MAO060-002-00-00
Doc. ver.: 1.14

TriCorevl.5

C CROSSCOMPILER
USER’S GUIDE

al TASKING [

A publication of
Altium BV
Documentation Department

Copyright [0 2002 Altium BV

All rights reserved. Reproduction in whole or part is prohibited
without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXIm is a registered trademark of Globetrotter Software, Inc.
HP and HP-UX are trademarks of Hewlett—Packard Co.
Intel is a trademark of Intel Corporation.
Motorola is a registered trademark of Motorola, Inc.
MS-DOS and Windows are registered trademarks of Microsoft Corporation.
SUN is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com
http://www.altium.com

The information in this document bas been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
Jfor inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

al TASKING [

SLN3LNOO

Table of Contents

1.1

1.2

1.2.1
13

131
1.3.2
133
1.4

1.4.1
15

15.1
152
153
154
155
1.5.6
1.5.7
1.5.8

2.1
2.2
2.3
231
23.2
233
2.4
2.5
2.6
2.6.1
2,62
2,63

Introduction 1-3
Installation for Windows 1-3
Setting the Environment 1-4
Installation for Linux 1-5
RPM Installation 1-5
Tar.gz Installation 1-6
Setting the Environment 1-7
Installation for UNIX Hosts 1-8
Setting the Environment 1-10
Licensing TASKING Products 1-11
Obtaining License Information 1-11
Installing Node-Locked Licenses 1-12
Installing Floating Licenses 1-13
Starting the License Daemon 1-15
Setting Up the License Daemon to Run Automatically . 1-16
Modifying the License File Location 1-17
How to Determine the Hostid 1-19
How to Determine the Hostname 1-19
Introduction to TriCore C Cross—Compiler 2-3
Product Definition 2-4
General Implementation 2-5
Compiler Phases i 2-5
Frontend Optimizations 2-6
Backend Optimizations 2-9
Compiler Structure 2-10
Environment Variables 2-13
Sample Session ... 2-14
Using EDE 2-14
Using the Control Program 2-21

Using the Makefile 2-23

\4

3.1
32
3.2.1
3.2.2
323
3.3
33.1
3.3.2
3.4
3.4.1
3.4.2
343
3.4.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.7
3.7.1
3.7.2
3.8
39
39.1
3.9.2
393
3.94
3.9.5
3.9.6
397
3.10
3.11
3.12

Table of Contents

Introduction 3-3
Accessing MemOryo 3-4
Storage TYPES . . oo vt 3-4
The at() Attribute L 3-6
The atbit() Attribute 3-7
Data TyPes . ..ot 3-8
Signed Characters 3-9
ANSI C Type Conversionsoooe.... 3-9
Fractional Data Types 3-13
Additional Basic Types, 3-13
Type Conversionsc.iiiiin... 3-13
Promotion Rules 3-14
Intrinsic Functions 3-15
Type Qualifier sat 3-16
Packed Data Typeso . 3-17
Additional Basic typeso oo 3-17
Intrinsic Functions 3-17
Halfword Packed Unions and Structures 3-19
BitData Types i 3-20
The bitType 3-20
Type Qualifier _sfrbitl6 and sfrbit32............... 3-21
Parameter Passing 3-23
Function Qualifiers 3-24
Interrupt Function Qualifier 3-24
Trap Function Qualifiers 3-25
Enable Interrupt/Trap Function Qualifier 3-27
BISR Interrupt/Trap Function Qualifier 3-28
System Call Function Qualifier..................... 3-29
Stack Model Function Qualifier 3-29
Far Function Storage Qualifier 3-30
Type Qualifier volatile 3-32
Type Qualifiers restrict and _restrict 3-33

StHNGS .« oo 3-34

Table of Contents

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2
4.2.1
4.3
4.4
4.5

5.1
5.2
5.3

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4

Variable Argument Lists 3-35
Inline C FUNCHONSt 3-36
Inline Assembly 3-37
Intrinsic Functions, 3-40
MISRA C . oo 3-44
StrUCtUre TaGS . .« oo v et 3-45
Typedef 3-45
Circular Buffers 3-46
Switch Statement oL, 3-47
Control Program o 4-3
Compiler 4-6
Detailed Description of the Compiler Options 4-10
Include Files 4-08
Pragmas 4-71
Compiler Limits i 4-78
Introduction 5-3
Return Values i, 5—4
Errors and Warnings i 5-5
Introduction 6-3
Header Fileso .., 6-3
CLibraries 64
Single Precision Floating Point 6-6
C Library Implementation Details 6-6
C Library Interface Description 6-12
C Library Reentrancy, 6-62

Run-time Library 6-72

\i

Vil

7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.5.4

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.11.1
3.11.2

Table of Contents

Startup Code 7-3
Register Usage 7-7
Stack ... 7-9
Heap 7-10
Floating Point Arithmetic 7-10
Compliance to IEEE-754 7-11
Special Floating Point Values 7-13
Trapping Floating Point Exceptions 7-13
Floating Point Trap Handling API 7-15
Introduction A-3
License Administration A-3
OVEIVIEW ..o A-3
Providing For Uninterrupted FLEXIm Operation A-5
Daemon Options File A-7
License Administration Tools A-8
Imcksum A-10
Imdiag (Windows only) A-11
Imdown A-12
Imgrd A-13
Imhostid A-15
Imremove A-16
Imreread A-17
Imstat A-18
Imswitchr (Windows only) A-20
Imver A-21
License Administration Tools for Windows A-22
LMTOOLS for Windows A-22

FLEXIm License Manager for Windows A-23

Table of Contents

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5

2.1
2.2
2.3
2.4
25
2.6
2.7
2.8
2.9
2.10

3.1
32
3.3
3.4
3.5

The Daemon Log File A-25
Informational Messages A-26
Configuration Problem Messages A-29
Daemon Software Error Messages A-31
FLEXIm License Errors oo, A-33
Frequently Asked Questions (FAQs) A-37
License File Questionso.... A-37
FLEXIm Version A-37
Windows QUESHtONSouiiii., A-38
TASKING Questions, A-39
Using FLEXIm for Floating Licenses A-41
Introduction C-3
CPU Functional Problem bypasses TC1 V1.2 C-5
TC112 CORL ... C-5
TC112.COR3o c-6
TCL12 COR4 ...t C-7
TCI12 CORG ... C-8
TC112 CORIO ... oo C-9
TC112 CORI3 ... e C-10
TC112 CORI4 i C-11
TC112 CORI5 ... o e C-13
TC112 CORI6 ... o C-14
TC112 CORL7 ... C-15
CPU Functional Problem bypasses TC1 V1.3 C-16
TCI13 PMUL ..ot C-16
TCI13 PMU3 ..o C-17
TCL13 CPUS ...t C-18
TCL13 CPU9 ... C-19

TC113 CPULL. ... C-20

3.6
3.7
3.8
39
3.10
3.11
3.12

Table of Contents

TC113_CPUI3 ..o c-21
TCI13 CPULA . ..ot c-22
TC113_CPULS . ..o c-23
TCI13_CPULG . . oo C-24
TC113 DMUL .. oo c-25
TCI13 LFI2 ... oo C-26

TCU13 LFI3 ... oo c-27

Manual Purpose and Structure

This manual is aimed at users of the TASKING TriCore C Cross—Compiler.
It assumes that you are familiar with the C language.

Related Publications
Conventions Used In This Manual

Software Installation
Describes the installation of the C Cross—Compiler for the TriCore
family of processors.

Overview
Provides an overview of the TASKING TriCore toolchain and gives you
some familiarity with the different parts of it and their relationship. A
sample session explains how to build a TriCore application from your
C file.

. Language Implementation

Concentrates on the approach of the TriCore architecture and describes
the language implementation. The C language itself is not described in
this document. We recommend: "The C Programming Language”
(second edition) by B. Kernighan and D. Ritchie (1988, Prentice Hall).

Compiler Use
Deals with control program and C compiler invocation, command line
options and pragmas.

Compiler Diagnostics
Describes the exit status and error/warning messages of the compilers.

Libraries
Contains the library functions supported by the compilers and
describes their interface and 'header’ files.

Xl

Xl Manual Purpose and Structure

7. Run-time Environment
Describes the run—time environment for a C application. It deals with
items like assembly language interfacing, C startup code and
stack/heap size.

A. Flexible License Manager (FLEXIm)
Contains a description of the Flexible License Manager.

B. MISRA C
Supported and unsupported MISRA C rules.

C. CPU Functional Problems
Describes how the TriCore toolchain can bypass some functional problems of
the CPU.

Manual Purpose and Structure X1

e The C Programming Language (second edition) by B. Kernighan and D.
Ritchie (1988, Prentice Hall)

* ANSI X3.159-1989 standard [ANSI]

* ISO/IEC 9899:1999(E), Programming languages — C [ISO/IEC]
More information on the standards can be found at
http://ww. ansi . org

¢ TriCore C Cross—Assembler, Linker/Locator, Utilities User’s Guide
[TASKING, MA060-000-00-00]

* TriCore CrossView Pro Debugger User’s Guide
[TASKING, MA060-043-00-00]

* TriCore Architecture Manual [1999, Infineon]
e TriCore Architecture v1.3 Manual [2000, Infineon]

XV

Manual Purpose and Structure

The notation used to describe the format of call lines is given below:

{

italics

screen font

bold font

For example

Items shown inside curly braces enclose a list from which
you must choose an item.

Items shown inside square brackets enclose items that are
optional.

The vertical bar separates items in a list. It can be read as
OR.

Items shown in italic letters mean that you have to
substitute the item. If italic items are inside square
brackets, they are optional. For example:

Sfilename

means: type the name of your file in place of the word
Sfilename.

An ellipsis indicates that you can repeat the preceding
item zero or more times.

Represents input examples and screen output examples.

Represents a command name, an option or a complete
command line which you can enter.

conmand [option]... filenane

This line could be written in plain English as: execute the command
command with the optional options option and with the file filename.

Hllustrations

The following illustrations are used in this manual:

@ This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and Structure

@? This illustration indicates actions you can perform with the mouse.
This illustration indicates keyboard input.

ﬂj This illustration can be read as “See also”. It contains a reference to
another command, option or section.

XV

XVI Manual Purpose and Structure

SOFTWARE
INSTALLATION

al TASKING [

d31dVHO

Software Installation 1-3

This chapter describes how you can install the TASKING C Cross—Compiler
for the TriCore on Windows 95/98/NT/2000, Linux and several UNIX
hosts.

Step 1
Start Windows 95/98/NT/2000, if you have not already done so.

Step 2
Insert the CD-ROM into the CD-ROM drive.

If the TASKING Welcome dialog box appears, skip to Step 5. Otherwise,
continue from Step 3.

Step 3

Select the St art button and select the Run. .. menu item.
Step 4
On the command line type:
d:\setup

(substitute the correct drive letter for your CD-ROM drive) and press the
<Ret ur n> or <Ent er > key or click on the OK button.

The TASKING Welcome dialog box appears.

Step 5

Select a product and click on I nstal | .

Step 6

Follow the instructions that appear on your screen.

@ You can find your serial number on the Certificate of Authenticity or
Product Update Form, delivered with the product.

1-4 Chapter 1

=

Step 7

License the software product as explained in section 1.5, Licensing
TASKING Products.

After you have installed the software, you can set some environment
variables to make invocation of the tools easier, when invoking the tools
from a command prompt. A list of all environment variables used by the
tool chain is present in the section Environment Variables in the chapter
Overview.

Make sure that your path is set to include all of the executables you have
just installed. If you installed the software under C: \ CTRI , you can
include the executable directory C: \ CTRI'\ Bl N in your search path.

The environment variable TMPDIR can be used to specify a directory
where programs can place temporary files. The compiler uses the
environment variable CTRIINC to search for include files. An example of
setting this variable is given below.

% See also the section Include Files in the chapter Compiler Use.
Example Windows Command Prompt
Enter the following line when you use a Command Prompt window.
set CTRIINC=c:\ctri\include
Example Windows 95/98
Add the following line to your aut oexec. bat file.
set CTRIINC=c:\ctri\include
Example Windows NT / 2000
1. Open the System Properti es dialog.

You can do this by double-clicking on the Syst emicon in the Control
Panel (Start | Settings | Control Panel) or right—click on the My
Comput er icon on your desktop and select Properti es.

2. Select the Envi ronnent tab.

Software Installation

3. In the Vari abl e edit field enter:
CTRI I NC

4. 1In the Val ue edit field enter:
c:\ctri\include

5. Click on the Set button, then click OK.

Each product on the CD-ROM is available as an RPM package and as a
gzipped tar file. For each product, the following files are present:

SWpr oduct —ver si on—RPM el ease. i 386. rpm
SWpr oduct —version. tar. gz

Both files contain exactly the same information. When your Linux
distribution supports RPM packages, you can install the . r pmfile.
Otherwise, you can install the product from the . t ar. gz file.

Step 1

In most situations you have to be "root” to install RPM packages, so either
login as "root”, or use the su command.

Step 2

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example / cdr om See the Linux manual pages about mount
for details.

Step 3
Go to the directory on which the CD-ROM is mounted:

cd /cdrom

1-5

1-6 Chapter 1

=

Step 4

To install or upgrade all products at once, issue the following command:
rpm-U SW.rpm

This will install or upgrade all products in the default installation directory
[usr/local . Every RPM package will create a single directory in the
installation directory.

The RPM packages are 'relocatable’, so it is possible to select a different
installation directory with the ——prefix option. For instance when you
want to install the products in / opt , use the following command:

rpm-U —prefix /opt SW.rpm

@ For Red Hat 6.0 users: The ——prefix option does not work with RPM

version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to
RPM verion 3.0.3 or higher, or use the . t ar. gz file installation described
in the next section if you want to install in a non-standard directory.

Step 1

Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.
Step 2

Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example / cdr om See the Linux manual pages about mount
for details.

Step 3
Go to the directory on which the CD-ROM is mounted:

cd /cdrom

Software Installation

Step 4

To install the products from the . t ar. gz files in the directory
/usr /| ocal , issue the following command for each product:

tar xzf SWroduct-version.tar.gz —C /usr/I ocal

Every . t ar. gz file creates a single directory in the directory where it is
extracted.

After you have installed the software, you can set some environment
variables to make invocation of the tools easier. A list of all environment
variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have
just installed.

The environment variable TMPDIR can be used to specify a directory
where programs can place temporary files.

1-7

1-8 Chapter 1

Step 1
Login as a user.
Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as root or use the su command.

Step 2
If you are a first time user decide where you want to install the product
(By default it will be installed in / usr/1 ocal).

Step 3

For CD-ROM install: insert the CD-ROM into the CD-ROM drive. Mount
the CD-ROM on a directory, for example / cdr om Be sure to use a ISO
9660 file system with Rock Ridge extensions enabled. See the UNIX
manuals page about mount for details.

Or:

For tape install: insert the tape into the tape unit and create a directory
where the contents of the tape can be copied to. Consider the created
directory as a temporary workspace that can be deleted after installation
has succeeded. For example:

nkdir /tnp/instdir

Step 4

For CD-ROM install: go to the directory on which the CD-ROM is
mounted:

cd /cdrom

For tape install: copy the contents of the tape to the temporary workspace
using the following commands:

cd /tnp/instdir
tar xvf /dev/tape

where tape is the name of your tape device.

@ If you have received a tape with more than one product, use the
non-rewinding device for installing the products.

Software Installation

Step 5

Run the installation script:
sh install
and follow the instructions appearing on your screen.

First a question appears about where to install the software. The default
answer is / usr/ | ocal . On certain sites you may want to select another
location.

On some hosts the installation script asks if you want to install SW000098,
the Flexible License Manager (FLEXIm). If you do not already have FLEXIm
on your system, you must install it; otherwise the product will not work on
those hosts. See section 1.5, Licensing TASKING Products.

If the script detects that the software has been installed before, the
following messages appear on the screen:

* k% V\ARN' ’\G * % %
SWKXXXXX XXXX.xxxx al ready install ed.
Do you want to REINSTALL? [y, n]

Answering n (no) to this question causes installation to abort and the
following message being displayed:

=> | nstallation stopped on user request <=

Answering y (yes) to this question causes installation to continue. And the
final message will be:

Install ati on of SWKXXXXX XXXX.XXXX conpl et ed.
For the TriCore the directory ctri will be created.

Step 6

For tape install: remove the temporary installation directory with the
following commands:

cd /tnmp
rm-—rf instdir

Step 7

If you purchased a protected TASKING product, license the software
product as explained in section 1.5, Licensing TASKING Products.

1-9

1-10 Chapter 1

Step 8
Logout.

After you have installed the software, you have to set some environment
variables to make invocation of the tools easier. A list of all environment
variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have
just installed.

The environment variable TMPDIR can be used to specify a directory
where programs can place temporary files.

Software Installation 1-11

TASKING products are protected with license management software
(FLEXIm). To use a TASKING product, you must install the licensing
information provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a
floating license. When you order a TASKING product determine which
type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the
product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among
users at one site. This license type does not lock the software to one
specific PC or workstation but it requires a network. The software can then
be used on any computer in the network. The license specifies the
number of users who can use the software simultaneously. A system
allocating floating licenses is called a license server. A license manager
running on the license server keeps track of the number of users.

% See the Flexible License Manager (FLEXIm) appendix for detailed
information on FLEXIm.

Before you can install a software license you must have a “License
Information Form” containing the license information for your software
product. If you have not received such a form follow the steps below to
obtain one. Otherwise, you can install the license.

Node-locked license (PC only)

1. If you need a node-locked license, you must determine the hostid of the
computer where you will be using the product. See section 1.5.7, How to
Determine the Hostid.

1-12

=

2.

Chapter 1

When you order a TASKING product, provide the hostid to your local
TASKING sales representative. The License Information Form which
contains your license key information will be sent to you with the software
product.

Floating license

1.

If you need a floating license, you must determine the hostid and
hostname of the computer where you want to use the license manager.
Also decide how many users will be using the product. See section 1.5.7,
How to Determine the Hostid and section 1.5.8, How to Determine the
Hostname.

When you order a TASKING product, provide the hostid, hostname and
number of users to your local TASKING sales representative. The License
Information Form which contains your license key information will be sent
to you with the software product.

Keep your "License Information Form” ready. If you do not have such a
form read section 1.5.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure
described in section 1.2, Installation for Windows.

Step 2

&
&

Create a file called "l i cense. dat ” in the c: \ f | ex| mdirectory, using an
ASCII editor and insert the license information contained in the "License
Information Form” in this file. This file is called the "license file”. If the
directory c: \ f | ex] mdoes not exist, create the directory.

If you wish to install the license file in a different directory, see section
1.5.6, Modifying the License File Location.

If you already have a license file, add the license information to the
existing license file. If the license file already contains any SERVER lines,
you must use another license file. See section 1.5.6, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

Software Installation

See the Flexible License Manager (FLEXIm) appendix for more information
on FLEXIm.

Keep your "License Information Form” ready. If you do not have such a
form read section 1.5.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure
described earlier in this chapter on the computer or workstation where
you will use the software product.

As a result of this installation two additional files for FLEXIm will be
present in the f | ex| msubdirectory of the toolchain:

Taski ng The Tasking daemon (vendor daemon).
i cense. dat A template license file.

Step 2

If you already have installed FLEXIm v6.1 or higher for Windows or v2.4
or higher for UNIX (for example as part of another product) you can skip
this step and continue with step 3. Otherwise, install SW000098, the
Flexible License Manager (FLEXIm), on the license server where you want
to use the license manager.

The installation of the license manager on Windows also sets up the
license daemon to run automatically whenever a license server reboots.
On UNIX you have to perform the steps as described in section 1.5.5,
Setting Up the License Deaemon to Run Automatically.

@ It is not recommended to run a license manager on a Windows 95 or
Windows 98 machine. Use Windows NT instead (or UNIX).

Step 3

If FLEXIm has already been installed as part of a non—TASKING product
you have to make sure that the bi n directory of the FLEXIm product
contains a copy of the Tasking daemon (see step 1).

1-13

1-14

=

Chapter 1

Step 4

&

&

Insert the license information contained in the "License Information Form”
in the license file, which is being used by the license server. This file is
usually called | i cense. dat . The default location of the license file is in
directory c¢: \ f| ex| mfor Windows and in
fusr/local/flexlmlicenses for UNIX.

If you wish to install the license file in a different directory, see section
1.5.6, Modifying the License File Location.

If the license file does not exist, you have to create it using an ASCII
editor. You can use the license file | i cense. dat from the toolchain’s
f | ex] msubdirectory as a template.

If you already have a license file, add the license information to the
existing license file. If the SERVER lines in the license file are the same as
the SERVER lines in the License Information Form, you do not need to add
this same information again. If the SERVER lines are not the same, you
must use another license file. See section 1.5.6, Modifying the License File
Location, for additional information.

Step 5

On each PC or workstation where you will use the TASKING software
product the location of the license file must be known. If it differs from
the default location (c: \fl exI m|icense. dat for Windows,
fusr/local/flexlmlicenses/license.dat for UNIX), then you
must set the environment variable LM_LICENSE_FILE. See section 1.5.6,
Modifying the License File Location, for more information.

Step 6

Now all license infomation is entered, the license manager must be started
(see section section 1.5.4). Or, if it is already running you must notify the
license manager that the license file has changed by entering the
command (located in the flexIm bi n directory):

| nr er ead

On Windows you can also use the graphical FLEXIm Tools (Imtools): Start
Imtools (if you have used the defaults this can be done by selecting
Start | Programs | TASKING FLEXI m | FLEX m Tool s), fill in the
current license file location if this field is empty, click on the Rer ead
button and then on OK. Another option is to reboot your PC.

Software Installation 1-15

The software product and license file are now properly installed.

Where to go from bere?

The license manager (daemon) must always be up and running. Read
section 1.5.4 on how to start the daemon and read section 1.5.5 for
information how to set up the license daemon to run automatically.

If the license manager is running, you can now start using the TASKING
product.

% See the Flexible License Manager (FLEXIm) appendix for detailed
information on FLEXIm.

The license manager (daemon) must always be up and running. To start
the daemon complete the following steps on each license server:

Windows

1. Start the license manager tool by (Start | Progranms | TASKI NG
FLEXI m | FLEXI m Li cense Manager).

2. In the Control tab, click on the St art button.

3. Close the program by clicking on the OK button.

UNIX

1. Log in as the operating system administrator (usually root).

2. Change to the FLEXIm installation directory (default
[usr/|ocal/flexl m:

cd /usr/local/flexlm
3. For C shell users, start the license daemon by typing the following:

bin/Imgrd -2 —p —c licenses/license.dat >>& \
/var/tnp/license.log &

1-16

Chapter 1

Or, for Bourne shell users, start the license daemon by typing the
following:

bin/Imgrd -2 —p —c licenses/license.dat >>\
/var/tnp/license.log 2>&1 &

In these two commands, the =2 and —p options restrict the use of the
Imdown and Imremove license administration tools to the license
administrator. You omit these options if you want. Refer to the usage of
Imgrd in the Flexible License Manager (FLEXIm) appendix for more
information.

To set up the license daemon so that it runs automatically whenever a
license server reboots, follow the instructions below that are approrpiate
for your platform. steps on each license server:

Windows

1.

Start the license manager tool by (Start | Prograns | TASKI NG
FLEXI m | FLEXI m Li cense Manager).

In the Set up tab, enable the Start Server at Power-Up check box.

Close the program by clicking on the OK button. If a question appears,
answer Yes to save your settings.

UNIX
In performing any of the procedures below, keep in mind the following:

* Before you edit any system file, make a backup copy.

HP-UX

1.

2.

Log in as the operating system administrator (usually root).

In the directory / et c/ rc. confi g. d create a file named r c. | ngr d with
the following contents. Replace FLEXLMDIR by the FLEXIm installation
directory (default / usr/1 ocal / fl ex] m):

#1/ sbi n/ sh
FLEXLMDI R/ bin/l mgrd -2 —p —c FLEXLMDI R/ |i censes/|icense.dat >> \
/var/tnp/license.log 2>&1 &

Software Installation 1-17

After the —c option, you have to specify the correct location of the license
file.

SunOS4

1. Log in as the operating system administrator (usually root).

2. Append the following lines to the file / et ¢/ rc. | ocal . Replace
FLEXIMDIR by the FLEXIm installation directory (default
[usr/local/flexlm:

FLEXLMDI R/ bin/I mgrd -2 —p —c FLEXLMDI R/l icenses/license.dat >> \
/var/tnp/license.log 2>&1 &

SunOS5 (Solaris 2)
1. Log in as the operating system administrator (usually root).

2. In the directory /et c/init. d create a file named r c. | mgr d with the
following contents. Replace FLEXLMDIR by the FLEXIm installation
directory (default / usr/ | ocal / f1 ex| m):

#!'/ bi n/ sh
FLEXLMDI R/ bin/I1 mgrd -2 —p —c FLEXLMDI R/ licenses/license.dat >> \
/var/tnp/license.log 2>&1 &
3. Make it exacutable:

chnod u+x rc. |l nmgrd

4. Create an 'S’ link in the / et ¢/ r ¢3. d directory to this file and create 'K’
links in the other / et ¢/ r ¢?. d directories:

In /etc/init.d/rc.lngrd /etc/rc3.d/ Snunrc. | ngrd
In /etc/init.d/rc.lngrd /etc/rc?.d/ Knunrc. | ngrd

num must be an approriate sequence number. Refer to you operating
system documentation for more information.

The default location for the license file on Windows is:
c:\flexlmMlicense. dat
On UNIX this is:

fusr/local/flexImlicenses/license. dat

1-18

Chapter 1

If you want to use another name or directory for the license file, each user
must define the environment variable LM_LICENSE_FILE. Do this in

aut oexec. bat (Windows 95/98), from the Control Panel —> System
| Environment (Windows NT) or in a UNIX login script.

If you have more than one product using the FLEXIm license manager you
can specify multiple license files to the LM_LICENSE_FILE environment
variable by separating each pathname (fpath) with a ’;’ (on UNIX also ’"):

Example Windows:
set LM LICENSE Fl LE=c:\flexl mlicense.dat;c:\Ilicense.txt
Example UNIX:

setenv LM LI CENSE_FI LE
/usr/local/flexlmlicenses/license.dat:/nyprod/license.txt

If the license file is not available on these hosts, you must set
LM_LICENSE_FILE to port@host; where host is the host name of the
system which runs the FLEXIm license manager and port is the TCP/IP port
number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting
with "SERVER”. The fourth field on this line specifies the TCP/IP port
number on which the license server listens. For example:

setenv LM LI CENSE_FILE 7594@l | i ot

See the Flexible License Manager (FLEXIm) appendix for detailed
information.

Software Installation

The hostid depends on the platform of the machine. Please use one of the
methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid
HP-UX lanscan 0000F0050185
(use the station address
without the leading '0x’)
SunOS/Solaris | hostid 170a3472
Windows tkhostid 0800200055327
(or use Imhostid)

Table 1-1: Determine the bostid

@ If you do not have the program tkhostid you can download it from our
Web site at: http://www.tasking.com/support/flexlm/tkhostid.zip . It is also

on every product CD that includes FLEXIm.

To retrieve the hostname of a machine, use one of the following methods.

Platform Method
HP-UX hostname
SunOS/Solaris | hostname

Windows 95/98

Go to the Control Panel, open "Network”, click on
"Identification”. Look for "Computer name”.

Windows NT

Go to the Control Panel, open "Network”. In the
"Identification” tab look for "Computer Name”.

Table 1-2: Determine the hostname

1-19

1-20 Chapter 1

OVERVIEW

al TASKING [

d31dVHO

Overview

This manual provides a functional description of the TASKING TriCore C
Cross—Compiler. This manual uses ctri (the name of the binary) as a
shorthand notation for "TASKING TriCore C Compiler”.

TASKING offers a complete toolchain for the Siemens TriCore family of
processors. "TriCore’ is used as a shorthand notation for the TriCore family
of processors and their derivatives.

The TASKING TriCore C compiler accepts source programs written in ANSI
C and translates these into TriCore assembly source code files. The
compiler accepts language extensions to improve code performance and
to allow the use of typical TriCore architectural provisions efficiently at the
C level. The compiler is ANSI C compatible and consists of three major
parts; the preprocessor, the C frontend and the associated TriCore backend
or code generator. These are all integrated into a single program to avoid
the need of intermediate files, thus speeding up the compilation process. It
also simplifies the implementation of joint frontend-backend optimization
strategies and preprocessor pragmas. This effectively makes the compiler a
one pass compiler, with minimum file I/O overhead.

The compiler processes one C function at a time, until the entire source
module has been read. The function is parsed, checked on semantic
correctness and then transformed into an intermediate code tree that is
stored in memory. Code optimizations are performed during the
construction of the intermediate code, and are also applied when the
complete function has been processed. The latter are often referred to as
global optimizations.

ctri generates assembly source code using the TriCore assembly language
specification, you must assemble this code with the TASKING TriCore
Cross—Assembler. This manual uses astri as a shorthand notation for
"TASKING TriCore Cross—Assembler”.

You can link the generated object with other objects and libraries using
the TASKING Iktri TriCore linker. In this manual we use lktri as a
shorthand notation for "TASKING lktri TriCore linker”. You can locate the
linked object to a complete application using the TASKING Ictri TriCore
locator. In this manual we use Ictri as a shorthand notation for "TASKING
Ictri TriCore locator”.

2-3

2-4

Chapter 2

The program cctri is a control program. The control program facilitates
the invocation of various components of the TriCore toolchain. cctri
recognizes several filename extensions. C source files (. ¢) are passed to
the compiler. Assembly sources (. asmand . Sr ¢) are passed to the
assembler. Relocatable object files (. obj) and libraries (. a) are recognized
as linker input files. Files with extension . out and . dsc are treated as
locator input files. The control program supports options to stop at any
stage in the compilation process and has options to produce and retain
intermediate files.

You can debug the software written in C with the TASKING CrossView Pro
high-level language debugger. A list of supported platforms and emulators
is available from TASKING.

Name:

TASKING TriCore C Cross—Compiler

Ordering Code:

TK060002

Target Assembler:

TASKING TriCore Cross—Assembler
TK060000 (included in TK060002)

Target Debugger:

TASKING TriCore CrossView Pro debugger (TK060043)

Target Processors:

All TriCore derivatives. Special function registers can be accessed by
means of a user—definable register file.

Overview

This section describes the different phases of the compiler and the target
independent optimizations.

During the compilation of a C program, a number of phases can be
identified. These phases are divided into two groups, referred to as
Sfrontend and backend.

frontend:
The preprocessor phase:
File inclusion and macro substitution are done by the preprocessor
before parsing of the C program starts. The syntax of the macro

preprocessor is independent of the C syntax, but also described in the
ANSI X3.159-1989 standard.

The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs
a syntactic and semantic analysis of the program, and generates an
intermediate representation of the program.

The frontend optimization phase:

Target processor independent optimization is performed by
transforming the intermediate code. The next section discusses the
frontend optimizations.

backend:

The backend optimization phase:

Performs target processor specific optimizations. Very often this means
another transformation of the intermediate code and actions like
register allocation techniques for variables, expression evaluation and
the best usage of the addressing modes. The chapter Language
Implementation discusses this item in more detail.

2-5

2-6 Chapter 2

=

The code generator phase:

This phase converts the intermediate code to an internal instruction
code, representing the TriCore assembly instructions.

The peephole optimizer / pipeline scheduler phase:

This phase uses pattern matching techniques to perform peephole
optimizations on the internal code. The pipeline scheduler reorders
and combines instructions to minimize the number of instructions.
Finally the peephole optimizer translates the internal instruction code
into assembly code for astri. The generated assembly does not contain
any macros. The assembler is also equiped with an optimizer.

All phases (of both frontend and backend) of the compiler are combined
into one program. The compiler does not use intermediate files for
communication between the different phases of compilation. The backend
part is not called for each C statement, but starts after a complete C
function has been processed by the frontend (in memory), thus allowing
more optimization. The compiler only requires one pass over the input
file, resulting in relatively fast compilation.

The command line option =O controls the amount of optimization applied
on the C source. Within a source file, the pragma #pragna opti ni ze
sets the optimization level of the compiler. Using the pragma, certain
optimizations can be switched on or off for a particular part of the
program. Several optimizations cannot be controlled individually. e.g.,
constant folding will always be done.

The compiler performs the following optimizations on the intermediate
code. They are independent of the target processor and the code
generation strategy:

Constant folding

Expressions only involving constants are replaced by their result. E.g.
1+5*3) is replaced by the value 16.

Expression rearrangement

Expressions are rearranged to allow more constant folding. E.g. 5+ (X-3)
is transformed into x + (5-3), which can be folded and will result in
X+2.

Overview

Expression simplification

As an example, multiplication by 0 or 1 and additions or subtractions of 0
are removed. Such useless expressions can be introduced by macros, or by
the compiler itself (e.g., array subscription).

Logical expression optimization
Expressions involving '&&’, |
series of conditional jumps.

“and " are interpreted and translated into a

Loop rotation

With f or and whi | e loops, the expression is evaluated once at the 'top’
and then at the 'bottom’ of the loop. This optimization speeds up
execution, and it could also save code in some cases.

Control flow optimization

By reversing jump conditions and moving code, the number of jump
instructions is minimized. This reduces both the code size and the
execution time.

Jump chaining

A conditional or unconditional jump to a label which is immediately
followed by an unconditional jump may be replaced by a jump to the
destination label of the second jump. This optimization does not save
code, but speeds up execution.

Remove useless jumps

An unconditional jump to a label directly following the jump is removed.
A conditional jump to such a label is replaced by an evaluation of the
jump condition. The evaluation is necessary because it may have side
effects.

Conditional jump reversal

A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the

code size and the execution time.
Constant/copy propagation

A reference to a variable with known contents is replaced by those
contents.

Chapter 2

Common subexpression elimination

The compiler has the ability to detect repeated uses of the same (sub-)
expression. Such a common” expression may be temporarily saved to
avoid recomputation. This method is called common subexpression
elimination, abbreviated CSE.

Invariant code motion

Invariant code can be moved out of a loop.

Subscript strength reduction

Expressions involving a loop index variable can be reduced in strength.

Dead code elimination

Unreachable code can be removed from the intermediate code without
affecting the program. However, the compiler generates a warning
message, because the unreachable code may be the result of a coding
error.

Dead assignment elimination

Removal of assignments to objects that are not used afterwards.

Dead storage elimination

Remove unused storage.

Loop unrolling

Eliminates short loops by replacing them with a number of copies.

In-line functions

In-line functions are supported. The overhead caused by a function call is
removed.

Sharing of string literals and floating point constants

String literals and floating point constants are put in ROM memory. The
compiler overlays identical strings (within the same module) and let them
share the same space, thus saving ROM space. Likewise identical floating
point constants are overlaid and allocated only once.

Overview

The following optimizations are target dependent and are therefore
performed by the backend.

Peephole optimizations

The generated assembly code is improved by replacing instruction
sequences by equivalent but faster and/or shorter sequences, or by
deleting unnecessary instructions.

Leaf function bandling

Leaf functions (function not calling other functions), are handled specially
with respect to stack frame building.

Tail recursion elimination

Replace a recursion statement to branch to the beginning of the statement.

2-9

2-10

Chapter 2

If you want to build a TriCore application you need to invoke the
following programs directly, or via the control program:

The C compiler (ctri), which generates an assembly source file from
the file with suffix . ¢. The suffix of the compiler output file is

. src. However, you can direct the output to st dout with the -n
option, or to another file with the —o option. C source lines can be
intermixed with the generated assembly statements with the -s
option. High level language debugging information can be
generated with the —g option. You are advised to switch off all
debugging with the -gn option when inspecting the generated
assembly source code, because it contains a lot of 'unreadable’ high
level language debug directives. The C compilers make only one
pass on every file. This pass checks the syntax, generates the code
and performs code optimization.

The corresponding cross—assembler (astri), which processes the
generated assembly source file into a relocatable object file with
suffix . obj .

The lktri linker, which links the generated relocatable object files
and C-libraries. The result is a relocatable object file with suffix
.out . A linker map file with suffix . I nl is available after this stage.

The Ictri locator, which locates the generated relocatable object
files. The result is an absolute loadable file with suffix . abs. A full
application map file with suffix . map is available after this stage.

You can directly load the output file of the locator with extension . abs
into the CrossView Pro debugger.

The next figure explains the relationship between the different parts of the
TASKING TriCore toolchain:

Overview

cctri

C source file
.C
1
C preprocessor

|

C compiler
ctri
assembly file assembly file
. pcp .src
!
assembler assembler
aspcp astri

listfile .1 st

— |

relocatable object

library maintainer
artri

relocatable object

library .a

module . obj

incremental
linker Iktri

control program

assembly file
.asm

T listfile .Ist

object reader

prtri

T C_ linkmap file

linker object

.Inl

. out
locator description _ |
file .dsc
locator
letri
T locate map file
’—l \—‘ . map
Intel Hex absolute load Motorola S—-record
object file module object file
. hex . abs .sre
______________________ Jom o
High level language TriCore
debugger Execution
CrossView xfwtri Environment

Figure 2-1: TriCore development flow

2-11

2-12

Chapter 2

The program cctri is a so—called control program, which facilitates the
invocation of various components of the TriCore toolchain. C source
programs are compiled by the compiler, assembly source files are passed
to the assembler. A C preprocessor program is available as an integrated
part of the C compiler. The control program recognizes the file extensions
.aand . obj as input files for the linker. The control program passes files
with extensions . out and . dsc to the locator. All other files are
considered to be object files and are passed to the linker. The control
program has options to suppress the locating stage (-cl), the linker stage
(=c) or the assembler stage (—cs).

Optionally the locator, Ictri produces output files in Motorola S-record
format or Intel Hex format. The default output format is IEEE-695.

Normally, the control program removes intermediate compilation results,
as soon as the next phase completes successfully. If you want to retain all
intermediate files, the option —-tmp prevents removal of these files.

For a description of all utilities available and the possible output formats of
the locator, see the TriCore Cross—Assembler User’s Guide.

The name of the TriCore CrossView Pro Debugger is xfwtri. For more
information check the TriCore CrossView Pro Debugger User’s Guide.

Overview

This section contains an overview of the environment variables used by

the TriCore toolchain.

Environment Description

Variable

ASTRIINC Specifies an alternative path for include files for the
assembiler.

CTRIINC Specifies an alternative path for #include files for the
C compiler ctri.

CTRILIB Specifies a path to search for library files used by
the linker Iktri.

CCTRIBIN When this variable is set, the control program, cctri,
prepends the directory specified by this variable to
the names of the tools invoked.

CCTRIOPT Specifies extra options and/or arguments to each

invocation of cctri. The control program processes
the arguments from this variable before the
command line arguments.

LM_LICENSE_FILE

Identifies the location of the license data file. Only
needed for hosts that need the FLEXIm license
manager.

PATH

Specifies the search path for your executables.

TMPDIR

Specifies an alternative directory where programs
can create temporary files. Used by ctri, cctri, astri,
Iktri, lctri, artri.

Table 2-1: Environment variables

2-13

2-14

Chapter 2

The subdirectory dhry in the exanpl es subdirectory contains a demo
program for the TriCore toolchain.

In order to debug your programs, you will have to compile, assemble, link
and locate them for debugging using the TASKING TriCore tools. You can
do this with one call to the control program or you can use EDE, the
Embedded Development Environment (which uses a project file and a
makefile) or you can call the makefile from the command line.

EDE stands for "Embedded Development Environment” and is the
MS-Windows oriented Integrated Development Environment you can use
with your TASKING toolchain to design and develop your application.

To use EDE on the dhry demo program in the subdirectory dhry in the
exanpl es subdirectory of the TriCore product tree follow the steps
below. This procedure is outlined as a guide for you to build your own
executables for debugging.

How to Start EDE

You can launch EDE by double-clicking on the EDE shortcut on your
desktop.

Elﬂ

The EDE screen provides you with a menu bar, a toolbar (command
buttons) and one or more windows (for example, for source files), a status
bar and numerous dialog boxes.

Overview

Compile Build Rebuild Debug On-line Manuals

51 TASKING EDE [Toolchain - C:\target\examples\demo\demo.pjt]
File Edit Search Project Bulld Test Document Customize Tooks Window Help

|- asEgs mmoc T HH R (SR BEIRBRE D
| [I=]
C:\taigetieramplesidemo.psp

i8] demo (5 Files)

\

Project Window
Contains several
tabs for viewing f struct rec_s
information about
projects and other
files.

B C:\target\examples\demo\DEMO.C

#include <string.h>
#include <stdio.h>

#define BELL_CHAR

Document Windows
Used to view and edit files.

typedef enum color_e
. 1

red, yellow, blue

| type;

Output Window

Contains several tabs to display _:El

and manipulate results of EDE
operations. For example, to view
the results of builds or compiles. _

(e} |f. I'I';JLJD_]B‘_J File Find 4 Seach A Browse A Difference 4 Shell 4 Symbols

[[=2 s [|lnett [Coln

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the
correct toolchain of the product you purchased is selected and displayed
in the title of the EDE desktop window.

If you have more than one TASKING product installed and you want to
change toolchains, do the following::

1. From the Proj ect menu, select Sel ect Tool chain. ..

The Sel ect Tool chai n dialog appears.

2-15

2-16 Chapter 2

Select Toolchain

Product Folder:
|cchearget

Toolchains: Cahcel

TASKIMG <toolchain: <

Browsze...

Scan Dizk...

3§14

¥ Display 'Toolchain switched to ... message Delete

2. Select the toolchain you want. You can do this by clicking on a toolchain
in the Tool chai ns list box and click OK.

If no toolchains are present, use the Browse. .. or Scan Di sk. ..
button to search for a toolchain directory. Use the Browse. . . button if
you know the installation directory of another TASKING product. Use the
Scan Di sk. .. button to search for all TASKING products present on a
specific drive. Then return to step 2.

How to Open an Existing Project

Follow these steps to open an existing project:
1. From the Proj ect menu, select Set Current —>.

2. Select the project file to open. For the dhry demo program select the file
dhry_1. pjt in the subdirectory dhry in the exanpl es subdirectory of
the TriCore product tree. If you have used the defaults, the file
dhry_1.pjt is in the directory c:\ ctri\exanpl es\dhry.

How to Load/Open Files

The next two steps are not needed for the demo program because the files
dhry_1. ¢ and dhry_2. ¢ are already open. To load the file you want to
look at:

1. From the Proj ect menu, select Load Files...

The Choose Project Files to Edit dialog appears.

Overview

Choose Project Files to Edit

Project Files: 1 of & zelected

C:Mbargethexampleshdemotiwelcome. bt akK

C
C:Mtargetiexampleshdemot.addone. asm Cancel

C:Mrargetherampleshdamat, s Slibharchatart asm
Help

Irvert

Clear

dddey.

2. Choose the file(s) you want to open by clicking on it. You can select
multiple files by pressing the <Ct r | > or <Shi f t > key while you click on
a file. With the <Ct r| > key you can make single selections and with the
<Shi f t > key you can select everything from the first selected file to the
file you click on. Then click OK.

This launches the file(s) so you can edit it (them).

Check the directory paths

1. From the Pr oj ect menu, select Directories....

The Di rect ori es dialog appears.

Directories E

“f'ou can use thiz dialog to specify which directories to search for binany, include and
library files. To specify more than one directary, separate them with a semicolon [;).

Executable Files Path:

|c:\target\bin Configure... |

Include Files Path:

|c:\targel\include:c:\myinc Configure... |

Library Files Path:

Ic:\target\lib Configure. .. |
Witput directen(instead of project direston]| -

I Brawses. |
Cancel | Defaults |

2-18 Chapter 2

-

2. Check the directory paths for programs, include files and libraries. You can
add your own directories here, separated by semicolons.

3. Click OK.

How to Build the Demo Application

The next step is to compile the file(s) together with its dependent files so
you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify
additional build options such as to stop the build process on errors and to
keep temporary files that are generated during a build.

1. From the Bui | d menu, select Opti ons. ..
The Bui | d Opti ons dialog appears.

Build Dptions

Build | Mise |

v ilze TASKING build and errar parser settings

¥ Save file[s] before starting a command

[T Scan dependencies before starting 2 build

W Stop build process anemarn
™ Keep temporary files that are gemerated during a build

™ Use external makefile (instead of 'demo.mak :

™ Use additional make options:

[utput directann(instead of preject drectan] |

ak I Cancel | Defaultz

2. Make your changes and press the OK button.
3. From the Bui | d menu, select Scan All Dependenci es.

4. Click on the Execut e ' Make’ command button. The following button is
the execute Make button which is located in the ribbon bar.

Overview 2-19

If there are any unsaved files, EDE will ask you in a separate dialog if you
want to save them before starting the build.

Houw to View the Results of a Build
Once the files have been processed you can inspect the generated
messages.

You can see which commands (and corresponding output captured) which
have been executed by the build process in the Bui | d tab:

TASKI NG program buil der vx.y rz Bui |l d nnn SN 00000000
Conpi ling "dhry_2.c¢”

Assenbling "dhry_2.src”

Conpi ling "dhry_1.c”

Assenbling "dhry_1.src”

Li nking and | ocating to dhry_1. out

Converting dhry_1.out to dhry_1.abs in | EEE-695 fornmat

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and
formatted they can be executed by CrossView Pro.

To execute CrossView Pro:

1. Click on the Debug appl i cati on button. The following button is the
Debug application button which is located in the toolbar.

&

CrossView Pro is launched. CrossView Pro will automatically download the
compiled file for debugging.

How to Load an Application

You must tell CrossView Pro which program you want to debug:
1. From the Fi | e menu, select Load Synbolic Debug Info...
The Load Synbol i c Debug | nf o dialog box appears.

2. Click Load.

2-20

Chapter 2

How to View and Execute an Application

To view your source while debugging, the Source Window must be open.
To open this window:

1. From the Vi ew menu, select Sour ce—>Sour ce | i nes.
The source window opens.

Before starting execution you have to reset the target system to its initial
state. The program counter, stack pointer and any other registers must be
set to their initial value. The easiest way to do this is:

2. From the Run menu, select Reset Target System
To run your application step-by-step:
3. From the Run menu, select Ani mat e.

The program dhry_1. abs is now stepping through the high level
language statements. Using the Accelerator bar or the menu bar you can
set breakpoints, monitor data, display registers, simulate I/O and much
more. See the CrossView Pro Debugger User’s Guide for more information.

How to Start a New Project

When you first use EDE you need to setup a project space and add a new
project:

1. From the Fi | e menu, select New Proj ect Space.. .
The Create a New Proj ect Space dialog appears.
2. Give your project space a name and then click OK.
The Proj ect Properties dialog box appears.
3. Click on the Add new project to project space button.
The Add New Project to Project Space dialog appears.
4. Give your project a name and then click OK.

The Proj ect Properties dialog box then appears for you to identify
the files to be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

Overview 2-21

Project Properties <]
2 <Default Settings> Directaries I embers I Toaals I Ermars I Filters l
demo (1 Project) Praject: C:\target'exampleshdemo’.demo. pjt

[Fies BN =S

Add new file Add existing files
Scan existing files

» If you do not have any source files yet, click on the Add new file
to project button in the Proj ect Properti es dialog. Enter a new
filename and click OK.

* To add existing files to a project by specifying a file pattern click on
the Scan existing files into project button in the Proj ect
Properti es dialog. Select the directory that contains the files you
want to add to your project. Enter one or more file patterns separated
by semicolons. The button next to the Pat t er n field contains some
predefined patterns. Next click OK.

¢ To add existing files to a project by selecting individual files click on
the Add existing files to project button in the Proj ect
Properti es dialog. Select the directory that contains the files you
want to add to your project. Add the applicable files by
double—clicking on them or by selecting them and pressing the Open
button.

The new project is now open.

