MA499-041-00-00
Doc. ver.: 10.115

M16C v2.1

CROSSVIEW PRO
DEBUGGER
USER’S GUIDE

Al TASKING [

A publication of
TASKING
Documentation Department

Copyright O 2001 TASKING, Inc.

All rights reserved. Reproduction in whole or part is prohibited
without the written consent of the copyright owner.

The following trademarks are acknowledged:

FLEXIm is a registered trademark of Globetrotter Software, Inc.
HP and HP-UX are trademarks of Hewlett—Packard Co.
Motorola is a trademark of Motorola, Inc.
MS-DOS and Windows are registered trademarks of Microsoft Corporation.
IBM is a trademark of International Business Machines Corp.
SUN is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

E-mail: support@tasking.com

WWW: http://www.tasking.com

MA499-041-00-00

The information in this document bas been carefully reviewed and is
believed to be accurate and reliable. However, TASKING assumes 1o
liabilities for inaccuracies in this document. Furthermore, the delivery of
this information does not convey to the recipient any license to use or copy
the software or documentation, except as provided in an executed license
agreement covering the software and documentation.

TASKING reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

al TASKING [

SLN3LNOO

Table of Contents

1.1

1.2

13
1.4
1.5
1.6
1.6.1
1.6.2
1.6.3
1.6.3.1
1.6.3.2
1.6.3.3
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8
1.6.9
1.6.9.1
1.6.9.2
1693

2.1
2.2
2.3
23.1
2.4
24.1
242
2.5
2.6
2.7

Introduction i 1-3
CrossView Pro’s Features 1-3
Source Level Debugging 1-7
How CrossView Pro Works 1-9
M16C Program Development 1-11
Getting Started 1-13
Before Starting 1-13
Setting Up the Execution Environment 1-13
Starting CrossView Pro 1-14
CrossView Pro Startup Settings 1-15
Configuring CrossView Pro 1-16
Loading Symbolic Debug Information 1-17
Executing an Application 1-20
Debugging an Application 1-22
CrossView Pro Output 1-24
Exiting CrossView Pro......................... 1-25
What You May Have Done Wrong 1-25
Building Your Executable 1-26
Using EDE 1-26
Using the Control Program 1-33
Using the Makefile 1-35
Introduction i 2-3
Note about Filenames 2-3
Installation for Windows 2-3
Requirements v 2-4
Installation for Linux 2-4
RPM Installation 2-5
Tar.gz Installation 2-6
Installation for UNIX Hosts 2-7
Configuring the X Windows Motif Environment . . . 2-9

Using X Resources 2-10

VI Table of Contents

2.8 Licensing TASKING Products
2.8.1 Obtaining License Information
2.8.2 Installing Node-Locked Licenses
283 Installing Floating Licenses
2.8.4 Starting the License Daemon
2.8.5 Setting Up the License Daemon to

Run Automatically
2.8.6 Modifying the License File Location
2.8.7 How to Determine the Hostid
2.8.8 How to Determine the Hostname
3.1 Introduction i
3.2 CrossView Pro Expressions
3.3 CoNStaNtS
3.4 Variables
3.5 Formatting Expressions
3.6 OPEIALOLS . .ottt
3.7 Special Expressions i
3.8 Conditional Evaluation
3.9 Functions oo
3.10 Case Sensitivity
4.1 Introduction i
4.2 Using the CrossView Pro Interface
4.3 Invoking CrossView Pro
4.4 Startup OptioNSot
4.4.1 What You May Have Done Wrong
4.5 The CrossView Pro Desktop
4.5.1 MENUS .o\ttt
45.1.1 Local Popup Menus,

452 Window Operationcooo...

2-13
2-13
2-14
2-15
2-17

2-18
2-19
2-21
2-21

3-13
3-17
3-18
3-19
3-20
3-21

4-3
4-3
4-4
4-5

4-11
4-13
4-14
4-15

Table of Contents

453
454
455
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.6.10
4.6.11
4.7
4.7.1
4.7.2
473
4.7.4
4.8
4.8.1
4.8.2
4.8.2.1

5.1

5.1.1
5.1.2
5.13
5.2

5.2.1
5.2.2
523

Dialog Boxes

Customizing CrossView Pro

CrossView Pro Messages

CrossView Pro Windows

Opening Windows from the View Menu

Command Window . .
Source Window
Trace Window
Stack Window
Register Window
Data Window
Memory Window
Virtual I/O Window . .

Simulated I/O Window

Pop-Up Windows . ..

Control Operations for CrossView Pro

Echoing Commands .

Mouse/Menu/Command Equivalents

Button Selection
Text Selection

Using the On-Line Help System

Accessing On-lineHelp

Components of MS-Windows Help
Using MS-Windows Help

Source Positioning . . .

Changing the Viewing Position

Changing the Execution Position

Synchronizing the Execution and Viewing Positions

Controlling Program Execution

Starting the Program .

Halting and Continuing Execution

Single-Step Execution

4-16
4-17
4-19
4-20
4-20
4-21
4-23
4-26
4-27
4-28
4-29
4-31
4-35
4-36
4-36
4-37
4-37
4-37
4-37
4-38
4-39
4-39
4-39
4-40

5-4
5-5
5-7

5-8
5-9

\i

Vil

5.2.4
5.3
5.4
5.4.1
5.4.2
5.4.3

6.1
6.2
6.2.1
6.2.2
6.2.3
6.3
63.1
6.3.2
633
6.3.4
6.3.5
6.4
6.4.1
6.5
6.5.1
06.5.2
6.5.3
6.5.4
6.6
6.6.1
6.7
6.7.1
6.7.2

Table of Contents

Stepping through at the Machine Level

Notes About Program Execution

Searching through the Source Window

Searching for a Function

Searching fora String,

Jumping to a Source Line

Introduction . ..

Accessing Variables

Viewing Variables, Structures and Arrays

Changing Variabl
The 1 Command

Expressions . ..

€S

Evaluating Expressions

Monitoring Expressions

Formatting Data

Displaying Memory

Displaying Memory Addresses

Displaying Disassembled Instructions

Intermixed Source and Disassembly

The Stack
How the Stack is
The Stack Windo

Organized

W e

Listing Locals and Parameters of a Function

Low-level Viewing the Stack

Trace Window .

Trace Window Setup

Register Window
Register Window
Editing Registers

Setup oo

5-12
5-14
5-14
5-14
5-15
5-16

6-3
6-3
6-3

6-8
6-10
6-10
6-11
6-13
6-14
6-16
6-17
6-18
6-19
6-19
6-20
6-22
6-23
6-24
6-24
6-26
6-26
6-27

Table of Contents

7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.3
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7
7.8
7.9
791
79.2
7.9.3
7.10
7.11
7.11.1
7.11.2
7.11.3
7.11.4
7.11.5
7.11.6
7.11.7

Introduction to Breakpoints
Code Breakpoints
Data Breakpoints
Listing Breakpoints
Setting Breakpoints

Data Breakpoints over a Range of Addresses

Temporary Breakpoints
Setting the Count
Deleting Breakpoints
Enabling/Disabling Breakpoints . .
Breakpoint Commands

Attaching Conditionals to a Breakpoint

Attaching Macros to a Breakpoint .
Attaching Strings to a Breakpoint .
Suppressing Breakpoint Messages .
Low-level Breakpoints
Up-level Breakpoints
Patches
Patching Code out of a Program . .
Patching Code into a Program
Replacing Code in a Program

Diagnostic Output and Statistical Information

Assertions
Global Assertion Mode
Defining an Assertion
Editing an Assertion

Activating and Suspending Assertions

Deleting Assertions
Using Assertions

Gathering Statistics with Assertions

7-3
7-6
7-7

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-17
7-18
7-19
7-20
7-22
7-22
7-23
7-23
7-24
7-25
7-25
7-26
7-28
7-28
7-29
7-30
7-32

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.3
8.4
8.5
8.5.1
8.5.2
8.5.3

9.1

9.1.1
9.1.2
9.13
9.1.4
9.15
9.1.6
9.2

9.2.1
9.2.2
9.23
9.3

9.4

9.4.1
9.4.2
943
9.4.4
9.4.5

CrossView Pro Macros
Defining Macros
Listing Macros
Redefining a Macro

Table of Contents

Saving Macro Definitions toa File

Loading Macro Definitions from a File

Deleting Macros
Macro Parameters

Redefining Existing CrossView Pro Commands

Using the Toolbox
Opening the Toolbox

Connecting Macros to the Toolbox

Removing a Macro Connection

Recording Commands
Entering Comments
Suspend Recording
Resume Recording
Check Recording Status . ..
Close File for Recording . . .
Command Recording Examp

le

Playing Back Command Files

Setting the Type of Playback
Calling Other Playback Files
Quitting Playback Mode . ..
Command Line Batch Proces

Logging
Setting up Logging

sing L

Recording Commands and Logging Screen Output

Command Window Log File

Example

Suspending and Resuming Output Log

Closing the Output Log File

8-3
8-5
8-5

87
8-8
8-9
8-10
8-11
8-11
8-11
8-12

9-10
9-12
9-13
9-14
9-14
9-14
9-16

Table of Contents

9.5 Startup Options i 9-17
9.6 CrossView Pro Command History Mechanism 9-18
10.1 Transparency Mode 10-3
10.2 RTOS Aware Debugging 10-4
10.3 COVEIAZE . . o oot 10-5
10.4 Profiling 10-7
10.5 Virtual I/O Channels 10-9
10.5.1 ROM MoONitor 10-9
10.5.2 Keyboard Mappings Virtual I/O 10-10
10.6 Simulated Input/Output 10-14
10.6.1 Setting Up Simulated I/O 10-15
10.6.2 Viewing Current Stream Settings 10-17
10.6.3 Changing Stream’s Properties 10-17
10.6.4 Changing the Simulated Input Prompt 10-19
10.6.5 Directing [/OtoaFile......................... 10-20
10.7 The Simulated I/O Window 10-20
10.8 Background Mode 10-21
10.8.1 Configuration 10-21
10.8.2 Manual Refresh 10-22
10.8.3 Entering Background Mode 10-23
10.8.4 Leaving Background Mode 10-24
10.8.5 The Stack in Background Mode 10-25
10.8.6 Local and Global Variables 10-25
10.8.7 Refresh Limitation 10-25
10.8.8 ASSEITIONS ..o\t 10-26
11.1 Debugging Assembly Language 11-3

11.2 Debugging Multiple Programs 11-3

Xl

12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9
12.2.10
123

13.1
13.2

14.1
14.2

2.1
2.2
23

3.1
3.2

Table of Contents

Conventions Used in this Chapter 12-3
Commands: Summary 12-4
Startup OptoNSo 124
Viewing Commands 12-7
Data Monitoring 12-8
Execution Control Commands 12-9
Record & Playback 12-13
MAaCrOS . .ot 12-13
Simulated Input/Output 12-14
Target System Control 12-14
Help Commands 12-14
Search Commands 12-15
Commands: Detailed Descriptions 12-15
What this Chapter Covers 13-3
Error Messageso 13-3
What this Chapter Covers 14-3
Glossary Termsvuiiiaiinnonn.. 14-3
Introduction A-3
License Administration A-3
OVEIVIEW .. o A-3
Providing For Uninterrupted FLEXIm Operation . . . A-5
Daemon Options File A-7
License Administration Tools A-8
Imcksum A-10

Imdiag (Windows only) A-11

Table of Contents

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.11.1
3.11.2

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5

3.1
32
3.3

FLEXIm License Manager for Windows

The Daemon Log File

Informational Messages

Configuration Problem Messages

Daemon Software Error Messages

FLEXIm License Errors
Frequently Asked Questions (FAQs)

License File

Questions

FLEXIm Version oo,
Windows QuUestions
TASKING Questions,
Using FLEXIm for Floating Licenses

Introduction

Executable Name

Supported Features

Mapping Memory o

State CoOunterc. ..

Coverage . .
Restrictions

A-12
A-13
A-15
A-16
A-17
A-18
A-20
A-21
A-22
A-22
A-23
A-25
A-26
A-29
A-31
A-33
A-37
A-37
A-37
A-38
A-39
A-41

Sim-3
Sim-3
Sim-3
Sim-3
Sim-4
Sim—4
Sim-4

Xl

XV Table of Contents

1 What is a ROM Monitor? Rom-3
2 Setting up the Target Environment Rom-5
3 Restrictions o Rom-5
4 Resources used by the ROM Monitor Rom-6
5 Supported Targetscouuiiiie.. Rom-7

Manual Purpose and Structure

This manual is aimed at users of the CrossView Pro debugger for the
M16C. It assumes that you are familiar with programming the M16C.

Related Publications
Conventions Used In This Manual

Overview
Highlights specific CrossView Pro features and capabilities, and shows
how to compile code for debugging.

Software Installation
Describes how to install CrossView Pro on your system.

Command Language
Details the syntax of CrossView Pro’s command language.

Using CrossView Pro
Describes the basic methods of invoking, operating, and exiting
CrossView Pro.

Controlling Program Execution
Describes the various means of program execution.

. Accessing Code and Data
Describes how to view and edit the variables in your source program.

Breakpoints and Assertions
Describes breakpoints and assertions.

Defining and Using Macros
Describes how to simplify a complicated procedure by creating a
”shorthand” macro which can be used to execute any sequence of
CrossView Pro or C language commands and expressions.

Command Recording & Playback
Describes the record and playback functions of CrossView Pro.

XVI

Manual Purpose and Structure

10. Special Features
Describes special features of CrossView Pro, such as the Transparency
Mode, RTOS Aware Debugging, Coverage, Profiling and the
Background Mode.

11. Debugging Notes
Contains some notes about debugging in special situations.

12. Command Reference
An alphabetical list of all CrossView Pro commands. Consult this
chapter for specifics and the exact syntax of any CrossView Pro
command.

13. Error Messages
Contains CrossView Pro error messages and gives advice for correcting
them.

14. Glossary
Defines the most common terms used in embedded systems
debugging.

A. Flexible License Manager (FLEXIm)
Contains a description of the Flexible License Manager.

B. Sound Support (MS-Windows)
Describes how to add sound to CrossView Pro events under
MS-Windows.

Execution Environment

Contains information specific to your particular type of target system.

Manual Purpose and Structure XVII

e The C Programming Language (second edition) by B. Kernighan and D.
Ritchie (1988, Prentice Hall)

* ANSI X3.159-1989 standard [ANSI]

e MI16C Cross—Assembler, Linker/Locator, Utilities User’s Guide
[TASKING, MA499-000-00-00]

e M16C C Cross—Compiler User’s Guide
[TASKING, MA499-002-00-00]

XV

Manual Purpose and Structure

The notation used to describe the format of call lines is given below:

{

italics

screen font

bold font

For example

Items shown inside curly braces enclose a list from which
you must choose an item.

Items shown inside square brackets enclose items that are
optional.

The vertical bar separates items in a list. It can be read as
OR.

Items shown in italic letters mean that you have to
substitute the item. If italic items are inside square
brackets, they are optional. For example:

Sfilename

means: type the name of your file in place of the word
Sfilename.

An ellipsis indicates that you can repeat the preceding
item zero or more times.

Represents input examples, screen output examples,
filenames and keywords.

Represents a command name, an option or a complete
command line which you can enter.

conmand [option]... filenane

This line could be written in plain English as: execute the command
command with the optional options option and with the file filename.

Hllustrations

The following illustrations are used in this manual:

@ This is a note. It gives you extra information.

A This is a warning. Read the information carefully.

Manual Purpose and Structure XIX

@? This illustration indicates actions you can perform with the mouse.
This illustration indicates keyboard input.

ﬂj This illustration can be read as “See also”. It contains a reference to
another command, option or section.

XX

Manual Purpose and Structure

OVERVIEW

al TASKING [

d31dVHO

Overview

This chapter highlights many of the features and capabilities of CrossView
Pro, including an Introduction to Source Level Debugging and the M16C
Development Environment.

This chapter also contains the section Getting Started, which shows you
how to compile a program to work with the debugger.

CrossView Pro is TASKING’s high—level language debugger. CrossView Pro
is a real-time, source-level debugger that lets you debug embedded
microprocessor systems at your highest level of productivity. Its powerful
capabilities include:

e Multi-Window Graphical User Interface

* C and Assembly level debugging

* C Expression Evaluation including Function Calls

* Code and Data Breakpoints

* Assertions (software data breakpoints)

e (C-trace, Instruction Trace

* Simulated I/O

¢ Data Monitoring

* Single Stepping

e Coverage

* Profiling

* Macros

* Flexible Record & Playback Facilities

* Real-Time Kernel Support

* On-line context sensitive Help

¢ Documentation

Multi-Window Interface

This interface uses your host’s native windowing system, so that you
already know how to open, close and resize windows. With windows you
can keep track of information concerning registers, the stack, and
variables. CrossView Pro automatically updates each window whenever
execution stops.

1-4 Chapter 1

=

You have great freedom in designing a suitable display. You can hide and
resize the various windows if you choose.

Statement Evaluation

You can enter C expressions, CrossView Pro commands or any
combination of the two for CrossView Pro to evaluate. You may also call
functions defined in your source code from the command line. Expression
evaluation is an ideal way to test subroutines by passing them sample
values and checking the results.

Code Breakpoints

Code breakpoints let you halt the program at critical junctures of program
execution and observe values of important variables.

Data Breakpoints

You may place data breakpoints to determine when memory addresses are
read from, written to, or both. With data breakpoints, you can easily track
the use and misuse of variables. Data breakpoints are not supported by all
execution environments.

Assertions

A powerful assertion mechanism lets you catch hard-to-find-errors. An
assertion is a command, or series of commands, executed after every line
of source code. You may use assertions to test for all sorts of error
conditions throughout the entire length of your program.

C-Trace

CrossView Pro has a separate window that displays the most recently
executed C statements or machine instructions. This feature uses the
execution environment’s trace buffer along with symbolic information
generated during compilation. This feature is depending on the execution
environment.

Simulated Input/Output

With Simulated I/O you can debug programs before the actual input and
output devices are present. Input data from the keyboard or file, or output
to a window or a file. You can view the data in several formats, including
hexadecimal and character. You can have up to eight separate simulated
I/O ports, which can be associated with the screen and displayed in
windows.

Overview

Data Monitoring

You may place variables and expressions in the Data window, where
CrossView Pro updates their values when execution stops.

Single Stepping

With CrossView Pro, you can single step through your code at source
level or at assembly level, into or over procedure calls. Running your
program one line at a time lets you check variables and program flow.

Coverage

When a command such as StepInto or Continue executes the application,
CrossView Pro traces all memory access, i.e. memory read, memory write
and instruction fetch. Through code coverage you can find executed and
non-executed areas of the application program. Areas of unexecuted
code may exist because of programming errors or because of unnecessary
code. It may be that your program input, your test set, is incomplete; It
does not cover all paths in the program. Data coverage allows you to
verify which memory locations, i.e. which variables, are accessed during
program execution. Additionally, you can see stack and heap usage. The
availability of this feature depends on the execution environment.

Profiling

Profiling allows you to perform timing analysis on your software. Two
forms of profiling are implemented in CrossView Pro.

Function profiling, also called cumulative profiling, gives you timing
information about a particular function or set of functions. CrossView Pro
shows: the number of times a function is called, the time spent in the
function, the percentage of time spent in the function, and the
minimum/maximum/average time spent in the function. The timing results
include the time spent in functions called by the profiled function.

Code range profiling presents timing information about a consecutive
range of program instructions. CrossView Pro displays the time consumed
by each line (source or disassembly) in the Source Window. Next to this,
the Profile Report dialog shows the time spend in each function. The
timing results do not include the time consumed in functions called by the
profiled function.

1-6

Chapter 1

The availability of profiling depends on the execution environment.
Function profiling can be supported if the execution environment provides
a clock that starts and stops whenever execution starts and stops. Code
range profiling heavily relies on special profiling features in the execution
environment. Normally code range profiling is only supported by
instruction set simulators.

Macros

Macros let you store and recall complex commands and expressions with a
minimal number of keystrokes. You can store macros in a "toolbox”,
making it possible to execute complex functions with the touch of a
mouse button. You can also place macros in command lists of breakpoints
and assertions. You can use flow control statements within macros, and
macros can call other macros, allowing you to construct arbitrarily
complex sequences. Macros can accept multiple parameters, be saved and
loaded from files and can even rename existing CrossView Pro commands.

Record & Playback

At any time, you can record the commands you type, and optionally their
output, to a file. You can also play back files of commands all at once or
in a single-step playback mode. These functions are helpful for setting up
standardized debugging tests or to save results for later study or
comparison.

Kernel Support

CrossView Pro supports RTOS (Real-Time Operating System) aware
debugging for various kernels. Since each kernel is different, the RTOS
aware features are not implemented in the CrossView Pro executable, but
in a library that will be loaded at run—time by CrossView Pro. The amount
of windows and dialogs and their contents is kernel dependent.

On-Line Help

All the major windows and dialog boxes contain a Hel p button. Clicking
on this button wherever it appears, or pressing the function key F1, opens
the CrossView Pro help system at the appropriate section. From this point,
you can also access the rest of the help system. The MS-Windows version
of CrossView Pro uses the native help system.

Overview

Documentation

CrossView Pro has a comprehensive set of documentation for both new
and experienced users. The manual includes an installation guide,
description of debugging with CrossView Pro, error messages, and a
command reference section. The documentation tries to cover a wide
range of expertise, by making few assumptions about the technical
experience of the reader.

CrossView Pro is a source level debugger. Source level means that
debugging works on the actual C code. Traditional debuggers are
symbolic, not source, level. Generally speaking, symbolic debuggers are
limited to dealing with global, non-dynamic variables and know nothing
of data types. Symbolic debuggers translate global names and global
subroutines into addresses. A symbolic debugger usually cannot deal with
variables that are placed on the stack, since stack resident data do not
have absolute addresses.

CrossView Pro, unlike a symbolic debugger, can deal with global and local
variables that are both statically and dynamically allocated variables.
Therefore, it can deal with compiled addresses of variables that move
around the stack. CrossView Pro knows the compiler’s addressing
conventions for variables of any type.

The Debugging Environment

All debugging configurations follow a similar pattern. There is a host
system where the debugger runs, and a target system (usually an
execution environment), where the program being debugged runs. There
may also be a probe that can plug into the actual hardware of the
embedded system being designed.

1-8

Chapter 1

CrossView Pro provides a high-level interface between you, the user,
working at the host system and a program running at the target system
(execution environment). This means that you may issue commands that
refer directly to the variables, source files, and line numbers as they
appear in the source program. You can do this because CrossView Pro
uses symbol information generated during compilation to translate the
high-level commands that you type into a series of low level instructions
that the target system understands. Using a connection (usually an RS-232
cable or LAN) between the host and target, CrossView Pro finds out
information about the state of the target program and then tells the target
to perform the requested actions.

A host-target arrangement can perform functions beyond the reach of
traditional software-based debuggers. Since the target contains the actual
chip, CrossView Pro can observe its operations without interfering. The
existence of CrossView Pro and the host is invisible to the target program.
This means that the program under debug runs exactly the same as the
final program will in a real embedded system (except for real-time
situations like timings).

With CrossView Pro, you may also take advantage of any advanced
capabilities of your target hardware through emulator mode
(transparency mode). In transparency mode you can communicate with
the target as if the host system were a terminal directly connected to the
target. You can enter and leave transparency mode freely without
restarting the debugger or the target system. CrossView Pro therefore does
not interfere with the normal operation of the target hardware. Thus the
debugger is a powerful accessory to the machine-level debugging that you
might do with the target system alone. The transparency mode is not
available for all execution environments.

Overview

Although it is not necessary to know how CrossView Pro performs its
debugging, you may be curious how CrossView Pro works.

Whenever you enter a debugger command, CrossView Pro obtains
information from or controls the execution environment by sending
appropriate commands over the host-target link. A typical session may go
something like this:

Highlight i ni t val and click on the Show sel ected source
expr essi on button in the Source Window.

E Source : demo.c M=l &3
PR & G [EOFE % |cew & P
HALT SYNC START GO GO STEP STEP EXPR| EXPR FUNC CHAR CHAR EDIT EDIT
Lot

|51 jlﬂx1428 jlmain leourceIines leourCeIinestep j

int loopwar; /% the loop counter L

long sum; A% will be 174+suwm of factorials from 0 to 7 %/

char cvar; /% sample char wvariable L

initwal = 17;

if (fReeReaN > recordwvar.a) |

i

'

/% This loop has an upper limit which is too high. */
/% As a result, initwal will get clobbered. L

for (loopwar = 0; loopvar <= §; ++loopwar)
i

< | 2

Figure 1-1: Inspect a variable

CrossView Pro converts this action into a command. Depending on
preferences you have set, the variable is shown in the Data Window or the
Expression Evaluation dialog is shown.

CrossView Pro consults the symbol table to deduce the type and address
of i nitval . Suppose i ni tval is a variable of type i nt which lies at
absolute location 100.

The debugger forms a command asking the target system to read two
bytes starting at address 100 (the size of an i nt equals 2).

CrossView Pro then transmits the command to the target system and
receives the response.

1-9

1-10 Chapter 1

-

6. CrossView Pro interprets the response, and for example determines that
i nitval equals 17.

7. CrossView Pro then displays i ni t val =17 since it knows i ni t val ’s type.

Command : Crozs¥iew M=] E3
= initwal ;I
initval = 17

hd
k= FY
=
=
=
=
= —
initwal e
initval Execute Halt

Figure 1-2: CrossView Pro Command Output

This is a simplified example, many CrossView Pro commands require
several complex transactions, but all take place without you being aware

of them.

Overview

The CrossView Pro debugger package is part of a toolchain that provides
an environment for modular program development and debugging. The
figure below shows the structure of the toolchain. The toolchain contains
the following programs:

ccml6

cm16

asm16

1km16

Icm16

arm16

prm16

mkm16

xfwm16

The control program which activates the C compiler,
assembler, linker and/or locator depending on its input.

The M16C C compiler. This is a dedicated M16C C compiler
which translates a C source program into a highly optimized
assembly source file, using the M16C assembly language
specification.

The assembler program which produces a relocatable object
file from a given assembly file.

A linker combining objects and object libraries into one
relocatable object file.

A locator that links an arbitrary number of linker output files
to one absolute load file in the IEEE Std. 695 debugging
connection format. This program can also produce files in the
Intel Hex format or Motorola S-record.

A librarian program, which can be used to create and
maintain object libraries.

A utility to view the contents of a relocatable object file or an
absolute file.

A program builder which uses a set of dependency rules in a
'makefile’ to build only the parts of an application which are
out of date.

The CrossView Pro debugger using M16C execution
environments.

1-11

1-12 Chapter 1

control program C source file
ccml6 .C

1
C preprocessor

C compiler
cmleé
| [preprocessor output

assembly file
.src
|
assembler
asml6

C_ listfile .Ist

relocatable object

library maintainer module . obj object reader
arm16 prm16
T
relocatable object
library . a
incremental
linker 1km16 call tree file . cal

linker object link map file . I nl

. out
locator description _ |
file .dsc
locator
lcm16
| | C__ locate map file
| I
Intel Hex absolute load Motorola S—record
object file module object file
. hex . abs .sre
e U |> 4
High level language M16C
debugger Execution
CrossView xfwm16 Environment

Figure 1-3: M16C development flow

For a full description of all available utility programs see the chapter
Utilities in the M16C Cross-Assembler User’s Guide.

Overview

Before using CrossView Pro, there are several things that you must do:

Install the CrossView Pro software. Directions for your particular
system are found in the Software Installation chapter.

Configure your execution environment as described in the
Execution Environment addendum.
Compile the program that you want to debug. A brief description

of this process is outlined in the section Building Your Executable
later in this chapter.

For the purpose of getting you started quickly, we have supplied you with
a demo program that you can debug. The demo program is deno. abs.

The following text only applies to ROM monitor and emulator versions of
CrossView Pro. Within CrossView Pro simulator versions the execution
environment is part of the CrossView Pro executable.

In order for the host and execution environment to communicate, a proper
connection must exist between the two machines. Here are some
important considerations:

Use the correct kind of RS-232 cable. Note there are at least two
types of cables, null modem and direct. Consult the execution
environment’s manual for the correct type.

Make sure the execution environment is configured to communicate
with the host at the baud rate that CrossView Pro expects. Usually,
the baud rate is 9600, but this is not always the case.

Use the correct ports on both the execution environment and host.
Many machines have two ports. If you use a different port on the
host than the default (COM1 for PC), you will have to use a special
startup switch, =D. See the startup options of the Using CrossView
Pro chapter.

See the addendum for details on the connection to the execution
environment.

1-13

1-14

Chapter 1

To invoke CrossView Pro, simply double—click on its icon. CrossView Pro
starts up and opens the command window, source window and other

windows.

Breakpoint

Toggle Local Toolbar

‘e Cross¥iew Pro - demo.abs

Menu Bar

Main Toolbar

El =2 § @ = rk r& &

DAD SRC HALT SYNc RESET RESET START GO GO

[z %2 [=

5z o
STEP STEP ISTEP ISTEP GO PET

ﬂ' G\DB\G HELP

[v

STEP STEP EXPR

FR 3

HALT S$YNC START GO

o

EXPR FUNC CHAR CHAR EDIT EDIT

o0

b7 =][o40a [main

< " Source lines

leUurce line step j —_

< |

woid nainiwoid)
i
int loopwar ; /% the loop counter 4 J
long Sum; A% will be 17+sum of factorials from 0 to 7 %/
char CVar; f™ sample char varisble L
[El initwal =
if (initwal > recordwvar.a)
{
sum = 0;

Command: CrossView = =] B Data

Execute |

= set Rerun "R" :I
> set Return "bU; C7

> get Defaultiio "0 sio i screen fc; 0O 3io p 47347

> set Main "rst:5"

= set DeldllBrk "D" J
= <<demo_tut.cmd

>/ =
et Rewn "R =]
zet Return "Bl £

zet DefaultSio "0 sio i screen Ao; O gio p "> 24" 1 sio o screen A" LI

Halt

[.%deno.c:47]

Main
Status Bar

Figure 1-4: Command Window

Local
Toolbars

Source Window
Status Bar

Overview 1-15

CrossView Pro can be passed the name of an execution (*. abs) file. This
can be done from a command line, but the native windowing system often
provides alternatives. Usually this involves dragging the program to be
debugged onto the CrossView Pro executable from the Windows Explorer
for Windows 95/98/NT/2000, and dropping it there or associating
CrossView Pro to be the application to start when double—clicking an

. abs icon. CrossView Pro will start and load the symbol information from
that file.

You can specify specific CrossView Pro startup settings in the CrossView
Startup dialog.

To open the CrossView Startup dialog:

e Selectthe Options | Startup | CrossView. .. item from the
menu. This option opens up the CrossVi ew St art up dialog box
as shown in figure 1-5.

CrossView Startup

T arget configuration

.arge ample2.cfg
C:Abargethetch sample3.cfg

L.

[~ Show configuration titles Browse...

CPU type: I cpul j
Erecution emiranment: I j
Configuration: I Simulatar j
Dezcription file: Ic: “targethetc'target. dsc j Brawse...

Source directories:

3l

El

Configure...

[~ |

Cancel |

Help... |

Figure 1-5: CrossView Pro Startup Settings

1-16 Chapter 1

=

You can set the following items in this dialog:
* Select a target configuration containing some target specific
configuration items. See the text below for more information.
* Select the CPU type.

* Specify a description file (*. dsc). The description file must be the
same file as you used to locate your application.

* Select the execution environment (not available for M16C).
* Specify the source directories for CrossView Pro. Click on the
Confi gure... button to change the list of source directories.
Target Configuration

The available targets are described by the target configuration files (*. cf g
in the et ¢ subdirectory). The target configuration files are text files and
can be edited with any text editor.

Empty lines, lines consisting of only white space are allowed. Comment
starts at an exclamation-sign (!") and ends at the end of the line.

The following configuration items are defined in a target configuration file:
title: title of the configuration file.

cpu_type: cpu type. You can specify multiple cpu
types separated by white space.

debug_i nstrument _nodul e: name of the DLL used for debugging.

ksm dl | _nane: name of the DLL used for RTOS aware
debugging (optional).

For each target a different set of extensions can be added to this list.

You may have to configure CrossView Pro to talk to the emulator or ROM
monitor. If you have a simulator version this step is not needed and the
associated menu item is grayed. To configure CrossView Pro:

e Selectthe File | Comunication Setup... item from the
menu. This option opens up the Comuni cat i on Set up dialog
box as shown in figure 1-6.

Overview

Communication Setup E

Select link twpe: [~ Serial Part Settings

Help... | 0K I Cancel

~| | Port: IEDM1: vI
Baud rate: |1152EIE| 'I
Timneout factar: |1

LI Handzhake
 Hondoff V¥ Exclusive access
& RTS/CTS

' Mone

Figure 1-0: Setting up CrossView Pro Communications

Adjust the communication parameters (baud rate and I/O port) to
match your hardware configuration.

Close the dialog box by clicking on the OK button.

The settings in this dialog (and other dialogs) will be saved on
exiting CrossView Pro, when the Deskt op and t ar get
settings check box in the Save Opti ons dialog is set. This
dialog always appears on exiting CrossView Pro.

From EDE you can set the communication parameters in the
Conmuni cati ons tab of the EDE | CrossView Pro Options. ..
menu item.

You must tell CrossView Pro which program that you want to debug. To
do this:

Select Fil e | Load Synbolic Debug Info... from the menu.
This opens up the Load Symbolic Debug Info dialog box, as shown
in figure 1-7.

Type in the path and file name of the program that you want to
debug, or click on the Fi | e. .. button to bring up a file selection
dialog box. In our example we are using denp. abs. Note that in
most cases you will want to set the code bias field to 0x0000.

1-17

1-18

Chapter 1

Set the Downl oad i mage t oo check box by clicking on it, if you
want to download the image of your absolute object file to the
target. You can decide to postpone downloading to the target. In
that case you can select the menu item Fi | e | Downl oad | mage
any time afterwards.

Set the Tar get system reset check box by clicking on it, if you
want to reset the target system to its initial state. You can decide to
postpone resetting the target. In that case you can select the menu
item Run | Target System Reset afterwards.

Set the Got 0 mai n check box by clicking on it, if you want to
execute the startup code. This automatically enables the Pr ogr am
reset check box. You can decide to postpone to goto the mai n
function. In that case you can execute a high-level single step
afterwards.

Clicking on the Communi cat i on setup... button, if not grayed,
opens the Communi cati on Set up dialog box as shown in figure
1-6. With the startup options... buttons you can open the
CrossVi ew St artup dialog and, if the button is not grayed, the
Enul at or Startup dialog. Please check the information in these
dialogs before downloading an application.

Clicking on the Load button will load the program’s symbol file into
the debugger, and will download the image of your absolute object
file if you have set the Downl oad i mage t oo check box.

Clicking on Cancel ignores all actions.

Overview 1-19

CrossView Pro remembers all previously saved settings. In this case, the
Load Symbolic Debug Info dialog already contains the previously saved
configuration, so you only have to click the Load button to perform your
actions.

Load Symbolic Debug Info

-
0=0000

Figure 1-7: Loading Symbolic Debug Information

1-20

Chapter 1

To view your source while debugging, the Source Window must be open.
To open this window,

e Select View | Source—>Source |ines from the menu.

Before starting execution you have to reset the target system to its initial
state. The program counter, stack pointer and any other registers must be
set to their initial value. The easiest way to do this is:

e Set the Target system reset check box and the Goto mai n
check box in the Load Synbol i ¢ Debug | nf o dialog box. (See
the previous section) Got 0 mai n automatically enables the
Program reset

Depending on your execution environment a target system reset may have
undesired side effects. For this reason, the target system reset is executed
before the code is downloaded to the target.

If you have not checked these items:

e Select Run | Target system Reset.
e Select Run | Program Reset.

* Execute a high-level single step (either into or over) using the
accelerator bar in the Source Window (or F8/F10).

The first single step executes the startup code and stops at the first line of
code in mai n() . You should see your program’s source code.

Another way of getting there is:

* Set a breakpoint at the entry of in nai n() by clicking on a
breakpoint toggle at the left side of the text in the Source Window.
See figure 1-8.

e Start the application using Run | Program Reset and Run |
Run.

To set a breakpoint you can:

* Click on a breakpoint toggle (as shown in figure 1-8) to set or to
remove a breakpoint. A green colored toggle shows that no
breakpoint is set. A red colored toggle shows that a breakpoint is
installed. An orange colored toggle shows that an installed
breakpoint is disabled.

Overview 1-21

Due to compiler optimizations it is possible that a C statement does
not translate in any executable code. In this case you cannot set a
breakpoint at such a C statement. No breakpoint toggle is shown in

this case.
B Source : demo.c M=l E3
A 2 4 [F % e Q @ O A & el g o
HALT SYNC START GO GO STEP STEP EXPR EXPR FUNC CHAR CHAR EDIT EDIT
IdS leﬂfﬂB jlmain leourceIines leourceIinestep j
void wain (void)
i
int loopwar ; #* the loop counter *F J
Loty Sum; f% will be 174sum of factorials from 0 to 7 */
char cvar; /% sample char wvariable w7
EIM | 0.057% initval = 17;
[El[~ | 0.000% § if (initwal > recordwar.a)
B~ | 0. oo0%
} -
ull | H 4
Breakpoint Coverage Profiling Current Status
Toggles Markers Execution Position Bar

Figure 1-8: Getting Control

Now it is time to execute your program:
¢ Select Run | Run from the menu.

In the Source Window the current execution position (i.e. the statement at
the address identified by the current value of the program counter) is
higlighted in blue. As a result, when execution stops, the line you set a
breakpoint on is highlighted. You can now single step through your
program using the Step I nto and Step Over buttons in the Source
Window. Or you may choose to execute the rest of the program (or at
least until the next breakpoint) with the Run button.

At any point you can interrupt the emulator and regain control by clicking
on the Hal t button in either the Source Window or the Command
Window.

For more information on executing a program, see the chapter Controlling
Program Execution.

1-22 Chapter 1

When debugging your application you probably want to see the calling
sequence of your program, and inspect the contents of variables and data
structures used within your program.

To see the calling sequence of your program the Stack Window must be
open. The stack window shows the functions that are currently on the
stack. To open the stack window,

e Select View | Stack from the menu.
To see the value of the local variables of a function,
e Select View | Data | Watch Local s W ndow from the menu.

‘¢ CrossView Pro C166/5T10 - demo.abs [_ O] =]
File Edit Search RBun Debug Data Options View Window Help

Bl § @ ¢ rk ra 2 [z 5= [z 5% 1 0 g

LOAD SRC HALT SYMC RESET RESET START GO GO STEP STEF ISTEP ISTEP GO RET m GCOEG HELP

D r& % [3 52 % w0 O @ @ <% @ [mon B

HALT SYNC START GO GO STEP STEP EXPR EXPR FUNC CHAR CHAR EDIT EDIT

|48 jlﬂ:ﬂﬂﬁ jlmain leource lines leource ling step j
wroid main(woid)
{
int loopwar; /% the loop counter */ J
long Fum; 4% will be 174+sum of factorials from 0 to 7 %/
char cwar; /% sample char wariable W
[E[| 0.o0o%

B[| 0.000%

e o P[] P

NEW IWEM ITEM SET oLp 0D

Fl I LOCAL loopwar/n : sdead-

LOCAL sum/mn : -1

Command: CrossView [] 5 LOCAL cwar/n : <deads:

E™ | 0.000%

> recordwvar/n ;I - WATCH reco;d&_xafi"r.l @ struct rec_s {
recordvar = struct rec_s { l b ; Dxi028 " Taslings
Sl i o = 987654321;
b = O0x10&5 "Tasking™: colot - blues
C = 957654321;
color = blue;
} : Stack =] E3

prat ® Cgrip
5

EP+ CALL +BP @3ITK @3TK
recordvar’n

0 maini) [.%demo.c:47]

_lLlL\‘_L

Execute

Figure 1-9: Watch variables

Overview 1-23

To inspect the value of global variables and data structures,
* Double—-click on the variable name in the Source Window.

Depending on preferences you have set, the variable is shown in the Data
Window as shown in figure 1-9 or the dialog displayed in figure 1-10 is
shown.

1 Expression Evaluation

Expression: Irecnrdvan"n vI Browse... |

— Optional Format Code

Shyle: IND[ma| vl Mumber of values: I Yalue size: IDefauIt vI

» recordvar/n d
recordvar = struct rec s

a=-1;

b = 0xle;

c = 12345;

color = blue;
} recordvar ;I

Help... | Add watch Add Show

Figure 1-10: Expression evaluation

Pointers, structures and arrays displayed in the data window have a
compact and expanded form. The compact form for a structure is just
<st ruct >, while the expanded form shows all the fields. The compact
form of a pointer is the value of the pointer, while the expanded form
shows the pointed-to object. The compact form is indicated by putting a
'+ at the start of the display. (i.e., the object is expandable), while a -’
indicates the expanded form (i.e., the object is contractible). Nesting is
supported, so structures within structures can likewise be expanded, ad
infinitum.

To expand a pointer or a structure:

¢ C(Click on the '+ in the Data Window

1-24

Chapter 1

Nearly every CrossView Pro command can be given using the graphical
user interface. These commands and the debugger’s response is logged in
the Command Output Window which is the upper part of the Command
Window. Alternatively, CrossView Pro commands can be entered directly
(without using the menu system) in the command edit field of the
command window.

To open the Command Window:
e Select View | Command->Cr ossVi ew from the menu.

Figure 1-11 shows an example of the Command Window. Commands can
be typed into the command edit field (bottom field) or selected from the
command history list (middle field) and edited then executed. The top
field is referred to as the Command Output Window. Each command,
echoed from the command edit field, is displayed with a "> prefix.
CrossView’s response to the command is displayed below the command.

CrossView Command CrossView Response Output Window

Command : Crozs¥iew

* initwal ;I
initwal = 17
=

LEr I I 4 e T 7]

initwval

initval Execute Halt

Command Edit Field— Command History List —

Figure 1-11: CrossView Pro Command Output

You can change the behavior of the command edit field in the Opti ons |
Deskt op Set up dialog.

Overview

To quit a debugging session:

Select the Fil e | Exit menu item or close the Command
Window.

In the Save Options dialog that appears, select the options you want
to be saved for another debug session.

Click on the Exi t button in the Save Options dialog.

CrossView Pro will exit immediately. If you selected one or more items in
the Save Options dialog your settings will be saved in the initialization file
XVW. i ni . This file is located in the startup directory.

Most problems in starting up CrossView Pro for a debugging session stem
from improperly setting up the execution environment or from an
improper connection between the host computer and the execution
environment. Some targets will require you to enter transparency mode to
set the execution environment for a debugging session. Check the notes
for your particular execution environment.

Here are some other common problems:

Specifying the wrong device name when invoking the debugger.

Specifying a baud rate different from the one the execution
environment is configured to expect.

Not supplying power to the execution environment or an attached
probe.

Using the wrong kind of RS-232 cable.

Plugging the cable into an incorrect port on the execution
environment or host. Some target machines and hosts have several
ports.

Installation of a device driver or resident application that uses the
same communications port on the host system.

The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process.

Specifying no or an invalid cpu type with the =C option.

1-25

1-26

&

Chapter 1

The subdirectory xvw in the exanpl es subdirectory contains a demo
program for the M16C toolchain.

In order to debug your programs, you will have to compile, assemble, link
and locate them for debugging using the TASKING M16C tools.You can do
this with one call to the control program or you can use EDE, the
Embedded Development Environment (which uses a project file and a
makefile) or you can call the makefile from the command line.

EDE stands for "Embedded Development Environment” and is the
Windows oriented Integrated Development Environment you can use with
your TASKING toolchain to design your application.

To use EDE on the demo program, located in the subdirectory Xxvw in the
exanpl es subdirectory of the M16C product tree, follow the steps below.

A detailed description of the process creating the sample program
deno. abs is described below. This procedure is outlined as a guide for
you to build your own executables for debugging.

The dialog boxes shown in this manual serve as an example. They may
slightly differ from the ones in your product.

How to Start EDE

1l TASKING EDE [Toolchain] [O] <]
File Edit Seaich Project Test Document Customize Tools 'Window Help EDE

|e-9-2cugs o aa e

You can launch EDE by double-clicking on the EDE shortcut on your
desktop.

Fﬁ

The EDE screen provides you with a menu bar, a toolbar (command
buttons) and one or more windows (for example, for source files), a status
bar and numerous dialog boxes.

PHENQI EREEDD D

T
Compile Buld Rebuld Debug Orvling Manuals

Overview

How to Select a Toolchain

1.

EDE supports all the TASKING toolchains. When you first start EDE, the
toolchain of the product you purchased is selected and displayed in the
title of the EDE desktop window.

If you selected the wrong toolchain or if you want to change toolchains do
the following:

Access the EDE menu and select the Sel ect Tool chai n. .. menu item.
This opens the Sel ect Tool chai n dialog.

Select the toolchain you want. You can do this by clicking on a toolchain
in the Tool chai ns list box and press OK.
Select Toolchain

Product Folder:
|ehearget

Toolchains: Cancel

TASEIMG <toolchain: <version:

Browsze. .

Scan Dizk...

Delete

EE

¥ Display 'Toolchain switched to ... message

If no toolchains are present, use the Browse. .. or Scan Di sk. ..
button to search for a toolchain directory. Use the Browse. . . button if
you know the installation directory of another TASKING product. Use the
Scan Di sk. .. button to search for all TASKING products present on a
specific drive. Then return to step 2.

How to Open an Existing Project

1.

2.

Follow these steps to open an existing project:
Access the Proj ect menu and select Set Current....

Select the project file to open and then click OK. For the demo program
select the file si m pj t | located in the subdirectory xvw in the exanpl es
subdirectory of the M16C product tree. If you have used the defaults, the
file si m pj t is in the directory c: \ cnml6c\ exanpl es\ xvw.

1-27

1-28

-

Chapter 1

How to Load/Open Files

The next two steps are not needed for the demo program because the files
addone. src and deno. ¢ are already open. To load the file you want to
look at:

In the Proj ect menu click on Load files....
This opens the Choose Project Files to Edit dialog.

Choose the file(s) you want to open by clicking on it. You can select
multiple files by pressing the <Ct r | > or <Shi ft > key while you click on
a file. With the <Ct r | > key you can make single selections and with the
<Shi f t > key you can select everything from the first selected file to the
file you click on. Then press the OK button.

Choose Project Files to Edit

Project Files: 1 of & selected

C:Mtargetiexampleshdemotiwelcome. bt kK
C:htargethenampleshdemaomeadme. bt
‘C-Mbargetheramplesh demohdemo.
C:Mbargetherampleshdemot.addone. asm

C:Mtargethexampleshdemaot. . libharcstart asm

Cancel

Help

Invert

dd Ay

Clear

This launches the file(s) so you can edit it (them).

How to Build the Demo Application

The next step is to compile the file(s) together with its dependent files so
you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify
additional build options such as to stop the build process on errors and to
select a command to be executed as foreground or background process.

1. Access the EDE menu and select the Bui | d Opti ons. .. menu item.

Overview 1-29

Manualz 3

Processor Options...

C++ Compiler Options

C Compiler Options
Safer C Compiler Options
Azzembler Options
Lirker/Locator Options. ..
Crossiiew Pra Options. ..

Eg Save/Restore Options...

Directonies. ..
Scan Dependencies DEMO.C
Scan all Dependencies

* ¥ v ¥

Select Toolchain...

About EDE...

This opens the Bui | d Opti ons dialog.

Build Dptions

Build | Misc |

W Usze TASKING build and eror parzer settings

¥ Save file[s] before starting a command

[T Scan dependencies before starting 2 build

IV Stop build process on emor
™ Keep temporary files that are generated during a build

™ Use external makefile (instead of 'demo.mak’) :

™ Use additional make options:

[utput directann(instead of preEct drectan] |

Ok I Cancel Defaults

1-30 Chapter 1

-

Build Dptions

Buld Mo |

[~ Show command line options at the bottorn of a ool kaks

™ Use third party debugger:

I s BiuEfshel lwhe el debuames

ak I Cancel | Defaults |

If you set the Show conmand |ine options at the bottomof a

t ool tab check box EDE shows the command line equivalent of the
selected tool option. You can also click on the arrow button (left of the OK
button) in a tool options dialog.

;l 0K I Cancel | Defaults | Help |

Optiohs string:

ooty ane fifed here

-
[

2. Make your changes and press the OK button.

3. Select the EDE | Directories menu item and check the directory paths
for programs, include files and libraries. You can add your own directories
here, separated by semicolons.

Overview 1-31

Directories E

YY'ou can use thiz dialog to specify which directories to gearch for binay, include and
library files. Tao specify more than one directory, separate them with a semicaolon).

Executable Files Path:

|c: “targetsbin Browse |
Include Files Path:

|c: targethinclude;c: \mping Browse |

Library Files Path:

Ic:\target\lib Browse |
(]4 I Cancel | Drefaults |

4. Access the EDE menu and select the Scan Al l Dependenci es menu
item.

5. Click on the Execut e ' Make’ command button. The following button is
the execute Make button which is located in the toolbar.

If there are any unsaved files, EDE will ask you in a separate dialog if you
want to save them before starting the build.

How to View the Results of a Build

Once the files have been processed you can inspect the generated
messages in the Bui | d tab:

TASKI NG program buil der vx.y rz SN00000001-020 (c) year TASKING Inc.
Conpi ling "deno. c”

Assenbl i ng "deno. src”

Assenbl i ng ”addone. src”

Linking to "simout”

Locating "simout” to "simabs” (|EEE-695)

1-32 Chapter 1

-

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and
formatted they can be executed by CrossView Pro.

To execute CrossView Pro:

1. Click on the Debug appl i cati on button. The following button is the
Debug application button which is located in the toolbar.

&

CrossView Pro is launched. CrossView Pro will automatically download the
compiled file for debugging.

How to Start a New Project

When you first use EDE you need to setup a project space and add a new
project:

1. Access the Proj ect menu and select Proj ect Space | New.. ..
2. Give your project space a name and then click OK.

3. Click on the Add new project to project space button.

4. Give your project a name and then click OK.

The Proj ect Properties dialog box then appears for you to identify
the files to be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

Project Properties
% <Default Setlings> Directoiies I Members I Tools I Ermors I Filters I
demo [1 Praject] Project: C:\target'exampleshdemot.demo. pit
By dema (0 Files|

I Files: BI IID*[X .I-

Add new file Add existing files
Scan existing files

¢ If you do not have any source files yet, click on the Add new file
to project button in the Proj ect Properti es dialog. Enter a new
filename and click OK.

Overview 1-33

* To add existing files to a project by specifying a file pattern click on
the Scan existing files into project button in the Proj ect
Properti es dialog. Select the directory that contains the files you
want to add to your project. Enter one or more file patterns separated
by semicolons. The button next to the Pat t er n field contains some
predefined patterns. Next click OK.

* To add existing files to a project by selecting individual files click on
the Add existing files to project button in the Proj ect
Properti es dialog. Select the directory that contains the files you
want to add to your project. Add the applicable files by
double—clicking on them or by selecting them and pressing the Open
button.

The new project is now open.

6. Click Project | Load Files to open files you want on your EDE
desktop.

EDE automatically creates a makefile for the project. EDE updates the
makefile every time you modify your project.

A detailed description of the process creating the sample program
deno. abs is described below. This procedure is outlined as a guide for
you to build your own executables for debugging.

1. Make the subdirectory xvw of the exanpl es directory the current working
directory.

2. Be sure that the directory of the binaries is present in the PATH
environment variable.

3. Compile, assemble, link and locate the modules using one call to the
control program ccm16:

ccml6é —g —M deno. ¢ addone.src —o deno. abs

The —g option specifies to generate symbolic debugging information. This
option must always be specified when debugging with CrossView Pro.

The -M option specifies to generate map files.

The -o option specifies the name of the output file.

1-34

Chapter 1

The command in step 3 generates the object files denp. obj and
addone. obj , the linker map file deno. | nl , the locator map file

deno. map and the absolute output file denp. abs. The file denp. abs is
in the IEEE Std. 695 format, and can directly be used by CrossView Pro.
No separate formatter is needed.

Now you have created all the files necessary for debugging with
CrossView Pro using one call to the control program.

If you want to see how the control program calls the compiler, assembler,
linker and locator, you can use the —=v0 option or —v option. The —v0
option only displays the invocations without executing them. The -=v
option also executes them.

ccnl6é —g —M deno. ¢ addone. src —o denp. abs -vO0

The control program shows the following command invocations without
executing them (UNIX output):

ML6C control programvx.y rz SNO0000000-003 (c) year TASKING |Inc.
deno. c:

+ cml6 —e —g —-Ms —0 /tnp/cc26583b. src deno. c

+ asml6 /tnp/cc26583b.src —e —g —o denp. obj

addone. src:

+ asnl6 addone.src —e —g —o0 addone. obj

+ 1 kml6 —e —M deno. obj addone.obj -lcs —-Ims -l fps —-Irts —odeno. out —Odeno
+ lcm6 —e —M —odenp. abs —dml6c. dsc denp. out

The -e option removes output files after errors occur. The =Ms option
selects the small memory model. The -Ics, -lfps and -Irts options of the
linker specify to link the appropriate C libraries. The —=O option of the
linker specifies the basename of the map file. The —-d option of the locator
specifies the name of the locator description file.

As you can see, the tools use temporary files for intermediate results. Also
the file denmp. out will be removed afterwards. If you want to keep the
intermediate files you can use the -tmp option. The following command
makes this clear.

ccnl6é —g —M deno. ¢ addone.src —o denp. abs —-v0 —tnp

Overview 1-35

This command produces the following output:

ML6C control programvx.y rz SNO0000000-003 (c) year TASKING |Inc.
deno. c:

+ cnml6 —e —g —Ms —o0 denp. src deno. c

+ asnl6 denp.src —e —g —o0 deno. obj

addone. src:

+ asml6 addone.src —e —g —o addone. obj

+ | kml6 —e —M deno. obj addone.obj -lcs —Inms —Ifps —Irts —odeno. out —Qdeno
+ lcml6é —e —M —odenp. abs —dnil6c. dsc denp. out

As you can see, if you use the —-tmp option, the assembly source files and
linker output file will remain in your current directory.

Of course, you will get the same result if you invoke the tools separately
using the same calling scheme as the control program.

As you can see, the control program automatically calls each tool with the
correct options and controls.

The subdirectories in the exanpl es directory each contain a makefil e
which can be processed by mkm16. Also each subdirectory contains a
readne. t xt file with a description of how to build the example.

To build the demo example follow the steps below. This procedure is
outlined as a guide for you to build your own executables for debugging.

1. Make the subdirectory xvw of the exanpl es directory the current working
directory.

This directory contains a makefile for building the demo example. It uses
the default mkm16 rules.

2. Be sure that the directory of the binaries is present in the PATH
environment variable.

3. Compile, assemble, link and locate the modules using one call to the
program builder mkm16:

nkni6

This command will build the example using the file makefil e.

1-36

Chapter 1

To see which commands are invoked by mkm16 without actually
executing them, type:

nkml6 —n
This command produces the following output:

ML6C program buil der vx.y rz SNO0000000-003 (c) year TASKING Inc.
ccnlé —c —o denp.obj —s —g denp.c

ccml6é —c —o addone. obj addone. src

ccml6é —o deno. abs deno. obj addone. obj

The -s option in the makefile instructs the compiler to include C source
lines as comments in the assembly output. The =g option is used to
instruct the C compiler to generate symbolic debug information. This
information makes debugging an application written in C much easier to
debug.

To remove all generated files type:

nkml6 cl ean

SOFTWARE
INSTALLATION

al TASKING [

d31dVHO

Software Installation

This chapter describes the procedure for the installation of the TASKING
CrossView Pro debugger for the M16C on Windows, Linux and several
UNIX hosts.

Members of the CrossView Pro family of debuggers use the following
name convention for their executables:

xfwril6c

Step 1
Start Windows (95/98/NT/2000), if you have not already done so.

Step 2
Insert the CD-ROM into the CD-ROM drive.

If the TASKING Welcome dialog box appears, skip to Step 5. Otherwise,
continue from Step 3.

Step 3

Select the St art button and select the Run. .. menu item.
Step 4
On the command line type:
d: \setup

(substitute the correct drive letter for your CD-ROM drive) and press the
<Ret ur n> or <Ent er > key or click on the OK button.

The TASKING Welcome dialog box appears.

Step 5

Select a product and click on I nstal | .

2-3

2-4 Chapter 2

=

Step 6

Follow the instructions that appear on your screen.

@ You can find your serial number on the Certificate of Authenticity or
Product Update Form delivered with the product.

Step 7

Make sure that the directory containing the installed executable files is
present in the PATH environment variable, when you invoke the tools
from a command prompt.

Step 8

License the software product as explained in section 2.8, Licensing
TASKING Products.

The hardware/software requirements are:

* 486 PC or higher
* Windows 95/98, NT or 2000

Each product on the CD-ROM is available as an RPM package and as a
gzipped tar file. For each product the following files are present:

SWor oduct —ver si on—RPM el ease. i 386. rpm
SWpr oduct —version. tar. gz

Both files contain exactly the same information. When your Linux
distribution supports RPM packages, you can install the . r pmfile.
Otherwise, you can install the product from the . t ar. gz file.

Software Installation 2-5

Step 1

In most situations you have to be “root” to install RPM packages, so either
login as "root”, or use the su command.

Step 2

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example / cdr om See the Linux manual pages about mount
for details.

Step 3
Go to the directory on which the CD-ROM is mounted:

cd /cdrom

Step 4

To install or upgrade all products at once, issue the following command:
rom-U SW.rpm

This will install or upgrade all products in the default installation directory
/usr /| ocal . Every RPM package will create a single directory in the
installation directory.

The RPM packages are 'relocatable’, so it is possible to select a different
installation directory with the —prefix option. For instance when you
want to install the products in / opt , use the following command:

rpom-U —prefix /opt SW.rpm

@ For Red Hat 6.0 users: The ——prefix option does not work with RPM

version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to
RPM verion 3.0.3 or higher, or use the . t ar. gz file installation described
in the next section if you want to install in a non-standard directory.

Step 5

Make sure that your path is set to include all of the executables you have
just installed.

X Windows is required to run CrossView Pro.

2-6 Chapter 2

Step 1

Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.
Step 2

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example / cdr om See the Linux manual pages about mount
for details.

Step 3
Go to the directory on which the CD-ROM is mounted:
cd /cdrom

Step 4

To install the products from the . t ar. gz files in the directory
[usr/local , issue the following command for each product:

tar xzf SWroduct—-version.tar.gz —C /usr/I ocal

Every . t ar. gz file creates a single directory in the directory where it is
extracted.

Step 5

Make sure that your path is set to include all of the executables you have
just installed.

X Windows is required to run CrossView Pro.

Software Installation 2-7

Step 1
Login as a user.
Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as root or use the su command.

Step 2

If you are a first time user decide where you want to install the debugger
(By default it will be installed in / usr/ 1 ocal).

Step 3

For CD-ROM install: insert the CD-ROM into the CD-ROM drive. Mount
the CD-ROM on a directory, for example / cdr om Be sure to use a ISO
9660 file system with Rock Ridge extensions enabled. See the UNIX
manuals page about mount for details.

Or:

For tape install: insert the tape into the tape unit and create a directory
where the contents of the tape can be copied to. Consider the created
directory as a temporary workspace that can be deleted after installation
has succeeded. For example:

nkdir /tnp/instdir

Step 4

For CD-ROM install: go to the directory on which the CD-ROM is
mounted:

cd /cdrom

For tape install: copy the contents of the tape to the temporary workspace
using the following commands:

cd /tnp/instdir
tar xvf /dev/tape

where tape is the name of your tape device.

@ If you have received a tape with more than one product, use the
non-rewinding device for installing the products.

2-8 Chapter 2

=

Step 5

Run the installation script:
sh install
and follow the instructions appearing on your screen.

First a question appears about where to install the software. The default
answer is / usr/ | ocal . On certain sites you may want to select another
location.

On some hosts the installation script asks if you want to install SW000098,
the Flexible License Manager (FLEXIm). If you do not already have FLEXIm
on your system, you must install it; otherwise the product will not work on
those hosts. See section 2.8, Licensing TASKING Products.

If the script detects that the software has been installed before, the
following messages appear on the screen:

* %k % V\ARN' ’\G * % %
SWKXXXXX XXXX.Xxxxx al ready install ed.
Do you want to REINSTALL? [y, n]

Answering n (no) to this question causes installation to abort and the
following message being displayed:

=> | nstallation stopped on user request <=

Answering y (yes) to this question causes installation to continue. And the
final message will be:

Installati on of SWKXXXXX XXXX.XXXX conpl et ed.

Step 6
For tape install: remove the temporary installation directory with the
following commands:

cd /tnp
rm-—rf instdir

Step 7

Make sure that the directory containing the installed executable files is
present in the PATH environment variable.

