
MA001–022–00–00
Doc. ver.: 1.6

68K/ColdFire v10.0

C Compiler/Assembler

User's Manual

A publication of

Altium BV

Documentation Department

Copyright 1997-2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

INTRODUCTION 1-1

1.1 Overview 1-3.

1.2 Documentation 1-3.

C COMPILER 2-1

2.1 Introduction 2-3.

2.2 C Compiler Options: Summary 2-3.

2.3 Usage 2-8.

2.4 C Compiler Options: Detailed Descriptions 2-10.

2.4.1 Listing Options 2-10.

2.4.2 Include Options 2-13.

2.4.3 Data Type Options 2-15.

2.4.4 Separate Data Options 2-19.

2.4.5 Optimizer Options 2-22.

2.4.6 Floating-Point Options (68K only) 2-28.

2.4.7 Code Generation Options 2-31.

2.4.8 Position-independent Code Options 2-37.

2.4.9 Miscellaneous Options 2-40.

2.5 Using the Optimizer 2-47.

2.6 Optimizations Performed 2-48.

2.6.1 Automatic Register Variable Assignment 2-48.

2.6.2 Common Subexpression Elimination 2-49.

2.6.3 Target Path Computation 2-49.

2.6.4 Strength Reduction 2-50.

2.6.5 Code Hoisting 2-51.

2.6.6 Loop Rotation 2-51.

2.6.7 Branch Tables 2-52.

2.6.8 Entry/Exit Optimization 2-52.

2.6.9 Multiplication Optimization 2-53.

2.6.10 Subscript Optimization 2-53.

2.6.11 Special Instruction Selection 2-53.

2.6.12 Special Addressing Modes 2-54.

2.7 Messages 2-54.

Table of ContentsVI
C
O
N
T
E
N
T
S

ASSEMBLER 3-1

3.1 Introduction 3-3.

3.2 Assembler Options: Summary 3-3.

3.3 Usage 3-5.

3.4 Assembler Options: Detailed Descriptions 3-6.

3.4.1 Listing Options 3-6.

3.4.2 INCLUDE Options 3-12.

3.4.3 Code Generation Options 3-12.

3.4.4 Miscellaneous Options 3-14.

LINKING LOCATOR 4-1

4.1 Introduction 4-3.

4.2 Linking Locator Options: Summary 4-3.

4.3 Usage 4-5.

4.3.1 Linking 4-5.

4.3.2 ROM Processing 4-5.

4.3.3 Locating 4-7.

4.4 Linking Locator Options: Detailed Descriptions 4-8.

4.4.1 Linker Options 4-8.

4.4.2 Locator Options 4-9.

4.4.3 ROM Processing Options 4-10.

4.4.4 Symbol Options 4-12.

4.4.5 Miscellaneous Options 4-13.

4.5 Linking Concepts 4-16.

4.5.1 Segments 4-16.

4.5.2 Groups 4-18.

4.5.3 Classes 4-19.

4.5.4 Relocation 4-21.

4.6 Compiler Library Organization 4-22.

4.7 Library Searches 4-26.

4.8 Locator Commands 4-27.

4.8.1 General Command Syntax 4-27.

4.8.2 Comments 4-28.

4.8.3 Numbers 4-28.

Table of Contents VII

• • • • • • • •

4.8.4 Keywords 4-28.

4.8.5 Address Ranges 4-28.

4.8.6 Names 4-29.

4.8.7 Name List 4-29.

4.9 Command Descriptions 4-29.

FORMATTER 5-1

5.1 Introduction 5-3.

5.2 Formatter Options: Summary 5-3.

5.3 Usage 5-5.

5.3.1 form 5-5.

5.3.2 form695 5-6.

5.4 Formatter Options: Detailed Descriptions 5-7.

5.4.1 Format Options 5-7.

5.4.2 PROM Options 5-11.

5.4.3 COFF Format Options 5-13.

5.4.4 Miscellaneous Options 5-13.

5.5 IEEE-695 Formatter Limitations 5-16.

OTHER UTILITIES 6-1

6.1 Librarian 6-4.

6.1.1 Librarian Options: Summary 6-4.

6.1.2 Usage 6-5.

6.1.3 Librarian Options: Detailed Description 6-7.

6.2 Global Symbol Mapper 6-11.

6.2.1 Global Symbol Mapper Options: Summary 6-11.

6.2.2 Usage 6-12.

6.2.3 Global Symbol Mapper Options: Detailed Description 6-13

6.3 Symbol List Utility 6-16.

6.3.1 Symbol List Utility Options: Summary 6-16.

6.3.2 Usage 6-16.

6.3.3 Symbol List Utility Options: Detailed Description 6-17.

6.3.4 The Symbol Table Listing 6-17.

Table of ContentsVIII
C
O
N
T
E
N
T
S

6.4 Object Size List Utility 6-21.

6.4.1 Object Size List Utility Options: Summary 6-21.

6.4.2 Usage 6-21.

6.4.3 Object Size List Utility Options: Detailed Description 6-22. .

APPLICATION NOTES 7-1

7.1 About the Application Notes 7-3.

7.2 Downloading 7-5.

7.2.1 Introduction 7-5.

7.2.2 PROM Programming 7-6.

7.3 Linking C and Assembly 7-8.

7.3.1 Introduction 7-8.

7.3.2 Conventions 7-8.

7.3.3 Sharing Global Data 7-11.

7.4 Pragma Separate (Option Separate) 7-14.

7.4.1 Introduction 7-14.

7.4.2 Preprocessor Option Directives 7-15.

7.4.3 Command Line Options 7-16.

7.5 Building Libraries That Do Not Use A5 7-17.

7.6 Position-independent Code 7-29.

7.6.1 Introduction 7-29.

7.6.2 How Position Independence is Achieved 7-30.

7.6.3 Position Independence and Data References 7-32.

7.6.4 Position Independence and Data Initialization 7-37.

7.6.5 Building a Position-independent System 7-38.

7.6.6 Some Additional Hints 7-41.

7.7 Getting the Best Code for Your Application 7-42.

7.7.1 Code Size versus Execution Speed 7-42.

7.7.2 If Statements 7-42.

7.7.3 Using Integer Data 7-43.

7.7.4 Size of int Data Type (68K only) 7-44.

7.7.5 Compilation Models for Data 7-46.

7.8 Support for the On-board Peripherals of

the 68332, 68340, and 68360 7-49.

Table of Contents IX

• • • • • • • •

C LANGUAGE SPECIFICATIONS A-1

1 Introduction A-3.

2 Preprocessor Extensions A-4.

3 In-line Assembly Language A-5.

3.1 The _CASM method A-8.

3.2 The _ASM method A-9.

3.3 Syntax Summary A-12.

4 ANSI C Function Prototypes A-14.

4.1 Creating Function Prototypes A-14.

4.2 Calls to Functions with Prototypes A-16.

5 Other ANSI C Features A-18.

5.1 Adjacent String Literal Concatenation A-18.

5.2 Trigraph Replacement A-19.

5.3 Void Pointers - void * A-20.

5.4 Const Type Qualifier A-20.

5.5 Stringization A-21.

5.6 ANSI C Preprocessor Additions A-22.

5.6.1 New Predefined Macros A-22.

5.6.2 New Directives A-22.

5.6.3 #error A-23.

5.6.4 #pragma A-23.

5.6.5 #elif A-23.

5.7 Volatile Type Qualifier A-23.

5.8 New Operators A-25.

5.8.1 defined A-25.

5.8.2 token pasting A-25.

6 Support for Interrupt Handlers in C A-26.

6.1 The _GPL Pseudo-Function A-27.

6.2 The _SPL Pseudo-Function A-28.

6.3 The _TRAP Function A-28.

6.4 The _IH Keyword A-28.

6.5 The _SWI Keyword A-30.

7 Implementation-Defined Behavior A-30.

Table of ContentsX
C
O
N
T
E
N
T
S

COMPILER NAMING CONVENTIONS B-1

1 Introduction B-3.

2 Code Symbols B-4.

3 Data Symbols B-4.

3.1 Global Data B-5.

3.2 Local Static Data B-5.

3.3 Stack Data B-5.

3.4 String Constants B-5.

3.5 Other Symbols B-5.

4 Segment Names B-6.

4.1 Code Segment Names B-6.

4.2 Data Segment Names B-6.

4.3 Separate Data B-7.

5 Symbol Naming Summary B-8.

5.1 Notes B-9.

COMPILER RUN-TIME CONVENTIONS C-1

1 Introduction C-3.

2 Storage Allocation C-3.

2.1 Notes C-4.

3 Segmentation Model C-4.

4 Register Usage C-6.

5 Subroutine Linkage C-6.

5.1 Preserved Registers C-6.

5.2 Register Return Values C-6.

5.3 Parameter Passing C-7.

5.4 Calling Sequence C-7.

5.5 Procedure Prologue C-8.

5.6 Initial Startup C-9.

Table of Contents XI

• • • • • • • •

OBJECT MODULE FORMATS D-1

1 Introduction D-3.

2 Intel ASCII Hex Format D-4.

3 Motorola S Records D-5.

4 Extended Motorola S Records D-5.

5 Packed Motorola S Records D-6.

6 S37 Motorola S Records D-7.

7 Tektronix Format (Tekhex) D-8.

8 Extended Tekhex Format D-8.

8.1 Section Definition Field D-9.

8.2 Symbol Definition Field D-10.

9 Binary Tektronix Format D-10.

10 HP64000 Format D-11.

10.1 Using the HP64000 Format D-11.

10.2 Files Needed D-12.

10.3 Generating Files for Use with the 64700 D-13.

10.4 Formatter Examples D-13.

10.5 Using get64 on Unix Hosts D-14.

11 Common Object File Format (COFF) D-16.

11.1 File Header D-16.

11.2 Option Header D-17.

11.3 Relocation Information D-18.

11.4 Section Headers D-18.

11.5 Line Number Information D-18.

11.6 Symbol Table Entries D-18.

11.7 COFF1 Format D-19.

12 IEEE-695 Object Module Format D-19.

COMPILER / ASSEMBLER DRIVER E-1

INDEX

Table of ContentsXII
C
O
N
T
E
N
T
S

Manual Purpose and Structure XIII

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is for users of the TASKING 68K/ColdFire C
compiler/assembler.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Introduction
Introduces the documentation conventions and organization.

2. C Compiler
Describes the operation and use of the TASKING 68K/ColdFire C
Compiler, including options, optimizer options, and error messages.

3. Assembler
Describes the operation and use of the TASKING 68K/ColdFire
Assembler.

4. Linking Locator
Describes the operation and use of the Linking Locator utility, including
options, linking concepts, compiler run-time libraries, library searches,
locator commands, and error messages.

5. Formatter
Describes the operation and use of two formatter utilities, including
options and error messages.

6. Other Utilities
Describes the following utilities: Librarian, Global Symbol Mapper,
Symbol List Utility, and Object Size Utility.

7. Application Notes
Contains information on the following topics:

• Downloading

• Linking C and Assembly

• Pragma Separate (Option Separate)

• Building Libraries that do not use A5

Manual Purpose and StructureXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

• Position-independent Code

• Getting the best code for your application

• Support for the on-board peripherals of the 68332, 68340, and 68360

APPENDICES

A. C Language Specifications
Contains information on the following:

• preprocessor extensions

• in-line assembly

• ANSI C function prototypes

• the const type qualifyer

• implementation-defined behavior

B. Compiler Naming Conventions
Contains information on the following:

• Code Symbols

• Data Symbols

• Segment Names

Contains a Symbol Naming Summary.

C. Compiler Run-Time Conventions
Describes Storage Allocation, the Segmentation Model, Register Usage,
Subroutine Linkage, Stack Layout, and Initial Startup.

D. Object Module Formats
Describes all of the various object module formats.

INDEX

Manual Purpose and Structure XV

• • • • • • • •

RELATED PUBLICATIONS

• American National Standard for Information Systems

- Programming Language C (ANSI/ISO 9899�1990, 1990)

• The C Programming Language (second edition) by Brian Kernighan

and D. Ritchie, (1988, Prentice-Hall, Inc., ISBN # 0-13-110362-8)

• C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr.,

(1987, Prentice-Hall, Inc., ISBN # 0-13-109810-1)

• M68000 Family Programmers Reference Manual (Motorola, Inc.)

• CPU32 Reference Manual (Motorola, Inc.)

• MC68xxx User's Manuals (Motorola, Inc.)

• ColdFire Family Programmers Reference Manual (Motorola, Inc.)

• MCF5xxx User's Manuals (Motorola, Inc.)

See the Motorola Semiconductor website (http://e-www.motorola.com) for

the complete documentation list for your derivative.

Manual Purpose and StructureXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and Structure XVII

• • • • • • • •

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

Manual Purpose and StructureXVIII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

1

INTRODUCTION
C
H
A
P
T
E
R

Chapter 11–2
IN
T
R
O
D
U
C
T
IO
N

1

C
H
A
P
T
E
R

Introduction 1–3

• • • • • • • •

1.1 OVERVIEW

This C Compiler/Assembler User's Manual contains invocation, options, and

usage summaries, along with examples for each of the tools and

definitions of special terminology and functions. This chapter contains an

overview of the 68K/ColdFire documentation. Please refer to the

Introduction chapter in the Getting Started Manual for information

concerning the 68K/ColdFire development system and for additional help.

1.2 DOCUMENTATION

Three manuals make up the 68K/ColdFire documentation: the Getting
Started Manual, the C Compiler/Assembler User's Manual and the C
Compiler/Assembler Reference Manual.

The Getting Started Manual contains an introduction to the development

system, an installation guide, and a tutorial which contains sample code

and exercises which lead you step-by-step through the powerful features

of each software tool.

The C Compiler/Assembler User's Manual includes invocation, options, and

usage summaries, along with examples for each of the tools and

definitions of special terminology and functions. This manual also contains

additional information in the appendices on run-time and naming

conventions, C language extensions, and object module formats.

The C Compiler/Assembler Reference Manual provides information on the

run-time libraries and the information necessary to write programs in

assembly language. It contains sections on source program coding,

assembler directives, macro operations, structured control statements, and

position-independent code, as well as a summary of the character set.

Chapter 11–4
IN
T
R
O
D
U
C
T
IO
N

2

C COMPILER
C

H
A

P
T

E
R

Chapter 22–2
C
O
M
P
IL
E
R

2

C
H

A
P

T
E

R

C Compiler 2–3

• • • • • • • •

This chapter describes the operation and use of the 68K/ColdFire C

Compiler. It begins with a summary listing of the available options and

continues with more detailed explanations of their usage, the optimizer

functions, and error messages.

2.1 INTRODUCTION

To compile C program(s), use the C compiler that corresponds to your

derivative. See section Derivatives Overview in chapter Tutorial of the

Getting Started Manual for a list of the supported derivatives with the

corresponding target to identify the C compiler (ctarget).

Invocation syntax

ctarget prog.c [prog2.c ...][options]

Input

prog.c [prog2.c ...]

Output

prog.ol [.lis, .pp, .psa .xrf, .s][prog2.ol...]

2.2 C COMPILER OPTIONS: SUMMARY

The C compiler recognizes the following options:

Option Function See:

–68 Software floating–point compatibility mode.
This option has no effect unless the –h option
is also supplied.
WARNING: This option is not compatible with
routines in the standard run–time library that
return doubles.

2–28

–a Generate source listing and show included
source.

2–10

–aa Align each procedure on a 16–byte boundary. 2–31

–ab Force word alignment for structures containing
bit fields.

2–16

–ac Align only the first procedure on a 16–byte
boundary.

2–31

Chapter 22–4
C
O
M
P
IL
E
R

See: FunctionOption

–ai Expand procedures inline. 2–22

–ao options Pass specified options to the assembler step.
Options must be in quotes if there’s more than
one given. Use only with –ia .

2–40

–ar Use alternate register usage conventions.
WARNING: The option is not compatible with
the standard run–time library.

2–32

–b5 Use 32–bit A5–relative offsets. 2–32

–bb Maintain backwards compatible bitfield
storage.

2–16

–C Old run–time model compatibility mode. Older
compiler preserved fewer registers across
procedure calls. Note : Not for ColdFire.

2–33

–ca Continue compilation to completion, even if –E
or –M is present.

2–41

–cc classname Set class of generated code segment to
classname.

2–34

–cs Put data declared with the const type
qualifier into a separate segment cdata and
class constant.

2–20

–D tbs [tbs ...] Define data type t as b bytes with sign s. 2–17

–d Generate symbolic debugging information. 2–41

–dd Allow ANSI–style duplicate declarations.
Note: This option changes the order of
allocation for uninitialized global variables.
Programs which depend on global variables
being allocated one after another must not use
this option.

2–41

–do Disable all optimizations which interfere with
debugging. This is equivalent to –nd , –nh ,
–nl , –np and –nr .

2–24

–E [pfn] Save preprocessor output in file pfn. If pfn is
omitted, write to prog.pp . Note: This option
changes the order of allocation for uninitialized
global variables. Programs which depend on
global variables being allocated one after
another must not use this option.

2–42

–e Issue warnings for language extensions. 2–42

–err [file] PC only . Write error messages to file. 2–42

C Compiler 2–5

• • • • • • • •

See: FunctionOption

–err+ [file] PC only . Append error messages to file. 2–42

–h Generate MC68881/MC68882 floating–point
instructions. Note : Not for ColdFire.

2–29

–I dir1 [dir2...] Define user #include directory(ies). 2–13

–i Generate interleaved source and
(pseudo–)assembly listing.

2–10

–ia Generate the object module by assembling
compiler output. This is required if in–line
assembly language is used.
Note : –ia is used by default when compiling
for ColdFire

2–10

–id Suppress PC–relative addressing for data
references. Use with –pd if separate code and
data address spaces.

2–37

–ih Assume routines called by interrupt handlers
do not use floating–point arithmetic (only
matters with –h). Note : Not for ColdFire.

2–34

–j Use short branches where possible. 2–35

–k Use a single name space for structure fields. 2–42

–ke On the PC, keep the compiler intermediate
files. On the PC, also execute the phases of
the compiler sequentially. On Unix hosts,
execute the phases of the compiler
sequentially, and keep the intermediate files
(for technical support use).

2–42

–L Define int as 4 bytes, short as 2 bytes.
Note : –L is used by default when compiling
for ColdFire or for C++

2–18

–l [lfn] Write output of listing options to file lfn.
If lfn is omitted, write to prog.lis .

2–11

–M [depsfile] Generate a list of “make” dependencies which
result from the various header files included
during compilation.
Note: An object module is not generated
unless –ca is used.

2–43

–m Use MC68881/MC68882 instructions for
mathematical functions. This option has no
effect unless the –h option is also supplied.
Note : Not for ColdFire.

2–29

Chapter 22–6
C
O
M
P
IL
E
R

See: FunctionOption

–mp [protofile] Construct an ANSI C prototype declaration for
each procedure defined in the compilation.

2–43

–n5 Do not reserve A5 for global data.
WARNING: This option is not compatible with
the standard run–time library.

2–35

–n6 Allow the compiler to use A6 for other
purposes.
WARNING: This option causes great
problems for symbolic debuggers.

2–36

–n7 [n] Limit stack–fixup optimization to n bytes (0 if n
is omitted).

2–36

–na Turn off ANSI C language extensions. 2–44

–nal Assume that the source contains no aliasing.
WARNING: This option is not safe for all
programs.

2–24

–nd Suppress detection of assignments to dead
variables.

2–24

–nf Generate narrow–format interleaved source
and pseudo–assembly listing. The
narrow–format listing usually fits in 80
columns while the –i listing is –p and –i
listings are 132 columns wide.
Note : Not for ColdFire.

2–10

–nh Suppress code hoisting. 2–25

–nl Do not remove LINK/UNLK instructions. This
guarantees that the stack is traceable by the
debugger.

2–25

–no Skip the optimizer. 2–25

–np Stop the optimizer from putting more than one
variable in a register.

2–25

–nr Suppress the strength reduction optimization. 2–26

–o ofn Write object module to file ofn. 2–45

–opfile opts Supply command line options in a file opts. 2–45

–os Optimize for space at the expense of time. 2–26

–ot Optimize for time at the expense of space. 2–26

–P ” string[=value]” Predefine preprocessor variable string. 2–45

–p Generate Wide–format pseudo–assembly
listing. Note : Not for ColdFire.

2–10

C Compiler 2–7

• • • • • • • •

See: FunctionOption

–pack n Change alignment of data.
–pack 1 causes byte alignment in structures,
even on word–like items.
–pack 2 causes word alignment, even on
fullword–like items.
–pack 4 causes fullword alignment for fullword
data.

2–18

–pc Force position–independent forms for code
(e.g., BSR.L).

2–38

–pd Force position–independent forms for data. 2–38

–ps Use short position–independent form for code
(e.g., BSR.W). If –pd is also present, use short
position–independent forms for data also.
Requires total code (and, if –pd , data) less
than 32K bytes for safe use.

2–39

–pw Emit warnings for calls to undeclared
functions.

2–45

–q Generate real–assembly listing. Can be
combined with –i for interleaved source.

2–10

–S dir1 [dir2...] Define system #include directory(ies). 2–13

–s Generate source listing. 2–10

–sc defclass
[defclass2]

Define default class(es) for separate data. 2–20

–sd Treat all global data as separate . 2–20

–se Unix only. Run the compiler phases
sequentially rather than as a Unix pipe (for
technical support use).

2–45

–si Allocate string literals in the idata segment.
This causes the compiler to use A5–relative
addressing for string literals.

2–40

–sp Enforce strict ANSI C precision constraints.
Note: This option decreases the efficiency of
generated code.

2–37

–ss defseg
[defseg2]

Define default segment(s) for separate data. 2–20

–V Display the version number of the
executables.

2–45

–v Verbose mode. Reports date, time, and
status/result of compilation.

2–45

Chapter 22–8
C
O
M
P
IL
E
R

See: FunctionOption

–ve Very verbose mode. Identifies all driver
actions as they are performed. This
determines which phase was executing if the
compiler aborts (technical support)

2–45

–vv Assume all global variables are volatile,
whether declared as volatile or not.
Note: This is required for programs that do
not use the ANSI volatile keyword
appropriately.

2–27

–w [n] Suppress warning messages of severity less
than n.

2–46

–x Generate cross–reference listing. 2–12

Table 2-1: Compiler options

Most of these options are also applicable to the C++ compiler. See the C++
Compiler User's Manual for more information

2.3 USAGE

The TASKING C compiler translates C source programs into object

modules containing machine language for the 68K/ColdFire

microprocessors. Input to the compiler is one or more C source programs,

which can �include" other files. The main output is one or more object

modules suitable for linking with other modules. Object modules may also

be catalogued in a library. Various kinds of listings may be generated to

display the results of compilation.

The 68K compiler produces a machine-language object module, not an

assembly-language program. The assembler is not run on the compiler

output. The 68K compiler can produce a listing that shows the assembly

language equivalent of the C program: this is called the pseudo-assembly

listing. The pseudo-assembly listing cannot actually be assembled without

modification.

The 68K compiler normally produces a machine-language object module.

It can also produce an assembly language output. The assembly language

output can be assembled without modification.

C Compiler 2–9

• • • • • • • •

The ColdFire compiler produces assembly language output and invokes

the assembler.

The compiler will produce object code for the 68K/ColdFire derivative

instruction set, depending upon the manner in which it is invoked. The

compiler will not emit instructions which do not exist on the specified

target processor.

The compiler has a powerful optimizer phase to generate tight object

code. This optimizer was designed to be used with embedded

applications, and can be used safely even in the presence of memory

mapped I/O and interrupt handlers.

The optimizer can be used with the TASKING source-level debugger,

CrossView Pro, but it can make debugging considerably more complex.

Use the –do option to disable those optimizations which interfere with

debugging. For more details about the interaction between the optimizer

and the debugger, see the description of the optimizer options.

See the Using the Optimizer section for a detailed description of the

function and usage of the optimizer, as well as some general coding hints

for getting better object code.

The compiler supports interrupt handlers in C. This feature is described in

the C Language Specifications appendix.

The compiler fully supports the ANSI C standard. However, in the interest

of backwards compatibility, some aspects of ANSI C are only supported in

the presence of command line options. For example, ANSI C requires the

size of the short data type to be at least 16 bits. By default the 68K

compiler maps the short data type into an 8-bit integer. Therefore the

68K compiler is not ANSI compliant unless –L or at least –D s2s is

supplied. The ColdFire compiler always maps the short data type into a

16-bit integer.

Full ANSI C compatibility also requires the –dd option and (under

hardware floating-point) the –sp option. However, these options have

side effects which may affect code quality. See the relevant option

descriptions for more details.

Example

c68000 sieve.c

• Compile source in file sieve.c .

• Write object module to file sieve.ol .

Chapter 22–10
C
O
M
P
IL
E
R

• Search for #include files in the current working directory.

• No listings will be generated.

2.4 C COMPILER OPTIONS: DETAILED DESCRIPTIONS

This section describes the C compiler options in more detail and provides

examples of their use.

2.4.1 LISTING OPTIONS

The listing options control the generation of the various listing files.

Listings are not produced by default; the user must specify the appropriate

options.

–a, –s Both –a and –s generate a source listing. The –a option

specifies that secondary #include 'd lines be listed in

addition to the primary source lines. If the –l option is not

specified, the source listing is written to file prog.lis .

–i
–nf
–p
–q These options control listings showing the generated code.

There are two kinds of assembler listings. One is a

�pseudo-assembly" listing. The pseudo-assembly listing

contains opcodes, a location counter, and actual object code

bytes. The pseudo-assembly listing resembles the listing

produced by the 68K assembler; it cannot actually be

assembled. If the –l option is not specified, the

pesudo-assembly listing is written to file prog.psa.

The other kind of assembler listing is a �real-assembly"

listing. It can be assembled, and, if the –ia option is present,

it actually is assembled. It is written to the file prog.s . The

real assembly listing resembles assembler source code. You

cannot get a pseudo-assembly listing if the assembler is

being used, that is, if the –ia option is present, but you can

ask the assembler to generate a listing. Use the –ao option to

pass listing options to the assembler.

C Compiler 2–11

• • • • • • • •

Either of these listings can be interleaved with C source. The

pseudo-assembly listing can be interleaved in wide or

narrow format; use the narrow format listing to print on an

80 column terminal screen or printer, because it won't wrap

to the next line.

Here are the possible combinations of options and what they

do:

• 68K: For assembly listing without actually using the

assembler:

–p Wide-format pseudo-assembly.

–i Wide-format interleaved pseudo-assembly.

–nf Narrow format interleaved pseudo-assembly.

–q Real-assembly listing.

–q –i Interleaved real-assembly listing.

• 68K: For assembly listings that use the assembler:

–ia –q Real-assembly listing (and assemble it).

–ia –i Interleaved, real-assembly listing (and

assemble it).

• ColdFire:

–q Keep real-assembly listing (and assemble it).

–i Keep interleaved, real-assembly listing (and

assemble it).

–l [lfn] This option controls the destination of listing output implied

by other listing options. If lfn is specified, the listing (if any)

is written to file lfn. If lfn is omitted, the listing is written to

file prog.lis .

If multiple listing options are selected, the results of all listing

options will be put in file lfn. If multiple source files are

given in one compiler invocation, lfn may not be specified.

Instead, a separate listing file is generated for each input file.

The listing output corresponding to progx.c appears in

progx.lis .

Chapter 22–12
C
O
M
P
IL
E
R

–x Generate a cross-reference listing. If the –l option is not

specified, write the listing to prog.xrf .

Example

Compile multiple programs:

c68000 sieve.c subr.c –s –l

• Compile source in sieve.c and subr.c .

• Write object modules to files sieve.ol and subr.ol .

• Write source listings to files sieve.lis and subr.lis .

Example

Generate assembly and cross-reference listings in the same file:

c68000 hello.c –i –x –l

• Compile source in file hello.c .

• Write object module to file hello.ol .

• Write cross-reference and interleaved pseudo-assembly listing to file

hello.lis (by using the combination –i –x –l).

Example

Generate source and cross-reference listings:

c68000 hello.c –a –x

• Compile source in file hello.c .

• Write object module to file hello.ol .

• Write source listing showing all #include 'd files to file hello.lis
(by using –a).

• Write cross-reference listing to file hello.xrf on the PC (by using

–x) or hello.xrf on Unix Hosts (by using –x).

C Compiler 2–13

• • • • • • • •

Source listing hello.lis :

1 #include ”hello.h”
1 1 /* hello.h */
2 1 int i; /* i gets declared here */

2 main()
3 {
4 printf (”Hello, world!\n”);
5 i = 1;
6 }

Cross-reference listing hello.xrf :

i
 Def : hello.h 2
 Ref : hello.c 5

main
 Def : hello.c 2

printf
 Def : * undefined *
 Ref : hello.c 4

2.4.2 INCLUDE OPTIONS

–I dir1 [dir2 ...]
Define one or more directories to be searched for user

include files. The default is to search the directory containing

the source file. No more than 32 user include directories may

be specified.

–S dir1 [dir2 ...]
Define one or more directories to be searched for system

include files. The default is to search the current working

directory. No more than 32 system include directories may be

specified.

On the PC, the directory path in the INCLUDE environment

variable is searched after the –S directories. (This

environment variable may also be named I2INCLUDE to

avoid conflicts with other software.)

Chapter 22–14
C
O
M
P
IL
E
R

Here are some #include directives as they might appear in a C program

source file:

#include ”file.h”
#include <file.h>

#include without ” ” or < > is invalid. The first form is considered to

be a user include; the second form is considered to be a system include.

Nesting is limited to 10 levels of #include files on the PC and 15 levels

on Unix.

When searching for user includes, the compiler first searches the directory

containing the source file (default), then all –I directories in the order

specified, followed by all –S directories. When searching for system

includes, the compiler searches only the directories specified by the –S
option, or the current working directory (default), if no –S is specified.

For both user include and system include files, the user can override the

placement of the default directory in the search order by specifying an

empty (null) directory name as an #include directory. An example of this

appears below:

c68000 prog.c –I first –I –I third

In this case, the default directory (which is the directory containing the

source file) is only searched at the position where the empty directory

name appears, i.e., after the directory named first and before the

directory named third .

Example

Specify other directories for #include files:

On the PC:

c68000 sieve.c –I smith\inc jones\inc williams\inc

On Unix hosts:

c68000 sieve.c –I smith/inc jones/inc williams/inc

• Compile source in file sieve.c .

• Write object module to file sieve.ol .

• The compiler searches for #include <filename.h> (system include) in

the current working directory.

C Compiler 2–15

• • • • • • • •

• The compiler searches for #include ” filename.h” (user include) in

the current working directory and the directories smith\inc ,

jones\inc , and williams\inc on the PC or smith/inc ,

jones/inc , and williams/inc on Unix hosts.

Example

Change the order of #include processing:

On the PC:

c68000 \usr\frank\sieve.c –S smith\inc jones\inc –S

On Unix hosts:

c68000 /usr/frank/sieve.c –S smith/inc jones/inc –S

• Compile source in file \usr\frank\sieve.c on the PC or

./usr/frank/sieve.c on Unix hosts.

• Write object module to file sieve.ol.

• The compiler searches for files included as #include <filename.h>
(system include) in the system include directories

smith\inc,jones\inc, on the PC or smith/inc, jones/inc on

Unix hosts and the current directory.

• The compiler searches for files included as #include ” filename.h”
(user include) in the source directory, \usr\frank on the PC or

/usr/frank on Unix hosts, then in the system include directories

named above, and finally in the current directory.

2.4.3 DATA TYPE OPTIONS

The TASKING C compiler allows you to redefine the size of the int
short and enum data types to accommodate larger values, or to assure

compatibility with other modules. You can specify whether the char data

type is to be treated as signed or unsigned.

In the case of enum types, the compiler supports four storage allocation

strategies. By default, an enumeration type all of whose values are

between -32768 and +32767 is stored in a signed 16-bit word, and other

enumeration types are stored as a signed 32-bit word. The other

strategies are:

1. Store an enumeration type whose values are between 0 and 255 as an

unsigned byte; store other enumerations as a signed 16-bit word.

Chapter 22–16
C
O
M
P
IL
E
R

2. Store an enumeration type whose values are between -128 and 127 as a

signed byte; store other enumerations in a signed 16-bit word.

3. Store all enumeration types as a 32-bit fullword.

The first two alternative strategies can result in more compact data. In

general, the last alternative strategy results in bigger data, and perhaps,

smaller and faster code. The last alternative strategy works best if the

integer data type is also redefined to be 32 bits long.

It is essential that all modules which are linked together into one program

be compiled with the same data type options. This rule includes run-time

library routines.

The characteristics of char, short and enumeration types do not affect the

library. The compiler is distributed with run-time libraries that have been

compiled both with and without the –L option.

For more information about the run-time libraries available, please refer to

the Compiler Library Organization section in the Linking Locator chapter.

–ab Force word alignment for structures containing bit fields.

A bit field that is completely contained in a byte can be

accessed via byte operations. Versions of the compiler prior

to Release 8.0 sometimes used word operations to access

some bit fields which were contained in a byte. This forced

the compiler to give word alignment to all bit field structures,

even those whose total size is one byte.

Later compiler releases use byte operations to access all bit

fields that are completely contained in a byte. This means

that word alignment is no longer necessary, and it is no

longer enforced.

–bb Maintain backwards compatible bitfield storage layout.

C Compiler 2–17

• • • • • • • •

This option forces the compiler to use the same storage

allocation algorithm as was used by C compiler versions

before version 7.1. The old algorithm disallowed bitfields

bigger than 16 bits, and aligned a bitfield on the next

halfword boundary if it would not otherwise fit completely in

one halfword-aligned halfword. The newer algorithm allows

bitfields up to 32 bits long, and aligns a bitfield on the next

halfword boundary only if it would not otherwise fit

completely in one halfword-aligned fullword. For example,

a bitfield structure consisting of a 15-bit field, a 2-bit field,

and a 15-bit field would be allocated in four bytes under the

new strategy, and would require five bytes in the old

strategy.

The –bb option is only for users who must maintain compatibility with the

old storage allocation. It results in a less compact storage mapping.

–D tbs [tbs] Redefine built-in data type.

The –D option overrides the default size and sign of a

built-in data type.

Use the –D option carefully, since all modules intended to be linked

together must be compiled with the same data type length options. This

rule includes run-time library modules.

Operands of the –D option are triples of the form tbs, where

t defines the data type, b the number of bytes and s the

signed/unsigned attribute. Legal values of t, b, and s, and

their permitted combinations and defaults are:

Chapter 22–18
C
O
M
P
IL
E
R

t type b s
––––––––––––––––––––––––
c char 1 s signed
e enum 2 u unsigned
i int 4
s short

Permitted Combinations of tbs and their defaults are:

Permitted: c1s c1u e1s e1u e2s e4s i2s i4s s1s s2s

Defaults
68K:

c1u e2s i2s s1s

Defaults
ColdFire:

c1u e2s i4s s2s

–L The –L option is shorthand for the following combination of

options:

–D i4s s2s –P _LONGINT

The first option defines the int type as 4 bytes long, and the

short type as 2 bytes long. The second option defines the

preprocessor variable _LONGINT. You can use _LONGINT to
define the length of an integer during compilation, allowing

conditional compilation. Without –L int is 2 bytes and

short is 1 byte. When compiling for ColdFire or C++, –L is

the default.

Example

Select long integer option:

c68000 sieve.c –L

• Compile int variables as 4-byte signed data items; short variables as

2-byte signed.

• Write object module to file sieve.ol .

sieve.ol must be linked with the long-integer run-time library.

–pack n Change alignment of data. The value of n must be 1, 2, or 4.

The default mode depends on the processor. For the

MC68020, MC68030, MC68040, MC68060, MC68360, ColdFire

and the corresponding EC-series processors, –pack 4 is the

default. For other processors –pack 2 is the default.

C Compiler 2–19

• • • • • • • •

The easiest way to see the effect of the –pack option is to

consider this structure:

struct { char c; long l; };

Under –pack 1 , this structure would be 5 bytes long. Under

–pack 2 , the compiler would ensure that the field l is word

aligned. This requires a one-byte �hole" between c and l ;

thus the structure would be 6 bytes long. Under –pack 4 ,

the compiler would ensure that the field �l " is fullword

aligned. This requires a three-byte hole; thus the structure

would be 8 bytes long.

The effects of alignment depend on the processor type. If a

68000-like processor attempts a word or fullword operation

on an odd address, the processor will force an address

exception. If a 68020-like processor attempts a fullword

operand on an address which is not fullword aligned, then

there is a performance degradation. The defaults (–pack 2
or –pack 4) were chosen to maximize performance and

avoid address exceptions.

Note that the –pack 4 option also ensures that all fullword

variables are aligned on fullword boundaries, even if they

occur outside structures. However, even under –pack 1
individual word and fullword variables are word aligned.

Thus –pack 1 only affects structure layout.

Here are the two most common uses of the –pack option:

• In a system which shares data between different

processors, to ensure that the data is aligned to the

maximum required by all the processors.

• To make data more compact at the cost of code speed.

On a 68000-like processor you should specify –pack1 only if you are

prepared to handle the address exceptions that may result.

2.4.4 SEPARATE DATA OPTIONS

A brief overview of separate data options is given in this section. For more

details, refer to the Pragma Separate (Option Separate) application note.

Chapter 22–20
C
O
M
P
IL
E
R

–cs Place all data declared as const into a separate segment

cdata and class constant .

Please see the C Language Specifications appendix for a

description of the const type qualifier.

This option causes the compiler to segregate variables

declared with the const attribute from other variables so

they can more easily be allocated in ROM.

–sc defclass [defclass2]

This option defines a default class or classes for separate data

segments. When invoked with argument defclass, all separate

segments whose class name is not otherwise specified have

class defclass. When invoked with arguments defclass and

defclass2, segments for initialized data have class defclass and

segments for uninitialized data have class defclass2.

The –sc option may also be used with the –ss option to set

defaults for both class and segment.

All modules which contain separate declarations naming the

same segment with no class name must be compiled with the

same –sc option. The linker will report an error if a segment

is assigned different class names in different modules.

Improper use of the –sc option can cause such errors.

–sd Treat all global data as separate. This option has the same

effect as a #pragma sep_on directive on the first line of the

source file being compiled. For a more detailed explanation

of this feature, please read the Pragma Separate (Option
Separate) application note.

–ss defseg [defseg2]

This option defines a default segment or segments for

separate data. When invoked with argument defseg, all

separate data whose segment name is not otherwise specified

are allocated in segment defseg. When invoked with

arguments defseg and defseg2, initialized separate data whose

segment is not otherwise specified are allocated in segment

defseg and uninitialized separate data is allocated in segment

defseg2.

The –ss option may also be used with the –sc option to set

defaults for both class and segment.

C Compiler 2–21

• • • • • • • •

The linker will report an error if a segment is assigned

different class names in different modules. For this reason,

the –ss segment assignments are NOT applied to separate

variables whose class name is specified, unless the specified

class name is the same as the �expected" class name for the

–ss segment. If the –sc option is present, the expected class

name is the –sc name. Otherwise the expected class name is

�separate".

All modules compiled with the –ss option should supply

the same –ss option to avoid link-time errors.

#option is equivalent to #pragma .

Chapter 22–22
C
O
M
P
IL
E
R

2.4.5 OPTIMIZER OPTIONS

There are several options to control the behavior of the optimizer. There

are two main reasons why one might wish to do this. The first is to allow

the optimizer to perform optimizations which are not safe in general but

which are safe for the particular module being compiled. The second is to

make the object code easier to understand or debug.

The TASKING source�level debugger, CrossView Pro, can be used with

optimized code. However, certain unexpected behavior can be caused by

the transformations performed by the optimizer. These anomalies are

described briefly below with the related compiler options.

 –ai Perform automatic inline procedure expansion.

The compiler supports a limited form of automatic inline

procedure expansion. You can request this optimization by

specifying the –ai (automatic inline) command�line option.

A procedure is said to be �expanded inline" if a copy of the

body of the subroutine is inserted in place of the usual call

operation. Generally speaking, inline procedure expansion

represents a trade�off of code space for execution speed.

You save the execution time spent in a call and return, but

the compiler must generate a whole new copy of the called

subroutine body at every inline call.

There are limits on the kinds of routines which can be

expanded inline; inline expansion is currently limited to two

cases:

• static subroutines which return a non�aggregate value and

which contain no flow�of�control statements (that is, no

loops or �if " statements are allowed; however,

conditional �?: " expressions are allowed.)

• static subroutines of type void (that is, which return no

value)

There is also a limit on the overall size of an inline routine,

and a limit of six arguments in an inline routine.

When the –ai option is enabled, the compiler behaves as

follows:

C Compiler 2–23

• • • • • • • •

• When processing a static subroutine, the compiler creates

an internal copy of the body of the subroutine. If the

routine turns out to be unsuitable for inline expansion,

the compiler emits the body as usual. Otherwise, the

compiler emits no code for the procedure, and retains the

internal copy of the body for future use.

• When the compiler processes a procedure call to a

routine for which it has retained a copy, it duplicates the

body in place of the call.

• At the end of the compilation unit, the compiler checks if

there is any need to emit an out�of�line body.

There are two reasons the compiler might need to emit an

out�of�line body: first, there may have been calls which

the compiler did not expand inline because they

appeared before the definition of the routine; second, the

compiler might have made some use of the address of the

function (for example, the compiler might have assigned

the address to a pointer�to�function).

If neither of these conditions apply, the saved body is

discarded.

To take advantage of inline procedure expansion across

compilation units, you may be tempted to place the

procedures which you intend to expand inline into a set of

�.h " include files, together with their bodies. This would

allow these procedures to be expanded inline in many

different compilation units.

However, we must warn you that code structured in this

manner cannot be debugged effectively with or without –ai ,

even though it will compile and run properly. The problem

is that most debug symbol table formats, including the .abs
file used by CrossView Pro, cannot describe programs whose

code comes from more than one source file. In fact, the

formatter treats the first file with line number marks in it as

the �primary" source file, and discards marks from the other

files.

This restriction will be removed in later releases of the

compiler and debugger; however, until then, we cannot

recommend the methodology of putting source in include

files.

Chapter 22–24
C
O
M
P
IL
E
R

–do Disable optimization which substantially interferes with

debugging. This is equivalent to –nd , –nh , –nl –np and -nr .

Use of the –do option may make the generated code significantly larger

and slower.

–nal Assume that the source contains no aliasing.

This option is not safe for all programs.

To understand aliasing, consider the following piece of C

code:

int i;
func() {
 int *pi;

 pi = &i;
 i = 0;
 *pi = 7;
 if(i == 0)
 printf(”test failed\n”);
}

This code contains an example of aliasing. This means that

the variable i is referred to both by name, in the assignment

of 0 to i , and through the pointer pi , in the assignment of 7

to *pi . Aliasing refers to the use of a pointer to an object

and that same named object in the same function.

Because of the possibility of aliasing, when an assignment is

made through a pointer variable, the optimizer must forget its

knowledge of all variables that could be pointed to by that

pointer. This includes all extern variables, and any locals that

ever have their addresses taken in the current function. The

example above shows what could happen if the optimizer

did not take aliasing into account. If the optimizer did not

know that i could be modified via the pointer pi , then it

might decide that i was still equal to zero, and thus

incorrectly decide that the if condition must be true.

–nd Suppress detection and removal of assignments to dead

variables.

C Compiler 2–25

• • • • • • • •

Normally the optimizer will remove stores into local variables

which are not subsequently referenced. This means that

reading a variable in the debugger will not always yield the

value last assigned to it.

The –nd option may make the generated code somewhat larger and

slower.

-nh Suppress code hoisting.

The code hoister is a part of the optimizer which attempts to

hoist instructions out of loops. After code hoisting, part or all

of a statement within a loop may be performed outside the

loop. Normally when the debugger stops at a C statement

one can assume that no instructions from that statement have

been executed, but this is no longer true after code hoisting.

The –nh option may make the generated code run significantly more

slowly.

–nl Do not remove LINK and UNLK instructions.

The LINK instruction is used in procedure prologue to

establish a stack frame. Many procedures do not require a

stack frame, since the optimizer can often pack all local

variables into registers. However, when LINK instructions are

removed the debugger cannot find all the active procedures

by stack traceback.

