
T r i C o r e A pp l i c a t i o n No t e

S e t t i n g Loc a to r O p t i o ns

Document ID: AN060-01

Date: 2002-03-25

A L T I U M B V

AN060-01 page 2 of 7 2002-03-25

TriCore Application Note
Setting Locator Options

1 Introduction
This application note shows how the locator controls influence the locating process. This note is
intended both for EDE and command line tools users.

After reading this application note the user should be able to configure the locating process and solve
errors that result from the chosen settings and controls.

2 Project and Locator
EDE users:
- your project is already setup to handle the locator options as described in this application note.

Command line tools users:
- copy c:\ctri\etc\tri.i to your project directory and rename it to <projectname>.i, adapt this file

to your specific memory configuration.

DO NOT MODIFY tri.dsc, tri.def and tri.cpu, since these files describe the TriCore architecture,
which you do not change in your project.

3 Setting linker/locator options

3.1 Standard linker/locator settings

Most of the linker/locator options speak for themselves and most options have a default value that can
be used. However sometimes a programmer wishes to locate a part of his program at a pre-defined
location in memory. All necessary options can be defined in EDE or in the <projectname>.i file
(command line tools users). Some option fields only require a number, others need a special syntax.
See the list below which describes these options and how to use them (split up for EDE and command
line tools users).

NOTE: specify all addresses in hexadecimal form (always prefixed by ‘0x’) like: 0xa0000050.

EDE users: The linker/locator options dialog is opened by selecting: Project -> Linker/Locator options.

Locator tab:

Field name data to enter in the field:

- RESET start address <hex address>
- Interrupt table start address <hex address>
- CrossView Pro buffer size <size in bytes>
- CrossView Pro buffer start address <hex address>
- *Additional options options as listed in the Assembler Linker Utilities manual (chapt. 11.2)

* Strings used in the options need special formatting! See the Assembler Linker Utilities manual (chapt. 11).

AN060-01 page 3 of 7 2002-03-25

TriCore Application Note
Setting Locator Options

.
Fig.1: Linker/locator options, Locator tab.

Stack/Heap tab:

Field name data to enter in the field

- User stack size <size in bytes>
- User stack start address <hex address>
- Interrupt stack size <size in bytes>
- Interrupt stack start address <hex address>
- Number of context blocks <number>
- Context start address <hex address>
- Heap size <size in bytes>
- Heap start address <hex address>

note 1): size may be given with suffix ‘k’, e.g. 1k for 1024.

AN060-01 page 4 of 7 2002-03-25

TriCore Application Note
Setting Locator Options

Fig. 2: Linker/locator options, Stack/Heap tab.

Memory tab:
Field name data to enter in the field

- Available RAM memory <memory region name>, <start addr>, <end addr>
example: ext_d, 0xB0000000, 0xB007FFFF
regions have to be separated using ‘;’

- Available ROM memory <memory region name>, <start addr>, <end addr>
regions have to be separated using ‘;’

On this tab you define which memory area’s are available for the locator to be filled with code (ROM
memory) and data (RAM memory).

PCP tab:
Field name data to enter in the field

- PCP RAM memory pcpram, <start addr>, <end addr>
example: pcpram, 0xB0000000, 0xB007FFFF

- PCP ROM memory pcprom, <start addr>, <end addr>

AN060-01 page 5 of 7 2002-03-25

TriCore Application Note
Setting Locator Options

Sections tab:
Field name data to enter in the field

- Reserved areas <start addr>, <end addr>
example: 0xB0005000, 0xB0005FFF
these areas will be skipped by the locator.

Command line tools users:

Command line tools users must change the settings in their <projectname>.i file (a copy of the tri.i
file). This file contains several #defines, memory area qualifiers (ROM/RAM/PCPROM/PCPRAM) and
section order qualifiers (ROM_LINEAR etc.).
In this file, all the options decribed above for EDE users, can be manually adapted.

- RESET start address #define RESET <addr>
- Interrupt table start address #define INTTAB <addr>
- CrossView Pro buffer size #define XVWBUF <size in bytes> addr=<address>

example 32 addr=0xb000020

- User stack size #define USTACK <size in bytes> addr=<address>
- Interrupt stack size #define ISTACK <size in bytes> addr=<address>
- Number of context blocks #define CSA <size> addr=<address>
- Heap size #define HEAP <size in bytes> addr=<address>

example: 8k addr=0xb0008000

- Available RAM memory RAM(<memory region name>, <start addr>, <end addr>)
example: RAM(ext_d, 0xB0000000, 0xB007FFFF)

- Available ROM memory ROM(<memory region name>, <start addr>, <end addr>)

- PCP RAM memory PCPRAM(pcpram, <start addr>, <end addr>)
- PCP ROM memory PCPROM(pcprom, <start addr>, <end addr>)

- Reserved areas RESERVED(<start addr>, <end addr>)
example: RESERVED(0xB0005000, 0xB0005FFF)
these areas will be skipped by the locator.