Software Installation

Step 8

If you purchased a protected TASKING product, license the software
product as explained in section 2.8, Licensing TASKING Products.

X Windows is required to run CrossView Pro.

To run the Motif version of CrossView Pro on a Sun, you must define the
environment variable LD_LIBRARY_PATH to where the library file
i bMm a resides. For example:

LD_LI BRARY_PATH=/usr/dt/1ib
export LD _LI BRARY_PATH

CrossView Pro uses a binary resource file for appearance-related
specifications for windows, menus, dialog boxes, and strings to be
accessed at run—-time. The name of the resource file has the same name as
the executable but with . ui d extension. Be sure that the . ui d file is
present in one of the following directories:

the current directory
the directory specified by the UIDPATH environment variable

The environment variable UIDPATH specifies the path used by Motif to
locate the resource (. ui d) file. If not set, it is set to a default value. The

resource file is installed in the same directory as the associated executable.

So, you should set UIDPATH as follows (Bourne shell syntax):

Ul DPATH=path _to uidl W)
export Ul DPATH

Replace path_to _uid by the path to the directory in which the resource
file is installed. The %J is required.

For more details refer to M mOpenHi er ar chy in the OSF/Motif
Programmer’s Reference manual.

2-9

2-10

Chapter 2

X toolkit resources specify GUI object (widget) attributes. Resources are
specified in either the . Xdef aul t s file or in application class—specific
files.

The . Xdef aul t s file is (typically) loaded into the X server at the start of
the session. Any changes take effect only in a new session, or after using
xrdb. Alternatively, application class resource files may be used.
Application resource files have the same name as the executable
CrossView Pro version they refer to (first letter NOT capitalized).
Application resource files must be present either in the directory specified
by the HOME environment variable, or in the app—def aul t s directory.
The app—def aul t s directory is typically located under / usr/ i b/ X11.

X recognizes various environment variables for specifying paths to the
application resource files. For more information, consult the chapter on X
resources in O’Reilly’s X Toolkit Intrinsics Programming Manual and your
system documentation.

The X resource specification allows either global (loosely) bound
specifications (*f or eground: bl ack) or per-widget instance
specifications (*but t on. f or eground: bl ack).

The following list shows the relevant widgets used by the Motif version of
CrossView Pro:

Windows:
TOP-LEVEL - XmMainWindow => XmDrawingArea
CHILD — XmScrolledWindow => XmDrawingArea
Dialog:
MODAL — XmBulletinBoard
MODELESS — XmBulletinBoard
Menu:
MENUBAR - XmMenuShell

PULLDOWN — XmCascadeButton

Software Installation 2-11

Controls:

CHECKBOX - XmToggleButton

RADIOBUTTON - XmToggleButton

TEXT — XmLabel

EDIT — XmText

LISTBOX — XmScrolledWindow => XmList

SCROLLBAR — XmScrollBar

PUSHBUTTON — XmPushButton

LISTBUTTON — XmText & XmArrowButton &
XmScrolledWindow => XmList

LISTEDIT — XmText & XmArrowButton &
XmScrolledWindow => XmList

GROUPBOX — XmFrame => XmULabel

ICON — XmlLable with pixmap

FILESELECTION - XmFileSelectionBox

ERRORPOPUP - XmMessageBox

CrossView Pro repaints its windows in the default color as specified with
the Motif widget resource settings. It is possible to overrule this behavior
with a resource setting like: ™ XmDr awi ngAr ea. backgr ound: bl ue”.

CrossView Pro uses a non proportional font in all of its windows. The font
size is selected using the "Desktop Setup dialog”. You can use the “font”
resource (*font Li st on Motif) to select the font to be displayed in the
menubar and dialogs, it won’t affect the font displayed in the CrossView
Pro windows.

The CrossView Pro stack and data windows are implemented using a
XnScr ol | edW ndow widget on Motif.

The following list show the contents of an example app—def aul t s file
intended for Motif environments. Of course you may adjust the colors and
font to your preferences. Sample app—def aul t s files are delivered with
the product in the et ¢ directory (app_def . mvm for Motif).

*fontLi st: 7x13bol d

*f or egr ound: bl ack

* XmVai nW ndow. backgr ound: white
Xnscr ol | edW ndow backgr ound: white

* XnDr awi ngAr ea. backgr ound: white

*XmBul | et i nBoar d. backgr ound: Dar kSeaG een
Xmlroggl eBut t on backgr ound: gray

* XmLabel *backgr ound: gray

2-12

Chapter 2

* Xmlext * backgr ound: white
*XnmScr ol | Bar *backgr ound: gray

* XmPushBut t on* backgr ound: gray

* XnFr ame* backgr ound: SeaG een

* XmAr r owBut t on* backgr ound: gray

* XnFor m backgr ound: SeaG een

* XmMVenuShel | *backgr ound: Dar kSeaGr een
* XmCascadeBut t on* backgr ound: SeaG een

If you encounter any problems due to incorrect resource settings, like
invisible text caused by identical text and background color, clear the
RESOURCE_MANAGER. Use the following procedure to clear the
RESOURCE_MANAGER:

. Save a copy of the . Xdef aul t s file located in your home directory.
. Install an empty . Xdef aul t s file.

. Execute xrdb —al | . Xdefaul ts to actually clear the

RESOURCE_MANAGER property.

. Restart CrossView Pro and check if windows and dialogs are displayed

correctly.

. Now you add the saved resources (one by one) back into the

. Xdef aul t s file and execute xrdb to install them in the server. Restart
CrossView Pro and check the influence of the new resource settings.
Adapt your saved resources when necessary.

Software Installation 2-13

TASKING products are protected with license management software
(FLEXIm). To use a TASKING product, you must install the licensing
information provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a
floating license. When you order a TASKING product determine which
type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the
product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among
users at one site. This license type does not lock the software to one
specific PC or workstation but it requires a network. The software can then
be used on any computer in the network. The license specifies the
number of users who can use the software simultaneously. A system
allocating floating licenses is called a license server. A license manager
running on the license server keeps track of the number of users.

% See Appendix A, Flexible License Manager (FLEXIm), for detailed
information on FLEXIm.

Before you can install a software license you must have a "License
Information Form” containing the license information for your software
product. If you have not received such a form follow the steps below to
obtain one. Otherwise, you can install the license.

Node-locked license (PC only)

1. If you need a node-locked license, you must determine the hostid of the
computer where you will be using the product. See section 2.8.7, How to
Determine the Hostid.

2-14

=

2.

Chapter 2

When you order a TASKING product, provide the hostid to your local
TASKING sales representative. The License Information Form which
contains your license key information will be sent to you with the software
product.

Floating license

1.

If you need a floating license, you must determine the hostid and
hostname of the computer where you want to use the license manager.
Also decide how many users will be using the product. See section 2.8.7,
How to Determine the Hostid and section 2.8.8, How to Determine the
Hostname.

When you order a TASKING product, provide the hostid, hostname and
number of users to your local TASKING sales representative. The License
Infomation Form which contains your license key information will be sent
to you with the software product.

Keep your "License Information Form” ready. If you do not have such a
form read section 2.8.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure
described in section 2.3, Installation for Windows.

Step 2

&
&

Create a file called ”l i cense. dat ” in the c: \ f | ex| mdirectory, using an
ASCII editor and insert the license information contained in the "License
Information Form” in this file. This file is called the "license file”. If the
directory c: \ f| ex] mdoes not exist, create the directory.

If you wish to install the license file in a different directory, see section
2.8.6, Modifying the License File Location.

If you already have a license file, add the license information to the
existing license file. If the license file already contains any SERVER lines,
you must use another license file. See section 2.8.6, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

Software Installation

See Appendix A, Flexible License Manager (FLEXIm), for more information
on FLEXIm.

Keep your "License Information Form” ready. If you do not have such a
form read section 2.8.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure
described earlier in this chapter on the computer or workstation where
you will use the software product.

As a result of this installation two additional files for FLEXIm will be
present in the f | ex] msubdirectory of the toolchain:

Taski ng The Tasking daemon (vendor daemon).
i cense. dat A template license file.

Step 2

If you already have installed FLEXIm v6.1 or higher for Windows or v2.4
or higher for UNIX (for example as part of another product) you can skip
this step and continue with step 3. Otherwise, install SW000098, the
Flexible License Manager (FLEXIm), on the license server where you want
to use the license manager.

The installation of the license manager on Windows also sets up the
license daemon to run automatically whenever a license server reboots.
On UNIX you have to perform the steps as described in section 2.8.5,
Setting Up the License Deaemon to Run Automatically.

@ It is not recommended to run a license manager on a Windows 95 or
Windows 98 machine. Use Windows NT instead (or UNIX).

Step 3

If FLEXIm has already been installed as part of a non—-TASKING product
you have to make sure that the bi n directory of the FLEXIm product
contains a copy of the Tasking daemon (see step 1).

2-15

2-16

=

Chapter 2

Step 4

&

&

Insert the license information contained in the "License Information Form”
in the license file, which is being used by the license server. This file is
usually called | i cense. dat . The default location of the license file is in
directory c¢: \ f| ex| mfor Windows and in
fusr/local/flexlmlicenses for UNIX.

If you wish to install the license file in a different directory, see section
2.8.6, Modifying the License File Location.

If the license file does not exist, you have to create it using an ASCII
editor. You can use the license file | i cense. dat from the toolchain’s
f | ex] msubdirectory as a template.

If you already have a license file, add the license information to the
existing license file. If the SERVER lines in the license file are the same as
the SERVER lines in the License Information Form, you do not need to add
this same information again. If the SERVER lines are not the same, you
must use another license file. See section 2.8.6, Modifying the License File
Location, for additional information.

Step 5

On each PC or workstation where you will use the TASKING software
product the location of the license file must be known. If it differs from
the default location (c: \ fl exI m|icense. dat for Windows,
fusr/local/flexlmlicenses/license.dat for UNIX), then you
must set the environment variable LM_LICENSE_FILE. See section 2.8.6,
Modifying the License File Location, for more information.

Step 6

Now all license infomation is entered, the license manager must be started
(see section section 2.8.4). Or, if it is already running you must notify the
license manager that the license file has changed by entering the
command (located in the flexIm bi n directory):

| nr er ead

On Windows you can also use the graphical FLEXIm Tools (Imtools): Start
Imtools (if you have used the defaults this can be done by selecting
Start | Programs | TASKING FLEXI m | FLEX m Tool s), fill in the
current license file location if this field is empty, click on the Rer ead
button and then on OK. Another option is to reboot your PC.

Software Installation 2-17

The software product and license file are now properly installed.

Where to go from bere?

The license manager (daemon) must always be up and running. Read
section 2.8.4 on how to start the daemon and read section 2.8.5 for
information how to set up the license daemon to run automatically.

If the license manager is running, you can now start using the TASKING
product.

% See Appendix A, Flexible License Manager (FLEXIm), for detailed
information on FLEXIm.

The license manager (daemon) must always be up and running. To start
the daemon complete the following steps on each license server:

Windows

1. Start the license manager tool by (Start | Progranms | TASKI NG
FLEXI m | FLEXI m Li cense Manager).

2. In the Control tab, click on the St art button.

3. Close the program by clicking on the OK button.

UNIX

1. Log in as the operating system administrator (usually root).

2. Change to the FLEXIm installation directory (default
[usr/|ocal/flexl m:

cd /usr/local/flexlm
3. For C shell users, start the license daemon by typing the following:

bin/Imgrd -2 —p —c licenses/license.dat >>& \
/var/tnp/license.log &

2-18

Chapter 2

Or, for Bourne shell users, start the license daemon by typing the
following:

bin/Imgrd -2 —p —c licenses/license.dat >>\
/var/tnp/license.log 2>&1 &

In these two commands, the -2 and -p options restrict the use of the
Imdown and Imremove license administration tools to the license
administrator. You omit these options if you want. Refer to the usage of
Imgrd in Appendix A, Flexible License Manager (FLEXIm), for more
information.

To set up the license daemon so that it runs automatically whenever a
license server reboots, follow the instructions below that are approrpiate
for your platform. steps on each license server:

Windows

1.

Start the license manager tool by (Start | Prograns | TASKI NG
FLEXI m | FLEXI m Li cense Manager).

In the Set up tab, enable the Start Server at Power-Up check box.

Close the program by clicking on the OK button. If a question appears,
answer Yes to save your settings.

UNIX
In performing any of the procedures below, keep in mind the following:

* Before you edit any system file, make a backup copy.

HP-UX

1.

2.

Log in as the operating system administrator (usually root).

In the directory / et c/ rc. confi g. d create a file named r c. | ngr d with
the following contents. Replace FLEXLMDIR by the FLEXIm installation
directory (default / usr/ 1 ocal / fl ex] m):

#1/ sbi n/ sh
FLEXLMDI R/ bin/l mgrd -2 —p —c FLEXLMDI R/ |i censes/|icense.dat >> \
/var/tnp/license.log 2>&1 &

Software Installation 2-19

After the —c option, you have to specify the correct location of the license
file.

SunOS4

1. Log in as the operating system administrator (usually root).

2. Append the following lines to the file / et ¢/ rc. | ocal . Replace
FLEXIMDIR by the FLEXIm installation directory (default
[usr/local/flexlm:

FLEXLMDI R/ bin/I mgrd -2 —p —c FLEXLMDI R/l icenses/license.dat >> \
/var/tnp/license.log 2>&1 &

SunOS5 (Solaris 2)
1. Log in as the operating system administrator (usually root).

2. In the directory /et c/init.d create a file named r c. | ngr d with the
following contents. Replace FLEXLMDIR by the FLEXIm installation
directory (default / usr/ | ocal / f1 ex| m):

#!'/ bi n/ sh
FLEXLMDI R/ bin/I1 mgrd -2 —p —c FLEXLMDI R/ licenses/license.dat >> \
/var/tnp/license.log 2>&1 &
3. Make it exacutable:

chnod u+x rc. |l nmgrd

4. Create an 'S’ link in the / et ¢/ r ¢3. d directory to this file and create 'K’
links in the other / et ¢/ r c?. d directories:

In /etc/init.d/rc.lngrd /etc/rc3.d/ Snunrc. | ngrd
In /etc/init.d/rc.lngrd /etc/rc?.d/ Knunrc. | ngrd

num must be an approriate sequence number. Refer to you operating
system documentation for more information.

The default location for the license file on Windows is:
c:\flexlmMlicense. dat
On UNIX this is:

fusr/local/flexImlicenses/license. dat

2-20

Chapter 2

If you want to use another name or directory for the license file, each user
must define the environment variable LM_LICENSE_FILE. Do this in

aut oexec. bat (Windows 95/98), from the Control Panel —> System
| Environment (Windows NT) or in a UNIX login script.

If you have more than one product using the FLEXIm license manager you
can specify multiple license files to the LM_LICENSE_FILE environment
variable by separating each pathname (/fpath) with a ’;’ (on UNIX also ’"):

Example Windows:
set LM LICENSE Fl LE=c:\flexl mlicense.dat;c:\Ilicense.txt
Example UNIX:

setenv LM LI CENSE_FI LE
/usr/local/flexlmlicenses/license.dat:/nyprod/license.txt

If the license file is not available on these hosts, you must set
LM_LICENSE_FILE to port@bost; where bost is the host name of the
system which runs the FLEXIm license manager and port is the TCP/IP port
number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting
with "SERVER”. The fourth field on this line specifies the TCP/IP port
number on which the license server listens. For example:

setenv LM LI CENSE_FILE 7594@l | i ot

See Appendix A, Flexible License Manager (FLEXIm), for detailed
information.

Software Installation

The hostid depends on the platform of the machine. Please use one of the
methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid
HP-UX lanscan 0000F0050185
(use the station address
without the leading '0x’)
SunOS/Solaris | hostid 170a3472
Windows tkhostid 0800200055327
(or use Imhostid)

Table 2—1: Determine the bostid

@ If you do not have the program tkhostid you can download it from our
Web site at: http://www.tasking.com/support/flexIm/tkhostid.zip . It is also

on every product CD that includes FLEXIm.

To retrieve the hostname of a machine, use one of the following methods.

Platform Method
HP-UX hostname
SunOS/Solaris | hostname

Windows 95/98

Go to the Control Panel, open "Network”, click on
"Identification”. Look for "Computer name”.

Windows NT

Go to the Control Panel, open "Network”. In the
"Identification” tab look for "Computer Name”.

Table 2-2: Determine the hostname

2-21

2-22 Chapter 2

COMMAND
LANGUAGE

al TASKING [

d31dVHO

Command Language

To

To

The syntax and semantics of CrossView Pro’s command language is
discussed here. This language is mainly used to enter textual commands in
the command edit field of the Command Window. The mouse and menus
allow you to access most actions without knowing the command language,
although the command language is more powerful. The command
language is also used when evaluating expressions and in commands
associated with assertions, breakpoints and macros. For information about
specific CrossView Pro commands, refer to Chapter 12, Command
Reference.

There are several methods that you can use to input an expression into
CrossView Pro:

It is possible to display both monitored and unmonitored expressions in
the Data Window. Monitored expressions are updated after every halt in
execution. Unmonitored expressions are just one-shot inspections of the
expressions value. Refer to section 4.6, CrossView Pro Windows for a
detailed description of the Data Window.

evaluate a simple expression:

Double click on a variable in the Source window. The result of the
expression appears in the data window. Alternatively, depending on the
preferences you set in the Data Display Setup dialog, the expression
appears in the Evaluate Expression dialog. Select the WAt ch or Show
button to display the result of the expression in the Data Window. Select
the Eval uat e button to display the result of the expression in the output
field of the Evaluate Expression dialog.

evaluate a complex expression:

Select Data | Eval uate Expression... from the menu and type in
any C expression in the Evaluate Expression dialog box. Optionally select
a format code. Click the Eval uat e button.

Type the expression into the command edit field of the Command
Window followed by a return or press the Execut e button.

3-3

Chapter 3

Expressions can be any length in most windows and dialog boxes;
CrossView Pro provides a horizontal scroll bar if an expression exceeds
the visible length of the entry field.

In CrossView Pro, C expressions may consist of a combination of numeric
constants, character constants, strings, variables, register names, C
operators, function names, function calls, typecasts and some CrossView
Pro-specific symbols. Each of these is described in the next sections.

Evaluation Precision

CrossView Pro evaluates expressions using the same data types and
associated precision as used by the target architecture when evaluating the
same expression.

CrossView Pro, like C, supports integer, floating point and character
constants.

Integers

Integers are numbers without decimal points. For example, CrossView Pro
will treat the following as integers:

5 9 23
The following number, however, are not treated as integers:
5.1 9.27 0.23

Negative integers, if they appear as the first item on a line, must have
parentheses around the number:

(-5)*4

This is to prevent confusion with CrossView Pro’s own - (minus sign)
command.

In addition, CrossView Pro supports standard C octal, hexadecimal and
binary notation. You can specify a hexadecimal constant using a leading
Ox or a trailing H (or h). The first character must be a decimal digit, so it
may be necessary to prefix a hexadecimal number with the ’0’ character.
The hexadecimal representation for decimal 16 is:

0x10 or 10H

Command Language

&

For the hexadecimal digits a through f you can use either upper or lower

case. The following are all correct hexadecimal representations for decimal

43981:
Oxabcd OxABCD OabCdH 0AbcDh

You can specify a binary constant using a trailing B or Y (or b or y). The
following are all binary representations for decimal 5:

0101b 101Y 00000101B

You can specify an octal constant using a leading '0’. The octal
representation for 8 decimal is:

010

You can use an L to indicate a long integer constant. For example,
CrossView Pro will recognize the following as long integers:

oL 57L OxffL

CrossView Pro uses the same ANSI C integral type promotion scheme as
the C compiler.

Floating Point

A floating point number requires a decimal point and at least one digit
before the decimal point. The following are valid examples of floating
point numbers:

12. 34 5.6 7.89

Exponential notation, such as 1. 234e01, is not allowed. The following
are not valid floating point numbers:

.02 1.234e01 5
As with integers, bracket a negative number with parentheses:

(-54. 321)

Expressions combining integers and floating point numbers will evaluate
to floating point values:

2.2 * 2
4.4

3-5

3-6

=

Chapter 3

Character

Character constants are single characters or special constants that follow
the C syntax for special characters. Examples of valid character constants
include:

|m !Xi y\n1

Character constants must be a single byte and are delimited by * * (single
quotation marks). For instance:

$nychar =" ni

Remember not to confuse character constants with strings. A character
constant is a single byte, in this example, the ASCII value of m

Strings

Strings are delimited by ” ” (double quotation marks). In C all strings end
with a null (zero) character. Strings are referenced by pointer, not by
value. This is standard C practice. In CrossView Pro, you may assign a
string literal to a variable which is of type char* (pointer to character):

”

$ystring = "nane

CrossView Pro supports the standard C character constants shown below:

Code ASCII Hex Function

\b BS 08 Backspace

\ f FF oC Formfeed

\n NL (LF) 0A Newline

\r CR ob Carriage return

\ t HT 09 Horizontal tab

\\ \ 5C Back slash

\? ? 3F Question mark

\’ ' 27 Single quote

\” " 22 Double quote

\ ooo 3—digit octal number
\ xhhh hexadecimal number

Table 3-1: C character codes

Command Language

Trigraph sequences are not supported.

CrossView Pro lets you use variables in the C expressions you type. You
may reference two classes of variables: variables defined in the source
code and special variables.

Variables defined in your source code fall into two categories: local
variables and global variables.

Storage Classes

Variables may be of any C storage class. The size of each class is target
dependent. Consult your M16C C Cross—Compiler User’s Guide for specific
sizes.

You may cast variables from one class to another:

(1 ong) $nychar

Local Variables

You define local variables within a function; their values are maintained on
the stack or in registers. When the program exits the function, you lose
local variable values. This means that you can only reference local
variables when their function is active on the stack.

Local variables of type st ati ¢ retain values between calls. Therefore, you
can reference st at i ¢ variables beyond their functions, but only if their
function is active on the stack.

CrossView Pro knows whether the compiler has allocated a local variable
on the stack or directly in a register and whether the register is currently
on the stack. The compiler may move some local variables into registers
when optimizing code.

If a part of your source code looks like this:

X = 5;
y =X
and you stopped the program after the assignment to x, and set X to

another value, this may not prevent the second statement from setting y to
5 due to "constant folding” optimizations performed by the compiler.

3-8 Chapter 3

=

Global Variables

Global variables are defined outside every function and are not local to
any function. Global (non-static) variables are accessible at any point
during program execution, after the system startup code has been
executed.

Global variables can be defined st ati ¢ in a module. These variables can
only be accessed when a function in this module is active on the stack, or
when that file is in the Source Window using the e command.

Specifying Variables in C expressions

The following table specifies how CrossView Pro treats different variables
in C expressions. The left column is the variable’s syntax in the expression,
the right column is the CrossView Pro semantics.

Variable Syntax CrossView Pro Behavior

variable CrossView Pro performs a scope search starting at
the current viewing position and proceeding outwards.
The debugger first checks locals, local statics and
parameters, followed by statics and globals explicitly
declared in the current file. Finally, globals in other
files are checked.

function#variable CrossView Pro searches for the first instance of
function. If found, the debugger uses the frame’s
address to perform a scope search for variable.
Variables are available only if the specified function is
active. That is, the stack frame for that function can be
found on the run—time stack.

number#variable The frame at stack level number is used by the
debugger for the scope search. The current function is
always at stack level 0. This format is very useful if
you are debugging a recursive function and there are
multiple instances of a variable on the stack.

:variable CrossView Pro searches for a global variable named
either variable or _variable, in that order.

$variable CrossView Pro searches the list of special variables
for $variable.

Table 3-2: Variables in C expressions

Command Language

Variables and Scoping Rules

A variable is in scope at any point in the program if it is visible to the C
source code. For instance, if you have a local variable i ni t val declared
in mai n(), and then step (or move the viewing position) into f act ori al ,
i ni tval will be out of scope. You can still find the value of i ni t val by

typing:
mai n#i ni tval

In this case CrossView Pro will search the stack for the function mai n(),
then look outwards from that function for the first occurrence of i ni t val
in scope and report its value. Note that mai n() must be active, that is,
program execution must have passed through mai n() and not yet
returned, in order for i ni t val to have a value.

You can also use the Browse. . . button in the Expression Evaluation
dialog box. This dialog box is called by either the Show Wt ch new

expr essi on button in the Toolbar or the Data | Eval uate
Expression. .. item in the menu. The Variable Lists dialog box lists both
global and local variables for you.

Special Variables

CrossView Pro maintains a set of variables that are separate from those
defined in your program being debugged. These special variables reside in
memory on the host computer, not on the target system. They contain the
values of the target processor’s registers, information about the debugger’s
status, and user—defined values. Special variables are case insensitive. Use
the opt command to display and set these variables (without using the
$—sign).

The following is a list of the reserved special variables for CrossView Pro:

Reserved Variable | Description

$ARG(N) Contains the value of the nth int-sized argument of the
current function. Allows access to arguments of variable
argument list functions without knowing the name of the
argument.

$FILE Contains the name of the file that holds the current
viewing position.

$IN(function) Contains the value 1 if the current pc is inside the
specified function, otherwise O.

3-10

Chapter 3

Reserved Variable

Description

$LINE

Contains the line number of the current viewing position.
This variable is often used in assertions to monitor
program flow.

$PROCEDURE

Contains the name of the procedure at the current
viewing position.

$ASMHEX

Contains a string "ON” or "OFF". The value "ON"
specifies that the disassembled code as displayed in the
assembly window will display hexadecimal opcodes.
Default is "OFF".

$AUTOSRC

Contains a string "ON” or "OFF". The value "ON"
specifies that the debugger will automatically switch
between the source window and the assembly window
display depending on the presence of symbolic debug
information at the current location. The value "OFF”
prevents the automatic window switching. Default is
"OFF".

$CPU

Contains a string indicating the current CPU type.

$DSC

Contains a string indicating the current locator
description file. Default is m16c¢ (et ¢/ ml6c. dsc). See
the —dsc option.

$FP

Contains the value of the frame pointer.

$MIXEDASM

Contains a string "ON” or "OFF”. The value "ON”
specifies that the disassembled code as displayed in the
assembly window will be intermixed with the
corresponding source lines. The value "OFF”
suppresses this intermixing. Default is "ON”.

$MORE

Contains a string "ON” or "OFF”. The value "ON”
specifies that the more output pager is enabled. The
value "OFF" disables the more output pager. Default is
"ON".

$PC

Contains the value of the program counter.

$PIPELINE

Contains a string "ON” or "OFF". The value "ON”
specifies that the pipeline should be displayed in the
assembly window. Default is "OFF”.

$register

Contains the value of the specified register.

$SP

Contains the value of the stack pointer.

$SYMBOLS

Contains a string "ON” or "OFF” indicating if local
symbols and symbolic addresses (e.g. mai n: 56+0x4)
or absolute addresses are present in disassembly.
Default is "ON".

Command Language

Reserved Variable

Description

$SRCLINENRS

Contains a string "ON” or "OFF". The value "ON”
specifies that line numbers should be printed in the
source window. The value "OFF” suppresses printing of
line numbers. Default is "OFF".

$SRCMERGELIMIT

Contains the value for the source merge limit in the
assembly window, the number of source lines to be
intermixed in the assembly window. Value O indicates
that there is no limit. Default is 0.

Table 3-3: Reserved special variables

Registers

For CrossView Pro, a fixed set of registers is always available. You can add

additional M16C derivative specific SFRs in a . sfr file. See the C
Cross—Compiler User’s Guide for more information.

You can configure which (and in which order) registers must appear in the

register window, using the Debug | Regi ster W ndow Set up menu

item.

It is possible to request the address of an SFR by using the address

operator &.

&3sp

Location of $SP is reg [SP]
Operand for '& incorrect

&$psw
0x578218

In addition to the standard register special variables, CrossView Pro
supplies the special variables: $sp (the stack pointer), $pc (the program
counter) and $f b (the current frame pointer) for all targets.

The values of Reserved special variables cannot be changed interactively
(i.e., on the CrossView Pro command line).

3-11

3-12 Chapter 3

=

User-defined Special Variables

During a debugging session, you may need some new variables for your
own debugging purposes, such as counting the number of times you
encounter a breakpoint. CrossView Pro allows you to create and use your
own special variables for this purpose. CrossView Pro does not allocate
space for these variables in target memory; it maintains them on the host
computer.

The names of these variables, which must begin with a $ (dollar sign), are
defined when they are first used. For instance:

$count =5

defines a variable named $count of type i nt with a value of 5. Special
variables are of the same type as the last expression they were assigned.
For example:

$name="j ohn”
then:
$nanme=3*4

creates a special variable $name of type (char *). The second statement
creates a special symbol $nane and assigns it the value of 12 of type i nt .

Special variables are just like any other variables, except you can not
meaningfully take the address of them. CrossView Pro allows as a default
26 user—-defined special variables. You may change this limit with the -s
option at startup, or by selecting the Options | Initialization...
menu item.

ﬂj See the startup options in Chapter 4, Using CrossView Pro.

Command Language

&

By default, CrossView Pro displays the value of an expression using the
appropriate format for the type of expression. CrossView Pro follows
several simple rules for displaying variables:

¢ The defaults are: addresses appear in hexadecimal format,
characters as ASCII and integers as decimal.

* There are four possible formats to show one integer value:
decimal, hexadecimal, octal, and ASCIL

e There are two different formats to display one floating point value:
decimal real and hexadecimal. If the absolute value is either too
big or too small (with too many non-significant zeroes), the
debugger automatically converts the format to one with fixed
decimal point and exponent.

* ASCII is the only format to display a string. Note that you can opt
for the array format. Unpredictable characters are output as \xhh,
where bb is a hexadecimal value. Control characters are output as
~C.

* All the values in an array appear in the same format. You are free to
select this format from the available options.

e If All the values of a structure appear in the same format. You are
free to select this format from the available options.

You can determine in which format a variable is displayed. Once the
format has been selected, however, you must enter values or change
values in the appropriate format. When editing is finished, the debugger
interprets all values in terms of the currently selected formats.

You may, however, tell CrossView Pro to display an expression in a
particular format other than the default format. The format code follows
the variable, in one of two ways:

The simplest method of specifying display formats is from the Evaluate
Expression dialog box. To access this dialog box:
e Select the Data | Eval uate Expressi on menu option.

In the Command Window, you can use several format codes shown in
the next table to specify the variable display. The format codes can be
entered as:

variable/format

3-13

3-14

&

Chapter 3

to display the variable in format format, or:
variable@format
to display the variable’s address in format format.
The structure of the formatting code is:
[count] style [size]

Count is the number of times to apply the format style style. Size indicates
the number of bytes to be formatted. Both count and size must be
numbers, although you may use ¢ (char), s (short), i (int), and 1 (long) as
shorthand for size. Legal integer format sizes are 1, 2, and 4; legal f | oat
format sizes are 4 and 8.

Be sure not to confuse CrossView Pro format codes with C character
codes, e.g. \ a. CrossView Pro uses a forward slash / not a backward slash

\.

Style | Description

a Print the specified number of characters of the character array; any
positive size is OK. Use the expression’s value as the address of the
first byte.

c Print a character; any positive size is OK; default size is sizeof(char).

D Print in decimal; needs NO size specifier; size is sizeof(long).

d Print in decimal; can have a size specifier; default size is

sizeof(expression).

E Print in “e” floating point notation; needs NO size specifier; default size
is sizeof(double).

e Print in “e” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

F Print in “f” floating point notation; needs NO size specifier; default size
is sizeof(double).

f Print in “f” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

G Print in “g” floating point notation; needs NO size specifier; default size

is sizeof(double).

Command Language

Style

Description

Print in “g” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

Print the function, source line, and disassembled instruction at the
address.

Print the disassembled instruction at address.

Print in the “natural” format, based on type; use it for printing variables
that have the same name as an CrossView Pro command.

Print in octal; needs NO size specifier; size is sizeof(long).

Print in octal; can have a size specifier; default size is
sizeof(expression).

Print the name of the function at the address.

Print the names of the file, function, and source line at the address.

Print the specified number of characters of the string, using the
expression’s value as the address of a pointer to the first byte.
Equivalent to * expression/ a. If no size is specified the entire string,
pointed to by expression, is printed (till nil-character).

Display the type of the indicated variable or function.

Print in unsigned decimal; needs NO size specifier; size is
sizeof(long).

Print in unsigned decimal; can have a size specifier; default size is
sizeof(expression).

Print in hexadecimal; needs NO size specifier; size is sizeof(long).

Print in hexadecimal; can have a size specifier; default size is
sizeof(expression).

Table 3-4: Format style codes

For example, typing:

i nitval /4xs

displays four, hexadecimal two-byte memory locations starting at the
address of i ni tval .

The following piece of C—code can be accessed in CrossView Pro using
the string format codes:

char

text[] " Sanpl e\ n”;

char *ptext = text;

3-15

3-16

Chapter 3

t ext What is the address of this char array
text = 0x8200

text/a Print it as a string
text = "Sanpl erJ”

pt ext What is the contents of this pointer
string = 0x8200

ptext/s Print it as a string
string = " Sanpl erJ”

&pt ext Where does ptext itself reside
0x8210

With format codes, you may view the contents of memory addresses on
the screen. For instance, to dump the contents of an absolute memory
address range, you must think of the address being a pointer. To show
(dump) the memory contents you use the C-language indirection operator
*. Example:

*0x4000/ 2x4
0x4000 = 0x00DB0208 0x5A055498

This command displays in hexadecimal two long words at memory
location 0x4000 and beyond. Instead of using the size specifier in the
display format, you can force the address to be a pointer to unsi gned
| ong by casting the value:

*(unsi gned | ong *)0x4000/ 2x
0x4000 = 0x00DB0208 0x5A055498

To view the first four elements of the array t abl e from the deno. c
program, type:

t abl e/ 4d2
table = 1 1 2 6

This command displays in decimal the first four 2-byte values beginning at
the address of the array t abl e.

Command Language 3-17

Standard C Operators

CrossView Pro supports the standard C operators in the ANSI defined
order of precedence. The order of precedence determines which operators
execute first.

The semicolon character (;) separates commands on the same line. In this
way, you may type multiple commands on a single line. Comments
delimited by / * and */ are allowed; CrossView Pro simply ignores them.

Order of Precedence
(in descending order)

0O [l —>.

I ~ 4+ — + — * & (type) sizeof

* [%

+ —

<< >>

< <= > >=

== | =

&

N

I

&&

N

?. = 4= —= *= [= Y &= = | = <<= >>=

Table 3-5: Order of precedence of standard C operators

The * | — and + operators appear twice since they exist as both unary and
binary operators and unary operators have higher precedence than binary.

@ Division is represented by // (two slashes) not / (one slash). This is to
avoid confusion with CrossView Pro’s format specifier syntax.

3-18 Chapter 3

=

Using Addresses

To specify an address, you may use the & operator. To determine the
address of i ni tval , type:

& ni tval

If you try to use the & operator on a local variable in a register, CrossView
Pro issues an error message and tells you which register holds the variable.

String Commands

Whenever CrossView Pro encounters an expression consisting solely of a
string by itself, it simply echoes the string. For example:

"hell o, world\n”
hell o, world

Use this technique to place helpful debugging messages on breakpoints.
For example, setting the following breakpoint:

60 b {"now in for loop\n”"; sum C}

this cause CrossView Pro to echo the message now i n for | oop, to
display the value of sum in the Command Window, and to continue when
line 60 is encountered. You can also enter this breakpoint and the
associated commands via the Breakpoints dialog box, which you can open
by selecting the Br eakpoi nt s menu item from the Debug menu.

The Period Operand

As a shorthand, CrossView Pro supports a special operand, period ‘.’; that
stands for the value of the last expression CrossView Pro calculated. For
instance, in the following example, the period in the second command
equals the value 11, which is the result of the previous expression:

5+ 6
11
4 *
44

Command Language 3-19

The period operand assumes the same size and format implied by the
specifier used to view the previous item. Thus if you look at a | ong as a
char, a subsequent ‘.’ is considered to be one byte. Use this technique to
alter specified pieces of a larger data item, such as the second highest byte
of a | ong, without altering the rest of the | ong. The period operand may
be used in any context valid for other variables.

@ ‘.’ is the name of a location. When you use it, it is dereferenced like any

other name. If you want the address of something that is 30 bytes farther
on in memory, do not type . +30 as this takes the contents of dot and
adds 30 to it. Type instead & +30 which adds 30 to the address of the
period operand.

CrossView Pro supports the i f construct. Use this construct in breakpoints
and assertions to alter program flow conditionally. For example, if you
reset the following breakpoint:

60 b {if (sumk=5931){C}{sun}}

CrossView Pro compares the value of sumwith 5931 when the program
stops at line 60. If sumis less than or equal to 5931, CrossView Pro
continues. Otherwise, CrossView Pro displays the value of sumwith 5931
when the program stops at line 60.

You can also use the expl ? exp2 : exp3 C ternary operator for conditional
expressions. For example:

$nyvar = (5 >2) ?21: -1

assigns the value 1 to myvar.

3-20 Chapter 3

In CrossView Pro expressions, you can include functions defined in the
program’s code.

@ Command line function calls are not supported for the M16C.

You can call functions through the Call a Function dialog box. Note that
shows only the results of the function call. You cannot enter expressions
in this field. If you want to use the results of the function call in an
expression, then type the expression into the Evaluate Expression dialog
box or type in the command into the Command Window (described in the
keyboard method below).

* Select Run | Call a Function... item from the menu to open
this box.

» List all functions by clicking the Br owse. .. button.

* You can place parameters in the Par anet er s field of the Call a
Function dialog box, separated by commas, but without the usual
parentheses or select from the drop—down history list.

The Command Window receives the results of the function call.

Type in the expression containing a function call directly into the
Command Window.

To execute a function on the target type the function name and the
arguments as you would do in your C program. For example,

do_sub(2, 1)
or

a = do_add(3, 4)

Command Language 3-21

The absolute file supplies the case sensitivity information for variable
names. It is initially case sensitive for the C language. You may toggle case
sensitivity by:

Selecting the Search | Search String... menu item to view the
Search String dialog box. This dialog contains the Case Sensitive
check box.

Typing the (capital) Z command in the Command Window.

3-22 Chapter 3

USING
CROSSVIEW PRO

al TASKING [

d31dVHO

Using CrossView Pro

This chapter and the following 8 chapters give you a comprehensive
picture of CrossView Pro’s features. In order to address the broadest range
of expertise, the contents range from introductory examples to the more
technical aspects and techniques of debugging with CrossView Pro. While
it is not necessary for you to read the chapters straight through, you may
find it especially helpful to do so. All of the examples are from the sample
program deno. ¢ which comes with CrossView Pro. For a complete
description of the commands presented in this chapter, consult the
Command Reference chapter.

Each CrossView Pro command introduced in the text has a matching box
summarizing its syntax and semantics. The command description follows
these general rules:

Items in bold font are the actual CrossView Pro commands: save, set.
Items in éfalics are names for the things you should type: filename,
commands. In addition, the | symbol means or. For instance, screen |
filename means you can use the word ”screen” or a filename in the syntax.

This manual uses the word “Windows” to generically refer to the host
computer system’s windowing system. On IBM-PCs and compatibles, this
is equivalent to Microsoft Windows (95/98/NT or 2000). On UNIX
workstations, this refers to the X Window System. Generally, this manual
makes no distinctions between the various windowing systems unless
needed to clarify the discussion.

This manual assumes you possess a basic familiarity with Windows
software. For this reason, discussion focuses on how CrossView Pro
works, rather than how to use the Window interface. For more information
on your Windows system, consult the Windows documentation provided
with your host system.

You can execute most CrossView Pro commands using either mouse or
textual commands. Mouse commands are executed by means of buttons
and pull-down menus in each of the separate CrossView Pro windows.
Text commands are typed at the prompt in the Command Window. In
most cases, there is no difference in functionality between mouse and text
equivalents.

4-3

4-4

Chapter 4

This manual discusses both methods of performing CrossView Pro
functions. For a quick-reference guide to all CrossView Pro commands,
refer to the Command Reference chapter.

Once an absolute file has been made it can be executed by CrossView
Pro. There are several ways to invoke CrossView Pro.

From EDE

To start CrossView Pro from EDE (the Embedded Development
Environment), click on the Debug appl i cati on button. The following
button is the Debug appl i cati on button which is located in the ribbon
bar.

&

From the desktop

With Windows 95/98/NT/2000 you can start CrossView Pro through the
Start menu. Or in the Windows Explorer you can double—click on an
absolute file if the . abs extension is associated with the CrossView Pro
executable.

@ On the PC, CrossView Pro is a Microsoft Windows application. As such,
you must invoke it from the Windows environment.

From the command line

To begin the debugging session, type the name of the CrossView Pro
debugger and optionally the name of the target program (absolute file).

Using CrossView Pro

CrossView Pro allows you to specify several options when you invoke the
program. Type these startup options (or switches as they are sometimes
called) after the optional basename of the application. The basename can
also contain a path specification. In this case, CrossView Pro sets its
current directory to the specified path. A minus sign proceeds each option;
the options can appear in any order.

Note that some versions of CrossView Pro have different startup options
and procedures than the ones described here. Please consult the
Addendum (at the end of this manual), for precise information about
starting up CrossView Pro with your target hardware.

You can set many of CrossView Pro’s options by using the dialog boxes
called by the Options | Startup—>CrossView .. and Options |

Initialization... menu items from the menu. Some targets and
environments have an additional menu option of Opti ons |
St art up—>Enul at or. ... You can save the options in the Xxvw. i ni file

and they are automatically used upon startup.

In Microsoft Windows, add startup options to the program’s property
sheet:

Windows 95/98/2000 or Windows NT 4.0 (or higher):
* Right—click on the CrossView Pro shortcut icon, shown in your
program installation folder.
* Select Properties. The Program Item Properties dialog box will
open up.
* Enter the startup options after the executable’s name in the Target
field of the shortcut.

@ Use menus to set options. After setting the options in the menus and

selecting the appropriate options in the Save Opti ons dialog on exit,
CrossView Pro saves the settings in the file xvw.ini for future debug
sessions.

To start up CrossView Pro type:

xf w6

4-6

Chapter 4

When your execution environment itself has a human-oriented ASCII
interface, you can use transparency mode with the =T option. In
transparency mode you can configure the execution environment’s
memory. Check the Addendum, the hardware—specific section of this
manual. In—circuit emulators generally require you to map the address
space, allocating memory ranges to the execution environment and/or the
target system. Fortunately, this generally does not mean you need to learn
your emulator’s command set, just a rote sequence of startup commands.
When your CrossView Pro version does not support transparency mode,
you do not need to configure the memory, and the =T option is not
needed.

If your target system supports serial communication and if the target
system is connected to a port other than the default port (see the Overview
chapter to determine the default port for your host), you can use the -D
option to specify the port name. The default baud rate is 9600. You may
use the =D option to specify the baud rate if the execution environment is
not the same as the default. For example:

xfwrlé —D rs232, conk, 19200

instructs CrossView Pro to use the COM2 port at 19200 baud. See your
execution environment in the Addendum of this manual for specific
communication information.

When you specify a startup option in CrossView Pro, the option overrules
the corresponding value in the current xvw. i ni file.

There are many different options you can invoke when starting up
CrossView Pro. The listing below gives an overview of all startup options.

There are several startup options having to do with the recording and
playing back of CrossView Pro command files. See also chapter 9,
Command Recording & Playback.

Using CrossView Pro

Startup Option

Description

—a number
—b number
—C number

—C cpu

—dsc dsc

—-D device_type,optl1[,opt2]

—D rs232,port,speed

—D parallel,port

—-D tcp,host,port

Sets the maximum number of assertions (the
default is 100).

Sets the maximum number of code breakpoints
(the default is 200).

Sets the maximum number of instruction trace for
the trace buffer (the default is 32).

Forces CPU type selection. This option also
determines which register file (regcpu.dat) will be
used. This option overrules the CPU type
selection in both xvw. i ni and a target
configuration file.

Forces locator description file selection. The
default is mL6c. dsc.

Selects a device and specifies device specific

options, such as communication port and baud

rate. The allowed combinations for your execution

environment are described in the manual

addendum for that specific execution environment.
The following combinations are possible:

Select RS—232 communication.

port For PC this is COM1, COM2, COM3 or
COM4. A colon should not be added. For
UNIX this is the full path of the RS-232
device driver (e.g., / dev/ tty01). By
default CrossView Pro uses the first
RS-232 port.

speed This is the baud rate used for the specified
port. The default is 9600.

Select parallel communication.

port For PC this is LPT1 or LPT2. Do not add a
colon. For UNIX this is the full path of the
parallel device driver. By default CrossView
Pro uses the first parallel port.

Select TCP/IP communication. On UNIX the
standard TCP/IP implementation is used. On
MS-Windows the W NSOCK. DLL implementation
is used.

host The name of the host to be accessed via
TCP/IP.

port The port number on host to be accessed.

4-7

4-8

Chapter 4

Startup Option

Description

—D dev,device—file

—-D isa,io—port,address

—em macro[=def]

—f file
—G path

—L file

—n address

—p file
—P file

—r file
—R file

—S number

Use a UNIX device driver as communication
channel. For RS-232 devices use the —D rs232
option, described above.

device—file
The full path of the UNIX device file.

Select communication channel to an (E)ISA
interface card in the PC.
io—port
PC 1/0 port number or I/O channel used for
accessing the (E)ISA card.

address
The memory address used to access the
(E)ISA card.

Add macro for pre—processing the description file.
If def is not given (‘=" is omitted), "1’ is assumed.

Read command line options from file.
Specify startup directory for CrossView Pro.

Has CrossView Pro download the image of the
absolute object file.

Keeps a log of CrossView—to—target
communications in a file. Not available for all
execution environments.

Informs CrossView Pro that the program was
loaded into memory at an address other than zero.

Starts playing back commands from file.

Starts playing back commands from file with
commands single step.

Starts recording commands in file.
Starts recording screen output in file.

Sets the maximum number of special variables
(variables independent of the program that
CrossView Pro provides for your use). The default
is 26.

Using CrossView Pro

Startup Option

Description

—sd directory

—tcfg file

T [file]

Specifies the directories CrossView Pro should
search for source files. Relative paths are allowed.
When the Ncommand is used to load a new
symbol file, the current directory is set to the
directory containing the symbol file and CrossView
Pro now searches for source files relative to this
directory. Directories must be separated by
semicolons.

Specify a target configuration file. This overrules
the filename specified in xvw. i ni . See section

CrossView Pro Startup Settings in the Overview
chapter.

Starts CrossView in transparency mode if present;
if file is given, commands in file are sent to the
execution environment.

Table 4-1: CrossView Pro Startup Options

Most problems in starting up CrossView Pro for a debugging session stem
from improperly setting up the execution environment or from an
improper connection between the host computer and the execution
environment. Some execution environments require you to enter
transparency mode to set the execution environment for a debugging
session. Check the notes for your particular execution environment and
the Addendum of this manual.

Here are some other common problems:

* Specifying the wrong device name when invoking the debugger.

* Specifying a baud rate different from the one the execution
environment is configured to expect.

* Not supplying power to the execution environment or an attached

probe.

* Using the wrong kind of communication cable.

* Plugging the cable into an incorrect port. Some target machines

have several ports.

¢ Installation of a device driver or resident applications that use the
same communications port on the host system.

4-9

4-10 Chapter 4

* The port is already in use by another user or login process on some
UNIX hosts.

* Specifying no or an invalid cpu type with the —=C option.

Using CrossView Pro

The CrossView Pro desktop is the screen background in which all
windows, icons and dialog boxes appear (see figure 4-1). Under some
windowing systems, the desktop is itself a window that does not contain
all other CrossView Pro windows.

The desktop always has the Command Window opened or iconized.
Window Menu Bar

Local Status Bar Toolbar

#:CrossYiew Pro - demo_abs
File Edit Search

Bun Debug Data Options Miew Window Help

El = § & = ra r& 3 05 [2 "2 [z 2 4 o=

LOAD SRC HALT| sYNC RESET RESET START GO G0 STEP STEP ISTEP ISTEP "GO PET ™ GDng

M Source : demo

P

HALT SYNC START GO

[&7 =lfoaen

Y cw Q@ @ <% @ e

EXPR EXPR FUNC CHAR CHAR EOIT EDIT

leource lines leource line step j —

String: I j

Direction
if [inits
f Up ' Dawn ™ Case Sensitive

El[~ | 0.000%
B[~ | 0.000%

sum =

}

Help... |

Search I

Cancel |

[Command: ___ [CI[=][ER||: Stack

L L Minimized Window L Dialog Box Main Status Bar
Breakpoint Toggles Local Toolbar- Scroll Bar —

Figure 4-1: CrossView Pro Desktop

At the top of the desktop is the Menu Bar, which contains the menus
applicable to the currently active window. Below the menu bar is the main
Toolbar, from which you can execute commands to control program
execution as button functions. Except for the Command Window, the
desktop can contain other windows as well.

Along the bottom of the desktop there is a Main Status Bar. The status
bar displays messages such as short “help messages” when you move the
cursor over any button in any CrossView Pro window.

4-11

4-12

=

Chapter 4

Menus

Each CrossView Pro window may have a menu associated with it. Under
Microsoft Windows, the active window’s menu is displayed in the menu
bar of the desktop.

Depending on your execution environment some menu items are always
grayed. For example, Comrmuni cat i on Set up is grayed if your target is
an instruction set simulator.

Windows

&

The debugger supports two types of windows: primary windows and
dialog boxes. Dialog boxes are the windows you access from a primary
window. For the remainder of this manual, the term “window” denotes a
primary window.

This manual also uses the term pop-up window. A pop—up window is a
primary window that contains supplemental information such as on-line
help.

CrossView Pro Windows are used to display information and to get user
input through either buttons, commands typed in input fields, or menu
selections. Windows may be moved around the desktop, sized, or
iconized. All windows can be opened from the Vi ew menu. The section
on CrossView Pro Windows provides more detail about each window.

A window is considered opened even if it is iconized (under Microsoft
Windows, this is called minimized). A window is considered closed if it
does not exist on the desktop in any form.

Dialog Boxes

Certain menu items or push buttons may call up a dialog box to complete
an action, display information, or get additional data. No other actions can
be performed until the dialog box is closed.

Using CrossView Pro

Each window in CrossView Pro uses the same menu. The active window’s
menu appears in the CrossView Pro desktop menu bar as shown in figure
4-2. The method of selection of a menu item varies depending on the
windowing system being used. See your Windowing System’s manual for
details of how to do this.

Each window has a hidden Cont r ol menu, to manipulate the window, as
part of the menu bar. The menu item Control | C ose closes the
current window. Your implementation of the windowing system may have
additional features. See your documentation for further details.

‘e CrossView Pro - demo.abs

File Edit §earchgebug Data Options View ‘Window Help

El = - Shift+F5 [

LOAD src WAL Erogiam Reset ISTEP
——————— Target System Rezet
|
Bun F&
' Run to Cursor F7 % row q Q
HALT S¥NE) 0o EXPR EXPR FUNC CHAR
Return from Function -
47 - (| 0«141 = ¥ [|Source lines
Blaskaround fode ¥ JI
kit
f Step Mode 4
Step Inta Fa the loop counter
Step Qwer Fin Will be 17+suwm of factg
Animate pauple char wariahle
B [o-000x [- Sthworize Saurce —
[Eal| & Funche. .
El~ | 0.o00% . a)
v Coverage
@I | o.o00% |+ Frofiing
v Trace

Figure 4-2: CrossView Pro Menus

4-13

4-14

Chapter 4

On MS-Windows environments CrossView Pro supports local popup
menus. Local popup menus are invoked by clicking the right mouse
button. The menu contents is context sensitive. If the mouse pointer is on
top of the global (main) toolbar the Confi gure Tool bar dialog is
shown. If the mouse pointer is located in the MDI window (task window
or background) the View Menu is shown which allows you to open new
windows.

Within the Source Window four different local popup menus may appear.
If the cursor is within the display area of the window the Run Menu is
shown. The Run Menu contains commands associated with program
execution. If your cursor is at a breakpoint indicator, the New Code
Breakpoint or Edit Code Breakpoint dialog is shown. If the cursor is on a
code coverage marker then the local popup menu contains commands to
move the cursor to the next or previous block of (not)covered statements.
If your cursor is in the profile column you can change the format of the
timing figures. All other windows have their own local popup menu. The
exception to the rule is the command window which does not have a local
popup. See figure 4-3 for an example of the local popup menu of the
Memory Window.

Fill...
Single Fill...
Copy...
Search...

v Toolbar
Setup...

Figure 4-3: CrossView Pro Local Popup Menu (Memory Window)

Using CrossView Pro

Windows can be opened, made active, and closed.

Opening Windows

The Vi ew menu of the menu bar lists all windows. Selecting a window
name from this list causes the window to open up. Selecting a window
that is already open brings that window to the front.

Selecting a Window

At any one time, a particular window is active. Most operations act (by
default) on the active window. The active window is distinguished by
highlighting the title bar. Only one window may be active at a time. There
are several ways to select a window (that is, make a window active).

* Open the window from the Vi ew menu. If the window is already
open it will be brought to the front.

* Click on the window’s border (or on any portion of the window in
some windowing systems). It will be brought to the front.

* Select the window name from the W ndow menu. The window will
be made active and is brought to the front. (This option is available
under Microsoft Windows only).

Closing a Window

Windows are closed by selecting Control | C ose, Control | Quit
or Control | Del ete menu item, or by clicking a Cl ose button, as
shown in figure 4-4. Selecting this item from the Command Window will
exit CrossView Pro.

Control Menu — Close Button

HEestore B R,

Mave RETK @STK

Size _—
Minimize demo. o 47]

I aximize

Cloze Cul+F4

et Chr+FE |

Figure 4-4: Closing a Window

4-15

4-16

Chapter 4

The debugger uses dialog boxes to acquire information needed to
complete a requested operation. The debugger also uses dialog boxes to
display information. If a button or menu item displays an ellipsis (...) after
its name, then there is an associated dialog box or pop-up window.

For example, the dialog box shown in figure 4-5 displays a list of Virtual
I/O streams. This dialog box uses a scrollable list box, radio buttons to
display the state, edit fields to enter information and push buttons to allow
certain functions to be performed. Note that the Browse. .. button calls
another dialog box. The Hel p. .. button causes the help pop-up
window to be displayed.

List Box
Yirtual 1/0 Setup

Check Box Push Buttons

— Stream Mr—— Stream Configuration
[Input farmat
. 2 [+ 100-1ke Teminal =] Esne] |
: E Cdtput Format Help. .. |
; ? [V1100 Terminal LisCilt =]

v Stream Enabled

— Log System Callz
" Dizabled & Enors € All

—F55 roof directon

| =

Aszterizk [¥] means enabled stream

List Edit Field - - Radio Buttons

Figure 4-5: Dialog Box

Using CrossView Pro 4-17

You can customize CrossView Pro’s visual appearance and operative
parameters to best suit your debugging environment.

Changing the Visual Appearance

Windows can be organized by resizing and moving them around the
desktop (see your Windowing System’s manual for details on how to do
this). All windows under Microsoft Windows have an additional W ndow
menu item. This menu allows the user to arrange all opened windows in
a tiled or cascaded format. In the tiled format, selected by W ndow |

Ti | e, all windows become the same size. All windows are the visible, the
same size and do not overlap. In the cascaded format, selected by W ndow
Cascade, all open windows are changed to the same size and
overlapped in a cascade with a constant vertical and horizontal offset.
Iconized (minimized) windows can be automatically rearranged by
selecting W ndow | Arrange | cons from the Window menu.

See the section Using X Resources in the chapter Software Installation for
details on changing the visual appearance of CrossView Pro under X
Windows.

Changing Operative Parameters

Operative parameters for CrossView Pro are adjusted by using the menu
items from the Opti ons menu, the Fil e | Communi cation Setup...
menu item and the Set up items of the Debug menu:

* Record, Pl ayback, and Log: Allow you to set command recording
and playback options.

e Tool box Setup, and Macro Definitions: Allow you to define
macros, and assign them to a push button in the Toolbox.

e Startup: Allows you to specify the source directories for
CrossView Pro, the execution environment and the CPU type. The
values are processed at CrossView Pro startup before executing
commands entered in the Command Window or before the target is
accessed as a result of opening a window. So, first edit this dialog
when you start CrossView Pro. If you have not loaded a symbol file
yet, you do not have to restart CrossView Pro.

4-18

Chapter 4

Initialization...: Allows you to specify the maximum
number of breakpoints, assertions, special variables, C-trace
instructions, command history lines, command output lines,
emulator output lines, simulated I/O lines. The values are processed
at CrossView Pro startup.

Deskt op Set up: Allows you to specify color settings for the
execution position in the Source Window and the colors used in the
Memory Window to show how a memory location has been
accessed by the application program. You can also specify font sizes
to be used in output windows.

Tool bar Set up: Allows you to configure the main toolbar to your
personal preferences.

Background Mode Set up: Allows you to specify wihich windows
to automatically refresh when running in background mode.

Conmmuni cati on Set up: Allows you to set communications
parameters.

Data Di splay Setup: Allows you to specify how CrossView Pro
displays data. This dialog also determines if the Expression
Evaluation dialog box must be bypassed or not.

Menmory W ndow Set up: Allows you to specify the mode and size
of the data and the number of data rows and columns to be shown
in the Memory Window. It also allows you to automaically refresh
the Memory Window and to display data coverage information.

Virtual |/O Setup: Allows you to specify the Virtual I/O
streams to be used in the Virtual I/O Windows. These windows are
used by File System Simulation (FSS).

Simul ated 1/ 0O Setup: Allows you to specify the simulated I/O
streams to be used in the Simulated I/O Windows.

Source W ndow Set up: Allows you to specify the step mode,
symbolic disassembly, automatically switching between source lines
and disassembly source to be displayed in the Source Window and
display code coverage information.

Regi ster W ndow Set up: Allows you to specify the registers that
appear in the Register Window.

Saving Changes on Exit

If you find yourself using a particular configuration, you may want to save
your configuration when you exit CrossView Pro:

Select the Fil e | Exit menu item or close the Command
Window.

Using CrossView Pro 4-19

* In the Save Options dialog that appears, select the options you want
to be saved for another debug session.

* Click on the Exi t button in the Save Options dialog.

CrossView Pro exits immediately. If you selected one or more items in the
Save Options dialog your settings are saved in the initialization file
XVW. i ni . This file is in the startup directory.

CrossView Pro communicates with you in a variety of ways. The
command window displays the results of commands. Important messages,
such as errors, appear in dialog boxes that pop up.

4-20

Chapter 4

The two prominent windows used in CrossView Pro are the Command
Window and the Source Window. From the Command Window you can
type CrossView Pro and emulator commands, and gain access to all other
windows. You can accomplish most global operations from either the
menu bar or the Command Window. Only from the Command Window
can you accomplish Single step playback. When you close the Command
Window, you exit CrossView Pro.

The Source Window focuses on the program being debugged. This
window controls most of the commonly-used execution operations, such
as breakpoints and searching functions.

You can open all CrossView Pro windows from the Vi ew menu by
selecting the name of the window. Selecting a window in this case brings
the window to front and makes it the active window. Available windows
are:

* Command Window supporting two modes: CrossView or
Emulator. Displays all CrossView Pro commands and responses or
Emulator commands and responses.

* Source Window: Controls the execution of the program and
displays the source file or disassembly.

* Trace Window: Displays the most recently executed lines.
¢ Stack Window: Displays the application’s stack trace.

* Register Window: Displays the current state of the processor’s
registers.

e Data Window: Displays the values of data that are being
monitored.

* Memory Window: Always you to display and modify target
memory.

* Simulated I/O Windows: Allow simulated I/O for an application.
* Kernel Windows: Display real-time kernel information.

Using CrossView Pro 4-21

Improving CrossView Pro Performance

CrossView Pro updates every window that is open, even if it is iconized
(minimized). Keeping a window up to date usually involves extra
communication with the emulator, slowing CrossView Pro down. For
instance, if the Register Window is open, CrossView Pro asks the emulator
to dump the contents of all displayed registers after each single step. Thus
it is a good idea to keep only those windows open that you are interested
in.

The Command Window allows you to:

e Enter CrossView Pro and emulator commands from the keyboard.
* View a history of CrossView Pro commands or emulator commands.

¢ View the result of CrossView Pro commands or emulator
commands.

* Execute playback files (in single step mode).

From the Vi ew menu you can specify if you want the Command Window
to be a CrossView Pro Command Window or an Emulator Command
Window. This way you can specify whether CrossView Pro interprets
commands or they go directly to the emulator.

Figure 4-6. shows the Command Window. You can type commands into
the command edit field (bottom field) or select them from the command
history list (middle field), edit and execute them. The command history
field displays previously entered commands. You can select and execute
one or more commands. The command history list provides you with a
clear, comfortable way to re-execute specific commands or sequences of
commands by preserving them in a scrollable list.

You can switch between the history list and the command edit field by
hitting the <Tab> key. Hitting the <Esc> key (escape) returns you to an
empty edit field.