For example, suppose procedure f1 calls procedure f2
which calls procedure f3 which calls procedure f4 , and that

the LINK instruction in procedure f3 was optimized away.

The debugger's stack traceback analysis starting from

procedure f4 would incorrectly conclude that the procedure

f3 was called from procedure f1 rather than from procedure

f2 .

The –nl option may make the generated code run more slowly.

–no Skip the optimizer.

This option bypasses the optimizer phase of the compiler.

–np Stop the optimizer from putting more than one variable in a

register.

Chapter 22–26
C
O
M
P
IL
E
R

By default the optimizer attempts to put as many different

variables into the same register as possible. Of course, two

variables may occupy the same register only if their lifetimes

do not overlap.

If two different variables are allocated in the same register,

then reading or writing those variables in the debugger can

have unexpected results. For example, assigning a variable

before its first use can cause a different variable to be

corrupted. Similarly, reading a variable after its last use can

deliver an incorrect value.

This option directs the optimizer not to pack more than one

variable to a single register.

The –np option may make the generated code significantly larger and

slower.

–nr Suppress strength reduction. Strength reduction is an

optimization that typically turns multiplies into additions

inside a loop.

In the classic case, the loop:

int a[10];
for (i=0; i <10; i++) {

a[i] = 0;
}

can be turned into the equivalent of:

int a[10],*pnt;
for (pnt = &a[0]; pnt<&a[10];) {

*pnt++ = 0;
}

which is both smaller and faster.

–os Optimize for space. Choose smaller but slower code

sequences.

–ot Optimize for time. Choose faster, but larger code sequences.

In the absence of either the –os or –ot option, the compiler optimizes for

time over space.

C Compiler 2–27

• • • • • • • •

–vv Assume all global variables are volatile.

Most variables in a C program have the characteristic that if

they are referenced twice with no intervening stores, either

direct stores or through pointers, then both references will

deliver the same value. A variable is called �volatile" if it does

not have this property. Generally the only way a variable can

be volatile is if that variable is located over a

memory-mapped I/O port, or if it could be modified by an

asynchronous interrupt handler.

It is critical the that optimizer know when it is dealing with a

volatile variable, since optimization can cause programs

which use volatile variables to execute incorrectly. Here is a

simple example:

extern int interrupt_happened;
void wait_for_interrupt() {

interrupt_happened = 0;
while (interrupt_happened == 0);

}

This programs expects an external interrupt handler to

change the global variable interrupt_happened . However,

the optimizer will, by default, assume that

interrupt_happened is always zero, because it can see no

code that can affect this variable between its assignment and

the test within the loop. Thus it would compile the �while"

loop into a jump-to-self instruction.

The best way to avoid problems like this is to use the ANSI

volatile keyword. That is, the declaration should be:

extern volatile int interrupt_happened;

However, if you do not feel confident that you can locate

and appropriate qualify all your volatile variables, then you

can still avoid inappropriate optimizations by using the –vv
option. This tells the compiler to treat all global variables as

volatile.

The –vv option may make the generated code significantly larger and

slower.

Chapter 22–28
C
O
M
P
IL
E
R

2.4.6 FLOATING-POINT OPTIONS (68K ONLY)

–68 Software floating-point compatibility mode.

This option is intended to facilitate the migration of a system

using software floating-point to one using hardware

floating-point. It directs the compiler to use the software

floating-point linkage conventions even though the hardware

floats option is selected. This option has no effect unless the

hardware floats option, –h is also selected.

By default, function return values of type float are passed

in register FP0 if the hardware floating-point option is

selected, and in register D0 otherwise. Function return values

of type double are passed in FP0 in the hardware

floating-point case, and in memory otherwise. (See the

Compiler Run-Time Conventions appendix for more details.)

This option directs the compiler not to return float/double

function values in FP0 even when the hardware

floating-point option is selected.

Suppose, for example, that you have a collection of assembly

language routines which return float or double values and

which are called from C code. Suppose further that these

routines were coded using the software floating-point

linkage conventions, as described in the paragraph above. If

you re-compile the calling C routine(s) with the hardware

floats option, then the assembly language routines will not

operate correctly. However, if you also supply the –68
option, then the assembly language program can be used as

is. This will allow you to modify the assembly language

routines gradually, and then you can switch over to the more

efficient hardware floating-point linkage conventions when

you are ready.

Use the –68 option carefully, since all modules intended to be linked

together must be compiled with the same linkage conventions.

C Compiler 2–29

• • • • • • • •

Care must be taken with any run-time library functions

which return float/double values. Most mathematical

functions (e.g., sin) can be expanded in-line by using the

–m option. If other such library routines are needed, e.g.

pow, then they should be re-compiled with –68 . Refer to the

–m option for related information concerning mathematical

functions.

–h Generate hardware floating-point instructions. Except for the

MC68040 and the MC68060, the default is to use software

floating-point. For the MC68040 and the MC68060 target,

hardware floating-point instructions are generated by default.

After compiling with the –h option, you must link the object module with

the hardware floating-point library.

–m Make calls to transcendental functions using floating-point

instructions. The option is effective only when the hardware

floating-point option, –h , is also selected, or if the target is

the MC68040 or MC68060.

This option directs the compiler to assume that calls to

functions named sin , sqrt , and so on actually are

invocations of the corresponding mathematical functions, and

not user-defined subroutines. Furthermore, it doesn't

generate code to set the global variable errno . This is

non-ANSI behavior because the ANSI standard requires

errno to be set if arguments are out of bounds.

For example, if the argument of sqrt is less than zero, then

the ANSI standard requires that the sqrt library routine set

errno to EDOM, a constant defined in the errno.h include

file. Under the –m option, the only code generated for a call

to sqrt would be a FSQRT instruction. Without –m, the

generated code would be a call to a library routine that

would range check the argument, set errno if it is out of

bounds, and then use FSQRT to compute the result.

Programs that do not check the errno variable after calls to

mathematical library routines will produce the same results

when compiled under the –m option.

Chapter 22–30
C
O
M
P
IL
E
R

The math.h system include file supplied with the run-time library must

be #include 'd in the C source to supply external declarations of the

mathematical functions.

Even if the –m option is not supplied, calls to mathematical functions that

have no range restrictions of their arguments are expanded in-line by

default. The routines treated in this way are atan , cos , cosh , exp , fabs ,

sin , sinh , tan , and tanh . In this case the full ANSI C semantics are

preserved. If in-line expansion is not desired, it can be avoided by

#undef ing the function after the math.h include file is included. For

example, this would force real out-of-line calls to cos :

#include ”math.h”
#undef cos

The following table summarizes which routines are expanded in-line by

default. On the MC68040 and the MC68060, the only floating functions are

sqrt and fabs ; all other routines are done out of line.

Subroutine Mathematical Function

acos arc cosine

asin arc sine

*atan arc tangent

*atanh hyperbolic arc tangent

*cos cosine

*cosh hyperbolic cosine

*exp exponential

+*fabs absolute value

log natural logarithm

log10 base 10 logarithm

log2 base 2 logarithm

*sin sine

*sinh hyperbolic sine

+sqrt square root

*tan tangent

*tanh hyperbolic tangent

Table 2-2: Expanded routines

C Compiler 2–31

• • • • • • • •

* Expanded in-line by default.

+ Expanded in-line on MC68040 and MC68060.

2.4.7 CODE GENERATION OPTIONS

–aa Align each procedure on a 16-byte boundary.

–ac Align only the first procedure on a 16-byte boundary.

These two options (–aa and –ac) are intended for use with

the 68040. They help optimize the instruction cache by

aligning subroutines on a 16-byte �line" boundary. –aa
aligns every subroutine; –ac aligns only the first subroutine

in the compilation unit.

The 68040 loads its internal instruction cache in units of 16

bytes called �lines". Lines are always loaded from 16-byte

aligned boundaries. To see how this affects program

execution, consider the case of two procedures: f1 and f2.

Suppose f1 is located at address 1600, a line-aligned address,

and that f2 is located at address 3208, eight bytes after a

line-aligned address. Suppose further that neither is resident

in the cache.

When f1 is entered, the 68040 will load the line containing

the entry point for f1 (addresses 1600-1615) into the cache.

This loads 16 bytes of the procedure f1. The 68040 will not

need to load more code into the cache until it executes the

first 16 bytes of f1. Now consider what happens when f2 is

entered. Again, the 68040 will fetch the line containing the

entry point for f2 (addresses 3200-3215). This will only

obtain 8 bytes of the procedure f2. This means that the 68040

may need to load the instruction cache sooner, resulting in a

delay.

Chapter 22–32
C
O
M
P
IL
E
R

The –ac option is appropriate when the compilation unit

consists of a relatively small package of procedures that often

call one another. Thus when you enter the package you

expect to see the whole package get loaded into the cache.

The –aa option is appropriate when the compilation unit

consists of a package of routines that do not call one another.

Thus when you enter the package you want to load the

minimum amount into the cache.

Aligning all procedures on a line boundary is probably not a

good idea, because it does make the total code larger (on the

average, 8 bytes per procedure). This makes it harder to

cover the code with a limited size cache. However, it makes

good sense to align the most frequently executed procedures

or groups of procedures.

–ar Use alternate register usage conventions.

Under the –ar option, the compiler uses a different set of

register conventions which more closely match that used by

other 68000-family compilers. Under the normal conventions,

registers D0, D1, A0, A4, FP0, and FP4 are considered scratch

registers, and pointer return values come back in A0. Under

the alternate conventions, registers D0, D1, A0, A1, FP0, and

FP1 are scratch registers, and pointer return values come

back in D0 (the same as integers).

The –ar option makes it easier to use the 68K/ColdFire

compiler with assembly language which was designed for

use with another compiler.

Of course, all modules in a program must be compiled using

the same register conventions. This rule also applies to the

run-time library. Therefore it is necessary to recompile the

run-time library using –ar in order to make a library which

can be used with –ar compilations. See the Run-Time
Library chapter in the Reference Manual for more details on

how to rebuild the run-time library.

–b5 Use 32-bit A5-relative offsets.

This option may make the generated code significantly larger and slower.

C Compiler 2–33

• • • • • • • •

The compiler addresses non-separate data via the A5 register.

Normally the compiler imposes a 64K byte limit on

A5-relative data, which allows the compiler to assume that

A5-relative offsets fit in 16 bits.

The –b5 option removes the 64K byte limitation on

A5-relative data. The compiler must then use 32-bit

A5-relative offsets. This means it can no longer use the

efficient �A5 plus 16-bit displacement" addressing mode.

Instead it must use the �A5 plus 32-bit displacement" mode.

On a 68000-like processor this more complex addressing

mode is not available, so a sequence of instructions are

necessary instead. For example:

extern long i;
i = 1

Default code:

MOVE.L #1,_i–data(A5)

Code under -b5, 68000 target:

MOVE.L #_i–data,D0
MOVE.L #1,(A5,D0.L)

Code under -b5, 68020 target:

MOVE.L #1,(_i–data,A5)

–C Old run-time model compatibility mode.

This option is intended to facilitate the migration of a system

built with a version of the compiler earlier than v7.0.

The run-time model for the 68K family compiler was

changed slightly, starting with the version of the compiler

which supports the optimizer (v7.0 or later). The change

affects the compiler's run-time convention with respect to

procedure calls and �preserved registers."

Chapter 22–34
C
O
M
P
IL
E
R

The newer run-time model requires that register D2 through

D7 be preserved by any procedure called from C, while the

old run-time model only required that D2 through D4 be

preserved. In the hardware floating-point case, registers FP1

through FP73 and FP5 through FP7 must be preserved where

before only FP1 through FP3 needed to be preserved. This

has two implications:

Assembly language programs which are called from C code

may have to be modified to save and restore these additional

registers in their entry/exit code if they were coded assuming

the old run-time model.

C code compiled under the older run-time model may not be

called by code compiled under the newer run-time model.

The converse, however is not true: code compiled under the

newer run-time model may be called from code compiled

under the older run-time model. In particular, the newer

model run-time library is compatible with older compilers,

and with code compiled under the –C option.

The run-time model was changed to allow the compiler to

use more registers for register variables. It has a very

substantial impact on code quality, especially with the

optimizer turned on. We recommend that the –C option be

used only as a stopgap measure until any affected assembly

language routines have been modified.

 –cc classname
Set class of generated code segment to classname.

The compiler generates one segment for each source model

to contain the generated machine instructions. By default this

segment is associated with the class name �{code }". This

option chooses a different class name.

It may be convenient to compile collections of related

modules with this option. The code can be distinguished in

gsmap listings, and the code from all these compilations can

be forced into a single address range with a single locate
command. See the Linking Locator chapter for more details.

–ih Assume routines called by interrupt handlers do not use

floating-point arithmetic. Only matters with –h . This option is

not valid for ColdFire compilers.

C Compiler 2–35

• • • • • • • •

An interrupt routine that uses floating-point registers must

preserve the state of the floating-point unit. This requires

several instructions, in the entry/exit sequence starting with

an FSAVE. Normally any interrupt routine which makes a

subroutine call must do the same. This is necessary because

the compiler fears that the called routine may do

floating-point arithmetic. However, if you know that the

routines called by your interrupt handlers do not do any

floating-point arithmetic, then these saves are unnecessary.

They can also be quite slow.

By supplying the –ih option, you can tell the compiler not to

worry about the routines called from your interrupt handlers.

Of course, if the interrupt handler itself uses floating-point

registers, then they will be saved on entry nevertheless.

–j Use short branch instructions where possible. This option

may decrease code size, depending upon the nature of the

source program.

When the compiler needs to emit a forward branch, there are

two alternative strategies it could use: emit a short or long

branch instruction. If the target of the branch instruction is

reachable by a short branch, then the first strategy will

produce smaller object code. If not, then the second strategy

will produce smaller object code. The only way to know

which strategy is better for any particular input program is to

try both options and pick the winner. The default is to emit

only long branches.

–n5 Do not reserve A5 for global data.

By default, the compiler uses A5 to address non-separate

global and static data. However, if you have no such data,

then the A5 register is effectively unused. In that case, the

–n5 option allows the compiler to use one more register.

This can result in significant code improvement in

subroutines that use a lot of pointer variables.

Chapter 22–36
C
O
M
P
IL
E
R

This option is not compatible with the standard run-time library, because

the library itself has some global and static data. For example, the variable

errno isdefined by the library. In order to use the –n5 option, you must

recompile the library using a compilation option such as –ss , –sc , or

–sd , which makes all data separate. See the Building Libraries That Do Not
Use A5 application note for a detailed explanation of how to do this.

-n6 Allow the compiler to use A6 for other purposes.

This option causes great problems for symbolic debuggers.

The –n6 option directs the compiler to use the A7 register

(the stack pointer) to access variables on the stack. This has

the advantage of freeing up an additional register for use by

the code generator, which can make a big difference in

subroutines which use lots of pointer variables. Code

compiled with –n6 may successfully be mixed with code

compiled without –n6 . In particular, it is NOT necessary to

rebuild the run-time library with –n6 .

The main disadvantage of the –n6 option is that the code

generated under –n6 is more difficult to read and debug. The

CrossView Pro source level debugger is completely unable to

locate stack variables or trace the stack when debugging

code compiled with –n6 . The main problem is that the A7

register changes frequently, so it is not easy for a debugger to

calculate the A7 offset of a variable at any given point in a

program. The A6 offset, in contrast, is always constant and

easy to manipulate.

–n7 [n] Limit stack-fixup deferral to n bytes (0 if n omitted).

The –n7 option is used to suppress or limit stack-fixup

optimization. To explain why this might be necessary, we

must describe how this optimization works.

After a procedure is called, the caller must pop the

parameters off the stack. This operation is called a �stack

fixup". The compiler attempts to optimize stack fixups by

delaying them as long as possible. This may allow the

compiler to do several fixups in one operation. For example,

f1(1,2,3);
f2(4,5,6);
f3(7,8,9);

C Compiler 2–37

• • • • • • • •

By default the compiler would generate only one fixup, after

the last call.

The problem with this optimization is that it may greatly

increase the total amount of stack space required by the

application. In this example, the parameters passed to f1 and

f2 would still be on the stack when f3 is called. If this

construct appeared in a highly recursive procedure, then that

extra space on each activation could become quite large. In

this case, the –n7 option can be used to limit stack fixup

delay to n bytes. Just �–n7 " alone or �–n7 0 " disables the

stack fixup optimization entirely.

–sp This option requires the compiler to obey strict ANSI C rules

for floating-point precision at the cost of code efficiency.

ANSI C permits floating-point expressions to be evaluated in

greater precision than their type, but it does not permit

variables to be stored in greater precision than their type.

Allowing the compiler to store variables in greater precision

than their type is very important, because it means that

variables of type float or double can be allocated in

floating-point registers. This is an enormous improvement in

efficiency over allocating such variables in memory, but it

does mean that these variables essentially take on extended

precision.

Generally speaking, greater precision is desirable. Since the

precision of floating-point expressions is indeterminate,

strictly controlling the precision of variables has little practical

benefit. However, it is true that the exact value of a

floating-point result is less predictable when the precision of

variables is indeterminate. This option prevents user variables

of type float or double from being allocated into

floating-point registers.

2.4.8 POSITION-INDEPENDENT CODE OPTIONS

Position independence is a very complex issue. For more details, see the

Position-independent Code application note.

–id Suppress PC-relative addressing for data references.

Chapter 22–38
C
O
M
P
IL
E
R

This option is ignored unless –pd is also present. It is

intended for use in systems where program-space fetches to

data will not work properly, as is the case where code and

data reside in different address spaces. Consider these two

code sequences:

MOVE x(PC),D0

and

LEA x(PC),A0
MOVE (A0),D0

The first sequence loads a word from program space. The

second sequence loads a word from the same address, but it

performs a data fetch, not a program fetch. The second

sequence would be substituted for the first under the –id
option.

–pc Force position-independent forms for code, e.g., BSR.L .

Uses PC-relative addressing to achieve position

independence. Here are some examples:

extern void f();
extern void (*p)();
f();
p = f;

Default code:

JSR _f
MOVE.L #_f,_p–data(A5)

Code under –pc :

BSR.L _f
LEA (_f,PC),A0
MOVE.L A0,_p–data(A5)

–pd Force position-independent forms for data.

This only affects separate data and string literals. Here are

some examples:

C Compiler 2–39

• • • • • • • •

char *q;
#pragma separate p
char *p;
p = ”abc”;
q = p;

Default code:

MOVE.L #__N1,_p
MOVE.L _p,_q–data(A5)

Code under –pd :

LEA (__N1,PC),A0
LEA (_p,PC),A4
MOVE.L A0,(A4)
MOVE.L (_p,PC),_q–data(A5)

–ps Use short position-independent form for code, e.g., BSR.W. If

–pd also present, use short position-independent forms for

data also.

The total size of code must be less than 32K bytes for safe use of this

option. If –pd is also present then total code plus data must be less than

32K bytes.

This option tells the compiler that it may assume that all

PC-relative offsets will safely fit in 16 bits. If they do not

actually fit, then use of this option will cause an bounds error

in the link or format stage of processing.

This option significantly improves efficiency, especially on

the 68000, 68010, and 68302 processors. It allows the

compiler to choose the efficient �PC+16-bit displacement"

addressing mode rather than the �PC+32-bit displacement"

mode. On a 68000-like processor this more complex

addressing mode is not available, and so a sequence of

instructions are necessary instead. For example:

#pragma separate x
long x;
void f();
_f(x);

Chapter 22–40
C
O
M
P
IL
E
R

Code under -pc -pd, 68000 target:

MOVEA.L #_f–*–8,A0
LEA (PC,A0),A0
MOVE.L (A0),–A7
MOVEA.L #_f–*–8,A0
LEA (PC,A0),A0
JSR (A0)

Code under –pc –pd , 68020 target:

MOVE.L (_x,PC),–(A7)
BSR.L _f

Code under –ps –pd :

MOVE.L _x(PC),–(A7)
BSR _f

–si Allocate string literals in the idata segment. This causes the

compiler to use A5-relative addressing for string literals.

There are two strategies available for achieving

position-independence for data. One is to use the –pd
option to cause PC-relative addressing for string literals and

separate data. However, this requires that the string literals

and separate data be moved as a rigid unit with the code.

This may not be possible under some environments.

The other strategy is to make all non-stack data A5-relative.

This requires avoiding the options and pragmas that cause

separate data to be generated. Then all that remains is to

make the string literals A5-relative. The –si option does this.

2.4.9 MISCELLANEOUS OPTIONS

–ao options Pass specified options to the assembler step.

Options must be in quotes if there's more than one given.

Use only with –ia option or ColdFire compilers.

C Compiler 2–41

• • • • • • • •

This option is used to specify additional options to the

assembler when assembling compiler output. It can be used,

for example, to specify a macro library that defines macros

for use within in-line assembly language insertions. See the

Assembler chapter for more details.

–ca Continue compilation to completion even if the –E or –M
options are specified.

–d Include symbolic debug information in the object module.

The default is no symbolic debugging information.

The linking locator and formatter programs pass symbol

information through to their output files. Eventually the

symbol information will reside in a hex output file, or in a

debugger symbol file to be read by CrossView Pro. Symbol

information can also be displayed with the symbol list utility.

–dd Allow ANSI-style duplicate declarations.

The ANSI C standard permits certain kinds of multiple

definitions. For example, the following program is legal ANSI

C:

int i;
int i = 1;

By default the compiler gives an error if more than one

definition for a variable is present in a single module. Put

another way, the extern keyword would be required on the

first declaration. The effect of the –dd option is to permit

multiple definitions in a single module, as required by ANSI

C.

Multiple definitions placed in separate modules are still illegal. The two

lines above, if compiled separately would cause an error at link time. This

treatment, called the �def-ref" model, is allowed by the ANSI standard and

is the most common among modern C compilers.

When the –dd option is present, the compiler delays emitting

data allocations for uninitialized variables until the end of the

compilation unit. (It does this in case an initialized definition

turns up later.) This delay affects the order of allocation of

uninitialized variables in memory.

Chapter 22–42
C
O
M
P
IL
E
R

It is expressly illegal for a C program to rely on the order of storage

allocation, but some programs do. Also, some programs have latent bugs

that only become apparent when the global variables are reordered.

Programs which execute differently with and without the –dd option

should be examined for constructs which assume that variables are

allocated one after another in the udata area.

Programs which depend on the order of storage allocation must not use

the –dd option. However, the –dd option is necessary for full ANSI

compliance.

–E [pfn] Generate a listing of preprocessor output. If pfn is omitted,

the listing is written to file prog.pp . The default is no

preprocessor listing. Compilation is halted after the

preprocessor step (and no object module is generated),

unless the –ca option is also specified.

tIf –E is specified and –ca is not also specified, then the compilation is

stopped after the preprocessor stage so that no object module is produced.

If –E is supplied and –ca is not also supplied, then the compilation is

stopped after the preprocessor stage, so no object module is produced.

This allows the preprocessor to be run on source files that do not contain

legal C code, such as C++ source.

–e Issue a warning for use of language extensions. The C code

containing the extension(s) is processed, but the warning

alerts the user to the use of the non-standard feature. This

warning is not affected by the –w option.

–err [file] PC only. Write error messages to file file. If file does not

exist, it will be created. If file does exist, it will be

overwritten. If file is omitted, then error output will be

redirected to standard output.

–err+ [file] PC only. Just like –err , except output will be appended if

file exists.

–k Use a single name space for all structure fields. The default is

to use separate name spaces for each structure type. When

–k is specified, the compiler flags as an error the occurrence

of the same field name in different structures.

–ke Execute the phases of the compiler sequentially, and keep

the intermediate files. For technical support use.

C Compiler 2–43

• • • • • • • •

-M [depsfile] Generate a list of �make" dependencies which result from the

various header files included during compilation. Write the

listing to depsfile. If depsfile is not specified, the listing output

corresponding to progx.c appears in progx.lis .

If –M is specified and –ca is not also specified, the

compilation is stopped after the preprocessor stage so that no

object module is produced.

The compilation is halted after the preprocessing step (and

no object module is generated), unless the –ca option is also

supplied.

If –M is supplied and –ca is not also supplied, then the compilation is

stopped after the preprocessor stage, so no object module is produced.

The compiler will not write more than one listing for a source program to

the default listing file, prog.lis . If you invoke the compiler using the –M
option without depsfile and try to generate other listings without using the

–l option (to redirect output), the compiler will only write a listing of

�make" dependencies to prog.lis . Other listing information will not

appear in any new file.

–mp [protofile]
Construct ANSI-style prototype declarations for each

procedure.

A function prototype is a kind of procedure declaration

which indicates the types of the arguments expected by a

procedure. Function prototypes are probably the single most

useful new feature in ANSI C, because they allow the

compiler to prevent the common error that results when the

type of an actual parameter does not match that expected by

the called procedure. Function prototypes are described in

some detail in the C Language Specifications appendix.

The -mp option is provided to help users who have

non-ANSI C code to take advantage of function prototypes.

The -mp option causes the compiler to generate a prototype

declaration for each of the procedures defined in this

compilation. You may want to edit the generated �header"

file (named prog.ah if protofile is absent) to add comments

and so on.

Chapter 22–44
C
O
M
P
IL
E
R

After you have constructed prototype header files for all the

procedures in your system, you should add #include
directives so that each module has access to prototype

declarations for all the procedures that it calls. This ensures

that all calls can be checked for argument mismatches and

the appropriate conversions can be automatically generated

by the compiler.

In C, function declarations come in two forms: �old style" and

�new style". The �old style" is the K&R C syntax, e.g.,

f (x, y)
float x;
short y;
{

The �new style" is the ANSI C prototype syntax, e.g.,

g (double x, int y)
{

Under the old K&R rules, an outgoing parameter of type float

was converted to double, and outgoing parameters of integral

types smaller than int were converted to int. Therefore the

function f above really expects a double and an int , not a

float and a short , as it appears. Therefore the prototype

generated under –mp would look similar for f and g above,

f (double, int);

This is NOT the same as would be generated for this

procedure:

h (float x, short y)
{

The prototype generated for this procedure would look like

this:

h (float, short);

–na Disable ANSI C language extensions, including new

keywords. Using the –na option turns off all ANSI C

additions that would make legal, pre-ANSI C source code

compile incorrectly.

C Compiler 2–45

• • • • • • • •

–o ofn Write the object module to file ofn. The default is to write to

file prog.ol .

–opfile opts
This option causes the compiler to read command line

options from file opts.

–P ``string[=value]''
This option has the same effect as one of the following C

statements, depending upon whether value is specified.

#define string
#define string value

–pw Emit warnings for calls to undeclared functions.

In C, undeclared identifiers are implicitly declared as

�external int function". This rule can mask real errors,

producing code that will not execute properly. This is

especially true in programs that rely on function prototypes

to coerce arguments to the correct type.

This option causes the compiler to emit a warning message

when it generates an implicit declaration. If all non-prototype

(�old style") function declarations are removed, this option

effectively guarantees that a prototype will be in force at

every call.

–se Unix only. Run the compiler phases sequentially rather than

as a Unix pipe.

–V Display the version number of executables (for technical

support use).

–v Verbose mode. Identifies compiler phases as they are

invoked. This helps determine which compiler phase was

executing if the compiler aborts (for technical support use).

–ve Very verbose mode. Reports date, time, and status/result of

compilation.

Chapter 22–46
C
O
M
P
IL
E
R

–w [n] Suppress warning messages of severity less than n.

The compiler generates warnings for non-portable or

non-standard uses of the C language. Warning severities vary

from 1 to 10 (1=least severe to 10=most severe), depending

upon the error. If omitted, n defaults to 11, i.e., all warnings

are suppressed. Warning severities are listed in the next

section. The default is to issue all warning messages.

Example

Include debugging information:

c68000 sieve.c –d

• Write object module to file sieve.ol .

• Include symbol table information in the object module. This

information can later be used by the symbolic debugger.

Example

Construct a header file of ANSI C prototype declarations:

c68000 prog.c –mp

• Write object module to file prog.o l.

• Write a header file, prog.ah .

Assume that prog.c contains the following lines:

int f(x,y)
double x;
short y;

{ ...}

The resulting header file, prog.ah , would be:

int f(double,
int);

C Compiler 2–47

• • • • • • • •

2.5 USING THE OPTIMIZER

Generally speaking, the optimizer is completely automatic. No source

changes are necessary to use the optimizer, and optimized and

non-optimized modules can be freely mixed.

The optimizer must build an intermediate representation of an entire

procedure in order to perform its functions. If the optimizer does run out

of space, these modules may be compiled without the optimizer by using

the –no option.

Optimization may make the generated code harder to debug. For example,

the optimizer may hoist code out of a loop, making it impossible to set

breakpoints within that code. When debugging is anticipated, the –do
option can be used to disable those optimizations which interfere with

debugging. This is preferable to –no which disables many more

optimizations.

The optimizer uses many different techniques to improve the quality of the

generated code. The main techniques are described in the Optimizations
Performed section below. By far the most significant optimization is the

automatic allocation of local variables into registers. This optimization is

performed in three steps:

1. Find the set of local variables which never have their address taken.

2. Analyze the uses of these variables to compute their �lifetimes."

3. Allocate each available register to as many variables as possible, given the

constraint that two variables with overlapping lifetimes cannot share the

same register.

A variable whose address is taken cannot be placed in a register, since a

pointer cannot point to a register. Avoid taking the address of commonly

used variables where possible, even if this requires the use of a secondary

variable.

Most variables in a C program have the characteristic that if they are

referenced twice with no intervening stores, either direct stores or through

pointers, then both references will deliver the same value. A variable is

called �volatile" if it does not have this property. One way a variable can

be volatile is if that variable is modified by an asynchronous interrupt

handler. Another way that a variable can be volatile is because of memory

mapped I/O.

Chapter 22–48
C
O
M
P
IL
E
R

By default, the optimizer assumes that only variables declared with the

ANSI C volatilkeyword are volatile.

If you have not appropriately marked your volatile variables, then you

must supply the –vv option. This tells the compiler to assume that all

global variables are volatile. This results in safe, but sub-optimal code.

Versions of the compiler earlier than 8.2 assumed that all globals were

volatile by default and would drop the assumption under the –nv option.

For versions 8.2 and later, the old –nv behavior is the default and the –vv
option recreates the old pre-8.2 default.

The –nal option can be used to inform the compiler that named variables

are not referenced indirectly through pointers. By default the optimizer

must �forget" all its information about global variables at every store

through a pointer, since it cannot know which variables are potentially

pointed to or �aliased" with the pointer. In some programs all pointer

variables point into the heap, so this loss of optimization is unnecessary.

Use caution when employing the –nal option, since it is not safe for all

programs. However, it can result in much improved code if used

appropriately.

2.6 OPTIMIZATIONS PERFORMED

Here is a brief summary of the transformations performed by the

optimizer.

2.6.1 AUTOMATIC REGISTER VARIABLE ASSIGNMENT

Most C compilers do not assign variables to registers unless they are

declared with the C register keyword. The optimizer analyzes the usage

of all local variables in a procedure and assigns them to registers in the

optimal way. Furthermore, the optimizer may assign several variables to

the same register, as long as the lifetimes of the variables are disjoint.

Therefore the optimizer can do a better job than the most conscientious

programmer.

C Compiler 2–49

• • • • • • • •

Assigning variables to registers is the single most important key to

generating good code for machines which have a large register set. This

saves a load instruction at every reference, and a store at every

assignment. Register variable allocation can reduce overall code size in

programs which use a lot of local data.

Register allocation is done by a packing algorithm which takes into

account the number of uses of each variable and whether these uses lie in

a loop.

2.6.2 COMMON SUBEXPRESSION ELIMINATION

Two computations are called common subexpressions, or CSEs, if they are

guaranteed to deliver the same value on all possible paths of program

execution. The simplest example is two occurrences of the same local

variable with no intervening store (either directly or through a pointer).

It is often better to compute a CSE once, save it in a temporary, and reuse

the temporary at subsequent uses than to re-compute the CSE each time

from scratch. This can save several instructions if the CSE is complex. Even

if the CSE is very simple, like a 32-bit constant, it may be worthwhile to

recognize the CSE just to decrease the size of the instructions which use

that value.

The optimizer decides whether using a temporary is an improvement and

transforms the program appropriately. The algorithm which makes this

decision is quite sophisticated. It takes into account the availability of a

register temporary, the number of times the CSE was used, and the cost to

re-compute.

Common subexpression elimination is an extremely important

optimization. It works especially well in conjunction with automatic

register variable assignment, as the CSEs automatically become candidates

for assignment to registers.

2.6.3 TARGET PATH COMPUTATION

Often a computation is evaluated for the purpose of storing it into a

particular register. The simplest example of this is an assignment into a

register-resident variable. Here the register variable is called the �target" of

the evaluation.

Chapter 22–50
C
O
M
P
IL
E
R

If the target register does not appear in the expression being evaluated,

then the expression may be evaluated directly into the target register. For

example, the ``targeted'' code for a = b + c; would be to move b into a
and then add c into a. Of course, this code would be incorrect if c were in

the same register as a. In contrast, the untargeted code would be to move

b into a temporary register, add c to the register, and move the register

into a. This requires an extra move instruction.

When the target register appears exactly once in the expression it may still

be possible to find a target path which �rolls up" the expression in the

target register. One example of this is the expression:

 a = b + (a * c);

Here the targeted code would be to multiply c into a, and then add b into

a. In contrast, the untargeted code would be to move a into a temp,

multiply c into the temp, add b into the temp, and move the temp into a.

This is twice as many instructions as the targeted sequence.

Targeting is an extremely valuable optimization because it occurs so often.

2.6.4 STRENGTH REDUCTION

Strength reduction is an optimization that typically turns complex address

calculations into additions inside a loop. In the classic case, the loop:

int a[10];
for (i=0; i<10; i++) {
 a[i] = 0;
}

can be turned into the equivalent of

long a[10],*pnt;
for (pnt = &a[0]; pnt<&a[10];) {
 *pnt++ = 0;
}

The generated code for the second loop is smaller and much faster.

C Compiler 2–51

• • • • • • • •

2.6.5 CODE HOISTING

A computation within a loop is called �loop invariant" if it is guaranteed to

deliver the same value on each iteration through the loop. It is always

faster to compute a loop invariant once outside the loop than to compute

it on each iteration. This optimization is called code hoisting because the

computation is effectively lifted out of the body of the loop.

In the case of nested loops, the hoisted code is examined again to see if it

can be hoisted out of the enclosing loop as well. Of course, a computation

can only be hoisted if it is guaranteed to be computed on all paths

through the loop.

This optimization does not decrease the size of the generated code, but

can greatly increase its speed. It is possible for code hoisting to slightly

increase the size of the generated code, and so code hoisting can be

disabled with a command line option –nh .

2.6.6 LOOP ROTATION

A typical for loop is:

for (i = 1; i < 10; i++)

Much less common are loops of the form:

for (i = 1; i < j; i++)

The significant difference between these two loops is that the body of the

first loop is guaranteed to execute at least once. Recognizing the difference

between these two cases allows the compiler to save a jump instruction

because it need not begin with the ``test'' code at the top of the loop. In

other words, the loop may be ``rotated'' to perform the test at the bottom.

The above optimizations are performed in the optimizer phase but

additional optimizations are performed in the back end phase itself. These

optimizations are performed even if the optimizer phase is not run.

Chapter 22–52
C
O
M
P
IL
E
R

2.6.7 BRANCH TABLES

Branch tables provide a more efficient implementation for switch

statements. There are two main strategies of code generation for switch

statements. One is for the generated code to compare the selector against

each of the case labels in succession, and jump to the appropriate case

when a match is found. This is called the �fall through" strategy. The other

is for the generated code to use the selector as an index into a table of

destination addresses, and then jump to the resulting address. This is

called the �branch table" strategy.

The compiler automatically selects the best strategy for the particular

switch statement at hand. The decision depends upon whether the switch

table is �dense," that is, if most of the values between the lowest and

highest case labels actually correspond to case labels. For example,

suppose you had a switch statement with two case labels, one at zero and

one at 10,000. It would be unwise for the compiler to implement this using

a 10,000 entry branch table. In general, the compiler will make a branch

table if the switch is at least one-third dense and has at least five cases. If

the switch is less dense but has many cases, the compiler will choose its

third option, a binary search run-time routine.

2.6.8 ENTRY/EXIT OPTIMIZATION

Most compilers typically emit a standard entry-exit sequence at the

beginning and end of each procedure. This code consists of two parts:

code to establish a stack frame, and code to save registers which must be

preserved according to the run-time model. Both of these kinds of code

are amenable to optimization.

First, the code to establish a stack frame is only necessary if the procedure

being compiled uses stack data. Since the optimizer performs automatic

register variable assignment, many procedures will have only

register-resident data, and thus do not need a stack frame. It should be

noted that stack frames are necessary for the debugger to trace the stack,

and so this optimization can be suppressed using the –nl command line

option.

Second, the code to save registers can be optimized to only save those

registers which are actually used in the body of the subroutine.

Furthermore, if only one register need be saved, then a single push

instruction is used instead of a multiple push instruction.

C Compiler 2–53

• • • • • • • •

In very small procedures, the entry-exit code can be a significant

percentage of the entire time spent in the subroutine, so this can be a very

important optimization.

2.6.9 MULTIPLICATION OPTIMIZATION

Many compilers can recognize that a multiply by a power of two can be

done by a shift. The compiler back end also recognizes many other

multiplications by constants which can be done without using a multiply

instruction. This is somewhat larger than a multiply instruction, but much

faster.

One limitation of the MC68000 instruction set is the lack of 32-bit multiply

and divide instructions. This means that the compiler must invoke a

run-time library routine to perform long multiply and divide operations, at

a considerable cost in execution time. However, if the compiler can

determine that both multiplicands fit in a 16-bit signed word, then the

compiler will use the MULS instruction and avoid the out-of-line call.

2.6.10 SUBSCRIPT OPTIMIZATION

The compiler uses 16-bit arithmetic for array index computations if it

knows the dimension of the array and can determine that the computation

will not overflow. This optimization is bypassed if the array has only one

element, because it is obvious in such cases that the user is intentionally

indexing off the end of the array.

2.6.11 SPECIAL INSTRUCTION SELECTION

The M68000 family has a number of special instructions which can be

used to generate just the right code in particular circumstances. The

compiler takes full advantage of these instructions. For example, the DBcc
(decrement and branch on condition) instruction is appropriate for certain

loops. The CMPM instruction is appropriate for the typical C expression

*p++ == *q++ .

Chapter 22–54
C
O
M
P
IL
E
R

2.6.12 SPECIAL ADDRESSING MODES

The MC68020 and later targets have a number of powerful addressing

modes which are not available on the MC68000. For example, array

subscripts can be used without having to multiply them by the element

size, as long as the element size is 2, 4, or 8. Also a pointer value may be

used directly from memory without having to load it into a register.

The compiler takes full advantage of these addressing modes. Every

memory reference is carefully analyzed so that the most efficient

addressing mode may be chosen.

2.7 MESSAGES

All C compiler error messages have the following format:

 :XX:name.c:nnn:message

where:

• XX identifies the compiler phase which detected the error.

XX Phase

FE Front End

OP Optimizer

Table 2-3: Error message format

• name.c is the name of the source file in which the error occurred.

• nnn is the line number in file name.c at which the error occurred.

• message is a description of the error.

Messages from the front end are graded in severity and are flagged either

as (Warning only) or as (FATAL!). Severity levels for warning messages

are listed below. Messages from the back end are always fatal. Messages

from the optimizer may be warnings or fatal errors.

C source files containing errors can cause the optimizer and back end to

emit fatal error messages. Other errors from the back end are generally

internal errors, and should be reported to Customer Support. Error

messages and warning messages affect the system return code returned by

the compiler.

C Compiler 2–55

• • • • • • • •

Phase Severity Warning Message

FE 1 Address initialization not position-independent

FE 1 Block scope extern declaration may not have
initializer

FE 1 Comma operator (",") not allowed in initialization

FE 1 Compilation defines no external names

FE 1 Degenerate unsigned compare with zero

FE 1 Duplicate qualifier

FE 1 Empty braced initialization list is illegal

FE 1 Empty character constant

FE 1 Extra comma at end of enumeration list ignored

FE 1 Filename is too long for list header

FE 1 Illegal hex constant (zero assumed)

FE 1 Missing ">" after header name (added)

FE 1 Non-int bitfield same as int bitfield

FE 1 Old style initializer

FE 1 Source line is too long for listing (truncated)

FE 1 Struct member redeclared

FE 1 Undefined, assuming 0

FE 1 Undefined, int function assumed

FE 1 Unsigned compare with negative constant

FE 1 Value specified is outside of legal range of 1 to
32767

FE 2 Case label not reachable by this type of switch
selector

FE 2 Enum function returning member of different
enum type

FE 2 Enum function returning value of different enum
type

FE 2 Enum member assigned to variable of different
enum type

FE 2 Enum member passed to prototype parameter of
different enum type

Chapter 22–56
C
O
M
P
IL
E
R

FE 2 Enum variable assigned to variable of different
enum type

FE 2 Enum variable passed to prototype parameter of
different enum type

FE 2 Implicit conversion to enum type

FE 2 Name already defined - stmt ignored

FE 2 Negative or 0 array length

FE 2 Separate directive must come before definition

FE 2 Separate variable not declared

FE 2 Unreachable code

FE 2 Variable is already separate; directive ignored

FE 2 Variable never referenced

FE 3 "&" requires lvalue operand; "&" ignored

FE 3 #option sep_off without #option sep_on

FE 3 #pragma sep_off without #pragma sep_on

FE 3 Argument names ignored

FE 3 Can't specify two class names to a single separate
segment

FE 3 Char constant too long

FE 3 Constant too big for field, value truncated

FE 3 Constant too big: truncated to 0

FE 3 Constant truncated to 1 byte

FE 3 Constant truncated to 2 bytes

FE 3 Constant value truncated

FE 3 Fixed point literal out of range

FE 3 Floating-point constant truncated in conversion
to integer

FE 3 Hex escape too long

FE 3 Hex escape truncated to four hex digits

FE 3 Hex escape truncated to two hex digits

FE 3 Integer constant truncated in conversion to
floating-point

C Compiler 2–57

• • • • • • • •

FE 3 Invalid directory name

FE 3 Missing #include file name

FE 3 Negation of unsigned fixed point value

FE 3 Null or invalid directory name

FE 3 Syntax error in #option statement

FE 3 Syntax error in #pragma statement

FE 3 Too many -I directories

FE 3 Too many -S directories

FE 3 Unknown #pragma

FE 4 Comparison between void and non-void pointers

FE 4 Float/double switch expression truncated

FE 4 Implicit conversion of pointer

FE 4 Implicit conversion to pointer

FE 4 Incompatible pointer types

FE 4 Non-portable pointer comparison

FE 4 Structure operation on non-structure item

FE 4 Structure ref base not a pointer

FE 6 Constant variable never initialized

FE 6 Duplicate specification in _ASM predicate

FE 6 Empty formal parameter name list after _ASM
keyword

FE 6 Empty formal parameter name list after _CASM
keyword

FE 6 Malformed "always" _ASM predicate; identifier
ignored

FE 8 Function declaration does not match previous
function prototype

FE 8 Function prototypes present but not enabled in
this compilation

FE 8 Name redefined

FE 8 Nonzero int assigned to pointer

FE 8 Nonzero int assigned to pointer return value

Chapter 22–58
C
O
M
P
IL
E
R

FE 8 Nonzero int used as pointer argument

FE 8 Pointer type in function call does not match
function definition

FE 8 Pointer types in assignment do not match

FE 8 Pointer value in return does not match function
type

FE 8 Prototype not compatible with previous
non-prototype declaration

FE 8 Void parameter list disagrees with previous
function prototype

FE 9 Division by 0 illegal; 1 assumed

FE 9 Division by 0.0 illegal; 1.0 assumed

FE 9 Negative shift count

FE 9 Shift count too large

3

ASSEMBLER
C

H
A

P
T

E
R

Chapter 33–2
A
S
S
E
M
B
L
E
R

3

C
H

A
P

T
E

R

Assembler 3–3

• • • • • • • •

This chapter describes the usage of the assembler for the 68K/ColdFire

family of microprocessors. For more information about the assembly

language, refer to the Reference Manual.

