
MA008−002−00−00
Doc. ver.: 1.13

8051 v7.2

C Cross−Compiler
User’s Manual

A publication of

Altium BV

Documentation Department

Copyright 2006 Altium BV

All rights reserved. Reproduction in whole or part is prohibited
without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

EMUL is a trademark of NOHAU Corporation.
FLEXlm is a registered trademark of Macrovision Corporation.

HP and HP−UX are registered trademarks of Hewlett−Packard Co.
Intel and ICE are trademarks of Intel Corporation.

MS−DOS and Windows are registered trademarks of Microsoft Corporation.
SUN is a trademark of Sun Microsystems Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com
http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O
N
T
E
N
T
S

Table of ContentsIV
CO

NT
EN

TS

C
O
N
T
E
N
T
S

Table of Contents V

• • • • • • • •

SOFTWARE INSTALLATION 1−1

1.1 Introduction 1−3.

1.2 Software Installation 1−3.

1.2.1 Installation for Windows 1−3.

1.2.2 Installation for Linux 1−4.

1.2.3 Installation for UNIX Hosts 1−6.

1.3 Software Configuration 1−8.

1.3.1 Configuring the Embedded Development Environment 1−8

1.3.2 Configuring the Command Line Environment 1−9.

1.4 Licensing TASKING Products 1−12.

1.4.1 Obtaining License Information 1−12.

1.4.2 Installing Node−Locked Licenses 1−13.

1.4.3 Installing Floating Licenses 1−14.

1.4.4 Modifying the License File Location 1−16.

1.4.5 How to Determine the Host ID 1−17.

1.4.6 How to Determine the Host Name 1−17.

OVERVIEW 2−1

2.1 Introduction to 8051 C Cross−Compiler 2−3.

2.2 General Implementation 2−4.

2.2.1 Compiler Phases 2−4.

2.2.2 Frontend Optimizations 2−5.

2.3 Program Development Flow 2−8.

2.4 Working With Projects in EDE 2−12.

2.5 Start EDE 2−13.

2.6 Using the Sample Projects 2−14.

2.7 Create a New Project Space with a Project 2−15.

2.8 Set Options for the Tools in the Toolchain 2−19.

2.9 Build your Application 2−21.

2.10 How to Build Your Application on the Command Line 2−22

2.10.1 Using a Makefile 2−23.

2.11 Debugging your Application 2−24.

Table of ContentsVI
CO

NT
EN

TS
LANGUAGE IMPLEMENTATION 3−1

3.1 Introduction 3−3.

3.2 Accessing Memory 3−5.

3.2.1 Storage Types 3−5.

3.2.2 Memory Models 3−7.

3.2.2.1 Mixed Memory Model Programming 3−9.

3.2.2.2 _MODEL and _ROMMODEL 3−10.

3.2.3 The _at() Attribute 3−11.

3.2.4 The _atbit() Attribute 3−12.

3.3 Data Types 3−13.

3.3.1 Signed Characters 3−14.

3.3.2 ANSI C Type Conversions 3−14.

3.3.3 Character Arithmetic 3−17.

3.3.4 The _bit Type 3−18.

3.3.5 The _bitbyte Type 3−20.

3.3.6 Special Function Registers 3−21.

3.4 Function Parameters 3−23.

3.5 Function Overlay 3−28.

3.6 Automatic Variables 3−28.

3.7 Register Variables 3−31.

3.8 Initialized Variables 3−33.

3.9 Type Qualifier volatile 3−33.

3.10 Strings 3−34.

3.11 Pointers 3−36.

3.12 Function Pointers 3−38.

3.13 Inline C Functions 3−39.

3.14 Inline Assembly 3−41.

3.15 Built−in Functions 3−42.

3.16 Interrupt and Using 3−48.

3.17 Register Bank Independent Code Generation 3−51.

3.18 C Code Checking: MISRA C 3−52.

3.19 Structure Tags 3−54.

3.20 Typedef 3−54.

3.21 Switch Statement 3−54.

Table of Contents VII

• • • • • • • •

3.22 Portable C Code 3−56.

3.23 How to Program Smart in C−51 3−56.

3.24 Some Examples of Complex Declarators 3−57.

COMPILER USE 4−1

4.1 cc51 Invocation 4−3.