6. From the Proj ect menu, select Load Fil es... to open the files you
want on your EDE desktop.

EDE automatically creates a makefile for the project. EDE updates the
makefile every time you modify your project.

A detailed description of the process using the sample program dhry is
described below. This procedure is outlined as a guide for you to build
your own executables for debugging.

1. Make the subdirectory dhry of the exanpl es directory the current
working directory.

2. Be sure that the directory of the binaries is present in the PATH
environment variable.

2-22

=

Chapter 2

3. Compile, assemble, link and locate the modules using one call to the

control program cctri:
cctri —g =M —o0 dhry_1.abs dhry_1.c dhry_2.c

The -g option specifies to generate symbolic debugging information. This
option must always be specified when debugging with CrossView Pro.

The -M option specifies to generate map files.
The -o option specifies the name of the output file.

The command in step 3 generates the object files dhry_1. obj and
dhry_2. obj , the linker map files dhry_1.1nl and dhry_2.1nl | the
locator map files dhry_1. map and dhry_2. map and the absolute output
file dhry_1. abs. The file dhry_1. abs is in the IEEE Std. 695 format, and
can directly be used by CrossView. No separate formatter is needed.

Now you have created all the files necessary for debugging with
CrossView Pro with one call to the control program.

If you want to see how the control program calls the compiler, assembler,
linker and locator, you can use the —=v0 option or —v option. The —v0
option only displays the invocations without executing them. The -v
option also executes them.

cctri —g =M —o dhry_1.abs dhry_1.c dhry_2.c —-vO

The control program shows the following command invocations without
executing them (UNIX output):

dhry_1.c:

+ ctri —e —g —o /tnp/cc2154b.src dhry_1.c

+ astri /tnp/cc2154b.src —e —ghl —o dhry_1. obj
dhry_2.c:

+ ctri —e —g —o /tnp/cc2l54c.src dhry_2.c

+ astri /tnp/cc21l54c.src —e —ghl —o dhry_2. obj

+ lktri —e —-M dhry_1.0bj dhry_2.0bj —-lc -Ifpn -Ltcl
—o/ t mp/ cc2154d. out

+ lctri —e —M —dtri.dsc /tnp/cc2154d. out —-odhry_1. abs

Overview 2-23

The -e option removes output files after errors occur. The -gsl option of
the assembler specifies to pass HLL debug information and to generate
local symbols debug information. The —O option of the linker specifies the
basename of the map file. The -lIc options of the linker specifies to link
the appropriate C library. The -d option of the locator specifies the name
of the locator description file.

As you can see, the tools use temporary files for intermediate results. If
you want to keep the intermediate files you can use the -tmp option. The
following command makes this clear.

cctri —-g -M —o dhry_1.abs dhry_1.c dhry 2.¢c —v0 —tnp
This command produces the following output:

dhry_1.c:

+ ctri —e —g —o dhry_1.src dhry_1.c

+ astri dhry_1.src —e —ghl —o dhry_1. obj

dhry_2.c:

+ ctri —e —g —o dhry_2.src dhry_2.c

+ astri dhry_2.src —e —ghl —o dhry_2. obj

+ lktri —e =M dhry_1.0bj dhry_2.0bj —-lc -Ifpn —-Ltcl
—odhry_1. out

+ lctri —e —M —dtri.dsc dhry_1.out —-odhry_1. abs

As you can see, if you use the -tmp option, the assembly source files and
linker output file will be created in your current directory also.

Of course, you will get the same result if you invoke the tools separately
using the same calling scheme as the control program.

As you can see, the control program automatically calls each tool with the
correct options and controls. The control program is described in detail in
Chapter Compiler Use.

The subdirectories in the exanpl es directory each contain a makefil e
which can be processed by mktri. Also each subdirectory contains a
readme. t xt file with a description of how to build the example.

To build the dhry demo example follow the steps below. This procedure
is outlined as a guide for you to build your own executables for
debugging.

2-24

Chapter 2

. Make the subdirectory dhry of the exanpl es directory the current

working directory.

This directory contains a makefile for building the dhry demo example. It
uses the default mktri rules.

. Be sure that the directory of the binaries is present in the PATH

environment variable.

. Compile, assemble, link and locate the modules using one call to the

program builder mktri:
nktri
This command will build the example using the file makefil e.

To see which commands are invoked by mktri without actually executing
them, type:

nktri -n
This command produces the following output:

TASKI NG Tri Core program buil der VX.yrz Build nnn
Copyright 1996-year Altium BV Seri al # 00000000
cctri —c —o dhry_1.0bj —-g -w91 —-w303 dhry_1.c
cctri —c —o dhry_2.0bj —-g -w91 -w303 dhry_2.c
cctri —o dhry_1.abs dhry_1.o0bj dhry_2. obj

The -g option in the makefile is used to instruct the C compiler to
generate symbolic debug information. This information makes debugging
an application written in C much easier to debug.

The -=w option in the makefile is used to suppress a warning.
The -o option specifies the name of the output file.
To remove all generated files type:

nktri cl ean

LANGUAGE
IMPLEMENTATION

al TASKING [

d31dVHO

Language Implementation

The TASKING C cross—compiler (ctri) offers a new approach to high-level
language programming for the TriCore family. It conforms to the ANSI
standard, but allows you to control the special functions of the TriCore in
C.

This chapter describes the C language implementation in relation to the
TriCore architecture.

The extensions to the C language in ctri are:

additional data types

In addition to the standard data type, ctri supports three additional basic
types to perform fixed point arithmetic (_fract, _sfract and _accum).
Two additonal basic types were added to the C compiler to support the
packed arithmetic instructions (_packb and _packhw). The intregal type
_bi t is added to support the bit instructions.

_at

You can specify a variable to be at an absolute address.

_atbit

You can specify a variable to be at a bit offset within a _bi t word or
bit-addressable _sfr variable.

bit fields
You can use the type qualifiers _sfrbi t16 and _sfrbit 32 to control the
access of SFR bit fields.

storage types

Apart from a memory category (extern, static, ...) you can specify a storage
type in each declaration (_near, _far, _a0, _al, _a8, _a9).

interrupt functions

You can specify interrupt functions directly through interrupt vectors in the
C language (_i nterrupt and _i nterrupt_fast keywords).

3-3

3-4 Chapter 3

=

intrinsic functions
A number of pre-declared functions can be used to generate inline
assembly code at the location of the intrinsic (built-in) function call. This

avoids the overhead which is normally used to do parameter passing and
context saving before executing the called function.

circular buffers

ctri supports circular buffers through the data type _circ.

In practice the majority of the C code of a complete application is standard
C (without using any language extension). You can compile this part of
the application without any modification, using the storage types which
fits best to the requirements of the system (code density, amount of
external RAM etc.).

Only a small part of the application uses language extensions. These parts
often have some of the following properties. They

— access 1/0, using the special function registers

- need high execution speed

- need high code density

— access non—-default memory

- are used to service interrupts

Static storage specifiers can be used to allocate static objects in a
particular memory area of the addressing space of the processor. All
objects taking static storage may be declared with an explicit storage
specifier. By default static variables will be allocated in _near or _far
memory according to some heuristic rules (see =N option).

Language Implementation

ctri recognizes the following storage type specifiers:

Storage Type | Description

_near The data object must be directly addressable using the
absolute addressing mode. The first 16K of each 256M block
are directly addressable.

_far The data must not be allocated in a direct addressable
memory region.

_ao0 The data is allocated in a section that is addressable with a
sign—extended 16-bit offset from AO.

_al The data is allocated in a section that is addressable with a
sign—extended 16-bit offset from Al.

_as8 The data is allocated in a section that is addressable with a
sigh—extended 16-bit offset from A8.

_a9 The data is allocated in a section that is addressable with a
sign—extended 16-bit offset from A9.

Table 3-1: Storage type specifiers

Examples:

int _near Var_in_near; /* fast accessible integer
in directly addressabl e
nenory */
int _near * _far Ptr_in_far_to_near; /* allocate pointer in
_far menory, conpiler will not
use absol ute addressing node */
char _a0 string[] = "TriCore”; /* string in A0 menory */

Using the _near addressing qualifier, allows the compiler to generate
faster access code for frequently used variables. Pointers are always 32-bit.

Functions are by default allocated in ROM Memory; the storage specifier
may be omitted in that case. Also, function return values cannot be
assigned to a storage area.

In addition to static storage specifiers, a static object can be assigned to a
fixed memory address using the _at () keyword:

int nyvar _at(0x100);

This is useful to interface to other programs using fixed memory schemes,
or to access special function registers.

3-6 Chapter 3

-

Examples using storage specifiers:

Some examples of using storage specifiers:

int _near *p; // pointer to int in _near nmenory
/'l (pointer has 32-bit size)

int _far *g; /1 pointer toint in _far nmenory
/'l (pointer has 32-bit size)

g =p /* the conpiler issues a warning */
If a library function declares:

extern int _near foo; /lextern int in _near nmenory
and a data object is declared as:

int _far foo; /[lint in _far nenmory

the linker will flag this as an error. The usage of the variables is always
without a storage specifier:

char _near exanpl e; /* define a char in _near menory */
exanple = 2; /* assign exanple */

The generated assembly would be:

nov1l6 d15, 2
st.b exanpl e, d15

All allocations with the same storage specifiers are collected in units called
’sections’. The section with the _near attribute will be located within the
first 16K of of each 256M block. It is always possible to control the
location of sections manually.

In C for the TriCore it is possible to place certain variables at absolute
addresses. Instead of writing a piece of assembly code, a variable can be
placed on an absolute address using the _at () attribute.

Example:

unsi gned char Displ ay[80*24] _at(0x2000);

Language Implementation

The example above creates a variable with the name Di spl ay at address
0x2000. In the generated assembly code an absolute section will appear.
On this position space is reserved for the variable Di spl ay.

A number of restrictions are in effect when placing variables on an
absolute address:

* Only global variables can be placed on absolute addresses.
Parameters of functions, or automatics within functions cannot be
placed on an absolute address.

e When declared ext er n, the variable is not allocated by the
compiler. When the same variable is allocated within another
module but on a different address, the compiler, assembler or linker
will not notice, because an assembler external object cannot specify
an absolute address.

* When the variable is declared st ati ¢, no public symbol will be
generated (normal C behavior).

e Functions cannot be declared absolute.

* Absolute variables cannot overlap each other, declaring two
absolute variables on the same address will cause an error
generated by the assembler or by the linker. The compiler does not
check this.

* Declaring the same absolute variable within two modules will also
produce conflicts during link time (except when one of the modules
declares the variable 'extern’).

In C for the TriCore it is possible to define bit variables within an int
variable. This can be done with the _at bi t () attribute. The syntax is:

_atbit(name, offset)

name is the name of a int variable and offset (range 0-31) is the bit-offset
within the variable. The int variable must be defined with the _at ()
attribute to make the _at bi t attribute valid.

Examples:
i nt bw _at(0x...);
_bit nyb _athit(bw, 3);

Variable bw must have the _at attribute to make _at bi t valid.

3-7

Chapter 3

All ANSI C data types are supported. Three types of pointers are
recognized. Object size and ranges:

Data Type Size Range
(in bytes)
_hit 1 [0,1]
signed char 1 -128 to +127
unsigned char 1 0 to 255U
signed short 2 —32768 to +32767
unsigned short 2 0 to 65535U
signed int 4 —2147483648 to +2147483647
unsigned int 4 0 to 4294967295UL
signed long 4 —2147483648 to +2147483647
unsigned long 4 0 to 4294967295UL
float 4 +/-1,1755E-38 to +/— 3,402E+38
double 8 +/—2,225E-308 to +/— 1,798E+308
enum 4 0 to 4294967295
pointer 4 0 to 4294967295
_sfract 2 [-1,+1>
_fract 4 [-1,+1>
_accum 8 [-131072,+131071>

Table 3-2: Data types

- _bit,char,short,int and | ong are all integral types, supporting
all implicit (automatic) conversions.

— the TriCore convention is used, storing variables with the most
significant part at the higher memory address (Little Endian).

— float is implemented in little endian IEEE-754 32-bit single precision

format.

— double is implemented in little endian IEEE-754 64-bit double
precision format.

Language Implementation

The character type is treated as si gned char by default. You can
overrule this default with the —-u command line option, which sets the
default to unsigned char.

Examples:
The following declarations are idential when —u is not used.

char c;
signed char c;

The following declarations are idential when —u is used.

char c;
unsi gned char c;

Integral promotions

According to the ANSI C X3.159-1989 standard, a character, a short integer,
an integer bit field (either signed or unsigned), or an object of
enumeration type, may be used in an expression wherever an integer may
be used. If a si gned i nt can represent all the values of the original type,
then the value is converted to si gned i nt; otherwise the value will be
converted to unsi gned i nt. This process is called integral promotions
(as defined in the ANSI C standard).

In case of the Tricore this implies that among other things, all character
and short integers, whether they are unsigned or signed, will be promoted
to signed integer, when integral promotions is applied.

Integral promotions is also performed on function pointers and function
parameters of integral types using the old-style declaration. To avoid
problems with implicit type conversions, you are advised to use function
prototypes.

Usual arithmetic conversions

Many operators cause conversions and yield result types in a similar way.
The effect is to bring operands into a common type, which is also the type
of the result. This pattern is called the usual arithmetic conversions (as
defined in the ANSI C standard).

3-10 Chapter 3

For the TriCore this means the following:
1. if necessary use | ong doubl e, doubl e or f| oat (in this order).

2. (un)si gned char and (un)si gned short are mapped onto
signed int.

3. if necessary use unsi gned | ong, | ong or unsi gned i nt
(in this order)

The following pseudo code gives the conversion algorithm in more detail:
IF either operand is | ong doubl e
THEN the other operand is converted to | ong doubl e
ELSE IF either operand is doubl e
THEN the other operand is converted to doubl e
ELSE IF either operand is f | oat
THEN the other operand is converted to f | oat
ELSE
Integral promotions are performed on both operands;
IF either operand is unsi gned | ong
THEN the other operand is converted to unsi gned | ong.
ELSE IF one operand is | ong and the other is unsi gned i nt
THEN
IF a | ong can represent all values of an unsi gned i nt
THEN the unsi gned i nt operand is converted to | ong
ELSE both opearands are converted to unsi gned | ong.
ELSE IF one operand is | ong
THEN the other operand is converted to | ong.
ELSE IF either operand is unsi gned int.
THEN the other operand is converted to unsi gned i nt.

ELSE both operands have type i nt .

Language Implementation

@ Sometimes surprising results may occur, for example when an unsigned
char is promoted to int. You can always use explicit casting to obtain the
type required. The following example makes this clear:

static unsigned char a=0xFF, b, c;

void f()
{
b=~a;
if (b
{
/*
*
*
*
*
*
*
*
*
*/
}
c=a+l;
{
/*
*
*
*
*
*
*
*
*/
}

== ~a)

This code is never reached, because
0x00000000 i s conpared to OxFFFFFFOO.

The conpiler converts character 'a to an
int before applying the ~ operator,

so '~a' yields OXxFFFFFFOO in the
assignment '~a’' is cast into an unsigned
char again, so the last byte is assigned
to b =>b =0x00in the conparison '~a' is
agai n OxFFFFFFOO, b however is pronptod to
an integer wth val ue 0x00000000.

while(¢ !'= a+l)

This | oop never stops because

0x00000000 is conpared to 0x00000100.

The conpiler evaluates "a+l’ as an integer
expression, so 'a+l' is OxO00000FF +
0x00000001, is 0x00000100.

In the assignment the last byte of the
result is assigned to c, so ¢ = 0x00.

In the conparison both sides are pronoted
to integer, the left sight to 0x00000000
and the right side to 0x00000100 agai n.

3-11

3-12 Chapter 3

5

To overcome this 'unwanted’ behavior use an explicit cast:

stati c unsigned char a=0xFF, b, c;
void f()

{
b=~a;
if (b == (unsigned char)~a)

/* This code is always reached */

}
c=a+l,
while(¢ !'= (unsigned char)(a+l))
{
/* This code is never reached */
}
}
Keep in mind that the arithmetic conversions apply to multiplications also:
static int h, i, j;
static long k, I, m
/* In Cthe followi ng rules apply:
* int * int result: int
* long * |ong result: long
*
* and NOT int * int result: long
*/
void f()
{
h=i *j; [* int * int = int */
k=1 *m /* long * long = |l ong */
I =i *j; /* int * int = int,

* afterwards pronoted (sign
* or zero extended) to long

*/
I =(long) i *j; [/* long * long = |long */
I = (long)(i * j); /* int * int =int,
* afterwards casted to |ong
*/

Language Implementation

The TriCore C compiler supports three additional basic types to perform
fixed point arithmetic. These types are:
_Sfract

16 bits: 1 sign bit + 15 mantissa bits

_fract
32 bits: 1 sign bit + 31 mantissa bits

_accum

64 bits: 1 sign bit + 17 integral bits + 46 mantissa bits

Most basic operations on the first two types are directly supported by the
TriCore instruction set. For example, the following assignment:

_sfract a, b, c;
a=>b+c;
will result in the following assembly code:

Id.q di5, b
Id.q d7, c
add16 d15,d7
st.q a, d15

A conversion from an integer to an _sfract /_fract or visa versa is of
very limited use, as there are only two numbers that are both an integer
and an _sfract /_fract: 0 and —-1. These conversions are most likely the
result of a programming error, so the compiler will flag them as an error.

Conversions of integers to/from the _accumtype may be useful and are
supported.

3-13

3-14

Chapter 3

All three fractional data types can be converted to/from the types f | oat
and doubl e.

For the three fractional types _sfract, _fract and _accum the
promotion rules are similar to the promotion rules for char, short i nt
and | ong. This means that for an operation on two different fractional
types, the smaller type will be promoted to the larger type before the
operation is performed. This larger type will also be the type of the result.

When a fractional type is mixed with a f | oat or doubl e type, the
fractional number is first promoted to f | oat respectively doubl e. The
latter type will also be the type of the result.

When an integer type is mixed with the _accumtype, the integer is first
promoted to _accum The result of the operation will also be of type
_accum

Because of the limited range of _sfract and _fract, only a few
operations make sense when combining an integer with an _sfract or
_fract. For that reason, only the following operations are supported in
this case:

left oper right result
fractional * integer fractional
integer * fractional | fractional
fractional / integer fractional
integer / fractional | integer
fractional << integer fractional
fractional >> integer fractional
fractional: _sfract, _fract

integer: char, short, int, long

Table 3-3: Fractional operations

Language Implementation 3-15

A number of intrinsic functions are defined for the fractional data types.
All these functions except for the first one are not strictly necessary,
because the compiler supports these operations directly. The functions are
provided so that you can write more portable code.

The following intrinsic function is defined for the case where you are
interested in the integer part of the multiplication of a _f ract with an
integer:

long _mulfractlong (_fract, long);

The following intrinsic can be used to convert a 32 bit fractional data type
to a 16 bit fractional data type by rounding the value instead of truncating
it. When a _sat qualified argument is passed (see next section) then
rounding will be done with saturation:

_sfract _round16 (_fract);

The following intrinsic can be used to convert an _accumvalue to a
fract:

_fract _getfract (_accum);

The following intrinsic can be used to count the number of consecutive
bits which have the same value as bit 15 of an _sfract:

short _clssf (_sfract);

These intrinsics can be used to perform a left or right shift on one of the
fractional data types. A negative second operand performes a right shift:

_sfract _shasfracts (_sfract, int);
_fract _shafracts (_fract, int);
_accum _shaaccum (_accum, int);

3-16

Chapter 3

When a variable is declared with the _sat type qualifier, all operations on
that variable will be performed using saturating arithmetic. When an
operation is performed on a plain variable and a _sat variable, the _sat
takes precedence, and the operation is done using saturating arithmetic.
The type of the result of such an operation also includes the _sat
qualifier, so that another operation on the result will also be saturated. In
this respect, the behavior of the _sat type qualifier is comparable to the
unsi gned keyword. You can overrule this behavior by inserting type casts
with or without the _sat type qualifier in an expression.

The _sat type qualifier can be used on both fractional and integer types. It
is advisable to pay extra attention when using the _sat type qualifier on
either (un)signed shorts or (un)signed characters, since these types will in
many cases be promoted to signed integers before the actual operation
takes place, this in accordance with the principles of usual arithmetic
conwversions and integral promotions See also: ANSI C Type Conversionsin
this chapter.The result will then be stored in a saturated way, if the result
should be of a saturated small integer type.

Care should also be taken when combining signed and unsigned types,
since no saturation between signed and unsigned is done.

Examples:
_sat int si = OX7FFFFFFF;
int i = 0x12345;
unsi gned int ui = OXFFFFFFFF;
si +i /] a saturated addition is performed,

yielding a saturated int

si + ui // a saturated unsigned addition is perforned
/'l yielding a saturated unsigned int

i +ui // a normal unsigned addition is perforned,
/'l yielding an unsigned int

Language Implementation

Two additional basic types were added to the C compiler to support the
packed arithmetic instructions of the TriCore. These types are:

_packb
A 32 bit word consisting of 4 bytes.

_packbw
A 32 bit word consisting of 2 halfwords.

A number of arithmetic operations on packed data types are directly
supported by the TriCore instruction set. For example, the following
function:

_packb add4 (_packb a, _packb b)
{

}

is translated into the following assembly code:

return a + b;

add4:
add. b d2, d4, d5
retl1l6

The following intrinsic functions let you manipulate packed data types in a
way that conforms to the standard C syntax. Code using these intrinsics is
portable to another platform, provided that you implement the intrinsics
with a library or with macro definitions.

Type conversion of a long integer value to a _packb or _packhw data
type:

_packb _initpackbl (long);
_packhw _initpackhwl (long);

3-17

3-18

5

Build a _packb/_packhw value from four/two separate values:

_packb
_packhw

_initpackb
_initpackhw

(int, int, int, int),
(int, int);

Chapter 3

Extract an individual byte/halfword from a _packb/_packhw value:

char
char
char
char
short
short

char
char
char
char
short int
short int

_extractbytel
_extractbyte2
_extractbyte3
_extractbyte4
_extracthwl
_extracthw2

_getbytel
_getbyte2
_getbyte3
_getbyte4
_gethw1
_gethw?2

(_packb);
(_packb);
(_packb);
(_packb);
(_packhw);
(_packhw);

(_packb *);
(_packb *);
(_packb *);
(_packb *);
(_packhw *);
(_packhw *);

Insert one byte/halfword into a _packb/_packhw value:

_packb
_packb
_packb
_packb
_packhw
_packhw

_packb
_packb
_packb
_packb
_packhw
_packhw

_insertbytel
_insertbyte2
_insertbyte3
_insertbyte4
_inserthw1
_inserthw2

_setbytel
_setbyte2
_setbyte3
_setbyte4
_sethwl
_sethw?2

(_packb, char);
(_packb, char);
(_packDb, char);
(_packb, char);
(_packhw, short);
(_packhw, short);

(_packb * char);
(_packb * char);
(_packb * char);
(_packb * char);
(_packhw *, short);
(_packhw *, short);

Mix four halfwords or 8 bytes into a double register that is represented by
the additional datatype _packw. To access the values in a _packw
variable, you can use a nunion data type: t ypedef doubl e _packw.

_packw
_packw

_transpose_hword(packhw, packhw);

_transpose_byte

(_packb, packb);

Language Implementation 3-19

The next inrinsic exchanges the values of value and memory, but only
those bits that are allowed by mask. Before the _swapnsk instruction is
generated, the parameters value and mask are moved into a double
register.

_void _swapmsk (int value, int mask, int * memory);

Another set of intrinsics is available to give you access to a number of
specific TriCore instructions that operate on packed data.

Calculate the absolute value of a _packb/_packhw value:

_packb _absb (_packb);

_packhw _absh (_packhw);
Calculate the absolute value of a _packhw value, using saturating
arithmetic:

_sat _packhw _abssh (_sat packhw);

Calculate the minimum/maximum value for either signed or unsigned
_packb/_packhw values:

_packb _minb (_packb, packb);
unsigned packb _minbu (unsigned packb, unsigned _packb);
_packhw _minh (_packhw, packhw);

unsigned _packhw _minhu (unsigned packhw,unsigned packhw);

To minimize space consumed by alignment padding with unions and
structures, elements follow the minimum alignment requirements imposed
by the architecture. The TriCore arichitecture supports access to 32-bit
integer variables on halfword boundaries.

Because only doubles, circular buffers, accum or pointers require the full
word access, structures that do not contain members of these types are
automatically halfword (2-bytes) packed.

Structures and unions that are divisible by 64-bit or contain members that
are divisible by 64-bit, are word packed to allow efficient access through
LD.D and ST.D instructions. These load and store operations require word
aligned structures that are divisible by 64-bit. If necessary, 64-bit divisible
structure elements are aligned or padded to make the structure 64-bit
accessible.

3-20

1.

2.

Chapter 3

With the pack 2 pragma the "LD.D/ST.D” structure and union copy
optimization can be disabled to ensure halfword structure and union
packing when possible. This "limited” halfword packing only supports
structures and unions that do not contain double, circular buffer, _accum
or pointer type members and that are not qualified with #pragma align to
get an alignment larger than 2-byte.

See also section 4.4, Pragmas in Chapter 4, Compiler Use.

The alignment of data sections and stack may also affect the alignment of
the base address of a halfword packed structure. A halfword packed
structure can be aligned on a halfword boundary or larger alignment.
When located on the stack or at the beginning of a section, the alignment
becomes a word, because of the minimum required alignment of data
sections and stack objects. A stack or data section can contain any type of
object. To avoid wrong word alignment of objects in the section, the
section base is also word aligned.

The main use of the _bi t type is to define and manipulate bit objects in
memory. A _bi t type variable can be handled in the same manner as a

variable of type int. Only some operations of the _bi t type are directly

supported by the TriCore instruction set.

The following rules apply to _bi t type variables:
A _bit type variable is always unsigned.

A _bit type variable can be exchanged with all other type-variables. The
compiler generates the correct conversion.

A _bit type variable is like a boolean. Therefore, converting an i nt type
variable to a _bi t type variable does not mean the _bi t type variable is
the least significant bit of the int type variable. It is 1 (true) if the i nt type
variable is not equal to 0, and 0 (false) if the i nt type variable is 0.

In C:

bit_variable = int_variable;

Language Implementation

can be seen as:
bit_variable = int_variable ? 1 : 0;

Pointer to _bi t is not allowed.

. The _bi t type is allowed as a structure member.

. A _bit type variable is allowed as a parameter of a function.

3
4
5
6.
5
8
9

A _bit type variable is allowed as a return type of a function.

. A _bit typed expression is allowed as switch expression.
. The si zeof ofa_bit typeis 1.

. Global or static _bi t type variable can be initialized.

10. A _bi t type variable can be declared absolute using the _at bi t attribute.

See section 3.2.3, The _atbit() Attribute for more details.

11. A _bi t type variable can be declared volatile.

Promotion Rules

For the _bi t type, the promotion rules are similar to the promotion rules
for char, short,int and | ong.

The type qualifiers _sfrbit 16 and _sfrbi t 32 control the access of
(SFR) bit fields. Bit fields qualified with the type qualifiers _srfbit 16 are
only accessed as word or half-word. Bit fields qualified with the type
qualifiers _sr f bi t 32 are only accessed as word.

To support SFR bit field access, SFR data structures are defined containing
SFR bit field members. For example the

ctri/include/ regcpu_nane. sfr files contain SFR structure definitions
that contain SFR bit field members.

In ANSI C, bit fields must be declared as integer type. However, in
implementations compliant with the TriCore Embedded Applications
Binary Interface, the alignment requirements they impose as members of
unions or structures, are the same as those that would be imposed by the
smallest integer—based data types wide enough to hold the fields. Thus:

» fields with a width of 8-bits or less impose only byte alignments

3-21

3-22

Chapter 3

* fields with a width from 9 to 16 bits impose half-word alignment
e fields with a width from 17 to 32 bits impose word alignment.

Byte type bit fields are accessed with byte instructions and half-word type
bit fields are accessed with half-word instructions. This works well for
SFR’s that allow byte access, but some of the TriCore SFR’s are restricted to
32-bit or 16-bit access.

When you define an SFR bit field with a size equal or smaller than 8-bit
for a 32-bit accessible SFR, this may result in byte or half-word access.
Also, when you define an SFR bit field with a size equal or smaller than
16-bit for a 32-bit accessible SFR, this may result in half-word access. But
byte and half-word operations are not allowed on 32-bit accessible SFR’s.
Therefor SFR’s that only allow 32-bit access, require type qualification with
_sfrbit 32 of its bit field members that are equal or smaller than 16-bit.
The _sfrbi t 32 type qualifier instructs the compiler to generate word
access only for accessing the SFR bit field members.

For example

#defi ne BCU Base O0xf0000200 /* BCU bl ock base address */
typedef volatile union

{
struct
{
unsigned _sfrbit32 BCUSRPN : 8; /* BCU Service Request
Priority Number. */
unsigned _sfrbit32 : 2;
unsigned _sfrbit32 BCUTCS : 2; [/* BCU Type-of —Service
Control . */
unsigned _sfrbit32 BCUSRE : 1; /* BCU Service Request
Enabl e Control . */
unsigned _sfrbit32 BCUSRR : 1, /* BCU Service Request
Fl ag. */
unsigned _sfrbit32 BCUCLRR : 1; /* BCU Request Cear Bit. */
unsigned _sfrbit32 BCUSETR : 1; /* BCU Request Set Bit. */
unsigned _sfrbit32 : 16;
} B
int |;

} BCU_SRC type;

#defi ne BCU_SRC (*(BCU_SRC type*)(BCU Base + 0xfc))
/* BCU Service Request Node */

SFR’s that allow only 16-bit or 32-bit access, require type qualification

with _sfrbit 16 of its bit field members that are equal or smaller than
8-bit. The _sfrbit 16 type qualifier instructs the compiler to generate
half-word or word access only for accessing the SFR bit field members.

Language Implementation 3-23

The _sfrbit32 and _sfrbit16 type qualifiers can only be used for int
types. For example, an error is generated for _sfrbit32 char x : 8;

When the _sfrbit32 and _sfrbitl6 type qualifiers are used for
qualifying other types than a bit field, this is ignored without warning. For
example _sfrbit32 int global; isequaltoint global;.

Structures or unions that contain a member qualified with _sfr bi t 32, are
zero padded when needed to complete a full word. The structure or union
will be word aligned. Structure or unions that contain a member qualified

with _sfrbit16, are zero padded when needed to complete a half-word.

The parameter registers D4..D7 and A4..A7 are used to pass the initial
function arguments. Up to 4 arithmetic types and 4 pointers can be passed
this way. A 64-bit argument is passed in an even/odd data register pair.
Parameter registers skipped because of alignment for a 64-bit argument
are used by subsequent 32-bit arguments. Any remaining function
arguments are passed on the stack. Stack arguments are pushed in
reversed order, so that the first one is at the lowest address. On function
entry, the first stack parameter is at the address (SP+0).

All function arguments passed on the stack are aligned on a multiple of 4
bytes. As a result, the stack offsets for all types except f | oat are
compatible with the stack offsets used by a function declared without a
prototype.

Structures up to eight bytes are passed via a data register or data register
pair. Larger structures are passed via the stack.

Arithmetic function results of up to 32 bits are returned in the D2 register.
64-bit arithmetic types are returned in the register pair D2/D3. Pointers are
returned in A2, and circular pointers are returned in A2/A3.

When the function return type is a structure, it is copied to a "return area”
that is allocated by the caller. The address of this area is passed as an
implicit first argument in A4.

3-24

Chapter 3

The C compiler supports two so—called function qualifiers, to change the
calling convention of a function: _syscal | func and _st ackpar m

The TriCore C language introduces introduces two new reserved words:
_interrupt and _i nterrupt _fast, which can be seen as special type
qualifiers, only allowed with function declarations. A function can be
declared to serve as an interrupt service routine. Interrupt functions cannot
return anything and must have a void argument type list. For example, in:

void _interrupt(vector)
_isr(void)

I

The compiler generates an interrupt service frame for interrupts. The
_interrupt function qualifier takes one argument, vector, that defines
the interrupt vector number. The difference between a normal function
and an interrupt function is that an interrupt function ends with an RFE
instruction instead of a RET, and that the lower context is saved and
restored with a pair of SVLCX/RSLCX instructions when one of the lower
context registers is used in the interrupt handler.

When the interrupt handler function is defined with the _i nt errupt ()
qualifier, the compiler will generate an entry for the interrupt vector table.
This vector will jump to the interrupt handler function. When the function
is defined with the _i nt errupt _f ast () qualifier, the interrupt handler is
directly placed in the interrupt vector table, thereby eliminating the jump
redirection code. This should only be used when the interrupt handler is
very small, as there is only 32 bytes of space available in the vector table.

Language Implementation 3-25

Example of _interrupt:

Suppose, you want an interrupt function for a software interrupt, and the
vector number is 0x30:

int c;

voi d
_interrupt(0x30)
transmt (void)

c = 1;

With the _trap and _trap_fast function qualifier you can declare a
function to serve as a trap service routine. Trap functions cannot return
anything and must have a void argument type list, except class 6 SYS trap
handlers. For example, in:

void _trap(7) _trapnm(void)
{

int tin;

#pragma asm(di5) /* tin nunber is inplicitly */
#pragma endasn(tin=dl5) /* passed via register di5 */

switch(tin)

{

case 0:

}

The compiler generates a trap service frame for traps. The _t r ap function
qualifier takes the class argument which defines the interrupt trap vector
number. The TriCore architecture specifies eight general classes for traps.
Each class has its own trap handler, accessed through a trap vector of 32
bytes per entry, indexed by the hardware—defined trap class number.
Within each class, specific traps are distinguished by a Trap Identification
Number (TIN) that is loaded by hardware into register D15 before the first
instruction of the trap handler is executed. The trap handler must test and
branch on the value in D15 to reach the sub-handler for a specific TIN.

3-26

Chapter 3

The difference between a normal function and a trap function is that a trap
function ends with an RFE instruction instead of a RET, and that the lower
context is saved and restored with a pair of SVLCX/RSLCX instructions if
one of the lower context registers is used in the interrupt handler. For class
6 SYS traps the lower context is not saved and restored which allows
passing and returning parameters.

When the trap handler function is defined with the _t rap() qualifier, the
compiler generates an entry for the trap vector table. This vector jumps to
the trap handler function.

When the function is defined with the _trap_f ast () qualifier, the
interrupt handler is directly placed in the trap vector table while
eliminating the jump redirection code. This should only be used when the
trap handler is very small because there is only 32 bytes of space available
in the vector table. This restriction is not checked by the compiler.

The class 6 SYS trap is raised immediately after execution of the SYSCALL
instruction to initiate a system call. The SYS trap can be called by functions
that are defined with the _syscal | f unc qualifier. (See section 3.9.5,
System Call Function Qualifier).

In contradiction to all other traps the SYS trap can return and pass
arguments like _syscal | f unc qualified functions. Arguments that are
passed via the stack, remain on the stack of the caller because it is not
possible to pass arguments from the user stack to the interrupt stack on a
system call. This restriction, caused by the TriCore’s run—time behavior, can
not be checked by the compiler.

Language Implementation 3-27

Example

_syscallfunc(1l) int syscalll(int, int);
_syscallfunc(2) int syscall2(int, int);

int Xx;

void main(void)

{
x = syscal l1(1, 2);
x = syscal |l 2(4, 3);
}
int trap(6) trap6(int a, int b))
{
int tin;

#pragma asm(d15)
#pragma endasm(tin=d15)

switch(tin)
{
case 1:
a += b;
br eak;
case 2:
a —= b;
br eak;
defaul t:
br eak;
}

return a;

With the _enabl e_ function qualifier you can declare an interrupt or trap
service routine to enable the interrupts immediately at function entry.
When entering an interrupt or trap service routine, the TriCore interrupt
system globally disables the interrupts. For example:

3-28

=

Chapter 3

void _interrupt(1l) _enable_isr(void)

{
}

The ENABLE instruction is generated as the first instruction in the interrupt
or trap service routine. The ENABLE instruction sets the Interrupt Enable
bit (ICR.IE) in the Interrupt Control Register.

The ENABLE instruction can also be generated with the _enabl e()
intrinsic function, but for this intrinsic function it is not guaranteed that it
will be the first instruction that is executed at interrupt service entry. See
also section 3.16, Intrinsic Functions

With the _bi sr_ interrupt/trap function qualifier you can set the current
cpu priority number (ICR.CCPN) to a value in the range of 0 to 511 and
enable the interrupts for an interrupt or trap service routine. The lower
context is also saved at function entry and restored at function exit for
bi sr qualified interrupt or trap functions. When entering an interrupt
or trap service routine the TriCore interrupt system globally disables the
interrupts. For example:

#define CCPN 10
void _interrupt(1) _bisr_(CCPN) isr(void)
{

}

The BISR instruction is generated as the first instruction in the interrupt or
trap service routine. The BISR instruction saves the lower context, sets the
Interrupt Enable bit (ICR.IE) in the Interrupt Control Register and sets the
CPU priority number (ICR.CCPN) to the specified CCPN value. At function
exit the lower context is restored with a RSLCX instruction.

The BISR instruction can also be generated with the _bi sr () intrinsic
function, but for this intrinsic function it is not guaranteed that it will be
the first instruction that is executed at interrupt service entry. See also
section 3.16, Intrinsic Functions

Language Implementation 3-29

The enable function qualifier is superfluous for bisr_qualified
functions. A warning will be generated and the _enable_ qualifier will be
ignored.

The bisr_ function qualifier is illegal for class 6 traps. The SYS trap, class
6, is raised immediately after execution of the SYSCALL instruction, to
initiate a system call. In contradiction to all other traps the SYS trap can
return and pass arguments, conform _syscallfunc qualified functions.
Returning values requires that the lower context may not be restored,
return values are returned in the lower context registers. Therefor BISR
can not be used, because it saves the lower context. Instead the _enable_
function qualifier can be used to ENABLE the interrupts and _mtcr()
intrinsic function can be used to set the ICR.CCPN value at the beginning
of a class 6 trap.

When you call a function declared with the _syscal | f unc function
qualifier, a SYSCALL instruction is generated rather than a function call.
The _syscal | f unc function qualifier can only be used at a function
declaration, not at a function definition. The _syscal | f unc function
qualifier takes one constant argument which is used as the operand of the
SYSCALL instruction.

Example:
_syscal I func(42) void trap42(int d4, int d5);
The function call t rap42(1, 2) will result in the following code:

nov16 d4, #1
nov16 ds, #2
syscal | #42

The function qualifier _st ackpar mchanges the standard calling
convention of a function into a convention where all function arguments
are passed via the stack, conforming a so called stack model. This qualifier
is only needed for situations where you need to use an indirect call to a
function for which you do not have a valid prototype.

3-30

Chapter 3

The compiler sets the least significant bit of the function pointer when you
take the address of a function declared with the _st ackpar m qualifier, so
that these function pointers can be identified at run—time. The least
significant bit of a function pointer address is ignored by the hardware.

Example:

voi d plain_func (int);
voi d _stackparm stack func (int);

void call _indirect (void (*fp)(int), int arg)

{
typedef _stackparmvoid (*SFP)(int);
SFP fp_stack

if ((int) fp &1)

fp_stack = (SFP) fp;
fp_stack(arg);

}
el se
{
fp(arg);
}
}
void main (void)
{
call _indirect(plain_func, 1);
call __indirect((void(*)) stack_func, 2);
}

With the _f ar function storage qualifier you can qualify a function to be
called indirectly instead of PC relative or absolute. The _f ar function
storage qualifier only effects non C function pointer calls; C function
pointer calls always use the indirect call operation of the TriCore.

Use the —-indirect option to enable code generation for indirect function
calling.

The TriCore architecture provides three alternative addressing modes for
calls and unconditional jumps: PC relative, absolute and register indirect.

Language Implementation

PC relative addressing provides a 24-bit, halfword-scaled relative
offset, supporting a target address range from -16Mb to +16Mb
around the calling point. This is not always sufficient for calls to
functions located within the same memory segment, but it is
particularly insufficient for calls across physical memory segments.

Absolute addressing provides a two—complement absolute address
with four bits of target segment ID and 20 bits of halfword scaled
offset within the segment. Via absolute addressing, targets can be
reached within any memory segment but only within the first two
megabytes of each segment.

Register indirect addressing provides a full 32-bit target address,
held in an address register specified in the instruction. Any target
address can be reached with this addressing mode. It only requires
to load the address register with the target address.

The PC relative and absolute addressing mode only require one word of
code. The indirect addressing requires a 2.5 word sequence (extended
load address in address register, call indirect address register). Because of
the equal instruction size, PC relative addressing and absolute addressing
mode can be combined in a generic call or generic unconditional jump.

To allow the compiler to generate efficient calls to external functions
whose final segment and offset remain unknown until locate time,

a default compilation mode is defined. You can overrule this mode with
the _f ar function storage qualifier or the —indirect compiler option. The
model for the default operation is as follows:

1. The compiler issues a cal | g or j g to the external symbol. These
instructions imply generic addressing.

2. The assembler generates a relocatable expression for this generic
addressing mode that may be resolved by the locator as a PC relative
or absolute call or unconditional jump.

3. If the branch address resolves to a location within +/— 16 Mb range of
the cal | g or | g instruction, the locator resolves it as a PC relative call
or unconditional jump.

Otherwise, if the branch address lies within the first two Mb of the
segment to which it is mapped, the locator changes the opcode bits
that specify the addressing mode of the cal | g or j g instruction,
changing the mode to absolute addressing, and resolves the branch as
an absolute call or unconditional jump.

3-31

3-32

=

Chapter 3

4. If neither of the above two conditions holds, the locator generates an
error telling that the target address is not in range of the generic
branch. In this case the function that defines this target address can be
qualified with _f ar to solve this problem.

In case you do not want to check your code on target addresses that might
be out of range, you can use the —indirect compiler option to implicitly
qualify all functions to be called indirectly. The (less efficient) 2.5 word
indirect call sequences will then be generated.

Naming convention for CODE sections

The CODE sections generated for _f ar qualified functions use a section
name f ar code. nod_nane instead of the default code section name
code. nod_nane. This naming convention makes it possible to identify
farcode and group farcode sections together. Within one source module,
all farcode sections are grouped together. With the =R compiler option or
with the #pragma section all farcode sections of your application can be
grouped together.

See Section 4.2.1, Detailed Description of the Compiler Options for a
description of the compiler option -R.

See section 4.4, Pragmas for a description of #pragma section.

The C libraries conform to the default compilation model. To call the C
library functions indirectly, use the —indirect option or use C function
pointer calls. C library functions should not be qualified _f ar and the
run—time library functions, mostly written in assembly, cannot be qualified
_far. To use indirect calling, you do not have to compile the C library
functions because most library functions are leaf functions or call other
library functions. The library functions linked with your application are
located in one section per library, PC relative addressing would be
sufficient for internal library calls.

You can use the vol ati | e type qualifier when modifications on the
object have undesired side effects when they are performed in the regular
way. Memory locations may not be updated because of compiler
optimizations, which attempt to save a memory write by keeping the value
in a register. When a variable is declared with the vol ati | e qualifier, the
compiler disables such optimizations.

Language Implementation 3-33

The ANSI report describes that the updates of volatile objects follow the
rules of the abstract machine (the target processor) and thus access to a
volatile object becomes implementation defined.

Example:
const volatile _near int real _time_clock _at(0x1234);

/* define the real tine clock register;
it is read—only (const);
read operations nust access the real nenory
| ocation (volatile)

*/

You can apply therestrict or _restrict type qualifier to pointer
types that point to an object and not a function. An object that is accessed
through a restrict-qualified pointer has a special association with that
pointer. This association requires that all accesses to that object use,
directly or indirectly, the value of that particular pointer. The intended use
of the restri ct qualifier is to promote optimization, and deleting all
instances of the qualifier from a program does not change the meaning of
the program.

Only the restri ct keyword can be enabled or disabled by the -Ar
(default) or —AR option respectively.

The restrict keyword is described in detail in the ISO/IEC 9899:1999(E)
standard, Programming languages — C.

Example:

_sfract * restrict a;
_sfract * restrict b;

declares two restri ct qualified pointers to an _sfract object. If an
object is accessed using one of a or b, and that object is modified
anywhere in the program, then it is never accessed using the other one.

3-34

Chapter 3

In this section the word ’strings’ means the separate occurrence of a string
in a C program. So, array variables initialized with strings are just
initialized character arrays, which can be allocated in any memory type,
and are not considered as ’strings’.

Strings and literals in a C source program, which are not used to initialize
an array, have static storage duration. The ANSI X3.159-1989 standard
permits string literals to be put in ROM. You can instruct the compiler to
allocate strings in ROM (CODE) memory with the —c option. By default,
ctri allocates strings in DATA memory. Note that initialized arrays are still
located in RAM.

char ranmhel p[] = "hel p”;
/* allocation of 5 bytes in RAM and
5 bytes in ROM */

Example of an array in ROM only, initialized with the addresses of strings,
also ROM only:

char * nmessage[] = {"hello”,”alarn,”exit"};

ANSI string concatenation is supported: adjacent strings are concatenated —
only when they appear as primary expressions — to a single new one. The
result may not be longer than the maximum string length (ANSI limit 509
characters, actual compiler limit 1500 characters).

The ANSI Standard states that identical string literals need not be distinct,
i.e. may share the same memory. Because memory can be very scarce with
microcontroller applications, the ctri compiler overlays identical strings
within the same module.

In section 3.1.4 the Standard states that behavior is undefined if a program
attempts to modify a string literal. Because it is a common extension to
ANSI (A.6.5.5) that string literals are modifiable, there may be existing C
source modifying strings at run—time. This can be done with pointers, or
even worse:

1)

"st ing"[2] ="r’";

Note that identical strings are overlayed!

Language Implementation 3-35

A special function call convention is used when a function is declared to
accept a variable number of arguments. The difference with the normal
parameter passing convention is that all variable arguments are always
passed on the stack. Default argument promotion takes place for these

arguments. The variable arguments can be accessed with the ANSI C
macros defined in st dar g. h.

3-36

Chapter 3

The _i nl i ne keyword is used to signal the compiler to inline the function
body instead of calling the function. An inline function must be defined in
the same source file before it is 'called’. When an inline function has to be
called in several source files, each file must include the definition of the
inline function. Usually this is done by defining the inline function in a
header file.

Not using a function which is defined as an _i nl i ne function does not
produce any code.

Example (t. c):

int wx,vy,z;

_inline int
add(int a, int b)
{
return(a + b);
}
voi d
mai n(void)
{
w=add(1, 2);
z = add(x, y);
}

No specific debug information is generated about inline functions. The
debugger cannot step—-into an inline function, it considers the inline
function as one HLL source line.

The pragmas asmand endasmare allowed in inline functions. This makes
it possible to define inline assembly functions. See also the section Inline
Assembly in this chapter.

Language Implementation

&

The generated code is:

mai n:
nov16 d15, #3
st.w w, d15
ld.w dis,y
Id.w d7, x
add16 dis, d7
st.w z,d15
ret 16

ctri supports inline assembly using the following pragmas:
#pragma asm Insert assembly text following this pragma.

#pragma asm_noflush As #pragma asm, but without flushing optimizer
information.

#pragma endasm Switch back to the C language.

C modules containing inline assembly are not portable and are very hard
to prototype in other environments.

When the compiler encounters a pragma asm, it discards some
information gathered for optimization. This means that optimizations like
copy and constant propagation are not performed across inline assembly
code. If you use pragma asm_noflush instead, these optimizations are not
disabled.

C Variable Interface

The pragmas can be followed by a specification of the register interface
between the C code and the inline assembly code. After the #pragma asm
or asm_noflush, you can allocate fixed registers or scratch registers that
can be used in the assembly code. These registers may optionally be
initialized with the value of a C variable. The compiler makes sure that C
variables that are needed after the inline assembly fragment are not
allocated in those registers.

