MA499-002-00-00
Doc. ver.: 1.6

M16C v2.1

C CROSSCOMPILER
USER’S GUIDE

al TASKING [

A publication of
TASKING
Documentation Department

Copyright 0 2001 TASKING, Inc.

All rights reserved. Reproduction in whole or part is prohibited
without the written consent of the copyright owner.

The following trademarks are acknowledged:

FLEXIm is a registered trademark of Globetrotter Software, Inc.
HP and HP-UX are trademarks of Hewlett—Packard Co.
Intel is a trademark of Intel Corporation.
Motorola is a registered trademark of Motorola, Inc.
MS-DOS and Windows are registered trademarks of Microsoft Corporation.
SUN is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

E-mail: support@tasking.com
WWW: http://www.tasking.com

The information in this document bas been carefully reviewed and is
believed to be accurate and reliable. However, TASKING assumes 1o
liabilities for inaccuracies in this document. Furthermore, the delivery of
this information does not convey to the recipient any license to use or copy
the software or documentation, except as provided in an executed license
agreement covering the software and documentation.

TASKING reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

al TASKING [

SLN3LNOO

Table of Contents

1.1

1.2

13

131
1.3.2
133
1.4

1.4.1
1.5

151
1.5.2
153
1.5.4
155
15.6
15.7
1.5.8

2.1
2.2
23
23.1
232
233
2.4
2.5
2.6
2.6.1
2,62
2,63

Introduction 1-3
Installation for Windows 1-3
Installation for Linux, 1-4
RPM Installation 1-4
Targz Installation 1-5
Setting the Environment 1-6
Installation for UNIX HOStS 1-7
Setting the Environment 1-9
Licensing TASKING Products 1-9
Obtaining License Information 1-10
Installing Node-Locked Licenses 1-10
Installing Floating Licenses 1-11
Starting the License Daemon 1-13
Setting Up the License Daemon to Run Automatically . 1-14
Modifying the License File Location 1-16
How to Determine the Hostid 1-17
How to Determine the Hostname 1-18
Introduction to M16C C Cross—-Compiler 2-3
Product Definition, 2-5
General Implementation, 2-6
Compiler Phases i, 2-6
Frontend Optimizations 2-7
Backend Optimizations 2-10
Compiler Structure 2-11
Environment Variables 2-14
Sample Session ... 2-15
Using EDE 2-15
Using the Control Program 2-23

Using the Makefile 2-25

\4

3.1
3.2
3.2.1
3.2.1.1
3212
322
323
3.3
331
332
333
3.3.4
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

Table of Contents

Introduction 3-3
Accessing MemoOryo 3-4
Storage TYPES . . oo v 3-5
Non-Volatile RAM 3-6
Storage and Section Relations 3-7
Memory Models o 3-8
The at() Attribute 3-9
Data Types oo 3-11
ANSI C Type Conversionsc..covvuon... 3-12
Character Arithmetic 3-15
The bit Typeo i 3-16
Special Function Registers 3-17
Function Parameters 3-18
Parameter Passing and Function Return 3-19
Automatic Variables o oL 3-21
Initialized Variables 3-21
Type Qualifier volatile 3-21
Strings 3-22
Pointers 3-22
Inline C Functions, 3-23
Inline Assembly 3-24
Calling Assembly Functions 3-25
Intrinsic Functions 3-27
INEEITUPLS ..ot 3-31
Safer C ... 3-32
Structure Tags 3-33
Typedef 3-33
Switch Statement, 3-34
Portable CCode i, 3-35
How to Program Smart 3-35

Some Examples of Complex Declarators 3-36

Table of Contents

4.1
4.1.1
4.1.2
4.2
421
4.3
4.4
4.5
4.6

5.1
5.2
5.3

6.1
6.2
6.3
63.1
6.3.2
633
6.3.4
6.4

7.1
7.2
7.3
7.4
7.5

Control Program, 4-3
Detailed Description of the Control Program Options . 4-5
Environment Variables 4-9
Compiler 4-10
Detailed Description of the Compiler Options 4-14
Include Files i 4-73
Pragmast 4-75
AlIAS .o 4-78
Compiler Limits i 4-80
Introduction o 5-3
Return Values o, 5-4
Errors and Warnings 5-5
INtroduCtioniiii 6-3
Header Files it 6-3
CLibraries 64
Single Precision Floating Point 6-6
C Library Implementation Details 6-6
C Library Interface Description 6-12
Printf and Scanf Formatting Routines 6-62
Run—-time Library 6-63
Startup Code 7-3
Register USagecviiiiin, 7-3
Section UsSage oo v e 7-4
Stack ..o 7-6

Heap 7-8

\i

Vil

7.6
7.6.1
7.7
7.8

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11
3.11.1
3.11.2

4.1
4.2
4.3

6.1
6.2
6.3

Table of Contents

Floating Point Arithmetic 7-9
Special Floating Point Values 7-9
Interrupt Functions i 7-10
Assembly Language Interfacing 7-12
Introduction A-3
License Administration A-3
OVEIVIEW ..ot A-3
Providing For Uninterrupted FLEXIm Operation A-5
Daemon Options File A-7
License Administration Tools A-8
Imcksum A-10
Imdiag (Windows only) A-11
Imdown A-12
Imgrd o A-13
Imhostid A-15
Imremove A-16
Imreread A-17
Imstat A-18
Imswitchr (Windows only) A-20
Imver A-21
License Administration Tools for Windows A-22
LMTOOLS for Windows A-22
FLEXIm License Manager for Windows A-23
The Daemon Log File A-25
Informational Messages A-26
Configuration Problem Messages A-29
Daemon Software Error Messages A-31
FLEXIm License Errors A-33
Frequently Asked Questions (FAQs) A-37
License File Questions A-37
FLEXIm Version A-37

Windows QUEStioNS, A-38

Table of Contents

6.4
6.5

SAFER C

TASKING Questions

Using FLEXIm for Floating Licenses

INDEX

Table of Contents

Manual Purpose and Structure

This manual is aimed at users of the TASKING M16C C Cross—Compiler. It
assumes that you are familiar with the C language.

Related Publications
Conventions Used In This Manual

. Software Installation

Describes the installation of the C Cross—-Compiler for the M16C.

. Overview

Provides an overview of the TASKING M16C tool chain and gives you
some familiarity with the different parts of it and their relationship. A
sample session explains how to build an M16C application from your C
file.

. Language Implementation

Concentrates on the approach of the M16C architecture and describes
the language implementation. The C language itself is not described in
this document. We recommend: "The C Programming Language”
(second edition) by B. Kernighan and D. Ritchie (1988, Prentice Hall).

. Compiler Use
Deals with control program and C compiler invocation, command line
options and pragmas.

. Compiler Diagnostics
Describes the exit status and error/warning messages of the compilers.

. Libraries

Contains the library functions supported by the compilers and
describes their interface and 'header’ files.

. Run-time Environment

Describes the run—time environment for a C application. It deals with
items like assembly language interfacing, C startup code and
stack/heap size.

Xl

Xl Manual Purpose and Structure

A. Flexible License Manager (FLEXIm)
Contains a description of the Flexible License Manager.

B. Safer C
Supported and unsupported Safer C rules.

Manual Purpose and Structure X1

e The C Programming Language (second edition) by B. Kernighan and D.
Ritchie (1988, Prentice Hall)

* ANSI X3.159-1989 standard [ANSI]
* M16C C Cross—Assembler User’s Guide [TASKING, MA012000)
* M16C CrossView Pro Debugger User’s Guide [TASKING, MA012043]

e M16C/60 Series Software Manual, Mitsubishi 16-Bit Single-Chip
Microcomputer M16C Family

XV

Manual Purpose and Structure

The notation used to describe the format of call lines is given below:

{

italics

screen font

bold font

For example

Items shown inside curly braces enclose a list from which
you must choose an item.

Items shown inside square brackets enclose items that are
optional.

The vertical bar separates items in a list. It can be read as
OR.

Items shown in italic letters mean that you have to
substitute the item. If italic items are inside square
brackets, they are optional. For example:

Sfilename

means: type the name of your file in place of the word
Sfilename.

An ellipsis indicates that you can repeat the preceding
item zero or more times.

Represents input examples and screen output examples.

Represents a command name, an option or a complete
command line which you can enter.

conmand [option]... filenane

This line could be written in plain English as: execute the command
command with the optional options option and with the file filename.

Hllustrations

The following illustrations are used in this manual:

@ This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and Structure

@? This illustration indicates actions you can perform with the mouse.
This illustration indicates keyboard input.

ﬂj This illustration can be read as “See also”. It contains a reference to
another command, option or section.

XV

XVI Manual Purpose and Structure

SOFTWARE
INSTALLATION

al TASKING [

d31dVHO

Software Installation

This chapter describes how you can install the TASKING C Cross—Compiler
for the M16C Family on Windows 95/98/NT/2000, Linux and several UNIX
hosts.

Step 1
Start Windows (95/98/NT/2000), if you have not already done so.

Step 2
Insert the CD-ROM into the CD-ROM drive.

If the TASKING Welcome dialog box appears, skip to Step 5. Otherwise,
continue from Step 3.

Step 3

Select the St art button and select the Run. .. menu item.
Step 4
On the command line type:
d:\setup

(substitute the correct drive letter for your CD-ROM drive) and press the
<Ret ur n> or <Ent er > key or click on the OK button.

The TASKING Welcome dialog box appears.

Step 5

Select a product and click on I nstal | .

Step 6

Follow the instructions that appear on your screen.

@ You can find your serial number on the Certificate of Authenticity or
Product Update Form, delivered with the product.

1-4 Chapter 1

=

Step 7

License the software product as explained in section 1.5, Licensing
TASKING Products.

Each product on the CD-ROM is available as an RPM package and as a
gzipped tar file. For each product the following files are present:

SWor oduct —ver si on—RPM el ease. i 386. rpm
SWpr oduct —version. tar. gz

Both files contain exactly the same information. When your Linux
distribution supports RPM packages, you can install the . r pmfile.
Otherwise, you can install the product from the . t ar. gz file.

Step 1

In most situations you have to be “root” to install RPM packages, so either
login as "root”, or use the su command.

Step 2

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example / cdr om See the Linux manual pages about mount
for details.

Step 3
Go to the directory on which the CD-ROM is mounted:
cd /cdrom
Step 4
To install or upgrade all products at once, issue the following command:
rpm-U SW.rpm

This will install or upgrade all products in the default installation directory
/usr /| ocal . Every RPM package will create a single directory in the
installation directory.

Software Installation

The RPM packages are 'relocatable’; so it is possible to select a different
installation directory with the ——prefix option. For instance when you
want to install the products in / opt , use the following command:

rpm-U —prefix /opt SW.rpm

@ For Red Hat 6.0 users: The ——prefix option does not work with RPM

version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to
RPM verion 3.0.3 or higher, or use the . t ar. gz file installation described
in the next section if you want to install in a non-standard directory.

Step 1

Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.
Step 2

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example / cdr om See the Linux manual pages about mount
for details.

Step 3
Go to the directory on which the CD-ROM is mounted:
cd /cdrom

Step 4

To install the products from the . t ar. gz files in the directory
/usr /| ocal , issue the following command for each product:

tar xzf SWroduct-version.tar.gz —C /usr/| ocal

Every . t ar. gz file creates a single directory in the directory where it is
extracted.

1-5

1-6 Chapter 1

After you have installed the software, you can set some of the
environment variables to make invocation of the tools easier (when
invoking the tools from the command line). A list of all environment
variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have
just installed.

The environment variable TMPDIR can be used to specify a directory
where programs can place temporary files.

Software Installation

Step 1
Login as a user.
Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as root or use the su command.

Step 2

If you are a first time user decide where you want to install the product
(By default it will be installed in / usr/1 ocal).

Step 3

For CD-ROM install: insert the CD-ROM into the CD-ROM drive. Mount
the CD-ROM on a directory, for example / cdr om Be sure to use a ISO
9660 file system with Rock Ridge extensions enabled. See the UNIX
manual pages about mount for details.

Or:

For tape install: insert the tape into the tape unit and create a directory
where the contents of the tape can be copied to. Consider the created
directory as a temporary workspace that can be deleted after installation
has succeeded. For example:

nkdir /tnp/instdir

Step 4

For CD-ROM install: go to the directory on which the CD-ROM is
mounted:

cd /cdrom

For tape install: copy the contents of the tape to the temporary workspace
using the following commands:

cd /tnp/instdir
tar xvf /dev/tape

where tape is the name of your tape device.

@ If you have received a tape with more than one product, use the
non-rewinding device for installing the products.

1-7

1-8 Chapter 1

=

Step 5

Run the installation script:
sh install
and follow the instructions appearing on your screen.

First a question appears about where to install the software. The default
answer is / usr/ | ocal . On certain sites you may want to select another
location.

On some hosts the installation script asks if you want to install SW000098,
the Flexible License Manager (FLEXIm). If you do not already have FLEXIm
on your system, you must install it; otherwise the product will not work on
those hosts. See section 1.5, Licensing TASKING Products.

If the script detects that the software has been installed before, the
following messages appear on the screen:

* %k % V\ARN' ’\G * % %
SWKxxx Xxxx.xxxx al ready install ed.
Do you want to REINSTALL? [y, n]

Answering n (no) to this question causes installation to abort and the
following message being displayed:

=> | nstallation stopped on user request <=

Answering y (yes) to this question causes installation to continue. And the
final message will be:

Installati on of SWkxxx XxxX.XXxXx conpl eted.
For the M16C the directory cnil6¢ will be created.

Step 6

For tape install: remove the temporary installation directory with the
following commands:

cd /tmp
rm-—rf instdir

Step 7

If you purchased a protected TASKING product, license the software
product as explained in section 1.5, Licensing TASKING Products.

Software Installation

Step 8
Logout.

After you have installed the software, you can set some environment
variables to make invocation of the tools easier. A list of all environment
variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have
just installed.

The environment variable TMPDIR can be used to specify a directory
where programs can place temporary files.

TASKING products are protected with license management software
(FLEXIm). To use a TASKING product, you must install the licensing
information provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a
floating license. When you order a TASKING product determine which
type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the
product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among
users at one site. This license type does not lock the software to one
specific PC or workstation but it requires a network. The software can then
be used on any computer in the network. The license specifies the
number of users who can use the software simultaneously. A system
allocating floating licenses is called a license server. A license manager
running on the license server keeps track of the number of users.

1-10

=

Chapter 1

See the Flexible License Manager (FLEXIm) appendix for detailed
information on FLEXIm.

Before you can install a software license you must have a "License
Information Form” containing the license information for your software
product. If you have not received such a form follow the steps below to
obtain one. Otherwise, you can install the license.

Node-locked license (PC only)

1.

If you need a node-locked license, you must determine the hostid of the
computer where you will be using the product. See section 1.5.7, How to
Determine the Hostid.

When you order a TASKING product, provide the hostid to your local
TASKING sales representative. The License Information Form which
contains your license key information will be sent to you with the software
product.

Floating license

1.

If you need a floating license, you must determine the hostid and
hostname of the computer where you want to use the license manager.
Also decide how many users will be using the product. See section 1.5.7,
How to Determine the Hostid and section 1.5.8, How to Determine the
Hostname.

When you order a TASKING product, provide the hostid, hostname and
number of users to your local TASKING sales representative. The License
Information Form which contains your license key information will be sent
to you with the software product.

Keep your "License Information Form” ready. If you do not have such a
form read section 1.5.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure
described in section 1.2, Installation for Windows.

Software Installation

Step 2

Create a file called "l i cense. dat ” in the c: \ f | ex] mdirectory, using an
ASCII editor and insert the license information contained in the "License
Information Form” in this file. This file is called the "license file”. If the
directory c: \ f | ex] mdoes not exist, create the directory.

@ If you wish to install the license file in a different directory, see section
1.5.6, Modifying the License File Location.

@ If you already have a license file, add the license information to the

existing license file. If the license file already contains any SERVER lines,
you must use another license file. See section 1.5.6, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

ﬂj See the Flexible License Manager (FLEXIm) appendix for more information
on FLEXIm.

Keep your "License Information Form” ready. If you do not have such a
form read section 1.5.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure
described earlier in this chapter on the computer or workstation where
you will use the software product.

As a result of this installation two additional files for FLEXIm will be
present in the f | ex] msubdirectory of the toolchain:

Taski ng The Tasking daemon (vendor daemon).
i cense. dat A template license file.

Step 2

If you already have installed FLEXIm v6.1 or higher for Windows or v2.4
or higher for UNIX (for example as part of another product) you can skip
this step and continue with step 3. Otherwise, install SW000098, the
Flexible License Manager (FLEXIm), on the license server where you want
to use the license manager.

1-11

1-12

&

Chapter 1

The installation of the license manager on Windows also sets up the
license daemon to run automatically whenever a license server reboots.
On UNIX you have to perform the steps as described in section 1.5.5,
Setting Up the License Deaemon to Run Automatically.

It is not recommended to run a license manager on a Windows 95 or
Windows 98 machine. Use Windows NT instead (or UNIX).

Step 3

If FLEXIm has already been installed as part of a non—TASKING product
you have to make sure that the bi n directory of the FLEXIm product
contains a copy of the Tasking daemon (see step 1).

Step 4

)

Insert the license information contained in the "License Information Form’
in the license file, which is being used by the license server. This file is
usually called | i cense. dat . The default location of the license file is in
directory c: \ f | ex] mfor Windows and in
fusr/local/flexlmlicenses for UNIX.

If you wish to install the license file in a different directory, see section
1.5.6, Modifying the License File Location.

If the license file does not exist, you have to create it using an ASCII
editor. You can use the license file | i cense. dat from the toolchain’s
f | ex] msubdirectory as a template.

If you already have a license file, add the license information to the
existing license file. If the SERVER lines in the license file are the same as
the SERVER lines in the License Information Form, you do not need to add
this same information again. If the SERVER lines are not the same, you
must use another license file. See section 1.5.6, Modifying the License File
Location, for additional information.

Step 5

On each PC or workstation where you will use the TASKING software
product the location of the license file must be known. If it differs from
the default location (c: \ fl exI m i cense. dat for Windows,
fusr/local/flexlmlicenses/license.dat for UNIX), then you
must set the environment variable LM_LICENSE_FILE. See section 1.5.6,
Modifying the License File Location, for more information.

Software Installation 1-13

Step 6

Now all license infomation is entered, the license manager must be started
(see section section 1.5.4). Or, if it is already running you must notify the
license manager that the license file has changed by entering the
command (located in the flexIm bi n directory):

| nr er ead

On Windows you can also use the graphical FLEXIm Tools (Imtools): Start
Imtools (if you have used the defaults this can be done by selecting
Start | Progranms | TASKING FLEXI m | FLEX m Tool s), fill in the
current license file location if this field is empty, click on the Rer ead
button and then on OK. Another option is to reboot your PC.

The software product and license file are now properly installed.

Where to go from bere?

The license manager (daemon) must always be up and running. Read
section 1.5.4 on how to start the daemon and read section 1.5.5 for
information how to set up the license daemon to run automatically.

If the license manager is running, you can now start using the TASKING
product.

See the Flexible License Manager (FLEXIm) appendix for detailed
information on FLEXIm.

The license manager (daemon) must always be up and running. To start
the daemon complete the following steps on each license server:

Windows

1. Start the license manager tool by (Start | Prograns | TASKI NG
FLEXI m | FLEXI m Li cense Manager).

2. In the Control tab, click on the St art button.

3. Close the program by clicking on the OK button.

1-14

5

Chapter 1

UNIX

1.

2.

Log in as the operating system administrator (usually root).

Change to the FLEXIm installation directory (default
[usr/|ocal/flexl m:

cd /usr/local/flexlm
For C shell users, start the license daemon by typing the following:

bin/Inmgrd -2 —p —c licenses/license.dat >>& \
/var/tnp/license.log &

Or, for Bourne shell users, start the license daemon by typing the
following:

bin/Imrd -2 —p —c licenses/license.dat >>\
/var/tnp/license.log 2>&1 &

In these two commands, the -2 and —p options restrict the use of the
Imdown and Imremove license administration tools to the license
administrator. You omit these options if you want. Refer to the usage of
Imgrd in the Flexible License Manager (FLEXIm) appendix for more
information.

To set up the license daemon so that it runs automatically whenever a
license server reboots, follow the instructions below that are approrpiate
for your platform. steps on each license server:

Windows

1.

Start the license manager tool by (Start | Prograns | TASKI NG
FLEXI m | FLEXI m Li cense Manager).

In the Set up tab, enable the Start Server at Power—-Up check box.

Close the program by clicking on the OK button. If a question appears,
answer Yes to save your settings.

Software Installation

UNIX
In performing any of the procedures below, keep in mind the following:
* Before you edit any system file, make a backup copy.

HP-UX

1. Log in as the operating system administrator (usually root).

2. In the directory / et ¢/ rc. confi g. d create a file named r c. | ngrd with
the following contents. Replace FLEXLMDIR by the FLEXIm installation
directory (default / usr/1 ocal / f| ex] m):

#!/sbin/sh

FLEXLMDI R/ bin/I mgrd -2 —p —c FLEXLMDI R/l icenses/|icense.dat >> \
/var/tnp/license.log 2>&1 &

After the —c option, you have to specify the correct location of the license
file.

SunOS4

1. Log in as the operating system administrator (usually root).

2. Append the following lines to the file / et ¢/ rc. | ocal . Replace
FLEXIMDIR by the FLEXIm installation directory (default
[usr/local/flexlm:

FLEXLMDI R/ bin/I mgrd -2 —p —c FLEXLMDI R/l icenses/|icense.dat >> \
/var/tnp/license.log 2>&1 &

SunOS5 (Solaris 2)

1. Log in as the operating system administrator (usually root).

2. In the directory /et c/init. d create a file named r c. | mgr d with the
following contents. Replace FLEXLMDIR by the FLEXIm installation
directory (default / usr/1 ocal / f1 exl m):

#!'/ bi n/ sh
FLEXLMDI R/ bin/I mgrd -2 —p —c FLEXLMDI R/ licenses/license.dat >> \
/var/tnp/license.log 2>&1 &
3. Make it exacutable:

chnod u+x rc.|lnmgrd

1-15

1-16

=

Chapter 1

4. Create an 'S’ link in the / et ¢/ r ¢3. d directory to this file and create 'K’

links in the other / et ¢/ r c?. d directories:

In /etc/init.d/rc.lngrd /etc/rc3.d/ Snunrc. | ngrd
In /etc/init.d/rc.lngrd /etc/rc?.d/ Knunrc. | ngrd

num must be an approriate sequence number. Refer to you operating
system documentation for more information.

The default location for the license file on Windows is:
c:\flexI mlicense. dat

On UNIX this is:
fusr/local/flexlmlicenses/license. dat

If you want to use another name or directory for the license file, each user
must define the environment variable LM_LICENSE_FILE. Do this in

aut oexec. bat (Windows 95/98), from the Control Panel —-> System
| Environment (Windows NT) or in a UNIX login script.

If you have more than one product using the FLEXIm license manager you
can specify multiple license files to the LM_LICENSE_FILE environment
variable by separating each pathname {fpath) with a ’;’ (on UNIX also ’?"):

Example Windows:
set LM LICENSE FlLE=c:\flexlmlicense.dat;c:\Ilicense.txt
Example UNIX:

setenv LM LI CENSE_FI LE
/usr/local/flexImlicenses/license.dat:/nyprod/license.txt

If the license file is not available on these hosts, you must set
LM_LICENSE_FILE to port@host; where host is the host name of the
system which runs the FLEXIm license manager and port is the TCP/IP port
number on which the license manager listens.

Software Installation

&

To obtain the port number, look in the license file at host for a line starting
with "SERVER”. The fourth field on this line specifies the TCP/IP port
number on which the license server listens. For example:

setenv LM LI CENSE FI LE 7594@l | i ot

See the Flexible License Manager (FLEXIm) appendix for detailed
information.

The hostid depends on the platform of the machine. Please use one of the
methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid

HP-UX lanscan 0000F0050185
(use the station address
without the leading '0x’)

SunOS/Solaris | hostid 170a3472

Windows tkhostid 0800200055327
(or use Imhostid)

Table 1-1: Determine the bhostid

If you do not have the program tkhostid you can download it from our
Web site at: http://www.tasking.com/support/flexlm/tkhostid.zip . It is also
on every product CD that includes FLEXIm.

1-17

1-18

Chapter 1

To retrieve the hostname of a machine, use one of the following methods.

Platform Method
HP-UX hostname
SunOS/Solaris | hostname

Windows 95/98

Go to the Control Panel, open "Network”, click on
"Identification”. Look for "Computer name”.

Windows NT

Go to the Control Panel, open "Network”. In the
"Identification” tab look for "Computer Name”.

Table 1-2: Determine the hostname

OVERVIEW

al TASKING [

d31dVHO

Overview

This manual provides a functional description of the TASKING M16C C
Cross—-Compiler. This manual uses cm16 (the name of the binary) as a
shorthand notation for "TASKING M16C C Compiler”.

The TASKING M16C C compiler accepts source programs written in ANSI
C and translates these into M16C assembly source code files. The compiler
accepts language extensions to improve code performance and to allow
the use of typical M16C architectural provisions efficiently at the C level.
The compiler is ANSI C compatible and consists of three major parts; the
preprocessor, the C frontend and the associated M16C backend or code
generator. These are all integrated into a single program to avoid the need
of intermediate files, thus speeding up the compilation process. It also
simplifies the implementation of joint frontend-backend optimization
strategies and preprocessor pragmas. This effectively makes the compiler a
one pass compiler, with minimum file I/O overhead.

The compiler processes one C function at a time, until the entire source
module has been read. The function is parsed, checked on semantic
correctness and then transformed into an intermediate code tree that is
stored in memory. Code optimizations are performed during the
construction of the intermediate code, and are also applied when the
complete function has been processed. The latter are often referred to as
global optimizations.

cm16 generates assembly source code using the M16C assembly language
specification, you must assemble this code with the TASKING M16C
Cross—Assembler. This manual uses asm16 as a shorthand notation for
"TASKING M16C Cross—Assembler”.

You can link the generated object with other objects and libraries using
the TASKING lkm16 M16C linker. In this manual we use Ikm16 as a
shorthand notation for "TASKING lkm16 M16C linker”. You can locate the
linked object to a complete application using the TASKING lem16 M16C
locator. In this manual we use lem16 as a shorthand notation for
"TASKING lem16 M16C locator”.

2-3

2-4

Chapter 2

The program ccm16 is a control program. The control program facilitates
the invocation of various components of the M16C toolchain. ccm16
recognizes several filename extensions. C source files (. ¢) are passed to
the compiler. Assembly sources (. asm) are preprocessed and passed to
the assembler. Relocatable object files (. obj) and libraries (. a) are
recognized as linker input files. Files with extension . out and . dsc are
treated as locator input files. The control program supports options to stop
at any stage in the compilation process and has options to produce and
retain intermediate files.

You can debug the software written in C with the TASKING CrossView Pro
high-level language debugger. This manual uses XVW as a shorthand
notation for "TASKING CrossView Pro high-level language debugger”. A
list of supported platforms and emulators is available from TASKING.

Overview

Name:
TASKING M16C C Cross—Compiler

Ordering Code:
TK499-002-05

Target Assembler:
TASKING M16C Cross—Assembler
TK499-000-05 (included in TK499-002-05)
Target Debugger:
TASKING M16C CrossView Pro debugger Simulator (TK499-043-05)

TASKING M16C CrossView Pro debugger ROM Monitor (TK499-041-05)

Target Processors:

All M16C derivatives. Special function registers can be accessed by means
of a user-definable register file.

2-5

2-6 Chapter 2

This section describes the different phases of the compiler and the target
independent optimizations.

During the compilation of a C program, a number of phases can be
identified. These phases are divided into two groups, referred to as front
end and backend.

Jfrontend:
The preprocessor phase:
File inclusion and macro substitution are done by the preprocessor
before parsing of the C program starts. The syntax of the macro

preprocessor is independent of the C syntax, but also described in the
ANSI X3.159-1989 standard.

The scanner phase:
The scanner converts the preprocessor output to a stream of tokens.
The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs
a syntactic and semantic analysis of the program, and generates an
intermediate representation of the program.

The frontend optimization phase:

Target processor independent optimization is performed by
transforming the intermediate code. The next section discusses the
frontend optimizations.

backend:

The backend optimization phase:

Performs target processor specific optimizations. Very often this means
another transformation of the intermediate code and actions like
register allocation techniques for variables, expression evaluation and
the best usage of the addressing modes. The chapter Language
Implementation discusses this item in more detail.

Overview

The code generator phase:

This phase converts the intermediate code to an internal instruction
code, representing the M16C assembly instructions.

The peephole optimizer:

This phase uses pattern matching techniques to perform peephole
optimizations on the internal code. The peephole optimizer translates
the internal instruction code into assembly code for asm16.

All phases (of both frontend and backend) of the compiler are combined
into one program. The compiler does not use intermediate files for
communication between the different phases of compilation. The back
end part is not called for each C statement, but starts after a complete C
function has been processed by the frontend (in memory), thus allowing
more optimization. The compiler only requires one pass over the input
file, resulting in relatively fast compilation.

The command line option —O controls the amount of optimization applied
on the C source. Within a source file, the pragma #pragna opti nm ze
sets the optimization level of the compiler. Using the pragma, certain
optimizations can be switched on or off for a particular part of the
program. Several optimizations cannot be controlled individually. e.g.,
constant folding will always be done.

The compiler performs the following optimizations on the intermediate
code. They are independent of the target processor and the code
generation strategy:

Constant folding

Expressions only involving constants are replaced by their result.

Expression rearrangement

Expressions are rearranged to allow more constant folding. E.g. 1+ (x-3)
is transformed into x + (1-3), which can be folded.

2-8 Chapter 2

Expression simplification

Multiplication by 0 or 1 and additions or subtractions of 0 are removed.
Such useless expressions may be introduced by macros, or by the
compiler itself (e.g., array subscription).

Logical expression optimization
Expressions involving '&&’, |
series of conditional jumps.

“and " are interpreted and translated into a

Loop rotation

With f or and whi | e loops, the expression is evaluated once at the 'top’
and then at the 'bottom’ of the loop. This optimization does not save code,
but speeds up execution.

Switch optimization

A number of optimizations of a switch statement are performed, such as
the deletion of redundant case labels or even the deletion of the switch.

Control flow optimization

By reversing jump conditions and moving code, the number of jump
instructions is minimized. This reduces both the code size and the
execution time.

Jump chaining

A conditional or unconditional jump to a label which is immediately
followed by an unconditional jump may be replaced by a jump to the
destination label of the second jump. This optimization does not save
code, but speeds up execution.

Remove useless jumps

An unconditional jump to a label directly following the jump is removed.
A conditional jump to such a label is replaced by an evaluation of the
jump condition. The evaluation is necessary because it may have side
effects.

Conditional jump reversal

A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the
code size and the execution time.

Overview

Cross jumping and branch tail merging

Identical code sequences in two different execution paths are merged
when this is possible without adding extra instructions. This transformation
decreases code size rather than execution time, but under certain
circumstances it avoids the execution of one jump.

Constant/copy propagation

A reference to a variable with known contents is replaced by those
contents.

Common subexpression elimination

The compiler has the ability to detect repeated uses of the same (sub-)
expression. Such a common” expression may be temporarily saved to
avoid recomputation. This method is called common subexpression
elimination, abbreviated CSE.

Dead code elimination

Unreachable code can be removed from the intermediate code without
affecting the program. However, the compiler generates a warning
message, because the unreachable code may be the result of a coding
error.

Loop optimization

Invariant expressions may be moved out of a loop and expressions
involving an index variable may be reduced in strength.

Loop unrolling

Eliminate short loops by replacing them with a number of copies.

Sharing of string literals and floating point constants

String literals and floating point constants are put in ROM memory. The
compiler overlays identical strings (within the same module) and let them
share the same space, thus saving ROM space. Likewise identical floating
point constants are overlaid and allocated only once.

2-9

2-10 Chapter 2

The following optimizations are target dependent and are therefore
performed by the backend.
Allocation graph

Variables, parameters, intermediate results and common subexpressions
are represented in allocation units. Per function, the compiler builds a
graph of allocation units which indicates which units are needed and
when. This allows the register allocator to get the most efficient
occupation of the available registers. The compiler uses the allocation
graph to generate the assembly code.

Peephole optimizations

The generated assembly code is improved by replacing instruction
sequences by equivalent but faster and/or shorter sequences, or by
deleting unnecessary instructions.

Leaf function bandling
Leaf functions (function not calling other functions), are handled specially
with respect to stack frame building.

Dead store elimination

Expressions from which the result is never used are eliminated.

Interrupt frame optimizations

Only resources required by the interrupt function are saved.

Tail recursion elimination

Replace a recursion statement to branch to the beginning of the statement.

Jump table optimizations

Three ways of code generation for a switch statement are supported: a
jump chain (linear switch), a jump table, or a binary search table.

Overview

If you want to build an M16C application you need to invoke the
following programs directly, or via the control program:

The C compiler (cm16), which generates an assembly source file
from the file with suffix . ¢. The suffix of the compiler output file is
. src. However, you can direct the output to st dout with the -n
option, or to another file with the —o option. C source lines can be
intermixed with the generated assembly statements with the -s
option. High level language debugging information can be
generated with the —g option. You are advised not to use the -g
option when inspecting the generated assembly source code,
because it contains a lot of 'unreadable’ high level language debug
directives. The C compilers make only one pass on every file. This
pass checks the syntax, generates the code and performs code
optimization.

The corresponding cross—assembler (asm16), which processes the
generated assembly source file into a relocatable object file with
suffix . obj . A full assembly listing with suffix . | st is available
after this stage.

The Ikm16 linker, which links the generated relocatable object files
and C-libraries. The result is a relocatable object file with suffix
.out . A linker map file with suffix . | nl is available after this stage.

The lem16 locator, which locates the generated relocatable object
files. The result is an absolute loadable file with suffix . abs. A full
application map file with suffix . map is available after this stage.

You can directly load the output file of the locator with extension . abs
into the CrossView Pro debugger.

The next figure explains the relationship between the different parts of the
TASKING M16C toolchain:

2-11

2-12 Chapter 2

control program C source file
ccml6 .C

1
C preprocessor

C compiler
cml6
| [preprocessor output

assembly file
.src
|
assembler
asml6

C__ listfile .Ist

relocatable object

library maintainer module . obj object reader
arm16 prm16
relocatable object
library . a
incremental
linker 1km16 call tree file . cal

linker object link map file . I nl

. out
locator description _ |
file .dsc
locator
lcm16
| | C__ locate map file
| I
Intel Hex absolute load Motorola S—record
object file module object file
. hex . abs .sre
e U |> 4
High level language M16C
debugger Execution
CrossView xfwm16 Environment

Figure 2-1: M16C development flow

Overview 2-13

The program cecm16 is a so—called control program, which facilitates the
invocation of various components of the M16C toolchain. C source
programs are compiled by the compiler, assembly source files are passed
to the assembler. A C preprocessor program is available as an integrated
part of the C compiler. The control program recognizes the file extensions
.aand . obj as input files for the linker. The control program passes files
with extensions . out and . dsc to the locator. All other files are
considered to be object files and are passed to the linker. The control
program has options to suppress the locating stage (-cl), the linker stage
(=c) or the assembler stage (—cs).

Optionally the locator, lecm16 produces output files in Motorola S-record
format or Intel Hex format. The default output format is IEEE-695.

Normally, the control program removes intermediate compilation results,
as soon as the next phase completes successfully. If you want to retain all
intermediate files, the option —tmp prevents removal of these files.

For a description of all utilities available and the possible output formats of
the locator, see the M16C Cross—Assembler and Utilities User’s Guide.

The name of the M16C CrossView Pro Debugger is xfwm16 For more
information check the M16C CrossView Pro Debugger User’s Guide.

2-14 Chapter 2

This section contains an overview of the environment variables used by
the M16C toolchain.

Environment Description

Variable

ASM16CINC Specifies an alternative path for include files for the
assembler.

CM16CINC Specifies an alternative path for #include files for the
C compiler cm16.

CM16CLIB Specifies a path to search for library files used by
the linker Ikm16.

CCM16CBIN When this variable is set, the control program,

ccm16, prepends the directory specified by this
variable to the names of the tools invoked.

CCM16COPT Specifies extra options and/or arguments to each
invocation of ccm16. The control program
processes the arguments from this variable before
the command line arguments.

PATH Specifies the search path for your executables.

TMPDIR Specifies an alternative directory where programs
can create temporary files. Used by cm16, ccm16,
asm16, lkm16, lcm16, arm16.

Table 2-1: Environment variables

Overview

&

The subdirectory dhry in the exanpl es subdirectory contains a demo
program for the M16C toolchain.

In order to debug your programs, you will have to compile, assemble, link
and locate them for debugging using the TASKING M16C tools. You can
do this with one call to the control program or you can use EDE, the
Embedded Development Environment (which uses a project file and a
makefile) or you can call the makefile from the command line.

EDE stands for "Embedded Development Environment” and is the
MS-Windows oriented Integrated Development Environment you can use
with your TASKING toolchain to design and develop your application.

To use EDE on the dhry demo program in the subdirectory dhry in the
exanpl es subdirectory of the M16C product tree follow the steps below.
This procedure is outlined as a guide for you to build your own
executables for debugging.

The dialog boxes shown in this manual serve as an example. They may
slightly differ from the ones in your product.

How to Start EDE

£ TASKING EDE [Toolchain | MEE

File Edt Seaich Project Test Document Customize Tools Window Help EDE

e -3 -aeugsman [-1#H#z¢

You can launch EDE by double-clicking on the EDE shortcut on your
desktop.

Elﬂ

The EDE screen provides you with a menu bar, a toolbar (command
buttons) and one or more windows (for example, for source files), a status
bar and numerous dialog boxes.

Ak

¢ u S PRI BAFEDE D

Compile Buld FAebuld Debug Orvling Manuals

2-15

2-16

5

Chapter 2

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the
toolchain of the product you purchased is selected and displayed in the
title of the EDE desktop window.

If you selected the wrong toolchain or if you want to change toolchains do
the following:

Access the EDE menu and select the Sel ect Tool chai n. .. menu item.
This opens the Sel ect Tool chai n dialog.

Select the toolchain you want. You can do this by clicking on a toolchain
in the Tool chai ns list box and press OK.

Select Toolchain

Product Folder:
|ehearget

Toolchains: Cancel

TASKING <taclchainy: <y

Browsze. .

Scan Dizk...

Delete

EE

¥ Display 'Toolchain switched to ... message

If no toolchains are present, use the Browse. .. or Scan Di sk. ..
button to search for a toolchain directory. Use the Browse. . . button if
you know the installation directory of another TASKING product. Use the
Scan Di sk. .. button to search for all TASKING products present on a
specific drive. Then return to step 2.

How to Open an Existing Project

1.

2.

Follow these steps to open an existing project:
Access the Proj ect menu and select Set Current....

Click the project file to open. For the dhry demo program select the file

dhry. pj t in the subdirectory dhry in the exanpl es subdirectory of the
M16C product tree. If you have used the defaults, the file dhry. pj t is in
the directory c: \ cnil6c\ exanpl es\ dhry.

Overview 2-17

How to Load/Open Files

The next two steps are not needed for the demo program because the files
dhry_1. ¢ and dhry_2. ¢ are already open. To load the file you want to
look at.

1. In the Proj ect menu click on Load files....
This opens the Choose Project Files to Edit dialog.

2. Choose the file(s) you want to open by clicking on it. You can select
multiple files by pressing the <Ct r | > or <Shi ft > key while you click on
a file. With the <Ct r | > key you can make single selections and with the
<Shi f t > key you can select everything from the first selected file to the
file you click on. Then press the OK button.

Choose Project Files to Edit

Project Files: 1 of & selected

C:Mtargetiexampleshdemotiwelcome. bt kK
| C:bargethexamplesh dema’readme: bt
:L-hbargethexamplest.demohdemo. o
C:Mbargetherampleshdemot.addone. asm
C:Mtargethexampleshdemaot. . libharcstart asm

Cancel

Help

Invert

dd Ay

Clear

This launches the file(s) so you can edit it (them).