3.1 INTRODUCTION

To assemble program(s), use the assembler that corresponds to your

derivative. See section Derivatives Overview in chapter Tutorial of the

Getting Started Manual for a list of the supported derivatives with the

corresponding target to identify the assembler (asmtarget).

Invocation syntax

asmtarget prog.asm [prog2.asm ...][options]

 Input

prog.asm [prog2.asm...]

Output

prog.ol [.lis, .xrf, .err, .gsm] [prog2.ol...]

3.2 ASSEMBLER OPTIONS: SUMMARY

The assembler recognizes the following options:

Option Function See:

–a Generate source listing and show
INCLUDE’d source.

3–6

–A Force absolute addressing. 3–12

–a4 Force fullword alignment. 3–14

–b Generate symbol table listing. 3–7

–B Suppress listing of macro definitions. 3–7

–bl Use 32–bit addressing for forward
(undefined) branches. Not allowed for
MC68000, MC68008, MC68010 and
MC68302 targets.

3–13

–bs Use 8–bit addressing for forward
(undefined) branches.

3–13

Chapter 33–4
A
S
S
E
M
B
L
E
R

See:FunctionOption

–bw Use 16–bit addressing for forward
(undefined) branches (default).

3–13

–C Suppress listing of macro invocations. 3–7

–d Generate symbolic debugging
information.

3–14

–e [erfn] Write all error messages to erfn; if erfn is
omitted, suppress all messages.

3–7

–err [file] PC only . Write error messages to file. 3–7

–err+ [file] PC only . Append error messages to file. 3–7

–ex Allow the following TASKING extensions
to the assembler language: COMMON,
ELSEC, ENDR, REPEATC, RESERVE,
RESUME, RORG, % (remainder) operator.

3–15

–F Fold identifiers to upper case. 3–15

–fs Use short addressing for forward
(undefined) references.

3–13

–g Generate global symbol listing. 3–7

–h Allow use of hardware floating–point
instructions even with processors that
do not support hardware floating–point.

3–15

–I dir1 [dir2...]
Define INCLUDE directories. 3–12

–l [lfn] Generate listing and send to file lfn; if lfn
is omitted, write to prog.lis .

3–7

–m Show all macro expansions. 3–7

–M mfn Pre–INCLUDE file mfn into source
stream.

3–12

–N Suppress listing of conditional assembly
directives.

3–7

–o ofn Write object module to file ofn. 3–7

–O Make a non–68000 assembler act like
the 68000 assembler.

3–13

–p Show code generated for structured
syntax.

3–8

–P [lines] Set lines–per–page to lines; if lines is
omitted, suppress pagination.

3–7

Assembler 3–5

• • • • • • • •

See:FunctionOption

Force PC–relative addressing in
absolute section.

3–14

–ps Force PC–relative addressing in
relocatable section.

3–14

–s Generate source listing and do not show
INCLUDE’d source.

3–8

–S dir1 [dir2...] Define INCLUDE directories (equivalent
to –I option).

3–12

–t Trim comments from listing. 3–8

–U Show unassembled source. 3–8

–V Display the version number of the
executables.

3–15

–v Verbose mode. Reports date, time, and
status/result of assemble.

3–15

–ve Very verbose mode. Identifies
executables as they are invoked. This
determines which program was
executing if the assembler aborts. For
technical support use.

3–15

–w [n] Suppress warnings of severity less than
or equal to n (default 10).

3–15

–x Generate cross–reference listing. 3–8

Table 3-1: Assembler options

3.3 USAGE

The assembler translates assembly language source programs into object

modules. These object modules may be input to the linking locator or

catalogued in a library. Source programs can also include (via INCLUDE
options) other source files. Various listing options are available to display

the results of assembly.

If an input file name with no extension is specified, e.g., prog, then the

assembler will search for prog.asm .

The assembler recognizes the assembly language originally specified by

Motorola, which is fully described in the Reference Manual.

Chapter 33–6
A
S
S
E
M
B
L
E
R

The –ex option allows the use of the TASKING extensions. Please refer to

the Assembler Directives chapter of the Reference Manual for details.

The assembler will produce object code for the processor derivative

specific instruction set, depending upon the manner in which it is invoked.

The assembler will disallow instructions which do not exist on the

specified target processor. The resulting object module is labeled internally

with the target name, e.g., object modules produced by asm68020 are

labeled as containing �68020" code. The linking locator will issue a

warning if you attempt to link object modules intended for different

targets.

The use of MC68851 memory management coprocessor instructions is

allowed only with asm68020 .

From now on, we will refer to the assembler as the 68000 assembler.

Example

Assemble with all defaults:

asm68000 test.asm

• Assemble test.asm .

• Search for any INCLUDE files in current directory.

• Write object module to file test.ol .

• No listings will be generated.

3.4 ASSEMBLER OPTIONS: DETAILED DESCRIPTIONS

This section describes the assembler options in more detail and provides

examples of their use.

3.4.1 LISTING OPTIONS

The listing options control the generation of the various listing files.

Listings are not produced by default; you must specify the appropriate

option or options.

–a Generate a source listing showing secondary INCLUDE'd lines

in addition to primary source lines.

Assembler 3–7

• • • • • • • •

–b Generate symbol table and macro definition listing.

–B Suppress listing of macro definitions.

–C Suppress listing of macro invocations.

–e [erfn] If erfn is specified, then error messages are directed to erfn.

Error messages are also written to the listing file, if any. If

erfn is omitted, then all error messages are suppressed. The

default is to print error messages to stderr.

–err [file] PC only. Write error messages to file file. If file does not

exist, it will be created. If file does exist, it will be

overwritten. If file is omitted, then error output will be

redirected to standard output.

–err+ [file] PC only. Just like –err , except output will be appended if

file exists.

–g Generate global symbol listing, using the gsmap utility. If –l
is not specified, the listing is written to file prog.gsm .

–l [lfn] This option controls the destination of the listing output

implied by the other listing options. If lfn is given, then the

listing is written to file lfn. If lfn is +, then the listing is

written to standard output. If lfn is omitted, then the listing

is written to file prog.lis. If multiple source files are given in

one assembler invocation, then neither + nor lfn may be

specified. Instead, a separate listing file is generated for each

input file. The listing output corresponding to progx.asm
appears in progx.lis .

–m Show the expansion of all macros in the source listing.

–N Suppress listing of conditional assembly directives.

–o ofn If ofn is specified, then write the object module to file ofn. If

ofn is +, then the object module is written to standard output.

The default is to write to file prog .ol .

–P [lines]
Set the number of lines per listing page to lines. If lines is
omitted, then suppress listing pagination.

Chapter 33–8
A
S
S
E
M
B
L
E
R

–p Show code generated for structured syntax, e.g.,

IF -THEN-ELSE.

–s Generate a source listing. Secondary INCLUDE'd lines are not

listed.

–t Trim comments from listing.

–U List unassembled source, that is, lines that are excluded via

conditional assembly constructs.

–x Generate cross-reference listing. If –l is not specified, the

listing is written to file prog .xrf .

If no listing option is specified, then no listing is generated. If

only one of –a, –b , –s, or –x is specified, then only that

particular listing is generated. Use a combination of options

to obtain a listing containing more than one of the listing

types described above.

If the –l option is used (with or without an explicit listing

filename) and none of –a, –b, –s, or –x is also

supplied, then a listing showing only primary source is

generated. The following invocations of the assembler are

thus all equivalent:

asm68000 prog.asm –s
asm68000 prog.asm –l
asm68000 prog.asm –s –l

Example

Generate source and cross-reference listings:

asm68000 spiral2.asm –x –s

• Assemble spiral2.asm .

• Write object module to file spiral2.ol .

• Write source listing to file spiral2.lis .

• Write cross reference listing to file spiral2.xrf .

Assembler 3–9

• • • • • • • •

Partial source of spiral2.asm :

XTRAP MACRO
IFC ’\1’,’CHAR’
LEA CHAR,A5
LEA CHAREND,A6
ENDC
TRAP #fifteen
DC seven
ENDM

* equ’s

one EQU 1
fifteen EQU 15
seven EQU 7

PAGE
SECTION TEXT

S TART:
CLR D0
LEA CLEAR,A5
LEA CLREND,A6
XTRAP NOCHAR

* ERASE:
LEA CENTER,A5
LEA CENEND,A6
XTRAP NOCHAR

*
MOVE #one,D2

Chapter 33–10
A
S
S
E
M
B
L
E
R

Partial source listing in spiral2.lis :

Source file: spiral2.asm

16 0 | XTRAP MACRO
17 0 | IFC ’\1’,’CHAR’
18 0 | LEA CHAR,A5
19 0 | LEA
CHAREND,A6
20 0 | ENDC
21 0 | TRAP #fifteen
22 0 | DC seven
23 0 | ENDM
24 0 | ************************
25 0 | * equ’s
26 0 | ************************
27 0 [$1] | one EQU 1
28 0 [$F] | fifteen EQU 15
29 0 [$7] | seven EQU 7
31 0 > | SECTION TEXT
32 0 | START:
33 0 4240 | CLR D0
34 2 4BF9{00000000} | LEA CLEAR,A5
35 8 4DF9{00000002} | LEA CLREND,A6
36 E | XTRAP NOCHAR
37 12 | *
38 12 | ERASE:
39 12 4BF9{00000002} | LEA CENTER,A5
40 18 4DF9{0000000A} | LEA CENEND,A6
41 1E | XTRAP NOCHAR
42 22 | *
43 22 343C0001 | MOVE #one,D2

Assembler 3–11

• • • • • • • •

Partial cross-reference listing in spiral2.xrf :

Dec 12 1999 10:13:22 CROSS–REFERENCE: spiral2.asm PAGE
1

BAKEND
Def : spiral2.asm 103
Ref : spiral2.asm 65

CENEND
Def : spiral2.asm 99
Ref : spiral2.asm 40

CENTER
Def : spiral2.asm 97
Ref : spiral2.asm 39

CHAREND
Def : spiral2.asm 119
Ref : spiral2.asm 51 59 67 75

CLEAR
Def : spiral2.asm 93
Ref : spiral2.asm 34

CLREND
Def : spiral2.asm 95
Ref : spiral2.asm 35

FOREND
Def : spiral2.asm 107
Ref : spiral2.asm 49

FORESP
Def : spiral2.asm 105
Ref : spiral2.asm 48

fifteen
Def : spiral2.asm 28
Ref : spiral2.asm 36 41 50 51 58 59

66 67 74 75

Example

Specify a different filename for the object module:

asm68000 myprog.asm –o myobj.ol

Chapter 33–12
A
S
S
E
M
B
L
E
R

• Assemble myprog.asm .

• Write object module to file myobj.ol .

3.4.2 INCLUDE OPTIONS

–I dir1 [dir2 .. .]
Define directory(ies) to be searched for user include files.

The default is to search the current working directory. No

more than 32 user include directories may be specified.

INCLUDE file,INCLUDE < file>
The first form is considered to be a user include; the second

form is considered to be a system include.

When searching for user includes, the assembler first

searches the directories specified by the –I option(s),

followed by the directories specified by the –S option(s),

followed by the current working directory.

When searching for system includes, the assembler only

searches the directories in the order specified by the –S
option(s).

–M mfn Pre-INCLUDE file mfn into source stream. The named file is

INCLUDE'd before any of the source file is processed. Thus, if

a library of macros is written, they can be predefined just as

if the first line of the source file were INCLUDE mfn.

–S dir1 [dir2...]
Define directives to be searched for system include files.

There is no default. No more than 32 system include

directories may be specified. The following are some

INCLUDE directories as they might appear in an assembly

program source file.

3.4.3 CODE GENERATION OPTIONS

–A Generate absolute addresses instead of PC-relative addresses

whenever possible. Code generated with this option will take

up more space because the address occupies 32 bits, while a

PC-relative displacement occupies either 8 or 16 bits.

Assembler 3–13

• • • • • • • •

–bl Use 32-bit addressing for forward branches. This option

cannot be used when assembling for the MC68000, MC68010

or MC68302 targets.

–bs Use 8-bit addressing for forward branches. If the

displacement does not fit in one byte, the assembler will

issue an error message and try to generate code anyway.

–bw Use 16-bit addressing for forward branches (default).

–fs Use short (16-bit) addressing for forward references other

than branches. If this option is not specified, long (32-bit)

addressing will be used.

–O Make a non-68000 assembler act like the 68000 assembler.

Sometimes the assembler must choose an instruction form

when it doesn't have enough information to pick the optimal

legal form. For example, consider the instruction �MOVE
#1,(xxx,A0)

", where �xxx " is an external name defined in an XREF

directive. The assembler must decide how much space to

allocate to hold the offset value (xxx). When assembling for

the MC68020 target, there are two choices: 16 bits or 32 bits.

In these situations, the assembler generally picks a less

optimal form that is more likely to execute properly than a

more optimal form that might not be suitable. In that spirit

the assembler tends to pick long-form instructions when it

cannot be sure that the corresponding short-form instruction

would be sufficient. Thus, in the example above, the 68020

assembler would choose a 32-bit offset.

The effect of the –O option is to restrict the assembler in

these situations to behave as if only the 68000 base

instruction forms were available to choose from. In the above

example, the 68000 assembler would choose a 16-bit offset,

because the 68000 does not support the 32-bit offset

addressing form.

Chapter 33–14
A
S
S
E
M
B
L
E
R

This option is appropriate for assembler source that is known

to assemble properly through a 68000 assembler. In that case

it is possible that an assembler for another target (like the

68020) might make less optimal code, since it's trying to be

safe.

–po Use PC-relative addressing in absolute sections. This applies

even to labels in sections other than the current one. Labels

in the current section are normally referred to via PC-relative

addressing, unless the displacement does not fit in 16 bits.

–ps Use PC-relative addressing in relocatable sections. This

applies even to labels in sections other than the current one.

Labels in the current section are normally referred to via

PC-relative addressing, unless the displacement does not fit

in 16 bits.

3.4.4 MISCELLANEOUS OPTIONS

–a4 Force fullword alignment.

By default the assembler assigns each segment halfword

alignment. This option forces all generated segments to have

fullword alignment. For derivatives having a 32-bit data bus,

fullword memory accesses take less time on fullword aligned

addresses.

–d Include symbolic information in the object module. The

default is no symbolic debugging information. The linking

locator and formatter programs pass symbolic information

through to their output files. Eventually the symbol

information will reside in a hex output file, or in a debugger

symbol file to be read by CrossView Pro. Symbolic

information can also be displayed with the symbol list

program, symlist. (See the Symbol List Utility section of the

Other Utilities chapter.)

Example

Include symbol table information:

asm68000 myprog.asm –d

• Assemble myprog.asm .

Assembler 3–15

• • • • • • • •

• Write output object module to file myprog.ol .

• Include symbol table information in the output object module.

–ex Allow the following TASKING extensions to the assembler

language: COMMON, ELSEC, ENDR, REPEATC, RESERVE,
RESUME, RORG, % (remainder) operator.

–F Fold identifiers to upper case.

–h Allow use of MC68881 floating-point coprocessor

instructions. By default MC68881 instructions are accepted

when assembling for the MC68020, MC68030, MC68040,

MC68060, MC68EC020 or MC68EC030 target. You can use this

option to force the assembler to accept MC68881 instructions

when assembling for one of the other targets.

–V Display the version number of executables. For technical

support purposes.

–v Verbose mode. Reports date, time, and status/result of

assemble.

–ve Very verbose mode. Identifies executables as they are

invoked. This determines which program was executing if

the assembler aborts. For technical support use.

–w [n] Suppress warning messages of severity less than n. Warning

severities vary from 1 to 9, (1 = least severe to 9 = most

severe) depending upon the error. If omitted, n defaults to

10, i.e., all warning messages are suppressed. The default is

to issue all warning messages.

Chapter 33–16
A
S
S
E
M
B
L
E
R

4

LINKING LOCATOR
C

H
A

P
T

E
R

Chapter 44–2
L

IN
K

IN
G

 L
O

C
A

T
O

R 4

C
H

A
P

T
E

R

Linking Locator 4–3

• • • • • • • •

This chapter describes the operation and use of the Linking Locator utility.

It begins with a summary listing of the available options and continues

with more detailed explanations of their usage, linking concepts, compiler

run-time libraries, library searches, locator commands, and error messages.

4.1 INTRODUCTION

Combine object modules, create ROM-able initialization segment, assign

absolute addresses to segments.

Invocation

llink [prog.[ol | ln | rmp]...] [options]

Input

Object modules and locator commands

Output

Standard output (or prog.ab or prog.ln or prog.rmp)

The llink linking locator is for C modules only. See the C++ User's Manual
for more information on ldriver , the C++ linking locator utility.

4.2 LINKING LOCATOR OPTIONS: SUMMARY

The linking locator recognizes the following options:

Option Function See
Page:

–0 (Zero) Display the version number of
executable.

4–13

–b segname Specify the segment to be created. Default
output segment is rompOutSeg .

4–10

–c cfn Read locator commands from file cfn. 4–9

–err [file] PC only . Write error messages to file. 4–13

–err+ [file] PC only . Append error messages to file. 4–13

–G Suppress all global symbols in output file. 4–12

Chapter 44–4
L

IN
K

IN
G

 L
O

C
A

T
O

R

See
Page:

FunctionOption

–i [ifn] Take the names of input object modules from
file ifn. If ifn is omitted, read names from
standard input.

4–14

-il ifn Read library index file name(s) from file ifn. 4–8

–k [sym sym2...] Keep only the named global symbols in
output.

4–12

–L lib [lib2...] Specify library index file(s) to be searched. 4–9

–lo Suppress locate processing (link only). 4–9

–o [ofn] Write output to file ofn. If ofn is omitted, write
to prog.ab if locate processing is performed,
otherwise to prog.rmp if ROM processing is
performed, otherwise to prog.ln . If the
option is omitted, write to standard output.

4–14

–opfile opts Supply command line options in a file opts.

–p n Pad the size of all segments by n bytes. 4–9

–p n% Pad the size of all segments to n percent of
their original size (n must be > 100).

4–9

–rc class1 [class2...] Create initialization segment for all segments
of the named class(es).

4–10

–rs seg1 [seg2...] Create initialization segment for the named
segment(s).

4–10

–s [sym sym2 ...] Suppress the named global symbols in
output file.

4–12

–S Suppress all local symbols in output file.
Symbols are generated by the compiler or
assembler when –d is used.

4–12

–v Report linking actions as performed. 4–14

–w Suppress warning messages, e.g., for
unresolved references.

4–14

–x Create external references for CrossView
Pro run–time support routines.

4–14

Table 4-1: Linking locator options

Linking Locator 4–5

• • • • • • • •

4.3 USAGE

The linking locator performs any combination of three basic functions.

These functions are called linking, locating, and ROM processing.

By default, llink performs only the linking and locating steps. ROM

processing is performed only if one of the ROM processing options, –b ,

–rc or –rs is specified. If the –lo option is specified, the locate step is

bypassed.

4.3.1 LINKING

The link step consists of combining linked or unlinked object modules

into a single output module. References between the input modules are

resolved during linking.

The modules to be combined may be named on the command line or

listed in a file presented to llink via the –i option. Modules listed in the

file should be listed one per line followed by a carriage return. Be aware

that MS-DOS enforces a relatively low limit on the number of characters in

a command, generally about 128 or less. If + is given as an input module

name, standard input is read. Llink attempts to resolve any undefined

symbols by searching the given library index files for modules which

define the symbols. External references which cannot be found in the

given libraries are reported as warnings.

It is possible to �pre-link" part of a system and resolve remaining external

references in subsequent links. For example, if one module is being

changed and tested, the remaining object modules can be linked without

the module in question. Each revision of the test module can be linked

with the pre-linked portion. This speeds up the linking process and

simplifies the llink command line.

4.3.2 ROM PROCESSING

A wide class of embedded applications need to begin (or restart)

execution without loading (or reloading) memory from an external device

such as a disk. Such applications are called �ROM-based" applications,

since the program must reside permanently in ROM (read-only memory).

Chapter 44–6
L

IN
K

IN
G

 L
O

C
A

T
O

R

All ROM-based systems must execute code to initialize their read-write

data, since the initial values cannot be maintained in RAM (random-access

memory), and read-write data cannot be allocated in ROM. ROM

processing is a feature which simplifies and automates the data

initialization process.

One technique to initialize global data is to code an explicit assignment

statement for each individual global variable, and never code an initial

value specification on a global data declaration.

When using ROM processing, initial values may be coded in the source on

declarations as needed. The compiler places the initial values

corresponding to all initialized non-separate variables in the idata
segment. The simplest form of ROM processing consists of reading an

object module and producing another module which is identical, except

that:

1. The idata segment contains no initial values.

2. A new segment named rompOutSe g has been added.

Unlike idata , the rompOutSeg segment is suitable for placement in

ROM. It contains a recipe for initializing the idata segments as indicated

in the input module. Basically, this recipe consists of a sequence of triples

of the form �address-length-data." This kind of segment is called an

�initialization segment."

Segments are explained in more detail in the Linking Concepts section

below.

The run-time library routine knows how to follow a recipe in this format.

It expects to receive the address of an initialization segment as a

parameter. When rcopy is called, it follows its recipe, which results in the

values in rompOutSeg (in ROM) being copied into idata , (in RAM).

The user's system start-up or reset code must call rcopy when

appropriate. Typically this is done at the start of the C main routine .

However, when building a C++ application, ROM processing should be

performed before main is called, i.e. in the assembly language system

initialization file that calls main . An example of this method is provided in

the ROM procesing Options section of this chapter.

Linking Locator 4–7

• • • • • • • •

This is necessary because the C++ compiler creates instructions at the start

of main to invoke the constructors of statically allocated objects. The

constructors execute before the instructions corresponding to the first

source line of main. If ROM processing were not performed until after

such constructors run, the constructors would read uninitialized ROM

memory. Similarly, any writes to initialized memory would be lost when

ROM processing finally occurred.

Any list of input segments can be processed, so separate variables and

assembly language segments can also be initialized. The name of the

output segment can be specified using the –b option (rompOutSeg is the

default).

ROM processing can be performed several times, but the user program

must include as many calls to rcopy as there are initialization segments.

You can omit the ROM processing step if there is no initialized data in

your system. Note, however, that the run-time library contains several

potential sources of initialized data.

For a detailed example of ROM processing, refer to the Introduction to
System Building Concepts section in the Tutorial chapter of the Getting
Started Manual.

4.3.3 LOCATING

The locate step consists of assigning target-machine addresses to the code

and data contained in the input module(s) and resolving address

references between segments accordingly. This process is done by

obeying optional user commands or default rules. These commands are

described in the Locator Commands section.

The result of locating is called an �absolute" module, because no

relocatable references remain. Absolute modules are suitable for input to

the formatter.

In general it is not possible to link an absolute module with other object

modules, because absolute segments cannot be combined. Refer to the

Segments part of the Linking Concepts section for more details.

Chapter 44–8
L

IN
K

IN
G

 L
O

C
A

T
O

R

Example

Link, locate and ROM process:

llink myprog.ol rest.ol –c sys.lc –rs idata –o

• Combine object modules myprog.ol and rest.ol .

• Locate according to commands in sys.lc .

• No library index files are searched for unresolved externals.

• Generate the segment rompOutSeg for initialization of the

idata segment.

Write absolute linked module to myprog.ab .

After the description of the llink options, this chapter contains a

discussion of basic linking concepts, an overview of the compiler
run–time library , a description of the library search algorithm, and a

description of the available locator commands.

4.4 LINKING LOCATOR OPTIONS: DETAILED

DESCRIPTIONS

This section describes the linking locator options in greater detail and

includes examples of their use.

4.4.1 LINKER OPTIONS

–il ifn Read library index to be searched from file ifn. Index file ifn
lists all libraries that would be specified on the command line

if the –L option were used.

On the PC, if the library name is a simple file name and it is

not found in the current directory, llink will search the

directories specified in the environment variable ``LIB .'' The

format of the LIB environment string is the same as the

MS-DOS path variable. This variable may also be named

I2LIB to avoid conflicts with the other software.

Linking Locator 4–9

• • • • • • • •

–L lib [lib2...] Name library index files to be searched for unresolved

externals. If the index file indicates that a given external can

be resolved by reading a particular module, that module is

included in the link. The Librarian chapter explains how

library files are built and managed. If a module name in the

library index file is not a full pathname, llink searches for the

module in the directory containing the index file.

–opfile opts
This option causes the linker to read command line options

from file opts.

Compiled code must be linked with the run-time library supplied with the

product. See the Compiler Library Organization section for

information about the compiler run-time library.

The linker portion of the linking locator may not always search the

libraries in the order given. See the Library Searches subsection for more

details.

4.4.2 LOCATOR OPTIONS

Locate processing is done by default. If the –lo option is present, locate

processing is not performed.

–c cfn Read locator commands from file cfn. See the Command
Descriptions section in this chapter for more information

about locator commands.

–lo Suppress locate processing (link only).

–p n Pad the size of all segments by n bytes. This is equivalent to

the following locator command:

SEGSIZE (n) ;

–p n% Pad the size of all segments to n percent of their original size

(n must be > 100). This is equivalent to the following locator

command:

SEGSIZE (n %) ;

On the PC, if you use this in a .BAT file, remember that you must use two

% signs because of MS-DOS syntax rules.

Chapter 44–10
L

IN
K

IN
G

 L
O

C
A

T
O

R

Example

Link only:

llink myprog.ol test.ol nph.ol –lo –o

• Link object modules myprog.ol , test.ol , and nph.ol .

• Write linked module to myprog.ln .

• Write warnings for unresolved references.

• No library index files are searched for unresolved externals.

• No ROM processing is performed.

• No locate processing is performed.

Example

Locate only:

llink myprog.ln –c sys.lc –o

• Read object module myprog.ln .

• Read locator commands from sys.lc .

• Write absolute linked module to myprog.ab .

4.4.3 ROM PROCESSING OPTIONS

ROM processing is performed if and only if some ROM processing option

is present.

–b segname Specify the name of the segment to be created. The default

name is rompOutSeg .

–rc class1 [class2...]
Specifies that all segments of the named class(es) will be

processed.

–rs seg1 [seg2...]
Specifies that the named segment(s) will be processed.

Example

ROM processing only:

llink myprog.ln –rs idata –rc isep –lo –o

• Read object module myprog.ln

Linking Locator 4–11

• • • • • • • •

• Process the segment named idata and any segments of class isep .

• No locate processing is performed.

• Write modified object module to myprog.rmp .

Example

Assume we have performed (or plan to perform) ROM processing with the

–b option supplied with the segment name _my_rompseg . Here is a

sample C program that invokes rcopy :

#pragma separate my_rompseg
extern int my_rompseg;
#include <rcopy.h>
main ()
{

rcopy (&my_rompseg);
...
}

Coding the external variable declaration is a technique used to induce the

compiler to pass a pointer to the initialization segment to the rcopy
routine. There is no actual variable named my_rompseg .

This technique cannot be used without the –b option. The compiler

prepends an underscore to the C source name, my_rompseg , to form the

linker global symbol name, _my_rompseg , referenced at the call

statement. See the Linking C and Assembly application note and the

Compiler Naming Conventions appendix for more details.

The call to rcopy is the first thing executed by the user program.

Example

Assume that this application uses C++. We have performed ROM

processing with the –b option supplied with the segment name

_my_rompseg. In this case we want to invoke rcopy from our system

initialization file just prior to the jump to main. Here is a sample assembly

program that performs this:

Chapter 44–12
L

IN
K

IN
G

 L
O

C
A

T
O

R

eXREF _rcopy
.
.
.

PEA _my_rompseg; Push address of _my_rompseg
JSR _rcopy ; Call _rcopy
ADDQ #4, A7

.

.

.
BSR.L _main

4.4.4 SYMBOL OPTIONS

–G Suppress all global symbols in output file. This is equivalent

to –k ; it is only retained for backwards compatibility.

–k [sym sym2...]
Keep only the named global symbols in the output module;

suppress all others. If no symbols are named, suppress all

global symbols (this is equivalent to the –G option).

–s [sym sym2...]
Suppress the named global symbols in the output module;

keep all others.

–S Suppress all local symbols in output file. Debugging symbols

are generated by the compiler or assembler when –d is used.

These options control the retention of global and local symbols in the

output file. The default is to retain all symbol information.

The �local" information refers to that which is added by the –d compiler

and assembler options. These symbols play no part in the linking process;

they are only present for debugging purposes.

Global symbols are generated by the compiler and assembler for global

variables and procedures. The compiler's rules for forming global symbol

names are described in the Compiler Naming Conventions appendix. Note

that the names specified in –s and –k must be those formed via these

conventions.

Linking Locator 4–13

• • • • • • • •

Generally all global symbols must be retained in the output module to

permit any further references to be resolved during later links. Specific

global symbols may be suppressed to mask name conflicts. The options

which apply to global symbols are mutually exclusive.

If no debugging is intended and the link is complete, all symbols may be

stripped. Stripping symbols reduces the amount of disk space required to

hold the output module and speeds up the execution of llink and the

formatter. It does not affect the size of the user program or the download

hex file generated by the formatter.

Suppressing either global or local symbols will prevent the formatter from

creating symbolic records for CrossView Pro debugger symbol files.

Example

Suppress specified global symbol in output file:

llink compute.ol rah.ln –s _double –lo –o

• Link compute.ol and rah.ln .

• Suppress global symbol double in compute.ln .

• No locate processing is performed.

• Write linked module to compute.ln .

4.4.5 MISCELLANEOUS OPTIONS

–0 (Zero) Displays the version number of the executable (for

technical support purposes).

–err [file] PC only. Write error messages to file file. If file does not

exist, it will be created. If file does exist, it will be

overwritten. If file is omitted, error output will be redirected

to standard output.

–err+ [file] PC only. Just like –err , except output will be appended if

file exists.

Chapter 44–14
L

IN
K

IN
G

 L
O

C
A

T
O

R

–i [ifn] This option specifies that the names of input object modules

are to be taken from the file ifn. The input module names

should be listed in the file, one per line. Comments may be

placed in the file by starting a comment line with �––". The

name of the first module listed will be used as a default for

constructing the name of the linked output file. If ifn is

omitted, the names of the files are read from stdin.

–o [ofn] This option specifies the name of the output file. If ofn is

omitted, write to prog.ab if locate processing is performed, or

to prog.rmp , if ROM processing is performed, or to prog.ln .

If the option is omitted, write to standard output. Here the

prog base name comes from the first input object module,

whether named on the command line or in a file supplied via

–i .

–v Verbose mode. Reports the following linking actions as

performed:

- The names of the object modules being read.

- The names of the library index files being searched.

- The name of the output module.

–w This option inhibits warning messages. If llink is not

performing the locate function, the �unresolved externals"

warning is the only warning message that llink can emit.

This can safely be suppressed if unresolved external

references are expected. Other warning messages represent

error conditions and should not in general be ignored or

suppressed.

–x Forces the creation of external reference for the symbols

BREAKPT and __end__ . This causes the run-time library

defining this symbol to be brought into the link. This is

necessary when the program being linked will be run under

CrossView Pro. See the CrossView Pro Debugger User's
Manual for more information.

Linking Locator 4–15

• • • • • • • •

Do not use the llink –x option with ROM Monitor versions of CrossView

Pro. The –x option, which is used to build programs to be debugged with

emulator-based versions of the debugger, will link in the run-time library

object modules end.ln and breakpt.ln . Although end.ln should be

linked with the application, breakpt.ln will interfere with the way the

ROM Monitor handles code breakpoints. Instead, end.ln should be

linked in explicitly on the llink command line. (end.ln contains code

which allows you to take advantage of CrossView Pro's ability to evaluate

function calls on the debugger command line.)

Chapter 44–16
L

IN
K

IN
G

 L
O

C
A

T
O

R

4.5 LINKING CONCEPTS

The following section defines some technical terms which are used in the

descriptions of the linking locator functions and commands.

4.5.1 SEGMENTS

Target-memory in a linked relocatable module is represented as a set of

�segments." A segment is an indivisible unit representing a sequence of

contiguous target memory words which can be located at some absolute

target address. Segments are defined directly by the user in assembly

language or implicitly by the compiler when processing C programs. Each

segment has a number of attributes; most important are its name, its length

(in bytes of target memory) and its binary initial values. Other attributes

include its memory space, combinability, and class membership. These

are discussed below in greater detail.

The initial values of a segment consist of code (machine instructions) or

data. The initial values are not required to define all the bytes contained in

a segment. This is the case, for example, with uninitialized storage defined

in assembly language. When a segment is loaded into memory, any

uninitialized bytes retain whatever value they had before the program was

loaded.

Normally the linking locator combines individually declared data items

from different compilation units into common data segments. However,

the compiler supports an extension to the C language, the compiler

directive #pragma separate . This feature forces specified global data

items to be placed into specified segments. These segments can then be

assigned specific absolute target memory addresses by using the locate
command. The #pragma separate feature is described in the Pragma
Separate (Option Separate) application note.

For a full description of the segments created by the compiler, see the

Compiler Naming Conventions appendix.

Example

This example will show you how to locate a memory-mapped I/O

variable.

Linking Locator 4–17

• • • • • • • •

Suppose there is an 8-bit memory mapped I/O port at address 100

(decimal). In a C source program, define a character variable for the I/O

port as follows:

#pragma separate io_port
char io_port;

The compiler allocates the variable io_port in its own segment named

S_io_port The locator command to position S_io_port at address 100

is:

locate (S_io_port : 100);

MC68000 family processors access data items larger than a byte more

efficiently if they are located at an even address. The MC68000 cannot load

data items larger than a byte from odd addresses without causing an

addressing exception. Other processors can do so, but less efficiently. The

``alignment'' attribute of a segment passes this information from the

compiler or assembler to llink. For example, the compiler specifies word

alignment for segments containing word-type variables, and llink will

refuse to locate a segment of word alignment at an odd address.

Combinability

The �combinability" attribute of a segment is defined by the compiler, or

by the user in assembly language. Compiler-generated segments are

always �concat" segments. The assembler can also create �common"

segments. All absolute segments are uncombinable. If two object modules

define the same segment, then llink 's action depends upon the

combinability attribute of the segment. The possibilities are:

1. Concat Segment. The segments are concatenated so as to preserve

alignment, and the references are adjusted accordingly. The length of the

output segment is roughly the sum of the lengths of the input segments.

The alignment of the output segment is the maximum of the alignments of

the input segments.

2. Common Segment. The object modules are combined by overlay. The

length of the output segment is the length of the largest input segment.

3. Uncombinable Segment. The linking locator cannot combine pieces of

an uncombinable segment and therefore emits an error message.

The combinability attributes of segments are displayed by the global

symbol map utility.

Chapter 44–18
L

IN
K

IN
G

 L
O

C
A

T
O

R

The fact that absolute segments are uncombinable implies that located

object modules often cannot be used as input to subsequent links. This is

because most modules define a chunk of the idata or udata segments,

which become uncombinable after locating.

Here is a summary of the different segments in the development system:

Segment Use

S_fname Code segment for a module whose first function is the
function fname

S_vname data segment for separate variable vname

idata Initialized non–separate global data

udata Uninitialized non–separate global data

sdata String constants

cdata See const qualified variables (see –cs compiler
option)

libcode Assembly language library code

init Initialization library routine (__main)

init@0 Initial values of PC and SSP at address 0

Table 4-2: Segments

4.5.2 GROUPS

A group is a named collection of data segments ; llink must place the

segments of a group within a contiguous 64K range of target memory.

The compiler generates a group named data which consists of the

idata and udata segments. By default all global variables with explicit

initial values are allocated in idata ; those without explicit initial values

are allocated in udata .

The linking locator creates a global symbol named ldata , whose value is

the size of the data group (idata and udata segments). This may be useful

to programs which dynamically allocate their global data area. Note that

ldata is not a segment; it is a global symbol.

Linking Locator 4–19

• • • • • • • •

The �origin" of a group smaller than 32K is the smallest address in any

segment in that group. The origin of a group larger than 32K is 32K plus

the smallest address in any segment in that group. This allows a program

to take advantage of more efficient addressing modes by using positive

and negative 16�bit offsets to address groups larger than 32K.

The compiler does not use the group concept with code. Rather, the

compiler places all code resulting from a single compilation into one

segment. All subroutine calls are long, that is, 32-bit addressing, but loop

control is done with short branches. As a result, individual subroutines are

limited to 32K of generated code, while there is no limit on the total

amount of code from a series of compilations.

Example

Locate segments in a group.

Suppose you want to independently locate two segments which belong to

a group, say, seg1 and seg2 , both of which belong to group �group1” .

The following locator commands in a locator command file will not work:

locate (seg1 : #F0000);
locate (seg2 : #FFFF0);

The problem is that the first locator command causes llink to also locate

seg2, since it wants to ensure that both segments will fit into the same 64K

byte range. The following locator command will work.

locate (seg1 : #F0000 , seg2 : #FFFF0);

The difference is that llink only locates group1 after it has finished the

entire locate command.

4.5.3 CLASSES

A class is a named collection of segments that share a common logical

attribute, such as being executable code or data. We often use the

notational convention of bracketing a name in curly braces to indicate that

it is a class name. This convention is also accepted within the locator

command language.

Chapter 44–20
L

IN
K

IN
G

 L
O

C
A

T
O

R

Class names provide a convenient �handle" by which one can refer to a

long list of segments without naming each one individually. For example,

it is possible to use a single locate command to place all the segments of

a given class into a given range of target memory. Unlike groups, classes

impose no size limit.

People sometimes confuse classes with groups. Groups play an important

role in code generation. They influence the compiler's strategy for

addressing data. In contrast, classes play no role in code generation. The

class name of a segment is best thought of as an abstract attribute of that

segment; it is a descriptive comment describing the meaning or intended

usage of that segment. Users can make up their own class names and

assign them whatever significance they want.

Every segment belongs to some class, even if it is only the null class, �{}".

All assembly language code and data have the null class. The compiler

assigns class names by the following rules:

• All code segments have class {code }, unless otherwise specified via the

–cc compiler option.

• All segments containing non-separate data have class {data }.

• The separate data segments which are assigned class names by

directives like:

#pragma sep_on class defclass
#pragma sep_on class defclass defclass2
#pragma separate myvar class defclass

or by options like:

–sc defclass
–sc defclass defclass2

have class {defclass} if defclass2 is not specified. If defclass2 is specified,

then they have class {defclass} if initialized data and {defclass2} if

uninitialized data.

• Other local static separate data segments have class {stsep }.

• When defclass and/or defclass2 are not specified, global separate data

segments have class {isep } if they contain initialized data, and {usep } if

they contain uninitialized data.

• All segments containing string constants have class {constant }.

Linking Locator 4–21

• • • • • • • •

Here is a summary of the different class names in the development

system:

 Class Use

{code } Code

{data } Non–separate global data

{constant } String constants, also see const qualifier

{isep } Default initialized separate data class

{usep } Default uninitialized separate data class

{stsep } Default static separate data class

{separate } Class name for separate data when a user–specified
segment name is supplied without a user–specified class
name

{} Null class –– assembly language code and data

Table 4-3: Class names

4.5.4 RELOCATION

Most segments are relocatable prior to locating, that is, they can be

placed anywhere in target memory, independently of other segments.

Address references in relocatable segments are represented symbolically,

so they can be correctly replaced with an absolute address reference after

location is complete.

llink maintains an image of the target machine memory and allocates

space for the segments in the input module. This is an automatic process

which can be partially or completely controlled through locate and

reserve locator commands. After all user-provided locator commands

have been processed, the default placement algorithm allocates memory to

any remaining segments.

The assembler can define absolute segments that are assigned absolute

target memory addresses at assembly time. To avoid overlapping segments,

llink first locates each absolute segment at its indicated address.

Next, your locate commands are processed. Each named segment or

class of segments is allocated in the indicated address range. If any of

these segments belong to a group, then the other segments in that group

are also allocated at that time.

Chapter 44–22
L

IN
K

IN
G

 L
O

C
A

T
O

R

Any remaining segments are allocated according to the default placement

algorithm. The default allocation begins at location zero and traverses the

segments in an unspecified order. If a segment belongs to a group, llink
attempts to locate the whole group within a single 64K range. Segments

are allocated with no gaps between them, except where gaps are needed

to honor segment alignment.

Varying amounts of memory are present in target environments. The actual

amount depends upon the particular configuration of the target machine.

Use the memory locator command to define the actual memory

configuration.

4.6 COMPILER LIBRARY ORGANIZATION

There are several libraries included in the product. These libraries are

described in detail in the Run-Time Library chapter in the Reference
Manual.

The different libraries are intended for use in differing situations: generally

you will be able to link with the same library each time. The following

issues will determine your library choice:

• Hardware/Software Floating-Point

This choice only applies to the MC68020, MC68030, MC68EC020 and

MC68EC030. The –h option directs the compiler to use MC68881

floating-point instructions. By default the compiler uses emulation

routines in place of hardware floating-point instructions. The software

floating-point library contains these routines; the hardware

floating-point library doesn't. Furthermore, floating-point operations

performed within the software floating-point library itself use

emulation routines, while corresponding operations within the

hardware floating-point library use hardware floating-point

instructions.

Code compiled with –h must be linked with a hardware floating-point

library. Except for the MC68040 and MC68060, code compiled without –h
must be linked with a software floating-point library.

Linking Locator 4–23

• • • • • • • •

• Long/Normal Integers

The 68K compiler has an option, –L which directs the compiler to treat

the int or short data type as 4 or 2 bytes long, respectively. This

affects the library, because routines with int parameters expect 4 bytes

of data if called from C code compiled with –L but only 2 bytes of data

if called from C code compiled without –L .

Code compiled with –L must be linked with a long library. Code

compiled without –L must be linked with a normal library.

The C++ compiler and the ColdFire compiler use –L by default and

therefore require a long library.

• Floating-point/No Floating-point

The ``no-floats'' library has been stripped of all floating-point

emulation routines. If your program uses NO floating-point data, then

a considerable reduction in size can be achieved by using this library.

• C++ Support

If your application uses C++, an additional library must be linked in.

The C++ library index files can be found in the cpplib directory,

under rtlibs . The choice of index file depends on the target

processor.

Linking in a C++ library must always be done in addition to linking in a

standard library.

The following table summarizes the libraries included in the product.

 (The PC directories shown are the default directories used by the

installation program. These may have been changed by your system

administrator.)