The top field is the Command Output Window or the Emulator Output
Window, depending on the type of Command Window you choose. Each
command, echoed from the command edit field, appears with a > prefix.
CrossView Pro displays its response (or the emulator’s response if the
window is an Emulator Command Window) to the command immediately
following the command.

4-22 Chapter 4

=

CrossView Command CrossView Response Output Window

Command : CrozsY¥iew

* initwal ;I

initwval = 17
=

LEr I I I 4 e T

initwval

initval Execute Halt

Command Edit Field— Command History List —

Figure 4-6: CrossView Pro Command Window

The Command Window also has two push buttons that provide rapid
access to frequently used actions. The Execut e button executes the
current command (or sequence of commands if more than one command
is selected). Note that the <Ent er > or <Ret ur n> key is equivalent. Use
the Hal t button to interrupt commands executing in continuous mode, or
to stop the emulator.

The Command Window maintains a history of recently executed
commands. To re—perform previously executed commands simply
double-click on it or select the command(s) from the command history list
in the Command Window and press the Execut e button. By hitting the
<Tab> key, it is also possible to select one or more entries. Hitting <Tab>
or <Esc> will return you to the command edit field.

@ The maximum number of lines saved to the CrossView Pro command

buffer list is set during debugger startup. The default is 100 lines. To
change the default select the Options | Initialization... item
from the menu. This number can also be modified via a startup option.

Using CrossView Pro

The Source Window offers most of the debugging functions you will need

on a regular basis. It allows you to:

* View the source file (source lines, disassembly or both).
» Set and clear assertions (not in Toolbar).

* Set and clear breakpoints.

* Monitor and inspect variables.

* Search for strings, functions, lines, addresses.

* Control execution.

* Call functions (not in Toolbar) and evaluate expressions.
e View code coverage information.

* View profiling/timing information.

An example of the source window is shown in figure 4-7.

B Source : demo.c H=] E3
O rh & I ST % e O @ @ O G [wely S
HALT S$¥NC S$TART GO GO STEP STEP EXPR EXPR FUNC CHAR CHAR EDIT EDIT
|49 jIDH‘IJﬂB jlmain leourcelines leourcelinestep j
void main (woid)
i
int loopwar ; /% the loop counter i J
Loty sum; S% will be 17+4sum of factorials from 0 to 7 #/
char cvar; /% sample char wvariable w
ElW | 0.057% initwal = 17;
E[| 0.000% if (initwal > recordvar.a)
E[™ | 0. oo0%
- ;
4] | [
Breakpoint Coverage Profiling Current Status
Toggles Markers Execution Position Bar

Figure 4-7: CrossView Pro Source Window

You can specify the step mode, symbolic disassembly and source lines /

disassembly with the Source Window Setup dialog box (Debug | Source
W ndow Setup...)or with Run | Step Mde. Alteratively, you can use

the drop—down buttons in the Source Window’s status bar.

4-23

4-24 Chapter 4

=

@ The default step modes are:

Source lines Window: Source line step
Disassembly Window: Instruction step
Source and Disassembly Window: mode of previous window!

(assumes the step mode of the previous Source Window setting)

The location of the cursor is also the viewing position. The line number
and address of the viewing position, appears at the top-left position of the
Source Window. This does NOT represent the current execution position
($pc). The current execution position appears in reverse or blue color.
The cursor appears as a dotted line.

On MS-Windows the so—called "quick watch” feature is supported. When
you position the mouse cursor over a variable or a function, a bubble help
box appears showing the value of the variable or the type information of
the function respectively.

A green colored toggle shows that no breakpoint is set. A red colored
toggle indicates an installed breakpoint. An orange colored toggle
indicates an installed but disabled breakpoint. If code coverage is enabled,
coverage markers appear to the right of the breakpoint toggles. If a
checkmark appears next to a line, it has been executed. If no checkmark
appears next to a line, it has not been executed.

The Source Window provides a local Toolbar containing the following
buttons, nearly all of which are shortcuts (using selected text) to
operations that you can perform via the menu bar:

HALT Stop program or command
EYNC Synchronize source
Pk
ETART Restart program
GO Continue execution (same as F5)
Run to cursor (same as F7)

Using CrossView Pro 4-25

STEP Step (over function calls)

vz

STEP Step (into function calls)

%

EXPR Show selected source expression

e

EXPR Watch selected source expression

FUNC Find function

CHAR Repeat search down for string

CHAR Repeat search up for string

EDIT Edit current source file

EDIT Edit breakpoint at cursor
Display code coverage
Display profiling

You can toggle the appearance of this local toolbar by selecting the Vi ew
| Local Tool bars | Source menu item.

4-26 Chapter 4

=

Edit Source

To edit the current source file, which appears in the Source Window,
select Edit | Edit Source. or press the Edit current source
fil e button. On MS-Windows the Codewright editor will be called with
the filename and line number of the file that is currently in the debugger.
on UNIX systems the xvwedit program will be called with the filename
and line number of the file that is currently in the debugger. The editor
will be started and the file will be loaded.

The xvwedit program is a shell script. You can adapt it to your specific
requirements.

The Trace Window, shown in figure 4-8, allows you to:
» Display the most recently executed lines of code.

CrossView Pro automatically updates the Trace Window each time you halt
execution, as long as the window is open, allowing you to check the
progress and flow of your program throughout the debugging session.

The Trace Window is only supported if your execution environment
supports the trace facility.

Trace HLL M=] E3

-—-— Continuse —--- ﬂ
demo. c:mainfba: initwal = 17;

demo. comainfbs: if {(initwal » recordwvar.al
demo. cimainfe0: suam = 0O;

demo. cimainfcs: for {(loopwvar = 0; loopwvar

r
=

Figure 4-8: CrossView Pro Trace Window

Using CrossView Pro 4-27

The stack records the return addresses of all functions the application has
called, and CrossView Pro can use this information to reconstruct the path
to the current execution position. The Stack Window, shown in figure 4-9,
displays the function calls on the stack with the values of the parameters
passed to them in an easily accessible and understandable form.

The Stack Window can help you assess program execution and allows you
to view parameter values. The stack window allows you to:

* View the stack trace which includes information about function
names, parameter values, source line numbers and stack level.

* Easily switch to the call statement of a stack level by clicking on it
once.

* Set temporary and permanent breakpoints at any level of the stack,
by double-clicking on the desired level.

Q # % row

BF+ CAlLL +BF &3TK &3TK

0 mainf) [.%demo.c:47]

Figure 4-9: CrossView Pro Stack Window with Toolbar

The Stack Window provides a local Toolbar containing the following
buttons:

BP-+ Set stack breakpoint after function call point

CALL Find call site

4-28

Chapter 4

+BF Set stack breakpoint at function entry point
SETK Show variables in selected stack frame
CEhm . _

&5TK Watch variables in selected stack frame

You can toggle the appearance of this local toolbar by selecting the Vi ew
| Local Tool bars | Stack menu item.

Figure 4-10 shows the Register Window. This window allows you to view
and edit register contents.

C3P =0000 IF =1404 -
RO =1170 Rl =1348
Rz =84%55 R3 =FFFF
R4 =1548 B3 =0000
ko =FFFF R7 =FFFF
k3 =FFFF k3 =FFFF
R10 =FFFF k11l =FFFF —
R1z =0000 R13 =0000
R14 =0000 R15 =FFFF
DPFPO=0000 DFP1=0001 _:J

Figure 4-10: CrossView Pro Register Window

Note that the contents of the Register Window for your particular target
may be different from the one show in figure 4-10.

You can specify which register set definition appears in the Register
Window with the Register Window Setup dialog box (Debug |
Regi ster W ndow Setup...).

Using CrossView Pro 4-29

CrossView Pro supports multiple Register Windows. Register Windows
either have the title "Register” or "Register — register set name”. The
"Register” title indicates the default register set.

In-situ editing allows you to change the registers contents directly by
clicking on the corresponding cell.

The Data Window is shown in figure 4-11. This window allows you to
show the value of monitored expressions and variables.

The Data Window updates the values shown every time the program
stops, and after an o command.

It is possible to display both monitored and unmonitored data expressions
in the Data Window. CrossView Pro monitors and updates WATCH
expressions after every halt in execution, and marks them with the text
"WATCH” at the start of the display line in the Data Window. SHOW
expressions, on the other hand, are one-shot inspections of an
expression’s value, and CrossView Pro does not update them except by
direct user action. Initially, SHOW expressions appear as normal text until
they are no longer known to be correct, at which time they appear with
the word “OLD” at the start of the display line

‘e &

MHEW =& ITEM ITEM 3ET OoLD oLD

+ b =

0x1028 "Tasking™:
987654321 ;

color = blue;
} recordwar

0l
1}

Figure 4-11: CrossView Pro Data Window

4-30

Chapter 4

To inspect the value of global variables and data structures, double—click
on the variable name in the Source Window.

Depending on preferences you set in the Data Display Setup dialog, the
variable appears immediately in the Data Window, see figure 4-11, or the
Expression Evaluation dialog appears first.

In-situ editing allows you to change the contents of everything in this
window by clicking the value you want to change.

If you have set the Di spl ay addr esses check box in the Data Display
Setup dialog box the addresses of the variables are also shown.

Pointers, structures and arrays displayed in the data window have a
compact and expanded form. The compact form for a structure is just
<struct >, while the expanded form shows all the fields. The compact
form of a pointer is the value of the pointer, while the expanded form
shows the pointed—to object. Indicate the compact form by putting a '+ at
the start of the display. (i.e., the object is expandable), and indicate the
expanded form with (i.e., the object is contractible). Nesting is supported,
so you can expand structures within structures ad infinitum.

To expand a pointer, structure or an array, double—click on the '+ in the
Data Window

The Data Window provides a local Toolbar containing the following
buttons:

NEW Show/Watch new expression

Pyl

= Toggle watch attribute on selected item
rﬁ Delete selected item

ITEM Update selected item

ZET Reformat selected item

Using CrossView Pro 4-31

&

Delete old data items

(=]
-
[=]

LD Update old data items

2

You can toggle the appearance of this local toolbar by selecting the Vi ew
| Local Tool bars | Data menu item.

The auto-watch locals feature may be activated or deactivated. When
active, a selected Data Window becomes the “auto-watch” window, and
all local variables from the current top—of-stack frame appear in that Data
Window. The text “LOCAL” appears at the start of the display for variables
displayed in this manner. As the execution position changes, the
auto-watch window deletes and adds locals as necessary, so that the locals
on the current top—of stack frame always appear.

To see the value of the local variables of a function, Select Vi ew | Dat a
| Watch Local s W ndow from the menu.

CrossView Pro supports multiple Data Windows. Data Windows either
have the title "Data Window #n” or "All Local Variables”. The "All Local
Variables” title indicates the auto-watch window if it exists (as explained
above).

The Memory Window is shown in figure 4-12. This window allows you to
view and edit the target memory.

Depending on the setting of the Aut o Ref r esh check box in the Memory
Window Setup dialog, CrossView Pro updates the displayed values every
time the program is stopped or only updates the values by user request.
For example, by pressing the Ref resh nmenory wi ndow button located
on the toolbar.

4-32

Chapter 4

| I |

address + 0 +1

00 OxFa 0x00
0xz 0xD0 Oxla _I
Ox4d OxFa 0x00
G 0«04 0x00
0x5 OxFa 0x00
Oxa 0=08 0x00
O=ec 0=Fi | 0x00

=

Figure 4-12: CrossView Pro Memory Window

To edit the target memory, click on a memory cell and type a new value.
To display another memory region: click on an address cell and type a
new address. CrossView Pro accepts input in symbolic format, so you can
enter expressions instead of just values.

CrossView Pro supports multiple instances of the Memory Window. If your
target supports multiple memory spaces, the Memory Window supports
them all. Refer to the section about memory space keywords to become
familiar with the memory space keywords and associated syntax your
target system uses.

You can specify the way data appears in the Memory Window by opening
the Memory Window Setup dialog. Select Debug | Menory W ndow

Set up. .. to open this dialog. The memory contents can appear in many
formats including ASCII character, hexadecimal, decimal, signed, unsigned,
and floating point formats. You can specify the size of the memory
window. You specify the number of memory cells that appear within the
window. The number of cells is fixed in the sense that if you re-size the
window the number of cells does not change.

Using CrossView Pro 4-33

Besides the current value of memory locations, the Memory Window also
displays whether memory locations have been accessed during program
execution. This is called ’data coverage’. An application program may read
from, write to, or fetch an instruction from a memory location. Of course
all combinations may be legal. Although writing data to a memory location
from which an instruction has been fetched is suspicious. All types of
accesss, read, write, fetch or combinations of these, can be shown using
different foreground and background colors. The color combination used
to show "rwx” access are specified in the Deskt op Set up dialog. Change
the background color if instructions are fetched from a memory location,
and change the foreground color to show read and write access.

You can display data coverage information in the Memory Window by
clicking on the Di spl ay cover age button in the Memory Window or by
setting the Di spl ay Data Cover age check box in the Memory Window
Setup dialog.

The Memory Window has the ability to highlight memory cells of which
the contents have been changed. Click on the Hi ghl i ght changed

val ues button in the Memory Window to see the changed cells. With the
Set reference button you can enter a new reference point for
highlighting. All the cells that have been changed since that reference
point are highlighted.

The Memory Window provides a local Toolbar containing the following
buttons:

lﬁ Setup memory display

Fill memory

Single fill memory

Copy memory

Search memory

o % (4

4-34 Chapter 4

il Display data coverage

Highlight changed values

Set reference

Nz .
Ll Refresh memory window

You can toggle the appearance of this local toolbar by selecting the Vi ew
| Local Tool bars | Menory menu item.

Using CrossView Pro 4-35

The CrossView Pro Virtual I/O windows provide an interface to exchange
data with the application on the target. This I/O facility can be
implemented in various ways. Using standard stream I/O function calls like
printf() in your source, you can test I/O to and from the target system or
simulator.

The debugger supports up to eight separate Virtual I/O windows
simultaneously.

VII] Stream: 0 Ol x|
VIEI Stream: 1 =] E3

Figure 4-13: CrossView Pro Virtual I/O Windows

You can setup the virtual I/O streams with the Virtual I/O Setup dialog
box (Debug | Virtual 1/0O Setup...).

4-36

Chapter 4

The Simulated I/O Windows, shown in figure 4-14, let you observe and
simulate the input and output of your program before the hardware
peripherals are in place.

Using special function calls in your source, you can simulate I/O to and
from the target system. The debugger supports up to eight separate
Simulated I/O windows simultaneously.

S10 Stream: O =]
stdin-
Simulated Input Stream: 0 |
Enter Input:
ly
| oK I

S0 Stream: 1 mi=lE

Do wou want to ring the bell (¥ or n)?

Figure 4-14: CrossView Pro Simulated I/O Windows

You can setup the simulated I/O streams with the Simulated 1I/O Setup
dialog box (Debug | Simulated 1/0O Setup...).

Finally, two more windows appear in certain situations:

Help Window: Activated with function key F1 or when a Hel p button is
pressed inside a dialog.

Toolbox: This window contains user definable buttons.

Using CrossView Pro 4-37

All control operations can take place in any CrossView Pro Window. You
can select and save startup options. You can record and play back
playback files. You can define macros and assign them a button in the
toolbox (allowing you to configure up 16 buttons).

The Command Window echoes every command given to CrossView Pro.
CrossView Pro translates most button actions and menu selections into the
CrossView Pro keyboard command equivalents. The Command Window
echoes the equivalent commands just as if you had typed them there.

Actions in CrossView Pro are performed by using keyboard commands
typed into the Command Window, selecting a menu item, by clicking on a
push button and sometimes by direct manipulation of objects with the
mouse. Many actions can be accomplished several ways. For instance
there are three different ways to set a breakpoint. You can:

1. Use the line b command in the command entry field.
2. Click on a breakpoint toggle in the Source Window.

3. Select Debug | Breakpoints... menu item to open up the
Breakpoints dialog box.

There are three types of buttons available with CrossView Pro:

¢ Radio Buttons: These buttons are grouped together. You can only
select one button from a group at a time (just like a car radio
button). This type of button is commonly used to select a mode of
operation.

* Check Boxes: These are special buttons which you can turn on or
off by selecting them. If more than one check box is present, you
can select as many as you like.

4-38

Chapter 4

* Push Buttons: These buttons do something. They either produce
a CrossView Pro command or perform some action related to the
Windows interface. A special form of push buttons are the
Accelerator Buttons of the Toolbar. Some windows, such as the
Source Window and Data Window, have a local toolbar.

Several windows allow you to select text using the mouse. You can use
this text in a variety of ways.

Most windows operate on a line of information at a time. To select a line
of text, move the mouse pointer to the text and click. The entire line
appears highlighted indicating that it is selected (not in the Source
Window). You can select multiple lines by either not releasing the mouse
button and dragging the mouse pointer over several lines or by holding
down a modifier key and clicking on the new line, depending on the
windowing system that you use.

Other windows, such as the Source Window, allow you to select portions
of a line (such as a variable name). To select a portion of a line, drag the
mouse over the desired text while holding down the left mouse button.
Double—clicking text selects and monitors an expression.

Using CrossView Pro 4-39

CrossView Pro has an extensive on-line help system to aid you. CrossView
Pro uses a windowing system’s Help system. This Help system uses
pop—up windows for definitions and hypertext jumps to cross reference
different topics. Topics for Help cover all CrossView Pro Windows,
commands, and dialog boxes.

You can access it by one of several ways:

All dialog boxes have a Hel p button. Pressing this button brings you
directly to the subject matter related to the dialog box in a Help Pop-up
Window. Also, CrossView Pro has F1=Hel p on the menu bar
(MS-Windows only). For the X Windowing systems (Motif) the Fi | @ menu
contains a Hel p entry. Selecting this item opens up a Help Pop-up
Window containing information related to the window that called it.

CrossView Pro maps the F1 key to the help function. Pressing this key at
any time gives you access to the on-line help system.

The Help Pop—up Window is composed of text, definition boxes, and
jumps to other topics, as shown in figure 4-15.

¢ Text: Main body of the subject.

* Definition Boxes: Contain the definition for a word or phrase in
the main text body. Text with a broken underline has a definition
box associated with it. Clicking on this text causes the definition of
that term to appear in an informational dialog box.

e Jumps: A jump is a link to another subject area. Clicking on text
underlined with a solid line jumps you to the new subject.

4-40

=

Chapter 4

Jump Link Definition Box Link

File | Edit Bookmark Options Help
Lo tentsl Search | Back | Erint | FullText |§et8tarted|

> f|
Cmss\ﬂew@g
Source Window
The Source Window is in fact Crossiew's working windowe, The Source Window can
display source files in © source formiat, assembly format or intermixed C and assembly
format. Which format is displayed dgpends on which Source Window you choose from the

“iew menu. Besides displaying source files, it also provides facilities for easily contralling
the execution of your application, suph as:

Yiewing the various source flles that comprise your application
Running, halting, and steppipg your code.

Inspecting variables and evaluating expressions.

Start monitoring data
Performing various types of search operations.
Defining assertions.

Defining ¢
Performing e

d-line function calls.

Note:
Wyhen the Source Window displays assembly instructions and the autosrc switch
i on, the window will automatically switch to high level source when symbolic
debug infarmation is present at the current location. If you do not want the Source
Window to switch display format autornatically, you have to disable the Auto
Switch Src/Asm check box in the Source Window Setup dialog.

Figure 4-15: CrossView Pro Help Window

Help, as mentioned previously, is context sensitive. When you first enter
Help, you are at a topic related to the current window or dialog box. By
clicking on jump links, you can follow different paths. You can return to
your starting point by clicking the Back button or by using the Hi st ory
button and clicking on the node that you want to return to.

You can also use Help to browse different subjects. At any time in help,
you can click on the Cont ent s button. This displays a list of main
subjects. Alternatively, you can click the Sear ch button. A dialog box
appears that allows you to search for a subject string, or to select a subject
from a scrolling list. Clicking on the Show Topi ¢ button lists all topics
pertaining to that subject.

To save time, you can iconize the Help Window and maximize it when
necessary.

CONTROLLING
PROGRAM
EXECUTION

al TASKING [

d31dVHO

Controlling Program Execution

When you have the Source Window open and it displays a source file,
there are two points of reference to keep in mind: the execution position
and the viewing position.

The execution position refers to the line of source at the Program
Counter address. This line is always the next statement or instruction to be
executed. When you load a file into the Source Window, CrossView Pro
automatically displays the portion of the source code that contains the
execution position.

The viewing position (also called 'cursor’) is the line currently being
examined in the displayed source file. Since many Source Window
operations act on this line, you can think of the viewing position as the
‘current line’. For instance, if you set a breakpoint without specifying a line
number, CrossView Pro sets the breakpoint at the line marked by the
viewing position. Please note that it is the viewing position that appears to
the left of the Source Window (NOT the execution position!).

The execution position and the viewing position refer to the same line
when a source file is first loaded into the Source Window. You can then
change the viewing position, if you wish.

The execution position and the viewing position appear different to

distinguish them from the rest of the source code. The execution position
line appears in the execution position highlight colors, while the viewing
position appears as a broken-line frame, also called the carsor. Note that
a line containing a breakpoint appears in the breakpoint highlight colors.

A combination of execution position, cursor and breakpoint (all of which
are potentially active on the same line) appear accordingly.

5-3

5-4

Chapter 5

When a program is active the viewing position is always visible in the
Source Window. You can change the viewing position to move throughout
the source file. Usually, whenever the execution position changes, the
viewing position automatically follows suit. But you may easily change the
viewing position without affecting the execution position.

@? To change the viewing position use any of the following possibilities:

* Use the vertical scroll bar to move a line or a page at a time. The
view point stays on the same line until it is no longer visible. It
then stays on the first or last line of the display, depending on the
direction of scrolling.

¢ Click on the desired, unmarked source line.
* Select the Search | Find Line... menu item to specify to
which particular line you wish to move.

In the upper-left corner of the Source Window, there are two text fields.
These fields show the line number of the current viewing position and the
address of the first machine instruction for that line. CrossView Pro
updates the Li ne and Addr ess values each time the viewing position
changes.

You can change the viewing position to the first executable line of a
particular function with the € command. For instance:
e main

will make the first executable line of mai n() the current viewing position
and display it in the Source window. You may also use the stack depth as
an argument, if you place it before the e:

1le

This will change the viewing position to stack depth 1, that is, the line that
called the current function.

FUNCTION: Change the viewing position.

COMMAND: stack e
e function

Controlling Program Execution

To change the viewing position to a specified address, you can use the ei
command. This command is useful for viewing some code in the assembly
window, without changing the program counter, since the execution
position is not changed.

FUNCTION: Change the viewing position to address.
COMMAND: address ei

There may be times when you want to start or resume execution at a
different line than the one marked by the current execution position.

Exercise caution when changing the execution position. Often each line of
C source code compiles into several machine language instructions.
Moving the program counter to a new address in the middle of a series of
related assembly instructions is sometimes risky. Moreover, even though
you change the program counter, registers and variables may not have the
expected values if you bypass parts of the code.

In the Source Window you can change the execution position to the
viewing position with the menu entry Run | Junp to Cursor. This
menu entry is disabled in Source file window mode to prevent problems
by skidding pieces of C code which are required to be executed. See also
the g and gi commands below.

When the program halts, you can change the execution position with the g
command in the Command Window. The g command moves the
execution position, but does not continue the program. To resume
execution from your new execution position, use the C command.

Although risky, the g command does have its uses, especially in
conjunction with breakpoints to patch code. Refer to the Breakpoints and
Assertions chapter for more information.

For example, to change the execution position from the current line, 54, to
line 62, enter:

g 62

5-5

5-6

Chapter 5

When you resume execution in this program, it is from line 62 instead of
line 54.

FUNCTION: Change the execution position to a specified C source
line

COMMAND: g line number

You can also change the execution position to a specified address directly,
although the same warnings apply. To do so, use the gi command. For
instance:

0x800 gi

FUNCTION: Change the execution position to address.
COMMAND: address gi

Of course, moving the program counter (gi command) is even more
potentially reckless than using the g command. Use both with caution
especially when debugging a program which has instructions re-ordered
due to optimizations.

To determine the address of a line of source, use the P command:

80 P
80: (0x1486): sum = sum + 1;

The hexadecimal number in parentheses is the instruction address for line
80.

FUNCTION: Print a source line and its instruction address.

COMMAND: line_number P

Controlling Program Execution

&%

The viewing position is always visible in the Source Window when a
program is active. The execution position, however, can disappear from
view when you scroll through the program or load a new file. Use the
synchronize source commands to bring the execution position back into
view after scrolling or loading a new source file.

Each time you stop execution, the execution position and the viewing
position synchronize. The viewing position always moves to match the
execution position. To synchronize the positions manually:

Click on the Synchroni ze sour ce button in the Source Window or
select the Run | Synchroni ze Source menu item.

From the Command Window, use the L command.

The L Command

The L command is shorthand for 0 e. It synchronizes the viewing and the

execution positions, adjusting the viewing position if the two are different.

The L command never affects the execution position. The L command is
useful if you have changed your viewing position and do not remember
where your execution position is.

FUNCTION: Synchronize viewing and execution position.

COMMAND: L

5-7

5-8 Chapter 5

Using the mouse in the Source Window, you can direct the execution of
your source programs. Among your options are:

e Starting execution from the first instruction or from the current
execution position.

e Manually stopping execution whenever you want.

* Executing the program a single line at a time.

» Executing functions by calling them directly.

To restart a program from its first instruction:

@? Click on the Restart programbutton in the Source Window.

or:

e Select Run | Program Reset menu item.

e Select Run | Run menu item, or click on the Conti nue
execut i on button.

@ This is NOT a target system reset. Refer to the rst command for
information about side effects that may be introduced due to a target
system reset.

After restarting a program, you can stop execution only by a breakpoint,
an assertion or a halt operation from the user.

FUNCTION: Reset program; run program.
COMMAND: R

Controlling Program Execution

To stop or continue execution:

Click on the Hal t button in the Source Window to stop execution. Click
on the Conti nue executi on button to resume execution.

Select the Run | Hal t menu item to stop execution. Select the Run |
Run menu item to resume execution.

K

Use the C command or function key F5 to resume execution.

When you halt the program, all the active windows update automatically
to reflect the program’s current status. For instance, if you have any
expressions monitored in the Data Window, their current value appears.

Note that when you use any of the above methods to stop the program,
CrossView Pro halts at the machine instruction that was on when
interrupted. While this is a convenient way to stop the program, it is
hardly an accurate one — you may stop execution in the middle of a C
source statement.

To stop a program at a precise line of C source code, set a breakpoint. For
more about breakpoints see the Breakpoints and Assertions chapter.

When continuing, CrossView Pro resumes execution as if the program had
never stopped.

FUNCTION: Continue execution from the current execution position.

COMMAND: C

When the program stops, you can continue execution, or you can step
through it one line or instruction at a time. This is called single-step
execution.

5-10

Chapter 5

Single-stepping is a valuable tool for debugging your programs. The effect
is to watch your programs run in stop motion. You can observe the values
of variables, registers, and the stack at a precise point in a program’s
execution. You can catch many potential bugs by watching a program run
line by line.

When you single step, CrossView Pro normally executes one line of your
source and advances to the next sequential line of the program. If you
single step to a line that contains a function call, however, you have two
options: step into the function or step over the function call.

Source Single-Step Into

There are several methods you can use to single step into:

Click on the St ep | nt o button in the Source Window or select the Run
| Step Into menu item.

Press function key F8 or type the s command in the Command Window.
You have the option of setting the number of lines you want to execute.
For example, to execute 2 lines of the program, type: 2 s.

FUNCTION: Step through a program one source line at a time.
COMMAND: number s

Stepping Into Functions

&

Stepping into a function means that CrossView Pro enters the function and
executes its prologue machine instructions, halting at the first C statement.
When you reach the end of the function, CrossView Pro brings you back
to the line after the function call and continues with the flow of the
program. The debugger changes the source code file displayed in the
Source Window, if necessary.

If you accidentally step into a function that you meant to step over, you
can select the Run | Return from Functi on menu item to escape
quickly.

For example, suppose you are at line 59 of a file, which contains a call to
the function factori al ():

mai n#59: tabl e[| oopvar] = factorial (I oopvar)

Controlling Program Execution 5-11

By performing one St ep | nt 0 action, you can step into the source code
for fact ori al (). Your Execution and viewing position change to:

factorial #03: char locvar = ’'x’;
CrossView Pro shows you the current function and line number and the C
source code for the current execution position.

Source Single-Step Over

To step over a statement or a function call:

Click on the St ep Over button in the Source Window or select the Run
| Step Over menu item.

Press function key F10 or enter the S command in the Command Window.
You have the option of setting the number of lines you want the debugger
to execute. For example, to execute three lines of source, single stepping
over functions, enter: 3 S.

FUNCTION: Single step, but treat function calls as single statements.
COMMAND: number S

Stepping over Functions

Stepping over a function means that CrossView Pro treats function calls as
a single statements and advances to the next line in the source. This is a
useful operation if a function has already been debugged or if you do not
want to take the time to step through a function line by line.

For example, suppose you reach line 59 in deno. ¢, which calls the
function f act ori al (), as in the example above. If you give a St ep

Over command, the execution position moves to line 60 of the source
code in the mai n() function immediately, without entering the source
code for factori al (). CrossView Pro has executed the function call as a
single statement.

5-12

Chapter 5

If you try to step over a function that contains a breakpoint or that calls
another function with a breakpoint, CrossView Pro halts at that breakpoint.
Once execution stops, the step over command is complete. Therefore, if
you resume execution by clicking on the Run button or with the C
command, you do not regain control at the entrance to the function with
the breakpoint. You can either single step through the rest of the function,
or select the Run | Return from Functi on menu item to return to the
line after the point of entry.

While single stepping through code at the source level is informative, you
might need a lower level approach. CrossView Pro can step through a
program at the assembly language instruction level.

While more time—consuming than a source level step—through, an
instruction level step-through allows you to examine how your code has
been compiled. As you advance through the assembly instructions, notice
how CrossView Pro translates data addresses to variable names, and
correlates branch addresses to points in the source code. This makes it
much easier to follow the source at the instruction level.

@ The default step modes are:

Source lines Window: Source line step
Disassembly Window: Instruction step
Source and Disassembly Window: mode of previous window!

(assumes the step mode of the previous Source Window setting)

@? Mouse and menu actions:

e The Step Intoand Step Over buttons, and Run | Step Over
and Run | Step I nto menus can be set to step by instructions by
selecting Run | Step Mode | Instruction step from the
menu bar.

* To change back to stepping by source lines, select Run | Step
Mbde | Source line step.
* Another way to set the step mode is to select the Source |ine

step or I nstructi on step radio button in the Debug |
Sour ce W ndow Set up dialog box.

Controlling Program Execution

&

To control this function from the Command Window, use the Si and si
commands. The Si and the si commands are analogous to the S and s
commands, Si will treat function calls (more precisely, jump to subroutine
instructions) as single statements, while si will enter the function.

FUNCTION: Single step at instruction level. Step into functions.
COMMAND: number si

FUNCTION: Single step at instruction level. Step over functions.

COMMAND: number Si

As an example of stepping through instruction level code, restart the
program. Then select Run | Step Mbde | Instruction Step. Once
it stops at the breakpoint you installed, advance execution one assembly
language instruction at a time by using the Step Over and Step Into
buttons. Or give the Si or si commands.

CrossView Pro will display disassembly of the next machine instruction
that forms part of the C code in the Command Output Window:

mai n#47+0x4: disassembled instruction

Different types of targets, of course, have different assembly code, so
debugging at the assembly level is hardware dependent.

Notice that a single C statement is usually compiled into several,
sometimes many, machine instructions.

CrossView Pro supports debugging on machine instruction level using the
Intermixed or Assembly mode of the Source Window.

5-13

5-14

Chapter 5

If you stop the program in a module without debug symbols, then an S or
s command attempts to step to a module with symbols. CrossView Pro
does this by searching the run-time stack for a return address in a module
with symbols, then setting a temporary breakpoint there, and running. This
process relies on two assumptions: that the stack layout is uniform, and
that each function eventually returns. In the unlikely event that these
assumptions are violated, the program may run away when you attempt to
single step.

CrossView Pro can search for addresses and functions in the entire
application and for line numbers, and strings in the current source file. A
string search starts from the current viewing position and "wraps around”
the end (or begin) of the current source file. The string search ends when
a matching string is found or when it returns to the starting point.

There are several ways to initiate a search for a function:

@? Using the mouse:

* Open up the Browse Function dialog box by clicking on the Fi nd
Funct i on accelerator button or by selecting the Sear ch |
Browse Function... menu item. Type in the name of the
function, select a function name from the drop—down history list or
click on the Br owse button to select the function name.

e Alternatively, you can highlight the name of the function in the
source code by clicking and dragging the mouse. To search for the
highlighted function name, click on the Fi nd Functi on
accelerator button.

* Selecting a function in the Stack Window shows the line that called
it.

From the Command Window, you can either specify e followed by the
function name, or a stack position followed by e. For example:

Controlling Program Execution

e main Find the function main().
1le Find the line that called the current function.

CrossView Pro searches through all the relevant source code files to find
the one containing the body of the function. The part of the file containing
the function appears in the Source Window.

CrossView Pro allows you to search for a particular string in the current
source file. CrossView Pro searches the Source Window from the current
viewing position. If it finds the string, it moves the viewing position to the
corresponding line. This does not affect the execution position.

To search for a string:

Open the Search String dialog box by clicking on the Repeat search
down or Repeat search up accelerator buttons, or selecting the Sear ch
| Search String... menu item. Enter the string to search for in the
box or select one from the drop—down history list. You can turn case
sensitivity on or off by clicking on the Case Sensi tive check box.

Alternatively, you can highlight the string to search for in the source code,
by clicking and dragging the mouse. To search for the highlighted string,
click on either the Repeat search up or Repeat search down
accelerator button.

In the Command Window, use the / or ? commands. The / command
searches forwards and the ? command searches backwards. For example,
to find the string i ni t val , enter:

linitval Search forward for the string "initval”

CrossView Pro’s searches "wrap around” beyond the top or bottom of the
file if necessary.

FUNCTION: Search forward for a string.
COMMAND: / String

5-15

5-16 Chapter 5

=

FUNCTION: Search backward for a string.
COMMAND: ? string

If no string is supplied to the / or ? command, or if you hit carriage return,
or press the function key F3 or select the Search | Search Next
String menu item, CrossView Pro searches again for the last string
requested.

As mentioned earlier in the Changing the Viewing Position section, you
can use the scroll bar to scroll through the source code or use the arrow
keys or the + and - keys. To find a specific line, you can use one of
several methods:

@? Select the Search | Find Line... menu item to open the Find Line
dialog box.

After you enter a line number (or select one from the history list) in this
dialog box and click on the Fi nd button, CrossView Pro will change the
viewing position to the indicated line number. At the first use, the Find
Line dialog box contains no line number, but on subsequent invocations it
will show the line number you entered before.

Enter the line number on the command line.

ACCESSING CODE
AND DATA

al TASKING [

d31dVHO

Accessing Code and Data 6-3

This chapter discusses topics related to viewing and editing the variables
in your source program and execution environment, including accessing
variables and registers, viewing and modifying the data space, using
monitors, viewing the source file, and disassembling code.

This section describes how to view and edit your program variables using
the debugger. You can monitor data so that every time you stop the
program, CrossView Pro updates the current value.

The Data Window displays the values of variables and expressions. As
long as the this window is open, CrossView Pro automatically updates the
display for each monitored variable and expression each time the program
stops.

@ Uninitialized variables will not have meaningful values when you first start

the debugger, since your program’s startup code has not been executed.
Also note that global data is initialized at load time. Re-running a
program may produce unexpected results. To guarantee that global data is
initialized properly, download the program again.

You may view variable values, and change them, from the Source Window
and the Command Window. CrossView Pro returns the variable in the
format var_name = value in the Command Window.

It is possible to display both monitored and unmonitored expressions in
the Data Window. After every halt in execution, CrossView Pro updates
monitored expressions. Unmonitored expressions are just one-shot
inspections of the expressions value. Refer to section 4.6, CrossView Pro
Windows for a detailed description of the Data Window.

6-4

=

Chapter 6

To show the contents of a variable or to show the type information of
a function:

Position the mouse cursor over a variable or a function in the Source
Window. A bubble help box appears showing the value of the variable or
the type information of the function, respectively.

To evaluate a simple expression:

Double—click on a variable in the Source window. The result of the
expression is shown in the Data Window. Alternatively, depending on the
preferences you set in the Data Display Setup dialog, the expression
appears in the Evaluate Expression dialog. Select the WAt ch or Show
button to display the result of the expression in the Data Window. Select
the Eval uat e button to display the result of the expression in the output
field of the Evaluate Expression dialog.

To evaluate a complex expression:

Select Data | Eval uate Expression... from the menu and type in
any C expression in the Evaluate Expression dialog box. Optionally select
a format code. Click the Eval uat e button.

Type the expression into the command edit field of the Command
Window followed by a return or press the Execut e button.

For example, to find the value of i ni t val in denp. ¢ type:
i nitval
and CrossView Pro will display:

initval = 17

FUNCTION: Display the value of a variable.
COMMAND: variable’s_name

@ For variables having the same name as an CrossView Pro command, use
/' n as format style code.

Accessing Code and Data

@ Any expression that can be typed into the Command Window can also be

typed in the Expr essi on field of the Expression Evaluation dialog box.
Throughout this discussion, expressions can be typed in either location,
depending on what is convenient.

Viewing Structures
You can also view structures.

By using any of the methods described above, you can print out the entire
structure. For example:

recordvar

and CrossView Pro prints out the structure of r ecor dvar and values of
recordvar’s fields in correct C notation:

recordvar = struct rec_s {

a = -1;
b = 0x1028 " TASKI NG';
c = 987654321;

col or = bl ue;
} recordvar

Displaying Individual Fields

Similarly, you can instruct the debugger to print the value of an individual
field.

In the Source Window, highlight r ecor dvar . col or and press the Show
sel ect ed source expression button. Or, in the Expr essi on edit
field of the Expr essi on Eval uati on dialog box or in the Command
Window, type the structure name followed by a period and the field
name. For instance, to see the field col or for the structure r ecor dvar,
enter:

recor dvar . col or Command
color = blue Output

Note that CrossView Pro returns the value in the form field name = value.
CrossView Pro also displays enumerated types correctly.

@ Variables will not have meaningful values when you first start CrossView
Pro, since your program’s startup code has not been executed.

6-6 Chapter 6

=

Displaying the Address of an Array

If you enter the name of an array in the Expr essi on Eval uati on dialog
box or in the Command Window, the debugger returns its address. For
instance, to find the address for the array table, select t abl e from the
browse list in the dialog box or type the name in the Command Window:

tabl e Command
tabl e = 0x200 Output

Note that CrossView Pro returns the address in the form array name =
address.

The debugger can also display the address and value of an individual
element of an array. Enter the name of the array and the number of the
element in brackets. For instance, to find the address and value of the
third element of array table, enter:

tabl e[3] Command
0x20C = 0 Output

Note that CrossView Pro returns the information in the form address =
value.

Displaying Character Pointers and Character Arrays

The following piece of C code can be accessed in CrossView Pro using the
string format codes:

char text[] = "Sanple\n”;

char *ptext = text;

t ext What is the address of this char array
text = 0x8200

text/a Print it as a string

text = "Sanpl erJd”

pt ext What is the contents of this pointer
string = 0x8200

ptext/s Print it as a string
string = " Sanpl erJ”

&pt ext Where does ptext itself reside
0x8210

Accessing Code and Data

Sizing Structures
With structured variables, it is especially useful to know the size of a
variable.

In the Command Window, you can determine the size of a variable with
the si zeof () function. For instance, to determine the size of the structure
recor dvar, enter:

si zeof (recordvar)
24

With CrossView Pro, you can not only view your variables, but change
them. This function allows you to easily test your code by single-stepping
through the program and assigning sample values to your variables. For
instance, to set the variable i ni t val to 100, enter:

i ni tval =100
and CrossView Pro confirms i ni t val ’s new value:
initval = 100

Note that CrossView Pro returns the values of variables with the syntax:
var_name = value, with any right-hand side expression evaluated to a
single value.

Changing variables in the Data Window

@? To change a variable in the Data Window, follow these steps:
* In the Data Window, double—click on the variable you wish to edit.
In-situ editing will be activated.
* Specify the new value in the edit control and hit the Ent er key.
When in-situ editing is active, you can use the Tab key to move the edit

field to the next variable value or use the Shi ft +Tab key combination to
move the edit control to the previous variable.

6-8 Chapter 6

=

Assigning Structures

CrossView Pro also allows you to assign whole structures to one another.

You can use a simple equation to assign the structures. For instance, to
assign st atrec to recordvar, enter:

statrec = recordvar

CrossView Pro’s windows contain a great deal of information about the
current debugging session. Occasionally, however, you have a few closed
windows, or wish the information to appear in the Command window (for
instance, when you are recording output). Using the 1 (list) command, you
can find out all sorts of things about the current state of the debugger and
have the information appear in the Command window.

Arguments of the | Command

a assertions k kernel state data

b breakpoints m memory map (of application code sections)
d directory p procedures (functions)

f files (modules) r registers

g globals s special variables

For configurations that support real-time kernels the 1 k command can
have additional arguments. See the description of the 1 command in the
Command Reference for details.

You may for example view the contents of the registers:
I r

Or the list of procedures (that is, functions):
I p

a complete list of global variables:

I g

Accessing Code and Data

The 1 f command (list files) also shows the address where CrossView Pro
placed the first procedure in the module. If the module is a data module
then the address reflects the first item’s placement.

With all of these 1 commands you can specify a string:
| g record

and CrossView Pro searches the globals for a match with the same initial
characters; in this case global variables that begin with r ecor d.

6-9

6-10

Chapter 6

CrossView Pro expressions use standard C syntax, semantics, and allow
special variables. You can calculate and show the values of expressions in
CrossView Pro by using a variety of methods:

It is possible to display both monitored and unmonitored expressions in
the Data Window. CrossView Pro updates monitored expressions after
every halt in execution. Unmonitored expressions are just one-shot
inspections of the expressions value. Refer to section 4.6, CrossView Pro
Windows for a detailed description of the Data Window.

To evaluate a simple expression:

Double—click on a variable in the Source window. The result of the
expression appears in the data window. Alternatively, depending on the
preferences you set in the Data Display Setup dialog, the expression
appears in the Evaluate Expression dialog. Select the WAt ch or Show
button to display the result of the expression in the Data Window. Select
the Eval uat e button to display the result of the expression in the output
field of the Evaluate Expression dialog.

To evaluate a complex expression:

Select Data | Eval uate Expression... from the menu and type in
any C expression in the Evaluate Expression dialog box. Optionally select
a format code. Click the Eval uat e button.

CrossView Pro calculates the result and displays the value in the
appropriate format. For details about expression formats see the section
Formatting Expressions in the chapter CrossView Pro Command Language.

Type the expression in the Command Window.

Expressions can contain variable names as arguments. For instance, if the
variable i ni t val has a value of 17 and you enter:

initval * 2
CrossView Pro displays:

34

Accessing Code and Data 6-11

The expression can contain names of variables, constants, function calls
with parameters, and so forth; anything that you can write directly at the
Command Window, you can use in the Evaluate Expression dialog box.
For more information on expressions and the CrossView Pro command
language, refer to the section CrossView Pro Expressions in the Command
Language chapter.

The Dot Operand

Using the dot shorthand ”.” can save you some typing. The dot stands for
the last value CrossView Pro displayed. For instance:

i nitval
initval = 17

Now you can use the value 17 in another expression by typing:
Y2
34

The value is the result of the new expression.

Naturally, using the dot operand saves you from retyping complex
expressions.

CrossView Pro allows you to monitor any variable or expression.
Monitoring means that the debugger evaluates a particular expression and
displays the result each time the program stops. If you are in window
mode, CrossView Pro displays the values of the monitored variables and
expressions in the Data window.

Monitor Set Up

To set up a monitor you can:

Select the Data | Eval uate Expression... menu item or
double—click on a variable in the Source Window, or click on the Wat ch
sel ect ed source expression accelerator button to view the
Expression Evaluation dialog box. From this dialog box, you can enter an
expression and monitor (watch) its value in the Data Window. You can
skip the Expression Evaluation dialog if you activate the Bypass Di al og
check box in the Data Display Setup dialog.

6-12

&

Chapter 6

Alternatively, click on the Show Wat ch new expr essi on accelerator
button from the Data Window.

The Data Window must be open to display the result. Otherwise
CrossView Pro does not monitor the expression. Therefore, CrossView Pro
opens the Data Window automatically if you give a Show' Wt ch
expressi on command.

Type the m expression command in the Command Window.
To place the variable i ni t val in the Data window type:
m i ni tval

i ni tval remains in the Data window. You may run the program, step
through it, and the display updates continually. Even if you are not in
window mode, CrossView Pro still displays the value of i ni t val after
every CrossView command.

FUNCTION: Monitor an expression or variable.

COMMAND: m expression

Similarly, if you want twice the value of i ni t val you could type:
minitval *2
And the expression i ni t val *2 is monitored.

Monitored expressions are evaluated exactly as if you had typed them in
from the command line; therefore, if you are monitoring a variable, say R,
identical to an CrossView Pro command, use the / n format, in this
example R/ n.

Momitor Delete

To remove a monitored expression you can:

Select the item in the Data Window and click on the Del et e sel ect ed
i t emaccelerator button from the Data Window, or select Dat a |
Delete | Item

Selecting Data | Delete | Al will remove all expressions from the
Data Window.

Accessing Code and Data

Type the number m d command in the Command Window.

To remove i ni tval from your Data Window #1, type the number of the
expression (first item of the Data Window has number 0) and m d
(monitor delete):

0Omd

and CrossView Pro removes i ni tval (in this case, assuming it is the first
variable listed in the window) from the Data Window.

FUNCTION: Remove an expression from the Data Window
COMMAND: number m d

Since local variables have no meaning beyond their range, CrossView Pro
issues error messages if you try to evaluate local variables beyond their
scope. Some variables also become invisible when the program call
another function. For instance, if you are in mai n() , monitoring sum and
mai n() calls factorial (), the unqualified name sumis no longer
visible inside f act ori al (). You can get around this problem, however,
by monitoring nmai n#suminstead.

When you display a particular variable, CrossView Pro displays it in the
format the symbolic debug information defines for it. You may, however,
easily specify another format using dialogues or keyboard commands. See
the section Formatting Expressions in the chapter CrossView Pro
Command Language.

Examples

To print the value of i ni tval in hexadecimal format, enter
i nitval/x

Be sure not to confuse CrossView Pro format codes with C character
codes. CrossView Pro uses a / (forward slash) not a \ (backward slash).

6-13

6-14

Chapter 6

Don’t worry about trying to memorize the list, you probably won’t have
occasion to use all these formats. Notice, however, that the / t format code
give information about a particular value. For instance, if you wanted to
find out what the type of i ni tval is, type:

initval/t
gl obal long initval

You can also take more low-level actions, such as finding out which
function contains the hexadecimal address 0x100.

0x100/ P
mai n

CrossView Pro tells you that address 0x100 is in the function nai n() .

CrossView Pro supports several methods to display memory contents. The
Memory Window provides a very user—friendly yet powerful way to
display the raw contents of the target memory.

Refer to section 4.6.8 for a description of the Memory Window.

Format codes also give you control over the number and size of multiple
pieces of data to display beginning at a particular address. The debugger
accepts format codes in the following form:

[count] style [size]

Count is the number of times to apply the format style style. Size indicates
the number of bytes to be formatted. Both count and size must be
numbers, although you may use c¢ (char), s (short), i (int), and 1 (long) as
shorthand for size. Legal integer format sizes are 1, 2, and 4; legal f | oat
format sizes are 4 and 8.

For instance:
i nitval/4xs

displays four, hexadecimal two-byte memory locations starting at the
address of i ni tval .

Accessing Code and Data 6-15

With format codes, you may view the contents of memory addresses on
the screen. For instance, to dump the contents of an absolute memory
address range, you must think of the address being a pointer. To show the
memory contents you use the C language indirection operator *. Example:

*0x4000/ 2x4
0x4000 = 0x00DB0208 0x5A055498

This command displays in hexadecimal two long words at memory
location 0x4000 and beyond. Instead of using the size specifier in the
display format, you can force the address to be a pointer to unsigned long
by casting the value:

*(unsi gned | ong *)0x4000/ 2x
0x4000 = 0x00DB0208 0x5A055498

To view the first four elements of the array t abl e from the deno. ¢
program, type:

t abl e/ 4d2
table = 1 1 2 6

This command displays in decimal the first four 2-byte values beginning at
the address of the array t abl e.

By typing the a space followed by a carriage return you can advance and
see the succeeding values in the same format:

[Enter]
0x11 = 24 120 720 5040

You may recognize that the array t abl e contains the factorials for the
integers 0 through 7.

Displaying memory in this way is particularly effective when you have
two—dimensional arrays. In this case you can display each row by
specifying the appropriate count. For instance, if nyarr is defined as i nt
nmyarr[5][8]:

nmyar r/ 8ds

displays the values for the eight elements in the first row of myar r. Typing
the carriage return repeatedly then display subsequent rows in the same
format.

6-16 Chapter 6

=

To scroll back in memory, type the * (caret) sign:

AN

0x9 =1 1 2 6

FUNCTION: Display value(s) at previous memory location.
COMMAND: ~

The f command lets you specify in which notation CrossView Pro displays
memory addresses. It takes the same arguments as the pri ntf () function
in C.

FUNCTION: Specify memory address notation.
COMMAND: f " printf-style-format” |

For instance, if you wish to display all memory addresses in octal, type:

f ” o/mﬂ
Now all addresses appear in octal. To return to the default hexadecimal,
type:

f ” O/M”

Using the f command without an argument also returns to hexadecimal
address display.

Accessing Code and Data 6-17

To show disassembled instructions:

Select the Vi ew | Source | Disassenbly menu item to open the
Disassembly Source Window.

ﬁ_@ Use the /i format switch to display disassembled code in the Command
Window.

By using an address and the /i format it is possible to display
disassembled code at any point. Suppose you wish to see how the
factorial () function has been compiled. One method would be to
examine the instructions displayed as you single step through a program at
the assembly language level. There is however a quicker method that does
not require you to execute the instructions. Type:

factorial/10i

This command displays the first ten assembly language instructions of
factorial (). Remember that in C a function’s name is also its address.
Thus f actori al is the address of the function f actori al ().

Note that CrossView Pro keeps track of variable and function names for
you in the disassembled code. You can also disassemble from the current
execution position by using the program counter:

$pc/ 5i

This command disassembles five assembly language instructions from the
current execution line.

You can display disassembled code for any function:
mai n#56/ 7i
disassembles seven instructions from line 56.

See also the ei command for displaying disassembly in a window.

Labels in Disassembly

@? If you desire labels in disassembly you can:

e Select the Debug | Source W ndow Setup... menu item to
open the Source Window Setup dialog box.

* Toggle the Synbol i ¢ di sassenbl y check box until it is set.

6-18

Chapter 6

If you desire labels in disassembly you can:

* Turn the $synbol s special variable "ON” by typing the following
command in the Command Window:

opt synbol s=on

To show intermixed source and disassembly:

Select the View | Source | Source and Di sassenbl y menu item to
open the Source and Disassembly Window.

Use the /| format switch to display intermixed C and disassembled code
in the Command Window.

The /1 format works exactly as the /i format, except CrossView Pro
intermixes the pseudo—-assembly listing with the original C source. This
feature is often helpful in displaying long portions of code.

Auto Switch between Source and Disassembly

To automatically switch between source and disassembly window
depending on the presence of symbols:

Select the Debug | Source W ndow Setup... menu item to open the
Source Window Setup dialog box.

Toggle the Show assenbly when SDI is m ssing check box until it
is set.

Turn the $aut osr ¢ special variable "ON” by typing the following
command in the Command Window:

opt autosrc=on

Accessing Code and Data 6-19

During debugging, you frequently find yourself lost or unable to pinpoint
your location through a series of function calls. The stack helps you with
the problem by recording the return addresses of all functions you have
passed through. CrossView Pro can use this information to reconstruct the
path to your current location.

The following diagram show the structure of the stack.

stack
(reentrant functions)
high memory A
parametern
parameter 1 frame size
stack return address
grows down - 1D -
. ($fb)
saved registers stack size
(always 0)
local 1
local n ,
temporary stack pointer
storage - SP adjust
low memory ($sp)

The stack saves the return addresses of functions, non-register automatic
and parameter variables of reentrant functions.

The stack is defined in the locator description file (*. dsc in directory

et ¢) with the keyword st ack, which results in a segment called st ack.
The description file tells lem16 to allocate the stack after all other data
segments and the heap.

6-20

Chapter 6

The stack size can be controlled with the keyword | engt h=si ze in the
description file. If you do not specify the stack size, the locator will
allocate the rest of the available ?memory for the stack, as done in the
startup code. You can use the locator defined labels __| ¢c_bs and

__l c_es in your application to retrieve the beginning and end address of
the stack. Please note that the locator will only allocate a stack segment if
the application refers to one of the locator defined symbols __| ¢_bs or
__l c_es. Remember that there must be enough space allocated for the
stack, which grows downwards.

Automatics and parameters are all accessed using the stack pointer register.
The stack pointer sp points to the last item pushed on the stack.

The stack frame also contains the frame base register (f b). The virtual
frame pointer points to the lower byte of the function’s return address. In
case of an _i nterrupt function f b points to PSWL. No on-chip register
is allocated to serve as frame pointer. It is the debuggers task to calculate
the virtual frame pointer for a function. All stack offsets in the debug info
are relative to this virtual frame pointer. To be able to access automatic
variables, the debugger needs to know two offsets, the stack size and the
stack pointer adjust.

The stack size is passed as a function constant by the compiler. The stack
size is always O (zero), because stack pointer adjust information is also
generated in the function prologue. The stack pointer adjust reflects the
number of pushes/pops done since the functions prologue.

Be aware that an interrupt function pushes both the PC and the current
value of the PSW on the stack.

The Stack Window shows the current contents of the stack after the
program has been stopped. This window helps you assess program
execution and allows you to view program values. You can also set
breakpoints for different stack levels from this window, as described in the
chapter Breakpoints and Assertions.

The Stack Window displays the following information for each stack level:

* The name of the function that was called
e All parameters specified to the function

Accessing Code and Data 6-21

¢ The line number in the source code from which the function was
called

Each stack level shown in the Stack Window is displayed with its level
number first. The levels are numbered sequentially from zero. That is, the
lowest/last pushed level in the function call graph is always assigned zero.

When you first see stack information, the lowest level appears against a
darker background than the other lines in the window. The marked line in
the Stack Window is the selected stack level, meaning that this line is
selected for window operations. You can change the selected stack level
by clicking on a different line.

Checking the Stack from the Command Window

The stack information is also accessible from the Command Window with
the t and T commands. The t command reconstructs the program’s calling
path. For instance, if you stepped into the function factori al () and
issue a t (trace) command:

t
CrossView Pro displays:

0 factorial (num=0) [denp. c: 105]
1 main() [deno.c:59]

The numbers to the left indicate the depth of each function on the stack.
The function at the zero stack level is your current function. CrossView
Pro tells you the line number where the function was called

({deno. c: line_nr]) and the value of the argument passed

(numrval ue). With this information it is fairly easy to reconstruct your
calling path, and see what parameter values your functions have received.

FUNCTION: Trace stack to reconstruct program’s calling path.
COMMAND: t

6-22 Chapter 6

There is a slight variation on the t command called the T command. The
two are identical, except that the T command also displays the local
variables for each function. For instance:

T
0 factorial (num=0) [derno. c: 105]
| ocvar = ' x
1 main() [denp. c: 59]
| oopvar = 0
sum= 0
cvar = "\xff’

FUNCTION: Trace stack and display local variables.
COMMAND: T

As mentioned in the previous section, CrossView Pro displays all
parameters of a function. You can view the local variables and parameters
of any single function active on the stack To do this:

@? Follow these steps:

* Open up the Expression Evaluation dialog box by clicking on the
Show WAt ch new expr essi on accelerator button from the
toolbar or selecting the Data | Eval uate Expression...
menu item.

» Click on the Browse. .. button.
In the Command Window, use the 1 (lowercase L) command.

For example, assuming you are still in factori al (), issue an 1
command:

| factoria
num = 0
| ocvar = 'x

)

Accessing Code and Data 6-23

You can accomplish the same task by specifying the stack depth instead of
a function name:

I O

You can directly view the contents of the stack. Although CrossView Pro
provides several high level methods of tracing functions on the stack, you
can view its contents directly with the frame pointer special variable, $f p.
For instance, the command:

$f p[0] / 4xb

displays the four one-byte values in hexadecimal to which the frame
pointer points. Notice that the stack frame is not really an array, but by
pretending it is, you can display the memory much as you did with the
t abl e array. Refer to the Accessing Variables section in this chapter for
more information.

6-24

Chapter 6

C level trace is not available for all execution environments. Please check
the Addendum for details.

The Trace Window displays the most recently executed lines of code each
time program execution stops. CrossView Pro automatically updates the
Trace Window each time execution halts, as long as the window is open.

For each executed line of code, the Trace Window displays:

* The name of the source file
* The name of the function
* The line number and corresponding source code

¢ The window shows all the code executed since the the last time the
program halted.

The Trace Window’s only function is to display the contents of the
emulator’s/ simulator’s trace buffer. The only operation you can perform in
this window that directly affects the contents is to set the maximum
number of instructions in the display.

To set the displaying limit, select the Options | Initialization...
menu item to view the Initialization dialog box. You can change the
maximum number of C-Trace machine instructions to fetch from the
execution environment’s trace buffer and the maximum number of trace
output lines in the Trace Window.

To view the most recently executed source statements from the Command
Window, use the ct command preceded by the number of machine
instructions you want to list. For example, to view the last source lines
corresponding to the last ten machine instructions, enter:

10 ct

FUNCTION: Display in the Command window the most recently
executed C statements.

COMMAND: number ct

Accessing Code and Data 6-25

To activate the source level trace window:

Select the View | Trace | Source Level menu item to view the
Trace Source Window.

You can view the last machine instructions executed with the ct i
command. For example:

15 ct i

displays the last 15 machine instructions in disassembled form in the
Command Window.

FUNCTION: Display the most recently executed machine
instructions.

COMMAND: number cti

To activate the instruction level trace window:

Select the View | Trace | Instruction Level menu item to view
the Trace Instructions Window.

You can view a raw trace with the ct r command. For example:
20 ct r

displays the last 20 trace frames in the Command Window.

FUNCTION: Display a raw trace.
COMMAND: number ctr

To activate the raw trace window:

Select the View | Trace | Rawmenu item to view the Trace Raw
Window.

6-26

Chapter 6

The Registers Window shows you the values of internal registers on your
target processor.

You can create multiple Register Windows and each Registers Window
contains the names and contents of all currently selected registers in the
selected register set definition. Values are displayed in hexadecimal format.
As long as the window is open, the debugger automatically updates the
values when the program stops.

To show the list of current registers and their contents in the Command
Window, enter the list registers command (1 r).

CrossView Pro also supplies the following special variables:

$sp stack pointer
$pc program counter
$f p current frame pointer

for all targets. For more information, refer to the Command Language
chapter.

You can configure which register set definition with which (and in which
order) registers must be displayed in the Register Window; using the
Debug | Regi ster W ndow Setup... menu item. Since you can have
more than one Register Window, the last active Register Window will be
configured when you select this menu item.

@) To configure a Register Window follow these steps:

e Select a Register Window.

* Select the Debug | Regi ster W ndow Setup... menu item to
view the Register Window Setup dialog box.

The dialog will show the active register set definition and the list of
available and selected registers for this particular register set
definition.

Accessing Code and Data

You can create a new register set definition by entering an unique
register set definition name in the Nane edit field and using the Add
button.

You can delete a register set definition by selecting an item from the
defined register set definition list and using the Del et e button.
Note that when you delete a register set definition, any Register
Window displaying a deleted register set will be closed.

You can select a register set definition by selecting an item from the
defined register set definition list. The list of available and selected
registers will be updated according to the configuration of the
selected regisetr set definition.

Once you have selected a register set definition, follow these steps to
configure this register set definition:

You can add registers to the list of selected registers by selecting
registers from the list of available registers by highlighting those
registers in the left list box and using the Add—>, Add Al | button
or by double—clicking on the register you want to add.

You can remove registers from the list of selected registers by
highlighting those registers in the right list box and using the
<-Rempve, Rm Al | button or by double—clicking on the register
you want to remove.

By using the Move Up and Move Down buttons you can change the
display order of the selected registers in the Register Window.

CrossView Pro automatically updates all Register Windows and places the
registers in each Register Window starting at the top-left position on one
line, wrapping to the next line if the next register does not fit.