How to Build the Demo Application
The next step is to compile the file(s) together with its dependent files so
you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify
additional build options such as to stop the build process on errors and to
select a command to be executed as foreground or background process.

1. Access the EDE menu and select the Bui | d Opti ons. .. menu item.

2-18 Chapter 2

Manualz 3

Processor Options...

C++ Compiler Options

C Compiler Options
Safer C Compiler Options
Azzembler Options
Lirker/Locator Options. ..
Crossiiew Pra Options. ..

Eg Save/Restore Options...

Directonies. ..
Scan Dependencies DEMO.C
Scan all Dependencies

* ¥ v ¥

Select Toolchain...

About EDE...

This opens the Bui | d Opti ons dialog.

Build Dptions

Build | Misc |

W Usze TASKING build and eror parzer settings

¥ Save file[s] before starting a command

[T Scan dependencies before starting 2 build

IV Stop build process on emor
™ Keep temporary files that are generated during a build

™ Use external makefile (instead of 'demo.mak’) :

™ Use additional make options:

[utput directann(instead of preEct drectan] |

Ok I Cancel Defaults

Overview 2-19

Build Dptions

Buld Mo |

[~ Show command line options at the bottorn of a ool kaks

™ Use third party debugger:

I s BiuEfshel lwhe el debuames

ak I Cancel | Defaults |

If you set the Show conmand |ine options at the bottomof a

t ool tab check box EDE shows the command line equivalent of the
selected tool option. You can also click on the arrow button (left of the OK
button) in a tool options dialog.

;l 0K I Cancel | Defaults | Help |

Optiohs string:

ooty ane fifed here

-
[

2. Make your changes and press the OK button.

3. Select the EDE | Directories menu item and check the directory paths
for programs, include files and libraries. You can add your own directories
here, separated by semicolons.

2-20

-

Chapter 2

Directories E

YY'ou can use thiz dialog to specify which directories to gearch for binay, include and
library files. Tao specify more than one directory, separate them with a semicaolon).

Executable Files Path:

|c: “targetsbin Browse |

Include Files Path:

|c: targethinclude;c: \mping Browse |

Library Files Path:

Ic:\target\lib Browse |
(]4 I Cancel | Drefaults |

4. Access the EDE menu and select the Scan Al |l Dependenci es menu

item.

Click on the Execut e ’ Make’ command button. The following button is
the execute Make button which is located in the toolbar.

If there are any unsaved files, EDE will ask you in a separate dialog if you
want to save them before starting the build.

How to View the Results of a Build

Once the files have been processed you can inspect the generated
messages in the Bui | d tab:

TASKI NG program buil der vx.y rz SN00000001-020 (c) year TASKING Inc.
Conpi ling "dhry_2.c”

Assenbling "dhry_2.src”

Conpiling "dhry_1.c”

Assenbling "dhry_1.src”

Linking to "dhry. out”

Locating "dhry.out” to "dhry. abs” (1EEE-695)

Overview

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and
formatted they can be executed by CrossView Pro.

To execute CrossView Pro:

Click on the Debug appl i cati on button. The following button is the
Debug application button which is located in the toolbar.

&

CrossView Pro is launched. CrossView Pro will automatically download the
compiled file for debugging.

How to Load an Application

2.

You must tell CrossView Pro which program you want to debug. To do
this:

Click on Fi | e in the menu bar and select the Load Synbol i ¢ Debug
I nfo... item. This opens up the Load Synbolic Debug I nfo dialog
box.

Click Load.

How to View and Execute an Application

2.

3.

To view your source while debugging, the Source Window must be open.
To open this window,

Click on Vi ew in the menu bar and select the Sour ce—>Sour ce | i nes
item.

Before starting execution you have to reset the target system to its initial
state. The program counter, stack pointer and any other registers must be
set to their initial value. The easiest way to do this is:

Click on Run in the menu bar and select the Pr ogr am Reset item.
Again click on Run in the menu bar and now select the Ani mat e item.

The program dhry_1. abs is now stepping through the high level
language statements. Using the Accelerator bar or the menu bar you can
set breakpoints, monitor data, display registers, simulate I/O and much
more. See the CrossView Pro Debugger User’s Guide for more information.

2-21

2-22

Chapter 2

How to Start a New Project

When you first use EDE you need to setup a project space and add a new
project:

1. Access the Proj ect menu and select Proj ect Space | New.. ..
2. Give your project space a name and then click OK.

3. Click on the Add new project to project space button.

4. Give your project a name and then click OK.

The Proj ect Properti es dialog box then appears for you to identify
the files to be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

Project Properties [x]
2 <Default Settings> Ditectaories I tembers I Tools I Enars I Filters I
demo (1 Project) Project: C:Mtargethexampleshdematdemo. pit
By demo (0 Files)

| Files: = .IBTX .

Add newfile [/ Add existing files
Scan existing files

* If you do not have any source files yet, click on the Add new file
to project button in the Proj ect Properties dialog. Enter a new
filename and click OK.

* To add existing files to a project by specifying a file pattern click on
the Scan existing files into project button in the Proj ect
Properti es dialog. Select the directory that contains the files you
want to add to your project. Enter one or more file patterns separated
by semicolons. The button next to the Patt er n field contains some
predefined patterns. Next click OK.

* To add existing files to a project by selecting individual files click on
the Add existing files to project button in the Proj ect
Properti es dialog. Select the directory that contains the files you
want to add to your project. Add the applicable files by
double-clicking on them or by selecting them and pressing the Qpen
button.

The new project is now open.

6. Click Project | Load Files to open files you want on your EDE
desktop.

Overview 2-23

EDE automatically creates a makefile for the project. EDE updates the
makefile every time you modify your project.

A detailed description of the process using the sample program si eve is
described below. This procedure is outlined as a guide for you to build
your own executables for debugging.

1. Make the subdirectory dhry of the exanpl es directory the current
working directory.

2. Be sure that the directory of the binaries is present in the PATH
environment variable.

3. Compile, assemble, link and locate the modules using one call to the
control program ccm16:

ccnlé —g —M —o dhry. abs dhry_1.c dhry_2.c

The —g option specifies to generate symbolic debugging information. This
option must always be specified when debugging with CrossView Pro.

The -M option specifies to generate map files.
The -0 option specifies the name of the output file.

The command in step 3 generates the object file dhry_1. obj , and
dhry_2. obj the linker map file dhry. | nl , the locator map file

dhry. map and the absolute output file dhry. abs. The file dhry. abs is
in the IEEE Std. 695 format, and can directly be used by CrossView. No
separate formatter is needed.

Now you have created all the files necessary for debugging with
CrossView Pro with one call to the control program.

If you want to see how the control program calls the compiler, assembler,
linker and locator, you can use the =v0 option or =v option. The -v0
option only displays the invocations without executing them. The —v
option also executes them.

ccnml6é —-g —M —o dhry. abs dhry_1.c dhry_2.c -vO

2-24

Chapter 2

The control program shows the following command invocations without
executing them (UNIX output):

ML6C control programva.b rc SNO00000-003 (c)year TASKING |Inc.
dhry_1.c:

+ cml6 —e —g —-Ms —0 /tnp/cc26910b. src dhry_1.c

+ asml6 /tnp/cc26910b.src —e —g —o dhry_1. obj

dhry_2.c:

+ cml6 —e —g —-Ms —0 /tnp/cc26910c. src dhry_2.c

+ asml6 /tnp/cc26910c.src —e —g —o dhry_2. obj

+ | kml6é —e —M dhry_1.0bj dhry_2.0obj —-Ics —Ins —lIfps —Irts —odhry.out —-Qdhry
+ lcml6 —e —M —odhry. abs —dmil6c. dsc dhry. out

The —e option removes output files after errors occur. The —-Ms option
selects the small memory model. The -Ics, -Ifps and -Irts options of the
linker specify to link the appropriate C libraries. The —=O option of the
linker specifies the basename of the map file. The -d option of the locator
specifies the name of the locator description file.

As you can see, the tools use temporary files for intermediate results. Also
the file dhry. out will be removed afterwards. If you want to keep the
intermediate files you can use the —=tmp option. The following command
makes this clear.

ccnmlé —g —M —o dhry. abs dhry_1.c dhry_2.c —-vO —tnp

This command produces the following output:

ML6C control programva.b rc SNO00000-003 (c)year TASKI NG |nc.
dhry_1.c:

+ cml6 —e —g —Ms —o dhry_1.src dhry_1.c

+ asml6 dhry_1.src —e —g —o dhry_1. obj

dhry_2.c:

+ cml6 —e —-g -Ms —o dhry_2.src dhry_2.c

+ asnl6 dhry_2.src —e —g —o dhry_2. obj

+ 1 kml6 —e —M dhry_1.0bj dhry_2.0bj —-lcs -Inms —Ifps —Irts —odhry.out —-Qdhry
+ lcml6 —e —M —odhry. abs —dml6c. dsc dhry. out

As you can see, if you use the —-tmp option, the assembly source files and
linker output file will be created in your current directory also.

Of course, you will get the same result if you invoke the tools separately
using the same calling scheme as the control program.

As you can see, the control program automatically calls each tool with the
correct options and controls. The control program is described in detail in
Chapter Compiler Use.

Overview 2-25

The subdirectories in the exanpl es directory each contain a makefil e
which can be processed by mkm16. Also each subdirectory contains a
readne. t xt file with a description of how to build the example.

To build the dhry demo example follow the steps below. This procedure
is outlined as a guide for you to build your own executables for
debugging.

1. Make the subdirectory dhry of the exanpl es directory the current
working directory.

This directory contains a makefile for building the dhry demo example. It
uses the default mkm16 rules.

2. Be sure that the directory of the binaries is present in the PATH
environment variable.

3. Compile, assemble, link and locate the modules using one call to the
program builder mkm16:

nmkml6
This command will build the example using the file makefil e.

To see which commands are invoked by mkm16 without actually
executing them, type:

nkml6é —n
This command produces the following output:
ML6C program buil der vx.y rz SNO00000-003 (c)year TASKING, Inc.
ccm6é —c —o dhry_1.0bj -g -w91 -w183 —-w303 -Wa-gsL dhry_1.c
ccnlé —c —o dhry_2.0bj -g -w91 -w183 -w303 —-\Wa—gsL dhry_2.c
ccml6 —o dhry_1.abs dhry_1.0bj dhry_2. obj

The -g option in the makefile is used to instruct the C compiler to
generate symbolic debug information. This information makes debugging
an application written in C much easier to debug.

The -=w option in the makefile is used to suppress a warning.

The -o option specifies the name of the output file.

2-26 Chapter 2

=

@ Depending on the contents of the makef i | e other options can be
displayed than the options described above. These are not of interest at
this moment.

To remove all generated files type:

nkml6 cl ean

Overview 2-27

2-28 Chapter 2

LANGUAGE
IMPLEMENTATION

al TASKING [

d31dVHO

Language Implementation

The TASKING C cross—compiler (cm16) offers a new approach to
high-level language programming for the M16C family. It conforms to the
ANSI standard, but allows you to control the special functions of the M16C
in C.

This chapter describes the C language implementation in relation to the
M16C architecture.

The extensions to the C language in cm16 are:

_bit You can use data type _bi t for the type definition of scalars
in the M16C bit-addressable area, and for the return type of
functions.

_sfrbit Data type for the declaration of Special Function Registers.

The compiler does not allocate memory for an _sfrhbit.

_sfrbyte Data type for the declaration of Special Function Registers.
The compiler does not allocate memory for an _sf r byt e.

_sfrword Data type for the declaration of Special Function Registers.
The compiler does not allocate memory for an _sf rword.

_sfrlong Data type for the declaration of Special Function Registers.
The compiler does not allocate memory for an _sfrl ong.

_at You can place a variable at an absolute address.

storage types
Apart from a memory category (extern, static, ...) you can
specify a storage type in each declaration. This way you
obtain a memory model-independent addressing of variables
in several address ranges (_sfr, _near, _far, _rom
_farrom _nearrom).

inline C functions
You can specify to inline a function body instead of calling
the function by using the _i nl i ne keyword.

assembly functions
Assembly functions can be called from C when they are
prototyped with the _asnf unc keyword.

3-3

3-4

Chapter 3

interrupt functions
You can specify interrupt functions directly through interrupt
vectors in the C language (_i nt errupt keyword). You may
also specify the register bank to be used.

The M16C has an address range of 1 Megabyte accessible via 20-bit
addresses in one linear memory area.

cm16 offers two ways of dealing with the separate address spaces
implemented in the M16C, which can be combined. You can:

— specify a storage type (and perhaps also a target memory of a
pointer) with the declaration of a C variable

and you are able to:

— select a memory model, specifying which memory space must be
used (as default) for all C variables which do not have an explicit
storage specifier. This is very useful for compiling existing C source,
which does not need to be adapted for the M16C.

In practice the majority of the C code of a complete application is standard
C (without using any language extension). You can compile this part of
the application without any modification, using the memory model which
fits best to the requirements of the system (code density, amount of
external RAM etc.).

Only a small part of the application uses language extensions. These parts
often deal with items such as:

- 1/0, using the special function registers

— high execution speed needed

— high code density needed

- access to non-default memory required (ROM, internal RAM)

- bit type needed

- Cinterrupt functions

Language Implementation

An object other than a function or an automatic (stack) variable cannot be
referred to solely by its starting address, because this might be valid for
several address spaces. You can explicitly assign each variable to one of
the logical address spaces (_near, _f ar, _rom) by using a type specifier.
This specifier determines the ’storage type’ of static objects.

cm16 recognizes the following storage type specifiers:

Storage Type Description

_bita bit-addressable RAM.

_hear Data is located in the first 64 Kb of memory.

_far Data is located in the SFR space.

_rom internal/external ROM. The compiler infers the type qualifier
const.

_farrom ROM data located anywhere in memory.

_nearrom ROM data located in the first 64 Kb of memory.

Table 3-1: Storage type specifiers

Keywords like _i nt ernal and _ext er nal , to specify whether code or
data should be located in on—-chip memory or external memory are NOT
provided. However, code or data stored in on—chip memory can be faster
accessed, and access consumes less power. On—chip and external memory
access is exactly the same from the perspective of the code generator.
Locating code and data in on—chip memory or external memory is solely a
problem to be solved by the locator, not by the compiler.

The pragma renamesect is used to rename a code or data section. The
DELFEE locator language is used to specify how to locate the renamed
section. Solving locate problems within the locator language instead of in
the C source, gives you the ability to tune an existing application for
another M16C derivative without updating the source code.

Functions are by default allocated in Program Memory; the storage
specifier may be omitted in that case. Also, function return values cannot
be assigned to a storage area.

In addition to static storage specifiers, a static object can be assigned to a
fixed memory address using the _at () keyword.

3-6 Chapter 3

=

cm16 treats the storage specifier _r omtype in a special way: _r omalways
implies the type qualifier const .

Const Qualifier

The ANSI standard states that the type qualifier const can be used to
specify ‘read-only’ objects (or: are not ’lvalues’). An ANSI C compiler may
allocate static const objects in ROM memory. Allocating constants in ROM
is therefore possible. Default are constants allocated in the M16C code
space. Constants will be placed in sections with the INIT attribute by
default. So, cm16 treats const just as a type qualifier, which allows the
compiler to check on illegal Ivalue use. This is exactly the way it is meant
to be used in the ANSI definition.

It is also possible to allocate strings and literals in the ROM code area only.
this ROM code area. When you use the =S option cm16 places strings in
this ROM code area. The =T option places all constants in the ROM code
area.

Example:

func(i)
const int i;

{
}

i++, /* results in error nessage fromcnl6 */

The value of variables located in non-volatile ram are retained when the
microcontroller system is reset or is turned off. The first time the
microcontroller system is started the non-volatile ram should be initialized,
afterwards the values stored in the non-volatile memory should not be
reinitialized after a reset. However, if the non—-volatile memory is
’damaged’ due to battery exchange, application program error, etc., the
non-volatile memory should be reinitialized after a reset.

Language Implementation

Handling non-volatile memory is a problem that should be solved by the
locator and the startup code. The pragma renamesect is used to associate
a symbolic name with the section that contains the objects located in
non-volatile RAM. The DELFEE locator language is used to add additional
locator attributes to the section (like nocl ear), and to map this section at
the right physical memory addresses. For this reason the TASKING M16C C
compiler does not support a keyword like _per si st ent to indicate that a
data object should be located in non-volatile memory.

The following table shows the resulting assembler section types and
attributes for each C storage type:

Storage M16C Section Type / Attribute

Type

_hit BIT CLEAR/INIT

_bita BITA CLEAR/INIT

_hear DATA CLEAR/INIT

_far FDATA CLEAR/INIT

_rom DATA (small memory model) or FDATA (large memory model)
ROMDATA

_farrom FDATA ROMDATA

_nearrom DATA ROMDATA

Table 3-2: Section types

Examples using explicit storage types:

_near char c;

_rom char text[] = "No snoking”;
_far int array[100][4];
_near long |;
allocating:
1 byte in RAM for ¢
11 bytes in ROM for the initialized character array t ext []

800 bytes in RAM for ar r ay

3-8

=

Chapter 3

4 bytes in RAM for |

The storage type specifiers are treated like any other type specifier (e.g.
unsi gned). This means the examples above can also be declared (exactly
the same):

char _near c;

char _rom text[] = "No snoking”;
int _far array[100][4];
Il ong _near |I;

An object must be fully contained in a single storage section. See section
3.17, Structure Tags for details.

cm16 supports two reentrant memory models: small and large. You can
select one of these models with the =M option.

If no memory model is specified on the command line, cm16 uses the
small model because this model generates the most efficient code. The
table below illustrates the meaning of each data model.

Model Data Constants
Small _hear _hear
Large _far _far

Table 3-3: cm16 memory models

Separate versions of the C and runtime libraries are supplied for all
supported data models, avoiding the need for the programmer to
recompile or rebuild these when using a particular model.

The value of the predefined preprocessor symbol MODEL represents the
memory model selected (-M option). This can be very helpful in making

conditional C code in one source module, used for different applications

in different memory models. Portable C Code

The value of MODEL is:

IS

small model S
large model T

Language Implementation

Code addresses are presumed to be 20-bit (by default). This corresponds
to command-line option =Jf. To make code addresses 16-bit, use option

=Jn.

The predefined preprocessor symbol CODEMODEL, which represents the
code model selected with the =J option, is set to 'n’ or ’f’, indicating
whether code addresses are assumed to be near or far.

Example:
#if _MODEL == "1’ /* large nodel */
#endi f

In C-M16C it is possible to place certain variables and functions at
absolute addresses. Instead of writing a piece of assembly code, a variable
or function can be placed on an absolute address using the _at ()
attribute.

Examples:
_near unsigned char Display _at(0x2000);

int f(int x) _at(0x0100)
{

}

The example above creates a variable with the name Di spl ay at address
0x2000. In the generated assembly code an absolute section appears in the
form 'DATA AT 2000H’; at this address, space is reserved for the variable

Di spl ay.

return x+1;

A number of restrictions are in effect when placing variables on an
absolute address:

* Only global variables can be placed on absolute addresses.
Parameters of functions, or automatics within functions cannot be
placed on an absolute address.

3-10

Chapter 3

When declared ’extern’, the variable is not allocated by the
compiler. When the same variable is allocated within another
module but on a different address, the compiler, assembler or linker
will not notice.

When the variable is declared ’static’, no public symbol will be
generated (normal C behavior).

Absolute variables cannot overlap each other, declaring two
absolute variables on the same address will cause an error
generated by the assembler or by the linker. The compiler does not
check this.

Declaring the same absolute variable within two modules will also
produce conflicts at link time (except when one of the modules
declares the variable ’extern’).

Language Implementation

All ANSI C data types are supported. In addition to these types, the
_sfrbit, _sfrbyte, and _bit types are added. Three types of pointers
are recognized. Object size and ranges:

Data Type Size Range
(in bytes)
_bit 1 bit Oorl
_sfrbit 1 bit Otol
signedchar 1 —128to +127
unsigned char 1 0 to 255U
_sfrbyte 1 0 to 255U
sighed short 2 —32768 to +32767
unsigned short 2 0 to 65535U
signed int 2 —32768 to +32767
unsigned int 2 0 to 65535U
_sfrword 2 0 to 65535U
_sfrlong 4 0 to 4294967295UL
signed long 4 —2147483648 to +2147483647
unsigned long 4 0 to 4294967295UL
float 4 +/-1.176E-38 to +/— 3.402E+38
double 8 +/—2.225E-308 to +/— 1.798E+308
enum 2 0 to 65535U
_near pointer 2 0 to 65535
_far pointer 2/4 0 to 1 megabyte

Table 3-4: Data types

— _bit,char, _sfrbyte, sfrword, _sfrlong, short,int and
| ong are all integral types, supporting all implicit (automatic)

conversions.

- cm16 generates instructions using (8 bit) character arithmetic, when
it is correct to evaluate a character expression this way. This results
in a higher code density compared with integer arithmetic. A special
section Character Arithmetic provides details.

3-11

3-12

Chapter 3

- the M16C convention is used, storing variables with the least
significant part at the lower memory address (Little Endian).

- float is implemented in little endian IEEE 32-bit single precision
format.

— double is implemented in little endian IEEE 64-bit double precision
format.

According to the ANSI C X3.159-1989 standard, a character, a short integer,
an integer bit field (either signed or unsigned), or an object of
enumeration type, may be used in an expression wherever an integer may
be used. If a si gned i nt can represent all the values of the original type,
then the value is converted to si gned i nt ; otherwise the value will be
converted to unsi gned i nt. This process is called integral promotion.

Integral promotion is also performed on function pointers and function
parameters of integral types using the old-style declaration. To avoid
problems with implicit type conversions, you are advised to use function
prototypes.

Many operators cause conversions and yield result types in a similar way.
The effect is to bring operands into a common type, which is also the type
of the result. This pattern is called the usual arithmetic conversions.

Integral promotions are performed on both operands; then, if either
operand is unsi gned | ong, the other is converted to unsi gned

| ong.

Otherwise, if one operand is | ong and the other is unsi gned i nt,
the effect depends on whether a | ong can represent all values of an
unsi gned i nt; if so, the unsi gned i nt operand is converted to

| ong; if not, both are converted to unsi gned | ong.

Otherwise, if one operand is | ong, the other is converted to | ong.
Otherwise, if either operand is unsi gned i nt, the other is converted
to unsi gned int.

Otherwise, both operands have type i nt .

% See also the section Character Arithmetic.

Language Implementation

&

Sometimes surprising results may occur, for example when unsi gned

char is promoted to i nt. You can always use explicit casting to obtain

the type required. The following example makes this clear:

static unsigned char a=0xFF, b, c;

void f()
{
b=~a;
if (b==-a)
/* This code is never reached because

* 0x0000 is compared to OxFFOO.
* The conpiler converts character 'a to
* an int before applying the ~ operator
*/

}

c=a+l,

while(¢ I= a+l)

{

/* This | oop never stops because,

* 0x0000 is conpared to 0x0100.
* The conpil er evaluates 'a+l' as an
* integer expression. As a side effect,
* the conparison will also be an integer
* operation
*/

}

3-13

3-14 Chapter 3

5

To overcome this 'unwanted’ behavior use an explicit cast:

stati c unsigned char a=0xFF, b, c;

void f()
{
b=~a;
if (b == (unsigned char)~a)
{
/* This code is always reached */
}
c=a+l,

while(¢ !'= (unsigned char)(a+l))

/* This code is never reached */

}
}
Keep in mind that the arithmetic conversions apply to multiplications also:

static int h, i, j;

static |ong k, 1, m

/* In Cthe following rules apply:
* int * int result: int
* long * |ong result: long
*
* NOT int * int result: long
*

/

Language Implementation 3-15

void f()
{
h =1 *j; /* int * int = int */
k=1 *m /* long * long = | ong */
I =i * j; /* int * int =int, afterwards
* pronoted (sign or zero
* extended) to |long
*/
I = (long) i * j; /* long * long = long */
I = (long)(i * j); /*int * int =int,
* afterwards casted to | ong
*/
}

cm16 generates code using 8 bit (character) arithmetic as long as the
result of the expression is exactly the same as if it was evaluated in integer
arithmetic. This must be done, because ANSI does not define character
arithmetic and character constants. Although the M16C performs 16-bit
operation as fast as 8-bit operations, the overhead caused by the integral
promotions is suppressed.

So it is recommended to use character variables in expressions, because it
saves data space for allocation, and often results in a higher code density.
You can always force to use character arithmetic with a character cast.

The following examples clarify when integer arithmetic is used and when
character arithmetic:

char a, b, ¢, d;

int i

voi d

mai n()
c =a+ b; /* character arithnetic */
i = a+b; /* integer arithmetic */
i = (char)(a + b); /* character arithnetic */
c =a/l d /* character arithnetic */
c =(a+b)/ d /* integer arithnetic */
c = ((char)(a + b)) / d; /* character arithnetic */
c = a > d; /* character arithnetic */
c =(a+ b) > d /* integer arithnetic */

3-16 Chapter 3

> b)) /* character arithnetic */
d;
a b) >c) /* integer arithmetic */
d;

—_
o—~o—~
-1 @

You can disable character arithmetic with the —AC ccommand line option.

The _bi t type is used to define scalars in the M16C bit-addressable area
and for the return type of functions. A struct containing bit fields cannot
be used for this purpose, for example because the struct is aligned at a
byte boundary.

The following rules apply to _bi t type variables:
1. A _bit type variable is always unsigned.

2. A bit type variable can be exchanged with all other integral type
variables. The compiler generates the correct conversion.

A _bit type variable is like a boolean. Therefore, converting an int type
variable to a _bit type variable does not mean the _bit type variable is the
least significant bit of the int type variable. It is 1 (true) if the int type
variable is not equal to 0, and 0 (false) if the int type variable is 0. In C:

bit _variable = int_variable;
can be seen as:
bit_variable = int_variable ? 1 : 0O;

3. A _bit type variable is not allowed as a function parameter of a function,
or as an automatic variable.

4. A function may have return type _bit. However, the next rule may not be
violated.

5. Evaluation of a complex _bit expression (using non _bit types or _bit
return type of a function) is not recursive or reentrant, because the
compiler might need temporary static bit space.

6. A _bit typed expression is not allowed as switch expression.

7. The si zeof of a _bit type is 1.

Language Implementation 3-17

The _sfrbyte, _sfrword, _sfrbit and _sfrl ong keywords allow

direct access to all special function registers as if they were C variables.
These special function registers can be used the same way as any other
integral data type, including all automatic conversions.

The _sfrbyte, _sfrword, _sfrbit and _sfrl ong keywords are
handled as vol ati | e unsi gned variables.

The notation is as follows:

_sfrbyte nanme _at(address);

or

_sfrword nanme _at(address);

or

_sfrlong nanme _at(address);

or

_sfrbit nane _at(bitaddr);

or

_sfrbit nane _atbit(address, bitnunber);

Where name occurs replace with the name of the SFR you want to specify.
addpress is the bit or byte address of the SFR. Because these registers are
placed in the sfr-area of the processor, the compiler will not allocate any
storage space.

Note, that the words ’sfrbyte’, 'sfrword’, ’sfrbit’ and ’sfrlong’ are not
reserved words for cm16. Therefore, these words can be used as an
identifier. ¢cm16 does not generate symbolic debugging information for
special function registers because they are already known by the
debugger.

Because the special function registers are dealing with 1/0, it is incorrect
optimize away the access to them. Therefore, cm16 deals with the special
function registers as if they were declared with the vol ati | e qualifier.

3-18

Chapter 3

cm16 supports (ANSI) prototyping of function parameters. Therefore,
cm16 allows passing parameters of type char, without converting these
parameters to i nt type. This results into higher code density, higher
execution speed and less RAM data space needed for parameter passing.

For example, in the following C code:

voi d func(char nunber, |ong val ue);

int printf(char *format, ...);
voi d
mai n(voi d)
{
int i;
char c;
func(c, i);

printf("c=%d, i=%\n", c, i);
}

the code generator uses the prototype of f unc() and:

— passes C as a byte
- promotes i to | ong before passing it as a | ong

However, the code generator does not know anything of the pri ntf ()
arguments, because this function is declared with a variable argument list.
If there is no prototype (as with the old style K & R functions), the
compiler promotes both char type parameters to int type, the same way an
automatic conversion is done in an assignment of a char type variable to
an int type variable. So, with the pri ntf () call the code generator:

- promotes € to i nt before passing it as i nt
- passesi asint

Language Implementation

A lot of execution time of an application is spent transferring parameters
between functions. The fastest parameter transport is via registers. If not
enough registers are available, some parameters are passed via registers,
the other parameters are passed over the stack. See the table below.

Parameter type

Parameter |char |int, long, float, double
2—-byte pointer, 4-byte pointer,
structure <= 2-byte |structure <=4-byte
ROL | RO RO;A0
ROH | AO

AO

Table 3-5: Register usage for parameter passing
Example with four register arguments:
funcl(char a, long b, int ¢, char d)

— a (first parameter) is passed in register ROL.

- b (second parameter) is passed on the stack.
— € (third parameter) is passed in register AQ.

- d (fourth parameter) is passed in register ROH.

All parameters of a variable argument list function are always passed over
the stack. Parameters are pushed in reverse order, so all ANSI C macros
defined in st dar g. h can be applied.

Example with variable argument function:

_printf(char *format, ...)
— all parameters (including f or mat) are passed via the stack.

Function return is performed as follows:

Return type Register(s)
bit 0,RO

char ROL
short/int RO

3-19

3-20

Return type

Register(s)

long RO;AO0

float RO;A0

double R3;R2;R1;R0
structure Stack temporary (ad-

dress passed by caller
in RO)

2—byte pointer

AO

4—hyte pointer

RO;AO0

Table 3-6: Register usage for function return types

Chapter 3

Language Implementation 3-21

In C the r egi st er type qualifier is 2 means for the programmer to tell the
compiler that the variable will be used very often. So the code generator
must try to reserve a register for this variable and use this register instead
of the stack location of this automatic variable. The compiler uses an
efficient allocation scheme to decide which of the automatic objects and
parameter objects that are used the most, are to be allocated within
registers. Because of this allocation scheme cm16 ignores the r egi st er
keyword.

Automatic variables are allocated on the user stack and are addressed
using the indexed addressing mode.

Non-automatic initialized variables use the same amount of space in both
ROM and RAM (for all possible RAM memory spaces). This is because the
initializers are stored in ROM and copied to RAM at start—up. This is
completely transparent to the user. The only exception is an initialized
variable residing in ROM, by means of the _r omstorage type specifier or a
const qualifier used with _near, _far:

Examples (small memory model) :

i nt i = 100; /* 2 bytes in rom and
2 bytes in DATA */
_rom int j = 3; /* 2 bytes in CODE ROVDATA */
_rom char a[] = "HELP"; /* 5 bytes in CODE ROVDATA */
_near char ¢ ='a’; /* 1 byte in DATA ROVDATA and
1 byte in DATA */

You can use the vol ati | e type qualifier when modifications on the
object have undesired side effects when they are performed in the regular
way. Memory locations may not be updated because of compiler
optimizations, which attempt to save a memory write by keeping the value
in a register. When a variable is declared with the vol ati | e qualifier, the
compiler disables such optimizations. Volatile variables are located in a
section of which the NOCLEAR attribute is set.

3-22 Chapter 3

=

The ANSI report describes that the updates of volatile objects follow the
rules of the abstract machine (the target processor) and thus access to a
volatile object becomes implementation defined.

Example:
const volatile int real _time_clock _at(0x1234);

/* define the real tine clock register;
it is read—only (const);
read operations nust access the real nenory
| ocation (volatile)

*/

In this section the word ’strings’ means the separate occurrence of a string
in a C program. So, array variables initialized with strings are just
initialized character arrays, which can be allocated in any memory type,
and are not considered as ’strings’. See section Initialized Variables for
more information on this topic.

Strings and literals in a C source program, which are not used to initialize
an array, have static storage duration. The ANSI standard does not require
that these strings be modifiable. Allocating the strings in ROM is therefore
possible. By default strings are allocated in the M16C code space.

It is also possible to allocate strings and literals in the ROM code space
only. When you use the =S option cm16 will place strings in this ROM
code area.

Some objects have two types: a 'logical’ type and a storage type. For
example, a function is residing in ROM (storage type), but the logical type
is the return type of this function. The most obvious C type having
different storage and logical type is a pointer. For example:

_romchar *_near p; /* pointer residing in DATA,
pointing to ROM */

Language Implementation 3-23

means p has storage type _near (allocated in direct addressable RAM),
but has logical type ’character in target memory space CODE ROMDATA'.
The memory type specifier used left to the ™, specifies the target memory
of the pointer, the memory specifier used right to the *, specifies the
storage memory of the pointer.

The memory type specifiers are treated like any other type specifier (like
unsigned). This means the pointer above can also be declared (exactly the
same) using:

char _rom*_near p; [/* pointer residing in DATA
pointing to ROM */

If the target memory and storage memory of a pointer are not explicitly
declared, cm16 uses the default of the memory model selected. For
example, in the small model, the declaration:

char *p;
is exactly the same as:
_near char * _near p;

cm16 recognizes two types of pointers _near and _far. _near pointers
are 16 bits and can point only to locations in the lowest 64K bytes of
memory. _far pointers are 32 bits and can point anywhere in memory.

In pointer arithmetic cm16 checks, besides the type of each pointer, also
the target memory of the pointers, which should be the same. You can
always convert from 2-byte to 4-byte pointer. When converting to a
smaller pointer size, the compiler will warn you for potential loss of
information.

The _i nl i ne keyword is used to signal the compiler to inline the function
body instead of calling the function. An inline function must be defined in
the same source file before it is "called’. When an inline function has to be
called in several source files, each file must include the definition of the
inline function. Usually this is done by defining the inline function in a
header file.

Not using a function which is defined as an _i nl i ne function does not
produce any code.

3-24 Chapter 3

5

Example (t . c):

int wx,vy,z;

_inline int
add(int a, int b))
{
return(a + b);
}
voi d
mai n(void)
{
w=add(1, 2);
z = add(x, y);
}

No specific debug information is generated for inline functions. The
debugger cannot step—-into an inline function, it considers the inline
function as one HLL source line.

The pragmas asmand endasmare allowed in inline functions. This makes
it possible to define inline assembly functions. See also the section In/ine
Assembly in this chapter.

The generated code is:

ct.c 12 w = add(1, 2);
MOV. W #3, w

; t.c 13 z = add(x, y);
MOV.W x, RO
ADD.W _y,RO
MOV.W RO, z

cm16 supports inline assembly using the following pragmas:
#pragma asm Insert assembly text following this pragma.

#pragma asm_noflush As #pragma asm, but the peephole optimizer
does not flush the code buffer.

#pragma endasm Switch back to the C language.

Language Implementation

&

S

C modules containing inline assembly are not portable and are very hard
to prototype in other environments.

The peephole optimizer in the compiler maintains a code buffer for
optimizing sequences of assembly instructions before they are written in

the output file. The compiler does not interpret the text of inline assembly.

It passes inline assembly lines directly to the output file. To prevent that
instructions in the peephole buffer, which belong to C code before the
inline assembly lines, will be written in the output file after the inline
assembly text, the compiler flushes the instruction buffer in the peephole
optimizer. All instructions in the buffer are written to the output file. If this
behavior is not desired the pragma asm_noflush starts inline assembly
without flushing the code buffer.

See also the section Assembly Language Interfacing in the chapter
Run Time Environment.

For a fixed register—based interface between C and assembly functions the
function qualifier _asnf unc is available. This function qualifier can be
used for a prototype of an assembly function to be called from C or for a
function definition of a C function to be called from assembly.

Example:

/* prototype of assenbly function */
extern _asnfunc int
special _out(int port, long config, int value);

void main(void)

{
I ong cfg;
int vy;

if(special _out(1, cfg, y)) /* call assenbly
function */
{

}

3-25

3-26

Chapter 3

The number of arguments that can be passed is limited by the number of
available registers. If too many arguments are used, the compiler will issue
an error. Passing some parameters over the stack is not an option, because
the interface would become complex and the _asnf unc qualifier loses its
value, i.e., creating a simple interface between C and assembly functions.

Language Implementation 3-27

When you want to use some specific M16C instructions, that have no
equivalence in C, you would be forced to write assembly routines to
perform these tasks. However, cm16 offers a way of handling this in C.
Therefore, cm16 has a number of built-in functions, which are
implemented as intrinsic functions.

To the programmer intrinsic functions appear as normal C functions, but
the difference is that they are interpreted by the code generator, so that
more efficient code may be generated. Several pre-declared functions are
available to generate inline assembly code for the intrinsic function (call).
This avoids the overhead that is normally introduced by parameter passing
and context saving before executing the called function.

The names of the intrinsic functions all have a leading underscore,
because the ANSI specification states that public C names starting with an
underscore are implementation defined.

The advantages of using intrinsic functions, compared with in-line
assembly (pragma asm/endasm) are:

* the possibility to use simulation routines or stub functions by a host
compiler, to replace the inline assembly code generated by cm16
* C level variables can be accessed

» the compiler chooses to generate the most efficient code to access C
variables

* intrinsic code is optimized, except for _nop()

The following intrinsic functions are implemented:

Function Comment

signed char _absb (signed char)

int _absw (int)
void _brk (void)
char _dadcb (char, char)

int _dadcw (int, int)
char _daddb (char, char)
int _daddw (int, int)
int _divb (int, char) Returns quotient and remainder

char _divb_q (int, char) Returns quotient

3-28

Chapter 3

Function

Comment

char _divb_r (int, char)

Returns remainder

long int _divw (long int, int)

Returns quotient and remainder

int _divw_q (long int, int)

Returns quotient

int _divw_r (long int, int)

Returns remainder

int _divub (int, char)

Returns quotient and remainder

char _divub_q (int, char)

Returns quotient

char _divub_r (int, char)

Returns remainder

long int _divuw (long int, int)

Returns quotient and remainder

int _divuw_q (long int, int)

Returns quotient

int _divuw_r (long int, int)

Returns remainder

int _divxb (int, char)

Returns quotient and remainder

char _divxb_q (int, char)

Returns quotient

char _divxb_r (int, char)

Returns remainder

long int _divxw (long int, int)

Returns quotient and remainder

int _divxw_q (long int, int)

Returns quotient

int _divxw_r (long int, int)

Returns remainder

char _dsbbb (char, char)

int _dsbbw (int, int)

char _dsubb (char, char)

int _dsubw (int, int)

int _enter (int)

void _exitd (void)

int _fclr (int)

UseOto7or _C, D, Z S, B,
_0O, _I, _Utoclear abitin the flag
register.

int _fset (int)

UseOto7o0r_C,_D, Z,_S, B,
_0O, _I, _Uto set a bit in the flag
register.

int _int (int)

void _into (void)

int _ldc_fb (int)

int _ldc_sb (int)

int _Idc_sp (int)

Language Implementation 3-29

Function Comment

int _ldc_isp (int)
int _|dc_flg (int)
int _ldintb (int)

int _Idc_intbh (int)
int _|dc_intbl (int)
int _Idipl (int)

void _nop (void)

int _popc (int) The operand is the register as
encoded in the opcode.

int _popm (int) The operand is the register mask
as encoded in the opcode.

int _pushc (int) The operand is the register as
encoded in the opcode.

int _pushm (int) The operand is the register mask
as encoded in the opcode.

void _reit (void)

int _rmpab (_near char *source,
_near char *dest,
int count)

long int _rmpaw (_near char *source,
_near char *dest,
int count)

char _rotb (signed char, char)

int _rotw (signed char, int)

void _rts (void)

char _shab (signed char, char)

int _shaw (signed char, int)

long int _shal (signed char, long int)

char _shlb (signed char, char)

int _shlw (signed char, int)

long int _shll (signed char, long int)

int _smovbb (_far char *source,
_hear char *dest,
int count)

3-30

Chapter 3

Function

Comment

int _smovbw (_far int *source,
_near int *dest,
int count)

int _smovfb (_far char *source,
_hear char *dest,
int count)

int _smovfw (_far int *source,
_hear int *dest,
int count)

char _sstrb (char, _near char *, int)

int _sstrw (int, _near int *, int)

int _stc_fb (void)

int _stc_sb (void)

int _stc_sp (void)

int _stc_isp (void)

int _stc_flg void()

int _stc_intbh (void)

int _stc_intbl (void)

void _und (void)

void _wait (void)

Table 3-7: Intrinsic functions

Language Implementation 3-31

The M16C C language introduces three new reserved words: _i nt er r upt
hw i nterruptand _bankswi t ch , which can be seen as special type
qualifiers, only allowed with function declarations. A function can be
declared to serve as an interrupt service routine. Interrupt functions cannot
return anything and must have a void argument type list. _i nt errupt is
used to define functions for the variable vector table. The vector argument
must be between 0 and 63. _hw_i nt errupt defines functions for the
fixed vector table. Its vector argument must be between 0 and 8.
_hw_interrupt also initializes the appropriate entry in the fixed vector
table. For example, in:

_interrupt(vector) _bankswitch void

i sr(void)

{

|
The _i nterrupt function qualifier takes one argument, vector, that
defines the interrupt vector number, i.e., the vector address.