Target
Processor

C Library
Directory

C Library C++ Library
(in cpplib)

MC68000 lib000\lib lib000 cpp000.lib

MC68HC000 lib000\lib lib000 cpp000.lib

MC68HC001 lib000\lib lib000 cpp000.lib

MC68EC000 lib000\lib lib000 cpp000.lib

MC68SEC000 lib000\lib lib000 cpp000.lib

Chapter 44–24
L

IN
K

IN
G

 L
O

C
A

T
O

R

C++ Library
(in cpplib)

C LibraryC Library
Directory

Target
Processor

MC68008 lib000\lib lib000 cpp000.lib

MC68010 lib010\lib lib010 cpp000.lib

MC68020 (sw fp) lib020s\lib lib020s cpp020.lib

MC68020 (hw fp) lib020h\lib lib020h cpp020.lib

MC68EC020 (sw fp) lib020s\lib lib020s cpp020.lib

MC68EC020 (hw fp) lib020h\lib lib020h cpp020.lib

MC68030 (sw fp) lib030s\lib lib030s cpp020.lib

MC68030 (hw fp) lib030h\lib lib030h cpp020.lib

MC68EC030 (sw fp) lib020s\lib libe30s cpp020.lib

MC68EC030 (hw fp) lib020h\lib libe30h cpp020.lib

MC68040 lib040h\lib lib040 cpp020.lib

MC68EC040 lib040s\lib libe40 cpp020.lib

MC68LC040 lib040s\lib libe40 cpp020.lib

MC68V040 lib040s\lib libe40 cpp020.lib

MC68060 lib060h\lib lib060 cpp020.lib

MC68EC060 lib060s\lib libe60 cpp020.lib

MC68LC060 lib060s\lib libe60 cpp020.lib

MC68302 lib000\lib lib302 cpp000.lib

MC68302
 (ADS parallel I/O)

lib000\lib lib302ap cpp000.lib

MC68302
 (ADS trap I/O)

lib000\lib lib302at cpp000.lib

MC68306 lib000\lib lib302 cpp000.lib

MC68328 lib000\lib lib000 cpp000.lib

MC68EZ328 lib000\lib lib000 cpp000.lib

MC68VZ328 lib000\lib lib000 cpp000.lib

MC68SZ328 lib000\lib lib000 cpp000.lib

MC68330 lib020s\lib lib332 cpp020.lib

MC68331 lib020s\lib lib332 cpp020.lib

MC68332 lib020s\lib lib332 cpp020.lib

Linking Locator 4–25

• • • • • • • •

C++ Library
(in cpplib)

C LibraryC Library
Directory

Target
Processor

MC68336 lib020s\lib lib332 cpp020.lib

MC68340 lib020s\lib lib340 cpp020.lib

MC68340 (BBC) lib020s\lib lib340b cpp020.lib

MC68360 lib020s\lib lib360 cpp020.lib

MC68360 (QUADS) lib020s\lib lib360b cpp020.lib

MC68F375 lib020s\lib lib332 cpp020.lib

MC68376 lib020s\lib lib332 cpp020.lib

MCF5204 lib5206\lib lib5206 cpp5206.lib

MCF5206 lib5206\lib lib5206 cpp5206.lib

MCF5206E lib5206e\lib lib5206e cpp5206e.lib

MCF5249 lib5206e\lib lib5206e cpp5206e.lib

MCF5249L lib5206e\lib lib5206e cpp5206e.lib

MCF5272 lib5206e\lib lib5206e cpp5206e.lib

MCF5280 lib5206e\lib lib5206e cpp5206e.lib

MCF5282 lib5206e\lib lib5206e cpp5206e.lib

MCF5307 lib5206e\lib lib5206e cpp5206e.lib

Table 4-4: C and C++ libraries

Chapter 44–26
L

IN
K

IN
G

 L
O

C
A

T
O

R

4.7 LIBRARY SEARCHES

llink does not begin searching for each external reference at the
beginning of the list of libraries. Rather, it starts at the first library and
continues searching until it cannot find the current external in the current
library. Once it finds an external in a secondary library, it continues to
search in that library until it cannot find an external there. It will
eventually return to the first library, but only after searching all subsequent
libraries.

This search pattern was designed to be efficient, but it has an important
side effect. If an external is defined in more than one module, then llink
might not choose the one in the library named first.

This presents no problems unless the same global is defined in more than
one library member. If the user has multiple libraries which define the
same global name, then there are two alternatives:

1. Delete members from the libraries (using the librarian) until they no longer

overlap.

2. Link the system in stages, naming the desired libraries one by one at each

step in the desired order.

Example

Search library files; write output on specified file.

Assume that c:\c68k\rtlibs is the name of the Windows directory
containing the compiler run-time libraries, or assume c68k\rtlibs for
UNIX. Substitute the correct installation directory if necessary.

For the PC:

llink sort.ol –lo –L c:\c68k\rtlibs\lib000\lib\lib000 –o end.ln

For Unix hosts:

llink sort.ol –lo –L c68k/rtlibs/lib000/lib/lib000 –o end.ln

• Read sort.ol .

• Include necessary modules from the run-time library.

• Do not perform locate processing.

• Write relocatable linked module to end.ln .

Linking Locator 4–27

• • • • • • • •

4.8 LOCATOR COMMANDS

llink accepts commands from a command file. Commands define the
layout of target memory and establish correspondence between external
symbols and absolute addresses. The –p command line option overrides
any conflicting SEGSIZE command in the command file. The following
table summarizes the available commands:

Command Function

DECLARE Define unresolved external symbol

LOCATE Specify segment placement

MEMORY Specify memory size

RESERVE Reserve memory space

SEGSIZE Pad segment sizes

START Specify starting address

Table 4-5: Commands

Example

Supply locator commands:

llink program.ln –c project.lc –o absolute.ab

• Read object module from file program.ln .

• Read locator commands from file project.lc .

• Write absolute module to file absolute.ab .

4.8.1 GENERAL COMMAND SYNTAX

All locator commands consist of a command keyword followed by a left
parenthesis “(” , a sequence of operands, a right parenthesis “)” , and a
semicolon “;”. For example:

LOCATE (init : #1000);

Insert blanks, tabs, or newlines freely to improve readability; they are only
significant as separators of items in a list. The kinds of operands and the
rules for forming them are discussed below.

Chapter 44–28
L

IN
K

IN
G

 L
O

C
A

T
O

R

4.8.2 COMMENTS

Comments may be entered anywhere in a command file by prefixing them
with two hyphens, ”––” . llink ignores all text between the dashes and
the next newline.

4.8.3 NUMBERS

Numbers are used as target-machine addresses or as pad values. Numbers
may be decimal or hexadecimal:

12345 is decimal

#A000 is hexadecimal

Hexadecimal numbers must be prefixed with the # character; the hex
digits A to F may be entered in upper or lower case.

4.8.4 KEYWORDS

Keywords may be entered in upper or lower case.

4.8.5 ADDRESS RANGES

An address range can be expressed in several forms:

low–address TO high–address
BEFORE address
AFTER address

The form BEFORE address is equivalent to 0 TO address; the form AFTER
address is equivalent to address TO end-of-memory.

The low address is considered to be included in the range, but the high
address is not considered to be included in the range. Thus the following
two ranges do not intersect:

1000 TO 2000
2000 TO 3000

Linking Locator 4–29

• • • • • • • •

4.8.6 NAMES

Depending upon the context, names may be segment, class or global
symbol names. Names are case-sensitive: xy is distinct from XY. Class
names may be enclosed in curly braces, e.g., {data} , or tagged with the
keyword CLASS, e.g., CLASS (data) , to distinguish them from conflicting
segment or group names. An empty pair of curly braces, i.e., {} , indicates
the null class.

4.8.7 NAME LIST

A name list is a sequence of names separated by blanks.

4.9 COMMAND DESCRIPTIONS

The following pages describe the syntax of the individual locator
commands. In cases where an optional repetition is allowed, a pair of
square-brackets, [and] , enclose the repeatable pattern. Ellipses, “...” ,
in this context refer to all of the previously specified operands.

Chapter 44–30
L

IN
K

IN
G

 L
O

C
A

T
O

R

Declare

Syntax:

DECLARE (name : address [,...]);

name is the name of an unresolved external symbol.

address is a 24-bit address for the external symbol.

Description

The DECLARE command:

• Supplies an address for an unresolved external symbol.

• Resolves address references to the unresolved external symbol as if the

external were located at the indicated address.

• Does not check to see if the address falls within any defined segment

or even within the legal address range of the target machine.

External names from C programs must be those chosen via the compiler's

naming conventions.

The DECLARE command can be used to repair references to external code

routines, e.g., monitor routines in ROM.

The DECLARE command cannot always correctly resolve references to

missing data items, because compiled code contains assumptions about

how the missing variable will be addressed. In particular, the compiled

code assumes that non-separate global data lie in group ``data.''

References to missing separate data items CAN be repaired.

DECLARE (_floppy_in : #FFE0,
 _floppy_out : #FFF0);

In this example, floppy_in() and floppy_out() are external routines.

The names floppy_in and floppy_out are global symbol names, not

segment names. The compiler prepends an underscore to the source name

of a function when forming the global symbol name.

Catch calls to missing routines

Let gone be a procedure which has not yet been coded. Suppose that calls

to gone appear in code to be tested before gone is ready. If a call to

gone is actually executed during testing, then the program will branch to

location zero, with the usual undesired results.

Linking Locator 4–31

• • • • • • • •

Let hero be a procedure written to handle wild calls. hero may, for

example, print a message and then return or cause a trap. The following

locator command file specifies all calls to gone are to be re-directed to

hero :

LOCATE (hero : #1000);
DECLARE (gone : #1000);

Chapter 44–32
L

IN
K

IN
G

 L
O

C
A

T
O

R

Locate

Syntax:

LOCATE (name-list : address-range [, ...]);

In the previous syntax statement, name-list is a list of segment, group or

class names. address-range defines the placement of named items.

Description

The LOCATE command:

• Directs llink to locate a segment or a collection of segments in a

specific region of target memory.

• After locating all the segments named in the name-lists, their groups (if

any) are also located.

The list of names may be any combination of segments, groups and

classes. Mention of a class is taken to mean the segments in that class

which have not already been located.

Using the ``address'' form of address-range is equivalent to using the

AFTER address form when more than a single segment-name is supplied

in the name-list.

Global symbol names may not be used in the name-list; use the

corresponding segment name instead.

Example

LOCATE (S_separate_var : #3E00);

LOCATE ({code} {} {data} : AFTER #200);

LOCATE (CLASS (code) : #200 TO #1400,
 {} : #1400 TO #3000,
 idata : #3000,
 udata : #3800,
 CLASS (data) : #3000 TO #C000);

Linking Locator 4–33

• • • • • • • •

Memory

Syntax:

MEMORY (address);

In the previous syntax statement, address is the maximum target memory

address.

Description

The MEMORY command:

• Specifies the total amount of virtual memory that llink may allocate.

The address given must be less than or equal to #FFFFFF.

• Allows specification of addresses larger or smaller than normally

available for the target machine.

• Can be used when the processor allows bank memories.

The default maximum address depends upon the target processor.

The actual address specified is considered not to be available for any

segment.

If llink attempts to locate something outside the MEMORY limitation,

llink will tell you that you shouldn't locate something outside the

addressing limitations of the processor. The MEMORY directive declares this

limit.

MEMORY (#FFFFFFFF);

This command means that you can allocate memory from 0 to n-1 where

n = FFFFFFFF. n is the maximum amount of memory used in the

environment.

Multiple address spaces

There are several hardware ``memory management'' devices which allow a

processor to access multiple address spaces, depending upon its state. For

example, it is possible to access different physical memory, depending

upon whether the memory access is a code or data fetch. This example is

not intended to show how to interface with any particular device, but

rather to offer some ideas which can be used to devise your own interface.

Chapter 44–34
L

IN
K

IN
G

 L
O

C
A

T
O

R

In an example for the MC68000, we form an absolute module in which

two 24-bit virtual address spaces (one for code, the other for data) are

mapped into a single 25-bit physical address space. Addresses 0 to

#FFFFFF contain data; addresses #1000000 to #1FFFFFF contain code. The

following locator commands expand memory and force all the code and

data into the proper address ranges:

MEMORY (#2000000);
LOCATE ({data} {isep} {usep} {stsep}

{constant} : BEFORE #1000000);
LOCATE ({code} {} : AFTER #1000000)

The located entities represented here are:

Class Contents

{data} C global data

{constant} C string constants

{isep} Initialized C global separate data

{usep} Uninitialized C global separate data

{stsep} C static separate data

{code} Code from C

{ } Code from assembler routines in run–time
library

Table 4-6: Entities

This scheme works because the MC68000 processor only uses the low

order 24 bits when it processes an address. Thus, a branch instruction

whose target is address #1000234 will transfer control to #234 (in the code

address space).

The following formatter options can be used to extract the code and data

images separately. See the Formatter chapter for more details.

–a 1000000 –w 1000000 Extracts code only
–w 1000000 Extracts data only

Linking Locator 4–35

• • • • • • • •

Reserve

Syntax:

RESERVE (address-range [, ...]);

In the above syntax statement, address-range represents the region of

target memory to be avoided during locate.

Description

The RESERVE command:

• Specifies areas of memory not to be allocated by llink .

• Can be used to avoid a region that contains a ROM monitor, or

memory dedicated to mapped I/O.

• Can be used to designate �holes" in the range of memory addresses

that may exist in a particular target system.

• May not designate a range of memory addresses containing segments.

• Should precede any LOCATE commands in the command file.

The lower bound of address-range is included in the reserved space; the

upper bound is not.

Allocation begins at #0800:

RESERVE (#0000 TO #0800);

Allocation is made from #1F00 through #2FFF and from #4000 through

#6FFF:

RESERVE (#0000 TO #1F00,
 #3000 TO #4000,
 AFTER #7000);

Allocation is allowed from #1F00 to #3000 , and from #4000 to #7000

Chapter 44–36
L

IN
K

IN
G

 L
O

C
A

T
O

R

Segsize

Syntax:

SEGSIZE ([name:] number [%] [, ...]);

In the above syntax statement, name is the name of the segment to be

padded (optional); If name is omitted, the pad is applied to all segments.

number [%] is the amount of padding.

Description

The SEGSIZE command:

• Directs llink to reserve a specified amount of ``growth room'' at the

end of a specified segment or all segments.

• Is more specific than the command line option because the user can

supply segment names.

If the percent sign is absent, number represents a pad size in words. Each

segment's length will be increased by number words regardless of its

original length.

If the percent sign is present, number (number > 100) represents a

percentage pad. Each segment's length will be increased to number/100

times its original size.

Example

SEGSIZE (counter : 300, control_blks : 150%);

SEGSIZE (120%);

Linking Locator 4–37

• • • • • • • •

Start

Syntax:

START (location-option);

In the above syntax statement, location-option represents the address of

segment name.

Description

The START command:

• Specifies the address in the absolute output module where execution is

to begin.

• May use a segment name, but not a global symbol name, to define the

start address.

The assembler has an option to define the ``start address''. If this option is

invoked, the assembler places the definition into a special ``.start'' record in

the object module. A compiled program typically picks up its start address

from the run-time library, which defines a starting point at the symbol

__main. An assembler main routine can define its own starting point.

The effect of the START command is to set the value in the .start record

in the absolute module. It can be used to override the start address

supplied in the input module(s), or to specify a start address where none

is supplied in the input module(s). If an absolute address is specified in

the START command, the user must take care to ensure that whatever

routine he intends to have control at system startup is actually located at

the indicated address.

The starting address is copied into the download file by the formatter. Any

effect this may have is determined by the target loader program. On some

systems, downloading a file with a defined start address causes the

program counter register to be set to that value. Systems which intend to

begin execution after a cold start generally do not need to define a start

address.

Start execution at origin of segment S_my_main :

START (S_my_main);

Chapter 44–38
L

IN
K

IN
G

 L
O

C
A

T
O

R

5

FORMATTER
C

H
A

P
T

E
R

Chapter 55–2
F
O
R
M
A
T
T
E
R

5

C
H

A
P

T
E

R

Formatter 5–3

• • • • • • • •

This chapter describes the operation and use of the two formatter utilities,

form and form695 . The chapter begins with a summary listing of the

available options and continues with more detailed explanations of their

usage and a list of error messages.

5.1 INTRODUCTION

Format load modules for target system.

form [prog.ab] [options]

Input

Standard input or prog.ab

Output

prog.hex [prog.asc] or

prog.X [prog.L] [prog.A]

Format load modules for IEEE-695 target system.

form95 [prog.ab] [options]

Input

Standard input or prog.ab

Output

prog.x

5.2 FORMATTER OPTIONS: SUMMARY

The formatter recognizes the following options:

Option Function See
Page:

–a bias form only . Specify address of window to be
formatted.

5–11

–b x y form only . Control PROM byte slicing. 5–12

Chapter 55–4
F
O
R
M
A
T
T
E
R

See
Page:

FunctionOption

–br form only .

With –f c :
 Reverse byte ordering within
 the COFF file.

5–13

–c form only. Suppress the prepending of an
extra ‘_’ (underscore) character to external
symbol names.

5–13

–d [only] [anycase]
[sfmt]

form only. Include symbolic records in
formatted output. If only is specified, include
only symbolic records. If anycase is
specified, then lower case letters are
preserved in Intel binary (omf86) format
output. If present, sfmt identifies the symbolic
record format.

5–7

–d [abs] [absf] form695 only . Include symbolic records in
formatted output. If this option is used, the
debug part of the IEEE–695 output file will be
present.

5–9

–e [seg1...] Exclude named segments from output. If no
segments are named, exclude “udata.”

5–13

–ec [class1...] Exclude named classes of segments from
output. If no classes are named, the option is
ignored.

5–14

–err [file] PC only . Write error messages to file. 5–14

–err+ [file] PC only . Append error messages to file. 5–14

–f format form only . Specify the ASCII hex or binary
output format.

5–9

–i [seg1...] Include only named segments in output. If no
segments are named, include no segments.

5–14

–ic [class1...] Include only named classes of segments in
output. If no classes are named, include no
classes.

5–14

–m [reclen] form only . Specify the maximum length
record to be output by the formatter. If reclen
is omitted, use largest possible record length.

5–14

–n Allow an unlimited number of errors without
aborting. By default the formatter aborts after
150 errors.

5–15

Formatter 5–5

• • • • • • • •

See
Page:

FunctionOption

–o [ofn] Write output to file ofn. If ofn is omitted, write
to prog.hex (form) or prog.x (form695).

5–15

–st target form695 only. Use target in the module
begin (MB) Id1 field instead of the target
string found in the input file.

5–11

–V Display the version number of executable. 5–16

–w size form only . Specify size of window to be
formatted.

5–12

Table 5-1: Options

5.3 USAGE

5.3.1 FORM

The formatter reads an absolute object module produced by the linking

locator and converts all or part of it into one of the industry standard

formats, usually an ASCII hex format. These formats provide for loading of

object text, i.e., code and data, into the memory of the target processor via

a simple loader program. The formats may also be input to PROM burners,

hardware devices which can program read-only memories. Many formats

are supported; see the Format Options section below for a detailed listing.

When the formatted output is intended to be used as input to a PROM

burner, you may want to produce several formatted files froma single

input file, one for each PROM. It is possible to extract a range of target

addresses, and/or select slices of memory, for example, every other byte.

See the PROM Options section below for more details.

The formatter also produces many different symbol formats. There are two

symbol generation options available. The –d option creates symbol

records that may be used by a variety of emulators or downloading

programs.

For the formatter to be able to include line number symbols, local static

symbols, or type information in the symbolic records (when supported by

the specific format), compilations or assemblies must be done using the –d
 option.

Chapter 55–6
F
O
R
M
A
T
T
E
R

5.3.2 FORM695

The formatter reads an absolute object module produced by the linking

locator and converts all or part of it into IEEE-695 object module format.

The format provides for loading of object text, i.e., code and data, into the

memory of the target processor via an IEEE-695 loader program.

The formatter also produces symbol information (IEEE-695 debug

information part). The –d option creates symbol records that may be used

by an emulator or other hardware and software that accepts IEEE-695

input. For the formatter to be able to include line number symbols, local

static symbols, or type information in the IEEE-695 output file the –d
option must also be used when compiling source files.

The CrossView Pro debugger uses an IEEE-695 file as input.

Formatter 5–7

• • • • • • • •

5.4 FORMATTER OPTIONS: DETAILED DESCRIPTIONS

This section describes the formatter options in greater detail and includes

examples of their use.

5.4.1 FORMAT OPTIONS

–d [only] [anycase] [sfmt]

form only. The –d option controls the generation of

symbolic records. Symbolic records, if generated, are placed

into the formatted output file or into a separate file. If only is

specified, ordinary target memory loading records are not

emitted.

If anycase is specified, then lower case letters are preserved

in Intel binary (omf86) format output.

The effect of the –d option is dependent on the file format

that has been selected with the –f option. Some formats;

Extended Tekhex, Binary Tekhex, COFF, and HP64000 for

Unix hosts; Binary Tekhex, and COFF for the PC; have their

own standard form for symbolic information. In these cases,

sfmt and only must not be specified. Here is a brief

summary of the symbolic information each format produces.

For more detailed information on the formats in general,

please refer to the Object Module Formats appendix.

Industry Standard Symbol Formats:

• Extended Tekhex

With the Extended Tekhex format, symbolic information is

produced for global symbols only.

• Binary Tekhex

With the Binary Tekhex format, symbolic information is

produced for global symbols only. Symbol names longer

than 16 characters are truncated.

• COFF

With the COFF format, symbolic information is produced

for global and local symbols, line number symbols and

type definitions.

Chapter 55–8
F
O
R
M
A
T
T
E
R

• HP64000 (Unix only)

With the HP64000 format, symbolic information is

produced for global symbols, local static symbols, and

line number symbols.

Non-Industry Standard Symbol Formats:

Other download formats have no industry standard format

for symbolic information. For these formats, use the sfmt to
select one of the �almost standard" symbol formats:

sfmt Value Formats Meaning

nwis i, m, xm,
pm, z, t, et

MicroCASE (Northwest Instruments
Systems) ASCII Format

pe map P+E Microcomputer Systems

zax i, m, xm,
pm, z

ZAX Corporation ZICE–compatible
symbols

Table 5-2: Symbol formats

• nwis

With the nwis symbol format, symbolic information is

provided for global symbols, local static symbols, and line

number symbols. Additionally, all of the type information

useful to the MicroCASE SoftAnalyst is provided. If

MicroCASE ASCII (NWIS ASCII) format is selected, symbol

information will be put into a separate file that is suitable

for use with the MicroCASE SoftAnalyst. This file is named

prog.asc . If only is specified for NWIS format, then only

the file prog.asc is produced.

• pe

With the pe symbol format, a generated map file can be

used with the P+E low�level debugger and toolset

normally used on CPU 32 targets.

• zax

With the zax symbol format, symbolic information is

provided for global symbols, local static symbols, and line

number symbols.

Formatter 5–9

• • • • • • • •

–d [abs] [absf]

form695 only. The –d option controls the generation of

symbolic records. Symbolic records, if generated, are placed

into the formatted output file. The debug part of the

IEEE-695 output file will be omitted unless this option is

present. The following flags are available:

abs All global variables that are group data relative (not

separate data) are given absolute addresses in the

debug information part of the output file. This may be

used to examine global variables even when the static

base register has not been initialized.

absf
This option creates dummy functions for assembly

programs. The dummy functions are necessary for

assembly level debugging with CrossView Pro,

because CrossView Pro can only deal with

function-relative addresses.

Example

To generate an IEEE-695 file and include symbolic records, type:

form695 test.ab –d

• Read input from file test.ab .

• Write output which includes the debug part to the file test.x .

To generate an IEEE-695 file for use with CrossView Pro, type:

form695 test.ab –d abs –o test.abs

• Read input from file test.ab .

• Write output which includes the debug part to the file test.abs

• Give all global variables absolute addresses in the debug part.

–f format form only.

Select the output format; the default format is Packed

Motorola (pm). For information on the formats, see the Object
Module Formats appendix. The available format options are:

bt Binary Tekhex.

c COFF (Common Object File Format).

Chapter 55–10
F
O
R
M
A
T
T
E
R

c1 COFF1 format. Identical to COFF, except that line

numbers start at 1, and thus directly correspond to the

program's line numbers. See the Object Module
Formats appendix.

et Extended Tekhex.

hp Unix only. Hewlett Packard HP64000 (absolute, linker

symbol, and assembler symbol files).

i Intel ASCII hex.

m Motorola (S records). Data in S1 records.

pm Packed Motorola (S records). Data in S1, S2, or S3

records, where the record type is chosen by the

number of address bytes.

s37 S37 Motorola (S records). Data is in S3 records.

This format does notprovide an S0 header record.

t Tektronix ASCII hex (Tekhex).

xm Extended Motorola (S records). Data in S2 records.

z Z80SBC format. This is identical to Intel ASCII format,

except the start address appears in the end record

instead of in a special record.

Example

To use Extended Tekhex format and generate a debugger symbol file,

type:

form test.ab –f et

• Read input from file test.ab .

• Output is in Extended Tektronix hex format.

• Write output to file test.hex .

Example

To include symbolic hex records in output, type:

form myprog.ab –f et –d –o out.hex

• Read input from file myprog.ab .

Formatter 5–11

• • • • • • • •

• Output is in Extended Tektronix hex format.

• Include load module and symbolic debugging information in

out.hex .

• Write output to file out.hex .

Example

To produce NWIS ASCII symbol information, type:

form myprog.ab –f pm –d nwis –o out.hex

• Read input from file myprog.ab .

• Output is in Packed Motorola S-record format.

• Put NWIS ASCII symbol information in myprog.asc .

• Write output to file out.hex .

Example

To produce only ZAX ZICE symbolic information in output, type:

form myprog.ab –f i –d only zax –o myprog.zax

• Read input from file myprog.ab .

• Put only symbolic debugging information in myprog.zax

• No target-loading hex bytes are in output file.

• Write output to file myprog.zax .

–st target form695 only. Use target in the module begin (MB) Id1

field instead of the target string found in the input file. Some

emulators need the exact processor type instead of the more

general name. For example, –st 68302 would cause the

default 68000 target type to be replaced with 68302.

5.4.2 PROM OPTIONS

–a bias form only. The bias is a value to be subtracted from each

target load address of the output hex file. The bias is an

unsigned hex value, with up to 8 hex digits. This feature may

be used, for example, to let a PROM programmer load a hex

module into its location 0, which is actually located at the

target address bias. Object text whose address is less than

bias will not be emitted.

Chapter 55–12
F
O
R
M
A
T
T
E
R

–b x y form only. This option supports byte slicing, which is useful

when burning interleaved PROMs. Interleaved PROMs are

used in hardware designs where the low order address bit(s)

select different PROM chips.

Two decimal numbers are required, x and y, the second of

which, y, must be a power of 2 (y is 2**n). The option causes

the output to contain only every yth byte, with address bits

shifted right by n bits, i.e., the output address is the input

address (minus the bias, if any) divided by y. The input

addresses chosen for output are those congruent to y mod x.

See the table below for some examples:

 Switch Meaning

–b 0 2 Output every second byte,
even addresses.

–b 1 2 Output every second byte,
odd addresses.

–b 3 4 Output every fourth byte,
address congruent to 3 mod 4.

Table 5-3: Meanings

ct–w size form only. Defines the size of a window of object text from

the input object file to be emitted to the output hex file. This

option is usually used in conjunction with the –a option.

size is an unsigned hex value, with up to 8 digits. The

addresses emitted into the output file range from 0 (after any

biasing) to size minus 1. If byte slicing is not done, this is the

maximum size in bytes of the object text in the output hex

file. If byte-slicing is done, the number of bytes of object text

in the output hex file will be divided by the number of slices.

Example

To format a range of addresses, type:

form prog.ab –w 8000 –a 38000

• Output addresses range from 0 to 7FFF.

• The output hex file can contain up to 8000 hex bytes.

• Ignore input text outside addresses 38000 to 3FFFF.

Formatter 5–13

• • • • • • • •

Example

To use PROM byte slicing with a range of addresses, type:

form prog.ab –w 8000 –a 38000 –b 0 2

• Output addresses range from 0 to 3FFF.

• The output hex file can contain up to 4000 hex bytes.

• Ignore input text outside addresses 38000 to 3FFFF.

• Ignore input text at odd addresses.

See the Downloading application note for further information about the

PROM options.

5.4.3 COFF FORMAT OPTIONS

–br form only. When used in conjunction with the –f c option,

this option will reverse the byte ordering within the COFF

file. By default, the byte ordering is chosen with respect to

the target processor. The section data is not modified.

–c form only. By default, form prepends an extra underscore

to all external names entered into the COFF symbol file. Use

of this option will cause names to be entered without

alteration. This option is useful for COFF implementations

that do not expect external names to have double

underscores.

5.4.4 MISCELLANEOUS OPTIONS

–e [seg1...] The –e option excludes named segments from the hex or

IEEE-695 output. This option may be used, for example, to

download only changed segments or to create a hex file of

only ROM segments for a PROM-burning procedure.

When no segments are named, the formatter excludes the

�udata" segment. This is appropriate if the user is sure the

compiler's convention of default initialization to zero is either

not needed or already ensured by some other means. For

example, if the hex or IEEE-695 file is to be loaded to

pre-zeroed memory, there is no need to format a segment

containing only zeros. The default is to include all segments.

Chapter 55–14
F
O
R
M
A
T
T
E
R

–ec [class1...]
The –ec option excludes named classes of segments from

the hex or IEEE-695 output. This option may be used, for

example, to exclude #pragma separate items. When no

classes are named, the formatter ignores the option.

–err [file] PC only. Write error messages to file file. If file does not

exist, it will be created. If file does exist, it will be

overwritten. If file is omitted, then error output will be

redirected to standard output.

–err+ [file] PC only. Just like –err, except output will be appended if

file exists.

–i [seg1...] The –i option includes only named segments in the hex or

IEEE-695 output. This option may be used, for example, to

separate compilations (or segments) that are patches to

previous downloads.

When the –i switch is specified, but no segments are

named, the formatter includes no segments.

–ic [class1...]
The –ic option includes only named classes of segments in

the hex or IEEE-695 output. This option may be used, for

example, to include only #pragma separate items. When

the –ic option is specified, but no classes are named, the

formatter includes no classes of segments.

–m [reclen] form only. This option specifies the maximum length record

to be output by the formatter. If reclen is supplied, it must

not be less than 35 nor greater than 255. If reclen is not

specified, the largest upper limit (255) is used. If this option

is not specified, a default is chosen depending upon the hex

format.

Formatter 5–15

• • • • • • • •

The following table lists the defaults for the PC:

Length Format

42 m and xm

80 pm

72 t

255 bt

46 et

80 i and z

255 omf86 and bi

Table 5-4: Defaults for PC

The following table lists the defaults for Unix hosts:

Length Format

42 m and xm

80 pm

72 t

255 bt

80 i and z

255 hp

255 omf86 and bi

Table 5-5: Defaults for UNIX

–n Allow an unlimited number of errors without aborting. By

default the formatter aborts after 150 errors.

–o [ofn] Write output to file ofn. If ofn is omitted, write output to

prog.hex (form) or prog.x (form695). If –o is omitted, write

output to prog.hex (form) or prog.x (form695).

Example

To exclude uninitialized pragma (option) separate items, type:

form prog.ab –f i –ec usep –o no_usep.hex

Chapter 55–16
F
O
R
M
A
T
T
E
R

• Read input from file prog.ab .

• Output is in Intel ASCII hex format.

• Exclude all uninitialized #pragma separate segments (located in

class usep) from output.

• Write output to file no_usep.hex .

–V Display the version number of executable (for technical

support use).

5.5 IEEE-695 FORMATTER LIMITATIONS

The IEEE-695 formatter (form695) expects the input file to be an absolute

located file generated by the llink linker/locator. Relocatable and

unresolved symbols are not supported. The known limitations, restrictions,

and problems are described below.

Register mask information is not generated for procedures. This means that

variables packed to registers by the optimizer will not have the correct

displayed value in a debugger if the scope is not the current procedure. A

workaround is to use the –no and –nl compiler options instead of –do
when compiling source code (in this case the optimizer will not be run at

all and no user variables will be packed to registers).

6

OTHER UTILITIES
C
H
A
P
T
E
R

Chapter 66–2
U
T
IL
IT
IE
S

6

C
H
A
P
T
E
R

Other Utilities 6–3

• • • • • • • •

This chapter describes the following additional utilities:

• Librarian

• Global Symbol Mapper

• Symbol List Utility

• Object Size List Utility

Chapter 66–4
U
T
IL
IT
IE
S

6.1 LIBRARIAN

Manage object module library.

Invocation

libr [obj1...] -L prog.lib [options]

Input

Object module library index file and object modules:

prog.lib [prog.obj1...]

Output

New or updated prog.lib [prog.lis]

6.1.1 LIBRARIAN OPTIONS: SUMMARY

The librarian recognizes the following options:

Option Function See
Page:

–a obj1 [obj2...] Add named object module(s) to library. 6–7

–af afn Add object modules in file afn to library. 6–7

–b [sym1...] List object files that define the named
symbols.

6–9

–c Check and report on header/index
consistency.

6–9

–d obj [obj2...] Delete named object module(s) from library. 6–7

–df dfn Delete object modules in file dfn from library. 6–7

–e Suppress updating of library index file if any
warning messages occur.

6–7

–err [file] PC only . Write error messages to file. 6–10

–err+ [file] PC only . Append error messages to file. 6–10

–i [obj1...] List index header of named object modules. 6–9

–i –b List the entire library. 6–9

–i obj1 [obj2...] –b List symbols of named object modules. 6–9

–i obj1 [obj2...]
–b sym1 [sym2...]

List specified symbols in named object
modules.

6–9

Other Utilities 6–5

• • • • • • • •

See
Page:

 FunctionOption

–l [lfn] Write listing to lfn. If lfn is omitted, write to
prog.lis .

6–9

–L lib Specify the name of the library to be created,
modified or listed.

6–7

–n Suppress segment and group names in
index.

6–7

–rf rfn Replace object modules in file rfn in library. 6–7

–u Update all object modules in library. 6–8

–V Display the version number of the
executable.

6–10

–v Report librarian actions as performed. 6–10

Table 6-1: Librarian options

6.1.2 USAGE

The librarian creates, maintains, and selectively lists library index files.

A library index file is a text file defining an indexing structure describing a

collection of object modules. It consists of a series of index entries, one for

each object module.

The library does not contain the object modules themselves, only their

filenames and information extracted from them. Each index contains the

following data:

1. A header containing:

• A full or relative pathname.

• A date/time stamp.

2. A list of global symbols defined in the object module.

This information is extracted from an object module and formatted as a

library index when a module is ``added'' to the library, or when its index is

``updated.''

Librarian input is taken from a library and/or object modules named on

the command line or in options. The object modules named on the

command line or in a file are added to the library.

Chapter 66–6
U
T
IL
IT
IE
S

If you specify object modules on the command line but do not specify an

add or delete option, the librarian will either replace or add the object

modules to the named library, depending on whether the object modules

are already in the named library.

If the library already contains an index for a module, the index is updated

only if the module is newer than the date stamped in the index.

The file containing names of the object modules to add, delete, or replace

must be in a specific format of one object module name per line.

When an object module has been created, deleted or modified, each

library containing that module must be updated. Otherwise, the library

indexes may contain incorrect information about the global symbol names

needed during the linking process.

The linking locator can search one or more libraries for modules that

resolve references to external symbols. If the file name in the library is not

a full pathname, the linking locator searches for the module in the

directory containing the index file. This allows you to construct portable

libraries. If the library index file and the object modules reside in a

common directory, you may move or rename the directory without

disturbing the functioning of the library. See the Linking Locator chapter

for a more detailed explanation of the use of library index files.

Example

Catalog an object module with all defaults:

libr prog.ol –L project.lib

• Add prog.ol to library project.lib .

• If a newer version of prog.ol is already in project.lib , a

warning is issued and project.lib is unchanged.

• If an older version of prog.ol is already in the library, its index is

replaced.

• No listing is generated.

Other Utilities 6–7

• • • • • • • •

6.1.3 LIBRARIAN OPTIONS: DETAILED DESCRIPTION

This section describes the librarian options in more detail and provides

examples of their use.

Library Option

–L lib Specify the library to be created, modified or listed. If the

library does not exist it will be created. This option is

required.

Command Options

–a obj1 [obj2...]
Add new indexes for the named object modules to prog.lib.

–af afn Add object modules in file afn to prog.lib.

Object module names are either taken from the command

line or from the named file, but not both. At least one object

module name is required if this option is used. If an object

module is already catalogued, its index is not replaced and a

warning is issued.

–d obj1 [obj2...]
Delete the indexes for the named object modules from

prog.lib.

-df dfn Delete object modules in file dfn from prog.lib.

Object module names are either taken from the command

line or from the named file, but not both. At least one object

module name is required.

–e Suppress updating of the library if any warning messages

occur.

–n Suppress segment and group names in the index. This makes

a smaller library index, thus speeding up the library search. It

is appropriate for compiler-generated object modules and the

run-time library. This is safe because the compiler never

generates external references to segment or group names. It

is not appropriate for those user assembler modules whose

segment names are used as external names in other modules.

–rf rfn Object module names are taken from file rfn. Replace the

indexes for the named object modules in prog.lib.

Chapter 66–8
U
T
IL
IT
IE
S

–u Update all indexes. This option is a global consistency check

and replace operation. It is performed on the entire library.

The consistency check compares all date/time stamps in the

respective files. If any pair of date stamps does not match,

the library index is updated. The librarian issues a warning if

no file is found for a library index.

 Example

Add new index for object module:

libr –n –L project2.lib –a myprog.ol

• Add index for myprog.ol to library project2.lib .

• The –n option tells the librarian to strip off segment and group

names. This makes for a more compact library, but is only

appropriate for compiler generated object modules.

• If myprog.ol is already in the library, a warning is issued and the

library is unchanged.

• No listing is generated.

Example

Create library from list of names in a file:

libr –L project6.lib –af addmods

• The file addmods contains:

hello.ol
sieve.ol

• Add hello.ol and sieve.ol to library project6.lib .

Example

Delete object modules from library:

libr –L project3.lib –d gjh.ol nph.ol

• Modify library index file project3.lib .

• Delete indexes for gjh.ol and nph.ol .

• The object modules themselves are not deleted.

Example

Update library:

libr –L project5.lib –u

Other Utilities 6–9

• • • • • • • •

• Access library index file project5.lib .

• Update all indexes to most recent versions.

Listing Options

–b [sym1...] List named global symbols. If no symbols are specified, list all

symbol entries.

–c Check and report on the consistency of all entries in the

library.

No changes are made to the library. Error messages are

issued when:

1. An index in the library has no corresponding object

module.

2. The date/time stamp in the library index does not agree

with the date/time stamp in the object module, i.e., the

library index does not correspond to the current object

module.

–i [obj1...] List the index headers of the specified object modules. If no

object modules are specified, list all index headers.

–l [lfn] Write listing output to file lfn. If lfn is omitted, write to file

prog.lis . The default is to write the listing to standard

output.

Combined Listing Options

–i –b List the entire library.

–i obj1 [obj2...] –b
List all global symbols in the named object modules.

–i obj1 [obj2...] –b sym1 [sym2...]
List the specified symbols in the named object modules.

Example

List library:

libr –L project4.lib –a hello.ol sieve.ol –i –b –l

• Add hello.ol and sieve.ol to library project4.lib .

• List all symbols in project4.lib .

Chapter 66–10
U
T
IL
IT
IE
S

• Write output to project4.lis .

Listing of project4.lis :

hello.ol ”Dec 31 1998 11:53:38”
data
idata
udata
sdata
_i
S_main
_main

sieve.ol ”Jan 18 1999 11:33:25”
data
idata
udata
sdata
_flags
_main
S_main

Miscellaneous Options

–err [file] PC only. Write error messages to file.

–err+ [file] PC only. Append error messages to file.

–V Display the version number of executable (for technical

support use).

–v Report librarian actions as performed.

Other Utilities 6–11

• • • • • • • •

6.2 GLOBAL SYMBOL MAPPER

List global symbols and segments.

Invocation

gsmap [obj1...] [options]

Input

Standard input or [obj1...]

Output

Standard output or obj1.map

6.2.1 GLOBAL SYMBOL MAPPER OPTIONS: SUMMARY

The global symbol mapper recognizes the following options:

Option Function See
Page:

–a Print symbols in alphabetical order. 6–14

–an Print symbols in alphabetical order and segments
in address order.

6–14

–err [file] PC only . Write error messages to file. 6–15

–err+ [file] PC only . Append error messages to file. 6–15

–n Print symbols in address order. 6–14

–na Print symbols in address order and segments in
alphabetical order.

6–14

–o [ofn] Write output to file ofn. If ofn is omitted, write to
obj.map. By default, gsmap writes to standard
output.

6–13

–P [lines] Set lines–per–page to lines. If lines is omitted,
suppress pagination.

6–14

–s Omit listing of externals and globals; list segments
only.

6–14

–V Display the version number of the executable. 6–15

–z Exclude empty segments from listing. 6–14

Table 6-2: Options

Chapter 66–12
U
T
IL
IT
IE
S

6.2.2 USAGE

The global symbol mapper (gsmap) displays symbolic information from an

object module. This utility can be used before or after linking or locating.

gsmap lists external names and the definitions of global symbols. The

SEGMENT section of the gsmap listing shows absolute address, length,

class and alignment for each segment.

The gsmap listing can be more easily understood once you know the

compiler's naming conventions. See the Compiler Naming Conventions
appendix for an explanation.

Example

Produce alphabetic global symbol listing:

gsmap hello.ol

• Reads object module hello.ol .

• Writes listing to standard output.

Given the following C program:

main() {
 printf (”Hello, world.\n”);
}

Other Utilities 6–13

• • • • • • • •

The alphabetic map listing produced is:

Symbol Map for hello.ol date time Page 1

Target : 68000

Externals

__main
_printf

Global Address

_main __E1

Group Size Limit Align Member Segments

data 00ffff (65535) hword idata udata

Segment Address Length Class Align Combine

S_main 000010 (16) {code} hword concat
idata 000000 (0) {data} hword concat
sdata 000010 (16) {constant} hword concat
udata 000000 (0) {data} hword concat

Statistics

Segments : 4
Externals : 2
Globals : 1
Groups : 1
Sum of class ”code” segments : 00000010 (16)
Sum of all other segments : 00000010 (16)

Total size of all segments : 00000020 (32)

6.2.3 GLOBAL SYMBOL MAPPER OPTIONS: DETAILED

DESCRIPTION

This section describes the global symbol mapper options in more detail

and provides examples of their use.

Listing Options

–o [ofn] This option specifies the name of the output file. If ofn is

omitted, the output is written to file obj.map, where obj is
the root of the first mappable file. If input is taken from stdin,

the default output file name is stdin.map .

Chapter 66–14
U
T
IL
IT
IE
S

–P [lines] Set the number of lines per listing page to lines. If lines is
omitted, suppress listing pagination. The default is to emit a

new title heading every 60 lines.

–s Omit listing of externals and globals; list segments only.

–z Omit empty segments from output listing.

Example

Set the number of lines per page in the output listing:

gsmap prog.ln –P 22 –o prog.out

• Reads linked object module prog.ln .

• Sets the number of lines per listing page to 22.

• Writes listing to prog.out .

Example

Exclude empty segments :

gsmap test1.ab test2.ab test3.ab –z –o

• Reads input from test1.ab , test2.ab and test3.ab .

• Produces a symbol map for each input file.

• Excludes empty segments from each symbol map.

• Writes listing containing all three symbol maps to test1.map .

Sorting Options

–a Print symbols in alphabetical order.

–an Print symbols in alphabetical order and segments in address

order.

–n Print symbols in address order.

–na Print symbols in address order and segments in alphabetical

order.

If both the –a and –n options are specified, segments and global symbols

are listed twice, once in each order. The default is to print in alphabetical

order.

Other Utilities 6–15

• • • • • • • •

Miscellaneous Options

–err [file] PC only. Write error messages to file.

–err+ [file] PC only. Append error messages to file.

–V Display the version number of the executable (for technical

support use).

Chapter 66–16
U
T
IL
IT
IE
S

6.3 SYMBOL LIST UTILITY

Display symbolic information from object module.

Invocation

symlist [prog.[ol | ln | ab]] [options]

Input

Standard input or [obj1...]

Output

Standard output or prog.sml

6.3.1 SYMBOL LIST UTILITY OPTIONS: SUMMARY

The symbol list utility recognizes the following options:

Option Function See
Page:

–err [file] PC only . Write error messages to file. 6–17

–err+ [file] PC only . Append error messages to file. 6–17

–o [ofn] Write output to file ofn. If ofn is omitted, write to
prog.sml .

6–17

–V Display the version number of the executable. 6–17

Table 6-3: Options

6.3.2 USAGE

The symbol list utility, symlist , produces a listing of all symbols, global

and local, along with target locations for source lines of input code. The

input may be any combination of unlinked object modules, linked object

modules, or absolute object modules. If no object modules are named,

then standard input is read.

Only object modules which were compiled or assembled with the –d
option will include symbolic information which can be listed.

Other Utilities 6–17

• • • • • • • •

Example

Produce symbol list output file:

symlist prog1.ln prog2.ln prog3.ln –o

• Reads object modules prog1.ln , prog2.ln , and prog3.ln .

• Writes listing to prog1.sml .

6.3.3 SYMBOL LIST UTILITY OPTIONS: DETAILED

DESCRIPTION

This section describes the symbol list utility options in more detail.

–err [file] PC only. Write error messages to file.

–err+ [file] PC only. Append error messages to file.

–o [ofn] This option specifies the name of the output file. If ofn is

omitted, the output is written to file obj.sml , where obj is the

root of the first file that can be successfully run through

symlist . If input is taken from standard input, the default

output file name is stdin.sml .

–V Display the version number of executable. For technical

support use.