CrossView Pro lets you change the contents of registers in a simple and
direct manner.

@? Follow these steps:

In the Register Window, click on the register value you wish to edit.
In-situ editing will be activated.

Specify the new value in the edit control and hit the Ent er key.

If the edited value is not acceptable, the debugger will emit an error
message and reset the old value.

6-27

6-28

Chapter 6

When in-situ editing is active, you can use the Tab key to move the edit
field to the next register value or use the Shi f t +Tab key combination to
move the edit control to the previous register. Use the Esc key to cancel
in—situ editing. When a register is not in view the contents of the Register
Window will be updated automatically.

You can enter any expression in the Registers Window.

Registers which can be edited symbolically have a special marker just
before the register name. You can click on this marker to activate the
Assign Register Symbolically dialog.

To access registers from the Command Window, use the $ designation and
the register name in the format:

$regi ster = val ue

BREAKPOINTS AND
ASSERTIONS

al TASKING [

d31dVHO

Breakpoints and Assertions

You can use breakpoints to stop program execution at specified locations
and return control to the user. An assertion is a number of statements
executed by the debugger each time the target executes a program line.
Use assertions to track down bugs, the cause of which is very hard to find.

Breakpoints halt program execution and return control to you. There are
two types of breakpoints, code and data. A code breakpoint halts the
program on a particular statement or instruction; a data breakpoint stops
the program when a particular memory address (or range of addresses) is
accessed. Data breakpoints are not available for all execution
environments, please check the Addendum.

A code breakpoint is set on a line in the code and makes the program
halt exactly before that line executes. When you define a code breakpoint,
you can include three elements:

* A count, which is the number of times the breakpoint must be
encountered before it stops the program (default is 1).

e A reset count, which is the value assigned to the count after the
program has stopped on a breakpoint (default is 1).

* A list of commands, which will be executed when the program hits
the breakpoint.

In the Source Window, a green colored toggle shows that no breakpoint is
set. A red colored toggle shows that a breakpoint is installed. An orange
colored toggle indicates an installed but disabled breakpoint. If coverage is
enabled, coverage markers are present to the right of the breakpoint
toggles. An executed line is marked and not executed lines are not
marked.

7-3

7-4 Chapter 7

-

B Source : demo.c M=l E3
A 4 02 Z % e O @ @ X B oo gy
HALT S$¥YNC START GO GO STEP STEP EXPR EXPR FUNC CHAR CHAR EDIT EDIT
|49 jIDH‘IJﬂB jlmain leourcelines leourcelinestep j
void main (woid)
i
int loopwar ; /% the loop counter i J
Loty sum; S% will be 17+4sum of factorials from 0 to 7 #/
char cvar; /% sample char wvariable wy
ElW | 0.057% initwal = 17;
E | 0.000% § if (initwal > recordvar.a)
E[™ | 0. oo0%
} -
i | H
Breakpoint Coverage Profiling Current Status
Toggles Markers Execution Position Bar

Figure 7-1: Code Breakpoint

Permanent/Temporary Code Breakpoints

Code breakpoints can be: permanent or temporary. A permanent
breakpoint exists until explicitly deleted. A temporary breakpoint only
exists until it stops the program once.

How CrossView Pro Sets Code Breakpoints

CrossView Pro depends on the symbol table for information about how
machine instructions map to lines of source. In general, the C compiler
issues line symbols at the start of each statement or line, whichever comes
first. This can lead to some surprising results. If you look carefully, you
can tell on which line CrossView Pro set the breakpoint, since CrossView
Pro tells you on which line the program stopped, a line that may be
different from the one you expected. To find out what happens if you
install a code breakpoint, use single stepping and watch the order in
which the source lines print out.

Multiple Statements on a Single Source Line

If you frequently include multiple statements on a single line in your
source code, you may have difficulties setting code breakpoints at certain
locations. For instance, suppose you have a source line containing:

a=0 b=1

Breakpoints and Assertions

Suppose you want to halt execution after the assignment to a and before
the one to b. A normal code breakpoint does not work here, because
execution stops at the first instruction of the source line. CrossView Pro
provides you with the capability of disassembling the code and inserting
breakpoints at the machine level. You can use the Assembly Source
Window or the Intermixed Source Window to spot the right location.

For more information on machine level breakpoints, see below.

Setting Breakpoints for Multi-line Statements

Code breakpoints have a special behavior for multiple-line statements,
such as a multiple-line i f. In an i f clause, a line symbol is generated at
the beginning of the list of conditions, and the other lines of the
conditions are generally associated with the first line of the clause. In an
i f—t hen—el se construct, the } character before the el se is associated
with the branch—-around to the end of the statement.

Consider the following example:

22: if ((a == b)&&
23: (¢ ==d)) {

24: X = 2;
25: } else {
26 y = 3;
27: '}

If you try to set a code breakpoint at line 23, CrossView Pro sets the
breakpoint on the preceding statement. If you try to set a breakpoint on
line 22, CrossView Pro highlights line 23. If you set a breakpoint on line
25, it hits after the assignment to X, but before the jump to line 27. Notice
that it is not hit unless the i f clause is true. In other words, a breakpoint
on line 25 is really a break on the }, not on the el se {. The same
behavior applies when the el se { statement is on the next source line.

Breakpoints and For Loops and While Loops

The code generated for a C ’for’ statement has three parts: the
initialization; the body of the loop; and the increment, test, and branch.
The initialization part and the increment, test, and branch are different
parts of code, but are both associated with the 'for’ statement itself. For
example consider:

99: for (i =0; i <9; i++) {

100: nyfunction(i);
101: }

7-6

Chapter 7

A breakpoint placed on line 99 will only be hit once, because it is hit at
the initialization code. The code for the increment, test, and branch is
associated with line 101, not 99, as you might expect.

The same applies to "while’ loops.

Breakpoints and Emulator Mode

Upon entering emulator mode, the debugger removes any breakpoints it
established in the target code. Removing breakpoints ensures that you can
access unmodified target code. When emulator mode ends, CrossView Pro
reestablishes breakpoints as necessary.

As long as you avoid the debugger’s own breakpoint trap, you may
establish arbitrary breakpoint conditions while in emulator mode. These
will not be removed by CrossView Pro and thus remain active, however,
after you exit emulator mode. If one of these breakpoints is hit during
normal debugging, CrossView Pro will issue a message such as:

St opped on breakpoi nt not set by debugger.

System Startup Code

It is possible (for example, by using the si command) to debug system
level startup code that initializes the target environment. You should not
use any global variables in CrossView Pro expressions until the data area
has been initialized. CrossView Pro assertions and other CrossView Pro
commands that examine C variables may deliver erroneous information or
cause memory access errors if used before the C environment is
established.

A data breakpoint instructs the execution environment to watch a
particular data address or address range and halt execution if the program
reads from or writes to that address. Data breakpoints are a powerful
feature for tracking the use, and possible misuse, of pointers, global
variables and memory mapped 1/O ports.

Data breakpoints are not available for all execution environments, please
check the Addendum.

When setting a data breakpoint, you can specify whether the breakpoint
stops the program when data is read from, written to, or both.

Breakpoints and Assertions

Data breakpoints are implemented in hardware. As a consequence, the
number of allowable data breakpoints is limited by your execution
environment. Refer to the environment-specific Addendum for more
information.

You may set a data breakpoint on a local variable, but only if the local
variable is active. CrossView Pro notifies you when program execution
passes beyond a local variable’s scope, and a breakpoint set on such a
variable deletes automatically. Data breakpoints for static variables do not
have this restriction.

Note that any local variables placed in registers cannot be tracked with
data breakpoints. In this case, you must use an assertion. Refer to the
Assertions section later in this chapter for more information.

To see a listing of all of the currently defined breakpoints:

Select the Debug | Breakpoi nts... menu item from the menu bar to
view the Breakpoints dialog box.

In the Command Window, enter the 1 b or B commands. The list appears
in the Command Window.

For example entering the B command can result in:

B
0 CODE nmain:59 count: 1: 1

The breakpoint’s number (used when deleting breakpoints) is listed first,
then its type: CODE for code breakpoints, READ for read data breakpoints,
WRI TE for write data breakpoints and READ & WRI TE for read and write
(sometimes called memory access) data breakpoints. Next, CrossView Pro
lists the function and line number, its count and reset count, and finally
any attached commands enclosed by < and >.

FUNCTION: View all breakpoints in the Command window.
COMMAND: B

7-8

Chapter 7

CrossView Pro decrements the count each time the breakpoint is hit.
When the breakpoint’s count reaches 0, CrossView Pro halts the program.

You may set a code or data breakpoint by:

¢ Using the mouse to open the Breakpoints dialog box.
* Using the mouse in the Source Window.

e Using the Stack Window.

* Using the command line in the Command Window.

When you set a new breakpoint using the mouse, without using the
Breakpoint dialog box, the type is always permanent, the count 1 and the
location corresponds to the current viewing position, if the Source
Window is open. These variables are described in more detail below.

Setting Breakpoints from the Menu

To set a code or data breakpoint from the menu, select the Debug |
Br eakpoi nts... menu item to view the Breakpoints dialog box. From
this dialog box, you have the option of defining either type of breakpoint.

Setting Breakpoints from the Source Window

You can set or remove a code breakpoint directly from the Source
Window by clicking on:

* The breakpoint toggle at the left side of the text in the Source
Window.

To set data breakpoints use the menu as described above.

Setting Breakpoints from the Stack Window

See the section Up-level Breakpoints later in this chapter.

Setting Breakpoints from the Command Window

You can set a code breakpoint from the Command Window using the b
command, and set a data breakpoint using the bd command.

Breakpoints and Assertions

When setting a code breakpoint, you may specify a line number, followed
by the b command and any commands you want to attach to the
breakpoint. For example, to set a code breakpoint at line 51 in your
source, enter:

51 b

If you do not specify a line number, a breakpoint will be set at the current
viewing position.

FUNCTION: Set a code breakpoint.
COMMAND: (line_number] b [commands)

To set a data breakpoint, you must specify an address, followed by the bd
command and any commands you want to attach to the breakpoint. There
are three types of data breakpoints:

* A data read breakpoint to see if a variable is read from (bd r
command)

* A data write breakpoint to watch if a variable is written to (bd w
command)

* A data read or write breakpoint to check if a variable is either read
from or written to (bd b command)

For example, to set a data breakpoint to watch the lowest byte in memory
of the global variable i ni t val , enter:

& nitval bd w

This command instructs CrossView Pro to set a data breakpoint that will
halt execution if the program writes to the lowest byte in memory of the
variable i ni t val . Note that you have to specify the variable’s address.

FUNCTION: Set a data read breakpoint.

COMMAND: address bd r commands

FUNCTION: Set a data write breakpoint.
COMMAND: address bd w commands

7-9

7-10 Chapter 7

FUNCTION: Set a data read and write breakpoint.
COMMAND: address bd b commands

You can also use data breakpoints to watch a contiguous range of
memory. As with standard data breakpoints, data breakpoints over a range
of addresses can be set to watch for reading, writing or both. To set a data
breakpoint of this type:

@? Using mouse and menu:

Click on the Debug | Breakpoi nts... menu item to open the
Breakpoints dialog box.

¢ Select the data breakpoint you want to edit and click on the
Edit... button.

* Alternatively, click on the New Dat a. .. button to define a new
data breakpoint.

¢ Set the Read check box or the Wit e check box or both.

* Specify an address range by entering a start address and an end
address.

From the Command Window:

* Type bD r to set a data read breakpoint over a range.

* Type bD w to set a data write breakpoint over a range.

e Type bD b to set a data breakpoint for both reading and writing
over a range.

For example, to ensure that the program stops if any of r ecor dvar’s
fields are either written to or read from:

& ecordvar bD b (int) \
&r ecor dvar +si zeof (recordvar) -1

FUNCTION: Set a data read breakpoint over a range of addresses.
COMMAND: address bD r address commands

Breakpoints and Assertions

FUNCTION: Set a data write breakpoint over a range of addresses.

COM

MAND: address bD w address commands

FUNCTION: Set a read and write breakpoint over a range of
addresses.
COMMAND: address bD b address commands

Code breakpoints can be: permanent or temporary. A breakpoint exists

until it

is manually deleted. A temporary breakpoint is automatically

removed by CrossView Pro after it halts the program once.

To set

@? Follow

a temporary breakpoint:

these steps:

Open the Source Window by selecting the Vi ew | Source |
Sour ce |ines menu item.

Open the Breakpoints dialog by selecting the Debug |
Br eakpoi nts... menu item.

Click on the New Code. . . button to open the Code Breakpoint
dialog box. The values displayed in the Location group box
correspond to the current viewing position if the Source Window is
open.

Select the Tenpor ary option in the Type field when defining or
editing a breakpoint in the Code Breakpoint dialog box.

Click on the Run button in the Source Window when the program
halts. This sets a temporary breakpoint at the viewing position and
the program starts again.

Alternatively, scroll to the line that you want to stop at and click
once (to establish a viewing position). Select Run | Run to

Cur sor menu item to continue execution until you reach this
temporary breakpoint.

7-11

7-12

=

Chapter 7

Type the C command followed by a line number in the Command
Window.

C 51

sets a temporary breakpoint at line 51 and resumes execution at the
current execution position.

CrossView Pro allows you to set a breakpoint’s count. The count defines
how many times you encounter the breakpoint before it halts the program.
For example, a breakpoint with a count of 3 means the program stops on
the third hit. Each time the breakpoint is hit, CrossView Pro decrements
the count. When the count reaches 0, CrossView Pro halts the program,
and resets the count to the value of the reset count. The default reset
count is 1.

To set a breakpoint’s count,

Follow these steps:

e Click on the Debug | Breakpoints... menu item to view the
Breakpoints dialog box.

* When you define or edit a code breakpoint from this box, you can
set the breakpoint’s count.

¢ Select one of the radio buttons Reset to 1 or Reset to Val ue.
From the Command Window, use the bc command.

For example, suppose you have a breakpoint set at line 59 of your source
code. The first time the program halts at line 59, enter:

bc 3 4

This command sets the breakpoint’s count to 3 and the reset count to 4.
You can observe a breakpoint’s current count and reset count when you
list the breakpoints in the Command Window with the 1 b command.

FUNCTION: Set the count and reset count for a breakpoint.
COMMAND: (breakpoint_number] bc [count] [reset_count|

Breakpoints and Assertions 7-13

You can delete a breakpoint directly from the source code, using the menu
items, or through the Command Window. To see a list of active
breakpoints, click on the Debug | Breakpoi nts... menu item or use
the 1 b command in the Command Window.

To delete a code breakpoint:

Click on the corresponding red breakpoint toggle at the left side of the
text in the Source Window. This deletes the code breakpoint and the
breakpoint toggle will be green.

@? You can also follow these steps:

¢ Select the Debug | Breakpoints... menu item to view the
Breakpoints dialog box. This box contains a delete function.

* Select the Breakpoint.
* Click the Del et e button.
* Leave the dialog by clicking on the OK button.

Use the breakpoint_number d command in the Command Window. You
need to know the breakpoint’s number for this command.

For example, to delete the breakpoint numbered 1, enter:

1d

FUNCTION: Delete a breakpoint.
COMMAND: breakpoint_number d

To clear all the breakpoints in the program, type:

D
Do you want to delete all breakpoints?y

FUNCTION: Delete all breakpoints.
COMMAND: D

7-14 Chapter 7

You can enable or disable a breakpoint directly from the source code,
using the menu items, or through the Command Window. To see a list of
active breakpoints, click on the Debug | Breakpoi nts... menu item
or use the 1 b command in the Command Window.

To enable or disable a code breakpoint:

@? Follow these steps:

* Select the Debug | Breakpoints... menu item to view the
Breakpoints dialog box. This box contains an edit function.

* Select the Breakpoint.
* Click the Edi t button.

¢ Check the Enabl ed check box to enable or unheck it to disable a
breakpoint.

* Leave the dialog by clicking on the OK button.

Use the breakpoint_number bena command or breakpoint_number bdis
command in the Command Window to enable or disable a breakpoint.
You need to know the breakpoint’s number for these commands.

For example, to disable the breakpoint numbered 1, enter:

1 bdis

FUNCTION: Disable a breakpoint.
COMMAND: breakpoint_number bdis

To enable the breakpoint numbered 1, enter:

1 bena

FUNCTION: Enable a breakpoint.
COMMAND: breakpoint_number bena

Breakpoints and Assertions

CrossView Pro allows you to attach commands to code and data
breakpoints. When execution halts at a breakpoint, CrossView Pro
executes the commands. Valid commands are almost any C statements and
CrossView Pro commands, giving you a very powerful tool for
manipulating a debugging session. To do this:

@? Follow these steps:

Open up the Breakpoints dialog by selecting the Debug |
Br eakpoi nts... menu item.

* Select an existing breakpoint and edit it by clicking on the Edi t. . .
button.

* Alternatively, click on the New Code. .. button or the New
Dat a. . button.

e Click on the Advanced >> button in the resulting dialog box. Note
that the advanced part of this dialog will be visible when there is
already a command defined.

* C(lick in the Commrand edit area.

* Type in the commands to be executed when the breakpoint is
reached.

@ You do not need to enclose a group of commands in brackets. However,
each command must be delimited by a semicolon.

New Code Breakpoint [x]
~Location
OF. |
T 2 |demu.:
Apply
— o |
Cancel
Function. o [main
Help.
Address: [masen
Task ID: [=l
¥ Enabled
~Typ Count
&' Permanent ' Resetio1
€ Temporary Reset o Valug: 1
Adyaricedby
~ Command Method
nitval; C € Hardware Breskpaint
| Softinate Breakanih

Figure 7-2: Breakpoint Commands

7-15

7-16

=

Chapter 7

ﬁ-@ Type the commands, enclosed in brackets and delimited by semicolons,

after the b command in the Command Window.

For instance, suppose you want a program to stop at a breakpoint, display
a variable’s value, and resume execution all in one stroke. To perform this
function, you need to attach the appropriate commands to a breakpoint.
Enter:

51 b {initval;C}

This places a breakpoint at line 51. When execution stops at the
breakpoint, CrossView Pro displays the value of i ni t val and immediately
resumes execution.

You can attach almost any valid CrossView Pro commands or C statement
to breakpoints. This latitude allows you to use breakpoints in powerful
ways. Later on you find out how breakpoints can create patches in your
program.

CrossView Pro does not check the syntax of attached commands until the
breakpoint is hit.

Data breakpoints accept command lists the same way as code breakpoints.
For instance, to set a data breakpoint that monitors the lowest byte in
memory of the value of i ni t val , enter:

& nitval bd w {initval; C

Every time the program writes to the lowest byte in memory of the
variable i ni t val , this breakpoint halts the program, prints the value of
i ni tval and continues execution.

For more information on the use of attached commands, see the Paiches
and Diagnostic Output and Statistical Information sections later in this
chapter.

You can pass standard C conditionals to a breakpoint.
For example:

63 b {if (initval==17) {C {initval/n}}

Breakpoints and Assertions 7-17

stops the program at line 63, checks to make sure the variable i ni t val is
17, and resumes execution if it is. If i ni t val ’s value does not equal 17,
CrossView Pro prints the value, and the program remains halted.

You can attach any currently defined macro to a breakpoint in a command
list. For example, suppose you define a macro named r g that checks the
value of the variable i ni t val . The command to define this macro is:

set rg "if (initval !=17) {initval/n} {Q"

If the value does not equal 17, the macro prints the value and halts the
program. Otherwise, execution continues.

You can include this macro at any point by attaching it to a breakpoint.
Entering:

51 b {rg}
63 b {rg}

this is a very efficient way to insert the macro with breakpoints at lines 51
and 63.

% For more information on macros, refer to Defining and Using Macros
chapter.

You can attach strings to a breakpoint’s command list. This feature is
useful for placing comments and reminders within your breakpoints.
Attaching a string to a breakpoint also eliminates the need for diagnostic
printf() statements in your compiled code.

For example, you could place a breakpoint on line 49 such as:
49 b {"Passed line 47\n"; C

Whenever the breakpoint on line 49 is hit, CrossView Pro prints the string
and continues execution.

7-18

Chapter 7

Whenever a breakpoint is hit, CrossView Pro displays in the Command
Window, the name of the function, line number and file in which the
breakpoint appears. You can suppress this information by setting
breakpoint “silent” mode. In the silent mode, the current location is not
printed out.

To set silent mode you can use the Q (for quiet) command as part of the
command attached to a breakpoint definition.

Pass the Q command to a breakpoint first. For example:
51 b {@Q initval = 5}

stops the program on line 51, but does not print 2 message stating where
the break occurred.

Breakpoints and Assertions

o)

CrossView Pro allows you to place breakpoints at individual machine
instructions.

When you define a new breakpoint, specify a particular address in the
Addr ess field in the Code Breakpoint dialog box.

In the Command Window, enter the address bi or address bI command.
The bi command sets a permanent breakpoint. The bI command sets a
temporary breakpoint.

If you do not specify an address, CrossView Pro uses the current viewing
position. For example:

factorial bi

instructs the debugger to place a breakpoint at the first machine instruction
in the function factorial ().

When you use hexadecimal addresses, be sure the number is actually the
start of a machine instruction because, in most implementations, the actual
opcode at the breakpoint address is replaced by a target-dependent value
that ultimately causes the breakpoint to occur. If this value appears in the
middle of an instruction, results are unpredictable.

FUNCTION: Set a instruction level breakpoint
COMMAND: laddress] bi [commands)

7-19

7-20 Chapter 7

Up-level breakpoints are breakpoints set at the entrance and/or exit of
functions. Basically, up-level breakpoints are code breakpoints that are
directly connected to the current HLL stack handling.

To see the current HLL stack, open the Stack Window or enter the t
command in the Command Window.

You can set up-level breakpoints via the Stack Window or in the
Command Window. You cannot set up-level breakpoints in the Source
Window:

Double—click on the function in the Stack Window to install a stack
breakpoint after the function call.

@? You can also follow these steps:

¢ Click on the function in the Stack Window.
* Select either Debug | Stack Breakpoint | After Function

Cal | or Debug | Stack Breakpoint | At Function Entry
from the menu.

You have the option of setting the breakpoint before (function entry) or
after (up-level) a selected function.

@ All breakpoints set through the Stack Window are temporary by default.

This can be toggled using the per manent radio button in the Code
Breakpoint dialog box. Using the bU and bB commands (explained
below), you can also set temporary breakpoints at the beginning and end
of functions.

In the Command Window, use the following commands:

Command | Function Type
bU Sets breakpoint after return of function temporary
bu Sets breakpoint after return of function permanent
bB Sets breakpoint at beginning of function temporary
bb Sets breakpoint at beginning of function permanent

Breakpoints and Assertions 7-21

For example, suppose you have accidentally single-stepped into a
function called f actori al (). If you do not want to single step through
the function, an up-level breakpoint can help you. Enter:

bu

The bU command sets a temporary breakpoint after return of the function.
Now, instead of having to single step all the way through the function,
you can start continuous execution, which stops when it hits the new
breakpoint at the function’s return. Note that it makes no difference
whether the function has several possible points of return; the up-level
breakpoint works at all points of return. Note that when the function that
contains the breakpoint is called from one of the functions that are located
below it on the stack, the execution may be stopped before returning at
the desired stack level, for example with recursive functions.

When setting up-level breakpoints from the Command Window, you can
specify how deep in the stack the function’s address is located. For
example, if you are two functions down from the mai n() program,
enter:

2 bU

This command breaks when you return to the top level of the call graph.

FUNCTION: Set a temporary breakpoint after function call.
COMMAND: [stack] BU [commands)

FUNCTION: Set a permanent breakpoint after function call.
COMMAND: [stack] bu [commands)

FUNCTION: Set a temporary breakpoint at function entry.
COMMAND: [stack] DB [commands)

7-22

=

Chapter 7

FUNCTION: Set a permanent breakpoint at function entry.
COMMAND: [stack] bb [commands)

A patch is a means of using CrossView Pro to change the execution of
your program without recompiling. Patches involve manipulating
breakpoints to skip code, include code, or replace existing code with new
code.

Basically, a patch is a breakpoint with certain associated commands that
enable you to alter program execution. This capability is a useful
debugging tool.

You can associate the commands used to patch code with a breakpoint
through either the Command Window or through the Commands edit box
in the Breakpoint dialog box. The examples below set breakpoints using
CrossView Pro commands typed in the Command Window. Breakpoints
can also be set using the Debug | Breakpoi nts... menu item. In this
case the commands between the brackets are entered into the Command
edit area.

To patch code out of a program, you can set a breakpoint that changes the
execution position. For instance, suppose you want to patch an infinite
loop out of your source.

78: while (Il oopvar)

79: |

80: sum = sum + 1;
81 }

82:

83: sum = sum + 5;

On line 78, place a breakpoint that jumps to line 83, effectively bypassing
the loop. In the Command Window, enter:

78 b {g 83; C

Breakpoints and Assertions 7-23

This creates a breakpoint on line 78 that does nothing more than move the
execution position beyond the loop and issue a C command. Remember
that the breakpoint on line 78 is hit before the C statement on that line
executes.

You can also patch code into a program by just including the code in the
breakpoint command. For example, suppose you want to add an equation
with the variable | oopvar .

78: while (Il oopvar)

79: {

80: sum = sum + 1;
81 }

82:

83: sum = sum + 5;
In the Command Window, enter:
78 b {loopvar = 0;C

This command halts execution at line 78, adds the statement | oopvar =0
to the program, and continues execution.

Finally, you can combine the two techniques described above to replace
code in a program. For instance, suppose you want to replace an infinite
loop with new code.

78: while (I oopvar)

79: |

80: sum = sum + 1;
81: }

82:

83: sum = sum + 5;
In the Command Window, enter:

78 b {Q if (sunx100) {sum+; g 78; C {g 83; C}

7-24

Chapter 7

This command sets a breakpoint that halts execution (quietly) at line 78
and inserts an i f statement into the program. If sumis less than 100, sum
increments and line 78 executes again. If sumequals 100, CrossView Pro
moves the execution position to line 83 (beyond the infinite loop) and
resumes execution.

Breakpoints with attached commands allow you to report on various
variables while the program executes. In the past, one inefficient method
of tracking variables was to litter code with pri nt f () statements. Using
breakpoints makes that process unnecessary.

For instance, suppose you want to keep track of the variable | oopvar at
line 59 of a program. Install a breakpoint with the following command:

59 b {Q |oopvar; C

The breakpoint halts the program, prints the value of | oopvar, and
resumes execution. The Q command suppresses the listing of where the
break occurred. This breakpoint does not affect the source code and no
recompilation is necessary.

Using special variables, you can also keep statistics about your program,
such as how many times a line of code executes or how many times a
variable is accessed.

For example, suppose you want to know how many times line 60
executes. You must define a special variable to keep track of your
statistical data, and set a breakpoint to accumulate the data for you.

First, define the special variable. In the Command Window, enter:
$test = 0

This command defines the special variable $t est and sets it to zero. For
convenience, you can also set a breakpoint at the beginning of the
program that initializes $t est .

Secondly, set a breakpoint at line 60 that increments $t est and continues
execution every time the program hits line 60:

60 b {$test++ ; C

Breakpoints and Assertions 7-25

An assertion is a collection of debugger commands executed by the
debugger after each program line. When you execute a program using
assertions, the debugger is in assertion mode. Running the debugger in
assertion mode is a way of executing continuous control of certain data.

Using assertions, you can have continuous control of certain data and stop
program execution if any of the set conditions are fulfilled. In this respect,
assertions are similar to data breakpoints. Assertions, however, are more
versatile than data breakpoints. For instance, a data breakpoint can only
detect when a variable is accessed. An assertion, on the other hand, can
check that the variable’s value falls within a certain range. Also, an
assertion can monitor variables whose values are kept in registers.

The default limit for the number of assertions you can define is 16. It is
possible to increase the number of assertions by selecting the Opti ons |
Initialization... menu item. Each individual assertion can be
activated or deactivated. In addition, you can also choose to suppress all
assertions by turning off the global assertion mode.

Opening the Assertions Dialog Box
@? Select Debug | Assertions... menu item.

The Assertions dialog box contains scrollable lists of all defined assertions,
and provides functions for defining, activating, suspending, editing and
deleting assertions.

The debugger is running in assertion mode when there is at least one
active assertion. A program executing in assertion mode is actually being
single-stepped very quickly, to ignore breakpoints. Because the program
is single-stepping, however, it runs significantly slower than at normal
speed.

A global assertion mode is available that suppresses all assertions,
regardless on whether they are marked as activated or deactivated. To set
the global active assertion mode:

@? Open the Assertions dialog box and globally activate all assertions by
clicking on the Asserti on Mbde Acti ve button.

7-26 Chapter 7

In the Command Window, enter the A command:

* Aa — activates assertion mode
e As — suspends assertion mode
c A — (by itself) toggles the assertion mechanism

The Global Active state activates all assertions. Globally activating the
assertion mode, however, does not change how each assertion is marked.

FUNCTION: Activate assertion mechanism.
COMMAND: Aa

FUNCTION: Suspend assertion mechanism.
COMMAND: As

FUNCTION: Toggle assertion mechanism.
COMMAND: A

To define or edit an assertion:

@? Follow these steps:

e C(lick on the Debug | Assertions... menu item to view the
Assertions dialog box.

e Click on the New. . . button to open up a text edit dialog box as
shown in figure 7-3 to type in commands.

Breakpoints and Assertions

Asszertions x|
o |
Aegertiarid: Im
] Cahicel |
— Cormmatd
if finitwal > 17] {x} Mes. .

Edit...

[~

Delete

Help...

dil

Cancel | Help... |

Figure 7-3: Defining Assertions

Use the a command followed by a list of commands.

FUNCTION: Create an assertion.
COMMAND: a commands

Assertions accept standard C statements and certain CrossView Pro
commands as arguments.

An assertion usually contains a conditional. For example, suppose you
want to create an assertion that watches the value of the global variable

i ni tval to see that it’s value does not exceed a certain limit. In this case,
you enter in the Assertion dialog box (or into the Command Window after
the a command):

if (initval > 17) {x}

This command creates an assertion with the condition that if i ni t val
exceeds 17, CrossView Pro halts the program. The { x} is a special
assertion command that tells CrossView Pro to halt the program and return
control to you.

7-27

7-28

Chapter 7

To edit the contents of an assertion:

@) Follow these steps:

Click on the Debug | Assertions... menu item to view the
Assertions dialog box.

¢ C(Click on the assertion to edit.

* Click on the Edi t. .. button. A text edit dialog box opens allowing
you to edit the assertion. Click on OK or Cancel when finished.

You must delete the specific assertion (section 7.11.5) and define a new
assertion (previous section) with the desired command.

A particular assertion is either active or suspended. A suspended
assertion does not execute before every line, but it retains its definition.

You may find it helpful to use activate and suspend assertion commands in
conjunction with code breakpoints, since assertions tend to slow the target
program. By attaching commands to a breakpoint to activate and suspend
assertions, you can turn assertions on only for certain sections of code
where a particular value needs checking. This method can dramatically
speed up the program.

Open up the Assertions dialog box from the Debug menu and
double—click on the assertion’s number.

To activate or suspend an assertion from the Command Window, you must
know the assertion’s number. To see a list of assertions and their assigned
numbers:

e Enter 1 a, the list assertions command, in the Command Window.
To activate an assertion:
* Enter assertion_number a a command. For example:

2 aa activates assertion 2

Breakpoints and Assertions 7-29

To suspend an assertion:
* Enter the assertion_number a s command. For example:

2 as suspends assertion 2

FUNCTION: Activate an assertion.

COMMAND: assertion_number a a

FUNCTION: Suspend an assertion.

COMMAND: assertion_number a s

Deleting an assertion removes its definition. It is important to note the
difference between suspending an assertion and deleting an assertion:
deleting an assertion removes its definition for good, while suspending it
retains the definition but prevents its execution.

@? Follow these steps:

e Open the Assertions dialog box from the Debug menu.
* Click on the assertion that you want to delete.
* Click the Del et e button.

Follow these steps:

e List the assertion numbers with 1a command in the Command
Window.

¢ In the Command Window, enter the assertion number followed by
the a d command. For example:

2 ad Deletes assertion 2.

FUNCTION: Delete an assertion.
COMMAND: assertion_number ad

7-30

Chapter 7

You can use assertions for almost any type of debugging task. For
example, if you want to check the value of a global variable,

gl obal _val , during the execution of a certain function, f () . A data
breakpoint or a straightforward CrossView Pro assertion does not suffice
for this task since there is no way to make either method limited to that
function’s code range. The solution lies in creating an assertion that is
active only over a specific range of lines. In this case, you could solve
your problem with the following steps:

110: void f(void)

111: {

112: if (global _flag)
113: {

114: ++gl obal _val

115: }

116: el se

117: {

118: gl obal _val = g();
119: }

120: }

Using the mouse and menu:

. Open up the Assertions dialog box from the Source Window.
. Click on the New. . . button.

. Set up the assertion to check the value of gl obal _val . Enter:

if (global _val == 17) {x}

This assertion halts program execution if the value of gl obal _val equals
17.

. Open up the Breakpoints dialog box by selecting Debug |

Br eakpoi nts. .. from the menu. Click the New Code. .. button.

. We want to establish a breakpoint at line 112, the first line of the function

f() and attach commands to the breakpoint to activate assertion mode
and continue execution. Change the Li ne number to 112. Click in the
Command edit area and enter:

Aa; C Activate the assertion and continue.

Breakpoints and Assertions 7-31

6. Create an assertion whose only function is to check that the current line
number is still valid for assertion mode. To do this, use the reserved
special variable $LI NE, which contains the line number of the current
execution position. In the Assertions dialog box, click on New. . . and
enter:

if (SLINE >= 120) {As; 1 x; C

If the line number exceeds 120, the program is about to leave the function
f() and CrossView Pro deactivates assertion mode. Normally, the x
command would make the program stop, but the non-zero value tells
CrossView Pro to execute the rest of the commands in the list, in this case,
C for continue.

You must enter all commands in the Command Window.

1. First set up the assertion you want:
aif (global _val == 17) {x}

2. Now set a breakpoint on the first line of the function factori al () that
will activate assertion mode, and continue execution:

110 b {A a; C}

3. Now create an assertion that does nothing but make sure that the current
line number is still valid for assertion mode. If the line number exceeds
120, you know you have left the function f () and assertion mode should
be suspended.

aif ($LINE >= 120) {As; 1 x; C

$LI NE is a reserved special variable that CrossView Pro maintains
containing the number of the line currently executing. If it becomes equal
to 120, assertion mode is turned off. Normally, the x would make the
program stop, but the non-zero value 1 tells CrossView Pro to execute the
rest of the commands in the list, in this case, C for continue.

In this manner you have created an assertion that is only active over a
limited range of source lines.

7-32

Chapter 7

You can also use assertions to gather statistics about your code. For
instance, you can find out how many lines of C code execute in a
particular session:

a {$nunm i nes++}

$num i nes is a user—defined special variable that increments on each line
of C code. When the program stops, type:

$nunl i nes

and CrossView Pro gives the result. To start again, you may want to
re—initialize $numl i nes to zero:

$numines = 0

Or just set a breakpoint on the first line of code to do the same.

DEFINING AND
USING MACROS

al TASKING [

d31dVHO

Defining and Using Macros

A macro is a user—created shorthand for any sequence of CrossView Pro
or C commands and expressions. Macros allow you to debug more
efficient when using CrossView Pro by substituting a short string for a
longer combination of words and evaluators.

You can use a macro anywhere an CrossView Pro or C expression is valid:
in a breakpoint’s command list, with assertions, from the keyboard, among
other places. CrossView Pro also allows you to save macro definitions, so
they are always available. By passing parameters to a macro, you can
create powerful and flexible macros to debug your code more efficiently.

You can use macros in the Command Window, or connect them to the
graphic interface in a feature called the toolbox. You can have this
toolbox visible as a CrossView Pro window and use it to execute a macro
by clicking a button. You control which macros have corresponding
buttons, making the toolbox easy to adapt to different situations.

You can create as many macros as you want:

menu item to view the
button.

Select the Options | Macro Definitions...
Macro Definitions dialog box and click on the New. . .

Macio Definitions |

[Macro——————— rryvy—"

Macro name: qupvar

78 b [loopvar=0;s]

New...

= Delete

—File

Current file: -

Cancel

Help...

™ Autoload ™ Autosave

Load... | Save |

Save as..,

0K | Cancel | Help...

Figure 8-1: Macro Definitions

&

Chapter 8

In the Command Window, use the set command followed by the macro’s
invocation name and the list of commands. Note that the list of commands
must be in (double) quotation marks. For example, the command:

set st "e min;, R

creates a macro call st that tells CrossView Pro to change the viewing
position to be the first executable line in the function mai n() and restart
the program from the beginning. Each time you enter st in the Command
Window, CrossView Pro substitutes the lengthier list of commands in the
definition.

FUNCTION: Create a macro.
COMMAND: set name “commands”

Note that there is no rule that the macro definition must be shorter than
the commands it represents. For instance, you could substitute br eak for
the b command, to make CrossView Pro’s command language more
expressive:

set break ”b”
Now instead of typing 74 b to set a breakpoint, you can also type:
74 break

Macros defined using either the command line or the graphic interface are
accessible both from the Command Window and the Toolbox.

Macros may call other macros, so it is possible to use simple macros as
building blocks for more complex functionality. No macro, however, can
call itself, or another macro that refers to the calling macro, since this type
of action results in infinite recursion.

Because of the order in which CrossView Pro parses statements, you may
not use the CrossView Pro commands # or % in a macro.

Defining and Using Macros

Open up the Macro Definitions dialog box by selecting the Opti ons |
Macro Definitions... menu item. This dialog box contains a
scrollable list of the macros.

To see the current definition of a macro:

@? Follow these steps:

Open up the Macro Definitions dialog box by selecting the
Options | Macro Definitions... menu item.

e Click on the macro that you want to see.

* Much of the macro is shown in the box in the center of the dialog.

If you need to see more, click on the Edi t. .. button.

see the definition for the st macro:

echo st Command.
e main; C 56 Output.

FUNCTION: Display macro expansion.
COMMAND: echo name

If you want to change the definition of a macro:

Open up the Macro Definitions dialog box by selecting the Opt i ons |
Macro Definitions... menu item. Click on the name of the macro
you wish to change and click on the Edi t. .. button.

In the Command Window, use the set command again, but enter an
exclamation point after the macro name. For instance, to redefine the
macro st , which was defined in the example above, use the command:

set st! "e nmain; C 56"

8-5

8-6 Chapter 8

Now, the st macro changes the viewing position and restarts program
execution, placing a temporary breakpoint at line 56. Be sure you do not
include a space before the exclamation point. Otherwise, CrossView Pro
may interpret the ! as the C “not” operator.

You can save all the macros you define in a debugging session in an
external file. This way, you do not lose the definitions when the program
ends.

To save macros to an external file:

@? Follow these steps:

* Open up the Macro Definitions dialog box by selecting the
Options | Macro Definitions... menu item.

e C(lick on the Save as... button. A Save Macro File dialog box
opens.

* If you want to save a file previously opened, click on the Save
button. This saves the file without opening the Save Macro File
dialog box.

* Alternatively, you can use the Aut osave check box. When
Aut osave is checked, all macros are saved in the ’current file’
when you leave CrossView Pro.

Type the save file command in the Command Window. This command
saves your macros to the file of your choice. For instance:

save nacro. nac writes all your macros to macr 0. mc

FUNCTION: Save macros to a file.
COMMAND: save filename

Defining and Using Macros

You can load saved macros anytime you want to re-use a definition. There
is no limit to the number of times you can load macros.

To load a macro file:

@? Follow these steps:

* Open up the Macro Definitions dialog box by selecting the

Options | Macro Definitions... menu item.
* Click on the Load. .. button and select the macro file you want to
load.

* Alternatively, you can use the Aut ol oad check box. When
Aut ol oad is checked, the macros saved in the ’current file’ are
loaded at startup.

To reinstate your macro definitions from the Command Window, use:
< fil enane. mac

You must load a program before you can read a macro definition file.

Aut ol oad will be ignored when the Execut e these settings at
CrossVi ew st art up check box in the Load Symbolic Debug Info dialog
box is not checked.

For more information on record and playback functions, see the next
chapter, Command Recording & Playback.

87

8-8 Chapter 8

To delete a specific macro:

@? Follow these steps:

Select the Options | Macro Definitions... menu item to
view the Macro Definitions dialog box.

* Highlight the name of the macro.

e Click on the Del et e button. To delete all the macro definitions at
the same time, click on the Del et e al | button. CrossView Pro
prompts you for confirmation.

Type the unset command in the Command Window. For example, to
remove the st macro, enter:

unset st!

When you are removing a macro definition in this manner, you must place
an exclamation point after the macro name to prevent CrossView Pro from
expanding the name to its full macro definition. To update your macro
definition files, issue a save command after using unset.

You can remove all existing macro definitions by entering the unset
command by itself. CrossView Pro prompts you for confirmation before
deleting the macros:

unset
Do you want to delete all nacros?y

FUNCTION: Delete a macro.
COMMAND: unset name!

Defining and Using Macros

Macros can accept arguments. Parameters are labelled sequentially in a
macro definition: $1, $2, $3, etc. Note that $0 has no meaning. When
you invoke a macro with parameters, enclose the parameters with
parentheses and separate them with commas.

CrossView Pro macros can accept any number of parameters, so it is
possible to create very complex command shortcuts. You may use any
type of parameter when defining a macro, including integers, strings, or
addresses. Note, however, that you must pass the macro the correct type at
invocation.

For instance, suppose you want to set a detailed breakpoint on any
number of lines and a parameter is to specify each line number on which
to install a breakpoint. Defining a macro named br k, type in the Macro
Definitions dialog box:

$1 b {Q initval; recordvar.a; if (initval > 1) {C}
or type in the Command Window:

set brk "$1 b {@Q initval; recordvar.a; if (initval >

1 {a}y”

In this case, the argument $1 represents the intended line number. To use
the br k macro, type:

brk(72) From the Command Window

CrossView Pro replaces every instance of $1 with the value 72. For this
example, that means a breakpoint is set at line 72.

8-9

8-10

&

Chapter 8

Using macros, you can even redefine an existing CrossView Pro command.

For instance, you could redefine the breakpoint command b to always
place a breakpoint at line 72 of your source code. To do this, enter the
command:

set b "72 b!”
CrossView Pro now interprets the b command as 72 b.

The exclamation point in the definition is necessary to prevent infinite
recursion. It tells CrossView Pro to take the command literally and to not
expand it into a macro definition. For example:

66 b!

CrossView Pro interprets this command as the standard breakpoint
command and places a breakpoint at line 66, despite the macro definition
for b.

Be sure not to have any space between the command and the exclamation
point. Otherwise CrossView Pro may interpret the ! as the C not operator.

Defining and Using Macros 8-11

The CrossView Pro toolbox, shown in figure 8-2, is controlled from the
View menu. Using the Opt i ons menu, you can configure the toolbox and
define the macros for it. You can resize the toolbox to the size you want.

Toolbox]

loopb

is_less

is_equal

skip_to

Figure 8-2: CrossView Pro Toolbox

To open the toolbox:
@? Select the Vi ew | Tool box menu item.

@ The Toolbox is a pop-up window that remains on top of the CrossView
Pro Desktop while you work in other windows.

To configure the toolbox, select the Options | Tool box Setup...
menu item to view the Toolbox Setup dialog box, shown in figure 8-3.
This dialog box displays the toolbox buttons and an alphabetized list of
the current macro definitions.

To connect a macro to a toolbox button:

@? Follow these steps:

* Click on the button you wish to change
* Scroll through the macro list to highlight the desired function
* Click on the Assi gn button or press the Ent er key

8-12 Chapter 8

Note that double clicking on the macro name in the alphabetized list
performs the third step automatically. The name of the new function
appears on the selected button and the connection is performed.

Toolbox Setup Eq

check = check | | oK |
is_equal

is_less looph Cancel
looph E |
EE‘-JI_ skip_to

is_less Clear |

is_equal

Help... |

= | |

Figure 8-3: Setting Up the Toolbox

@ Do not assign parameterized macros to the toolbox since there is no way
to pass in parameter values.

To delete a macro definition from the toolbox:

@) Follow these steps:

e Select the Options | Tool box Setup... menu item to view the
Toolbox Setup dialog box.

¢ Select the desired button.
e C(Click on d ear.

This deletes the macro definition from the toolbox.

COMMAND
RECORDING &
PLAYBACK

al TASKING [

d31dVHO

Command Recording & Playback

CrossView Pro lets you save a series of CrossView Pro commands to the

file of your choice. This is record mode. You can re-load a saved file to
repeat parts of debugging tasks or replay a debugging session (up to the
point where you left the last time).

Record mode means that all CrossView Pro commands from the keyboard,
mouse or menu are recorded to a disk file. The debugger can read this file
and execute the commands as if they were entered into the Command
Window. This is called playback mode, see more about playback mode
later in this chapter.

@ Record and playback modes can never be active at the same time.

You can only record CrossView Pro commands. When recording on
CrossView Pro command level, all commands that you type in the
Command Window, as well as the CrossView Pro command language
equivalents of dialog actions and menu selections are saved in a file.
When you want to record commands entered in the Emulator Command
Window, you have to turn on CrossView—Emulator I/O logging (see the
section Logging in this chapter).

From the Command Window you control record mode using either the
mouse or keyboard commands. To start or setup recording:

@? From the menu system:
* Select the Options | Record... menu item.

The Record dialog box contains an Aut omati cal |y at
CrossVi ew st artup check box. If you select this check box the
debugger enters record mode at every startup.

¢ Enter the name of the file in the Fi | enane: edit field, or click on
the Browse. . . button to select an existing file. The default
filename extension is . cnd.

e Click on the Set up button to save the current settings into the
initialization file xvw.ini for following debugging sessions.

e Click on the St art button to start recording.

Enter the > command with the name of the file to start recording. For
example, enter:

>sessi on. cnd

9-4 Chapter 9

=

After you invoke this command, CrossView Pro saves every executed
command, whether using the mouse or manually typed into the Command
Window, to the file sessi on. cnd.

FUNCTION: Save CrossView Pro commands to a file.
COMMAND: >filename

Every command, whether typed into the Command Window or the result
of a mouse or menu action goes into the recording file. To add comments
to a file recording CrossView Pro commands, enclose text typed in the
Command Window with C comments delimiters, “/*” and “*/”. When
logging emulator commands, refer to your emulator documentation for the
appropriate comment characters.

This function acts like the pause button on a tape recorder: the recording
mechanism stays in place, but suspends temporarily. CrossView Pro does
not save to file any commands you enter while you suspend recording,
but the file remains open and ready to accept input. To suspend
recording:

Select the Opti ons | Record... menu item to view the Record dialog
box. Click on the Suspend button.

In the Command Window, use the >f command (for “false”).

FUNCTION: Suspend recording.
COMMAND: >f

Command Recording & Playback

This function is the counterpart of the suspend recording function.
CrossView Pro resumes adding commands to the current record file. Any
new command you enter appears in the file; they do not affect the
commands already saved.

Select the Opti ons | Record... menu item to view the Record dialog
box. Click on the Resune button to resume recording.

In the Command Window, use the >t command (for “true”).

FUNCTION: Resume command recording.
COMMAND: >t

If at any point you do not remember whether recording is on or off, check
by:

Selecting the Opti ons | Record... menu item. If record mode is
active, the St op button is enabled. If the St art and Set up buttons are
enabled, record mode is off.

Enter the > command in the Command Window.

This command shows the status of the recording and logging mechanism.
For example, if you enter > you might see:

>

Qut put logging is OFF

Conmand recording is ON

Target communi cation logging is OFF

The > command gives you the status for the different recording
mechanisms. Output logging and target communication logging are
described below.

9-5

9-6

Chapter 9

Closing a file for recording differs from suspending recording in that when
you close a file, you may not add any more commands to it. If you were
to start recording again using the same filename, the old commands in the
file would be deleted. (Note that this does not exclude editing the file
manually by some other means, since the file is saved as ASCII text.)

Select the Opti ons | Record... menu item to view the Record dialog
box. Click on the St op button to stop recording.

Enter the >c command to close the file:

>C

FUNCTION: Close command recording file.
COMMAND: >c

For example, consider the following command sequence (from the
Command Window):

>sessi on. cnd ————— Start Recording to File
i ni tval
p 12
———— Carriage Return
>f ————— Suspend Recording
I b
sum
>t ————— Resume Recording
/* This is a comment! */
>C

This series starts with a command to record to a file named sessi on. cnd.
The blank line above represents a carriage return. After the last command,
c, if you were to view this file, it contains:

i nitval
p 12
/* This is a coment! */

Command Recording & Playback

The saved command file contains simply the commands, without any
output. Note that commands entered while recording was suspended 1'b
and sum) do not appear in the file. Carriage returns are not recognized as
commands.

Once you have recorded a set of CrossView Pro commands, you can play
them back to recreate a debugging session or repeat often-used
sequences. Running the debugger while reading commands from a file is
playback mode.

@ Remember that for a file to be played back, it can only contain CrossView

Pro or emulator commands. For this reason, screen output files cannot be
used in playback mode. Refer to the Recording Commands section earlier
in this chapter for more information.

As with recording, the Command Window controls playback mode. To
playback a command file:

@? Follow these steps:

1. Select the Options | Playback | CrossView. .. menu item to view
the CrossVi ew Pl ayback dialog box, or select the Opti ons |
Pl ayback| Emul ator... menu item to view the Enul at or Pl ayback
dialog box.

@ You can choose to playback either CrossView Pro commands or Emulator
commands. Open the Emulator Command Window if the playback file
contains commands sent directly to your emulator.

2. Type the playback filename or use the Browse. .. button to select the
file. The default filename extension is . cnd.

@ In the Playback dialog box, you have two additional options: Playback at
XVW startup and Continuous playback. CrossView Pro enters playback
mode automatically when you start the debugger if you click on the
Pl ayback at XVW startup check box in the Playback dialog box. The
entire playback file executes if you check the Cont i nuous pl ayback
check box.

3. Click on the Execut e button to start the playback.

9-8

Chapter 9

In the Command Window, use the < or << filename command to
playback CrossView Pro commands.

On the command line of CrossView Pro give the option =T filename to
start CrossView Pro in transparency mode and playback emulator
commands. Not available for all execution environments.

Using the mouse, you can toggle continuous playback by clicking on the
Conti nuous pl ayback check box in the CrossView Playback dialog
box.

In the Command Window, there are two commands for the type of
playback. The < filename command starts playback. Commands are read
from a file and executed without any stop. For example:

<sessi on. cnd load and execute all the commands

The << command causes CrossView Pro to playback commands one at a
time, similar to single-stepping through code. For example:

<<sessi on. cnd read a command from the file.

Clicking the Execut e button or pressing the Ent er key executes the next
command.

FUNCTION: Play back a file of CrossView Pro commands.
COMMAND: <filename

FUNCTION: Play back a file of CrossView Pro commands, one
command at a time.

COMMAND: <<filename

Command Recording & Playback

A playback file can call another playback file in the course of its
execution.

When CrossView Pro creates a command file, it saves all commands in
their textual form, whether entered by the mouse or as text. You must edit
this file to use the < and << commands.

When the debugger reaches a < or << command in a playback file,
playback execution switches to the new file, but does not return to the
original file. In other words, you chain playback files but not nest them.

Playback mode stops automatically when CrossView Pro reaches the end
of the command file. If you want to end playback mode before this point,
click the Hal t button.

9-9

9-10 Chapter 9

CrossView Pro supports command line batch file processing, but
CrossView Pro will halt if a modal dialog is encountered or if the target
program contains an endless loop. The command line option
——timeout=n_seconds switches CrossView Pro to a different mode of
operation, without the two drawbacks mentioned above.

In order to process files in batch mode you have to do the following:
1. Create a temporary directory.

2. Start CrossView Pro from this temporary directory. For Windows
95/98/NT/2000 you can create a separate icon or shortcut to start
CrossView Pro, which has the working directory (Start in:) set to the
temporary directory.

3. Close all CrossView Pro windows except the Command Window.
4. Exit CrossView Pro (with Save Deskt op enabled).
You now have generated an xvw. i ni file with minimal GUI overhead.

5. Save the xvw. i ni file and remove the temporary directory.

For each batch run of CrossView Pro you have to do the following:
1. Create a temporary directory.
2. Copy the saved xvw. i ni file to the temporary directory.
3. Create a command file in the temporary directory.

The following command file sessi on. cnd loads the . abs file,
downloads the code, runs the code and exits.

N hel | o. abs load the symbols

dn download the program

_exit bi set a breakpoint at the exit point

R run the program

$pc optional: show the program counter

qy extt CrossView Pro

Command Recording & Playback 9-11

where hel | 0. ¢ contains

#i ncl ude <stdi o. h>

voi d main()

{
}

4. Copy the . abs file to the temporary directory. This is needed because
CrossView Pro changes its working directory when the N command is
used.

printf("Hello Wrld!\n");

5. The following line executes CrossView Pro in batch mode and waits for it
to finish:

Windows 95/98/NT/2000:

start /wait c:\cnl6\bin\xfwrl6é —tineout=120 —-tcfg simcfg
—p session.cnd —R session. | og

UNIX:
xfwnl6 —timeout =120 —tcfg simcfg —p session.cnd —R session. | og

This command must be issued in the temporary directory! After the
execution has ended, the file sessi on. | og contains a transcript of the
commands.

6. Save the output files and clean up (or remove) the temporary directory.
This must be done because the xvw. i ni file has been modified now. If
CrossView Pro would be started again in the temporary directory, the file
sessi on. cnd would be executed again.

The —-timeout=rn_seconds command activates the batch operation mode
of CrossView Pro. It causes CrossView Pro to terminate when the specified
amount of time has elapsed, which is crucial in batch processing: if a
program does not terminate, the timeout will terminate CrossView Pro, so
that the next program in the batch can be executed. CrossView Pro will
also terminate in the batch mode if a modal dialog pops up, since this
requires user interaction to continue. Before CrossView Pro exits, the text
in the dialog will be written to the log file. A special case of this dialog is
the ’End of program reached’ dialog. For this reason, the line has to
be added to the . cnd file, so it is possible to do some things (for example,
read registers modified by a machine code program) after the program is
finished. If the breakpoint at is absent, CrossView Pro immediately exits

9-12

Chapter 9

after having executed the R command, so any consecutive commands will
be ignored.

Logging means that all output text to a particular window is saved in a file
for later use. Two windows allow logging:

e Command Output Window
(upper part of the CrossView Command Window)

e Emulator Output Window
(upper part of the Emulator Command Window)

"GDI Accesses” can also be logged. This is the information transferred
between CrossView Pro and the Debug Instrument (DI).

You can control logging from the Options menu or from the Command
Window.

You can also determine the status of each logging function:

Select the Options | Log | Conmmand |nput/ CQutput... menu
item, the Options | Log | CrossView-Enulator I/O .. menu item
orthe Options | Log | CrossViewCDl Accesses... menu item.

If a logging function is is active, the St op button is enabled. If the St art
and Set up buttons are enabled, logging is off.

Enter the >> or >& command in the Command Window.

Each type of logging is described in the following section.

The Emulator Output Window is primarily a diagnostic tool. It should be
used wisely, since it generates substantial amounts of output, the format of
which is emulator dependent. For emulators that have an ASCII interface,
the actual command/response dialogue will be displayed. For emulators
with a binary interface, CrossView Pro will generate a record of function
calls with their associated input and output parameters. This also applies
to the GDI Accesses output logging.

Command Recording & Playback

To setup logging:

@) From the menu system:

Select Options | Log | Command | nput/ Qutput...,
Options | Log | CrossView Enulator I/QO .. or Options
| Log | CrossView-GDl Accesses... toopen the appropriate
dialog box.

Type in the name of the log file or use the Br owse. . . button to
select a filename. The default filename extension is . | 0g.

Each Log dialog box has an Aut ost art check box. This check box
instructs CrossView Pro to start recording the output of a particular
window upon starting up of CrossView Pro.

Click on the Set up button to save the current settings into the
initialization file xvw.ini for following debugging sessions.

Click on the St art button to start logging.

You can open up a log file for CrossView Command Output by using the
>> filename command as in:

>>screen.log

ﬁ_@ You can open up a log file for Emulator Output by using the >& filename
command as in:

>&t arget. | og

FUNCTION: Save CrossView Pro commands and command window

output to a file.

COMMAND: >>filename

FUNCTION: Log target communications.
COMMAND: >&filename

9-13

9-14

A

o)

Chapter 9

It is possible to have command recording, command output logging and
target communication logging on at the same time. That is, you can have
one file recording just the CrossView Pro commands, and another file
concurrently recording both the commands and the computer responses.
Refer to the previous section for information on command record files.

Since the Command Window log file contains both your commands and
the computer responses, you cannot use it in playback mode.

For example, if you entered the following commands:

>>screen. | og
i nitval
| a

The output file, scr een. | og, contains:

> jnitval
initval =0
> a

no assertions

You can resume and suspend the Logging process from the menu or from
the Command Window:

Select Options | Log | Conmand |nput/ Qutput..., Options |
Log | CrossView Enulator I/O .. orOptions | Log |
CrossVi ew-GDI Accesses. .. to select the appropriate dialog box.

To suspend logging:

Click on the Suspend button.

Command Recording & Playback

In the Command Window, use the >>f command for suspending the
logging of the Command Output Window. Type >&f to suspend the
Emulator Output Window. After you issue this command, CrossView Pro
does not save all subsequent commands and their computer responses.

To resume logging:

@? Click on the Resune button.

In the Command Window, use the >>t command to resume logging the
Command Output Window. Type >&t to resume the Emulator Output
Window. After you issue this command, CrossView Pro saves all
subsequent commands and their computer responses.

FUNCTION:
COMMAND:

FUNCTION:

COMMAND:

FUNCTION:

COMMAND:

FUNCTION:

COMMAND:

Suspend output logging (logging is false).

>>f

Resume output logging (logging is true).

>>t

Suspend target logging (logging is false).
>&f

Resume target logging (logging is true).
>&t

9-15

9-16

Chapter 9

To close the output file:

Select Opti ons |

Log | Conmand | nput/ CQutput...,Options |

Log | CrossView Emulator 1/O .. orOptions | Log |

CrossVi ew-GDI

Accesses. .. to select the appropriate dialog box.

Click on the St op button to stop logging.

Enter the >>c or >&c command in the Command Window to close the
Command Output and Emulator Output log files. These commands end
the recording for the currently specified output log file.

FUNCTION:
COMMAND:

FUNCTION:

COMMAND:

Close output log file.

>>C

Close target log file.

>&c

Command Recording & Playback 9-17

When starting up CrossView Pro you may immediately start recording or
playing back files. For instance,

xfwrlé fact —p session

plays back the commands in the file sessi on. A =P switch single—steps
through each command, prompting you for a return after each. You can
also start recording:

xfwrl6 fact —-r session

This command records all your commands (just like the > command) to
the file sessi on, while:

xfwrl6 fact —R session

logs your commands and screen output to the file session (just like the >>
command).

You can also use the Automatically at CrossVi ew startup option
in the Record, Playback, and Log dialogs to immediately start recording,
playback or logging at CrossView Pro startup.

@? You can also enter record and playback files via EDE. Select the EDE |
CrossView Pro Options... menu item. Enter your filenames in the
Loggi ng tab.

9-18 Chapter 9

CrossView Pro stores the command history in the list box of the Command
Window.

You can select a command from the history list by clicking on it or
jumping with the <Tab> key to the history listing and using the arrow
keys.. The command appears in the edit field of the Command Window.
You may edit the command if you want.

To execute the command, click on the Execut e button.

If you do not want to edit the command, double—click on the selected
command in the list box to execute the command, or hit the <Ret ur n>
key.

SPECIAL FEATURES

al TASKING [

d31dVHO

10

Special Features

Transparency mode allows you to communicate directly with the
execution environment. Most of the time CrossView Pro will handle all the
low level communications, freeing you to concentrate on the high level C
code. Depending on the type of execution environment, however, you
may have to enter transparency mode to set up the execution environment
when the machine is first turned on.

To enter transparency mode:

@? Select the Vi ew | Command | Enul at or menu item.

All commands entered in the Emulator Command Window are passed
directly to the execution environment.

To exit transparency mode:

Select the Vi ew | Command | CrossVi ewmenu item.

In CrossView Pro, you can pass a string directly to the execution
environment without leaving CrossView Pro with the o command:

0 map

This passes the command map directly to the execution environment,
while you remain in CrossView Pro. Naturally you will have to learn your
execution environment’s command set to make use of the o0 command.

FUNCTION: Pass a command to the execution environment.

COMMAND: o string

Do not issue one-shot transparency commands that result in large output
(or otherwise require intervention other than a carriage return to terminate
output). Instead, enter transparency mode first, then issue the command.

You may also enter transparency mode upon startup with the =T option.
See the section on startup options.