_bankswi t ch causes register bank 1 to be used for the function.

Because the vector is filled by the compiler (unless disabled by the —v
option), the interrupt number must be specified. To find out which
interrupt number should be used, see the section Inferrupt Functions in
chapter Run-time Environment.

Some interrupts are reserved and handled or used by the compiler
(run—time library) like:

e Hardware reset.
¢ Stack overflow and underflow.

_speci al defines functions to be called using the M16C JSRS instruction.
The syntax is:

_speci al (nunber) void
filenanme (args)

number must be between 18 and 255.

3-32

Chapter 3

Based upon the 'MISRA guidelines for the application of C language
invehicle based software’, the TASKING Safer C technology offers
enhanced compiler error checking that will guide the programmer in
writing better, more coherent and intrinsically safer applications. Through
this configurable system of enhanced C language error checking, the use
of error—-prone C constructs can be prevented. A predefined configuration
for compliance with the 'required rules’ described in the MISRA guidelines
is selectable through a single click in the EDE| Saf er C Opti ons menu.
A custom set of applicable Safer C rules can be easily configured using the
same menu. It is also possible to have a project team work with a Safer C
configuration common to the whole project. In this case the Safer C
configuration can be read from an external settings file. This too, is easily
selected through the EDE| Saf er C Opti ons menu. In order to provide
proof that installed company Safer C requirements have in fact been
adhered to throughout the entire project, the M16C Linker/Locator can
generate a Safer C Quality Assurance report. This report lists the various
modules in the project with the respective Safer C settings under which
these have been compiled.

Unfortunately it has not been possible to implement support for all 127
rules described in the MISRA guidelines. The reason for this is that a
number of rules are beyond the scope of what can be checked in a C
compiler environment. These unsupported rules are visible in the

EDE| Saf er C Opti ons menu dialog boxes, but cannot be selected
(grayed out).

MISRA is a registered trademark of MIRA held on behalf of the Motor
Industry Software Reliability Association.

Enabling Safer C

From the command line Safer C can be enabled by the following compiler
option:

—safern,n, ...

where 7 specifies the rule(s) which must be checked.

Language Implementation 3-33

Error Messages

In case a Safer C rule is violated, an error message will be generated
e.g.

E 209: Safer C rule 9 violation: comments shall not be nested.

See Appendix B Safer C for the supported and unsupported Safer C rules.

A tag declaration is intended to specify the lay—out of a structure or union.
If a memory type is specified, it is considered to be part of the declarator.
A tag name itself, nor its members can be bound to any storage area,
although members having type ”... pointer to” do require one. A tag may
then be used to declare objects of that type, and may allocate them in
different memories (if that declaration is in the same scope). The following
example illustrates this constraint.

struct S {
_near int i; /* referring to storage: not correct */
_far char *p; /* used to specify target nenory: correct */

h

In the example above cm16 ignores the erroneous _near storage
specifier (without displaying a warning message).

Typedef declarations follow the same scope rules as any declared object.
Typedef names may be (re-)declared in inner blocks but not at the

parameter level. However, in typedef declarations, memory specifiers are
allowed. A typedef declaration should at least contain one type specifier.

Examples:
typedef _near int NEARI NT; /* storage type _near: OK */
typedef int _near *PTR /* logical type _near

storage type 'default’ */

3-34 Chapter 3

cm16 supports two ways of code generation for a switch statement: a
jump chain (linear switch) or a jump table.

A jump chain is comparable with an if/else—if/else—if/else construction. A
jump table is a table filled with case label entry points for each possible
switch value. The switch argument is used as an index in the jump table.
An indirect jump is performed to the indexed case label entry point.

By default, the compiler will try to use the switch method which uses the
least space in ROM.

It is obvious that, especially for large switch statements, the jump table
approach executes faster than the jump chain approach. Also, the jump
table has a predictable behavior in execution speed. No matter the switch
argument, every case is reached in the same execution time.

With a small number of cases, the jump chain method can be faster in
execution and shorter in size.

The compiler chosen switch method can be overruled by using one of the
following option combinations:

-Or —OW /* force junmp chain code */

- /* force junp table code */

-Or -Ow /* let the conpiler decide
the switch nethod used */

The last one is also the default of the compiler. Using a pragma cannot
overrule the restrictions as described earlier.

@ By default, jump tables contain 2-byte address offsets, and the JMPL W
instruction is void. If the function is very large, you may need to use the
—-Zw option to use 3-byte absolute addresses with the JMPILA instruction.

Language Implementation 3-35

If you are developing C code for the M16C using cm16, you might want
to test some code on the host you are working on, using a C compiler for
that host. Therefore, we deliver the include file cnil6. h. This header file
checks if CM16C is defined (cm16 only), and redefines the storage type
specifiers if it is not defined.

When using this include file, you are able to use the storage type specifiers
(when needed) and yet write 'portable C code’.

Furthermore an adapted prototype of each C built-in function is present,
because these functions are not known by another ANSI compiler. If you
use these functions, you should write them in C, performing the same job
as the M16C and link these functions with your application for simulation
purposes.

For compatibility with existing C-51 programs, the file ¢51. h is delivered,
which just includes cnil6. h.

If you want to get the best code out of cm16, the following guidelines
should be kept in mind:

1. Always use function prototyping. So, char variables can be passed as
char without being promoted to i nt .

2. If you are using the large model (because it is not possible to use a smaller
model), try to declare the most frequently used variables (static) with
storage type _near . If you want your code to remain portable, you can
use the r egi st er keyword.

We recommend to use the smallest model (small before large) that best
fits your application and explicitly declare big data items as _f ar. You can
make your own C functions to access these far data objects. If you want to
use the Standard C library functions on far data objects, you have to use
the large model.

3. Try to use the unsigned qualifier as much as possible (e.g.
for (i = 0; i < 500; i++)), because unsigned comparisons require
less code than signed comparisons.

3-36

=

Chapter 3

4. Try to use the smallest data type as possible: bit for boolean usage (flags),

character for small loops and so on. See also the sections Character
Arithmetic and The _bit Type.

. If execution speed is important (e.g. interrupt functions and time

consuming loops), you should use the =OS option or #pragma
optimize S.

Because cm16 has some extensions to support the various memory types
of the M16C processor family, declarations of objects may need some
explanation.

First of all, declaration of simple objects is done exactly the same way as
in standard C.

For example:
char c;
int i;
long |;

When programming portable C code, declaration of pointers is also
standard.

For example:
char *pc;
int *pi;
long *pl;
However, for code density it may be desired to place an object in another

memory area, this can be done by preceding the object type by the
requested data area specifier.

For example:

_near char nc;
_near int ni;
_far long fl;

Language Implementation

also correct is :

char _near nc;
int _near ni;
long _far fl;

Now, pointers to another area than the default (specified by the memory
model, see the section Detailed description of the Compiler Options) are

declared as follows:

_near char * pnc;

_near int * pni;

_far long * pfl;

Pointer resides in default memory, points
to a character in near .

Pointer resides in default memory, points
to an integer in near.

Pointer resides in default memory, points
to alongin f ar.

Even more difficult, these pointers may be placed in some other data area

than the default.
For example:

_near char * _near npnc;

_near int * _near npni;

_far long * _near fppl;

Pointer resides in near, points to a
character in near .

Pointer resides in near, points to an
integer in near.

Pointer resides in near, points to a long
infar.

@ Using objects located in _near always produces less code than using

objects in _f ar. So the smallest code size (and often the fastest execution
speed) can be achieved by placing as many objects as possible in _near.
When it is not possible to place all objects in internal RAM, select the
objects which are most referenced in the code.

Some examples of complex declarators are given below.

_hear ppp = &pp;

_near char c;

_near char * _far p = &c;
_near char * _far * pp = &p;
_near char * _far * *

3-37

3-38

Chapter 3

Now ppp is a pointer located in near, points to a pointer in default
memory, this points to a pointer in f ar, which is a pointer to a character
in near.

int far * func(void);
int far (* _near fp)(void) = func;

Now f p is a pointer located in near, points to a function with no
arguments, returning a pointer to an integer in f ar .

COMPILER USE

al TASKING [

d31dVHO

Compiler Use

The control program ccm16 facilitates the invocation of the various
components of the M16C tool chain, from a single command line. The
control program accepts source files and options on the command line in
random order.

The invocation syntax of the control program is:
ccml6 | [option)] ... [control] ... [file] ...] ...

Options are preceded by a - (minus sign). The input file can have one of
the extensions explained below.

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as ’()’ and '?") must be enclosed with” " or
escaped. The -? option (in the C—shell) becomes: " =?" or =\?.

The control program recognizes the following argument types:

* Arguments starting with a -’ character are options. Some options
are interpreted by the control program itself; other options are
passed to those programs in the tool chain that accept the option.

* Arguments with ’()’ or arguments without a ’.” character are
interpreted as assembler controls and are passed to the assembler.

e Arguments with a . cc, . cxx or . cpp suffix are interpreted as C++
source programs and are passed to the C++ compiler.

* Arguments with a . ¢ suffix are interpreted as C source programs
and are passed to the compiler.

* Arguments with a . asmsulffix are interpreted as assembly source
files which have to be preprocessed and passed to the assembler.

* Arguments with a . src suffix are interpreted as compiled assembly
source files. They are directly passed to the assembler.

e Arguments with a . out suffix are interpreted as linked object files
and are passed to the locator. The locator accepts only one . out
file in the invocation.

* Arguments with a . dsc suffix are treated as locator command files.
If there is a file with extension . dsc on the command line, the
control program assumes a locate phase has to be added. If there is
no file with extension . dsc, the control program stops after linking
(unless it has been directed to stop in an earlier phase)

* Everything else is considered an object file and is passed to the
linker.

4-3

Chapter 4

Normally, a control program tries to compile and assemble all source files
to object files, followed by a link and locate phase which produces an
absolute output file. There are however, options to suppress the assembler,
linker or locator stage. The control program produces unique filenames for
intermediate steps in the compilation process, which are removed
afterwards. If the compiler and assembler are called subsequently, the
control program prevents preprocessing of the compiler generated
assembly file. Normally, assembly input files are preprocessed first.

The following options are interpreted by the control program:

Option Description

—? or none Display invocation syntax

—Ccpu Use special function register definitions for cpu

-MI Large memory model

—Ms Small memory model

-V Display version header only

—Waarg Pass argument directly to the assembler

—Wcarg Pass argument directly to the C compiler

—Wcparg Pass argument directly to the C++ compiler
—Wplarg Pass argument directly to the C++ pre—linker
—Wlkarg Pass argument directly to the linker

—Wilcarg Pass argument directly to the locator

—C++ Assaociate . c files with the c++ compiler

—C Do not link: stop at . obj

-cc Do not compile: stop at. ¢

—cl Do not locate: stop at . out

) Do not assemble: compile C files to . sr ¢ and stop
—f file Read arguments from file ("-" denotes standard input)
=g[f|l|n]... Enable symbolic debug information (unless —gn is used)
—ieee Set locator output file format to IEEE-695 (default)
—ihex Set locator output file format to Intel Hex

—nolib Do not link with the standard libraries

—o file Specify the output file

—srec Set locator output file format to Motorola S—records
—tiof Set locator output file format to TIOF-695

—tmp Keep intermediate files

Compiler Use

Option Description

-V Show command invocations

-vO0 Show command invocations, but do not start them
—wc++ Enable C and assembler warnings for C++ files.

Table 4-1: Control program options

-?
-Ccpu
-M{s | I}

—c++

Display a short explanation of options at st dout .
Use special function register definitions for cpu.
Specify the memory model to be used:

small (s)
large @

The copyright header containing the version number is
displayed, after which the control program terminates.

With these options you can pass a command line argument
directly to the assembler (-Wa), C compiler (-Wc), C++
compiler (-Wcp), C++ pre-linker (-Wpl), linker (-WIK) or
locator (-Wlc). These options may be used to pass some
options that are not recognized by the control program, to
the appropriate program. The argument may be either
directly appended to the option, or follow the option as a
separate argument of the control program.

Specify that files with the extension . ¢ are considered to be
C++ files instead of C files. So, the C++ compiler is called
prior to the C compiler. This option also forces the linker to
link C++ libraries.

4-5

4-6

-C
-cc
-l

—f file

Chapter 4

Normally, the control program invokes all stages to build an
absolute file from the given input files. With these options it
is possible to skip the C compiler, assembler, linker or locator
stage. With the —cc option the control program stops after
compilation of the C++ files and retains the resulting . ¢ files.
With the —cs option the control program stops after the
compilation of the C source files (. ¢) and after preprocessing
the assembly source files (. asm), and retains the resulting

. src files. With the —c option the control program stops after
the assembler, with as output one or more object files

(. obj). With the -cl option the control program stops after
the link stage, with as output a linker object file (. out).

»_

Read command line arguments from file. The filename
may be used to denote standard input. To get around the
limits on the size of the command line, it is possible to use
command files. These command files contain the options that
could not be part of the real command line. Command files
can also be generated on the fly, for example by the make
utility.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line
in the command file.

2. To include whitespace in the argument, surround the
argument with either single or double quotes.

3. If single or double quotes are to be used inside a quoted
argument, we have to go by the following rules:

a. If the embedded quotes are only single or double
quotes, use the opposite quote around the
argument. Thus, if a argument should contain a
double quote, surround the argument with single
quotes.

b. If both types of quotes are used, we have to split
the argument in such a way that each embedded
quote is surrounded by the opposite type of quote.

Compiler Use

—g[f|1|n]...

Example:

"This has a single quote ' enbedded”
or

"This has a double quote " enbedded
or

"This has a double quote ” and \
a single quote "’ enbedded”

4. Some operating systems impose limits on the length of
lines within a text file. To circumvent this limitation it is
possible to use continuation lines. These lines end with a
backslash and newline. In a quoted argument,
continuation lines will be appended without stripping any
whitespace on the next line. For non—-quoted arguments,
all whitespace on the next line will be stripped.

Example:

"This is a continuation \
i ne”
—> "This is a continuation |ine”

control (fil el(node,type),\
file2(type))

->

control (filel(node,type),file2(type))
5. It is possible to nest command line files up to 25 levels.

Enable symbolic debug information (unless -gn used). With
—-gn you disable all debug, including type checking. With —gl
you disable lifetime information for all types. If you use -gf,
high level language type information is also emitted for types
which are not referenced by variables. Therefore, this
sub—option is not recommended.

4-7

4-8

—-ieee
—ihex
-srec
—tiof

-nolib

-o file

-V

Chapter 4

With these options you can specify the locator output format
of the absolute file. The output file can be an IEEE-695 file
(. abs), Intel Hex file (. hex), Motorola S-record file (. sre)
or TIOF-695 file (. abs). The default output is IEEE-695

(. abs).

With this option the control program does not supply the
standard libraries to the linker. Normally the control program
supplies the default C and run-time libraries to the linker.
Which libraries are needed is derived from the compiler
options.

Normally, this option is passed to the locator to specify the
output file name. When you use the =cl option to suppress
the locating phase, the —o option is passed to the linker.
When you use the —c option to suppress the linking phase,
the —o option is passed to the assembler, provided that only
one source file is specified. When you use the —cs option to
suppress the assembly phase, the —o option is passed to the
compiler. The argument may be either directly appended to
the option, or follow the option as a separate argument of
the control program.

With this option the control program creates intermediate
files in the current directory. They are not removed
automatically. Normally, the control program generates
temporary files for intermediate translation results, such as
compiler generated assembly files, object files and the linker
output file. If the next phase in the translation process
completes successfully, these intermediate files will be
removed.

When you use the =v option, the invocations of the
individual programs are displayed on standard output,
preceded by a '+’ character.

This option has the same effect as the -=v option, with the
exception that only the invocations are displayed, but the
programs are not started.

Compiler Use

-wC+H+ Enable C and assembler warnings for C++ files. The
assembler and C compiler may generate warnings on C
output of the C++ compiler. By default these warnings are
suppressed.

The control program uses the following environment variables:

TMPDIR This variable may be used to specify a directory, which the
control program should use to create temporary files. When
this environment variable is not set,temporary files are
created in the directory ”/tmp” on UNIX systems, and in the
current directory on other operating systems.

CCM16COPT This environment variable may be used to pass extra options
and/or arguments to each invocation of the control program
ccm16. The control program processes the arguments from
this variable before the command line arguments.

CCM16CBIN When this variable is set, the control program prepends the
directory specified by this variable to the names of the tools
invoked.

4-9

4-10

Chapter 4

The invocation syntax of the C compiler is:
cm16 | [option] ... [file] ...] ...

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as ’()’ and "?") must be enclosed with” " or
escaped. The -? option (in the C-shell) becomes: " =?" or =\?.

The C compiler accepts C source file names and command line options in
random order. Source files are processed in the same order as they appear
on the command line (left-to-right). Options are indicated by a leading -
character. Each C source file is compiled separately and the compiler
generates an output file with suffix . sr ¢ per C source module, containing
assembly source code.

The priority of the options is left—to-right: when two options conflict, the
first (most left) one takes effect. The =D and -U options are not
considered conflicting options, so they are processed left-to-right for each
source file. You can overrule the default output file name with the -o
option. The compiler uses each -o option only once, so it is possible to
specify multiple —o options for multiple source files.

When you invoke em16 without any argument, the invocation syntax is
displayed (same as =? option).

A summary of the options is given below. The next section describes the
options in more detail.

Option Description

-2 Display invocation syntax

—Alflag...] Control language extensions

—Ccpu Use special function registers for cpu

—Dmacro[=def] Define preprocessor macro

—E[m]l] Preprocess only or emit dependencies or enable multi—line
macros

—Hfile Include file before starting compilation

—Idirectory Look in directory for include files

=J{n|f} Select code memory model (near or far)

—M{s|I} Select memory model: small or large

Compiler Use 4-11

Option Description

—Oflag... Control optimization

—Rmem=name Change section name

-S Allocate strings in ROM only

-T Allocate constants in ROM only

—Umacro Remove preprocessor macro

-V Display version header only

-Za Assume arrays are small (<64KB) if size is unspecified
-Zs Assume objects don't span 64KB boundry

A Do not emit fixed vector table initialization

—Zw Use 3-byte addresses in switch jump tables
—align_data Align data to an even address

—align_func Align functions to an even address

-e Remove output file if compiler errors occur

—err Send diagnostics to error list file (. err)

—f file Read options from file

—g[f|l|n]... Enable symbolic debug information (unless —gn is used)
-n Send output to standard output

—o file Specify name of output file

-S Merge C—source code with assembly output
—safern,n,... Enable individual safer C checks

—t Display lines/min

—-u Treat all 'char’ variables as unsigned

—w[nhum] Suppress one or all warning messages
Table 4-2: Compiler options (alphabetical)

Description Options
Include options

Read options from file —f file
Include file before starting compilation —Hfile
Look in directory for include files —Idirectory

4-12

Chapter 4

Description Options
Preprocess options
Preprocess only or emit dependencies or enable multi-line —E[m|l]

macros
Define preprocessor macro
Use special function registers for cpu

Remove preprocessor macro

—Dmacro[=def]
—Ccpu

—Umacro

Allocation control options

Change section name

—Rmem=name

Allocate strings in ROM only -S
Allocate constants in ROM only -T

Code generation options

Select code model: near or far =J{n|f}
Select memory model: small or large -M{s|l}
Control optimization —Oflag...
Assume arrays are small (<64KB) if size is unspecified —Za
Assume objects don’t span 64KB boundary -Zs

Do not emit fixed vector table initialization A

Use 3-byte addresses in switch jump tables —-Zw
Align data to an even address —align_data
Align functions to an even address —align_func
Language control options

Enable/disable specific language extensions —Alflag...]
Enable 'float’ constants -Fc
Treat all 'char’ variables as unsigned —-u
Output file options

Remove output file if compiler errors occur —-e

Send output to standard output -n
Specify name of output file —o file
Merge C—source code with assembly output -s
Diagnostic options

Display invocation syntax -?
Display version header only -V

Compiler Use

Description Options
Send diagnostics to error list file (. err) —err

Enable symbolic debug information (unless —gn is used) —g[f|l|n]...
Enable individual safer C checks —safern,n,...
Display lines/min —t
Suppress one or all warning messages —w[num]

Table 4-3: Compiler options (functional)

4-13

4-14 Chapter 4

Option letters are listed below. Each option (except —-o; see description of
the —o option) is applied to every source file. If the same option is used
more than once, the first (most left) occurrence is used. The placement of
command line options is of no importance except for the -I and -o
options. For the —o option, the filename may not start immediately after
the option. There must be a tab or space in between. All other option
arguments must start immediately after the option. Source files are
processed in the same order as they appear on the command line
(left-to-right).

Some options have an equivalent pragma.

Compiler Use

Option:
-?

Description:

Display an explanation of options at stdout.

Example:
cnlé -?

4-15

4-16

Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Set or disable the Language Ext ensi ons in the Language
tab.

-Alflags]

Arguments:

Optionally one or more language extension flags.

Default:
-Al

Description:

Control language extensions. —A without any flags, specifies strict ANSI
mode; all language extensions are disabled. This is equivalent to
-ABCDKLPQSTUVX and -AO.

Flags which are controlled by a letter, can be switched on with the lower
case letter and switched off with the uppercase letter. Note that the usage
of these options might have effect on code density and code execution
performance. The following flags are allowed:

b
B

Default. Allow 8-bit operations on bitfields.
Do not allow 8-bit operations on bitfields.

Default. Perform character arithmetic. cm16 generates code using 8-bit
character arithmetic as long as the result of the expression is exactly
the same as if it was evaluated using integer arithmetic. See also section
Character Aritbmetic.

Conform to ANSI-C by checking for assignments of a constant string to
a non constant string pointer. The example above produces warning
W130: "operands of =" are pointers to different types”.

Default. Define storage for uninitialized constant rom data, instead of
implicit zero initialization. The compiler generates a ‘DS 1’ for ‘const
char i[1];.

Compiler Use 4-17

D Uninitialized constant rom data is implicitly zero. The compiler
generates a ‘DB 1’ for 'const char i[1];".

Default. Allow keyword language extensions such as _far and _bit.
K Keyword extensions are not allowed.

1 Default. 500 significant characters are allowed in an identifier instead of
the minimum ANSI-C translation limit of 31 significant characters. Note:
more significant characters are truncated without any notice.

L Conform to the minimum ANSI-C translation limit of 31 significant
characters. This makes it possible to translate your code with any
ANSI-C conforming C-compiler. Note: more significant characters are
truncated without any notice.

p Default. Allow C++ style comments in C source code. For example:
/Il e.g this is a C++ coment |ine.

P Do not allow C++ style comments in C source code, to conform to
strict ANSI-C.

q Default. Allow single quoted strings longer than one character.
Q Do not allow single quoted strings longer than one character.

s Default. STDC _is defined as ’0’. The decimal constant ’0’, intended
to indicate a non—-conforming implementation. When one of the
language extensions are enabled STDC__ should be defined as °0’.

S _ STDC__ is defined as '1’. In strict ANSI-C mode (-A) _ STDC__is
defined as '1".

t Default. Do not promote old-style function parameters when prototype
checking.

T Perform default argument promotions on old-style function parameters
for a strict ANSI-C implementation. char type arguments are promoted
to i nt type and f | oat type arguments are then promoted to doubl e

type.

u Default. Use type unsi gned char for 0x80-0xff. The type of an
unsuffixed octal or hexadecimal constant is the first of the
corresponding list in which its value can be represented:

Character arithmetic enabled -Ac:

4-18

Chapter 4

char, unsigned char, int, unsigned int, |ong,
unsi gned | ong

Character arithmetic disabled —AC (strict ANSI-C):
int, unsigned int, long, unsigned |ong

Do not use type unsi gned char for 0x80-0xff. The type of an
unsuffixed octal or hexadecimal constant is the first of the
corresponding list in which its value can be represented:

Character arithmetic enabled -Ac:

char, int, unsigned int, long, unsigned |ong
Character arithmetic disabled =AC (strict ANSI-C):

int, unsigned int, long, unsigned |ong

Default. Allow type cast of an lvalue object with incomplete type voi d
and Ivalue cast which does not change the type and memory of an
lvalue object.

Example:
void *p; ((int*)p)++ /* allowed */
int i; (char)i=2; /* NOT all owed */

A cast may not yield an lvalue, to conform strict ANSI-C mode.

Default. Do not check for assignments of a constant string to a
non-constant string pointer. With this option the following example
produces no warning:

char *p;
void main(void) { p = "hello”; }

Conform to ANSI-C by checking for assignments of a constant string to
a non-constant string pointer. The example above produces warning
W130: "operands of =" are pointers to different types”.

- same as —~ABCDKLPQSTUVX (disable all, strict ANSI-C)

- same as —Abcdklpgstuvx (default, enable all)

Compiler Use 4-19

Example:

To disable character arithmetic and C++ comments enter:

cmlé —-ACP test.c

4-20 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Enable the Al i gn data to an even address check box
in the Code Gener ati on tab.

-align_data

Description:

With this option the compiler generates assembly code to align 16, 32 and
64 bit data variables to even addresses. This optimizes access time but may
take extra memory space.

Example:

To specify to the compiler to align data to even addresses, enter:

cml6 —align_data test.c

Compiler Use

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Enable the Al i gn functions to an even address check
box in the Code Cener ati on tab.

-align_func
Description:

With this option the compiler generates assembly code to align functions
to even addresses. This optimizes access time to functions but may take
extra memory space.

Example:

To specify to the compiler to align functions to even addresses, enter:

cml6 —align_func test.c

4-21

4-22 Chapter 4

Option:

@? Choose a cpu from the EDE | Processor Options... | CPUmenu
item.

~Cepu

Arguments:

The cpu name which identifies your M16C derivative.

Description:
Use special function register definitions for cpu. The filename looked for is
"regcpu.sfr” in the same way include files whose names are enclosed in ™"
are searched.

Example:

To specify to the compiler to look for a file named reg61. sfr, and to use
this file as a special function register definition file, enter:

cml6 —-CML6C61 test.c

% Section Special Function Registers in the previous chapters.

Compiler Use 4-23

Select the EDE | C Conpiler Options | Project Options...
menu item. Define a macro (syntax: macro[=def]) in the Def i ne user
macr os field in the Pr epr ocessi ng tab. You can define more macros by
separating them with commas.

-Dmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro to the preprocessor, as in #define. If def is not given (= is
absent), 1’ is assumed. Any number of symbols can be defined. The
definition can be tested by the preprocessor with #if, #ifdef and #ifndef,
for conditional compilations. If the command line is getting longer than
the limit of the operating system used, the —f option is needed.

Example:

The following command defines the symbol NORAMas 1 and defines the
symbol Pl as 3. 1416.

cml6 —DNORAM —DPI =3. 1416 test.c

%—U

4-24 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Enable the Preprocess only and capture output check
box in the Pr epr ocessi ng tab.

“E[m 1]

Description:

Run the preprocessor of the compiler only and send the output to stdout.
When you use the —E option, use the —o option to separate the output
from the header produced by the compiler.

When you use the =Em option, the compiler generates dependency rules
which can be used by a 'make’ utility.

When you use the =El option, you can use multi-line macros. A backslash
used to continue a macro on the next source line will be expanded as a
new line instead of a concatenation of the lines.

Examples:

The following command preprocesses the file t est . ¢ and sends the
output to the file pr eout .

cnl6 —E -0 preout test.c

The following command preprocesses the file t est. ¢ which may contain
multi-line macros, and sends the output to the file mul ti .

cml6 —El test.c —o nulti

The following command generates dependency rules for the file t est . ¢
which can be used by mkm16 (the M16C 'make’ utility).

cmlé -Emtest.c

test.src : test.c

Compiler Use 4-25

Option:
@? EDE always removes the output file on errors.

B

Description:

Remove the output file when an error has occurred. With this option the
‘'make’ utility always does the proper productions.

Example:
cmlé —e test.c

4-26 Chapter 4

Option:

In EDE this option is not so useful. If you would use this option you
would not see the error messages in the Bui | d tab.

i-ﬁ —-€rr

Description:

Write errors to the file source.err instead of stderr.

Example:

To write errors to the t est. err instead of stderr, enter:

cmlé —err test.c

Compiler Use

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Add the option to the Addi ti onal opti ons field in the
M sc tab.

£ file

Arguments:

A filename for command line processing. The filename ”"-” may be used to
denote standard input.

Description:

Use file for command line processing. To get around the limits on the size
of the command line, it is possible to use command files. These command
files contain the options that could not be part of the real command line.
Command files can also be generated on the fly, for example by the make
utility.

More than one —f option is allowed.
Some simple rules apply to the format of the command file:

It is possible to have multiple arguments on the same line in the command
file.

To include whitespace in the argument, surround the argument with either
single or double quotes.

If single or double quotes are to be used inside a quoted argument, we
have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the
opposite quote around the argument. Thus, if a argument should
contain a double quote, surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such
a way that each embedded quote is surrounded by the opposite type
of quote.

4-27

4-28

Chapter 4

Example:

"This has a single quote ' enbedded”
or

"This has a doubl e quote " enbedded’
or

"This has a double quote ” and \
a single quote '”’ enbedded”

. Some operating systems impose limits on the length of lines within a

text file. To circumvent this limitation it is possible to use continuation
lines. These lines end with a backslash and newline. In a quoted
argument, continuation lines will be appended without stripping any
whitespace on the next line. For non—quoted arguments, all whitespace
on the next line will be stripped.

Example:

"This is a continuation \
i ne”
—> "This is a continuation |ine”

control (fil el(node,type),\

file2(type))
—>

control (filel(node,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:
Suppose the file mycnds containts the following line:

—err
test.c

The command line can now be:

cmlé —f mycnds

Compiler Use

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Enable the Generate synbolic debug information
check box in the Debug tab. Optionally enable the | ncl ude debug
i nformation for non referenced types and/or Di sabl e
lifetime info for all types check box.

~glf[1]n)]...

Description:

Add directives to the output files, incorporating symbolic information to
facilitate high level debugging.

With —=gn you disable all debug, including type checking.
With -gl you disable lifetime information for all types.

If you use —gf, high level language type information is also emitted for
types which are not referenced by variables. Therefore, this sub—option is
not recommended.

When the compiler is set to a high optimization level the debug comfort
may decrease.

Examples:
To add symbolic debug information to the output files, enter:
cnl6 —g test.c

To add symbolic debug information to the output files but disable lifetime
information for all types, enter:

cnmlé —gl test.c
To disable all symbolic debug information including type checking, enter:

cnl6 —gn test.c

4-29

4-30 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Enter a filename in the Fi rst #i nclude this fil e field in
the Pr epr ocessi ng tab.

~Hjile
Arguments:

The name of an include file.

Description:

Include file before compiling the C—source. This is the same as specifying
#include "file” at the first line of your C-source.

Example:
cml6 —Hstdio.h test.c

%-1

Compiler Use 4-31

Option:

Select the EDE | Directories... menu item. Add one or more
directory paths to the | ncl ude Fil es Pat h field.

~Idirectory

Arguments:

The name of the directory to search for include file(s).

Description:

Change the algorithm for searching #include files whose names do not
have an absolute pathname to look in directory. Thus, #include files
whose names are enclosed in ”” are searched for first in the directory of
the file containing the #include line, then in directories named in -I
options in left-to-right order. If the include file is still not found, the
compiler searches in a directory specified with the environment variable
CM16CINC. CM16CINC may contain more than one directory. Finally, the
directory . . /i ncl ude relative to the directory where the compiler binary
is located is searched. This is the standard include directory supplied with
the compiler package.

For #include files whose names are in <>, the directory of the file
containing the #include line is not searched. However, the directories
named in - options (and the one in CM16CINC and the relative path) are
still searched.

Example:
cml6é —I/proj/include test.c

% Section Include Files.

4-32 Chapter 4

Option:
—-Jmodel

Arguments:

The code model to use, where model is one of the following:

n near
f far

Default
_Jf

Description:

Select the code model to use.

Example:
cmlé -Jn test.c

Compiler Use 4-33

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Choose a Menory Mdel and a Default Data Menory in
the Code Generati on tab.

-Mmodel

Arguments:

The memory model to be used, where model is one of:

s small (default)
1 large

Default:
-Ms

Description:

Select memory model to be used.

Example:
cml6é -M test.c

% Section Memory Models.

4-34 Chapter 4

Option:

-n

Description:

Do not create output files; instead, the output is sent to stdout.

Example:
cnl6 —n test.c

Compiler Use 4-35

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. You can control optimizations in the Opti nmi zat i on and
Adv. Optim tabs.

~Oftags

Pragma:
optimize flags

Arguments:

One or more optimization flags.

Default:
-01

Description:

Control optimization. If you do not use this option, the default
optimization of cm16 is -O1, which is an optimization level to let cm16
generate the smallest code.

Flags which are controlled by a letter, can be switched on with the lower
case letter and switched off with the uppercase letter. These options are
described together.

All optimization flags can also be given in the source file after a #pr agma
opti m ze. However, depending on the optimization some opti ni ze
pragmas affect the entire module (module level), whereas other opti mi ze
pragmas can be used on a function scope only (function level) or on each
source line (flow level). 'On function level’ means that if a pragma

opti mi ze is found within a function, it is interpreted as if it was found
just before the function. The optimization level of each opti nmi ze pragma
is described for each —O option.

An overview of the flags is given below.

4-36 Chapter 4

a - relaxed alias checking (cse required) (function)
¢ - cse optiminazition (function)
d - optiminizations based on data flow analysis (function)
e - expression propagation (cse required) (function)
f - flow optimization (function)
i - invariant code motoin (function)
1 - duplicate loop condition (function)
s — optimize for small code size (flow)

t - force jump table for switch statement (flow)

u - loop unrolling (function)
v - subscript strength reduction on arrays (function)
w - switch statement optiminization, table or chain (flow)

y - peephole optimization

0 - same as ~-OACDEFILSTUVWY (no optim)

1 - same as “OacdefiLsTUvwy (default, size)

2 - same as ~-OACDESfILsTUvwy (debug, size)

3 - same as -OacdefilSTUvwy (speed)

4 - same as ~OACDEfIISTUvwy (debug, speed)
Example:

cml6 —OACdEf I LW test.c

% Pragma opti m ze in section Pragmas.

Compiler Use 4-37

Option:

-Onumber

Arguments:

A number in the range 0 - 2.

Default:
-01

Description:

Control optimization. You can specify a single number in the range 0 - 2,
to enable or disable optimization. The options are a combination of the
other optimization flags:

-00 - same as “OACDEFILSTUVWY
Switchable optimizations switched off

-01 - same as -OacdefiLstUvw
Default. Set optimization to let cm16 generate the smallest
code.

-02 - same as —OacdefilSTUvw

Set optimization flags to let cm16 generate the fastest code.

@ The flags 0 to 2 cannot be concatenated with other flags. For example,
—0a2c is not allowd, —OacF is allowed.

Example:

To optimize for code size, enter:

cmlé -O1 test.c

4-38 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the Rel axed al i as checki ng
(requires CSE) check box.

-Oa / -OA

Pragma:

noalias / alias
optimize a / optimize A (on function level)

Default:
-0OA

Description:
With —=Oa you relax alias checking. If you specify this option, cm16 will
not erase remembered register contents of user variables if a write
operation is done via an indirect (calculated) address. You must be sure
this is not done in your C-code (check pointers!) before turning on this
option. Note that the option -Oc must be on to use this option.

With —=OA you specify strict alias checking. If you specify this option, the
compiler erases all register contents of user variables when a write
operation is done via an indirect (calculated) address.

Example:
An example is given in section Alias in this chapter.

I o

Pragmas noal i as, al i as and opti m ze in section Pragmas

Compiler Use 4-39

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opt i m zat i on tab. Enable or disable the Conmon subexpr essi on
elimnation (CSE) check box.

-Oc / -0OC

Pragma:

optimize ¢ / optimize C (on function level)

Default:
-Oc

Description:

With =Oc you enable CSE (common subexpression elimination). With this
option specified, the compiler tries to detect common subexpressions
within the C code. The common expressions are evaluated only once, and
their result is temporarily held in registers.

Note that the =Oc option must be on to enable the relax alias checking
(=0a), expression propagation (-Oe) and moving invariant code outside a
loop (-Oi).

With =OC you disable CSE (common subexpression elimination). With this
option specified, the compiler will not try to search for common
expressions. Also relax alias checking, expression propagation and moving
invariant code outside a loop will be disabled.

4-40 Chapter 4

=

Example:
/*
* Conpile with —-CC —-Q0,
* Conpile with -Cc —Q0, comon subexpressions are found

* and tenporarily saved.
*/

char x, y, a, b, ¢, d;

voi d
mai n(void)
{
x =(a* b) - (c * d);
y =(a* b) + (c * d);/*(a*b) and (c*d) are comon */
}

% Pragma opt i m ze in section Pragmas.

Compiler Use

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the Const ant and copy
propagati on (requires CSE) check box.

~0d / -OD

Pragma:

optimize d / optimize D (on function level)

Default:
-0d

Description:

With —=Od you enable constant and copy propagation. With this option, the
compiler tries to find assignments of constant values to a variable, a
subsequent assignment of the variable to another variable can be replaced
by the constant value.

With —=OD you disable constant and copy propagation.

Example:
/*
* Conpile with -OD —-Q0, 'i’ is actually assigned to 'j’
* Conpile with —-Od —-00, 15 is assigned to 'j’, i’ was
* propagat ed
*/
int i;
int j;
voi d
mai n(void)
{
i = 10;
i =1 +5
}

ﬂ3 Pragma opt i m ze in section Pragmas.

4-41

4-42 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the Expr essi on propagati on
(requires CSE) check box.

-Oe / -OE

Pragma:

optimize e / optimize E (on function level)

Default:
-Oe

Description:

With —=Oe you enable expression propagation. With this option, the
compiler tries to find assignments of expressions to a variable, a
subsequent assignment of the variable to another variable can be replaced
by the expression itself. Note that the option -Oc must be on to use this
option.

With —OE you disable expression propagation.

Example:
/*
* Compile with —CE -Cc -0, nornmal cse is done
* Conpile with —-Oe -Cc -Q0, 'i+j’ is propagated.
*/

unsigned i, j;

i nt

mai n(void)

{ o
static int a;
a=1i +j;
return (a);

Compiler Use 4-43

I o

Pragma opt i m ze in section Pragmas.

4-44

Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opt i m zat i on tab. Enable or disable the Code fl ow optini zati on
and order rearrangi ng check box.

~Of / -OF

Pragma:

optimize f / optimize F(on function level)

Default:
-Of

Description:

With -Of you enable control flow optimizations and code order
rearranging on the intermediate code representation, such as jump
chaining and conditional jump reversal.

With =OF you disable control flow optimizations.

Examples:

The following example shows a control optimization:

/*

* Conmpile with -OF -Q0

* Conmpile with —OF —-00, conpiler finds first time i
* is always < 10, the unconditional junp is renoved.