After the #pragma endasm, you can add assignments from a register back
to a C variable. All registers mentioned here, should have been allocated
in the corresponding #pragma asm.

3-37

3-38

The syntax of the pragmas is as follows:

#pragma asm [(reg[=varname||, reg[=varnamel] ...)|

#pragma asm_noflush [(reg[=varname]|, reg[=varnamel]| ...

#pragma endasm |(varname=reg|, varname=reg]| ...)|
The arguments of the pragmas are:
varname name of a C variable,
reg a fixed register or a scratch register.
You can use the following fixed registers:

do..d15

a2..a7,all..als

e0..e14 (data registers pairs)

c2..c6, c12..c14 (address register pairs)

A scratch register name has the following syntax:
{d|a]e|c}%index

d data register

a address register

e data registers pair

¢ address register pair

Chapter 3

)l

index is a user defined number in the range 0-9. In the inline assembly
code, escape sequences consisting of a percent sign followed by a number
are replaced by the corresponding scratch register that was allocated by
the compiler. Registers are not replaced inside strings or comments. When
the scratch register is a register pair (€%, c%®), you can substitute the low
or high part of the register pair by adding an I’ or "h’ after the '%’ sign.

Example:

int doit (int a, int b)

{

#pragma asm (dO, dl=a, d%, d¥%3=b)
MOV do, d1
MOV 92, 98

#pragma endasm (a=d0, b=d%R)
return a + b;
}

Language Implementation 3-39

This example allocates four data registers. The first two, dO and d1, are
real registers, the last two, d%2 and d%3 are scratch registers that are
allocated automatically. Register d1 is initialized with the value of variable
a, and the scratch register d%3 is initialized with the value of variable b.
Afterwards, the compiler makes sure that the value of dO becomes
accessible as the C variable a, and scratch register d%2 becomes available
as variable b. This will be done by either allocating the C variable in the
register, or when this is not possible, by generating a MOV instruction.

You can use inline assembly code in a function that is declared _i nl i ne.
This makes it possible to write an _i nl i ne function that acts like a C
wrapper around your inline assembly code.

3-40

Chapter 3

When you want to use specific TriCore instructions that have no
equivalence in C, you would be forced to write assembly routines to
perform these tasks. However, ctri offers a way of handling this in C. ctri
has a number of built-in functions, which are implemented as intrinsic
functions.

To the programmer intrinsic functions appear as normal C functions, but
the difference is that they are interpreted by the code generator, so that
more efficient code may be generated. Several pre-declared functions are
available to generate inline assembly code at the location of the intrinsic
function call. This avoids the overhead that is normally introduced by
parameter passing and context saving before executing the called function.

The names of the intrinsic functions all have a leading underscore,
because the ANSI specification states that public C names starting with an
underscore are implementation defined.

The advantages of using intrinsic functions, compared with in-line
assembly (pragma asm/endasm) are:

* the possibility to use simulation routines or stub functions by a host
compiler, to replace the inline assembly code generated by ctri
* C level variables can be accessed

» the compiler chooses to generate the most efficient code to access C
variables

* intrinsic code is optimized, except for _nop()
The intrinsic _di sabl e yields an indication whether the interrupts where

enabled before. This indication can be passed to the _r est or e intrinsic to
restore the state of the interrupt handling.

void _enable (void);
int _disable (void);
void _restore (int);

Language Implementation 3-41

The following intrinsic functions generate the single instruction that
corresponds to the function name. The _syscal | and _bi sr functions
require a constant argument:

void _debug (void);
void _dsync (void);
void _isync (void);
void _svlex (void);
void _rslex (void);
void _nop (void);
void _syscall (int);

void _bisr (int);

These intrinsics can be used to access controll registers with the MFCR and
MTCR instructions. The first argument is the constant 16-bit register offset:

int _mfcr (int);
void _mtcr (int, int);

A number of specialized instructions that operate on a register value and
return a value in another register, can be accessed via the following
intrinsic functions:

int _clz (int);
int _clo (int);
int _cls (int);
int _satb (int);
int _satbu (int);
int _sath (int);
int _sathu (int);
int _abs (int);
int _abss (int);
int _parity (int);

To determine the minimum or maximum value of a signed or unsigned
value with a single instruction, you can use the following intrinsics:

int _min (int, int);

short _mins (short, short);
unsigned _minu (unsigned, unsigned);
int _max (ing, int);

short _maxs (short, short);

unsigned _maxu (unsigned, unsigned);

3-42

Chapter 3

Extracting a bit field from an integer with the EXTR or EXTRU instruction
can be done with the _extr () or _extru() intrinsics. Inserting a bit field
with the INSERT instruction is done with the _i nsert () intrinsic. The
pos and wi dt h arguments must be constant:

int _extr (int value, int pos, int width);
unsigned _extru (int value, int pos, int width);
int _insert (int old, int new, int pos, int width);

Access to the INS and INSN instruction is provided through the _i ns()
and _i nsn() intrinsics. The ol dbi t and newbi t arguments specify the
bit positions in the original value and new value. These bit positions must
be constants:

int _ins (int old, int oldbit, int new, int newbit);
int _insn (int old, int oldbit, int new, int newbit);

To multiply two 32-bit number to a 64-bit result, and scale back the result
to a 32-bit result, you can use the _rul sc() intrinsic. The third operand
specifies the number of bits that should be dropped from the result:

int _mulsc (int a, int b, int scale);

Additional intrinsic functions are available for manipulating fractional
numbers, packed data types and circular pointers. Refer to the description
of these language extensions for a description of the associated intrinsic
functions.

When you invoke ctri with the command line option -builtin, a list of
prototypes for all intrinsic functions is displayed.

With the _imaskldmst() intrinsic function you can peform atomic
Load-Modify-Store of a bit-field from an integer value with the IMASK
and LDMST instruction. This intrinsic writes the number of bits of an
integer value at a certain address location in memory with a bitoffset. The
number of bits must be a constant value:

void _imaskldmst (int* address, int value, int bitoffset, int bits)

With the intrinsic macro _putbit() you can store a single bit atomicly in
memory at a specified bit offset. The bit at offset 0 in value is stored at an
addpress location in memory with a bitoffset:

void _putbit (int value, int* address, int bitoffset)

Language Implementation

This intrinsic is implemented as a macro definition which uses the
_imaskldmst() intrinsic:

#define _putbit (value, address, bitoffset) _imaskldmst (address,
value, bitoffset, 1)

With the intrinsic macro _getbit() you can load a single bit from memory
at a specified bit offset. A bit value is loaded from an address location in
memory with a bitoffset and returned as an unsigned integer value:

unsigned _getbit (int* address , int bitoffset);

This intrinsic is implemented as a macro definition which uses the
_extru() intrinsic:

#define _getbit (address, bitoffset) _extru (*(address), bitoffset, 1)

3-43

3-44

Chapter 3

Based upon the 'MISRA guidelines for the application of C language
invehicle based software’, the TASKING MISRA C technology offers
enhanced compiler error checking that will guide the programmer in
writing better, more coherent and intrinsically safer applications. Through
this configurable system of enhanced C language error checking, the use
of error—-prone C constructs can be prevented. A predefined configuration
for compliance with the 'required rules’ described in the MISRA guidelines
is selectable through a single click in the EDE| M SRA C Conpi | er

Opt i ons menu. A custom set of applicable MISRA C rules can be easily
configured using the same menu. It is also possible to have a project team
work with a MISRA C configuration common to the whole project. In this
case the MISRA C configuration can be read from an external settings file.
This too, is easily selected through the EDE| M SRA C Conpi | er

Opt i ons menu. In order to provide proof that installed company MISRA C
requirements have in fact been adhered to throughout the entire project,
the TriCore Linker/Locator can generate a2 MISRA C Quality Assurance
report. This report lists the various modules in the project with the
respective MISRA C settings under which these have been compiled.

Unfortunately it has not been possible to implement support for all 127
rules described in the MISRA guidelines. The reason for this is that a
number of rules are beyond the scope of what can be checked in a C
compiler environment. These unsupported rules are visible in the

EDE| M SRA C Conpi l er Opti ons menu dialog boxes, but cannot be
selected (grayed out).

MISRA is a registered trademark of MIRA held on behalf of the Motor
Industry Software Reliability Association.

Enabling MISRA C

From the command line MISRA C can be enabled by the following
compiler option:

—m sracn,n, ...

where 7 specifies the rule(s) which must be checked.

Language Implementation 3-45

Error Messages

In case a MISRA C rule is violated, an error message will be generated
e.g.

E 209: MISRA C rule 9 violation: comments shall not be nested.

See Appendix B MISRA C for the supported and unsupported MISRA C
rules.

A tag declaration is intended to specify the lay—out of a structure or union.
If a memory type is specified, it is considered to be part of the declarator.
A tag name itself, nor its members can be bound to any storage area,
although members having type ”... pointer to” do require one. A tag may
then be used to declare objects of that type, and may allocate them in
different memories (if that declaration is in the same scope). The following
example illustrates this constraint.

struct S {
_near int i; /* referring to storage: not correct */
_far char *p; /* used to specify target nmenory: correct */
b

In the example above ctri ignores the erroneous _near storage qualifier
(without displaying a warning message).

Typedef declarations follow the same scope rules as any declared object.
Typedef names may be (re-)declared in inner blocks but not at the

parameter level. However, in typedef declarations, memory specifiers are
allowed. A typedef declaration should at least contain one type specifier.

Examples:
typedef _near int NEARINT; /* storage type _near: OK */
typedef int _far *PTR /* logical type _far

storage type 'default’ */

3-46

Chapter 3

The TriCore provides a specific addressing mode that can be used to
efficiently implement a circular buffer. This type of buffer is often used in
DSP applications. The C compiler ctri supports this addressing mode with
the pointer qualifier _ci r c. When you define a pointer variable with this
keyword, operations on this pointer will be performed using the circular
addressing mode. Because a circular pointer consists of two address
registers, it is eight bytes in size.

The following example shows how a circular pointer is defined:

_fract _circ buffer[SlZE];
_fract _circ *circBuffer = buffer;

If you want to initialize a circular pointer with a dynamically allocated
buffer at run—time, you should use the intrinsic function _initcirc():

#define N 100
_fract *buf = calloc(N, sizeof(_fract));
circBuffer = _initcirc(buf, N, 0);

Language Implementation 3-47

ctri supports three ways of code generation for a switch statement: a jump
chain (linear switch), a jump table or a lookup table.

A jump chain is comparable with an if/else—if/else—if/else construction. A
jump table is a table filled with target addresses for each possible switch
value. The switch argument is used as an index within this table. A lookup
table is a table filled with a value to compare the switch argument with
and a target address to jump to. The compiler generates a call to a
run-time library function, which performs a binary search lookup.

By default, the compiler will automatically choose the most efficient switch
implementation based on code and data size and execution speed. The
selection of the switch method can be influenced by the -Os option,
which favors execution speed over code size.

It is obvious that, especially for large switch statements, the jump table
approach executes faster than the lookup table approach. Also the jump
table has a predictable behavior in execution speed. No matter the switch
argument, every case is reached in the same execution time. However,
when the case labels are distributed far apart, the jump table becomes
sparse, wasting code memory. The compiler will not use the jump table
method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in
execution and shorter in size.

The compiler chosen switch method can be overruled by using:

#pragma switch |inear /* force junp chain code */
#pragma switch junptab /* force junp table code */
#pragma switch | ookup /* force | ookup table
code */
#pragma switch auto /* let the conpiler decide
the switch nethod used */
#pragma switch restore /* restore previous swtch
nmet hod */

Pragma swi t ch aut o is also the default of the compiler.

@ It is not possible to change the switch method selection inside a function
definition. Therefore, you should only use #pr agma swi t ch at file scope.

3-48 Chapter 3

COMPILER USE

al TASKING [

d31dVHO

Compiler Use

The control program cctri facilitates the invocation of the various
components of the TriCore toolchain, from a single command line. The
control program accepts source files and options on the command line in
random order.

The invocation syntax of the control program is:
cctri [[option] ... [control] ... [file] ...] ...

Options are preceded by a - (minus sign). The input file can have one of
the extensions explained below.

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as ’()’ and '?") must be enclosed with” " or
escaped. The -? option (in the C—shell) becomes: " =?" or =\?.

The control program recognizes the following argument types:

* Arguments starting with a -’ character are options. Some options
are interpreted by the control program itself; the remaining options
are passed to those programs in the tool chain that accept the
option.

e Arguments with a . ¢ suffix are interpreted as C source programs
and are passed to the compiler.

e Arguments with a . asm or . sr ¢ suffix are interpreted as assembly
source files. They are directly passed to the assembler.

e Arguments with a . a suffix are interpreted as library files and are
passed to the linker.

e Arguments with a . obj suffix are interpreted as object files and are
passed to the linker.

* Arguments with a . out suffix are interpreted as linked object files
and are passed to the locator. The locator accepts only one . out
file in the invocation.

* Arguments with a . dsc suffix are treated as locator command files.
If there is a file with extension . dsc on the command line, the
control program assumes a locate phase has to be added. If there is
no file with extension . dsc, the control program stops after linking
(unless it has been directed to stop in an earlier phase)

* Everything else is considered an object file and is passed to the
linker.

4-3

Chapter 4

Normally, a control program tries to compile and assemble all source files
to object files, followed by a link and locate phase which produces an
absolute output file. There are however, options to suppress the assembler,
linker or locator stage. The control program produces unique filenames for
intermediate steps in the compilation process, which are removed
afterwards.

The following options are interpreted by the control program:

Option Description

—? or none Display invocation syntax

—Waarg Pass argument directly to the assembler

—-Wcarg Pass argument directly to the C compiler

—Wocparg Pass argument directly to the C++ compiler
-Wilkarg Pass argument directly to the linker

—Wilcarg Pass argument directly to the locator

—Wplarg Pass argument directly to the C++ pre-linker

-V Display version header only

—C++ Force . c files to C++ mode

—C Do not link: stop at . obj

—cc Compile C++ files to . ¢ and stop

—cl Do not locate: stop at . out

-cm Always also invokes the C++ muncher

-cp Always also invokes the C++ pre—linker

—Ccs Do not assemble: compile C files to . sr ¢ and stop
—elf Set locator output file format to ELF/DWARF

—f file Read arguments from file ("-" denotes standard input)
—fptrap Use a floating point library with trap handler.

—ieee Set locator output file format to IEEE-695 (default)
—ihex Set locator output file format to Intel Hex

—nolib Do not link with the standard libraries

—o file Specify the output file

—srec Set locator output file format to Motorola S—records
—tiof Set locator output file format to TIOF-695

—tmp Keep intermediate files

-V Show command invocations

Compiler Use

Option Description
-0 Show command invocations, but do not start them
—wC++ Enable C and assembler warnings for C++ files

Table 4-1: Control program options

ﬂj For more detailed information about the control program cctri, refer to
section cctri in Chapter Utils of the Cross-Assembler Linker/Locator, Ulilities

User Guide.

4-6

Chapter 4

The invocation syntax of the C compiler is:
ctri | [option] ... [file] ...] ...

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as ’()’ and "?") must be enclosed with” " or
escaped. The -? option (in the C-shell) becomes: " =?" or =\?.

The C compiler accepts C source file names and command line options in
random order. Source files are processed in the same order as they appear
on the command line (left-to-right). Options are indicated by a leading -
character. Each C source file is compiled separately and the compiler
generates an output file with suffix . sr ¢ per C source module, containing
assembly source code.

The priority of the options is left—to-right: when two options conflict, the
first (most left) one takes effect. The =D and -U options are not
considered conflicting options, so they are processed left-to-right for each
source file. You can overrule the default output file name with the -o
option. The compiler uses each -o option only once, so it is possible to
specify multiple —o options for multiple source files.

When you invoke ctri without any argument, the invocation syntax is
displayed (same as =? option).

A summary of the options is given below. The next section describes the
options in more detail.

Option Description

-2 Display invocation syntax

—Alflag...] Control language extensions

—Ccpu Include SFR definition file regcpu.sfr before source

—Dmacro[=def] Define preprocessor macro

—E[m]l] Preprocess only or emit dependencies or enable multi—line
macros

-F Treat 'double’ as 'float’

-Fc Enable float’ constants

-FPU Allow the use of single precision floating point hardware
instructions

—Hfile Include file before starting compilation

Compiler Use

Option Description

—ldirectory Look in directory for include files

-K No type—checking for old—style (K&R) function calls

-N Allocate all data in _near memory

—Nthreshold Threshold for _near/_far allocation (default 8)

—Oflag... Control optimization

—R[name] Change default section name

-TC2 Allow use of TriCore2 instructions

—Umacro Remove preprocessor macro

-V Display version header only

-WAE Treat warning messages as errors

-Z Allocate all data in _a0 memory

—Zthreshold Threshold for _a0 allocation (default 0)

—builtin Display the list of builtin (intrinsic) functions

—C Allocate strings in code memory

-e Remove output file if compiler errors occur

—err Send diagnostics to error list file (. err)

—f file Read options from file

—g[f|l|n]... Enable symbolic debug information (unless —gn is used)

—indirect Generate indirect call and jump instructions for indirect
function calling

—misracn,n,... Enable individual MISRA C checks

-n Send output to standard output

—o file Specify name of output file

-Ss Merge C—source code with assembly output

—-u Treat all ‘char’ variables as unsigned

—w[num] Suppress one or all warning messages

—wstrict Suppress strict warnings (196,303)

—zpragma Identical to '#pragma pragma’ in the C source

Table 4-2: Compiler options (alphabetical)

4-7

Chapter 4

Description Options
Include options

Read options from file —f file
Include SFR definition file regcpu.sfr before source —Ccpu
Include file before starting compilation —Hfile
Look in directory for include files —Idirectory
Preprocess options

Preprocess only or emit dependencies or enable —E[m|I]

multi-line macros
Define preprocessor macro

—Dmacro[=def]

Remove preprocessor macro —Umacro
Allocation control options

Allocate all data in _near memory -N
Threshold for _near/_far allocation (default 8) —Nthreshold
Allocate all data in _a0 memory —Z
Threshold for _a0 allocation (default 0) —Zthreshold
Change default section name —R[name]
Allocate strings in code memory —C

Code generation options

Allow the use of single precision floating point —-FPU
hardware instructions

Control optimization —Oflag...
Allow use of TriCore2 instructions -TC2
Generate indirect call and jump instructions for —indirect
indirect function calling

Identical to '#pragma pragma’ in the C source —zpragma
Language control options

Enable/disable specific language extensions —Alflag...]
Treat 'double’ as ‘float’ -F
Enable 'float’ constants —-Fc

No type—checking for old—style (K&R) function calls -K

Treat all 'char’ variables as unsigned —-u

Compiler Use

Description Options
Output file options

Display the list of builtin (intrinsic) functions —builtin
Remove output file if compiler errors occur -e

Send output to standard output -n
Specify name of output file —o file
Merge C—source code with assembly output -s
Diagnostic options

Display invocation syntax -?
Display version header only -V

Treat warning messages as errors -WAE
Send diagnostics to error list file (. err) —err
Enable symbolic debug information (unless —gn is —g[f[l|n]...
used)

Enable individual MISRA C checks —misracn,n,...
Suppress one or all warning messages —w[num]
Suppress strict warnings (196,303) —wstrict

Table 4-3: Compiler options (functional)

4-10 Chapter 4

Option letters are listed below. Each option (except —-o; see description of
the —o option) is applied to every source file. If the same option is used
more than once, the first (most left) occurrence is used. The placement of
command line options is of no importance except for the -I and -o
options. For the —o option, the filename may not start immediately after
the option. There must be a tab or space in between. All other option
arguments must start immediately after the option. Source files are
processed in the same order as they appear on the command line
(left-to-right).

Some options have an equivalent pragma.

With options that can be set from within EDE, you will find a mouse icon
that describes the corresponding action.

Compiler Use

Option:
-?

Description:

Display an explanation of options at stdout.

Example:
ctri =?

4-11

4-12 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Set or disable the Language Ext ensi ons in the Language
tab.

~Alflags
Arguments:

Optionally one or more language extension flags.

Default:
-Al

Description:

Control language extensions. —A without any flags, specifies strict ANSI
mode; all language extensions are disabled. This is equivalent to
-ACKLPRSTYV and -AO.

Flags which are controlled by a letter, can be switched on with the lower
case letter and switched off with the uppercase letter. Note that the usage
of these options might have effect on code density and code execution
performance. The following flags are allowed:

¢ Default. Do not check for assignments of a constant string to a
non-constant string pointer. With this option the following example
produces no warning;:

char *p;
void main(void) { p = "hello”; }

C Conform to ANSI-C by checking for assignments of a constant string to
a non—constant string pointer. The example above produces warning
W130: "operands of =" are pointers to different types”.

k Default. Allow keyword language extensions such as _near, _far and
_at.

K Keyword extensions are not allowed.

Compiler Use 4-13

1 Default. 500 significant characters are allowed in an identifier instead of
the minimum ANSI-C translation limit of 31 significant characters. Note:
more significant characters are truncated without any notice.

L Conform to the minimum ANSI-C translation limit of 31 significant
characters. This makes it possible to translate your code with any
ANSI-C conforming C-compiler. Note: more significant characters are
truncated without any notice.

p Default. Allow C++ style comments in C source code. For example:
/Il e.g this is a C++ coment |ine.

P Do not allow C++ style comments in C source code, to conform to
strict ANSI-C.

r Default. Allow the use of the restri ct qualifier.
R Do not alow the use of the restri ct qualifier.

s Default. STDC is defined as ’0’. The decimal constant ’0’, intended
to indicate a non—-conforming implementation. When one of the
language extensions are enabled _ STDC__ should be defined as ’0’.

S _ STDC__ is defined as '1’. In strict ANSI-C mode (-A) _ STDC__is
defined as '1’.

t Default. Do not promote old-style function parameters when prototype
checking.

T Perform default argument promotions on old-style function parameters
for a strict ANSI-C implementation. char type arguments are promoted
to i nt type and f | oat type arguments are then promoted to doubl e

type.

v Default. Allow type cast of an lvalue object with incomplete type voi d
and Ivalue cast which does not change the type and memory of an
lvalue object.

Example:
void *p; ((int*)p)++; /* allowed */
int i; (char)i=2; /* NOT allowed */

V A cast may not yield an Ivalue, to conform strict ANSI-C mode.

4-14 Chapter 4

=

0 - same as —ACKLPRSTYV (disable all, strict ANSI-C)

1 - same as —Acklprstv (default, enable all)

Example:

To disable language keyword extensions and C++ comments enter:

ctri —-AKP test.c

Compiler Use 4-15

Option:
-builtin

Description:

Displays a list of function prototypes for all intrinsic functions.

Example:
ctri —builtin test.c

4-16 Chapter 4

Option:

Select the Proj ect | Processor Options... menu item and choose
the CPU tab. Select a CPU type in the CPU t ype field.

If you select User defi ned in the CPU t ype field, type the name of
your TriCore derivative in the User specified CPU nane field.

If you select User defi ned in the CPU t ype field and leave the User
speci fi ed CPU nane field empty, the option =C is not used.

~Cepu

Arguments:

The CPU name which identifies your TriCore derivative.

Description:

Use special function register definitions for cpu. The filename looked for is
"regcpu.sfr’. The search algorithm for . sfr files is the same as for include
files that are enclosed in ”” at the beginning of the C source. The file is
included before the source.

Example:
To use SFR definitions from the file r egt c10gp. sf r, enter:

ctri —CtclOgp test.c

Compiler Use 4-17

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Enable the Al | ocate strings in code nenory check
box in the Al | ocati on tab.

Description:

Use this option to force allocation of strings or floating point constants in
code memory. By default, these constants are allocated in data memory.

Example:
ctri —c test.c

4-18 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Define a macro (syntax: macro[=def]) in the Def i ne user
macr os field in the Pr epr ocessi ng tab. You can define more macros by
separating them with commas.

-Dmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro to the preprocessor, as in #define. If def is not given (= is
absent), 1’ is assumed. Any number of symbols can be defined. The
definition can be tested by the preprocessor with #if, #ifdef and #ifndef,
for conditional compilations. If the command line is getting longer than
the limit of the operating system used, the —f option is needed.

Example:

The following command defines the symbol NORAMas 1 and defines the
symbol Pl as 3. 1416.

ctri —DNORAM —DPI =3. 1416 test.c

%—U

Compiler Use 4-19

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Enable the Preprocess only and capture output check
box in the Pr epr ocessi ng tab.

“E[m 1]

Description:

Run the preprocessor of the compiler only and send the output to stdout.
When you use the —E option, use the —o option to separate the output
from the header produced by the compiler.

When you use the =Em option, the compiler generates dependency rules
which can be used by a 'make’ utility.

When you use the =El option, you can use multi-line macros. A backslash
used to continue a macro on the next source line will be expanded as a
new line instead of a concatenation of the lines.

Examples:

The following command preprocesses the file t est . ¢ and sends the
output to the file pr eout .

ctri —E —0 preout test.c

The following command preprocesses the file t est. ¢ which may contain
multi-line macros, and sends the output to the file mul ti .

ctri —El test.c —o nulti

The following command generates dependency rules for the file t est . c
which can be used by mktri (the TriCore 'make’ utility).

ctri —-Emtest.c

test.src : test.c

4-20 Chapter 4

Option:
@? EDE always removes the output file on errors.

B

Description:

Remove the output file when an error has occurred. With this option the
‘'make’ utility always does the proper productions.

Example:
ctri —e test.c

Compiler Use 4-21

Option:

In EDE this option is not so useful. If you would use this option you
would not see the error messages in the Bui | d tab.

i-ﬁ —-€rr

Description:

Write errors to the file source.err instead of stderr.

Example:

To write errors to the t est. err instead of stderr, enter:

ctri —err test.c

4-22 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Enable the Treat type ’double’ as ’'float’ and/or
Use type 'float’ instead of 'double’ for floating point
const ant s check box in the M sc tab.

~Flc]

Description:

-F forces using single precision floating point only, even when doubl e
or | ong doubl e is used. In fact doubl e and | ong doubl e are treated as
fl oat and default argument promotion from f | oat to doubl e is
suppressed. When you use this option, you must use the single precision
version of the C library.

% See the chapter Libraries for the naming conventions of the standard
libraries.

—-Fc enables the use of 'float’ constants. In ANSI C floating point constants
are treated having type doubl e, unless the constant has the suffix 'f. So
’3.0’ is a double precision constant, while ’3.0f is a single precision
constant. This option tells the compiler to treat all floating point constants
as single precision float types (unless they have an explicit "I’ suffix).

Example:

To force doubl e to be treated as f | oat , enter:

ctri —-F test.c

Compiler Use 4-23

Option:
~f file
Arguments:

A filename for command line processing. The filename "-” may be used to
denote standard input.

Description:

Use file for command line processing. To get around the limits on the size
of the command line, it is possible to use command files. These command
files contain the options that could not be part of the real command line.
Command files can also be generated on the fly, for example by the make
utility.

More than one —f option is allowed.
Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command
file.

2. To include whitespace in the argument, surround the argument with either
single or double quotes.

3. If you use quotes inside a quoted argument, use the following syntax:

a. If you use a single quote, surround the argument with double quotes.
If you use a double quote, surround the argument with single quotes.

Example:
"Single quote ' enbedded”
"Doubl e quote " enbedded’

b. If you use both types of quotes, split the argument in such a way that
each embedded quote is surrounded by the opposite type of quote.

"Doubl e quote ” and single quote '”’ enbedded”

4-24 Chapter 4

=

4. Some operating systems impose limits on the length of lines within a
text file. To circumvent this limitation it is possible to use continuation
lines. These lines end with a backslash and newline. In a quoted
argument, continuation lines will be appended without stripping any
whitespace on the next line. For non—quoted arguments, all whitespace
on the next line will be stripped.

Example:
"This is a continuation \

i ne”
—> "This is a continuation |line”

control (fil el(node,type),\
file2(type))

-
control (filel(node,type),file2(type))
5. It is possible to nest command line files up to 25 levels.
Example:
Suppose the file mycnds containts the following line:

—err
test.c

The command line can now be:

ctri —f rnycnds

Compiler Use

Option:

Select the Proj ect | C Conpiler Options | Project Options...

menu item. Enable the Use hardware single precision floating
poi nt instructions check box in the M sc tab.

@ This option is only available (and relevant) when you enable the FPU
present (on user defined CPU) check box on the CPU tab in the
Project | Processor Options... menu item.

-FPU

Description:

The -FPU option allows the generation of single precision floating point
instructions in the generated assembly file. When you select this option,
the macro _FPU is defined in the C source file. For a more detailed
description about the floating point arithmetic see Section 7.5, Floating
Point Arithmetic in Chapter 7, Run—time Environment.

Example:

To allow the use of floating point unit (FPU) instructions in the generated
assembly file, enter:

ctri —FPU test.c

4-25

4-26

Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Enable the Generate synbolic debug information
check box in the Debug tab. Optionally enable the | ncl ude debug
information for non referenced types and Di sable lifetine
info for all types check boxes.

~glf[1|n]...

Description:

Add directives to the output files, incorporating symbolic information to
facilitate high level debugging.

With —=gn you disable all debug, including type checking.
With -gl you disable lifetime information for all types.

If you use —gf, high level language type information is also emitted for
types which are not referenced by variables. Therefore, this sub—option is
not recommended.

Examples:
To add symbolic debug information to the output files, enter:

ctri —g test.c

To add symbolic debug information to the output files but disable lifetime
information for all types, enter:

ctri —gl test.c
To disable all symbolic debug information including type checking, enter:

ctri —gn test.c

Compiler Use 4-27

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Enter a filename in the Fi rst #i nclude this fil e field in
the Pr epr ocessi ng tab.

-Hfile
Arguments:

The name of an include file.

Description:
Include file before compiling the C—source. This is the same as specifying
#include "file” at the first line of your C-source.

Example:
ctri —Hstdio.h test.c

%-1

4-28

Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Enter one or more directory paths to the | ncl ude search
pat h field in the Pr epr ocessi ng tab.

=Idirectory

Arguments:

The name of the directory to search for include file(s).

Description:

Change the algorithm for searching #include files whose names do not
have an absolute pathname to look in directory. Thus, #include files
whose names are enclosed in ”” are searched for first in the directory of
the file containing the #include line, then in directories named in -I
options in left-to—-right order. If the include file is still not found, the
compiler searches in a directory specified with the environment variable
CTRIINC. CTRIINC may contain more than one directory. Finally, the
directory . . /i ncl ude relative to the directory where the compiler binary
is located is searched. This is the standard include directory supplied with
the compiler package.

For #include files whose names are in <>, the directory of the file
containing the #include line is not searched. However, the directories
named in -I options (and the one in CTRIINC and the relative path) are
still searched.

Example:

ctri —I/proj/include test.c

% Section Include Files.

Compiler Use 4-29

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Enable the Cal | functions indirect check box in the
M sc tab.

—-indirect

Description:

With the —indirect option you can globally enable code generation for
indirect function calling.

Example:

ctri —indirect test.c

% See Section 3.9.7, Far Function Storage Qualifier.

4-30 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Disable the Type checking for old (K& function
cal I s check box in the M sc tab.

8

Description:
Do not perform type-checking for old-style (K&R) function calls.
When a function is called without a visible prototype, the compiler will
synthesize a prototype from the types of the function arguments. This

prototype is then used for type checking of further calls to the same
function. The =K option disables this type checking.

Example:
Consider the following two calls to a function without a visible prototype:

unknown(1, 2);
unknown(3) ;

The compiler will issue an error message for the second call, because it is
not compatible with the prototype systhesized for the first call.

Compiler Use

@ Select the Project | M SRA C Conpiler Options | Project
Opti ons. .. menu item. Select one of the MISRA C options. If you select
Cust om M SRA C configuration you can enable or disable specific
rules in the numbered tabs.

-misracs,,....

Arguments:
The MISRA C rules to be checked.

Description:

With this option, the MISRA C rules to be checked can be specified. Refer
to Appendix B MISRA C for a list of supported and unsupported MISRA C
rules.

Example:
ctri —msrac9 test.c

Will generate an error in case ’test.c’ contains nested comments.

4-31

4-32 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select a _near al | ocati on radio button in the Al | ocati on
tab. Optionally enter a threshold value.

=N{threshold)
Arguments:
Optionally the threshold size of an object (in bytes).

Default:
-N8

Description:

Specify the threshold for _near /_f ar allocation. When you do not specify
either _near or _far in a declaration, the compiler uses a default based
on the size of the object. Objects smaller or equal to the threshold will be
allocated _near . Larger objects, arrays and strings will be allocated _f ar .

The default threshold is eight bytes.

When the =N option is specified without a threshold value, all objects will
be allocated _near ., including arrays and string constants.

Example:
To specify a threshold of 12 bytes, enter:

ctri —NI12 test.c

Compiler Use 4-33

Option:

-n

Description:

Do not create output files; instead, the output is sent to stdout.

Example:
ctri —-n test.c

4-34 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. You can control optimizations in the Opt i mi zat i on tab.

~Oflags
Pragma:

optimize flags

Arguments:

One or more optimization flags.

Default:
-01

Description:

Control optimization. If you do not use this option, the default
optimization of ctri is =01, which is an optimization level to let ctri
generate the smallest code.

Flags which are controlled by a letter, can be switched on with the lower
case letter and switched off with the uppercase letter. These options are
described together.

All optimization flags can also be given in the source file after a #pr agma
optim ze.

An overview of the flags is given below.

Compiler Use 4-35

a - relax alias checking (needs -Oc)
¢ - common subexpression elimination

e - expression propagation (needs —Oc)

f - code flow, order rearranging

i - move invariant code outside loop (needs —Oc)

1 - fast loops (increases code size)

o - software pipelining (needs —Ocfv, increases code size)
p - data flow, constant/copy propagation

s — optimize for speed

t - tail call conversion

u - loop unrolling

v - subscript strength reduction

w — global variable writeback caching

y - peephole optimization

z - pipeline scheduler

0 - same as —OACEFILOPSTUVWYZ (no optim)

1 - same as —-OacefiLOpStUvwyz (default, size)

2 - same as —OacefilopstUvwyz (speed)
Example:

ctri —OACfILPv test.c

% Pragma opti m ze in section Pragmas.

4-36 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Choose an Opti m zati on level in the Opti ni zati on tab.

-Onumber

Arguments:

A number in the range 0 - 2.

Default:
-01

Description:

Control optimization. You can specify a single number in the range 0 - 2,
to enable or disable optimization. The options are a combination of the
other optimization flags:

-00 - same as ~OACEFILOPSTUVWYZ
Switchable optimizations switched off

-01 - same as —OacefiLOpStUvwyz
Default. Set optimization flages to let ctri generate the
smallest code.

-02 - same as —OacefilopstUvwyz
Set optimization flags to let ctri generate the fastest code.

@ The flags 0 to 2 cannot be concatenated with other flags. For example,
—0a2c is not allowd, —OacF is allowed.

Example:

To optimize for code size, enter:

ctri -0l test.c

Compiler Use

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the Rel ax al i as checki ng
check box.

-Oa / -OA

Pragma:

optimize a / optimize A

Default:
-0OA

Description:

With -=Oa you relax alias checking. If you specify this option, ctri will not
erase remembered register contents of user variables if a write operation is
done via an indirect (calculated) address to a variable with a different

type.

@ It is quite safe to enable this optimization, unless you are assigning the
address of a variable to a pointer of a different type.

With —=OA you specify strict alias checking. If you specify this option, the

compiler erases all register contents of user variables when a write
operation is done via an indirect (calculated) address.

ﬂj Pragma opt i m ze in section Pragmas.

4-37

4-38 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the Conmon subexpr essi on
elimnation (CSE) check box.

-Oc / -0OC

Pragma:

optimize ¢ / optimize C

Default:
-Oc

Description:

With =Oc you enable CSE (common subexpression elimination). With this
option specified, the compiler tries to detect common subexpressions
within the C code. The common expressions are evaluated only once, and
their result is temporarily held in registers.

Note that the =Oc option must be on to enable moving invariant code
outside a loop (-Oi).

With —=OC you disable CSE (common subexpression elimination). With this
option specified, the compiler will not try to search for common
expressions. Also expression propagation and moving invariant code
outside a loop will be disabled.

Compiler Use 4-39

Example:
/*
* Conpile with —-CC —-Q0,
* Conpile with —OCc —Q0, comon subexpressions are found

* and tenporarily saved.
*/

char x, y, a, b, ¢, d;

voi d
mai n(void)
{
x =(a* b) - (c * d);
y =(a* b) + (c * d);/*(a*b) and (c*d) are common */
}

% Pragma opt i m ze in section Pragmas.

4-40

Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the Expr essi on propagati on
check box.

-Oe / -OE

Pragma:

optimize e / optimize E

Default:
-Oe

Description:

With —=Oe you enable expression propagation. With this option, the
compiler tries to find assignments of expressions to a variable, a
subsequent assignment of the variable to another variable can be replaced
by the expression itself. Note that the option -Oc must be on to use this
option.

With —OE you disable expression propagation.

Example:
/*
* Conpile with —OE —Cc —Q0, normal cse is done

* Conpile with —Ce —Qc -Q0, 'i+j' is propagated.
*/

unsigned i, j;

int

mai n(void)
static int a;
a=1i +j;
return (a);

}

Ik o

Pragma opt i m ze in section Pragmas.

Compiler Use

Option:

Select the Proj ect | C Conpiler Options | Project Options...

menu item. Select the Advanced optimization level in the
Opti m zat i on tab. Enable or disable the Control fl ow
optim zation and code reordering check box.

~Of / -OF

Pragma:

optimize f / optimize F

Default:
-Of

Description:

With -Of you enable control flow optimizations and code order
rearranging on the intermediate code representation, such as jump
chaining and conditional jump reversal.

With =OF you disable control flow optimizations.

Examples:

The following example shows a control optimization:

/*
* Conmpile with —-OF -Q0
* Conmpile with —OF —-00, conpiler finds first time "i’
* is always < 10, the unconditional junp is renoved.
*/
int i;
voi d
mai n(void)
{

for(i=0; i<10; i++)

{

do_sonet hi ng();
}

4-41

4-42

Chapter 4

The following example shows a conditional jump reversal:

/
Conpile with —OF
Conpile with -O

Code rearrangi ng
optim ze better,

* Ok X * Sk F

*/

int i;

—Q0, code as witten sequenti al
—Q0, code is rearranged

enabl es other optim zations to
e.g. CSE

extern void dumy(void);

void main ()

{
do
{
if (i)
{
=
}
el se
{ .
i ++:
br eak;
}
dumy();
} while (i);
}

éﬁf§ Pragma opt i m ze in section Pragmas.

Compiler Use 4-43

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zati on tab. Enable or disable the Move i nvari ant code

out si de | oop check box.

-0i / -OI

Pragma:

optimize i / optimize I

Default:
-0i

Description:
With —Oi you move invariant code outside a loop. Note that the option
-Oc must be on to use this option.

With =OI you disable moving invariant code outside a loop.

Example:

/*
* Conmpile with -0 —-QOc -00, normal cse is done
* Conmpile with -G —-Oc -Q0, invariant code is found in

* the | oop, code is noved outside the |oop.
*/

voi d

mai n(void)

{

char x, y, a, b;
int i;

for(i=0; i<20; i++)
{

a + b;
a+b

X
y

i

}

Ik o

Pragma opt i m ze in section Pragmas.

4-44 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opt i m zat i on tab. Enable or disable the Fast | oops (nore code

si ze) check box.

-0l /-0L

Pragma:

optimize 1 / optimize L

Default:
-OL

Description:

With =0l you enable fast loops. Duplicate the loop condition. Evaluate the
loop condition one time outside the loop, just before entering the loop,
and at the bottom of the loop. This saves one unconditional jump and
gives less code inside a loop.

With —=OL you disable fast loops.

Example:
/*
* Conpile with -OL —-Q0
* Conpile with - —Q0, conpiler duplicates the |oop
* condition, the unconditional junp is renoved.
*/
int i;

voi d
mai n(void)

for(; i<10; i++)
{

}

do_sonet hi ng() ;
}

ﬂ3 Pragma opt i m ze in section Pragmas.

Compiler Use 4-45

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the Sof t war e pi pel i ni ng

(i ncreases code size) check box.

-Oo / -00

Pragma:

optimize o / optimize O

Default:
-00

Description:

With -Oo you enable software pipelining. Software Pipelining is a
technique which increases parallelism in loops by executing iterations in
an overlapped fashion. This includes the use of SIMD (single instruction
multiple data) instructions. The optimization requires —Ocfv. Loops may
execute up to four times faster with this optimization at the expense of an
increased code size.

A loop must meet the following requirements:

e It should merely operate on _sfract data types including at least
one array variable.

* The loop trip count must be a compile time constant.

* The loop should not contain conditional code, references to volatile
objects, inline assembly or function calls. Calls to inline or intrinsic
functions are permitted but may degrade the optimization.

When the loop updates an array it is necessary in most cases to tell the
compiler that the array cannot overlap with other arrays used in the same
loop. This can be achieved by declaring the arrays as restri ct qualified
pointers.

With =00 you disable software pipelining.

4-46 Chapter 4

=

Example:
/*
* Wth software pipelining enabled two iterations
* will be done in parallel using SIMD instructions.
*/

_sat _sfract acc;
voi d vquant (_sat _sfract *x, _sat _sfract *k)

int i;
acc = 0;
for (i =0; i < 64; ++i)
{
acc += (k[i] — x[i]) * (k[i] = x[i]);
}

}

% Pragma opt i m ze in section Pragmas.

Compiler Use

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the Const ant and copy

pr opagati on check box.

-Op / -OP

Pragma:

optimize p / optimize P

Default:
_Op

Description:

With =Op you enable constant and copy propagation. With this option, the
compiler tries to find assignments of constant values to a variable, a
subsequent assignment of the variable to another variable can be replaced
by the constant value.

With -OP you disable constant and copy propagation.

Example:
/*
* Conpile with -OP —Q0, 'i’ is actually assigned to 'j’
* Conpile with —Op -00, 15 is assigned to 'j’, i’ was
* propagat ed
*/
int i;
int j;
voi d
mai n(void)
{
i = 10;
i =1 +5
}

ﬂ3 Pragma opt i m ze in section Pragmas.

4-47

4-48 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zati on tab. Enable or disable the Opti m ze for speed

i nstead of size check box.

-Os / -0S

Pragma:

optimize s / optimize S
Default:

-Os

Description:

With -Os you tell the compiler to generate faster code. Whenever possible
instructions are used that use less instruction cycles.

With -OS you disable optimization for speed, favor code size over
execution speed.

% Pragma opti m ze in section Pragmas.

Compiler Use

Option:

Select the Proj ect | C Conpiler Options | Project Options...

menu item. Select the Advanced optimization level in the
Opti m zat i on tab. Enable or disable the Tai | call conversion
check box.

-0t / -OT

Pragma:

optimize t / optimize T
Default:

-Ot

Description:

With =Ot you tell the compiler to replace a CALL directly followed by a
RET with a J instruction.

With =OT you disable this optimization. This may be the case for
debugging.

% Pragma opti m ze in section Pragmas.

4-49

4-50 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the
Opti m zati on tab. Enable or disable the Loop unrol | i ng check box.

-Ou / -OU

Pragma:

optimize u / optimize U

Default:
-OU

Description:

With =Ou you enable loop unrolling. With this option specified, the
compiler tries to eliminate short loops by duplicating a loop body 2, 4 or 8
times. This reduces the number of branches and creates a longer linear
code part.

With =OU you disable loop unrolling.

Example:

/*
* Conpile with —-QU, nornmal | oop handling
* Conpile with —Qu, loop is elimnated, body is duplicated

*/
int i, j;
void
mai n(void)
{
for(i=0; i<2; i++) /* short |oop */
{
=2
}
}

% Pragma opt i m ze in section Pragmas.

Compiler Use 4-51

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zati on tab. Enable or disable the Subscri pt strength
reducti on check box.

-Ov / -OV

Pragma:

optimize v / optimize V

Default:
-Ov

Description:

With =Ov you enable subscript strength reduction. With this option
specified, the compiler tries to reduce expressions involving an index
variable in strength.

With —OV you disable subscript strength reduction.

Example:
/*
* Conpile with —-OvV —Q0, disable subscript strength reduction
* Conpile with —Ov —00, begin and end address of 'a' are
* determ ned before the loop and tenporarily put in registers

* instead of determ ning the address each time inside the |oop

*/
int a[4];
void main(void)
{
int i;
for(i=0; i<4; i++)
{
a[i] = 0;
}

% Pragma opti m ze in section Pragmas.

4-52 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the d obal vari abl e

wri t eback cachi ng check box in the ... Optim zati on tab.

-Ow / -OW

Pragma:

optimize w / optimize W

Default:
-Ow

Description:
With -Ow the compiler will cache multiple writes to a global variable in a
register in some situations.

With —OW all updates of a global variable are directly written to memory.

Examples:
/*
* Conpile with —ONW-00, 'sum is updated tw ce
* Conpile with —Ow -Q0, "sum is updated only once

*/
int sum
voi d
add(int a, int b))
{
sum += a;
sum += b;
}

ﬂé Pragma opt i m ze in section Pragmas.

Compiler Use

Option:

Select the Proj ect | C Conpiler Options | Project Options...

menu item. Select the Advanced optimization level in the
Opti m zat i on tab. Enable or disable the Peephol e opti nmi zer

(remove redundant code) check boxinthe ... Optim zati on tab.

B -oy/ -oY
Pragma:

optimize y / optimize Y
Default:

_OY
Description:

With -Oy you enable peephole optimization. Remove redundant code.
The peephole optimizer searches for redundent instructions or for
instruction sequences which can be combined to minimize the number of
instructions.

With —=OY you disable peephole optimization.

ﬂj Pragma opt i m ze in section Pragmas.

4-53

4-54 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select the Advanced optimization level in the

Opti m zat i on tab. Enable or disable the I nstructi on pi peline
schedul er check box in the ... Optim zati on tab.

-0z / -OZ

Pragma:
optimize z / optimize Z

Default:
-0z

Description:

With -0z you enable instruction scheduling. The instruction scheduler will
try to rearrange instructions in order to make better use of the parallel
execution capabilities of the TriCore CPU. As a result, the program will run
faster. A disadvantage of this optimization is that the assembly code
generated by the C compiler is more difficult to read.

With =OZ you disable instruction scheduling.

% Pragma opti m ze in section Pragmas.

Compiler Use

Option:
-o file

Arguments:

An output filename. The filename may not start immediately after the
option. There must be a tab or space in between.

Default:

Module name with . sr ¢ suffix.

Description:

Use file as output filename, instead of the module name with . sr ¢ suffix.

Special care must be taken when using this option, the first —o option
found acts on the first file to compile, the second —o option acts on the
second file to compile, etc.

Example:
When specified:
ctri filel.c file2.c —o file3.src —o file2.src

two files will be created, file3.src for the compiled file filel.c and
file2.src for the compiled file file2.c.

4-55

4-56 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Add the option to the Addi ti onal opti ons field in the
M sc tab.

-R[name)

Pragma:

section

Arguments:

Optionally, a section name.

Description:

The compiler defaults to a section naming convention, using a memory
type abbreviation and the module name: code.name for code sections,
bss.name for cleared direct addressable data, etc. In case a module must
be loaded at a fixed address or a data section needs a special place in
memory, you can use the =R option to generate a different section name.
This way the order Ictri allocates these sections can be specified in the
locator description file.