10-3

10-4

Chapter 10

CrossView Pro supports RTOS (Real-Time Operating System) aware
debugging for various kernels. Since each kernel is different, the RTOS
aware features are not implemented in the CrossView Pro executable, but
in a library that will be loaded at run—time by CrossView Pro. The amount
of windows and dialogs and their contents is kernel dependent.

Within the CrossView Startup dialog (Options | Startup |

CrossVi ew) you select the CrossView configuration you will use by
selecting a "target configuration file”. These target configuration files are
normal ASCII text files. The name of the shared library that contains the
kernel aware code can be specified in the target configuration. The "r adn?
configuration item specifies the name of the shared library that contains
the kernel aware code.

The syntax of a target configuration file is:
[' comment] field : field-value

field one of the defined keywords

field-value the value assigned to the field

comment optional comment

Empty lines, lines consisting of only white space are allowed. Comments
start at an exclamation—-sign (") and end at the end of the line.

The line for the shared library that supports RTOS aware code could be:

radm vyourrtos.dll

Special Features

&

You can only use this feature if it is supported by the execution
environment (see the addendum).

When the application program is executed as a result of a command such
as Steplnto or Continue, CrossView Pro traces all memory access, i.e.
memory read, memory write and instruction fetch. Through code
coverage, executed and not execute areas of the application program can
be found. Areas of unexecuted code may exist in case of programming
errors or simply dead code which could be eliminated. Alternatively, your
program input, your test set, is incomplete. It does not cover all paths in
the program. Data coverage allows you to verify which memory locations,
i.e. which variables, are accessed during program execution. Additionally,
stack and heap usage can be shown.

To enable/disable coverage:

@? Select the Run | Cover age checked menu item.

When the menu item is checked, coverage is enabled. Select the menu
item again to disable coverage.

Type the ce or cd command on the command line:

ce

FUNCTION: Enable coverage.
COMMAND: ce

FUNCTION: Disable coverage.
COMMAND: cd

10-5

10-6

Chapter 10

Two dialogs are present to give you coverage information. The code
coverage dialog shows the percentage of executed code within
application, module and function scope. Code coverage information can
also be displayed in the Source Window. The data coverage dialog shows
the data access of HLL variables in the executed program. Data coverage
can also be displayed in the Memory Window. The coverage dialogs can
be opened via the Debug menu.

You can display code coverage information in the Source Window by
clicking on the Di spl ay cover age button in the Source Window. In this
case an extra column appears to the right of the breakpoint toggles (to the
left of the source line). For each source code line that is executed
(covered), the source line is marked. The not executed lines are not
marked. CrossView Pro has special commands to move the cursor to the
next or previous covered or uncovered line:

FUNCTION: Move cursor to next covered line.

COMMAND: nC

FUNCTION: Move cursor to next uncovered line.

COMMAND: nU

FUNCTION: Move cursor to previous covered line.

COMMAND: pC

FUNCTION: Move cursor to previous uncovered line.

COMMAND: pU

You can display data coverage information in the Memory Window by
clicking on the Di spl ay cover age button in the Memory Window.
Besides the current value of memory locations, the memory window also
displays whether memory locations have been accessed during program
execution. An application program may read from, write to, or fetch an

Special Features 10-7

instruction from a memory location. Of course all combinations may be
legal. Although writing data to a memory location from which an
instruction has been fetched is suspicious. All types of accesss, read, write,
fetch or combinations of these, can be shown using different foreground
and background colors. The color combination used to show "rwx” access
are specified in the Deskt op Set up dialog. It is advised to change the
background color if instructions are fetched from a memory location, and
to change the foreground color to show read and write access.

@ You can only use this feature if it is supported by the execution
environment (see the addendum).

Profiling allows you to perform timing analysis on your software. Two
forms of profiling are implemented in CrossView Pro. Both forms of
profiling are fully implemented in the CrossView Pro debugger. You do
not have to recompile your source code to enable the profiling features.

Function profiling, also called cumulative profiling, gives timing
information about a particular function or set of functions. The time spent
in functions called by the function being profiled is included in the timing
results. Within the Cunul ati ve Profiling Setup dialog you select
one or more functions to be profiled. The gathered profile is shown in the
Cumul ative Profiling Report dialog. For each function the number
of calls, the minimum/maximum/average and total time spent in the
function are shown. Also, the relative amount of time consumed by a
function in respect to the time consumed by the application is shown.

Function profile data is gathered whenever the program is executed using
the Continue command (not single stepped). Function profiling can be
supported if the execution environment provides a clock that starts and
stops whenever execution starts and stops. Basically function profiling is
implemented by using a special type of breakpoint. Breakpoints are
inserted at the function entry address and all it’s return addressed.
Whenever execution stops due to a profile-breakpoint hit, CrossView Pro
will read the clock, update the internal profile tables, and restart
execution.

To specify the functions to be profiled:

@? Select the Debug | Cumul ative Profiling Setup... menu item.

10-8

=

Chapter 10

To view the profiling results:

@? Select the Debug | Cumul ative Profiling Report... menu item.

Code range profiling presents timing information about a consecutive
range of program instructions. CrossView Pro displays the time consumed
by each statement, C or assembly, in the source window. The timing data
can be displayed in three different formats: absolute, relative to program,
and relative to function. To change the display format: position the cursor
on the profile column and click the right mouse button. Select the
appropriate format from the popup menu.

Next to the source window, the profile report dialog shows the time spend
in each function. The time consumed by functions called from the function
being profiled is not included in the displayed time.

Code range profiling data is gathered whenever the program is executed.
It does not matter if the program executes due to a continue, step—over or
step—into command. Code range profiling heavily relies on special
profiling features in the execution environment. Normally code range
profiling is only supported by instruction set simulators.

To enable/disable profiling:

@? Select the Run | Profiling checked menu item.

When the menu item is checked, code range profiling is enabled. Enabled
means that the execution environment starts gathering profiling data.
Select the menu item again to disable profiling.

Type the pe or pd command on the command line:

pe
FUNCTION: Enable profiling.

COMMAND: pe

FUNCTION: Disable profiling.
COMMAND: pd

Special Features

&

Select the Di spl ay profiling button in the Source Window to display
profile data in the Source Window. (If profiling is not enabled, clicking the
accelerator button also enables the gathering of profiling data.)

Normally both function and code range profiling will slow down the
execution speed of the application being debugged. Therefore, switch off
profiling whenever the timing information is not required.

The CrossView Pro Virtual I/O windows provide an interface to exchange
data with the application on the target. This I/O facility can be
implemented in various ways. The debugger supports up to eight separate
Virtual I/O windows simultaneously.

If your CrossView Pro environment is a ROM monitor, the TASKING ROM
monitor supports so—called virtual I/O channels. These channels can be
used by the application for reading or writing data on the same channel as
the ROM monitor uses for its debug communications. The channels will
however, as opposed to the regular input and output USRs, be logically
separated from the ROM monitor’s input and output. This way it is
possible to communicate with the application, while the ROM monitor
communications remain undisturbed, and debugging control over the
application remains intact.

The channels are to be used in combination with CrossView Pro.
CrossView Pro will turn on the new virtchan configuration item of the
ROM monitor. This tells the ROM monitor to treat virtual channel service
requests to be logically separated from the ROM monitor’s own
communications. This way CrossView Pro will be able to display these
communications in separate windows.

When you want to run your application without CrossView Pro, then leave
the virichan configuration turned off. This tells the ROM monitor to treat
any virtual channel service request as a regular I/O request. Now you can
use a simple terminal to communicate with your application, even if it is
reading and writing using the virtual channel service requests instead of
using the regular service requests such as USR_INCHR and USR_OUTCHR.
See the file vi o_t est . ¢ for an example of virtual I/O.

10-9

10-10

Chapter 10

The following keyboard mappings, being both control codes and escape
sequences, are supported by the VT100-like terminal mode of the virtual

1/0 windows:

Key Character Sequence
and/or Decimal Value

Backspace 8d

TAB ad

DEL 127d

ESC 27d

Insert ESC[2~

Prev/Page Up ESC[5~

Next/Page Down ESC[6~

Arrow Up ESC[A

Arrow Right ESC[B

Arrow Left ESC[C

Arrow Down ESC[D

Table 10-1: General Keyboard Mappings

Display Control Virtual 1/0

The VT100-like terminal mode of the virtual I/O windows comprises the

following control codes and escape sequences for displaying:

ASCII Decimal Operation

Code Value

BELL 7 Ring the bell

BS 8 Move cursor one position back
TAB 9 Move cursor to next tab stop

LF 10 Move cursor one line down

CR 13 Move cursor to start of line

ESC 27 Start escape sequence (see below)

Table 10-2: Control Codes

Special Features

Escape Sequences

&

Escape Operation

Sequence

ESC D Cursor one line down (scrolls if already at last line)
ESCE Cursor one line down and to left margin (scrolls)
ESC M Cursor one line up (scrolls if already at top line)
ESC[nlA Cursor nl lines up

ESC[nlB Cursor n1 characters right

ESC[n1C Cursor nl characters left

ESC[nl1D Cursor nl lines down

ESC[H Cursor home

ESC[nl;n2H Move cursor to (n1,n2) with n1=row, n2=col

Table 10-3: Cursor Motion

Parameters 71 and/or n2 may be left out, in which case a value of 1 is

assumed.

Escape Operation

Sequence

ESC[J Clear screen from cursor till bottom-right

ESC[plJ 0: Clear screen from cursor till bottom-right
1: Clear screen from top—left till cursor
2: Clear entire screen

ESC[K Clear line from cursor till end

ESC[plK 0: Clear line from cursor till end

1: Clear line from begin to cursor
2: Clear entire line

Table 10-4: Erasing

For example, to clear the entire screen in the C programming language,

you can enter:

printf(”\033[H 033[2J");
fflush(stdout);

10-11

10-12

Chapter 10

Escape Operation
Sequence

ESC[nl @ Insert characters
ESC[nl1P Delete nl characters
ESC[nlL Insert nl lines
ESC[n1M Delete nl lines

Table 10-5: Inserting and Deleting

@ Parameter 7 may be left out, in which case a value of 1 is assumed.

Escape Operation
Sequence

ESC[m Turn off all attributes

ESC[nlm 0: turn off all attributes
1: bold

4: underline

5: blinking

7: reverse

8: invisible

22: turn off bold
24: turn off underline
25: turn off blinking
27: turn off reverse
28: turn off invisible

Table 10-6: Character Attributes

Multiple parameters may be specified simultaneously:

ESC [n1 ; : nN m

Some attributes or combinations of attributes are mapped to a regular

standout mode.

Parameters may be left out, in which case a value of 0 is assumed.

Special Features

Escape Operation
Sequence
ESC[121 Local echo on
ESC[12h Local echo off
ESC[?7h Wrap around on
ESC[? 7] Wrap around off
ESC[?25h Cursor on
ESC[? 251 Cursor off
ESC[?921 Enquire after the window's size
Response:
ESC [? rows, columns ¢

Table 10-7: Miscellaneous

10-13

10-14 Chapter 10

Simulated I/0 allows you to observe the input and output of your
program before the hardware is in place. In CrossView Pro, simulated I/O
operates through special function calls.

I/O calls in your M16C C program like printf () and get char () call the
low-level function _i owrite() and _i oread() . In the distributed C
libraries these functions call _si no() and _si mi (), respectively. So, all
your M16C programs support simulated I/O by default. Stream number 0
is for input, for example by get char () ; stream number 1 is for output
functions like pri nt f () ; stream number 2 is for error messages.

To use simulated I/O, you will need to add two special function calls to
your application. The _si mi and _si no routines allow CrossView Pro to
trap I/O for debugging purposes. The _si mi and _si np routines, found
in the C library or supplied with CrossView Pro as source code in a
module called | i b/ src/ _sim o. ¢, are simple stubs as shown below:

int _sim(int stream char *port, int |en)

{
return len + stream + *port;
/* names used by CrossView Pro */
}
int _simo(int stream char *port, int |en)
{
return len + stream + *port;
/* names used by CrossView Pro */
}
The parameters for this function are:
stream The stream number used to identify the particular 1/0O.
port The address of the input or output buffer where your

program reads or writes its input/output data (the name "port’
is used for historical reasons).

I en The length of the input data or size of the output data.
Example:

_si no(QUTPUT_STREAM out buf, 80);

Special Features 10-15

QUTPUT_STREAM s the stream number used to identify this I/O; out buf is
the address of the output buffer where your program writes its output
data; and 80 is the size of the output buffer. Note that out buf must
always be the same physical buffer. So, copy your data into it before
calling _si no.

The _sim call (for simulated input) has a similar form:
_sim (I NPUT_STREAM i nbuf, 2)

| NPUT_STREAM s the identifying I/O number; i nbuf is the address where
the input data will be received; and 2 is the size of the input buffer: two
bytes.

If you have several I/O routines that you want to simulate, be sure to give
each one a different stream number. Valid stream numbers are 0 through
7.

Once your code has been compiled with the appropriate _si mi /_si no
calls, and CrossView Pro is up and running, you have to define the
simulated streams.

You can set up an input or output stream. For input you may specify
either a file or the keyboard, for output either a file or the screen. Each
stream has its own identifying number. There can be as many as eight
streams.

You may also specify the format of the stream’s values. The default is
character, but you may want to use hexadecimal or octal values when
directing data to or from a file.

To set up a simulated I/O stream:

@? From the menu system:

Select the Debug | Simulated |/0O Setup... menu item to
open the Simulated I/O Setup dialog box.

¢ Select a stream number from the St r eam Nr list selection box.
* Select the | nput or Qut put radio button.

10-16 Chapter 10

* Select the I/O device: either Screen / Keyboard or Fi | enane.
If you want file I/O enter the name of the file or use the
Browse. .. button to select a file. The default filename extension is
.sio.

e Optionally, select one of the For mat radio buttons.
* Optionally, specify an alternative prompt for an input stream.
* Click on the Act i vat e button to activate the stream.

* Specify another stream by repeating the steps above or click on the
OX button to close this dialog box.

Enter the sio o or sio i command in the Command Window.

FUNCTION: Create an output stream.
COMMAND: stream sio o {file | screen} [/format)

To set up a simulated output stream, you could type:
1 sio o screen

This creates an output stream number 1 (corresponding to the
QUTPUT_STREAM #def i ne in the source). The output is directed to the
screen. CrossView Pro automatically assigns the stream a simulated 1/O
window where the output appears.

To create a simulated input stream, type:

0 sio i screen

FUNCTION: Create an input stream.
COMMAND: siream sio i {file | screen} [/format)

This creates an input stream number 0 (corresponding to the
| NPUT_STREAM #def i ne in the source), and directs the input from the
keyboard while prompted on the screen.

@ Using the hexadecimal or octal format, CrossView Pro requires a space
between each hexidecimal/octal value as input.

Special Features

To view the number and types of current streams:

@) Follow these steps:

e Select the Debug | Sinmulated |/O Setup... menu item to
open the Simulated I/O Setup dialog box.

e If a stream in the St ream Nr list selection box contains an asterisk
(*) before its number the stream is active. The Menory box shows
the address and length of the currently selected stream.

* Select a stream number from the St ream Nr list selection box for
which you want to see the current settings.

Enter the sio command in the Command Window.

sio
stream O screen input format X adr: 0x190 len: 2
stream 1 screen out put adr: 0x140 len: 80

CrossView Pro shows each stream’s characteristics: file or screen, input or
output, its format, location in memory, and its length (defined in the
_sim and _si np calls). Note that the program must run and call a
simulated I/O function at least once in order for a stream to have the
address and length information displayed.

FUNCTION: View simulated I/O status.
COMMAND: sio

When CrossView Pro requests the simulated input from the keyboard, it
displays the prompt and waits for your typed input. If you want, you may
also input hexadecimal characters by changing the format of the I/O
stream.

@? To change stream properties:

e Select the Debug | Sinmulated |/0O Setup... menu item to
open the Simulated I/O Setup dialog box.

10-17

10-18 Chapter 10

¢ Select the stream from the St r eam Nr list selection box for which
you want to make some changes.

* Note that when a stream is active and has already been used, you
must deactivate the stream before editing.

e Make the changes and click on the OK button to accept your
changes.

Delete the previous stream with the sio d command in the Command
Window and create a new stream.

For example, to change stream O first, delete the previous stream:

0 siod

FUNCTION: Delete an I/O stream.
COMMAND: stream sio d

Then create a new stream. For example, to change stream 0 to
hexadecimal format:

0O sioi screen /X

Now the values you enter must be hexadecimal numbers. For instance, to
enter the ASCII value of 'y’ you would type:

SI O_i nput >79

You can specify one of three types of formats: ¢ (character), x
(hexadecimal) and o (octal). The default format is character.

Simulated I/0 Buffers

Each of the eight simulated I/O streams has a corresponding dedicated
buffer. For instance, output stream 1 corresponds to a different buffer than
output stream 2. Once a stream corresponds to a buffer, it is always with
that buffer. You cannot select a new buffer after the initial call to either
_sim or_sino.

Special Features

&

The address and size of each simulated I/O stream buffer is determined
the first time a call to either _si mi or _si no is made. Thereafter, every
call to either _si m or _si nmo using that stream will use the same buffer
size and address as the first call. The buffer size and address for a stream
cannot be changed once it has been initially set. You have to delete the
stream first.

I/O streams that correspond to files instead of the screen also have their
buffers set to a fixed size on the first call.

Any output to a buffer that is too small results in truncated output at the
limit of the buffer. If 40 characters go to a 20 character buffer, it discards
20 characters. Any input to a buffer that is too small results in limiting the
input to the size of the buffer.

To change the prompt for simulated input:

Follow these steps:

e Select the Debug | Sinulated I/O Setup... menu item to
open the Simulated I/O Setup dialog box.

¢ Select the stream from the St r eam Nr list selection box for which
you want to change the prompt.

* Enter the new prompt in the Pronpt edit field and click on the OK
button to accept your changes.

Enter the sio p command in the Command Window.
To change the prompt for the input stream number 0, type:
0 sio p "Enter>"

The quotation marks are not strictly necessary, but they help to distinguish
the prompt from other CrossView Pro commands.

FUNCTION: Change prompt of an I/O stream.
COMMAND: stream sio p prompi

10-19

10-20

Chapter 10

For more complicated I/O you may want to direct information to or from a
file. Enter the filename in the corresponding edit field of the Simulated I/O
Setup dialog box. When you use the keyboard, type the filename after the
sio command.

In the denp example, you direct the output stream to file nyfil e, by
typing:

1 sioo mfile

Now CrossView Pro sends the simulated output to the file nyfil e.
Similarly, if you want the information recorded in hexadecimal format, you

type:
1 sioonmfile /'x

In order for CrossView Pro to close the output file, you must delete the
stream:

1siod

If the output from the program does not fill the length specified,
CrossView Pro fills the additional space with null (zero) values.

Inputting data from a file is an identical process. To input octal data from
the file myfi | e, you type:

0sioi nyfile /o

If you direct simulated I/O to the screen, CrossView Pro displays the
output in the Simulated I/O window. Depending on the number of
streams, the window shows from one to eight streams at a time.

Similarly, if you direct input from the keyboard; whatever you input
appears in the appropriate simulated I/O window.

See chapter Using CrossView Pro for examples of Simulated I/O Windows.

Special Features

&
&

Background mode is a feature for running the application under debug
and CrossView Pro at the same time. This allows you to monitor the target
application using CrossView Pro, while the application is running.
Depending on the target hardware and/or debug instrument connected to
CrossView, target execution can even be real-time.

Since CrossView’s monitoring of the target hardware must be
non-intrusive, not all functions of the debugger are enabled while running
in background mode.

You can only use this feature if it is supported by the execution
environment (see the addendum).

CrossView can be instructed to automatically refresh one or more windows
of the debugger periodically while running in background mode. You can
use the Background Mode Setup dialog for specifying the desired set of
windows to be refreshed.

Use menu item Opt i ons| Background Mdde Setup. .. to open the
Background Mode Setup dialog.

A distinction has been made between updating the Source lines window
and updating the Disassembly window. Updating the Disassembly window
may be to time-consuming, so you may want to disable its updating in
Background mode, while still keeping the Source lines window
up-to—date when that is displayed on screen.

Use the u command to toggle the updating of windows in background
mode.

FUNCTION: Toggle update of window in background mode.
COMMAND: [interval) u [d|k|r|cd|ck|cr|s|a|mem |t

10-21

10-22

o)

Chapter 10

The following windows can be updated in background mode:

d (Data), k (Stack), r (Register),
cd (Data, composite), ck (Stack, composite), cr (Register, composite),
s (Source), a (Assembly), mem (Memory), t (Trace)

Initially only the data window will be updated. CrossView Pro repeatedly
looks at the execution environment to react on changes. It
pseudo-simultaneously looks for user commands from the keyboard (or
from the playback file), and periodically it updates the windows.

If all windows would be updated the update frequency would drop. That
is why you can toggle a switch for each window. To toggle the updating
of the register window, you can type:

XVwWe u r

If the switch for a window is ’on’, it will be updated, otherwise it will be
skipped.

You can also specify a new update interval.

Without arguments, CrossView Pro displays all windows updated
periodically plus the update interval.

Notice that simulated I/O is done through ’invisible’ breakpoints, and these
must be handled inside the loop. Hence, if updating the windows takes a
lot of time (many monitor commands), it will also slow down simulated
1/0.

If you have windows which you do not want to refresh periodically, you
can disable them in the Background Mode Setup dialog’s refresh list, and
refresh these windows manually.

Select the Vi ew | Background Mbode menu item and select one of the
refresh options.

Use the ubgw command.

Special Features

FUNCTION: Update the appropriate window when the target runs in
the background.

COMMAND: wubgw [s|a|k|r|d| mem |t]all]

ﬂj Section Refresh Limitation in this chapter.

To run a program in background mode:
g;s@ Select menu item Run| Background Mode| Run in Background.

Type the CB command on the command line.

FUNCTION: Run a program in background mode.
COMMAND: [count] CB [linenumber)

This will start the application under debug to run continuously (as with
the C command), and switch CrossView Pro from Halted to Background
Mode. count is assigned to the breakpoint at the current execution
position as the number of times to hit this breakpoint before execution to
stop. linenumber specifies the source line to place a temporary
breakpoint.

The mouse pointer changes to an arrow with a small watch face
underneath. This indicates that CrossView Pro is now in background
mode. Some commands are treated a little different in this mode, because
they can otherwise influence the running program badly. Commands that
need information from the stack (like bU, bu, bb or bB) are not allowed
because that information is not reliable. Other commands require great
care, for example the o command.

For example if you type the g while in background mode you will see:

XVWh g 56
Conmand "g” is not allowed while the emulator is
runni ng in background.

10-23

10-24

Chapter 10

You can leave Background Mode in three ways:

7. Stop the target immediately:

@? Select menu item Run| Backgr ound Mde| Halt Tar get.

Enter the st command:

XVW st

8. Let CrossView wait for the target to stop:

Select menu item Run| Backgr ound Mbyde| Wait for Target to
St op.

To wait to come to a breakpoint, you can use the wt command:

XVW Wt

9. A program running in background mode also stops when it encounters a

breakpoint.

FUNCTION: Stop a program in background mode.
COMMAND: st

The wt command behaves just as if you have typed the C command.
CrossView Pro returns with a prompt, after the program hits a breakpoint.
However, there is an interesting difference with the C command. If you
push the Hal t button, it returns with the background prompt. The
program that runs in the execution environment continues without
interruption.

FUNCTION: Wait for the running process to stop
COMMAND: wt

Special Features 10-25

While the execution environment runs in background, CrossView Pro does
not allow the use of information that comes from the stack. The reason is
that the running program must be stopped in order to get consistent
information from the stack. Stopping (and afterwards continuing) the
program conflicts with the “real-time” nature of the background mode.

If there is a need for it, you can make a macro that performs the desired
operations.

In background mode you can continuously monitor variables. However,
realize that local variables (in CrossView Pro variables are called 'local’ if
they reside on the stack) cannot be monitored. Instead you will see
“unknown name”. Global variables have a fixed address, so CrossView Pro
knows where to get their contents from.

If you are very anxious to see local variables you can first get an address
and then use that address to monitor the contents. For example:

$adr _sum = &sum
m *(adr _sun)/ x4

In this example sumis a long (4 bytes). You must be sure that sum
remains at that address while the program is running.

@ The values you get this way are only valid under specific conditions. Local
variables from the function mai n normally meet these conditions.

While running the application in the background mode, the automatic
refresh functionality may not be able to keep up with all the debugging
information produced by the running target. Typically, the collected
information will be correctly displayed and automatically updated in the
current open views and no information will be lost. You might lose the
debugging information when scrolling these views during the background
mode. The reason is that either CrossView Pro does not run fast enough or
the communication with the target hardware is not handled fast enough by
the operating system.

10-26

Chapter 10

The information that cannot be processed by CrossView Pro within the
specified update interval, is displayed as either '<unknown>’ or dashes.
The way the lost information is displayed depends on the internal
communication level within CrossView Pro where the information is lost.
Information lost during communication with the target hardware is
displayed as '<unknown>’. Information lost by CrossView Pro while
processing and interpreting this information, is displayed as dashes.

On the next automatic or manual update, all debugging information in the
currently open views is automatically updated. All visible '<unknown>’
values and dashes are replaced with their actual values as produced by the
running target.

CrossView Pro automatically suspends assertions with the CB command.

DEBUGGING NOTES

al TASKING [

d31dVHO

11

Debugging Notes 11-3

Here are a few notes about debugging in special situations:

You may debug assembly language programs or modules much as you do
C source. The s, S and si commands single step through the assembly
source. You may place code breakpoints on assembly language
instructions with the bi command.

For additional information on debugging assembly code, see $aut osr c,
$m xedasmand $synbol s in the Reserved Special Variables table in
section 3.4.

There is a restriction on debugging assembly language code:

* Assembly language subroutines cannot be called from the command
line.

You probably have only one linked and located absolute object file that
describes the whole system load. However, for various reasons, you may
want to build your system load by linking and locating into several files.
The debugger can handle the symbols from only one load module in one
absolute object file at a time. Consequently, if there are several absolute
files or several load modules within one absolute file, you will have to
change the context from one to another explicitly. Use the N command or
the Load Synbol i c Debug | nf o dialog to load the appropriate
symbols. This does not disturb the state of the target system.

You can also download the image part of another absolute object file
(using the dn command), without leaving the debugger.

Chapter 11

11-4

S310N ONIDONE3d

COMMAND
REFERENCE

al TASKING [

d31dVHO

12

Command Reference 12-3

This chapter contains a summary of all CrossView Pro commands,
followed by a complete description of each command.

Each CrossView Pro command has a particular syntax, that is, the form it
must take for CrossView Pro to recognize it. To help you learn the syntax
of each command, this chapter uses a special notation to describe the
syntax of each command. Consider the following example:

stream sio {i| o} {file |screen} [/format]

Command items in bold font are the actual command keywords typed
from the keyboard. In the example above, sio is in bold font since you
must type it exactly as shown.

Items in #talics are names of the command part. Here stream is in italics,
since you must substitute the appropriate value for stream. The
Description section for each command describes what kinds of values
should be substituted for italicized terms.

Expressions in [brackets] are optional items you may include in a particular
command. In this example /format is not necessary for the sio command
to work. Usually if you omit an optional expression, CrossView Pro uses a
default value.

The | symbol means or. For instance, { file | screen} means a filename or
the word screen (but not both) may be used in the command.

12-4 Chapter 12

@? From EDE, you can set the values of the -a, -b and -c options in the
M scel | aneous tab of the EDE | CrossView Pro Options dialog.

—-a number Set the maximum number of assertions (the default is 100).
-b number Set the maximum number of breakpoints (the default is 200).

—-c number Set the maximum number of instruction trace (the default is

32).

-C ¢cpu Force CPU type selection. This option also determines which
register file (regcpu.dat) will be used. This option overrules
the CPU type selection in both xvw. i ni and a target
configuration file.

-dsc dsc Force locator description file selection. The default is
nml6c. dsc.

-D device _type,optl|,0pt2)
Selects a device and specifies device specific options, such as
communication port and baud rate. The allowed
combinations for your execution environment are described
in the manual addendum for that specific execution
environment.

The following combinations are possible:

-D rs232 port,speed
Select RS-232 communication.

port For PC this is COM1, COM2, COM3 or COM4. A
colon should not be added. For UNIX this is the
full path of the RS-232 device driver (e.g.,
/ dev/tty01l). By default CrossView Pro uses
the first RS-232 port.

speed This is the baud rate used for the specified port.
The default is 9600.

Command Reference

-D parallel,port

Select parallel communication.

port For PC this is LPT1 or LPT2. Do not add a
colon. For UNIX this is the full path of the
parallel device driver. By default CrossView Pro
uses the first parallel port.

-D tcp,host.port

Select TCP/IP communication. On UNIX the standard TCP/IP
implementation is used. On MS-Windows the W NSOCK. DLL
implementation is used.

host The name of the host to be accessed via TCP/IP.

port The port number on host to be accessed.

-D dev,device-file

Use a UNIX device driver as communication channel. For
RS-232 devices use the -D rs232 option, described above.

device-file The full path of the UNIX device file.

-D isa,io—port.address

Select communication channel to an (E)ISA interface card in
the PC.

io-port PC I/O port number or I/O channel used for
accessing the (E)ISA card.

address The memory address used to access the (E)ISA
card.

@? From EDE, you can set communication parameters in the
Comuni cat i ons tab of the EDE | CrossView Pro Opti ons dialog.

—-em macro|=def]

—f file
-G path

-i

Add macro for pre—processing the description file. If def is
not given (=’ is omitted), '1’ is assumed.

Read command line options from file.
Specify startup directory for CrossView Pro.

Perform an initial download of the image of the absolute
object file on startup.

12-5

12-6

=

Chapter 12

From EDE, you can enable the I ni ti al downl oad of programcheck
box in the M scel | aneous tab of the EDE | CrossView Pro Options

dialog.
-L file

-n address

-p file
-P file

-r file

-R file

Make a log of CrossView Pro target communications in file.

Inform CrossView Pro that the program was loaded into
memory at an address other than zero.

Begin by playing back commands from file.

Begin by playing back commands from file with command
single step.

Begin recording commands in file.

Begin logging commands and screen output in file.

From EDE, you can enter record, log and playback filenames in the
Loggi ng tab of the EDE | CrossView Pro Options dialog.

-s number

Set the maximum number of special variables (variables
independent of the program that CrossView Pro provides for
your use). The default is 26.

From EDE, you can enter the maximum number of special variables in the
M scel | aneous tab of the EDE | CrossVi ew Pro Opti ons dialog.

-sd directory ...

-tcfg file

=T [file]

Specify the directories CrossView Pro should search for
source files (separated by semicolons). Relative paths are
allowed. When the N command is used to load a new
symbol file, the current directory is set to the directory
containing the symbol file and CrossView Pro now searches
for source files relative to this directory.

Specify a target configuration file. This overrules the filename
specified in Xxvw. i ni . See section CrossView Pro Startup
Settings in the Overview chapter.

Start CrossView Pro in transparency mode; if file is specified,
commands in file are sent to the execution environment.This
option is not available for all execution environments.

Command Reference 12-7

"~ [format) Display contents of preceding memory location.
exp Print value of expression using /n format.

exp @ formatPrint address of expression exp in format format.
exp/format Print value of expression exp in format format.
line Move viewing position to line line.

number ¢t Display a source-level trace corresponding to the last
number of machine instructions executed. This command is
not available for all execution environments.

number cti Display a disassembled assembly-level trace corresponding
to the last number of machine instructions executed. This
command is not available for all execution environments.

number ct r Display a raw trace corresponding to the last number of trace
frames. This command is not available for all execution
environments.

e [func | file]

Enter function func or file file or view current viewing

position.

stack e Enter function using stack address.

laddr| ei View current viewing position or view instruction at address
addp.

f ["printf-style—format”
Change default address display format.

L Synchronize the viewing position with the execution
position. Print current file, function and line number.

la|b|d|f[g|k[l[L|m|p[r|s|S} [string]
List assertions, breakpoints, directories, files, globals, kernel
state data, labels (on module scope), all Labels, memory map
(of application code sections), procedures, registers, special
variables, Symbol tables. If given, only those starting with
string.

12-8

1 [func]

1 stack
nC

nU

Chapter 12

List all parameters and locals of function func. Without a
function, this command lists all parameters and locals of the
current function in view.

List all parameters and locals of function at depth stack.
Move viewing position to next covered line.

Move viewing position to next uncovered line.

opt [option [= valuel|

(line] P [exp)

lline] p fexp]
pC

pU

lexp] T

lexp] t

td

te

cd

ce

List or set option value. Without an argument, list all option
values.

Print exp lines of source starting at line /ine, include machine
addresses.

Print exp lines of source starting at line /ine.

Move viewing position to previous covered line.

Move viewing position to previous uncovered line.

Trace the stack for exp number of levels, list local variables.

Trace the stack for exp number of levels, printing active
functions and parameters passed.

Disable tracing.

Enable tracing.

Disable, turn off, gathering of coverage data.

Enable, turn on, gathering of coverage data.

dis address [, {address | #count} [,i]]

Disassemble a range of memory.

dump address |, laddress | #count] |, [style [width)] |, filename |,a]]]

M

Dump a memory range.

Display list of monitored expressions in the Command
window.

Command Reference 12-9

m exp Monitor the expression exp.
num md Remove monitored expression labeled 7num.

addr start mcp addr_end, addr dest
Memory copy.

addr mF exp[exp]...
Single fill memory address addr with expressions.

addr start mf addr _end, exp[,exp)...
Fill memory address range with expressions and repeat the
pattern until the end address of the memory region is
reached.

addr start ms addr_end, exp|,exp]...
Search memory address range for a given pattern.

pd Disable, turn off, profiling.

pe Enable, turn on, profiling.

proinfo List profiling info.

A [a]s] Toggle state of assertion mechanism.

a cmds Create a new assertion with the command list cimnds.
exp a{a|d]|s}

Activate, delete, suspend assertion exp.
B List all breakpoints.

[line] b [cmds)
Set breakpoint at source line /ine, and associate command list
cmds with breakpoint.

[stack] BB [cmdls)
Set temporary breakpoint at beginning of function at stack
level stack and associate command list cmnds.

[stack] bb [cmds)
Set breakpoint at beginning of function at stack level stack
and associate command list cmds.

12-10

Chapter 12

[number] be [count] [reset_count]
Set breakpoint count and reset_count for breakpoint with
number number.

count bCYC [cmds)
Set temporary breakpoint after the specified cycle count and
associate command list cmds.

count beyc [cmds)
Set breakpoint after the specified cycle count and associate
command list cmds.

exp bD {r|w|b} exp2 [cmds)
Set a data range breakpoint (between addresses exp and
exp2) read (r), write (w) or both read and write (b), and
associate command list cmds. This command is not available
for all execution environments.

exp bd {r | w|b} [cmds]
Set a data breakpoint, read (r), write (w) or both read and
write (b) at address exp, and associate command list cmds.
This command is not available for all execution
environments.

num bdis Disable code breakpoint.
num bena Enable code breakpoint.

laddyr] bI [cmds]
Set temporary breakpoint at machine instruction and
associate command list cmds.

laddr] bi [cmdls)
Set breakpoint at machine instruction and associate command
list cmds.

count bINST [cmdls)
Set temporary breakpoint after count machine instructions
and associate command list cmds.

count binst [cmds|
Set breakpoint after count machine instructions and associate
command list cmds.

Command Reference 12-11

time bTIM [cmds)
Set temporary breakpoint after #me number of seconds and
associate command list cmnds.

time btim [cmds)
Set breakpoint after z/me number of seconds and associate
command list cmds.

[stack] bU [cmdls)
Set a temporary up-level breakpoint at stack level stack and
associate command list cmds.

[stack] bu [cmds)
Set up-level breakpoint at stack level stack and associate
command list cmds.

lexp] C [line] Continue execution from current value of program counter. If
line is specified, execution continues up to that line.
Breakpoint’s count is set to exp.

lexp] CB |line]
Continue execution in background from current value of
program counter. If /ine is specified, execution continues up
to that line. Breakpoint’s count is set to exp.
This command is not available for all execution

environments.
D Delete all breakpoints.
Dy Delete all breakpoints without prompt for confirmation.

[rumber] d Delete breakpoint number.

cpu eC Start execution on the current CPU and switch to cpu.
[cpu] ec Select CPU or show current CPU number.
g line Go to the specified line in the current procedure.

address gi Go to the specified adrress.

if (exp) {cmds} Remds)|
Conditionally execute commands.

load [file] Load symbol table of file in CrossView Pro and download the
image part to the target. This is a combination of N and dn.

12-12

rst

lexp] S
lexp] s
lexp) Si

lexp] si

st

Chapter 12

Load symbol table of file in CrossView Pro.
Reset program counter.

Report breakpoint quietly.

Quit debugger (do not save desktop settings).
Save current desktop settings and quit debugger.
Reset program counter and start execution.
Reset target system to initial conditions.

Single step for exp lines, step over function calls.
Single step for exp lines, step into function calls.

Single machine step for exp machine instructions, step over
subroutine calls.

Single machine step for exp machine instructions, step into
subroutine calls.

Stop the execution of the target immediately.
This command is not available for all execution
environments.

[interval) u [d|k|r|cd|ck|cr|s|a|mem |t

Toggle updating of the appropriate window when the target
runs in the background. You can specify the update interval,
in seconds. If interval is zero, never update automatically.
This command is not available for all execution
environments.

ubgw [s|a|k|r|d|mem t]|all]

use path)...

Refresh the appropriate window, or all open windows, when
the target runs in the background. This command is not
available for all execution environments.

Clear source directory search path or use the specified path
to search for source files.

Wait for the completion of the target.
This command is not available for all execution
environments.

Command Reference

lexp] x

<file
<<file
>file
>{t|f|c}
>

>>file
>>{t|f|c}

>>

>&file

>&{t|f|c}

>&

echo siring
save file

set

Force an exit from assertion mode. If exp is non-zero, finish
executing command list of the current assertion.

Play back commands from file.

Play back commands with single step from file.
Record commands in file.

Set recording file status, true (t), false (f) or closed (c).
Report status of command recording mechanism.

Log commands and screen output in file.

Set logging file status, true (t), false (f) or closed (c)

Report status of command and screen output logging
mechanism.

Log host-to-target communication in file. Not available for all
execution environments.

Turn target communication logging on (t), off (f) or close (c)
log file. Not available for all execution environments.

Report status of target communication logging mechanism.
Not available for all execution environments.

Display macro expansion of string.
Save current macros to file.

Display all macros.

set macro “cmds”

unset

Define macro macro as command list cmds.

Delete all macros.

12-13

12-14

Chapter 12

unset macro!
Delete definition of macro macro.

macro! Prevent expansion of macro.

sio List all simulated I/O streams.

stream sio {i| o} {file | screen} [/format)
Create simulated input (i) or output (o), numbered stream,
directed from/to file or from/to the screen. Display data in
Jormat.

stream sio d Delete 1/0 stream stream.

stream sio p prompt
Change input stream’s prompt to prompt.

dn Download the image part of the current absolute file,
specified when CrossView Pro was invoked or loaded with
the N command.

dn file Download the image part of the absolute file file.

n (addr] Set code address bias (for overlays) to addr. If no address is
given, then display the current bias.

o [cmd)| Enter transparency mode (exit with ct#/-D). If cmd is present,
pass cmd to the execution environment. Not available for all
execution environments.

! [command-line]
Execute shell command command-line or invoke new shell.

I Print information about debugger state.

Command Reference

Z Toggle case sensitivity in searches.

/[string] Search forwards in source file for string. If string is not
present, perform previous search again.

?(string] Search backwards in source file for string. If string is not
present, perform previous search again.

’string” Print string.

The rest of this chapter provides the detailed descriptions of the CrossView
Pro commands.

12-15

12-16

Chapter 12

Function

Print the value or address of an expression.

Select the Data | Eval uate Expressi on menu item. Enter an
expression and optionally select a format code. You may set up a monitor,
which instructs the debugger to evaluate a particular expression each time
the program stops, from the Source Window by selecting text there and by
clicking on the Wat ch sel ect ed source expression accelerator
button.

Enter the expression in the Command Window. You may specify in which
format you want CrossView Pro to display the answer.

Description

In the Command Window, the syntax for this command is:
exp [/ format |@ format

Print the value or address of exp with format format. A / (slash) is used to
print the value of exp and a @ (commercial at) is used to print the address
of exp. If format is not supplied, the natural (/n) format of the expression
is used.

Formats have the syntax:
[count] style [size]

count is the number of times to apply the format style and defaults to 1.
style may be one of:

acbhDOUXdouxEFGef gil nPpst

See the Accessing Code and Data chapter and the section Formatting
Expressions in the chapter Command Language for details on each of the
format styles. size indicates the number of bytes to be formatted. Rather
than a number for the integer type styles, size may also be: c for char, s
for short, i for int, and 1 for long.

The default action, if no modifier is specified, is to print the value of exp
using the /n (normal) format.

Command Reference 12-17

Be careful with one letter variable names, as they may be taken as an
CrossView Pro command rather than as a variable. If an expression begins
with a variable that might be mistaken for a command, then eliminate any
white space between the variable and the first operator. For example: use
h=9 instead of h = 9.

To display the value of a variable that has the same name as an CrossView
Pro command you must use the natural format modifier. For example: to
print the value of the variable C, use C/ n.

Variables may be altered as a side effect of evaluation of exp. See the
example below.

Example
To set variable aux to t times 8, type:
aux = t++*8
As a side effect the variable t is post-incremented. If you type:
$s_aux = func(t,s)

CrossView Pro will set special variable $s_aux to the result of the function
call to f unc with the variables t and s passed as parameters. If you type:

$s_aux/ x4

Print the value of the special variable $s_aux as four hex bytes; you could
also use: $s_aux/ x| .

%,\

12-18 Chapter 12

Function

Display the C source line numbered /izze in the current source file.

Select the Search | Find Line... menu item, enter the line number
and click on the Fi nd button. Alternately, you may click on the desired
source line in the Source Window.

Enter the line number in the Command Window. The syntax is:
line

Description

The current viewing position becomes line.

Example

To display the twelfth line in the current source file, type:

12

Iocrs

Command Reference

Function

Echo a string to the terminal.

There is no mouse equivalent for this function. However, many distinct
functions accept strings. See below.

Description

A string may contain standard C escapes, such as \n for a newline. The
syntax for a string in the Command Window is:

”Stﬂng”

Example

This function can be useful for labelling breakpoints. For example, to
insert a breakpoint at line 12 and have a message printed when that line is
reached, enter:

12 b {"At the twelfth line\n"; C}

When CrossView Pro reached line 12, the message “At the twelfth line”
will be printed and the program will continue. If you only type:

" Debug”

CrossView Pro will simply echo the word “Debug.”

ﬂ? Q, expression

12-19

12-20 Chapter 12

Function

Instruct CrossView Pro to interpret a command literally, ignoring any
macro definitions of the same name. Also, enter a shell command.

@? There is no mouse equivalent for this command.

The syntax for this command is:

[string | !
or:
! [string |
Description

This command is useful whenever string should be treated literally and not
as a potential macro invocation. It can be used, for example, in executing
an CrossView Pro command whose name has been defined as a macro.

Example

To enter the host environment under a new shell, type:
I

To execute the host dat e command, type:
I date

To execute the CrossView Pro command b instead of the macro named b,
type:

b!

ﬂj set, unset, echo, save

Command Reference

Function
Search down (forward) for a string.
To search for a string in the Source Window, select the Sear ch |

Search String menu item or click on the Repeat search down for
st ri ng accelerator button.

The command line syntax is:
/ | string |

Description

The search begins with the line after the current line. If the string is found
the viewing position is changed to the line containing the string. The
execution position is not affected. If you do not specify a string to search
for, CrossView Pro will look for the most recent specified string.

Searches wrap around to the beginning of the file. Regular expressions are
not recognized.
Example

To look for the next occurrence of Randomin the current file, beginning
with the line after the current line, type:

/ Random

I

12-21

12-22 Chapter 12

Function
Search up (backward) for a string.
To search for a string in the Source Window, select the Sear ch |

Search String menu item or click on the Repeat search up for
st ri ng accelerator button.

The command line syntax is:

? [string |

Description

The search begins with the line before the current line. If string is found,
the current line is changed to point to the line containing the string. The

execution position is not affected. If you do not specify string, CrossView
Pro searches for the previously—specified string again.

Searches wrap around to the end of the file. Regular expressions are not
recognized.
Example

To look for the previous occurrence of Randomin the current file,
beginning with the line above the current line, type:

?Random

&

Command Reference 12-23

Function
Continuous command playback. Read commands continuously from a file.
To setup command playback, select the Opti ons | Pl ayback menu

item. Enable the Cont i nuous pl ayback check box and click on the
Execut e button.

The command line syntax is:
< file

Description

All the commands in file will be read and executed. If a playback file
contains either a < or << command, playback switches to the newly
specified file and does not return to the original file.

Record and playback options can also be specified via command line
parameters.

If the execution of commands from the playback file is interrupted with
the Hal t button, CrossView Pro will begin reading the remainder of
commands in file using single step playback (see the << command.)

Example

To read and execute the commands found in the file command. out , type:

<comrand. out

ﬂj <<, > 1

12-24 Chapter 12

Function
Single-step command playback.
To setup command playback, select the Opti ons | Pl ayback menu

item. Disable the Cont i nuous pl ayback check box and click on the
Execut e button.

The command line syntax is:

<<file

Description

Commands will be played back one at a time. Each command will be
loaded sequentially into the entry field of the Command Window. The
command can then be edited and executed.

The carriage return will execute the current command and stop at the next
one.

If a playback file contains either a < or << command, playback switches to
the newly specified file and does not return to the original file. Record and
playback options can also be specified via command line parameters.

Example

To read and execute the commands found in the file command. out , type:

<< command. out

%<,>,I

Command Reference 12-25

Function

Record CrossView Pro commands to a file.

To start recording or toggle the state of the command recording
mechanism, select the Opti ons | Record menu item. To start recording
click on the St art button. To suspend recording click on the Suspend
button. To resume recording click on the Resumne button. To stop
recording click on the St op button.

The command line syntax is (note that the greater than sign must be typed
as shown):

>[1][file | t|f]c]

Description

CrossView Pro will start recording commands in a file if file is specified,
otherwise, turn recording on (t), off (f), or close (c) the recording file.
Specifying a different file while recording is on will cause the old output
file to be closed and all successive commands will be sent to the new file.
If no arguments are given, the state of the recording mechanism will be
displayed.

The optional " forces flushing of the output after every write.

The commands recorded can be played back by using the < or <<
command. It is possible to have a command recording file and a screen
output recording file to be open concurrently. The file is also closed as a
side effect of the q command.

Commands issued to the emulator under transparency mode are not
recorded.

Files may not be named: t, f or c.

Example

To set (or change) the command recording file to | og. cnd and turn
command recording on, type:

>| og. crd

12-26 Chapter 12

To suspend recording commands, type:
>f

To resume recording the commands to the recording file, type:
>t

To stop recording commands and close the file, type:
>C

To display the state of the recording mechanism, type:

>

% >> >&, <, <<, 1, q

Command Reference 12-27

Function

Log Command Window screen output. All Command Window input and
output will be saved to a file.

To create a log of Command Window screen output, select the Opt i ons

| Log | Conmand Input/Qutput... menu item. To turn on logging
click on the St art button. To suspend logging click on the Suspend
button. To resume logging click on the Resume button. To turn off logging
click on the St op button.

>> (1] [file | t]|f] ¢

Description

Start logging the commands typed and their output in a file if file is
specified, otherwise, turn logging on (t), off (f), or close (c) the log file.
Specifying a different file while logging is on will cause the old output file
to be closed and all successive Command window output will be sent to
the new file. If no arguments are given, the state of the recording and
logging mechanism is displayed.

The optional " forces flushing of the output after every write.

Because output is logged as well as commands, files logged using >>
cannot be played back like those recorded with the > command.

It is possible to have both a command recording file and a screen output
logging file open concurrently. The log file is also closed as a side effect
of the q command. Log files may not be named: t, f or c.

Example

To set (or change) screen output recording file to the file | og. out and
turn screen output recording on, type:

>>| og. out
To suspend recording the screen output, type:

>>f

12-28 Chapter 12

To resume recording the screen output in the recording file, type:
>>t

To stop recording the screen output and close the file, type:
>>C

To display the state of the recording mechanism, type:

>>

ﬂj >, >&, I q

Command Reference

Function

Log communications between debugger and emulator.

To save debugger/emulator communications, select the Opti ons | Log
| CrossView-Emulator I/0O .. menu item. To turn on logging click
on the St art button. To suspend logging click on the Suspend button.

To resume logging click on the Resune button. To turn off logging click
on the St op button.

The command line syntax is:
SX [[file | t] f] c]

Description

Start host-to—execution environment communication logging in a file if file
is specified; otherwise, turn logging on (t), off (f), or close (c) the log file.
This feature is most often used to diagnose problems with CrossView Pro
itself.

The optional 'Y forces flushing of the output after every write.

The commands captured cannot be played back the way commands
recorded by the > command can. The log file is also closed as a side effect
of the q command.

@ Not available for all execution environments.

Example

To open the file | 0g. out and put the following host-to—emulator
communications in this file, type:

>&l og. out

To suspend logging communications in the log file, type:
>&f

To resume logging communications in the log file, type:

>&t

12-29

12-30 Chapter 12

=

To stop logging communications and close the file, type:

>&C

ﬂj > >> q

Command Reference

Function
Display contents of preceding memory location based on the size of the
last data item displayed.

@? There is no direct mouse equivalent for this function.

The command line syntax is:
~ [format |
Description
Use previous format or format, if supplied. Formats have the syntax:
[count] style [size]

count is the number of times to apply the format style and defaults to 1.
style may be one of:

acbhDOUXdouxEFGef gil nPpst

See the Accessing Code and Data chapter and the section Formatting
Expressions in the chapter Command Language for details on each of the
format styles. size indicates the number of bytes to be formatted. Rather
than a number for the integer type styles, size may also be: ¢ for char, s
for short, i for int, and 1 for long.

This command is most often used in combination with exp/format to look
at the value of some variable or memory location.

Example
To display the variable aux as two octal values of length two, type:
~ aux/ 202
To show the eight bytes before aux in hexadecimal format, next type:

N2x4

% expression

12-31

12-32 Chapter 12

Function

Toggle the state of the assertion mode.

To activate or suspend assertion mode, select the Debug |
Assertions... menu item, and enable or disable the Asserti on Mde
Acti ve check box.

The command line syntax is:
Ala]s]

Description

Activate (A a) or suspend (A s) overall state of the assertion mechanism. If
no operand is given, toggle the state.

Example
To activate the assertion mechanism, type:
A a
To suspend the assertion mechanism, type:
A's
To toggle the state of the assertion mechanism, simply type:

A

g =

Command Reference 12-33

Function

Define or modify an assertion.

Select the Debug | Assertions... menu item to view the Assertions
dialog box. Select New. . . to define an assertion. Select and assertion and
select Edi t. .. to modify an assertion.

The command line syntax is:

expa{a|d|s}
a cmds

Description

The a command is used to invoke two different commands. The syntax for
each command is distinct. The first version allows modification of the state
of the assertion specified by the expression exp. (The assertion can be
activated (a a), deleted (a d) or suspended (a s).) The second version
creates a new assertion with the given command list cmds. Using the
mouse, you can create a new assertion or toggle the state of an existing
one from the Assertions dialogue box.

Suspended assertions continue to exist, but are not active. Deleted
assertions must be explicitly redefined in order to be made active again.

The commands for every active assertion are executed after every source
statement is executed. The x command in an assertion command list
forces an exit from assertion mode.

This command is not allowed when the target runs in the background.
Example
To suspend assertion 3, type:
3 as
To delete assertion 1, type:

l1ad

12-34 Chapter 12

=

To set an assertion to stop the program when global variable nyvar
exceeds 3, type:

aif (nmyvar > 3) {x}

%A,I,X

Command Reference

Function
List all of the currently defined breakpoints.

Select the Debug | Breakpoi nts.. menu item to view the Breakpoints
dialog box.

The command line syntax is:
B

Description

Breakpoints are listed with numbers associated with them. These numbers
can be used to delete individual breakpoints.

ﬂj b, bb, bB, bi, bl, bu, bU, R, C, D, 1

12-35

12-36

Chapter 12

Function

Set a code breakpoint.

Select the Debug | Breakpoints... menu item to view the
Breakpoints dialog box. Select the New Code. . . button to create a new
code breakpoint, leave the Task | D field empty or enter the string

” ”

any” .

Alternatively, you can set a code breakpoint directly in the source by
double—clicking on unmarked text, the viewing position, or the execution
position.

The command line syntax is:

[line] b [commands]

Description

You can attach a list of CrossView Pro commands with the breakpoint. If
no line is given, set the breakpoint at the current viewing position.

When the breakpoint is hit execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next, any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the b
command.

Example

To set a breakpoint at the current line, type:
b

To set a breakpoint at line 10 that will list all global variables and halt
execution, type:

10 b {I g}

% bd, bD, bb, bB, bi, b, bt, bti, btl, bu, bU, Q

Command Reference 12-37

Function
Set a temporary breakpoint at the beginning of a function.

In the Stack Window, click on the desired function and select the Debug
| Stack Breakpoint | At Function Entry menu item.

The command line syntax is:

[stack] BB [cmds |

Description

The function is designated by the stack level stack. If no function is
specified, CrossView Pro uses the current function (stack level 0), and
associates the list of CrossView Pro commands cmds with the breakpoint.

Breakpoints set in the Stack Window are always temporary, meaning they
will be deleted after the first time you reach them. A breakpoint set in this
manner will not be visible in the Source Window.

When the breakpoint is hit, execution is halted; the breakpoint is then
removed. By default the current execution position, function, line number,
and source statement are displayed. Next, any commands associated with
the breakpoint are executed. The Q command can be used to suppress the
output from the bB command.

This command is not allowed when the target runs in the background.

Example

To set a temporary breakpoint at the beginning of the current function
which prints a stack trace, type:

bB {T}

To set a temporary breakpoint at the beginning of the function whose
stack number is 2, type:

2 bB

ﬂj b, bb, bd, bD, bi, b, bt, bti, btl, bu, bU, Q

12-38 Chapter 12

Function

Set a permanent breakpoint at the beginning of a function.

In the Stack Window, click on the desired function and select the Debug

| Stack Breakpoint | At Function Entry menu item. To make the
stack breakpoint permanent, select the Debug | Breakpoi nts... menu
item, select the desired stack breakpoint, click on the Edi t. .. button and
select the Per manent radio button.

The command line syntax is:
[stack] bb [cmds |

Description

Set a breakpoint at the beginning of the function designated by the stack
level stack. Otherwise, use the current function (stack level 0), and
associate the list of CrossView Pro commands cmds with the breakpoint.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next, any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bb command.

This command is not allowed when the target runs in the background.

Example

To set a breakpoint at the beginning of the current function, which prints a
stack trace, type:

bb {T}

To set a breakpoint at the beginning of a function whose stack number is
2, type:

2 bb

ﬂj b, bB, bd, bD, bi, bl, bt, bti, btl, bu, bU, Q

Command Reference

Function

Set a breakpoint’s count and reset count.

Select the Debug | Breakpoi nt... menu item, select the breakpoint for
which you want to set the count and reset count, click on the Edi t. ..
button, enter a breakpoint count and select the Reset to 1 or Reset

t o val ue radio button.

The command line syntax is:

[number] bc [count| [reset_count |

Description

Set the count and reset_count for the breakpoint with breakpoint number
number. When no arguments are given, the breakpoint at the current
viewing position is set to a count of 1 and a reset count of 1. If no
breakpoint is present at the current viewing position, the message "No
such breakpoint” appears.

Each time a breakpoint is hit, CrossView Pro decrements the count. When
the count reaches 0, execution is halted and the count is reset to the
reset_count.

This command is not allowed when the target runs in the background.

Example

To set a breakpoint’s count and reset count to 1 for the breakpoint at the
current viewing position, type:

bc

To set the count to 3 and the reset count to 4 for the breakpoint whose
breakpoint number is 2, type:

g c

2 bc 3 4

12-39

12-40 Chapter 12

Function

Set a temporary cycle count breakpoint.

@? There is no mouse equivalent for this command.

The command line syntax is:
count bCYC [cmds)

Description

Set a temporary breakpoint after the specified cycle count. count can be
any expression evaluating to a number. The list of CrossView Pro
commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted; the breakpoint is then
removed. By default the current execution position, function, line number,
and source statement are displayed. Next any commands associated with
the breakpoint are executed. The Q command can be used to suppress the
output from the bCYC command.

Example

To set a temporary breakpoint after 4 clock cycles and list all global
variables, type:

4 pbeyc {I g}

ﬂ? b, bcyc, bINST, binst, bTIM, btim, D

Command Reference

Function

Set a permanent cycle count breakpoint.

@? There is no mouse equivalent for this command.

The command line syntax is:

count beyc [cmds)

Description

Set a permanent breakpoint after the specified cycle count. count can be
any expression evaluating to a number. The list of CrossView Pro
commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bcyc command.

Example

To set a cycle count breakpoint after 4 clock cycles and list all global
variables, type:

4 bcyc {I g}

ﬂ? b, bCYC, bINST, binst, bTIM, btim, D

12-41

12-42 Chapter 12

Function

Set a read and/or write data breakpoint over a range of addresses.

Select the Debug | Breakpoints... menu item to view the
Breakpoints dialog box. Select the New Dat a. . . button to create a new
Data breakpoint.

The command line syntax is:
expl bD {r | w | b} exp2 [cmds)

Description

Set a read, write, or both (read and write) data breakpoint in the address
range expl to exp2 and associate the list of CrossView Pro commands
cmds with the breakpoint.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next, any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bD command.

If exp1 is the address of a local (stack) variable, the function in which it
was declared must be currently active on the stack. If the local variable
corresponding to a data breakpoint goes out of scope due to a return from
the function in which it is currently active, the data breakpoint will be
removed and a message will be printed telling the user that the variable is
no longer active.

@ Not available for all execution environments.

Example
To set a data breakpoint that includes the entire structure r ecl, type:

& ecl bD r (int)& ecl+sizeof(recl)-1

This breakpoint will be hit only if any address in the range of addresses is
read from.

Command Reference 12-43

To set a data breakpoint for the address range 10 to 10f hex (256 bytes)
that will list all global variables, type:

0x10 bD b ox10f {I g;}

This breakpoint will be hit if any memory locations within the range
10-10f hex are either read from or written to.

% b, bb, bB, bd, bi, b, bt, bti, btI, bu, bU, Q

12-44

Chapter 12

Function

Set a read and/or write data breakpoint at an address.

Select the Debug | Breakpoints... menu item to view the
Breakpoints dialog box. Select the New Dat a. . . button to create a new
Data breakpoint.

The command line syntax is:

exp bd {r | w | b} [cmds)]

Description

&

Set a read, write or both (read and write) data breakpoint at the address
specified by exp and associate the list of CrossView Pro commands cmds
with the breakpoint.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bd command.

If exp corresponds to a local (stack) variable, the function in which it was
declared must be currently active on the stack. If the local variable
corresponding to a data breakpoint goes out of scope due to a return from
the function in which it is currently active, the data breakpoint will be
removed and a message will be printed telling you that the variable is no
longer active.

Not available for all execution environments.

Example

&

To set a breakpoint at the variable count which will all be hit only if the
variable is read from memory, type:

&count bd r

Note that the breakpoint only acts on the lowest byte in memory of this
variable.

Command Reference 12-45

To set a breakpoint at address 10 hex that will list all global variables,
type:

0x10 bd b {I g}

This breakpoint will be hit if address 10 hex is either read from or written
to.

% b, bb, bB, bD, bi, bl, bt, bti, btl, bu, bU, Q

12-46 Chapter 12

Function
Disable code breakpoint.

Select the Debug | Breakpoi nt... menu item, select the breakpoint
you want to disable, click on the Edi t. .. button, disable the Enabl ed
check box.

The command line syntax is:

number bdis

Description

Disable the code breakpoint associated with the given number.

This does not delete the code breakpoint. It disables the code breakpoint
until you enable it again with the bena command.

This command does not work on data breakpoints, only on code
breakpoints

Example
To disable code breakpoint number 3, type:

Command Reference

Function

Enable code breakpoint.

Select the Debug | Breakpoint... menu item, select the breakpoint
you want to disable, click on the Edi t. .. button, set the Enabl ed check
box.

The command line syntax is:
number bena

Description

Enable the code breakpoint associated with the given numbe., which was
previously disabled by the bdis command.

This command does not work on data breakpoints, only on code
breakpoints

Example

To enable code breakpoint number 3, type:

12-47

12-48 Chapter 12

Function

Set a temporary low-level breakpoint at a machine instruction.