4.2 Detailed description of the C−51 options 4−7.

4.3 Include Files 4−79.

4.4 Pragmas 4−82.

4.5 Alias 4−86.

4.6 Compiler Limits 4−88.

COMPILER DIAGNOSTICS 5−1

5.1 Introduction 5−3.

5.2 Return Values 5−4.

5.3 Errors and Warnings 5−6.

LIBRARIES 6−1

6.1 Introduction 6−3.

6.2 Header Files 6−3.

6.3 C Libraries 6−4.

6.3.1 C Library Implementation Details 6−6.

6.3.2 C Library Interface Description 6−10.

6.3.3 Printf and Scanf Formatting Routines 6−47.

6.4 Run−time Library 6−48.

6.5 Creating your own C Library 6−48.

RUN−TIME ENVIRONMENT 7−1

7.1 Startup Code 7−3.

7.2 Register Usage 7−7.

7.3 Segment Usage 7−8.

7.4 Stack 7−11.

Table of ContentsVIII
CO

NT
EN

TS
7.5 Heap 7−13.

7.6 Floating Point 7−14.

7.7 Interrupt Functions 7−15.

7.8 Multiple Data Pointer Support 7−21.

7.9 Assembly Language Interfacing 7−23.

7.10 Reentrant Model / _reentrant Functions 7−25.

7.11 Linking an Application 7−26.

7.12 Troubleshooting 7−28.

7.12.1 Linking Problems 7−28.

7.12.2 Run−time Problems 7−29.

MISRA C A−1

SFR DEFINITION FILE B−1

RESTRICTIONS FOR THE 80751 AND THE 80752 C−1

CONVERTING PL/M−51 APPLICATIONS TO C−51 D−1

1 Introduction D−3.

2 Why Converting to C−51 D−3.

3 Points of Attention D−4.

4 Using PL/M−51 together with C−51 D−6.

CPU FUNCTIONAL PROBLEMS E−1

1 Introduction E−3.

2 CPU Functional Problem Bypasses E−4.

Table of Contents IX

• • • • • • • •

MIGRATION FROM KEIL, FRANKLIN OR
ARCHIMEDES F−1

1 Introduction F−3.

2 ANSI−C Extensions F−3.

2.1 Memory Type Qualifiers F−3.

2.2 Pointers F−4.

2.3 Absolute Variable Allocation F−4.

2.4 SFR Registers F−4.

2.5 Function Qualifiers F−5.

2.6 Assembly Interface F−6.

2.7 Built−in (intrinsic) Functions F−7.

2.8 Library Routines F−7.

3 Compiler Invocation F−8.

3.1 Memory Models F−8.

3.2 Libraries F−8.

3.3 Controls or Pragmas F−9.

3.4 Compiler Optimizations F−11.

INDEX

Table of ContentsX
CO

NT
EN

TS

Manual Purpose and Structure XI

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the TASKING C 8051 Cross−Compiler. It
assumes that you are familiar with the C language.

MANUAL STRUCTURE

Related Publications
Conventions Used In This Manual

Chapters

1. Software Installation
Describes the installation of the C Cross−Compiler for the 8051.

2. Overview
Provides an overview of the TASKING 8051 toolchain and gives you
some familiarity with the different parts of it and their relationship. A
sample session explains how to build an 8051 application from your C
file.

3. Language Implementation
Concentrates on the approach of the 8051 architecture and describes
the language implementation. The C language itself is not described in
this document. We recommend: �The C Programming Language"
(second edition) by B. Kernighan and D. Ritchie (1988, Prentice Hall).

4. Compiler Use
Deals with compiler invocation, command line options and pragmas.

5. Compiler Diagnostics
Describes the exit status and error/warning messages of the compilers.

6. Libraries
Contains the library functions supported by the compilers and
describes their interface and ’header’ files.

7. Run−time Environment
Describes the run−time environment for a C−51 application. It deals
with items like register usage, assembly language interfacing, C startup
code, interrupt handlers, stack/heap size and floating point mathematic.