Example:

To generate the section name section_type.NEWinstead of the default
section name section_type.mod_name, enter:

ctri —RNEWtest.c

To generate the section name section_type instead of the default section
name section_type.mod_name, enter:

ctri -Rtest.c

Compiler Use

Option:

Select the Proj ect | C Conpiler Options | Project Options...

menu item. Enable the Merge C source code with assenbly in
output file (.src) checkbox in the Qut put tab.

s -

Pragma:

source

Description:

Merge C source code with generated assembly code in output file.

Example:
ctri —-s test.c

; test.c:
1 |int i;

;2 I

;3 | int

;4 | mai n(void)
;5 [{

.global nmain
.extern _START

% Pragmas sour ce and nosour ce in section Pragmas.

4-57

4-58 Chapter 4

Option:

Select the Proj ect | Processor Options... menu item. Select the
CPU tab. Select TC2 in the CPU t ype box.

B -1C2
Description:

The -TC2 option allows the generation of TriCore2 instructions in the
generated assembly file. When you select this option, the macro _TC2 is
defined in the C source file.

Example:

To allow the use of TriCore2 instructions in the generated assembly file,
enter:

ctri —-TC2 test.c

Compiler Use

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Undefine one or more of the predefined symbols TASKING
or CTRI by disabling the corresponding check box in the

Pr epr ocessi ng tab.

-Uname

Arguments:

The name macro you want to undefine.

Description:

Remove any initial definition of identifier name as in #undef, unless it is a
predefined ANSI standard macro. ANSI specifies the following predefined
symbols to exist, which cannot be removed:

_ FILE “current source filename”

__LINE _ current source line number (int type)

_ TIME “hh:mm:ss”

__DATE "Mmm dd yyyy”

__STDC__ level of ANSI standard. This macro is set to 1 when the

option to disable language extensions (-A) is effective.

Whenever language extensions are excepted, STDC__ is set
to 0 (zero).

When ctri is invoked, also the following predefined symbols exist:

_CTRI predefined symbol to identify the compiler. This symbol can
be used to flag parts of the source which must be recognized

by the ctri compiler only. It expands to the version number
of the compiler.

_TASKING identifies the compiler. This symbol can be used to flag parts

of the source which must be recognized by TASKINGs ctri
only. It expands to 1.

4-59

4-60 Chapter 4

=

_SINGLE_FP This symbol is defined when the =F option is used to map
type doubl e onto type f oat .

_DOUBLE_FP
This symbol is defined when the —F option is not used.

These symbols can be turned off with the -=U option.

Example:
ctri —U TASKING test.c

%—D

Compiler Use

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Enable the Treat ’'char’ vari abl es as unsigned
check box in the M sc tab.

Description:

Treat 'character’ type variables as 'unsigned character’ variables. By default
char is the same as specifying si gned char. With —u char is the same
as unsi gned char.

Example:

With the following command char is treated as unsi gned char:

ctri —u test.c

4-61

4-62

Option:
-V
Description:

Display version information.
Example:
ctri -V

TASKI NG Tri Core C conpiler
Copyright 1996-year Altium BV

vX.yrz Build nnn
Serial # 00000000

Chapter 4

Compiler Use 4-63

Option:
-WAE

Description:

Treat warning messages as errors. This also affects the return value of the
application when only warnings occur. A build process will now stop
when warnings occur.

Example:
ctri —WAE test.c

4-64 Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select one of the Di agnosti cs options in the Qut put tab
and optionally fill in specific message numbers to suppress.

—winum|

-wstrict

Arguments:

Optionally the warning number to suppress.

Description:
-w suppress all warning messages. —-wnum only suppresses the given
warning. —wstrict suppresses all "strict” warning messages (183, 196, 303).

Example:

To suppress warning 135, enter:

ctri filel.c —w135

Compiler Use

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Select a _near al | ocati on radio button in the Al | ocati on
tab. Optionally enter a threshold value.

=Z[threshold)

Arguments:
Optionally the threshold size of an object (in bytes).

Default:
-Z0

Description:

Specify the threshold for _a0 allocation. When you do not specify any
memory specifier such as _near or _f ar in a declaration, the compiler
uses a default based on the size of the object

First, the size of the object is checked against the =N threshold, according
to the description of the —-N option. If the size is larger that the -N
threshold, but lower or equal to the -=Z threshold, the object is allocated in
_a0 memory. Larger objects, arrays and strings will be allocated _f ar.

The default =Z threshold is zero, which means that the compiler will never
use _a0 memory unless you specify the —=Z option. When you use the -Z
option without a threshold value, all objects not allocated _near ,
including arrays and string constants, will be allocated in _a0 memory.

Allocation in _a0 memory means that the object is addressed indirectly,
using AO as the base pointer. The total amount of memory that can be
addressed this way is 64 Kbytes.

Example:
To specify a threshold of 12 bytes, enter:

ctri —-Z12 test.c

4-65

4-66

Chapter 4

Option:

Select the Proj ect | C Conpiler Options | Project Options...
menu item. Add the option to the Addi ti onal opti ons field in the
M sc tab.

-

Arguments:

A pragma. The compiler recognizes all pragmas that are mentioned in
section 4.4 Pragmas as well as pragmas that can be used to solve CPU
functional problems (see Appendix C, CPU Functional Problems).

Description:

With this option you can give a pragma on the command line. This is the
same as specifying #pragma pragma’ in the C source. Dashes (') on the
command line in the pragma are converted to spaces. A dash prefixed by
another dash or space is never translated, so it is still possible to specify a
dash for negative numbers as pragma argument.

If you use quotes inside a quoted argument, use the following syntax:

a. If you use a single quote, surround the argument with double quotes.
If you use a double quote, surround the argument with single quotes.

Example:
"Single quote ' enbedded”
"Doubl e quote " enbedded’

b. If you use both types of quotes, split the argument in such a way that
each embedded quote is surrounded by the opposite type of quote.

"Doubl e quote ” and single quote '”’ enbedded”

Compiler Use

Example:
The following option
—zoptim ze—p
is equivalent with:

#pragma optimze p

@ To include pragmas to enable bypasses for CPU functional problems, you
can also use EDE:
Select the Proj ect | Processor Options... menu and chooose the
Bypasses TCl v1. 2 tab or the Bypasses TCl v1. 3 tab. Then select
the bypasses you want to enable.

Section 4.4, Pragmas,
Appendix C, CPU Functional Problems.

4-67

4-68

. If the filename is enclosed in

Chapter 4

You may specify include files in two ways: enclosed in <> or enclosed in
””. When an #include directive is seen, ctri used the following algorithm
trying to open the include file:

IIRH)

, and it is not an absolute pathname (does
not begin with a "\’ for PC, or a '/’ for UNIX), the include file is searched
for in the directory of the file containing the #include line. For example,
in:

PC:

ctri ..\..\source\test.c
UNIX:

ctri ../../sourcel/test.c

ctri first searches in the directory . . \..\source (../../source for
UNI X) for include files.

If you compile a source file in the directory where the file is located (ctri
test.c), the compiler searches for include files in the current directory.

This first step is not done for include files enclosed in <>.

Use the directories specified with the -I options, in a left—to-right order.
For example:

PC:

ctri —I..\..\include deno.c
UNIX:

ctri —=l1../../include deno.c

Check if the environment variable CTRIINC exists. If it does exist, use the
contents as a directory specifier for include files. You can specify more
than one directory in the environment variable CTRIINC by using a
separator character. Instead of using -I as in the example above, you can
specify the same directory using CTRIINC:

Compiler Use

PC:

set CTRII NC=..\..\include
ctri denpo.c

UNIX:
if using the Bourne shell (sh)

CTRIINC=../../include
export CTRIINC
ctri deno.c

or if using the C-shell (csh)

setenv CTRIINC ../../include
ctri deno.c

4. When an include file is not found with the rules mentioned above, the
compiler tries the subdirectory i ncl ude, one directory higher than the
directory containing the ctri binary. For example:

PC:

ctri.exe is installed in the directory C:\ CTRI\ BI N
The directory searched for the include file is C: \ CTRI \ | NCLUDE

UNIX:

ctri is installed in the directory / usr/l ocal /ctri/bin
The directory searched for the include file is
[usr/local/ctri/include

The compiler determines run—time which directory the binary is executed
from to find this i ncl ude directory.

A directory name specified with the =I option or in CTRIINC may or may
not be terminated with a directory separator, because ctri inserts this
separator, if omitted.

When you specify more than one directory to the environment variable
CTRIINC, you have to use one of the following separator characters:

PC:
s, space

e.g. set CTRIINC=..\..\include;\proj\include

4-69

4-70 Chapter 4

UNIX:
s, Space

e.g. setenv CTRIINC ../../include:/proj/include

Compiler Use 4-71

According to ANSI (3.8.6) a preprocessing directive of the form:
#pragma pragma-t oken—li st new-line

causes the compiler to behave in an implementation-defined manner. The
compiler recognizes all pragmas that are mentioned below as well as
pragmas that can be used to solve CPU functional problems (see Appendix
C, CPU Functional Problems). Other pragmas will be ignored. Pragmas
give directions to the code generator of the compiler. Besides the pragmas
there are two other possibilities to steer the code generation process:
command line options and keywords (e.g., _near type variables) in the C
application itself. The compiler acknowledges these three groups using the
following rules:

Command line options can be overruled by keywords and pragmas.
Keywords can be overruled by pragmas. Hence, pragmas have the highest
priority.

This approach makes it possible to set a default optimization level for a
source module, which can be overridden temporarily within the source by
a pragma.

The C compiler ctri supports the following pragmas:
align
Align objects of four bytes or larger to a word boundary. By default, the

minimum alignment dictated by the hardware is used. Depending on the
cache configuration, using a larger alignment may be faster.

This pragma optionally accepts one of the following arguments:

on enable this pragma (default)

off disable this pragma

n align object of size four or larger to # (z must be a power
of two)

restore restore the previous setting.

4-72 Chapter 4

asm

Insert the following (non preprocessor lines) as assembly language source
code into the output file. The inserted lines are not checked for their
syntax. The code buffer of the peephole optimizer is flushed. Thus the
compiler will stop optimizations like peephole pattern replacement and
resumes these optimizations after the endasm pragma as if it starts at the
beginning of a function.

% See section 3.15, Inline Assembly, for a description of the optional C
variable interface.

For advanced assembly in-lining, intrinsic functions can be used. The
defined set of intrinsic functions cover most of the specific TriCore features
which could otherwise not be accessed by the C language.

% For more information on intrinsic functions see section 3.16, Intrinsic
Functions.
asm_noflush
Same as pragma asm, except that the except that the optimizer does not
flush its information at this point, so that copy and constant propagation
may be performed across the inline assembly fragment.
clear

Perform ’clearing’ of non-initialized static/public variables.

noclear

No ’clearing’ of non-initialized static/public variables.

endasm
Switch back to the C language.

intenum
Force all enumeration types to type i nt . By default, the compiler uses
char or short when that is sufficient to represent all enumvalues.

This pragma optionally accepts one of the following arguments:

on enable this pragma
off disable this pragma (default)
restore restore the previous setting.

Compiler Use

listinc

Expand include files in generated list file.

nolistinc

Default. Do not expand include files in list file.

optimize flags

Controls the amount of optimization. The remainder of the source line is
scanned for option characters, which are processed like the flags of the -O
command line option. Please refer to the —O option for the list of available

flags.

optimize restore

End a region that was optimized with a #pragma optimize. The pragma
optimize restore restores the situation as it was before the corresponding
pragma optimize. #pragma optimize/optimize restore pairs can be

nested.
Example:

#pragna
/*

#pragﬁa.

/*

switch(. ..

{
}

#pragma

pack 2

optimze O
disable all optimnzations */

optimze 2
enabl e all optimzations */

)

optim ze restore

back to all optimzations disabled */
optim ze restore

back to default optimzations */

Qualify a structure or union type for halfword packing. The structure or
union to be packed cannot have members that require an alignment larger

than 2-byte.

4-73

4-74

Chapter 4

Example:

#pragma pack 2

typedef struct {
unsi gned char ucl
unsi gned char uc2;
unsi gned short usl
unsi gned short us2;
unsi gned short us3;

} packed_struct;

#pragma pack O

The #pragma pack directives can be nested.

% See also section 3.6.3, Halfword Packed Unions and Structures in
Chapter 3, Language Implementation.

pack 0

Turn off halfword packing for structures and unions.

When you place a #pragma O before a structure or union, its alignment
will not be changed:

#pragma pack O
packed_struct pstruct;

section [sect_type=/"name”

Change the default section names for new objects. The default name used
by the compiler consists of a prefix denoting the section type, and a suffix
derived from the module name. For example, the default name for the
code section of the module hel | 0. ¢ is code. hel | 0. After a #pragma
section, the current state will be the default situation plus all
modifications from the last #pragma section. All modifications from
previous #pragma section statements will be lost.

With #pragma section, you can change the default section name suffix or
specify an alternative name for specific sections. To change the default
suffix, specify the new suffix as a string after the pragma:

#pragma section "ny_suffix”

@ You can also change the default section name suffix from the command
line with the —-R option.

Compiler Use 4-75

To change a specific section name, you have to specify the section type,
an equal sign, followed by the new section name. For example:

#pragma section code="mny_code” data="ny_data”

The following section types are available:

Type Description

code program code

data initialized _near data

fardata initialized _far data

bss uninitialized _near data (cleared)
farbss uninitialized _far data (cleared)
rom constant _near data

farrom constant _far data

noclear uninitialized _near data
farnoclear | uninitialized _far data

Table 4-4: Section types
#pragnma section code_init

With the pragma above, the code section is copied from ROM to RAM
when the program is started.

#pragnma section data_overl ay

The pragma above allows the nocl ear and f ar nocl ear section to be
overlayed with other sections with the same name. Because of the default
naming scheme, you must force the existence of identical section names
with #pragma section [sect_type=/"name”. The use of the nocl ear
sections must be forced with #pragma noclear.

The following pragmas allow the nocl ear overlay and the f ar nocl ear
overlay sections to be overlayed with similar named sections in other
modules:

#pragma nocl ear
#pragma section data_overlay “overlay”

To restore the default section naming scheme, use:

#pragnma section

4-76

Chapter 4

source

Same as -s option. Enable mixing C source with assembly code.

nosource

Default. Disable generation of C source within assembly code.

stack

Use the alternative “stack” calling convention for the function or function
pointer immediately following this pragma. This pragma is equivalent with
the function qualifier _stackparm.

switch auto

Default. The compiler decides what code to generate on a switch
statement. In general, the compiler chooses the most efficient method in
terms of code density and execution speed. See also the paragraph Switch
Statement.

switch linear

Force the compiler to generate linear jump code for switch statements. See
also the paragraph Switch Statement.

switch jumptab

Force the compiler to generate jump tables for switch statements. See also
the paragraph Switch Statement.

switch lookup

Force the compiler to generate lookup tables for switch statements. See
also the paragraph Switch Statement.

switch restore

The compiler restores the previous switch method. See also the paragraph
Switch Statement. Example:

Compiler Use 4-77

#pragma switch |inear
/* linear junp code */

#pragﬁa. sWi tch | ookup
/* | ookup tables */
switch(...)

#pragma switch restore

/* back to switch linear */
#pragma switch restore

/* back to default switch auto */

TC112_DEFECTS
Enables all C compiler bypases for the TC112 CPU functional problems.

TC113_DEFECTS
Enables all C compiler bypases for the TC113 CPU functional problems.

Pragmas are also available to enable individual bypasses for CPU
functional problems. These pragmas have the names of the functional
problems as defined by Infineon. Refer to Appendix C, CPU Functional
Problems for a complete overview of these pragmas.

4-78 Chapter 4

The ANSI C standard [1-2.2.4] defines a number of translation limits, which
a C compiler must support to conform to the standard. The standard states
that a compiler implementation should be able to translate and execute a
program that contains at least one instance of every one of the limits listed
below. ctri’s actual limits are given within parentheses.

Most of the actual compiler limits are determined by the amount of free
memory in the host system. In this case a "D’ (Dynamic) is given between
parentheses. Some limits are determined by the size of the internal
compiler parser stack. These limits are marked with a 'P’. Although the size
of this stack is 200, the actual limit can be lower and depends on the
structure of the translated program.

* 15 nesting levels of compound statements, iteration control structures
and selection control structures (P > 15)
* 8 nesting levels of conditional inclusion (50)

* 12 pointer, array, and function declarators (in any combinations)
modifying an arithmetic, a structure, a union, or an incomplete type in
a declaration (15)

* 31 nesting levels of parenthesized declarators within a full declarator
(P > 31)

* 32 nesting levels of parenthesized expressions within a full expression
(P > 32)

* 31 significant characters in an external identifier (full ANSI-C mode),
1500 significant characters in an external identifier (non ANSI-C mode)

* 511 external identifiers in one translation unit (D)

* 127 identifiers with block scope declared in one block (D)

* 1024 macro identifiers simultaneously defined in one translation unit (D)
* 31 parameters in one function declaration (D)

* 31 arguments in one function call (D)

* 31 parameters in one macro definition (D)

* 31 arguments in one macro call (D)

* 509 characters in a logical source line (1500)

* 509 characters in a character string literal or wide string literal (after
concatenation) (1500)

* 8 nesting levels for #included files (50)

* 257 case labels for a switch statement, excluding those for any nested
switch statements (D)

Compiler Use 4-79

* 127 members in a single structure or union (D)
e 127 enumeration constants in a single enumeration (D)

* 15 levels of nested structure or union definitions in a single
struct—declaration-list (D)

4-80 Chapter 4

COMPILER
DIAGNOSTICS

al TASKING [

d31dVHO

Compiler Diagnostics

ctri has three classes of messages: user errors, warnings and internal
compiler errors.

Some user error messages carry extra information, which is displayed by
the compiler after the normal message. The messages with extra
information are marked with T’ in the list below. They never appear
without a previous error message and error number. The number of the
information message is not important, and therefore, this number is not
displayed. A user error can also be fatal (marked as 'F’ in the list below),
which means that the compiler aborts compilation immediately after
displaying the error message and may generate a 'not complete’ output
file.

The error numbers and warning numbers are divided in two groups. The
frontend part of the compiler uses numbers in the range 0 to 499, whereas
the backend (code generator) part of the compiler uses numbers in the
range 500 and higher. Note that most error messages and warning
messages are produced by the frontend.

If you program a non fatal error, ctri displays the C source line that
contains the error, the error number and the error message on the screen.
If the error is generated by the code generator, the C source line displayed
always is the last line of the current C function, because code generation is
started when the end of the function is reached by the frontend. However,
in this case, ctri displays the line number causing the error before the
error message. ctri always generates the error number in the assembly
output file, exactly matching the place where the error occurred.

So, when a compilation is not successful, the generated output file is not
accepted by the assembler, thus preventing a corrupt application to be
made (see also the —e option).

Warning messages do not result into an erroneous assembly output file.
They are meant to draw your attention to assumptions of the compiler, for
a situation which may not be correct. Warning messages can be controlled
with the =w[num] option.

The last class of messages are the internal compiler errors. The following
format is used:

S nunber: internal error — please report

5-3

Chapter 5

These errors are caused by failed internal consistency checks and should
never occur. However, if such a 'SYSTEM’ error appears, please report the
occurrence to TASKING, using a Problem Report form. Please include a
diskette or tape, containing a small C program causing the error.

ctri returns an exit status to the operating system environment for testing.

For example,

in 2 BATCH-file you can examine the exit status of the program executed
with ERRORLEVEL:

ctri -s %.c
| F ERRORLEVEL 1 GOTO STOP_BATCH

In a bourne shell script, the exit status can be found in the $? variable, for
example:

ctri $*

case $? in

0) echo ok ;;

1] 2| 3) echo error ;;
esac

The exit status of ctri is one of the numbers of the following list:

Compilation successful, no errors

There were user errors, but terminated normally

A fatal error, or System error occurred, premature ending
Stopped due to user abort

W N~ O

Compiler Diagnostics

Errors start with an error type, followed by a number and a message. The
error type is indicated by a letter:

information

error

fatal error

internal compiler error
warning

g(ﬂ"ﬂt‘ﬂ"‘

Frontend

F 1 evaluation expired
Your product evaluation period has expired. Contact your local
TASKING office for the official product.

W 2 unrecognized option: ‘option’
The option you specified does not exist. Check the invocation syntax
for the correct option.

E 4 expected number more #endif

The preprocessor part of the compiler found the#if’, #ifdef or #ifndef
dirctive but did not find a corresponding ‘#endif in the same source
file. Check your source file that each "#if’, ‘#ifdef or #ifndef has a
corresponding #endif.

E 5 no source modules

You must specify at least one source file to compile.

F 6 cannot create “file”
The output file or temporary file could not be created. Check if you
have sufficient disk space and if you have write permissions in the
specified directory.

F 7 cannot open “file”
Check if the file you specified really exists. Maybe you misspelled the
name, or the file is in another directory.

F 8 attempt to overwrite input file "file”

The output file must have a different name than the input file.

5-6 Chapter 5

E 9 unterminated constant character or string

This error can occur when you specify a string without a closing
double—-quote (") or when you specify a character constant without a
closing single-quote ("). This error message is often preceded by one
or more E 19 error messages.

F 11 file stack overflow

This error occurs if the maximum nesting depth (50) of file inclusion is
reached. Check for #include files that contain other #include files. Try
to split the nested files into simpler files.

F 12 memory allocation error
All free space has been used. Free up some memory by removing any
resident programs, divid the file into several smaller source files, break
expressions into smaller subexpressions or put in more memory.

W 13 prototype after forward call or old style declaration — ignored
Check that a prototype for each function is present before the actual
call.

E 14 ’; inserted
An expression statement needs a semicolon. For example, after ++i in
{ int i; ++i }.

E 15 missing filename after —o option

The -0 option must be followed by an output filename.

E 16 bad numerical constant

A constant must conform to its syntax. For example, 08 violates the
octal digit syntax. Also, a constant may not be too large to be
represented in the type to which it was assigned. For example,

int i = 0x1234567890; is too large to fit in an integer.

E 17 string too long
This error occurs if the maximum string size (1500) is reached. Reduce
the size of the string.

E 18 illegal character (Oxhexnumber)

The character with the hexadecimal ASCII value Oxbexnumber is not
allowed here. For example, the '# character, with hexadecimal value
0x23, to be used as a preprocessor command, may not be preceded by
non-white space characters. The following is an example of this error:

Compiler Diagnostics

E

char *s = #S ; /1l error

19 newline character in constant

The newline character can appear in a character constant or string
constant only when it is preceded by a backslash (\). To break a string
that is on two lines in the source file, do one of the following:

¢ End the first line with the line—continuation character, a backslash
V-

* Close the string on the first line with a double quotation mark, and
open the string on the next line with another quotation mark.

20 empty character constant
A character contant must contain exactly one character. Empty
character contants (" ') are not allowed.

21 character constant overflow

A character contant must contain exactly one character. Note that an
escape sequence (for example, \t for tab) is converted to a single
character.

22 ’#define’ without valid identifier

You have to supply an identifier after a '#define’.

23 ‘#else’ without #if

‘#else’ can only be used within a corresponding #if’, ‘#ifdef or '#fndef
construct. Make sure that there is a '#if’, '#ifdef’ or '#ifndef statement in
effect before this statement.

24 ‘#endif without matching #f

‘#endif appeared without a matching #if’, #ifdef or #ifndef
preprocessor directive. Make sure that there is a matching *#endif’ for
each '#f, '#ifdef and '#ifndef statement.

25 missing or zero line number

‘#line’ requires a non-zero line number specification.

26 undefined control

A control line (line with a '#dentifier’) must contain one of the known
preprocessor directives.

5-7

5-8

=

\

Chapter 5

27 unexpected text after control

#ifdef’ and '#ifndef require only one identifier. Also, '#else’ and
‘#endif only have a newline. '#undef requires exactly one identifier.

28 empty program

The source file must contain at least one external definition. A source
file with nothing but comments is considered an empty program.

29 bad #include’ syntax

A *#include’ must be followed by a valid header name syntax. For
example, #i ncl ude <stdi 0. h misses the closing ™>'".

30 include file "file” not found

Be sure you have specified an existing include file after a *#include’
directive. Make sure you have specified the correct path for the file.

31 end-of-file encountered inside comment

The compiler found the end of a file while scanning a comment.
Probably a comment was not terminated. Do not forget a closing
comment */> when using ANSI-C style comments.

32 argument mismatch for macro "name”

The number of arguments in invocation of a function-like macro must
agree with the number of parameters in the definition. Also, invocation
of a function-like macro requires a terminating ”)” token. The
following are examples of this error:

#define A(a) 1
int i = A(1,2); /* error */

#define B(b) 1
int j = B(1; /* error */

33 ’name” redefined

The given identifier was defined more than once, or a subsequent
declaration differed from a previous one. The following examples
generate this error:

int i

char i; /* error */

mai n()

{

}

Compiler Diagnostics

\\

mai n()
{

int j;

int j; /* error */
}

34 illegal redefinition of macro "name”

A macro can be redefined only if the body of the redefined macro is
exactly the same as the body of the originally defined macro.

This warning can be caused by defining a macro on the command line
and in the source with a '#define’ directive. It also can be caused by
macros imported from include files. To eliminate the warning, either
remove one of the definitions or use an #undef directive before the
second definition.

35 bad filename in #ine’

The string literal of a #line (if present) may not be a "wide—char” string.

So, #l i ne 9999 L"t45.c” is not allowed.

36 ’debug’ facility not installed

‘#pragma debug’ is only allowed in the debug version of the compiler.

37 attempt to divide by zero
A divide or modulo by zero was found. Adjust the expression or test if
the second operand of a divide or modulo is zero.

38 non integral switch expression
A swi t ch condition expression must evaluate to an integral value. So,
char *p = 0; switch (p) isnotallowed.

39 unknown error number: number
This error may not occur. If it does, contact your local TASKING office
and provide them with the exact error message.

40 non-standard escape sequence

Check the spelling of your escape sequence (a backslash, \, followed
by a number or letter), it contains an illegal escape character. For
example, \ ¢ causes this warning.

5-9

5-10

Chapter 5

41 #elif without #f

The '#elif directive did not appear within an #if, '#ifdef or #ifndef
construct. Make sure that there is a corresponding “#if’, ‘#ifdef or
‘#ifndef statement in effect before this statement.

42 syntax error, expecting parameter type/declaration/statement

A syntax error occurred in a parameter list a declaration or a statement.
This can have many causes, such as, errors in syntax of numbers, usage
of reserved words, operator errors, missing parameter types, missing
tokens.

43 unrecoverable syntax error, skipping to end of file
The compiler found an error from which it could not recover. This
error is in most cases preceded by another error. Usually, error E 42.

44 in initializer "name”

Informational message when checking for a proper constant initializer.

46 cannot hold that many operands

The value stack may not exceed 20 operands.

47 missing operator

An operator was expected in the expression.

48 missing right parenthesis

")’ was expected.

49 attempt to divide by zero — potential run—time error
An expression with a divide or modulo by zero was found. Adjust the
expression or test if the second operand of a divide or modulo is zero.
50 missing left parenthesis

' was expected.
51 cannot hold that many operators

The state stack may not exceed 20 operators.
52 missing operand

An operand was expected.

Compiler Diagnostics

E

53 missing identifier after defined’ operator

An identifier is required in a #i f def i ned(identifier) .

54 non scalar controlling expression
Iteration conditions and ’if’ conditions must have a scalar type (not a
struct, union or a pointer). For example, after static struct {int
i;} si = {0}; itis notallowed to specify while (si) ++si.i;.

55 operand has not integer type
The operand of a #if’ directive must evaluate to an integral constant.
So, #i f 1. is not allowed.

56 ’<debugoption><level>' no associated action
This warning can only appear in the debug version of the compiler.
There is no associated debug action with the specified debug option
and level.

58 invalid warning number: number
The warning number you supplied to the -w option does not exist.
Replace it with the correct number.

59 sorry, more than number errors

Compilation stops if there are more than 40 errors.

60 label "label” multiple defined

A label can be defined only once in the same function. The following
is an example of this error:

f()
{
| abl:

| abl: [* error */

}
61 type clash

The compiler found conflicting types. For example, a | ong is only
allowed on i nt or doubl e, no specifiers are allowed with struct,
uni on or enum The following is an example of this error:

unsi gned signed int i; /* error */

5-11

5-12

=

E

Chapter 5

62 bad storage class for "name”

The storage class specifiers aut 0 and r egi st er may not appear in
declaration specifiers of external definitions. Also, the only storage class
specifier allowed in a parameter declaration is r egi st er.

63 "name” redeclared
The specified identifier was already declared. The compiler uses the

second declaration. The following is an example of this error:

struct T { int i; };
struct T{ long j: }; /* error */

64 incompatible redeclaration of "name”

The specified identifier was already declared. All declarations in the
same function or module that refer to the same object or function must
specify compatible types. The following is an example of this error:

f()
{ . -

int i;

char i; /* error */
}

66 function "name”: variable "name” not used
A variable is declared which is never used. You can remove this
unused variable or you can use the =w66 option to suppress this
warning.

67 illegal suboption: option
The suboption is not valid for this option. Check the invocation syntax
for a list of all available suboptions.

68 function "name”: parameter "name” not used

A function parameter is declared which is never used. You can remove
this unused parameter or you can use the =-w68 option to suppress this
warning.

69 declaration contains more than one basic type specifier
Type specifiers may not be repeated. The following is an example of
this error:

int char i; /* error */

Compiler Diagnostics

E

70 ’break’ outside loop or switch
A br eak statement may only appear in a swi t ch or a loop (do, f or
orwhile). So,if (0) break; is notallowed.

71 illegal type specified
The type you specified is not allowed in this context. For example, you
cannot use the type voi d to declare a variable. The following is an
example of this error:

void i; /* error */

72 duplicate type modifier
Type qualifiers may not be repeated in a specifier list or qualifier list.
The following is an example of this warning:

{ long long i; } /* error */

73 object cannot be bound to multiple memories
Use only one memory attribute per object. For example, specifying
both rom and ram to the same object is not allowed.

74 declaration contains more than one class specifier
A declaration may contain at most one storage class specifier. So,
regi ster auto i; is not allowed.

75 ’continue’ outside a loop
conti nue may only appear in a loop body (do, f or or whi | e). So,
switch (i) {default: continue;} is not allowed.

76 duplicate macro parameter “name”

The given identifier was used more than one in the formatl parameter
list of a macro definition. Each macro parameter must be uniquely
declared.

77 parameter list should be empty
An identifier list, not part of a function definition, must be empty. For
example,int f (i, j, k); is notallowed on declaration level.
78 ’void’ should be the only parameter

Within a function protoype of a function that does not except any
arguments, Voi d may be the only parameter. So, i nt f(void,
int); is not allowed.

5-13

5-14

E

Chapter 5

79 constant expression expected
A constant expression may not contain a comma. Also, the bit field
width, an expression that defines an enum, array-bound constants and
Swi t ch case expressions must all be integral contstant expressions.

80 '# operator shall be followed by macro parameter

The '# operator must be followed by a macro argument.

81 '## operator shall not occur at beginning or end of a macro

The ## (token concatenation) operator is used to paste together
adjacent preprocessor tokens, so it cannot be used at the beginning or
end of a macro body.

86 escape character truncated to 8 bit value

The value of a hexadicimal escape sequence (a backslash, \, followed
by a ’x’ and a number) must fit in 8 bits storage. The number of bits
per character may not be greater than 8. The following is an example
of this warning:

char ¢ = "\ xabc’; /* error */

87 concatenated string too long

The resulting string was longer than the limit of 1500 characters.

88 "name” redeclared with different linkage

The specified identifier was already declared. This warning is issued
when you try to redeclare an object with a different basic storage class,
and both objects are not declared extern or static. The following is an
example of this warning:

int i;
int i(); /* error E 64 and warning */
89 illegal bitfield declarator
A bit field may only be declared as an integer, not as a pointer or a
function for example. So, struct {int *a:1;} s; is not allowed.
90 #error message

The message is the descriptive text supplied in a "#error’ preprocessor
directive.

Compiler Diagnostics

\

91 no prototype for function "name”

Each function should have a valid function prototype.

92 no prototype for indirect function call

Each function should have a valid function prototype.

94 hiding earlier one
Additional message which is preceded by error E 63. The second
declaration will be used.

95 protection error: message
Something went wrong with the protection key initialization. The
message could be: "Key is not present or printer is not correct.”, "Can’t
read key.”, ”Can’t initialize key.”, or "Can’t set key—model”.

96 syntax error in #define

#define id(requires a right-parenthesis).

97 ”...” incompatible with old-style prototype

If one function has a parameter type list and another function, with the
same name, is an old-style declaration, the parameter list may not have
ellipsis. The following is an example of this error:

int f(int, ...);
int f(); /* error, old-style */
98 function type cannot be inherited from a typedef
A typedef cannot be used for a function definition. The following is

an example of this error:

typedef int I NTFEN();
INTFN f {return (0);} /* error */
99 conditional directives nested too deep
#f, #ifdef or #ifndef directives may not be nested deeper than 50
levels.
100 case or default label not inside switch

The case: or defaul t: label may only appear inside a swi t ch.

5-15

5-16

Chapter 5

101 vacuous declaration

Something is missing in the declaration. The declaration could be
empty or an incomplete statement was found. You must declare array
declarators and st ruct , uni on, or enummembers. The following are
examples of this error:

int ; /* error */
static int a[2] ={ }; /* error */

102 duplicate case or default label

Switch case values must be distinct after evaluation and there may be
at most one def aul t : label inside a swi t ch.

103 may not subtract pointer from scalar

The only operands allowed on subtraction of pointers is pointer —
pointer, or pointer — scalar. So, scalar — pointer is not allowed. The
following is an example of this error:

int i;

int *pi = &

ff(1 - pi); /* error */

104 left operand of operator has not struct/union type

The first operand of a "> or '=>’ must have a st ruct or uni on type.

105 zero or negative array size — ignored

Array bound constants must be greater than zero. So, char a[0] ; is
not allowed.

106 different constructors

Compatible function types with parameter type lists must agree in
number of parameters and in use of ellipsis. Also, the corresponding
parameters must have compatible types. This error is usually followed
by informational message I 111. The following is an example of this
error:

int f(int);
int f(int, int); [* error different
paraneter |ist */

Compiler Diagnostics 5-17

E 107 different array sizes

Corresponding array parameters of compatible function types must
have the same size.This error is usually followed by informational
message I 111. The following is an example of this error:

int f(int [1[2]);
int f(int [1[3]); /* error */

E 108 different types

Corresponding parameters must have compatible types and the type of
each prototype parameter must be compatible with the widened
definition parameter. This error is usually followed by informational
message I 111. The following is an example of this error:

int f(int);
int f(long); /* error different type
in parameter list */
E 109 floating point constant out of valid range

A floating point constant must have a value that fits in the type to
which it was assigned. See section Data Types for the valid range of a
floating point constant. The following is an example of this error:

float d = 10E9999; /* error, too big */

E 110 function cannot return arrays or functions

A function may not have a return type that is of type array or function.
A pointer to a function is allowed. The following are examples of this

Crror:
typedef int F(); F f(); /* error */
typedef int A[2]; A g(); [* error */

I 111 parameter list does not match earlier prototype

Check the parameter list or adjust the prototype. The number and type
of parameters must match. This message is preceded by error E 106, E
107 or E 108.

E 112 parameter declaration must include identifier

If the declarator is a prototype, the declaration of each parameter must
include an identifier. Also, an identifier declared as a t ypedef name
cannot be a parameter name. The following are examples of this error:

5-18

Chapter 5

int f(int g, int) {return (g);} /* error */

typedef int int_type;
int h(int_type) {return (0);} /* error */

E 114 incomplete struct/union type

The struct or uni on type must be known before you can use it. The
following is an example of this error:

extern struct unknown sa, sb;
sa = sb; /* "unknown’ does not have a
defined type */

The left side of an assignment (the lvalue) must be modifiable.

115 label "name” undefined

A got o statement was found, but the specified label did not exist in
the same function or module. The following is an example of this error:

f1() { a: ; } /* W116 */
f2() { goto a; } /* error, label "a:’ is
not defined in f2() */

116 label "name” not referenced

The given label was defined but never referenced. The reference of the
label must be within the same function or module. The following is an
example of this warning:

f() { a ; } /* a is not referenced */

117 “name” undefined

The specified identifier was not defined. A variable’s type must be
specified in a declaration before it can be used. This error can also be
the result of a previous error. The following is an example of this
error:

unknown i ; /* error, 'unknown’ undefined */
i = 1; /* as aresult, i’ is also
undefined */

)

118 constant expression out of valid range

A constant expression used in a case label may not be too large. Also
when converting a floating point value to an integer, the floating point
constant may not be too large. This warning is usually preceded by
error E 16 or E 109. The following is an example of this warning;:

Compiler Diagnostics 5-19

int i = 10E88; /* error and warning */

E 119 cannot take ’sizeof bitfield or void type
The size of a bit field or voi d type is not known. So, the size of it
cannot be taken.

E 120 cannot take 'sizeof function

The size of a function is not known. So, the size of it cannot be taken.

E 121 not a function declarator

This is not a valid function. This may be due to a previous error. The
following is an example of this error:

int f() return O; /* missing '{ }' */

int g() {} /* error, 'g is not a fornma
paraneter and therefore,
this is not a valid function
decl aration */

1

E 122 unnamed formal parameter

The parameter must have a valid name.

W 123 function should return something

A return in a non-voi d function must have an expression.

E 124 array cannot hold functions

An array of functions is not allowed.

E 125 function cannot return anything

A return with an expression may not appear in a voi d function.

W 126 missing return (function "name”)
A non-voi d function with a non-empty function body must have a
ret ur n statement.

E 129 cannot initialize "name”

Declarators in the declarator list may not contain initializations. Also, an
ext er n declaration may have no initializer. The following are
examples of this error:

{ externint i =0; } /* error */
int f(i) int i=0; /* error */

5-20

Chapter 5

W 130 operands of operator are pointers to different types

Pointer operands of an operator or assignment (=), must have the
same type. For example, the following code generates this warming:

long *pl;
int *pi = 0;
pl = pi; /* warning */

131 bad operand type(s) of operator
The operator needs an operand of another type. The following is an
example of this error:

int *pi;

pi += 1.; /* error, pointer on left; needs

integral value on right */

132 value of variable "name” is undefined
This warning occurs if a variable is used before it is defined. For
example, the following code generates this warning:

int a,b;
a = b; /* warning, value of b unknown */
133 illegal struct/union member type
A function cannot be a member of a st ruct or uni on. Also, bit fields
may only have type i nt or unsi gned.
134 bitfield size out of range - set to 1

The bit field width may not be greater than the number of bits in the
type and may not be negative. The following example generates this
error:

struct i { unsigned i : 999; }; /* error */

135 statement not reached
The specified statement will never be executed. This is for example the
case when statements are present after a r et urn.
138 illegal function call
You cannot perform a function call on an object that is not a function.
The following example generates this error:

int i, j;

o =i0); /* error, i is not a function */

Compiler Diagnostics 5-21

E 139 operator cannot have aggregate type

The type name in a (cast) must be a scalar (not a struct, uni on or a
pointer) and also the operand of a (cast) must be a scalar. The
following are examples of this error:

static union ui {int a;} ui ;
ui = (union ui)9; /* cannot cast to union */
ff((int)ui); /* cannot cast a union

to sonething else */

E 140 type cannot be applied to a register/bit/bitfield object or
builtin/inline function
For example, the ’&” operator (address) cannot be used on registers
and bit fields. So, func(& 6); and func(&bitf.a); are invalid.
E 141 operator requires modifiable lvalue

The operand of the '++’, or '— operator and the left operand of an
assignment or compound assignment (lvalue) must be modifiable. The
following is an example of this error:

const int i = 1;
i =3 /* error, const cannot be
nmodi fied */
E 143 too many initializers
There may be no more initializers than there are objects. The
following is an example of this error:

static int a[1] = {1, 2}; /* error,
only one object can be initialized */
W 144 enumerator "name” value out of range
An enumconstant exceeded the limit for an i nt . The following is an

example of this warning:

enum { A = INT_MAX, B }; /* war ni ng,
B does not fit in an int anynore */
E 145 requires enclosing curly braces
A complex initializer needs enclosing curly braces. For example, i nt
a[] = 2; isnotvalid, butint a[] = {2}; is.
E 146 argument #number: memory spaces do not match

With prototypes, the memory spaces of arguments must match.

5-22

=

Chapter 5

W 147 argument #number: different levels of indirection

With prototypes, the types of arguments must be assignment
compatible. The following code generates this warning:

int i; void func(int,int);
func(1, &); /* warning, argunment 2 */

148 argument #number: struct/union type does not match

With prototypes, both the prototyped function argument and the actual
argument was a st ruct or uni on., but they have different tags. The
tag types should match. The following is an example of this warning:

f(struct s); /* prototype */
mai n()
{
struct { int i; } t;
f(t); /*t has other type than s */
}

149 object "name” has zero size
A struct or uni on may not have a member with an incomplete type.
The following is an example of this error:

struct { struct unknown m } s; /* error */

150 argument #number: pointers to different types
With prototypes, the pointer types of arguments must be compatible.
The following example generates this warning:

int f(int*);

long *I;

f(l); /* warning */
151 ignoring memory specifier

Memory specifiers for a struct, uni on or enumare ignored.

152 operands of operator are not pointing to the same memory
space

Be sure the operands point to the same memory space. This error
occurs, for example, when you try to assign a pointer to a pointer from
a different memory space.

Compiler Diagnostics 5-23

E 153 ’sizeof zero sized object

An implicit or explicit si zeof operation references an object with an
unkown size. This error is usually preceded by error E 119 or E 120,
cannot take 'sizeof’.

E 154 argument #number: struct/union mismatch

With prototypes, only one of the prototyped function argument or the
actual argument was a st ruct or uni on. The types should match. The
following is an example of this error:

f(struct s); /* prototype */

mai n()
{

int i;

f(i); /*i is not a struct */
}

E 155 casting lvalue 'type’ to type’ is not allowed

The operand of the '++’, or '— operator or the left operand of an
assignment or compound assignment (lvalue) may not be cast to
another type. The following is an example of this error:
int i =3
++(unsi gned) i ; /* error, cast expression
is not an |value */

E 157 ’name’ is not a formal parameter
If a declarator has an identifier list, only its identifiers may appear in
the declarator list. The following is an example of this error:
int f(i) int a; [* error */
E 158 right side of operator is not a member of the designated
struct/union
The second operand of ’.” or '—>’ must be a member of the designated
struct orunion
E 160 pointer mismatch at operator
Both operands of operator must be a valid pointer. The following

example generates this error:

int *pi = 44; /* right side not a pointer */

5-24

=

Chapter 5

E 161 aggregates around operator do not match

The contents of the structs, unions or arrays on both sides of the
operator must be the same. The following example causes this error:

struct {int a; int b;} s;

struct {int c; int d; int e;} t;

s = t; /* error */
162 operator requires an lvalue or function designator
The '&’ (address) operator requires an lvalue or function designator.
The following is an example of this error:

int i;

=& 0 =0);
163 operands of operator have different level of indirection
The types of pointers or addresses of the operator must be assignment
compatible. The following is an example of this warning:

char **a;
char *b;
a = b; /* warning */

164 operands of operator may not have type 'pointer to void’

The operands of operator may not have operand (voi d *).

165 operands of operator are incompatible: pointer vs. pointer to
array

The types of pointers or addresses of the operator must be assignment
compatible. A pointer cannot be assigned to a pointer to array. The
following is an example of this warning:

mai n()
{
typedef int array[10];
array a;
array *ap = a; /* warning */

}

166 operator cannot make something out of nothing

Casting type voi d to something else is not allowed. The following
example generates this error:

Compiler Diagnostics 5-25

void f(void);
mai n()
{ . .
int i;
i = (int)f(); [* error */
}

E 170 recursive expansion of inline function "name”

An _i nli ne function may not be recursive. The following example
generates this error:

_inline int a (int i)

{
a(i); /* recursive call */
return i;

}

mai n()

{
a(l); /* error */

}

E 171 too much tail-recursion in inline function "name”

If the function level is greater than or equal to 40 this error is given.
The following example generates this error:

_inline void a ()

{

a();
}
mai n()
{

a();
}

W 172 adjacent strings have different types
When concatenating two strings, they must have the same type. The
following example generates this warning:

char b[] = L"abc””def”; /* strings have
different types */

E 173 ’void’ function argument

A function may not have an argument with type voi d.

5-26

Chapter 5

174 not an address constant

A constant address was expected. Unlike a static variable, an automatic
variable does not have a fixed memory location and therefore, the
address of an automatic is not a constant. The following is an example
of this error:

int *a;
static int *b = a; /* error */
175 not an arithmetic constant

In a constant expression no assignment operators, no ++ operator, no
'— operator and no functions are allowed. The following is an
example of this error:

int a;
static int b = a++; /* error */
176 address of automatic is not a constant

Unlike a static variable, an automatic variable does not have a fixed
memory location and therefore, the address of an automatic is not a
constant. The following is an example of this error:

int a; /* automatic */
static int *b = &; /* error */
177 static variable "name” not used
A static variable is declared which is never used. To eliminate this
warning remove the unused variable.
178 static function "name” not used
A static function is declared which is never called. To eliminate this
warning remove the unused function.
179 inline function "name” is not defined

Possibly only the prototype of the inline function was present, but the
actual inline function was not. The following is an example of this
error:

Compiler Diagnostics 5-27

_inline int a(void); /* prototype */
mai n()
{

int b;

b =a(); [* error */
s

E 180 illegal target memory (znemory) for pointer
The pointer may not point to memory. For example, a pointer to
bitaddressable memory is not allowed.

E 181 invalid cast to function
A cast to type function is not allowed. A cast to a function pointer type
is allowed.

W 182 argument #number: different types
With prototypes, the types of arguments must be compatible.

W 183 variable 'name’ possibly uninitialized

Possibly an initialization statement is not reached, while a function
should return something. The following is an example of this warning:

int a;
int f(void)
{
int i;
if (a)
{
i = 0; /* statenent not reached */
}
return i; /* warning */
}

W 184 empty pragma name in —z option — ignored

The -z option requires a pragma name.

I 185 (prototype synthesized at line number in "name”)

This is an informational message containing the source file position
where an old-style prototype was synthesized. This message is
preceded by error E 146, W 147, W 148, W 150, E 154, W 182 or E 203.

5-28

Chapter 5

186 array of type bit is not allowed

An array cannot contain bit type variables.

187 illegal structure definition

A structure can only be defined (initialized) if its members are known.

So, struct unknown s = { 0 }; is not allowed.

188 structure containing bit-type fields is forced into bitaddressable
area

This error occurs when you use a bitaddressable storage type for a

structure containing bit-type members.

189 pointer is forced to bitaddressable, pointer to bitaddressable is
illegal

A pointer to bitaddressable memory is not allowed.

190 ”long float” changed to "float”

In ANSI C floating point constants are treated having type doubl e,
unless the constant has the suffix ’f. If you have specified an option to
use float constants, a | ong floating point constant such as 123. 12f| is
changed to a f | oat .

191 recursive struct/union definition

A struct or uni on cannot contain itself. The following example
generates this error:

struct s { struct s a; } b; /[* error */

192 missing filename after —f option

The —f option requires a filename argument.

194 cannot initialize typedef

You cannot assign a value to a typedef variable. So, t ypedef i=2; is
not allowed.

195 constant expression out of range — truncated

The resulting constant expression is too large to fit in the specified data
type. The value is truncated. The following example generates this
warning:

int i = 140000L; /* warning, value is too |large
to fit in an int */

Compiler Diagnostics 5-29

W 196 constant expression out of range due to signed/unsigned type
mismatch

The resulting constant expression is too large to fit in the specified data
type. The following example generates this warning:

int i = 40000U; /* the unsigned value is too |large
to fit in a signed int */
/* unsigned int i = 40000U; is OK */

W 197 unrecognized —w argument: argument
The -=w option only accepts a warning number or the text 'strict’ as an
argument. See the description of the =w option for details.