’)

*/

int i;

voi d

mai n(void)

{
for(i=0; i<10; i++)
{

do_sonet hi ng();

}

Compiler Use

The following example shows a conditional jump reversal:

/
Conpile with —OF
Conpile with -O

Code rearrangi ng
optim ze better,
/

L T T

int i;
extern

void main ()

—Q0, code as witten sequenti al
—Q0, code is rearranged

enabl es other optim zations to
e.g. CSE

voi d dumy(void);

{
do
{
i f (i
{
=
}
el se
{ .
i ++:
br eak;
}
dumy();
} while (i);
}

éﬁf§ Pragma opt i m ze in section Pragmas.

4-45

4-46 Chapter 4

-0i / -0l

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zati on tab. Enable or disable the Move i nvari ant code
out side | oop (requires CSE) check box.

-0i / -0l

Pragma:

optimize i / optimize I (on function level)

Default:
-0Oi

Description:

With =Oi you move invariant code outside a loop. Note that the option
-Oc must be on to use this option.

With -OI you disable moving invariant code outside a loop.

Example:
/*
* Compile with —O -Cc -0, normal cse is done
* Conpile with —O -Cc -0, invariant code is found in
* the | oop, code is noved outside the | oop.
*/
voi d
mai n(void)
{
char x, y, a, b;
int i;

for(i=0; i<20; i++)
{

X a + b;
a+b

y

Compiler Use 4-47

I o

Pragma opt i m ze in section Pragmas.

4-48 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the Generate fast | oops
(i ncreases code size) check box.

-0l /-0L

Pragma:

optimize 1 / optimize L(on function level)

Default:
-OL

Description:

With -0l you enable fast loops. Duplicate the loop condition. Evaluate the
loop condition one time outside the loop, just before entering the loop,
and at the bottom of the loop. This saves one unconditional jump and
gives less code inside a loop.

With —=OL you disable fast loops.

Example:

/*

* Conpile with —OL -Q0

* Conpile with —A -00, conpiler duplicates the |oop
* condition, the unconditional jump is renoved.

*/

int i;

voi d

mai n(void)

{
for(; i<10; i++)

{
}

do_sonet hi ng();

Compiler Use 4-49

ﬂj Pragma opti m ze in section Pragmas.

4-50 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zati on tab. Enable or disable the Favor snmal| code size
above execution speed check box.

-Os / =08

Pragma:

optimize s / optimize S (on flow level)

Default:
-Os

Description:

With -Os you tell the compiler to generate smaller code. Whenever
possible less instructions are used. Note that this may result in more
instruction cycles.

With =OS you disable the smaller code optimization.

% Pragma opti m ze in section Pragmas.

Compiler Use 4-51

Option:
-Ot / -OT

Pragma:

optimize t / optimize T (on flow level)

Default:
-0oT

Description:

With —Ot you force the compiler to generate jump tables for switch
statements.

With -OT it depends on the -Ow/-OW option which switch method is
used. With =OT and -OW the compiler generates a jump chain for switch
statements. With —OT and -Ow the compiler chooses the best switch
method possible, jump chain or jump table. So, with —OT a jump table can
still be generated.

Overview:
-0t -Ow jump table
-OT -Ow smart
-0t -OW jump table

-OT -OW jump chain

4-52 Chapter 4

Example:

/*
* Conpile with —OT —OW generate junp chain.
* Conmpile with —-O —OW generate junp table.

*/
int i;
voi d
mai n(void)
{
switch (i)
{
case 1: i =0;
case 2: i =1,
case 3: i =2
defaul t: i =3
}
}

% Section Swiich Statement.
Pragma opt i m ze in section Pragmas.

Compiler Use

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the
Opti m zati on tab. Enable or disable the Loop unrol | i ng check box.

-Ou / -OU

Pragma:

optimize u / optimize U (on function level)
Default:

-OU
Description:

With =Ou you enable loop unrolling. With this option specified, the
compiler tries to eliminate short loops by duplicating a loop body 2, 4 or 8
times. This reduces the number of branches and creates a longer linear
code part.

With =OU you disable loop unrolling.

Example:
/*
* Conpile with —-QU, nornmal | oop handling
* Conpile with —Qu, loop is elinnated,
* body is duplicated

*/
int i, j;
voi d
mai n(void)
{
for(i=0; i<2; i++) /* short |oop */
{
j =2 *i;
}
}

% Pragma opt i i ze in section Pragmas.

4-53

4-54 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zati on tab. Enable or disable the Subscri pt strength
reducti on check box in the Advanced Opti m zati on tab.

-Ov / -OV

Pragma:

optimize v / optimize V (on function level)

Default:
-Ov

Description:

With =Ov you enable subscript strength reduction. With this option
specified, the compiler tries to reduce expressions involving an index
variable in strength.

With —OV you disable subscript strength reduction.

Compiler Use 4-55

Example:
/*
Conpile with —Ov —Q0, disable subscript strength
reduction
Conpile with —Ov —Q0, begin and end address of "a
are determ ned before the loop and tenporarily put in
* registers instead of determning the address each
* time inside the | oop
*/
int i;
int a[4];

) 1

* Ok ¥ X

voi d
mai n(void)
{
for(1=0; i<4; i++)

{
}

a[i] =i;
}

% Pragma opt i i ze in section Pragmas.

4-56 Chapter 4

Option:
-Ow / -OW

Pragma:

optimize w / optimize W (on flow level)

Default:
-Ow

Description:

With —Ow the compiler chooses the best switch method possible, jump
chain or jump table, unless =Ot is used. —Ot forces the generation of a
jump table.

With =OW the compiler generates a jump chain for switch statements,
unless =0t is used. =Ot forces the generation of a jump table.

Example:
/*
* Conpile with —-OWN-OT, always generate junp chain.
* Conpile with —Ow —OT, choose best switch nmethod, in this
* case this is also a junp chain.

*/
int i;
voi d
mai n(void)
{
switch (i)
{
case 1: i =0;
case 2: i =1,
case 3: i =2
defaul t: i =3
}
}

Section Switch Statement.
Pragma opti m ze in section Pragmas.

Compiler Use

Option:
Select the EDE |

C Conpiler Options | Project Options...

menu item. Select the Advanced optimization level in the
Opti m zat i on tab. Enable or disable the Peephol e opti m zati on
check box in the Advanced Opti m zati on tab.

~0y / -OY

Pragma:

optimize y / optimize Y (on flow level)

Default:
-Oy

Description:

With -Oy you enable peephole optimization. Remove redundant code.
The peephole optimizer searches for redundent instructions or for
instruction sequences which can be combined to minimize the number of

instructions.

With —=OY you disable peephole optimization.

Example:

/*
* Conpile with
* Conpile with
* for patterns
* renoved/ conbi
*/

long a;
long f(void);

voi d
mai n(void)
{

I ong b;

f();

(a <<

—-OY -0, unnecessary instructions found
-0y -0, peephol e optini zer searches

in the generated code which can be

ned. E. g.

1) + b;

4-57

4-58 Chapter 4

=

ﬂj Pragma opti m ze in section Pragmas.

Compiler Use

Select the EDE | C Conpiler Options | Project Options...
menu item. Add the option to the Addi ti onal opti ons field in the
M sc tab.

Arguments:

An output filename. The filename may not start immediately after the
option. There must be a tab or space in between.

Default:

Module name with . sr ¢ suffix.

Description:

Use file as output filename, instead of the module name with . sr ¢ suffix.

Special care must be taken when using this option, the first —o option
found acts on the first file to compile, the second —o option acts on the
second file to compile, etc.

Example:
When specified:
cml6 filel.c file2.c —o file3.src —o file2.src

two files will be created, file3.src for the compiled file filel.c and
file2.src for the compiled file file2.c.

4-59

4-60 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Add the option to the Addi ti onal opti ons field in the
M sc tab.

-Rmem=name

Pragma:

renamesect

Arguments:

A memory space, followed by a section name. mem can be one of:

mem | Description

Bl _hit

FD _far

DA _near

RO _rom

CcoO near program code
FC far program code

Table 4-4: Memory spaces

Description:

The compiler defaults to a section naming convention, using the module
name and a two letter memory type abbreviation: name RO for executable
code. In case a module must be loaded at a fixed address or a data section
needs a special place in memory, the -R option enables the user to
generate a unique section name. In this way the order lem16 allocates
these sections can be specified in a locator description file.

Example:

To create a new section name (MARK_CLR_BlI) for cleared _bi t sections,
enter:

cml6 —RBI =MARK test.c

Compiler Use 4-61

ﬂj Pragma r enanesect in section Pragmas.

4-62 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Enable the Keep strings and constants in ROM check
box in the Code Cener ati on tab.

B -s

Description:
Default string literals and const declared objects are allocated in ROM
and copied to RAM, which allows run-time string modification.

With option -8 string literals and const declared objects can be allocated
in ROM only.

Example:
cml6 -S test.c

% Section 3.9 Strings in Chapter Language Implementation and section const
Qualifier in section 3.2.1 Storage Types in Chapter Language
Implementation.

Compiler Use 4-63

Select the EDE | C Conpiler Options | Project Options...
menu item. Enable the Merge C source code with assenbly
out put check box in the Code Cener ati on/ CQut put tab.

s -

Pragma:

source

Description:

Merge C source code with generated assembly code in output file.

Example:
cmlé —s test.c

; test.c 1 long a;

; test.c 2 long f(void);
; test.c 3

; test.c 4 void

; test.c 5 main(void)
; test.c 6 {

GLOBAL _rmmin

% Pragmas sour ce and nosour ce in section Pragmas.

4-64 Chapter 4

Option:
—safern,n,....

Arguments:
The Safer C rules to be checked.

Description:

With this option, the Safer C rules to be checked can be specified. Refer to
Appendix B Safer C for a list of supported and unsupported Safer C rules.

Example:
cml6 —safer9 test.c

Will generate an error in case ’test.c’ contains nested comments.

Compiler Use

Select the EDE | C Conpiler Options | Project Options...
menu item. Enable the Keep constants in ROM check box in the
Code Cenerati on tab.

Description:

Default string literals and const declared objects are allocated in ROM
and copied to RAM, which allows run-time string modification.

With option =T const declared objects can be allocated in ROM only.

Example:
cml6 -T test.c

Section const Qualifier in section 3.2.1 Storage Types in Chapter Language
Implementation.

4-65

4-66 Chapter 4

Option:
-t
Description:

Display the number of lines processed and the compilation speed in lines
per minute.

Example:
cnll6 -t test.c

processed 25 lines at 7075 lines/mn

Compiler Use

Option:
-Uname

Arguments:

The name macro you want to undefine.

Description:

Remove any initial definition of identifier name as in #undef, unless it is a
predefined ANSI standard macro. ANSI specifies the following predefined
symbols to exist, which cannot be removed:

_ FILE “current source filename”

__LINE__ current source line number (int type)

_ TIME “hh:mm:ss”

__DATE _ "Mmm dd yyyy”

_ STDC__ level of ANSI standard. This macro is set to 1 when the

option to disable language extensions (-A) is effective.

Whenever language extensions are excepted, STDC__ is set
to 0 (zero).

When c¢m16 is invoked, also the following predefined symbols exist:

_CM16C predefined symbol to identify the compiler. This symbol can
be used to flag parts of the source which must be recognized
by the cm16 compiler only. It expands to the version
number of the compiler.

_CODEMODEL

Identifies for which memory model the module was
compiled ("n” for near and “f” for far).

_MODEL identifies for which memory model the module is compiled.
It expands to a single character (’s’ for small or I’ for large)

that can be tested by the preprocessor. See section Memory
Modlels for details.

These symbols can be turned off with the =U option.

4-67

4-68 Chapter 4

=

Example:
cml6 —-U MODEL test.c

%—D

Compiler Use

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Enable the Treat ’'char’ vari abl es as unsigned
check box in the Language?2 tab.

-

Description:

Treat 'character’ type variables as 'unsigned character’ variables. By default
char is the same as specifying si gned char. With —u char is the same
as unsi gned char.

Example:

With the following command char is treated as unsi gned char:

cmlé —u test.c

4-69

4-70 Chapter 4

Option:
-V

Description:

Display version information.

Example:
cnl6 -V

mléc C conpiler vx.y rz SNO00000-015 (c) year TASKING Inc.

Compiler Use

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Supr ess speci fi ¢ war ni ngs option in the M sc
tab and optionally fill in specific message numbers to suppress.

Arguments:

Optionally the warning number to suppress.

Description:

-w suppress all warning messages. ~-wnum only suppresses the given
warning.

Example:

To suppress warning 135, enter:

cml6 filel.c —w135

4-71

4-72 Chapter 4

Option:

Select the EDE | C Conpiler Options | Project Options...
menu item. Select the Addi ti onal options inthe M sc. tab and
optionally fill in specific code generation options.

~Zargument

Arguments:

Miscellaneous M16C-specific code generation options, where option is
one of the following:

a Assume small (<=64KB) arrays by default

s Assume that objects don’t span 64KB bounderies

v Do not emit fixed vector table initialization code

W Use JMPLA in switch tables

Default:

All options turned off.

Description:

Select certain code generation options.

Example:
cmlé —Za —Zw test.c

Compiler Use 4-73

You may specify include files in two ways: enclosed in <> or enclosed in
7. When an #include directive is seen, cm16 used the following algorithm
trying to open the include file:

999

1. If the filename is enclosed in 7”7, and it is not an absolute pathname (does
not begin with a "\’ the include file is searched for in the directory of the
file containing the #include line. For example, in:

PC:
cml6 ..\..\sourceltest.c
UNIX:
cml6 ../../source/test.c
cm16 first searches in the directory . . \. .\ source.

If you compile a source file in the directory where the file is located
(cm16 test.c), the compiler searches for include files in the current
directory.

@ This first step is not done for include files enclosed in < >.

2. Use the directories specified with the -I options, in a left-to-right order.
For example:

PC:

cm6 —I..\..\include denp.c
UNIX:

cm6 —-I../../include denp.c

3. Check if the environment variable CM16CINC exists. If it does exist, use
the contents as a directory specifier for include files. You can specify more
than one directory in the environment variable CM16CINC by using a
separator character. Instead of using -I as in the example above, you can
specify the same directory using CM16CINC:

PC:

set CML6CI NC=..\..\include
cnl6 denp. c

4-74 Chapter 4

=

UNIX:
if using the Bourne shell (sh)

CML6CI NC=. ./../incl ude
export CML6CI NC
cml6 denp.c

or if using the C—shell (csh)

setenv CML6CINC ../../include
cml6 deno.c

4. When an include file is not found with the rules mentioned above, the
compiler tries the subdirectory i ncl ude, one directory higher than the
directory containing the cm16 binary. For example:

PC:

cml6.exe is installed in the directory C: \ CML6C\ BI N
The directory searched for the include file is C: \ CML6C\ | NCLUDE

UNIX:

cm16 is installed in the directory / usr/ | ocal / cnmil6c/ bi n
The directory searched for the include file is
[usr/local/cml6c/include

The compiler determines run—time which directory the binary is executed
from to find this i ncl ude directory.

A directory name specified with the -I option or in CM16CINC may or may
not be terminated with a directory separator, because cm16 inserts this
separator, if omitted.

When you specify more than one directory to the environment variable
CM16CINC, you have to use one of the following separator characters:

PC:
5, Space
e.g. set CML6CINC=..\..\include;\proj\include
UNIX:
5 , Space

e.g. setenv CML6CINC ../../include:/proj/include

Compiler Use 4-75

According to ANSI (3.8.6) a preprocessing directive of the form:
#pragma pragma-t oken—li st new-line

causes the compiler to behave in an implementation—-defined manner. The
compiler ignores pragmas which are not mentioned in the list below.
Pragmas give directions to the code generator of the compiler. Besides the
pragmas there are two other possibilities to steer the code generation
process: command line options and keywords (e.g., _bi t type variables)
in the C application itself. The compiler acknowledges these three groups
using the following rules:

Command line options can be overruled by keywords and pragmas.
Keywords can be overruled by pragmas. Hence, pragmas have the highest
priority.

This approach makes it possible to set a default optimization level for a
source module, which can be overridden temporarily within the source by
a pragma.

The C compiler cm16 supports the following pragmas:

alias
Default. Same as -OA. Perform strict alias checking. When a pointer is

dereferenced, all register contents are assumed to be invalid afterwards.
See also the section Alias.

noalias

Same as -Oa. Relax alias checking.

asm

Insert the following (non preprocessor lines) as assembly language source
code into the output file. The inserted lines are not checked for their
syntax. The code buffer of the peephole optimizer is flushed. Thus the
compiler will stop optimizations like peephole pattern replacement and
resumes these optimizations after the endasm pragma as if it starts at the
beginning of a function.

For advanced assembly in-lining, intrinsic functions can be used. The
defined set of intrinsic functions cover most of the specific M16C features
which could otherwise not be accessed by the C language. For more
information on intrinsic functions see section 3.14 Intrinsic Functions.

4-76

Chapter 4

asm_noflush

Same as pragma asm, except that the peephole optimizer does not flush
the code buffer and assumes register contents remain valid.

endasm

Switch back to the C language.
The section Inline Assembly in the chapter Language Implementation
contains more information.

listinc

Expand include files in generated list file.

nolistinc

Default. Do not expand include files in list file.

optimize flags

Controls the amount of optimization. The remainder of the source line is
scanned for option characters, which are processed like the flags of the —-O
command line option. Please refer to the —O option for the list of available
flags.

Depending on the optimization some optimize pragmas can be used on a
function scope only (function level), whereas other optimize pragmas can
be used on each source line (flow level). ’On function level’ means that if
a pragma optimize is found within a function, it is interpreted as if it was
found just before the function. The optimization level of each optimize
pragma is described for each flag of the —=O option.

endoptimize

End a region that was optimized with a #pragma optimize. The pragma
endoptimize restores the situation as it was before the corresponding
pragma optimize. #pragma optimize/endoptimize pairs can be nested.

Compiler Use 4-77

Example:

#pragma optimze O
/* disable all optimzations */

#pragma optinee t

/* force generation of table for switch */
switch(...)
{

}
#pragma endoptim ze

/* back to all optimzations disabled */
#pragma endoptim ze

/* back to default optim zations */

renamesect mem=new

Rename a section. This pragma is used to create unique section names.
Section renaming is used in combination with locator description files to
assign specific locator attributes to pieces of C code. Same as =R option.

source

Same as the —s option. Enable mixing C source with assembly code.

nosource

Default. Disable generation of C source within assembly code.

4-78

By default the compiler assumes that each pointer may point to any object
created in the program, so when any pointer is dereferenced, all register

contents are assumed to be invalid afterwards.

Chapter 4

When it is known that aliasing problems do not occur in the written C

source, alias checking may be relaxed (use the =Oa option). Note that the
option -Oc must be on to use this option. Relaxing alias checking may

reduce code size.

Example 1:
int i;
voi d
func()
{
char *
char c;
char d;
if(i)
p = &c;
el se
p = &d;
c = 2
d = 3;
p = 4; /
/*
i =c; /*

/*
/*
/*

my wite to ¢’ or 'd */
——> aliasing object 'c’ or 'd */

"*p’ mght have changed the value of 'c¢’,
so 'c’ may not be used fromregister
contents, but MJST be read from nenory
——> alias checking MIUST be ON in this case

*/
*/
*/
*/

Compiler Use

Example 2:
int i;

voi d

func(char *p)

{

Example 3:

C
d,

/*

/*
/~k
/*

int array[2];

mai n()

array[0]
array[1]

array|[0]

/*
/*
/*
/*
/*

cannot wite to 'c’ or 'd, but to sone other

obj ect */

"*p’ cannot have changed the value of 'c’,
so 'c’ may be used fromregister contents
——> alias checking may be OFF in this case

1;
_1’

array[0] + array[1];

an interrupt mght have changed the val ue
of "array’, so 'array' may not be used
fromregister contents, but MJST be read
from nenory

——> alias checking MIST be ON in this case

*/
*/
*/

*/
*/
*/
*/
*/

4-79

4-80

Chapter 4

The ANSI C standard [1-2.2.4] defines a number of translation limits, which
a C compiler must support to conform to the standard. The standard states
that a compiler implementation should be able to translate and execute a
program that contains at least one instance of every one of the limits listed
below. cm16’s actual limits are given within parentheses.

Most of the actual compiler limits are determined by the amount of free
memory in the host system. In this case a "D’ (Dynamic) is given between
parentheses. Some limits are determined by the size of the internal
compiler parser stack. These limits are marked with a 'P’. Although the size
of this stack is 200, the actual limit can be lower and depends on the
structure of the translated program.

* 15 nesting levels of compound statements, iteration control
structures and selection control structures (P > 15)
* 8 nesting levels of conditional inclusion (50)

* 12 pointer, array, and function declarators (in any combinations)
modifying an arithmetic, a structure, a union, or an incomplete type
in a declaration (15)

* 31 nesting levels of parenthesized declarators within a full
declarator (P > 31)

* 32 nesting levels of parenthesized expressions within a full
expression (P > 32)

* 31 significant characters in an external identifier (full ANSI-C
mode),
500 significant characters in an external identifier (non ANSI-C
mode)

* 511 external identifiers in one translation unit (D)

* 127 identifiers with block scope declared in one block (D)

¢ 1024 macro identifiers simultaneously defined in one translation unit
D)

* 31 parameters in one function declaration (D)

* 31 arguments in one function call (D)

* 31 parameters in one macro definition (D)

* 31 arguments in one macro call (D)

* 509 characters in a logical source line (1500)

* 509 characters in a character string literal or wide string literal (after
concatenation) (1500)

Compiler Use

8 nesting levels for #included files (50)

257 case labels for a switch statement, excluding those for any
nested switch statements (D)

127 members in a single structure or union (D)
127 enumeration constants in a single enumeration (D)

15 levels of nested structure or union definitions in a single
struct-declaration-list (D)

4-81

4-82 Chapter 4

COMPILER
DIAGNOSTICS

al TASKING [

d31dVHO

Compiler Diagnostics

cm16 has three classes of messages: user errors, warnings and internal
compiler errors.

Some user error messages carry extra information, which is displayed by
the compiler after the normal message. The messages with extra
information are marked with T’ in the list below. They never appear
without a previous error message and error number. The number of the
information message is not important, and therefore, this number is not
displayed. A user error can also be fatal (marked as 'F’ in the list below),
which means that the compiler aborts compilation immediately after
displaying the error message and may generate a 'not complete’ output
file.

The error numbers and warning numbers are divided in two groups. The
frontend part of the compiler uses numbers in the range 0 to 499, whereas
the backend (code generator) part of the compiler uses numbers in the
range 500 and higher. Note that most error messages and warning
messages are produced by the frontend.

If you program a non fatal error, cm16 displays the C source line that
contains the error, the error number and the error message on the screen.
If the error is generated by the code generator, the C source line displayed
always is the last line of the current C function, because code generation is
started when the end of the function is reached by the frontend. However,
in this case, cm16 displays the line number causing the error before the
error message. cm16 always generates the error number in the assembly
output file, exactly matching the place where the error occurred.

So, when a compilation is not successful, the generated output file is not
accepted by the assembler, thus preventing a corrupt application to be
made (see also the —e option).

Warning messages do not result into an erroneous assembly output file.
They are meant to draw your attention to assumptions of the compiler, for
a situation which may not be correct. Warning messages can be controlled
with the =w[num] option.

The last class of messages are the internal compiler errors. The following
format is used:

S nunber: internal error — please report

5-3

5-4

Chapter 5

These errors are caused by failed internal consistency checks and should
never occur. However, if such a 'SYSTEM’ error appears, please report the
occurrence to TASKING, using a Problem Report form. Please include a
diskette or tape, containing a small C program causing the error.

cm16 returns an exit status to the operating system environment for
testing.

For example,

in a MS-DOS BATCH-file you can examine the exit status of the program
executed with ERRORLEVEL:

cnmle —s %.c
| F ERRORLEVEL 1 GOTO STOP_BATCH

In a bourne shell script, the exit status can be found in the $? variable, for
example:

cnl6 $*

case $? in

0) echo ok ;;

1] 2| 3) echo error ;;
esac

The exit status of cm16 is one of the numbers of the following list:

Compilation successful, no errors

There were user errors, but terminated normally

A fatal error, or System error occurred, premature ending
Stopped due to user abort

JONEN NSRS)

Compiler Diagnostics

Errors start with an error type, followed by a number and a message. The
error type is indicated by a letter:

information

error

fatal error

internal compiler error
warning

g(ﬂ"ﬂt‘ﬂ"‘

Frontend

F 1 evaluation expired
Your product evaluation period has expired. Contact your local
TASKING office for the official product.

W 2 unrecognized option: ‘option’
The option you specified does not exist. Check the invocation syntax
for the correct option.

E 4 expected number more #endif

The preprocessor part of the compiler found the#if’, #ifdef or #ifndef
dirctive but did not find a corresponding ‘#endif in the same source
file. Check your source file that each "#if’, ‘#ifdef or #ifndef has a
corresponding #endif.

E 5 no source modules

You must specify at least one source file to compile.

F 6 cannot create “file”
The output file or temporary file could not be created. Check if you
have sufficient disk space and if you have write permissions in the
specified directory.

F 7 cannot open “file”
Check if the file you specified really exists. Maybe you misspelled the
name, or the file is in another directory.

F 8 attempt to overwrite input file "file”

The output file must have a different name than the input file.

5-6 Chapter 5

E 9 unterminated constant character or string

This error can occur when you specify a string without a closing
double—-quote (") or when you specify a character constant without a
closing single-quote ("). This error message is often preceded by one
or more E 19 error messages.

F 11 file stack overflow

This error occurs if the maximum nesting depth (50) of file inclusion is
reached. Check for #include files that contain other #include files. Try
to split the nested files into simpler files.

F 12 memory allocation error
All free space has been used. Free up some memory by removing any
resident programs, divid the file into several smaller source files, break
expressions into smaller subexpressions or put in more memory.

W 13 prototype after forward call or old style declaration — ignored
Check that a prototype for each function is present before the actual
call.

E 14 ’; inserted
An expression statement needs a semicolon. For example, after ++i in
{ int i; ++i }.

E 15 missing filename after —o option

The -0 option must be followed by an output filename.

E 16 bad numerical constant

A constant must conform to its syntax. For example, 08 violates the
octal digit syntax. Also, a constant may not be too large to be
represented in the type to which it was assigned. For example,

int i = 0x1234567890; is too large to fit in an integer.

E 17 string too long

This error occurs if the maximum string size (1500) is reached. Reduce
the size of the string.

Compiler Diagnostics

E

18 illegal character (Oxhexnumber)

The character with the hexadecimal ASCII value Oxhexnumber is not
allowed here. For example, the '# character, with hexadecimal value
0x23, to be used as a preprocessor command, may not be preceded by
non-white space characters. The following is an example of this error:

char *s = #S ; /] error

19 newline character in constant

The newline character can appear in a character constant or string
constant only when it is preceded by a backslash (). To break a string
that is on two lines in the source file, do one of the following:

* End the first line with the line—continuation character, a backslash
QY2

* Close the string on the first line with a double quotation mark, and
open the string on the next line with another quotation mark.

20 empty character constant
A character contant must contain exactly one character. Empty
character contants ('’) are not allowed.

21 character constant overflow
A character contant must contain exactly one character. Note that an
escape sequence (for example, \t for tab) is converted to a single
character.

22 ‘'#define’ without valid identifier
You have to supply an identifier after a #define’.

23 ‘#else’ without #if
‘#else’ can only be used within a corresponding #if’, *#ifdef or '#ifndef
construct. Make sure that there is a '#if’, '#ifdef’ or '#ifndef statement in
effect before this statement.

24 ‘#endif without matching *#if

‘#endif appeared without a matching #if, '#ifdef or #ifndef
preprocessor directive. Make sure that there is a matching '#endif for
each '#f, '#ifdef and #ifndef statement.

25 missing or zero line number

'#line’ requires a non—zero line number specification.

5-8

=

E

Chapter 5

26 undefined control
A control line (line with a '#dentifier’) must contain one of the known
preprocessor directives.
27 unexpected text after control
#ifdef and #ifndef require only one identifier. Also, *#else’ and
‘#endif only have a newline. '#undef requires exactly one identifier.
28 empty program
The source file must contain at least one external definition. A source
file with nothing but comments is considered an empty program.
29 bad #include’ syntax
A ’#include’ must be followed by a valid header name syntax. For
example, #i ncl ude <stdi 0. h misses the closing ™>'.
30 include file “file” not found
Be sure you have specified an existing include file after a '#include’
directive. Make sure you have specified the correct path for the file.
31 end-of-file encountered inside comment

The compiler found the end of a file while scanning a comment.
Probably a comment was not terminated. Do not forget a closing
comment */” when using ANSI-C style comments.

32 argument mismatch for macro "name”

The number of arguments in invocation of a function-like macro must
agree with the number of parameters in the definition. Also, invocation
of a function-like macro requires a terminating ”)” token. The
following are examples of this error:

#define A(a) 1
int i = A(1,2); /* error */

#define B(b) 1
int j = B(1; [* error */

Compiler Diagnostics

E

\

33 ’name” redefined

The given identifier was defined more than once, or a subsequent
declaration differed from a previous one. The following examples
generate this error:

int i;

char i; /* error */

mai n()

{

}

mai n()

{

int j;
j

int j; /* error */

}

34 illegal redefinition of macro "name”

A macro can be redefined only if the body of the redefined macro is
exactly the same as the body of the originally defined macro.

This warning can be caused by defining a macro on the command line
and in the source with a '#define’ directive. It also can be caused by
macros imported from include files. To eliminate the warning, either
remove one of the definitions or use an #undef’ directive before the
second definition.

35 bad filename in #ine’

The string literal of a #line (if present) may not be a "wide—char” string.

So, #l i ne 9999 L"t45.c” is not allowed.

36 ’debug’ facility not installed

‘#pragma debug’ is only allowed in the debug version of the compiler.

37 attempt to divide by zero
A divide or modulo by zero was found. Adjust the expression or test if
the second operand of a divide or modulo is zero.

38 +non integral switch expression

A sw t ch condition expression must evaluate to an integral value. So,
char *p = 0; switch (p) isnotallowed.

5-9

5-10

=

F

Chapter 5

39 unknown error number: number
This error may not occur. If it does, contact your local TASKING office
and provide them with the exact error message.

40 non-standard escape sequence

Check the spelling of your escape sequence (a backslash, \, followed
by a number or letter), it contains an illegal escape character. For
example, \ ¢ causes this warning.

41 #elif without #f
The *#elif directive did not appear within an '#f, '#ifdef or #ifndef
construct. Make sure that there is a corresponding '#if’, '#ifdef or
‘#ifndef statement in effect before this statement.

42 syntax error, expecting parameter type/declaration/statement
A syntax error occurred in a parameter list a declaration or a statement.
This can have many causes, such as, errors in syntax of numbers, usage
of reserved words, operator errors, missing parameter types, missing
tokens.

43 unrecoverable syntax error, skipping to end of file
The compiler found an error from which it could not recover. This
error is in most cases preceded by another error. Usually, error E 42.

44 in initializer "name”

Informational message when checking for a proper constant initializer.

46 cannot hold that many operands

The value stack may not exceed 20 operands.

47 missing operator

An operator was expected in the expression.
48 missing right parenthesis
') was expected.

49 attempt to divide by zero — potential run—time error
An expression with a divide or modulo by zero was found. Adjust the
expression or test if the second operand of a divide or modulo is zero.
50 missing left parenthesis

' was expected.

Compiler Diagnostics 5-11

E 51 cannot hold that many operators

The state stack may not exceed 20 operators.

E 52 missing operand

An operand was expected.

E 53 missing identifier after defined’ operator

An identifier is required in a #i f def i ned(identifier) .

E 54 +non scalar controlling expression
Iteration conditions and ’if conditions must have a scalar type (not a
struct, union or a pointer). For example, after static struct {int
i;} si = {0}; itis notallowed to specify while (si) ++si.i;.
E 55 operand has not integer type
The operand of a '#if directive must evaluate to an integral constant.
So, #i f 1. is not allowed.
W 56 ’<debugoption><level> no associated action

This warning can only appear in the debug version of the compiler.
There is no associated debug action with the specified debug option
and level.

W 58 invalid warning number: number
The warning number you supplied to the -w option does not exist.
Replace it with the correct number.

F 59 sorry, more than number errors

Compilation stops if there are more than 40 errors.

E 60 label "label” multiple defined

A label can be defined only once in the same function. The following
is an example of this error:

f()
{
| abl:

| abl: /* error */

}

5-12

Chapter 5

61 type clash

The compiler found conflicting types. For example, a | ong is only
allowed on i nt or doubl e, no specifiers are allowed with st ruct
uni on or enum The following is an example of this error:

unsi gned signed int i; /* error */

62 bad storage class for "name”

The storage class specifiers aut 0 and r egi st er may not appear in
declaration specifiers of external definitions. Also, the only storage class
specifier allowed in a parameter declaration is r egi st er.

63 “name” redeclared
The specified identifier was already declared. The compiler uses the

second declaration. The following is an example of this error:

struct T{ int i; };
struct T{ long j; }; /* error */

64 incompatible redeclaration of "name”

The specified identifier was already declared. All declarations in the
same function or module that refer to the same object or function must
specify compatible types. The following is an example of this error:

f()
{ . -

int i;

char i; /* error */
}

66 function "name”: variable "name” not used

A variable is declared which is never used. You can remove this
unused variable or you can use the =w66 option to suppress this
warning.

67 illegal suboption: option
The suboption is not valid for this option. Check the invocation syntax
for a list of all available suboptions.

68 function "name”: parameter "name” not used

A function parameter is declared which is never used. You can remove
this unused parameter or you can use the =-w68 option to suppress this
warning.

Compiler Diagnostics

E

69 declaration contains more than one basic type specifier

Type specifiers may not be repeated. The following is an example of
this error:

int char i; /* error */

70 +’break’ outside loop or switch

A br eak statement may only appear in a swi t ch or a loop (do, f or
orwhile). So,if (0) break; is not allowed.

71 illegal type specified

The type you specified is not allowed in this context. For example, you

cannot use the type voi d to declare a variable. The following is an
example of this error:
void i; /* error */
72 duplicate type modifier
Type qualifiers may not be repeated in a specifier list or qualifier list.
The following is an example of this warning:

{ long long i; } /[* error */

73 object cannot be bound to multiple memories
Use only one memory attribute per object. For example, specifying
both rom and ram to the same object is not allowed.

74 declaration contains more than one class specifier
A declaration may contain at most one storage class specifier. So,
regi ster auto i; is notallowed.

75 +'continue’ outside a loop
cont i nue may only appear in a loop body (do, f or or whi | e). So,
switch (i) {default: continue;} is notallowed.

76 duplicate macro parameter “name”

The given identifier was used more than one in the formatl parameter
list of 2 macro definition. Each macro parameter must be uniquely
declared.

77 parameter list should be empty

An identifier list, not part of a function definition, must be empty. For
example,int f (i, j, k); is notallowed on declaration level.

5-13

5-14

Chapter 5

78 ’void’ should be the only parameter

Within a function protoype of a function that does not except any
arguments, voi d may be the only parameter. So, i nt f (void,

i nt); is not allowed.

79 +constant expression expected

A constant expression may not contain a comma. Also, the bit field
width, an expression that defines an enum, array-bound constants and
Swi t ch case expressions must all be integral contstant expressions.

80 '# operator shall be followed by macro parameter

The '# operator must be followed by a macro argument.

81 '## operator shall not occur at beginning or end of a macro

The ## (token concatenation) operator is used to paste together
adjacent preprocessor tokens, so it cannot be used at the beginning or
end of a macro body.

86 escape character truncated to 8 bit value

The value of a hexadicimal escape sequence (a backslash, \, followed
by a 'x’ and a number) must fit in 8 bits storage. The number of bits
per character may not be greater than 8. The following is an example
of this warning:

char ¢ = "\ xabc’; /* error */

87 concatenated string too long

The resulting string was longer than the limit of 1500 characters.

88 "name” redeclared with different linkage

The specified identifier was already declared. This warning is issued
when you try to redeclare an object with a different basic storage class,
and both objects are not declared extern or static. The following is an
example of this warning:

int i;

int i(); /* error E 64 and warning */

89 illegal bitfield declarator

A bit field may only be declared as an integer, not as a pointer or a
function for example. So, struct {int *a:1;} s; is not allowed.

Compiler Diagnostics

E

90 #error message
The message is the descriptive text supplied in a "#error’ preprocessor
directive.

91 no prototype for function "name”

Each function should have a valid function prototype.

92 no prototype for indirect function call

Each function should have a valid function prototype.

94 hiding earlier one
Additional message which is preceded by error E 63. The second
declaration will be used.

95 protection error: message

Something went wrong with the protection key initialization. The
message could be: "Key is not present or printer is not correct.”, "Can’t

»»

read key.”, "Can’t initialize key.”, or "Can’t set key—model”.

96 syntax error in #define

#defi ne id(requires a right-parenthesis ’)’.

97 ”...” incompatible with old-style prototype

If one function has a parameter type list and another function, with the
same name, is an old-style declaration, the parameter list may not have
ellipsis. The following is an example of this error:

int f(int, ...);
int f(); /* error, old-style */
98 function type cannot be inherited from a typedef
A typedef cannot be used for a function definition. The following is

an example of this error:

typedef int | NTFEN();
INTEN f {return (0);} /* error */
99 conditional directives nested too deep

#f) #ifdef or #ifndef directives may not be nested deeper than 50
levels.

5-15

5-16

Chapter 5

100 +case or default label not inside switch

The case: or defaul t: label may only appear inside a swi t ch.

101 vacuous declaration

Something is missing in the declaration. The declaration could be
empty or an incomplete statement was found. You must declare array
declarators and st ruct, uni on, or enummembers. The following are
examples of this error:

int ; /* error */
static int a[2] = { }; /* error */

102 +duplicate case or default label

Switch case values must be distinct after evaluation and there may be
at most one def aul t: label inside a swi t ch.

103 may not subtract pointer from scalar

The only operands allowed on subtraction of pointers is pointer —
pointer, or pointer — scalar. So, scalar — pointer is not allowed. The
following is an example of this error:

int i;

int *pi = &

ff(1 - pi); [* error */

104 left operand of operator has not struct/union type

The first operand of a "> or '=>’ must have a st ruct or uni on type.

105 zero or negative array size — ignored

Array bound constants must be greater than zero. So, char a[0] ; is
not allowed.

106 different constructors

Compatible function types with parameter type lists must agree in
number of parameters and in use of ellipsis. Also, the corresponding
parameters must have compatible types. This error is usually followed
by informational message I 111. The following is an example of this
error:

int f(int);
int f(int, int); /* error different
paraneter list */

Compiler Diagnostics 5-17

E 107 different array sizes

Corresponding array parameters of compatible function types must
have the same size.This error is usually followed by informational
message I 111. The following is an example of this error:

int f(int [1[2]);
int f(int [1[3]); /[* error */
E 108 different types

Corresponding parameters must have compatible types and the type of
each prototype parameter must be compatible with the widened
definition parameter. This error is usually followed by informational
message I 111. The following is an example of this error:

int f(int);
int f(long); /* error different type
in paranmeter list */
E 109 floating point constant out of valid range

A floating point constant must have a value that fits in the type to
which it was assigned. See section Data Types for the valid range of a
floating point constant. The following is an example of this error:

float d = 10E9999; /* error, too big */

E 110 function cannot return arrays or functions

A function may not have a return type that is of type array or function.
A pointer to a function is allowed. The following are examples of this
error:

typedef int F(); F f(); [/* error */
typedef int A[2]; Ag(); /* error */

I 111 parameter list does not match earlier prototype

Check the parameter list or adjust the prototype. The number and type
of parameters must match. This message is preceded by error E 106, E
107 or E 108.

5-18 Chapter 5

E 112 parameter declaration must include identifier

If the declarator is a prototype, the declaration of each parameter must
include an identifier. Also, an identifier declared as a t ypedef name
cannot be a parameter name. The following are examples of this error:

int f(int g, int) {return (g);} /* error */

typedef int int_type;
int h(int_type) {return (0);} /* error */
E 114 incomplete struct/union type
The struct or uni on type must be known before you can use it. The

following is an example of this error:

extern struct unknown sa, sb
sa = sb; /* "unknown’ does not have a
defined type */

The left side of an assignment (the lvalue) must be modifiable.