Select the Debug | Breakpoints... menu item to view the
Breakpoints dialog box. Select the New Code. . . button to create a new
code breakpoint. Select the Tenpor ary radio button, edit the Addr ess
field, leave the Task | D field empty or enter the string ” any” and select

Apply.

The command line syntax is:
laddr] bI [cmds)

Description

Set a temporary breakpoint at the machine instruction at address addy, or
the current viewing position’s address if addr is not specified; the list of
CrossView Pro commands cmds are executed when the breakpoint is hit.

Make sure that addr is the start address of a machine instruction,
otherwise the results are unpredictable. When the breakpoint is hit
execution is halted. By default the current execution position, function,
line number, and source statement are displayed. Next any commands
associated with the breakpoint are executed. The Q command can be used
to suppress the output from the bI command.

Example

To set a temporary breakpoint at the current viewing position’s address,
type:

bl

To set a temporary breakpoint at address 100 that will print the addresses
of the next five source statements, type:

100 bl {P 5}

% b, bb, bB, bd, bD, bi, bt, bti, btl, bu, bU, Q

Command Reference 12-49

Function

Set a permanent low-level breakpoint at a machine instruction.

Select the Debug | Breakpoi nts... menu item to view the
Breakpoints dialog box. Select the New Code. . . button to create a new
code breakpoint. Select the Per manent radio button, edit the Addr ess
field, leave the Task | D field empty or enter the string ” any” and select

Apply.

Alternatively, you can place a breakpoint in the intermixed window or
assembly window by double clicking on the desired instruction.

The command line syntax is:
laddr] bi [cmds)

Description

Set a permanent breakpoint at the machine instruction at address addr, or
the current viewing position’s address if addr is not specified; the list of
CrossView Pro commands cmds are executed when the breakpoint is hit.

Make sure that addr is the start address of a machine instruction,
otherwise the results are unpredictable. When the breakpoint is hit
execution is halted. By default the current execution position, function,
line number, and source statement are displayed. Next any commands
associated with the breakpoint are executed. The Q command can be used
to suppress the output from the bi command.

Example
To set a breakpoint at the current viewing position’s address, type:
bi

To set a breakpoint at address 100 that will print the addresses of the next
five source statements, type:

100 bi {P 5}

% b, bb, bB, bd, bD, bl bt, bti, btl, bu, bU, Q

12-50 Chapter 12

Function

Set a temporary instruction count breakpoint.

@? There is no mouse equivalent for this command.

The command line syntax is:
count bINST [cmdls)

Description

Set a temporary breakpoint after the specified count number of machine
instructions have been executed. count can be any expression evaluating
to a number. The list of CrossView Pro commands cmds are executed
when the breakpoint is hit.

When the breakpoint is hit, execution is halted; the breakpoint is then
removed. By default the current execution position, function, line number,
and source statement are displayed. Next any commands associated with
the breakpoint are executed. The Q command can be used to suppress the
output from the bINST command.

Example

To set a temporary breakpoint after execution of 5 instructions and list all
global variables, type:

5 bI NST {I g}

% b, bCYC, bcyc, binst, bTIM, btim, D

Command Reference

Function

Set a permanent instruction count breakpoint.

@? There is no mouse equivalent for this command.

The command line syntax is:

count binst [cmds)

Description

Set a permanent breakpoint after the specified count number of machine
instructions have been executed. count can be any expression evaluating
to a number. The list of CrossView Pro commands cmds are executed
when the breakpoint is hit.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
binst command.

Example

To set a permanent breakpoint after execution of 5 instructions and list all
global variables, type:

5 binst {I g}

% b, bCYC, beyc, bINST, bTIM, btim, D

12-51

12-52 Chapter 12

Function

Set a task aware code breakpoint.

Select the Debug | Breakpoints... menu item to view the
Breakpoints dialog box. Select the New Code. . . button to create a new
code breakpoint and fill in the Task | D field.

The command line syntax is:
[line] bt “Taskld” [cmds)

Description

Set a task aware code breakpoint at the specified source /ine and associate
the list of CrossView Pro commands cmds with the breakpoint. If no line is
given, set the breakpoint at the current viewing position. The Taskld is the
identification of the task as displayed in the Tasks Window or specified by
the 1 k command.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next, any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bt command.

Example
To set a breakpoint for task 4 at the current viewing position, type:
bt "4

To set a breakpoint for task 4 at line 10, which lists all global variables,
type:

10 bt "4” {I g}

ﬂj b, bb, bB, bd, bD, bi, bl, bti, btl, bu, bU, 1, Q

Command Reference 12-53

Function

Set a temporary low-level task aware breakpoint at a machine instruction.

Select the Debug | Breakpoints... menu item to view the
Breakpoints dialog box. Select the New Code. . . button to create a new
code breakpoint and fill in the Task | D field. Select the Tenpor ary radio
button, edit the Addr ess field and select Appl y.

The command line syntax is:
laddr] btl “Taskld” [cmds]

Description

Set a temporary task aware breakpoint at the machine instruction at
address addpy, or the current viewing position’s address if addr is not
specified; the list of CrossView Pro commands cmds are executed when
the breakpoint is hit. The Taskld is the identification of the task as
displayed in the Tasks Window or specified by the 1 k command.

Make sure that addr is the start address of a machine instruction,
otherwise the results are unpredictable. When the breakpoint is hit
execution is halted. By default the current execution position, function,
line number, and source statement are displayed. Next any commands
associated with the breakpoint are executed. The Q command can be used
to suppress the output from the btl command.

Example

To set a temporary breakpoint for task 4 at the current viewing position’s
address, type:

bt "4”

To set a temporary breakpoint for task 4 at address 0xFOO and print the
message, type:

OxFOO btl "4” {”breakpoint triggered:
address OxF00, task 4"}

% b, bb, bB, bd, bD, bi, bl, bt, bti, bu, bU, I, Q

12-54 Chapter 12

Function

Set a permanent low-level task aware breakpoint at a machine instruction.

Select the Debug | Breakpoi nts... menu item to view the
Breakpoints dialog box. Select the New Code. . . button to create a new
code breakpoint and fill in the Task | D field. Select the Per manent radio
button, edit the Addr ess field and select Appl y.

The command line syntax is:
laddr] bti “Taskld” [cmds)

Description

Set a permanent task aware breakpoint at the machine instruction at
address addpy, or the current viewing position’s address if addr is not
specified; the list of CrossView Pro commands cmds are executed when
the breakpoint is hit. The Taskld is the identification of the task as
displayed in the Tasks Window or specified by the 1 k command.

Make sure that addr is the start address of a machine instruction,
otherwise the results are unpredictable. When the breakpoint is hit
execution is halted. By default the current execution position, function,
line number, and source statement are displayed. Next any commands
associated with the breakpoint are executed. The Q command can be used
to suppress the output from the bti command.

Example
To set a breakpoint for task 4 at the current viewing position’s address,
type:
bti 4"

To set a breakpoint for task 4 at address 0xFOO and print the message,
type:

OxFOO bti "4” {”breakpoint triggered:
address OxF00, task 4"}

% b, bb, bB, bd, bD, bi, b, bt, btI, bu, bU, 1, Q

Command Reference

Function

Set a temporary time breakpoint.

@? There is no mouse equivalent for this command.

The command line syntax is:

time BTIM [cmdls]

Description

Set a temporary breakpoint after the specified time (in seconds). time can
be any expression evaluating to a number. The list of CrossView Pro
commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted; the breakpoint is then
removed. By default the current execution position, function, line number,
and source statement are displayed. Next any commands associated with
the breakpoint are executed. The Q command can be used to suppress the
output from the bTIM command.

Example

To set a temporary breakpoint after 0.5 seconds and list all global
variables, type:

0.5 bTIM{l g}

ﬂ? b, bCYC, bcyc, bINST, binst, btim, D

12-55

12-56 Chapter 12

Function

Set a permanent time breakpoint.

@? There is no mouse equivalent for this command.

The command line syntax is:

time btim [cmds)

Description

Set a permanent breakpoint after the specified #ime (in seconds). time can
be any expression evaluating to a number. The list of CrossView Pro
commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
btim command.

Example
0.5 bTIM{l g}

ﬂ? b, bCYC, bceyc, bINST, binst, bTIM, D

Command Reference 12-57

Function

Set a temporary up-level breakpoint.

In the Stack Window, double—click on the desired function. Alternately,
you can click on the desired function in the Stack Window and select the
Debug | Stack Breakpoint | After Function Call menu item.

The command line syntax is:

[stack] bU [commands |

Description

This command sets a temporary up-level breakpoint immediately after the
return to the function designated by the stack number stack, otherwise the
currently viewed function is used. Associate the list of CrossView Pro
commands commands with the breakpoint.

When the breakpoint is hit execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bU command.

Breakpoints set in the Stack Window are always temporary, meaning they
will be deleted after the first time you reach them. A breakpoint set in this
manner will not be visible in the Source Window.

This command is not allowed when the target runs in the background.

Example

To set a temporary up-level breakpoint immediately after the return from
the currently viewed function, type:

bu

To set a temporary up-level breakpoint immediately after the return from
the function at stack level 2, type:

2 bU {1}

12-58 Chapter 12

=

After stopping, this command will cause CrossView Pro to print out the
function’s local variables and arguments.

% b, bb, bB, bd, bD, bi, bl, bt, bti, btl, bu, Q

Command Reference 12-59

Function

Set a permanent up-level breakpoint.

In the Stack Window you can click on the desired function and select the
Debug | Stack Breakpoint | After Function Call menu item.
To make the stack breakpoint permanent, select the Debug |

Br eakpoi nts... menu item, select the desired stack breakpoint, click on
the Edi t. .. button and select the Per manent radio button.

The command line syntax is:

[stack]| bu [commands |

Description

Set a permanent up-level breakpoint immediately after the return to the
function designated by the stack number stack, otherwise the currently
viewed function is used. Associate the list of CrossView Pro commands
commands with the breakpoint.

When the breakpoint is hit execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bu command.

This command is not allowed when the target runs in the background.

Example

To set an up-level breakpoint at the beginning of the currently viewed
function, type:

bu

To set an up-level breakpoint at beginning of function whose stack
number is 2 and, after stopping, print out the local variables and
arguments of that function, type:

2 bu {I}

% b, bb, bB, bd, bD, bi, bl, bt, bti, btI, bU, Q

12-60 Chapter 12

Function

Continue using the current value of the program counter.

In the Source Window, click on the Cont i nue executi on accelerator
button. You can also select the Run | Run menu item.

The command line syntax is:
[exp] C [line]

Description

If exp is specified and you are stopped at a breakpoint, then the
breakpoint count is set to this value. If /ine is specified, a temporary
breakpoint is set at that line number. Note that this temporary breakpoint
will overwrite any existing breakpoint at that line.

The C command can be used in the command lists of breakpoints to
resume execution automatically.

This command is not allowed when the target runs in the background.
Example
To continue execution from the current target program counter, type:
C
To set the breakpoint’s count to 4 and continue, type:
4 C
To set a temporary breakpoint at line 52 and continue, type:

C 52

% bc, g, R, CB

Command Reference

Function

Continue execution in background using the current value of the target
program counter.

@? There is no mouse equivalent for this command.

The command line syntax is:
[exp] CB |line]

Description

If exp is specified and you are stopped at a breakpoint, then the
breakpoint count is set to this value. If /ine is specified, a temporary
breakpoint is set at that line number. Note that this temporary breakpoint
will overwrite any existing breakpoint at that line.

The CB command can be used in the command lists of breakpoints to
resume execution automatically.

This command is not allowed when the target runs in the background.
Not available for all execution environments.
Example

To continue execution from the current target program counter, type:
CB

To set the breakpoint’s count to 4 and continue, type:
4 CB

To set a temporary breakpoint at line 52 and continue, type:

CB 52

% g R, C, st, wt

12-61

12-62 Chapter 12

Function

Disable, turn off, gathering of coverage data.
@? Select the Run | Cover age menu item if this item was set.

The command line syntax is:
cd

Description
If coverage is supported by your version of CrossView Pro, this command
disables the coverage system. Normally, you should disable coverage if
you are not interested in the coverage results, as this will often improve
the performance of the execution environment.

Example

To disable coverage, type:

cd

% ce, nC, nU, pC, pU

Command Reference

Function

Enable, turn on, gathering of coverage data.
@? Select the Run | Cover age menu item if this item was not set.

The command line syntax is:

ce

Description

If coverage is supported by your version of CrossView Pro, this command
enables the coverage system. Normally, you should disable coverage if
you are not interested in the coverage results, as this will often improve
the performance of the execution environment.

Example

To enable coverage, type:

ce

% cd, nC, nU, pC, pU

12-63

12-64 Chapter 12

Function
Display a C—execution trace.
Select the View | Trace | Source Level menu item. The Trace
Window displays the most recently executed lines of code every time
program execution is stopped. CrossView Pro automatically updates the

Trace Window each time execution is halted, as long as the window is
open.

The command line syntax is:

number ct

Description

Display a C-execution trace in the Command window, corresponding to
the last number of machine instructions executed. Since the ct command
relies on the emulator’s trace buffer, the ct command will not be
implemented on some emulators.

For each executed line of code, the Trace Window displays:

* The name of the source file
* The name of the function
* The line number and corresponding source code

The window shows all the code executed since the the last time the
program halted.

This command is not allowed when the target runs in the background.
@ Not available for all execution environments.

Example

To display, in the Command window, the last C statements (corresponding
to the last ten machine instructions) executed, type:

10 ct

% cti,ctr

Command Reference

Function
Display a disassembled trace.
Select the View | Trace | Instruction Level menu item. The
Trace Window displays the most recently executed lines of code every
time program execution is stopped. CrossView Pro automatically updates

the Trace Window each time execution is halted, as long as the window is
open.

The command line syntax is:
number ct i

Description

Display a disassembled trace in the Command window, corresponding to
the last number of machine instructions executed.

Since the ct i command relies on the emulator’s trace buffer, the ct i
command will not be implemented on some emulators.

This command is not allowed when the target runs in the background.
@ Not available for all execution environments.

Example

To display in the Command window the last 20 disassembled instructions
executed, type:

20 ct i

% Cct,ctr

12-65

12-66 Chapter 12

Function

Display a raw trace.

Select the View | Trace | Rawmenu item. The Trace Window displays
the most recently executed lines of code every time program execution is
stopped. CrossView Pro automatically updates the Trace Window each
time execution is halted, as long as the window is open.

The command line syntax is:
number ct r

Description

Display a raw trace in the Command window, corresponding to the last
number of trace frames. This command merely shows the contents of the
emulator’s trace buffer.

Since the ct r command relies on the emulator’s trace buffer, the ct r
command will not be implemented on some emulators.

This command is not allowed when the target runs in the background.
@ Not available for all execution environments.

Example

To display in the Command window the last 20 trace frames, type:

20 ct r

ﬂj ct, cti

Command Reference

Function
Delete all currently defined breakpoints.

Select the Debug | Breakpoints... menu item to view the
Breakpoints dialog box. This box contains a delete function.

The command line syntax is:

Dly]

Description

D deletes all currently defined breakpoints. Dy does not ask for
confirmation.

Jon

12-67

12-68 Chapter 12

Function

Delete a specific breakpoint.

To delete a code breakpoint directly from the C source, simply
double—click the mouse on the corresponding, highlighted source line in
the Source Window. The code breakpoint will be deleted and the line will
cease to be highlighted.

Otherwise, select the Debug | Breakpoi nts... menu item to view the
Breakpoints dialog box. This box contains a delete function.

The command line syntax is:
[number] d

Description

Delete the breakpoint associated with the given number. If no number is
given, delete the breakpoint at the current line. If there is no breakpoint at
the current line, a B command will be executed to display all breakpoints.

Whenever a breakpoint is deleted the remaining breakpoints are
renumbered starting at 0.

Example
To delete a breakpoint at the current line, type:
d
To delete breakpoint number 3, type:

3d

% b, bb, bB, bd, bD, bi, bl, bt, bti, btl, bu, bU, B, D

Command Reference

Function

Disassemble a range of memory.

Select the Vi ew | Source | Disassenbly orView | Source
Source and Di sassenbl y menu item to open the Disassembly or
Source and Disassembly window respectively.

The command line syntax is:

dis address [,{address | #count} [,i||

Description
Disassemble a range of memory. The output is interleaved with source
lines when i is specified. You can enter valid expressions as well for
address and count.

Example

To disassemble 4 instructions starting at 3 bytes behind the start address of
the function mai n., type:

dis mai n+3, #4

To disassemble memory for (i ni t val +1) instructions, starting at the
address of the function mai n., type:

di s mai n+3, #i ni tval +1

To disassemble from 0x2000 up to and including the instruction at 0x2100
and also interleave C source lines of any function resident in that memory
range, type:

di s 0x2000, 0x2100, i

% dump, expression

12-69

12-70 Chapter 12

Function

Download a file

Select the Fil e | Downl oad | mage menu item to download the image
part of the file to the execution environment.

The command line syntax is:
dn |file]

Description

Download the image part of the specified file to the execution
environment. If no file is specified, use the file specified when CrossView
Pro was invoked, and from which the symbolic information was read
during startup, or the file specified in either the N command or the Load
Synbol i ¢ Debug I nf o dialog.

Downloading a file only copies an image part into target memory. It will
not cause CrossView Pro to re-read symbolic information.

This command is not allowed when the target runs in the background.
Example
To download the current file, type
dn
To download the IEEE file denp. abs, type:
dn denp. abs
To download the hex file t est . hex, type:

dn test. hex

Jors

Command Reference 12-71

Function

Dump a range of memory.
@? Select the Vi ew | Menory menu item to open the Memory Window.

The command line syntax is:

dump address |, laddress | #count) [, [style [width] |, filename |,al]]

Description

The dump command can dump memory as hexadecimal data or as C
variables. You can enter valid C expressions as well for address and count.
You can also dump Motorola S records or Intel hex records. Also, you can
specify a filename in which the dump is to be written or appended.

style can be one of:
acDOUXdouxEFGef gnPpRrstil M

Style I dumps Intel hex and style M specifies Motorola S records output.
See the Accessing Code and Data chapter and the section Formaiting
Expressions in the chapter Command Language for details on each of the
other format styles. The R and r style are only available for targets that
support the fractional type.

@ Mind the following:

the commas are required
* the addresses can also be C expressions
e default width is MAU (usually byte) sized words
e additional style M: Motorola S records
* additional style I: Intel hex
* asemicolon is a command terminator
* the dump is end address INclusive

Example
To dump the first byte of the function mai n., type:

dunp main

12-72 Chapter 12

To dump the first 10 bytes of the function mai n as Motorola S records in
the file mai n. sre, type:

dunp nain, mai n+10, M nai n. sre

To dump the first 5 bytes of the function mai n. as 1 string, type:
dunp nain, mai n+10, M mai n. sre, a

To append the first 5 bytes of the function mai n. as 1 string, type:
dunp nmain,,c5

To dump the resulting value bytes of 'the address of mai n binary anded
with 3’, type:

dunp mai n+1, #mai n&3

% dis, expression

Command Reference 12-73

Function

Establish viewing position

Select the Fil e | Qpen Source... menu item to view a file. In the
Source Window, click on the Fi nd Functi on button to find a function,
or select the Search | Browse Function... menu item.

In the Stack Window click once on the function to be examined.

e |[file | function
stack e

Description

The e option invokes two distinct commands. The first version establishes
the viewing position to be the first line of file, the first executable line of
the function function or the current viewing position if no argument is
given.

The second version establishes the viewing position to be the line at stack
level stack in the stack trace. (See the t command.)

The stack e command is not allowed when the target runs in the
background.

The L command is equivalent to O e.
Example
To view the function main, type:
e nain
To view the test file t est . ¢, type:
e test.c
To view the call site of the current function, type:

0 e

12-74 Chapter 12

=

To view the line at stack level 3, type:

3 e

ﬂj?,/,ei,L,p,P,t

Command Reference

Function

Start execution on current CPU and switch to another CPU.

The command line syntax is:

cpu_number eC
Description
Start execution on the current CPU and switch to CPU cpu_number.

This command can only be issued when the currently selected CPU is in
debug mode.
Example

To start execution on the current CPU and select the CPU indicated by
number 1, type:

1 eC

b «

12-75

12-76 Chapter 12

Function

Select a CPU or show current CPU number.

The command line syntax is:
[cou_number| ec

Description

The ec command allows you to select a CPU in your current Execution
Environment if your target has multi-CPU support.

This command can only be issued when the currently selected CPU is in
debug mode.

Example
To view the current CPU selection, type:
ec
To select the CPU indicated by number 1, type:

1 ec

b e

Command Reference

Function

Display the definition of a macro name without executing the macro.

You can view the definition of a macro by selecting the Opti ons |

Macro Definitions... menu item to view the Macro Definitions dialog
box.
The command line syntax is:
echo rext
Description

Perform macro expansion on fext without executing. This allows you to
see how a macro is expanded. It is particularly informative when macros
call other macros.

Example
If you type:

echo macro(3)

CrossView Pro will display the expansion of macr o(3) .

% set, unset, save, !

12-77

12-78 Chapter 12

Function

Establish viewing position at a specified address.
@? Select the Search | Find Address... menu item.

The command line syntax is:
laddr] ei

Description

The ei command establishes the viewing position to be at the instruction
specified.

This command is useful for viewing some code in the assembly window,
without changing the program counter, since the execution position is not
changed.

Example
To view the current viewing position, type:
ei
To view the instruction at address 0x100, type:

0x100 ei

%?7/7erlﬁpvpyt

Command Reference 12-79

Function

Select the specified task’s context.

@? In the Tasks Window click once on the task to be examined.

The command line syntax is:
et "Taskld”

Description

Select the specified task’s context. The Taskld is the identification of the
task as displayed in the Tasks Window or specified by the 1 k command.

The current execution position, function, line number, and source
statement are displayed. All other windows, except for the Kernel
Windows, are updated accordingly.

Subsequent CrossView Pro commands use the context of the selected task.
For example, the t command shows a stack trace of the selected task.

Example
To select task 4, type:

=%

et "4

12-80 Chapter 12

Function

Set default address printing format

@? Their is no mouse equivalent for this command.

The command line syntax is:
f [printf-style-format ” |

Description

Set the default address printing format, using a pri nt f format
specification.

If there is no argument, the format defaults to %, which prints an address
in hexadecimal.

This command is intended to allow users to see memory addresses in
decimal, octal or a format of their choosing.

Example
To display addresses in octal, type:
f " %"
To display addresses in hex, type:
f

% expression

Command Reference 12-81

Function
Change the program counter to a new execution position.

@? Click on a source line and select the Run | Junp to Cursor menu
item.

The command line syntax is:
g line

Description

This command changes the program counter so that /ine becomes the
current execution position. Lize must be a line in the current function.

This command changes only the program counter. It does not cause the
target to begin execution.

Exercise caution when changing the execution position. Oftentimes, each
line of C source code is compiled into several machine language
instructions. Moving the program counter to a new address in the middle
of a series of related assembly instructions is sometimes risky. Moreover,
even though you change the program counter, registers and variables may
not have the expected values if parts of the code are bypassed.

This command is not allowed when the target runs in the background.

Example

To change the program counter so that the next instruction to be executed
corresponds to line 127, type:

12-82 Chapter 12

Function

Change the program counter to a new execution position.

@? Click on a source line and select the Run | Junp to Cursor menu
item.

The command line syntax is:

address gi

Description

This command changes the program counter so that address becomes the
current execution position.

This command changes only the program counter. It does not cause the
target to begin execution.

Exercise caution when changing the execution position. The Junp to

Cur sor menu item is not available in the source lines window mode to
prevent problems by skipping pieces of C code which are required to be
executed. Moving the program counter to a new address in the middle of
a series of related assembly instructions is sometimes risky. Moreover, even
though you change the program counter, registers and variables may not
have the expected values if parts of the code are bypassed.

This command is not allowed when the target runs in the background.

Example

To change the program counter so that the next instruction to be executed
corresponds to address 0x0800, type:

0x0800 gi

ﬂjcag)l{

Command Reference 12-83

Function

Print out information about the state of CrossView Pro.

@? There is no mouse equivalent for this command.

The command line syntax is:
I

Description

Print out information about the state of CrossView Pro, including: the
CrossView Pro version number, the execution environment version
information, the name of the program being debugged (and the number of
its files and functions), the state of the assertion mechanism, the state of
output recording, the state of command recording, the state of target
communication recording and the state of search case sensitivity.

The state of the assertion mechanism tells how many assertions have been
defined and whether the overall assertion mechanism is active or
suspended; it does not tell whether any individual assertions are active or
suspended.

ﬂj La A > > >&, Z

12-84 Chapter 12

Function

Conditional command execution.
@? There is no mouse equivalent for this function.

The command line syntax is:
if (expression Y {cmds} [{cmds})

Description

If expression evaluates to a non-zero value, execute the first group of
commands. Otherwise, the second group of commands, if present, will be
executed. This command is nestable.

Leave a space between if and exp. i f (a==b) parses as a function call.
The if statement is used primarily within breakpoint command lists.

Example
If you type:
if (a=b) {5t} {C

CrossView Pro will trace back five levels on the stack if a is equal to b.
Otherwise, CrossView Pro will continue.

The command line:
if (wait>1000) {wait;l r}

will print the value of wai t and list all registers if the value of wai t
exceeds 1000.

Command Reference

Function
Synchronize the viewing and execution positions.
To synchronize the positions manually, click on the

Synchr oni ze sour ce accelerator button in the Source Window or select
the Run | Synchroni ze Source menu item.

The command line syntax is:
L

Description

This command synchronizes the viewing and execution positions. It also
lists the current file, function and line number of the current program
counter. The viewing position is always moved to match the execution
position.

The L command is synonymous with a 0 € command and does not affect
the execution position.

@ This command is not allowed when the target runs in the background.

Example

To synchronize the viewing and execution positions, then list current file,
function, and line number, type:

L

e

12-85

12-86

Chapter 12

Function

List.

There are multiple mouse equivalents for this command. Generally
speaking, the dialog box in which you define a feature also maintains a
list.

The command line syntax is:

1{a| b| d| f| g| k| 1| L| m| p| r| s| S} [string]
1 [func]
1 stack

Description

In the first case above, list one of the following: assertions, breakpoints,
directories, files, globals, kernel state data, labels (on module scope), all
Labels, memory map (of application code sections), procedures, registers,
special variables, Symbol tables. If string is present, then list only those
items that start with string.

In the second case, list the values of all parameters and locals of the
function func. Without a function, this command lists all parameters and
locals of the current function in view.

In the third case, list all parameters and locals of the function at depth
stack.

The 1 f and 1 m commands also show the address of the modules’ first
procedure. The 1 m command is identical to 1 £, list files, but the list of
files is sorted on ascending segment addresses. func must be a function
on the stack or the current function.

Command Reference

For configurations that support real-time kernels, the 1 k command can
have one of the following arguments (1 k is the same as specifying 1 k t):

ReTeeg.a g~

Example

Display tasks.

Display mailboxes.

Display queues.

Display pipes.

Display semaphores.

Display events.

Display HISRs (High-level Interrupt Service Routines)
Display signals.

Display timers.

Display partition memory.

Display dynamic memory.

Display resources.

Display miscellaneous information.

To list defined assertions and the state of the assertion mechanism, type:

| a

To list all locals and parameters of the current function, type:

I p

Data is displayed using the normal (/m) format. To list all the parameters
and locals of the function f cn, type:

| fcn

To list queue information for the current tasks (only if your configuration
supports it), type:

I kg

% L, et

12-87

12-88 Chapter 12

Function

Load a program’s symbol file and download the image part.

Select the Fil e | Load Synbolic Debug Info... menu item. This
dialog allows you to specify the file.

The command syntax is:
load [filename)]
Description
This command performs the N and dn commands sucessively.

Downloading a file only copies the image part into target memory (dmn). It
will not cause CrossView Pro to re-read symbolic information (N). The
load command does both.

@ This command is not allowed when the target runs in the background.

Example

To load the symbol table of file denp. abs in CrossView Pro and to
download the image part, type:

| oad deno. abs

% dn,N

Command Reference 12-89

Function
List the data currently being monitored.
Refer to the Data Window. Each time the program stops, the debugger

evaluates all monitored expressions and displays the results in the Data
Window.

The command line syntax is:
M

Description

List all C expressions being monitored by CrossView Pro. The listing
associates a unique number with each expression. This number is used to
specify the deletion of monitored data.

g m

12-90 Chapter 12

Function
Monitor (watch) an expression. (Also delete a monitor.)
From the Source Window, double—click on an expression. A new monitor
is created in the Data Window or the Expression Evaluation dialog is
opened if the Bypass Di al og check box in the Data Display Setup
dialog is not set. If the latter is the case, click on the Wat ch button to
create 2 new monitor in the Data Window. To remove an existing monitor,

select the monitor in the Data Window and click on the Del et e
sel ect ed it embutton.

The command syntax is:

m exp
number md

Description

The m command has two distinct functions. The first monitors the given
expression. The second deletes the monitoring of the expression specified
by number.

Data monitoring takes place whenever the program stops execution, that
is, for a breakpoint, assertion, single step, or user interrupt (c7/-C). In
window mode, the values of all currently monitored data are displayed in
the Data window. Each piece of monitored data has a unique identifying
number that is used when deleting it.

Example
To monitor the value of the variable myvar, type:
m myvar
To monitor the address of variable nyvar, type:
m &nyvar
To monitor the element al pha+1 of arr ay, type:

m array[al pha+1]

Command Reference 12-91

To delete expression number 2 of the monitored data, type:

ﬂjM,b,a,s,R,C

12-92 Chapter 12

Function
Memory copy.
From the Memory Window, click on the Copy menory button to open the
Memory Copy dialog. Enter the start address and end address (inclusive)

of the memory region you want to copy. Enter the destination address and
click on the OK button.

The command syntax is:

addr_start mcp addr_end, addr_dest

Description

The mcp command copies a block of target memory starting at address
addr start to destination address addr _dest. The size of the memory block
is defined as: ‘addr_end — addr_start + 1. The data item located at address
addr _end is included in the copy.

If your target supports multiple memory spaces then it is legal to copy data
between different memory spaces. Of course addr_start and addr_end
must be located in the same memory space. This command does not have
any effect on code breakpoints.

Example

To copy the contents of variable buf to address 0x200, type:

&uf nctp &buf +si zeof (buf), 0x200

% mF, mf

Command Reference

Function
Memory single fill.
From the Memory Window, click on the Si ngl e Fill menory button to
open the Memory Single Fill dialog. Enter the start address the memory

region you want to fill. Enter one or more expressions separated by
commas and click on the OK button.

The command syntax is:

addr mF expr [,expr]...

Description

The mF command fills target memory with data. The value defined by exp
is written to address addr in target memory. Multiple exps separated by
commas may be entered. Each exp is written to a subsequent MAU.

If your target supports multiple memory spaces then addr may refer to any
memory space.

If the sizeof a given exp occupies more than one MAU, only the least
significant MAU will be written to memory. This command does not have
any effect on code breakpoints.

Example

To store value 0x12 at memory location 0x400 and value OXAB at location
0x401, type:

0x400 nF 0x12, OxAB

ﬂj mcp, mf

12-93

12-94 Chapter 12

Function
Memory fill, repeating the specified pattern until the specified region is
filled.
From the Memory Window, click on the Fi | | menory button to open the

Memory Fill dialog. Enter the start address and end address (inclusive) of
the memory region you want to fill. Enter one or more expressions
separated by commas and click on the OK button.

The command syntax is:
addr_start mf addr _end, expr [,expr]...

Description

The mf command fills a block of target memory with a pattern. The
memory region starting at address addr start and ending at address

addr _end is filled with the pattern defined by exp [,exp]. Multiple exps
separated by commas may be entered. Each exp is written to a subsequent
MAU.

The specified pattern is repeated until the end address of memory region
is reached.

If your target supports multiple memory spaces then addr may refer to any
memory space.

If the sizeof a given exp occupies more than one MAU, only the least
significant MAU will be written to memory. This command does not have
any effect on code breakpoints.

Example

To store values 0x01 and 0x02 at succeeding memory locations in the
range 0x400 to 0x404, type:

0x400 nf 0x404, 0x01, 0x02

Command Reference 12-95

The result of this command is:

address: 0x400 0x401 0x402 0x403 0x404

val ue: 1 2 1 2 1

ﬂ3 mcp, mf

12-96 Chapter 12

Function
Memory search.
From the Memory Window, click on the Sear ch nenory button to open
the Memory Search dialog. Enter the start address and end address

(inclusive) of the memory region you want to search. Enter one or more
search patterns separated by commas and click on the OK button.

The command syntax is:

addr_start ms addr_end, expr [,expr]...

Description

The ms command searches for a pattern within a block of target memory.
The memory region starting at address addr_start and ending at address
addr_end (inclusive) is searched for the pattern defined by exp [,exp].
Multiple exps separated by commas may be entered. Each exp corresponds
to a subsequent MAU.

If your target supports multiple memory spaces then addr may refer to any
memory space.

This command does not have any effect on code breakpoints.

Example

Suppose the memory range 0x400 to Ox4f f was filled using the following
commands:

0x400 nf Ox4ff, O
0x400 nf 0x404, 1, 2

To search for the values 0x01 and 0x02 at memory locations in the range
0x400 to Ox4f f, type:

0x400 ns 0Ox4ff, 0x01, 0x02
The result of this command is:

FOUND pattern at 0x400
FOUND pattern at 0x402

Command Reference 12-97

ﬂj mcp, mF, mf

12-98 Chapter 12

Function

Load a program’s symbol file.

Select the Fil e | Load Synbolic Debug Info... menu item. This
menu item allows you to specify the file.

The command syntax is:
N (|patbhlfilename]|.abs])

Description

Load the symbol table of the specified file in CrossView Pro. If no filename
is given, the file being debugged is reloaded. In this case only the
breakpoints set by the user are removed. Monitors, simulated I/O streams,
assertions and CrossView Pro local variables remain active.

If a new file (different filename) is loaded, all breakpoints, monitors,
simulated I/O streams, assertions and CrossView Pro local variables are
removed.

If a path is supplied, CrossView Pro changes its current directory according
to the specified path. In case a relative search path to source files was
provided at startup time, CrossView Pro will search relative to the new
working directory.

This command is automatically executed during CrossView Pro startup
when a filename was given on the command line. Use the dn command to
send the associated executable code to the target.

Example
To load the symbol table of file denp. abs in CrossView Pro, type:

N denp. abs

I o

Command Reference

Function

Set address bias

Select the Fil e | Load Synbolic Debug Info... menu item. In the
Load Symbolic Debug Info dialog you can edit the Code address bi as
field.

The command syntax is:
n [addr)

Description

Set address bias of overlay files to addr. If no address is given, then
display current bias.

If a program is to be loaded at a different address than that indicated in
the linked and located (absolute object) file, then the address information
in the debugger’s symbol file will be incomplete, since it does not know
where the program is actually going to be loaded. This command will
normalize the addresses by adding the bias to every address.

Example
To add a bias of 1000 to every address in the code, type:
n 1000
To display the current bias, type:

n

12-99

12-100 Chapter 12

Function

Set the viewing position to the next covered block of statements.
@? Use the scroll bar and click on the desired line.

The command line syntax is:
nC

Description

If code coverage is supported by your version of CrossView Pro, this
command enables you to skip to the next block of statements that have
been executed while the program was running on the target.

Example

To move the cursor to the next executed block, type:

nC

(= nu. pc, pu

Command Reference

Function

Set the viewing position to the next not covered block of statements.
@? Use the scroll bar and click on the desired line.

The command line syntax is:
nU

Description
If code coverage is supported by your version of CrossView Pro, this
command enables you to skip to the next block of statements that have
not been executed while the program was running on the target.
Example

To move the cursor to the next not executed block, type:

nuU

(= nc. pc, pu

12-101

12-102 Chapter 12

Function

Enter emulator mode.

Select the Vi ew | Conmand | Enul at or menu item. If you know the
emulator-level command language, you can communicate directly with the
emulator from this window.

The command line syntax is:
o string
Description
Pass string to emulator and show the emulator response.

The o command lets you communicate with the emulator directly via
emulator commands.

Do not issue one-shot transparency emulator commands that result in
large output (or otherwise require intervention other than a carriage return
to terminate output). Instead, enter transparency mode first, then issue the
command.

Example

To send the string map to the emulator, type:

0 map

Command Reference

Function

Set or display specific options.
@? Option values can be changed in the corresponding dialogs and menus.
The command line syntax is:

opt [option_name [= option_value])

Description

If no arguments are passed, all options with their current value are listed.
By specifying an option’s name, the current value of that option is
displayed. By specifying an option name followed by a valid value, the
option is set to that new value.

The options are a sub—set of CrossView’s so—called “special variables”. See
chapter Command Language for a list of all special variables.

Example
To display all options, type:
opt

To disable mixing of disassembly code and source lines in the assembly
window, type:

=%

opt m xedasnrof f

12-103

12-104

Chapter 12

Function
Print source lines, including machine addresses.

In the Source Window, the machine address of the line at the current
viewing position is displayed in the Addr ess field in the upper left corner.

The command line syntax is:
[line]| P |exp]

Description
Print exp lines of source starting at line /ine, including machine addresses.
If exp is omitted, print one line. If /ine is omitted, start from the current
viewing position.

Example

To print source lines 4, 5, 6, 7 and 8 (displaying machine addresses) of the
current source file, type:

4P5

{ v

Command Reference 12-105

Function

Print source lines.
@? C source is displayed in the Source Window.

The command line syntax is:
[line] p [exp]

Description

Print exp lines of source starting at line /ine. If exp is omitted, print one
line. If line is omitted, start from the current viewing position.

Example

To print source lines 4, 5, 6, 7 and 8 of the current source file, type:

=

4 p5

12-106 Chapter 12

Function

Set the viewing position to the previous covered block of statements.
@? Use the scroll bar and click on the desired line.

The command line syntax is:
pC

Description

If code coverage is supported by your version of CrossView Pro, this
command enables you to skip to the previous block of statements that
have been executed while the program was running on the target.

Example

To move the cursor to the previous executed block, type:

pC

% nC, nU, pU

Command Reference

Function
Disable, turn off, profiling.

@? Select the Run | Profiling menu item if this item was set.

The command line syntax is:
pd

Description

If profiling is supported by your version of CrossView Pro, this command
disables the profiling system. Normally, you should disable profiling if you
are not interested in the profiling results, as this will often improve the
performance of the execution environment.

Example

To disable profiling, type:

pd

I

12-107

12-108 Chapter 12

Function

Enable, turn on, profiling.
@? Select the Run | Profiling menu item if this item was not set.

The command line syntax is:
pe

Description

If profiling is supported by your version of CrossView Pro, this command
enables the profiling system. Normally, you should disable profiling if you
are not interested in the profiling results, as this will often improve the
performance of the execution environment.

Example

To enable profiling, type:
pe

dom

Command Reference

Function

List profiling results.

Select the Debug | Profiling Report... menu item, make your
changes and select the Updat e button..

The command line syntax is:

proinfo

Description

If profiling is supported by your version of CrossView Pro and profiling is
enabled, this command lists the profiling results. Normally, you should
disable profiling if you are not interested in the profiling results, as this
will often improve the performance of the execution environment.

Example

To list the profiling results, type:

pe
proi nfo

% pd, pe

12-109

12-110

Chapter 12

Function
Reset the application being debugged to initial conditions. That is, set the
program counter to the start address of the application.

@? Select the Run | Program Reset menu item.

The command line syntax is:

prst

Description

The program counter is set to the start address of the application being
debugged. This command does NOT perform a hardware reset of the
target system. That is, no registers are modified except for the program
countetr.

@ This command is not allowed when the target runs in the background.

% R, rst

Command Reference 12-111

Function

Set the viewing position to the previous not covered block of statements.
@? Use the scroll bar and click on the desired line.

The command line syntax is:
pU

Description
If code coverage is supported by your version of CrossView Pro, this
command enables you to skip to the previous block of statements that
have not been executed while the program was running on the target.
Example

To move the cursor to the previous not executed block, type:

puU

% nC, nU, pC

12-112 Chapter 12

Function
Quiet breakpoint reporting.

@? There is no mouse equivalent for this command.

The command line syntax is:
Q

Description

If this appears as the first command in a breakpoint’'s command list, the
debugger does not make the usual announcement of:

Sunction: line number: source file
when the breakpoint is hit.

The purpose of this command is to allow quiet breakpoint reporting. For
example, to check the value of a variable without cluttering the screen
with text.

Example
If you type the following:
21 b {Q varl}

CrossView Pro will set a breakpoint at line 21. When that breakpoint is hit,
CrossView Pro will print the value of var 1, but will not print the current
function, line number, and source file.

=

Command Reference 12-113

Function

Quit a debugging session.
@? Select the Fil e | Exit menu item.

The command line syntax is:
qfs|vy]

Description

CrossView Pro will prompt you if you really want to quit if you do not
specify anything. Note that the current desktop settings are NOT saved
then!

Typing q s saves the current desktop settings and quits the debugger
without confirmation.

Typing q y does not save the current desktop settings and quits the
debugger without confirmation.

Inside a command line procedure call it will just quit from this.

When the target runs in the background CrossView Pro will first stop the
target.

12-114 Chapter 12

Function

Reset program and begin execution from initial conditions.

@? Select the Run | Program Reset menu item followed by the Run |
Run menu item.

The command line syntax is:
R

Description

Reset the application being debugged and begin execution from initial
conditions. The program counter is set to the start address of the
application being debugged. This command does NOT perform a
hardware reset of the target system. That is, no registers are modified
except for the program counter.

@ This command is not allowed when the target runs in the background.

ﬂ3 C, g, prst

Command Reference

Function

Reset target system to initial conditions.
@? Select the Run | Target System Reset menu item.
The command line syntax is:
rst

Description

The target is initialized according to the power—up sequence for the
processor. Almost all registers, including the system stack pointer and
program counter are initialized.

@ A target system reset may have undesired side effects. To be sure that the
application code is correct, a download must be performed after a target

system reset.

@ This command is not allowed when the target runs in the background.

ﬂ3 R, prst

12-115

12-116 Chapter 12

Function
Single step C statements, stepping over function calls.
To step over a function, click on the St ep Over accelerator button in the
Source Window. You can also select the Run | Step Over menu item.

Verify the Run | Step Mbyde menu item; Sour ce St ep must be
selected.

The command line syntax is:
[exp] S

Description

If you try to step over a call to a function which contains a breakpoint (or
which calls another function with a breakpoint) then the breakpoint will
be hit.

Stepping over a function means that CrossView Pro treats function calls as
a single statement and advances to the next line in the source. This is a
useful operation if a function has already been debugged or if you do not
want to take the time to step through a function line by line.

When multiple statements are present on one line, they are all executed by
this single step.

@ This command is not allowed when the target runs in the background.

Example

To step one C statement, type:
S

To step five C statements, type:

% C, s, si, Si

Command Reference

Function

Single step C statements, stepping into function calls

To single step into a function, click on the St ep | nt o accelerator button
in the Source Window. You can also select the Run | Step | nto menu
item. Verify the Run | Step Mdde menu item; Source |ine step must
be selected.

The command line syntax is:

[exp]s

Description

&

Single step exp (default is 1), C statements, stepping into function calls.

Stepping into a function means that CrossView Pro enters the function and
executes its prologue machine instructions halting at the first C statement.
When the end of the function is reached, CrossView Pro brings you back
to the line after the function call. The debugger changes the source code
file displayed in the Source Window, if necessary.

This command is not allowed when the target runs in the background.

Example

S

To step one source instruction, type:
s
To step five source instructions, type:

5 s

C, S, si, Si

12-117

12-118

Chapter 12

Function
Save macros.
Select the Options | Macro Definitions... menu item to view the
Macro Definitions dialog box. From this dialog box, you can save macros

by clicking on the Save button. To save macro definitions in a file other
than the current one, click on the Save as. .. button.

The command line syntax is:

save file

Description

Save all currently defined macros in the specified file. This file is in the
format of a sequence of set commands, and thus can be loaded by
reading it as a playback file. See the < and << commands.

An existing save file with the same name will be overwritten.

Example

To save the definitions of the currently defined macros in the file
mac. sav, type:

save nmcC. sav

% set, unset, echo, !, <, <<

Command Reference 12-119

Function
Definition and display of macros.
To create a macro, select the Options | Macro Definitions...

menu item to view the Macro Definitions dialog box. Click on the New. . .
button.

The command line syntax is:

set [name | "cmds” | |

Description

The set command allows for definition and display of macros. If name and
cmds are supplied, a macro entry is made associating the name with the
commands. If only name is supplied, the body of the specified macro is
displayed.

If no arguments are supplied the names of all currently defined macros are
displayed. Macro definitions must contain the body of the macro in double
quotation marks.

Macros may take arguments. In the body of a macro formal arguments are
referred to as $n, where n is the argument number starting from 1.

It is important to understand that macro expansion takes place for all
names. Therefore, if you wish to pass the name of an existing macro to a
command, such as set, you must escape it with ', to keep CrossView Pro
from expanding the name.

Example
To display the names of all currently defined macros, type:
set
To display the body of the macro named macr o, type:

set macro!

12-120 Chapter 12

To define macr o to be a macro which lists the registers then enters the
function given by its first argument, type:

set macro "l r; e $1”
To invoke this macro, you might type, for example:

macr o(mai n)

ﬂj unset, echo, save, !

Command Reference

Function

Single step machine instructions, stepping over subroutine calls

Select the Run | Step Mdde | Machi ne step menu item. Then click
on the St ep Over accelerator button in the Source Window, or select the
Run | Step Over menu item.

The command line syntax is:
[exp] Si

Description

Single step exp (default is 1) machine instructions, stepping over
subroutine calls.

If you try to step over a call to a subroutine which contains a breakpoint
(or which calls another subroutine with a breakpoint) then the breakpoint
will be hit.

The next instruction to be executed is shown as a disassembled
instruction, not as a C statement.

@ This command is not allowed when the target runs in the background.

Example

To step one machine instruction, type:
Si

To step five machine instructions, type:

% C,s, S, si, R

12-121

12-122

Chapter 12

Function

Single step machine instructions, stepping into subroutine calls

Select the Run | Step Mdde | Machi ne step menu item. Then click
on the St ep | nt o accelerator button in the Source Window, or select the
Run | Step Into menu item.

The command line syntax is:
[exp] si

Description

Single step exp (default is 1), machine instructions, stepping into
subroutine calls.

The next instruction is shown as a disassembled instruction, not as a C
statement.

@ This command is not allowed when the target runs in the background.

Example

To step one machine instruction, type:
Si

To step five machine instructions, type:

ﬂs C, S, S, Si,R

Command Reference 12-123

Function

Associate a stream with a file or screen.

Use the Debug | Sinul ated 1/ O Setup menu item to set up simulated
I/O streams. You can open a simulated I/O stream with one of the Vi ew

| Simulated 1/O | Stream x menu items or use the Debug |

Simul ated 1/ 0O Set up dialog to configure a number of streams. In this
case, the associated window will be created when input is required from
the window or when output is sent to the window.

stream sio {i| o} {file |screen} [/format]
stream sio d

stream sio p prompt

sio

Description

Associate an I/O stream with a file file or screen. Valid stream numbers are
0 through 7. The stream may be input (i) or output (0). I/O is either done
on the file file or via the screen/keyboard. The stream may be read from
or written to using the format format which tells CrossView Pro how to
interpret the data. The default format is character. Formats may also be x
(hexadecimal) and o (octal).

Other options to the sio command are: delete (d) the specified stream,
and change the input prompt string (stream sio p prompt). The sio
command with no arguments lists all simulated I/O streams.

This command can only be used in conjunction with user I/O routines
containing _si m or _si no calls. See the Simulated Input/Output chapter
for further details.

Deleting a stream will close all communication with that stream. This is
useful to stop output to the screen or file when enough output information
has been seen and resumption of the program, running without I/O
breaks from this simulated I/O stream, is desired.

12-124 Chapter 12

=

Example
To start simulated input from the file t est dat a. i n, type:

5 sioi testdata.in/x

This input will be associated with stream 5. Data in the t est dat a. i n file
are expected to be in hexadecimal format.

To list all simulated I/O streams, type:

sio

Command Reference

Function

Stop the execution of the target immediately.
@? There is no mouse equivalent for this command.

The command line syntax is:

st

Description

This command stops the running process immediately.

@ Not available for all execution environments.

@ﬂ%ﬁ§ CB, wt

12-125

12-126 Chapter 12

Function

Stack trace with local variables

@? There is no mouse equivalent for this command.

The command line syntax is:
[exp] T

Description

Produce a trace of functions on the stack and show local variables. Only
the first exp levels of the stack trace will be displayed. If exp is omitted, all
of the levels of the stack trace (up to 20) will be printed.

This command works independently of the Stack Window.
@ This command is not allowed when the target runs in the background.

Example
To print out a stack trace of 20 levels with corresponding local variables,
type:

T

To print out the top five levels of the stack trace with corresponding local
variables, type:

5T

ﬂse,l,t

Command Reference 12-127

Function

Stack trace.

Select the Vi ew | St ack menu item. The Stack Window shows the
current situation in the stack after the program has been stopped. It
displays the following information for each stack frame:

* The name of the function that was called
* The value of all input parameters to the function

¢ The line number in the source code from which the function was
called

The command line syntax is:
[exp]t

Description

Produce a trace of functions on the stack.

exp specifies the number of levels of the stack trace to be displayed. If
omitted, up to 20 levels of the stack trace will be printed.

Each stack level shown in the Stack Window is displayed with its level
number first. The levels are numbered sequentially from zero. That is, the
lowest/last level in the function call chain is always assigned zero.

@ This command is not allowed when the target runs in the background.

Example
To print out a stack trace of 20 levels, type:
t

To print out the top five levels of the stack trace, type:

5t

ﬂje,l,T

12-128 Chapter 12

Function

Disable, turn off, trace.
@? Select the Run | Trace menu item if this item was set.

The command line syntax is:
td

Description

If trace is supported by your version of CrossView Pro, this command
disables tracing (both instruction level, high level and raw). Trace is
automatically disabled when you close the Trace Window.

Example
To disable tracing, type:

td

b «

Command Reference

Function

Enable, turn on, trace.
@? Select the Run | Trace menu item if this item was not set.

The command line syntax is:

te

Description

If trace is supported by your version of CrossView Pro, this command
enables tracing (both instruction level, high level and raw). Trace is
automatically enabled when you open a Trace Window.

Example

To enable tracing, type:

te

I

12-129

12-130 Chapter 12

Function
Toggle the updating of the appropriate window when the target runs in
the background.

@? There is no mouse equivalent for this command.

The command line syntax is:

[interval) u [d|k|r|cd|ck|cr|s|a|mem |t

Description
The following windows can be updated:
d (Data), k (Stack), r (Register),

cd (Data, composite), ck (Stack, composite), cr (Register, composite),
s (Source), a (Assembly), mem (Memory), t (Trace)

With interval you can specify the update interval (in seconds). If interval
is zero, no window is automatically updated.

The updating of the Data Window is ON at startup, the others are OFF

If all windows are being updated and/or many monitor commands are
active it will increase the load on the communication between CrossView
Pro and the target.

The uw d and the u c¢d commands toggle both the Data Window and the
Composite Data Window. The same goes for the u r, uk, u cr and the u
ck commands in respect to the Register Window, Stack Window,
Composite Register Window and the Composite Stack Window.

@ This command is not available if the background mode is not supported
(check the addendum).

Example
To toggle the updating of the Register Window, type:

ur

Command Reference 12-131

To toggle the updating of the Source Window, type:
us

To disable period updating, type:

ﬂj CB, llbgW

12-132

Chapter 12

Function

Update the appropriate window when the target runs in the background.

Select the Vi ew | Background Mbde menu item and select one of the
refresh options.

The command line syntax is:
ubgw [s|a|k|r|d| mem|t]all]
Description
The following windows can be updated:

s (Source), a (Assembly), k (Stack), r (Register), d (Data), mem
(Memory), t (Trace), all (all open windows)

Without an argument, the ubgw command refreshes all windows selected
by the background mode (u command).

The ubgw all command refreshes all open windows.

This command is not available if the background mode is not supported
(check the addendum).

Example
To update the Source Window, type:

ubgw s

To update the Memory Window, type:

g v

ubgw nem

Command Reference 12-133

Function
Delete a macro definition.
Select the Options | Macro Definitions... menu item to view the

Macro Definitions dialog box. Highlight the name of the macro and click
on the Del et e button.

The command line syntax is:

unset | name !|

Description

The unset command deletes a macro. If name is supplied, the specified
macro is deleted. If no arguments are supplied, all currently defined
macros are deleted after CrossView Pro confirms your intent.

It is important to understand that macro expansion takes place for all
names. Therefore if you wish to pass the name of a macro to a command,
for example unset, you must escape it with ‘!, to keep from expanding
the name.

Example
To delete all macros, type:
unset

CrossView Pro will first ask for confirmation. To delete all the macro
definitions at the same time, click on the Del et e al | button in the Macro
Definitions dialog box.

To delete the macro named macr o, type:

unset macr o!

% set, echo, save, !

12-134 Chapter 12

Function
Change source directories run—time.
Select the Options | Startup | CrossVi ewmenu item to view the
CrossView Startup dialog box. Click on the Confi gure. .. button to

specify the names of the directories containing your source files. Relative
paths are allowed.

The command line syntax is:

use [path |...

Description

The use command changes the source directories. Without a path this
command empties the search path, except for the path . (current
directory). If one or more paths are supplied, this command adds the,
semicolon separated, paths to the list of searched directories. Relative
paths are allowed.

Example
To clear the source directory path, type:
use

To search for source files in the directory / pr oj ect/ src and in the src
directory relative to your current directory, type:

use /project/src;../src

I 1a

Command Reference

Function

Wait for the completion of the target.

@? There is no mouse equivalent for this command.

The command line syntax is:

wt

Description

This command can only be used if the target runs in the background
mode.

This command waits for the running process to stop.

Waiting can be interrupted by typing ct#/-C. The target continues to run
without interruption. It could be that some informational messages from
the target are displayed in the command window. They can be ignored.

@ Not available for all execution environments.

% CB, st

12-135

12-136 Chapter 12

Function

Force an exit from assertion mode.

@? There is no mouse equivalent for this command.

The command line syntax is:
[exp] x

Description

Normally this command stops execution immediately, but if exp is present
and its value is non-zero, then CrossView Pro finishes executing the entire
command list of the current assertion.

Example

To define an assertion to stop the program when the value of global
variable myvar exceeds 10, type:

aif (nmyvar > 10) {x}

To define an assertion to suspend the assertion mechanism and continue
program execution when global variable nyvar exceeds 10, type:

aif (myvar > 10) { As; 1 x; G

ﬂsa,l\,l

Command Reference

Function
Toggle case sensitivity in searches

Select the Search | Search String... menu item to view the Search
String dialog box. This dialog contains the Case Sensi ti ve check box.

The command line syntax is:
z

Description

Toggle case sensitivity in searches. The initial state of this toggle depends
on information in the currently loaded absolute file. Use the I command to
find out the state of the case sensitivity.

This command affects everything: file names, function names, variables
and string searches.

&

12-137

12-138 Chapter 12

ERROR MESSAGES

al TASKING [

d31dVHO

13

Error Messages

The following is a list of common user error messages, and some
suggested ways to solve the problem.

CrossView Pro is a complex program running on several hosts. From time
to time, slight differences between the documentation and the program’s
operations do occur. The list of errors presented below and the suggested
remedies may not be, therefore, entirely comprehensive.

If you get a message that begins with "XVW Error” or "XVW Fatal Error”
please contact TASKING technical support for help.

(in alphabetical order):

"member—name” is not defined for "enum enum”

You cannot assign or compare an enum type with a name that is not in the
enumeration’s members. Try casting the enum to a different type.

'save’ must have a filename; type 'help save’ for more information

The save command requires a file to be supplied. Note: if the supplied file
name already exists, it will be overwritten.

*** Eatal XVW error

CrossView Pro has detected a error which it can not handle. If information
is displayed, you may be able to detect the source of the error and correct
it. Otherwise, if the message persists, please contact TASKING Technical
Support.

Oxvalue is an invalid value. The register register is unchanged.

The value supplied is incorrect for the specified register. Verify that both
the value and the register are correct and retry.

Adding 2 pointers not allowed

You cannot add two pointers together in an expression. If you intended to
add to a pointer, make sure that the argument is a value, not another
pointer.

13-3

13-4

Chapter 13

Address not allowed for 'l or ~ or % operator’

The "Not”, "One’s complement”, and "Modulus” operators cannot be used
with an address. If you intended to perform the operation on the contents
of the address, please be sure to dereference the pointer.

Addresses not allowed in '* or / operator’

The multiply and divide operators cannot be used with address data. If
you intended to perform the operation on the contents of the address,
please be sure to dereference the pointer.

Addresses not allowed in 'bitwise logical or logical or shift operators’

Bitwise logical (&, *, or |), logical (&& or | |), and shift (<< >>) operators
only work on data, not addresses. If you intended to perform the
operation on the contents of the address, please be sure to dereference the
pointer.

Attempt to set breakpoint at invalid address

The memory location is not available. If the memory location is not out of
the target chip’s range, you may need to map the target system’s memory
to allow access to this location.

Bad argument to the command command

The argument you have given to the sio or f command is not allowed.
Refer to the Command Reference chapter, for allowable arguments and
their meanings.

Bad assertion number: number

The number number is not a valid assertion number. List assertions with
the 1a (list assertions) command to determine which assertion numbers
are valid.

both expressions must be addresses for 'relational operator’

If one of the expressions is an address type, both expressions for relational
operators (<, <=, >, >=, == and !=) must be address types. Retry with both
expressions as either addresses or arithmetic types.

Breakpoint is (or at the address of) an CrossView internal breakpoint. It
can not be deleted.

You may not install a breakpoint over an CrossView Pro internal
breakpoint. See Breakpoints and Assertions chapter for more information.

Error Messages 13-5

com return code=code

The MS-DOS version of CrossView Pro received a status condition from
the monitor communication channel which it can not handle. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

command takes no arguments.

The command command needs no arguments. Refer to the Command
Reference chapter, for the command syntax.

Can not open file (file)

CrossView Pro could not open the file file. Check the spelling of file and
check that the file is in the correct directory. You should also check the
permission of file. With MS-DOS, check the CONFI G. SYS file for the
maximum number of open files allowed. Increase the number and reboot
if necessary.

Can not output to input stream

An attempt was made to output to an input stream. The most common
case is incorrectly setting up your simulated i/o streams. Correct and retry.

Can not scroll that window

The window you have tried to scroll is not scrollable. Examine your
choice of window and/or your choice of windowing commands.

Can’t define macro: out of space

There is not enough host memory to add your macro. Eliminate one or
more unused macros before adding a new one.

Can’t expand macro: out of space

There is not enough host memory to expand your macro. Eliminate one or
more unused macros before adding a new one.

Can’t monitor data: out of space

CrossView Pro cannot add any more variables or expressions to monitor.
You must delete one or more variables or expressions before adding any
more.

13-6

Chapter 13

Can’t open logfile-name as log file

CrossView Pro could not open the specified host-to-target system
communications logfile. Check the spelling of logfile-name and that
logfile-name is in the correct directory. Check permissions of
logfile-name. With MS-DOS, check the CONFI G SYS file for the maximum
number of open files allowed. Increase the number and reboot if
necessary. Make sure the filename is valid for the host Operating System.

Can’t open output—file—-name as output file

CrossView Pro could not open the specified output file. Check the spelling
of output-file-name and that output—file-name is in the correct directory.
Check permissions of output-file-name. With MS-DOS, check the

CONFI G SYS file for the maximum number of open files allowed. Increase
the number and reboot if necessary. Make sure the filename is valid for
the host operating system.

Can’t open playback—file—-name as playback file

CrossView Pro could not open the specified playback file. Check the
spelling of playback-file-name and that playback—file-name is in the
correct directory. Check permissions of playback-file-name. With
MS-DOS, check the CONFI G SYS file for the maximum number of open
files allowed. Increase the number and reboot if necessary. Make sure the
filename is valid for the host operating system.

Can’t open record—file-name as record file

CrossView Pro could not open the specified recording file. Check the
spelling of record-file-name and that record-file-name is in the correct
directory. Check permissions of record-file-name. With MS-DOS, check
the CONFI G SYS file for the maximum number of open files allowed.
Increase the number and reboot if necessary. Make sure the filename is
valid for the host operating system.

Can’t open file 'file’

CrossView Pro could not open the specified file. Check the spelling of file
and that file is in the correct directory. Check permissions of file. With
MS-DOS, check the CONFI G SYS file for the maximum number of open
files allowed. Increase the number and reboot if necessary. Make sure the
filename is valid for the host operating system.

Error Messages 13-7

Can’t perform trace, out of memory

There is not enough host memory to support tracing. Reduce memory
demands and retry again. If the problem persists, please contact the
TASKING Technical Support staff for assistance.

Can'’t set breakpoint; either the current file has no symbols, or line
line# is not inside any procedure in the current file.