6.3.4 THE SYMBOL TABLE LISTING

The symlist listing can be divided into two main parts. The first part

contains symbol information for each compilation unit. It begins with the

header line:

INDEX NAME SCOPE CLASS, ATTRIBUTES

Following the header line is a list of executable line numbers and code

addresses for linked or located object modules, with relative code

addresses for linked modules, and absolute code addresses for located

modules.

Chapter 66–18
U
T
IL
IT
IE
S

Next is a listing of all symbols and their attributes. In each entry, the

INDEX is a number referring to each item's location in the symbol table.

NAME is the name of each symbol as it appears in the symbol table. A

blank entry in this column refers to an anonymous symbol. SCOPE is the

index of the symbol which defines the enclosing scope for a particular

item. CLASS specifies the category of each item, e.g., type, variable,

function. The ATTRIBUTES for each item list compiler-generated symbol

information that may be useful in debugging.

Symbols in the listing are grouped according to the module, subroutine, or

structure definition in which they occur. The symbol defining the module,

subroutine or structure is listed first, followed by the remaining symbols in

that particular scope. Symbols are numbered sequentially for easy

reference to other symbols. The entry for each item includes that symbol's

class and attributes, and the index of the symbol that defines that symbol's

scope.

The scope of a type is either global or limited to a structure. The scope of

a variable is either global (accessible anywhere), local to a compilation

unit (accessible anywhere in the compilation unit which declares it), or

local to a subroutine (accessible only in the subroutine that declares it).

The first group of named symbol entries in the listing for each compilation

unit represents type definitions for standard built-in C types, without

regard for any –L option given to the compiler. Each built-in type

definition entry is followed by an anonymous entry defining a pointer to

that type. The built-in and pointer type definitions are followed by entries

for the symbols defined in the compilation unit.

The second part of the symlist listing begins with the header line:

ALPHABETIC SYMBOL INDEX

This contains an alphabetized list of all symbols in the linked object

module, with symbol indexes from the first part of the listing. If a symbol

name is used many times (in different scopes), a list of indexes is given.

Symbols without names are listed first under the name (anonymous).

Other Utilities 6–19

• • • • • • • •

Example

Consider the following program, sym.c

struct structtype {
int structint;
char structchar;

} mystruct;
int i;

subr()
{

int loci;
i = loci = 1;

}

Suppose we compile sym.c with the –d option, link, and locate. The

listing generated by symlist for the located object module is shown

below:

INDEX NAME SCOPE CLASS, ATTRIBUTES

1 sym.c 0 module,source file,line# and addr
 of code stmts:
”sym.c”
 7 #00000006 10 #00000006 11 #0000000c

 2 unsigned char/short 1 type, size=1, unsigned 8 bit
 3 1 type, ptr to type=2, size=4
 4 signed char/short 1 type, size=1, signed 8 bit
 5 1 type, ptr to type=4, size=4
 6 int 1 type, size=2, signed 16 bit
 7 1 type, ptr to type=6, size=4
 8 unsigned int 1 type, size=2, unsigned 16 bit
 9 1 type, ptr to type=8, size=4
 10 long 1 type, size=4, signed 32 bit
 11 1 type, ptr to type=10, size=4
 12 unsigned long 1 type, size=4, unsigned 32 bit
 13 1 type, ptr to type=12, size=4
 14 float 1 32 bit floating–point
 15 1 type, ptr to type=14, size=4
 16 double 1 64 bit floating–point
 17 1 type, ptr to type=16, size=4
 18 structtype 1 type, record, size=4
 19 structint 18 field, type=6, offset=0
 20 structchar 18 field, type=2, offset=2
 21 mystruct 1 variable,type=18,static,
 addr=#00000000
 22 i 1 variable, type=6, static,
 addr=#00000004
 23 subr 1 function, return type=6, #args=0,

Chapter 66–20
U
T
IL
IT
IE
S

 addr=#00000006
 24 loci 23 variable, type=6, local,
 register=D1

ALPHABETIC SYMBOL INDEX

i 22
loci 24
mystruct 21
structchar 20
structint 19
structtype 18
subr 23
sym.c 1

Other Utilities 6–21

• • • • • • • •

6.4 OBJECT SIZE LIST UTILITY

Display size information from object module(s).

Invocation

olsize obj1 [obj2 ...] [options]

Input

Standard input or obj1 [obj2 ...]

Output

Standard output

6.4.1 OBJECT SIZE LIST UTILITY OPTIONS: SUMMARY

The object size list utility recognizes the following options:

Option Function See
Page:

–i [ifn] Take the names of input object modules from file
ifn. If ifn is omitted, read the names of object mod-
ules from standard input.

6–22

–o ofn Write output to file ofn. 6–22

–V Display the version number of the executable. 6–22

Table 6-4: Options

6.4.2 USAGE

The object module size list utility, olsize , produces a listing of the total
size of code, data, and constant data contained in a collection of object
modules. The input may be any combination of unlinked object modules,
linked object modules, or absolute object modules, although the program
runs somewhat slower on unlinked object modules.

The type of each segment, code, constant, or data, is determined by the
class name. Segments with class name ``code'' or ``CODE'' are assumed to
contain code; segments with class name ``constant'' or ``CONSTANT'' are
assumed to contain constant data. All other segments are judged to contain
data.

Chapter 66–22
U
T
IL
IT
IE
S

Example

List size of object files:

olsize prog1.ln prog2.ln prog3.ln

• Read object modules prog1.ln , prog2.ln , and prog3.ln .

• Write listing to the terminal.

6.4.3 OBJECT SIZE LIST UTILITY OPTIONS: DETAILED

DESCRIPTION

This section describes the object size list utility options in more detail and
provides examples of their use.

–i [ifn] This option specifies that the names of input object modules
are to be taken from file ifn. The input module names should
be listed in the file, one per line. If no file is given as an
argument to the option, the names of the files are read from
standard input.

–o ofn This option specifies the name of the output file.

–V Display the executable's version number (for technical
support use).

Example

Produce object size listing in a file:

olsize sample.ab hello.ol –o size.out

• Read object modules sample.ab and hello.ol .

• Write listing to file size.out .

File size.out is listed below:

Code Data Constant Total Hex File
2500 2500 0 5000 1388 sample.ab
28 0 16 44 2c hello.ol
2528 2500 16 5044 13b4 Grand Total

7

APPLICATION
NOTES

C
H

A
P

T
E

R

Chapter 77–2
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

7

C
H

A
P

T
E

R

Application Notes 7–3

• • • • • • • •

This chapter contains application notes on the following topics:

• Downloading

• Linking C and Assembly

• Pragma Separate (Option Separate)

• Building Libraries That Do Not Use A5

• Position-independent Code

• Getting the Best Code for Your Application

• Support for the On-board Peripherals of the 68332, 68340, and

68360

7.1 ABOUT THE APPLICATION NOTES

The following is a brief summary of the contents of the application notes

chapter. After this list, the remainder of the chapter is dedicated to a more

detailed discussion of each topic. The following topics are covered in this

chapter:

Downloading

Downloading is the process by which a program developed with the

68K/ColdFire toolchain is loaded into memory for the target

microprocessor. The program may be downloaded to an emulator for

integration and testing of the program, or directly to the user's actual

hardware system. Downloading can be accomplished in a variety of ways;

several methods are explained in the Downloading application note.

Linking C and Assembly

Interfacing C and Assembly allows the user to utilize the benefits of both

languages in programming tasks. The Linking C and Assembly application

note gives linking methods, conventions, and examples.

Pragma Separate (Option Separate)

The #pragma separate compiler directive is one of the TASKING C

language extensions. This feature gives you complete control over the

placement of global data. The Pragma Separate (Option Separate)
application note gives a detailed explanation of this useful directive.

Chapter 77–4
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Building Libraries That Do Not Use A5

By default the compiler uses A5-relative addressing to access non-separate

global and static variables. Some users may wish to use direct addressing

instead. This can be accomplished for user code with command line

options like –sd . However, A5-relative references would still remain

because of the compiler run-time library. This application note tells you

how to build a library that does not use any A5-relative addressing.

Position-independent Code

To say that a unit of code or data is �position-independent" means that it

can be moved from one location in memory to another without relinking

and still execute properly. This application note describes how position

independence is achieved in general, in what circumstances it would be

used, and the nature of the compiler support for position independence.

Getting the Best Code for Your Application

The compiler has many options which affect optimization. Most of these

options disable optimization in order to make the code easier to debug.

However, there are circumstances where tradeoffs must be made. In these

cases the right choice depends on your particular application. This

application note describes the issues involved to help you make the best

choices.

Support for the On-board Peripherals of the 68332, 68340, and 68360

The run-time libraries contain many files to support access, via C or

assembly language, to the on-board peripheral units of the 68332, 68340,

and 68360 processors. This application note describes how access to the

peripheral components is achieved through the use of C and assembly

language include files.

Application Notes 7–5

• • • • • • • •

7.2 DOWNLOADING

7.2.1 INTRODUCTION

This section discusses some of the different environments available for

loading and executing programs developed with the 68K/ColdFire

toolchain. This discussion deals with simulators, emulators, and PROM

programmers.

Simulators

Simulators are software products which run on the host computer.

Simulators can ``simulate'' program execution by converting the

instructions generated for the target microprocessor into one or more

instructions for the host computer. Target memory and registers are also

simulated on the host. The simulator's debugger can display and modify

this simulated target. Breakpoints can be set and single stepping can be

done.

This technique provides a reasonable method for algorithm analysis.

However, it is limited in some respects. Real time control is difficult and

hardware timing tests cannot be done. For many applications an expensive

test bed must be prepared to handle input and output requirements.

Memory mapping is not easily done.

Emulators

Emulators are hardware devices connected to the circuit being tested.

Emulators take the place of the actual target chip and provide the most

thorough testing environment, since the testing is done on the actual target

board. Furthermore, an emulator provides on-board firmware which can

display the state of the executing program, set breakpoints and stop and

start execution. Depending upon the emulator, these debugging aids can

be quite elaborate.

The TASKING source-level debugger, CrossView Pro, can intelligently

control an emulator during testing. The debugger provides a high-level

interface between the user working on the host system's keyboard and the

emulator. The user may issue commands which refer directly to the

variables, source files, and line numbers as they appear in the source

program. Using symbol information retained during compilation, the

debugger translates the high level commands into a series of low level

commands that are understood by the emulator.

Chapter 77–6
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Transferring a program image developed with the 68K/ColdFire toolchain

into an emulator is a straightforward procedure. The emulator User's

Manual will describe in detail how to do it. Generally the process is as

follows:

The emulator is connected to the host with an RS-232 connection or

parallel connection, usually from a terminal port on the host to a

``computer'' or ``host'' port on the emulator.

When the emulator and the host are suitably connected, the

communications software can transfer the absolute hex file produced by

the formatter through the emulator into target memory.

Depending upon the configuration, either the host or the emulator must

have a communications package capable of monitoring and controlling the

transfer of information. CrossView Pro contains one such communication

package; many emulator manufacturers provide their own package.

7.2.2 PROM PROGRAMMING

Once a system is thoroughly tested using an emulator, production of the

finished product can be done. In embedded systems this frequently

involves programming ``read-only memory'' chips (ROMs). This ``burning''

of the memory chip is done on a PROM burner.

Most PROM burners accept one or more industry standard formats. The

formatter is capable of generating many standard formats. The PROM

burner is connected to the host system in much the same way as the

emulators described above.

There are two possible complications in the loading of the ROM memory.

One complication is encountered when the target microprocessor's data

bus is wider than 8 bits, and the PROMs to be used are 8 bits wide. If the

data bus is 16 bits wide, then two PROMs may be addressed in parallel. If

the data bus is 32 bits, then four PROMs may be addressed at once. In this

case it is necessary to distribute the bytes alternately among all the PROMs.

This is known as byte-slicing. The formatter will create individual files for

each PROM. For example, if 8-bit PROMs are to be programmed for a

16-bit data bus, the formatter would be run twice:

form file.ab –b 0 2 –o file.even
form file.ab –b 1 2 –o file.odd

Application Notes 7–7

• • • • • • • •

If 8-bit PROMs are to be programmed for a 32-bit bus, the formatter

would be run four times:

form file.ab –b 0 4 –o file.zero
form file.ab –b 1 4 –o file.ones
form file.ab –b 2 4 –o file.twos
form file.ab –b 3 4 –o file.threes

Each of the files would be programmed into a different PROM. Each

PROM would be plugged into the appropriate socket on the target board,

resulting in a complete hex image at the target level.

The second complication is also related to the need to fit a hex image into

multiple PROMs. Suppose a chip has a one megabyte address space, to be

filled with 256K-byte PROMs. A 256K-byte PROM has 18 address lines.

The two high-order bits of the 1M-byte address are decoded by other

hardware on the target board. Internally each PROM is addressed 0 to

0x3FFFF. It is necessary to break up the hex image into four different files

to be burned into PROMs. The formatter can separate the full program into

files of the appropriate size and can also generate the correct offset, so

that the address 0x40000 will correspond to 0 when the PROM is burned.

The following commands would result in four hex files, each appropriate

to burn into a PROM which is addressed on a 256K-byte boundary:

form file.ab –w 40000 –o first.hex
form file.ab –w 40000 –a 40000 –o second.hex
form file.ab –w 40000 –a 80000 –o third.hex
form file.ab –w 40000 –a C0000 –o fourth.hex

The 68K/ColdFire product also provides the tools needed to store

initialized data values in ROM, and, when the system is turned on, to

automatically transfer these initial data values to RAM. The Linking Locator
chapter describes this process (ROM processing) in greater detail.

Chapter 77–8
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

7.3 LINKING C AND ASSEMBLY

7.3.1 INTRODUCTION

Interfacing C and assembly code is an important aspect of efficient

programming. Modern programming experience indicates that programs

written in higher level languages are more portable and reliable.

Nevertheless, assembly language still offers the maximum in efficiency and

flexibility. Furthermore, some machine-dependent operations cannot be

performed at all in C. The combination of the two languages gives the

programmer great control over execution of the task at hand.

The information in the Compiler Run-Time Conventions and Compiler
Naming Conventions appendices are critical to interfacing C routines and

assembly language. Please refer to these sections for more information on

each subject.

7.3.2 CONVENTIONS

In accordance with the compiler naming conventions, an underscore (`_')

must be prepended to each procedure name in the assembly module(s)

which contain(s) global symbols so that C programs and assembly

modules can be linked.

Example

Here is a sample C program which calls an assembly language routine:

extern void asmsub(); /* NO underscore here! */
main()
{

.

.
asmsub(arg1,arg2,arg3); /* NO underscore here! */

.

.
}

Application Notes 7–9

• • • • • • • •

After the entry code (or prologue) in the assembly routine has been

executed, we obtain the following stack configuration:

Example of Stack Management:

Low Memory

<––– Stack Pointer

Local Variables (negative offsets from Frame Pointer)

Old Frame Pointer

Return Address

arg1 (positive offsets from Frame Pointer)

arg2

arg3 <––– Caller’s Stack Pointer before call

Calling Routine’s Stack
Frame

<––– Caller’s Frame Pointer

High memory

The ``Calling Routine'' is the C routine. The stack grows from high to low

memory.

Chapter 77–10
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

The assembly language routine asmsub needs to have the following form

to be callable from C: (The prologue and epilogue are shown in the

Compiler Run-Time Conventions appendix.)

XDEF _asmsub /* Note the underscore */
_asmsub:

[PROLOGUE]
 .
 . /* Body of asmsub */
 .
[EPILOGUE]

Both the caller's frame pointer and the return address are 32 bits wide.

Here is an example of how to reference parameters from the stack. For

example, suppose the first parameter is a pointer variable. The following

instruction would be used to load the first parameter into a register:

MOVEA.L 8(A6),D0

The long word move is used since the parameter is a 32-bit integer. The

source operand is 8(A6) which signifies that the first parameter is 8 bytes

away from the frame pointer, A6. The result is moved into register D0.

For an example of returning a value from a function call, consider the

following:

extern int asmfunc();
{

main()
{

int i;
i = asmfunc();

.

.

.

}

When returning an integer as in the example above, the assembly routine

asmfunc must place the return value in register D0 since the calling C

routine expects the value in D0.

Application Notes 7–11

• • • • • • • •

Notes:

• Both compilations and assemblies create object modules. The linking

locator takes either kind of object module as input. This provides the

flexibility for linking C and assembly.

• Do not change the value of register A5! If, for example, an interrupt

gives control to the C program, the C program expects register A5 to be

pointing at the global data area at all times. Changing the A5 register

may result in access to unexpected areas of memory.

• Pay special attention to stack management when interfacing C and

assembler code. It is good practice to use macros to provide standard

prologue and epilogue sequences in all assembler routines. If the

hardware stack is not handled properly, the calling program may not

execute correctly.

• Other conventions apply to routines returning struct types. See the

Compiler Run-Time Conventions appendix for more details.

7.3.3 SHARING GLOBAL DATA

It is possible to declare data in C and reference it in assembly language

and vice versa. Generally it is preferable to declare the data in C. Here are

some examples showing how this is done.

Referencing C Data in Assembly Code

Consider the following C declarations:

long global_var;
#pragma separate sep_var
long sep_var;

Here we have two variables, global_var and sep_var , both of which

represent 32 bit integers. According to the compiler naming conventions,

these variables give rise to global symbols whose names are

_global_var and _sep_var respectively. The variable global_var will

be allocated in the udata segment and the variable sep_var will be

allocated in the S_sep_var segment. (If global_var had been

initialized, it would have been allocated in the idata segment).

Chapter 77–12
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Here is sample assembly language code which references these variables.

It stores the value �1" in global_var and the value �2" in sep_var .

XREF _global_var
XREF _sep_var
XREF data

.

.

.
MOVE.L #1,_global_var–data(A5)
MOVE.L #2,_sep_var

The non-separate variable global_var is accessed through the A5

register. This register contains the address of the data group, which

contains the udata segment containing global_var . Since the

_global_var global symbol represents the full 32 bit address of the

variable global_var , the origin of the data group must be subtracted to

yield the offset relative to this register.

The non-separate variable sep_var is not accessed through the A5

register, because sep_var does not lie in the data group.

Referencing Asm Data from C

Normally it is preferable to declare the data in C, but it is still possible to

reference assembly language data from C if it is properly declared.

The procedures are similar to those discussed above, except that external

declarations are replaced by definitions and vice versa. The C program

would look like this:

extern long global_var;
#pragma separate sep_var
extern long sep_var;

.

.

.
global_var = 1;
sep_var = 2;

Application Notes 7–13

• • • • • • • •

The assembly language declarations would look like this:

XDEF _global_var
XDEF _sep_var
SECTION udata,,’data’

_global_var DC.L 0
SECTION S_sep_var,,’usep’

_sep_var DC.L 0

The non-separate variable global_var is allocated in the udata
segment. If global_var had an initial value, it would be allocated in

idata . The separate variable sep_var is allocated in its own segment.

The name of the segment for sep_var chosen here matches the compiler

convention, but this is not strictly necessary for the compiled code to

access the variable successfully.

Chapter 77–14
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

7.4 PRAGMA SEPARATE (OPTION SEPARATE)

7.4.1 INTRODUCTION

The C compiler supports a directive, #pragma separate , as part of the C

language extensions. This directive allows the user complete control over

the segmentation of global data. The older syntax #option separate is

equivalent to #pragma separate .

The compiler creates a ``data'' group containing all data which is accessed

by A5 register-relative addressing. This is a very efficient addressing

mode. By default, global and static data items are allocated in one of two

data segments: ``idata ,'' for initialized data, or ``udata ,'' for uninitialized

data. Data allocated in these segments is restricted to a total size of 64K

bytes because the register-relative addressing uses a 16-bit offset.

To allow for global data items that are very large, or items that the user

would like to place in specific memory locations, the 68K/ColdFire toolkit

provides the concept of separate data. Separate data items are placed in

their own segments, and thus may be placed independently in memory

using the locate function of the linking locator. Furthermore, they are not

subject to the 64K-byte total size restriction imposed on normal global

data. There is no limit to the size of an individual separate data item, other

than the size of the memory area in which the data is allocated..

The compiler uses different code sequences to access variables in the

idata/udata area than it uses to access separate variables. For this reason

the compiler must know whether an external variable is defined as

separate. It is a good idea to keep the necessary #pragma separate
directives together with ``extern'' declarations for separate variables.

The #pragma separate directive can also be used to separate constant

data from read-write data. This allows constant data to be placed in ROM.

Application Notes 7–15

• • • • • • • •

7.4.2 PREPROCESSOR OPTION DIRECTIVES

#pragma separate variable_name [segment segname]
[class classname]

#pragma sep_on [segment segname [segname2]]
[class classname [classname2]]

#pragma sep_off

The #pragma separate directive causes the data item named

variable_name to be separate. The #pragma separate directive for

variable_name must precede the definition of variable_name in the

source program. The compiler will put this data in the specified class and

segment, if that information is included in the statement.

The #pragma sep_on and #pragma sep_off directives automatically

cause all global or local static data declared between them to be separate.

This provides a shorthand notation that is equivalent to writing several

#pragma separate directives. Note that this includes data declared with

the const type qualifier.

The optional segment and class specifiers permit the user to specify the

segment name and/or the class of the segment in which the separate

variable is allocated. More than one separate variable may be allocated

into a single segment, but all #pragma separate directives with the

same segment option must have the same class option. Of course, if

two separate variables lie in the same segment then they cannot be

placed in memory independently of one another.

When only segname is supplied with the segment option, data will be

allocated into segname. When both segname and segname2 are supplied,

initialized data will be allocated into segname, and uninitialized data will

be allocated into segname2. If the keyword default replaces segname or

segname2, data will be allocated into the default segments for separate

data, as explained in the Compiler Naming Conventions appendix.

When only classname is supplied with the class option, separate segments

will be given class {classname}. When both classname and classname2 are

supplied, initialized data segments will be given class {classname}, and

uninitialized data segments will be given class {classname2}. If the

keyword default replaces classname or classname2, separate segments

will be given the default class name for separate data.

Chapter 77–16
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

If no segment or class name is supplied, the compiler will use default

names which are described in detail in the Compiler Naming Conventions
appendix. The compiler's default rules will give rise to a different segment

name for each separate variable.

7.4.3 COMMAND LINE OPTIONS

Data can also be made separate by using command line options:

–cs Place all data declared as const into a separate segment

cdata and class constant. The –sc and –ss options override

the –cs option and make its use invalid. Refer to the C
Language Specifications appendix for an explanation of the

const type qualifier.

–sc myclass [myclass2]

If the only argument is myclass, separate data segments will

be given class {myclass}. If arguments myclass and myclass2
are used, initialized data segments will be given class

{myclass}, and the uninitialized data segments will be given

class {myclass2}.

–sd Make all global and static data separate.

–ss mysegment [mysegment2]

If the only argument is mysegment, data will be allocated into

mysegment. If arguments mysegment and mysegment2 are

used, initialized data will be allocated into mysegment, and

uninitialized data will be allocated into mysegment2.

The command line options are equivalent to inserting the appropriate

#pragma sep_on directive described above before the first line of the

source file being compiled.

The segments defined for separate data items can be located either by

their segment names, or by the segment class. Please see the Linking
Locator chapter for details on how to place segments in memory.

Application Notes 7–17

• • • • • • • •

7.5 BUILDING LIBRARIES THAT DO NOT USE A5

Sometimes users may wish to eliminate the A5-relative addressing that is

used by default for global data. This can be accomplished with command

line options which have the effect of making all global data �separate",

that is, directly addressed. However, A5-relative addressing may still

remain, because the run-time library has some private global data of its

own which is addressed via A5. This application note tells you how you

can build a library that does not use any A5-relative addressing.

The run-time library contains both C and assembly source files. The C

modules must be recompiled using options that make all data separate,

plus any other options, such as –L , that are needed for your particular

application. Subsequent links will run faster if you pre-link each object

module by itself (to resolve internal references), but this is not essential.

Alternate versions of the assembly language modules that reference data

via A5 are supplied with the library distribution, so no assemblies need be

done. After the C modules are recompiled, the library index files must be

updated to include the alternate assembly language modules and the

recompiled C modules.

There are several different libraries supplied with the distribution. There

are libraries for different targets, like MC68000 or MC68020. There may be

libraries for hardware and software floating-point. Within each of these are

libraries for use with –L (long integer, default for C++ and ColdFire) and

libraries for use without –L (the default for 68K). There are libraries that

do not support floating-point (the �no-floats" libraries), and libraries that

do support floating-point (the default). Of course, you need only rebuild

the libraries you intend to use. The examples that follow show you how to

rebuild all the libraries for the MC68000 software floating-point target. The

procedure for other targets is similar, except that you use a different

compiler name, for the specific target (e.g., 68020, 68040, etc.). In addition,

the command line option for hardware floating-point (–h) must be used

for libraries which rely on floating-point hardware.

At the end of this chapter there are six tables labelled �Table 7-1" through

�Table 7-9". Each table represents a subset of target chips. Find the table

that contains your target microprocessor. Within the table, in the 1st

column find the library index file you plan to use. In the 2nd column you

will find the library modules which must be replaced.

Chapter 77–18
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

The following steps will update existing library index files. If you want to

save the original index files, you should first copy the run-time library

directory, then set your working directory to that directory. Otherwise, set

your working directory to the run-time library. We will start with the 68000

libraries (lib000 , lib000.nf , lib000.l , lib000.lnf).

1. Recompile all the C source files in the library, using –ss libdata –sd .

This makes all library data separate in segment libdata . Execute a

command like this for each c file:

c68000 abort.c –ss libdata –sd

2. Pre-link each object module. Execute a command like this for each .ol
file you just created:

llink strcpy.ol –lo –w –o strcpy.ln

3. Update the library index file. Table 7-1 contains the library index files for

target MC680000. Looking up lib000 in the table we find the following

modules must be replaced: adln.ln . adlog.ln , adsqrt.ln ,

dpfncs.ln , dpopns.ln , fpopns.ln , pmain.ln , and xlfncs.ln .

Execute the following commands:

For the PC:

libr –L lib000
–d adln.ln adlog.ln adsqrt.ln dpfncs.ln

 dpopns.ln fpopns.ln pmain.ln xlfncs.ln
–a adlnx.ln adlogx.ln adsqrtx.ln dpfncsx.ln

 dpopnsx.ln fpopnsx.ln pmainx.ln xlfncsx.ln

libr –L lib000 –u

For Unix hosts:

libr –L lib000 \
–d adln.ln adlog.ln adsqrt.ln dpfncs.ln \
dpopns.ln fpopns.ln pmain.ln xlfncs.ln
–a adlnx.ln adlogx.ln adsqrtx.ln dpfncsx.ln \
dpopnsx.ln fpopnsx.ln pmainx.ln xlfncsx.ln

libr –L lib000 –u

Application Notes 7–19

• • • • • • • •

This replaces the assembly language modules with the �no-A5" versions.

All the �no-A5" versions have names that end in �x". It also updates the

library with the recompiled versions of the C modules.

Now we continue with the �no-floats" library.

4. Recompile xprintf and xscanf . Here you need the extra command line

option –P NO_FP_IO to generate the �no-floats" version of xprintf and

xscanf :

c68000 xprintf.c xscanf.c –P NO_FP_IO –ss libdata –sd

5. Pre-link xscanf and xprintf. Execute the following commands. Note

the output going to the special .in suffix:

llink xprintf.ol –lo –w –o xprintf.in
llink xscanf.ol –lo –w –o xscanf.in

6. Update the no-floats library index file. This is similar to step 3), except

that the only �no-A5" assembler module in the no-floats library is pmain :

libr –L lib000.nf –d pmain.ln –a pmainx.ln
libr –L lib000.nf –u

Now we continue with the long integer libraries. Here the procedure is

similar, except in the following ways. An additional option, –L is required

on all compilations. The list of �no-A5" assembler modules is different.

The library index file names are different. The linked module suffix names

.ln and .in are replaced with .lln and .iln .

7. Recompile all the C source files in the library, using –sd, –ss libdata
and –L . Execute a command like this for each c file:

c68000 abort.c –L –ss libdata –sd

8. Pre-link each object module same as step 2), except direct the output to

.lln , not .ln , for example:

llink strcpy.ol –lo –w –o strcpy.lln

9. Rebuild the library index files. Again refer to Table 7-1 to find which

modules must be replaced in library index file lib000.l . Execute these

commands:

Chapter 77–20
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

For the PC:

libr –L lib000.l –d adlnl.ln adlogl.ln
adsqrtl.ln dpfncs.ln dpopns.ln
fpopns.ln pmain.ln xlfncs.ln
–a adlnlx.ln adloglx.ln
adsqrtlx.ln dpfncsx.ln dpopnsx.ln
fpopnsx.ln pmainx.ln xlfncsx.ln

libr –L lib000.l –u

For Unix hosts:

libr –L lib000.l –d adlnl.ln adlogl.ln \
adsqrtl.ln dpfncs.ln dpopns.ln \
fpopns.ln pmain.ln xlfncs.ln
–a adlnlx.ln adloglx.ln \
adsqrtlx.ln dpfncsx.ln dpopnsx.ln \
fpopnsx.ln pmainx.ln xlfncsx.ln

libr –L lib000.l –u

This replaces the assembly language modules with the �no-A5" versions. It

also updates the library with the recompiled versions of the C modules.

Now we continue with the long integer, no-floats library. Note that the list

of assembly language modules is different here than it was in the short

integer library. For example, lib000.l uses adsqrtl.ln whereas

lib000 uses adsqrt.ln . Again, refer to Table 7-1 to find which modules

must be replaced in library index file lib000.l .

10. Recompile no-floats, long integer version of xprintf and xscanf :

c68000 xprintf.c xscanf.c –P NO_FP_IO –ss libdata –L –sd

11. Pre-link xscanf and xprintf . This is the same as step 5), except direct

the output to .iln instead of .in , that is:

llink xprintf.ol –lo –w –o xprintf.iln
llink xscanf.ol –lo –w –o xscanf.iln

12. Update the no-floats library index file:

libr –L lib000.lnf –d pmain.ln –a pmainx.ln
libr –L lib000.lnf –u

Application Notes 7–21

• • • • • • • •

If you are using a C++ library (cpp000.lib , cpp020.lib , cpp5206.lib
or cpp5206e.lib), it will need to be updated as well. Also note that

since C++ assumes –L , a C long library must also be created as shown

above. This example includes a rebuild of cpp000.lib.

1. Recompile all C++ source files using –sd and –ss libdata. Execute a

command like this for each C++ file:

cp68000 array_del.cpp –sd –ss libdata –I. ..\cppinc
 ––exceptions ––building_runtime

The cpp020.lib library was oringinally built using the MC68332

compiler, but other (non-68000) compilers could be used for this purpose.

2. Recompile the C file whatami.c :

c68000 whatami.c –sd –ss libdata

3. Pre-link each object module. Execute a command like this for each .ol
file for just created:

llink array_del.ol –lo –w –o array_del.0ln

The .0ln extension is used for cpp000.lib and the .2ln extension is

used for cpp020.lib .

4. Update the library index file:

libr –L cpp000.lib –u

The procedure is the same for every other target-specific library, except

that the library index files are different and the list of assembler modules

containing A5 references is different.

The following table summarizes all the assembler modules that use

A5-relative addressing and what library index files they belong to. In all

cases the name of the replacement no-A5 version is formed by adding an

�x" before the suffix. For example, the no-A5 replacement for adsqrt.ln
is adsqrtx.ln .

Here is how you use this table. Look up the library you are are rebuilding

on the left-hand column. Update the library index file by deleting the

named modules and adding their replacements. There is one table for

each library directory which covers all the library index files in that

directory.

Chapter 77–22
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Libraries Modules to be Replaced with no–A5
Versions

lib000 lib010 adln.ln adlog.ln adsqrt.ln

lib302 lib020s dpfncs.ln dpopns.ln fpopns.ln

lib030s pmain.ln xlfncs.ln

lib000.nf lib000.lnf pmain.ln

lib010.nf lib010.lnf

lib302.nf lib302.lnf

lib020s.nf lib030s.lnf

lib000.l lib010.l adlnl.ln adlogl.ln adsqrtl.ln

lib302.l lib020s.l dpfncs.ln dpopns.ln fpopns.ln

lib030s.l pmain.ln xlfncs.ln

lib302ap adln.ln adlog.ln adsqrt.ln

lib302at dpfncs.ln dpopns.ln fpopns.ln

pmn302a.ln xlfncs.ln

lib302ap.nf lib302ap.lnf pmn302a.ln

lib302at.nf lib302at.lnf

lib302ap.l adlnl.ln adlogl.ln adsqrtl.ln

lib302at.l dpfncs.ln dpopns.ln fpopns.ln

pmn302a.ln xlfncs.ln

lib000r adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmainr.ln xlfncs.ln

lib000r.nf lib000r.lnf pmainr.ln

lib000r.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmainr.ln xlfncs.ln

Table 7-1: Library index files (MC68000, MC68010, MC68302)

Application Notes 7–23

• • • • • • • •

Libraries Modules to be Replaced with no–A5
Versions

lib020s lib030s adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

lib020s.nf lib020s.lnf pmain.ln

lib030s.nf lib030s.lnf

lib020s.l lib030s.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

lib332 adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn332.ln xlfncs.ln

lib332.nf lib332.lnf pmn332.ln

lib332.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn332.ln xlfncs.ln

lib340 adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn340.ln xlfncs.ln

lib340.nf lib340.lnf pmn340.ln

lib340.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn340.ln xlfncs.ln

lib340b adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn340b.ln xlfncs.ln

lib340b.nf lib340b.lnf pmn340b.ln

lib340b.l adlnl.ln adlogl.ln adsqrtl.ln

 dpfncs.ln dpopns.ln fpopns.ln

pmn340b.ln xlfncs.ln

lib360 adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

Chapter 77–24
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Modules to be Replaced with no–A5
Versions

Libraries

pmn360.ln xlfncs.ln

lib360.nf lib360.lnf pmn360.ln

lib360.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn360.ln xlfncs.ln

lib360b adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn360b.ln xlfncs.ln

lib360b.nf lib360b.lnf pmn360b.ln

lib360b.l adlnl.ln adlogl.ln adsqrtl.ln

 dpfncs.ln dpopns.ln fpopns.ln

pmn360b.ln xlfncs.ln

lib332r adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn332r.ln xlfncs.ln

lib332r.nf lib332r.lnf pmn332r.ln

lib332r.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn332r.ln xlfncs.ln

lib030r adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn030r.ln xlfncs.ln

lib030r.nf lib030r.lnf pmn030r.ln

lib030r.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn030r.ln xlfncs.ln

Table 7-2: Library index files (MC68020, MC68030, MC68332, MC68340,
MC68360), no 68881/68882

Application Notes 7–25

• • • • • • • •

Libraries Modules to be Replaced with no–A5
Versions

lib020h lib030h acos.ln asin.ln log.ln

log2.ln log10.ln pmain.ln

sqrt.ln

lib020h.nf lib020h.lnf pmain.ln

lib030h.nf lib030h.lnf

lib020h.l lib030h.l acosl.ln asinl.ln logl.ln

log2l.ln log10l.ln pmain.ln

sqrtl.ln

lib030hr acos.ln asin.ln log.ln

log2.ln log10.ln pmn030r.ln

sqrt.ln

lib030hr.nf lib020hr.lnf pmn030r.ln

lib030hr.l acosl.ln asinl.ln logl.ln

log2l.ln log10l.ln pmn030r.ln

sqrtl.ln

Table 7-3: Library index files (MC68020, MC68030), with 68881/68882

Libraries Modules to be Replaced with no–A5
Versions

libe40 adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

libe40.nf libe40.lnf pmain.ln

libe40.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

Table 7-4: Library index files (MC68EC040)

Chapter 77–26
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Libraries Modules to be Replaced with no–A5
Versions

lib040 acos.ln asin.ln log.ln

 log2.ln log10.ln pmain.ln

sqrt.ln

lib040.nf lib040.lnf pmain.ln

lib040.l acosl.ln asinl.ln logl.ln

log2l.ln log10l.ln pmain.ln

sqrtl.ln

Table 7-5: Library index files (MC68040)

Libraries Modules to be Replaced with no–A5
Versions

libe60 adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

libe60.nf libe60.lnf pmain.ln

libe60.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

Table 7-6: Library index files (MC68EC060)

Libraries Modules to be Replaced with no–A5
Versions

lib060 acos.ln asin.ln log.ln

 log2.ln log10.ln pmainf.ln

sqrt.ln

lib060.nf lib060.lnf pmain.ln

lib060.l acosl.ln asinl.ln logl.ln

log2l.ln log10l.ln pmainf.ln

sqrtl.ln

Application Notes 7–27

• • • • • • • •

Modules to be Replaced with no–A5
Versions

Libraries

lib060r acos.ln asin.ln log.ln

log2.ln log10.ln pmn060rf.ln

sqrt.ln

lib060r.nf lib060r.lnf pmn060r.ln

lib060r.l acosl.ln asinl.ln logl.ln

log2l.ln log10l.ln pmn060rf.ln

sqrtl.ln

Table 7-7: Library index files (MC68060)

Libraries Modules to be Replaced with no–A5
Versions

lib5206 adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

lib5206.nf pmain.ln

lib5206r adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmainr.ln xlfncs.ln

lib5206r.nf pmainr.ln

Table 7-8: Library index files (MCF5204, MCF5206)

Chapter 77–28
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Libraries Modules to be Replaced with no–A5
Versions

lib5206e adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

lib5206e.nf pmain.ln

lib5206er adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmainr.ln xlfncs.ln

lib5206er.nf pmainr.ln

Table 7-9: Library index files (MCF5206E, MCF5249, MCF5349L,
MCF5272, MCF5280, MCF5282, MCF5307)

Application Notes 7–29

• • • • • • • •

7.6 POSITION-INDEPENDENT CODE

7.6.1 INTRODUCTION

The most common situation where position independence is desirable is

in conjunction with an operating system that supports the concept of a

dynamically loaded program. When the system is built, the dynamically

loaded program is compiled and linked, and then stored on an external

device. At run-time the program is loaded into memory by the system

loader and executed.

If the address of the dynamically loaded program can be predicted in

advance, then there is no need for position independence. One merely has

to locate the program at the address where it will be when it is executed.

This really is more like an overlay than a dynamically loaded program. If

the execution address is not determined until run-time, then the linker

cannot really know the absolute addresses of the code or data segments in

the program.

There are two general approaches which can be used. The first is to

arrange for the loader program to know where the address references are

in the program being loaded, and to have the loader update these

references as the program is being loaded. In some sense the loader

completes the work of the link editor, and so one says that the loader is

acting as a �linking loader". Systems that use a linking loader also do not

need position independence.

The alternative is to have the loader do no address correction during the

loading operation. However, since there is no way to predict where the

program will be loaded, there is certain to be a mismatch between the

addresses where the link editor thought the program would be loaded and

the address where it actually will be loaded. To say that the program is

position independent is equivalent to saying that the program will execute

properly even under these circumstances.

As will be explained below, position-independent code generation

patterns are less efficient than the patterns used by default. Generally

speaking, the cost is quite moderate if the application is small (less than

32K bytes). Larger applications, especially on a MC68000 rather than a

MC68020 or CPU32 processor, may suffer a larger performance

degradation. If these costs are not acceptable, then the best recourse is to

implement a linking loader.

Chapter 77–30
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

It does require some work to implement a linking loader. There is no

simple industry standard download format for a relocatable program

image. For absolute program images there are many standards (Motorola

S-records, Tekhex, and so on). Consequently, users who wishes to use a

linking loader must design their own download format, write their own

loader, and write a utility program that converts the relocatable module file

(the .ln file) into their relocatable download format. While

straightforward, these tasks do require some effort. In contrast, writing a

non-linking loader program that reads a standard absolute format like

S-records is very simple.

7.6.2 HOW POSITION INDEPENDENCE IS ACHIEVED

Programs cannot always be moved from place to place and still execute

correctly because references to code or data may become incorrect when

the objects they refer to are moved. The M68000 family processors support

three general forms of memory references:

• Direct Addressing

The address of the memory location is expressed as a constant

address. Usually this is a 32-bit constant, but it can be expressed as

a 16-bit constant which is sign-extended to form the address.

• PC-relative Addressing

The address of the memory location is expressed as a displacement

which is added to the value in the PC at the time of the reference to

form the address.

• Register-based Addressing

This includes all other addressing modes. The address is usually

expressed as a sum of registers and constants.

Some examples might make this more clear. Suppose we have a procedure

named f which we wish to call. Here are three different ways we could

call f :

JSR f Direct Addressing

BSR f PC-relative Addressing

JSR (A0) Register-based Addressing

Application Notes 7–31

• • • • • • • •

In the third case, A0 is assumed to contain the address of f .

It is clear that the direct addressing case is never position independent.

The instruction contains the absolute address of the object being

referenced (f). If f is moved, then the reference becomes invalid. On the

other hand, the instruction containing the JSR can itself be moved without

causing problems. It is the destination of the call that matters.

PC-relative addressing will remain correct, as long as both the object

being referenced (f), and the instruction making the reference, are moved

by the same amount. In that case the difference between their addresses

remains constant, and it is this difference that is contained in the

instruction. However, if only one of the two are moved, or if both are

moved by different amounts then the reference becomes incorrect.

Register-based addressing will remain correct, as long as the value in the

A0 register is adjusted so that it points to the address to which f was

moved. Naturally this depends on how A0 was set up. For example,

suppose the instruction that set up A0 looked like this:

MOVEA.L #f ,A0

In this case the register-based addressing would behave just like the direct

addressing case, i.e., not position independent, because the MOVEA

instruction contains the absolute address of f . On the other hand, suppose

A0 was set up like this:

 LEA f (PC),A0

Then register-based addressing would behave just like the PC-relative

case.

Another alternative is for A0 to be set by the operating system. For

example, suppose f is the main entry point into a dynamically loaded

program. Then the system call that causes f to be loaded would

presumably return the address of f to the caller. In that case the

register-based addressing would be position-independent. It would reach

f no matter where f was loaded.

Chapter 77–32
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

The C compiler always uses register-based addressing for calls through

�pointer-to-procedure" variables. By default, the compiler uses direct

addressing when assigning the address of a named function to a

pointer-to-procedure variable. When the position-independent code

options, –ps or –pc , are present, the compiler uses PC-relative addressing

instead. Therefore pointer-to-procedure variables work correctly as long

as the procedure which assigns the pointer and the procedure being

assigned are part of the same position-independent unit.

If an application needs to access code that is outside the

position-independent unit, such as operating system services, then there

are two ways to do so. One is to use a pointer-to-procedure variable

which is deliberately initialized in a non position-independent manner.

This could be done by C code compiled without the position-independent

options, or by assembly language using direct addressing. The other is to

use TRAP instructions and interrupt handlers.

7.6.3 POSITION INDEPENDENCE AND DATA

REFERENCES

By default, the compiler references most data via register-based

addressing. By default, global and static data is referenced via A5. Separate

data and string literals (quoted strings), on the other hand, are referenced

via direct addressing. Since direct addressing is incompatible with position

independence, the compiler must be forced to use either PC-relative

addressing or A5-relative addressing instead.

First, let's discuss the consequences of PC-relative addressing. The –pd
option forces the compiler to use PC-relative addressing for data in cases

where it would have used direct addressing. If you use PC-relative

addressing for data, then there are three requirements:

• The data and the code must be relocated together so that their relative

offset remains constant. This is not necessary when using A5-relative

addressing, since the base address for data (in A5) is not related to the

code.

• PC-relative global data, like directly addressed data, is not reentrant.

A5-relative data, on the other hand, can be made reentrant by

dynamically allocating the A5-relative data area. If your system

generates multiple real-time tasks executing the same code, then you

must avoid using non-constant separate data.

Application Notes 7–33

• • • • • • • •

• If your hardware uses separate code and data address spaces, then you

must also supply the –id option. This option informs the compiler that

instruction and data storage is different. Since PC-relative addressing

generates a code fetch, the compiler must avoid using PC-relative

addressing on data fetches. However, it can still use an LEA with a

PC-relative addressing mode to compute an address which it uses to

reference data. Examples are supplied below showing how this works.

If these requirements are acceptable to you, then you can achieve

position-independence for data merely by supplying the –pd option in

addition to the –ps or –pc option.