E 115 label "name” undefined

A got o statement was found, but the specified label did not exist in
the same function or module. The following is an example of this error:

f1() { a: ; } [* W116 */
f2() { goto a; } /* error, label "a:’ is
not defined in f2() */

W 116 label "name” not referenced

The given label was defined but never referenced. The reference of the
label must be within the same function or module. The following is an
example of this warning:

f() { ao ; } /* a is not referenced */

E 117 ’name” undefined

The specified identifier was not defined. A variable’s type must be
specified in a declaration before it can be used. This error can also be
the result of a previous error. The following is an example of this
error:

unknown i; /* error, 'unknown’ undefined */
i = 1; /* as a result, i’ is also
undefined */

Compiler Diagnostics 5-19

W 118 constant expression out of valid range

A constant expression used in a case label may not be too large. Also
when converting a floating point value to an integer, the floating point
constant may not be too large. This warning is usually preceded by
error E 16 or E 109. The following is an example of this warning:

int i = 10E88; /* error and warning */

E 119 cannot take ’sizeof’ bitfield or void type
The size of a bit field or voi d type is not known. So, the size of it
cannot be taken.

E 120 cannot take ’sizeof function

The size of a function is not known. So, the size of it cannot be taken.

E 121 not a function declarator
This is not a valid function. This may be due to a previous error. The
following is an example of this error:

int f() return O; [/* mssing '{ } */
int g() {} /* error, 'g is not a
formal paranmeter and
therefore, this is not a
valid function declaration */
E 122 unnamed formal parameter

The parameter must have a valid name.

W 123 function should return something

A return in a non-voi d function must have an expression.

E 124 array cannot hold functions

An array of functions is not allowed.

E 125 +function cannot return anything

A return with an expression may not appear in a voi d function.

W 126 missing return (function "name”)

A non-voi d function with a non-empty function body must have a
ret ur n statement.

5-20

=

Chapter 5

E 129 cannot initialize "name”

Declarators in the declarator list may not contain initializations. Also, an
ext er n declaration may have no initializer. The following are
examples of this error:

0; } /* error */
=0; /* error */

{ externint i =
int f(i) inti
130 operands of operator are pointers to different types

Pointer operands of an operator or assignment (=), must have the
same type. For example, the following code generates this warning:

I ong *pl;
int *pi =0
pl = pi; /* warning */

131 bad operand type(s) of operator
The operator needs an operand of another type. The following is an
example of this error:

int *pi;

pi += 1.; /* error, pointer on left; needs

i ntegral value on right */

132 value of variable "name” is undefined
This warning occurs if a variable is used before it is defined. For
example, the following code generates this warning:

int a,b;
a = b; /* warning, value of b unknown */
133 illegal struct/union member type
A function cannot be a member of a st ruct or uni on. Also, bit fields
may only have type i nt or unsi gned.
134 bitfield size out of range - set to 1

The bit field width may not be greater than the number of bits in the
type and may not be negative. The following example generates this
error:

struct i { unsigned i : 999; }; /* error */

Compiler Diagnostics 5-21

W 135 statement not reached

The specified statement will never be executed. This is for example the
case when statements are present after a r et urn.

E 138 illegal function call
You cannot perform a function call on an object that is not a function.
The following example generates this error:
int i, j;
o =i0); /* error, i is not a function */

E 139 operator cannot have aggregate type

The type name in a (cast) must be a scalar (not a struct, uni on or a
pointer) and also the operand of a (cast) must be a scalar. The
following are examples of this error:

static union ui {int a;} ui ;
ui = (union ui)9; /* cannot cast to union */
ff((int)ui); /* cannot cast a union

to sonmething else */

E 140 type cannot be applied to a register/bit/bitfield object or
builtin/inline function
For example, the & operator (address) cannot be used on registers
and bit fields. So, func(& 6); and func(&bitf.a); are invalid.
E 141 operator requires modifiable lvalue

The operand of the '++’, or '— operator and the left operand of an
assignment or compound assignment (lvalue) must be modifiable. The
following is an example of this error:

const int i = 1;
i = 3; /* error, const cannot be
nodi fied */
E 143 too many initializers

There may be no more initializers than there are objects. The
following is an example of this error:

static int a[l1] = {1, 2}; [/* error,
only one object can be initialized */

5-22

Chapter 5

W 144 enumerator "name” value out of range

An enumconstant exceeded the limit for an i nt . The following is an
example of this warning:

enum{ A = INT_MAX, B }; /* war ni ng,
B does not fit in an int anynore */
145 requires enclosing curly braces
A complex initializer needs enclosing curly braces. For example, i nt
a[] = 2; isnotvalid, butint a[] = {2}, is.
146 argument #number: memory spaces do not match

With prototypes, the memory spaces of arguments must match.

147 argument #number: different levels of indirection
With prototypes, the types of arguments must be assignment
compatible. The following code generates this warning:

int i; void func(int,int);
func(1, &); /* warning, argument 2 */

148 argument #number: struct/union type does not match

With prototypes, both the prototyped function argument and the actual
argument was a st ruct or uni on., but they have different tags. The
tag types should match. The following is an example of this warning:

f(struct s); /* prototype */
mai n()
{

struct { int i; } t;

f(t); /*t has other type than s */
}

149 object "name” has zero size

A struct or uni on may not have a member with an incomplete type.
The following is an example of this error:

struct { struct unknown m } s; /* error */

Compiler Diagnostics

W 150 argument #number: pointers to different types

With prototypes, the pointer types of arguments must be compatible.
The following example generates this warning:

int f(int*);

long *I;

f(l); [* warning */
151 ignoring memory specifier

Memory specifiers for a st ruct, uni on or enumare ignored.

152 operands of operator are not pointing to the same memory
space

Be sure the operands point to the same memory space. This error
occurs, for example, when you try to assign a pointer to a pointer from
a different memory space.

153 ’sizeof’ zero sized object

An implicit or explicit Si zeof operation references an object with an
unkown size. This error is usually preceded by error E 119 or E 120,
cannot take 'sizeof’.

154 argument #rumber: struct/union mismatch

With prototypes, only one of the prototyped function argument or the
actual argument was a st ruct or uni on. The types should match. The
following is an example of this error:

f(struct s); /* prototype */
mai n()
{
int i;
fCi); /* i is not a struct */
}

155 casting Ivalue type’ to "type’ is not allowed

The operand of the '++’, or '— operator or the left operand of an
assignment or compound assignment (lvalue) may not be cast to
another type. The following is an example of this error:

int i =3
++(unsi gned) i ; /* error, cast expression
is not an |value */

5-23

5-24

Chapter 5

157 "mame” is not a formal parameter
If a declarator has an identifier list, only its identifiers may appear in
the declarator list. The following is an example of this error:
int f(i) int a; /* error */

158 right side of operator is not a member of the designated

struct/union
The second operand of ’.” or '—>’ must be a member of the designated
struct or uni on.
160 pointer mismatch at operator
Both operands of operator must be a valid pointer. The following
example generates this error:

int *pi = 44; /* right side not a pointer */

161 aggregates around operator do not match
The contents of the structs, unions or arrays on both sides of the
operator must be the same. The following example causes this error:

struct {int a; int b;} s;

struct {int c; int d; int e;} t;

s = t; /* error */
162 operator requires an lvalue or function designator
The '& (address) operator requires an lvalue or function designator.
The following is an example of this error:

int i;

=& 0 =0);
163 operands of operator have different level of indirection
The types of pointers or addresses of the operator must be assignment
compatible. The following is an example of this warning:

char **a;
char *b;
a = b; /* warning */
164 operands of operator may not have type ’pointer to void’

The operands of operator may not have operand (voi d *).

Compiler Diagnostics

W 165 operands of operator are incompatible: pointer vs. pointer to
array

The types of pointers or addresses of the operator must be assignment
compatible. A pointer cannot be assigned to a pointer to array. The
following is an example of this warning:

mai n()
{
typedef int array[10];
array a;
array *ap = a; /* warning */

}

E 166 operator cannot make something out of nothing

Casting type voi d to something else is not allowed. The following
example generates this error:

void f(void);
mai n()
{ . .
int i;
i = (int)f(); /* error */
}

E 170 recursive expansion of inline function "name”

An _i nli ne function may not be recursive. The following example
generates this error:

_inline int a (int i)

a(i); /* recursive call */
return i;

}

mai n()
a(l); /[* error */

5-25

5-26 Chapter 5

=

E 171 +too much tail-recursion in inline function "name”

If the function level is greater than or equal to 40 this error is given.
The following example generates this error:

_inline void a ()

{

a();
}
mai n()
{

a();
}

W 172 adjacent strings have different types
When concatenating two strings, they must have the same type. The
following example generates this warning:

char b[] = L"abc””def”; /* strings have
different types */
E 173 ’void’ function argument

A function may not have an argument with type voi d.

E 174 not an address constant

A constant address was expected. Unlike a static variable, an automatic
variable does not have a fixed memory location and therefore, the
address of an automatic is not a constant. The following is an example
of this error:

int *a;
static int *b =a; [/* error */

E 175 not an arithmetic constant

In a constant expression no assignment operators, no ++ operator, no
'— operator and no functions are allowed. The following is an
example of this error:

int a;
static int b = a++; /* error */

E 176 address of automatic is not a constant

Unlike a static variable, an automatic variable does not have a fixed
memory location and therefore, the address of an automatic is not a
constant. The following is an example of this error:

Compiler Diagnostics

int a; /* automatic */
static int *b = &; /* error */
W 177 static variable "name” not used
A static variable is declared which is never used. To eliminate this
warning remove the unused variable.
W 178 static function "name” not used
A static function is declared which is never called. To eliminate this
warning remove the unused function.
E 179 +inline function "name” is not defined

Possibly only the prototype of the inline function was present, but the
actual inline function was not. The following is an example of this
error:

_inline int a(void); [/* prototype */

mai n()
{

int b;

b = a(); [* error */
b

E 180 illegal target memory (meemory) for pointer
The pointer may not point to memory. For example, a pointer to
bitaddressable memory is not allowed.

E 181 invalid cast to function
A cast to type function is not allowed. A cast to a function pointer type
is allowed.

W 182 argument #number: different types

With prototypes, the types of arguments must be compatible.

5-27

5-28 Chapter 5

=

W 183 variable 'name’ possibly uninitialized

Possibly an initialization statement is not reached, while you tried to
use the variable. The following is an example of this warning:

int a;
int f(void)
{
int i;
if (a)
{
i = 0; /* statenent not reached */
}
return i; /* warning */
}

I 185 (prototype synthesized at line number in "name”)

This is an informational message containing the source file position

where an old-style prototype was synthesized. This message is

preceded by error E 146, W 147, W 148, W 150, E 154, W 182 or E 203.
E 186 array of type bit is not allowed

An array cannot contain bit type variables.

E 187 illegal structure definition
A structure can only be defined (initialized) if its members are known.
So, struct unknown s = { 0 }; is not allowed.
E 188 structure containing bit-type fields is forced into bitaddressable
area
This error occurs when you use a bitaddressable storage type for a
structure containing bit-type members.
E 189 pointer is forced to bitaddressable, pointer to bitaddressable is
illegal

A pointer to bitaddressable memory is not allowed.

W 190 long float” changed to “float”

In ANSI C floating point constants are treated having type doubl e,
unless the constant has the suffix 'f. If you have specified an option to
use float constants, a | ong floating point constant such as 123. 12f | is
changed to a f | oat .

Compiler Diagnostics 5-29

E 191 recursive struct/union definition
A struct or uni on cannot contain itself. The following example
generates this error:

struct s { struct s a; } b; /* error */

E 192 missing filename after —f option

The —f option requires a filename argument.

E 193 only one —f option allowed

You can use the —f option only once.

E 194 cannot initialize typedef
You cannot assign a value to a typedef variable. So, t ypedef i=2; is
not allowed.

W 195 constant expression out of range — truncated

The resulting constant expression is too large to fit in the specified data
type. The value is truncated. The following example generates this
warning:

int i = 140000L; /* warning, value is too |arge
to fit inan int */
W 196 constant expression out of range due to signed/unsigned type
mismatch

The resulting constant expression is too large to fit in the specified data
type. The following example generates this warning:

int i = 40000U; /* the unsigned value is too |arge
to fit in a signed int */
/* unsigned int i = 40000U; is OK */

W 197 unrecognized —w argument: argument

The =w option only accepts a warning number or the text ’strict’ as an
argument. See the description of the —w option for details.

W 198 trigraph sequence replaced

Trigraphs are used in the C language to create special characters on
obsolete terminals with a limited character set. When they are replaced
in your source, e.g. in a string, they may give rise to very obscure
errors.

5-30

=

Chapter 5

F 199 demonstration package limits exceeded

The demonstration package has certain limits which are not present in
the full version. Contact TASKING for a full version.

200 unknown pragma - ignored

The compiler ignores pragmas that are not known. For example,
#pragma unknown.

201 nmame cannot have storage type — ignored

A regi st er variable or an automatic/parameter cannot have a storage
type. To eliminate this warning, remove the storage type or place the
variable outside a function.

202 ’mame’ is declared with 'void’ parameter list

You cannot call a function with an argument when the function does
not accept any (voi d parameter list). The following is an example of
this error:

int f(void); /* void paraneter |ist */
mai n()
Lt
int i;
i = f(i); /* error */
i =f(); [* OK */
}

203 too many/few actual parameters

With prototyping, the number of arguments of a function must agree
with the protoype of the function. The following is an example of this
error:

int f(int); /* one paraneter */

mai n()

t
int i;
i =f(i,i); [* error, one too many */
io=f(i); [* OK */

}

W 204 U suffix not allowed on floating constant — ignored

A floating point constant cannot have a 'U’ or 'u’ suffix.

Compiler Diagnostics 5-31

W 205 F suffix not allowed on integer constant — ignored

An integer constant cannot have a 'F’ or ’f’ suffix.

E 206 ’name’ named bit-field cannot have 0 width
A bit field must be an integral contstant expression with a value greater
than zero.

E 207 list of rule numbers expected after "—safer” option
Add the numbers of the Safer C rules to the —safer option to specifiy
the rules that must be checked. See Appendix B Safer C

W 208 unsupported Safer C rule number number.

Specified Safer C rule number is not supported.

E 209 +Safer C rule number violation: rule_description

A specified Safer C rule is violated.

E 212 ’name”: missing static function definition

A function with a st ati ¢ prototype misses its definition.

W 213 invalid string/character constant in non—-active part of source

This part of the source is skipped.

E 214 second occurrence of #pragma asm or asm_noflush
#pragma asm/#pragma endasmblocks cannot be nested. Use
#pragma endasmbefore starting a new #pragnma asm#pr agna
endasmblock.

E 215 ’#pragma endasm” without a "#pragma asm”
A #pragma endasmmust always have a corresponding #pr agma asm
or #pragma asm nof | ush.

W 216 suggest parentheses around assignment used as truth value

Generated when the argument of an i f statement is actually an
assignment (might indicate a typing error).

5-32

Chapter 5

W 303 variable 'name’ possibly uninitialized

Possibly an initialization statement is not reached, while you tried to
use the variable. The following is an example of this warning:

int a;
int f(void)
{
int i;
if (a)
{
i = 0; /* statenent not reached */
}
return i; /* warning */
}

E 327 too many arguments to pass in registers for _asmfunc 'name’

An _asnf unc function uses a fixed register-based interface between C
and assembly, but the number of arguments that can be passed is
limited by the number of available registers. With function name this
limit was reached.

Backend

W 507 duplicate qualifier
Only one function qualifier is allowed. Duplicate function qualifiers are
ignored.

W 510 function qualifier used on non-function

A function qualifier can only be used on functions.

E 511 interrupt function must have void result and void parameter list
A function declared with _i nt errupt (n) may not accept any
arguments and may not return anything.

W 512 (number) not within valid range (numli num?2)

An interrupt vector number must be in the range numl to num2. Any
other number is illegal.

E 514 conflicting 'name’ attribute from previous definition

The attributes of the current function qualifier declaration and the
previous function qualifier declaration are not the same.

Compiler Diagnostics 5-33

E 515 difference in vector number (old_num = new num) from
previous declaration

The function prototype of an interrupt service routine must have the
same vector number as in the function definition.
E 516 ’memory type’ is illegal memory for function

The storage type is not valid for this function.

W 517 address would be truncated
This warning is issued when pointer conversion is needed, for
example, when you assign a _f ar pointer to a _near pointer.

E 526 function qualifier °_asmfunc’ not allowed in function definition

_asnf unc is only allowed in the function protoptype.

E 528 at() requires a numerical address

You can only use an expression that evaluates to a numerical address.

E 529 at() address out of range for this type of object

The absolute address is not present in the specified memory space.

E 530 _at() only valid for global variables

Only global variables can be placed on absolute addresses.

E 531 _at() only allowed for uninitialized variables

Absolute variables cannot be initialized.

E 532 _at() has no effect on external declaration

When declared ext er n the variable is not allocated by the compiler.

W 533 language extension keyword used as identifier
A language extension keyword is a reserved word, and reserved words
cannot be used as an identifier.
W 536 truncating the value to: hexnumber
The value does not fit in the specified storage class and is truncated.
W 542 optimization stack underflow, no optimization options are saved
with #pragma optimize

This warning occurs if you use a #pragnma endopt i m ze while there
were no options saved by a previous #pragne optim ze.

5-34

Chapter 5

562 Bit type parameter not allowed

Parameters cannot be of type _bi t.

563 Bit-type struct member not allowed

Struct members cannot be of type _bi t .

566 special function registers may not be initialized

For example, the construction _sfrbyte a = 2; is not allowed.

567 operand of ‘memory _type’ must be a constant
The operand from an intrinsic function should specify an immediate
constant value.

Example:int i; —enter (i); The —enter mnemonic requires a
constant number.

568 _at() only valid for global variables

Only global variables can be placed on absolute addresses.Only global
variables can be placed on absolute addresses.

569 Bit offset out of range

With _at bi t you can specify a bit offset within _sfrbyte from 0 to 7,
within _sfrwor d from 0 to 15 and within _sfr | ong from 0 to 31.

LIBRARIES

al TASKING [

d31dVHO

Libraries

This chapter describes the library functions delivered with the compiler.
Some functions (e.g. printf (), scanf ()) can be edited to match your
needs. cm16 come with libraries in object format per memory model and
with header files containing the appropriate prototype of the library
functions. The library functions are also shipped in source code (C or

assembly).

A number of standard operations within C are too complex to generate
inline code for. These operations are implemented as run—time library
functions. The run-time library routines are added to the C library.

The following header files are delivered with the C compiler:

<assert.h>

<ctype.h>

<errno.h>
<fcntl.h>

<float.h>

<limits.h>
<locale.h>
<malloc.h>

<math.h>

<setjmp.h>
<signal.h>
<simio.h>

<stdarg.h>

assert

isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower,
isprint, ispunct, isspace, isupper, isxdigit, toascii, _tolower,
tolower, _toupper, toupper

Error numbers. No C functions.

Definition of flags used by open().

copysign, copysignf, isfinite, isfinitef, isinf, isinff, isnan, isnan,
scalbf. Constants related to floating point arithmetic.

Limits and sizes of integral types. No C functions.
localeconv, setlocale. Delivered as skeletons.
Non-ANSI C header file with prototypes of malloc and free.

acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh

longjmp, sejmp
raise, signal. Functions are delivered as skeletons.
_Simi, _simo

va_arg, va_end, va_start

6-4

<stddef.h>

<stdio.h>

<stdlib.h>

<string.h>

<time.h>

Chapter 6

offsetof, definition of special types.

clearerr, close, fclose, feof, ferror, fflush, fgetc, fgetpos,
fgets, fopen, fprintf, fputc, fputs, fread, freopen, fscanf, fseek,
fsetpos, ftell, fwrite, getc, getchar, gets, Iseek, open, perror,
printf, putc, putchar, puts, read, remove, rename, rewind,
scanf, setbuf, setvbuf, sprintf, sscanf, tmpfile, tmpnam,
ungetc, viprintf, vprintf, vsprintf, unlink, write

abort, abs, atexit, atof, atoi, atol, bsearch, calloc, div, exit,
free, getenv, labs, Idiv, malloc, mblen, mbstowcs, mbtowc,
gsort, rand, realloc, srand, strtod, strtol, strtoul, system,
wcstombs, wctomb

memchr, memcmp, memcpy, memmove, memset, strcat,
strchr, strcmp, strcol, strepy, strespn, strerror, strlen, strncat,
strnemp, strnepy, strpbrk, strrchr, strspn, strstr, strtok, strxfrm

asctime, clock, ctime, difftime, gmtime, localtime, mktime,
strftime, time. All functions are delivered as skeletons.

The C library contains C library functions. All C library functions are
described in this chapter. These functions are only called by explicit
function calls in your application program.

The | i b directory contains the following libraries:

Compiler Model Library to link
Small libcs.a
Large libcl.a

Table 6-1: C libraries

Compiler Model Library to link
Small libms.a
Large libml.a

Table 6-2: Math libraries

Libraries

Compiler Model Library to link
Small printfss.a
printfsm.a
scanfss.a
Large printfls.a
printflm.a
scanfls.a

Table 6-3: Printf and scanf libvaries

Compiler Model Library to link
Small librts.a
Large librtl.a

Table 6-4: Run-time librvaries

Compiler Model Library to Link
Small libfps.a
Large libfpl.a

Table 6-5: Floating point libvaries

@ The Ikm16 linker is using this naming convention when specifying the -1

option. For example, with -lIcs the linker is looking for | i bcs. a in the
system | i b directory. Specifying the libraries is a job taken care of by the
control program.

When you use floating point, the floating point library must be the last
library linked. It should be placed after the C library. Arithmetic routines
like si n(), cos(), etc. are not present in these libraries. Only basic
floating point operations can be done.

6-6

Chapter 6

In ANSI C all mathematical functions (<mat h. h>), are based on doubl e
arguments and double return type. So, even if you are using only f | oat
variables in your code, the language definition dictates promotion to
doubl e, when using the math functions or floating point formatters
(printf () and scanf ()). The result is more code and less execution
speed. In fact the ANSI approach introduces a performance penalty.

To improve the code size and execution speed, the compiler supports the
option -F to force single precision floating point usage. If you use -F, a
fl oat variable passed as an argument is no longer promoted to doubl e
when calling a variable argument function or an old style K&R function,
and the type doubl e is treated as f | oat . It is obvious that this affects the
whole application (including libraries). Therefore, special single precision
versions of the floating point libraries are delivered with the package.
When using =F, these libraries must be used. It is not possible to mix C
modules created with the =F option and C modules which are using the
regular ANSI approach.

The -Fc option only treats floating point constants (having no suffix) as
f1 oat instead of doubl e.

The single precision floating point C libraries have an additional ’s’ in the
filename.

A detailed description of the delivered C library is shown in the following
list.

Explanation :

Y - Fully implemented
I - Implemented, but needs some user written low level routine
L - Delivered as a skeleton

Libraries

File Imple— Routine name | Description / Reason
mented
assert.h Y 'assert()’ macro | Macro definition
ctype.h Y Most of the routines are
delivered as macro AND as
function (as prescribed by
ANSI).
Y isalnum
Y isalpha
Y iscntrl
Y isdigit
Y isgraph
Y islower
Y isprint
Y ispunct
Y isspace
Y isupper
Y isxdigit
Y tolower
Y toupper
Y _tolower Not defined by ANSI
Y _toupper Not defined by ANSI
Y isascii Not defined by ANSI
Y toascii Not defined by ANSI
errno.h Y Only Macros
fentl.h Y Definitions of flags used by _open
I open
float.h Y
limits.h Y Only Macros
locale.h Y
L localeconv No OS present
L setlocale No OS present

6-7

6-8

Chapter 6

File

Imple—
mented

Routine name

Description / Reason

math.h

acos
asin
atan
atan2
ceil
cos
cosh
exp
fabs
floor
fmod
frexp
Idexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh

setjmp.h

longjmp
setjmp

signal.h

raise
signal

stdarg.h

va_arg
va_end
va_start

stddef.h

I I I e I e et e et R

Only Macros

Libraries

File Imple— Routine name | Description / Reason
mented
stdio.h Y
Y clearerr
I fclose Needs _close
Y feof
Y ferror
I fflush Needs _write/_lseek
I fgetc Needs _read
I fgetpos Needs _Iseek
I fgets Needs _read
I fopen Needs _open
I fprintf Needs _write
I fputc Needs _write
I fputs Needs _write
I fread Needs _read
I freopen Needs _close/_open
I fscanf Needs read
I fseek Needs _Iseek
I fsetpos Needs _Iseek
I ftell Needs _Iseek
I fwrite Needs _write
I getc Needs _read
I getchar Needs _read
I gets Needs _read
Y perror
I printf Needs _write
I putc Needs _write
I putchar Needs _write
I puts Needs _write
I remove Needs _unlink
L rename
I rewind Needs _Iseek
I scanf Needs _read
Y setbuf
Y setvbuf
Y sprintf
Y sscanf
L tmpfile
L tmpnam Delivered as a random name
generator, but should use
some process ID.
Y ungetc
I vfprintf Needs _write
I vprintf Needs _write
Y vsprintf

6-10 Chapter 6

File Imple— Routine name | Description / Reason

mented

I _close Low level file close routine

I _open Low level file open routine

I _Iseek Low level file positioning
routine

| _read Low level block input routine,
when not customized, will
use _simi

I _unlink Low level file remove routine

I _write Low level block write routine,
when not customized, will
use _simo

stdlib.h Y

Y abort Calls _exit() in cstart

Y abs

Y atexit

Y atof

Y atoi

Y atol

Y bsearch

Y calloc

Y div

Y exit Calls _exit() in cstart

Y free

L getenv No OS present

Y labs

Y Idiv

Y malloc

Y gsort

Y strtod

Y strtol

Y strtoul

Y rand

Y realloc

Y srand

L system No OS present

L mblen wide chars not supported

L mbstowcs wide chars not supported

L mbtowc wide chars not supported

L wcstombs wide chars not supported

L wctomb wide chars not supported

Libraries

6-11

File

Imple—
mented

Routine name

Description / Reason

string.h

memchr
memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcoll
strcpy
strcspn
strerror
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtok
strxfrm

wide chars not supported

wide chars not supported

time.h

KL LT KL F <K<K << << << <<

asctime
clock
ctime
difftime
gmtime
localtime
mktime
stritime
time

real time clock not supported

6-12 Chapter 6

_close

#i ncl ude <stdio. h>
int close(int fd);

Low level file close function. close is used by the functions close and
fclose. The given file descriptor should be properly closed, any buffer is
already flushed.

_Iseek

#i ncl ude <stdio. h>
off t Iseek(int fd, off _t offset, int whence);

Low level file positioning function. _lIseek is used by all file positioning
functions (fgetpos, fseek, fsetpos, ftell, rewind).

_open

#i ncl ude <stdio. h>
int open(int fd, int flags);

Low level file open function. _open is used by the functions fopen and
freopen. The given file descriptor should be properly opened.

_read

#i ncl ude <stdio. h>
si ze_t
read(FILE *fin, char *base, size t size);

Low level block input function. It reads a block of characters from the
given stream. This function interfaces to CrossView Pro’s simulated I/O
feature.

Returns the number of characters read.

Libraries 6-13

_simi

#i ncl ude <sim o. h>
int sim(int stream char *port, int len);

CrossView Simulated input interface function.
% See also " read()”.
_simo

#i ncl ude <si m o. h>
int simo(int stream char *port, int len);

CrossView Simulated output interface function.

ﬂ? See also ”_write()”.

_tolower

#i ncl ude <ctype. h>
int tolower(int c);

Converts ¢ to a lowercase character, does not check if ¢ really is an
uppercase character. This is a non—-ANSI function.

Returns the converted character.

_toupper

#i ncl ude <ctype. h>
int toupper(int c);

Converts € to an uppercase character, does not check if ¢ really is a
lowercase character. This is a non—-ANSI function.

Returns the converted character.

6-14 Chapter 6

_unlink

#i ncl ude <stdio. h>
int _unlink(const char *nane);

Low level file remove function. _unlink is used by the function remove.
_write
#i ncl ude <stdio. h>
size t

_wite(FILE *iop, char *base, size t size);

Low level block ouput function. It writes a block of characters to the given
stream. This function interfaces to CrossView Pro’s simulated 1/0O feature.

Returns the number of characters correctly written.

abort

#i ncl ude <stdlib. h>
voi d abort(void);

Terminates the program abnormally. It calls the function _exi t , which is
defined in the start-up module.

Returns nothing.

abs

#i ncl ude <stdlib. h>
int abs(int n);

Returns the absolute value of the signed int argument.
acos

#i ncl ude <mmath. h>
doubl e acos(double x);

Returns the arccosine cos~1(x) of x in the range [0, T1,
x O[-1, 1.

Libraries 6-15

asctime

#i ncl ude <time.h>
char *asctime(const struct tm*tp);

Converts the time in the structure *t p into a string of the form:
Mon Jan 21 16:15:14 1989\ n\0

Returns the time in string form.
asin

#i ncl ude <mmat h. h>
doubl e asi n(double x);

Returns the arcsine sin~1(x) of x in the range [-TV/2, /2],
x O[-1, 1.

assert

#i ncl ude <assert.h>
voi d assert(int expr);

When compiled with NDEBUG, this is an empty macro. When compiled
without NDEBUG defined, it checks if expr is true. If it is true, then a line
like:

"Assertion failed: expression, file filenane, |line
nunt

is printed.
Returns nothing.

atan

#i ncl ude <mat h. h>
doubl e atan(double x);

Returns the arctangent tan~1(x) of X in the range [-T/2, T/2]. x O |[-1,
1].

6-16 Chapter 6
atan2

#i ncl ude <nmat h. h>
doubl e atan2(double y, double x);

Returns the result of: tan~1(y/ x) in the range [-Tt, T1.

atexit

#i ncl ude <stdlib. h>
int atexit(void (*fcn)(void));

Registers the function f cn to be called when the program terminates

normally.
Returns zero, if program terminates normally.
non-zero, if the registration cannot be made.
atof

#i ncl ude <stdlib. h>
doubl e atof (const char *s);

Converts the given string to a double value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the double value.

atoi

#i ncl ude <stdlib. h>
int atoi (const char *s);

Converts the given string to an integer value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the integer value.

Libraries

atol

#i ncl ude <stdlib. h>
long atol (const char *s);

Converts the given string to a long value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the long value.

bsearch

#i ncl ude <stdlib. h>

_reentrant void *bsearch(const void *key,
const void *base, size_t n, size_t size, int (* cnp)
(const void *, const void *));

This function searches in an array of n members, for the object pointed to
by pt r. The initial base of the array is given by base. The size of each

member is specified by si ze. The given array must be sorted in ascending

order, according to the results of the function pointed to by cnp.

Returns a pointer to the matching member in the array, or NULL
when not found.

calloc

#i ncl ude <stdlib. h>
void *call oc(size_t nobj,
size_t size);

The allocated space is filled with zeros. The maximum space that can be
allocated can be changed by customizing the heap size (see the section
Heap). By default no heap is allocated. When “calloc()” is used while no
heap is defined, the locator gives an error.

Returns a pointer to space in external memory for nobj items of
si ze bytes length.
NULL if there is not enough space left.

6-17

6-18 Chapter 6

ceil

#i ncl ude <math. h>
doubl e ceil (double x);

Returns the smallest integer not less than X, as a double.

clearerr

#i ncl ude <stdio. h>
void clearerr(FILE *stream);

Clears the end of file and error indicators for stream.
Returns nothing.

clock

#i ncl ude <tine. h>
clock_t clock(void);

Determines the processor time used.
Returns -1.
copysign

#i ncl ude <fl oat. h>
doubl e copysign(double d, double sign);

IEEE-754-1985 Recommended function. Copy the sign of the second
argument to the value of the first argument and return that as result.

Returns the first argument with the sign of the second argument.

Libraries 6-19

copysignf

#i ncl ude <fl oat. h>
float copysignf(float f, float sign);

IEEE-754-1985 Recommended function. Copy the sign of the second
argument to the value of the first argument and return that as result.

Returns the first argument with the sign of the second argument.

cos

#i ncl ude <mat h. h>
doubl e cos(double x);

Returns the cosine of X.

cosh

#i ncl ude <mat h. h>
doubl e cosh(double x);

Returns the hyperbolic cosine of X.

ctime

#i ncl ude <tine. h>
char *ctime(const tine_t *tp);

Converts the calender time *t p into local time, in string form. This
function is the same as:

asctime(localtine(tp));

Returns the local time in string form.

6-20 Chapter 6

-

difftime

#i ncl ude <tine. h>
doubl e
difftime(time_t time2, tine_t timel);

Returns the result of ti me2 — ti nel in seconds.
div

#i ncl ude <stdlib. h>
div_t div(int num int denom);

Both arguments are integers. The returned quotient and remainder are also

integers.
Returns a structure containing the quotient and remainder of num
divided by denom
exit

#i ncl ude <stdlib. h>
void exit(int status);

Terminates the program normally. Acts as if ‘'main()’ returns with st at us
as the return value.

Returns zero, on successful termination.
exp

#i ncl ude <mmat h. h>
doubl e exp(double x);

Returns the result of the exponential function eX.

Jfabs

#i ncl ude <math. h>
doubl e fabs(double x);

Returns the absolute double value of X. |x |

Libraries

Sclose

#i ncl ude <stdio. h>
int fclose(FILE *stream)

Flushes any unwritten data for stream, discards any unread buffered input,
frees any automatically allocated buffer, then closes the st r eam

Returns zero if the st r eamis successfully closed, or EOF on error.
Jeof

#i ncl ude <stdi o. h>
int feof(FILE *stream);

Returns a non-zero value if the end-of-file indicator for st r eam is
set.

ferror

#i ncl ude <stdio. h>
int ferror(FILE *stream);

Returns a non—zero value if the error indicator for st r eam is set.

Sflush

#i ncl ude <stdio. h>
int fflush(FILE *stream);

Writes any buffered but unwritten date, if stream is an output stream. If
st reamis an input stream, the effect is undefined.

Returns zero if successful, or EOF on a write error.

6-21

6-22 Chapter 6

-

Sgetc

#i ncl ude <stdio. h>
int fgetc(FILE *stream);

Reads one character from the given st ream

Returns the read character, or EOF on error.

Sgetpos

#i ncl ude <stdio. h>
int fgetpos(FILE *stream fpos_t *ptr);

Stores the current value of the file position indicator for the stream pointed
to by st r eamin the object pointed to by pt r. The type f pos_t is
suitable for recording such values.

Returns zero if successful,
a non-zero value on error.

Sfgets

#i ncl ude <stdio. h>
char *fgets(char *s, int n, FILE *stream);

Reads at most the next n—1 characters from the given st r eaminto the
array s until a newline is found.

Returns s, or NULL on EOF or error.

Sloor

#i ncl ude <mmat h. h>
doubl e fl oor(double x);

Returns the largest integer not greater than x, as a double.

Libraries 6-23

Jmod

#i ncl ude <mat h. h>
doubl e fnpd(double x, double y);

Returns the floating—point remainder of x/ y, with the same sign as X.
If y is zero, the result is implementation—-defined.

Sfopen

#i ncl ude <stdi o. h>
FI LE *f open(const char *fil enaneg,
const char *node);

Opens a file for a given node.
Returns a stream. If the file cannot not be opened, NULL is returned.
You can specify the following values for node:

r read; open text file for reading

w write; create text file for writing; if the file already exists its
contents is discarded

a append; open existing text file or create new text file for
writing at end of file

“r+” open text file for update; reading and writing

"W+ create text file for update; previous contents if any is
discarded

"a+” append; open or create text file for update, writes at end of

file

The update mode (with a '+") allows reading and writing of the same file.
In this mode the function fflush must be called between a read and a write
or vice versa. By including the letter b after the initial letter, you can
indicate that the file is a binary file. E.g. "rb” means read binary, "w+b”
means create binary file for update. The filename is limited to

FILENAME MAX characters. At most FOPEN_ MAX files may be open at
once.

6-24 Chapter 6

5

Jprintf

#i ncl ude <stdio. h>
int fprintf(FILE *stream
const char *format, ...);

Performs a formatted write to the given st ream

% See also "printf()”, ”_write()” and section Printf and Scanf Formatting
Routines.

Jputc

#i ncl ude <stdio. h>
int fputc(int ¢, FILE *stream);

Puts one character onto the given st r eam

% See also ”_write()”.

Returns EOF on error.
Jputs

#i ncl ude <stdio. h>
int fputs(const char *s, FILE *stream);

Writes the string to a st r eam The terminating NULL character is not
written.

ﬂ? See also ”_write()”.

Returns NULL if successful, or EOF on error.

Libraries

Jread

#i ncl ude <stdio. h>
size t fread(void *ptr,
size_t size, size_t nobj, FILE *stream);

Reads nobj members of si ze bytes from the given st eaminto the array
pointed to by ptr.

% See also ”_read()”.

Returns the number of successfully read objects.

free

#i ncl ude <stdlib. h>
void free(void *p);

Deallocates the space pointed to by p. p Must point to space earlier

» »

allocated by a call to "calloc()”, "malloc()” or "realloc()”. Otherwise the
behavior is undefined.

% See also "calloc()”, "malloc()” and realloc()”.

Returns nothing
Jreopen

#i ncl ude <stdi o. h>
FI LE *
freopen(const char *fil enaneg,
const char *node, FILE *stream);

Opens a file for a given nbde associates the st r eamwith it. This function
is normally used to change the files associated with stdin, stdout, or stderr.

% See also "fopen()”.

Returns stream or NULL on error.

6-25

6-26 Chapter 6

5

Jrexp

#i ncl ude <math. h>
doubl e frexp(double x, int *exp);

Splits x into a normalized fraction in the interval [1/2, 1>, which is
returned, and a power of 2, which is stored in *exp. If X is zero, both
parts of the result are zero. For example: frexp(4.0, &var) results in
0.5-23. The function returns 0.5, and 3 is stored in var.

Returns the normalized fraction.

Jscanf

#i ncl ude <stdio. h>
int fscanf(FILE *stream
const char *format, ...);

Performs a formatted read from the given st r eam

See also "scanf()”, ”_read()” and section Printf and Scanf Formatting
Routines.

Returns the number of items converted successfully.
Sfseek

#i ncl ude <stdio. h>
i nt
fseek(FILE *stream |ong offset, int origin);

Sets the file position indicator for st r eam A subsequent read or write will
access data beginning at the new position. For a binary file, the position is
set to of f set characters from ori gi n, which may be SEEK_SET for the
beginning of the file, SEEK_CUR for the current position in the file, or
SEEK_END for the end-of-file. For a text stream, of f set must be zero, or
a value returned by ftel | . In this case ori gi n must be SEEK SET.

Returns zero if successful,
a non-zero value on error.

Libraries

Ssetpos

#i ncl ude <stdio. h>
int fsetpos(FILE *stream
const fpos_t *ptr);

Positions st r eamat the position recorded by f get pos in *ptr.

Returns zero if successful,
a non-zero value on error.

Jtell

#i ncl ude <stdio. h>
long ftell(FILE *stream);

Returns the current file position for st r eam or
-1L on error.

SJwrite

#i ncl ude <stdio. h>

size t fwite(const void *ptr,
size_t size, size_t nobj,
FI LE *stream);

Writes nobj members of si ze bytes to the given st r eamfrom the array
pointed to by ptr.

Returns the number of successfully written objects.
getc

#i ncl ude <stdio. h>
int getc(FILE *stream);

Reads one character out of the given stream Currently #defined as
getchar(), because FILE I/O is not supported.

% See also ”_read()”.

Returns the character read or EOF on error.

6-27

6-28 Chapter 6

getchar

#i ncl ude <stdio. h>
int getchar(void);

Reads one character from standard input.

% See also ”_read()”.

Returns the character read or EOF on error.

getenv

#i ncl ude <stdlib. h>
char *getenv(const char *nane);

Returns the environment string associated with name, or NULL if no
string exists.

gets

#i ncl ude <stdio. h>
char *gets(char *s);

Reads all characters from standard input until a newline is found. The
newline is replaced by a NULL-character.