W 198 trigraph sequence replaced

Trigraphs are used in the C language to create special characters on
obsolete terminals with a limited character set. When they are replaced
in your source, e.g. in a string, they may give rise to very obscure
errors.

F 199 demonstration package limits exceeded
The demonstration package has certain limits which are not present in
the full version. Contact TASKING for a full version.

W 200 unknown pragma "name” - ignored
The compiler ignores pragmas that are not known. For example,
#pragma unknown.

W 201 name cannot have storage type — ignored

A regi st er variable or an automatic/parameter cannot have a storage
type. To eliminate this warning, remove the storage type or place the
variable outside a function.

E 202 ‘’name’ is declared with 'void’ parameter list

You cannot call a function with an argument when the function does
not accept any (Voi d parameter list). The following is an example of
this error:

5-30 Chapter 5

int f(void); /* void paranmeter list */
mai n()
{ . .
int i;
i = f(i); /* error */
i =1(0); [* OK */
}

E 203 too many/few actual parameters

With prototyping, the number of arguments of a function must agree
with the protoype of the function. The following is an example of this

error:

int f(int); /* one paraneter */

mai n()

{
int i;
o= f(i,i); /* error, one too many */
i = f(i); [* K */

}

W 204 U suffix not allowed on floating constant — ignored

A floating point constant cannot have a 'U’ or "u’ suffix.

W 205 F suffix not allowed on integer constant — ignored

An integer constant cannot have a 'F’ or ’f suffix.

E 206 ’name named bit-field cannot have 0 width

A bit field must be an integral contstant expression with a value greater
than zero.

W 208 unsupported MISRA C rule number %d.
Specified MISRA C rule number is not supported.

E 209 +MISRA C rule %d violation: %s
A specified MISRA C rule is violated.

E 212 “name’: missing static function definition

A function with a st ati ¢ prototype misses its definition.

Compiler Diagnostics 5-31

W 213 invalid string/character constant in non—active part of source

This part of the source is skipped.

E 214 second occurrence of #pragma asm or asm_noflush
#pragma asmy#pragma endasmblocks cannot be nested. Use
#pragnma endasmbefore starting a new #pragnma asm#pr agna
endasmblock.

E 215 ’#pragma endasm” without a "#pragma asm”
A #pragma endasmmust always have a corresponding #pr agma asm
or #pragma asm nof | ush.

W 303 variable 'name’ uninitialized

Possibly an initialization statement is not reached, while a function
should return something. The following is an example of this warning:

int a;
int f(void)
{
int i;
if (a)
{
i = 0; /* statenent not reached */
}
return i; /* warning */
}

E 327 too many arguments to pass in registers for asmfunc 'name’

An _asnf unc function uses a fixed register-based interface between C
and assembly, but the number of arguments that can be passed is
limited by the number of available registers. With function name this
limit was reached.

5-32 Chapter 5

=

Backend
W 501 function qualifier used on non-function

A function qualifier can only be used on functions.

W 502 _fract constant saturation occurred

An overflow occurred. The following is an example of this warning:

_fract g;

int f(void)
{

}

E 503 conversion between _fract types and integer not allowed

a=.75+.5 [* 1.25, overflow */

504 initialization with constant not allowed for circular pointers
E 505 no conversions allowed to/from packed types
Packed variables cannot be combined with any other type.
E 506 _sat _packb add/subtract is not supported by the TriCore
instruction set
W 508 duplicate function qualifier
Only one function qualifier is allowed.
E 509 function definition not allowed for _syscallfunc() function
"name”
The _syscal | func function qualifier can only be used at a function
declaration, not at a function definition.
E 510 pointer to _syscallfunc() function "name” not allowed
E 511 interrupt function must have void result and void parameter list
A function declared with _i nt errupt (n) may not accept any
arguments and may not return anything.
W 512 illegal interrupt number 'number’ — ignored
The interrupt vector number must be in the range 0 to 255. Any other
number is illegal.
E 513 calling an interrupt routine

An interrupt function cannot be called directly, you must use the
intrinsic function _enabl e() .

Compiler Diagnostics

mgt—nm o5}

el

514 conflict in’_interrupt/_stackparm’ attribute

The attributes of the current function qualifier declaration and the
previous function qualifier declaration are not the same.

515 different *_interrupt’ number

The interrupt number of the current function qualifier declaration and
the previous function qualifier declaration are not the same.

516 ‘'memory_type’ is illegal memory for function

The storage type is not valid for this function.

517 _packb/ packhw division is not supported
526 Identifier name unknown
527 _sat ignored for ‘operation’ operator on type _accum

528 _at() requires a numerical address

You can only use an expression that evaluates to a numerical address.

530 _at()/_atbit() only valid for global variables

Only global variables can be placed on absolute addresses.

531 _at()/_atbit() only allowed for uninitialized variables

Absolute variables cannot be initialized.

532 _atbit() only valid for ’_at’ variables

533 language extension keyword used as identifier

A language extension keyword is a reserved word, and reserved words

cannot be used as an identifier.

534 #pragma section: duplicate section suffix ignored

Only one section suffix is allowed after a #pr agnma sect i on if you
have not specified a section type.

535 #pragma section: unknown section type

See the description of #pragma secti on in paragraph Pragmas for a

list of valid section types.

536 #pragma section: '=" expected

A section type must be followed by an '=" (equal) sign and a section
name.

5-33

5-34

Chapter 5

537 #pragma section: section name expected

A section type must be followed by an '=" (equal) sign and a section
name.

538 #pragma section: syntax error

See paragraph Pragmas for a description of #pr agnma secti on.

540 #pragma stack underflow

This warning occurs if you use a #pragma swi tch restore while

there were no options saved by a previous #pragnma swi t ch.

541 pragma name should be followed by on/off/restore, a number
or nothing

Check the usage of the pragma for details.

542 #pragma optimize: stack underflow

This warning occurs if you use a #pragnma optin ze restore while

there were no options saved by a previous #pragnma opti n ze.

543 #pragma switch: stack underflow

This warning occurs if you use a #pragnma swi tch restore while

there were no options saved by a previous #pragma swi t ch.

544 #pragma switch must be followed by one of: auto, linear,
jumptab, lookup, restore

You have given no or a wrong argument to the #pragma swi t ch.

547 assignment of a (non-)circular object to a (non-)circular pointer

549 only _circ pointers and arrays/structs/unions are allowed -
ignored on struct/union member ‘name’

_circ is only allowed on structures and unions if its member is of
type _circ.

550 file write error

Check if there is enough free space left and check if you have write

permissions.

552 pointer to variable of type -bit is not allowed

Compiler Diagnostics 5-35

E 556 _atbit() only possible on objects, not on constant addresses
Use _at bit () to define bit variables within variables with a previously
defined name.

E 558 bit position must be a constant value in the range [0..32)

E 560 builtin function "name” requires constant argument

Check the usage of the intrinsic (builtin) function for details.

W 561 ”enum” bitfield type treated as “int”

The type enumis not allowed on bitfields, so it is treated as an i nt .

E 562 #pragma asm: cannot use register name

See section Inline Assembly for a list of the registers you can use.

E 563 #pragma asm: scratch register index must be less than 10

A scratch register must have a number in the range 0-9.

E 564 #pragma asm: register name mentioned multiple times

Use unique register names.

E 565 #pragma asm: syntax error
See section Inline Assembly for the syntax of #pr agma asm
E 566 #pragma endasm: register name must be declared in #pragma
asm
The register you want to use after a #pr agna endasmmust be
previously declared in the corresponding #pr agma asm
E 567 #pragma endasm: type of register name does not agree with
#pragma asm

The scratch register you want to use after a #pr agma endasmmust be
of the same type as previously declared in the corresponding #pr agnma
asm

E 568 #pragma endasm: cannot assign register name to multiple
variables

A register can be assigned to a variable only once after a #pr agma
endasm

5-36 Chapter 5

=

E 569 #pragma endasm: syntax error

See section Inline Assembly for the syntax of #pr agma endasm

E 570 #pragma asm: unknown scratch register name

The scratch register you want to use within a #pr agnma asmpart must
be previously declared in the corresponding #pragna asm

LIBRARIES

al TASKING [

d31dVHO

Libraries

6.1 INTRODUCTION

This chapter describes the library functions delivered with the compiler.
Some functions (e.g. printf() ,scanf()) can be edited to match your
needs. ctri come with libraries in object format and with header files
containing the appropriate prototype of the library functions. The library
functions are also shipped in source code (C or assembly).

A number of standard operations within C are too complex to generate
inline code for. These operations are implemented as run—time library
functions. The run—time library routines are added to the C library.

6.2 HEADER FILES

The following header files are delivered with the C compiler:

<assert.h> assert

<ctype.h> isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower,
isprint, ispunct, isspace, isupper, isxdigit, toascii, _tolower,
tolower, _toupper, toupper

<errno.h> Error numbers. No C functions.

<fcntl.h> Definition of flags used by open().

<float.h> copysign, isfinite, isinf, isnan, scalb. Constants related to
floating point arithmetic.

<fss.h> Definitions for file system simulation.

<limits.h> Limits and sizes of integral types. No C functions.
<locale.h> localeconv, setlocale. Delivered as skeletons.

<malloc.h> Non-ANSI C header file with prototypes of malloc and free.

<math.h> acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh

<setjmp.h> longjmp, setjmp
<signal.h> raise, signal. Functions are delivered as skeletons.

<stdarg.h> va arg, va_end, va_start

6-4

Chapter 6

<stddef.h> offsetof, definition of special types.

<stdio.h> clearerr, close, fclose, feof, ferror, fflush, fgetc, fgetpos,

fgets, fopen, fprintf, fputc, fputs, fread, freopen, fscanf, fseek,
fsetpos, ftell, fwrite, getc, getchar, gets, Iseek, open, perror,
printf, putc, putchar, puts, read, remove, rename, rewind,
scanf, setbuf, setvbuf, sprintf, sscanf, tmpfile, tmpnam,
ungetc, viprintf, vprintf, vsprintf, _unlink, write

<stdlib.h> abort, abs, atexit, atof, atoi, atol, bsearch, calloc, div, exit,

free, getenv, labs, Idiv, malloc, mblen, mbstowcs, mbtowc,
gsort, rand, realloc, srand, strtod, strtol, strtoul, system,
wcestombs, wcetomb

<string.h> memchr, memcmp, memcpy, memmove, memset, strcat,

strchr, stremp, strcol, strepy, strespn, strerror, strlen, strncat,
strnemp, strnepy, strpbrk, strrchr, strspn, strstr, strtok, strxfrm

<time.h> asctime, clock, ctime, difftime, gmtime, localtime, mktime,

strftime, time. All functions are delivered as skeletons.

<unistd.h> Non-ANSI C header file with prototypes for standard POSIX

6.3

I/0O functions. access, chdir, close, getcwd, Iseek, read, stat,
unlink, write.

C LIBRARIES

The C library contains C library functions. All C library functions are
described in this chapter. These functions are only called by explicit
function calls in your application program.

Library directories

The standard set of libraries for TC1 derivatives is located in the system
lib\tc1 directory.

The standard set of libraries for TC2 derivatives is located in the system
lib\tc2 directory.

A protected library set for the TC112 CPU functional problems is
located in the system lib\p\tc112 directory.

A protected library set for the TC113 CPU functional problems is
located in the system lib\p\tc113 directory.

Libraries

The protected library sets provide software bypasses for all TC112 and
TC113 supported CPU functional problems. They must be used in
conjunction with the appropriate C compiler workarounds for CPU
functional problems. For more details refer to Appendix C, CPU
Functional Problems.

The C library uses the following name syntax:

Library to link Description

libc.a (def.) C library double precision

libcs.a C library single precision (—F option)
libcs_fpu.a C library single precision with FPU instructions

(-F and —FPU options)
libfpn.a (def.) | Floating point library (no trapping)

libfpt.a Floating point library (trapping)

libfpn_fpu.a Floating point library with FPU instructions
(no trapping, —FPU option)

libfpt_fpu.a Floating point library with FPU instructions
trapping, —FPU option)

Table 6-1: C and floating point library name syntax

The Iktri linker is using this naming convention when specifying the -1
option. For example, with -lc the linker is looking for libc.a in the
system lib\tc1 directory. Specifying the libraries is a job taken care of by
the control program.

When you use floating point, the floating point library must always be the
last library linked, it should be placed after the C library. Arithmetic
routines like sin() , cos() , etc. are not present in these libraries, they
only contain basic floating point operations like ADDand MUL These
operations are only called implicitly in your application program.

The non-trapping floating point libraries libfpn.a and libfpn_fpu.a
have been optimized for speed. As a result, they do not completely follow
the IEEE-754 floating point standard for all exceptional cases.

6-5

6-6 Chapter 6

=

6.3.1 SINGLE PRECISION FLOATING POINT

In ANSI C all mathematical functions (<math.h>), are based on double
arguments and double return type. So, even if you are using only float
variables in your code, the language definition dictates promotion to
double , when using the math functions or floating point formatters
(printf() and scanf()). The result is more code and less execution
speed. In fact the ANSI approach introduces a performance penalty.

To improve the code size and execution speed, the compiler supports the
option =F to force single precision floating point usage. If you use -F, a
float variable passed as an argument is no longer promoted to double
when calling a variable argument function or an old style K&R function,
and the type double is treated as float . It is obvious that this affects the
whole application (including libraries). Therefore, special single precision
versions of the floating point libraries are delivered with the package.
When using -F, these libraries must be used. It is not possible to mix C
modules created with the —F option and C modules which are using the
regular ANSI approach.

The -Fc option only treats floating point constants (having no suffix) as
float instead of double .

6.3.2 C LIBRARY IMPLEMENTATION DETAILS

A detailed description of the delivered C library is shown in the following
list.

Explanation :

Y - Fully implemented
I - Implemented via file system simulation
L - Delivered as a skeleton

Libraries

File Imple— Routine name | Description / Reason
mented
assert.h Y ‘assert()’ macro | Macro definition
ctype.h Y Most of the routines are
delivered as macro AND as
function (as prescribed by
ANSI).
Y isalnum
Y isalpha
Y iscntrl
Y isdigit
Y isgraph
Y islower
Y isprint
Y ispunct
Y isspace
Y isupper
Y isxdigit
Y tolower
Y toupper
Y _tolower Not defined by ANSI
Y _toupper Not defined by ANSI
Y isascii Not defined by ANSI
Y toascii Not defined by ANSI
errno.h Y Only Macros
fentl.h Y Definitions of flags used by _open
I open
float.h Y
limits.h Y Only Macros
locale.h Y
L localeconv No OS present
L setlocale No OS present

6-7

6-8

Chapter 6

File

Imple—

3
®
=
—
®
o

Routine name

Description / Reason

math.h

acos
asin
atan
atan2
ceil
cos
cosh
exp
fabs
floor
fmod
frexp
Idexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh

setjmp.h

longjmp
setjmp

signal.h

raise
signal

stdarg.h

va_arg
va_end
va_start

stddef.h

I I I A et et e e e e R e e

Only Macros

Libraries

File

Imple—
mented

Routine name

Description / Reason

stdio.h

Fr<<<< -~ M- - -~~~ -~~~ ———————————— <~

<——=<

clearerr
fclose
feof
ferror
fflush
fgetc
fgetpos
fgets
fopen
fprintf
fputc
fputs
fread
freopen
fscanf
fseek
fsetpos
ftell
fwrite
getc
getchar
gets
perror
printf
putc
putchar
puts
remove
rename
rewind
scanf
setbuf
setvbuf
sprintf
sscanf
tmpfile
tmpnam

ungetc
vfprintf
vprintf

vsprintf

Delivered as a random name
generator, but should use
some process ID.

6-9

6-10

Chapter 6

File

Imple—
mented

Routine name

Description / Reason

_close
_open
_Iseek
_read

_unlink
_write

stdlib.h

P R

rrrrrr

abort
abs
atexit
atof
atoi
atol
bsearch
calloc
div
exit
free
getenv
labs
Idiv
malloc
gsort
strtod
strtol
strtoul
rand
realloc
srand

system
mblen
mbstowcs
mbtowc
wcstombs
wctomb

Calls _exit() in cstart

Calls _exit() in cstart

No OS present

No OS present

wide chars not supported
wide chars not supported
wide chars not supported
wide chars not supported
wide chars not supported

Libraries

File

Imple—

3
®
=
—
®
o

Routine name

Description / Reason

string.h

memchr
memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcoll
strcpy
strcspn
strerror
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtok
strxfrm

wide chars not supported

wide chars not supported

time.h

asctime
clock
ctime
difftime
gmtime
localtime
mktime
stritime
time

real time clock not supported

Uses SYSTIMO register

unistd.h

e e B R R R A iR e e e I I I e e I e e

access
chdir
close
getcwd
Iseek
read
stat
unlink
write

standard UNIX I/O functions

6-11

6-12 Chapter 6

6.3.3 C LIBRARY INTERFACE DESCRIPTION

_close

#include <stdio.h>
int _close(int fd);

Low level file close function. close is used by the functions close and
fclose. The given file descriptor should be properly closed, any buffer is
already flushed. This function interfaces to CrossView Pro’s file system
simulation.

_Iseek

#include <stdio.h>
off_t _Iseek(int fd, off_t offset, int whence);

Low level file positioning function. Iseek is used by all file positioning
functions (fgetpos, fseek, fsetpos, ftell, rewind). This function interfaces to
CrossView Pro’s file system simulation.

_open

#include <stdio.h>
int _open(int fd, int flags);

Low level file open function. _open is used by the functions fopen and
freopen. The given file descriptor should be properly opened. This
function interfaces to CrossView Pro’s file system simulation.

_read

#include <stdio.h>
size_t
_read(int fd, char *buffer, size_t count);

Low level input function. It reads a sequence of characters from a file. This
function interfaces to CrossView Pro’s file system simulation.

Returns the number of characters read.

Libraries

_tolower

#include <ctype.h>
int _tolower(int c);

Converts ¢ to a lowercase character, does not check if ¢ really is an
uppercase character. This is a non—ANSI function.

Returns the converted character.

_toupper

#include <ctype.h>
int _toupper(int c);

Converts € to an uppercase character, does not check if ¢ really is a
lowercase character. This is a non—ANSI function.

Returns the converted character.
_unlink

#include <stdio.h>
int _unlink(const char *name);

Low level file remove function. unlink is used by the function remove.
This function interfaces to CrossView Pro’s file system simulation.

_write
#include <stdio.h>

size t
_write(int fd, char *buffer, size_t count);

Low level ouput function. It writes a sequence of characters to a file. This
function interfaces to CrossView Pro’s file system simulation.

Returns the number of characters correctly written.

6-13

6-14 Chapter 6

5

abort

#include <stdlib.h>
void abort(void);

Terminates the program abnormally. It calls the function _exit , which is
defined in the start—-up module.

Returns nothing.

abs

#include <stdlib.h>
int abs(int n);

Returns the absolute value of the signed int argument.

access

#include <unistd.h>
int access(const char * name, int mode);

Use the file system simulation feature of CrossView Pro to check the
permissions of a file on the host. mode specifies the type of access and is a
bit pattern constructed by a logical OR of the following values:

R OK Checks read permission.

W_OK Checks write permission.

X OK Checks execute (search) permission.
F OK Checks to see if the file exists.

Returns zero if successful,
-1 on error.

acos

#include <math.h>
double acos(double x);

Returns the arccosine cos~1(x) of x in the range [0, T1,
x O -1, 1].

Libraries

asctime

#include <time.h>
char *asctime(const struct tm *tp);

Converts the time in the structure *tp into a string of the form:

Mon Jan 21 16:15:14 1989\n\0

Returns the time in string form.
asin

#include <math.h>
double asin(double x);

Returns the arcsine sin~1(x) of x in the range [-TV/2, /2],
x O[-1, 1.

assert

#include <assert.h>
void assert(int expr);

When compiled with NDEBUG, this is an empty macro. When compiled
without NDEBUG defined, it checks if expr is true. If it is true, then a line

like:

"Assertion failed: expression | file filename | line
is printed.
Returns nothing.

atan

#include <math.h>
double atan(double x);

Returns the arctangent tan~1(x) of X in the range [-TV2, TV/2].

x 01, 1.

6-16 Chapter 6
atan2

#include <math.h>
double atan2(double y, double x);

Returns the result of: tan~1(y/x) in the range [-Tt, T1.

atexit

#include <stdlib.h>
int atexit(void (*fcn)(void));

Registers the function fcn to be called when the program terminates

normally.
Returns zero, if program terminates normally.
non-zero, if the registration cannot be made.
atof

#include <stdlib.h>
double atof(const char *s);

Converts the given string to a double value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the double value.

atoi

#include <stdlib.h>
int atoi(const char *s);

Converts the given string to an integer value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the integer value.

Libraries

atol

#include <stdlib.h>
long atol(const char *s);

Converts the given string to a long value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the long value.

bsearch

#include <stdlib.h>

void *bsearch(const void *key,
const void *base, size_t n, size_t size, int (* cmp)
(const void *, const void *));

This function searches in an array of n members, for the object pointed to

by ptr . The initial base of the array is given by base . The size of each

member is specified by size . The given array must be sorted in ascending

order, according to the results of the function pointed to by cmp.

Returns a pointer to the matching member in the array, or NULL
when not found.

calloc

#include <stdlib.h>
void *calloc(size_t nobj, size_t size);

The allocated space is filled with zeros. The maximum space that can be
allocated can be changed by customizing the heap size (see the section
Heap). By default no heap is allocated. When “calloc()” is used while no
heap is defined, the locator gives an error.

Returns a pointer to space in external memory for nobj items of
size Dbytes length.
NULL if there is not enough space left.

6-17

6-18 Chapter 6

ceil

#include <math.h>
double ceil(double x);

Returns the smallest integer not less than X, as a double.

chdir

#include <unistd.h>
int chdir(const char *path);

Use the file system simulation feature of CrossView Pro to change the
current directory on the host to the directory indicated by path .

Returns zero if successful,
-1 on error.

clearerr

#include <stdio.h>
void clearerr(FILE *stream);

Clears the end of file and error indicators for stream.
Returns nothing.

clock

#include <time.h>
clock_t clock(void);

Determines the processor time used.

Returns number of microseconds since the last reset, assuming a 100
MHz cpu.

Libraries

close

#include <unistd.h>
int close(int fd);

File close function. The given file descriptor should be properly closed.

This function calls _close.

Returns zero if successful,
-1 on error.

copysign

#include <float.h>
double copysign(double d, double sign);

IEEE-754-1985 recommended function. Copy the sign of the second
argument to the value of the first argument and return that as result.

Returns the first argument with the sign of the second argument.

cos

#include <math.h>
double cos(double x);

Returns the cosine of X.

cosh

#include <math.h>
double cosh(double x);

Returns the hyperbolic cosine of X.

6-19

6-20 Chapter 6

-

ctime

#include <time.h>
char *ctime(const time_t *tp);

Converts the calender time *tp into local time, in string form. This
function is the same as:

asctime(localtime(tp));
Returns the local time in string form.
difftime
#include <time.h>

double
difftime(time_t time2, time_t timel);

Returns the result of time2 — timel in seconds.
div

#include <stdlib.h>
div_t div(int num, int denom);

Both arguments are integers. The returned quotient and remainder are also

integers.
Returns a structure containing the quotient and remainder of num
divided by denom.
exit

#include <stdlib.h>
void exit(int status);

Terminates the program normally. Acts as if ‘'main()’ returns with status
as the return value.

Returns zero, on successful termination.

Libraries

exp

#include <math.h>
double exp(double x);

Returns the result of the exponential function eX.
Jfabs

#include <math.h>
double fabs(double x);

Returns the absolute double value of x. |x |

Jclose

#include <stdio.h>
int fclose(FILE *stream)

Flushes any unwritten data for stream, discards any unread buffered input,
frees any automatically allocated buffer, then closes the stream .

Returns zero if the stream is successfully closed, or EOF on error.
Jeof

#include <stdio.h>
int feof(FILE *stream);

Returns a non—-zero value if the end-of-file indicator for stream is
set.

Sferror

#include <stdio.h>
int ferror(FILE *stream);

Returns a non—zero value if the error indicator for stream is set.

6-21

6-22 Chapter 6

-

Sftusb

#include <stdio.h>
int fflush(FILE *stream);

Writes any buffered but unwritten date, if stream is an output stream. If
stream is an input stream, the effect is undefined.

Returns zero if successful, or EOF on a write error.

Jgetc

#include <stdio.h>
int fgetc(FILE *stream);

Reads one character from the given stream .

Returns the read character, or EOF on error.

Jgetpos

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *ptr);

Stores the current value of the file position indicator for the stream pointed
to by stream in the object pointed to by ptr . The type fpos_t s
suitable for recording such values.

Returns zero if successful,
a non-zero value on error.

fgets

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Reads at most the next n—1 characters from the given stream into the
array s until a newline is found.

Returns s, or NULL on EOF or error.

Libraries 6-23

Sfloor

#include <math.h>
double floor(double x);

Returns the largest integer not greater than x, as a double.

Jmod

#include <math.h>
double fmod(double x, double y);

Returns the floating—point remainder of x/y , with the same sign as Xx.
If y is zero, the result is implementation—defined.

Jopen

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Opens a file for a given mode.
Returns a stream. If the file cannot not be opened, NULL is returned.
You can specify the following values for mode:

T read; open text file for reading

W write; create text file for writing; if the file already exists its
contents is discarded

a append; open existing text file or create new text file for
writing at end of file

“r+” open text file for update; reading and writing

"W+ create text file for update; previous contents if any is
discarded

"a+” append; open or create text file for update, writes at end of

file

6-24 Chapter 6

The update mode (with a '+") allows reading and writing of the same file.
In this mode the function fflush must be called between a read and a write
or vice versa. By including the letter b after the initial letter, you can
indicate that the file is a binary file. E.g. ’rb” means read binary, "w+b”
means create binary file for update. The filename is limited to

FILENAME MAX characters. At most FOPEN MAX files may be open at
once.

Jprintf

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);

Performs a formatted write to the given stream .
% See also "printf()”, 7 write()”.
Sfbutc

#include <stdio.h>
int fputc(int c, FILE *stream);

Puts one character onto the given stream .

% See also ”_write()”.

Returns EOF on error.
Sputs

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Writes the string to a stream . The terminating NULL character is not
written.

% See also ”_write()”.

Returns NULL if successful, or EOF on error.

Libraries 6-25

Jread

#include <stdio.h>
size_t fread(void *ptr, size_t size,
size_t nobj, FILE *stream);

Reads nobj members of size bytes from the given steam into the array
pointed to by ptr .

@]j See also ”_read()”.

Returns the number of successfully read objects.

free

#include <stdlib.h>
void free(void *p);

Deallocates the space pointed to by p. p Must point to space earlier

» »

allocated by a call to "calloc()”, "malloc()” or "realloc()”. Otherwise the
behavior is undefined.

d]j See also "calloc()”, "malloc()” and realloc()”.
Returns nothing
Jreopen
#include <stdio.h>

FILE * freopen(const char *filename,
const char *mode, FILE *stream);

Opens a file for a given mode associates the stream with it. This function
is normally used to change the files associated with stdin, stdout, or stderr.

@j See also "fopen()”.

Returns stream |, or NULL on error.

6-26 Chapter 6

Jrexp

#include <math.h>
double frexp(double x, int *exp);

Splits x into a normalized fraction in the interval [1/2, 1>, which is
returned, and a power of 2, which is stored in *exp . If X is zero, both
parts of the result are zero. For example: frexp(4.0, &var) results in
0.5-23. The function returns 0.5, and 3 is stored in var.

Returns the normalized fraction.

Jscanf

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);

Performs a formatted read from the given stream .

See also "scanf()”, ” read()”.
) —

Returns the number of items converted successfully.

Jseek

#include <stdio.h>
int fseek(FILE *stream, long offset, int origin);

Sets the file position indicator for stream . A subsequent read or write will
access data beginning at the new position. For a binary file, the position is
set to offset characters from origin , which may be SEEK SET for the
beginning of the file, SEEK_CUR for the current position in the file, or
SEEK END for the end-of-file. For a text stream, offset must be zero, or
a value returned by ftell . In this case origin must be SEEK_SET.

Returns zero if successful,
a non-zero value on error.

Libraries

Sfsetpos

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *ptr);

Positions stream at the position recorded by fgetpos in *ptr

Returns zero if successful,
a non-zero value on error.

Jtell
#include <stdio.h>
long ftell(FILE *stream);
Returns the current file position for stream |, or
—1L on error.
Jwrite

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size,
size_t nobj, FILE *stream);

Writes nobj members of size bytes to the given stream from the array
pointed to by ptr .

Returns the number of successfully written objects.
geitc

#include <stdio.h>
int getc(FILE *stream);

Reads one character out of the given stream . Currently #defined as
getchar(), because FILE I/O is not supported.

% See also ”_read()”.

Returns the character read or EOF on error.

6-27

6-28 Chapter 6

getchar

#include <stdio.h>
int getchar(void);

Reads one character from standard input.
% See also ”_read()”.
Returns the character read or EOF on error.

getcwd

#include <unistd.h>
char * getcwd(char * buf, size t size);

Use the file system simulation feature of CrossView Pro to retrieve the
current directory on the host.

Returns the directory name if successful,
NULL on error.

getenv

#include <stdlib.h>
char *getenv(const char *name);

Returns the environment string associated with nhame, or NULL if no
string exists.

gets

#include <stdio.h>
char *gets(char *s);

Reads all characters from standard input until a newline is found. The
newline is replaced by a NULL-character.

% See also ”_read()”.

Returns a pointer to the read string or NULL on error.

Libraries 6-29

gmtime

#include <time.h>
struct tm *gmtime(const time_t *tp);

Converts the calender time *tp into Coordinated Universal Time (UTC).

Returns a structure representing the UTC, or NULL if UTC is not
available.

isalnum

#include <ctype.h>
int isalnum(int ¢);

Returns a non-zero value when ¢ is an alphabetic character or a
number (JA-Z][a-2][0-9]).

isalpha

#include <ctype.h>
int isalpha(int ¢);

Returns a non-zero value when ¢ is an alphabetic character
((A-Z][a~z]).

isascii

#include <ctype.h>
int isascii(int ¢);

Returns a non-zero value when c is in the range of 0 and 127. This is
a non—-ANSI function.

iscntrl

#include <ctype.h>
int iscntrl(int c);

Returns a non—zero value when ¢ is a control character.

6-30 Chapter 6

-

isdigit

#include <ctype.h>
int isdigit(int ¢);

Returns a non—zero value when ¢ is a numeric character (|0-9]).
isfinite

#include <float.h>
int isfinite(double d);

IEEE-754-1985 recommended function. Test the given variable on being a
finite IEEE-754) value.

Returns zero if the variable is not finite, else non-zero.
isgraph

#include <ctype.h>
int isgraph(int ¢);

Returns a non-zero value when ¢ is printable, but not a space.
isinf

#include <float.h>
int isinf(double d);

IEEE-754-1985 recommended function. Test the given variable on being
an infinite (IEEE-754) value.

Returns zero if the variable is not +—infinite, else non-zero.

islower

#include <ctype.h>
int islower(int ¢);

Returns a non-zero value when c is a lowercase character ([a-z]).

Libraries

isnan

#include <float.h>
int isnan(double d);

IEEE-754-1985 recommended function. Test the given variable on being a
NaN (Not a Number, IEEE-754) value.

Returns zero if the variable is not NaN, else non-zero.
isprint

#include <ctype.h>
int isprint(int c);

Returns a non-zero value when ¢ is printable, including spaces.
ispunct

#include <ctype.h>
int ispunct(int ¢);

Returns a non-zero value when ¢ is a punctuation character (such as

1o p

)00 ete).
isspace

#include <ctype.h>
int isspace(int c);

Returns a non-zero value when ¢ is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

isupper

#include <ctype.h>
int isupper(int c);

Returns a non-zero value when ¢ is an uppercase character (JA-Z)).

6-31

6-32

Chapter 6

isxdigit

#include <ctype.h>
int isxdigit(int ¢);

Returns a non-zero value when ¢ is a hexadecimal digit

([0-9][A-F][a—1]).
labs

#include <stdlib.h>
long labs(long n);

Returns the absolute value of the signed long argument.

ldexp

#include <math.h>
double Idexp(double X, int n);

Returns the result of: x- 20,
Idiv

#include <stdlib.h>
Idiv_t Idiv(long hum, long denom);

Both arguments are long integers. The returned quotient and remainder
are also long integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

Libraries 6-33

localeconv

#include <locale.h>
struct Iconv *localeconv(void);

Sets the components of an object with type struct Iconv with values
appropriate for the formatting of numeric quantities according to the rules
of the current locale.

Returns a pointer to the filled-in object.

localtime

#include <time.h>
struct tm *localtime(const time_t *tp);

Converts the calender time *tp into local time.

Returns a structure representing the local time.
log

#include <math.h>
double log(double x);

Returns the natural logarithm In(x), x>0
log10

#include <math.h>
double log10(double x);

Returns the base 10 logarithm log10(x), x>0

6-34 Chapter 6

-

longjmp

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Restores the environment previously saved with a call to setjmp(). The
function calling the corresponding call to setjmp() may not be terminated
yet. The value of val may not be zero.

Returns nothing.

Iseek

#include <unistd.h>
off_t Iseek(int fd, off_t offset, int whence);

Moves read-write file offset. This function calls _lseek.

Returns the resulting pointer location if successful,
-1 on error.

malloc

#include <stdlib.h>
void *malloc(size_t size);

The allocated space is not initialized. The maximum space that can be
allocated can be changed by customizing the heap size (see the section
Heap). By default no heap is allocated. When "malloc()” is used while no
heap is defined, the locator gives an error.

Returns a pointer to space in external memory of size bytes length.
NULL if there is not enough space left.

Libraries 6-35

mblen

#include <stdlib.h>
int mblen(const char *s, size_tn);

Determines the number of bytes comprising the multi-byte character
pointed to by s, if s is not a null pointer. Except that the shift state is not
affected. At most n characters will be examined, starting at the character
pointed to by s.

Returns the number of bytes, or 0 if s points to the null character, or
-1 if the bytes do not form a valid multi-byte character.

mbstowcs

#include <stdlib.h>
size_t mbstowcs(wchar_t *pwcs,
const char *s, size_tn);

Converts a sequence of multi-byte characters that begins in the initial shift
state from the array pointed to by s, into a sequence of corresponding
codes and stores these codes into the array pointed to by pwcs, stopping
after n codes are stored or a code with value zero is stored.

Returns the number of array elements modified (not including a
terminating zero code, if any), or (size_t) -1 if an invalid
multi-byte character is encountered.

mbtowc

#include <stdlib.h>
int mbtowc(wchar_t *pwc,
const char *s, size_tn);

Determines the number of bytes that comprise the multi-byte character
pointed to by s. It then determines the code for value of type wchar_t

that corresponds to that multi-byte character. If the multi-byte character is
valid and pwc is not a null pointer, the mbtowc function stores the code in
the object pointed to by pwc. At most n characters will be examined,
starting at the character pointed to by s.

Returns the number of bytes, or 0 if s points to the null character, or
-1 if the bytes do not form a valid multi-byte character.

6-36 Chapter 6

-

memchr

#include <string.h>
void *memchr(const void *cs, int c, size_tn);

Checks the first n bytes of cs on the occurrence of character c.

Returns NULL when not found, otherwise a pointer to the found
character is returned.

memcmp

#include <string.h>
int memcmp(const void *cs, const void *ct,
size_tn);

Compares the first n bytes of cs with the contents of ct .
Returns avalue<0if cs<ct |

Oifcs==ct
or a value > 0 if cs > ct

memcpy

#include <string.h>
void *memcpy(void *s, const void *ct, size_tn);

Copies n characters from ct to s. No care is taken if the two objects
overlap.

Returns S

memmove

#include <string.h>
void *memmove(void *s, const void *ct, size_t n);

Copies n characters from ct to s. Overlapping objects will be
handled correctly.

Returns S

Libraries 6-37

memset

#include <string.h>
void *memset(void *s, int ¢, size_tn);

Fills the first n bytes of s with character c.
Returns S

mktime

#include <time.h>
time_t mktime(struct tm *tp);

Converts the local time in the structure *tp into calendar time.

Returns the calendar time, or -1 if it cannot be represented.

modf

#include <math.h>
double modf(double x, double *ip);

Splits x into integral and fractional parts, each with the same sign as x. It
stores the integral part in *ip.

Returns the fractional part.

offsetof

#include <stddef.h>
int offsetof(type, member);

Returns the offset for the given member in an object of type.

6-38 Chapter 6

-

open

#include <fcntl.h>
int open(const char * name, int flags);

Opens a file a file for reading or writing. This function calls _open.

% See also "fopen()”.

Returns the file descriptor if successful (a non-negative integer), or
-1 on error.

perror

#include <stdio.h>
void perror(const char *s);

Prints s and an implementation—-defined error message corresponding to
the integer errno , as if by:

fprintf(stderr, "%s: %s\n”, s, “error message”);

The contents of the error message are the same as those returned by the
strerror function with the argument errno

ﬂj See also the ”strerror()” function.

Returns nothing.
pow

#include <math.h>
double pow(double x, double y);

A domain error occurs if x=0 and y<=0, or if x<0 and y is not an integer.

Returns the result of X raised to the power of y: xV.

Libraries 6-39

printf

#include <stdio.h>
int printf(const char *format,...);

Performs a formatted write to the standard output stream.

@]j See also ”_write()”.

Returns the number of characters written to the output stream.

The format string may contain plain text mixed with conversion
specifiers. Each conversion specifier should be preceded by a ’%’
character. The conversion specifier should be build in order:

— Flags (in any order):
- specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.
+ has higher precedence as space.

space a negative number is preceded with a sign, positive numbers
with a space.

0 specifies padding to the field width with zeros (only for
numbers).
specifies an alternate output form. For o, the first digit will be

zero. For x or X, "0x” and "0X” will be prefixed to the
number. For e, E, f, g, G, the output always contains a
decimal point, trailing zeros are not removed.

— A number specifying a minimum field width. The converted
argument is printed in a field with at least the length specified here.
If the converted argument has fewer characters than specified, it will
be padded at the left side (or at the right when the flag =" was
specified) with spaces. Padding to numeric fields will be done with
zeros when the flag '0’ is also specified (only when padding left).
Instead of a numeric value, also ™*’ may be specified, the value is
then taken from the next argument, which is assumed to be of type
int.

- A period. This separates the minimum field width from the
precision.

6-40

Chapter 6

- A number specifying the maximum length of a string to be printed.
Or the number of digits printed after the decimal point (only for
floating point conversions). Or the minimum number of digits to be
printed for an integer conversion. Instead of a numeric value, also
** may be specified, the value is then taken from the next
argument, which is assumed to be of type int.

- A length modifier ’h’, ’I’ or 'L’. ’h’ indicates that the argument is to
be treated as a short or unsigned short number. "I’ should be used if
the argument is a long integer. 'L’ indicates that the argument is a
long double.

Flags, length specifier, period, precision and length modifier are optional,
the conversion character is not. The conversion character must be one of
the following, if a character following '%’ is not in the list, the behavior is
undefined:

Character Printed as

d,i int, signed decimal
o] int, unsigned octal

X, X int, unsigned hexadecimal in lowercase or uppercase

respectively

u int, unsigned decimal
c int, single character (converted to unsigned char)
S char *, the characters from the string are printed until

a NULL character is found. When the given precision
is met before, printing will also stop

f double
e E double
g,G double
n int *, the number of characters written so far is written

into the argument. This should be a pointer to an inte-
ger in default memory. No value is printed.

p pointer (hexadecimal 24-bit value)

r _fract, _sfract

R _accum

% No argument is converted, a ‘%’ is printed.

Table 6-2: Printf conversion characters

Libraries

putc

#include <stdio.h>
int putc(int c, FILE *stream);

Puts one character onto the given stream.

@]j See also ”_write()”.

Returns EOF on error.

putchar

#include <stdio.h>
int putchar(int c);

Puts one character onto standard output.

@j See also ”_write()”.

Returns the character written or EOF on error.

puts

#include <stdio.h>
int puts(const char *s);

Writes the string to stdout, the string is terminated by a newline.

@]j See also ”_write()”.

Returns NULL if successful, or EOF on error.

6-41

6-42 Chapter 6

qsort

#include <stdlib.h>

void gsort(
const void *base, size_t n, size_t size,
int (* cmp)(const void *, const void *));

This function sorts an array of n members. The initial base of the array is
given by base . The size of each member is specified by size . The given
array is sorted in ascending order, according to the results of the function
pointed to by cmp.

Returns nothing.

raise

#include <signal.h>
int raise(int sig);

Sends the signal sig to the program.

% See also "signal()”.

Returns zero if successful, or a non-zero value if unsuccessful.

rand

#include <stdlib.h>
int rand(void);

Returns a sequence of pseudo-random integers, in the range 0 to
RAND_MAX.

read

#include <unistd.h>
size_t read(int fd, char * buffer, size_t count);

Reads a sequence of characters from a file. This function calls _read.

% See also ”_read()”.

Libraries

realloc

#include <stdlib.h>
void *realloc(void *p, size_t size);

Reallocates the space for the object pointed to by p. The contents of the
object will be the same as before calling realloc(). The maximum space that
can be allocated can be changed by customizing the heap size (see the
section Heap). By default no heap is allocated. When “realloc()” is used
while no heap is defined, the linker gives an error.

@j See also "malloc()”.

Returns NULL and *p is not changed, if there is not enough space for
the new allocation. Otherwise a pointer to the newly
allocated space for the object is returned.

remove

#include <stdio.h>
int remove(const char *filename);

Removes the named file, so that a subsequent attempt to open it fails.

Returns zero if file is successfully removed, or
a non-zero value, if the attempt fails.

rename

#include <stdio.h>
int rename(const char *oldname,
const char *newname);

Changes the name of the file.

Returns zero if file is successfully renamed, or
a non-zero value, if the attempt fails.

6-43

6-44 Chapter 6

rewind

#include <stdio.h>
void rewind(FILE *stream);

Sets the file position indicator for the stream pointed to by stream to the
beginning of the file. This function is equivalent to:

(void) fseek(stream, OL, SEEK_SET);
clearerr(stream);

Returns nothing.

scalb

#include <float.h>
double scalb(double d, int power);
IEEE-754-1985 Recommended function.
Returns d * 2" power for integral values power without computing
2"N.

scanf

#include <stdio.h>
int scanf(const char *format, ...);

Performs a formatted read from the standard input stream.

% See also ”_read()”.

Returns the number of items converted successfully.

All arguments to this function should be pointers to variables (in default
memory) of the type which is specified in the format string.

The format string may contain :

— Blanks or tabs, which are skipped.

— Normal characters (not ’%’), which should be matched exactly in the
input stream.

— Conversion specifications, starting with a %’ character.

Libraries

Conversion specifications should be built as follows (in order) :

A ™ meaning that no assignment is done for this field.
A number specifying the maximum field width.

The conversion characters d, i , n, 0, u and X can be preceeded by
'h’ if the argument is a pointer to short rather than int | or by I’
(letter ell) if the argument is a pointer to long . The conversion
characters e, f , and g can be preceeded by 'l if a pointer double
rather than float is in the argument list, and by 'L’ if a pointer to a
long double

A conversion specifier. ¥, maximum field width and length modifier
are optional, the conversion character is not. The conversion
character must be one of the following, if a character following "%’
is not in the list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a
character following *%’ is not in the list, the behavior is undefined.

Character Scanned as

d int, signed decimal.

i int, the integer can be octal (i.e. with a leading 0) or
hexadecimal (leading "0x” or "0X"), or just decimal.

0] int, unsigned octal.

u int, unsigned decimal.

X int, unsigned hexadecimal in lowercase or upper-
case.

c single character (converted to unsigned char).

S char *, a string of non white space characters. The

argument should point to an array of characters,
large enough to hold the string and a terminating
NULL character.

f float
e E float
g,G float
n int *, the number of characters written so far is written

into the argument. No scanning is done.

p pointer; hexadecimal 24—bit value which must be en-
tered without Ox— prefix.

r _fract, _sfract

6-45

6-46 Chapter 6

Character Scanned as

R _accum

[...] Matches a string of input characters from the set be-
tween the brackets. A NULL character is added to
terminate the string. Specifying []...] includes the ']’
character in the set of scanning characters.

[~.] Matches a string of input characters not in the set
between the brackets. A NULL character is added to
terminate the string. Specifying []...] includes the ']
character in the set.

% Literal '%’, no assignment is done.

Table 6-3: Scanf conversion characters

setbuf

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

Buffering is turned off for the stream , if buf is NULL.
Otherwise, setbuf is equivalent to:

(void) setvbuf(stream, buf, IOFBF, BUFSIZ)

Returns nothing.

@j See also "setvbuf()”.

setjmp

#include <setjmp.h>
int setimp(jmp_buf env);

Saves the current environment for a subsequent call to longjmp.

Returns 0 after a direct call to setjmp(). Calling the function "longjmp()”
using the saved env restores the current environment and
jumps to this place with a non—-zero return value.

@j See also "longjmp()”.

Libraries

setlocale

#include <locale.h>
char *setlocale(int category, const char *locale);

Selects the appropriate portion of the program’s locale as specified by the
category and locale arguments.

Returns the string associated with the specified category for the
new locale if the selection can be honored.
null pointer if the selectioin cannot be honored.

setvbuf

#include <stdio.h>
int setvbuf(FILE *stream, char *buf,
int mode, size_t size);

Controls buffering for the stream ; this function must be called before
reading or writing. mode can have the following values:

_IOFBF causes full buffering
_IOLBF causes line buffering of text files
_IONBF causes no buffering

If buf is not NULL, it will be used as a buffer; otherwise a buffer will be
allocated. size determines the buffer size.

Returns zero if successful
a non—zero value for an error.

d]j See also "setbuf()”.

6-47

6-48

-

Chapter 6

signal

#include <signal.h>
void (*signal(int sig, void (*handler)(int)))(int);

Determines how subsequent signals will be handled. If handler is
SIG_DFL, the default behavior is used; if handler is SIG_IGN, the signal
is ignored; otherwise, the function pointed to by handler will be called,
with the argument of the type of signal. Valid signals are:

SIGABRT abnormal termination, e.g. from abort

SIGFPE arithmetic error, e.g. zero divide or overflow
SIGILL illegal function image, e.g. illegal instruction
SIGINT interactive attention, e.g. interrupt

SIGSEGV illegal storage access, e.g. access outside
memory limits
SIGTERM termination request sent to this program

When a signal sig subsequenly occurs, the signal is restored to its default
behavior; then the signal-handler function is called, as if by
(*handler)(sig) . If the handler returns, the execution will resume
where it was when the signal occurred.

Returns the previous value of handler for the specific signal, or
SIG_ERR if an error occurs.

sin

#include <math.h>
double sin(double x);

Returns the sine of x.

sinb

#include <math.h>
double sinh(double x);

Returns the hyperbolic sine of x.

Libraries

sprintf

#include <stdio.h>
int sprintf(char *s, const char *format, ...);

Performs a formatted write to a string.

% See also "printf()”.

sqrt

#include <math.h>
double sqgrt(double x);

Returns the square root of x. Vx, where x = 0.

srand

#include <stdlib.h>
void srand(unsigned int seed);

This function uses seed as the start of a new sequence of pseudo-random
numbers to be returned by subsequent calls to srand(). When srand is
called with the same seed value, the sequence of pseudo-random
numbers generated by rand() will be repeated.

Returns pseudo random numbers.

sscanf

#include <stdio.h>
int sscanf(char *s, const char *format, ...);

Performs a formatted read from a string.

% See also "scanf()”.