If you cannot arrange for the code and data to be relocated together then

you cannot use PC-relative addressing for data at all. In that case you must

adopt a strategy of making all non-stack data A5-relative. To be precise,

building a system in which all non-stack data is addressed via A5 can be

achieved by the following steps:

1. Remove any #pragma separate or #pragma sep_on directives from

your code. Avoid using the following compiler options: –cs , –sd , –ss ,

–sc , and –pd . This ensures that there will be no separate data in your

system.

2. Supply the –si option on all compilations. This causes string literals to be

allocated in the idata segment.

3. If the total size of data is more than 64K bytes, supply the –b5 option.

This forces the compiler to use 32-bit A5-relative offsets instead of 16-bit

offsets, and thus relaxes the 64K-byte limit on A5-relative data.

4. If the total size of code is less than 32K bytes, supply the –ps option;

otherwise supply the –pc option.

If your system requires reentrancy, then you cannot use PC-relative

addressing for non-constant data. Building a system in which all

non-stack non-constant data is addressed via A5, but constant data is

addressed via PC-relative addressing, can be achieved by the following

steps:

1. Use #pragma separate or #pragma sep_on directives only when they

affect read-only variables. You may also use –cs , which makes all

const-qualified variables separate. Do not use –sd , –ss , or –sc .

2. Supply –pd on all compilations.

3. Supply –b5 if the total size of A5-relative data is more than 64K bytes.

Chapter 77–34
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

4. If the total size of code, separate data, and string literals is less than 32K

bytes, supply the –ps option. Otherwise, supply the –pc option.

Whatever method you choose, the compiler's run-time library must be

rebuilt using these same procedures. See the Run-Time Library appendix

of the Reference Manual for details about how to recompile the run-time

library. The run-time library sources do not have any non-constant

separate data, but it does have both read-write A5-relative data and

constant separate data.

The A5-only strategy is probably the most efficient approach if there is

less than 64K bytes of A5-relative data. The 16-bit A5-relative addressing

mode is quite efficient. However, if there is more than 64K bytes of

A5-relative data, then the –b5 option is necessary, and this imposes a

significant performance penalty. In that case it might be better to try to

keep the A5-relative data area under under 64K by using some separate

data and/or allocating string literals outside the A5-relative data area.

Here are some examples which should make it more clear how these

various methods and options work. Consider these declarations and

assignments:

#pragma separate s
long s;
long a;
s = a;
a = s;

Application Notes 7–35

• • • • • • • •

Here are some typical code patterns which might be generated for these

assignments under various combinations of options. Note that PC-relative

addressing may not be used for destination operands, and that –id means

that PC-relative addressing may not be used for source operands either.

Also, the 68000 target does not support 32-bit offsets in addressing modes,

so these addressing modes must be simplified before they can be used.

The actual addressing modes being used are shown, as well as the total

count of bytes and cycles. Cycles counts were obtained by adding together

the �cache case" for the 68020 processor. Timing would be different on

other processors. The actual code sequences used by the compiler in any

given program would depend on surrounding context and other compiler

options.

Default options: 16 bytes, 17 cycles:

MOVE.L _a–data(A5),_s d16(An),d32 8/10
MOVE.L _s,_a–data(A5) d32,d16(An) 8/7

–pd , 68020: 22 bytes, 38 cycles:

LEA (_s,PC),A0 (d32,PC),An 8/14
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
MOVE.L (_s,PC),a–data(A5) (d32,PC),d16(An) 10/16

–pd , 68000: 26 bytes, 36 cycles:

MOVE.L #_s–*–8,D0 i32,Dn 6/6
LEA *+2(PC,D0.L),A0 d8(PC,Dn),An 4/6
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
MOVE.L #_s–*–8,D0 i32,Dn 6/6
MOVE.L *+2(PC,D0.L),a–data(A5) d8(PC,Dn),d16(An)
 6/10

–pd , 68020, –id : 24 bytes, 33 cycles:

LEA (_s,PC),A0 (d32,PC),An 8/14
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
LEA (_s,PC),A0 (d32,PC),An 8/14
MOVE.L (A0),a–data(A5) (An),d16(An) 4/7

Chapter 77–36
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

–pd , 68000, –id : 28 bytes, 39 cycles:

MOVE.L #_s–*,D0 i32,Dn 6/6
LEA *–6(PC,D0.L),A0 d8(PC,Dn),An 4/6
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
MOVE.L #_s–*,D0 i32,Dn 6/6
LEA *–6(PC,D0.L),A0 d8(PC,Dn),An 4/6
MOVE.L (A0),a–data(A5) (An),d16(An) 4/7

–pd , –ps : 14 bytes, 20 cycles:

LEA _s(PC),A0 d16(PC),An4/4
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
MOVE.L _s(PC),a–data(A5) d16(PC),d16(An)6/8

–pd , –ps , –id : 16 bytes, 23 cycles:

LEA _s(PC),A0 d16(PC),An 4/4
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
LEA _s(PC),A0 d16(PC),An 4/4
MOVE.L (A0),a–data(A5) (An),d16(An) 4/7

–b5 , 68020: 24 bytes 34 cycles:

MOVE.L (_a–data,A5),_s(d32,An),d32 12/18
MOVE.L _s,(_a–data,A5)d32,(d32,An) 12/16

–b5 , 68000: 28 bytes, 33 cycles:

MOVE.L #_a–data,D0 i32,Dn 6/6
MOVE.L (A5,D0.L),_s d8(An,Dn),d32 8/12
MOVE.L #_a–data,D0 i32,Dn 6/6
MOVE.L _s,(A5,D0.L) d32,d8(An,Dn) 8/9

Here are some of the things this table demonstrates:

• All the position-independent methods impose some penalty in size or

speed or both.

• The A5 + 16-bit offset and PC + 16-bit offset addressing modes are

very efficient. However, the A5 + 16-bit mode is more applicable. It

can be used as source or destination, and only imposes a limit of 64K

bytes on data size. The PC + 16-bit mode can only be used as a

source, and even then only if the –id option is absent, and it imposes

a limit of 32K bytes on the total amount of code and data.

• All the other addressing modes are larger and slower, especially on the

68000 target.

Application Notes 7–37

• • • • • • • •

The choice of whether to use A5-relative addressing or PC-relative

addressing for data may also be influenced by issues of reentrancy and

storage management. Generally speaking, if you have one program which

may be reentered, then A5-relative data will be private (unshared), while

PC-relative data will be public (shared). If your application require shared

data, then you must support some PC-relative data. If your application

requires private data, then you must support some A5-relative data. All

things being equal, the best strategy is probably to have the constant data

be shared, and the non-constant data be private. This avoids unnecessary

duplication of constants.

If your system separates code and data into two different address spaces,

then it may be difficult for you to cause data to be relocated together with

code. In that case you cannot use PC-relative addressing for data, and

must instead use the pure A5-relative strategy.

7.6.4 POSITION INDEPENDENCE AND DATA

INITIALIZATION

In C, the initial value of a global or static variable must be a constant.

Addresses of global or static variables, string literals, and functions are all

considered to be constant. In a position-independent world, such

addresses are only run-time constants, not link-time constants. In fact, in a

program which dynamically allocates the A5-relative data area, addresses

of A5-relative data items are also not really constant.

This creates special problems for data initializations which involve

addresses. For example:

char *p = ”abc”;
char **q = &p;

Here �p" is supposed to be initialized with the address of the string of

characters �abc ", and �q" is supposed to be initialized with the address of

�p". Under position-independence, the only way such initialization can be

performed is with run-time code, because the addresses of �abc " and �p"

are not known until the program begins execution. When the

position-independent code options are present, the compiler will emit a

warning for such initializations:

Address initialization not position–independent
(Warning only)

Chapter 77–38
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

The only way such initializations could be made to work is if the loader

program adjusts these initializations when the proper addresses become

known. Of course, if the loader were capable of this, then

position-independence would not be required at all. Assuming the loader

is not capable of adjusting these initializations, the only other strategy is to

avoid using these kinds of initializations.

If you have an address initialization, the best strategy is to replace the

initialize address value with 0 (null pointer), and then assign the correct

address value with an assignment statement which would be executed

somewhere before the first reference to the variable. Your �main" routine

would be a good spot to put such assignments.

7.6.5 BUILDING A POSITION-INDEPENDENT SYSTEM

There are many ways to build position-independent systems. The

following example describes one way of doing it, but there are many

alternatives. In this example, we discuss building a system consisting of a

root portion which will be in the initial system load and two collections of

subroutines which would be loaded dynamically.

To allow the dynamically loaded modules to use run-time library routine

and system service routines in the root, we devised a system of special

�.h " header files.

The idea behind these special �.h " headers is to distinguish calls to the

root (which should NOT be position-independent) from calls to other

modules in the same position-independent package (which should be

position-independent). Since the root does not move with the

position-independent module, we want calls to the root to always go to

the same place. Note that we do not allow calls from one

position-independent package to another.

We placed these special headers in a separate directory which we name

with a –S option ahead of the standard run-time library when compiling

our position-independent code. Here is an example showing what these

special headers look like:

_CASM int printf(char *p, ...) {
XREF _printf
JSR _printf

}

Application Notes 7–39

• • • • • • • •

These headers redefine the normal C library routines as in-line assembly

language routines consisting only of a non-position-independent call. This

�trick" allows us to code ordinary-looking calls to the root, but still get the

code we require.

The data usage pattern for our application did not present any special

problems. Each position-independent module had its own private data,

and did not contain any references to the data in the root. Thus we were

able to adopt a relatively simple convention for data. All the data

belonging to each position-independent module will be made separate. It

will be collected together in a single segment which will become part of

the position-independent unit and will move with it as it is relocated. It

will be accessed via PC-relative addressing.

Data in the root will be A5-relative. Since the run-time library routines are

only called from the root, we do not need to rebuild the run-time library

to make it position-independent.

Here are the steps we used to build this system:

1. Compile all the root modules with no special options.

2. Compile all the dynamically loaded modules for the first package. We

supply the special header files via –S, and we make sure that there are no

address initializations anywhere in this source. We add the –sc p1data
option to make all data separate, in data segments of class p1data . We

also supply –ps and –pd , to make the code position-independent and the

(separate) data PC-relative. Finally, we add –cc p1code to assign a

uniform class name for all the code in these modules.

3. Compile all the dynamically loaded modules for the second package. We

supply the same options as in step 2, except that we use –sc p2data and

–cc p2code instead of –sc p1data and –cc p1code . This separates

the code and data for this package from the code and data for the first

package.

4. Link all modules together into a single .ab file. Use use locator commands

to control the placement of segments in target memory. Our goal is to

locate all the code and data in the each position-independent package in

its own address range. It doesn't matter much what address range we use,

because the program will not actually be loaded at that address. The

following locator commands cause the first position-independent module

to be located between addresses 100000 and 150000 (hex), and the second

module to be located between addresses 200000 and 250000 (hex):

Chapter 77–40
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

LOCATE ({p1code} {p1data} : #100000 TO #150000);
LOCATE ({p2code} {p2data} : #200000 TO #250000);

We locate the root code and data in the range of addresses where it will

actually run. In our target system, we plan to have ROM in the address

range between 0 and 20000 (hex). We make sure that only root code and

constant data will be placed in this area. We plan to have RAM in the

address ranges above 20000 (hex). We make sure that root data will be

located in this area. Here are the locator commands that will do this:

LOCATE ({code} {constant} : #0 TO #20000);
LOCATE ({data} : AFTER #20000);

5. Once the link is finished, we format the resulting .ab file. We want to

form three hex files: one for the root and one for each

position-independent module. There are several ways to do this. One is to

tell the formatter to format a particular address range. Another is to tell the

formatter to include a named class of segments, excluding all others.

Another is to tell the formatter to exclude a named class of segments,

including all others. Here is an example showing how to extract the first

position-independent module by including only the segments in class

p1code and p1data :

form module.ab –ic p1code p1data –o p1.hex

Here the –ic option specifies the classes of segments to include. Here is

an example that extracts the root by excluding both position-independent

packages:

form module.ab –ec p1code p1data p2code p2data
 –o root.hex

Here the –ec option specifies the classes of segments to exclude. Here is

an example that extracts the second position-independent package by

specifying the address range containing that module (100000 to 150000

hex):

form module.ab –a 100000 –w 50000 –o p2.hex

Here the –a option defines a starting address, and the –w option defines a

size. So this command generates a download file that represents the values

between hex 100000 and 150000.

Application Notes 7–41

• • • • • • • •

7.6.6 SOME ADDITIONAL HINTS

If our application did have sharing of data between the root and the

position-independent modules, then our approach would have been

slightly different. First we would not use the –sc option when compiling

the position-independent modules. By using –sc , we are telling the

compiler that all data is separate. This is not the case anymore, since the

compiler must be told that the shared root data is A5-relative.

We can still make the position-independent data separate, but we would

have to use the #pragma separate or #pragma sep_on directives

rather than command line options to do it. Alternatively, we could make

the position-independent data A5-relative. However, this would mean that

this data would now be located in the root. It might be important to save

valuable space in the root by having the data belonging to the

position-independent module located with the position-independent

module, outside the root.

Chapter 77–42
C
O
D
E

7.7 GETTING THE BEST CODE FOR YOUR

APPLICATION

The compiler has many options which affect optimization. Most of these

options disable optimization in order to make the code easier to debug.

However, there are circumstances where tradeoffs must be made. In these

cases the right choice depends on your particular application. This

application note describes the issues involved to help you make the best

choices.

7.7.1 CODE SIZE VERSUS EXECUTION SPEED

The first thing to consider is whether your application should be optimized

for execution time or code size. The –ot option directs the compiler to

use any means necessary to optimize for time, and the –os option directs

the compiler to optimize for size. The default behavior is to optimize for

time, but in moderation. Certain very space-intensive optimization

techniques, such as loop unrolling, are not enabled by default, only under

–ot .

For most applications both code size and execution speed are important.

Usually the best strategy in these cases is to identify which modules are

executed most often and compile them to optimize execution time. Most

modules are executed infrequently, and they can be optimized for code

size. The conventional wisdom, sometimes referred to as the �90-10" rule,

is that 90% of the time is spent executing 10% of the code.

7.7.2 IF STATEMENTS

Suppose you have an if statement with an else clause:

if (expr) {
true_clause;

} else {
false_clause;

}

Application Notes 7–43

• • • • • • • •

This generally compiles into code that looks like this:

test expr
branch on condition to false clause
true clause
branch unconditionally around false clause
false clause

From this example, you can see that you are better off putting your more

frequently executed code in �false clause". This is because execution of

the �false clause" requires one branch-taken, where execution of the �true

clause" requires one branch-not-taken and one branch-taken. This is

especially true for the MC68040, which favors branch-taken over

branch-not-taken.

7.7.3 USING INTEGER DATA

There are a number of coding techniques which can be used when

dealing with integer variables. On the one hand, one can take care to

declare each variable with the smallest type which can hold all the values

you expect to store in that variable. Alternatively, you can declare all your

integral variables as 32-bit integers. Which is best?

The strategy of using all 32-bit integers avoids generating any code to

sign-extend 16-bit values to 32 bits. These operations would otherwise

occur whenever 16-bit variables are combined with 32-bit variables.

However, there are a number of inefficiencies in 32-bit variables.

On the 68K family processors, 32-bit multiply and divide operations are

very much slower than 16-bit multiply and divide. In fact, the 68000,

68010, and 68302 processors have no long multiply or divide instruction,

so such operations are done out-of-line in a library routine. Naturally you

will want to avoid such operations whenever possible.

The compiler does optimize divide and mod by powers of two and most

multiplications by constants. For example, multiplication by four is

performed using a left shift, not a multiply instruction.

Another important fact is that 32-bit constant operands are considerably

more expensive than 16-bit constant operands. In fact, on all processors

but the 68040 and 68EC040, this sequence:

MOVEQ.L #100,D0
MOVE.L D0,(A0)

Chapter 77–44
C
O
D
E

is actually smaller and faster than this sequence:

MOVE.L #100,(A0)

Of course, this simplification can only be performed if the value of the

constant is between -128 and +127. Even so, this shows how slow the

32-bit constant operand is: you can run a whole extra instruction in less

time than the difference between a constant operand and a register

operand.

For these reasons, it is generally more efficient to use 16-bit variables than

32-bit variables. However, there is no further advantage to using 8-bit

variables instead of 16-bit variables. The cost of any operation is the same

whether it is done in 8 bits or 16 bits. In fact, the 8-bit operations usually

are more expensive, because of the additional sign-extension operations

which can occur.

In summary, we recommend:

• Only use byte variables in large arrays when the savings in data size

make them worthwhile. Local variables should always be at least 16

bits wide.

• Try to avoid combining 16-bit integers with 32-bit integers. For

example, suppose you have two counters which will be added

together, and one of them must be 32 bits wide. Then it is probably

better to make the other counter 32 bits wide also.

• Avoid 32-bit multiply and divide operations whenever possible.

7.7.4 SIZE OF INT DATA TYPE (68K ONLY)

The 68K compiler allows you to determine the size of the built-in int
data type (by default the size of int is 16 bits). It is of course possible to

declare integers of any size, whether you use –L or not. For example, you

can use #define 's like these:

#define INT32 long
#define UINT32 unsigned long
#define INT8 signed char
#define UINT8 unsigned char

If you use –L , you would complete the set with these #define 's:

#define INT16 short
#define UINT16 unsigned short

Application Notes 7–45

• • • • • • • •

If you do not use –L , you would use these #define 's instead:

#define INT16 int
#define UINT16 unsigned int

However, even if you use #defines like these everywhere in your program,

there are still some differences between –L programs and non-�–L"

programs. If you are using a processor with a 32-bit data bus, it is

probably best to use the –L option, which makes int 32 bits wide. This is

a rather subtle point, and depends on close reading of ANSI C.

The biggest different is in parameter passing. In C, all integral arguments

smaller than int are widened to int before they are pushed onto the

stack. Thus if you compile with –L , then you will always pass integers as

32 bits. If you compile without –L then you will pass small integers as 16

bits.

Passing arguments as 16 bits saves some stack space, and makes better

code for passing small integer constant arguments. However, it has two

distinct disadvantages:

• The stack may become misaligned:

This is only an issue with processors having a 32-bit data bus. On

these processors, a fullword access to a fullword-aligned address

executes faster than a fullword accesses to a non-fullword-aligned

addresses. If an odd number of parameter words are pushed on the

stack, then the next frame will be misaligned, causing inefficient

accesses to variables on the stack. This is not an issue for processors

having a 16-bit data bus, because word alignment is just as fast as

fullword alignment on those processors.

• Procedure call mismatch errors can occur:

If you have a procedure which expects a long (32-bit) parameter, and

you accidently pass it an argument of type int , then only 16-bits will

be pushed on the stack if –L is not supplied. This would cause the

code to execute incorrectly. These errors can be avoided by using

function prototypes, of course. However, if you don't always use

prototypes, then you must code like this:

f ((INT32)6);

OR:

f (6L);

Chapter 77–46
C
O
D
E

Another difference between –L and non-�–L" compilation is the semantics

of 16-bit arithmetic. Suppose you add two 16-bit integers and store the

result in a 32-bit integer. Under –L , C says that you sign-extend both

16-bit integers to 32 bits and then add them as 32-bit integers. Under

non-�–L", C says that you add them as 16-bit integers, and then

sign-extend the result to 32 bits. These two sequences give the same

answer if the result is in range for a 16-bit integer. If the answer is not in

range, then the –L sequence will compute the correct answer and the

non-�–L" sequence will truncate.

Generally speaking, the –L sequence is to be preferred, because it always

gets the right answer. However, the non-�–L" sequence is more efficient.

If you add two 16-bit integers and store the result in a 16-bit integer, then

both the –L and non-�–L" cases would generate the same code: add the

two 16-bit integers as 16-bit integers. Any overflow would be truncated

away, so this is legal.

In summary:

• The default (not –L) compilation model is likely to be more efficient

for 16-bit operations, but it can be more error-prone. Operations done

in 16 bits may cause destructive overflow, and more kinds of

parameter-argument mismatch errors are possible.

• The –L compilation model is probably better for the 68020, 68030,

68040, 68060 and EC-series processors because it guarantees that the

stack will remain fullword aligned.

7.7.5 COMPILATION MODELS FOR DATA

The compiler supports several different strategies for addressing data.

Although the default models are usually best, it is sometimes possible to

improve efficiency by using a different model.

First, consider data on the stack. Normally, the compiler uses a frame

pointer (A6) to address variables on the stack. This straightforward scheme

is used by almost all 68K-family compilers. However, it does consumes a

valuable register (A6), and requires a relatively expensive instruction pair

to set up A6 (LINK/UNLK).

Application Notes 7–47

• • • • • • • •

The alternative is to use the stack pointer (A7) to address variables on the

stack. This is very much more complicated for the compiler, because A7

moves around every time something is pushed on the stack. It also makes

it just about impossible for the debugger to keep track of what is going

on, and it makes it harder to read and understand the code. Nevertheless,

this does lead to more efficient code. This �no frame pointer" strategy is

selected by using the –n6 option. Code compiled with –n6 can be

successfully combined with code that is compiled without –n6 , so it is not

necessary to rebuild the run-time library to use –n6 .

Next, consider the non-stack data. Normally, the compiler uses the �16-bit

displacement from A5" addressing mode, �d16(A5) ", to access non-stack

data. Variables marked as �separate", either by the �#pragma separate "

directive or various compilation options are addressed via 32-bit direct

addressing, �d32 ".

The �d16(A5) " addressing mode is smaller than the �d32 " addressing

mode, and slightly faster in most cases. However, this strategy does

consume the valuable A5 register. The �no-A5" strategy may be very much

better if your application spends a lot of time in subroutines that can use

the additional A5 register effectively.

The �no-A5" compilation strategy is relatively more effective on the 68040

and the 68EC040 processors. This is because these processors execute the

�d32 " addressing mode at the same speed as �d16(A5) ", rather than

slightly slower. So there is no speed advantage gained by using A5. In fact,

there is one case where using �d32 " over �d16(A5) " yields a speed

advantage. The most common case is where the address of a non-stack

variable is assigned to a pointer which is not in a register. If the variable is

separate, then you get this instruction:

MOVE.L #d32,pointer

If the variable is A5-relative, then you get these two instructions:

LEA.Ld16(A5),A0
MOVE.L A0,pointer

On a 68040, the first sequence is faster. On a 68020 they are equally fast.

Thus, on a 68040, the �no-A5" strategy can be expected to to run slightly

faster than the default �A5" strategy.

Chapter 77–48
C
O
D
E

To use the �no-A5" compilation strategy, supply –n5 and one of –sd , –ss ,

or –sc . This makes all your non-stack data �separate", i.e., directly

addressed, and tells the compiler that it may use A5 for other purposes.

Note that you must also build yourself a �no-A5" run-time library. This

process is described in detail elsewhere in the User's Manual.

The �no-A5" strategy does have other implications. For example,

A5-relative data can be dynamically allocated, where separate data must

be statically allocated. This consideration may prevent you from using the

no-A5 strategy for your application.

Application Notes 7–49

• • • • • • • •

7.8 SUPPORT FOR THE ON-BOARD PERIPHERALS OF

THE 68332, 68340, AND 68360

The run-time libraries contain many files to support access, via C or

assembly language, to the on-board peripheral units of the 68332, 68340,

and 68360 processors. Access to the peripheral components is achieved

through the use of C and assembly language include files. These files are

listed below:

CPU Peripheral
 C
 Include
 File

Assembly Language
Include File

68332 System Integration Module sim30.h sim30.h68

68332 Queued Serial Module qsm30.h qsm30.h68

68332 Standby RAM ram30.h ram30.h68

68332 Timer Processor Unit tpu30.h tpu30.h68

68340 System Integration Module sim40.h sim40.h68

68340 Direct Memory Access
(DMA) Controller Module

dma40.h dma40.h68

68340 Serial Module sio40.h sio40.h68

68340 Timer Modules tim40.h tim40.h68

68360 System Integration Module sim60.h sim60.h68

68360 Communication Processor
Module

cpm60.h cpm60.h68

68360 Dual–Port RAM dpram60.h dpram60.h68

Table 7-10: Include files

In the C include files listed above, several C types are used to describe the

components of the various peripherals. These C types are defined in the

library include file stypes.h . You do not need to include this file

yourself, because it is included by the C include files listed above. The

fundamental types defined in stypes.h are _BYTE (an unsigned char

type), _WORD (a 16-bit unsigned integer type), and _DWORD (a 32-bit

unsigned integer type).

Chapter 77–50
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Each C include file above defines a structure whose fields correspond to

the particular peripheral unit's components. As an example, to access the

Module Control Register (MCR) of the 68332's System Integration Module

(SIM), you might have code like the following:

#include ”sim30.h”
...
if (_SIM.MCR == init_value) {
...
}

Each assembly language include file uses EQU statements to define the

peripheral components as offsets from the peripheral's base address. Thus,

to access the Module Control Register (MCR) of the 68332's System

Integration Module (SIM) via assembly language, you might have code like

the following:

include ’sim30.h68’
...
move.w __MCR,d0
...

The C include files for the 68340's Serial Module (sio40.h) and for the

68360's Dual-Port RAM (dpram60.h) are a little more complicated.

In the case of the 68340's Serial Module, there are some components

which are read-only, some which are write-only, and some which are

read/write. Some of these read-only and write-only components are

mapped into the same location. The components which can be both read

and written are accessed through the external variable, _SIO . Those which

are read-only are accessed through either _SIO or _SIOR; the

components which are write-only are accessed through _SIOW. For

example, the following names all reference a register that is at located

0x11 bytes from the start of the SIO module:

_SIO.SRA –– Status Register A (read–only)
_SIOR.SRA –– Status Register A (read–only)
_SIOW.CSRA–– Clock Select Register A (write–only)

However,

_SIO.CSRA –– Clock Select Register A (write–only)

is illegal since CSRA is a write-only component; it is not a field of the

_SIO structure.

Application Notes 7–51

• • • • • • • •

In the case of the 68360's Dual-Port RAM, the memory map can be used in

different ways so it is defined using multiple levels of structures and

unions. Here are some sample references to components of the Dual-Port

RAM:

#include ”dpram60.h”

 ...

i1 = _DPRAM.USR_DATA[1]; /* User Data / BDs / Microcode */

/* Program */

i2 = _DPRAM.SCC1.UART.TBASE; / * UART–mode SCC1 Tx BD Base */

/* Address */

i3 = _DPRAM.SCC2.HDLC.C_MASK; /* HDLC–mode SCC2 CRC Constant */

i4 = _DPRAM.SCC1.BISYNC.BDLE; /* BISYNC–mode SCC1 BISYNC DLE */

/* Character */

i5 = _DPRAM.SCC1.TRANS.TSTATE; /* Transparent–mode SCC1 Tx */

/* Internal State */

i6 = _DPRAM.SPI.RBASE; /* SPI Rx BD Base Address */

i7 = _DPRAM.TIMER.R_TMR; /* RISC Timer Mode Register */

i8 = _DPRAM.IDMA1.ISTATE; /* IDMA Internal State */

i9 = _DPRAM.SMC1.UART.TBASE; /* UART–mode SMC1 Tx BD Base */

/* Address */

i10 = _DPRAM.SMC1.TRANS.RBASE; /* Transparent–mode SMC1 Rx BD */

/* Address */

i11 = _DPRAM.SMC1.GCI.CI_RxBD; /* GCI–mode SMC1 C/I Channel Rx BD */

...

Code which uses any of these C or assembly language include files (and is

linked with the appropriate run-time library) is automatically linked with a

target-specific object module which defines a segment containing entry

points for that target's peripheral units. For the 68332, this object module is

from the run-time library file mc68332.68k . For the 68340, the run-time

library file is mc68340.68k . For the 68360, the file is mc68360.68k .

On reset, the 68332 peripheral areas are mapped into 68332 memory

starting at address 0xFFFA00. However, by clearing the MM bit in the

System Integration Module (SIM) Module Control Register (MCR), you can

remap them into addresses starting at 0x7FFA00. If you choose to do this,

you must also change the absolute location of the MC68332_SUBSYSTEMS
segment defined in the mc68332.68k module.

If the 68340 or 68360 is NOT being used with the corresponding debug

monitor (e.g., 340bug or 360bug), then the peripheral areas may be

mapped into any 4K-byte aligned address. The address of the area used

must be written into the Module Base Address Register (MBAR) before the

on-chip peripherals can be used. For the 68340, the MBAR is set up by the

68340 version of pmain , defined in the file pmn340.68k . For the 68360,

the MBAR is set up by the 68360 version of pmain , defined in the file

pmn360.68k .

Chapter 77–52
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

If the 68340 or 68360 is being used with the corresponding debug monitor,

the MBAR is already set up by the monitor. Thus, the 68340 and 68360

libraries that should be used with a debug monitor do not set the MBAR.

Instead, the mc68340b.68k and mc68360b.68k files define an absolute

segment containing the entry points for the on-board peripherals.

For more information, refer to the run-time library files mentioned above.

A

C LANGUAGE
SPECIFICATIONS

A
P

P
E

N
D

IX

Appendix AA–2
C

 L
A

N
G

U
A

G
E

A

A
P

P
E

N
D

IX

C Language Specifications A–3

• • • • • • • •

This appendix discusses preprocessor extensions, in-line assembly, ANSI C

function prototypes, the const type qualifier, the volatile type qualifier, and

implementation-defined behavior.

1 INTRODUCTION

The 68K/ColdFire C language consists of ANSI standard C, plus some

extensions described in this appendix. This appendix also focuses on

some of the new parts of ANSI C and how they interact with various

compiler options. The final section describes how some aspects of ANSI C

that are �left to the implementation" have been done by the 68K/ColdFire

compiler.

There are some aspects of ANSI C which are only supported in the

presence of compiler options. This is done in the interest of backwards

compatibility and code quality. For example, ANSI C requires that the size

of the �short" data type to be at least 16 bits long. By default the 68K

compiler (not ColdFire) maps the �short" data type into an 8-bit integer.

Therefore the 68K compiler is not ANSI compliant unless one of –L (16-bit

shorts, 32-bit ints) or –D s2s (16-bit shorts) is supplied. There are two

other cases discussed below where the default behavior of the compiler

does not agree with the ANSI standard, but these are unlikely to affect

most users. See the C Compiler chapter for more details.

ANSI C permits floating-point expressions to be computed in greater

precision than their types would indicate, but it does not permit

floating-point variables to be stored in greater precision than their type.

This requirement has no special implications in the software floats case.

However, in the hardware floats case this requirement makes

floating-point register variables illegal, since 68881/68882 floating-point

registers hold 80-bit extended precision values. Strict adherence to this

rule is quite expensive in code quality terms, so it is only provided if the

–sp option is supplied.

Finally, ANSI C permits redundant declarations of the form:

int i;
int i = 1;

Appendix AA–4
C

 L
A

N
G

U
A

G
E

to appear within a single module. Since the 68K/ColdFire compiler

segregates initialized from uninitialized data via the idata /udata
segments, this requirement forces the compiler to delay emitting data

allocation statements for uninitialized variables until the end of the

compilation. This requirement slows down the compiler and has the

possibly undesirable side effect of emitting uninitialized declarations in a

different order than their original declarations.

This change should not affect legal C programs, but in practice it may

cause programs to execute differently. For this reason this kind of

declaration is only permitted if the –dd option is supplied.

Note that these two declarations would not be legal if they were compiled

in separate modules and linked together. This is not a violation of the

ANSI C standard. The 68K/ColdFire compiler implements the �strict def-ref

model" of external names. Every external name must have exactly one

module containing a �defining declaration", i.e., one without the extern
keyword. All other modules must contain only �referencing declarations",

i.e., ones with the extern keyword. In that spirit, duplicate declarations

of the form permitted by the –dd option are considered bad form but

legal.

2 PREPROCESSOR EXTENSIONS

The 68K/ColdFire C preprocessor is functionally equivalent to the standard

ANSI C preprocessor, and includes the additional features listed in the

table below:

 Command Function Default

#list on List following lines until #list
off (or EOF)

list on

#list off Disable listing until
#list on (or EOF)

#list page Start new page; print page header

#list skip n Put n blank lines in listfile n = 1

C Language Specifications A–5

• • • • • • • •

DefaultFunction Command

#list title string string becomes the page header.
Also does a
#list page command

null title

#pragma separate...
#pragma sep_on
#pragma sep_off

See the Pragma Separate (Option
Separate) application note

Table A-1: Extensions

The #pragma separate statements can be equivalently coded as

#option separate .

3 IN-LINE ASSEMBLY LANGUAGE

In-line assembly language is a language extension which permits assembly

language code to be inserted into the code generated by the C compiler.

This is similar to calling an out-of-line routine coded in assembly

language except that the call and return overhead is eliminated.

Normally the 68K compiler produces an object module directly rather than

generating assembly language and assembling it into an object module as

with the ColdFire compiler. However, when in-line assembly language is

present, an assembly step must be used to process the inserted assembly

language source. The –ia command line option directs the 68K compiler

to generate assembly language rather than an object module, and then to

invoke the assembler to generate the final object module. This option

makes the compiler run more slowly, but it is required when in-line

assembly language insertions are used.

The simplest form of in-line assembly is provided by the _ASMLINE
built-in function. By coding:

_ASMLINE(” string ”);

you cause the compiler to emit the indicated line directly into the

generated assembly language (the compiler will append a newline

character). This construct may appear within or between procedures.

Ordinary C escape processing is NOT performed on the assembly

language string, so you can't embed newlines using \n . Also, remember

that in assembly language only labels can begin in column 1, so you

probably will want to put a leading blank in your string. The resulting

code is otherwise ignored by the compiler.

Appendix AA–6
C

 L
A

N
G

U
A

G
E

Many other compilers support this feature using asm in place of

_ASMLINE. The compiler uses _ASMLINE because the ANSI C standard

says that C programs should to be able to use asm as an identifier. If you

prefer asm, either add �#define asm _ASMLINE " to your program or use

the equivalent command line option, �–P asm=_ASMLINE".

This feature is very simple and straightforward, but it has several

weaknesses. First, it cannot receive arguments or return results to the

surrounding C code. Second, because it is completely ignored by the

optimizer, it must not cause side-effects (such as modifying registers and

non-volatile global variables) which could invalidate the results of

optimization. In cases where more flexibility is needed, a pre-defined

in-line assembly insertion must be used.

An in-line assembly language insertion is defined as a kind of

pseudo-function whose body is coded in assembly language. This

pseudo-function is called an �asm macro." An assembly language macro

declaration is preceded by keyword _CASM or _ASM, and its body is coded

in assembly language, but otherwise it obeys the same C syntax rules as an

ordinary function declaration. It may have a function prototype. There are

two restrictions: _ASM macros may not have more than 16 parameters, and

neither _ASM nor _CASM macros may return a value of type aggregate or

(except under the hardware floating-point option) double.

The two forms, _CASM and _ASM, reflect two alternate methods of

parameter passing. In the _CASM method, parameter setup is performed

exactly as it would be before an out-of-line call. That is, the parameters

are evaluated one by one and pushed onto the stack. In the _ASM method,

parameter setup is performed by a different method which is intended to

minimize the parameter setup code. The exact method used is described

below in more detail. In general, the _CASM method is easier to use, but

the _ASM method is more powerful and may lead to more efficient object

code.

An assembly language macro is invoked by using the ordinary C syntax for

a procedure call, giving the name of the assembly language macro as the

function being �called." The compiler replaces the call instruction (JSR or

BSR) that would be generated with the body of the assembly language

macro.

C Language Specifications A–7

• • • • • • • •

Here is an example:

_CASM void disable_interrupts() {
 or #$0700,sr
}
_CASM void enable_interrupts() {
 and #$f8ff,sr
}
f() {
 disable_interrupts();
 ...
 enable_interrupts();
}

This example shows two assembly language macros. One of them enables

interrupts and the other disables interrupts, by changing the interrupt

priority mask in the status register. The �call" to disable_interrupts
causes the �or to status register" instruction to be inserted into the body of

the procedure f immediately after the prologue sequence. The �call" to

enable_interrupts causes the �and to status register" instruction to be

inserted into the body of the procedure f immediately before the epilogue

sequence. Therefore the procedure f would run with interrupts disabled.

Generally speaking, all the rules for interfacing C and assembly language

apply equally well to assembly language macros. In particular, the same

set of registers can be modified and return values are transmitted in the

same way. See the Linking C and Assembly application note for a detailed

explanation of these rules. In fact, assembly language routines originally

coded to be called from C can be converted to _CASM assembly language

macros in a very straightforward way.

In-line assembly language must be used carefully, especially if the

optimizer is being used. The optimizer assumes that in-line assembly

language insertions are entered at the top and exit (if at all) at the bottom.

In particular, an in-line assembly insertion must not contain jumps out of

that insertion and into another insertion. It also must not write into the

stack storage belonging to the �calling" routine.

An assembly language macro represents a sequence of instructions that are

repeated at every call. It therefore provides an in-line procedure facility.

As with any kind of in-line procedure facility, this can represent a

space/time tradeoff: there is no call overhead, so it is faster, but the entire

body is repeated each time, so it may be larger. An assembly language

macro thus has no address, and so it cannot be invoked through a �pointer

to procedure" variable as a normal subroutine can.

Appendix AA–8
C

 L
A

N
G

U
A

G
E

A detailed description of the syntax of in-line assembly macro definitions

appears at the end of this section. Next, we will describe the two methods,

_CASM and _ASM, and discuss their differences.

3.1 THE _CASM METHOD

The _CASM method is the most straightforward method of in-line

assembly. As was mentioned above, the code generated for a call to a

_CASM macro is exactly the same as would be generated for an out-of-line

call. Therefore the parameters will be in a predictable place. On entry to

the macro, the first parameter will be on top of the stack (pointed to by

A7). Note that an out-of-line routine would find its return address on top

of the stack, and the first parameter four bytes higher up.

Here is an example of a simple assembly language routine coded to be

called from C:

section S_f,,”code”
xdef _setvbr
_setvbr equ *
move.l 4(a7),d0
movec.l d0,vbr
rts
end

This routine expects one 4-byte parameter, and stores that parameter into

the VBR register. Its entry point is _setvbr , and it is stored in a segment

named S_setvbr . This definition is consistent with this external C

declaration:

extern void setvbr(long);

Here is the definition for an equivalent _CASM assembly language macro:

_CASM void setvbr(long value) {
move.l (a7),d0
movec.l d0,vbr

}

The parameter is now expected at (a7) rather than 4(a7) because there

will be no �return address" on the stack. Also, note that the rts (return

from subroutine) instruction is absent. The external label _setvbr has

also been removed, as has the section directive and the end directive.

Here is an invocation of this macro.

C Language Specifications A–9

• • • • • • • •

 t() {
setvbr(256);

 }

Here is the code that would result from the call:

pea.l 256
move.l (a7),d0
movec.l d0,vbr
addq.l #4,a7

The first instruction is the parameter setup for the �call," the next two are

the body of the assembly language macro, and the last instruction is the

stack cleanup that normally follows a call. It pops off the parameters that

were pushed for the call.

3.2 THE _ASM METHOD

The _ASM method is designed to allow the most efficient object code to be

generated. It not only eliminates the call and return overhead, it also

eliminates the stack cleanup after the call, and usually all of the parameter

setup code as well. On the other hand, it is harder to use.

The example shown in the _CASM example in the previous section shows

the inefficiencies imposed by a standard calling convention. The _ASM
method attempts to eliminate parameter setup code by adopting the

convention that parameters are passed �where they are." For example, if

the actual parameter was the name of a global variable, then at a _CASM
call it would be pushed on the stack, while at an _ASM call it would stay

where it is. That is, no setup code would be emitted.

This leads to the first question: how can the body of the assembly

language macro refer to its parameters? The answer is that the body of an

_ASM macro references its parameters using the syntax of 68000 family

assembly language macros. That is, \1 refers to the first parameter, \2 to

the second, and so on.

This is not enough to solve all the problems in referencing parameters.

Sometimes it is necessary to know whether a parameter is a constant, a

memory location, or a register. For example, references to constants must

be preceded by a pound sign (#) in 68000 family assembly language. Also,

some instructions require register operands, while others accept either

register or memory operands. For example, the first operand of the

MOVEC instruction must be a register.

Appendix AA–10
C

 L
A

N
G

U
A

G
E

This second problem is solved by having alternative expansions of the

macro for different kinds of actual parameters. Here is an example

showing the same setvbr example from the _CASM section recoded as an

_ASM macro:

_ASM void setvbr(long value) {
%reg value

movec.l \1,vbr
%con value

move.l #\1,d0
movec.l d0,vbr

%mem value
move.l \1,d0
movec.l d0,vbr

}

Here the %reg value line is a predicate which delimits the first

alternative expansion of the setvbr assembly language macro. This

expansion consists of all the assembly language lines up to the next

predicate, marked by %con value . The second alternative expansion

consists of all lines up next predicate, %mem value . The third alternative

expansion consists of all lines up to the right curly brace that terminates

the assembly language macro definition.

If you wish to have a null body predicate, you must insert a blank line or

a comment between successive predicates. Otherwise, the compiler will

treat the adjacent �%" lines as one predicate definition.

The compiler chooses one alternative expansion at each call, depending

on the form of the actual parameters at that call. If the actual parameter

was a register variable, then the first expansion, %reg, would be chosen. If

the actual parameter was a constant, then the second expansion, %con,
would be chosen. If the actual parameter was a memory location, then the

third expansion, %mem would be chosen. There is another predicate, %var,
which was not used here, which matches parameters of type �variable,"

that is, register or memory but not constant.

If the argument of an _ASM macro cannot be characterized as a register

variable, a constant, or a memory variable, then the compiler generates a

temporary variable, copies the actual parameter into the temporary, and

passes the temporary in its place. Memory locations accessed via pointers

or arrays subscripted by non-constant subscripts are also handled in this

way.

C Language Specifications A–11

• • • • • • • •

Here is an invocation of this assembly language macro.

 t() {
setvbr(256);

 }

Here is the code that would result from the call:

move.l #256,d0
movec.l d0,vbr

The constant parameter, 256, is not pushed on the stack before the macro

invocation, nor is it popped afterwards. This saves two instructions over

the _CASM method. On the other hand, the source for the _CASM form of

the setvbr macro was four lines long, while the _ASM form is ten lines

long, because it is necessary to code three alternative expansions. This is a

fairly typical tradeoff.

When an _ASM macro has more than one parameter, the predicates

become more complex. It is then necessary to specify the characteristics of

all the parameters in combination. For two parameters, this could require

nine alternatives (three possible types, register, constant, or memory for

both parameters). If it can be limited to two types (constant or variable),

then it would require only four alternatives. For three parameters, it could

require between eight and twenty-seven alternatives. Clearly, it is

impractical to use the _ASM method with assembly language macros that

have large numbers of parameters.

An _ASM macro must not modify its parameters. This violates the

assumptions of the compiler, and may result in incorrect optimization. For

example, the compiler may load a local variable into a register before an

assembly language macro, pass that variable to an assembly language

macro, and then use that register after the assembly language macro.

Therefore an assignment to that variable within the assembly language

macro would not have the intended effect. An assembly language macro

may modify global variables and may modify the targets of pointer

variables. If you want to modify a local variable in an assembly language

macro, you should pass its address to the macro, not its value.

Appendix AA–12
C

 L
A

N
G

U
A

G
E

An _ASM macro can freely use the scratch registers, D0, D1, A0, A4, FP0,

and FP4, without having to save and restore them. If the –ar compiler

option is used, then the _ASM macro can instead use scratch registers D0,

D1, A0, A1, FP0, and FP1. In either case, it may also use other registers, as

long as it saves them and restores them before exiting. Note however that

register parameters may be resident in these other registers. Therefore,

before overwriting any other registers, care should be taken to make sure

that no parameter could be in that register. For example, suppose an _ASM
macro wants to make use of the D2 register. If there are any parameters of

integral type, then one might be in D2 at some invocation of this macro.

The prudent course would be to move the parameter elsewhere, say, D0,

before pushing D2 and overwriting its value.

3.3 SYNTAX SUMMARY

Having given examples of each form, here is the syntax of the _CASM
and_ASM macros:

_CASM <C–style function header> {
 asm–line
 ...
}

_ASM <C–style function header> {
 predicate
 asm–line
 ...
 predicate
 asm–line
 ...
...
}

_ASM <C–style function header> {
 asm–line
 ...
}

Here asm-line is a complete line of assembly language, terminated by a

newline. It may contain any characters, but the first non-white-space

character may not be a pound sign (#), a percent sign (%), or a right curly

brace (}).