% See also ”_read()”.

Returns a pointer to the read string or NULL on error.
gmtime

#i ncl ude <tinme. h>
struct tm*gntine(const time_t *tp);

Converts the calender time *t p into Coordinated Universal Time (UTC).

Returns a structure representing the UTC, or NULL if UTC is not
available.

Libraries 6-29

isalnum

#i ncl ude <ctype. h>
int isalnum int c);

Returns a non-zero value when ¢ is an alphabetic character or a
number (JA-Z][a-z][0-9)).

isalpbha

#i ncl ude <ctype. h>
int isalpha(int c);

Returns a non-zero value when ¢ is an alphabetic character
([A-Z][a-z]).

isascii

#i ncl ude <ctype. h>
int isascii(int c);

Returns a non-zero value when c is in the range of 0 and 127. This is
a non—-ANSI function.

iscntrl

#i ncl ude <ctype. h>
int iscntrl(int c);

Returns a non—zero value when ¢ is a control character.
isdigit

#i ncl ude <ctype. h>
int isdigit(int ¢);

Returns a non-zero value when ¢ is a numeric character ([0-9)).

6-30 Chapter 6

-

isfinite

#i ncl ude <fl oat. h>
int isfinite(double d);

IEEE-754-1985 recommended function. Test the given variable on being a
finite IEEE-754) value.

Returns zero if the variable is not finite, else non-zero.
isfinitef

#i ncl ude <fl oat. h>
int isfinitef(float f);

IEEE-754-1985 recommended function. Test the given variable on being a
finite IEEE-754) value.

Returns zero if the variable is not finite, else non-zero.
isgraph

#i ncl ude <ctype. h>
int isgraph(int c);

Returns a non-zero value when ¢ is printable, but not a space.
isinf

#i ncl ude <fl oat. h>
int isinf(double d);

IEEE-754-1985 Recommended function. Test the given variable on being
an infinite (IEEE-754) value.

Returns zero if the variable is not +—infinite, else non-zero.

Libraries

isinff

#i ncl ude <fl oat. h>
int isinff(float f);

IEEE-754-1985 Recommended function. Test the given variable on being
an infinite (IEEE-754) value.

Returns zero if the variable is not +—infinite, else non-zero.
islower

#i ncl ude <ctype. h>
int islower(int c);

Returns a non-zero value when ¢ is a lowercase character ([a-z]).
isnan

#i ncl ude <fl oat. h>
int isnan(double d);

IEEE-754-1985 Recommended function. Test the given variable on being a
NaN (Not a Number, IEEE-754) value.

Returns zero if the variable is not NaN, else non-zero.
isnant

#i ncl ude <fl oat. h>
int isnanf(float f);

IEEE-754-1985 Recommended function. Test the given variable on being a
NaN (Not a Number, IEEE-754) value.

Returns zero if the variable is not NaN, else non-zero.

6-31

6-32

Chapter 6

isprint

#i ncl ude <ctype. h>
int isprint(int c);

Returns a non-zero value when ¢ is printable, including spaces.
ispunct

#i ncl ude <ctype. h>
int ispunct(int c);

Returns a non-zero value when ¢ is a punctuation character (such as
), et).

isspace

#i ncl ude <ctype. h>
int isspace(int c);

Returns a non—zero value when ¢ is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

isupper

#i ncl ude <ctype. h>
int isupper(int c);

Returns a non-zero value when ¢ is an uppercase character ([A-Z)).
isxdigit

#i ncl ude <ctype. h>
int isxdigit(int c);

Returns a non-zero value when ¢ is a hexadecimal digit
(0-9][A-F][a—1]).

Libraries

labs

#i ncl ude <stdlib. h>
long labs(long n);

Returns the absolute value of the signed long argument.
ldexp

#i ncl ude <math. h>
doubl e | dexp(double x, int n);

Returns the result of: x- 20,
Idiv

#i ncl ude <stdlib. h>
Idiv_t Idiv(long num |ong denom);

Both arguments are long integers. The returned quotient and remainder
are also long integers.

Returns a structure containing the quotient and remainder of num
divided by denom

localeconv

#i ncl ude <l ocal e. h>
struct |conv *|ocal econv(void);

Sets the components of an object with type struct | conv with values

appropriate for the formatting of numeric quantities according to the rules

of the current locale.

Returns a pointer to the filled-in object.

6-33

6-34 Chapter 6

5

localtime

#i ncl ude <tinme.h>
struct tm*localtinme(const time_t *tp);

Converts the calender time *t p into local time.

Returns a structure representing the local time.
log

#i ncl ude <mmath. h>
doubl e | og(double x);

Returns the natural logarithm | n(x), x>0.
log10

#i ncl ude <math. h>
doubl e | 0g10(double x);

Returns the base 10 logarithm | 0g10(x), x>0.
longjmp

#i ncl ude <setj np. h>
void | ongjnmp(jnp_buf env, int val);

Restores the environment previously saved with a call to setjmp(). The
function calling the corresponding call to setjmp() may not be terminated
yet. The value of val may not be zero.

Returns nothing.

Libraries 6-35

malloc

#i ncl ude <stdlib. h>
void *mal | oc(size_ t size);

The allocated space is not initialized. The maximum space that can be
allocated can be changed by customizing the heap size (see the section
Heap). By default no heap is allocated. When "malloc()” is used while no
heap is defined, the locator gives an error.

Returns a pointer to space in external memory of si ze bytes length.
NULL if there is not enough space left.

mblen

#i ncl ude <stdlib. h>
int mblen(const char *s, size_t n);

Determines the number of bytes comprising the multi-byte character
pointed to by s, if s is not a null pointer. Except that the shift state is not
affected. At most n characters will be examined, starting at the character
pointed to by s.

Returns the number of bytes, or 0 if s points to the null character, or
-1 if the bytes do not form a valid multi-byte character.

mbstowcs

#i ncl ude <stdlib. h>
size_t nbstowcs(wchar_t *pwcs,
const char *s, size t n);

Converts a sequence of multi-byte characters that begins in the initial shift
state from the array pointed to by s, into a sequence of corresponding
codes and stores these codes into the array pointed to by pwes, stopping
after n codes are stored or a code with value zero is stored.

Returns the number of array elements modified (not including a
terminating zero code, if any), or (si ze_t) -1 if an invalid
multi-byte character is encountered.

6-36 Chapter 6

5

mbtowc

#i ncl ude <stdlib. h>
int nbtowc(wchar_t *pwc,
const char *s, size_t n);

Determines the number of bytes that comprise the multi-byte character
pointed to by s. It then determines the code for value of type wehar _t
that corresponds to that multi-byte character. If the multi-byte character is
valid and pwe is not a null pointer, the mbtowc function stores the code in
the object pointed to by pwe. At most n characters will be examined,
starting at the character pointed to by s.

Returns the number of bytes, or 0 if s points to the null character, or
-1 if the bytes do not form a valid multi-byte character.

memchr

#i ncl ude <string. h>
voi d *nmenchr(const void *cs, int c,
size_t n);

Checks the first n bytes of ¢s on the occurrence of character c.

Returns NULL when not found, otherwise a pointer to the found
character is returned.

memcmp

#i ncl ude <string. h>
int mencnp(const void *cs,
const void *ct, size_t n);

Compares the first n bytes of ¢cs with the contents of ct .

Returns avalue<0if cs < ct,
Oifcs = = ct,
or a value >0 if cs > ct.

Libraries

memcpy

#i ncl ude <string. h>
void *nencpy(void *s
const void *ct, size_t n);

Copies n characters from ct to s. No care is taken if the two objects
overlap.

Returns S

memmove

#i ncl ude <string. h>
voi d *nemmove(void *s
const void *ct, size t n);

Copies n characters from ct to s. Overlapping objects will be
handled correctly.

Returns S

memset

#i ncl ude <string. h>
void *nenset(void *s, int c,
size_t n);

Fills the first n bytes of s with character c.

Returns S

mbktime

#i ncl ude <tine.h>
time_t nktinme(struct tm*tp);

Converts the local time in the structure *t p into calendar time.

Returns the calendar time, or -1 if it cannot be represented.

6-37

6-38

Chapter 6

modf

#i ncl ude <nmat h. h>
doubl e nodf (double x, double *ip);

Splits X into integral and fractional parts, each with the same sign as x. It
stores the integral part in *i p.

Returns the fractional part.

offsetof

#i ncl ude <stddef. h>
int offsetof(type, nenber);

Returns the offset for the given nmenber in an object of type.

perror

#i ncl ude <stdio. h>
voi d perror(const char *s);

Prints s and an implementation—defined error message corresponding to
the integer er r no, as if by:

fprintf(stderr, "%s: %s\n”, s, “error message”);

The contents of the error message are the same as those returned by the
strerror function with the argument err no.

% See also the "strerror()” function.

Returns nothing.
pow

#i ncl ude <math. h>
doubl e pow(double x, double y);

A domain error occurs if X=0 and y<=0, or if Xx<0 and y is not an integer.

Returns the result of X raised to the power of y: x¥.

Libraries 6-39

printf

#i ncl ude <stdio. h>
int printf(const char *format,...);

Performs a formatted write to the standard output stream.

% See also " write()” and section Printf and Scanf Formaitting Routines.
Returns the number of characters written to the output stream.

The f or mat string may contain plain text mixed with conversion
specifiers. Each conversion specifier should be preceded by a ’%’
character. The conversion specifier should be build in order:

— Flags (in any order):
- specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.
+ has higher precedence as space.

spacea negative number is preceded with a sign, positive numbers
with a space.

0 specifies padding to the field width with zeros (only for
numbers).
specifies an alternate output form. For o, the first digit will be

zero. For x or X, ”0x” and "0X” will be prefixed to the
number. For e, E, f, g, G, the output always contains a
decimal point, trailing zeros are not removed.

— A number specifying a minimum field width. The converted
argument is printed in a field with at least the length specified here.
If the converted argument has fewer characters than specified, it will
be padded at the left side (or at the right when the flag =" was
specified) with spaces. Padding to numeric fields will be done with
zeros when the flag '0’ is also specified (only when padding left).
Instead of a numeric value, also ™*’ may be specified, the value is
then taken from the next argument, which is assumed to be of type
int.

- A period. This separates the minimum field width from the
precision.

6-40

Chapter 6

- A number specifying the maximum length of a string to be printed.
Or the number of digits printed after the decimal point (only for
floating point conversions). Or the minimum number of digits to be
printed for an integer conversion. Instead of a numeric value, also
** may be specified, the value is then taken from the next
argument, which is assumed to be of type int.

- A length modifier ’h’, I’ or 'L’. ’h’ indicates that the argument is to
be treated as a short or unsigned short number. "I’ should be used if
the argument is a long integer. 'L’ indicates that the argument is a
long double.

Flags, length specifier, period, precision and length modifier are optional,
the conversion character is not. The conversion character must be one of
the following, if a character following '%’ is not in the list, the behavior is
undefined:

Character Printed as

d,i int, signed decimal
o] int, unsigned octal

X, X int, unsigned hexadecimal in lowercase or uppercase

respectively

u int, unsigned decimal
c int, single character (converted to unsigned char)
S char *, the characters from the string are printed until

a NULL character is found. When the given precision
is met before, printing will also stop

f double
e E double
g,G double
n int *, the number of characters written so far is written

into the argument. This should be a pointer to an inte-
ger in default memory. No value is printed.

p pointer (hexadecimal 32-bit value)

% No argument is converted, a ‘%’ is printed.

Table 6-6: Printf conversion characters

Libraries

putc

#i ncl ude <stdio. h>
int putc(int ¢, FILE *stream);

Puts one character onto the given stream.

% See also ”_write()”.

Returns EOF on error.

putchar

#i ncl ude <stdio. h>
int putchar(int c);

Puts one character onto standard output.

% See also ”_write()”.

Returns the character written or EOF on error.

puts

#i ncl ude <stdio. h>
int puts(const char *s);

Writes the string to stdout, the string is terminated by a newline.

% See also ”_write()”.

Returns NULL if successful, or EOF on error.

6-41

6-42 Chapter 6

qsort

#i ncl ude <stdlib. h>

_reentrant void gsort(
const void *base, size_t n, size_t size,
int (* cmp)(const void *, const void *));

This function sorts an array of n members. The initial base of the array is
given by base. The size of each member is specified by si ze. The given
array is sorted in ascending order, according to the results of the function
pointed to by cnp.

Returns nothing.

raise

#i ncl ude <signal . h>
int raise(int sig);

Sends the signal si g to the program.

% See also “signal()”.

Returns zero if successful, or a non-zero value if unsuccessful.

rand

#i ncl ude <stdlib. h>
int rand(void);

Returns a sequence of pseudo-random integers, in the range 0 to
RAND MAX.

Libraries

realloc

#i ncl ude <stdlib. h>
void *realloc(void *p, size_ t size);

Reallocates the space for the object pointed to by p. The contents of the
object will be the same as before calling realloc(). The maximum space that
can be allocated can be changed by customizing the heap size (see the
section Heap). By default no heap is allocated. When “realloc()” is used
while no heap is defined, the linker gives an error.

% See also "malloc()”.

Returns NULL and * p is not changed, if there is not enough space for
the new allocation. Otherwise a pointer to the newly
allocated space for the object is returned.

remove

#i ncl ude <stdio. h>
int remove(const char *filenane);

Removes the named file, so that a subsequent attempt to open it fails.

Returns zero if file is successfully removed, or
a non-zero value, if the attempt fails.

rename

#i ncl ude <stdio. h>
int renane(const char *ol dnane,
const char *newnane);

Changes the name of the file.

Returns zero if file is successfully renamed, or
a non-zero value, if the attempt fails.

6-43

6-44 Chapter 6

rewind

#i ncl ude <stdi o. h>
void rewind(FILE *stream);

Sets the file position indicator for the stream pointed to by st r eamto the
beginning of the file. This function is equivalent to:

(void) fseek(stream, OL, SEEK_SET);
clearerr(stream);

Returns nothing.

scalb

#i ncl ude <fl oat. h>
doubl e scal b(double d, int power);

IEEE-754-1985 Recommended function.

Returns d * 2" power for integral values power without computing
2"N.

scalbf

#i ncl ude <fl oat.h>
doubl e scal bf (float d, int power);

IEEE-754-1985 Recommended function.

Returns d * 2" power for integral values power without computing
2"N.

scanf

#i ncl ude <stdio. h>
i nt scanf(const char *format, ...);

Performs a formatted read from the standard input stream.

% See also ”_read()” and section Printf and Scanf Formatting Routines.

Returns the number of items converted successfully.

Libraries

All arguments to this function should be pointers to variables (in default
memory) of the type which is specified in the format string.

The format string may contain :

Blanks or tabs, which are skipped.

Normal characters (not '%’), which should be matched exactly in the
input stream.

Conversion specifications, starting with a '%’ character.

Conversion specifications should be built as follows (in order) :

A ™ meaning that no assignment is done for this field.
A number specifying the maximum field width.

The conversion characters d, i , n, 0, u and X may be preceede by
'h’ if the argument is a pointer to short rather than i nt, or by 'I’
(letter ell) if the argument is a pointer to | ong. The conversion
characters e, f , and g may be preceede by I’ if a pointer doubl e
rather than f 1 oat is in the argument list, and by 'L’ if a pointer to a
| ong doubl e.

A conversion specifier. *; maximum field width and length modifier
are optional, the conversion character is not. The conversion
character must be one of the following, if a character following '%’
is not in the list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a
character following ’%’ is not in the list, the behavior is undefined.

Character Scanned as

d int, signed decimal.

i int, the integer may be given octal (i.e. a leading 0 is
entered) or hexadecimal (leading "0x” or "0X"), or just

decimal.

o int, unsigned octal.

u int, unsigned decimal.

X int, unsigned hexadecimal in lowercase or upper-
case.

c single character (converted to unsigned char).

6-45

6-46

Chapter 6

Character

Scanned as

S

char *, a string of non white space characters. The
argument should point to an array of characters,
large enough to hold the string and a terminating
NULL character.

float

e E

float

9, G

float

int *, the number of characters written so far is written
into the argument. No scanning is done.

pointer; hexadecimal 32—bit value which must be en-
tered without Ox— prefix.

Matches a string of input characters from the set be-
tween the brackets. A NULL character is added to
terminate the string. Specifying []...] includes the ']’
character in the set of scanning characters.

Matches a string of input characters not in the set
between the brackets. A NULL character is added to
terminate the string. Specifying []...] includes the ']’
character in the set.

%

Literal '%’, no assignment is done.

Table 6-7: Scanf conversion characters

setbuf

#i ncl ude <stdi o. h>

voi d

setbuf (FILE *stream char *buf);

Buffering is turned off for the st ream if buf is NULL.
Otherwise, setbuf is equivalent to:

(void) setvbuf(stream, buf, IOFBF, BUFSIZ)

Returns

nothing.

% See also "setvbuf()”.

Libraries

setjmp

#i ncl ude <setj np. h>
int setjnp(jnp_buf env);

Saves the current environment for a subsequent call to longjmp.

Returns the value 0 after a direct call to setjimp(). Calling the function
“longjmp()” using the saved env will restore the current
environment and jump to this place with a non-zero return
value.

% See also "longjmp()”.

setlocale

#i ncl ude <l ocal e. h>
char *setlocal e(int category,
const char *locale);

Selects the appropriate portion of the program’s locale as specified by the
cat egory and | ocal e arguments.

Returns the string associated with the specified cat egory for the
new locale if the selection can be honored.
null pointer if the selectioin cannot be honored.

6-47

6-48 Chapter 6

-

setvbuf

#i ncl ude <stdio. h>

i nt

setvbuf (FILE *stream char *buf
int node, size_t size);

Controls buffering for the st r eam this function must be called before
reading or writing. node can have the following values:

_IOFBF causes full buffering
_IOLBF causes line buffering of text files
_IONBF causes no buffering

If buf is not NULL, it will be used as a buffer; otherwise a buffer will be
allocated. si ze determines the buffer size.

Returns zero if successful
a non—zero value for an error.

ﬂ? See also "setbuf()”.

signal

#i ncl ude <si gnal . h>
void (*signal (int sig,
void (*handler)(int)))(int);

Determines how subsequent signals will be handled. If handl er is
SIG_DFL, the default behavior is used; if handl er is SIG_IGN, the signal
is ignored; otherwise, the function pointed to by handl er will be called,
with the argument of the type of signal. Valid signals are:

SIGABRT abnormal termination, e.g. from abort

SIGFPE arithmetic error, e.g. zero divide or overflow

SIGILLillegal function image, e.g. illegal instruction

SIGINT interactive attention, e.g. interrupt

SIGSEGYV illegal storage access, e.g. access outside
memory limits

SIGTERM termination request sent to this program

Libraries 6-49

When a signal si g subsequenly occurs, the signal is restored to its default
behavior; then the signal-handler function is called, as if by

(*handl er) (si g) . If the handler returns, the execution will resume
where it was when the signal occurred.

Returns the previous value of handl er for the specific signal, or
SIG_ERR if an error occurs.

sin

#i ncl ude <mat h. h>
doubl e sin(double x);

Returns the sine of X.
sinbh

#i ncl ude <nat h. h>
doubl e sinh(double x);

Returns the hyperbolic sine of x.
sprintf

#i ncl ude <stdio. h>
int sprintf(char *s, const char *format, ...);

Performs a formatted write to a string.
% See also "printf()” and section Printf and Scanf Formatting Routines.
sqrt

#i ncl ude <mat h. h>
doubl e sqrt(double x);

Returns the square root of X. VX, where x = 0.

6-50 Chapter 6

-

srand

#i ncl ude <stdlib. h>
voi d srand(unsigned int seed);

This function uses seed as the start of a new sequence of pseudo-random
numbers to be returned by subsequent calls to srand(). When srand is
called with the same seed value, the sequence of pseudo-random
numbers generated by rand() will be repeated.

Returns pseudo random numbers.

sscanf

#i ncl ude <stdio. h>
int sscanf(char *s, const char *format, ...)

Performs a formatted read from a string.

% See also "scanf()” and section Printf and Scanf Formatting Routines.

strcat

#i ncl ude <string. h>
char *strcat(char *s, const char *ct);

Concatenates string ct to string s, including the trailing NULL character.

Returns S

strchr

#i ncl ude <string. h>
char *strchr(const char *cs, int c);

Returns a pointer to the first occurrence of character ¢ in the string
cs. If not found, NULL is returned.

Libraries

strcmp

#i ncl ude <string. h>

int strcnp(const char *cs, const char *ct);

Compares string CS to string Ct .

Returns <0 ifcs < ct,
0 ifcs == ct,
>0 ifcs > ct.

strcoll

#i ncl ude <string. h>

int strcoll(const char *cs, const char *ct);

Compares string €s to string ¢t . The comparison is based on strings
interpreted as appropriate to the program’s locale.

Returns <0ifcs < ct,
0 ifcs = = ct,

>0 ifcs > ct.

strcpy

#i ncl ude <string. h>

char *strcpy(char *s, const char *ct);

Copies string ct into the string S, including the trailing NULL character.
Returns s

strcspn

#i ncl ude <string. h>

size_t strcspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs, consisting of characters
not in the string ct .

6-51

6-52

-

strerror

#i ncl ude <string. h>

char

Returns

strftime

*strerror(size_t n);

Chapter 6

pointer to implementation—defined string corresponding to

error n.

#i ncl ude <ti nme. h>

si ze_

t

strftime(char *s, size_t smax,

const char *fnt,
const struct tm*tp);

Formats date and time information from the structure *t p into s according
to the specified format f nt . f nt is analogous to a pri ntf format. Each
%c is replaced as described below:

%a
%A
%b
%B
%C
%d
%H
%1
%j
%m
%M
%p
%S
%U

%W
%W

%X
%X
%y
%Y

abbreviated weekday name

full weekday name

abbreviated month name

full month name

local date and time representation
day of the month (01-31)

hour, 24-hour clock (00-23)

hour, 12-hour clock (01-12)

day of the year (001-366)

month (01-12)

minute (00-59)

local equivalent of AM or PM
second (00-59)

week number of the year, Sunday as first day of the
week (00-53)

weekday (0-6, Sunday is 0)

week number of the year, Monday as first day of the
week (00-53)

local date representation

local time representation

year without century (00-99)

year with century

Libraries

6-53

%Z time zone name, if any
%% %

Ordinary characters (including the terminating ‘\0°) are copied into s. No
more than smax characters are placed into s.

Returns the number of characters (\0’ not included), or

zero if more than smax characters where produced.
strlen

#i ncl ude <string. h>
size_t strlen(const char *cs);

Returns

the length of the string in ¢S, not counting the NULL
character.

strncat

#i ncl ude <string. h>

char *strncat(char *s,
const char *ct, size t n);

Concatenates string ct to string S, at most n characters are copied. Add a
trailing NULL character.

Returns S

strucmp

#i ncl ude <string. h>
int strncnp(const char *cs,
const char *ct, size t n);

Compares at most n bytes of string €S to string ct .

Returns <0 ifcs < ct,

0 ifcs == ct,
>0 ifcs > ct.

6-54 Chapter 6

5

strucpy

#i ncl ude <string. h>
char *strncpy(char *s,
const char *ct, size_t n);

Copies string ¢t onto the string S, at most n characters are copied. Add a
trailing NULL character if the string is smaller than n characters.

Returns S

strpbrk

#i ncl ude <string. h>
char *strpbrk(const char *cs,
const char *ct);

Returns a pointer to the first occurrence in ¢s of any character out of
string ct . If none are found, NULL is returned.

strrchr

#i ncl ude <string. h>
char *strrchr(const char *cs,
int ¢);

Returns a pointer to the last occurrence of ¢ in the string ¢s. If not
found, NULL is returned.

strspn

#i ncl ude <string. h>
size_t strspn(const char *cs,
const char *ct);

Returns the length of the prefix in string ¢s, consisting of characters
in the string ct .

Libraries 6-55

strstr

#i ncl ude <string. h>
char *strstr(const char *cs,
const char *ct);

Returns a pointer to the first occurrence of string ct in the string cs.
Returns NULL if not found.

strtod

#i ncl ude <stdlib. h>
doubl e strtod(const char *s, char **endp);

Converts the initial portion of the string pointed to by s to a double value.
Initial white spaces are skipped. When endp is not a NULL pointer, after
this function is called, *endp will point to the first character not used by
the conversion.

Returns the read value.
strtok

#i ncl ude <string. h>
char *strtok(char *s, const char *ct);

Search the string s for tokens delimited by characters from string ct . It
terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with
s == NULL will return the next token in the string.

6-56

-

Chapter 6

strtol

#i ncl ude <stdlib. h>
long strtol (const char *s,
char **endp, int base);

Converts the initial portion of the string pointed to by s to a long integer.
Initial white spaces are skipped. Then a value is read using the given
base. When base is zero, the base is taken as defined for integer
constants. I.e. numbers starting with an '0’ are taken octal, numbers
starting with ’0x” or ’0X’ are taken hexadecimal. Other numbers are taken
decimal. When endp is not a NULL pointer, after this function is called,
*endp will point to the first character not used by the conversion.

Returns the read value.

strtoul

#i ncl ude <stdlib. h>
unsi gned | ong strtoul (
const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to an unsigned
long integer. Initial white spaces are skipped. Then a value is read using
the given base. When base is zero, the base is taken as defined for
integer constants. I.e. numbers starting with an ’0’ are taken octal, numbers
starting with '0x’ or ’0X’ are taken hexadecimal. Other numbers are taken
decimal. When endp is not a NULL pointer, after this function is called,
*endp will point to the first character not used by the conversion.

Returns the read value.

strxfrm

#i ncl ude <string. h>
si ze_t
strncnp(char *ct, const char *cs, size t n);

Transforms the string pointed to by ¢s and places the resulting string into
the array pointed to by ct . No more than n characters are placed into the
resulting string pointed to by ct , including the terminating null character.

Returns the length of the transformed string.

Libraries

system

#i ncl ude <stdlib. h>
int systenm(const char *s);

Passes the string s to the environment for execution.

Returns a non-zero value if there is a command processor, if s is
NULL; or an implementation-dependent value, if s is not
NULL.
tan

#i ncl ude <math. h>
doubl e tan(double x);

Returns the tangent of X.

tanh

#i ncl ude <mmat h. h>
doubl e tanh(double x);

Returns the hyperbolic tangent of x.
time

#i ncl ude <tine. h>
time_t tinme(tinme_t *tp);

The return value is also assigned to *t p, if t p is not NULL.

Returns the current calendar time, or —1 if the time is not available.

6-57

6-58 Chapter 6

-

tmpfile

#i ncl ude <stdi o. h>
FILE *tnmpfile(void);

Creates a temporary file of the mode "wb+” that will be automatically
removed when closed or when the program terminates normally.

Returns a stream if successful, or NULL if the file could not be
created.

tmpnam

#i ncl ude <stdio. h>
char *tnpnam(char s[L_tnmpnam);

Creates a temporary name (not a file). Each time t mpnamis called a
different name is created.

t mpnam(NULL) creates a string that is not the name of an existing file,
and returns a pointer to an internal static array. t npnan{(s) creates a
string and stores it in § and also returns it as the function value. s must
have room for at least L_t npnamcharacters. At most TMP_MAX different
names are guaranteed during execution of the program.

Returns a pointer to the temporary name, as described above.

toascii

#i ncl ude <ctype. h>
int toascii(int ¢);

Converts ¢ to an ascii value (strip highest bit). This is a non—ANSI
function.

Returns the converted value.

Libraries

tolower

#i ncl ude <ctype. h>
int tolower(int c);

Returns ¢ converted to a lowercase character if it is an uppercase
character, otherwise ¢ is returned.

toupper

#i ncl ude <ctype. h>
int toupper(int c);

Returns ¢ converted to an uppercase character if it is a lowercase
character, otherwise c is returned.

ungeitc

#i ncl ude <stdio. h>
int ungetc(int ¢, FILE *fin);

Pushes at the most one character back onto the input buffer.
Returns EOF on error.
va_arg

#i ncl ude <stdarg. h>
va_arg(va_list ap, type);

Returns the value of the next argument in the variable argument list.

It's return type has the type of the given argument t ype. A
next call to this macro will return the value of the next
argument.

6-59

6-60

Chapter 6

va_end

#i ncl ude <stdarg. h>
va_end(va_list ap);

This macro must be called after the arguments have been processed. It
should be called before the function using the macro 'va_start’ is
terminated (ANSI specification).

va_start

#i ncl ude <stdarg. h>
va_start(va_list ap, lastarg);

This macro initializes ap. After this call, each call to va_arg() will return
the value of the next argument. In our implementation, va_| i st cannot
contain any bit type variables. Also the given argument | ast ar g must be
the last non-bit type argument in the list.

vfprintf
#i ncl ude <stdi o. h>

int viprintf(FILE *stream
const char *format, va_list arg);

Is equivalent to vprintf, but writes to the given stream.

See also "vprintf()”, ”_write()” and section Printf and Scanf Formatting
Routines.

vprintf
#i ncl ude <stdi o. h>

int vprintf(const char *format,
va_list arg);

Does a formatted write to standard output. Instead of a variable argument
list as for printf(), this function expects a pointer to the list.

% See also "printf()”, ”_write()” and section Printf and Scanf Formatting
Routines.

Libraries 6-61

vsprintf

#i ncl ude <stdio. h>
int vsprintf(char *s,
const char *format, va_list arg);

Does a formatted write a string. Instead of a variable argument list as for
printf(), this function expects a pointer to the list.

See also "printf()”, ”_write()” and section Printf and Scanf Formatting
Routines.

wcstombs

#i ncl ude <stdlib. h>
size_t wecstonbs(char *s,
const wchar _t *pwcs, size_t n);

Converts a sequence of codes that correspond to multi-byte characters
from the array pointed to by pwcs, into a sequence of multi-byte
characters that begins in the initial shift state and stores these multi-byte
characters into the array pointed to by s, stopping if a multi-byte character
would exceed the limit of n total bytes or if a null character is stored.

Returns the number of bytes modified (not including a terminating
null character, if any), or (si ze_t) -1 if a code is
encountered that does not correspond to a valid multi-byte
character.

wctomb

#i ncl ude <stdlib. h>
int wetonb(char *s, wchar_t wchar);

Determines the number of bytes needed to represent the multi-byte
corresponding to the code whose value is wehar (including any change in
the shift state). It stores the multi-byte character representation in the array
pointed to by s (if s is not a null pointer). At most MB_CUR_MAX
characters are stored. If the value of wchar is zero, the wctomb function is
left in the initial shift state.

Returns the number of bytes, or -1 if the value of wchar does not
correspond to a valid multi-byte character.

6-62

Chapter 6

The functions printf (), fprintf(),vfprintf(),vsprintf(), .. call
one single function that deals with the format string and arguments. This
function is _dopri nt () . This is a rather big function because the number
of possibilities of the format specifiers in a format string are large. If you
do not use all the possibilities of the format specifiers a smaller

_doprint () function can be used. Three different versions exist:

LARGE the full formatter, no restrictions
MEDIUM floating point printing is not supported
SMALL as MEDIUM, but also the length specifier cannot be used.

The same applies to all scanf type functions, which all call the function
_doscan() .

The formatters included in the standard C libraries are LARGE. You can
select different formatters by linking other libraries with your application.
The following extra libraries are included:

lib/printfss small model, SMALL formatter

lib/printfsm small model, MEDIUM formatter

l'i b/ scanfss small model, SMALL formatter

lib/printfls large model, SMALL formatter

lib/printflm large model, MEDIUM formatter

l'ib/scanfls large model, SMALL formatter
Example:

To use the MEDIUM printf formatter for the small model:

Select the EDE | C Conpiler Options | Project Options...
menu item. Enable the Al | ow wi dt h speci fier, precision and
fl ags check box in the Pri nt f/ Scanf tab. Disable the Pri nt
floati ng point val ues check box.

ccm16 -Ms hello.obj -Iprinfsm

Libraries 6-63

Some compiler generated code contains calls to run-time library functions
that would use too much code if generated as inline code. The name of a
run—time library function always contains two leading underscores.

Because cm16 generates assembly code (and not object code) it prepends
an underscore ’_’ for the names of (public) C variables to distinguish these
symbols from M16C registers. So if you use a function with a leading
underscore, the assembly label for this function contains two leading
underscores. This function name could cause a name conflict (double
defined) with one of the run—time library functions. However, ANSI states
that it is not portable to use names starting with an underscore for public
C variables and functions, because results are implementation defined.

6-64 Chapter 6

RUN-TIME
ENVIRONMENT

al TASKING [

d31dVHO

Run-time Environment

When linking your C modules with the library, you automatically link the
object module, containing the C startup code. This module is called
cstart. obj and is present in every C library (once for every compiler
model).

EDE generates the file cst art. src for you, when you make selections in
the EDE | Processor Options dialog. You must manually add the file
cstart. src to your project properties.

cm16 uses the following registers for C function return types:

Return type Register(s)

bit 0,RO

char ROL

short/int RO

long RO;AO

float RO;AO0

double R3;R2;R1;RO

structure Stack temporary (address passed
by caller in RO)

2—byte pointer AO

4—byte pointer RO;A0

Table 7-1: Register usage

7-3

7-4

Chapter 7

cm16 uses a large number of section. This section contains a list of all
possible section names of a complete C application:

BIT
M16C_INI_BI

BIT ADDRESSABLE
M16C_INI_BA

modulename CLR_BA

NEAR DATA
M16C_INI_DA

modulename CLR_DA

FAR DATA
M16C_INI_FD

modulename CLR_FD

NEAR CODE

modulename CO

FAR CODE

modulename FC
HARDWARE INTERRUPTS

modulename FV_OxFFFxx

modulename FV
SPECIAL SUBROUTINES

modulename_CO_0xFFFxx

modulename_FC_HIG

initialized user C _bi t variables

initialize user C _bi t a variables

cleared C _bi t a type variables

initialized C near variables

cleared C near variables

initialized C far variables

cleared C far variables

near C code

far C code

generated for _hw_interrupt vector table
entries xx is a hex offset

the interrupt code

generated for _hw_interrupt vector table
entries xx is a hex offset.

the special subroutine code

Run-time Environment 7-5

If you use the -R option (or renamesect pragma), to specify the name
cm16 must use for a certain section, this name is added to this list. Note
that Iecm16 produces a locator map (suffix . map) which shows the
addresses of all sections used in the application.

7-6

Chapter 7

The stack is defined in the locator description file (mL6c. dsc in directory
et ¢) with the keyword st ack, which results in a section called st ack.
The description file tells lem16 to allocate the stack after all other data
sections and the heap.

The stack size can be controlled with the keyword | engt h=si ze in the
description file. If you do not specify the stack size, the locator will
allocate the rest of the available memory for the stack, as done in the
startup code. You can use the locator defined labels __| ¢c_bs and
__lc_es in your application to retrieve the beginning and end address of
the stack. Please note that the locator will only allocate a stack section if
the application refers to one of the locator defined symbols __| ¢_bs or
__l c_es. Remember that there must be enough space allocated for the
stack, which grows downwards.

The following diagram shows the stack frame when using reentrant
functions. The processor mode, user-mode or system-mode, does not
influence the stack frame.

stack
(reentrant functions)

high memory A
parametern
parameter 1 frame size
stack return address
grows down - b -
_ ($fp) .
saved registers stack size
(always 0)
local 1
local n v
temporary stack pointer
storage - SP adjust
low memory ($sp)

Figure 7-1: Stack diagram

Run-time Environment

The stack saves the return addresses of functions, non-register automatic
and parameter variables of reentrant functions.

Automatics and parameters are all accessed using the stack pointer register.

The stack pointer SP points to the last item pushed on the stack.

The stack frame also contains a so—called virtual frame pointer (f p). The
virtual frame pointer points to the lower byte of the function’s return
address. In case of an _i nt errupt function f p points to the save
contents of the M16C FLG register. All stack offsets in the debug info are
relative to this virtual frame pointer. To be able to access automatic
variables, the debugger needs to know two offsets, the stack size and the
stack pointer adjust.

The stack size is passed as a function constant by the compiler. The stack
size is always 0 (zero), because stack pointer adjust information is also
generated in the function prologue. The stack pointer adjust reflects the
number of pushes/pops done since the functions prologue.

Be aware that an interrupt function pushes both the PC and the current
value of the FLG register on the stack.

7-7

7-8

&

Chapter 7

The heap is only needed when dynamic memory management library
functions are used: mal | oc(), cal l oc(),free() andreal |l oc(). The
heap is a reserved area in the data space. So, only if you use one of the
memory allocation functions listed above, the locator automatically
allocates a heap, as specified in the locator description file with the
keyword heap.

A special section called heap is used for the allocation of the heap area.
You can place the heap section anywhere in memory, using the locator
description file. You can specify the size of the heap using the keyword

| engt h=si ze in the locator description file. If you do not specify the
heap size and yet refer to it (e.g. call mal | oc()), the locator will allocate
the rest of the available IDATA for the heap. The locator defined labels
__lc_bhand __| c_eh (beginning and end of heap) are used by the
library function sbr k() , which is called by mal | oc() when memory is
needed from the heap.

Please note that, when using the heap, you should not forget to clear all
IDATA memory in the startup code.

After editing, you must process the C startup file with asm16 to make the
correct object file. For a detailed description, see the section Startup Code.

Example part of the locator description file defining the heap size and
location:

anode idata

{

section sel ection=w,
heap | engt h=1000;
}

The special heap section is only allocated when its locator labels are used
in the program.

Run-time Environment 7-9

Floating point arithmetic support for the cm16 is included in software as a
separate set of libraries. When linking, the desired floating point library
must be specified after the C library. The libraries are reentrant, and only
use temporary program stack memory.

To ensure portability of floating point arithmetic, floating point arithmetic
for the cm16 has been implemented adhering to the IEEE-754 standard
for floating point arithmetic. See the IEEE Standard for Binary
Floating—Point Arithmetic document, as published in 1985 by the IEEE
Computer Society, for more details on these floating point arithmetic
definitions. This document is referred to as IEEE-754 in this manual.

cm16 supports both single and double precision floating point operations,
usable via the ANSI C types f | oat and doubl e respectively. For the sole
purpose of speed, also a non-trapping library is included for each memory
model. For the library name syntax, see section C Libraries.

@ M16C does not support floating point exceptions.

Below is a list of special, IEEE-754 defined, floating point values as they
can occur during run—time.

Special value Sign Exponent Mantissa
+0.0 (Positive Zero) 0 all zeros all zeros
-0.0 (Negative Zero) 1 all zeros all zeros
+INF (Positive Infinite) 0 all ones all zeros
—INF (Negative Infinite) 1 all ones all zeros
NaN (Not a number) 0 all ones all ones

Table 7-2: Special floating point values

7-10

Chapter 7

Interrupt functions may be implemented directly in C, by using the
_interrupt(n) function qualifier. A function declared with this qualifier
differs from a normal function definition in a number of ways:

1. The appropriate interrupt vector, consisting of an interrupt function entry
label. For more details, see section Interrupts. The vector may be
suppressed with the —v option.

2. If the _bank_swi t ch is not used, all registers that might possibly be
corrupted during the execution of the interrupt function are saved on
function entry and restored on function exit. Normally, only the registers
directly used by the interrupt function will be saved.

3. _bank_sw tch can be used to cause register bank 1 to be used. This
saves the overhead of saving registers.