6-49

6-50 Chapter 6

stat

#include <unistd.h>
int stat(const char * name, struct stat * buf);

Use the file system simulation feature of CrossView Pro to stat() a file on
the host platform.

Returns zero if successful,
-1 on error.

Strcat

#include <string.h>
char *strcat(char *s, const char *ct);

Concatenates string ct to string s, including the trailing NULL character.
Returns S

strchr

#include <string.h>
char *strchr(const char *cs, int ¢);

Returns a pointer to the first occurrence of character ¢ in the string
cs. If not found, NULL is returned.

stremp

#include <string.h>
int strcmp(const char *cs, const char *ct);

Compares string €S to string ct .

Returns <0 if cs < ct,
0 ifcs==ct |,
>0 if cs > ct

Libraries

strcoll

#include <string.h>
int strcoll(const char *cs, const char *ct);

Compares string ¢S to string ct . The comparison is based on strings
interpreted as appropriate to the program’s locale.

Returns <0 if cs < ct,
0 ifecs==ct ,
>0 if cs > ct
strcpy

#include <string.h>
char *strcpy(char *s, const char *ct);

Copies string ct into the string s, including the trailing NULL character.

Returns S

strcspn

#include <string.h>
size_t strcspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs, consisting of characters

not in the string ct .

strerror

#include <string.h>
char *strerror(size_t n);

Returns pointer to implementation—defined string corresponding to
error n.

6-51

6-52 Chapter 6

=

strftime

#include <time.h>

size_t strftime(char *s, size_t smax,
const char *fmt,
const struct tm *tp);

Formats date and time information from the structure *tp into s according
to the specified format fmt . fmt is analogous to a printf format. Each
%c is replaced as described below:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation

%d day of the month (01-31)

%H hour, 24-hour clock (00-23)

%1 hour, 12-hour clock (01-12)

%j day of the year (001-366)

%m month (01-12)

%M minute (00-59)

%p local equivalent of AM or PM

%S second (00-59)

%U week number of the year, Sunday as first day of the
week (00-53)

%w weekday (0-6, Sunday is 0)

%W week number of the year, Monday as first day of the
week (00-53)

%x local date representation

%X local time representation

%y year without century (00-99)

%Y year with century

%7 time zone name, if any

%% %

Ordinary characters (including the terminating ‘\0°) are copied into s. No
more than smax characters are placed into s.

Returns the number of characters (\0’ not included), or
zero if more than smax characters where produced.

Libraries 6-53

strlen

#include <string.h>
size_t strlen(const char *cs);

Returns the length of the string in ¢s, not counting the NULL
character.

strncat

#include <string.h>
char *strncat(char *s, const char *ct, size_t n);

Concatenates string ¢t to string S, at most n characters are copied. Add a
trailing NULL character.

Returns S

strncmp

#include <string.h>
int strncmp(const char *cs, const char *ct,
size_tn);

Compares at most n bytes of string ¢s to string ct .
Returns <0 if cs < ct,

0 ifcs==ct |,
>0 if cs > ct

strucpy

#include <string.h>
char *strncpy(char *s, const char *ct, size_t n);

Copies string ¢t onto the string s, at most n characters are copied. Add a
trailing NULL character if the string is smaller than n characters.

Returns S

6-54 Chapter 6

-

strpbrk

#include <string.h>
char *strpbrk(const char *cs, const char *ct);

Returns a pointer to the first occurrence in ¢s of any character out of
string ct . If none are found, NULL is returned.

strrchr

#include <string.h>
char *strrchr(const char *cs, int ¢);

Returns a pointer to the last occurrence of ¢ in the string cs. If not
found, NULL is returned.

strspn

#include <string.h>
size_t strspn(const char *cs, const char *ct);

Returns the length of the prefix in string cs, consisting of characters
in the string ct .

strstr

#include <string.h>
char *strstr(const char *cs, const char *ct);

Returns a pointer to the first occurrence of string ct in the string cs.
Returns NULL if not found.

Libraries

strtod

#include <stdlib.h>
double strtod(const char *s, char **endp);

Converts the initial portion of the string pointed to by s to a double value.

Initial white spaces are skipped. When endp is not a NULL pointer, after
this function is called, *endp will point to the first character not used by
the conversion.

Returns the read value.

strtok

#include <string.h>
char *strtok(char *s, const char *ct);

Search the string s for tokens delimited by characters from string ct . It
terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with
s == NULL will return the next token in the string.

strtol

#include <stdlib.h>
long strtol(const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to a long integer.
Initial white spaces are skipped. Then a value is read using the given
base . When base is zero, the base is taken as defined for integer
constants. I.e. numbers starting with an 0’ are taken octal, numbers
starting with ’0x” or ’0X’ are taken hexadecimal. Other numbers are taken
decimal. When endp is not a NULL pointer, after this function is called,
*endp will point to the first character not used by the conversion.

Returns the read value.

6-55

6-56 Chapter 6

-

strtoul

#include <stdlib.h>
unsigned long strtoul(
const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to an unsigned
long integer. Initial white spaces are skipped. Then a value is read using
the given base . When base is zero, the base is taken as defined for
integer constants. I.e. numbers starting with an ’0” are taken octal, numbers
starting with '0x” or ’0X’ are taken hexadecimal. Other numbers are taken
decimal. When endp is not a NULL pointer, after this function is called,
*endp will point to the first character not used by the conversion.

Returns the read value.

strxfrm

#include <string.h>
size t
strncmp(char *ct, const char *cs, size_tn);

Transforms the string pointed to by ¢s and places the resulting string into
the array pointed to by ct . No more than n characters are placed into the
resulting string pointed to by ct , including the terminating null character.

Returns the length of the transformed string.
system

#include <stdlib.h>
int system(const char *s);

Passes the string s to the environment for execution.

Returns a non-zero value if there is a command processor, if s is
NULL; or an implementation-dependent value, if s is not
NULL.

Libraries

tan

#include <math.h>
double tan(double x);

Returns the tangent of Xx.

tanb

#include <math.h>
double tanh(double x);

Returns the hyperbolic tangent of x.

time

#include <time.h>
time_t time(time_t *tp);

The return value is also assigned to *tp , if tp is not NULL.

Returns the current calendar time, or —1 if the time is not available.

tmpfile

#include <stdio.h>
FILE *tmpfile(void);

Creates a temporary file of the mode "wb+” that will be automatically
removed when closed or when the program terminates normally.

Returns a stream if successful, or NULL if the file could not be

created.

6-57

6-58 Chapter 6

-

tmpnam

#include <stdio.h>
char *tmpnam(char s[L_tmpnam]);

Creates a temporary name (not a file). Each time tmpnam is called a
different name is created.

tmpnam(NULL) creates a string that is not the name of an existing file,
and returns a pointer to an internal static array. tmpnam(s) creates a
string and stores it in s and also returns it as the function value. s must
have room for at least L_tmpnam characters. At most TMP_MAX different
names are guaranteed during execution of the program.

Returns a pointer to the temporary name, as described above.

toascii

#include <ctype.h>
int toascii(int ¢);

Converts ¢ to an ascii value (strip highest bit). This is a non—ANSI
function.

Returns the converted value.

tolower

#include <ctype.h>
int tolower(int ¢);

Returns ¢ converted to a lowercase character if it is an uppercase
character, otherwise ¢ is returned.

toupper

#include <ctype.h>
int toupper(int ¢);

Returns ¢ converted to an uppercase character if it is a lowercase
character, otherwise c is returned.

Libraries

ungetc

#include <stdio.h>
int ungetc(int ¢, FILE *fin);

Pushes at the most one character back onto the input buffer.

Returns EOF on error.
unlink

#include <unistd.h>
int unlink(const char * name);

Removes the named file, so that a subsequent attempt to open it fails. This
function calls _unlink.

Returns zero if file is successfully removed, or
a non-zero value, if the attempt fails.

va_arg

#include <stdarg.h>
va_arg(va_list ap, type);

Returns the value of the next argument in the variable argument list.
It's return type has the type of the given argument type . A
next call to this macro will return the value of the next
argument.

va_end

#include <stdarg.h>
va_end(va_list ap);

This macro must be called after the arguments have been processed. It
should be called before the function using the macro 'va_start’ is
terminated (ANSI specification).

6-59

6-60

Chapter 6

va_start

#include <stdarg.h>
va_start(va_list ap, lastarg);

This macro initializes ap. After this call, each call to va_arg() will return
the value of the next argument. In our implementation, va_list cannot
contain any bit type variables. Also the given argument lastarg must be
the last non-bit type argument in the list.

vfprintf
#include <stdio.h>

int vfprintf(FILE *stream,
const char *format, va_list arg);

Is equivalent to vprintf, but writes to the given stream.
% See also "vprintf()”, ”_write()”.
vprintf

#include <stdio.h>
int vprintf(const char *format, va_list arg);

Does a formatted write to standard output. Instead of a variable argument
list as for printf(), this function expects a pointer to the list.

% See also "printf()”, ”_write()”.
vsprintf
#include <stdio.h>
int vsprintf(char *s, const char *format,

va_list arg);

Does a formatted write a string. Instead of a variable argument list as for
printf(), this function expects a pointer to the list.

% See also "printf()”, ”_write()”.

Libraries 6-61

wcstombs

#include <stdlib.h>
size_t westombs(char *s, const wchar_t *pwcs,
size_tn);

Converts a sequence of codes that correspond to multi-byte characters
from the array pointed to by pwcs, into a sequence of multi-byte
characters that begins in the initial shift state and stores these multi-byte
characters into the array pointed to by s, stopping if a multi-byte character
would exceed the limit of n total bytes or if a null character is stored.

Returns the number of bytes modified (not including a terminating
null character, if any), or (size_t) -1 if a code is
encountered that does not correspond to a valid multi-byte
character.

wctomb

#include <stdlib.h>
int wetomb(char *s, wchar_t wchar);

Determines the number of bytes needed to represent the multi-byte
corresponding to the code whose value is wchar (including any change in
the shift state). It stores the multi-byte character representation in the array
pointed to by s (if s is not a null pointer). At most MB_CUR_MAX
characters are stored. If the value of wchar is zero, the wctomb function is
left in the initial shift state.

Returns the number of bytes, or -1 if the value of wchar does not
correspond to a valid multi-byte character.

write

#include <unistd.h>
size_t write(int fd, char * buffer, size_t count);

Write a sequence of characters to a file. This function calls _write.

@]j See also ”_write()”.

6-62 Chapter 6

=

6.3.4 C LIBRARY REENTRANCY

Some of the functions in the C library are reentrant, others are not. The
table below shows the functions in the C library, whether they are
reentrant and, if not, the reason why. Note that some of the functions are
not reentrant because they set the global variable ’errno’. If your program
does not check this variable and errno is the only reason for the function
not being reentrant, these functions can be assumed reentrant as well.

The explanation of the cause why a function is not reentrant sometimes
refers to a footnote because the explanation is to lengthy for the table.

Function Reentrant Cause

abort no Calls exit

abs yes -

access no Uses global File System Simulation buffer,
_fss_buffer

acos no Function sets errno when error occurs.
If errno not used, acos is reentrant.

asctime no asctime defines static array for broken—down
time string.

asin no Function sets errno when error occurs.
If errno not used, asin is reentrant.

atan yes -

atan2 yes -

atexit no atexit defines static array with function pointers
to execute at exit of program.

atof yes -

atoi yes -

atol yes -

bsearch yes -

calloc no calloc uses static buffer management
structures. See malloc (5).

cell yes -

chdir no Uses global File System Simulation buffer,
_fss_buffer

cleanup no Calls fclose. See (1)

clearerr no Modifies iob[]. See (1)

Libraries

Function Reentrant Cause

clock yes -

close no Calls _close

_close no Uses global File System Simulation buffer,
_fss_buffer

cos yes -

cosh no cosh calls exp(), which sets errno. If errno is
discarded, cosh is reentrant.

ctime no Calls asctime

difftime yes -

div yes -

_doflt no Uses 1/0 functions which modify iob[].
See (1).

_doprint no Uses indirect access to static iob[] array. See
).

_doscan no Uses indirect access to iob[] and calls ungetc
(access to local static ungetc[] buffer). See (1).

exit no Calls fclose indirectly which uses iob([]
calls functions in _atexit array. See (1).
To make exit reentrant kernel support is
required.

exp no Sets errno. If errno not used, exp is reentrant.

fabs yes -

fclose no Uses values in iob[]. See (1).

feof no Uses values in iob[]. See (1).

ferror no Uses values in iob[]. See (1).

fflush no Modifies iob[]. See (1).

fgetc no Uses pointer to iob[]. See (1).

fgetpos no Sets the variable errno and uses pointer to
iob[]. See (1) / (2).

fgets no Uses iob[]. See (1).

_filbuf no Uses iob[]. See (1).

floor yes -

_flsbuf no Uses iob[]. See (1).

fmod yes -

6-63

6-64

Chapter 6

Function Reentrant Cause

fopen no Uses iob[] and calls malloc when file open for
buffered 10. See (1)

fprintf no Uses iob[]. See (1).

fputc no Uses iob[]. See (1).

fputs no Uses iob[]. See (1).

fread no Calls fgetc. See (1).

free no free uses static buffer management structures.
See malloc (5).

freopen no Modifies iob[]. See (1).

frexp yes -

fscanf no Uses iob[]. See (1)

fseek no Uses iob[] and calls _doscan.
Acesses ungetc[] array. See (1).

fsetpos no Uses iob[] and sets errno. See (1) / (2).

ftell no Uses iob[] and sets errno. Calls _Iseek.
See (1) / (2).

fwrite no Uses iob[]. See (1).

getc no Uses iob[]. See (1).

getchar no Uses iob[]. See (1).

getcwd no Uses global File System Simulation buffer,
_fss_buffer

getenv yes Skeleton only.

_qgetflt no Uses iob[]. See ().

gets no Uses iob[]. See ().

gmtime no gmtime defines static structure

halloc no Needs kernel support. See malloc (5).

hcalloc no hcalloc uses static buffer management
structures. See malloc (5).

hfree no hfree uses static buffer management
structures. See malloc (5).

hrealloc no See malloc (5).

_iob no Defines static iob[]. See (1).

_ioread no Depends on low level I/O implementation.

Uses iob[]. See (1).

Libraries

Function Reentrant Cause

_iowrite no Depends on low level I/O implementation.
Uses iob[]. See (2).

isalnum yes -

isalpha yes -

isascii yes -

iscntrl yes -

isdigit yes -

isgraph yes -

islower yes -

isprint yes -

ispunct yes -

isspace yes -

isupper yes -

isxdigit yes -

_itoa yes -

labs yes -

Idexp no Sets errno. See (2).

Idiv yes -

localeconv - Skeleton function

localtime yes

log no Sets errno. See (2).

log10 no Calls log. See (2).

longjmp yes -

Iseek no Calls _Iseek

_Iseek no Uses global File System Simulation buffer,
_fss_buffer

ltoa yes -

malloc no Needs kernel support. See (5).

mblen - Skeleton function

mbstowcs - Skeleton function

mbtowc - Skeleton function

memchr yes -

6-65

6-66

Chapter 6

Function Reentrant Cause

memcmp yes -

memcpy yes -

memmove yes -

memset yes -

mktime yes -

modf yes -

open no Calls _open

_open no Uses global File System Simulation buffer,
_fss_buffer

perror no Uses errno. See (2)

pow no Sets errno. See (2)

printf no Uses iob[]. See (1)

putc no Uses iob[]. See (1)

putchar no Uses iob[]. See (1)

puts no Uses iob[]. See (1)

gsort yes -

raise no Updates the signal handler table

rand no Uses static variable to remember latest
random number. Must diverge from ANSI
standard to define reentrant rand. See (4).

read no Calls _read

_read no Uses global File System Simulation buffer,
_fss_buffer

realloc no See malloc (5).

remove - Skeleton only.

rename - Skeleton only.

rewind - Skeleton only.

sbrk no Allocates memory which is assigned at locate
time. Needs kernel for memory management.

scanf no Uses iob[], calls _doscan. See (1).

setbuf no Sets iob[]. See (1).

setjmp yes -

setlocale

Skeleton function

Libraries

Function Reentrant Cause

setvbuf no Sets iob and calls malloc. See (1) / (5).

signal no Updates the signal handler table

sin yes —

sinh no Sinh calls exp() which sets errno.
If errno is discarded sinh is reentrant.

sprintf no Calls doprint. See (1).

sqrt no Sets errno. See (2).

srand no See rand

sscanf no Calls _doscan

stat no Uses global File System Simulation buffer,
_fss_buffer

strcat yes -

strchr yes -

stremp yes -

strcoll - Skeleton function

strcpy yes -

strcspn yes -

strerror yes -

strftime yes -

strlen yes -

strncat yes -

strncmp yes -

strncpy yes -

strpbrk yes -

strrchr yes -

strspn yes -

strstr yes -

strtod yes -

strtok no Strtok saves last position in string in local
static variable. This function is not reentrant by
design. See (4).

strtol no Sets errno. See (2).

strtoul no Sets errno. See (2).

6-67

6-68 Chapter 6

Function Reentrant Cause

strxfrm - Skeleton function

system - Skeleton function

tan no Sets errno. See (2).

tanh no Uses sinh for calculation.

time no l_Jses static variable which defines initial start
time

tmpfile no Uses iob[]. See (1).

tmpnam no Uses local buffer to build filename.

Function can be adapted to use user buffer.
This makes the function non ANSI. See (4).

toascii yes -

tolower yes -

toupper yes -

ungetc no Uses static buffer to hold ungetted characters
for each file. Can be moved into iob structure.
See (1).

unlink no Calls _unlink

_unlink no Uses global File System Simulation buffer,
_fss_buffer

viprintf no Uses iob[], calls doprint. See (1).

vprintf no Uses iob[], calls doprint. See (1).

vsprintf no Calls doprint.

wcstombs - Skeleton function

wctomb - Skeleton function

write no Calls _write

_write no Uses global File System Simulation buffer,
_fss_buffer

Table 6-4: C library reentrancy

Several functions in the C library are not reentrant due to the following
reasons:
— The iob[] structure is static. This influences all I/O functions.

— The ungetc[] array is static. This array holds the characters (one
for each stream) when ungetc() s called.

Libraries 6-69

— The variable errno is globally defined. The following functions
read or modify errno :

acos, asin, _doprint, _doscan, exp, fgetpos,
fsetpos, ftell, log, log10, perror, pow, rewind,
sqrt, strerror, strtol, strtoul, tan

— _doprint and _doscan use static variables for e.g. character
counting in strings.

- Some string functions use locally defined (static) buffers. This is
prescribed by ANSI.

— malloc uses a static heap space.

The following description discusses these items into more detail. The
numbers at the begin of each paragraph relate to the number references in
the table above.

(1) iob structures

The I/0 part of the C library is not reentrant by design. This is mainly
caused by the static declaration of the iob[] array. The functions which use
elements of this array access these elements via pointers (FILE *).

Building a multi-process system that is created in one link-run is hard to
do. The C language scoping rules for external variables make it difficult to
create a private copy of the iob[] array. Currently, the iob[] array has
external scope. Thus it is visible in every module involved in one link
phase. If these modules comprise several tasks (processes) in a system
each of which should have its private copy of iob[] , it is apparent that
the iob[] declaration should be changed. This requires adaption of the
library to the multi-tasking environment. The library modules must use a
process identification as an index for determining which iob[] array to
use. Thus the library is suitable for interfacing to that kernel only.

Another approach for the iob[] declaration problem is to declare the
array static in one of the modules which create a task. Thus there can be
more than one iob[] array is the system without having conflicts at link
time. This brings several restrictions: Only the module that holds the
declaration of the static iob[] can use the standard file handles stdin
stdout and stderr (which are the first three entries in iob[]). Thus all
I/0 for these three file handles should be located in one module.

6-70 Chapter 6

=

(2) errno declaration

Several functions in the C library set the global variable errno . After
completion of the function the user program may consult this variable to
see if some error occurred. Since most of the functions that set errno
already have a return type (this is the reason for using errno) it is not
possible to check successful completion via the return type.

The library routines can set errno to the values defined in errno.h . See
the file errno.h for more information.

errno can be set to ERR_FORMAT by the print and scan functions in the
C library if you specify illegal format strings.

errno can be set to ERR_NOFLOAT by the scan functions if you use
floating point formatting while using the SMALL formatting routines. See
also the next section Printf and Scanf Formatting Routines.

errno will never be set to ERR_ NOLONG or ERR_ NOPOINT since the
Tricore C library supports long and pointer conversion routines for input
and output.

errno can be set to ERANGE by the following functions: exp() ,

strtol() , strtoul() and tan() . These functions may produce results
that are out of the valid range for the return type. If so, the result of the
function will be the largest representable value for that type and errno s
set to ERANGE.

errno is set to EDOM by the following functions: acos() , asin() ,
log() , pow() and sqrt() . If the arguments for these functions are out of
their valid range (e.g. sqrt(—1)), errno is set to EDOM.

errno can be set to ERR_POS by the file positioning functions ftell() ,
fsetpos() and fgetpos()

(3) ungetc

Currently the ungetc buffer is static. For each file entry in the iob]]
structure array, there is one character available in the buffer to unget a
character.

Libraries

(4) local buffers

tmpnam() creates a temporary filename and returns a pointer to a local
static buffer. This is according to the ANSI definition. Changing this
function such that it creates the name in a user specified buffer requires
another calling interface. Thus the function would be no longer portable.

strtok() scans through a string and remembers that the string and the
position in the string for subsequent calls. This function is not reentrant by
design. Making it reentrant requires support of a kernel to store the
information on a per process basis.

rand() generates a sequence of random numbers. The function uses the
value returned by a previous call to generate the next value in the
sequence. This function can be made reentrant by specifying the previous
random value as one of the arguments. However, then it is no longer a
standard function.

(5) malloc

&

Malloc uses a heap space which is assigned at locate time. Thus this
implementation is not reentrant. Making a reentrant malloc requires that
the sbrk() function can do some sort of system call to obtain free
memory space on a per process basis. This is not easy to solve within the
current context of the library. This requires adaption to a kernel.

This paragraph on reentrancy applies to multi-process environments only.
If reentrancy is required for calling library functions from an exception
handler, another approach is required. For such a situation it is of no use
to allocate e.g. multiple iob[] structures. In such a situation several
pieces of code in the library have to be declared "atomic’: this means that
interrupts have to be disabled while executing an atomic piece of code.

6-71

6-72 Chapter 6

=

6.4 RUN-TIME LIBRARY

Some compiler generated code contains calls to run—time library functions
that would use too much code if generated as inline code. The name of a
run-time library function always contains two leading underscores.

The run-time library functions are included in the C library (libc.a or
libcs.a).

RUN-TIME
ENVIRONMENT

al TASKING [

d31dVHO

Run-time Environment

When linking your C modules with the library, you automatically link the
object module, containing the C startup code. This module is called
cstart. obj and is present in every C library.

Because this module specifies the run—time environment of your TriCore C
application, you might want to edit it to match your needs. Therefore, this
module is delivered in source in the file cstart. asmin the src
subdirectory of the | i b directory. Typically, you will copy the template
startup file to your own directory and edit it. The startup code contains
equates to tune the startup code. The invocation (using the cctri control
program) is:

cctri —c cstart.asm

In the C startup code an absolute code section is defined for setting up the
power on vector and the TriCore C environment. The power—on vector
contains a definition of the the START label. This global label should not
be removed, since the C compiler referres to it. It is also used as the
default start address of the application.

In the file cst art . asmthe actual location of several special function
registers is required. These addresses are specified in the

regcpu_nane. def SFR system include files. You can include such a file
with the assembler option =Ccpu_name. In EDE the appropriate file is
included when you have selected a CPU type. If you do not specify an
SFR file, the default SFR r egt c10gp. def file is included.

The stack size is defined in the locator control file (tri. i in directory

et ¢) with the macros USTACK and | STACK which results in sections called
ust ack and i st ack. See section 7.3, Stack for detailed information on
the stack.

The heap is defined in the description file with the keyword heap, which
results in as section called heap. See section 7.4 Heap for detailed
information on heap management.

The startup code takes care of clearing global variables and initializing C
variables residing in RAM. The startup code copies the initial values of
initialized C variables from ROM to RAM, using a locator generated table
(also known as the 'copy table’) and a run—time library function _c_ini t.

7-3

7-4

A

o)

Chapter 7

When everything described above has been executed, your C application
is called, using the global label mai n, which has been generated by ctri
for the C function mai n() .

When the C application ’returns’, which is not likely to happen in an
embedded environment, the program ends with a DEBUG16 instruction, at
the assembly label _exi t . When using a debugger, it can be useful to set
a breakpoint on this label to indicate that the program has reached the
end, or that the library function exi t () has been called.

To control cst art . asmfrom within EDE, you first have to add
cstart.asmto your project:

Select the Proj ect | Configure Sel ected CPU... menu item and
activate the Cst art tab. Enable the Aut omatically Add cstart.asm
check box and click OK.

The file cst art. asmis added to your project. Now you can specify all
your startup settings in the St art up Code tab of the Confi gure
Sel ect ed CPU dialog:

Select the Proj ect | Configure Sel ected CPU... menu item.

You can specify CPU settings in the same dialog:

Select the Proj ect | Configure Bus... menu and select the
appropriate bus configuration settings. EDE automatically defines macros
according to the selected settings.

A number of other macro preprocessor symbols are used. These can be
enabled or disabled using the assembler command line option =D with the
following syntax:

-Didentifier|=replacement]).

In the startup file the following macro preprocessor symbols are used:

Define Description

External Boot Memory Configuration (BOOTCFG)
_BOOTCFG_ADDRC Address generation value
_BOOTCFG_AGEN Read access wait—states value
_BOOTCFG_BCGEN Address Cycles value
_BOOTCFG_CFG Variable wait—state insertion value

Run-time Environment

Define

Description

_BOOTCFG_CMULT

Extended address setup value

_BOOTCFG_SETUP

Active /WAIT level value

_BOOTCFG_WAIT

Byte control signal timing mode value

_BOOTCFG_WAITINV

Wait cycle multiplier value

_BOOTCFG_WAITRDC

Boot Memory Data Width value

Memory Control (PMUCONO/DMUCON)

_PMUCONO_CCBYP

Code cache bypass value

_PMUCONO_CCSIZ

Code cache size value

_DMUCON_DCAON

If defined, Enable data cache

Startup

_NO_BTV_INIT If define, Base Address of Trap Vector Table is
not initialized with trap table start address
(trap_tab).

_NO_BIV_INIT If defined, Base Address of Interrupt Vector
Table is not initialized with interrupt table start
address (_lc_u_int_tab).

_NO_ISP_INIT If defined, Interrupt Stack Pointer is not initialized
with end address of interrupt stack
(Ulc_ue_istack).

_NO_USP_INIT If defined, User Stack Pointer is not initialized

with end address of user stack (_lc_ue_istack).

“NO_PCX_RESET

If defined, the Previous Context is not explicitly
cleared.

_NO_PSW_RESET

If defined, the Call Depth Counter is not explicitly
cleared.

_NO_AOA1_ADDRESSING

If defined, global address register AO/Al is not
initialized with start address of the _a0/_al
addressable area (_lc_gb_a0/1).

“NO_A8A9_ADDRESSING

If defined, global address register A8/A9 is not
initialized with start address of the _a8/ a9
addressable area (_lc_gb_a8/9).

“NO_CSA_INIT

If defined, Context Save Area lists are not
initialized.

_NO_WATCHDOG_INIT

If defined, Watchdog timer disabled.

_NO_BUS_CONF

If defined, bus configuration registers are not
initialized.

“NO_C_INIT

If defined, C variables are not initialized.

7-5

7-6

Chapter 7

Define Description
_NO_ARG_INIT If defined, disable initialization of argc and argv([].
_NO_EXIT If defined, C library function exit() or abort() not

supported.

Miscellaneous

_CALL_INIT

Can be set to a function to be called before
main. This function cannot have a return or
arguments. This function can be used, for
example, to initialize the serial port before main
is called. This is useful for building programs
without making any modifications to the original
source.

_CALL_ENDINIT

Can be set to a function to be called before the
ENDINIT instruction is executed. Like the
CALLINIT function, it cannot not have a return
value or arguments.

CPU functional bypasses

_TC112 XXX If defined, TC112 CPU functional defect XXX is
bypassed and/or checked.
_TC113 XXX If defined, TC113 CPU functional defect XXX is

bypassed and/or checked. See appendix C CPU
Functional Problems CPU Functional Problems
for a complete list of these macros.

Table 7-1: Defines used in cstart.src

The following table shows the locator labels used in the startup code.

Define Description

_START start label, mentioned in description file (tri.dsc)
_c_init label copy table init function

main start label user C program

exit start label of exit() function

_exit exit() function jumps to this place
_CALL_ENDINIT label called before ENDINIT

_CALL_INIT _CALL_INIT label called before main()
_lc_gb_a0 locator label start of AO addressable area
_lc_gb_al locator label start of A1 addressable area
_lc_gb_a8 locator label start of A8 addressable area

Run-time Environment 7-7

Define Description

_lc_gb_a9 locator label start of A9 addressable area
_lc_u_int_tab locator label interrupt table

_lc_ub_csa locator label context save area begin
_lc_ue_csa locator label context save area end
_lc_ue_istack locator label interrupt stack end
_lc_ue_ustack locator label user stack end

Table 7-2: Locator labels used in startup code

ctri will try to use the available registers as efficient as possible. The
compiler uses a flexible register allocation scheme, which implies that any
change to the C code may result in a different register usage.

The TriCore register file consists of 16 data registers and 16 address
registers, which are 32 bits wide. The contents of registers D8-D15 and
A10-A15 are saved by the CALL instruction and restored by the RET
instruction. As a result, these registers (with the exception of the link
register A11) can be used in a function without the need to save and
restore their original contents. The registers DO-D7 and A2-A7 are
considered "scratch”: their contents is undefined after a function call. The
"global registers” AO-A1 and A8-A9 are not changed by a function call or
context switch.

For C function return types, the following registers are used:

Return type Register Description

char D2 return register

short D2

int/ long / float D2

double D2/D3 (most significant part in D3)
pointer A2 return register

Table 7-3: C function return types

Chapter 7

Structures and unions of up to 8 bytes in size are returned in registers
D2/D3. Larger structures or unions are returned on the stack. The address
of this return area is passed as an implicit first argument in A4.

The following table summarize the register usage conventions used by
ctri:

Register Usage Register Usage

DO scratch A0 global

D1 scratch Al global

D2 return register for A2 return register for
arithmetic types pointers

D3 most significant part of | A3 scratch
64 bit result

D4 parameter A4 parameter

D5 parameter A5 parameter

D6 parameter A6 parameter

D7 parameter A7 parameter

D8 saved register A8 global

D9 saved register A9 global

D10 saved register Al10 stack pointer

D11 saved register All link register

D12 saved register A12 saved register

D13 saved register A13 saved register

D14 saved register Al4 saved register

D15 saved register, implicit | A15 saved register, implicit
register pointer

Table 7-4: Register usage

Run-time Environment

The stack is used for local automatic variables, function parameters and
saved registers.

The following diagram show the structure of a stack frame.

stack
high memory
incoming
stack parameters
grows down P
saved registers on entry
local variables framesize
outgoing
parameters
- Sp I A
low memory
($sp)

during execution

Figure 7-1: Stack diagram

The stack size is defined in the locator control file (tri. i in directory
et ¢) with the macro USTACK and i st ack, which results in sections called
ust ack and i st ack.

The locator defined label _| c_ue_ust ack refers to the top of the user
stack area and is used in the file cst art. asmto initialize the user stack
pointer register (SP). The locator defined label _| c_ue_i st ack refers to
the top of the interrupt stack area and is used in the file cstart. asmto
initialize the interrupt stack pointer register (ISP)

As long as the user program does not change the IS bit in the program
status word (PSW), only the user stack is used. Refer to the TriCore
Architecture (v1.3) Manual for the implications of an IS bit change.

7-9

7-10

Chapter 7

The heap is only needed when dynamic memory management library
functions are used: mal | oc(), cal l oc(),free() andreal |l oc(). The
heap is a reserved area in memory. Only if you use one of the memory
allocation functions listed above, the locator automatically allocates a
heap, as specified in the locator description file with the keyword heap.

A special section called heap is used for the allocation of the heap area.
The size of the heap is defined in the locator control file (tri.i in
directory et ¢) with the macro HEAP, which results in a section called
heap. The locator defined labels _I| ¢_bh and _I| c_eh (begin and end of
heap) are used by the library function sbr k() , which is called by

mal | oc() when memory is needed from the heap.

The special heap section is only allocated when its locator labels are used
in the program.

Floating point arithmetic support for the compiler ctri is included in the
software as a separate set of libraries or in the hardware when available
(only single precision). During linking you have to specify the desired
floating point library after the C library. The libraries are reentrant, and
only use temporary program stack memory.

To ensure portability of floating point arithmetic, floating point arithmetic
for the compiler ctri has been implemented complying to the IEEE-754
standard for floating point arithmetic. See the [EEE Standard Binary for
Floating—-Point Arithmetic document [IEEE Computer Society, 1985] for
more details on the floating point arithmetic definitions. This document is
referred to as IEEE-754 in this manual.

The compiler ctri supports both single and double precision floating point
operations using the ANSI C types f | oat and doubl e respectively. To
optimize for speed, also a non-trapping library is included. For the library
names, see section 6.3, C Libraries.

It is possible to intercept floating point exceptional cases and, if desired,
handle them with an application defined exception handler. The
intercepting of floating point exceptions is referred to as ’trapping’.
Examples of how to install a trap handler are included.

Run-time Environment

o)

&
VS

The level to which the floating point implementation complies to the
IEEE-754 standard, depends on the choosen configuration.

All floating point calculations are executed using the 'round to nearest
(even)’ rounding mode, since this is required by ANSI-C 89. This is
conform IEEE-754. Because there are no double precision floating point
hardware instructions, an emulating library is always needed for double
precision calculation.

When the use of hardware FPU instructions is choosen (-FPU), the
available hardware instructions for single precision floating point will be
used either in the compiler or in one of the libraries. For double precision
floating point calculations the choosen floating point emulaton library will
be used. When no hardware FPU instructions are allowed, all floating
point operations will be used from the choosen floating point emulaton
library.

In EDE you can specify to use the single precision floating point hardware:

Select the Project | C Conpiler Options | Project Options...
menu item and enable the Use hardwar e singl e precision
floating point instructions check box in the M sc tab.

This option is only available (and relevant) when you enable the FPU
present (on user defined CPU) check box on the CPU tab in the
Project | Processor options... menu item.

-FPU in Chapter 4, Compiler Use.

Compliance with IEEE-754: TriCore bardware FPU instructions

The following implementation issues for the single precision hardware
instructions (optionally implemented on the TriCore chip), are important:

* subnormals are not supported (hardware design decision).

* when converting single precision floats to integers, rounding is done to
the nearest (even) integer. This does not comply with ANSI-C 89 or
ISO-C 99, but does comply with IEEE-754, since this is the current
rounding mode (hardware design decision).

* when a converted single precision float overflows the target integer
type, the value is saturated to MAX_INT or MIN_INT (hardware design
decision).

7-11

7-12

=

Chapter 7

whenever a double precision float is involved, the results are
determined by the chosen emulation library.

Compliance with IEEE-754: Trapping emulation library

The following implementation issues for the trapping floating point library
are important:

subnormals are not supported. This is conform the TriCore hardware
design.

when converting floats to integers, the value is truncated. This complies
with ANSI-C 89 and ISO-C 99, but does not comply with IEEE-754,
since the current rounding mode is ‘round to nearest (even)’.

when a converted float overflows the target integer type, a predictable
value is assigned to the target integer.

Compliance with IEEE-754: Hand-optimized non-trapping emulation
lLibrary

The following implementation issues for the non-trapping floating point
library are important:

when calculating with floats, rounding is done to the nearest integer
(rounding towards infinity when equally near).

there is no distinction between -0 and +0

when an operand of a calculation is a NaN, Inf or subnormal, the result
is undefined.

when the result of a calculation would be a subnormal, the result is 0.
whenever a NaN or Inf would be the result of a calculation, the result
is undefined

when converting single precision floats to integers, rounding is done to
the nearest integer (rounding towards infinity when equally near). This
is similar to the TriCore FPU hardware.

when converting double precision floats to integers, the value is
truncated. This is similar to the trapping emulation library.

when a converted float overflows the target integer type, the value is
saturated to MAX INT or MIN INT.

Run-time Environment 7-13

Below is a list of special, IEEE-754 defined, floating point values as they
can occur during run-time.

Special value Sign Exponent Mantissa
+0.0 (Positive Zero) 0 all zeros all zeros
-0.0 (Negative Zero) 1 all zeros all zeros
+INF (Positive Infinite) 0 all ones all zeros
—INF (Negative Infinite) 1 all ones all zeros
NaN (Not a number) 0 all ones not all zeros

Table 7-5: Special floating point values

Four floating point run—time libraries are delivered for every memory
model:

with fp trap handling; without FPU instructions: l'ibfpt.a
without trapping; without FPU instructions (default): | i bf pn. a
with fp trap handling; with FPU instructions: I'i bf pt_fpu.a
without trapping; with FPU instructions: I'i bf pn_fpu. a

By specifying the —fptrap option to the control program cctri, the
trapping type floating point library is linked into your application. By
specifying the —=FPU option to the control program cctri, a floating point
library with single precision FPU instructions is linked into your
application. If these options are not specified, the floating point library
without trapping mechanism and without FPU instructions is used.

@? In EDE you can specify to use the trapping type floating point library as
follows: Select the Proj ect | Linker/Locator Options... menu
and enable the Use trapping floating point |ibrary check box
in the Li nker tab.

7-14 Chapter 7

-

IEEE-754 Trap Handler

In the IEEE-754 standard a trap handler is defined, which is invoked on
(specified) exceptional events, passing along much information about the
event. To install your own trap handler, use the library call

_fp_install _trap_handl er. When installing your own exception
handler, you must select on which types of exceptions you want to have
your handler invoked, using the function call

_fp_set_excepti on_mask. See below for more details on the floating
point library exception handling function interface.

SIGFPE Signal Handler

In ANSI-C the regular approach of dealing with floating point exceptions
is by installing a so—called signal handler by means of the ANSI-C library
call si gnal . If such a handler is installed, floating point exceptions cause
this handler to be invoked. To have the signal handler for the SIGFPE
signal actually become operational with the provided floating point
libraries, a (very) basic version of the IEEE-754 exception handler must be
installed (see example below) which will raise the desired signal by means
of the ANSI-C library function call r ai se. For this to be achieved, the
function call _f p_i nstal | _trap_handl er is present. When installing
your own exception handler, you will have to select on which types of
exceptions you want to receive a signal, using the function call
_fp_set_excepti on_mask. See further below for more details on the
floating point library exception handling function interface.

There is no way to specify any information about the context or nature of
the exception to the signal handler. Just that a floating point exception
occurred can be detected. See therefor the IEEE-754 trap handler
discussion above if you want more control over floating point results.

Run-time Environment 7-15

Example:

#i ncl ude <float. h>
#i ncl ude <signal . h>

static void pass_fp_exception_to_signal(
_fp_exception_info_t *info)
{

i nfo; /* suppress paraneter not used warning */
/* cause S| GFPE signal to be raised */

rai se(SIGFPE);

/*

* now continue the program
* with the unaltered result
*/

For purposes of dealing with floating point arithmetic exceptions, the
following library calls are available:

#i ncl ude <float. h>

i nt _fp_get _exception_nmask(void);
void _fp_set_exception_nask(int);

A pair of functions to get or set the mask which controls which type of
floating point arithmetic exceptions are either ignored or passed on to the
trap handler. The types of possible exception flag bits are defined as:

EFI NVOP
EFDI VZ
EFOVFL
EFUNFL
EFI NEXCT

while,
EFALL

is the OR of all possible flags. See below for an explanation of each flag.

7-16

S

Chapter 7

#i ncl ude <float. h>

i nt _fp_get_exception_status(void);
void _fp_set_exception_status(int);

A pair of functions for examining or presetting the status word containing
the accumulation of all floating point exception types which occurred so
far. See the possible exception type flags above.

#i ncl ude <float. h>

void _fp_install_trap_handler(void (*)
(_fp_exception_info_t *));

This function call expects a pointer to a function, which in turn expects a
pointer to a structure of type _f p_excepti on_i nf o_t . The members of
_fp_exception_info_t are:

exception
This member contains one of the following (numerical) values:

EFI NVOP
EFDI VZ
EFOVFL
EFUNFL
EFI NEXCT

operation

This member contains one of the following numbers:

_OP_ADDI TI ON
_OP_SUBTRACTI ON
_OP_COVPARI SON
_OP_EQUALI TY
_OP_LESS_THAN
_OP_LARGER_THAN
_OP_MULTI PLI CATI ON
_OP_DI VI SI ON
_OP_CONVERSI ON

sour ce_f or mat
destinati on_f or mat

Run-time Environment 7-17

Numerical values of these two members are:

_TYPE_SI GNED_CHARACTER
_TYPE_UNSI GNED_CHARACTER
_TYPE_SI GNED_SHORT_| NTEGER
_TYPE_UNSI GNED_SHORT_| NTEGER
_TYPE_SI GNED_| NTEGER
_TYPE_UNSI GNED_| NTEGER
_TYPE_SI GNED_LONG | NTEGER
_TYPE_UNSI GNED_LONG | NTEGER
_TYPE_FLOAT

_TYPE_DOUBLE

oper andl /* left side of binary or */

/* right side of unary */
oper and2 /* right side for binary */
result

These three are of the following type, to receive and return a value
of arbitrary type:

typedef wunion _fp_val ue_union_t
{
char «c¢;
unsi gned char uc;
short s;
unsi gned short us;
int i;
unsi gned int ui
long |I;
unsi gned long ul
float f;
#if | _SINGLE_FP
doubl e d;
#endi f
}

_fp_value_union_t;

@ The member d is not present when specifying the —F option to the C
compiler.

7-18

=

Chapter 7

The following table lists all the exception code flags, the corresponding
error description and result:

Error Description Exception Flag Default Result with Trapping
Invalid Operation EFINVOP NaN
Division by zero EFDIVZ +INF or —INF
Overflow EFOVFL +INF or —INF
Underflow EFUNFL zero
Inexact EFINEXT undefined
INF Infinite which is the largest absolute floating point number,
which is always: —INF < every finite number < +INF
NAN Not a Number, a symbolic entity encoded in floating point format.

Table 7-6: Exception Type Flag Codes

To ensure all exception types are specified, you can specify EFALL to a
function, which is the binary OR of all above enlisted flags.

FLEXIBLE LICENSE
MANAGER (FLEXIm)

al TASKING [

XIAN3ddV

Flexible License Manager (FLEXIm)

This appendix discusses Globetrotter Software’s Flexible License Manager
and how it is integrated into the TASKING toolchain. It also contains
descriptions of the Flexible License Manager license administration tools
that are included with the package, the daemon log file and its contents,
and the use of daemon options files to customize your use of the
TASKING toolchain.

The Flexible License Manager (FLEXIm) is a set of utilities that, when
incorporated into software such as the TASKING toolchain, provides for
managing access to the software.

The following terms are used to describe FLEXIm concepts and software
components:

feature A feature could be any of the following:

e A TASKING software product.
e A software product from another vendor.
license The right to use a feature. FLEXIm restricts licenses for

features by counting the number of licenses for features in
use when new requests are made by the application

software.

client A TASKING application program.

daemon A process that "serves” clients. Sometimes referred to as a
server.

vendor daemon
The daemon that dispenses licenses for the requested
features. This daemon is built by an application’s vendor, and
contains the vendor’s personal encryption code. Tasking is
the vendor daemon for the TASKING software.

A-4

=

Appendix A

license daemon

server node

license file

The daemon process that sends client processes to the
correct vendor daemon on the correct machine. The same
license daemon is used by all applications from all vendors,
as this daemon neither performs encryption nor dispenses
licenses. The license daemon processes no user requests on
its own, but forwards these requests to other daemons (the
vendor daemons).

A computer system that is running both the license and
vendor daemon software. The server node will contain all the
dynamic information regarding the usage of all the features.

An end-user specific file that contains descriptions of the
server nodes that can run the license daemons, the various
vendor daemons, and the restrictions for all the licensed
features.

The TASKING software is granted permission to run by FLEXIm daemons;
the daemons are started when the TASKING toolchain is installed and run
continuously thereafter. Information needed by the FLEXIm daemons to
perform access management is contained in a license data file that is
created during the toolchain installation process. As part of their normal
operation, the daemons log their actions in a daemon log file, which can
be used to monitor usage of the TASKING toolchain.

The following sections discuss:

¢ Installation of the FLEXIm daemons to provide for access to the
TASKING toolchain.

¢ Customizing your use of the toolchain through the use of a daemon
options file.

» Utilities that are provided to assist you in performing license
administration functions.

* The daemon log file and its contents.

For additional information regarding the use of FLEXIm, refer to the
chapter Software Installation.

Flexible License Manager (FLEXIm)

TASKING products licensed through FLEXIm contain a number of utilities
for managing licenses. These utilities are bundled in the form of an extra
product under the name SW000098. TASKING products themselves contain
two additional files for FLEXIm in a flex/m subdirectory:

Taski ng The Tasking daemon (vendor daemon).
i cense. dat A template license file.

If you have already installed FLEXIm (e.g. as part of another product) then
it is not needed to install the bundled SW000098. After installing SW000098
on UNIX, the directory / usr /| ocal / f | ex] mwill contain two
subdirectories, bi n and | i censes. After installing SW000098 on Windows
the directory c: \ f | ex] mwill contain the subdirectory bi n. The exact
location may differ if FLEXIm has already been installed as part of a
non-TASKING product but in general there will be a directory for
executables such as bi n. That directory must contain a copy of the
Tasking daemon shipped with every TASKING product. It also contains
the files:

I mgrd The FLEXIm daemon (license daemon).
[A group of FLEXIm license administration utilities.

Next to it, a license file must be present containing the information of all
licenses. This file is usually called | i cense. dat . The default location of
the license file is in directory c: \ f | ex] mfor Windows and in
[usr/local/flexlmlicenses for UNIX. If you did install SW000098
then the | i censes directory on UNIX will be empty, and on Windows
the file | i cense. dat will be empty. In that case you can copy the

I'i cense. dat file from the product to the | i censes directory after filling
in the data from your "License Information Form”.

Be very careful not to overwrite an existing | i cense. dat file because it
contains valuable data.

Example | i cense. dat :

SERVER HOSTNAME HOSTI D PORT
DAEMON Tasking /usr/1ocal/flexl m bin/ Taski ng
FEATURE SW08002-32 Taski ng 3. 000 EXPDATE NUSERS PASSWORD SERI AL

Appendix A

After modifications from a license data sheet (example):

SERVER el | iot 5100520c 7594

DAEMON Taski ng /usr/ | ocal /fl exl m bi n/ Taski ng

FEATURE SW)08002-32 Tasking 3.000 1-j an-00 4 0B1810310210A6894 " 123456

If the | i cense. dat file already exists then you should make sure that it
contains the DAEMON and FEATURE lines from your license data sheet.
An appropriate SERVER line should already be present in that case. You
should only add a new SERVER line if no SERVER line is present. The third
field of the DAEMON line is the pathname to the Tasking daemon and
you may change it if necessary.

The default location for the license file on Windows is:
c:\flexI mMlicense. dat

On UNIX this is:
fusr/local/flexlnllicenses/license. dat

If the pathname of the resulting license file differs from this default
location then you must set the environment variable LM_LICENSE_FILE to
the correct pathname. If you have more than one product using the
FLEXIm license manager you can specify multiple license files by
separating each pathname (/fpath) with a ’;’ (on UNIX also ") :

Windows:

set LM LI CENSE_FI LE={fpath[slfpath)...
UNIX:

setenv LM LI CENSE_FI LE [fpath|:lfpath]...