C Language Specifications A–13

• • • • • • • •

The term predicate is a complete line with the following syntax:

%mem|reg|con|var parameter [;|, parameter]...

or

%always

The percent sign must be the first non-white-space character on the line.

It is followed by a list of pairs consisting of one of the four keywords,

mem, reg , con , or var , followed by a comma-separated list of formal

parameter names. Each predicate must name all of the formal parameters

exactly once. For readability the elements of the list may be separated by

commas or semicolons. Long predicates may be continued on successive

lines, as long as each begins with a percent character.

Lines whose first non-white-space character is a pound sign are treated as

preprocessor directives and are interpreted in the normal way. In

particular, it is possible to use conditional inclusion (#if ... #endif)

inside macro definitions. However, the asm-lines inside the macro are not

scanned by the compiler. Thus, a preprocessor macro inside an asm-line
would not be expanded.

The right curly brace that terminates the body of the _ASM or _CASM
macro must be the first non-white-space character on that line.

The body of an _ASM macro is divided into a list of alternatives, each

consisting of a predicate and a list of asm-lines. When an _ASM macro is

invoked, the compiler chooses one these alternatives by comparing the

arguments at that invocation with the predicates. Each predicate that

matches the arguments is chosen. The �always" predicate always matches,

regardless of the arguments.

The macro body must follow the rules, syntax, and label restrictions

described in the Macros Operations and Conditional Assembly chapter in

the Reference Manual.

A reg condition matches if the argument is contained in one of the

following registers:

• D2 - D7

• A1 - A3

• FP1 - FP3

• FP5 - FP7

A con condition matches if the argument is a constant.

Appendix AA–14
C

 L
A

N
G

U
A

G
E

A mem condition matches if the argument is a memory location whose

address is either a 32-bit constant, a 16-bit constant plus the A5 register,

or a 16-bit constant plus the A6 register.

A var condition is equivalent to either reg or mem being true.

The compiler ensures that each argument at an _ASM macro invocation

matches one of these cases. If necessary, code will be generated to move

the argument into a temporary variable. Note that the compiler may

allocate variables and common subexpressions into registers, so it is not

always obvious which alternative will be chosen at a particular invocation.

For example, an argument like a+b might be a register if the optimizer

determined that the value a+b was useful later on in the program.

4 ANSI C FUNCTION PROTOTYPES

Function prototypes, as described in the ANSI C standard, are supported

by 68K/ColdFire compilers. Function prototypes are function declarations

and function definition headers that include a list of the data types of the

function's parameters. They are used to ensure that all calls, declarations,

and definitions of the function that are within the scope of the prototype

contain the declared number, type and order of arguments or parameters.

Function prototypes may appear in two contexts: in the headers of

function definitions, and in function-type declarations. Although function

prototypes are quite useful, they are not required. The following

description briefly summarizes the use of function prototypes. Consult an

ANSI C reference manual for more details.

4.1 CREATING FUNCTION PROTOTYPES

In an old-style definition for a function without a function prototype
the function header contains a parenthesized list of parameter names,

followed by parameter declarations.

C Language Specifications A–15

• • • • • • • •

For example:

/* Not a function prototype */
int func (param1, param2)

int * param1;
char param2;

{
/* function body */

}

An old-style declaration for this function could be:

int func(); /* Not a function prototype */

This syntax has been expanded for the creation of function prototypes. In

function definitions that act as function prototypes, a parenthesized,

comma-separated, list of parameter types and identifiers replaces the list of

parameter names and the parameter type declarations of the old-style

function definition header. As an example, the function defined above

could have been defined to include a function prototype in its header:

/* function prototype */
int func (int * param1, char param2)
{

/* function body */
}

The parameter declarations are now incorporated into the function

prototype on the first line of the function definition.

Function declaration syntax has also been expanded. In function

declarations that will act as prototypes, the function name is followed by a

parenthesized, comma separated list of parameter types and optional

identifiers.

A declaration for the function defined above, which will act as a prototype

for the function, could be:

extern int func (int * x, char y);

or

extern int func (int *, char);

These two declarations are equivalent; the identifiers x and y are ignored.

Appendix AA–16
C

 L
A

N
G

U
A

G
E

The types and numbers of the parameters listed in a function prototype

declaration should match the types and numbers of parameters in the

function definition (prototype or old-style), but the identifiers used in the

declaration prototype declaration need not match the definition.

Function prototypes may be written for functions that take a variable

number of arguments. The ellipsis notation, ``, ...'', used as the last element

in a parameter type list in a function prototype, indicates that an

unspecified number of arguments follow. At least one parameter must

precede the ellipsis in the function declaration. For example, if a function

is declared as:

int func1 (char *fmt, int num, ...);

it may be called with two or more arguments.

A function prototype with a parameter type list that consists solely of the

keyword void is used to declare a function that has no parameters.

For example, the function

int func2 (void);

has no parameters. Invoking this function with any arguments would be

incorrect.

Clearly, it is desirable to construct include files that use prototype-style

declarations for global subroutines. To facilitate this process, use the make

prototypes option, –mp. This automatically generates a header file

containing prototype declarations for all the subroutines defined in the

module being compiled. See the C Compiler chapter for more details.

4.2 CALLS TO FUNCTIONS WITH PROTOTYPES

The number of arguments in a function call must correctly correspond to

the number of parameters in an in-scope function prototype. If a

function's prototype has a void type list, there must be no arguments in

the call. If the ellipsis notation was used to define a prototype for a

function that takes a variable number of parameters, the function call

should contain at least as many arguments as there were parameters

before the ellipsis. For all other functions declared with prototypes, the

number of arguments at the call should match the number of parameters

in the prototype.

C Language Specifications A–17

• • • • • • • •

If a function prototype is in scope of a function call, the arguments are

converted, as if by assignment, to the types of the corresponding

prototype parameters. If the prototype for a function used the ellipsis

notation, this conversion is done only for parameters that were explicitly

declared in the prototype; after the ellipses, the default C promotions

(including widening of float to double) are done.

The promotion of float to double is not done if a prototype is in scope.

This provides a way for an actual float value to be passed to a function.

However, it does mean that if a function defined with a prototype has a

float parameter, then a protoytpe must be in scope at every call. In fact,

ANSI C formally requires that a prototype be in force at every call to any

procedure defined with a prototype. This is a good practice, but is not

actually required unless a float parameter is involved.

Programmers familiar with strongly-typed languages such as Pascal or Ada

are often surprised that no warning is given at an apparent type mismatch

between the actual and formal parameters. In ANSI C, prototypes cause

conversions, not checks. For example, if an integer is passed to a routine

whose prototype calls for a double, than an integer to double conversion

would occur prior to the call, just as it would at an assignment.

68K/ColdFire C compilers emit error messages when function declarations,

calls or definitions are incompatible with function prototypes that are in

scope.

There is one technicality in the ANSI C prototype rules which confuses

many people, so we will describe it thoroughly here. Suppose you have a

compilation which contains both prototype and old-style declarations for

the same procedure. ANSI C requires that they be compatible with one

another. The tricky part is the way this compatibility is checked.

Generally speaking, the rule is that the default C promotions are

performed on the non-prototype side before making the comparison. This

means that this natural looking program is in error:

extern void f1(char);
void f1(c)

char c;
{

/* function body */
}

Appendix AA–18
C

 L
A

N
G

U
A

G
E

The problem here is that the default C promotions turn char into int ,

and int is not compatible with char . This program IS correct:

extern void f1(int);
void f1(c)

char c;
{

/* function body */
}

If you think about it, this does make sense. The underlying assumption is

that a procedure defined in the old style expects to be called in the old

way, i.e., with no prototype in force at the call. When no prototype is in

force the default C promotions are applied to the arguments. Therefore an

old-style definition really expects to receive its arguments in promoted

form. A prototype, on the other hand, expects to receive its parameter in

whatever way is most efficient for its type.

As a matter of fact, the 68K/ColdFire compiler does pass char parameters

as int , even if a prototype is present. This is a small loss in efficiency, but

it is much less error-prone. In the case of float versus double however

there really is a difference; old-style definition routines expect double,

while prototype definition routines expect float.

5 OTHER ANSI C FEATURES

This section contains descriptions of:

• Adjacent String Literal Concatenation

• Trigraph Replacement

• void Pointers

• const Type Qualifier

• Stringization

• volatile Type Qualifier

• Preprocessor Additions

5.1 ADJACENT STRING LITERAL CONCATENATION

In the ANSI C standard, adjacent strings are automatically concatenated,

with a single null character appended to the end of the resulting string.

C Language Specifications A–19

• • • • • • • •

Example

char test[] = ”This ”
”is a ”
”test”;

This is the equivalent to the following assignment:

char test[] = ”This is a test”;

This addition makes it unnecessary to use the line continuation convention

to write very long string constants.

5.2 TRIGRAPH REPLACEMENT

Trigraphs let you write C programs on computers using a subset of the

ASCII character set. Trigraphs are introduced by two consecutive question

marks. The only legal trigraphs are:

trigraph is equal to

??([

??)]

??< {

??> }

??/ \

??’ ^

??= #

??– ~

??! |

Table A-2: Trigraphs

A new escape character (\?) prevents the translation of trigraph-like

constructs. For example:

trigraph form string

’’Eh\?\?!’’ ’’Eh??!’’

’’Backslash is ??/’’ ’’Backslash is \ ’’

Table A-3: Escape characters

Appendix AA–20
C

 L
A

N
G

U
A

G
E

5.3 VOID POINTERS - VOID *

The ANSI C standard states that the type void * will be the generic

pointer type. Pointers can be assigned into and from void pointers silently

and without casting. A void pointer may not be dereferenced without an

explicit cast.

Example

void * f1;
int * i1;
int i2 = 5;

i1 = &i2;
f1 = i1; /* silent assignment into a void pointer */

printf(”The integer in f1 ”
 ”is %d0”,*(int *)f1); /* example of */

/* neccessary cast */

5.4 CONST TYPE QUALIFIER

Another new feature in ANSI C is the const keyword. This keyword is

used to define a read-only type. Note that const can be used both with

object declarations and with pointer types. Here are some examples:

const double pi = 3.14159;
const double *ptr_to_const;
double d;
double *const const_ptr = &d;
double *non_const_ptr;

/* the following are now illegal */
pi = 3.14; /* assigns to constant */
const_ptr = &d; /* assigns to constant */
ptr_to_const = 3.14; / assigns to constant */
non_const_ptr = π /* ptr type mismatch */

/* these are legal */
ptr_to_const = π /* ptr types match */
const_ptr = 3.14; / value pointed to by a constant
 ptr is non–const */
ptr_to_const = &d; /* ptr to const can point to
 non_const */

C Language Specifications A–21

• • • • • • • •

The compiler ensures that objects with const -qualified types are not

modified. Objects declared with const -qualified types must therefore be

initialized. Global variables declared with const -qualified type must be

declared extern const to prevent other modules from modifying the

object.

There are two different ways to use the const keyword. The most typical

use is for true constants, such as those which might be located in ROM.

However, the const qualifier can also be used to control access to

sensitive variables. For example, it is possible to declare a variable without

the const keyword, and then provide an external declaration which

declares it extern const . This technique prevents code outside the

defining module from modifying the variable. const thus provides

support for information management.

If the only use of const is for true constants, then it is possible to direct

the compiler to segregate all const variables into a separate segment

named cdata of class {constant} . This can be done by using the –cs
compiler option. This makes it easier to locate all const variables in ROM

storage.

The –cs option has the effect of adding an implicit #pragma directive of

the following form for each const variable.

#pragma separate my_var segment cdata class constant

Note that the –cs option must not be used if const is being used for

information management. This is because the generated code will not

operate correctly if there is a mismatch between the non-separate

definition and the implicit external separate declaration created by the

option. This is a special case of the general rule that separate variables

must be declared external separate and non-separate variables must be

declared external non-separate.

5.5 STRINGIZATION

Within macro definitions, the # character is recognized as a unary

``stringization'' operator that has to be followed be a formal parameter

name. When macro expansion occurs, the # and formal name are replaced

by the corresponding actual argument enclosed in string quotations. Any

double quotes (") and backslashes (\) are automatically escaped with a

preceding backslash.

Appendix AA–22
C

 L
A

N
G

U
A

G
E

For example, the following source text:

#define STRING(a,b) printf(#a ”, ”#b)

STRING(hello,world);

will become, after stringization

 printf(”hello””,””world”);

which will, after string concatenation, become

printf(”hello, world”);

5.6 ANSI C PREPROCESSOR ADDITIONS

The following sections describe valid ANSI C preprocessor additions.

5.6.1 NEW PREDEFINED MACROS

There are three new predefined macros, defined by the draft proposed

ANSI C standard. These macros are:

__STDC__ for an ANSI C conforming compiler will equal 1. The

68K/ColdFire C compiler will define this as zero until the

compiler achieves full ANSI compatibility.

__DATE__ is the date of the compilation. It is set once and does not

change, regardless of the compilation length. The format of

the date is MMM DD, YYYY, where days less than 10 are

indicated by a space followed by the day. MMM represents

the month in alphabetic characters.

__TIME__ is the time of the compilation. It is set once during

compilation and does not change, regardless of the

compilation length. The format of the time is HH:MM:SS.

5.6.2 NEW DIRECTIVES

The ANSI C standard defines three new preprocessing directives: #error ,

#pragma and #elif .

C Language Specifications A–23

• • • • • • • •

5.6.3 #ERROR

The format for #error is:

#error errmsg

The directive causes a compiler error with the given errmsg printed out.

5.6.4 #PRAGMA

#pragma is a synonym for #option , and supports the same syntax. Any

other parameter to #pragma which would not be legal with #option will

give an ``Unknown pragma'' warning.

5.6.5 #ELIF

The #elif directive acts like a combination of #else and #if . The

#elif comes between #if and #endif , and has a constant expression to

be evaluated in the same way as #if . The use of this directive allows for a

simpler syntax as the following example shows:

Directive Becomes

#if #if

#else
#if

#elif

#endif
#endif

#endif

Table A-4: #Elif directives

5.7 VOLATILE TYPE QUALIFIER

The ANSI C volatile keyword is used to allow higher levels of

optimization without adversely affecting programs which use

memory-mapped I/O and interrupt processing, as many embedded

applications do.

Appendix AA–24
C

 L
A

N
G

U
A

G
E

Many optimizations rely on tracking what a program is doing and looking

for a more efficient way to get the same result. This kind of analysis is

much more effective when the optimizer can make certain common-sense

assumptions based on the way that computer memory works. In particular,

it is natural to assume that two successive loads from the same memory

location without any possible intervening store must yield the same value.

Using this principle, an optimizer may eliminate the second load, thus

improving the efficiency of the generated code.

This reasonable-sounding assumption can be violated in two ways. First, if

the memory location represents a memory-mapped I/O port, then

successive loads correspond to successive read operations. Second, an

asynchronous interrupt handler could modify the memory location

between the two load operations. Variables whose values may change

without any apparent cause are called �volatile."

If the optimizer can be told which variables are volatile, then it can

selectively optimize the non-volatile variables more aggressively. This is

the motivation for the volatile keyword.

The volatile keyword can be used to qualify any C type. It can also be

used with pointer types. Here are some examples:

Use the volatile keyword as follows. First, decide which variables in

your program are volatile. This includes any memory-mapped I/O ports

and any variables modified by interrupt handlers. Mark these objects as

volatile. Next, determine which pointer variables are used to access these

volatile objects, and mark their pointed-to type with the volatile
keyword. Be sure to watch for pointers formed by type-casting constants

into addresses.

If you do not feel confident that you can locate and appropriately qualify

all your volatile variables, then you can avoid inappropriate optimizations

by using the –vv option. Note, however, that this option may make the

generated code significantly larger and slower.

C Language Specifications A–25

• • • • • • • •

5.8 NEW OPERATORS

5.8.1 DEFINED

In an #if there is a new operator: defined . This operator returns true if

its parameter is a currently defined macro that has not been subject to an

#undef .

The syntax is as follows:

#if defined (identifier)

 or

#if defined identifier

This is like #ifdef and #ifndef , but it returns a boolean so expressions

can be created, like the following:

#if defined (macro_one) && !defined(macro_two)
.
.
.

#endif

5.8.2 TOKEN PASTING

Another new operator is the token pasting operator (##). This is used

inside macro definitions to concatenate two tokens, to create a new token.

For example:

#define pasting(x,y) x ## y

int pasting(x,1);

 would become:

 int x1;

after macro substitution and expansion.

Appendix AA–26
C

 L
A

N
G

U
A

G
E

6 SUPPORT FOR INTERRUPT HANDLERS IN C

Special interrupt services are provided by the 68K/ColdFire C compiler as

extensions to the language. Three pseudo-functions and two

function-type keywords are defined:

• _GPL()

• _SPL(n)

• _TRAP(n)

• _IH

• _SWI

These features will be described in detail below.

The complete description of exception processing is beyond the scope of

this manual, but is fully described in the User's Manual for the

microprocessor. First, we will briefly review the general nature of

exception processing to describe how the compiler can be used to code

handlers for exceptions, generate traps and manipulate the status register.

Exception processing may be initiated in several different ways, which fall

into the following general categories:

• TRAP instruction

• Interrupt by external device

• Instruction trace, i.e., machine single step

• System error, e.g., bus error or divide by zero

When an exception occurs, some information is stored on the stack and

execution passes through an exception vector. The exception vectors

reside at fixed offsets from the base of the exception vector table. The

particular vector chosen depends on the kind of exception. The exception

vector table is located at address 0 for the MC68000, but for other M68000

family processors its address is defined by the VBR register.

A routine which receives control after an exception is called a handler. It
takes whatever action is appropriate for the given exception. When it

finishes, the handler may return control to the routine which was active

when the exception occurred. This kind of return must be done via the

RTE (return from exception) instruction. The RTE pops off the information

which was stored on the stack when the exception occurred. It then

restores the program counter and status register to their value at the time

of the exception.

C Language Specifications A–27

• • • • • • • •

With the 68K/ColdFire Toolkit, you can use the _IH or _SWI keywords to

designate a given C function as an exception handler. This causes the

compiler to generate an RTE instruction in the epilogue of the function

instead of the usual RTS return instruction. Furthermore, the compiler will

ensure that the function's prologue preserves the entire machine state, not

just those registers which, by convention, are preserved across ordinary

function calls. The difference between _IH and _SWI is described in detail

below.

A routine designated as a handler must have the void return type and

may not take any parameters. It must not be called as a procedure by any

other code. Like any normal function, handlers may declare local data,

access global data, and call other functions. If you are using the volatile
keyword, please note that global variables which are modified by

exception handlers must usually be designated as volatile .

Note that the appropriate exception vector must be initialized in order to

establish a given function as a handler for a particular exception. This can

be done with ``ordinary'' C code: typecasting the vector's address into

``pointer to pointer to function'' provides a pointer to the vector. This

pointer can be used to initialize the vector with the address of the handler.

Thus, no special language extension is required.

External interrupts have one of eight different priority levels. The status

register contains a 3-bit field which defines the interrupt priority mask.

Interrupts of priority less than or equal to the current interrupt priority

mask level are postponed until the mask becomes low enough to unblock

the interrupt. Interrupts of priority seven are a special case; they may not

be inhibited by the priority mask, thus providing a non-maskable

interrupt. When an interrupt occurs the interrupt priority mask is set to the

level of the interrupt being serviced. The handler's RTE instruction restores

the status register, thus restoring the interrupt priority mask.

The _GPL and _SPL pseudo-functions allow the user to read and write

the interrupt priority mask. The _TRAP pseudo-function generates a TRAP
instruction.

6.1 THE _GPL PSEUDO-FUNCTION

_GPL returns the value of the interrupt priority mask in the status register.

The result is an integer whose value is between zero and seven.

Appendix AA–28
C

 L
A

N
G

U
A

G
E

6.2 THE _SPL PSEUDO-FUNCTION

_SPL(n) sets the value of the interrupt priority mask in the status register

according to the low order three bits of the value of n. The sequence for

_SPL(5) looks like this:

MOVE SR,D1 get status register

AND #$F8FF,D1 clear the mask field

OR #$500,D1 set the mask field

MOVE D1,SR update status register

_SPL returns the new value of the interrupt priority mask as a result. If

this value will not be used, code to determine it is not emitted.

6.3 THE _TRAP FUNCTION

_TRAP(n) simply forces the compiler to emit the TRAP #n instruction.

Here n must be a constant between zero and fifteen.

6.4 THE _IH KEYWORD

_IH specifies that the defined function is an exception handler. The

keyword must precede any class or type information associated with the

function. The type of any _IH function must be void, and an _IH function

may not receive any parameters.

When the compiler recognizes a function as an exception handler, it emits

the RTE instruction for returns, instead of the usual RTS instruction. Also,

any registers modified by the function will be saved and restored, not just

the set of registers designated as preserved across normal function calls.

However, registers not used by the function might not be explicitly saved

and restored in the function's prologue and epilogue, respectively.

An interrupt handler routine may only be called from C with the _TRAP
mechanism since a standard procedure call does not have the same effect

as a TRAP instruction.

C Language Specifications A–29

• • • • • • • •

Example

Definition of interrupt handler in C:

 /* _IH KEYWORD EXAMPLES */

int GotInterrupted = 0;

_IH void myhandler () {
GotInterrupted = 1;

}

Example

 XREF ––main, –myhandler
ORG 0 ;assume EVT at 0

SECTION vectors
DC.L $00007ffc ;vector 0
DC.L ––main ;vector 1
DC.L –myhandler ;vector 2

.

.

.

Example

 /* _IH KEYWORD EXAMPLES */

int GotInterrupted = 0;
int Icount;

_IH void myhandler () {
GotInterrupted = 1;

}

void set_handler(f, vec_number)
void (*f) ();
int vec_number;

{
/* make the vector at address 4*vec_number */
/* point to the handler procedure f. */
*((void (**) ())(4*vec_number)) = f;

}

Appendix AA–30
C

 L
A

N
G

U
A

G
E

6.5 THE _SWI KEYWORD

The _SWI (software interrupt) keyword is similar to the _IH keyword

except that it is used for exception handlers which might provoke a

context swap. In order to provide for this, the _SWI function explicitly

performs a full context save upon entry.

The keyword must precede any class or type information associated with

the function. The type of any _SWI function must be void, and an _SWI
function may not take any parameters.

Example

/* _SWI KEYWORD EXAMPLE */

extern struct TCB {
int priority;
int * saved_context;

} *current_task, *highest_prio_task;
extern void swap_process ();

_SWI void timer_handler () {
if (current_task–>priority <

highest_prio_task–>priority) {
swap_process ();

}
}

7 IMPLEMENTATION-DEFINED BEHAVIOR

The ANSI standard allows each C compiler to behave differently in a fixed

set of situations. The behavior of the 68K/ColdFire C compiler in these

situations is described below. Section numbers refer to the ANSI standard

document.

(sect. 3.3.3.4, 4.1.1)

The type of the sizeof operator, size_t , is unsigned
long int .

(sect. 3.3.6, 4.1.1)

The type of integer required to hold the difference between

two pointers to elements of the same array, ptrdiff_t , is

long int .

C Language Specifications A–31

• • • • • • • •

(sect. 3.5.2.1)

A �plain" int bit-field is treated as an unsigned int
bit-field. To make a signed bit-field, use signed int type.

(sect. 4.5.1) The mathematics functions return undefined values on

domain errors.

(sect. 4.5.1) The mathematics functions set the integer expression errno
to the value of the macro ERANGE on overflow range errors.

(sect. 4.5.6.4)

When the fmod function has a second argument of zero, a

domain error occurs, and the function returns an undefined

value.

(sect. 4.9.6.1)

The output for %p conversion in the fprintf function is as

if the conversion specification were %lx .

(sect. 4.9.6.2)

The output for %p conversion in the fscanf function is as if

the conversion specification were %lx .

(sect. 4.9.6.2)

A - (hyphen) character in any position in the scanlist for a

%[] conversion in the fscanf function is treated like any

other character. For example, %[a–z] will match any

sequence of a, –, or z characters. It will not match any

sequence of lower case alphabetic characters.

(sect. 4.10.3)

The functions calloc and malloc return NULL if the size

requested is zero. The function realloc frees the memory

specified and then returns NULL if the size requested is zero.

The ANSI standard does not specify the method by which two declarations

of the same external name are combined at link time. The 68K/ColdFire

compiler implements the most common method of resolving this problem,

called the �strict def-ref" or �omitted-extern" solution.

Appendix AA–32
C

 L
A

N
G

U
A

G
E

In the strict def-ref model, declarations with the extern keyword are

considered �referencing" declarations. A declaration without the

extern or static keyword that appears outside of any function is

considered a �defining" declaration. The 68K/ColdFire compiler requires

that there be exactly one module which contains a defining declaration for

each external name. All other modules may contain only referencing

declarations for that external name.

An option has been added to the compiler to allow ANSI-style duplicate

declarations. By default the compiler gives an error if more than one

definition for a variable is present in a single module. The effect of the

–dd option is to permit multiple definitions in a single module, as required

by ANSI C. Note that this option changes the order of allocation for

uninitialized global variables. Programs that depend on global variables

being allocated in the order they are declared must not use this option.

B

COMPILER NAMING
CONVENTIONS

A
P

P
E

N
D

IX

Appendix BB–2
N

A
M

IN
G

 C
O

N
V

E
N

T
IO

N
S

B

A
P

P
E

N
D

IX

Compiler Naming Conventions B–3

• • • • • • • •

This appendix describes Code Symbols, Data Symbols, and Segment

Names and contains a Symbol Naming Summary.

1 INTRODUCTION

This section describes the naming conventions of the 68K/ColdFire C

compiler system. Familiarity with the compiler's naming conventions will

make it easier to:

• Read the pseudo-assembly listing from the compiler.

• Write linking locator commands to control placement of code and

data into target memory.

• Read the listing from the global symbol mapper.

• Interface compiled code with assembly language.

Interfacing compiled code with assembly language requires more detailed

technical information. See the Compiler Run-Time Conventions appendix.

The compiler forms linker symbols from the names in a user program. It

creates three kinds of symbols:

• Internal symbol names.

• Global symbol names.

• Segment names.

Internal symbols are temporary names which are eliminated as the linking

locator processes the object module. They are used to resolve internal

references. They are not visible to other modules and thus cannot be

referenced by assembly language code. They can be displayed by the

symbol list utility, but not by the global symbol mapper. However, they do

appear in the pseudo-assembly listing.

Global symbols are visible to other modules, and can be used by assembly

language code to reference compiler-generated code and data. They can

also be referenced by other compiled modules. They can be displayed

with the global symbol mapper.

Appendix BB–4
N

A
M

IN
G

 C
O

N
V

E
N

T
IO

N
S

Segments represent relocatable blocks of target memory. They contain the

generated machine instructions and data to be loaded into the target.

Segments have a name and are assigned a class and, optionally, a group.

See the Linking Concepts section in the Linking Locator chapter for a more

detailed description of segments, classes, and groups.

2 CODE SYMBOLS

The compiler creates symbols for procedure entry points. The symbol

names are based on the names the user specified in the source program,

with an underscore (�_") added to the beginning of the name.

Global functions are those which are visible outside their compilation unit.

In C, all functions are global by default. Local functions are indicated with

the static keyword.

The compiler creates a global symbol for each global function. Its name is

formed by prepending an underscore, �_", to the source name. For

example, the global function visible would generate the global symbol

_visible. The compiler creates an internal symbol for each local function.

It's name is generated using two underscores followed by an �N", a unique

number, a period and the class name, in this case �code ". For example, a

local function might generate the name __N14.code .

3 DATA SYMBOLS

There are several kinds of data which can be defined in a C program.

They are:

• Global Data all data visible to other compilation units, i.e., all data

declared outside procedure blocks, except that with the static
attribute.

• Local Static Data all data declared with the static attribute.

• Activation Record Local Data formal procedure parameters and data

defined inside of procedures, except that with the static attribute.

Compiler Naming Conventions B–5

• • • • • • • •

3.1 GLOBAL DATA

The compiler generates global symbols for all global data items. The

symbol name is formed by prepending an underscore, “_” , to the source

name. For example, a global variable whose source name is global_int
gives rise to a global symbol named _global_int.

3.2 LOCAL STATIC DATA

Artificial names are generated for all static variables declared within

procedures to avoid name conflicts. The internal symbol name is

generated using two underscores and �N" followed by a unique number, a

period and the class name if it is not �data ". For example, a local static

variable might generate a name such as __N4.myclass .

3.3 STACK DATA

The compiler generates no symbols for stack data. These variables do not

have permanent memory locations allocated to them; they are allocated on

the run-time stack.

Stack variables are addressed at a constant offset from the stack frame

pointer register, A6.

3.4 STRING CONSTANTS

String constants arise from quoted string literals in the source. The

compiler generates dummy internal symbol names.

3.5 OTHER SYMBOLS

The C++ compiler creates symbols with the prefixes __TIR__ , __CBI__ ,

and __DNI__ for its own internal use.

Appendix BB–6
N

A
M

IN
G

 C
O

N
V

E
N

T
IO

N
S

4 SEGMENT NAMES

4.1 CODE SEGMENT NAMES

All code in a single module is allocated in one code segment. The segment

name is formed by prepending an �S" to the symbol name given by the

compiler or assembler to the first subroutine encountered in the source

module. Thus, if a global function named sort is the first function in a

module, the code generated for all procedures in the module will be

allocated in a segment named S_sort . If a static function named hidden
is the first function, the generated code will be allocated in a segment

named S_�_N#.code, where # is some unique number. The code segment is

assigned class {code}, unless the –cc option is specified. The –cc option

allows you to set the class name. The Linking Locator chapter summarizes

the class names.

4.2 DATA SEGMENT NAMES

There are three data segments which are always created by the compiler,

regardless of the input program. They are idata, udata, and sdata .

idata contains initialized data and udata contains uninitialized data.

Both idata and udata are assigned group data and class {data }. sdata
contains string constants and is assigned class {constant}. All non-stack

data will be in one of these segments unless the separate option is used.

The linking locator creates a global symbol named ldata , whose value is

the size of the data group (idata and udata segments). Note that ldata is

not a segment, but a global symbol. This may be useful to programs which

dynamically allocate their global data area.

Compiler Naming Conventions B–7

• • • • • • • •

4.3 SEPARATE DATA

Segments are also created whenever data items are declared separate .

The segment names are either created from the name of the data item or

are explicitly specified by the user. In addition to segments, separate
data items are assigned a class, either by default or by explicit user

request. For a detailed explanation of separate data, see the Pragma
Separate (Option Separate) application note.

If neither segment nor class specifications are explicitly given, the segment

names for separate data are formed by prepending an �S" to the

corresponding symbol name. The class name is either {isep}, {usep}, or

{stsep}, depending upon whether the separate data item is global

initialized, global uninitialized, or static.

User Specified Data Initial Resulting

Segment Class Type Value Segment Class

none none global No S_X usep

none none global Yes S_X isep

none none static NA S__N#.stsep stsep

sname none global or
 local

NA sname separate

none cname global NA S_X cname

none cname local NA S__N#.cname cname

sname cname global or
 local

NA sname cname

Table B-1: Segments

For example, in a global context, the sequence

#pragma separate var1
int var1;

would produce a segment named S_var1 of class {usep }. If var1 were

initialized, the class would be {isep}.

In another example, the sequence

#pragma sep_on segment myseg
int var2;

Appendix BB–8
N

A
M

IN
G

 C
O

N
V

E
N

T
IO

N
S

would produce a segment named myseg of class {separate }. For this

example, initialization of var2 or the local/global context would have no

effect on the segment and class names.

In a third example, the sequence

#pragma sep_on segment seg1 seg2 class cl1 cl2
int var3, var4 = 1;

would produce a segment named seg1 of class {cl1}, which would hold the

initialized data, and a segment named seg2 of class {cl2}, which would

hold the uninitialized data, as explained in the Pragma Separate (Option
Separate) application note.

As a final example, the sequence

#pragma sep_on segment seg3 default class cl3 default
int var4 = 3, var5;

would produce a segment named seg3 of class {cl3} to hold the initialized

data, and a segment named S_var5 of class {usep} to hold the uninitialized

data.

It is possible to create errors by inconsistent assignment of class names to

a single segment. If this is done in a single compilation, the compiler will

detect the error. If there is a conflict between separately compiled

modules, the linking locator will inform you of this discrepancy.

5 SYMBOL NAMING SUMMARY

The following table summarizes the symbol names generated by the

compiler. Given an item X in the source, here are the names and attributes

of the compiler-generated symbols and segments.

 If X is Separate Initial Name Attributes

Global
Routine

_X Global Symbol

Global
Routine

S_X Segment, class {code }

Local
Routine

_X Internal Symbol

Local
Routine

S_X Segment, class {code }

Compiler Naming Conventions B–9

• • • • • • • •

 AttributesNameInitialSeparate If X is

Global
Variable

Either Either _X Global symbol

Local
Variable

Either Either __N#.stsep Internal Symbol

Global
Variable

No No udata Segment, class {data }

Global
Variable

No Yes idata Segment, class {data }

Global
Variable

Yes No S_X Segment, class {usep }

Global
Variable

Yes Yes S_X Segment, class {isep }

Local
Variable

No No udata Segment, class {data }

Local
Variable

No Yes idata Segment, class {data }

Local
Variable

Yes Either S__N#.stsep Segment, class {stsep }

String
Constant

__N# Internal Symbol

String
Constant

sdata Segment, class
{constant}

Stack
Variable

No symbols

Table B-2: Symbol names

5.1 NOTES

• The name of the code segment is determined by the first subroutine.

Each compilation generates only one code segment.

• Static variables declared inside procedures get dummy internal symbol

names.

• Segments idata and udata belong to group �data."

• This table assumes that no class or segment specifications were used

for separate data.

Appendix BB–10
N

A
M

IN
G

 C
O

N
V

E
N

T
IO

N
S

C

COMPILER
RUN–TIME
CONVENTIONS

A
P

P
E

N
D

IX

Appendix CC–2
R
U
N
-T
IM
E

C

A
P

P
E

N
D

IX

Compiler Run–Time Conventions C–3

• • • • • • • •

This appendix describes Storage Allocation, the Segmentation Model,

Register Usage, Subroutine Linkage, Stack Layout, and Initial Startup.

1 INTRODUCTION

This appendix describes the compiler's code generation conventions. The

stack layout is described, as well as the procedure linkage conventions

and data allocation rules. The information in this section is primarily

intended for those attempting to interface compiled code with assembly

language. It will also be useful to those users who are debugging at the

machine instruction level, since it will help you follow what the

compiler-generated code is doing.

Throughout this appendix, we assume that you are familiar with the

information in the Compiler Naming Conventions appendix.

2 STORAGE ALLOCATION

The basic C data types are implemented as follows:

char 8 bits, unsigned

short 68L: 8 bits, signed

ColdFire: 16 bits, signed

int 68K: 16 bits, signed

ColdFire: 32 bits, signed

unsigned 68K: 16 bits, unsigned

ColdFire: 32 bits, unsigned

long 32 bits, signed

float 32 bits

double 64 bits

pointer (address) 32 bits (absolute address)

Appendix CC–4
R
U
N
-T
IM
E

2.1 NOTES

• Basic data types bigger than a byte are aligned on a 16-bit boundary.

Data types no bigger than a byte are aligned on a byte boundary.

• Each element of a structure or array is aligned therein according to its

own alignment. The alignment of an aggregate data type is defined to

be the strictest alignment of any subcomponent. These rules can be

modified with the –pack compiler option.

• Successive bits in a bit field are allocated from left-to-right, that is,

most significant bit first. If the layout of a field would cross two

consecutive 16-bit boundaries, the bit field is aligned at the next 16-bit

boundary. Bit fields which are completely contained in a byte

contribute byte alignment to the surrounding structure. Other bit fields

contribute 16-bit alignment to the surrounding structure. These rules

can be modified by various compiler options.

• Some of the above data sizes can be changed with the –D compiler

option. In particular, the –L option makes short 16 bits and int 32

bits (default for C++ and ColdFire).

3 SEGMENTATION MODEL

In the following sections, the references to the floating-point registers

apply only under the –h hardware floating-point option.

User variables are allocated storage in one of the following places:

1. The run-time stack.

2. The A1, A2, A3, D2, D3, D4, D5, D6, D7, FP1, FP2, FP3, FP5, FP6 and FP7

registers.

3. The global data area (idata and udata segments) referenced by A5.

4. Separate segments.

Compiler Run–Time Conventions C–5

• • • • • • • •

Variables declared in procedure blocks, including formal procedure

parameters, are allocated on the run-time stack. The optimizer allocates

variables and temporaries into registers. If the optimzer is suppressed, then

variables declared with the register keyword are allocated in registers.

Registers A1-A3 are available for pointers; registers D2-D7 are available

for character or integer types; registers FP1-FP3 and FP5-FP7 are available

for types float or double . Variables named in a #pragma separate
directive are allocated in separate segments. See the Pragma Separate
(Option Separate) application note for more detail. All other variables are

placed in the global data area. Initialized variables are placed in idata

uninitialized varialbes in udata.

The compiler addresses variables on the stack using constant offsets from

the frame pointer, i.e., the A6 register. Positive offsets indicate references

to formal parameters; negative offsets indicate references to local variables.

See the Stack Layout section below for a picture of the stack.

The total size of the local variables for any single subroutine is limited to

32K. If a single procedure allocates too much data, the compiler will flag a

fatal error:

source error: local variables
require too much space (fatal)

The compiler addresses variables in the global data area using 16-bit

offsets from the dedicated register A5. This addressing scheme allows the

compiler to address global data very efficiently, since it can use 16-bit

offsets rather than full addresses. On the other hand, this implies a

system-wide limit of 64K on the size of the global data area.

If you declare too much global data, the compiler will not be affected, but

the linking locator will issue an error:

group {data} exceeds maximum size

If the 64K limit is exceeded, some variables must be made separate to

bring the total size below 64K. Variables allocated in separate storage are

not restricted in size. Variables in separate storage are addressed using full

32-bit addresses.

Appendix CC–6
R
U
N
-T
IM
E

4 REGISTER USAGE

The compiler reserves the following machine registers for use:

 Register Use

A1, A2, A3 Pointer register variables

A5 Pointer to global data area

A6 Frame pointer

A7 Stack pointer

D2, D3, D4, D5, D6, D7 Integer register variables

FP1, FP2, FP3, FP5, FP6, FP7 Floating–point register variables

A0 Pointer return values

D0 Integer return values

FP0 Floating–point return values

Table C-1: Machine registers

5 SUBROUTINE LINKAGE

5.1 PRESERVED REGISTERS

Every procedure is responsible for preserving the following registers: D2,

D3, D4, D5, D6, D7, A1, A2, A3, A5, A6, A7, FP1, FP2, FP3, FP5, FP6, FP7.

This rule also applies to any assembly language routines called from

compiled code.

5.2 REGISTER RETURN VALUES

The compiler expects function return values in registers under the

following circumstances:

• Pointer values are returned in A0.

• If the hardware floating-point option –h is selected and the software

floating-point compatibility option –68 is not selected, then float
and double values are returned in FP0. Otherwise float values are

returned in D0 and double values are returned in a temporary stack

location.

Compiler Run–Time Conventions C–7

• • • • • • • •

• Return values of integral type are returned in D0.

5.3 PARAMETER PASSING

All parameters are pushed as one (or more) 16-bit word(s). This means,

for example, that one-byte structure parameters occupy two bytes on the

stack. The contents of the other (high order) bytes are undefined. For

more information on function prototypes, see the C Language
Specifications appendix.

For the ColdFire compiler or when the –L option is used with the 68K

compiler, all parameters are pushed as one (or more) 32-bit word(s).

5.4 CALLING SEQUENCE

The generated code for a procedure call has the following form:

1. Determine if the function return value will be returned in a register. If not,

allocate space for a function return temporary on the stack.

2. Push the arguments onto the stack. The arguments are pushed as words in

reverse order, i.e., the last argument is pushed first.

3. If a function return temporary was allocated, push its address.

4. Call the function.

5. Pop the arguments off the stack.

6. If a function return temporary was allocated, deallocate it after it is used.

Appendix CC–8
R
U
N
-T
IM
E

5.5 PROCEDURE PROLOGUE

There are three instructions which may appear in the prologue code. The

presence of each depends on the nature of the routine. If there are local

variables on the stack (or if the –nl compiler option is present) then there

will be a LINK instruction. If any non-floating-point register variables are

used by the routine a MOVEM is executed. If any floating-point register

variables are used by the routine an FMOVEM is executed. The form of

these instructions follows:

LINK A6,#n n is the size of the new frame

MOVEM reg list,–(A7) Save A/D registers

FMOVEM freg list,–(A7) Save float registers

The reg list names all the preserved registers, A1, A2, A3, D2, D3, D4, D5,

D6, D7, which are modified in the subroutine. The freg list names all the

preserved floating-point registers, FP1, FP2, FP3, FP5, FP6, FP7, which are

modified in the subroutine.

FMOVEM (A7)+,<freg list> Restore float registers

MOVEM (A7)+,<reg list> Restore A/D registers

UNLK A6 Restore previous stack frame

RTS Return to caller

Compiler Run–Time Conventions C–9

• • • • • • • •

Here is a picture of a typical run-time stack configuration:

Lower addresses

<–– Stack Pointer (A7)

Local Variables (negative offsets from Frame Pointer)

Old Frame Pointer <–– Frame Pointer (A6)

Return Address

Parameter 1

. . . (positive offsets from Frame Pointer)

Calling Routine’s Frame

<–– Caller’s Frame Pointer

Higher Addresses

5.6 INITIAL STARTUP

The compiled code which first receives control from an operating system,

executive, power-up sequence, etc., will require certain preparations in

order to execute properly. Generally the main requirements are to

establish an initial stack frame and to initialize the A5 register with the

address of the global data area. Please refer to the Segmentation Model
subsection above for an explanation of the use of ``ldata'' in initialization

of the A5 register.

A prototype startup routine for use with a ROM-based monitor is provided

with the run-time library. This __main routine is discussed in detail in the

Run-Time Library chapter in the Reference Manual.

Appendix CC–10
R
U
N
-T
IM
E

The compiler generates an external reference to the __main library

routine if the module being compiled contains a routine named main. This

allows automatic loading of __main from a link library.

D

OBJECT MODULE
FORMATS

A
P

P
E

N
D

IX

Appendix DD–2
F
O
R
M
A
T
S

D

A
P

P
E

N
D

IX

Object Module Formats D–3

• • • • • • • •

This appendix contains the following sections:

• Introduction

• Intel ASCII Hex Format

• Motorola S Records

• Extended Motorola S Records

• Packed Motorola S Record

• S37 Motorola S Records

• Tektronix Format (Tekhex)

• Extended Tekhex Format

• Binary Tektronix Format

• HP64000 Format

• Common Object File Format (COFF)

• IEEE-695 Object Module Format

1 INTRODUCTION

Once a C program has been compiled, linked and located, a file exists that

contains all the information required to specify exactly where in memory

each part of the program should reside.

However, there is no one standard that determines how this information

should be supplied to various PROM burners, emulators, and so on. Each

system has its own requirements for file formats, header information,

checksums, and other essential information.

The 68K/ColdFire toolkit supports a wide variety of ASCII hex and binary

object module formats, which are briefly described here. Use the

formatter's (form) –f option to choose an output format or use form695

to produce IEEE-695. For further information on format specifications

please refer to the manufacturer's specification for the equipment to which

you plan to transfer data.

Appendix DD–4
F
O
R
M
A
T
S

2 INTEL ASCII HEX FORMAT

The general format of a record, shown here with spaces separating each

field, is:

: ll aaaa tt dd ... dd cc

In this format field:

: is the keyword used to signal the start of the record.

ll is the number of code/data bytes in the record.

aaaa is the lower 16 bits of the absolute address at which the first
byte of code/data in the record is to be placed. (For record
types 01 to 03, this field contains “0000”. See below.)

tt represents the record type.

dd..dd is the data for each record type.

cc is the checksum.