4. The function is terminated with an REIT instruction.

Example:

ML6C C conpi l er
; options: —s —gn

$CASE ON
$OPTJ ON
NANVE
; hand. c 1
; hand. c 2
; hand. c 3
; hand. c 4
GLOBAL
DEFSECT
SECT
_int__1:
_handl er:
fset b
; hand. c 5

add. w

vi.0 r9 SNO0000000-??? (c) 1998 TASKI NG Inc.
—-Ms

" hand”

int count;

_interrupt(1l) _bank_sw tch void handler(void)

_handl er
"hand_FC’, CODE
"hand_FC’

count ++;
#1, _count

Run-time Environment

; hand.c 6 }
fclr b
reit

DEFSECT "interpt_co”, CODE
SECT "interpt_co”

PCOP. W RO

POP. W R1

REI T

Dw 0008FH, _handl er

DEFSECT "hand_CLR _DA’, DATA, CLEAR

SECT "hand_CLR DA’

GLOBAL _count
_count: DS 2

END

7-11

7-12

Chapter 7

Assembly language functions can be called from C and vice versa. The
names used by em16 are case sensitive, so you must tell asm16 to act
case sensitive too, using the $CASE control. cm16 prepends an underscore
for the name of the C variable, to distinguish these names from the M16C
registers. So, any names used or defined in M16C C must have a leading
underscore in assembly code. Internal compiler symbols (run—time library)
use two underscores.

When using strict ANSI, and when you call an assembly routine that has a
name of e.g. 50 characters, you get a link error "UNRESOLVED
EXTERNAL”. The reason for it is that the C compiler truncates names to 32
characters, but the assembler and linker do not. The solution is, when
calling assembly routines, use names of 31 characters or less (if you do not
count the leading ’ ’ for a moment). The same rule applies when you call
a C function from your assembly code.

The quickest (and most reliable) way to make an assembly language
function, which must conform to M16C C, is to make the body of this
function in C, and compile this module with the memory model used by
all other C modules. If the assembly function must return something,
specify the return type in the ’assembler function’ using C syntax, and let it
return something. If parameters are used, force code generation for
accessing these parameters with a dummy statement (e.g. an assignment)
or declare the parameter as volatile and just access it:

int assen(char volatile a, char c, int i)
{

a,

return(¢ + i);

}

Now compile this module, using the correct memory model. The compiler
makes the correct frame, and you can edit the generated assembly
module, to make the real assembly function inside this frame.

A second method to create an interface to assembly is to make use of the
feature of the compiler to have inline assembly.

Assembly lines in the C source must be introduced by a #pragma asm’, the
end is indicated by a #pragma endasm’. For example:

Run-time Environment 7-13

int assen(char c, int i)
{ . .

int j;

o=
#pragma asm

MOV. B #01, ROL
#pragma endasm

i =c
}

When the assembly does not change any registers, like in the example
above, also #pragma asm_noflush’ may be used instead of #pragma asm’.
For an explanation of the used pragmas see the section Pragmas.

7-14 Chapter 7

FLEXIBLE LICENSE
MANAGER (FLEXIm)

al TASKING [

XIAN3ddV

Flexible License Manager (FLEXIm)

This appendix discusses Globetrotter Software’s Flexible License Manager
and how it is integrated into the TASKING toolchain. It also contains
descriptions of the Flexible License Manager license administration tools
that are included with the package, the daemon log file and its contents,
and the use of daemon options files to customize your use of the
TASKING toolchain.

The Flexible License Manager (FLEXIm) is a set of utilities that, when
incorporated into software such as the TASKING toolchain, provides for
managing access to the software.

The following terms are used to describe FLEXIm concepts and software
components:

feature A feature could be any of the following:

e A TASKING software product.
e A software product from another vendor.
license The right to use a feature. FLEXIm restricts licenses for

features by counting the number of licenses for features in
use when new requests are made by the application

software.

client A TASKING application program.

daemon A process that "serves” clients. Sometimes referred to as a
server.

vendor daemon
The daemon that dispenses licenses for the requested
features. This daemon is built by an application’s vendor, and
contains the vendor’s personal encryption code. Tasking is
the vendor daemon for the TASKING software.

A-4

=

Appendix A

license daemon

server node

license file

The daemon process that sends client processes to the
correct vendor daemon on the correct machine. The same
license daemon is used by all applications from all vendors,
as this daemon neither performs encryption nor dispenses
licenses. The license daemon processes no user requests on
its own, but forwards these requests to other daemons (the
vendor daemons).

A computer system that is running both the license and
vendor daemon software. The server node will contain all the
dynamic information regarding the usage of all the features.

An end-user specific file that contains descriptions of the
server nodes that can run the license daemons, the various
vendor daemons, and the restrictions for all the licensed
features.

The TASKING software is granted permission to run by FLEXIm daemons;
the daemons are started when the TASKING toolchain is installed and run
continuously thereafter. Information needed by the FLEXIm daemons to
perform access management is contained in a license data file that is
created during the toolchain installation process. As part of their normal
operation, the daemons log their actions in a daemon log file, which can
be used to monitor usage of the TASKING toolchain.

The following sections discuss:

¢ Installation of the FLEXIm daemons to provide for access to the
TASKING toolchain.

¢ Customizing your use of the toolchain through the use of a daemon
options file.

» Utilities that are provided to assist you in performing license
administration functions.

* The daemon log file and its contents.

For additional information regarding the use of FLEXIm, refer to the
chapter Software Installation.

Flexible License Manager (FLEXIm)

TASKING products licensed through FLEXIm contain a number of utilities
for managing licenses. These utilities are bundled in the form of an extra
product under the name SW000098. TASKING products themselves contain
two additional files for FLEXIm in a flex/m subdirectory:

Taski ng The Tasking daemon (vendor daemon).
i cense. dat A template license file.

If you have already installed FLEXIm (e.g. as part of another product) then
it is not needed to install the bundled SW000098. After installing SW000098
on UNIX, the directory / usr /| ocal / f | ex] mwill contain two
subdirectories, bi n and | i censes. After installing SW000098 on Windows
the directory c: \ f | ex] mwill contain the subdirectory bi n. The exact
location may differ if FLEXIm has already been installed as part of a
non-TASKING product but in general there will be a directory for
executables such as bi n. That directory must contain a copy of the
Tasking daemon shipped with every TASKING product. It also contains
the files:

I mgrd The FLEXIm daemon (license daemon).
[A group of FLEXIm license administration utilities.

Next to it, a license file must be present containing the information of all
licenses. This file is usually called | i cense. dat . The default location of
the license file is in directory c: \ f | ex] mfor Windows and in
[usr/local/flexlmlicenses for UNIX. If you did install SW000098
then the | i censes directory on UNIX will be empty, and on Windows
the file | i cense. dat will be empty. In that case you can copy the

I'i cense. dat file from the product to the | i censes directory after filling
in the data from your "License Information Form”.

Be very careful not to overwrite an existing | i cense. dat file because it
contains valuable data.

Example | i cense. dat :

SERVER HOSTNAME HOSTI D PORT
DAEMON Tasking /usr/1ocal/flexl m bin/ Taski ng
FEATURE SW08002-32 Taski ng 3. 000 EXPDATE NUSERS PASSWORD SERI AL

Appendix A

After modifications from a license data sheet (example):

SERVER el | iot 5100520c 7594

DAEMON Taski ng /usr/ | ocal /fl exl m bi n/ Taski ng

FEATURE SW)08002-32 Tasking 3.000 1-j an-00 4 0B1810310210A6894 " 123456

If the | i cense. dat file already exists then you should make sure that it
contains the DAEMON and FEATURE lines from your license data sheet.
An appropriate SERVER line should already be present in that case. You
should only add a new SERVER line if no SERVER line is present. The third
field of the DAEMON line is the pathname to the Tasking daemon and
you may change it if necessary.

The default location for the license file on Windows is:
c:\flexI mMlicense. dat

On UNIX this is:
fusr/local/flexlnllicenses/license. dat

If the pathname of the resulting license file differs from this default
location then you must set the environment variable LM_LICENSE_FILE to
the correct pathname. If you have more than one product using the
FLEXIm license manager you can specify multiple license files by
separating each pathname (/fpath) with a ’;’ (on UNIX also ") :

Windows:

set LM LI CENSE_FI LE={fpath[slfpath)...
UNIX:

setenv LM LI CENSE_FI LE [fpath|:lfpath]...

If you are running the TASKING software on multiple nodes, you have
three options for making your license file available on all the machines:

Place the license file in a partition which is available (via NFS on Unix
systems) to all nodes in the network that need the license file.

. Copy the license file to all of the nodes where it is needed.

. Set LM_LICENSE _FILE to "port@bost”, where host and port come from the

SERVER line in the license file.

Flexible License Manager (FLEXIm)

When the main license daemon Imgrd already runs it is sufficient to type

the command:

| nT er ead

for notifying the daemon that the | i cense. dat file has been changed.
Otherwise, you must type the command:

Imgrd >/usr/tnp/license.log &

Both commands reside in the flexlm bi n directory mentioned before.

It is possible to customize the use of TASKING software using a daemon
options file. This options file allows you to reserve licenses for specified
users or groups of users, to restrict access to the TASKING toolchain, and
to set software timeouts. The following table lists the keywords that are
recognized at the start of a line of a daemon options file.

Keywords Function

RESERVE Ensure that TASKING software will always be available to
one or more users or on one or more host computer systems.

INCLUDE Specify a list of users who are allowed exclusive access to
the TASKING software.

EXCLUDE Specify a list of users who are not allowed to use the
TASKING software.

GROUP Specify a group of users for use in the other commands.

TIMEOUT Allow licenses that are idle for a specified time to be returned
to the free pool, for use by someone else.

NOLOG Causes messages of the specified type to be filtered out of
the daemon’s log output.

Table A-1: Daemon options file keywords

In order to use the daemon options capability, you must create a daemon
options file and list its pathname as the fourth field on the DAEMON line for
the Tasking daemon in the license file. For example, if the daemon
options were in file / usr /| ocal / f1 ex] mf Taski ng. opt (UNIX), then
you would modify the license file DAEMON line as follows:

DAEMON Tasking /usr/local/Tasking /usr/local/flexln Taski ng. opt

A-8 Appendix A

=

A daemon options file consists of lines in the following format:

RESERVE nunber feature {USER | HOST | DI SPLAY | GROUP} nane
| NCLUDE feature {USER | HOST | DI SPLAY | GROUP} name
EXCLUDE feature {USER | HOST | DI SPLAY | GROUP} name

GROUP nanme <list_of _users>

TI MEQUT feature timeout _in_seconds

NCOLOG {IN] OUT | DEN ED | QUEUED}

REPORTLOG file

Lines beginning with the sharp character (#) are ignored, and can be used
as comments. For example, the following options file would reserve one
copy of feature SWkxxxxx—xXx for user “pat”, three copies for user “lee”,
and one copy for anyone on a computer with the hostname of “terry”; and
would cause QUEUED messages to be omitted from the log file. In addition,
user “joe” and group “pinheads” would not be allowed to use the feature
SWKXXXXX—XX :

GROUP pi nheads noe larry curl ey
RESERVE 1 SWxxxxx—xx USER pat
RESERVE 3 SWkxxxxx—xx USER | ee
RESERVE 1 SWKXXXXX—XX HOST terry

EXCLUDE SWkxxxxx—xx USER j oe
EXCLUDE SWKXXXXX—xX CGROUP pi nheads
NOLOG QUEUED

The following utilities are provided to facilitate license management by
your system administrator. In certain cases, execution access to a utility is
restricted to users with root privileges. Complete descriptions of these
utilities are provided at the end of this section.

Imcksum
Prints license checksums.
Imdiag (Windows only)

Diagnoses license checkout problems.

Imdouwn

Gracefully shuts down all license daemons (both Imgrd all vendor
daemons, such as Tasking) on the license server.

Flexible License Manager (FLEXIm)

mgrd

The main daemon program for FLEXIm.

Imbostid
Reports the hostid of a system.

Imremove

Removes a single user’s license for a specified feature.

Imreread

Causes the license daemon to reread the license file and start any new
vendor daemons.

Imstat

Helps you monitor the status of all network licensing activities.

Imswitchr

Switches the report log file.

Imver

Reports the FLEXIm version of a library or binary file.

Imtools (Windouws only)

This is a graphical Windows version of the license administration tools.

A-10 Appendix A

Name

Imcksum - print license checksums

Synopsis
Imcksum [-c license_file] | -k]

Description

The Imcksum program will perform a checksum of a license file. This is
useful to verify data entry errors at your location. Imcksum will print a
line-by-line checksum for the file as well as an overall file checksum.

The following fields participate in the checksum:

¢ hostid on the SERVER lines
¢ daemon name on the DAEMON lines

e feature name, version, daemon name, expiration date, # of licenses,
encription code, vendor string and hostid on the FEATURE lines

¢ daemon name and encryption code on FEATURESET lines

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imcksum looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imcksum looks for the
filec:\flexI M1icense.dat (Windows), or
fusr/local/flexlImlicenses/l|icense.dat (UNIX).

-k Case-sensitive checksum. If this option is specified,
Imcksum will compute the checksum using the exact case of
the FEATURE’s and FEATURESET’s encryption code.

Flexible License Manager (FLEXIm) A-11

Name

Imdiag - diagnose license checkout problems

Synopsis
Imdiag [-c license_file | [-n | [feature |

Description

Imdiag (Windows only) allows you to diagnose problems when you
cannot check out a license.

If no feature is specified, Imdiag will operate on all features in the license
file(s) in your path. Imdiag will first print information about the license,
then attempt to check out each license. If the checkout succeeds, Imdiag
will indicate this. If the checkout fails, Imdiag will give you the reason for
the failure. If the checkout fails because Imdiag cannot connect to the
license server, then you have the option of running "extended connection
diagnostics”.

These extended diagnostics attempt to connect to each port on the license
server node, and can detect if the port number in the license file is
incorrect. Imdiag will indicate each port number that is listening, and if it
is an Imgrd process, Imdiag will indicate this as well. If Imdiag finds the
vendor daemon for the feature being tested, then it will indicate the
correct port number for the license file to correct the problem.

Parameters

Sfeature Diagnose this feature only.

Options

~c license_file
Diagnose the specified license_file. If no —c option is
specified, Imdiag looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imdiag looks for the file
c:\flexI mMlicense.dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

-n Run in non-interactive mode; Imdiag will not prompt for
any input in this mode. In this mode, extended connection
diagnostics are not available.

A-12 Appendix A

Name

Imdown - graceful shutdown of all license daemons

Synopsis

Imdown | —c license file | | -q]

Description

The Imdown utility allows for the graceful shutdown of all license
daemons (both Imgrd and all vendor daemons, such as Tasking) on all
nodes. You may want to protect the execution of Imdown, since shutting
down the servers causes users to lose their licenses. See the —p option in
Section 3.4, Imgrd.

Imdown sends a message to every license daemon asking it to shut down.
The license daemons write out their last messages to the log file, close the
file, and exit. All licenses which have been given out by those daemons
will be revoked, so that the next time a client program goes to verify his
license, it will not be valid.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imdown looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imdown looks for the
filec:\flexI M1icense.dat (Windows), or
lusr/local/flexlnmlicenses/license.dat (UNIX).

-q Quiet mode. If this switch is not specified, lmdown asks for
confirmation before asking the license daemons to shut
down. If this switch is specified, Imdown will not ask for
confirmation.

% Imgrd, Imstat, Imreread

Flexible License Manager (FLEXIm)

Name

Imgrd - flexible license manager daemon

Synopsis

Imgrd | —c license_file | | -1 logfile | [-2 =p] [=t timeout | | =s interval |

Description

Imgrd is the main daemon program for the FLEXIm distributed license
management system. When invoked, it looks for a license file containing
all required information about vendors and features. On UNIX systems, it
is strongly recommended that lmgrd be run as a non-privileged user (not

root).

Options

-c license_file

-1 logfile

-2 -p

-t timeout

Use the specified license_file. If no —c option is specified,
Imgrd looks for the environment variable

LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imgrd looks for the file
c:\flexImlicense. dat (Windows), or
/usr/local/flexlmlicenses/l|icense.dat (UNIX).

Specifies the output log file to use. Instead of using the -1
option you can use output redirection (> or >>) to specify
the name of the output log file.

Restricts usage of Imdown, Imreread, and lmremove to a
FLEXIm administrator who is by default root. If there is a
UNIX group called "Imadmin” then use is restricted to only
members of that group. If root is not a member of this group,
then root does not have permission to use any of the above
utilities.

Specifies the timeout interval, in seconds, during which the
license daemon must complete its connection to other
daemons if operating in multi-server mode. The default value
is 10 seconds. A larger value may be desirable if the daemons
are being run on busy systems or a very heavily loaded
network.

A-13

A-14 Appendix A

=

-s interval Specifies the log file timestamp interval, in minutes. The
default is 360 minutes. This means that every six hours
Imgrd logs the time in the log file.

ﬂj Imdown, Imstat

Flexible License Manager (FLEXIm) A-15

Name
Imhostid - report the hosti d of a system

Synopsis
Imhostid

Description
Imbhostid calls the FLEXIm version of get host i d and displays the results.
The output of Imhostid looks like this:

I mhostid — Copyright (C) 1989, 1999 d obetrotter Software, Inc.
The FLEXI m host ID of this machine is "1200abcd”

Options

Imhostid has no command line options.

A-16 Appendix A

Name

Imremove - remove specific licenses and return them to license pool

Synopsis

Imremove | —c license_file | feature user host | display |

Description

The Imremove utility allows the system administrator to remove a single
user’s license for a specified feature. This could be required in the case
where the licensed user was running the software on a node that
subsequently crashed. This situation will sometimes cause the license to
remain unusable. Imremove will allow the license to return to the pool of
available licenses.

Imremove will remove all instances of “user” on node “host” on display
“display” from usage of “feature”. If the optional —c¢ fi | e is specified, the
indicated file will be used as the license file. Since removing a user’s
license can be disruptive, execution of Imremove is restricted to users
with root privileges.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imremove looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imremove looks for the
filec:\flexI M1icense.dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

ﬂj Imstat

Flexible License Manager (FLEXIm) A-17

Name

Imreread - tells the license daemon to reread the license file

Synopsis

Imreread | —c license_file |

Description

Imreread allows the system administrator to tell the license daemon to
reread the license file. This can be useful if the data in the license file has
changed; the new data can be loaded into the license daemon without
shutting down and restarting it.

The license administrator may want to protect the execution of Imreread.
See the —p option in Section 3.4, Imgrd for details about securing access to
lmreread.

Imreread uses the license file from the command line (or the default file,
if none specified) only to find the license daemon to send it the command
to reread the license file. The license daemon will always reread the file
that it loaded from the original path. If you need to change the path to the
license file read by the license daemon, then you must shut down the
daemon and restart it with that new license file path.

You cannot use Imreread if the SERVER node names or port numbers
have been changed in the license file. In this case, you must shut down
the daemon and restart it in order for those changes to take effect.

Imreread does not change any option information specified in an options
file. If the new license file specifies a different options file, that
information is ignored. If you need to reread the options file, you must
shut down (Imdown) the daemon and restart it.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imreread looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imreread looks for the
file | i cense. dat in the default location.

% Imdown

A-18 Appendix A

Name

Imstat — report status on license manager daemons and feature usage

Synopsis
Imstat [-a | [-A | [-c license_file | | —f [feature] |
[-1 [regular _expression)] | [-s [server] | [=S [daemon] | [-t timeout |
Description

License administration is simplified by the lmstat utility. Imstat allows
you to instantly monitor the status of all network licensing activities.
Imstat allows a system administrator to monitor license management
operations including:

* Which daemons are running

* Users of individual features

* Users of features served by a specific DAEMON

Options
-a Display all information.
-A List all active licenses.

—c license_file
Use the specified license_file. If no —c option is specified,
Imstat looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imstat looks for the file
c:\flexI mlicense.dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

—f [feature] List all users of the specified feature(s).

-1 [regular_expression)|
List all users of the features matching the given
regular_expression.

-s [server] Display the status of the specified server node(s).

=S |daemon)] List all users of the specified daemon’s features.

Flexible License Manager (FLEXIm) A-19

-t timeout Specifies the amount of time, in seconds, lmstat waits to
establish contact with the servers. The default value is 10
seconds. A larger value may be desirable if the daemons are
being run on busy systems or a very heavily loaded network.

ﬂj Imgrd

A-20

Appendix A

Name

Imswitchr - switch the report log file
Synopsis
Imswitchr | —c license_file | feature new-file
or:

Imswitchr | —c license_file | vendor new-file

Description

Imswitchr (Windows only) switches the report writer (REPORTLOG) log
file. It will also start a new REPORTLOG file if one does not already exist.

Parameters
Sfeature Any feature this daemon supports.
vendor The name of the vendor daemon (such as Tasking).
new-file New file path.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imswitchr looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imswitchr looks for the
filec:\flexI MIicense. dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

Flexible License Manager (FLEXIm)

Name

Imver - report the FLEXIm version of a library or binary file

Synopsis

Imver filename

Description
The Imver utility reports the FLEXIm version of a library or binary file.

Alternatively, on UNIX systems, you can use the following commands to
get the FLEXIm version of a binary:

strings file | grep Copy

Parameters

filename Name of the executable of the product.

A-21

A-22

Appendix A

For the 32 Bit Windows Platforms, an lmtools.exe Windows program is
provided. It has the same functionality as listed in the previous sections
but is graphically—oriented. Simply run the program (Start | Prograns
| TASKI NG FLEXI m | FLEXI m Tool s) and choose a button for the
functionality required. Refer to the previous sections for information about
the options of each feature. The command line interface is replaced by
pop-up dialogs that can be filled out.The central EDIT field is where the
license file path is placed. This will be used for all other functions and
replaces the "-c license_file” argument in the other utilities.

The HOSTI D button displays the hostid’s for the computer on which the
program is running. The Tl ME button prints out the system’s internal time
settings, intended to diagnose any time zone problems. The TCP

Set ti ngs button is intended to fix a bug in the Microsoft TCP protocol
stack which has a symptom of very slow connections to computers. After
pressing this button, the system will need to be rebooted for the settings to
become effective.

Flexible License Manager (FLEXIm) A-23

Imgrd.exe can be run manually or using the graphical Windows tool. You
can start this tool from the FLEXIm program folder. Click on Start |
Programs | TASKING FLEXIm | FLEXI m Tool s

FLEXIm License Manager E2

etup I Licensesl Diagnnsticsl About I

— Controlz License Manager
Service Mame IFLEXIm Lizense Manager for TASKING

Start Startz Up the Licenze Server

T Stopz the License Server

Clatus Licenze Manager Status

ddd

Q. I Cancel el

From the Control tab you can start, stop, and check the status of your
license server. Select the Set up tab to enter information about your
license server.

FLEXIm Licenze Manager E

Contral Licensesl Diagnoslicsl About I

— Setup of Licenze Manager

Service Mame IFLEXIm Licenze Manager for TASKING j

Imgrd. exe Bl | IC:\erxIm\bin'\Imgrd.eHe
Licenze File Browse | Ic:\flexlm\license.dat
Eifgbug Log Browse | Ic:\flexlm\license.log

[Start Server at Power-Up ¥ Use NT Services Remowe |

ok I Cancel | Sy |

A-24

Appendix A

Select the Cont r ol tab and click the St art button to start your license
server. Imgrd.exe will be launched as a background application with the
license file and debug log file locations passed as parameters.

If you want Imgrd.exe to start automatically on NT, select the Use NT
Servi ces check box and Imgrd.exe will be installed as an NT service.
Next, select the Start Server at Power —UP check box.

The Li censes tab provides information about the license file and the
Advanced tab allows you to perform diagnostics and check versions.

Flexible License Manager (FLEXIm) A-25

The FLEXIm daemons all generate log files containing messages in the
following format:

mm/dd bb:mm (DAEMON name) message
Where:

mm/dd bb:mm Is the month/day hour:minute that the message was
logged.

DAEMON name Either “license daemon” or the string from the DAEMON
line that describes your daemon.

In the case where a single copy of the daemon cannot
handle all of the requested licenses, an optional “_”
followed by a number indicates that this message comes
from a forked daemon.

message The text of the message.

The log files can be used to:
¢ Inform you when it may be necessary to update your application
software licensing arrangement.
¢ Diagnose configuration problems.
» Diagnose daemon software errors.

The messages are grouped below into the above three categories, with
each message followed by a brief description of its meaning.

A-26

Appendix A

Connected to node

This daemon is connected to its peer on node node.

CONNECTED, master is name

The license daemons log this message when a quorum is up and everyone
has selected a master.

DEMO mode supports only one SERVER bost!

An attempt was made to configure a demo version of the software for
more than one server host.

DENIED: N feature to user (mm/dd/yy bb:mm)

user was denied access to N licenses of feature. This message may indicate
a need to purchase more licenses.

EXITING DUE TO SIGNAL nnn
EXITING with code nnn

All daemons list the reason that the daemon has exited.

EXPIRED: feature

Sfeature has passed its expiration date.
IN: feature by user (N licenses) (used: d:bh:mm:ss)

(mm/dd/yy bb:mm)

user has checked back in N licenses of feature at mm/dd/yy bb.mm.
IN server died: feature by user (number licenses)

(used: d:bb:mm:ss) (mm/dd/yy bb:mm)

user has checked in N licenses by virtue of the fact that his server died.

License Manager server started

The license daemon was started.

Flexible License Manager (FLEXIm) A-27

Lost connection to bost

A daemon can no longer communicate with its peer on node host, which
can cause the clients to have to reconnect, or cause the number of
daemons to go below the minimum number, in which case clients may
start exiting. If the license daemons lose the connection to the master, they
will kill all the vendor daemons; vendor daemons will shut themselves
down.

Lost quorum

The daemon lost quorum, so will process only connection requests from
other daemons.

MASTER SERVER died due to signal nnn

The license daemon received fatal signal n#nn.

MULTIPLE xxx servers running. Please kill, and restart license
daemon

The license daemon has detected that multiple copies of vendor daemon
xxx are running. The user should kill all xxx daemon processes and
re-start the license daemon.

OUT: feature by user (N licenses) (mm/dd/yy bb:mm)

user has checked out N licenses of feature at mm/dd/yy bb:mm

Removing clients of children

The top-level daemon logs this message when one of the child daemons
dies.

RESERVE feature for HOST name
RESERVE feature for USER name

A license of feature is reserved for either user name or host name.

REStarted xxx (internet port nnn)

Vendor daemon xxx was restarted at internet port 7.

Retrying socket bind (address in use)

The license servers try to bind their sockets for approximately 6 minutes if
they detect address in use errors.

A-28

Appendix A

Selected (EXISTING) master node

This license daemon has selected an existing master (node) as the master.

SERVER shutdown requested
A daemon was requested to shut down via a user—generated Kkill
command.

[NEW] Server started for: feature-list

A (possibly new) server was started for the features listed.

Shutting down xxx

The license daemon is shutting down the vendor daemon xxx.

SIGCHLD received. Killing child servers

A vendor daemon logs this message when a shutdown was requested by
the license daemon.

Started name

The license daemon logs this message whenever it starts a new vendor
daemon.

Trying connection to node

The daemon is attempting a connection to zode.

Flexible License Manager (FLEXIm) A-29

bostname: Not a valid server bost, exiting

This daemon was run on an invalid hostname.

bostname: Wrong hostid, exiting

The hostid is wrong for hostname.

BAD CODE for feature-name

The specified feature name has a bad encryption code.

CANNOT OPEN options file “file”

The options file specified in the license file could not be opened.

Couldn’t find a master

The daemons could not agree on a master.

license daemon: lost all connections

This message is logged when all the connections to a server are lost,
which often indicates a network problem.

lost lock, exiting
Error closing lock file
Unable to re-open lock file

The vendor daemon has a problem with its lock file, usually because of an
attempt to run more than one copy of the daemon on a single node.
Locate the other daemon that is running via a ps command, and kill it
with kill -9.

NO DAEMON line for daemon

The license file does not contain a DAEMON line for daemon.

No “license” service found

The TCP license service did not exist in / et ¢/ servi ces.

No license data for “feat”, feature unsupported

There is no feature line for feat in the license file.

A-30

Appendix A

No features to serve!

A vendor daemon found no features to serve. This could be caused by bad
data in the license file.

UNSUPPORTED FEATURE request: feature by user

The user has requested a feature that this vendor daemon does not
support. This can happen for a number of reasons: the license file is bad,
the feature has expired, or the daemon is accessing the wrong license file.

Unknown bost: bostname

The hostname specified on a SERVER line in the license file does not exist
in the network database (probably / et ¢/ host s).

Im_server: lost all connections

This message is logged when all the connections to a server are lost. This
probably indicates a network problem.

NO DAEMON lines, exiting

The license daemon logs this message if there are no DAEMON lines in the
license file. Since there are no vendor daemons to start, there is nothing to
do.

NO DAEMON line for name

A vendor daemon logs this error if it cannot find its own DAEMON name in
the license file.

Flexible License Manager (FLEXIm) A-31

accept: message

An error was detected in the accept system call.

ATTEMPT TO START VENDOR DAEMON xxx with NO MASTER

A vendor daemon was started with no master selected. This is an intermnal
consistency error in the daemons.

BAD PID message from nnn: pid: xxx (msg)
A top-level vendor daemon received an invalid Pl D message from one of
its children (daemon number xxx).

BAD SCONNECT message: (message)

An invalid “server connect” message was received.

Cannot create pipes for server communication

The pi pe call failed.

Can’t allocate server table space

A mal | oc error. Check swap space.

Connection to node TIMED OUT

The daemon could not connect to node.

Error sending PID to master server

The vendor server could not send its Pl D to the top-level server in the
hierarchy.

Illegal connection request to DAEMON
A connection request was made to DAEMON, but this vendor daemon is not
DAEMON.

Illegal server connection request
A connection request came in from another server without a DAEMON
name.

KILL of child failed, errno = nnn
A daemon could not kill its child.

A-32

Appendix A

No internet port number specified

A vendor daemon was started without an internet port.

Not enough descriptors to re-create pipes

The “top-level” daemon detected one of its sub-daemon’s death. In trying
to restart the chain of sub-daemons, it was unable to get the file
descriptors to set up the pipes to communicate. This is a fatal error, and
the daemons must be re-started.

read: error mes sage

An error in a r ead system call was detected.

recycle_control BUT WE DIDN’T HAVE CONTROL

The hierarchy of vendor daemons has become confused over who holds
the control token. This is an internal error.

return_reserved: can’t find feature listhead

When a daemon is returning a reservation to the “free reservation” list, it
could not find the | i st head of features.

select: message

An error in a select system call was detected.

Server exiting

The server is exiting. This is normally due to an error.

SHELLO for wrong DAEMON

This vendor daemon was sent a “server hello” message that was destined
for a different DAEMON.

Unsolicited msg from parent!
Normally, the top-level vendor daemon sends no unsolicited messages. If
one arrives, this message is logged. This is a bug.

WARNING: CORRUPTED options list (0->next == 0)

Options list TERMINATED at bad entry

An internal inconsistency was detected in the daemon’s option list.

Flexible License Manager (FLEXIm) A-33

FLEXIm license error, encryption code in license file is inconsistent

Check the contents of the license file using the license data sheet for the
product. Correct the license file and run the Imreread command.
However, do not change the last (fourth) field of a SERVER line in the
license file. This cannot have any effect on the error message but changing
it will cause other problems.

license file does not support this version

If this is a first time install then follow the procedure for the error message:

FLEXIm |icense error, encryption code in license file is
i nconsi st ent

because there may be a typo in the fourth field of a FEATURE line of your
license file. In all other cases you need a new license because the current
license is for an older version of the product.

Replace the FEATURE line for the old version of the product with a
FEATURE line for the new version (it can be found on the new license
data sheet). Run the Imreread command afterwards. You can have only
one version of a feature (previous versions of the product will continue to
work).

FLEXUImn license error, cannot find license file

Make sure the license file exists. If the pathname printed on the line after
the error message is incorrect, correct this by setting the

LM LI CENSE_FI LE environment variable to the full pathname of the
license file.

FLEXIm license error, cannot read license file

Every user needs to have read access on the license file and at least
execute access on every directory component in the pathname of the
license file. Write access is never needed. Read access on directories is

recommended.

FLEXIm license error, no such feature exists

Check the license file. There should be a line starting with:

FEATURE SWiiiii—j

A-34

Appendix A

for identifying a compatible host architecture. During product installations
the product code is shown, e.g. SW008002, SW019002. The number in the
software code is the same as the number in the product code except that
the first number may contain an extra leading zero (it must be six digits
long).

The line after the license error message describes the expected feature
format and includes the host code.

Correct the license file using the license data sheet for the product and run
the Imreread command. There is one catch: do not add extra SERVER
lines or change existing SERVER lines in the license file.

FLEXIm license error, license server does not support this feature

If the LM _LI CENSE_FI LE variable has been set to the format
number@hbost then see first the solution for the message:

FLEXIm |l icense error, no such feature exists

Run the Imreread program to inform the license server about a changed
license data file. If Imreread succeeds informing the license server but the
error message persists, there are basically three possibilities:

. The license key is incorrect. If this is the case then there must be an error

message in the log file of Imgrd. Correct the key using the license data
sheet for the product. Finally rerun lmreread. The log file of Imgrd is
usually specified to Imgrd at startup with the -1 option or with >.

. Your network has more than one FLEXIm license server daemon and the

default license file location for Imreread differs from the default assumed
by the program. Also, there must be more than one license file. Try one of
the following solutions on the same host which produced the error
message:

- type:
Interead —c /usr/local/flexlmlicenses/license. dat
- set LM LI CENSE_FI LE to the license file location and retry the
Imreread command.

- use the Imreread program supplied with the product SW000098,
Flexible License Manager. SW000098 is bundled with all TASKING
products.

Flexible License Manager (FLEXIm) A-35

3. There is a protocol version mismatch between lmgrd and the daemon
with the name "Tasking” (the vendor daemon according to FLEXIm
terminology) or there is some other internal error. These errors are always
written to the log file of Imgrd. The solution is to upgrade the lmgrd
daemon to the one supplied in SW000098, the bundled Flexible License
Manager product.

On the other hand, if Imreread complains about not being able to
connect to the license server then follow the procedure described in the
next section for the error message "Cannot read license file data from
server”. The only difference with the current situation is that not the
product but a license management utility shows a connect problem.

FLEXIm license error, Cannot read license file data from server

This indicates that the program could not connect to the license server
daemon. This can have a number of causes. If the program did not
immediately print the error message but waited for about 30 seconds (this
can vary) then probably the license server host is down or unreachable. If
the program responded immediately with the error message then check
the following if the LM LI CENSE_FI LE variable has been set to the format
number@host:

— is the number correct? It should match the fourth field of a SERVER
line in the license file on the license server host. Also, the host
name on that SERVER line should be the same as the host name set
in the LM _LI CENSE_FI LE variable. Correct LM LI CENSE_FI LE if
necessary.

In any case one should verify if the license server daemon is running.
Type the following command on the host where the license server
daemon (Imgrd) is supposed to run.

On SunOS 4.x:

ps wax | grep Ingrd | grep —v grep
On HP-UX or SunOS 5.x (Solaris 2.x):

ps —ef | grep Ingrd | grep —v grep

If the command does not produce any output then the license server
daemon is not running. See below for an example how to start Imgrd.

A-36

Appendix A

Make sure that both license server daemon (Imgrd) and the program are
using the same license data. All TASKING products use the license file
fusr/local/flexlnllicenses/license.dat unless overruled by the
environment variable LM LI CENSE_FI LE. However, not all existing
Imgrd daemons may use the same default. In case of doubt, specify the
license file pathname with the —c option when starting the license server
daemon. For example:

Imgrd —c /usr/local/flexlmlicenses/license.dat \
-l Jusr/local/flexImlicenses/license.log &

and set the LM LI CENSE_FI LE environment variable to the

i cense. dat pathname mentioned with the —c option of Imgrd before
running any license based program (including lmreread, Imstat,
Imdown). If Imgrd and the program run on different hosts, transparent
access to the license file is assumed in the situation described above (e.g.
NES). If this is not the case, make a local copy of the license file (not
recommended) or set LM LI CENSE_FI LE to the form number@hbost, as
described earlier.

If none of the above seems to apply (i.e. Imgrd was already running and
LM LI CENSE_FI LE has been set correctly) then it is very likely that there
is a TCP port mismatch. The fourth field of a SERVER line in the license
file specifies a TCP port number. That number can be changed without
affecting any license. However, it must never be changed while the license
server daemon is running. If it has been changed, change it back to the
original value. If you do not know the original number anymore, restart
the license server daemon after typing the following command on the
license server host:

kill PID

where PI D is the process id of Imgrd.

Flexible License Manager (FLEXIm)

Ive received FLEXIm license files from 2 different companies. Do I
bave to combine them?

You don’t have to combine license files. Each license file that has any
‘counted’ lines (the 'number of licenses’ field is >0) requires a server. It’s
perfectly OK to have any number of separate license files, with different
Imgrd server processes supporting each file. Moreover, since Imgrd is a
lightweight process, for sites without system administrators, this is often
the simplest (and therefore recommended) way to proceed. With vo+
Imgrd/Imdown/lmreread, you can stop/reread/restart a single vendor
daemon (of any FLEXIm version). This makes combining licenses more
attractive than previously. Also, if the application is v6+, using ’dir/*lic’ for
license file management behaves like combining licenses without
physically combining them.

When is it recommended to combine license files?

Many system administrators, especially for larger sites, prefer to combine
license files to ease administration of FLEXIm licenses. It's purely a matter
of preference.

Does FLEXIm bandle dates in the year 2000 and beyond?

Yes. The FLEXIm date format uses a 4—digit year. Dates in the 20th century
(19xx) can be abbreviated to the last 2 digits of the year (xx), and use of
this feature is quite widespread. Dates in the year 2000 and beyond must
specify all 4 year digits.

Which FLEXlm versions does TASKING deliver?
For Windows we deliver FLEXIm v6.1 and for UNIX we deliver v2.4.

A-37

A-38 Appendix A

-

I bave products from several companies at various FLEXIm version
levels. Do I bave to worry about bow these versions work together?

If you're not combining license files from different vendors, the simplest
thing to do is make sure you use the tools (especially lmgrd) that are
shipped by each vendor.

Imgrd will always correctly support older versions of vendor daemons
and applications, so it's always safe to use the latest version of Imgrd and
the other FLEXIm utilities. If you've combined license files from 2 vendors,
you must use the latest version of Imgrd.

If you've received 2 versions of a product from the same vendor, you must
use the latest vendor daemon they sent you. An older vendor daemon
with a newer client will cause communication errors.

Please ignore letters appended to FLEXIm versions, i.e., v2.4d. The
appended letter indicates a patch, and does NOT indicate any
compatibility differences. In particular, some elements of FLEXIm didn’t
require certain patches, so a 2.4 lmgrd will work successfully with a 2.4b
vendor daemon.

Ive received a new copy of a product from a vendor, and it uses a new
version of FLEXIm. Is my old license file still valid?

Yes. Older FLEXIm license files are always valid with newer versions of
FLEXIm.

What Windows Host Platforms can be used as a server for Floating
Licenses?

The system being used as the server (where the FLEXIm License Manager
is running) for Floating licenses, must be Windows NT. The FLEXIm
License Manager does not run properly with Windows 95/98.

Why do I need to include NWlink IPX/SPX on NT?

This is necessary for either obtaining the Ethernet card address, or to
provide connectivity with a Netware License server.

Flexible License Manager (FLEXIm)

How will the TASKING licensing/pricing model change with License
Management (FLEXlm)?

TASKING will now offer the following types of licenses so you can
purchase licenses based upon usage:

License Description Pricing

Node Locked This license can only be used on a | The pricing for this
specific system. It cannot be license will be the
moved to another system. current product pricing.

Floating This license requires a network The pricing for this
(license server and a TCP/IP (or license will be 50%
IPX/SPX) connection between higher than the node

clients and server) and can be used | locked license.
on any host system (using the
same operating system) in the
network.

How does FLEXIm affect future product ordering?

&

For all licenses, node locked or floating, you must provide information
that is used to create a license key. For node locked licenses we must
have the HOST ID. Floating licenses require the HOST ID and HOST
NAME. The HOST ID is a unique identification of the machine, which is
based upon different hardware depending upon host platform. The HOST
NAME is the network name of the machine.

TASKING Logistics CANNOT ship ANY orders that do not include the
HOST ID and/or HOST NAME information.

What if I do not know the information needed for the license key?

We have a software utility (tkhostid.exe) which will obtain and display
the HOST ID so a customer can easily obtain this information. This utility
is available from our web site, placed on all product CDs (which support
FLEXIm), and from technical support. If you have already installed
FLEXIm, you can also use Imhostid.