CrossView Pro was unable to set the breakpoint that you specified. First
check the location of line /ine# and verify that it is in the current
procedure being debugged. If it is within the current procedure, then you
may need to compile/assemble/link/locate for debugging. Refer to chapter
Overview for details.

Can’t start a new process. Feature not implemented.
Your host system does not support shell commands. Any attempt to issue
shell commands will cause this message to be displayed.

Can’t write to a read—only SFR.

The SFR register is a read—only register. It can not be set or altered.

Cannot allocate memory for symbol table

Allocating memory for storing the symbol table failed. Remove some tasks
from memory or add more memory to your computer system.

Cannot allocate symbol table memory buffers

The symbol table is too large for CrossView Pro. You may need to
selectively compile with the =g switch only those files and procedures that
most interest you.

Cannot allow that combination of operand(s) and operator

The operand(s) is/are incompatible for this type of operation. For
example, you may not add two structures. Please verify the operation and
data types you are using.

Character constant is missing ending’

Character constants must be delimited with single quotes. Example: ’a’.

13-8

Chapter 13

Command 'command’ not allowed while emulator running in
background

The target is running, this command is not allowed unless the target is
stopped. See the st command.

couldn’t error-message

VMS is reporting a condition that CrossView Pro can not handle. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

Data already being monitored "task—id”:'symbol’
The variable or expression symbol is already being monitored by
CrossView Pro. You do not need to enter it again.

Display format required
The display command expected an output format option that was not
supplied. See chapter Command Language for valid format options and
their meanings.

Double not allow in '% or ~ operator’
You may not use the one’s complement or modulus operators on double
floating point types.

Double not allow in 'bitwise operator’
You may not use bitwise operators (&, ~ and |) on double floating point
types.

ERROR: you must enter ?,i,r,d
CrossView Pro’s line editor only supports the following commands: ?-help,
i—insert, r-replace, d-delete, and <cr> to execute command.

Establish a file context first.
The command executed requires an active file. Verify the file you specified
to CrossView Pro on start up.

Establish a procedure context first

The command executed requires an active procedure. Either execute the
command from within a procedure, or give a procedure name as an
argument to the command.

Error Messages 13-9

Exiting procedure call state

An unknown system signal caused the end of a command line function
call.

Expecting stream number

The following forms of the sio command expect a stream number:
stream sio {i| o} {file | screen}
stream sio d
Stream sio p prompt

Expression garbaged

The symbol table contains a type that is unknown to CrossView Pro.
Please verify that you are using the compiler and utilities supplied to you.
If the condition persists, please contact the TASKING Technical Support
staff for assistance.

file has already been edited, going to NEW file

The command executed requires that the file be edited only once. A new
file has been created.

failed to allocate the SIO tables

Entries for recording simulated input/output information could not be
allocated due to lack of host memory. Please contact your system
administrator, or call the TASKING Technical Support staff for assistance.

Float not allowed in '% or ~ operator’

You may not use the modulus or one’s complement operators on floating
point types. Change the data type to an appropriate type, for example,
integer.

Float not allowed in 'bitwise or shift operator’

You may not use the bitwise (&, ~, or |) or shift (>>, or <<) operators on
floating point types. Change the data type to an appropriate type, for
example, integer.

Framing Error on COM port number

The host computer detected a data frame communication error on COM
port number. Check the host and target communication set up as well as
line connections. If the problem persists, please contact your system

administrator, or call the TASKING Technical Support staff for assistance.

13-10

Chapter 13

| can’t put something that big in the child process

The size of the expression exceeds the buffer size needed to spawn a
child process. Be sure you have linked end. ¢ in your application. This
module implies space for CrossView Pro in your execution environment.
Refer to section Building Your Executable in chapter Overview. If this
condition persists, please contact the TASKING Technical Support staff for
assistance.

| don’t have symbols for this procedure

You will need to re-compile, assemble, link and locate with the proper
debugging options before using this command. See section Building Your
Executable in chapter Overview for details.

| have no source file for this address

The program counter holds an address which is outside all the address
ranges that CrossView Pro knows about. This may happen if program
execution has reached a file that was not compiled with the —g generate
debug symbols switch.

I need alinenumber
The go g command requires a line number. Enter a line number and the
command will be executed.

lllegal address for Emulator Hardware Breakpoint
The address specified is out of emulator hardware breakpoint memory
range. Verify the address and retry.

Illegal argument ("0") to 'p’ command
You must specify a number greater than 0 for the p command, which
prints the specified number of lines.

lllegal argument to 'command’ command: 'argument’
You have passed an illegal argument to the specified command. Refer to
chapter Command Reference for legal arguments.

Illegal argument to ct: "argument’

You have passed an illegal argument to the C-trace command. Refer to
chapter Command Reference for legal arguments.

Error Messages 13-11

lllegal data monitor command

You have passed an illegal argument to the m data monitor command.
Legal commands are:

mexp to set up monitoring

idmd to delete monitoring of a specific expressions

md to delete monitoring of all expressions

lllegal third arg to set: 'argument’

The set command may have only two arguments: the name by which the
macro is known and the command string to be executed when the macro
is invoked. Enclose the command string in quotes, separating the
individual commands with semicolons. Refer to chapter Command
Reference for more information.

Improper floating point format length

You have specified a format length that is inconsistent with floating
numbers. Legal lengths are 4 and 8 bytes.

Improper integer format length

You have specified a format length that is inconsistent with integer
numbers. Legal length are 1, 2, and 4 bytes. You may also choose b, s, or 1
for 1, 2, and 4 byte integers.

Improper string format length

You have specified a format length that is inconsistent with character
strings. Choose a positive number.

Input buffer overflow

CrossView Pro is over—-running the input buffer. Contact your system
administrator to either increase the input buffer or lower the
communication line baudrate.

Input communications buffer overflow on COM port

CrossView Pro is over—-running the input buffer. Contact your system
administrator to either increase the input buffer or lower the
communication line baudrate.

13-12

Chapter 13

Input from stdin longer than max—input—size characters: input—string
Command truncated

The input data is longer that the input buffer, therefore the data was
truncated at max—-input-size. Try to reduce the input data and/or
commands.

Internal error while setting an instruction level breakpoint

If this error condition persists, please contact the TASKING Technical
Support staff for assistance.

Invalid assertion maintenance command

You have entered an illegal assertion command. Valid commands are:
aa to activate assertions
ad to delete assertions
as to suspend assertions

Invalid value for uplevel break.

You have entered an illegal value for an uplevel break. The form of the
command is exp bU or exp bU, where exp determines how many returns
from functions should occur before the break. Execute the t command to
find out how many levels down in the stack you are, then choose an
appropriate value for the uplevel break. See chapter Command Reference
for more information.

Invoking procedure calls not allowed while emulator is running in the
background

The target is running, this command is not allowed unless the target is
stopped. See the st command.

Macro Expansion error: expansion looping

CrossView Pro looped 50 times while trying to expand this macro without
completing the expansion. Check the logic of the macro arguments. It may
need to be corrected or simplified.

Macro Expansion error: expansion too large

The macro expansion exceeds 200 commands. The macro must be
simplified.

Error Messages

Macro Expansion error: missing '(

See the command reference page or use the help command to review
macro command syntax.

Macro Expansion error: missing ’)’
See the command reference page or use the help command to review
macro command syntax.

Macro Expansion error: missing ',
See the command reference page or use the help command to review
macro command syntax.

Macro Expansion error: not enough args
See the command reference page or use the help command to review
macro command syntax.

Macro Expansion error: out of space
There is not enough memory to expand the macro. Eliminate one or more
unused macros before adding a new one.

Maximum trace size is: max—trace-size
CrossView Pro can perform C tracing only up to max—trace-size source
lines. Choose a number less than max-trace-size with the ct command.

Missing { after if command

The required format for the if command is: if exp {commands}

Missing file name or 'screen’

The sio command was missing a required parameter for setting up a
simulated i/o stream. See chapter Command Reference for command
definition and format.

Missing format character
You did not specify a display format type with your command. Either
remove '/’ from the command, or add a format character.

Missing prompt string

You did not specify a prompt string with the sio command. Either remove
p from the sio command, or add a prompt string.

13-13

13-14

Chapter 13

Must supply 'b’ or 'f’

The color command requires a value of f for foreground or b for
background to modify the screen color.

Must supply 'r’,’w’ or 'b’
Both the data range (bD) and data (bd) breakpoint commands require the
type of data modification to generate a break condition. Use r for read, w
for write, and b for both read/write. Please see chapter Command
Reference for more information.

Must supply data to be monitored
You did not specify a variable or expression to the m monitor command.

Please provide a variable or expression to be monitored, for example, m
nmyvar .

Must supply second address with bD command.

The bD command requires two addresses. Either specify an upper limit if
you want to break anywhere in memory range, or use the bd command if
you want to break on an individual address.

Negative /baudrate value ignored. (VAX)
or
Negative baud rate (-S) value ignored.

The baudrate specified was a negative value. Please specify a legal value
or use the default.

Negative /TIMEOUT value ignored. (VAX)
or
Negative timeout interval (-I) value ignored.

The time out value specified was negative. Please specify a legal timeout
value or use the default.

No child process

The CrossView Pro internal data structure containing user information
about child processes is not as expected. Please contact the TASKING
Technical Support staff for assistance.

No current file

Undefined special variable, $fi | e; probably due to debugging where no
symbols are present.

Error Messages 13-15

No current line number

Undefined special variable, $| i ne; probably due to debugging where no
symbols are present.

No current procedure

Undefined special variable, $pr oc; probably due to debugging where no
symbols are present.

No host memory

There is not enough space in memory to execute this command. Check
whether you have unnecessary processes running in the background or
resident in memory.

No host memory for command

There is not enough space in memory to execute this command. Check
whether you have unnecessary processes running in the background or
resident in memory.

No macros to save; file not created

CrossView Pro found no macros to save, therefore the save command did
not create a file.

No Match — pattern

CrossView Pro did not find the specified pattern in its search of this file.
Check your spelling or case—sensitivity. Use the Z command to toggle
case-sensitivity if necessary.

No memory space

There is not enough host memory to execute this command. Check
whether you have unnecessary processes running in the background or
resident in memory.

No more hardware breakpoints available

The target system uses hardware breakpoints to support the data
breakpoint function. To continue, you must explicitly delete a data
breakpoint before placing a new one.

No more room for directories (> max—dir—size)

You can reference no more that max-dir-size directories for source files.

13-16

Chapter 13

No more SIO windows, 1/0 to command window.

Only four SIO streams can be displayed simultaneously in the SIO
window. Subsequent SIO streams’ output will be displayed in the
command window.

No name of symbol file specified

CrossView Pro cannot deduce the name of a symbol file. No filename was
given to the N command and no symbol file was currently loaded.

No playback name specified

Give the name of the playback file to be used for this session.

No process

CrossView Pro only allows one process to be debugged at the same time.

No such breakpoint

The breakpoint number was incorrect. List breakpoints with the 1 b
command to find the correct breakpoint.

No such field name "name” for "<structure | union> name”

The field name is not recognized for the specified structure or union.
Check the spelling of field name. The /t format will show you the names
and types of a particular structure’s or union’s fields.

No Such Line

CrossView Pro can not find the specified line number in any of its known
files. Please check the source window or a source listing for legal line
numbers.

No such procedure, "name”.

CrossView Pro does not recognize name as a procedure name. Check the
spelling and whether the file was compiled/assembled/linked/located for
debugging. Check that the file is in the appropriate directory.

No such procedure or file name: procedure

CrossView Pro does not recognize procedure as a procedure or file name.
Check the spelling and whether the file was
compiled/assembled/linked/located for debugging. Check that the file is in
the appropriate directory.

Error Messages 13-17

No such PSW register state

Check register name and selected target.

No such register

The target processor does not have a register with that name.

No such sr reg state

Check register name and selected target.

No such stream

The stream you tried to delete does not exist. Check the stream number,
correct, and retry.

No symbols —unable to determine end-of-procedure

CrossView Pro has no symbol information for this procedure. To facilitate
debugging this procedure, you must compile, assemble, link and locate
with the appropriate switches. Refer to the Overview chapter for details.

No symbols available in active procedures.

To get symbol information you must compile, assemble, link, and locate
with the appropriate switches. Refer to the Overview chapter for details.

No symbols for that procedure

To get symbol information you must compile, assemble, link, and locate
with the appropriate switches. Refer to the Overview chapter for details.

No User or System special variable matches prefix name

The string argument of the 1 s command did not match any user or system
special defined variables. Check spelling and case-sensitivity and retry.
You may also enter 1's to print out all the user and system special defined
variables.

Not enough memory available to start up windows. Either use the —nw
(no window) option or remove resident programs from memory.

CrossView Pro has detected that there is not enough host memory to
execute the windowing software. You may need to use the -nw option to
start up CrossView Pro in line mode. Check whether you have
unnecessary processes running in the background or resident in memory.

13-18

Chapter 13

Not enough memory to execute shell command.

The attempt to create a child process for the shell command failed due to
the lack of host memory. Check whether you have unnecessary processes
running in the background or resident in memory.

Not enough memory to start window mode

CrossView Pro has detected that there is not enough host memory to
execute the windowing software. You may need to use the -nw option to
start up CrossView Pro in line mode. Check whether you have
UNNECESSary processes

Not enough space

CrossView Pro has detected a general error due to lack of host memory.
Check whether you have unnecessary processes running in the
background or resident in memory.

Not in known territory. Could not set breakpoint.

CrossView Pro’s current location is not in a file or procedure that it knows
about. The breakpoint request can not be performed.

Not in window mode

The command issued requires CrossView Pro windows to be active. Use
the WW command and repeat the previous command.

Not that many levels active on the stack.

A stack level was specified that does not exist. Execute the t command to
determine levels on the stack. See chapter Command Reference for more
information.

Oops called with sig = signal-number

CrossView Pro has received a signal that it can not handle. Continuing
from this point may result in a fatal process condition. If this condition
persists, please contact your system administrator, or call the TASKING
Technical Support staff for assistance.

Placement of the breakpoint handler must be in one of
the restart vectors. Choose a value from 0 to 7.
Try again. (Hit <cr> to exit)?

The specified placement for the breakpoint handler was not valid for this
target. CrossView Pro is requesting a valid location.

Error Messages

Procedure "name” is not active on the stack.

The procedure name was not found on the current stack. Execute the t
command to list functions which are active on the stack.

Procedure 'name’ is not at that stack depth

The procedure name was not found on the specified stack. Execute the t
command to list functions which are active on the stack.

Procedure "procedure” is not active

The procedure procedure was not found on the current stack. Execute the
t command to list functions which are active on the stack or 1 p for list of
procedures known to CrossView Pro.

Program not completely loaded

An error occurred during loading a symbol file. Check what cause the
problem (illegal filename or file format). You may retry to load a symbol
file.

Prompt too long (> max—number)

Choose a prompt of no more than max-number characters.

Ran out of memory reading symbol file into memory

Reduce the size of the symbol file by re-compiling only the “interesting”
files with the —g debug switch.

Read I/O request could not be queued

VMS detected an error for a read I/0O queue which CrossView Pro can not
handle. If the condition persists, please contact your system administrator,
or call the TASKING Technical Support staff for assistance.

Readprompt I/O request could not be queued

VMS detected an error for a read I/O queue which CrossView Pro can not
handle. If the condition persists, please contact your system administrator,
or call the TASKING Technical Support staff for assistance.

Redo: line too large

Limit line length to fewer than 256 characters.

13-19

13-20

Chapter 13

Result type too large for command line call.

A command line function call must pass the result back in a register. The
specified function does not. You cannot call functions whose return value
is greater than an integer, for instance floating point types and structures.

Result type undefined
Type casting from the expression or variable to the result type was not
possible.

Second address smaller then first
When specifying a range of addresses for a data breakpoint, the second
address must be higher than the first.

Sim I/O request too long (>max—number bytes)

The 1/0 request exceeds the maximum length.

Simulated /O stream out of range

Choose a stream value between 0 and 7.

Sorry, the ”v” command is not supported on this host

No visual editor is available on this host.

Stream already active

Either choose another stream, or deactivate this one before re—assigning it.

String constant is missing ending ”

String constants must be delimited with double quotes: ”

Subtracting 2 pointers not allowed

You cannot subtract two pointers in an expression. If you intended to
subtract from a pointer, make sure that the argument is a value, not
another pointer.

Symbol file is either unreadable or too short

The symbol file is not an absolute IEEE-695 file, or the file format is not
correct, or the file is not an IEEE-695 file at all.

Error Messages 13-21

Symbol file is not formatted correctly
The symbol file is not intended for the type of microprocessor you are
using.

Symbol not in current procedure

There is no symbol by this name in the current procedure. Check the
spelling of the symbol name.

The ’command’ command accepts no args

The command command does not accept any arguments. See chapter
Command Reference for more information on command.

The window would be too large; Total lines must not be greater that
max-—size
The window size options specified would create a window that would
have exceeded the screen size. Retry with corrected window size options.

There is insufficient information to do a structure dump

CrossView Pro cannot uniquely identify the structure or part of the
structure to be dumped.

There is no associated source.

The program counter holds an address which is outside all the address
ranges that CrossView Pro knows about. This may happen if program

execution has reached a file that was not compiled with the —g debug

switch.

There is no available source line for the current address.
$pc=address

CrossView Pro is reporting that the current position has no associated
source line. This may happen if you are trying to debug a routine that was
not compiled with —=g debug switch or are trying to debug a runtime
library routine.

This does not appear to be a struct or a union

The data entered is not recognizable as a structure or union. Check the
specified variable.

13-22

Chapter 13

Timed read 1/O request could not be queued

VMS reported a condition on a timed read i/o request that CrossView Pro
could not handle. If the condition persists, please contact your system
administrator, or call the TASKING Technical Support staff for assistance.

Too many args to unset: 'argument’

You may specify only one macro at a time, for example, unset name, or
you may remove all macros at once with unset.

Too many assertions (>max—number)

The maximum number of assertions allowed is max-number as shown in
the error message. Remove a previous assertion before trying to add one,
or reinvoke CrossView Pro with the —a option to increase the maximum
number of assertions.

Too many breakpoints (> max_number)

The maximum number of breakpoints allowed is max-number as shown
in the error message. You must explicitly delete a breakpoint before
adding any new ones. Alternatively, you could re-invoke CrossView Pro
with the —b option to increase the maximum number of breakpoints.

Too many locals (> max—number)
Eliminate some existing locals or reinvoke CrossView Pro with the -s
switch to increase the number of locals allowed.

Too many modules
The symbol file describes an application that was constructed from more
than 1818 modules.

Too many processes (> max—number)

CrossView Pro allows only one process to be debugged.

Too many streams (> max—number)

The maximum number of I/O streams, max-number, has been reached.
You must eliminate an I/O stream before adding a new one.

Trace size is required

The required format of the command is exp ct, where exp is the number
of statements to trace. Re—enter the command with a value for exp.

Error Messages

Type 'r ’, to run program from power—on conditions or 'c ' to continue
with current program pointer

This is to inform you that command 7 is not implemented and that you
should used 7 or c.

Type of command-line—expression is too complex
The command line function returns a data type that CrossView Pro cannot
handle. An example would be a function returning a structure.

Unexpected breakpoint type 'type’

CrossView Pro has encountered a breakpoint with an unknown type
attribute. Verify the previous break commands and re-try. If the condition

persists, please contact the TASKING Technical Support staff for assistance.

Unknown command ‘command’ (number>)

CrossView Pro does not recognize command, and has echoed the
command number for Technical Support purposes. Please check the
spelling and retry. If the condition persists, please contact the TASKING
Technical Support staff for assistance.

Unknown data monitor id 'number’

The monitor number number that you tried to delete does not exist. Use
the M command to list currently monitored variables.
Unknown data size

Valid data sizes are 1, 2, 4, or 8 bytes.

Unknown display mode

See chapter Accessing Code and Data, for a list of display mode options.

Unknown name 'name’

Variable name is not in scope or is undefined.

Unknown procedure "name”.

The function name does not exist in any file that CrossView Pro knows
about. The file containing name may not have been compiled with the —-g
debug switch.

13-23

13-24

Chapter 13

Unknown macro 'name’

CrossView Pro does not recognize the macro name as given. Please check
the spelling. You may list all current macros by using the set command
with no arguments, or display the Macro window for currently defined
macros.

Unknown window

CrossView Pro does not recognize the window name as given. See chapter
Command Reference for valid window arguments.

Unsupported format type (parameter)
Supported types are ¢ (character), x (hex), and o (octal).

Value number is not defined for this enum.

The member specified was not part of the enumerated set. Please check
the spelling and verify that the correct enum was used.

Value exceeds depth of stack.

A stack level was specified that does not currently exist. Please check the
value and retry. Check the stack window for valid stack levels, or execute
a t command (trace stack) to determine the depth of the stack.

VMS error : cannot establish handler for signals

CrossView Pro on VMS could not establish proper error handlers. If the
condition persists, please contact the TASKING Technical Support staff for
assistance.

VMS error : cannot establish pasteboard

CrossView Pro on VMS can not establish the running environment. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

VMS error : cannot establish virtual keyboard

CrossView Pro on VMS can not establish the running environment. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

Error Messages

VMS error code = number \ Attempt to get message text fail.

CrossView Pro on VMS received an error while attempting to provide an
error diagnostic message from the host error message library. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

Warning: NULL pointer dereference

The expression contained a null pointer dereference. Check the expression
for possible errors, or verify that the pointer should in fact be null.

Warning: pointer dereference with invalid segment selector.

The pointer is addressing invalid memory and the dereference may report
unexpected data results. Check the initialization of the pointer or verify
that it has been set correctly.

Warning: too few parameters.

The command given was not invoked with the proper number of
arguments. CrossView Pro will supply the command with defaults which
may or may not produce the result you expected.

Warning: Using file-b instead of file—a

CrossView Pro could not find file-a, or file-a’s status was such that
CrossView Pro could not use it. If file-b is not correct, check file-a spelling
and its directory.

Warning: X=Y: X is x—size bytes and Y is y—size bytes

The assignment of two different size variables may cause unexpected
results. Please correct the condition if possible. This condition is common
when assigning string variables where string y is shorter than string x.

Warning: X=Y: X is x—size words and Y is y—size words

The assignment of two different size variables may cause unexpected
results. Please correct the condition if possible. This condition is common
when assigning string variables where string y is shorter than string x.

13-25

13-26

Chapter 13

Warning: CrossView comment terminated by end of command line
source—command-line

The playback file has a comment that was not terminated. It is by default
terminated, but if the next line was the continuation of the comment, then
unexpected results may occur. Please terminate comment strings on each
line to avoid this warning.

Windows not enabled; use WW to enable

The command issued can only be used when windows are enabled.

Write 1/0 request could not be queued

CrossView Pro received a condition that it could not handle. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

Write—only register. Value may not be valid.

CrossView Pro set a write—only register but has no way of verifying the
correctness of the register contents.

Wrong storage class for data breakpoint

You may not set a data breakpoint at the address of a register variable or
special variables.

CrossView could not disassemble the emulator’s trace buffer because
the address information in the buffer is incorrect.

The trace buffer may be corrupted. Re-check the commands leading to
this condition, and retry. If the condition persists, please contact the
TASKING Technical Support staff for assistance.

XVW error — message
or
XVW Fatal error — message

These messages are generated by internal conditions that should not
normally occur. The message is usually encrypted and should be brought
to the attention of the TASKING staff. Please contact the TASKING
Technical Support staff for assistance.

Error Messages

XVW:main — Cannot continue, incomplete initialization.

CrossView Pro’s initialization was interrupted and could not be completed.
Please re—start CrossView Pro, and if the condition persists, contact the
TASKING Technical Support staff for assistance.

You can’t goto a line outside of the current procedure

The specified line number is outside the current procedure. Change the
line number to one within the procedure or enter the correct procedure
before executing this command.

You may not assign from a host system string/array

The expression given performs an assignment that CrossView Pro can not
perform at this time.

You may not assign from a void function

The expression attempts to assign a variable from a void function. Please
check the return value of the function and verify that you are referencing
the correct function.

You may not assign more than max—size bytes to a special variable
An attempt was made to assign greater than the maximum number of
bytes to a special variable. Check the expression for errors, and check the
variable’s spelling.

You may not assign to a constant
The value of a constant cannot be changed. Check the name that you have
specified.

You may not mix assignment of a scalar and an aggregate

An attempt was made to assign incompatible types of data. Please check
the data types and retry.

You need to supply a program name.

CrossView Pro requires a program name to debug on the invocation line.

13-27

13-28 Chapter 13

GLOSSARY

al TASKING [

d31dVHO

14

Glossary 14-3

This chapter defines many terms common to CrossView Pro and
source-level embedded systems debugging. Italicized items in definitions
are also entries.

absolute file. The IEEE-695 file (. abs) that contains symbolic debug
information and the executable code of the target system.

active window. A user—selected CrossView Pro window that commands
operate on as a default. An active window’s title appears in red (on color
monitors) or inverse video (on monochrome).

Assembly window. An CrossView Pro window showing a part of the
disassembled program space. It also indicates such information as the
current execution position, viewing position and installed breakpoints.

assertion. A command or set of commands to be executed before every
line of source code. Assertions are especially useful in tracking down hard
to find bugs when other methods fail. Individual assertions may either be
active or suspended. See also assertion mode.

assertion mode. A mode of CrossView Pro operation under which
assertions will be executed. Before CrossView Pro executes a source line
of code, it tests for an arbitrary condition specified by the user. Since
CrossView Pro is single stepping breakpoints will not be effective. As long
as there is at least one assertion active, CrossView Pro operates in assertion
mode. A program running in assertion mode will stop when an asserted
command executes an X (exit assertion mode) command.

background mode. A feature in CrossView Pro that lets the execution
environment run while you can still enter CrossView Pro commands.

bias. The offset value from zero at which a target program is actually
loaded into memory. The bias can be set with the —n startup option.

14-4

Chapter 14

breakpoint. A mechanism for stopping target program execution at a
particular line of code (see code breakpoint), when a memory address is
accessed (see data breakpoint), or at a return from a function (see
uplevel breakpoint). There are two general kinds of breakpoints,
hardware which the emulator sets in its circuitry, and software, which are
special instructions placed in user code. Since the number of simultaneous
hardware breakpoints is limited in number, CrossView Pro uses software
breakpoints. Using transparency mode, however, you may set your own
hardware breakpoints.

Breakpoint window. An CrossView Pro pop—-up window displaying
code and data breakpoints, and any attached commands.

C-trace window. An CrossView Pro window keeping a record of the
most recently executed C or machine statements.

cache. Some microprocessors keep in on—chip memory a copy of the
most recently executed instructions to speed processing. Sometimes
execution will not halt until the this private storage (the cache) is
exhausted. See also skidding.

code breakpoint. A breakpoint that halts program execution when a
particular line of code is reached. A code breakpoint can have a command
list. A breakpoint can be set on a line of source code or at the address of a
machine instruction. See also count.

Command window. The Command window contains all user input.
Output may be directed to the Command window.

command list. A series of CrossView Pro and/or C commands attached
to a code or data breakpoint, executed when the breakpoint is hit.

Composite window. An CrossView Pro window that is a combination of
three separate windows: the Data, Register, and Stack windows.

count. The number of times a breakpoint must be hit before execution
halts. Breakpoints are created with a count of 1. The C command may be
used to change the count of a breakpoint.

current function. The function that execution is currently in. The current
function is always at level 0 on the stack.

Glossary 14-5

data breakpoint. A breakpoint that halts program execution when a
particular memory address (or an address within a particular range) is
written to, read from, or both. A data breakpoint may have a command list
and a count.

data monitoring. CrossView Pro allows you to monitor expressions and
variables in the Data window. CrossView Pro updates their values
whenever execution stops.

Data window. An CrossView Pro window displaying the values of
monitored expressions.

diagnostic output. Program output designed for debugging purposes.
With CrossView Pro, breakpoints and data monitoring can be used for
diagnostic output, eliminating the need for intrusive and annoying printf
calls compiled into code.

”»

dot operand. The period character ”.” used in an expression to represent
the last value CrossView Pro calculated. The dot operand is useful as
shorthand.

embedded system. An application program built for a microprocessor
running in real-time. An embedded system usually is part of a larger,
non-computer system, hence the term "embedded.” The TASKING product
line is designed for embedded systems programming.

emulator. A device used to monitor various aspects of a microprocessor’s
operation. An emulator usually is built around two chips, the target
microprocessor and a controlling chip. The controller chip can start and
stop the target chip’s program execution, and can examine and change
registers and memory. An emulator can be connected via a probe to a
hardware prototype to emulate fully the behavior of the target chip. Hence
it is an ideal debugging device. See ROM monitor.

__end_. A run-time library routine used to implement command line
function calls. It must be linked into the object code.

execution position. The source line corresponding to the value of the
program counter. See viewing position.

14-6

Chapter 14

format. The manner in which CrossView Pro displays data; for instance,
hexadecimal, character and octal are different formats. You may include
special format codes when specifying variables.

hardware breakpoint. See breakpoint.

Help window. One of two levels of windows summarizing the syntax
and function of CrossView Pro commands.

history mechanism. The process by which CrossView Pro retains the
last twenty CrossView Pro commands issued.

host system. The computer system on which CrossView Pro is run. The
host system is connected to the target system, usually with an RS-232
cable.

image part. This is the downloadable part of the absolute file (. abs) that
contains the executable code of the target program. See also absolute file.

interrupt key. The key that interrupts ongoing processes. On many
systems this is ct7/-C.

Librarian. The utility which manages libraries of program modules at
the prelink or postlink phase of development.

line mode. An CrossView Pro operating mode in which all screen output
appears after the prompt. No windows are present. See also window
mode.

Linker. The utility which combines separate object modules into a single
module, resolving references.

Glossary 14-7

local variable. A variable that can only be referenced from within its
defining function.

Locator. The utility which assigns absolute target-memory locations to
relocatable sections and resolves address references.

low-level breakpoint. A code breakpoint placed on an individual
machine instruction. Low-level breakpoints can be set with the bi
command.

macro. A user—created shorthand for an CrossView Pro command
sequence. Macros can accept parameters and can be saved to a file.

Macro window. An CrossView Pro window that lists all currently defined
macros. It automatically appears whenever you define a new macro in
window mode.

main(). The function where a C program’s execution begins. See also
system startup code.

MAU. Abbreviation for minimum addressable unit.

memory map. The configuration of an emulator’s memory that specifies
which addresses are read-only, and which are read/write. With many
emulators, you must first set up a memory map before using CrossView
Pro.

minimum addressable unit. For a given processor, the amount of
memory located between an address and the next address. It is not
necessarily equivalent to a word or a byte. Abbreviated MAU.

object language. A representation for target machine instructions, with
the ability to represent either relocatable or absolute address locations.

On-line Help. A complete summary of all CrossView Pro commands and
individual descriptions available while CrossView Pro is running.

On-line Tutorial. A playback file supplied with CrossView Pro that
demonstrates CrossView Pro’s capabilities.

14-8

Chapter 14

optimizer. A phase of the compiler which identifies sections of source
code that can be made more efficient by the code emitter and directs the
code emitter to implement those improvements.

output buffer. The location in memory where CrossView Pro directs
simulated output. See also simulated I/0.

overlay. A module that may be loaded into memory at an address other
than the address specified at locate time. CrossView Pro allows you to
debug relocatable code by specifying an offset when invoking the
debugger. CrossView Pro uses the information to correlate executable
code with the symbol table.

patch. A technique to alter program flow (without recompiling the source
code) with CrossView Pro commands and/or C expressions. With
CrossView Pro, it is possible to use breakpoints to alter program flow by
patching in new code or moving the execution position around existing
code.

pop-up window. A window that appears in certain situations that
overlaps the current display. Pop—up windows usually contain information
(like a command definition) that need not be continuously displayed. The
Breakpoint, Macro and Help windows are pop-up windows.

probe. A part of an emulator that can be inserted in place of the target
chip in the actual embedded systems hardware.

pseudo-assembly. An optional output from the compiler that lists an
assembly code representation of the compiled output. Since the compiler
compiles directly to object code, there is no actual assembly output.

quiet command. A Q instruction in the command list of a breakpoint
suppressing the default display of function: line number: source file.

Glossary 14-9

record & playback. The ability to save CrossView Pro commands (and, if
desired, Command window output) to a file. CrossView Pro can play back
simple text files consisting solely of CrossView Pro commands.

Register window. An CrossView Pro window showing the contents of
the target microprocessor’s registers.

reserved special variables. Special variables ($LI NE, $PROCEDURE,
$FI LE) whose values CrossView Pro maintains to reflect the current status
of the debugging session. See also special variables.

ROM monitor. A program which supervises or controls, at an elementary
level, the overall operation of an embedded system. There are ROM
monitors, designed to TASKING's specifications that communicate with
CrossView Pro. Because of the limited hardware features of most boards
containing ROM monitors, some CrossView Pro features may not be
supported. See also emulator.

RS-232 cable. A cable that transmits serial data between the host and
target systems.

scope. The extent to which a variable can be referred to. Global variables
are always in scope; local variables are only in scope when their defining
function is the current function.

select. To make a window active.

simulated I/O. A technique to trap input and output calls for debugging
purposes. Simulated I/O is often used for testing a program before the
actual input and output hardware devices are present. See also stream.

Simulated I/O window. An CrossView Pro window containing all the
input and output streams directed to the screen. CrossView Pro can display
from one to four separate windows at a time.

single stepping. Executing a source statement or a machine instruction
then halting. Single stepping lets you observe a program executing in
stop—motion, to observe registers, variables and program flow.

14-10

Chapter 14

skidding. When a microprocessor executes a few instructions after a data
breakpoint halts execution. On some microprocessors, execution may not
stop until all instructions in its cache have been executed. It is important
to realize therefore that a target program may not halt at the precise
instruction where the data breakpoint occurred.

software breakpoint. See breakpoint.

source level debugger. A debugger capable of correlating source code
and variable names with object code. CrossView Pro is a source level
debugger.

Source window. An CrossView Pro window containing the listing of the
target program. It also indicates such information as the current execution
position, viewing position and installed breakpoints.

special variable. A variable independent of the target program that
CrossView Pro maintains for the user’s benefit. Special variables start with
a $ and are defined when first mentioned. CrossView Pro also maintains
reserved special variables that contain information about the state of the
debugging session.

split screen mode. See window mode.

stack depth. The level that a particular return address from a function
resides on the stack. The current function is always at stack depth zero.

stack traceback. An operation in which CrossView Pro reads the return
addresses and passed parameters off the stack to reconstruct program
flow.

Stack window. An CrossView Pro window showing the function calls on
the stack, with the values of the parameters passed to them.

startup options. Special command line switches passed to CrossView
Pro when the debugger is first loaded. These options control items such as
the number of assertions allowed, or can perform various actions such as
to start recording screen output to a file.

stream. A particular input or output data path for simulated I/O. Each
stream has a unique number for identifying purposes.

switches. See startup options.

Glossary 14-11

symbolic debugger. A type of debugger generally limited to dealing with
global, non-dynamic variables. Symbolic debuggers know nothing of the
data types; they translate global names and global subroutines into
addresses. See also source level debugger.

symbol information. The necessary information for CrossView Pro to
correlate object code with source code. The symbol information is part of
the absolute file (. abs file). See also absolute file.

system startup code. A run-time library routine written in assembly
language source that initializes the target environment before calling
mai n() . See also main().

target communication. The low-level communication between the host
and the target system. For the most part, CrossView Pro handles target
communications, allowing the programmer to concentrate on the
high-level information.

target microprocessor. The chip on which the target program runs.

target system. The emulator or ROM monitor where the target
microprocessor resides, and on which the target program runs.

trace buffer. A target-resident buffer that contains the most recent
commands executed by the target microprocessor. CrossView Pro uses this
buffer to perform a C—trace.

transparency mode. The mode in which CrossView Pro passes user
input directly to the emulator. Transparency mode is often used when
setting up memory maps.

uplevel breakpoint. A code breakpoint set at the return from a function
at a specified stack depth.

14-12 Chapter 14

viewing position. The line of source code currently being viewed. This
line contains the cursor. Some commands operate as a default on the
viewing position. The viewing position and the execution position are
initially the same, but you may adjust each individually.

window mode. An CrossView Pro operating mode in which the screen
is divided into several windows (which you may control) where various
information is grouped by category. See also line mode.

zoom. To expand the Data, Register or Stack window to the full width of
the screen.

FLEXIBLE LICENSE
MANAGER (FLEXIm)

al TASKING [

XIAN3ddV

Flexible License Manager (FLEXIm)

This appendix discusses Globetrotter Software’s Flexible License Manager
and how it is integrated into the TASKING toolchain. It also contains
descriptions of the Flexible License Manager license administration tools
that are included with the package, the daemon log file and its contents,
and the use of daemon options files to customize your use of the
TASKING toolchain.

The Flexible License Manager (FLEXIm) is a set of utilities that, when
incorporated into software such as the TASKING toolchain, provides for
managing access to the software.

The following terms are used to describe FLEXIm concepts and software
components:

feature A feature could be any of the following:

e A TASKING software product.
e A software product from another vendor.
license The right to use a feature. FLEXIm restricts licenses for

features by counting the number of licenses for features in
use when new requests are made by the application

software.

client A TASKING application program.

daemon A process that "serves” clients. Sometimes referred to as a
server.

vendor daemon
The daemon that dispenses licenses for the requested
features. This daemon is built by an application’s vendor, and
contains the vendor’s personal encryption code. Tasking is
the vendor daemon for the TASKING software.

A-4

=

Appendix A

license daemon

server node

license file

The daemon process that sends client processes to the
correct vendor daemon on the correct machine. The same
license daemon is used by all applications from all vendors,
as this daemon neither performs encryption nor dispenses
licenses. The license daemon processes no user requests on
its own, but forwards these requests to other daemons (the
vendor daemons).

A computer system that is running both the license and
vendor daemon software. The server node will contain all the
dynamic information regarding the usage of all the features.

An end-user specific file that contains descriptions of the
server nodes that can run the license daemons, the various
vendor daemons, and the restrictions for all the licensed
features.

The TASKING software is granted permission to run by FLEXIm daemons;
the daemons are started when the TASKING toolchain is installed and run
continuously thereafter. Information needed by the FLEXIm daemons to
perform access management is contained in a license data file that is
created during the toolchain installation process. As part of their normal
operation, the daemons log their actions in a daemon log file, which can
be used to monitor usage of the TASKING toolchain.

The following sections discuss:

¢ Installation of the FLEXIm daemons to provide for access to the
TASKING toolchain.

¢ Customizing your use of the toolchain through the use of a daemon
options file.

» Utilities that are provided to assist you in performing license
administration functions.

* The daemon log file and its contents.

For additional information regarding the use of FLEXIm, refer to the
chapter Software Installation.

Flexible License Manager (FLEXIm)

TASKING products licensed through FLEXIm contain a number of utilities
for managing licenses. These utilities are bundled in the form of an extra
product under the name SW000098. TASKING products themselves contain
two additional files for FLEXIm in a flex/m subdirectory:

Taski ng The Tasking daemon (vendor daemon).
i cense. dat A template license file.

If you have already installed FLEXIm (e.g. as part of another product) then
it is not needed to install the bundled SW000098. After installing SW000098
on UNIX the directory / usr/ | ocal / f | ex] mwill contain two
subdirectories, bi n and | i censes. After installing SW000098 on Windows
the directory c: \ f | ex] mwill contain the subdirectory bi n. The exact
location may differ if FLEXIm has already been installed as part of a
non-TASKING product but in general there will be a directory for
executables such as bi n. That directory must contain a copy of the
Tasking daemon shipped with every TASKING product. It also contains
the files:

I mgrd The FLEXIm daemon (license daemon).
[A group of FLEXIm license administration utilities.

Next to it, a license file must be present containing the information of all
licenses. This file is usually called | i cense. dat . The default location of
the license file is in directory c: \ f | ex] mfor Windows and in
[usr/local/flexlmlicenses for UNIX. If you did install SW000098
then the | i censes directory on UNIX will be empty, and on Windows
the file | i cense. dat will be empty. In that case you can copy the

I'i cense. dat file from the product to the | i censes directory after filling
in the data from your "License Information Form”.

Be very careful not to overwrite an existing | i cense. dat file because it
contains valuable data.

Example | i cense. dat :

SERVER HOSTNAME HOSTI D PORT
DAEMON Tasking /usr/1ocal/flexl m bin/ Taski ng
FEATURE SW08002-32 Taski ng 3. 000 EXPDATE NUSERS PASSWORD SERI AL

Appendix A

After modifications from a license data sheet (example):

SERVER el | iot 5100520c 7594

DAEMON Taski ng /usr/ | ocal /fl exl m bi n/ Taski ng

FEATURE SW)08002-32 Tasking 3.000 1-j an-00 4 0B1810310210A6894 " 123456

If the | i cense. dat file already exists then you should make sure that it
contains the DAEMON and FEATURE lines from your license data sheet.
An appropriate SERVER line should already be present in that case. You
should only add a new SERVER line if no SERVER line is present. The third
field of the DAEMON line is the pathname to the Tasking daemon and
you may change it if necessary.

The default location for the license file on Windows is:
c:\flexI mMlicense. dat

On UNIX this is:
fusr/local/flexlnllicenses/license. dat

If the pathname of the resulting license file differs from this default
location then you must set the environment variable LM_LICENSE_FILE to
the correct pathname. If you have more than one product using the
FLEXIm license manager you can specify multiple license files by
separating each pathname (/fpath) with a ’;’ (on UNIX also ") :

Windows:

set LM LI CENSE_FI LE={fpath[slfpath)...
UNIX:

setenv LM LI CENSE_FI LE [fpath|:lfpath]...

If you are running the TASKING software on multiple nodes, you have
three options for making your license file available on all the machines:

Place the license file in a partition which is available (via NFS on Unix
systems) to all nodes in the network that need the license file.

. Copy the license file to all of the nodes where it is needed.

. Set LM_LICENSE _FILE to "port@bost”, where host and port come from the

SERVER line in the license file.

Flexible License Manager (FLEXIm)

When the main license daemon Imgrd already runs it is sufficient to type

the command:

| nT er ead

for notifying the daemon that the | i cense. dat file has been changed.
Otherwise, you must type the command:

Imgrd >/usr/tnp/license.log &

Both commands reside in the flexlm bi n directory mentioned before.

It is possible to customize the use of TASKING software using a daemon
options file. This options file allows you to reserve licenses for specified
users or groups of users, to restrict access to the TASKING toolchain, and
to set software timeouts. The following table lists the keywords that are
recognized at the start of a line of a daemon options file.

Keywords Function

RESERVE Ensure that TASKING software will always be available to
one or more users or on one or more host computer systems.

INCLUDE Specify a list of users who are allowed exclusive access to
the TASKING software.

EXCLUDE Specify a list of users who are not allowed to use the
TASKING software.

GROUP Specify a group of users for use in the other commands.

TIMEOUT Allow licenses that are idle for a specified time to be returned
to the free pool, for use by someone else.

NOLOG Causes messages of the specified type to be filtered out of
the daemon’s log output.

Table A-1: Daemon options file keywords

In order to use the daemon options capability, you must create a daemon
options file and list its pathname as the fourth field on the DAEMON line for
the Tasking daemon in the license file. For example, if the daemon
options were in file / usr /| ocal / f1 ex] mf Taski ng. opt (UNIX), then
you would modify the license file DAEMON line as follows:

DAEMON Tasking /usr/local/Tasking /usr/local/flexln Taski ng. opt

A-8 Appendix A

=

A daemon options file consists of lines in the following format:

RESERVE nunber feature {USER | HOST | DI SPLAY | GROUP} nane
| NCLUDE feature {USER | HOST | DI SPLAY | GROUP} name
EXCLUDE feature {USER | HOST | DI SPLAY | GROUP} name

GROUP nanme <list_of _users>

TI MEQUT feature timeout _in_seconds

NCOLOG {IN] OUT | DEN ED | QUEUED}

REPORTLOG file

Lines beginning with the sharp character (#) are ignored, and can be used
as comments. For example, the following options file would reserve one
copy of feature SWkxxxxx—xXx for user “pat”, three copies for user “lee”,
and one copy for anyone on a computer with the hostname of “terry”; and
would cause QUEUED messages to be omitted from the log file. In addition,
user “joe” and group “pinheads” would not be allowed to use the feature
SWKXXXXX—XX :

GROUP pi nheads noe larry curl ey
RESERVE 1 SWxxxxx—xx USER pat
RESERVE 3 SWkxxxxx—xx USER | ee
RESERVE 1 SWKXXXXX—XX HOST terry

EXCLUDE SWkxxxxx—xx USER j oe
EXCLUDE SWKXXXXX—xX CGROUP pi nheads
NOLOG QUEUED

The following utilities are provided to facilitate license management by
your system administrator. In certain cases, execution access to a utility is
restricted to users with root privileges. Complete descriptions of these
utilities are provided at the end of this section.

Imcksum
Prints license checksums.
Imdiag (Windows only)

Diagnoses license checkout problems.

Imdouwn

Gracefully shuts down all license daemons (both Imgrd all vendor
daemons, such as Tasking) on the license server.

Flexible License Manager (FLEXIm)

mgrd

The main daemon program for FLEXIm.

Imbostid
Reports the hostid of a system.

Imremove

Removes a single user’s license for a specified feature.

Imreread

Causes the license daemon to reread the license file and start any new
vendor daemons.

Imstat

Helps you monitor the status of all network licensing activities.

Imswitchr

Switches the report log file.

Imver

Reports the FLEXIm version of a library or binary file.

Imtools (Windouws only)

This is a graphical Windows version of the license administration tools.

A-10 Appendix A

Name

Imcksum - print license checksums

Synopsis
Imcksum [-c license_file] | -k]

Description

The Imcksum program will perform a checksum of a license file. This is
useful to verify data entry errors at your location. Imcksum will print a
line-by-line checksum for the file as well as an overall file checksum.

The following fields participate in the checksum:

¢ hostid on the SERVER lines
¢ daemon name on the DAEMON lines

e feature name, version, daemon name, expiration date, # of licenses,
encription code, vendor string and hostid on the FEATURE lines

¢ daemon name and encryption code on FEATURESET lines

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imcksum looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imcksum looks for the
filec:\flexI M1icense.dat (Windows), or
fusr/local/flexlImlicenses/l|icense.dat (UNIX).

-k Case-sensitive checksum. If this option is specified,
Imcksum will compute the checksum using the exact case of
the FEATURE’s and FEATURESET’s encryption code.

Flexible License Manager (FLEXIm) A-11

Name

Imdiag - diagnose license checkout problems

Synopsis
Imdiag [-c license_file | [-n | [feature |

Description

Imdiag (Windows only) allows you to diagnose problems when you
cannot check out a license.

If no feature is specified, Imdiag will operate on all features in the license
file(s) in your path. Imdiag will first print information about the license,
then attempt to check out each license. If the checkout succeeds, Imdiag
will indicate this. If the checkout fails, Imdiag will give you the reason for
the failure. If the checkout fails because Imdiag cannot connect to the
license server, then you have the option of running "extended connection
diagnostics”.

These extended diagnostics attempt to connect to each port on the license
server node, and can detect if the port number in the license file is
incorrect. Imdiag will indicate each port number that is listening, and if it
is an Imgrd process, Imdiag will indicate this as well. If Imdiag finds the
vendor daemon for the feature being tested, then it will indicate the
correct port number for the license file to correct the problem.

Parameters

Sfeature Diagnose this feature only.

Options

~c license_file
Diagnose the specified license_file. If no —c option is
specified, Imdiag looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imdiag looks for the file
c:\flexI mMlicense.dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

-n Run in non-interactive mode; Imdiag will not prompt for
any input in this mode. In this mode, extended connection
diagnostics are not available.

A-12 Appendix A

Name

Imdown - graceful shutdown of all license daemons

Synopsis

Imdown | —c license file | | -q]

Description

The Imdown utility allows for the graceful shutdown of all license
daemons (both Imgrd and all vendor daemons, such as Tasking) on all
nodes. You may want to protect the execution of Imdown, since shutting
down the servers causes users to lose their licenses. See the —p option in
Section 3.4, Imgrd.

Imdown sends a message to every license daemon asking it to shut down.
The license daemons write out their last messages to the log file, close the
file, and exit. All licenses which have been given out by those daemons
will be revoked, so that the next time a client program goes to verify his
license, it will not be valid.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imdown looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imdown looks for the
filec:\flexI M1icense.dat (Windows), or
lusr/local/flexlnmlicenses/license.dat (UNIX).

-q Quiet mode. If this switch is not specified, lmdown asks for
confirmation before asking the license daemons to shut
down. If this switch is specified, Imdown will not ask for
confirmation.

% Imgrd, Imstat, Imreread

Flexible License Manager (FLEXIm)

Name

Imgrd - flexible license manager daemon

Synopsis

Imgrd | —c license_file | | -1 logfile | [-2 =p] [=t timeout | | =s interval |

Description

Imgrd is the main daemon program for the FLEXIm distributed license
management system. When invoked, it looks for a license file containing
all required information about vendors and features. On UNIX systems, it
is strongly recommended that lmgrd be run as a non-privileged user (not

root).

Options

-c license_file

-1 logfile

-2 -p

-t timeout

Use the specified license_file. If no —c option is specified,
Imgrd looks for the environment variable

LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imgrd looks for the file
c:\flexImlicense. dat (Windows), or
/usr/local/flexlmlicenses/l|icense.dat (UNIX).

Specifies the output log file to use. Instead of using the -1
option you can use output redirection (> or >>) to specify
the name of the output log file.

Restricts usage of Imdown, Imreread, and lmremove to a
FLEXIm administrator who is by default root. If there is a
UNIX group called "Imadmin” then use is restricted to only
members of that group. If root is not a member of this group,
then root does not have permission to use any of the above
utilities.

Specifies the timeout interval, in seconds, during which the
license daemon must complete its connection to other
daemons if operating in multi-server mode. The default value
is 10 seconds. A larger value may be desirable if the daemons
are being run on busy systems or a very heavily loaded
network.

A-13

A-14 Appendix A

=

-s interval Specifies the log file timestamp interval, in minutes. The
default is 360 minutes. This means that every six hours
Imgrd logs the time in the log file.

ﬂj Imdown, Imstat

Flexible License Manager (FLEXIm) A-15

Name
Imhostid - report the hosti d of a system

Synopsis
Imhostid

Description
Imbhostid calls the FLEXIm version of get host i d and displays the results.
The output of Imhostid looks like this:

I mhostid — Copyright (C) 1989, 1999 d obetrotter Software, Inc.
The FLEXI m host ID of this machine is "1200abcd”

Options

Imhostid has no command line options.

A-16 Appendix A

Name

Imremove - remove specific licenses and return them to license pool

Synopsis

Imremove | —c license_file | feature user host | display |

Description

The Imremove utility allows the system administrator to remove a single
user’s license for a specified feature. This could be required in the case
where the licensed user was running the software on a node that
subsequently crashed. This situation will sometimes cause the license to
remain unusable. Imremove will allow the license to return to the pool of
available licenses.

Imremove will remove all instances of “user” on node “host” on display
“display” from usage of “feature”. If the optional —c¢ fi | e is specified, the
indicated file will be used as the license file. Since removing a user’s
license can be disruptive, execution of Imremove is restricted to users
with root privileges.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imremove looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imremove looks for the
filec:\flexI M1icense.dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

ﬂj Imstat

Flexible License Manager (FLEXIm) A-17

Name

Imreread - tells the license daemon to reread the license file

Synopsis

Imreread | —c license_file |

Description

Imreread allows the system administrator to tell the license daemon to
reread the license file. This can be useful if the data in the license file has
changed; the new data can be loaded into the license daemon without
shutting down and restarting it.

The license administrator may want to protect the execution of Imreread.
See the —p option in Section 3.4, Imgrd for details about securing access to
lmreread.

Imreread uses the license file from the command line (or the default file,
if none specified) only to find the license daemon to send it the command
to reread the license file. The license daemon will always reread the file
that it loaded from the original path. If you need to change the path to the
license file read by the license daemon, then you must shut down the
daemon and restart it with that new license file path.

You cannot use Imreread if the SERVER node names or port numbers
have been changed in the license file. In this case, you must shut down
the daemon and restart it in order for those changes to take effect.

Imreread does not change any option information specified in an options
file. If the new license file specifies a different options file, that
information is ignored. If you need to reread the options file, you must
shut down (Imdown) the daemon and restart it.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imreread looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imreread looks for the
file | i cense. dat in the default location.

% Imdown

A-18 Appendix A

Name

Imstat — report status on license manager daemons and feature usage

Synopsis
Imstat [-a | [-A | [-c license_file | | —f [feature] |
[-1 [regular _expression)] | [-s [server] | [=S [daemon] | [-t timeout |
Description

License administration is simplified by the lmstat utility. Imstat allows
you to instantly monitor the status of all network licensing activities.
Imstat allows a system administrator to monitor license management
operations including:

* Which daemons are running

* Users of individual features

* Users of features served by a specific DAEMON

Options
-a Display all information.
-A List all active licenses.

—c license_file
Use the specified license_file. If no —c option is specified,
Imstat looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imstat looks for the file
c:\flexI mlicense.dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

—f [feature] List all users of the specified feature(s).

-1 [regular_expression)|
List all users of the features matching the given
regular_expression.

-s [server] Display the status of the specified server node(s).

=S |daemon)] List all users of the specified daemon’s features.

Flexible License Manager (FLEXIm) A-19

-t timeout Specifies the amount of time, in seconds, lmstat waits to
establish contact with the servers. The default value is 10
seconds. A larger value may be desirable if the daemons are
being run on busy systems or a very heavily loaded network.

ﬂj Imgrd

A-20

Appendix A

Name

Imswitchr - switch the report log file
Synopsis
Imswitchr | —c license_file | feature new-file
or:

Imswitchr | —c license_file | vendor new-file

Description

Imswitchr (Windows only) switches the report writer (REPORTLOG) log
file. It will also start a new REPORTLOG file if one does not already exist.

Parameters
Sfeature Any feature this daemon supports.
vendor The name of the vendor daemon (such as Tasking).
new-file New file path.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imswitchr looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imswitchr looks for the
filec:\flexI MIicense. dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

Flexible License Manager (FLEXIm)

Name

Imver - report the FLEXIm version of a library or binary file

Synopsis

Imver filename

Description
The Imver utility reports the FLEXIm version of a library or binary file.

Alternatively, on UNIX systems, you can use the following commands to
get the FLEXIm version of a binary:

strings file | grep Copy

Parameters

filename Name of the executable of the product.

A-21

A-22

Appendix A

For the 32 Bit Windows Platforms, an lmtools.exe Windows program is
provided. It has the same functionality as listed in the previous sections
but is graphically—oriented. Simply run the program (Start | Prograns
| TASKI NG FLEXI m | FLEXI m Tool s) and choose a button for the
functionality required. Refer to the previous sections for information about
the options of each feature. The command line interface is replaced by
pop-up dialogs that can be filled out.The central EDIT field is where the
license file path is placed. This will be used for all other functions and
replaces the "-c license_file” argument in the other utilities.

The HOSTI D button displays the hostid’s for the computer on which the
program is running. The Tl ME button prints out the system’s internal time
settings, intended to diagnose any time zone problems. The TCP

Set ti ngs button is intended to fix a bug in the Microsoft TCP protocol
stack which has a symptom of very slow connections to computers. After
pressing this button, the system will need to be rebooted for the settings to
become effective.

Flexible License Manager (FLEXIm) A-23

Imgrd.exe can be run manually or using the graphical Windows tool. You
can start this tool from the FLEXIm program folder. Click on Start |
Programs | TASKING FLEXIm | FLEXI m Tool s

FLEXIm License Manager E2

etup I Licensesl Diagnnsticsl About I

— Controlz License Manager
Service Mame IFLEXIm Lizense Manager for TASKING

Start Startz Up the Licenze Server

T Stopz the License Server

Clatus Licenze Manager Status

ddd

Q. I Cancel el

From the Control tab you can start, stop, and check the status of your
license server. Select the Set up tab to enter information about your
license server.

FLEXIm Licenze Manager E

Contral Licensesl Diagnoslicsl About I

— Setup of Licenze Manager

Service Mame IFLEXIm Licenze Manager for TASKING j

Imgrd. exe Bl | IC:\erxIm\bin'\Imgrd.eHe
Licenze File Browse | Ic:\flexlm\license.dat
Eifgbug Log Browse | Ic:\flexlm\license.log

[Start Server at Power-Up ¥ Use NT Services Remowe |

ok I Cancel | Sy |

A-24

Appendix A

Select the Cont r ol tab and click the St art button to start your license
server. Imgrd.exe will be launched as a background application with the
license file and debug log file locations passed as parameters.

If you want Imgrd.exe to start automatically on NT, select the Use NT
Servi ces check box and Imgrd.exe will be installed as an NT service.
Next, select the Start Server at Power —UP check box.

The Li censes tab provides information about the license file and the
Advanced tab allows you to perform diagnostics and check versions.

Flexible License Manager (FLEXIm) A-25

The FLEXIm daemons all generate log files containing messages in the
following format:

mm/dd bb:mm (DAEMON name) message
Where:

mm/dd bb:mm Is the month/day hour:minute that the message was
logged.

DAEMON name Either “license daemon” or the string from the DAEMON
line that describes your daemon.

In the case where a single copy of the daemon cannot
handle all of the requested licenses, an optional “_”
followed by a number indicates that this message comes
from a forked daemon.

message The text of the message.

The log files can be used to:
¢ Inform you when it may be necessary to update your application
software licensing arrangement.
¢ Diagnose configuration problems.
» Diagnose daemon software errors.

The messages are grouped below into the above three categories, with
each message followed by a brief description of its meaning.

A-26

Appendix A

Connected to node

This daemon is connected to its peer on node node.

CONNECTED, master is name

The license daemons log this message when a quorum is up and everyone
has selected a master.

DEMO mode supports only one SERVER bost!

An attempt was made to configure a demo version of the software for
more than one server host.

DENIED: N feature to user (mm/dd/yy bb:mm)

user was denied access to N licenses of feature. This message may indicate
a need to purchase more licenses.

EXITING DUE TO SIGNAL nnn
EXITING with code nnn

All daemons list the reason that the daemon has exited.

EXPIRED: feature

Sfeature has passed its expiration date.
IN: feature by user (N licenses) (used: d:bh:mm:ss)

(mm/dd/yy bb:mm)

user has checked back in N licenses of feature at mm/dd/yy bb.mm.
IN server died: feature by user (number licenses)

(used: d:bb:mm:ss) (mm/dd/yy bb:mm)

user has checked in N licenses by virtue of the fact that his server died.

License Manager server started

The license daemon was started.

Flexible License Manager (FLEXIm) A-27

Lost connection to bost

A daemon can no longer communicate with its peer on node host, which
can cause the clients to have to reconnect, or cause the number of
daemons to go below the minimum number, in which case clients may
start exiting. If the license daemons lose the connection to the master, they
will kill all the vendor daemons; vendor daemons will shut themselves
down.

Lost quorum

The daemon lost quorum, so will process only connection requests from
other daemons.

MASTER SERVER died due to signal nnn

The license daemon received fatal signal n#nn.

MULTIPLE xxx servers running. Please kill, and restart license
daemon

The license daemon has detected that multiple copies of vendor daemon
xxx are running. The user should kill all xxx daemon processes and
re-start the license daemon.

OUT: feature by user (N licenses) (mm/dd/yy bb:mm)

user has checked out N licenses of feature at mm/dd/yy bb:mm

Removing clients of children

The top-level daemon logs this message when one of the child daemons
dies.

RESERVE feature for HOST name
RESERVE feature for USER name

A license of feature is reserved for either user name or host name.

REStarted xxx (internet port nnn)

Vendor daemon xxx was restarted at internet port 7.

Retrying socket bind (address in use)

The license servers try to bind their sockets for approximately 6 minutes if
they detect address in use errors.

A-28

Appendix A

Selected (EXISTING) master node

This license daemon has selected an existing master (node) as the master.

SERVER shutdown requested
A daemon was requested to shut down via a user—generated Kkill
command.

[NEW] Server started for: feature-list

A (possibly new) server was started for the features listed.

Shutting down xxx

The license daemon is shutting down the vendor daemon xxx.

SIGCHLD received. Killing child servers

A vendor daemon logs this message when a shutdown was requested by
the license daemon.

Started name

The license daemon logs this message whenever it starts a new vendor
daemon.

Trying connection to node

The daemon is attempting a connection to zode.

Flexible License Manager (FLEXIm) A-29

bostname: Not a valid server bost, exiting

This daemon was run on an invalid hostname.

bostname: Wrong hostid, exiting

The hostid is wrong for hostname.

BAD CODE for feature-name

The specified feature name has a bad encryption code.

CANNOT OPEN options file “file”

The options file specified in the license file could not be opened.