Record Types:

The following is a list of possible record types (the tt field) with the

corresponding value of the ll field:

tt ll

00 – data record actual data length

01 – end of file record 00

02 –extended address 02

03 – start address record 04

Record Type Data:

For each record type, the data is as follows:

tt dd...dd

00 the code/data bytes

01 none

02 4 hex digits – the first is the upper four bits of the 20 bit
absolute address, followed by 3 zeroes

03 CS and IP (8 digits)

Object Module Formats D–5

• • • • • • • •

3 MOTOROLA S RECORDS

The general format of a record, shown here with spaces separating each

field, is as follows:

ss ll aaaa dd ... dd cc

Where:

ss is the S–record type.

ll is the record length, which includes the number of bytes in the
address, code/data and checksum fields.

aaaa is the 2–byte address at which the first byte of code/data in
the record is to be placed.

dd...dd is the code/data bytes.

cc is the checksum

The following is a list of possible S-record types for the ss field:

S0 – header record for each block

S1 – record containing code/data and 2–byte address at which the
code/data is to reside

S9 – termination record

4 EXTENDED MOTOROLA S RECORDS

The general format of a record, shown here with spaces separating each

field, is as follows:

ss ll aaaaaa dd ... dd cc

Where:

ss is the S–record type.

ll is the record length, which includes the number of bytes in the
address, code/data and checksum fields.

aaaaaa is the 3–byte address at which the first byte of code/data in
the record is to be placed.

dd...dd is the code/data bytes.

cc is the checksum.

Appendix DD–6
F
O
R
M
A
T
S

The following is a list of the possible S-record types for the ss field:

S0 – header record for each block.

S2 – record containing code/data and 3–byte address at which
the code/data is to reside.

S8 – termination record.

5 PACKED MOTOROLA S RECORDS

The general format of a record, shown here with spaces separating each

field, is as follows:

ss ll aaaa [aa[aa]] dd... dd cc

Where:

ss is the S–record type.

ll is the record length, which includes the number of bytes
in the address, code/data and checksum fields.

aaaa[aa[aa]] is the 2–, 3– or 4–byte address at which the first byte of
code/data in the record is to be placed.

dd...dd is the code/data bytes.

cc is the checksum.

Object Module Formats D–7

• • • • • • • •

The following is a list of the possible S-record types for the ss field:

S0 – header record for each block.

S1 – record containing code/data and 2–byte address at which
the code/data is to reside.

S2 – record containing code/data and 3–byte address at which
the code/data is to reside.

S3 – record containing code/data and 4–byte address at which
the code/data is to reside.

S7 – termination record that includes a 4–byte start address.

S8 – termination record that includes a 3–byte start address.

S9 – termination record that includes a 2–byte start address;
also if there is no defined start address (two bytes of
zero).

6 S37 MOTOROLA S RECORDS

The general format of a record, shown here with spaces separating each

field, is:

ss ll aaaaaaaa dd .. dd cc

Where:

ss is the S–record type.

ll is the record length, which includes the number of bytes
in the address, code/data, and checksum fields.

aaaaaaaa is the 4–byte at which the first byte of code/data in the
record, code/data, and checksum fields.

dd...dd is the code/data bytes.

cc is the checksum.

The following are possible S-record types for the ss field:

S3 – record containing code/data and 4–byte address at which
the code/data is to reside.

S7 – termination record.

This format does not provide an S0 header record.

Appendix DD–8
F
O
R
M
A
T
S

7 TEKTRONIX FORMAT (TEKHEX)

The general format of a record, shown here with spaces separating each

field, is:

/ aaaa ll ss dd ... dd cc

here:

/ is the keyword used to signal the start of a record.

aaaa is the 2–byte address at which the first byte of code/data
in the record is to be placed. Successive data bytes are
stored in the following memory locations.

ll is the number of code/data bytes in the record. A count of
zero indicates end–of–file.

ss represents the sum of the preceding six digits.
(a+a+a+a+l+l).

dd...dd is the code/data bytes.

cc is the checksum.

8 EXTENDED TEKHEX FORMAT

The formatter can produce extended Tektronix Hexadecimal Format

(Extended Tekhex). Symbolic information is produced for global symbols

when the formatter debugging option, –d , is used. To conform with legal

Extended Tekhex conventions, symbol names are modified as follows

before being emitted:

• Leading underscore (`_') characters are removed.

• Illegal characters (`@' and `*') are replaced with `$'.

• Leading dollar sign (`$') characters are moved to the end of the name.

• Symbol names longer than 16 characters are truncated.

The general format of a record, shown here with spaces separating each

field, is:

% ll t cc aa(aaaaaaaaaaaaaaa) dd...dd

Object Module Formats D–9

• • • • • • • •

Where:

% is the keyword used to signal the start of a record.
ll is the number of digits in the record (not including the

leading % or end–of–line).
t indicates the record type.
cc checksum
aa may be from 2 to 17 hex or ASCII digits. The first digit is

always a hex which indicates how many digits are to
follow. The meaning of theaa field depends on the type of
record. (See below.)

data: load address of object code

symbol: name of thesection that contains the
symbols defined in this block

termination: transfer address, or the address where the
program must begin.

dd Meaning and length depend on record type. (See below.)

data Each dd represents a byte of object code/data.

symbol 5 to 35 hex digits of Section Definition and
5 to 35 ASCII and hex digits for each
Symbol Definition.

termination No characters in this field.

Record Types:

The following are possible record types for the t field:

6 = data block

3 = symbol block

8 = termination block

8.1 SECTION DEFINITION FIELD

The general format of a section definition is as follows, with a space

separating the fields. (This is an expansion of dd above.)

0 AA LL

Appendix DD–10
F
O
R
M
A
T
S

Where:

0 is the keyword used to identify the start of a section
definition.

AA is 2 to 17 hex digits which represent the starting address
of the section. The first digit indicates how many digits
will follow.

LL is 2 to 17 hex digits which represent the length of a
section. The first digit indicates how many digits will
follow.

8.2 SYMBOL DEFINITION FIELD

The general format of a symbol definition field is as follows:

X SS VV

Where:

X Indicates the type of value that the symbol represents.
For our purposes, this hex digit is always a ‘1’, meaning a
global address.

SS is 2 to 17 digits which represent the name of the symbol.
The first digit is a hex digit which indicates how many
ASCII digits will follow.

VV is 2 to 17 hex digits which represent the address of the
symbol. The first digit indicates how many digits will
follow.

9 BINARY TEKTRONIX FORMAT

Binary Tekhex format is a binary format. A full description of this format is

beyond the scope of this appendix. For details, please refer to the

Tektronix binary object format specification.

The following Binary Tekhex records are produced when the formatter

debugging option, –d , is not used:

• LAS_MODULE_DEFINITION_BLOCK

• MODULE_COMMENT_INFO_BLOCK

• MICROPROCESSOR_DEPENDENT_BLOCK

Object Module Formats D–11

• • • • • • • •

• SECTION_EXPORT_BLOCK :
LAS_SECTION_DEFINITION_RECORD only

• LAS_TEXT_BLOCK

• LAS_END_BLOCK

In addition, global symbol information is available with the following

record when the formatter debugging option, –d , is invoked:

LAS_MODULE_SYMBOL_TABLE_BLOCK :
LAS_GLOBAL_LABEL_RECORD only

Symbol names longer than 16 characters are truncated.

10 HP64000 FORMAT

HP64000 format is a binary format. A full description of this format is

beyond the scope of this appendix. For details, please refer to the Hewlett

Packard document 64000-UX Hosted Development System File Formats (HP

64880-90903).

10.1 USING THE HP64000 FORMAT

The formatter can produce all the files necessary for doing:

For PC hosts:Emulation analysis on a HP64700 emulator using

 the Emulator Interface.

For Unix hosts:Emulation and state analysis on a Hewlett Packard

 HP 64000-UX system. Output is compatible with

 the following systems:

• Hewlett Packard Emulation Bus Analyzer (HP 64302A)

and the Hewlett Packard State/Software Analyzer (HP

64620S).

• Hewlett Packard 32-bit Emulation Bus Analyzer (HP

64416A/B Real-Time Emulator).

All global, local static, and source line symbols are available for all hosts.

Appendix DD–12
F
O
R
M
A
T
S

For Unix hosts, the files that are generated by the formatter utility are

appropriate for downloading from a UNIX development environment to

the HP 64000-UX with:

• The Hewlett Packard downloading program called get64 (HP 64887S

Network Transfer Utility), which runs on the HP 9000 Series 300

running HP-UX.

The get64 program performs a translation of these downloadable files

from a UNIX-specific format to an HP 64000-UX specific format during

downloading. If the formatter is hosted on an HP 64000-UX it generates

these files in a format which is already HP 64000-UX specific.

10.2 FILES NEEDED

The following file types are required for emulation analysis (and state

analysis for Unix hosts) on the HP64700 for PC hosts and HP64000-UX for

Unix hosts:

• Absolute file (.X). The absolute file contains absolute data that will be

loaded into memory, and information about the target processor that

will be used. One absolute file is needed per program.

• Linking locator symbol file (.L). The linking locator symbol file

contains global symbol definitions, lists source modules, and describes

the location of the program code that was generated from each source

module. One linker symbol file is required for each program.

• Assembler symbol files (.A). Assembler symbol files contain local

static symbol definitions and information for displaying line numbers

during emulation analysis (and state analysis for Unix hosts). One

assembler symbol file is required for each source module for which

source lines and/or local static symbols will be displayed.

• Source files. The source files used to generate the executable module

are required for displaying source line information during emulation

and state analysis.

All of the necessary files are created by the formatter. From each

absolutely located object file produced by the linking locator (.ab file), the

formatter produces one absolute file, one linking locator symbol file, and

optionally, assembler symbol files. For an overview of the way that these

files are used on the HP 64000-UX for Unix hosts and a detailed

description of the file formats for PC and Unix hosts, see the Hewlett

Packard document, 64000-UX Hosted Development System File Formats
(HP 64880-90903).

Object Module Formats D–13

• • • • • • • •

10.3 GENERATING FILES FOR USE WITH THE 64700

To produce files for use with the HP64700 for PC hosts or the

HP64000-UX for Unix hosts, the tools are run as usual, but with the

following additions:

• If source line information and/or local static symbol information is to

be made available for a particular source module (i.e., if an assembler

symbol file is to be produced for that module), then that source must

be compiled or assembled with the –d (debugging) option.

• Choose the HP64000 format by running the formatter with the –f hp
option.

• If source line information and/or local static symbol information is

required for any module, use the –d formatter option.

Generally, source line information is needed for only part of the input

source modules. For example, displaying source lines for assembly

language modules will not always be useful, since it is possible to

disassemble code in the state and emulation analyzers. Also, run-time

libraries are usually not assembled with debugging information. Any

combination of object language files compiled or assembled with and

without debugging information may be linked together. Assembler symbol

files will only be produced for those that have been compiled or

assembled with debugging information.

At formatting time, if an assembler symbol file is created, it is placed in the

same directory as its corresponding source file (not necessarily the same

directory in which the formatter is invoked). Therefore, source directories

that are used for this purpose must be writable.

10.4 FORMATTER EXAMPLES

In the following examples, it is assumed that two source files, xtest.c and

ytest.c, have been compiled (using the –d option), linked and located,

producing an absolute file called xtest.ab.

Example

form xtest.ab –f hp

• For PC hosts only, produces an absolute file named xtest.X , and a

linker symbol file named xtest.L .

Appendix DD–14
F
O
R
M
A
T
S

• For PC and Unix hosts, neither source line information nor local static

symbol information is included.

Example

form xtest.ab –f hp –d

• Produces an absolute file, xtest.X , a linker symbol file, xtest.L ,

and assembler symbol files, xtest.A and ytest.A , containing source

line information and local static symbol information for the

corresponding source files.

10.5 USING GET64 ON UNIX HOSTS

The files that are generated by the formatter are in a format appropriate for

downloading to the HP 64000-UX with the Hewlett Packard program

get64 , which runs on the HP 9000 Series 300 running HP-UX. For a

description of the options to get64 , see the HP manual Network Transfer
Utility for the HP 64000-UX Microprocessor Development Environment (HP

64887-90901).

The absolute file, the linker symbol file, the assembler symbol files, and

the source files may all be downloaded to the HP 64000-UX at the same

time. The name of the linker symbol file (with an absolute directory path)

is specified as an argument to get64 . get64 derives the name of the

absolute file from the name of the linker symbol file by replacing the ``.L''

extension with ``.X''. The names of the source files, with absolute directory

paths, are included in the linker symbol file, and the assembler symbol

files, if created, are found by get64 in the same directory as their

corresponding source files (the name of the assembly symbol file is

inferred from the source file name).

When compiling (or assembling) files with the TASKING 68K/ColdFire

toolkit, it is not necessary to specify absolute directory paths for the

names of the sources. Using the names with which the compiler (or

assembler) was invoked, the formatter will create file names with full

directory information and insert them in the linker symbol file. Therefore,

the compiler, assembler and formatter must all be executed in the same
directory.

Object Module Formats D–15

• • • • • • • •

If the source is specified with a directory path relative to the current

working directory, the absolute path name that the formatter builds for the

file and places in the linker symbol file will not necessarily be the shortest

name possible. For example, suppose the compiler is invoked within the

directory /user/c68k/test1 , with the name of the source specified as

../test2/test.c . At formatting time, the formatter will create in the

linker symbol file an absolute directory path name

/user/c68k/test1/../test2/test.c , and not

/user/c68k/test2/test.c .

The following points are important to keep in mind:

• when composing a file of mapping patterns to be used with the –m
option of get64 . If you are unsure of the absolute path file names

included in the binary linker symbol file, run the UNIX program

strings on the linker symbol file to determine the full names of the

source files.

• for viewing local symbol information when using the HP 64416A/B

Real Time Emulator. In order to display local symbols for a file with

../ in its directory path, you must precede each occurrence of ../
within the directory path with a backslash \ .

• if the source file has no extension in its name (i.e., ../test2/test ,

as opposed to ../test2/test.c). The HP 64416A/B Real Time

Emulator, using the source file names within the linker symbol file, is

unable to correctly infer the name of the assembler symbol file

corresponding to a source file with no extension and with a ../ in its

directory path (even though the assembler symbol file has been created

in the proper directory). If this occurs, local static symbol information

and source line referencing information will not be available within the

emulator for that source file.

Appendix DD–16
F
O
R
M
A
T
S

11 COMMON OBJECT FILE FORMAT (COFF)

COFF is a binary format. A full description of this format is beyond the

scope of this appendix. There are several implementations of the COFF

standard, which differ largely in regard to which fields of the COFF

records are filled in and which are null padded. Unless otherwise noted

below, the formatter utility fills in fields according to the System V/68
Release 3 Programmer's Guide (Motorola, Inc., 1987) and Understanding
and Using COFF by Gintaras R. Gircys (O'Reilly & Associates, Inc., 1988).

COFF output from the formatter has been tested with the ATRON

68000/010/020 series emulators. Line numbers and all global and local

symbols are available.

The following table shows the basic structure and contents of a COFF file

(from figure 1-2 in Understanding and Using COFF).

11.1 FILE HEADER

The only magic number (f_magic) used currently in the file header is

octal 520. This is normally associated with an MC68000 target processor.

The formatter utility does process other target .ab files, but the resulting

COFF file always gets this magic number.

Note that for the Intel family of processors, the byte ordering in the binary

COFF file is done in the following manner: the least significant byte gets

the lowest address. This is the reverse of the ordering used by the

MC68000. The –br formatter option allows both types of byte ordering for

the supported processors, to better allow for cross development.

Object Module Formats D–17

• • • • • • • •

A COFF File Contents

File Header General information such as file
 timestamp and magic number

Optional Header
 Run–time information

Section Header 1
.

.
Section Header

 Descriptions of section
 characteristics

Section 1 contents
.

.
Section n contents

 Actual contents of sections

Section 1 relocation info
.

.
Section n relocation info

 Information used by the linker to
 create run–time executable

Section 1 line number info
.

.
Section Header

 Debug information

Symbol Table Information used by the
 debugger and linker

String Table Very long symbolic names

11.2 OPTION HEADER

The vstamp , text_start , and data_start fields are not used (null

padded). The magic number is always set to octal 520. This means that

text and data segments are aligned within the binary file, so that the file

can be paged directly.

Appendix DD–18
F
O
R
M
A
T
S

11.3 RELOCATION INFORMATION

This information is not emitted by the 68K/ColdFire toolkit, since the

llink utility will have already been used for relocation.

11.4 SECTION HEADERS

The relocation information related fields s_relptr and s_nreloc are

always zero. The section names idata and udata are equivalent to

.data and .bss respectively.

The only types of sections emitted are: STYP_TEXT, STYP_DATA,
STYP_BSS.

The names of the sections are truncated to the eight character limit.

11.5 LINE NUMBER INFORMATION

Line number entries are absent when files are compiled without the

symbolic debug option.

11.6 SYMBOL TABLE ENTRIES

Symbol table entries are absent when files are compiled without the

symbolic debug option. The following items list the different

implementation techniques used for Symbol Table entries:

• External symbols receive an extra prepended `_' (underscore) character.

The –c formatter option suppresses the addition of an extra

underscore.

• There are several �special symbols" that are not supported. They are:

.text , .bss , .data , .target , .bb , .eb , etext , edata and end .

• The auxiliary information for DT_FCN function entries contains only the

x_lnnoptr line number pointer and the x_fsize function size fields;

other fields are not used.

• The .bf and .ef auxiliary directives do not contain the �line number"

or �index of next entry" information and are left null padded.

• Tag type entries are not chained.

Object Module Formats D–19

• • • • • • • •

11.7 COFF1 FORMAT

COFF1 format is almost identical to the COFF format described earlier in

this appendix.

It differs only in its treatment of line number symbols. COFF1 format starts

its line numbers from 1. As a result, each line number symbol directly

corresponds to an actual program line number.

Note that this is not true for the TASKING 68K/ColdFire COFF format,

which was developed for use with the ATRON emulator. The ATRON

emulator requires COFF line number symbols which have been specially

processed. Therefore, COFF line number symbols do not directly

correspond to the program line numbers.

12 IEEE-695 OBJECT MODULE FORMAT

IEEE-695 is a binary format. Use this format for debugging with CrossView

Pro. A full description of this format is beyond the scope of this appendix.

Use the form695 formatter to generate this type of objects. For more

information see IEEE-695 Object Module Format Specification (Revision

4.1, MRI/HP., 1992).

Appendix DD–20
F
O
R
M
A
T
S

E

COMPILER /
ASSEMBLER DRIVER

A
P
P
E
N
D
IX

Appendix EE–2
D
R
IV
E
R

E

A
P
P
E
N
D
IX

Compiler/Assembler Driver E–3

• • • • • • • •

This appendix discusses the driver that invokes compiler and assembler

executables.

The compiler and assembler are invoked by a driver program. This

program is responsible for reinvoking the compiler and/or assembler

repeatedly if there are multiple source files, and for invoking the various

executables which constitute the compiler. This driver program has

options of its own, which are generally of interest only when debugging

the compiler and/or the assembler itself. They are:

–ke For PC hosts only, keep the intermediate files between

compiler phases. For Unix hosts only, execute the phases of

the compiler sequentially and keep the intermediate files.

–se For UNIX hosts only, this option is like –ke , but deletes the

intermediate files if compilation is successful.

–v Verbose mode. Identifies executables as they are invoked.

This helps determine which phase was executing if the

compiler aborts. For technical support purposes.

–ve Very verbose mode. Reports date, time, and status/result.

For PC hosts only, the driver by default queries the I2EXE environment

variable to determine the directory containing executable files. If the

I2EXE variable is not defined, the driver invokes executable files which lie

in the same directory as the driver executable.

For UNIX hosts only, the driver by default invokes executable files which

lie in the same directory as the driver executable.

The following options direct the driver to invoke other executables.

–as file Specifies a different assembler executable.

–be file Specifies a different compiler back end executable.

–fe file Specifies a different compiler front end executable.

–gs file Specifies a different global symbol mapper utility.

–in file Specifies a different interleave utility.

–me file Specifies a different merge utility.

–op file Specifies a different compiler optimizer.

Appendix EE–4
D
R
IV
E
R

–xd directory
Specifies a different executable directory.

–xr file Specifies a different cross-reference utility.

–1 Invokes the assembler once, passing all source files. When

using other options with –1 (one), –1 must appear first in the

invocation.

For PC hosts only, the driver program uses the I2ARGV0 environment

variable internally. You should not use this variable for any other purpose.

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

Symbols
#elif directive, A-23�A-28

#error directive, A-23�A-28

#pragma directive, A-23�A-28

_GPL pseudo-function, A-27�A-28

_IH keyword, A-26, A-27, A-28

_LONGINT variable, 2-18

_SPL pseudo-function, A-28

_SWI keyword, A-30

_TRAP function, A-28

Numbers
16-bit subscript, 2-53

64K limit, 7-14, C-5

A
A0 register, C-6

A5, libraries that do not use A5, 7-17

A5 register, 2-32�2-33, 2-35�2-36,

7-11

A5 relative addressing, 7-14, 7-17, C-5

A5-relative addressing, 2-32�2-33,

2-35�2-36

A6 register, 2-36, C-5

absolute

module, 4-7, 5-5, 5-6
segment, 4-21

address

range, 4-28�4-30, 4-32, 4-35
reference, 4-21

address exception, 2-19

address spaces, multiple, 3-7, 4-33

addressing modes, 2-33, 2-38�2-39,

2-54�2-58, 7-35, 7-48

AFTER address, 4-28, 4-32

alignment, 2-18�2-19, 2-31, 3-14

ANSI C, 2-6, 2-27�2-28, 2-29, 2-37,

2-41, 2-44, A-14�A-32

ANSI function prototypes, 2-44

array subscript, 2-53, 2-54

ASCII hex formats, D-3

assembler, 3-1�3-16

options, listing, 3-6�3-8
usage, 3-5�3-16

assembly

conventions, 7-8
in-line, A-5�A-32
routine call, 7-8

assembly listing, 2-10

automatic register variable assignment,

2-48�2-58

B
backwards compatibility, 2-16, 2-28

BEFORE address, 4-28

Best Code, 7-42

bias, 5-11

binary formats, 5-9, 5-10, D-11�D-20

Binary Tekhex format, 5-7, 5-9,

D-10�D-20

bitfield storage layout, 2-17

branch tables, 2-52�2-58

built-in data types, 2-17

burning interleaved PROMs, 5-12

byte slicing, 5-12, 5-13

C
C and assembly, 7-11

linking, 7-8�7-13
C interrupt handlers, A-26�A-32

C language specifications, A-1�A-32

C++ support, 4-23

calling, sequence, C-7�C-10

IndexIndex–4
IN
D
E
X

cataloging object modules, 6-6, 6-7

checksums, D-3

class, 4-19�4-26, 6-21, 7-15, B-7, B-8

code

generation, options, 2-31�2-46
hoisting, 2-25, 2-51�2-58
segment, B-6�B-10
size, 2-49
symbols, B-4�B-10

COFF, 5-7, 5-9, 5-13, D-16�D-20

COFF1, 5-10

combinability, 4-17

combining segments, 4-17

common

segment, 4-17
subexpression elimination,

2-49�2-58
compiler, 2-1�2-21

error messages, 2-54�2-58, A-17
input, 2-3
library organization, 4-22�4-38
options, 2-3�2-21
output, 2-3
usage, 2-8�2-21

concat segment, 4-17

conditional assembly, 3-7, 3-8

const, A-20

const type qualifier, 7-15, 7-16,

A-20�A-32

constant data, 7-14

constants in ROM, 7-14

conventions

compiler, A-4
compiler naming, 7-8�7-13

cross-reference listing, 2-12, 2-13

CrossView Pro, debugger, 2-9,

2-22�2-30, 7-5, 7-6

CSE, 2-49

customer support, 2-54

D
D0 register, C-6

data

allocation rules, C-3
global, B-4, B-5�B-10
local static, B-4, B-5�B-10
segment, B-6�B-10
separate, B-7�B-10
stack, B-4, B-5�B-10
symbols, B-4
uninitialized, B-6, B-7, B-8

data type

length options, 2-17
options, 2-15�2-18
void, A-27

date/time stamp, 6-8, 6-9

debugging

information, 2-41, 3-14
symbolic, 3-14, 4-13

with optimizer, 2-47
DECLARE command, 4-30

default

format, 5-7
placement, 4-21
separate

class, 2-20, 7-15
segment, 7-15

defined operator, A-25�A-28

directives, ANSI C, A-22�A-28

documentation, 1-3�1-4

download

file, 5-13
format, 5-7, D-3

downloading, 7-5�7-7

Index Index–5

• • • • • • • •

E
empty segments, 6-14

emulators, 7-5�7-7

entry/exit optimization, 2-52�2-58

enum type, 2-15

error messages

compiler, 2-54�2-58, A-17
librarian, 6-9

exception, A-26

handler, A-26
vector, A-27

excluding from download

named classes, 5-14
named segments, 5-13

Extended Motorola format, 5-10,

D-5�D-20

Extended Tekhex format, 5-7, 5-10,

D-8�D-20

extensions, preprocessor, A-4�A-32

external, reference, 4-14, 4-26

F
floating-point compatibility, 2-28

formatter, 5-1�5-16

input, 5-3
invocation, 5-3
options, 5-3�5-16
output, 5-3
usage, 5-5�5-16

fullword alignment, 2-19, 3-14

function

declaration syntax, A-15
definition header, A-15
header, A-14
prototypes, A-14�A-32

creating, A-14�A-18
return temporary, C-7
return values, 2-28

function prototype, 2-45

G
get64 program, D-14

global

consistency check, 6-8, 6-9
data, 7-11, 7-14, B-4, B-5�B-10,

C-4, C-5
sharing, 7-11�7-13

function, B-4, B-6
replace operation, 6-9
symbol, 4-13, 6-5, 6-9, 6-10, 6-12,

B-3, B-4
listing, 3-4, 3-7

variable, 4-16
global symbol mapper, 6-11�6-15, B-3

input, 6-11
invocation, 6-11
listing, 6-12
options, 6-11�6-15

listing, 6-13
sorting, 6-14

output, 6-11
usage, 6-12�6-15

GPL. See _GPL pseudo-function

group, 4-18�4-19

gsmap. See global symbol mapper

H
halfword alignment, 3-14

handler, A-26

hardware floating-point, 2-28, 2-29,

4-22

hardware floats option, 2-28

Hewlett-Packard format. See HP64000

format

hex file, 3-14, 5-14, 7-6

HP64000 format, 5-7, 5-8, 5-10,

D-11�D-20

IndexIndex–6
IN
D
E
X

I
idata, 2-40, 4-6, 4-18, 7-14, B-6, B-9

IEEE-695, D-19�D-20

IH. See _IH keyword

in-line, assembly, A-5�A-32

in-line assembly, 2-10, 2-40�2-41,

A-5

include

directive, 2-14
options, compiler, 2-13�2-14

initial

stack frame, C-9�C-10
values, 4-6, 4-16

initialization, segment, 4-6

initialized variables, 4-6, 7-14, 7-16

input

assembler, 3-3
compiler, 2-3
formatter, 5-3
global symbol mapper, 6-11
librarian, 6-4
linking locator, 4-3
object size list utility, 6-21
symbol list utility, 6-16

instruction, for returns, A-28

Intel

ASCII hex format, 5-10
formats, D-4�D-20

internal symbol, B-3, B-4

interrupt

handlers, A-26
C, A-26�A-32

priority level, A-27
interrupt handlers, 2-9, 2-47

invocation

formatter, 5-3
global symbol mapper, 6-11
librarian, 6-4
linking locator, 4-3
object size list utility, 6-21
symbol list utility, 6-16

L
ldata, 4-18, B-6

libr, 6-4

librarian, 6-4�6-10

input, 6-4
invocation, 6-4
options, 6-4�6-10

command, 6-7�6-8
output, 6-4
usage, 6-5�6-10

library

index
file, 4-4, 4-5, 4-9, 6-5, 6-6, 6-8
header, 6-5, 6-9

listing output, 6-9
search, 4-9, 4-26�4-38, 6-8

lifetime

analysis, 2-26, 2-47
overlap, 2-47

LINK instruction, 2-25

linkage conventions, 2-28

linking, 4-5�4-7

options, 4-8�4-9
linking locator, 4-16�4-38

input, 4-3
invocation, 4-3
options, 4-3�4-38
output, 4-3
usage, 4-5�4-38

listing

object size, 6-21�6-22
symbol table, 6-17�6-20

listing options

assembler, 3-6�3-8
compiler, 2-10�2-12
global symbol mapper, 6-13�6-14
librarian, 6-9

llink. See linking locator

loader program, 5-5, 7-29

local

functions, B-4

Index Index–7

• • • • • • • •

information, 4-12
stack data, B-4, B-5�B-10

LOCATE command, 4-16, 4-19, 4-20,

4-21, 4-32

locating, 4-7

segments, 4-19
locator, commands, 4-9, 4-27�4-38

long integer, 2-18, 4-23

loop rotation, 2-51�2-58

M
M68020, 2-18�2-19

M68030, 2-18�2-19

M68040, 2-18�2-19

M68EC020, 2-18�2-19

M68EC030, 2-18�2-19

M68EC040, 2-18�2-19

macro, definition, A-21

macros, ANSI predefined, A-22�A-28

main routine, C-9

mathematical functions, 2-29

maximum address, 4-33

MC68000, compatibility mode, 2-28

MC68020, addressing mode, 2-54

MC68040, 2-31

MC68302, 3-13

MC68881, instructions, 4-22

memory

limitation, 4-33
management, 4-33

MEMORY command, 4-22, 4-33

memory mapped I/O, 2-9, 2-47, 4-16

memory space, 4-16

messages, librarian, 6-9

MICROCASE SoftAnalyst, 5-8

missing, routines, 4-30

Motorola S format, 5-10, D-5�D-20

multiplication optimization, 2-53�2-58

N
name

conflict, 4-13
list, 4-29, 4-32

negative offsets, C-5

nested include, 2-14

nesting limit, 2-14

no-A5 library, 2-36

no-alias option, A-23

no-floats library, 4-23

non-volatile option, A-23

null class, 4-20

NWIS ASCII format, 5-8, 5-11

O
object

module, 2-8, 6-7
cataloging, 6-7

text window, 5-12
object size list utility, 6-21�6-22

input, 6-21
invocation, 6-21
listing, 6-22
options, 6-21�6-22
output, 6-21
usage, 6-21�6-22

offsets

negative, C-5
positive, C-5

olsize. See object size list utility

operators, ANSI C, A-25�A-28

optimizer, 2-9, 2-48�2-58

and debugging, 2-4, 2-9, 2-24
options, 2-22�2-46
special instructions, 2-53�2-58
subexpression, 2-22

IndexIndex–8
IN
D
E
X

suppression, 2-47
usage, 2-47�2-58

option sep_off, 7-15

option sep_on, 2-19�2-21, 7-15, 7-16

option separate, 2-20, 5-15,

7-14�7-16, B-6, B-7�B-10, C-5

options

assembler, 3-6�3-16
compiler, 2-3�2-21
formatter, 5-3�5-16
global symbol mapper, 6-11�6-15

listing, 6-13�6-14
sorting, 6-14

librarian, 6-4�6-10
command, 6-7
listing, 6-9

linking locator, 4-8�4-38
listing, librarian, 6-9
object size list utility, 6-21�6-22
symbol list utility, 6-16�6-20

output

assembler, 3-3
compiler, 2-3
global symbol mapper, 6-11
librarian, 6-4
linking locator, 4-3
object size list utility, 6-21
symbol list utility, 6-16, 6-17

overlapping segments, 4-21

P
Packed Motorola format, 5-10

padding segments, 4-9, 4-36

pagination, 3-7

suppression, 6-14
parallel connection, 7-6

parameter passing, C-7�C-10

PC-relative addressing, 7-30�7-41

PC-relative code, 2-38

peripherals, on-board, 7-49

portable libraries, 6-6

position-independent code, 2-37,

2-38�2-40, 3-13, 7-29�7-41

position-independent data, 7-32

positive offsets, C-5

pragma sep_off, 7-15

pragma sep_on, 2-19�2-21, 7-15, 7-16

pragma separate, 2-20, 5-15,

7-14�7-16, B-6, B-7�B-10, C-5

pre-INCLUDE'd files, 3-12

prelink, 4-5

preprocessor, 2-42, 2-43

additions, ANSI C, A-22�A-32
extensions, A-4�A-32
option directives, 7-15�7-16

preserved registers, 2-33, C-6

procedure

blocks, C-5
call, 2-34
prologue, 2-25, C-8�C-10

program image, 7-6

prologue, C-8�C-10

PROM

burners, 7-6
options, 5-11�5-12
programming, 7-5, 7-6�7-7

prototype. See function prototype

pseudo-assembly, listing, 2-8

R
RAM, 4-6, 7-7

rcopy, 4-6

read-only variables, A-20

register

allocation, 2-26, 2-47, 2-48
preserved, C-6�C-10
return values, C-6�C-10
usage, C-6�C-10
variable, 2-34, 2-48, 2-49

relocatable segment, 4-21

relocation, 4-21�4-38

RESERVE command, 4-21, 4-35

Index Index–9

• • • • • • • •

return values, 7-10

ROM, 4-6, 7-6, 7-7, 7-14

processor, 4-5
variables in, A-20

rompOutSeg, 4-6

RS-232 connection, 7-6

RTE instruction, A-27, A-28

RTS instruction, A-28

run-time conventions, 2-33

run-time library, 2-16, 2-17, 2-29,

2-32, 2-36, 4-14, 7-17

organization, 4-22�4-38
run-time model, 2-32, 2-33

S
S37 Motorola S records, D-7�D-20

sdata, 2-40, B-6

segment, B-3, B-6�B-10

absolute, 4-21
code, B-6�B-10
data, B-6
length, 4-16
name, 4-16, 7-15, B-4
overlapping, 4-21
padding, 4-36

segmentation model, C-4�C-10

SEGSIZE command, 4-36

separate

data, 2-19�2-21, 7-16, B-7�B-10
default class, 2-20, 7-15
default segment, 7-15

signed bitfield, A-31

signed/unsigned attribute, 2-17

simulators, 7-5

software

floating-point, 2-28, 4-22
interrupt keyword, A-30

source, listing, 2-13

SPL. See _SPL pseudo-function

stack, 2-36�2-37

data, B-4, B-5�B-10
fixup, 2-36�2-37
frame, 2-25, 2-36

initial, C-9�C-10
layout, C-3
traceback, 2-25

START command, 4-37

static

data items, 7-14
functions, B-6
keyword, B-4
variable, B-9

storage allocation, 2-17, 2-19,

C-3�C-10

strength reduction, 2-26, 2-50�2-58

string constants, B-5�B-10

stringization, A-21�A-32

structure, fields, 2-42

structure, fields, 2-19

structured assembly, 3-8

subroutine, linkage, C-6�C-10

subscript optimization, 2-53�2-58

support, customer, 2-54

SWI. See _SWI keyword

symbol

formats, 5-5, 5-7, 5-9
global, B-3, B-4
information, 2-41, 3-14, 4-13, 5-7
internal, B-3, B-4
naming, B-8�B-10

symbol list utility, 3-14, 6-16�6-20,

B-3

input, 6-16
invocation, 6-16
listing, 6-19�6-20
options, 6-16�6-20
output, 6-16, 6-17
usage, 6-16�6-20

IndexIndex–10
IN
D
E
X

symlist. See symbol list utility

system, include directory, 2-13

T
target path

computation, 2-49�2-58
optimization, 2-50

Tekhex format, 5-10, D-8�D-20

token pasting operator, A-25�A-28

TRAP, A-26

trigraphs, A-19�A-32

type

char, 2-15
double, 2-28
float, 2-28
int, 2-15, 4-23
qualifier, const, A-20�A-32
short, 2-15

type qualifier, A-23

U
udata, 4-18, 5-13, 7-14, B-6, B-9

unassembled source, 3-8

uncombinable segment, 4-17

undefined symbol, 2-45, 4-5

uninitialized

bytes, 4-16
data, B-6, B-7, B-8

storage, 4-16
variables, 7-14, 7-16

updating library, 6-5, 6-6, 6-8

uppercase identifiers, 3-15

user include

directory, 2-13
file, 2-13

V
VBR register, A-26

vector exception, A-27

void

data type, A-27
keyword, A-16
pointers, A-20�A-32

volatile, 2-27�2-28, 2-48, A-23

keyword, A-27

W
warning

messages, 2-46, 3-15
severities, 2-46, 3-15

Z
Z80SBC format, 5-10

ZAX format, 5-8, 5-11

	TABLE OF CONTENTS
	1. INTRODUCTION
	1.1 Overview
	1.2 Documentation

	2. C COMPILER
	2.1 Introduction
	2.2 C Compiler Options: Summary
	2.3 Usage
	2.4 C Compiler Options: Detailed Descriptions
	2.4.1 Listing Options
	2.4.2 Include Options
	2.4.3 Data Type Options
	2.4.4 Separate Data Options
	2.4.5 Optimizer Options
	2.4.6 Floating-Point Options (68K only)
	2.4.7 Code Generation Options
	2.4.8 Position-independent Code Options
	2.4.9 Miscellaneous Options

	2.5 Using the Optimizer
	2.6 Optimizations Performed
	2.6.1 Automatic Register Variable Assignment
	2.6.2 Common Subexpression Elimination
	2.6.3 Target Path Computation
	2.6.4 Strength Reduction
	2.6.5 Code Hoisting
	2.6.6 Loop Rotation
	2.6.7 Branch Tables
	2.6.8 Entry/Exit Optimization
	2.6.9 Multiplication Optimization
	2.6.10 Subscript Optimization
	2.6.11 Special Instruction Selection
	2.6.12 Special Addressing Modes

	2.7 Messages

	3. ASSEMBLER
	3.1 Introduction
	3.2 Assembler Options: Summary
	3.3 Usage
	3.4 Assembler Options: Detailed Descriptions
	3.4.1 Listing Options
	3.4.2 INCLUDE Options
	3.4.3 Code Generation Options
	3.4.4 Miscellaneous Options

	4. LINKING LOCATOR
	4.1 Introduction
	4.2 Linking Locator Options: Summary
	4.3 Usage
	4.3.1 Linking
	4.3.2 ROM Processing
	4.3.3 Locating

	4.4 Linking Locator Options: Detailed Descriptions
	4.4.1 Linker Options
	4.4.2 Locator Options
	4.4.3 ROM Processing Options
	4.4.4 Symbol Options
	4.4.5 Miscellaneous Options

	4.5 Linking Concepts
	4.5.1 Segments
	4.5.2 Groups
	4.5.3 Classes
	4.5.4 Relocation

	4.6 Compiler Library Organization
	4.7 Library Searches
	4.8 Locator Commands
	4.8.1 General Command Syntax
	4.8.2 Comments
	4.8.3 Numbers
	4.8.4 Keywords
	4.8.5 Address Ranges
	4.8.6 Names
	4.8.7 Name List

	4.9 Command Descriptions

	5. FORMATTER
	5.1 Introduction
	5.2 Formatter Options: Summary
	5.3 Usage
	5.3.1 form
	5.3.2 form695

	5.4 Formatter Options: Detailed Descriptions
	5.4.1 Format Options
	5.4.2 PROM Options
	5.4.3 COFF Format Options
	5.4.4 Miscellaneous Options

	5.5 IEEE-695 Formatter Limitations

	6. OTHER UTILITIES
	6.1 Librarian
	6.1.1 Librarian Options: Summary
	6.1.2 Usage
	6.1.3 Librarian Options: Detailed Description

	6.2 Global Symbol Mapper
	6.2.1 Global Symbol Mapper Options: Summary
	6.2.2 Usage
	6.2.3 Global Symbol Mapper Options: Detailed Description

	6.3 Symbol List Utility
	6.3.1 Symbol List Utility Options: Summary
	6.3.2 Usage
	6.3.3 Symbol List Utility Options: Detailed Description
	6.3.4 The Symbol Table Listing

	6.4 Object Size List Utility
	6.4.1 Object Size List Utility Options: Summary
	6.4.2 Usage
	6.4.3 Object Size List Utility Options: Detailed Description

	7. APPLICATION NOTES
	7.1 About the Application Notes
	7.2 Downloading
	7.2.1 Introduction
	7.2.2 PROM Programming

	7.3 Linking C and Assembly
	7.3.1 Introduction
	7.3.2 Conventions
	7.3.3 Sharing Global Data

	7.4 Pragma Separate (Option Separate)
	7.4.1 Introduction
	7.4.2 Preprocessor Option Directives
	7.4.3 Command Line Options

	7.5 Building Libraries That Do Not Use A5
	7.6 Position-independent Code
	7.6.1 Introduction
	7.6.2 How Position Independence is Achieved
	7.6.3 Position Independence and Data References
	7.6.4 Position Independence and Data Initialization
	7.6.5 Building a Position-independent System
	7.6.6 Some Additional Hints

	7.7 Getting the Best Code for Your Application
	7.7.1 Code Size versus Execution Speed
	7.7.2 If Statements
	7.7.3 Using Integer Data
	7.7.4 Size of int Data Type (68K only)
	7.7.5 Compilation Models for Data

	7.8 Support for the On-board Peripherals of the 68332, 68340, and 68360

	A. C LANGUAGE SPECIFICATIONS
	1 Introduction
	2 Preprocessor Extensions
	3 In-line Assembly Language
	3.1 The _CASM method
	3.2 The _ASM method
	3.3 Syntax Summary

	4 ANSI C Function Prototypes
	4.1 Creating Function Prototypes
	4.2 Calls to Functions with Prototypes

	5 Other ANSI C Features
	5.1 Adjacent String Literal Concatenation
	5.2 Trigraph Replacement
	5.3 Void Pointers - void *
	5.4 Const Type Qualifier
	5.5 Stringization
	5.6 ANSI C Preprocessor Additions
	5.6.1 New Predefined Macros
	5.6.2 New Directives
	5.6.3 #error
	5.6.4 #pragma
	5.6.5 #elif

	5.7 Volatile Type Qualifier
	5.8 New Operators
	5.8.1 defined
	5.8.2 token pasting

	6 Support for Interrupt Handlers in C
	6.1 The _GPL Pseudo-Function
	6.2 The _SPL Pseudo-Function
	6.3 The _TRAP Function
	6.4 The _IH Keyword
	6.5 The _SWI Keyword

	7 Implementation-Defined Behavior

	B. COMPILER NAMING CONVENTIONS
	1 Introduction
	2 Code Symbols
	3 Data Symbols
	3.1 Global Data
	3.2 Local Static Data
	3.3 Stack Data
	3.4 String Constants
	3.5 Other Symbols

	4 Segment Names
	4.1 Code Segment Names
	4.2 Data Segment Names
	4.3 Separate Data

	5 Symbol Naming Summary
	5.1 Notes

	C. COMPILER RUN-TIME CONVENTIONS
	1 Introduction
	2 Storage Allocation
	2.1 Notes

	3 Segmentation Model
	4 Register Usage
	5 Subroutine Linkage
	5.1 Preserved Registers
	5.2 Register Return Values
	5.3 Parameter Passing
	5.4 Calling Sequence
	5.5 Procedure Prologue
	5.6 Initial Startup

	D. OBJECT MODULE FORMATS
	1 Introduction
	2 Intel ASCII Hex Format
	3 Motorola S Records
	4 Extended Motorola S Records
	5 Packed Motorola S Records
	6 S37 Motorola S Records
	7 Tektronix Format (Tekhex)
	8 Extended Tekhex Format
	8.1 Section Definition Field
	8.2 Symbol Definition Field

	9 Binary Tektronix Format
	10 HP64000 Format
	10.1 Using the HP64000 Format
	10.2 Files Needed
	10.3 Generating Files for Use with the 64700
	10.4 Formatter Examples
	10.5 Using get64 on Unix Hosts

	11 Common Object File Format (COFF)
	11.1 File Header
	11.2 Option Header
	11.3 Relocation Information
	11.4 Section Headers
	11.5 Line Number Information
	11.6 Symbol Table Entries
	11.7 COFF1 Format

	12 IEEE-695 Object Module Format

	E. COMPILER / ASSEMBLER DRIVER
	INDEX