* In the case of a Node locked license, it is important that the customer
runs this utility on the exact machine he intends to run the
TASKING tools on.

A-39

A-40

Appendix A

* In the case of a Floating License, the tkhostid.exe (or Imhostid)
utility should be run on the machine on which the FLEXIm license
manager will be installed, e.g. the server. The HOST NAME
information can be obtained from within the Windows Control
Panel. Select "Network”, click on ”Identification”, look for
"Computer name”.

How will the “locking” mechanism work?
¢ For node locked licenses, FLEXIm will first search for an ethernet card.
If one exists, it will lock onto the number of the ethernet card. If an
ethernet card does not exist, FLEXIm will lock onto the hard disk serial
number.

* For floating licenses, the ethernet card number will be used.

What bappens if I try to move my node locked license to another
system?

The software will not run.

What does linger-time for floating licenses mean?

When the TASKING product starts to run, it will try to obtain a license
from the license server. The license server keeps track of the number of
licenses already issued, and grants or denies the request. When the
software has finished running, the license is kept by the license server for
a period of time known as the “linger-time”. If the same user requests the
TASKING product again within the linger-time, he is granted the license
again. If another user requests a license during the linger-time, his
request is denied until the linger-time has finished

What is the length of the linger-time for floating licenses?

The length of the linger-time for both the PC and UNIX floating licenses is
5 minutes.

Can the linger-time be changed?

Yes. A customer can change the linger—time to be larger (but not shorter)
than the time specified by TASKING.

What bappens if my system crashes or I upgrade to a new system?

You will need to contact Technical Support for temporary license keys due
to a system crash or to move from one system to another system. You will
then need to work with your local sales representative to obtain a
permanent new license key.

Flexible License Manager (FLEXIm) A-41

Does FLEXIm work across the internet?

Yes. A server on the internet will serve licenses to anyone else on the
internet. This can be limited with the INTERNET=" attribute on the
FEATURE line, which limits access to a range of internet addresses. You
can also use the INCLUDE and EXCLUDE options in the daemon option
file to allow (or deny) access to clients running on a range of internet
addresses.

Does FLEXIm work with Internet firewalls?

Many firewalls require that port numbers be specified to the firewall.
FLEXIm v5 Imgrd supports this.

If my client dies, does the server free the license?

Yes, unless the client’s whole system crashes. Assuming communications is
TCP, the license is automatically freed immediately. If communications are
UDP, then the license is freed after the UDP timeout, which is set by each
vendor, but defaults to 45 minutes. UDP communications is normally only
set by the end-user, so TCP should be assumed. If the whole system
crashes, then the license is not freed, and you should use ‘lmremove’ to
free the license.

What bappens when the license server dies?

FLEXIm applications send periodic heartbeats to the server to discover if it
has died. What happens when the server dies is then up to the application.
Some will simply continue periodically attempting to re-checkout the
license when the server comes back up. Some will attempt to re-checkout
a license a few times, and then, presumably with some warning, exit.
Some GUI applications will present pop—ups to the user periodically
letting them know the server is down and needs to be re-started.

How do you tell if a port is already in use?

99.44% of the time, if it’s in use, it’s because Imgrd is already running on
the port — or was recently killed, and the port isn’t freed yet. Assuming this
is not the case, then use telnet host port’ — if it says “can’t connect”, it's a
free port.

A-42 Appendix A

=

Does FLEXIm require root permissions?

No. There is no part of FLEXIm, Imgrd, vendor daemon or application,
that requires root permissions. In fact, it is strongly recommended that you
do not run the license server (lmgrd) as root, since root processes can
introduce security risks.

If Imgrd must be started from the root user (for example, in a system boot
script), we recommend that you use the su’ command to run lmgrd as a
non-privileged user:

su usernanme —c”/path/lImgrd —c /path/license.dat \
-l [path/log”

where username is a non-privileged user, and path is the correct paths to
Imgrd, | i cense. dat and debug log file. You will have to ensure that the
vendor daemons listed in /path-to-license/license.dat have execute
permissions for username. The paths to all the vendor daemons in the
license file are listed on each DAEMON line.

Is it ok to run mgrd as ’root’ (UNIX only)?

It is not prudent to run any command, particularly a daemon, as root on
UNIX, as it may pose a security risk to the Operating System. Therefore,
we recommend that Imgrd be run as a non—privileged user (not 'root’). If
you are starting Imgrd from a boot script, we recommend that you use

su usernanme —c”umask 022; /path/lInmgrd \
—c /path/license.dat —I /path/log”

to run Imgrd as a non-privileged user.

Does FLEXIm licensing impose a beavy load on the network?

No, but partly this depends on the application, and end-user’s use. A
typical checkout request requires 5 messages and responses between
client and server, and each message is < 150 bytes.

When a server is not receiving requests, it requires virtually no CPU time.
When an application, or Imstat, requests the list of current users, this can
significantly increase the amount of networking FLEXIm uses, depending
on the number of current users. Also, prior to FLEXIm v5, use of
‘port@host’ can increase network load, since the license file is
down-loaded from the server to the client. 'port@host’ should be, if
possible, limited to small license files (say < 50 features). In v5, 'port@host’
actually improves performance.

Flexible License Manager (FLEXIm)

Does FLEXIm work with NFS?

Yes. FLEXIm has no direct interaction with NFS. FLEXIm uses an
NFS-mounted file like any other application.

Does FLEXIm work with ATM, ISDN, Token-Ring, etc.?

In general, these have no impact on FLEXIm. FLEXIm requires TCP/IP or
SPX (Novell Netware). So long as TCP/IP works, FLEXIm will work.

Does FLEXIm work with subnets, fully-qualified names, multiple
domains, etc.?

Yes, although this behavior was improved in v3.0, and v6.0. When a
license server and a client are located in different domains, fully—qualified
host names have to be used. A fully-qualified hostname is of the form:

node.domain

where node is the local hostname (usually returned by the ’hostname’
command or 'aname -n’) domain is the internet domain name, e.g.
"globes.com’.

To ensure success with FLEXIm across domains, do the following:

1. Make the sure the fully—qualified hostname is the name on the SERVER
line of the license file.

2. Make sure ALL client nodes, as well as the server node, are able to 'telnet’
to that fully—qualified hostname. For example, if the host is locally called
'speedy’, and the domain name is ’corp.com’, local systems will be able to
logon to speedy via ’telnet speedy’. But very often, 'telnet
speedy.corp.com’ will fail, locally.

Note that this telnet command will always succeed on hosts in other
domains (assuming everything is configured correctly), since the network
will resolve speedy.corp.com automatically.

3. Finally, there must be an 'alias’ for speedy so it’s also known locally as
speedy.corp.com. This alias is added to the / et ¢/ host s file, or if
NIS/Yellow Pages are being used, then it will have to be added to the NIS
database. This requirement goes away in version 3.0 of FLEXIm.

If all components (application, Imgrd and vendor daemon) are v6.0 or
higher, no aliases are required; the only requirement is that the
fully—qualified domain name, or IP-address, is used as a hostname on the
SERVER, or as a hostname in LM_LICENSE FILE port@host, or @host.

A-43

A-44 Appendix A

=

Does FLEXIm work with NIS and DNS?

Yes. However, some sites have broken NIS or DNS, which will cause
FLEXIm to fail. In v5 of FLEXIm, NIS and DNS can be avoided to solve this
problem. In particular, sometimes DNS is configured for a server that's not
current available (e.g., a dial-up connection from a PC). Again, if DNS is
configured, but the server is not available, FLEXIm will fail.

In addition, some systems, particularly Sun, SGI, HP, require that
applications be linked dynamically to support NIS or DNS. If a vendor
links statically, this can cause the application to fail at a site that uses NIS
or DNS. In these situations, the vendor will have to relink, or recompile
with v5 FLEXIm. Vendors are strongly encouraged to use dynamic libraries
for libc and networking libraries, since this tends to improve quality in
general, as well as making NIS/DNS work.

On PCs, if a checkout seems to take 3 minutes and then fails, this is
usually because the system is configured for a dial-up DNS server which is
not currently available. The solution here is to turn off DNS.

Finally, hostnames must NOT have periods in the name. These are not
legal hostnames, although PCs will allow you to enter them, and they will
not work with DNS.

We’re using FLEXIm over a wide-area network. What can we do to
improve performance?

FLEXIm network traffic should be minimized. With the most common uses
of FLEXIm, traffic is negligible. In particular, checkout, checkin and
heartbeats use very little networking traffic. There are two items, however,
which can send considerably more data and should be avoided or used
sparingly:

* ’lmstat —a’ should be used sparingly. 'lmstat —a’ should not be
used more than, say, once every 15 minutes, and should be
particularly avoided when there’s a lot of features, or concurrent
users, and therefore a lot of data to transmit; say, more than 20
concurrent users or features.

* Prior to FLEXIm v5, the 'port@host’ mode of the LM_LICENSE_FILE
environment variable should be avoided, especially when the
license file has many features, or there are a lot of license files
included in LM_LICENSE FILE. The license file information is sent
via the network, and can place a heavy load. Failures due to
"port@host’ will generate the error LM SERVNOREADLIC (-61).

SAFER C

al TASKING [

XIAN3ddV

Safer C

Supported and unsupported Safer C rules

1.

*o2

11.
12.
13.
14.

17.

19.

20.

21.

22.

24.

Y »® N oW

no language extensions shall be used

other languages should only be used with an interface standard
inline assembly is only allowed in dedicated C functions
provision should be made for appropriate run-time checking
only use characters defined by the C standard

character values shall be restricted to a subset of ISO 106460-1
trigraphs shall not be used

multibyte characters and wide string literals shall not be used
comments shall not be nested

sections of code should not be "commented out”

identifiers shall not rely on significance of more than 31 characters
the same identifier shall not be used in multiple name spaces
specific-length typedefs should be used instead of the basic types
use 'unsigned char’ or ’signed char’ instead of plain ’char’
floating point implementations should comply with a standard
the bit representation of floating point numbers shall not be used
typedef names should not be reused

numeric constants should be suffixed to indicate type

octal constants (other than zero) shall not be used

all object and function identifiers shall be declared before use
identifiers shall not hide identifiers in an outer scope
declarations should be at function scope where possible ("%s”)
all declarations at file scope should be static where possible

identifiers shall not have both internal and external linkage

B-4

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

Appendix B

identifiers with external linkage shall have exactly one definition
multiple declarations for objects or functions shall be compatible
external objects should not be declared in more than one file
the ’register’ storage class specifier should not be used

the use of a tag shall agree with its declaration

all automatics shall be initialized before being used

braces shall be used in the initialization of arrays and structures
only the first, or all enumeration constants may be initialized

the right hand side of && or | | shall not contain side effects

the operands of a logical && or | | shall be primary expressions
assignment operators shall not be used in Boolean expressions
logical operators should not be confused with bitwise operators
bitwise operations shall not be performed on signed integers

a shift count shall be between 0 and the operand width minus 1
the unary minus shall not be applied to an unsigned expression
'sizeof” should not be used on expressions with side effects

the implementation of integer division should be documented
the comma operator shall only be used in a 'for’ condition

don’t use implicit conversions which may result in information loss
redundant explicit casts should not be used

type casting from any type to/from pointers shall not be used
the value of an expression shall be evaluation order independent
no dependence should be placed on operator precedence rules
mixed arithmetic should use explicit casting

tests of a (non-Boolean) value against 0 should be made explicit

Safer C

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

F.P. variables shall not be tested for exact equality or inequality
constant unsigned integer expressions should not wrap—around
there shall be no unreachable code

all non—null statements shall have a side-effect

a null statement shall only occur on a line by itself

labels should not be used

the ’goto’ statement shall not be used

the ’continue’ statement shall not be used

the ’break’ statement shall not be used (except in a ’switch’)

an ’'if’ or loop body shall always be enclosed in braces

all ’if’, ’else if’ constructs should contain a final ’else’

every non-empty 'case’ clause shall be terminated with a 'break’
all ’switch’ statements should contain a final 'default’ case

a 'switch’ expression should not represent a Boolean case

every ’switch’ shall have at least one ’case’

floating point variables shall not be used as loop counters

a "for” should only contain expressions concerning loop control
iterator variables should not be modified in a "for” loop
functions shall always be declared at file scope

functions with variable number of arguments shall not be used
functions shall not call themselves

function prototypes shall be visible at the definition and call

the function prototype of the declaration shall match the definition
identifiers shall be given for all prototype parameters or for none

parameter identifiers shall be identical for declaration/definition

B-6

75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.

88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.

Appendix B

every function shall have an explicit return type

functions with no parameters shall have a 'void’ parameter list
an actual parameter type shall be compatible with the prototype
the number of actual parameters shall match the prototype

the values returned by ’void’ functions shall not be used

void expressions shall not be passed as function parameters
"const” should be used for reference parameters not modified

a function should have a single point of exit

every exit point shall have a ’return’ of the declared return type
for *void’ functions, ’return’ shall not have an expression
function calls with no parameters should have empty parentheses
if a function returns error information, it should be tested

#include shall only be preceded by another directives or
comments

non-standard characters shall not occur in #include directives
#include shall be followed by either <filename> or filename”
plain macros shall only be used for constants/qualifiers/specifiers
macros shall not be defined/undefined within a block

'#undef should not be used

a function should be used in preference to a function-like macro
a function-like macro shall not be used without all arguments
macro arguments shall not contain pre-preprocessing directives
macro definitions/parameters should be enclosed in parentheses
don’t use undefined identifiers in pre—processing directives

a macro definition shall contain at most one # or ## operator

Safer C

100.
101.
102.
*103.
104.
105.
106.
*107.
* 108.
*109.
* 110.
111.
112.
113.
114.
115.
* 116.
* 117.
118.
119.
120.
121.
122.

123.

all uses of the #pragma directive shall be documented
"defined’ shall only be used in one of the two standard forms
pointer arithmetic should not be used

no more than 2 levels of pointer indirection should be used

no relational operators between pointers to different objects
non—constant pointers to functions shall not be used

functions assigned to the same pointer shall be of indentical type
an automatic address may not be assigned to a longer lived object
the null pointer shall not be de-referenced

all struct/union members shall be fully specified

overlapping variable storage shall not be used

unions shall not be used to access the sub—parts of larger types
bit fields shall have type 'unsigned int’ or ’signed int’

bit fields of type 'signed int’ shall be at least 2 bits long

all struct/union members shall be named

reserved and standard library names shall not be redefined
standard library function names shall not be reused

production libraries shall comply with the Safer C restrictions
the validity of library function parameters shall be checked
dynamic heap memory allocation shall not be used

‘errno’ should not be used

the macro ’offsetof()’ shall not be used

<locale.h> and the ’setlocale’ function shall not be used

the ’setjimp’ and ’longjmp’ functions shall not be used

the signal handling facilities of <signal.h> shall not be used

B-8

124.
125.
126.

127.

Appendix B

the <stdio.h> library shall not be used in production code
the functions atof/atoi/atol shall not be used
the functions abort/exit/getenv/system shall not be used

the time handling functions of library <time.h> shall not be used

@ * = Not supported by the TASKING M16C C compiler

INDEX

al TASKING [

X3ANI

Index

#define, 4-23

#include, 4-31, 4-73

#pragma, 4-75
alias, 4-75
asm, 3-24, 4-75
asm_noflush, 3-24, 4-76
endasm, 3-24, 4-76
endoptimize, 4-76
listinc, 4-76
noalias, 4-75
nolistinc, 4-76
nosource, 4-77
optimize, 4-76
renamesec, 4-77
source, 4-77

#pragma optimize, 4-35

#undef, 4-67
-M option, 3-8
-O option, 3-36
—-v option, 3-31
__DATE_, 4-67
__FILE__, 4-67
__LINE_, 4-67
__STDC__, 4-67
__TIME__, 4-67

_asmfunc, 3-25

_at attribute, 3-9
_bdat, 3-5

_bit, 3-11, 3-16
_close, 6-12

_CM16C, 3-35, 4-67
_CODEMODEL, 4-67
_far, storage type, 3-5
_farrom, 3-5

_inline, 3-23
_interrupt, 3-31
_Iseek, 6-12
_MODEL, 4-67

_near, storage type, 3-5
_nearrom, 3-5
_open, 6-12

_read, 6-12

_rom, 3-5

_sfrbit, 3-11, 3-17
_sfrbyte, 3-11, 3-17
_sfrlong, 3-11, 3-17
_sfrword, 3-11, 3-17
_simi, 6-13

_simo, 6-13
_tolower, 6-13
_toupper, 6-13
_unlink, 6-14
_write, 6-14

abort, 6-14

abs, 6-14

acos, 6-14

adding files to a project, 2-22
address range, 3—4

address spaces, 3-5

alias, 4-38, 4-75, 4-78
allocation graph, 2-10

ansi standard, 2-3, 3-3, 4-67
asctime, 6-15

asin, 6-15

asm, 4-75

asm_noflush, 4-76

asm16, 2-11

assembly functions, 3-25

assembly language interfacing, 7-12

assembly routine, 7-12
assembly source file, 2-11
assert, 6-15

assert.h, 6-3

atan, 6-15

atan2, 6-16

atexit, 6-16

atof, 6-16

atoi, 6-16

atol, 6-17

automatic variables, 3-21

Index-3

Index—4

backend
compiler phase, 2-6
optimization, 2-6, 2-10
bit, 3-16, 7-4
bit addressable, 7-4
branch tail merging, 2-9
bsearch, 6-17
built-in functions, 3-27

C
inline functions, 3-23
language extensions, 3-3
C library, 64
implementation details, 6-6
interface description, 6-12
C startup code, 7-3
calloc, 6-17
CCM16CBIN, 4-9
CCM16COPT, 4-9
ceil, 6-18
character arithmetic, 3-15, 4-16
clearerr, 6-18
clock, 6-18
CM16CINC, 4-31, 4-73
code density, 4-50
code generator, 2-7, 3-18, 3-21
command file, 4-6, 4-27
command line processing, 4-27
comments, C++ style, 4-17
common subexpression elimination,
2-9
compiler, invocation, 4-10
compiler diagnostics, 5-1
compiler limits, 4-80
compiler options
-7 4-15
A, 4-16

Index

-align_data, 4-20
-align_func, 4-21
-C, 4-22

-D, 4-23

-E, 4-24

-e, 4-25

-El, 4-24

-Em, 4-24

—err, 4-26

-F, 6-6

—f, 4-27

-Fc, 6-6

-g, 4-29

-gf, 4-29

-gl, 4-29

-gn, 4-29

-H, 4-30

-1, 4-31

-, 4-32

-M, 4-33

-n, 4-34

-0, 4-35, 4-37
-0, 4-59

-Oa / -OA, 4-38
-Oc / -OC, 4-39
-Od / -OD, 4-41
-Oe / -OE, 4-42
-Of / -OF, 4-44
-0i / -OI, 4-46
-0l /-OL, 4-48
-Os / -0S, 4-50
-0t/ -0OT, 4-51
-Ou / -OU, 4-53
-Ov / -0V, 4-54
-Ow / -OW, 4-56
Oy / -0Y, 4-57
-R, 4-60

=S, 4-62

-s, 4-63

-safer, 4-64

-7, 4-65

-t 4-66

Index

-U, 4-67
-u, 4-69
-V, 4-70
-w, 4-71
~Z, 4-72
detailed description, 4-14
overview, 4-10
overview in functional order, 4-11
priority, 4-10
compiler phases, 2—-6
backend, 2-6
code generator phase, 2-7
optimization phase, 2—-6
peephole optimizer phase, 2-7
Sfrontend, 2-6
optimization phase, 2—-6
parser phase, 2—-6
preprocessor phase, 2-6
scanner phase, 2-6
compiler structure, 2-11
compiler use, 4-1
compound assignment, 4-42
conditional jump reversal, 2-8, 4-44
const, 3-6
constant folding, 2-7
constant propagation, 2-9, 4-41
control flow optimization, 2-8, 4-44
control program, 4-3
options overview, 4—4
control program options
-7 4-5
-C, 4-5
-c, 4-6
—-c++ 4-5
-cc, 4-6
—cl, 4-6
-cs, 4-6
-, 4-6
-g, 4-7
~ieee, 4-8
~ihex, 4-8
-Ml, 4-5
-Ms, 4-5

-nolib, 4-8
-0, 4-8
—srec, 4-8
~tiof, 4-8
—-tmp, 4-8
-V, 4-5
-v, 4-8
-0, 4-8
-Wa, 4-5
-Wc¢, 4-5
—wc++, 4-9
-Wep, 4-5
-Wic, 4-5
-Wik, 4-5
-Wpl, 4-5
detailed description, 4-5
conversions, ANSI C, 3-12
copy propagation, 2-9, 4-41
copysign, 6-18
copysignf, 6-19
cos, 6-19
cosh, 6-19
creating a makefile, 2-23
cross jumping, 2-9
cross—assembler, 2-11
CSE, 2-9, 4-39
ctime, 6-19
ctype.h, 6-3
_tolower, 6-13
_toupper, 6-13
isalnum, 6-29
isalpha, 6-29
isascii, 6-29
iscntrl, 6-29
isdigit, 6-29
isgraph, 6-30
islower, 6-31
isprint, 6-32
ispunct, 6-32
isspace, 6-32
isupper, 6-32
isxdigit, 6-32
toascii, 6-58

Index-5

Index—6

=

tolower, 6-59
toupper, 6-59

data types, 3-11-3-17

_bit, 3-11

_far pointer, 3-11

_near pointer, 3-11

_sfrbyte, 3-11

_sfrlong, 3-11

_sfrword, 3-11

double, 3-11

enum, 3—-11

float, 3-11

signed char, 3-11

signed int, 3-11

signed long, 3-11

signed short, 311

unsigned char, 3-11

unsigned int, 3-11

unsigned long, 3-11

unsigned short, 3-11
dead code elimination, 2-9
dead store elimination, 2-10
debug information, 4-29
debugger, starting, 2-21
derivatives, 2-5, 4-22
detailed option description

compiler, 4-14—4-72

control program, 4-5—4-9
development flow, 2-12
difftime, 6-20
directory separator, 4-74
div, 6-20
double, 3-11

Index

EDE, 2-15
build an application, 2-17
load files, 2-17
open a project, 2-16
select a toolchain, 2-16
start a new project, 2-22
starting, 2-15

embedded development environment.

See EDE

enabling safer ¢, 3-32

endasm, 4-76

endoptimize, 4-76

enum, 3-11

environment variable
CCM16CBIN, 4-9
CCM16COPT, 4-9
CMI16CING, 4-31, 4-73
LM _LICENSE FILE, 1-16, A-6
overview of, 2-14
PATH, 1-6, 1-9
TMPDIR, 1-6, 1-9, 4-9
used by control program, 4-9
used by tool chain, 2-14

errno.h, 6-3

error level, 5-4

Error Messages, 3—-33

errors, 5-5
backend, 5-32
FLEXIm license, A-33
Sfrontend, 5-5

example
starting EDE, 2-15
using EDE, 2-15
using the control program, 2-23
using the makefile, 2-25

Index

execution speed, 4-50
execution time, 3-19

exit, 6-20

exit status, 5-4

exp, 6-20

expression propagation, 4—42
expression rearrangement, 2-7
expression simplification, 2-8
extensions to C, 3-3

fabs, 6-20

FAQ, FLEXIm, A-37

far code, 7-4

far data, 7-4

fast loops, 4-48

fclose, 6-21

fentlh, 6-3

feof, 6-21

ferror, 6-21

fflush, 6-21

fgetc, 6-22

fgetpos, 6-22

fgets, 6-22

Flexible License Manager, A-1

FLEXIm, A-1
daemon log file, A-25
daemon options file, A-7
FAQ, A-37

Sfrequently asked questions, A-37
license administration tools, A-8

Sfor Windows, A-22
license errors, A-33
float, 3-11
float.h, 6-3
copysign, 6-18
copysignf, 6-19
isfinite, 6-30

isfinitef, 6-30
isinf, 6-30
isinff, 6-31
isnan, 6-31
isnanf, 6-31
scalb, 6-44
scalbf, 6-44
floating license, 1-9
floating point, 7-9
single precision, 6-6
special values, 7-9
floor, 6-22
fmod, 6-23
fopen, 6-23
formatters
printf, 6-62
scanf, 6-62
fprintf, 6-24
fputc, 6-24
fputs, 6-24
fread, 6-25
free, 6-25
freopen, 6-25
frexp, 6-26
frontend
compiler phase, 2-6
optimization, 2-6, 2-7
fscanf, 6-26
fseek, 6-26
fsetpos, 6-27
ftell, 6-27

function parameters, 3—-18
function qualifier, asmfunc, 3-25

function return, 3-19

function return types, 7-3

functions
built-in, 3-27
intrinsic, 3-27

fwrite, 6-27

Index—7

Index-8

getc, 6-27
getchar, 6-28
getenv, 6-28
gets, 6-28
gmtime, 6-28

header files, 6-3
heap, 7-8
beginning of, 7-8
end of, 7-8
heap size, 7-8
hostid, determining, 1-17
hostname, determining, 1-18

identifier, 4-17
IEEE 32-bit single precision format,
3-12
IEEE 64-bit double precision format,
3-12
IEEE-695, 2-13
IEEE-754, 7-9
include files, 4-73
default directory, 4-74
initialized variables, 3-21
inline assembly, 3-24
installation
licensing, 1-9
Linux, 1-4
RPM, 1-4
tar.gz, 1-5
UNIX, 1-7
Windows, 1-3
Windows 95/98, 1-3
Windows NT, 1-3

Index

integral promotion, 3-12
Intel hex format, 2-13
function, inline C, 3-23
interrupt frame optimization, 2-10
interrupt functions, 7-10
intrinsic functions, 3-27
introduction, 2-3
invariant code, 4-46
invocation
compiler, 4-10
control program, 4-3
isalnum, 6-29
isalpha, 6-29
isascii, 6-29
iscntrl, 6-29
isdigit, 6-29
isfinite, 6-30
isfinitef, 6-30
isgraph, 6-30
isinf, 6-30
isinff, 6-31
islower, 6-31
isnan, 6-31
isnanf, 6-31
isprint, 6-32
ispunct, 6-32
isspace, 6-32
isupper, 6-32
isxdigit, 6-32

jump chain, 3-34, 4-56
jump chaining, 2-8, 4-44
jump table, 2-10, 3-34, 4-51, 4-56

keyword, _inline, 3-23

Index

labs, 6-33
language extensions, 4-16
language implementation, 3-1
lem16, 2-11
Idexp, 6-33
ldiv, 6-33
leaf function handling, 2-10
libraries, 6-1

C, 6-4

C (single precision floating point),

6-6

Sfloating point, 6-5

run-time, 6-63
license

Sfloating, 1-9

node-locked, 1-9

obtaining, 1-10
license file

default location, A-6

location, 1-16
licensing, 1-9
limits, compiler, 4-80
limits.h, 6-3
linker, 2-11
listinc, 4-76
lkm16, 2-11
LM_LICENSE FILE, 1-16, A-6
Imcksum, A-10
Imdiag, A-11
Imdown, A-12
Imgrd, A-13
Imhostid, A-15
Imremove, A-16
Imreread, A-17
Imstat, A-18
Imswitchr, A-20
Imver, A-21
locale.h, 6-3

localeconv, 6-33

setlocale, 6-47
localeconv, 6-33

localtime, 6-34
locator, 2-11
log, 6-34
log10, 6-34

logical expression optimization, 2-8

longjmp, 6-34

loop optimization, 2-9

loop rotation, 2-8, 4-48
loop unrolling, 2-9, 4-53
loop variable detection, 4-39

makefile
automatic creation of, 2-23
updating, 2-23
malloc, 6-35
malloc.h, 6-3
math.h, 6-3
acos, 6-14
asin, 6-15
atan, 6-15
atan2, 6-16
ceil, 6-18
cos, 6-19
cosh, 6-19
exp, 6-20
fabs, 6-20
floor, 6-22
fmod, 6-23
frexp, 6-26
Idexp, 6-33
log, 6-34
log10, 6-34
modyf, 6-38
pow, 6-38
sin, 6-49
sinh, 6-49
sqrt, 6-49
tan, 6-57
tanh, 6-57
mblen, 6-35

Index-10

=

mbstowcs, 6-35
mbtowc, 6-36
memchr, 6-36
memcmp, 6-36
memcpy, 6-37
memmove, 6-37
memory access, 3—4
memory model, 3-8
large, 3-8
small, 3-8
memory type, 3-23
memset, 6-37
mktime, 6-37
modf, 6-38
Motorola S-record, 2-13
multi-line macros, 4-24

names, 7-12

near code, 7-4

near data, 7-4

noalias, 4-75
node-locked license, 1-9
nolistinc, 4-76
non-volatile ram, 3-6
nosource, 4—77

offsetof, 6-38
optimization, 4-35, 4-37
backend, 2-6, 2-10
Sfrontend, 2-6, 2-7
optimization (backend)
allocation graph, 2-10
dead store elimination, 2-10
interrupt frame, 2-10
Jump table, 2-10
leaf function handling, 2-10
peephole optimizations, 2-10

Index

tail recursion elimination, 2-10
optimization (frontend)
common subexpression elimination,
2-9
conditional jump reversal, 2-8
constant folding, 2-7
constant/copy propagation, 2-9
control flow optimization, 2-8
cross jumping and branch tail
merging, 2-9
dead code elimination, 2-9
expression rearrangement, 2-7
expression simplification, 2-8
Jump chaining, 2-8
logical expression optimization, 2-8
loop optimization, 2-9
loop rotation, 2-8
loop unrolling, 2-9
remove useless jumps, 2-8
sharing of string literals and floating
point constants, 2-9
switch optimization, 2-8
optimize, 4-76
options, control program, 4-4
output file, 4-59
overview, 2-1

parameter passing, 3-19
parameters, 3-18
parser, 2-6
PATH, 1-6, 1-9
peephole optimization, 2-10, 4-57
peephole optimizer, 2-7
perror, 6-38
pointer

far, 3-11

_near, 3-11
pointers, 3-22
portable C code, 3-35
pow, 6-38

Index

pragma
alias, 4-75
asm, 4-75
asm_noflush, 4-76
endasm, 4-76
endoptimize, 4-76
listinc, 4-76
noalias, 4-75
nolistinc, 4-76
nosource, 4-77
optimize, 4-76
renamesec, 4-77
source, 4-77

pragma optimize
flow level, 4-35

function level, 4-35

pragmas, 4-75

predefined symbols, 4-67

_CM16C, 4-67

_CODEMODEL, 4-67

_MODEL, 4-67
printf, 6-39
printf formatter, 6-62

product definition, 2—-5
project files, adding files, 2-22

prototyping, 3-18
putc, 641
putchar, 6-41
puts, 6-41

gsort, 6-42

raise, 6-42
RAM, 3-4, 3-21
rand, 6-42
realloc, 6-43
reentrant, 3—16

register usage, 3-19, 7-3

remove, 6-43

remove useless jumps, 2—-8

rename, 6-43
renamesec, 477
return address, 7-7
return values, 5—4
rewind, 6-44
ROM, 3-22

rom, 3-5

ROM memory, 3-6

run-time library, 6-63

Safer C, B-1
safer c, 3-32

sample session, 2-15

scalb, 6-44
scalbf, 6-44
scanf, 6-44

scanf formatter, 6-62

scanner, 2—-6
section
attribute, 3-7
type, 3-7
section name, 4-60
section usage, 7-4
setbuf, 6-46
segjmp, 6-47
sejmp.h, 6-3
longimp, 6-34
setjmp, 6-47
setlocale, 6-47

setting the environment, 1-6, 1-9

setvbuf, 6-48
sfr, 3-17

sharing of string literals and floating
point constants, 2-9

SIGABRT, 6-48
SIGFPE, 6-48
SIGILL, 6-48

Index-11

Index-12

=

SIGINT, 6-48
signal, 6-49
signal.h, 6-3
raise, 6—42
signal, 6-48
signals, 6-48
signed
char, 3-11
int, 3-11
long, 3-11
short, 3-11
SIGSEGV, 6-48
SIGTERM, 6-48
simio.h, 6-3
_simi, 6-13
_simo, 6-13
sin, 6-49
sinh, 6-49
smart programming, 3-35
source, 4-77
special function registers, 3-17, 4-22
sprintf, 6-49
sqrt, 6-49
srand, 6-50
sscanf, 6-50
stack, 3-5, 7-6, 7-7
beginning of, 7-6
end of, 7-6
organization of, 7-6
stack size, 7-6
start.obj, 7-3
startup code, 7-3
stdarg.h, 6-3
va_arg, 6-59
va_end, 6-60
va_start, 6-60
stddef.h, 6-4
offsetof, 6-38
stdio.h, 6—4
_close, 6-12
_Iseek, 6-12
_open, 6-12
_read, 6-12

Index

_unlink, 6-14
_write, 6-14
clearerr, 6-18
[fclose, 6-21
feof, 6-21
ferror, 6-21
Sflush, 6-21
fgetc, 6-22
Sfgetpos, 6-22
fgets, 6-22
fopen, 6-23
fprintf, 6-24
Jbutc, 6-24
fputs, 6-24
fread, 6-25
[freopen, 6-25
[scanf, 6-26
fseek, 6-26
[fsetpos, 6-27
ftell, 6-27
Sfwrite, 6-27
getc, 6-27
getchar, 6-28
gets, 6-28
perror, 6-38
printf, 6-39
putc, 6-41
putchar, 6-41
puts, 6-41
remove, 6-43
rename, 6-43
rewind, 6-44
scanf, 6-44
setbuf, 6-46
setvbuf, 6-48
sprintf, 6-49
sscanf, 6-50
tmpfile, 6-58
tmpnam, 6-58
ungetc, 6-59
vfprintf, 6-60
vprintf, 6-60
vsprintf, 6-61

Index

stdlib.h, 6-4
abort, 6-14
abs, 6-14
atexit, 6-16
atof, 6-16
atoi, 6-16
atol, 6-17
bsearch, 6-17
calloc, 6-17
div, 6-20
exit, 6-20
free, 6-25
getenv, 6-28
labs, 6-33
Idiv, 6-33
malloc, 6-35
mblen, 6-35
mbstowcs, 6-35
mbtowc, 6-36
gsort, 6-42
rand, 6-42
realloc, 6-43
srand, 6-50
strtod, 6-55
striol, 6-56
strioul, 6-56
system, 6-57
wcstombs, 6-61
wctomb, 6-61

storage type, 3-5
_bdat, 3-5
_far, 3-5
_farrom, 3-5
_near, 3-5
_nearrom, 3-5
_rom, 3-5, 3-21

relation to section, 3-7

strcat, 6-50
strchr, 6-50
stremp, 6-51
strcoll, 6-51
strepy, 6-51
strespm, 6-51

strerror, 6-52
strftime, 6-52
string, 3-22
string.h, 6-4
memchr, 6-36
memcmp, 6-36
memcpy, 6-37
memmove, 6-37
memset, 6-37
strcat, 6-50
strchr, 6-50
stremp, 6-51
strcoll, 6-51
strepy, 6-51
strespn, 6-51
strevror, 6-52
strlen, 6-53
strncat, 6-53
strncmp, 6-53
straucpy, 6-54
strpbrk, 6-54
strrchr, 6-54
strspn, 6-54
strstr, 6-55
striok, 6-55
strxfrm, 6-56
strlen, 6-53
strncat, 6-53
strncmp, 6-53
strncpy, 6-54
strpbrk, 6-54
strrchr, 6-54
strspn, 6-54
strstr, 6-55
strtod, 6-55
strtok, 6-55
strtol, 6-56
strtoul, 6-56
structure tag, 3-33
strxfrm, 6-56
subscript strength reduction, 4-54
switch optimization, 2-8, 4-51, 4-56
switch statement, 3-34

Index-13

Index-14

=

symbols, predefined, 4-67
system, 6-57

tail recursion elimination, 2-10
tan, 6-57
tanh, 6-57
target memory, 3-23
target processors, 2—5
temporary files, 4-9
time, 6-57
time.h, 6-4
asctime, 6-15
clock, 6-18
ctime, 6-19
difftime, 6-20
gmtime, 6-28
localtime, 6-34
mktime, 6-37
strftime, 6-52
time, 6-57
TMPDIR, 1-6, 1-9, 4-9
tmpfile, 6-58
tmpnam, 6-58
toascii, 6-58
tolower, 6-59
toupper, 6-59
transferring parameters between
functions, 3-19
type qualifier
const, 3-6, 3-21
volatile, 3-21
typedef, 3-33

ungetc, 6-59
unresolved external, 7-12
unsigned
char, 3-11
int, 3-11
long, 3-11
short, 3-11
updating makefile, 2-23

va_arg, 6-59

va_end, 6-60

va_start, 6-60

variable, automatic, 3-21
variables, initialized, 3-21
version information, 4-70
viprintf, 6-60

volatile, 3-21

vprintf, 6-60

vsprintf, 6-61

warnings, 5-5

warnings (suppress), 4-71
westombs, 6-61

wctomb, 6-61

Index

	TABLE OF CONTENTS
	SOFTWARE INSTALLATION
	Introduction
	Installation for Windows
	Installation for Linux
	RPM Installation
	Tar.gz Installation
	Setting the Environment

	Installation for UNIX Hosts
	Setting the Environment

	Licensing TASKING Products
	Obtaining License Information
	Installing Node-Locked Licenses
	Installing Floating Licenses
	Starting the License Daemon
	Setting Up the License Daemon to Run Automatically
	Modifying the License File Location
	How to Determine the Hostid
	How to Determine the Hostname

	OVERVIEW
	Introduction to M16C C Cross-Compiler
	Product Definition
	General Implementation
	Compiler Phases
	Frontend Optimizations
	Backend Optimizations

	Compiler Structure
	Environment Variables
	Sample Session
	Using EDE
	Using the Control Program
	Using the Makefile

	LANGUAGE IMPLEMENTATION
	Introduction
	Accessing Memory
	Storage Types
	Non-Volatile RAM
	Storage and Section Relations

	Memory Models
	The _at() Attribute

	Data Types
	ANSI C Type Conversions
	Character Arithmetic
	The _bit Type
	Special Function Registers

	Function Parameters
	Parameter Passing and Function Return
	Automatic Variables
	Initialized Variables
	Type Qualifier volatile
	Strings
	Pointers
	Inline C Functions
	Inline Assembly
	Calling Assembly Functions
	Intrinsic Functions
	Interrupts
	Safer C
	Structure Tags
	Typedef
	Switch Statement
	Portable C Code
	How to Program Smart
	Some Examples of Complex Declarators

	COMPILER USE
	Control Program
	Detailed Description of the Control Program Options
	Environment Variables

	Compiler
	Detailed Description of the Compiler Options

	Include Files
	Pragmas
	Alias
	Compiler Limits

	COMPILER DIAGNOSTICS
	Introduction
	Return Values
	Errors and Warnings

	LIBRARIES
	Introduction
	Header Files
	C Libraries
	Single Precision Floating Point
	C Library Implementation Details
	C Library Interface Description
	Printf and Scanf Formatting Routines

	Run-time Library

	RUN-TIME ENVIRONMENT
	Startup Code
	Register Usage
	Section Usage
	Stack
	Heap
	Floating Point Arithmetic
	Special Floating Point Values

	Interrupt Functions
	Assembly Language Interfacing

	FLEXIBLE LICENSE MANAGER (FLEXlm)
	Introduction
	License Administration
	Overview
	Providing For Uninterrupted FLEXlm Operation
	Daemon Options File

	License Administration Tools
	lmcksum
	lmdiag (Windows only)
	lmdown
	lmgrd
	lmhostid
	lmremove
	lmreread
	lmstat
	lmswitchr (Windows only)
	lmver
	License Administration Tools for Windows
	LMTOOLS for Windows
	FLEXlm License Manager for Windows

	The Daemon Log File
	Informational Messages
	Configuration Problem Messages
	Daemon Software Error Messages

	FLEXlm License Errors
	Frequently Asked Questions (FAQs)
	License File Questions
	FLEXlm Version
	Windows Questions
	TASKING Questions
	Using FLEXlm for Floating Licenses

	SAFER C
	INDEX