If you are running the TASKING software on multiple nodes, you have
three options for making your license file available on all the machines:

Place the license file in a partition which is available (via NFS on Unix
systems) to all nodes in the network that need the license file.

. Copy the license file to all of the nodes where it is needed.

. Set LM_LICENSE _FILE to "port@bost”, where host and port come from the

SERVER line in the license file.

Flexible License Manager (FLEXIm)

When the main license daemon Imgrd already runs it is sufficient to type

the command:

| nT er ead

for notifying the daemon that the | i cense. dat file has been changed.
Otherwise, you must type the command:

Imgrd >/usr/tnp/license.log &

Both commands reside in the flexlm bi n directory mentioned before.

It is possible to customize the use of TASKING software using a daemon
options file. This options file allows you to reserve licenses for specified
users or groups of users, to restrict access to the TASKING toolchain, and
to set software timeouts. The following table lists the keywords that are
recognized at the start of a line of a daemon options file.

Keywords Function

RESERVE Ensure that TASKING software will always be available to
one or more users or on one or more host computer systems.

INCLUDE Specify a list of users who are allowed exclusive access to
the TASKING software.

EXCLUDE Specify a list of users who are not allowed to use the
TASKING software.

GROUP Specify a group of users for use in the other commands.

TIMEOUT Allow licenses that are idle for a specified time to be returned
to the free pool, for use by someone else.

NOLOG Causes messages of the specified type to be filtered out of
the daemon’s log output.

Table A-1: Daemon options file keywords

In order to use the daemon options capability, you must create a daemon
options file and list its pathname as the fourth field on the DAEMON line for
the Tasking daemon in the license file. For example, if the daemon
options were in file / usr /| ocal / f1 ex] mf Taski ng. opt (UNIX), then
you would modify the license file DAEMON line as follows:

DAEMON Tasking /usr/local/Tasking /usr/local/flexln Taski ng. opt

A-8 Appendix A

=

A daemon options file consists of lines in the following format:

RESERVE nunber feature {USER | HOST | DI SPLAY | GROUP} nane
| NCLUDE feature {USER | HOST | DI SPLAY | GROUP} nane
EXCLUDE feature {USER | HOST | DI SPLAY | GROUP} nane

GROUP name <list_of_users>

TI MEQUT feature timeout_in_seconds

NCOLOG {IN] QUT | DENIED | QUEUED}

REPORTLOG file

Lines beginning with the sharp character (#) are ignored, and can be used
as comments. For example, the following options file would reserve one
copy of feature SWkxxxxx—xXx for user “pat”, three copies for user “lee”,
and one copy for anyone on a computer with the hostname of “terry”; and
would cause QUEUED messages to be omitted from the log file. In addition,
user “joe” and group “pinheads” would not be allowed to use the feature
SWKXXXXX—XX :

GROUP pi nheads nmoe larry curley
RESERVE 1 SWKxxxxx—xx USER pat
RESERVE 3 SWkxxxxx—xx USER | ee
RESERVE 1 SWKXXXXX—XxX HOST terry

EXCLUDE SWkxxxxx—xx USER j oe
EXCLUDE SWKxxxxx—xx GROUP pi nheads
NOLOG QUEUED

The following utilities are provided to facilitate license management by
your system administrator. In certain cases, execution access to a utility is
restricted to users with root privileges. Complete descriptions of these
utilities are provided at the end of this section.

Imcksum
Prints license checksums.
Imdiag (Windows only)

Diagnoses license checkout problems.

Imdouwn

Gracefully shuts down all license daemons (both Imgrd all vendor
daemons, such as Tasking) on the license server.

Flexible License Manager (FLEXIm)

mgrd

The main daemon program for FLEXIm.

Imbostid
Reports the hostid of a system.

Imremove

Removes a single user’s license for a specified feature.

Imreread

Causes the license daemon to reread the license file and start any new
vendor daemons.

Imstat

Helps you monitor the status of all network licensing activities.

Imswitchr

Switches the report log file.

Imver

Reports the FLEXIm version of a library or binary file.

Imtools (Windouws only)

This is a graphical Windows version of the license administration tools.

A-10 Appendix A

Name

Imcksum - print license checksums

Synopsis
Imcksum [-c license_file] | -k]

Description

The Imcksum program will perform a checksum of a license file. This is
useful to verify data entry errors at your location. Imcksum will print a
line-by-line checksum for the file as well as an overall file checksum.

The following fields participate in the checksum:

¢ hostid on the SERVER lines
¢ daemon name on the DAEMON lines

e feature name, version, daemon name, expiration date, # of licenses,
encription code, vendor string and hostid on the FEATURE lines

¢ daemon name and encryption code on FEATURESET lines

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imcksum looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imcksum looks for the
filec:\flexI M1icense.dat (Windows), or
fusr/local/flexlImlicenses/l|icense.dat (UNIX).

-k Case-sensitive checksum. If this option is specified,
Imcksum will compute the checksum using the exact case of
the FEATURE’s and FEATURESET’s encryption code.

Flexible License Manager (FLEXIm) A-11

Name

Imdiag - diagnose license checkout problems

Synopsis
Imdiag [-c license_file | [-n | [feature |

Description

Imdiag (Windows only) allows you to diagnose problems when you
cannot check out a license.

If no feature is specified, Imdiag will operate on all features in the license
file(s) in your path. Imdiag will first print information about the license,
then attempt to check out each license. If the checkout succeeds, Imdiag
will indicate this. If the checkout fails, Imdiag will give you the reason for
the failure. If the checkout fails because Imdiag cannot connect to the
license server, then you have the option of running "extended connection
diagnostics”.

These extended diagnostics attempt to connect to each port on the license
server node, and can detect if the port number in the license file is
incorrect. Imdiag will indicate each port number that is listening, and if it
is an Imgrd process, Imdiag will indicate this as well. If Imdiag finds the
vendor daemon for the feature being tested, then it will indicate the
correct port number for the license file to correct the problem.

Parameters

Sfeature Diagnose this feature only.

Options

~c license_file
Diagnose the specified license_file. If no —c option is
specified, Imdiag looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imdiag looks for the file
c:\flexI mMlicense.dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

-n Run in non-interactive mode; Imdiag will not prompt for
any input in this mode. In this mode, extended connection
diagnostics are not available.

A-12 Appendix A

Name

Imdown - graceful shutdown of all license daemons

Synopsis

Imdown | —c license file | | -q]

Description

The Imdown utility allows for the graceful shutdown of all license
daemons (both Imgrd and all vendor daemons, such as Tasking) on all
nodes. You may want to protect the execution of Imdown, since shutting
down the servers causes users to lose their licenses. See the —p option in
Section 3.4, Imgrd.

Imdown sends a message to every license daemon asking it to shut down.
The license daemons write out their last messages to the log file, close the
file, and exit. All licenses which have been given out by those daemons
will be revoked, so that the next time a client program goes to verify his
license, it will not be valid.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imdown looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imdown looks for the
filec:\flexI M1icense.dat (Windows), or
lusr/local/flexlnmlicenses/license.dat (UNIX).

-q Quiet mode. If this switch is not specified, lmdown asks for
confirmation before asking the license daemons to shut
down. If this switch is specified, Imdown will not ask for
confirmation.

% Imgrd, Imstat, Imreread

Flexible License Manager (FLEXIm)

Name

Imgrd - flexible license manager daemon

Synopsis

Imgrd | —c license_file | | -1 logfile | [-2 =p] [=t timeout | | =s interval |

Description

Imgrd is the main daemon program for the FLEXIm distributed license
management system. When invoked, it looks for a license file containing
all required information about vendors and features. On UNIX systems, it
is strongly recommended that lmgrd be run as a non-privileged user (not

root).

Options

-c license_file

-1 logfile

-2 -p

-t timeout

Use the specified license_file. If no —c option is specified,
Imgrd looks for the environment variable

LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imgrd looks for the file
c:\flexImlicense. dat (Windows), or
/usr/local/flexlmlicenses/l|icense.dat (UNIX).

Specifies the output log file to use. Instead of using the -1
option you can use output redirection (> or >>) to specify
the name of the output log file.

Restricts usage of Imdown, Imreread, and lmremove to a
FLEXIm administrator who is by default root. If there is a
UNIX group called "Imadmin” then use is restricted to only
members of that group. If root is not a member of this group,
then root does not have permission to use any of the above
utilities.

Specifies the timeout interval, in seconds, during which the
license daemon must complete its connection to other
daemons if operating in multi-server mode. The default value
is 10 seconds. A larger value may be desirable if the daemons
are being run on busy systems or a very heavily loaded
network.

A-13

A-14 Appendix A

=

-s interval Specifies the log file timestamp interval, in minutes. The
default is 360 minutes. This means that every six hours
Imgrd logs the time in the log file.

ﬂj Imdown, Imstat

Flexible License Manager (FLEXIm) A-15

Name
Imhostid - report the hosti d of a system

Synopsis
Imhostid

Description
Imbhostid calls the FLEXIm version of get host i d and displays the results.
The output of Imhostid looks like this:

I mhostid — Copyright (C) 1989, 1999 d obetrotter Software, Inc.
The FLEXI m host ID of this machine is "1200abcd”

Options

Imhostid has no command line options.

A-16 Appendix A

Name

Imremove - remove specific licenses and return them to license pool

Synopsis

Imremove | —c license_file | feature user host | display |

Description

The Imremove utility allows the system administrator to remove a single
user’s license for a specified feature. This could be required in the case
where the licensed user was running the software on a node that
subsequently crashed. This situation will sometimes cause the license to
remain unusable. Imremove will allow the license to return to the pool of
available licenses.

Imremove will remove all instances of “user” on node “host” on display
“display” from usage of “feature”. If the optional —c¢ fi | e is specified, the
indicated file will be used as the license file. Since removing a user’s
license can be disruptive, execution of Imremove is restricted to users
with root privileges.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imremove looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imremove looks for the
filec:\flexI M1icense.dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

ﬂj Imstat

Flexible License Manager (FLEXIm) A-17

Name

Imreread - tells the license daemon to reread the license file

Synopsis

Imreread | —c license_file |

Description

Imreread allows the system administrator to tell the license daemon to
reread the license file. This can be useful if the data in the license file has
changed; the new data can be loaded into the license daemon without
shutting down and restarting it.

The license administrator may want to protect the execution of Imreread.
See the —p option in Section 3.4, Imgrd for details about securing access to
lmreread.

Imreread uses the license file from the command line (or the default file,
if none specified) only to find the license daemon to send it the command
to reread the license file. The license daemon will always reread the file
that it loaded from the original path. If you need to change the path to the
license file read by the license daemon, then you must shut down the
daemon and restart it with that new license file path.

You cannot use Imreread if the SERVER node names or port numbers
have been changed in the license file. In this case, you must shut down
the daemon and restart it in order for those changes to take effect.

Imreread does not change any option information specified in an options
file. If the new license file specifies a different options file, that
information is ignored. If you need to reread the options file, you must
shut down (Imdown) the daemon and restart it.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imreread looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imreread looks for the
file | i cense. dat in the default location.

% Imdown

A-18 Appendix A

Name

Imstat — report status on license manager daemons and feature usage

Synopsis
Imstat [-a | [-A | [-c license_file | | —f [feature] |
[-1 [regular _expression)] | [-s [server] | [=S [daemon] | [-t timeout |
Description

License administration is simplified by the lmstat utility. Imstat allows
you to instantly monitor the status of all network licensing activities.
Imstat allows a system administrator to monitor license management
operations including:

* Which daemons are running

* Users of individual features

* Users of features served by a specific DAEMON

Options
-a Display all information.
-A List all active licenses.

—c license_file
Use the specified license_file. If no —c option is specified,
Imstat looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imstat looks for the file
c:\flexI mlicense.dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

—f [feature] List all users of the specified feature(s).

-1 [regular_expression)|
List all users of the features matching the given
regular_expression.

-s [server] Display the status of the specified server node(s).

=S |daemon)] List all users of the specified daemon’s features.

Flexible License Manager (FLEXIm) A-19

-t timeout Specifies the amount of time, in seconds, lmstat waits to
establish contact with the servers. The default value is 10
seconds. A larger value may be desirable if the daemons are
being run on busy systems or a very heavily loaded network.

ﬂj Imgrd

A-20

Appendix A

Name

Imswitchr - switch the report log file
Synopsis
Imswitchr | —c license_file | feature new-file
or:

Imswitchr | —c license_file | vendor new-file

Description

Imswitchr (Windows only) switches the report writer (REPORTLOG) log
file. It will also start a new REPORTLOG file if one does not already exist.

Parameters
Sfeature Any feature this daemon supports.
vendor The name of the vendor daemon (such as Tasking).
new-file New file path.

Options

—c license_file
Use the specified license_file. If no —c option is specified,
Imswitchr looks for the environment variable
LM LI CENSE_FI LE in order to find the license file to use. If
that environment variable is not set, Imswitchr looks for the
filec:\flexI MIicense. dat (Windows), or
lusr/local/flexlmlicenses/license.dat (UNIX).

Flexible License Manager (FLEXIm)

Name

Imver - report the FLEXIm version of a library or binary file

Synopsis

Imver filename

Description
The Imver utility reports the FLEXIm version of a library or binary file.

Alternatively, on UNIX systems, you can use the following commands to
get the FLEXIm version of a binary:

strings file | grep Copy

Parameters

filename Name of the executable of the product.

A-21

A-22

Appendix A

For the 32 Bit Windows Platforms, an lmtools.exe Windows program is
provided. It has the same functionality as listed in the previous sections
but is graphically—oriented. Simply run the program (Start | Prograns
| TASKI NG FLEXI m | FLEXI m Tool s) and choose a button for the
functionality required. Refer to the previous sections for information about
the options of each feature. The command line interface is replaced by
pop-up dialogs that can be filled out.The central EDIT field is where the
license file path is placed. This will be used for all other functions and
replaces the "-c license_file” argument in the other utilities.

The HOSTI D button displays the hostid’s for the computer on which the
program is running. The Tl ME button prints out the system’s internal time
settings, intended to diagnose any time zone problems. The TCP

Set ti ngs button is intended to fix a bug in the Microsoft TCP protocol
stack which has a symptom of very slow connections to computers. After
pressing this button, the system will need to be rebooted for the settings to
become effective.

Flexible License Manager (FLEXIm) A-23

Imgrd.exe can be run manually or using the graphical Windows tool. You
can start this tool from the FLEXIm program folder. Click on Start |
Programs | TASKING FLEXIm | FLEXI m Tool s

FLEXIm License Manager E2

etup I Licensesl Diagnnsticsl About I

— Controlz License Manager
Service Mame IFLEXIm Lizense Manager for TASKING

Start Startz Up the Licenze Server

T Stopz the License Server

Clatus Licenze Manager Status

ddd

Q. I Cancel el

From the Control tab you can start, stop, and check the status of your
license server. Select the Set up tab to enter information about your
license server.

FLEXIm Licenze Manager E

Contral Licensesl Diagnoslicsl About I

— Setup of Licenze Manager

Service Mame IFLEXIm Licenze Manager for TASKING j

Imgrd. exe Bl | IC:\erxIm\bin'\Imgrd.eHe
Licenze File Browse | Ic:\flexlm\license.dat
Eifgbug Log Browse | Ic:\flexlm\license.log

[Start Server at Power-Up ¥ Use NT Services Remowe |

ok I Cancel | Sy |

A-24

Appendix A

Select the Cont r ol tab and click the St art button to start your license
server. Imgrd.exe will be launched as a background application with the
license file and debug log file locations passed as parameters.

If you want Imgrd.exe to start automatically on NT, select the Use NT
Servi ces check box and Imgrd.exe will be installed as an NT service.
Next, select the Start Server at Power —UP check box.

The Li censes tab provides information about the license file and the
Advanced tab allows you to perform diagnostics and check versions.

Flexible License Manager (FLEXIm) A-25

The FLEXIm daemons all generate log files containing messages in the
following format:

mm/dd bb:mm (DAEMON name) message
Where:

mm/dd bb:mm Is the month/day hour:minute that the message was
logged.

DAEMON name Either “license daemon” or the string from the DAEMON
line that describes your daemon.

In the case where a single copy of the daemon cannot
handle all of the requested licenses, an optional “_”
followed by a number indicates that this message comes
from a forked daemon.

message The text of the message.

The log files can be used to:
¢ Inform you when it may be necessary to update your application
software licensing arrangement.
¢ Diagnose configuration problems.
» Diagnose daemon software errors.

The messages are grouped below into the above three categories, with
each message followed by a brief description of its meaning.

A-26

Appendix A

Connected to node

This daemon is connected to its peer on node node.

CONNECTED, master is name

The license daemons log this message when a quorum is up and everyone
has selected a master.

DEMO mode supports only one SERVER bost!

An attempt was made to configure a demo version of the software for
more than one server host.

DENIED: N feature to user (mm/dd/yy bb:mm)

user was denied access to N licenses of feature. This message may indicate
a need to purchase more licenses.

EXITING DUE TO SIGNAL nnn
EXITING with code nnn

All daemons list the reason that the daemon has exited.

EXPIRED: feature

Sfeature has passed its expiration date.
IN: feature by user (N licenses) (used: d:bh:mm:ss)

(mm/dd/yy bb:mm)

user has checked back in N licenses of feature at mm/dd/yy bb.mm.
IN server died: feature by user (number licenses)

(used: d:bb:mm:ss) (mm/dd/yy bb:mm)

user has checked in N licenses by virtue of the fact that his server died.

License Manager server started

The license daemon was started.

Flexible License Manager (FLEXIm) A-27

Lost connection to bost

A daemon can no longer communicate with its peer on node host, which
can cause the clients to have to reconnect, or cause the number of
daemons to go below the minimum number, in which case clients may
start exiting. If the license daemons lose the connection to the master, they
will kill all the vendor daemons; vendor daemons will shut themselves
down.

Lost quorum

The daemon lost quorum, so will process only connection requests from
other daemons.

MASTER SERVER died due to signal nnn

The license daemon received fatal signal nn7n.

MULTIPLE xxx servers running. Please kill, and restart license
daemon

The license daemon has detected that multiple copies of vendor daemon
xxx are running. The user should kill all xxx daemon processes and
re-start the license daemon.

OUT: feature by user (N licenses) (mm/dd/yy bb:mm)

user has checked out N licenses of feature at mm/dd/yy bb:mm

Removing clients of children

The top-level daemon logs this message when one of the child daemons
dies.

RESERVE feature for HOST name
RESERVE feature for USER name

A license of feature is reserved for either user name or host name.

REStarted xxx (internet port nnn)

Vendor daemon xxx was restarted at internet port 7.

Retrying socket bind (address in use)

The license servers try to bind their sockets for approximately 6 minutes if
they detect address in use errors.

A-28

Appendix A

Selected (EXISTING) master node

This license daemon has selected an existing master (node) as the master.

SERVER shutdown requested
A daemon was requested to shut down via a user—generated Kkill
command.

[NEW] Server started for: feature-list

A (possibly new) server was started for the features listed.

Shutting down xxx

The license daemon is shutting down the vendor daemon xxx.

SIGCHLD received. Killing child servers

A vendor daemon logs this message when a shutdown was requested by
the license daemon.

Started name

The license daemon logs this message whenever it starts a new vendor
daemon.

Trying connection to node

The daemon is attempting a connection to zode.

Flexible License Manager (FLEXIm) A-29

bostname: Not a valid server bost, exiting

This daemon was run on an invalid hostname.

bostname: Wrong hostid, exiting

The hostid is wrong for hostname.

BAD CODE for feature-name

The specified feature name has a bad encryption code.

CANNOT OPEN options file “file”

The options file specified in the license file could not be opened.

Couldn’t find a master

The daemons could not agree on a master.

license daemon: lost all connections

This message is logged when all the connections to a server are lost,
which often indicates a network problem.

lost lock, exiting
Error closing lock file
Unable to re-open lock file

The vendor daemon has a problem with its lock file, usually because of an
attempt to run more than one copy of the daemon on a single node.
Locate the other daemon that is running via a ps command, and kill it
with kill -9.

NO DAEMON line for daemon

The license file does not contain a DAEMON line for daemon.

No “license” service found

The TCP license service did not exist in / et ¢/ servi ces.

No license data for “feat”, feature unsupported

There is no feature line for feat in the license file.

A-30

Appendix A

No features to serve!

A vendor daemon found no features to serve. This could be caused by bad
data in the license file.

UNSUPPORTED FEATURE request: feature by user

The user has requested a feature that this vendor daemon does not
support. This can happen for a number of reasons: the license file is bad,
the feature has expired, or the daemon is accessing the wrong license file.

Unknown bost: bostname

The hostname specified on a SERVER line in the license file does not exist
in the network database (probably / et ¢/ host s).

Im_server: lost all connections

This message is logged when all the connections to a server are lost. This
probably indicates a network problem.

NO DAEMON lines, exiting

The license daemon logs this message if there are no DAEMON lines in the
license file. Since there are no vendor daemons to start, there is nothing to
do.

NO DAEMON line for name

A vendor daemon logs this error if it cannot find its own DAEMON name in
the license file.

Flexible License Manager (FLEXIm) A-31

accept: message

An error was detected in the accept system call.

ATTEMPT TO START VENDOR DAEMON xxx with NO MASTER

A vendor daemon was started with no master selected. This is an intermnal
consistency error in the daemons.

BAD PID message from nnn: pid: xxx (msg)
A top-level vendor daemon received an invalid Pl D message from one of
its children (daemon number xxx).

BAD SCONNECT message: (message)

An invalid “server connect” message was received.

Cannot create pipes for server communication

The pi pe call failed.

Can’t allocate server table space

A mal | oc error. Check swap space.

Connection to node TIMED OUT

The daemon could not connect to node.

Error sending PID to master server

The vendor server could not send its Pl D to the top-level server in the
hierarchy.

Illegal connection request to DAEMON
A connection request was made to DAEMON, but this vendor daemon is not
DAEMON.

Illegal server connection request
A connection request came in from another server without a DAEMON
name.

KILL of child failed, errno = nnn
A daemon could not kill its child.

A-32

Appendix A

No internet port number specified

A vendor daemon was started without an internet port.

Not enough descriptors to re-create pipes

The “top-level” daemon detected one of its sub-daemon’s death. In trying
to restart the chain of sub-daemons, it was unable to get the file
descriptors to set up the pipes to communicate. This is a fatal error, and
the daemons must be re-started.

read: error mes sage

An error in a r ead system call was detected.

recycle_control BUT WE DIDN’T HAVE CONTROL

The hierarchy of vendor daemons has become confused over who holds
the control token. This is an internal error.

return_reserved: can’t find feature listhead

When a daemon is returning a reservation to the “free reservation” list, it
could not find the | i st head of features.

select: message

An error in a select system call was detected.

Server exiting

The server is exiting. This is normally due to an error.

SHELLO for wrong DAEMON

This vendor daemon was sent a “server hello” message that was destined
for a different DAEMON.

Unsolicited msg from parent!
Normally, the top-level vendor daemon sends no unsolicited messages. If
one arrives, this message is logged. This is a bug.

WARNING: CORRUPTED options list (0->next == 0)

Options list TERMINATED at bad entry

An internal inconsistency was detected in the daemon’s option list.

Flexible License Manager (FLEXIm) A-33

FLEXIm license error, encryption code in license file is inconsistent

Check the contents of the license file using the license data sheet for the
product. Correct the license file and run the Imreread command.
However, do not change the last (fourth) field of a SERVER line in the
license file. This cannot have any effect on the error message but changing
it will cause other problems.

license file does not support this version

If this is a first time install then follow the procedure for the error message:

FLEXIm |icense error, encryption code in license file is
i nconsi st ent

because there may be a typo in the fourth field of a FEATURE line of your
license file. In all other cases you need a new license because the current
license is for an older version of the product.

Replace the FEATURE line for the old version of the product with a
FEATURE line for the new version (it can be found on the new license
data sheet). Run the Imreread command afterwards. You can have only
one version of a feature (previous versions of the product will continue to
work).

FLEXUImn license error, cannot find license file

Make sure the license file exists. If the pathname printed on the line after
the error message is incorrect, correct this by setting the

LM LI CENSE_FI LE environment variable to the full pathname of the
license file.

FLEXIm license error, cannot read license file

Every user needs to have read access on the license file and at least
execute access on every directory component in the pathname of the
license file. Write access is never needed. Read access on directories is

recommended.

FLEXIm license error, no such feature exists

Check the license file. There should be a line starting with:

FEATURE SWiiiii—j

A-34

Appendix A

for identifying a compatible host architecture. During product installations
the product code is shown, e.g. SW008002, SW019002. The number in the
software code is the same as the number in the product code except that
the first number may contain an extra leading zero (it must be six digits
long).

The line after the license error message describes the expected feature
format and includes the host code.

Correct the license file using the license data sheet for the product and run
the Imreread command. There is one catch: do not add extra SERVER
lines or change existing SERVER lines in the license file.

FLEXIm license error, license server does not support this feature

If the LM _LI CENSE_FI LE variable has been set to the format
number@hbost then see first the solution for the message:

FLEXIm |l icense error, no such feature exists

Run the Imreread program to inform the license server about a changed
license data file. If Imreread succeeds informing the license server but the
error message persists, there are basically three possibilities:

. The license key is incorrect. If this is the case then there must be an error

message in the log file of Imgrd. Correct the key using the license data
sheet for the product. Finally rerun lmreread. The log file of Imgrd is
usually specified to Imgrd at startup with the -1 option or with >.

. Your network has more than one FLEXIm license server daemon and the

default license file location for Imreread differs from the default assumed
by the program. Also, there must be more than one license file. Try one of
the following solutions on the same host which produced the error
message:

- type:
Interead —c /usr/local/flexlmlicenses/license. dat
- set LM LI CENSE_FI LE to the license file location and retry the
Imreread command.

- use the Imreread program supplied with the product SW000098,
Flexible License Manager. SW000098 is bundled with all TASKING
products.

Flexible License Manager (FLEXIm) A-35

3. There is a protocol version mismatch between lmgrd and the daemon
with the name "Tasking” (the vendor daemon according to FLEXIm
terminology) or there is some other internal error. These errors are always
written to the log file of Imgrd. The solution is to upgrade the lmgrd
daemon to the one supplied in SW000098, the bundled Flexible License
Manager product.

On the other hand, if Imreread complains about not being able to
connect to the license server then follow the procedure described in the
next section for the error message "Cannot read license file data from
server”. The only difference with the current situation is that not the
product but a license management utility shows a connect problem.

FLEXIm license error, Cannot read license file data from server

This indicates that the program could not connect to the license server
daemon. This can have a number of causes. If the program did not
immediately print the error message but waited for about 30 seconds (this
can vary) then probably the license server host is down or unreachable. If
the program responded immediately with the error message then check
the following if the LM LI CENSE_FI LE variable has been set to the format
number@host:

— is the number correct? It should match the fourth field of a SERVER
line in the license file on the license server host. Also, the host
name on that SERVER line should be the same as the host name set
in the LM _LI CENSE_FI LE variable. Correct LM LI CENSE_FI LE if
necessary.

In any case one should verify if the license server daemon is running.
Type the following command on the host where the license server
daemon (Imgrd) is supposed to run.

On SunOS 4.x:

ps wax | grep Ingrd | grep —v grep
On HP-UX or SunOS 5.x (Solaris 2.x):

ps —ef | grep Ingrd | grep —v grep

If the command does not produce any output then the license server
daemon is not running. See below for an example how to start Imgrd.

A-36

Appendix A

Make sure that both license server daemon (Imgrd) and the program are
using the same license data. All TASKING products use the license file
fusr/local/flexlnllicenses/license.dat unless overruled by the
environment variable LM LI CENSE_FI LE. However, not all existing
Imgrd daemons may use the same default. In case of doubt, specify the
license file pathname with the —c option when starting the license server
daemon. For example:

Imgrd —c /usr/local/flexInllicenses/license.dat \
—I Jusr/local/flexlnllicenses/license.log &

and set the LM LI CENSE_FI LE environment variable to the

i cense. dat pathname mentioned with the —c option of Imgrd before
running any license based program (including lmreread, Imstat,
Imdown). If Imgrd and the program run on different hosts, transparent
access to the license file is assumed in the situation described above (e.g.
NES). If this is not the case, make a local copy of the license file (not
recommended) or set LM LI CENSE_FI LE to the form number@hbost, as
described earlier.

If none of the above seems to apply (i.e. Imgrd was already running and
LM LI CENSE_FI LE has been set correctly) then it is very likely that there
is a TCP port mismatch. The fourth field of a SERVER line in the license
file specifies a TCP port number. That number can be changed without
affecting any license. However, it must never be changed while the license
server daemon is running. If it has been changed, change it back to the
original value. If you do not know the original number anymore, restart
the license server daemon after typing the following command on the
license server host:

kill PID

where PI D is the process id of Imgrd.

Flexible License Manager (FLEXIm)

Ive received FLEXIm license files from 2 different companies. Do I
bave to combine them?

You don’t have to combine license files. Each license file that has any
‘counted’ lines (the 'number of licenses’ field is >0) requires a server. It’s
perfectly OK to have any number of separate license files, with different
Imgrd server processes supporting each file. Moreover, since Imgrd is a
lightweight process, for sites without system administrators, this is often
the simplest (and therefore recommended) way to proceed. With vo+
Imgrd/Imdown/lmreread, you can stop/reread/restart a single vendor
daemon (of any FLEXIm version). This makes combining licenses more
attractive than previously. Also, if the application is v6+, using ’dir/*lic’ for
license file management behaves like combining licenses without
physically combining them.

When is it recommended to combine license files?

Many system administrators, especially for larger sites, prefer to combine
license files to ease administration of FLEXIm licenses. It's purely a matter
of preference.

Does FLEXIm bandle dates in the year 2000 and beyond?

Yes. The FLEXIm date format uses a 4—digit year. Dates in the 20th century
(19xx) can be abbreviated to the last 2 digits of the year (xx), and use of
this feature is quite widespread. Dates in the year 2000 and beyond must
specify all 4 year digits.

Which FLEXlm versions does TASKING deliver?
For Windows we deliver FLEXIm v6.1 and for UNIX we deliver v2.4.

A-37

A-38 Appendix A

-

I bave products from several companies at various FLEXIm version
levels. Do I bave to worry about bow these versions work together?

If you're not combining license files from different vendors, the simplest
thing to do is make sure you use the tools (especially lmgrd) that are
shipped by each vendor.

Imgrd will always correctly support older versions of vendor daemons
and applications, so it's always safe to use the latest version of Imgrd and
the other FLEXIm utilities. If you've combined license files from 2 vendors,
you must use the latest version of Imgrd.

If you've received 2 versions of a product from the same vendor, you must
use the latest vendor daemon they sent you. An older vendor daemon
with a newer client will cause communication errors.

Please ignore letters appended to FLEXIm versions, i.e., v2.4d. The
appended letter indicates a patch, and does NOT indicate any
compatibility differences. In particular, some elements of FLEXIm didn’t
require certain patches, so a 2.4 lmgrd will work successfully with a 2.4b
vendor daemon.

Ive received a new copy of a product from a vendor, and it uses a new
version of FLEXIm. Is my old license file still valid?

Yes. Older FLEXIm license files are always valid with newer versions of
FLEXIm.

What Windows Host Platforms can be used as a server for Floating
Licenses?

The system being used as the server (where the FLEXIm License Manager
is running) for Floating licenses, must be Windows NT. The FLEXIm
License Manager does not run properly with Windows 95/98.

Why do I need to include NWlink IPX/SPX on NT?

This is necessary for either obtaining the Ethernet card address, or to
provide connectivity with a Netware License server.

Flexible License Manager (FLEXIm)

How will the TASKING licensing/pricing model change with License
Management (FLEXlm)?

TASKING will now offer the following types of licenses so you can
purchase licenses based upon usage:

License Description Pricing

Node Locked This license can only be used on a | The pricing for this
specific system. It cannot be license will be the
moved to another system. current product pricing.

Floating This license requires a network The pricing for this
(license server and a TCP/IP (or license will be 50%
IPX/SPX) connection between higher than the node

clients and server) and can be used | locked license.
on any host system (using the
same operating system) in the
network.

How does FLEXIm affect future product ordering?

&

For all licenses, node locked or floating, you must provide information
that is used to create a license key. For node locked licenses we must
have the HOST ID. Floating licenses require the HOST ID and HOST
NAME. The HOST ID is a unique identification of the machine, which is
based upon different hardware depending upon host platform. The HOST
NAME is the network name of the machine.

TASKING Logistics CANNOT ship ANY orders that do not include the
HOST ID and/or HOST NAME information.

What if I do not know the information needed for the license key?

We have a software utility (tkhostid.exe) which will obtain and display
the HOST ID so a customer can easily obtain this information. This utility
is available from our web site, placed on all product CDs (which support
FLEXIm), and from technical support. If you have already installed
FLEXIm, you can also use Imhostid.

* In the case of a Node locked license, it is important that the customer
runs this utility on the exact machine he intends to run the
TASKING tools on.

A-39

A-40

Appendix A

* In the case of a Floating License, the tkhostid.exe (or Imhostid)
utility should be run on the machine on which the FLEXIm license
manager will be installed, e.g. the server. The HOST NAME
information can be obtained from within the Windows Control
Panel. Select "Network”, click on ”Identification”, look for
"Computer name”.

How will the “locking” mechanism work?
¢ For node locked licenses, FLEXIm will first search for an ethernet card.
If one exists, it will lock onto the number of the ethernet card. If an
ethernet card does not exist, FLEXIm will lock onto the hard disk serial
number.

* For floating licenses, the ethernet card number will be used.

What bappens if I try to move my node locked license to another
system?

The software will not run.

What does linger-time for floating licenses mean?

When the TASKING product starts to run, it will try to obtain a license
from the license server. The license server keeps track of the number of
licenses already issued, and grants or denies the request. When the
software has finished running, the license is kept by the license server for
a period of time known as the “linger-time”. If the same user requests the
TASKING product again within the linger-time, he is granted the license
again. If another user requests a license during the linger-time, his
request is denied until the linger-time has finished

What is the length of the linger-time for floating licenses?

The length of the linger-time for both the PC and UNIX floating licenses is
5 minutes.

Can the linger-time be changed?

Yes. A customer can change the linger-time to be larger (but not shorter)
than the time specified by TASKING.

What bappens if my system crashes or I upgrade to a new system?

You will need to contact Technical Support for temporary license keys due
to a system crash or to move from one system to another system. You will
then need to work with your local sales representative to obtain a
permanent new license key.

Flexible License Manager (FLEXIm) A-41

Does FLEXIm work across the internet?

Yes. A server on the internet will serve licenses to anyone else on the
internet. This can be limited with the INTERNET=" attribute on the
FEATURE line, which limits access to a range of internet addresses. You
can also use the INCLUDE and EXCLUDE options in the daemon option
file to allow (or deny) access to clients running on a range of internet
addresses.

Does FLEXIm work with Internet firewalls?

Many firewalls require that port numbers be specified to the firewall.
FLEXIm v5 Imgrd supports this.

If my client dies, does the server free the license?

Yes, unless the client’s whole system crashes. Assuming communications is
TCP, the license is automatically freed immediately. If communications are
UDP, then the license is freed after the UDP timeout, which is set by each
vendor, but defaults to 45 minutes. UDP communications is normally only
set by the end-user, so TCP should be assumed. If the whole system
crashes, then the license is not freed, and you should use ‘lmremove’ to
free the license.

What bappens when the license server dies?

FLEXIm applications send periodic heartbeats to the server to discover if it
has died. What happens when the server dies is then up to the application.
Some will simply continue periodically attempting to re-checkout the
license when the server comes back up. Some will attempt to re-checkout
a license a few times, and then, presumably with some warning, exit.
Some GUI applications will present pop—ups to the user periodically
letting them know the server is down and needs to be re-started.

How do you tell if a port is already in use?

99.44% of the time, if it’s in use, it’s because Imgrd is already running on
the port — or was recently killed, and the port isn’t freed yet. Assuming this
is not the case, then use telnet host port’ — if it says “can’t connect”, it's a
free port.

A-42 Appendix A

=

Does FLEXIm require root permissions?

No. There is no part of FLEXIm, Imgrd, vendor daemon or application,
that requires root permissions. In fact, it is strongly recommended that you
do not run the license server (lmgrd) as root, since root processes can
introduce security risks.

If Imgrd must be started from the root user (for example, in a system boot
script), we recommend that you use the su’ command to run lmgrd as a
non-privileged user:

su usernanme —c”/path/lImgrd —c /path/license.dat \
-l [path/log”

where username is a non-privileged user, and path is the correct paths to
Imgrd, | i cense. dat and debug log file. You will have to ensure that the
vendor daemons listed in /path-to-license/license.dat have execute
permissions for username. The paths to all the vendor daemons in the
license file are listed on each DAEMON line.

Is it ok to run mgrd as ’root’ (UNIX only)?

It is not prudent to run any command, particularly a daemon, as root on
UNIX, as it may pose a security risk to the Operating System. Therefore,
we recommend that Imgrd be run as a non—privileged user (not 'root’). If
you are starting Imgrd from a boot script, we recommend that you use

su usernanme —c”umask 022; /path/lInmgrd \
—c /path/license.dat —I /path/log”

to run Imgrd as a non-privileged user.

Does FLEXIm licensing impose a beavy load on the network?

No, but partly this depends on the application, and end-user’s use. A
typical checkout request requires 5 messages and responses between
client and server, and each message is < 150 bytes.

When a server is not receiving requests, it requires virtually no CPU time.
When an application, or Imstat, requests the list of current users, this can
significantly increase the amount of networking FLEXIm uses, depending
on the number of current users. Also, prior to FLEXIm v5, use of
‘port@host’ can increase network load, since the license file is
down-loaded from the server to the client. 'port@host’ should be, if
possible, limited to small license files (say < 50 features). In v5, 'port@host’
actually improves performance.

Flexible License Manager (FLEXIm)

Does FLEXIm work with NFS?

Yes. FLEXIm has no direct interaction with NFS. FLEXIm uses an
NFS-mounted file like any other application.

Does FLEXIm work with ATM, ISDN, Token-Ring, etc.?

In general, these have no impact on FLEXIm. FLEXIm requires TCP/IP or
SPX (Novell Netware). So long as TCP/IP works, FLEXIm will work.

Does FLEXIm work with subnets, fully-qualified names, multiple
domains, etc.?

Yes, although this behavior was improved in v3.0, and v6.0. When a
license server and a client are located in different domains, fully—qualified
host names have to be used. A fully-qualified hostname is of the form:

node.domain

where node is the local hostname (usually returned by the ’hostname’
command or 'aname -n’) domain is the internet domain name, e.g.
"globes.com’.

To ensure success with FLEXIm across domains, do the following:

1. Make the sure the fully—qualified hostname is the name on the SERVER
line of the license file.

2. Make sure ALL client nodes, as well as the server node, are able to 'telnet’
to that fully—qualified hostname. For example, if the host is locally called
'speedy’, and the domain name is ’corp.com’, local systems will be able to
logon to speedy via ’telnet speedy’. But very often, 'telnet
speedy.corp.com’ will fail, locally.

Note that this telnet command will always succeed on hosts in other
domains (assuming everything is configured correctly), since the network
will resolve speedy.corp.com automatically.

3. Finally, there must be an 'alias’ for speedy so it’s also known locally as
speedy.corp.com. This alias is added to the / et ¢/ host s file, or if
NIS/Yellow Pages are being used, then it will have to be added to the NIS
database. This requirement goes away in version 3.0 of FLEXIm.

If all components (application, Imgrd and vendor daemon) are v6.0 or
higher, no aliases are required; the only requirement is that the
fully—qualified domain name, or IP-address, is used as a hostname on the
SERVER, or as a hostname in LM_LICENSE FILE port@host, or @host.

A-43

A-44 Appendix A

=

Does FLEXIm work with NIS and DNS?

Yes. However, some sites have broken NIS or DNS, which will cause
FLEXIm to fail. In v5 of FLEXIm, NIS and DNS can be avoided to solve this
problem. In particular, sometimes DNS is configured for a server that's not
current available (e.g., a dial-up connection from a PC). Again, if DNS is
configured, but the server is not available, FLEXIm will fail.

In addition, some systems, particularly Sun, SGI, HP, require that
applications be linked dynamically to support NIS or DNS. If a vendor
links statically, this can cause the application to fail at a site that uses NIS
or DNS. In these situations, the vendor will have to relink, or recompile
with v5 FLEXIm. Vendors are strongly encouraged to use dynamic libraries
for libc and networking libraries, since this tends to improve quality in
general, as well as making NIS/DNS work.

On PCs, if a checkout seems to take 3 minutes and then fails, this is
usually because the system is configured for a dial-up DNS server which is
not currently available. The solution here is to turn off DNS.

Finally, hostnames must NOT have periods in the name. These are not
legal hostnames, although PCs will allow you to enter them, and they will
not work with DNS.

We’re using FLEXIm over a wide-area network. What can we do to
improve performance?

FLEXIm network traffic should be minimized. With the most common uses
of FLEXIm, traffic is negligible. In particular, checkout, checkin and
heartbeats use very little networking traffic. There are two items, however,
which can send considerably more data and should be avoided or used
sparingly:

* ’lmstat —a’ should be used sparingly. 'lmstat —a’ should not be
used more than, say, once every 15 minutes, and should be
particularly avoided when there’s a lot of features, or concurrent
users, and therefore a lot of data to transmit; say, more than 20
concurrent users or features.

* Prior to FLEXIm v5, the 'port@host’ mode of the LM_LICENSE_FILE
environment variable should be avoided, especially when the
license file has many features, or there are a lot of license files
included in LM_LICENSE FILE. The license file information is sent
via the network, and can place a heavy load. Failures due to
"port@host’ will generate the error LM SERVNOREADLIC (-61).

MISRA C

al TASKING [

XIAN3ddV

MISRA C

Supported and unsupported MISRA C rules

1.

*o2

11.
12.
13.
14.

17.

19.

20.

21.

22.

24.

Y »® N oW

no language extensions shall be used

other languages should only be used with an interface standard
inline assembly is only allowed in dedicated C functions
provision should be made for appropriate run-time checking
only use characters defined by the C standard

character values shall be restricted to a subset of ISO 106460-1
trigraphs shall not be used

multibyte characters and wide string literals shall not be used
comments shall not be nested

sections of code should not be "commented out”

identifiers shall not rely on significance of more than 31 characters
the same identifier shall not be used in multiple name spaces
specific-length typedefs should be used instead of the basic types
use 'unsigned char’ or ’signed char’ instead of plain ’char’
floating point implementations should comply with a standard
the bit representation of floating point numbers shall not be used
typedef names should not be reused

numeric constants should be suffixed to indicate type

octal constants (other than zero) shall not be used

all object and function identifiers shall be declared before use
identifiers shall not hide identifiers in an outer scope

declarations should be at function scope where possible (static
variable”)

all declarations at file scope should be static where possible

identifiers shall not have both internal and external linkage

B-4

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

Appendix B

identifiers with external linkage shall have exactly one definition
multiple declarations for objects or functions shall be compatible
external objects should not be declared in more than one file
the ’register’ storage class specifier should not be used

the use of a tag shall agree with its declaration

all automatics shall be initialized before being used

braces shall be used in the initialization of arrays and structures
only the first, or all enumeration constants may be initialized

the right hand side of && or | | shall not contain side effects

the operands of a logical && or | | shall be primary expressions
assignment operators shall not be used in Boolean expressions
logical operators should not be confused with bitwise operators
bitwise operations shall not be performed on signed integers

a shift count shall be between 0 and the operand width minus 1
the unary minus shall not be applied to an unsigned expression
'sizeof” should not be used on expressions with side effects

the implementation of integer division should be documented
the comma operator shall only be used in a 'for’ condition

don’t use implicit conversions which may result in information loss
redundant explicit casts should not be used

type casting from any type to/from pointers shall not be used
the value of an expression shall be evaluation order independent
no dependence should be placed on operator precedence rules
mixed arithmetic should use explicit casting

tests of a (non-Boolean) value against 0 should be made explicit

MISRA C

50.

52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

68.
69.
70.
71.
72.
73.
74.

F.P. variables shall not be tested for exact equality or inequality
constant unsigned integer expressions should not wrap—around
there shall be no unreachable code

all non—null statements shall have a side-effect

a null statement shall only occur on a line by itself

labels should not be used

the ’goto’ statement shall not be used

the ’continue’ statement shall not be used

the ’break’ statement shall not be used (except in a ’switch’)

an ’'if’ or loop body shall always be enclosed in braces

all ’if’, ’else if’ constructs should contain a final ’else’

every non-empty 'case’ clause shall be terminated with a 'break’
all ’switch’ statements should contain a final 'default’ case

a 'switch’ expression should not represent a Boolean case

every ’switch’ shall have at least one ’case’

floating point variables shall not be used as loop counters

a "for” should only contain expressions concerning loop control
iterator variables should not be modified in a "for” loop
functions shall always be declared at file scope

functions with variable number of arguments shall not be used
functions shall not call themselves

function prototypes shall be visible at the definition and call

the function prototype of the declaration shall match the definition
identifiers shall be given for all prototype parameters or for none

parameter identifiers shall be identical for declaration/definition

B-6

75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.

88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.

Appendix B

every function shall have an explicit return type

functions with no parameters shall have a 'void’ parameter list
an actual parameter type shall be compatible with the prototype
the number of actual parameters shall match the prototype

the values returned by ’void’ functions shall not be used

void expressions shall not be passed as function parameters
"const” should be used for reference parameters not modified

a function should have a single point of exit

every exit point shall have a ’return’ of the declared return type
for *void’ functions, ’return’ shall not have an expression
function calls with no parameters should have empty parentheses
if a function returns error information, it should be tested

#include shall only be preceded by another directives or
comments

non-standard characters shall not occur in #include directives
#include shall be followed by either <filename> or filename”
plain macros shall only be used for constants/qualifiers/specifiers
macros shall not be defined/undefined within a block

'#undef should not be used

a function should be used in preference to a function-like macro
a function-like macro shall not be used without all arguments
macro arguments shall not contain pre-preprocessing directives
macro definitions/parameters should be enclosed in parentheses
don’t use undefined identifiers in pre—processing directives

a macro definition shall contain at most one # or ## operator

MISRA C

100.
101.
102.
*103.
104.
105.
106.
*107.
* 108.
*109.
* 110.
111.
112.
113.
114.
115.
* 116.
* 117.
118.
119.
120.
121.
122.

123.

all uses of the #pragma directive shall be documented
"defined’ shall only be used in one of the two standard forms
pointer arithmetic should not be used

no more than 2 levels of pointer indirection should be used

no relational operators between pointers to different objects
non—constant pointers to functions shall not be used

functions assigned to the same pointer shall be of indentical type
an automatic address may not be assigned to a longer lived object
the null pointer shall not be de-referenced

all struct/union members shall be fully specified

overlapping variable storage shall not be used

unions shall not be used to access the sub—parts of larger types
bit fields shall have type 'unsigned int’ or ’signed int’

bit fields of type 'signed int’ shall be at least 2 bits long

all struct/union members shall be named

reserved and standard library names shall not be redefined
standard library function names shall not be reused

production libraries shall comply with the MISRA C restrictions
the validity of library function parameters shall be checked
dynamic heap memory allocation shall not be used

‘errno’ should not be used

the macro ’offsetof()’ shall not be used

<locale.h> and the ’setlocale’ function shall not be used

the ’setjimp’ and ’longjmp’ functions shall not be used

the signal handling facilities of <signal.h> shall not be used

B-8

124.
125.
126.

127.