These options are quite simple, so nothing should go wrong. The only option not described yet, is
more advanced and will be discussed in the next paragraph.

3.2 Advanced linker/locator settings

The most advanced option that can be used is the option that enables you to specify in which order
and at which addresses you want segments to be located.

To be able to use this option, you should know globally how the compiling/locating process works.
-All compiled code is put into sections (pieces of code with names).2)

-Sections can have restrictions; for example: size and location.

AN060-01 page 6 of 7 2002-03-25

TriCore Application Note
Setting Locator Options

-The locator examines all sections and their restrictions and locates the code according
to those restrictions. Thus, if two sections have a size restriction, the locator can place them
anywhere in memory, as long as they fit in the specified area. If you want to be sure that one
section is placed before the other, an additional location restriction must be given.

-The locator is free to locate sections when all restrictions are met!

Note 2) For instance all code from file test.c is placed in section code.test, unless the #pragma
section is used somewhere in this file. In assembly .sdecl and .sect are used to respectively define
and use sections. If you want to place a part of the C-code in another section from within C, use:

….. // default sections created by the compiler

#pragma section code=”my_section” [data=”my_data_section”]
…. Some C code, placed in section my_section,

data declared here will be placed in data section my_data_section
#pragma section

….. // return to default sections

To set the section restrictions for each section EDE users must select the ‘Sections’ tab through the
Project -> Linker/Locator dialog.
In the lower part of the window, (‘Define section order / address’), you can specify the order in
which certain sections must be located and/or bind sections to specified addresses. Four fields are
available (see fig 3): code linear, code abs24, data linear, data abs18. (The abs24 and abs18 attributes
specify that sections placed in these fields will be placed in direct addressable code or data memory.)

For example: consider a project consisting of three files test1.c, test2.c and test3.c. You want
test2.c to be located before test1.c. Also test2.c should be located at address 0xC0000010.
The locator may locate test3.c anywere in the available code memory.
The field ‘code linear’ must be filled with: code.test2 addr=0xC0000010; code.test1

Command line tools users can set the section restrictions for each section by adapting their
<projectname>.i file. The specification of the section ordering can be done with: ROM_LINEAR,
ROM_ABS24, etc.

Using the above given example, this means adding to your <projectname>.i file:
ROM_LINEAR(code.test1 addr=0xC0000200)
ROM_LINEAR(code.test2)

NOTE: if an address is specified for a group of sections, the first section must be assigned to the
address, otherwise unexpected results will occur! (for both EDE and command line tools users!).

For example:
ROM_LINEAR(code.test1)
ROM_LINEAR(code.test2)

The locator will place code.test2 after section code.test1 somewhere in code memory (to be
determined by the locator)

AN060-01 page 7 of 7 2002-03-25

TriCore Application Note
Setting Locator Options

Further:
ROM_LINEAR(code.test1 addr=0xC0000200)
ROM_LINEAR(code.test2)

Will locate section code.test1 at address 0xC0000200 and section code.test2 will be placed
somewhere after section code.test1, however not necessarily consecutive in memory! The locator may
choose to put other sections between code.test1 and code.test2.

However:
ROM_LINEAR(code.test2)
ROM_LINEAR(code.test1 addr=0xC0000200)

will give unexpected results for section code2.test.

Fig 3. Linker/locator options, ‘Sections’ tab.

3.3 Copying code from ROM to RAM
If you want to run a code section in RAM memory (for instance because it is faster), the code section
needs to be copied from ROM to RAM by the startup code. This can be achieved by declaring this
code section (code.test) with the attributes initialize(i), writable(w) and not read-only (-r).

The EDE-user can do this by putting the string "code.test attr=iw-r" in the 'code linear'-field on the
'Sections' tab of the Project->linker/locator dialog.

The commandline tools user can do this by adding the following line to the <projectname>.i file:
ROM_LINEAR(code.test attr=iw-r)

	Introduction
	Project and Locator
	Setting linker/locator options
	Standard linker/locator settings
	Advanced linker/locator settings
	Copying code from ROM to RAM