Couldn’t find a master

The daemons could not agree on a master.

license daemon: lost all connections

This message is logged when all the connections to a server are lost,
which often indicates a network problem.

lost lock, exiting
Error closing lock file
Unable to re-open lock file

The vendor daemon has a problem with its lock file, usually because of an
attempt to run more than one copy of the daemon on a single node.
Locate the other daemon that is running via a ps command, and kill it
with kill -9.

NO DAEMON line for daemon

The license file does not contain a DAEMON line for daemon.

No “license” service found

The TCP license service did not exist in / et ¢/ servi ces.

No license data for “feat”, feature unsupported

There is no feature line for feat in the license file.

A-30

Appendix A

No features to serve!

A vendor daemon found no features to serve. This could be caused by bad
data in the license file.

UNSUPPORTED FEATURE request: feature by user

The user has requested a feature that this vendor daemon does not
support. This can happen for a number of reasons: the license file is bad,
the feature has expired, or the daemon is accessing the wrong license file.

Unknown bost: bostname

The hostname specified on a SERVER line in the license file does not exist
in the network database (probably / et ¢/ host s).

Im_server: lost all connections

This message is logged when all the connections to a server are lost. This
probably indicates a network problem.

NO DAEMON lines, exiting

The license daemon logs this message if there are no DAEMON lines in the
license file. Since there are no vendor daemons to start, there is nothing to
do.

NO DAEMON line for name

A vendor daemon logs this error if it cannot find its own DAEMON name in
the license file.

Flexible License Manager (FLEXIm) A-31

accept: message

An error was detected in the accept system call.

ATTEMPT TO START VENDOR DAEMON xxx with NO MASTER

A vendor daemon was started with no master selected. This is an intermnal
consistency error in the daemons.

BAD PID message from nnn: pid: xxx (msg)
A top-level vendor daemon received an invalid Pl D message from one of
its children (daemon number xxx).

BAD SCONNECT message: (message)

An invalid “server connect” message was received.

Cannot create pipes for server communication

The pi pe call failed.

Can’t allocate server table space

A mal | oc error. Check swap space.

Connection to node TIMED OUT

The daemon could not connect to node.

Error sending PID to master server

The vendor server could not send its Pl D to the top-level server in the
hierarchy.

Illegal connection request to DAEMON
A connection request was made to DAEMON, but this vendor daemon is not
DAEMON.

Illegal server connection request
A connection request came in from another server without a DAEMON
name.

KILL of child failed, errno = nnn
A daemon could not kill its child.

A-32

Appendix A

No internet port number specified

A vendor daemon was started without an internet port.

Not enough descriptors to re-create pipes

The “top-level” daemon detected one of its sub-daemon’s death. In trying
to restart the chain of sub-daemons, it was unable to get the file
descriptors to set up the pipes to communicate. This is a fatal error, and
the daemons must be re-started.

read: error mes sage

An error in a r ead system call was detected.

recycle_control BUT WE DIDN’T HAVE CONTROL

The hierarchy of vendor daemons has become confused over who holds
the control token. This is an internal error.

return_reserved: can’t find feature listhead

When a daemon is returning a reservation to the “free reservation” list, it
could not find the | i st head of features.

select: message

An error in a select system call was detected.

Server exiting

The server is exiting. This is normally due to an error.

SHELLO for wrong DAEMON

This vendor daemon was sent a “server hello” message that was destined
for a different DAEMON.

Unsolicited msg from parent!
Normally, the top-level vendor daemon sends no unsolicited messages. If
one arrives, this message is logged. This is a bug.

WARNING: CORRUPTED options list (0->next == 0)

Options list TERMINATED at bad entry

An internal inconsistency was detected in the daemon’s option list.

Flexible License Manager (FLEXIm) A-33

FLEXIm license error, encryption code in license file is inconsistent

Check the contents of the license file using the license data sheet for the
product. Correct the license file and run the Imreread command.
However, do not change the last (fourth) field of a SERVER line in the
license file. This cannot have any effect on the error message but changing
it will cause other problems.

license file does not support this version

If this is a first time install then follow the procedure for the error message:

FLEXIm |icense error, encryption code in license file is
i nconsi st ent

because there may be a typo in the fourth field of a FEATURE line of your
license file. In all other cases you need a new license because the current
license is for an older version of the product.

Replace the FEATURE line for the old version of the product with a
FEATURE line for the new version (it can be found on the new license
data sheet). Run the Imreread command afterwards. You can have only
one version of a feature (previous versions of the product will continue to
work).

FLEXUImn license error, cannot find license file

Make sure the license file exists. If the pathname printed on the line after
the error message is incorrect, correct this by setting the

LM LI CENSE_FI LE environment variable to the full pathname of the
license file.

FLEXIm license error, cannot read license file

Every user needs to have read access on the license file and at least
execute access on every directory component in the pathname of the
license file. Write access is never needed. Read access on directories is

recommended.

FLEXIm license error, no such feature exists

Check the license file. There should be a line starting with:

FEATURE SWiiiii—j

A-34

Appendix A

for identifying a compatible host architecture. During product installations
the product code is shown, e.g. SW008002, SW019002. The number in the
software code is the same as the number in the product code except that
the first number may contain an extra leading zero (it must be six digits
long).

The line after the license error message describes the expected feature
format and includes the host code.

Correct the license file using the license data sheet for the product and run
the Imreread command. There is one catch: do not add extra SERVER
lines or change existing SERVER lines in the license file.

FLEXIm license error, license server does not support this feature

If the LM _LI CENSE_FI LE variable has been set to the format
number@hbost then see first the solution for the message:

FLEXIm |l icense error, no such feature exists

Run the Imreread program to inform the license server about a changed
license data file. If Imreread succeeds informing the license server but the
error message persists, there are basically three possibilities:

. The license key is incorrect. If this is the case then there must be an error

message in the log file of Imgrd. Correct the key using the license data
sheet for the product. Finally rerun lmreread. The log file of Imgrd is
usually specified to Imgrd at startup with the -1 option or with >.

. Your network has more than one FLEXIm license server daemon and the

default license file location for Imreread differs from the default assumed
by the program. Also, there must be more than one license file. Try one of
the following solutions on the same host which produced the error
message:

- type:
Interead —c /usr/local/flexlmlicenses/license. dat
- set LM LI CENSE_FI LE to the license file location and retry the
Imreread command.

- use the Imreread program supplied with the product SW000098,
Flexible License Manager. SW000098 is bundled with all TASKING
products.

Flexible License Manager (FLEXIm) A-35

3. There is a protocol version mismatch between lmgrd and the daemon
with the name "Tasking” (the vendor daemon according to FLEXIm
terminology) or there is some other internal error. These errors are always
written to the log file of Imgrd. The solution is to upgrade the lmgrd
daemon to the one supplied in SW000098, the bundled Flexible License
Manager product.

On the other hand, if Imreread complains about not being able to
connect to the license server then follow the procedure described in the
next section for the error message "Cannot read license file data from
server”. The only difference with the current situation is that not the
product but a license management utility shows a connect problem.

FLEXIm license error, Cannot read license file data from server

This indicates that the program could not connect to the license server
daemon. This can have a number of causes. If the program did not
immediately print the error message but waited for about 30 seconds (this
can vary) then probably the license server host is down or unreachable. If
the program responded immediately with the error message then check
the following if the LM LI CENSE_FI LE variable has been set to the format
number@host:

— is the number correct? It should match the fourth field of a SERVER
line in the license file on the license server host. Also, the host
name on that SERVER line should be the same as the host name set
in the LM _LI CENSE_FI LE variable. Correct LM LI CENSE_FI LE if
necessary.

In any case one should verify if the license server daemon is running.
Type the following command on the host where the license server
daemon (Imgrd) is supposed to run.

On SunOS 4.x:

ps wax | grep Ingrd | grep —v grep
On HP-UX or SunOS 5.x (Solaris 2.x):

ps —ef | grep Ingrd | grep —v grep

If the command does not produce any output then the license server
daemon is not running. See below for an example how to start Imgrd.

A-36

Appendix A

Make sure that both license server daemon (Imgrd) and the program are
using the same license data. All TASKING products use the license file
fusr/local/flexlnllicenses/license.dat unless overruled by the
environment variable LM LI CENSE_FI LE. However, not all existing
Imgrd daemons may use the same default. In case of doubt, specify the
license file pathname with the —c option when starting the license server
daemon. For example:

Imgrd —c /usr/local/flexlmlicenses/license.dat \
-l Jusr/local/flexImlicenses/license.log &

and set the LM LI CENSE_FI LE environment variable to the

i cense. dat pathname mentioned with the —c option of Imgrd before
running any license based program (including lmreread, Imstat,
Imdown). If Imgrd and the program run on different hosts, transparent
access to the license file is assumed in the situation described above (e.g.
NES). If this is not the case, make a local copy of the license file (not
recommended) or set LM LI CENSE_FI LE to the form number@hbost, as
described earlier.

If none of the above seems to apply (i.e. Imgrd was already running and
LM LI CENSE_FI LE has been set correctly) then it is very likely that there
is a TCP port mismatch. The fourth field of a SERVER line in the license
file specifies a TCP port number. That number can be changed without
affecting any license. However, it must never be changed while the license
server daemon is running. If it has been changed, change it back to the
original value. If you do not know the original number anymore, restart
the license server daemon after typing the following command on the
license server host:

kill PID

where PI D is the process id of Imgrd.

Flexible License Manager (FLEXIm)

Ive received FLEXIm license files from 2 different companies. Do I
bave to combine them?

You don’t have to combine license files. Each license file that has any
‘counted’ lines (the 'number of licenses’ field is >0) requires a server. It’s
perfectly OK to have any number of separate license files, with different
Imgrd server processes supporting each file. Moreover, since Imgrd is a
lightweight process, for sites without system administrators, this is often
the simplest (and therefore recommended) way to proceed. With vo+
Imgrd/Imdown/lmreread, you can stop/reread/restart a single vendor
daemon (of any FLEXIm version). This makes combining licenses more
attractive than previously. Also, if the application is v6+, using ’dir/*lic’ for
license file management behaves like combining licenses without
physically combining them.

When is it recommended to combine license files?

Many system administrators, especially for larger sites, prefer to combine
license files to ease administration of FLEXIm licenses. It's purely a matter
of preference.

Does FLEXIm bandle dates in the year 2000 and beyond?

Yes. The FLEXIm date format uses a 4—digit year. Dates in the 20th century
(19xx) can be abbreviated to the last 2 digits of the year (xx), and use of
this feature is quite widespread. Dates in the year 2000 and beyond must
specify all 4 year digits.

Which FLEXlm versions does TASKING deliver?
For Windows we deliver FLEXIm v6.1 and for UNIX we deliver v2.4.

A-37

A-38 Appendix A

-

I bave products from several companies at various FLEXIm version
levels. Do I bave to worry about bow these versions work together?

If you're not combining license files from different vendors, the simplest
thing to do is make sure you use the tools (especially lmgrd) that are
shipped by each vendor.

Imgrd will always correctly support older versions of vendor daemons
and applications, so it's always safe to use the latest version of Imgrd and
the other FLEXIm utilities. If you've combined license files from 2 vendors,
you must use the latest version of Imgrd.

If you've received 2 versions of a product from the same vendor, you must
use the latest vendor daemon they sent you. An older vendor daemon
with a newer client will cause communication errors.

Please ignore letters appended to FLEXIm versions, i.e., v2.4d. The
appended letter indicates a patch, and does NOT indicate any
compatibility differences. In particular, some elements of FLEXIm didn’t
require certain patches, so a 2.4 lmgrd will work successfully with a 2.4b
vendor daemon.

Ive received a new copy of a product from a vendor, and it uses a new
version of FLEXIm. Is my old license file still valid?

Yes. Older FLEXIm license files are always valid with newer versions of
FLEXIm.

What Windows Host Platforms can be used as a server for Floating
Licenses?

The system being used as the server (where the FLEXIm License Manager
is running) for Floating licenses, must be Windows NT. The FLEXIm
License Manager does not run properly with Windows 95/98.

Why do I need to include NWlink IPX/SPX on NT?

This is necessary for either obtaining the Ethernet card address, or to
provide connectivity with a Netware License server.

Flexible License Manager (FLEXIm)

How will the TASKING licensing/pricing model change with License
Management (FLEXlm)?

TASKING will now offer the following types of licenses so you can
purchase licenses based upon usage:

License Description Pricing

Node Locked This license can only be used on a | The pricing for this
specific system. It cannot be license will be the
moved to another system. current product pricing.

Floating This license requires a network The pricing for this
(license server and a TCP/IP (or license will be 50%
IPX/SPX) connection between higher than the node

clients and server) and can be used | locked license.
on any host system (using the
same operating system) in the
network.

How does FLEXIm affect future product ordering?

&

For all licenses, node locked or floating, you must provide information
that is used to create a license key. For node locked licenses we must
have the HOST ID. Floating licenses require the HOST ID and HOST
NAME. The HOST ID is a unique identification of the machine, which is
based upon different hardware depending upon host platform. The HOST
NAME is the network name of the machine.

TASKING Logistics CANNOT ship ANY orders that do not include the
HOST ID and/or HOST NAME information.

What if I do not know the information needed for the license key?

We have a software utility (tkhostid.exe) which will obtain and display
the HOST ID so a customer can easily obtain this information. This utility
is available from our web site, placed on all product CDs (which support
FLEXIm), and from technical support. If you have already installed
FLEXIm, you can also use Imhostid.

* In the case of a Node locked license, it is important that the customer
runs this utility on the exact machine he intends to run the
TASKING tools on.

A-39

A-40

Appendix A

* In the case of a Floating License, the tkhostid.exe (or Imhostid)
utility should be run on the machine on which the FLEXIm license
manager will be installed, e.g. the server. The HOST NAME
information can be obtained from within the Windows Control
Panel. Select "Network”, click on ”Identification”, look for
"Computer name”.

How will the “locking” mechanism work?
¢ For node locked licenses, FLEXIm will first search for an ethernet card.
If one exists, it will lock onto the number of the ethernet card. If an
ethernet card does not exist, FLEXIm will lock onto the hard disk serial
number.

* For floating licenses, the ethernet card number will be used.

What bappens if I try to move my node locked license to another
system?

The software will not run.

What does linger-time for floating licenses mean?

When the TASKING product starts to run, it will try to obtain a license
from the license server. The license server keeps track of the number of
licenses already issued, and grants or denies the request. When the
software has finished running, the license is kept by the license server for
a period of time known as the “linger-time”. If the same user requests the
TASKING product again within the linger-time, he is granted the license
again. If another user requests a license during the linger-time, his
request is denied until the linger-time has finished

What is the length of the linger-time for floating licenses?

The length of the linger-time for both the PC and UNIX floating licenses is
5 minutes.

Can the linger-time be changed?

Yes. A customer can change the linger—time to be larger (but not shorter)
than the time specified by TASKING.

What bappens if my system crashes or I upgrade to a new system?

You will need to contact Technical Support for temporary license keys due
to a system crash or to move from one system to another system. You will
then need to work with your local sales representative to obtain a
permanent new license key.

Flexible License Manager (FLEXIm) A-41

Does FLEXIm work across the internet?

Yes. A server on the internet will serve licenses to anyone else on the
internet. This can be limited with the INTERNET=" attribute on the
FEATURE line, which limits access to a range of internet addresses. You
can also use the INCLUDE and EXCLUDE options in the daemon option
file to allow (or deny) access to clients running on a range of internet
addresses.

Does FLEXIm work with Internet firewalls?

Many firewalls require that port numbers be specified to the firewall.
FLEXIm v5 Imgrd supports this.

If my client dies, does the server free the license?

Yes, unless the client’s whole system crashes. Assuming communications is
TCP, the license is automatically freed immediately. If communications are
UDP, then the license is freed after the UDP timeout, which is set by each
vendor, but defaults to 45 minutes. UDP communications is normally only
set by the end-user, so TCP should be assumed. If the whole system
crashes, then the license is not freed, and you should use ‘lmremove’ to
free the license.

What bappens when the license server dies?

FLEXIm applications send periodic heartbeats to the server to discover if it
has died. What happens when the server dies is then up to the application.
Some will simply continue periodically attempting to re-checkout the
license when the server comes back up. Some will attempt to re-checkout
a license a few times, and then, presumably with some warning, exit.
Some GUI applications will present pop—ups to the user periodically
letting them know the server is down and needs to be re-started.

How do you tell if a port is already in use?

99.44% of the time, if it’s in use, it’s because Imgrd is already running on
the port — or was recently killed, and the port isn’t freed yet. Assuming this
is not the case, then use telnet host port’ — if it says “can’t connect”, it's a
free port.

A-42 Appendix A

=

Does FLEXIm require root permissions?

No. There is no part of FLEXIm, Imgrd, vendor daemon or application,
that requires root permissions. In fact, it is strongly recommended that you
do not run the license server (lmgrd) as root, since root processes can
introduce security risks.

If Imgrd must be started from the root user (for example, in a system boot
script), we recommend that you use the su’ command to run lmgrd as a
non-privileged user:

su usernanme —c”/path/lImgrd —c /path/license.dat \
-l [path/log”

where username is a non-privileged user, and path is the correct paths to
Imgrd, | i cense. dat and debug log file. You will have to ensure that the
vendor daemons listed in /path-to-license/license.dat have execute
permissions for username. The paths to all the vendor daemons in the
license file are listed on each DAEMON line.

Is it ok to run mgrd as ’root’ (UNIX only)?

It is not prudent to run any command, particularly a daemon, as root on
UNIX, as it may pose a security risk to the Operating System. Therefore,
we recommend that Imgrd be run as a non—privileged user (not 'root’). If
you are starting Imgrd from a boot script, we recommend that you use

su usernanme —c”umask 022; /path/lInmgrd \
—c /path/license.dat —I /path/log”

to run Imgrd as a non-privileged user.

Does FLEXIm licensing impose a beavy load on the network?

No, but partly this depends on the application, and end-user’s use. A
typical checkout request requires 5 messages and responses between
client and server, and each message is < 150 bytes.

When a server is not receiving requests, it requires virtually no CPU time.
When an application, or Imstat, requests the list of current users, this can
significantly increase the amount of networking FLEXIm uses, depending
on the number of current users. Also, prior to FLEXIm v5, use of
‘port@host’ can increase network load, since the license file is
down-loaded from the server to the client. 'port@host’ should be, if
possible, limited to small license files (say < 50 features). In v5, 'port@host’
actually improves performance.

Flexible License Manager (FLEXIm)

Does FLEXIm work with NFS?

Yes. FLEXIm has no direct interaction with NFS. FLEXIm uses an
NFS-mounted file like any other application.

Does FLEXIm work with ATM, ISDN, Token-Ring, etc.?

In general, these have no impact on FLEXIm. FLEXIm requires TCP/IP or
SPX (Novell Netware). So long as TCP/IP works, FLEXIm will work.

Does FLEXIm work with subnets, fully-qualified names, multiple
domains, etc.?

Yes, although this behavior was improved in v3.0, and v6.0. When a
license server and a client are located in different domains, fully—qualified
host names have to be used. A fully-qualified hostname is of the form:

node.domain

where node is the local hostname (usually returned by the ’hostname’
command or 'aname -n’) domain is the internet domain name, e.g.
"globes.com’.

To ensure success with FLEXIm across domains, do the following:

1. Make the sure the fully—qualified hostname is the name on the SERVER
line of the license file.

2. Make sure ALL client nodes, as well as the server node, are able to 'telnet’
to that fully—qualified hostname. For example, if the host is locally called
'speedy’, and the domain name is ’corp.com’, local systems will be able to
logon to speedy via ’telnet speedy’. But very often, 'telnet
speedy.corp.com’ will fail, locally.

Note that this telnet command will always succeed on hosts in other
domains (assuming everything is configured correctly), since the network
will resolve speedy.corp.com automatically.

3. Finally, there must be an 'alias’ for speedy so it’s also known locally as
speedy.corp.com. This alias is added to the / et ¢/ host s file, or if
NIS/Yellow Pages are being used, then it will have to be added to the NIS
database. This requirement goes away in version 3.0 of FLEXIm.

If all components (application, Imgrd and vendor daemon) are v6.0 or
higher, no aliases are required; the only requirement is that the
fully—qualified domain name, or IP-address, is used as a hostname on the
SERVER, or as a hostname in LM_LICENSE FILE port@host, or @host.

A-43

A-44 Appendix A

=

Does FLEXIm work with NIS and DNS?

Yes. However, some sites have broken NIS or DNS, which will cause
FLEXIm to fail. In v5 of FLEXIm, NIS and DNS can be avoided to solve this
problem. In particular, sometimes DNS is configured for a server that's not
current available (e.g., a dial-up connection from a PC). Again, if DNS is
configured, but the server is not available, FLEXIm will fail.

In addition, some systems, particularly Sun, SGI, HP, require that
applications be linked dynamically to support NIS or DNS. If a vendor
links statically, this can cause the application to fail at a site that uses NIS
or DNS. In these situations, the vendor will have to relink, or recompile
with v5 FLEXIm. Vendors are strongly encouraged to use dynamic libraries
for libc and networking libraries, since this tends to improve quality in
general, as well as making NIS/DNS work.

On PCs, if a checkout seems to take 3 minutes and then fails, this is
usually because the system is configured for a dial-up DNS server which is
not currently available. The solution here is to turn off DNS.

Finally, hostnames must NOT have periods in the name. These are not
legal hostnames, although PCs will allow you to enter them, and they will
not work with DNS.

We’re using FLEXIm over a wide-area network. What can we do to
improve performance?

FLEXIm network traffic should be minimized. With the most common uses
of FLEXIm, traffic is negligible. In particular, checkout, checkin and
heartbeats use very little networking traffic. There are two items, however,
which can send considerably more data and should be avoided or used
sparingly:

* ’lmstat —a’ should be used sparingly. 'lmstat —a’ should not be
used more than, say, once every 15 minutes, and should be
particularly avoided when there’s a lot of features, or concurrent
users, and therefore a lot of data to transmit; say, more than 20
concurrent users or features.

* Prior to FLEXIm v5, the 'port@host’ mode of the LM_LICENSE_FILE
environment variable should be avoided, especially when the
license file has many features, or there are a lot of license files
included in LM_LICENSE FILE. The license file information is sent
via the network, and can place a heavy load. Failures due to
"port@host’ will generate the error LM SERVNOREADLIC (-61).

SOUND SUPPORT
(M S-Windows)

al TASKING [

XIAN3ddV

Sound Support (MS—Windows)

You can have sound effects being played when a predefined event in
CrossView Pro occurs. You can configure the sound in the Sound settings
of the Control Panel of MS-Windows. Similar to assigning a sound to a
system event, you can assign a sound to a CrossView Pro event.

Currently the following events are supported:

Breakpoint hit

File has been downloaded
CrossView Pro has started execution
CrossView Pro is exiting
Run command/button

Step command/button
StepOver command/button
Halt command/button
Symbols Loaded

Fatal (system) error occurred
Non-fatal error

How to add sound support

1. Firstly all events must be specified to MS-Windows. You can do this by
adding the following lines to the Registry under:
My Conput er \ HKEY_CURRENT_USER\ AppEvent s\ Event Label s\

Use regedit to start the registry editor.

snd_xvw_bphi t " XVW Br eakpoint Hit”
snd_xvw_downl oad " XVW Pr ogr am Downl oad”
snd_xvw_start "XVW Start”
snd_xvw_exi t " XVW Exi t”
snd_xvw_run " XVW Run”
snd_xvw_step "XVW Step I nto”
snd_xvw_st epover "XVW Step Over”
snd_xvw_st op " XVW St op”
snd_xvw_syns_| oad "XVW Load Synbol s”
snd_xvw_syserror " XVW syserror”
snd_xvw_uerror "XVW uerror”

2. You must also add the same list of keys (without values) to
My Conput er \ HKEY_CURRENT_USER\ AppEvent s\ Schenes\ Apps\ . Def aul t\

3. Now go and start the Sound settings in your Control Panel. Here you can
assign a sound to each event. You can also assign None to an event, which
prevents CrossView Pro from playing a sound if that specific event occurs.

B—4 Appendix B

=

4. For the sound effects to become operational, you also have to edit the
xvw. i ni file. You can do this using any editor, e.g. the Windows
notepad command. Add the following line at an arbitrary line to your
XVW. i ni file:

sound_effects: TRUE
It is also possible to disable the sound effects by changing this line into:
sound_effects: FALSE

Now all sound effects are disabled.

SIMULATOR

al TASKING [

NNAN3IAAV

Simulator Sim-3

This addendum contains information specific to the simulator version of
CrossView Pro for the M16C.

The following CrossView Pro executable is delivered with the package:
xfwm16.exe CrossView Pro Debugger Simulator.
The simulator is delivered as a separate DLL within the package:

simm16.d11 CrossView Pro Debugger Simulator.

Except for the restrictions mentioned in the next section, the simulator
version of the debugger cleanly supports all the standard features of
CrossView Pro, including single stepping, code breakpoints, data
breakpoints, trace support, C expression evaluation, code and data
coverage and record/playback capability. With respect to setting
breakpoints the simulator version of the debugger is capable of supporting
all breakpoint types, including separate data-read and data—write
breakpoints. Each of these breakpoints can be placed on any of the
memory addresses.

All instructions listed in the M16C/60 Series Software Manual are
supported. The granularity for timing measurements is one instruction
state.

Because this is a simulator version, you do not have to setup a serial
communication at startup, as with an emulator.

The simulator version of the debugger uses the locator description file to
determine how much memory must be allocated from the system and how
logical addresses are mapped to physical addresses. The default file used
is et c\ mL6c. dsc for all memory models. The CPU description file is

et c\ ml6c. cpu and the memory description file is et c\ mL6c. nem

Sim-4

Execution Environment

When you use EDE, the memory settings are saved and automatically
transferred to the debugger. All memory mappings of your applications are
automatically done by the debugger.

You can specify a different locator description file in the Cr ossVi ew

St ar t up dialog. Make sure, however, that the memory configuration as
defined by this description file does not differ from the one used for
locating.

In addition to the standard features of CrossView Pro, the simulator
version executes the M16C instruction set and can perform state counting.
For this purpose the simulator has a state counter, which can be
monitored. The first one is the regular ’state counter’, this counter can be
monitored in the register window where it is shown as 'CCNT’ and it can
also be accessed through the register $ccnt .

The simulator traces all memory access performed during program
execution. This feature can be switched on or off. If you are not interested
in coverage information you should turn off this feature because gathering
coverage data will slow down the execution speed of the simulator. The
simulator differentiates between data read, data write and instruction
fetch. CrossView Pro shows the gathered coverage data through various
windows and dialogs.

Facilities for background mode are absent in the simulator version of
CrossView Pro. As a consequence, the CrossView Pro commands CB, st, u,
and wt for background mode, are not available. Because the debugger
and the simulator have been integrated into one executable program, the
>& command to record target communication and the o command for
transparency mode are not available. Also, the simulator version of the
debugger does not support command line function calling.

ROM MONITOR

al TASKING [

NNAN3IAAV

ROM Monitor Rom-3

CrossView Pro ROM is a ROM monitor-based source level debugger for
debugging real-time embedded C and assembly programs. CrossView Pro
ROM integrates two separate debugging components. The figure below
shows these two components and how they communicate with each other.

RS-232 Cable
| |
[=) Y
el S E
Host

running CrossView Pro

EPROMs ————— ‘S J & ?
|

containing the |
ROM Monitor

Target Board
running your program

Figure Rom—1: CrossView Pro ROM hardware configuration

The first component is CrossView Pro, the source level debugger that runs
on the host development system. CrossView Pro translates the low level
target information obtained from the embedded ROM monitor to the C and
assembly language source level. CrossView Pro has both a powerful
command language to control the target’s execution and a multi-window
user interface to display target and debugging information.

Rom-4

Execution Environment

Target
ROM exception
monitor
rfi
—

t

Application

cpu, memory, ...

Figure Rom-2: Target functional blocks

The second component of CrossView Pro ROM is the ROM monitor, also
referred to as the target monitor. The ROM monitor is a low level
debugging program that normally resides in ROM on the target board and
runs on the target microprocessor. The ROM monitor includes a serial
communications interface that lets it accept and interpret commands from

CrossView Pro.

The ROM monitor has the following general capabilities:

» It gives you complete access to the target machine via the serial
port. The access includes reading and writing memory and registers
(both general purpose and special purpose).

» It can take over from any application going wrong. For example,
executing an illegal or non—existent instruction or accessing
non-existent memaory.

M16C cannot detect non—existent memory, therefore it will not be a trap as

in other monitors.

e It can interrupt a running application.

ROM Monitor Rom-5

In the rest of this Addenum we use the following terms:
Host: the computer running CrossView Pro.

Application: a program written by you and to be tested and debugged by
CrossView Pro. Also called 'user program’ or ’user code’.

Target: the embedded controller where an application is running on.

The Mitsubishi ROM monitor must be present and running on the target
board before CrossView Pro is able to communicate properly with the
execution environment.

To download/debug your application you must connect the board to a
serial communications port of the computer.

From EDE:
1. Select CrossView Pro Options... from the EDE menu.
2. In the Setti ngs tab select M t subi shi ROM noni t or.

3. In the Communi cat i ons tab select the correct serial port and serial baud
rate.

The Mitsubishi ROM monitor will download the application in Flash
memory. Breakpoint support is implemented through the Address Match
interrupts. Since only 2 ranges are supported the number of breakpoints is
also limited to 2. Besides these limits Crossview Pro cleanly supports the
standard features including single stepping, code breakpoints, C
expression evaluation and record/playback capability.

Facilities for hardware breakpoints, trace and background mode are absent
on the ROM monitor. As a consequence, the CrossView Pro commands bd
and bD for data breakpoints, the command ct for C-level tracing, and the
commands CB, st, u and wt for background mode, are not available.

Rom-6

Execution Environment

Every ROM monitor uses some resources, first it will use some code space
in which it is running, then it will use some data space for keeping state
information. Finally, it will require some kind of communication channel
with the debugger. Currently only serial connections are supported by the
Crossview Pro debugger. This means that one of the serial ports on the
target is reserved by the ROM monitor and cannot be used by the
application anymore.

Since the ROM monitor communication is interrupt based the
corresponding interrupt vectors are also reserved. This is very important
when creating an application to be run using the ROM monitor. The M16C
supports a variable vector table that will mostly be initialized in the startup
code of your application. If this vector table does not contain the serial
interrupt vectors used by the ROM monitor, then the connection will
certainly hang after initialization of the interrupt vector table register! To
add the serial interrupt vectors to the applications vector table you can use
the following assembly file:

DEFSECT ”.vecttab”, FDATA, ROVDATA, NAX

SECT ".vecttab”, RESET

OFFSET <seri al —vect or —nunber> * 4

DL <serial—-interrupt—transmt-vector>
; used by the ROM nonitor

DL <serial —i nterrupt—recei ve-vect or >

; used by the ROM nonitor

END

for example, in case of the Mitsubishi MDECE0222 evaluation board the
ROM monitor uses serial port 0, with corresponding interrupt vectors 17
(transmit) and 18 (receive). The interrupt handler for both interrupts is
located on address OxF8A00. This results in the following assembly
definition:

DEFSECT ".vecttab”, FDATA, ROVDATA, NAX

SECT ".vecttab”, RESET

OFFSET 17 * 4

DL 0xF8A00 ; used by the MDECEO0222 ROM nonitor
DL 0xF8A00 ; used by the MDECE0222 ROM nonitor

END

ROM Monitor Rom-7

For exact numbers on the code area, the data area and the interrupts being
used by the ROM monitor please check the documentation on your
specific target board.

In principle all targets using the Mitsubishi ROM monitor interface are
supported. Currently the following target boards have been tested:

Mitsubishi MDECEO022 evaluation board
Glyn EVBM16C/62 evaluation board
Glyn EVBM16C/6N evaluation board

EDE contains several example projects for use with these target boards.

Rom-8 Execution Environment

INDEX

al TASKING [

X3ANI

Index

. (period) operand, 3-18
! command, 12-20

? command, 5-15, 12-22
& operator, 3-18
@format code, 3-13
—timeout, 9-10

/ command, 5-15, 12-21
/format code, 3-13

~ command, 12-31

< command, 12-23

<< command, 12-24

> command, 12-25

>& command, 12-29

>> command, 12-27
_simi, 10-14

_simo, 10-14

A command, 12-32
a command, 12-33
absolute file, 14-3
accelerator bar, 4-24
accelerator button, 4-11, 4-24, 4-38
accessing code and data, 6-1
adding files to a project, 1-32
address bias, set, 12-99
addresses
in expressions, 3-18
specifying format of, 6-16
application
debugging, 1-22
executing, 1-20
argument of a function, 3-9
arm16, 1-11
arrays
display address of, 6-6
display character, 3-15, 6-6
displaying two-dimensional, 6-15

viewing contents of, 3-16, 6-15
asml6, 1-11
assembler, 1-11
assembly
pseudo-assembly listings, 14-8
window, 14-3
assembly window
bexadecimal display, 3-10
intermixed assembly, 3-10
pipeline, 3-10
source merge limit, 3-11
assertion mode, 14-3
assertions, 1-4, 7-25, 14-3
activating and suspending, 7-28
active, 7-25
debugging with, 7-30
define or modify assertion, 12-33
defining, 7-26
deleting, 7-29
editing, 7-28
global assertion mode, 7-25
quit assertion mode, 12-136
statistics, 7-32
toggle mode, 12-32
autosrc, 6-18

B command, 12-35
b command, 12-36
background color, 2-11
background mode, 10-21, 14-3
assertions, 10-26
leaving, 10-24
local and global variables, 10-25
manual refresh, 10-22
refresh limitations, 10-25
running a program, 10-23
stack, 10-25
starting, 10-23
stopping a program, 10-24

Index-3

Index—4

=

updating windows, 10-21
waiting, 10-24

batch mode, 9-10

batch processing, 9-10

bB command, 12-37

bb command, 12-38

bc command, 12-39

bCYC command, 12-40

bcyc command, 12-41

bD command, 12-42

bd command, 12-44

bdis command, 12-46

bena command, 12-47

bl command, 12-48

bi command, 12-49

bias, 14-3

binary constants, 3-5

binary notation, 3—4

bINST command, 12-50

binst command, 12-51

breakpoint toggle, 4-23, 7-3

breakpoints, 7-1, 14-4
and diagnostic output, 7-24
and multi-line statements, 7-5
and multiple statements, 7-4
and statistical information, 7-24
attaching macros to, 7-17
code, 1-4, 7-3
commands associated with, 7-15
conditionals, 7-16
count, 14—4
count of, 7-3
cycle count, 12-40, 12-41
data, 1-4, 7-6
data breakpoints over a range of

addresses, 7-10

delete, 12-68
delete all, 12-67
deleting, 7-13
disable, 7-14, 12-46
emulator mode, 7-6
enable, 7-14, 12-47

Index

forloops, 7-5
function, permanent, 12-38
instruction count, 12-50, 12-51
list, 12-35
listing, 7-7
low-level, 7-19, 14-7
patching code with, 7-22
permanent, 7-4
permanent low-level, 12-49
task aware, 12-54
permanent up-level, 12-59
quiet reporting of, 7-18
reset count, 7-3, 7-12
set at beginning of function, 12-37
set count, 12-39
setting, 1-20, 7-8
[from command window, 7-8
Sfrom menu, 7-8
[from source window, 7-8
Jfrom stack window, 7-8
setting the count of, 7-12
strings, 7-17
system startup code, 7-6
task aware
code, 12-52
permanent low-level, 12-54
temporary low-level, 12-53
temporary, 7-4, 7-11
temporary low-level, 12-48
task aware, 12-53
temporary up-level, 12-57
time, 12-55, 12-56
up-level, 7-20
while loops, 7-5
bt command, 12-52
btl command, 12-53
bti command, 12-54
bTIM command, 12-55, 12-56
bU command, 12-57
bu command, 12-59
buttons, 4-37

Index

C
character constants, 3-6
compiler, 1-11
C command, 5-12, 12-60
C trace, 1-4, 12-64
cache, debugging with, 14-4
case sensitivity, 3-21, 12-137
casting values, 3-16, 6-15
CB command, 12-61
ccml16, 1-11
cd command, 12-62
ce command, 12-63
character codes, 6-13
character codes table, 3-6
character constants, 3-6
check box, 4-37
cml6, 1-11
code breakpoints, 1-4
See also breakpoints
set breakpoint, 12-36
task aware, 12-52
code coverage, 1-5
color, windows, 2-11
color settings, 2-11
command history, displaying recent
commands, 9-18
command language, 3-1
command line, batch processing, 9-10
command line options, 4-5
Command Window, 4-21
displaying data in, 6-8
opening, 1-24
commands
multiple, 3-17
syntax, 4-3
comments, 3—-17
communication setup, 1-16
compiler, 1-11
conditional command execution, 12-84
conditional keywords, 3-19

configure CrossView Pro, 1-16
constants, 3—4
binary, 3-5
character, 3-6
character constants in C, 3-6
Sfloating point, 3-5
bhexadecimal, 3-4
long integer, 3-5
octal, 3-5
strings, 3-6
continue execution, 5-9
control operations, 4-37
control program, 1-11
coverage, 1-5, 10-5, Sim—4
disable, 10-5, 12-62
enable, 10-5, 12-63
marker, 4-23, 7-3
memory window, 4-33
next covered block, 12-100
next not covered block, 12-101
previous covered block, 12-106
previous not covered block, 12-111
source window, 4-24
cpu, 3-10, 12-4
cpu selection, 12-75, 12-76
creating a makefile, 1-33
CrossView
and command line options, 4-5
command files, 4-6
command language, 3—1
command line baitch processing,
9-10
command reference, 12-1
commands summary, 12-4, 12-15
customizing, 4-17
desktop, 4-11
executable name, Sim-3
Sfeatures of the execution
environment, Sim-3
invoking, 4—4
restrictions of execution
environment, Sim-4

Index-5

Index—6 Index

=

sound support, B-1 debugger, starting, 1-32
special features, 10-1 debugging
starting, 4-4 and optimized code, 3-7
startup options, 12-4 assembly language, 11-3
state of, 12-83 code without symbols, 5-14
using, 4-1 environment, 1-7
CrossView Pro mudtiple programs, 11-3
before starting, 1-13 notes about, 11-1
debugger, 1-11 source-level, 1-7
debugging environment, 1-7 viewing source while, 1-20
documentation, 1-7 debugging an application, 1-22
exiting, 1-25 description file, 3-10, 4-7, 12-4, Sim-3
Sfeatures, 1-3 desktop, 4-11
bow it works, 1-9 development flow, 1-12
invoking, 1-14 diagnostic output, and breakpoints,
output, 1-24 7-24
source level debugging, 1-7 diagnostics, 14-5
startup settings, 1-15 dialog boxes, 4-16
using windows, 1-3 dis command, 12-69
windows, 1-3 disassemble memory, 12-69
ct command, 12-64 disassembly, 6-17
ct i command, 12-65 display, customizing, 4-17
ct r command, 12-66 display formats, set default, 12-80
cursor, 5-3 dn command, 12-70

documentation, 1-7
dot operand, 6-11
download a file, 12-70
download image, 12-88

D command, 12-67 downloading, files to the execution
d command, 12-68 environment, 1-17
data dsc, 3-10

displaying, 6-1 dump, 3-16, 6-15

enumerated, 6-5 dump command, 12-71

list data monitors, 12-89 Dy command, 12-67

data breakpoints, 1-4

set at an address, 12-44

set over range of addresses, 12-42
data coverage, 4-33

data monitoring, 1-5, 14-5 e command, 5-14, 12-73
removing expressions, 6-12 eC command, 12-75
Data Window, 1-5, 4-29, 6-11 ec command, 12-76

toolbar, 4-30 echo command, 12-77

Index

echo string to terminal, 12-19
EDE, 1-26
build an application, 1-28
load files, 1-28
open a project, 1-27
select a toolchain, 1-27
start a new project, 1-32
starting, 1-26
edit source, 4-26
ei command, 12-78
embedded development environment.
See EDE
embedded system, 14-5
emulator communication setup, 1-16
emulator mode, 1-8
environment variable
LD _LIBRARY PATH, 2-9
LM _LICENSE FILE, 2-19, A-6
PATH, 2-4, 2-5, 2-6, 2-8
UIDPATH, 2-9
error messages, alphabetical listing of,
13-1
errors, FLEXIm license, A-33
Esc key, 4-21
et command, 12-79
evaluate expression, 12-16
example
starting EDE, 1-26
using EDE, 1-26
using the control program, 1-33
using the makefile, 1-35
executable, building for CrossView,
1-26
executing an application, 1-20
execution control commands,
summary of, 12-9
execution environment, Sim—1, Rom-1
connecting to CrossView, 4-6
downloading files to, 1-17
setting up, Rom-5
execution position, 5-3
changing the, 5-5
definition of, 14-5

sync with viewing position, 5-7

exit, 4-18
exponential notation, 3-5
expression evaluator, 1-4
expressions, 3-3
C character codes, 3-6
character constants, 3-6
evaluating, 6-10
evaluation precision, 3—4
floating point constants, 3-5
Sformat of, 3-13
momnitoring, 6-11
removing monitored, 6—12
show, 4-29
special expressions, 3-18
specifying variables in, 3-8
strings, 3-6
waich, 4-29

f command, 12-80
FAQ, FLEXIm, A-37
filenames, 2-3
Flexible License Manager, A-1
FLEXIm, A-1
daemon log file, A-25
daemon options file, A-7
FAQ, A-37

[frequently asked questions, A-37
license administration tools, A-8

Sfor Windows, A-22

license ervors, A-33
floating license, 2-13
floating point constants, 3—5
format codes, 3-14
formats, for variables, 6-13
formatting expressions, 3-13
frame pointer, 3—-10
functions, 3-20

listing all, 6-8

Index—7

Index—8 Index

=

listing local variables and parameters integral promotion, 3-5
of, 6-22 long, 3-5
negative, 3-4
octal, 3-5

integral promotion, 3-5
intermixed source and disassembly,
g command, 5-5, 12-81 6-18
GDI, 9-12 9_14 interrupt kﬁy, 14-6
logging, 9-13, 9-14, 9-16
getting started, 1-13
gi command, 5-6, 12-82
global variables, 3-8

glossary, 14-1 jump to cursor, 5-5
halt execution, 5-9 kernel support, 1-6, 10-4
help keywords, conditional, 3-19-3-22

on-line, 1-6, 4-39

summary of belp commands, 12-14
hexadecimal disassembly, 3—-10
hexadecimal notation, 3—4
history mechanism, 14-6 L command, 12-85
hostid, determining, 2-21

| command, 12-86
hostname, determining, 2-21

label, in disassembly, 6-17
language, 3-1

lem16, 1-11

LD LIBRARY PATH, 2-9
librarian, 1-11, 14-6

I command, 12-83 license
if command, 12-84 Sfloating, 2-13
image part, 14-6 node—-locked, 2-13
in—situ editing, 6-7, 6-27 obtaining, 2-13
installation license file
licensing, 2-13 default location, A-6
Linux, 2-4 location, 2-19
RPM, 2-5 licensing, 2-13
tar.gz, 2-6 line command, 12-18
integers, 3-4 line mode, 14-6
binary, 3-5 line numbers, 3-11

hexadecimal, 3—-4 linker, 1-11, 14-6

Index

listing, 12-86

lkm16, 1-11

LM_LICENSE_FILE, 2-19, A6

Imcksum, A-10

Imdiag, A-11

Imdown, A-12

Imgrd, A-13

Imhostid, A-15

Imremove, A-16

Imreread, A-17

Imstat, A-18

Imswitchr, A-20

Imver, A-21

load command, 12-88

load symbol file, 12-88, 12-98

local variables, 3—7
and the stack, 3-7
auto-watch, 4-31

locator, 1-11, 14-7

logging, 9-12

command window output, 12-27
commands and screen output, 9-14

debugger-emulator 1/0O, 12-29
example, 9-14
resume, 9-14
setting up, 9-13
start, 9-13
startup options, 9-17
stop, 9-16
summary of commands, 12-13
suspend, 9-14
long integer constants, 3-5

M command, 12-89
m command, 12-90

M16C program development, 1-11

macros, 1-6, 8-1, 14-7
calling other macros, 8—4
define, 12-119

defining, 8-3
delete definition, 12-133
deleting, 8-8
echo command, 12-77
expanding, 8-5
listing, 8-5
parameters of, 8-9
reading from a file, 8-7
redefining, 8-5, 8-10
save, 12-118
saving to a file, 8-6
summary of commands, 12-13
using the toolbox, 8-11
main() function, 14-7
make utility, 1-11
makefile
automatic creation of, 1-33
updating, 1-33
MAU (minimum addressable unit),
14-7
mcp command, 12-92
memory
copy, 12-92
disassembly, 12-69
displaying, 6-14
dump, 12-71
fill, 12-94
mapping, Sim-3
search, 12-96
single fill, 12-93
memory access, tracing, 1-5
memory dump, 3-16, 6-15
memory map, 4-6, 14-7
Memory Window, 4-31
setup, 4-32
toolbar, 4-33
menu, 4-13
local popup, 4-14
menu bar, 4-11
mF command, 12-93
mf command, 12-94
minimum addressable unit, 14-7

Index—9

Index-10

=

mkm16, 1-11
monitor. See ROM Monitor
monitor data, 12-89
monitors, 12-90
more, 3—-10
ms command, 12-96
MS-Windows
installing CrossView, 2-3
requirements, 2—4

N command, 12-98

n command, 12-99

nC command, 12-100
node-locked license, 2-13
nU command, 12-101

o command, 12-102
object reader, 1-11
octal constants, 3-5
octal notation, 3—4
operators, 3-17
order of precedence, 3-17
using addresses, 3-18
opt command, 12-103

optimization, and debugging, 3-7

optimizer, 14-8

options, display or set, 12-103
output paging mechanism, 3-10
overview, 1-1

P command, 12-104
p command, 12-105

Index

patches, 14-8
and breakpoints, 7-22
PATH, 2-4, 2-5, 2-0, 2-8
pC command, 12-106
pd command, 12-107
pe command, 12-108
performing timing analysis, 1-5
pipeline, 3-10
playback, 9-7
calling other playback files, 9-9
quitting, 9-9
setting the type of, 9-8
startup options, 9-17
summary of commands, 12-13
playback mode, 1-6
continuous, 12-23
single step, 12-24
pointer, 3-16
display character, 3-15, 6-6
precision, evaluating expresions, 3—4
print source lines, 12-104, 12-105
prm16, 1-11
problems
common, 1-25
communicating with CrossView, 4-9
profiling, 1-5, 10-7
code range, 1-5, 10-8
cumulative, 10-7
disable, 10-8, 12-107
enable, 10-8, 12-108
Sfunction, 10-7
Sfunctions, 1-5
information, 12-109
program builder, 1-11
program counter, 3—10, 12-60
g command (change), 12-81
gi command (change), 12-82
inside function, 3-9
program execution
controlling, 5-1
notes about, 5-14
program reset, 12-110

Index

proinfo command, 12-109
project files, adding files, 1-32
prst command, 12-110
pseudo—assembly, 6-18

pU command, 12-111

push button, 4-38

Q command, 12-112

q command, 12-113

quiet breakpoint recording, 12-112
quit debugger, 12-113

R command, 5-8, 12-114
radio button, 4-37
record, commands only, 12-25
record and playback, 9-1
definition of, 14-9
record mode, 1-6
recording
checking status, 9-5
close file for, 9-6
entering comments, 94
example, 9-6
resume, 9-5
start, 9-3
startup options, 9-17
stop, 9-6
summary of commands, 12-13
suspend, 9-4
refresh windows, 12-132
Register Window, 4-28, 6-26
setup, 6-26
registers, 3-11
displaying the contents of, 6-8
special variable, 3-10
reset program, 5-8, 12-110
reset target system, 12-114, 12-115

resource file, 2-9

return address, 6-19

ROM Monitor, Rom-1
capabilities of, Rom—4
restrictions of, Rom-5

rst command, 12-115

RTOS aware debugging, 10-4

S command, 5-11, 12-116

s command, 12-117

save command, 12-118

save on exit, 4-18

scoping rules and variables, 3-9

scroll bar, 4-11

search
backward for string, 12-22
Sforward for string, 12-21
summary of commands, 12-15

searching, 5-14-5-16
for a function, 5-14
for a source line, 5-16
Jfor a string, 5-15

serial ports, 4-6

set command, 12-119

Si command, 5-12, 12-121

si command, 5-12, 12-122

Simulated I/0. See simulated

input/output

simulated 1/0, 10-14

Simulated I/O Windows, 4-36, 12-123

simulated input/output, 1-4
buffers, 10-18
changing stream properties, 10-17
changing the prompt, 10-19
defined, 14-9
deleting a stream, 10-18
directing 1/O to a file, 10-20
installing calls in code, 10-15
setting up streams, 10-15
summary of commands, 12-14

Index—11

viewing active streams, 10-17
windows, 4-36
simulator, Sim-1
single stepping, 1-5, 5-9-5-10
at machine level, 5-12-5-16
defined, 14-9
into, 5-10
into function calls, 12-117
into functions, 5-10
machine level into functions, 12-122
machine level over functions, 12-121
over, 5-11
over function calls, 12-116
over functions, 5-11
sio command, 12-123
sizeof() function, 6-7
skidding, 14-10
software installation
MS-Windows, 2-3
UNIX, 2-7
Windows 95/NT, 2-3
sound support, B-1
source directory, change, 12-134
source level debugging, 1-7
source line, jump to, 5-16
source merge limit, 3-11
source positioning, 5-3
Source Window, 4-23
change execution position, 5-5
change viewing position, 5-4
controlling program execution,
5-8-5-16
edit source, 4-26
searching in, 5-14-5-16
single stepping, 5-9
sync execution and viewing positions,
5-7
toolbay, 4-24
source window, line numbers, 3—-11
special variables, 3-9, 14-10
reserved, 14-9
user—defined, 3-12
st command, 12-125

stack, 6-19
beginning of, 6-20
end of, 6-20
local variables, 3-7
organization of, 6-19
stack pointer, 3-10
stack trace, 12-126, 12-127
Stack Window, 4-27, 6-20
toolbay, 4-27
startup options, 4-5, 12-4
defined, 14-10
list of, 4-7
startup settings, 1-15
state counter, Sim—4
static variables, 3—7
status bar, 4-11
stop target execution, 12-125
storage classes, 37
string command, 3-18
strings, 3-6
structures
assignment, 6-8
viewing, 6-5
style codes, 3-14
symbol information, 14-11
symbolic disassembly, 6-17
symbols, in disassembly, 3-10

Index

synchronize execution and viewing

positions, 5-7, 12-85
system startup code, 14-11

T command, 12-126

t command, 12-127

Tab key, 4-21

target communication, 14-11

target configuration file, 1-16
target program counter, 12-61
target system, 1-7

task selection, 12-79

Index

td command, 12-128
te command, 12-129
toolbar, 4-11, 4-38
data window, 4-30
memory window, 4-33
source window, 4-24
stack window, 4-27
toolbox, 8-11
trace
C, 12-64
disable, 12-128
disassembled, 12-65
enable, 12-129
instruction level, 6-25
raw, 6-25, 12-66
source level, 6-24
trace buffer, 14-11
Trace Window, 4-26, 6-24
instruction level, 12-65
raw, 12-66
source level, 12-64
traceback mode, 1-4
transparency mode, 1-8, 10-3, 12-102
and CrossView startup, 4-6
defined, 14-11
entering, 10-3
one-shot commands, 10-3
startup options, 10-3
trigraph sequence, 3-7
troubleshooting, 1-25, 4-9

u command, 12-130

ubgw command, 12-132
UIDPATH, 2-9

UNIX, installing CrossView on, 2-7
unset command, 12-133

update windows, 12-130, 12-132
updating makefile, 1-33

use command, 12-134

user defined functions, 1-6

using EDE, 1-26
USR * 10-9

variables, 3-7
and case sensitivity, 3-21
and scoping rules, 3-9
casting, 3-7
changing, 6-7
determining the size of, 6-7
Sformats of, 6-13
global, 6-8
global variables, 3-8
local, 14-7
local variables, 3-7
scope, 14-9
special, 14-10
special variables, Pages, 3-9
specifying in expressions, 3-8
static variables, 3-7
user-defined special variables, 3-12
viewing position, 3-10, 5-3
changing the, 5-4-5-7
defined, 14-12
establish, 12-73
establish at address, 12-78
sync with execution position, 5-7
virtual I/O channels, 10-9
keyboard mappings, 10-10
ROM momnitor, 10-9
Virtual I/O Windows, 4-35
virtual input/output, windows, 4-35

wait for target completion, 12-135
waiting, 10-24
window mode, 14-12

Index-13

Index-14 Index

=

windows, 4-20 Windows 95/NT, installing CrossView,
active, 4-15, 14-3 2-3
automatic switching between source wt command, 12-135

and assembly, 3-10
closing, 4-15
command window, 4-21
customizing, 4-17
data window, 4-29

x command, 12-136
belp window, 4-36

X Resources, 2—-10

memory window, 4-31 X Widgets, CrossView Motif, 2-10
opening, 4-15 X Windows

pop-up, 4-36 Motif environment, 2-9

register window, 4-28 resources, 2-10

selecting, 4-15 xfwm16, 1-11

simulated I/O windows, 4-36 xvwedit, 4-26
source positioning, 5-3

source window, 4-23

stack window, 4-27

toolbox, 4-36

trace window, 4-26

virtual 1/O windows, 4-35 Z command, 12-137

	TABLE OF CONTENTS
	OVERVIEW
	Introduction
	CrossView Pro's Features
	Source Level Debugging
	How CrossView Pro Works
	M16C Program Development
	Getting Started
	Before Starting
	Setting Up the Execution Environment
	Starting CrossView Pro
	CrossView Pro Startup Settings
	Configuring CrossView Pro
	Loading Symbolic Debug Information

	Executing an Application
	Debugging an Application
	CrossView Pro Output
	Exiting CrossView Pro
	What You May Have Done Wrong
	Building Your Executable
	Using EDE
	Using the Control Program
	Using the Makefile

	SOFTWARE INSTALLATION
	Introduction
	Note about Filenames
	Installation for Windows
	Requirements

	Installation for Linux
	RPM Installation
	Tar.gz Installation

	Installation for UNIX Hosts
	Configuring the X Windows Motif Environment
	Using X Resources
	Licensing TASKING Products
	Obtaining License Information
	Installing Node-Locked Licenses
	Installing Floating Licenses
	Starting the License Daemon
	Setting Up the License Daemon to Run Automatically
	Modifying the License File Location
	How to Determine the Hostid
	How to Determine the Hostname

	COMMAND LANGUAGE
	Introduction
	CrossView Pro Expressions
	Constants
	Variables
	Formatting Expressions
	Operators
	Special Expressions
	Conditional Evaluation
	Functions
	Case Sensitivity

	USING CROSSVIEW PRO
	Introduction
	Using the CrossView Pro Interface
	Invoking CrossView Pro
	Startup Options
	What You May Have Done Wrong

	The CrossView Pro Desktop
	Menus
	Local Popup Menus

	Window Operation
	Dialog Boxes
	Customizing CrossView Pro
	CrossView Pro Messages

	CrossView Pro Windows
	Opening Windows from the View Menu
	Command Window
	Source Window
	Trace Window
	Stack Window
	Register Window
	Data Window
	Memory Window
	Virtual I/O Window
	Simulated I/O Window
	Pop-Up Windows

	Control Operations for CrossView Pro
	Echoing Commands
	Mouse/Menu/Command Equivalents
	Button Selection
	Text Selection

	Using the On-Line Help System
	Accessing On-line Help
	Components of MS-Windows Help
	Using MS-Windows Help

	CONTROLLING PROGRAM EXECUTION
	Source Positioning
	Changing the Viewing Position
	Changing the Execution Position
	Synchronizing the Execution and Viewing Positions

	Controlling Program Execution
	Starting the Program
	Halting and Continuing Execution
	Single-Step Execution
	Stepping through at the Machine Level

	Notes About Program Execution
	Searching through the Source Window
	Searching for a Function
	Searching for a String
	Jumping to a Source Line

	ACCESSING CODE AND DATA
	Introduction
	Accessing Variables
	Viewing Variables, Structures and Arrays
	Changing Variables
	The l Command

	Expressions
	Evaluating Expressions
	Monitoring Expressions
	Formatting Data
	Displaying Memory
	Displaying Memory Addresses

	Displaying Disassembled Instructions
	Intermixed Source and Disassembly

	The Stack
	How the Stack is Organized
	The Stack Window
	Listing Locals and Parameters of a Function
	Low-level Viewing the Stack

	Trace Window
	Trace Window Setup

	Register Window
	Register Window Setup
	Editing Registers

	BREAKPOINTS AND ASSERTIONS
	Introduction to Breakpoints
	Code Breakpoints
	Data Breakpoints
	Listing Breakpoints

	Setting Breakpoints
	Data Breakpoints over a Range of Addresses
	Temporary Breakpoints
	Setting the Count

	Deleting Breakpoints
	Enabling/Disabling Breakpoints
	Breakpoint Commands
	Attaching Conditionals to a Breakpoint
	Attaching Macros to a Breakpoint
	Attaching Strings to a Breakpoint

	Suppressing Breakpoint Messages
	Low-level Breakpoints
	Up-level Breakpoints
	Patches
	Patching Code out of a Program
	Patching Code into a Program
	Replacing Code in a Program

	Diagnostic Output and Statistical Information
	Assertions
	Global Assertion Mode
	Defining an Assertion
	Editing an Assertion
	Activating and Suspending Assertions
	Deleting Assertions
	Using Assertions
	Gathering Statistics with Assertions

	DEFINING AND USING MACROS
	CrossView Pro Macros
	Defining Macros
	Listing Macros
	Redefining a Macro
	Saving Macro Definitions to a File
	Loading Macro Definitions from a File
	Deleting Macros

	Macro Parameters
	Redefining Existing CrossView Pro Commands
	Using the Toolbox
	Opening the Toolbox
	Connecting Macros to the Toolbox
	Removing a Macro Connection

	COMMAND RECORDING & PLAYBACK
	Recording Commands
	Entering Comments
	Suspend Recording
	Resume Recording
	Check Recording Status
	Close File for Recording
	Command Recording Example

	Playing Back Command Files
	Setting the Type of Playback
	Calling Other Playback Files
	Quitting Playback Mode

	Command Line Batch Processing
	Logging
	Setting up Logging
	Recording Commands and Logging Screen Output
	Command Window Log File Example
	Suspending and Resuming Output Log
	Closing the Output Log File

	Startup Options
	CrossView Pro Command History Mechanism

	SPECIAL FEATURES
	Transparency Mode
	RTOS Aware Debugging
	Coverage
	Profiling
	Virtual I/O Channels
	ROM Monitor
	Keyboard Mappings Virtual I/O

	Simulated Input/Output
	Setting Up Simulated I/O
	Viewing Current Stream Settings
	Changing Stream's Properties
	Changing the Simulated Input Prompt
	Directing I/O to a File

	The Simulated I/O Window
	Background Mode
	Configuration
	Manual Refresh
	Entering Background Mode
	Leaving Background Mode
	The Stack in Background Mode
	Local and Global Variables
	Refresh Limitation
	Assertions

	DEBUGGING NOTES
	Debugging Assembly Language
	Debugging Multiple Programs

	COMMAND REFERENCE
	Conventions Used in this Chapter
	Commands: Summary
	Startup Options
	Viewing Commands
	Data Monitoring
	Execution Control Commands
	Record & Playback
	Macros
	Simulated Input/Output
	Target System Control
	Help Commands
	Search Commands

	Commands: Detailed Descriptions

	ERROR MESSAGES
	What this Chapter Covers
	Error Messages

	GLOSSARY
	What this Chapter Covers
	Glossary Terms

	FLEXIBLE LICENSE MANAGER (FLEXlm)
	Introduction
	License Administration
	Overview
	Providing For Uninterrupted FLEXlm Operation
	Daemon Options File

	License Administration Tools
	lmcksum
	lmdiag (Windows only)
	lmdown
	lmgrd
	lmhostid
	lmremove
	lmreread
	lmstat
	lmswitchr (Windows only)
	lmver
	License Administration Tools for Windows
	LMTOOLS for Windows
	FLEXlm License Manager for Windows

	The Daemon Log File
	Informational Messages
	Configuration Problem Messages
	Daemon Software Error Messages

	FLEXlm License Errors
	Frequently Asked Questions (FAQs)
	License File Questions
	FLEXlm Version
	Windows Questions
	TASKING Questions
	Using FLEXlm for Floating Licenses

	SOUND SUPPORT (MS-Windows)
	SIMULATOR
	Introduction
	Executable Name
	Supported Features
	Mapping Memory
	State Counter
	Coverage

	Restrictions

	ROM MONITOR
	What is a ROM Monitor?
	Setting up the Target Environment
	Restrictions
	Resources used by the ROM Monitor
	Supported Targets

	INDEX