Appendix B

the <stdio.h> library shall not be used in production code
the functions atof/atoi/atol shall not be used
the functions abort/exit/getenv/system shall not be used

the time handling functions of library <time.h> shall not be used

@ * = Not supported by the TASKING TriCore C compiler

CPU FUNCTIONAL
PROBLEMS

al TASKING [

XIAN3ddV

CPU Functional Problems

Infineon Technologies regularly publishes microcontroller errata sheets
reporting functional problems and deviations from the electrical
specifications and timing specifications.

The TASKING TriCore software development tools provide solutions for a
number of these functional problems in the TriCore architecture.

Support to deal with CPU functional problem is provided in three areas:

* Whenever possible and relevant, compiler bypasses will modify the
code in order to avoid the identified erroneous code sequences;

* The TriCore assembler gives warnings for suspicious or erroneous code
sequences;

* Ready-build, ’protected’ standard C libraries with bypasses for all
identified TriCore CPU functional problems are included in the tool
chain.

This appendix lists a summary of identified functional problems which can
be bypassed by the TASKING TriCore tool Kkit.

Please refer to the Infineon errata sheets for the TriCore architecture
revision-step of your particular device, to check the need for applying any
of these bypasses. Also refer to the Infineon errata sheets for a complete
description of the CPU functional problems, as the workarounds listed
below do not describe the functional problem itself.

The syntax used by Infineon to identify a CPU functional problems is:
TC<architecture_nr><version>_<module name><problem nr>
For example: TC113_CPU5 (TC1, version 1.3, module “CPU”, problem #5)

With the TASKING C compiler and assembler command line options,
pragmas and macro definitions you can enable or disable specific CPU
functional problem bypasses.

To enable the compiler bypasses and assembler checks for all TriCore CPU
TC112 problems (respectively TC113 problems) at once, use the command
line option —=zZTC112_DEFECTS or #pragma TC112_DEFECTS
(respectively =zTC113_DEFECTS or #pragma TC113_DEFECTS)

Appendix C

In the embedded development environment (EDE) you can enable as
follows:

Select the EDE | Processor Options... menu and chooose the
Bypasses TCl v1. 2 tab or the Bypasses TCl v1. 3 tab. Then select
the bypasses you want to enable.

The table below shows an overview of all CPU functional problems.

TC Version Functional Problem
112 COR1
112 COR3
112 COR4
112 COR®6
112 COR10
112 COR13
112 COR14
112 COR15
112 COR16
112 COR17
113 PMU1
113 PMU3
113 CPU5
113 CPU9
113 CPU1L1
113 CPU13
113 CPU14
113 CPU15
113 CPU16
113 DMU1
113 LFI2
113 LFI3

Table C-1: Overview of supported TriCore CPU functional problems

CPU Functional Problems Cc-5

Compiler and assembler option:
-zTC112_COR1

Pragma:
#pragma TC112_COR1 [on | off| restore]

Assembler control:
$TC112_COR1 {on | off}

Assembler macro:
The assembler macro _TC112_COR1 is defined if you specify the option
-zT'C112_CORL1.

Protected libraries to link:
lib\p\tcl12*.a

Compiler bypass:
To bypass this CPU functional problem, the C compiler generates an
ISYNC instruction before each LOOP, LOOP16 and LOOPU instruction.
Assembler check:

The assembler gives a warning when the preceding instruction of a LOOP,
LOOP16 or LOOPU instruction is not an ISYNC instruction:

171 suspicious instruction concerning CPU functional
defect TCl12_COR1

You can suppress this warning with the option -w171.

Appendix C

Locator option:
-em TC112 COR3
To bypass this CPU functional problem, a locator control is used in the

tri.cpu descriptor to restrict the size in the CSA absolute address
mapping to 32Kb scratch pad RAM on the DMU.

CPU Functional Problems Cc-7

Compiler and assembler option:
-ZTC112_COR4

Pragma:
#pragma TC112_COR4 [on | off | restore]

Assembler control:
$TC112_COR4 {on | off}

Assembler macro:

The assembler macro _TC112_COR4 is defined if you specify the option
-zTC112_COR4.

Protected libraries to link:
lib\p\tcl12*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP
instruction between a (target) label and the instruction following it This is
done when the instruction directly uses an An register for either an
effective address calculation or as the target of an indirect branch.

Assembler check:

The assembler gives a warning for an instruction using an An register for
either an effective address calculation or as the target of an indirect branch
that is located directly after a (target) label:

172 suspicious instruction concerning CPU functional
defect TCl12_COR4

You can suppress this warning with the option -w172.

Appendix C

Assembler option:
-zZTC112_CORG

Assembler control:
$TC112_CORG {on | off}

Assembler macro:
The assembler macro _TC112_COR6 is defined if you specify the option
-ZTC112_CORG.

Protected libraries to link:
lib\p\tcl12*.a

Compiler bypass:
There is no C compiler workaround required for this CPU functional
problem, because the compiler does not generate CALLI instructions with
a target address in register A11.

Assembler check:

The assembler generates an error for instruction CALLI A11.

CPU Functional Problems Cc-9

Compiler and assembler option:
-zT'C112_COR10

Pragma:
#pragma TC112_CORI10 [on | off | restore]

Assembler control:
$TC112_COR10 {on | off}

Assembler macro:
The assembler macro _TC112_COR10 is defined if you specify the option
-zTC112_COR10.

Protected libraries to link:
lib\p\tcl12*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler avoids generation
of store instructions that use a circular addressing mode with an offset
value not equal to zero. An additional circular load instruction is generated
with the required offset to post-increment the circular buffer pointer.

For example:

st.w [a6/a7+c]0, d15
Id.w dl15,[a6/a7+c]4

Instead of:

st.w [a6/a7+c]4,dl5

Assembler check:

The assembler gives a warning for store operations that use a circular
addressing mode with an offset not equal to zero:

173 suspicious instruction concerning CPU functional
defect TCl12_COR10

You can suppress this warning with the option -w173.

C-10

Appendix C

Compiler and assembler option:
-ZI'C112_COR13

Pragma:
#pragma TC112_COR13 [on | off | restore]

Assembler control:
$TC112_COR13 {on | off}

Assembler macro:
The assembler macro _TC112_COR13 is defined if you specify option
-zTC112_COR13.

Protected libraries to link:
lib\p\tcl12*.a

Compiler bypass:
To bypass this CPU functional problem, the C compiler generates a NOP
prior to the LOOP instruction if the loop contains a single integer
instruction that is a DVSTEP or a DVSTEP.U.

Assembler check:
The assembler gives a warning for loops that contain a single integer
instruction that is a DVSTEP or a DVSTEP.U:

174 suspicious instruction concerning CPU functional
def ect TCl112_COR13

You can suppress this warning with the option -w174.

CPU Functional Problems

Compiler and assembler option:
-zTC112_COR14

Pragma:
#pragma TC112_COR14 [on | off | restore]

Assembler control:
$TC112_COR14 {on | off}

Assembler macro:

The assembler macro _TC112_COR14 is defined if you specify the option
-zTC112_COR14.

Protected libraries to link:
lib\p\tcl12*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler uses code that
protects a divide instruction sequence against interrupts. Instead of
generating inline divide code, the C compiler generates calls to run-time
library functions that support divide operations with interrupt protection.
Next skeleton code demonstrates the protective code used in these
run-time library functions:

;; Save interrupt state and disable interrupts

,n:fcr do, #0xf e2c ; save ICR in dO
di sabl e ; disable interrupts

divide instructions:

;; Restore interrupt state

jz.t dO: 8, disabl ed ; do not enable interrupts
enabl e ; when they were disabled
di sabl ed:

Cc-11

Cc-12 Appendix C

=

The C run-time library modules involved are aci r ci nt. asm
df rfr.asm sdi vnod. asm and udi vnod. asm

Assembler check:

An assembler check for this CPU functional problem is not available,
because global interrupt enable state can not be checked at assembly
level.

CPU Functional Problems Cc-13

Assembler option:
-ZI'C112_COR15

Assembler control:
$TC112_COR15 {on | off}

Assembler macro:
The assembler macro _TC112_COR15 is if you specify the option
-zTC112_COR15.

Protected libraries to link:
lib\p\tcl12*a (or add | i b\ src\ cstart. asmto your project).

Compiler bypass:

To bypass this CPU functional problem, an assembler macro is added to
the C startup code to disable the starvation protection by resetting the
BCUCON.SPE bit.

Assembler check:

No assembler check is supported, because run time checking of starvation
protection is not possible at assembly level.

C-14

Appendix C

Compiler and assembler option:
-zTC112_COR16

Linker option:
-em_TC112_COR16

Pragma:
#pragma TC112_COR16 [on | off | restore]

Assembler control:
$TC112_COR16 {on | off:

Assembler macro:

The assembler macro _TC112_COR16 is defined if you specify the option
-zTC112_COR16.

Protected libraries to link:
lib\p\tc112*a (or add |ib\src\cstart.asmto your project).

Compiler bypass:

To bypass this CPU functional problem, the C compiler aligns circular
qualified buffers to a quad-word boundary, and the compiler sizes all
stack frames to an integral number of quad-words. An assembler macro
isadded to the C startup code to enable initialization of the stack pointers
to a quad-word boundary. A locator control is used in the tri . dsc
descriptor to set the alignment of the user stack and the interrupt stack to
a quad-word alignment. See section 3.20, Circular Buffers for a
description on how to declare a circular buffer.

Assembler check:

No assembler check is supported, because circular storage type info is not
available at assembly level.

CPU Functional Problems Cc-15

Compiler and assembler option:
-ZI'C112_COR17

Pragma:
#pragma TC112_COR17 [on | off | restore]

Assembler control:
$TC112_COR17 {on | off}

Assembler macro:
The assembler macro _TC112_COR17 is defined if you specify the option
-ZI'C112_COR17.

Protected libraries to link:
lib\p\tcl12*.a

Compiler bypass:
To bypass this CPU functional problem, the C compiler generates a NOP
instruction after a DSYNC instruction. The C compiler only generates a
DSYNC instruction when bypass TC113 CPU17 is enabled.

Assembler check:
The assembler gives a warning if a DSYNC is not followed by a NOP

instruction:

175 suspicious instruction concerning CPU functional
def ect TCl12_COR17

You can suppress this warning with the option -w175.

C-16 Appendix C

Assembler option:
~ZTC113_PMU1

Protected libraries to link:
[ib\p\tcll3*. a,oraddlib\src\cstart.asmto your project.

Assembler macro:

The assembler macro _TC113_PMJ1 is defined if you specify the option
-zT'C113_PMU1.

Compiler bypass:

To bypass this CPU functional problem, an assembler macro is added to
the C startup code to disable the split mode on the LMB bus. The SPLT bit
of the SFR register LFI CON is set to zero.

Assembler check:

No assembler check is supported, because run time split mode can not be
checked at assembly level.

CPU Functional Problems

Assembler option:
-ZIC113_PMU3

Assembler macro:

The assembler macro _TC113_PMJ3 is defined if you specify the option
-zT'C113_PMU3.

Protected libraries to link:
lib\p\tc113*.a (or add | i b\ src\ cstart. asmto your project).

Compiler bypass:

To bypass this CPU functional problem, an assembler macro is added to
the C startup code to set the TLB-A and TLB-B mappings to a page size of
16 Kb. The SZA and SZB in the MMU_CON are set to 16 Kb.

Assembler check:

No assembler check is supported, because run time TBL mappings can not
be checked at assembly level.

C-18 Appendix C

Compiler and assembler option:
-zZI'C113_CPU5

Pragma:
#pragma TC113_CPUS5 [on | off | restore]

Assembler control:
$TC113_CPUS5 {on | off}

Assembler macro:
The assembler macro _TC113_CPU5 is defined if you specify the option
-ZTC113_CPUS5.

Protected libraries to link:
lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates an
ISYNC instruction before a loop body.

Example:
i sync
_|l oop_start:
| oop a8, _loop_start

Assembler check:

This CPU functional problem does not cause a run-time problem, it is only
a performance issue. Therefor no assembler checking is required to warn
you for possible run-time problems.

CPU Functional Problems Cc-19

Compiler and assembler option:
-zZI'C113_CPU9

Pragma:
#pragma TC113_CPU9 [on | off | restore]

Assembler control:
$TC113_CPU9 {on | off}

Assembler macro:

The assembler macro _TC113_CPWI is defined if you specify the option
-zT'C113_CPU9.

Protected libraries to link:
lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates two NOP
instructions after a DSYNC instruction. The C compiler only generates a
DSYNC instruction when CPU functional problem bypass TC113 _CPU14 is
enabled.

Assembler check:

The assembler gives a warning if a DSYNC is not followed by two NOP
instructions:

176 suspicious instruction concerning CPU functional
defect TC113_CPW9

You can suppress this warning with the option -w176.

C-20

Appendix C

Compiler and assembler option:
-ZI'C113_CPU11

Pragma:
#pragma TC113_CPU11 [on | off | restore]

Assembler control:
$TC113_CPU11 {on | off}

Assembler macro:

The assembler macro _TC113_CPUL1 is defined if you specify the option
-zIC113_CPU11.

Protected libraries to link:
lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP
instruction between a LDA, LDDA, LD16A and the JI instruction. The
compiler also generates a NOP before a RET and RET16 instruction if there
is no or just one instruction before RET, starting from the function entry
point.

Assembler check:

The assembler gives a warning when an LDA, LDDA, or LD16A instruction
is directly followed by a JI instruction. The assembler also gives a warning
when there is no or just one instruction (not a NOP instruction) between
label and RET or RET16:

177 suspicious instruction concerning CPU functional
defect TC1l13_CPUl1l

You can suppress this warning with the option -w177.

CPU Functional Problems c-21

Assembler option:
-ZI'C113_CPU13

Assembler macro:

The assembler macro _TC113_CPUL3 is defined if you specify the option
-zTC113_CPU13.

Protected libraries to link:
lib\p\tc113*.a (or add | i b\ src\ cstart. asmto your project).

Compiler bypass:

To bypass this CPU functional problem, an assembler macro is added to
the C startup code to enable the 16Kb D-Cache. The DCSIZ bits are set to
16Kb in the SFR register DMU_CON.

Assembler check:

No assembler check is supported, because run time D-Cache size can not
be checked at assembly level. As an alternative, you can use the

TC113 CPU14 assembler check and workaround. You can also insert a
DSYNC to workaround this CPU functional problem.

C-22

Appendix C

Compiler and assembler option:
-ZI'C113_CPU14

Pragma:
#pragma TC113_CPU14 [on | off | restore]

Assembler control:
$TC113_CPU14 {on | off}

Assembler macro:
The assembler macro _TC113_CPU14 is defined if you specify the option
-ZTC113_CPU14.

Protected libraries to link:
lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a DSYNC
instruction directly after a (interrupt) function entry point label. Also an
assembler macro is added to the run-time library functions for optionally
adding a DSYNC instruction after a function entry point label.

Assembler check:

The assembler gives a warning when the first label in a code section is not
followed by a DSYNC instruction:

178 suspicious instruction concerning CPU functional
def ect TC113_CPUl4

You can suppress this warning with the option -w178.

CPU Functional Problems Cc-23

Compiler and assembler option:
-ZI'C113_CPU15

Pragma:
#pragma TC113_CPUI15 [on | off | restore]

Assembler control:
$TC113_CPU15 {on | off}

Assembler macro:
The assembler macro _TC113_CPUL5 is defined if you specify the option
-ZI'C113_CPU15.

Protected libraries to link:
lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler avoids generation
of the ST.T, SWAP and LDMST instructions. For immediate _bit and
bit-field operations alternative instructions are used.

Assembler check:
The assembler gives a warning for ST.T, SWAP and LDMST instructions:

179 suspicious instruction concerning CPU functional
defect TCl13_CPU15

You can suppress this warning with the option -w179.

C-24

Appendix C

Compiler and assembler option:
-ZI'C113_CPU16

Pragma:
#pragma TC113_CPU16 [on | off | restore]

Assembler control:
$TC113_CPU16 {on | off}

Assembler macro:

The assembler macro _TC113_CPUL6 is defined if you specify the option
-zZIC113_CPU16.

Protected libraries to link:
lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler generates a NOP
instruction between an LDA, LDDA, LD16A and the JI or CALLI instruction
with the same address register as parameter. The compiler also generates a
NOP instruction before a RET and RET16 instruction if there is no or just
one instruction before RET, starting from the function entry point.

Assembler check:

The assembler gives a warning when an LDA, LDDA or LD16A instruction
is directly followed by a JI or CALLI instruction with the same address
register as parameter. The assembler also gives a warning when there is no
or just one instruction (not a NOP instruction) between label and RET or
RET16:

180 suspicious instruction concerning CPU functional
defect TCl13_CPU16

You can suppress this warning with the option -w180.

CPU Functional Problems Cc-25

Compiler and assembler option:
-zZI'C113_DMU1

Pragma:
#pragma TC113_DMU1 [on | off | restore]

Assembler control:
$TC113_DMU1 {on | off}

Assembler macro:
The assembler macro _TC113_DMJL is defined if you specify the option
-ZTC113_DMUL1.

Protected libraries to link:
lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler avoids generation
of the ST.T, SWAP and LDMST instructions. For direct _bit and bit-field
operations, alternative instructions are used.

Assembler check:
The assembler gives a for SWAP, LDMST and ST.T instructions:

181 suspicious instruction concerning CPU functional
defect TC113_DMJ1

You can suppress this warning with the option -w181.

C-26

Appendix C

Compiler and assembler option:
-ZTC113_LFI2

Pragma:
#pragma TC113_LFI2 [on | off| restore]

Assembler control:
$TC113_LFI2 {on | off}

Assembler macro:
The assembler macro _TC113_LFI 2 is defined if you specify the option
-ZI'C113_LFI2.

Protected libraries to link:
lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the C compiler avoids generation
of ST.T, SWAP and LDMST instructions. For immediate _bit and bit-field
operations alternative instructions are used.

Assembler check:
The assembler gives a warning for SWAP, LDMST and ST.T instructions:

182 suspicious instruction concerning CPU functional
defect TCl13 LFI2

You can suppress this warning with the option -w182.

CPU Functional Problems

Compiler and assembler option:
-ZTC113_LFI3

Pragma:
#pragma TC113_LFI3 [on | off| restore]

Assembler control:
$TC113_LFI3 {on | off}

Assembler macro:
The assembler macro _TC113_LFI 3 is defined if you specify the option
-ZI'C113_LFI3.

Protected libraries to link:
lib\p\tc113*.a

Compiler bypass:

To bypass this CPU functional problem, the compiler avoids generation of
the ST.T, SWAP and LDMST instructions. For direct _bit and bit-field
operations alternative instructions are used.

Assembler check:
The assembler gives a warning for SWAP, LDMST and ST.T instructions:

183 suspicious instruction concerning CPU functional
defect TCl113 LFI3

You can suppress this warning with the option -w183.

c-27

Appendix C

C-28

SIN31804dd TVNOILLONNS NdI

INDEX

al TASKING [

X3ANI

Index

#define, 4-18
#include, 4-28, 4-68
#pragma, 4-71
asm, 3-37
asm_noflush, 3-37
clear, 4-72
endasm, 3-37
noclear, 4-72
#pragma optimize, 4-34

#undef, 4-59
__DATE__, 4-59
__FILE__, 4-59
__LINE__, 4-59
~ START, 7-3

_ STDC__, 4-59
__TIME__, 4-59

a0, storage type, 3-5
_al, storage type, 3-5
_a8, storage type, 3-5
a9, storage type, 3-5
_accum, 3-8, 3-13
_at attribute, 3-6
_atbit attribute, 3-7
bisr, 3-28
_bit, 3-8
_circ, 3-46
_close, 6-12
_CTRI, 4-59
_DOUBLE_FP, 4-60
_enable , 3-27
_far, 3-30

storage type, 3-5
_fp_get_exception_mask, 7-15
_fp_get_exception_status, 7-16
_fp_install trap handler, 7-16
_fp_set_exception_mask, 7-15
_fp_set_exception_status, 7-16
_fract, 3-8, 3-13
_inline, 3-36
_interrupt, 3-24
_interrupt_fast, 3-24

_Iseek, 6-12

_near, storage type, 3-5
_open, 6-12

_packb, 3-17
_packhw, 3-17

_read, 6-12

_sat, 3-16

_sfract, 3-8, 3-13
_sfrbit16, 3-21
_sfrbit32, sfrbit32, 3-21
_SINGLE_FP, 4-60
_stackparm, 3-29
_syscallfunc, 3-29
_TASKING, 4-59
_tolower, 6-13
_toupper, 6-13

_trap, 3-25

_trap_fast, 3-25
_unlink, 6-13

_write, 6-13

abort, 6-14
abs, 6-14
access, 6-14
acos, 6-14
adding files to a project, 2-20
alias, 4-37
align, 4-71
ansi standard, 2-3, 3-3, 4-59
asctime, 6-15
asin, 6-15
asm, 4-72
asm_noflush, 4-72
assembly source file, 2-10
assert, 6-15
assert.h, 6-3
assert, 6-15
astri, 2—-10
atan, 6-15
atan2, 6-16

Index-3

Index—4

atexit, 6-16
atof, 6-16
atoi, 6-16
atol, 6-17

backend
compiler phase, 2-5
optimization, 2-5, 2-9
bit data type, 3-20
bsearch, 6-17
buffer, circular, 3-46
built-in functions, 3-40

C
inline functions, 3-36
language extensions, 3-3

C library, 64
implementation details, 6-6
interface description, 6-12
name syntax, 6-5
reentrancy, 6-62

C startup code, 7-3

cache global variables, 4-52

calloc, 6-17

ceil, 6-18

chdir, 6-18

circular buffer, 3-46

circular pointer, 3—46

clear, 4-72

clearerr, 6-18

clock, 6-18

close, 6-19

code generator, 2—6

command file, 4-23

command line processing, 4-23

comments, C++ style, 4-13

2-8

compiler, invocation, 4-6
compiler limits, 4-78
compiler options

-7 4-11

-A, 4-12
~builtin, 4-15
-C, 4-16

-c, 4-17

-D, 4-18

-E, 4-19

-e, 4-20

-El, 4-19

-Em, 4-19

-err, 4-21

-F, 4-22, 6-6
—f, 4-23

-Fc, 4-22, 6-6
-FPU, 4-25

-g, 4-26

-gf, 4-26

-gl, 4-26

-gn, 4-26

-H, 4-27

-1, 4-28
—indirect, 4-29
-K, 4-30
—misrac, 4-31
-N, 4-32

-n, 4-33

-0, 4-34, 4-36
-0, 4-55

-Oa /| -OA, 4-37
-Oc / -0C, 4-38
-Oe / -OFE, 4-40
~Of | ~OF, 441
-0i / -Ol, 4-43
-0l /-0L, 4-44
-0Oo / -00, 4-45
-Op / -OP, 4-47
-Os / -0S, 4-48

Index

common subexpression elimination,

Index

-0t / -OT, 4-49
-Ou / -OU, 4-50
-Ov / -0V, 4-51
-Ow / -OW, 4-52
-0y / -0Y, 4-53
-0z / -OZ, 4-54
-R, 4-50
-s, 4-57
-TC2, 4-58
-U, 4-59
-u, 4-61
-V, 4-62
-w, 4-64
-WAE, 4-63
—wstrict, 4-64
-7, 4-65
-z, 4-66
detailed description, 4-10
overview, 4-6
overview in functional order, 4-8
priority, 4-6
compiler phases, 2-5
backend, 2-5
code generator phase, 2-6
optimization phase, 2-5
peephole optimizer phase, 2—6
pipeline scheduler, 2-6
Sfrontend, 2-5
optimization phase, 2-5
parser phase, 2-5
preprocessor phase, 2-5
scanner phase, 2-5
compiler structure, 2-10
compound assignment, 4-40
conditional jump reversal, 2-7, 4-41
constant folding, 2-6
constant propagation, 2-7, 4-45, 4-47
control flow optimization, 2-7, 4-41
control program, 4-3
options overview, 4—4
conversions
ANSI C, 3-9
Jractional, 3-13

copy propagation, 2-7, 447

copysign, 6-19

cos, 6-19

cosh, 6-19

creating a makefile, 2-21

cross—assembler, 2-10

CSE, 2-8, 4-38

cstart.asm, 7-3

ctime, 6-20

CTRIING, 4-28, 4-68

ctype.h, 6-3
_tolower, 6-13
_toupper, 6-13
isalnum, 6-29
isalpha, 6-29
isascii, 6-29
iscntrl, 6-29
isdigit, 6-30
isgraph, 6-30
islower, 6-30
isprint, 6-31
ispunct, 6-31
isspace, 6-31
isupper, 6-31
isxdigit, 6-32
toascii, 6-58
tolower, 6-58
toupper, 6-58

data types, 3-8-3-12
_accum, 3-8, 3-13
_bit, 3-8
_fract, 3-8, 3-13
_packb, 3-17
_packbw, 3-17
_sfract, 3-8, 3-13
double, 3-8
enum, 3-8

Sloat, 3-8

Index-5

Index—6

=

[fractional, 3-13-3-15
packed, 3-17-3-20
pointer, 3-8
signed char, 3-8, 3-9
signed int, 3-8
signed long, 3-8
signed short, 3-8
unsigned char, 3-8, 3-9
unsigned int, 3-8
unsigned long, 3-8
unsigned short, 3-8
dead assignment elimination, 2—-8
dead code elimination, 2-8
dead storage elimination, 2-8
debug information, 4-26
debugger, starting, 2—-19
derivatives, 2—4
detailed option description, compiler,
4-10-4-67
development flow, 2-10
difftime, 6-20
directory separator, 4—69
div, 6-20
double, 3-8

EDE, 2-14
build an application, 2-18
load files, 2-16
open a project, 2-16
select a toolchain, 2-15
start a new project, 2-20
starting, 2-14

embedded development environment.

See EDE
enabling MISRA C, 3-44
endasm, 4-72
enum, 3-8
environment variable
CTRIINC, 4-28, 4-68
LM LICENSE FILE, 1-17, A-6

Index

overview of, 2-13
PATH, 1-4, 1-7, 1-10
TMPDIR, 1-4, 1-7, 1-10
used by tool chain, 2-13
errno declaration, 6-70
errno.h, 6-3, 6-70
error level, 5-4
Error Messages, 3—45
errors, 5-5
backend, 5-32
FLEXIm license, A-33
Sfrontend, 5-5
example
starting EDE, 2-14
using EDE, 2-14
using the control program, 2-21
using the makefile, 2-23
exceptions, floating point, 7-13
execution time, 3-23
exit, 6-20
exit status, 5—4
exp, 6-21
expression propagation, 4—40
expression rearrangement, 2—6
expression simplification, 2-7
extensions to C, 3-3

fabs, 6-21
FAQ, FLEXIm, A-37
fast code, 4-48
fast loops, 4-44
fclose, 6-21
fentl.h, 6-3
open, 6-38
feof, 6-21
ferror, 6-21
fflush, 6-22
fgetc, 6-22
fgetpos, 6-22
fgets, 6-22

Index

file system simulation, 6-3
Flexible License Manager, A-1
FLEXIm, A-1
daemon log file, A-25
daemon options file, A-7
FAQ, A-37
Jrequently asked questions, A-37
license administration tools, A-8
Jor Windows, A-22
license errors, A-33
float, 3-8
float.h, 6-3
copysign, 6-19
isfinite, 6-30
isinf, 6-30
isnan, 6-31
scalb, 6-44
floating license, 1-11
floating point, 7-10
single precision, 4-25, 6-6
special values, 7-13
trap handler, 7-14
trap bandling api, 7-15
trapping, 7-13
floating point constants, 4-22
floor, 6-23
fmod, 6-23
fopen, 6-23
fprintf, 6-24
fputc, 6-24
fputs, 6-24
fractional data types, 3-13
intrinsic functions, 3-15
operations on, 3—-14
promotion rules, 3-14
fread, 6-25
free, 6-25
freopen, 6-25
frexp, 6-26
frontend
compiler phase, 2-5
optimization, 2-5, 2-6
fscanf, 6-26

fseek, 6-26
fsetpos, 6-27
fss.h, 6-3
ftell, 6-27
function qualifier
bisr, 3-28
_enable , 3-27
_far, 3-30
_interrupt, 3-24
_interrupt_fast, 3-24
_stackparm, 3-29
_syscallfunc, 3-29
_trap, 3-25
_trap_fast, 3-25
function return types, 7-7
functional problems, C-3
functions
built-in, 3-40
intrinsic, 3-40
fwrite, 6-27

getc, 6-27

getchar, 6-28
getcwd, 6-28

getenv, 6-28

gets, 6-28

global variables, 4-52
gmtime, 6-29

header files, 6-3
heap, 7-3, 7-10
begin of, 7-10
end of, 7-10
heap size, 7-10
hostid, determining, 1-19

hostname, determining, 1-19

Index—7

Index-8

identifier, 4-13

IEEE 32-bit single precision format,

3-8

IEEE 64-bit double precision format,

3-8
IEEE-695, 2-12
in-line functions, 2-8
include files, 4-68
default directory, 4-69
indirect function calling, 4-29
inline assembly, 3-37
installation
licensing, 1-11
Linux, 1-5
RPM, 1-5
targz, 1-6
UNIX, 1-8
Windows, 1-3
Windows 95, 1-3
Windows NT, 1-3
instruction scheduling, 4-54
integral promotion, 3-9
Intel hex format, 2-12
intenum, 4-72
function, inline C, 3-36
interrupts, 3-24
intrinsic functions, 3-40
_abs, 3-41
_absb, 3-19
_absh, 3-19
_abss, 3-41
_abssh, 3-19
_bisr, 3-41
_clo, 3-41
_cls, 3-41
_clz, 3-41
_debug, 3-41
_disable, 3-40
_dsync, 3-41
_enable, 3-40

_extr, 3-42
_extractbytel, 3-18
_extractbyte2, 3-18
_extractbyte3, 3-18
_extractbyte4, 3-18
_extracthwl, 3-18
_extracthw2, 3-18
_extru, 3-42
_getbit, 3-43
_getbytel, 3-18
_getbyte2, 3-18
_getbyte3, 3-18
_getbyte4, 3-18
_getfract, 3-15
_gethwl, 3-18
_gethw2, 3-18
_imaskldmst, 3-42
_initpackb, 3-18
_initpackbl, 3-17
_initpackbw, 3-18
_initpackbwl, 3-17
_ins, 3-42

_insert, 3-42
_insertbytel, 3-18
_insertbyte2, 3-18
_insertbyte3, 3-18
_insertbyte4, 3-18
_inserthwl1, 3-18
_inserthw2, 3-18
_insn, 3-42

_isync, 3-41

_max, 3—41
_maxs, 3—41
_maxu, 3-41
_mfcr, 3-41

_min, 3-41

_minb, 3-19
_minbu, 3-19
_minb, 3-19
_mins, 341
_minu, 3-41
_micr, 3-41

Index

Index

Index—9

_mulfractlong, 3-15
_mulsc, 3-42
_nop, 3-41
_parity, 3-41
_putbit, 3-42
_restore, 3-40
_roundl6, 3-15
_rslex, 3-41
_satb, 3-41
_satbu, 3-41
_sath, 3-41
_sathu, 3-41
_sethytel, 3-18
_sethyte2, 3-18
_sethyte3, 3-18
_sethyte4, 3-18
_sethwl, 5-18
_sethw2, 3-18
_shaaccum, 3-15
_shafracts, 3-15
_shasfracts, 3-15
_svlcx, 3-41
_swapmsk, 3-19
_syscall, 3-41
_transpose_byte, 3-18
_transpose_bword, 3-18
display prototypes, 4-15
[fractional, 3-15
packed, 3-17
introduction, 2-3
invariant code, 2-8, 4-43
invocation
compiler, 4-6
control program, 4-3
iob structures, 6-69
isalnum, 6-29
isalpha, 6-29
isascii, 6-29
iscntrl, 6-29
isdigit, 6-30
isfinite, 6-30
isgraph, 6-30
isinf, 6-30

islower, 6-30
isnan, 6-31

isprint, 6-31

ispunct, 6-31
isspace, 6-31
isupper, 6-31
isxdigit, 6-32

jump chain, 3-47
jump chaining, 2-7, 4-41
jump table, 3—47

keyword, _inline, 3-36

labs, 6-32
language extensions, 4-12
lctri, 2-10
ldexp, 6-32
Idiv, 6-32
leaf function handling, 2-9
libraries
C, 64
C (single precision floating point),
6-6
floating point, 6-5
name syntax, 6-5
run-time, 6-72
license
floating, 1-11
node-locked, 1-11
obtaining, 1-11
license file
default location, A-6

Index-10

=

location, 1-17
licensing, 1-11
limits, compiler, 4-78
limits.h, 6-3
linker, 2-10
listinc, 4-73
1ktri, 2-10
LM _LICENSE FILE, 1-17, A-6
Imcksum, A-10
Imdiag, A-11
Imdown, A-12
Imgrd, A-13
Imhostid, A-15
Imremove, A-16
Imreread, A-17
Imstat, A-18
Imswitchr, A—20
Imver, A-21
locale.h, 6-3

localeconv, 6-33

setlocale, 6-47
localeconv, 6-33
localtime, 6-33
locator, 2-10
log, 6-33
log10, 6-33

logical expression optimization, 2-7

longjmp, 6-34

lookup table, 3-47

loop rotation, 2-7, 4-44
loop unrolling, 2-8, 4-50
loop variable detection, 4-38
Iseek, 6-34

makefile
automatic creation of, 2-21
updating, 2-21

malloc, 6-34

malloc.h, 6-3

Index

math.h, 6-3

acos, 6-14

asin, 6-15

atan, 6-15

atan2, 6-16

ceil, 6-18

cos, 6-19

cosh, 6-19

exp, 6-21

fabs, 6-21

Sfloor, 6-23

fmod, 6-23

Sfrexp, 6-26

Idexp, 6-32

log, 6-33

log10, 6-33

modyf, 6-37

pow, 6-38

sin, 6-48

sinh, 6-48

sqrt, 6-49

tan, 6-57

tanh, 6-57
mblen, 6-35
mbstowcs, 6-35
mbtowc, 6-35
memchr, 6-36
memcmp, 6-36
memcpy, 6-36
memmove, 6-36
memory access, 3—4
memset, 6-37
MISRA C, 3-44, B-1, C-1
mktime, 6-37
modf, 6-37
Motorola S-record, 2-12
multi-line macros, 4-19

Index

name syntax, C library, 6-5
noclear, 4-72

node-locked license, 1-11
nolistinc, 4-73

nosource, 4-76

offsetof, 6-37
open, 6-38
optimization, 4-34, 4-36
backend, 2-5, 2-9
Sfrontend, 2-5, 2-6
optimization (backend)
leaf function handling, 2-9
peephole optimizations, 2-9
tail recursion elimination, 2-9
optimization (frontend)
common subexpression elimination,
2-8
conditional jump reversal, 2-7
constant folding, 2-6
constant/copy propagation, 2-7
control flow optimization, 2-7
dead assignment elimination, 2-8
dead code elimination, 2-8
dead storage elimination, 2-8
expression rearrangement, 2-6
expression simplification, 2-7
in-line functions, 2-8
invariant code motion, 2-8
Jump chaining, 2-7
logical expression optimization, 2-7
loop rotation, 2-7
loop unrolling, 2-8
remove useless jumps, 2-7

sharing of string literals and floating

point constants, 2-8
subscript strength reduction, 2-8

optimize, 4-73

optimize restore, 4-73
options, control program, 4-4
output file, 4-55

pack 0, 4-74
pack 2, 4-73
packed data types, 3-17
intrinsic functions, 3-17
parameter passing, 3-23
parser, 2-5
PATH, 1-4, 1-7, 1-10
peephole optimization, 2-9, 4-53
peephole optimizer, 2-6
perror, 6-38
pipeline scheduler, 2-6
pipeline scheduling, 4-54
pointer, 3-8
pow, 6-38
power—on vector, 7-3
pragma
align, 4-71
asm, 4-72
asm_noflush, 4-72
clear, 4-72
endasm, 4-72
intenum, 4-72
listinc, 4-73
noclear, 4-72
nolistinc, 4-73
nosource, 4-76
on command line, 4-66
optimize, 4-73
optimize restore, 4—73
pack 0, 4-74
pack 2, 4-73
section, 4-74
source, 4-76
stack, 4-76

Index-11

Index—12 Index

=

switch
auto, 4-76
jl:lnngg iaZ’ §g76 sample session, 2-14
- scalb, 6-44
lookup, 4-76 scanf, 6-44

restore, 4-76
TC112 DETECTS, 4-77
TC113_DETECTS, 4-77
pragma optimize, 4-34

scanner, 2-5

section, 3-6
rename, 4-74

section name, 4-56

pragmas, 4-71
predefined symbols, 4-59 S‘ethf’ 66_4466
CTRI, 4-59 **et!mp’h .
_DOUBLE_FP, 4-60 i, 631 o
“SINGLE FP, 4-60 Seyi’ip’pé_ o
—.TASKING’ 459 setlocale, 6-47
printf, 6_39. . setting the environment, 1-4, 1-7, 1-10
pr().duct .deﬁnltlop, 2—.4 setvbuf, 6-47
project files, adding files, 2-20 . L .
sharing of string literals and floating
putc, 6-41 4 point constants, 2—-8
pu@gr’ 46' 1 SIGABRT, 6-48
puts, 6-41 SIGFPE, 6-48
SIGFPE signal handler, 7-14
SIGILL, 6-48
SIGINT, 6-48
signal, 6-48
gsort, 6-42 signal.h, 6-3
raise, 6-42
signal, 6-48
signals, 6-48
signed
raise, 6-42 char, 3-8, 3-9
RAM, 3-4 int, 3-8
rand, 6-42 long, 3-8
read, 6-42 short, 3-8
realloc, 6-43 signed characters, 3-9
reentrancy, 6-62 SIGSEGYV, 6-48
register usage, 7-7 SIGTERM, 6-48
remove useless jumps, 2-7 sin, 6-48
rename, 6-43 sinh, 6-48
restrict, 3-33 software pipelining, 4-45
return values, 5-4 source, 4-76
rewind, 6—44 sprintf, 6-49

run—time library, 6-72 sqrt, 6-49

Index

srand, 6-49
sscanf, 6-49
stack, 4-76, 7-9
begin of, 7-9
stack size, 7-9
start.obj, 7-3

startup code, 7-3

stat, 650
stdarg.h, 6-3
va_arg, 6-59
va_end, 6-59
va_start, 6-60
stddef.h, 6-4
offsetof, 6-37
stdio.h, 6—4
_close, 6-12
_Iseek, 6-12
_open, 6-12
_read, 6-12
_unlink, 6-13
_write, 6-13
clearerr, 6-18
fclose, 6-21
Jeof, 6-21
Sferror, 6-21
Jflush, 6-22
Jfgetc, 6-22
Jgetpos, 6-22
Jgets, 6-22
Jopen, 6-23
Jprintf, 6-24
fputc, 6-24
Jputs, 6-24
fread, 6-25
Jfreopen, 6-25
fscanf, 6-26
[fseek, 6-206
Sfsetpos, 6-27
Jrell, 6-27
Swrite, 6-27
getc, 6-27
getchar, 6-28
gets, 6-28

perror, 6-38
printf, 6-39
putc, 6-41
putchar, 6-41
puts, 6-41
remove, 6-43
rename, 6-43
rewind, 6-44
scanf, 6-44
setbuf, 6-46
setvbuf, 6-47
sprintf, 6-49
sscanf, 6-49
tmpfile, 6-57
tmpnam, 6-58
ungetc, 6-59
vfprintf, 6-60
vprintf, 6-60
vsprintf, 6-60
stdlib.h, 6-4
abort, 6-14
abs, 6-14
atexit, 6-16
atof, 6-16
atoi, 6-16
atol, 6-17
bsearch, 6-17
calloc, 6-17
div, 6-20
exit, 6-20
free, 6-25
getenv, 6-28
labs, 6-32
Idiv, 6-32
malloc, 6-34
mblen, 6-35
mbstowcs, 6-35
mbitowc, 6-35
gsort, 6-42
rand, 6-42
realloc, 6-43
srand, 6-49
striod, 6-55

Index-14

=

strtol, 6-55
strtoul, 6-56
system, 6-56

wcstombs, 6-61

wctomb, 6-61

storage type, 3—4

_a0, 3-5
_al, 3-5
_as, 3-5
_a9, 3-5
_far, 3-5
_near, 3-5
strcat, 6-50
strchr, 6-50
stremp, 6-50
strcoll, 6-51
strepy, 6-51
strespm, 6-51
strerror, 6-51
strftime, 6-52
string, 3-34
string.h, 6-4

memchr, 6-36
memcmp, 6-36
memcpy, 6-36
memmove, 6-36

memset, 6-37
strcat, 6-50
strchr, 6-50
stremp, 6-50
strcoll, 6-51
strepy, 6-51
strespn, 6-51
strerror, 6-51
strlen, 6-53
strncat, 6-53

strncmp, 6-53

strncpy, 6-53
strpbrk, 6-54
strrchr, 6-54
strspn, 6-54
strstr, 6-54
strtok, 6-55

strxfrm, 6-56
strlen, 6-53
strncat, 6-53
strncmp, 6-53
strnepy, 6-53
strpbrk, 6-54
strrchr, 6-54
strspn, 6-54
strstr, 6-54
strtod, 6-55
strtok, 6-55
strtol, 6-55
strtoul, 6-56

structure tag, 3—-45

strxfrm, 6-56

Index

subscript strength reduction, 2-8, 4-51

switch

auto, 3-47, 4-76
Jumptab, 3-47, 4-76
linear, 3-47, 4-76
lookup, 3-47, 4-76
restore, 3-47, 4-76
switch statement, 3—-47-3-48
symbols, predefined, 4-59

system, 6-56

tail call conversion, 4-49
tail recursion elimination, 2-9

tan, 6-57
tanh, 6-57

target processors, 2—4
TC112_DETECTS, 4-77
TC113_DETECTS, 4-77

time, 6-57

time.h, 6-4
asctime, 6-15
clock, 6-18
ctime, 6-20
difftime, 6-20

Index

gmtime, 6-29
localtime, 6-33
mktime, 6-37
strftime, 6-52
time, 6-57
TMPDIR, 1-4, 1-7, 1-10
tmpfile, 6-57
tmpnam, 6-58
toascii, 6-58
tolower, 6-58
toupper, 6-58
transferring parameters between
functions, 3-23
trap, 7-18
trap handler, 7-14
trap handling api, 7-15
TriCore2 instructions, 4-58
type checking, 4-30
disable, 4-26
type conversion, fractional, 3-13
type qualifier
_restrict, 3-33
_sat, 3-16
_sfrbit16, 3-21
_sfrbit32, 3-21
restrict, 3-33
volatile, 3-32
typedef, 3-45

ungetc, 6-59

unistd.h, 6-4
access, 6-14
chdir, 6-18
close, 6-19

getcwd, 6-28
Iseek, 6-34
read, 6-42
stat, 6-50
unlink, 6-59
write, 6-61
unlink, 6-59
unsigned
char, 3-8, 3-9
int, 3-8
long, 3-8
short, 3-8
updating makefile, 2-21

va_arg, 6-59
va_end, 6-59
va_start, 6-60

variable argument list, 3-35

version information, 4-62
viprintf, 6-60
volatile, 3-32
vprintf, 6-60
vsprintf, 6-60

warnings, 5-5

warnings (suppress), 4-64

warnings as errors, 4—63
wcestombs, 6-61
wctomb, 6-61

write, 6-61

writeback caching, 4-52

Index-15

Index—16 Index

=

	TABLE OF CONTENTS
	SOFTWARE INSTALLATION
	Introduction
	Installation for Windows
	Setting the Environment

	Installation for Linux
	RPM Installation
	Tar.gz Installation
	Setting the Environment

	Installation for UNIX Hosts
	Setting the Environment

	Licensing TASKING Products
	Obtaining License Information
	Installing Node-Locked Licenses
	Installing Floating Licenses
	Starting the License Daemon
	Setting Up the License Daemon to Run Automatically
	Modifying the License File Location
	How to Determine the Hostid
	How to Determine the Hostname

	OVERVIEW
	Introduction to TriCore C Cross-Compiler
	Product Definition
	General Implementation
	Compiler Phases
	Frontend Optimizations
	Backend Optimizations

	Compiler Structure
	Environment Variables
	Sample Session
	Using EDE
	Using the Control Program
	Using the Makefile

	LANGUAGE IMPLEMENTATION
	Introduction
	Accessing Memory
	Storage Types
	The _at() Attribute
	The _atbit() Attribute

	Data Types
	Signed Characters
	ANSI C Type Conversions

	Fractional Data Types
	Additional Basic Types
	Type Conversions
	Promotion Rules
	Intrinsic Functions

	Type Qualifier _sat
	Packed Data Types
	Additional Basic types
	Intrinsic Functions
	Halfword Packed Unions and Structures

	Bit Data Types
	The _bit Type
	Type Qualifier _sfrbit16 and _sfrbit32

	Parameter Passing
	Function Qualifiers
	Interrupt Function Qualifier
	Trap Function Qualifiers
	Enable Interrupt/Trap Function Qualifier
	BISR Interrupt/Trap Function Qualifier
	System Call Function Qualifier
	Stack Model Function Qualifier
	Far Function Storage Qualifier

	Type Qualifier volatile
	Type Qualifiers restrict and _restrict
	Strings
	Variable Argument Lists
	Inline C Functions
	Inline Assembly
	Intrinsic Functions
	MISRA C
	Structure Tags
	Typedef
	Circular Buffers
	Switch Statement

	COMPILER USE
	Control Program
	Compiler
	Detailed Description of the Compiler Options

	Include Files
	Pragmas
	Compiler Limits

	COMPILER DIAGNOSTICS
	Introduction
	Return Values
	Errors and Warnings

	LIBRARIES
	Introduction
	Header Files
	C Libraries
	Single Precision Floating Point
	C Library Implementation Details
	C Library Interface Description
	C Library Reentrancy

	Run-time Library

	RUN-TIME ENVIRONMENT
	Startup Code
	Register Usage
	Stack
	Heap
	Floating Point Arithmetic
	Compliance to IEEE-754
	Special Floating Point Values
	Trapping Floating Point Exceptions
	Floating Point Trap Handling API

	FLEXIBLE LICENSE MANAGER (FLEXlm)
	Introduction
	License Administration
	Overview
	Providing For Uninterrupted FLEXlm Operation
	Daemon Options File

	License Administration Tools
	lmcksum
	lmdiag (Windows only)
	lmdown
	lmgrd
	lmhostid
	lmremove
	lmreread
	lmstat
	lmswitchr (Windows only)
	lmver
	License Administration Tools for Windows
	LMTOOLS for Windows
	FLEXlm License Manager for Windows

	The Daemon Log File
	Informational Messages
	Configuration Problem Messages
	Daemon Software Error Messages

	FLEXlm License Errors
	Frequently Asked Questions (FAQs)
	License File Questions
	FLEXlm Version
	Windows Questions
	TASKING Questions
	Using FLEXlm for Floating Licenses

	MISRA C
	CPU FUNCTIONAL PROBLEMS
	Introduction
	CPU Functional Problem bypasses TC1 V1.2
	TC112_COR1
	TC112_COR3
	TC112_COR4
	TC112_COR6
	TC112_COR10
	TC112_COR13
	TC112_COR14
	TC112_COR15
	TC112_COR16
	TC112_COR17

	CPU Functional Problem bypasses TC1 V1.3
	TC113_PMU1
	TC113_PMU3
	TC113_CPU5
	TC113_CPU9
	TC113_CPU11
	TC113_CPU13
	TC113_CPU14
	TC113_CPU15
	TC113_CPU16
	TC113_DMU1
	TC113_LFI2
	TC113_LFI3

	INDEX