Manual Purpose and StructureXII
M
AN

UA
L
ST

RU
CT

UR
E

Appendices

A. MISRA C
Supported and unsupported MISRA C rules.

B. SFR Definition File
Contains an example of a Special Function Register definition file.

C. Restrictions for the 80751 and the 80752
Contains the restrictions of the cc51 for certain 8051 derivatives.

D. Converting PL/M−51 Applications to C−51
Describes how to convert PL/M−51 applications to C−51.

E. CPU Functional Problems
Describes how the 8051 toolchain can bypass some functional
problems of the CPU.

F. Migration from Keil, Franklin or Archimedes
Describes how you can migrate your C−51 application from the Keil,
Franklin or Archimedes compiler to the TASKING C−51 compiler
(cc51).

Manual Purpose and Structure XIII

• • • • • • • •

RELATED PUBLICATIONS

• The C Programming Language (second edition) by B. Kernighan and D.
Ritchie (1988, Prentice Hall)

• ANSI X3.159−1989 standard [ANSI]

• 8051 Cross−Assembler, Linker, Utilities User’s Manual
[TASKING, MA008−010−00−00]

• 8051 CrossView Pro Debugger User’s Manual
[TASKING, MA008−041−00−00]

Manual Purpose and StructureXIV
M
AN

UA
L
ST

RU
CT

UR
E

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which
you must choose an item.

[] Items shown inside square brackets enclose items that are
optional.

| The vertical bar separates items in a list. It can be read as
OR.

italics Items shown in italic letters mean that you have to
substitute the item. If italic items are inside square
brackets, they are optional. For example:

filename

means: type the name of your file in place of the word
filename.

... An ellipsis indicates that you can repeat the preceding
item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete
command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command
command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and Structure XV

• • • • • • • •

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to
another command, option or section.

Manual Purpose and StructureXVI
M
AN

UA
L
ST

RU
CT

UR
E

1

SOFTWARE
INSTALLATION

C
H
A
P
T
E
R

Chapter 11−2
IN
ST
AL

LA
TI
O
N

1

C
H
A
P
T
E
R

Software Installation 1−3

• • • • • • • •

1.1 INTRODUCTION

This chapter guides you through the procedures to install the software on
a Windows system or on a Linux or UNIX host.

The software for Windows has two faces: a graphical interface (Embedded
Development Environment) and a command line interface. The Linux and
UNIX software have only a command line interface.

After the installation, it is explained how to configure the software and
how to install the license information that is needed to actually use the
software.

1.2 SOFTWARE INSTALLATION

1.2.1 INSTALLATION FOR WINDOWS

1. Start Windows 95/98/XP/NT/2000, if you have not already done so.

2. Insert the CD−ROM into the CD−ROM drive.

If the TASKING Setup dialog box appears, proceed with Step 5.

3. Click the Start button and select Run...

4. In the dialog box type d:\setup (substitute the correct drive letter for
your CD−ROM drive) and click on the OK button.

The TASKING Setup dialog box appears.

5. Select a product and click on the Install button.

6. Follow the instructions that appear on your screen.

You can find your serial number on the invoice, delivery note, or picking
slip delivered with the product.

7. License the software product as explained in section 1.4, Licensing
TASKING Products.

Chapter 11−4
IN
ST
AL

LA
TI
O
N

1.2.2 INSTALLATION FOR LINUX

Each product on the CD−ROM is available as an RPM package, Debian
package and as a gzipped tar file. For each product the following files are
present:

SWproduct−version−RPMrelease.i386.rpm
swproduct_version−release_i386.deb
SWproduct−version.tar.gz

These three files contain exactly the same information, so you only have
to install one of them. When your Linux distribution supports RPM
packages, you can install the .rpm file. For a Debian based distribution,
you can use the .deb file. Otherwise, you can install the product from the
.tar.gz file.

RPM Installation

1. In most situations you have to be "root" to install RPM packages, so either
login as "root", or use the su command.

2. Insert the CD−ROM into the CD−ROM drive. Mount the CD−ROM on a
directory, for example /cdrom. See the Linux manual pages about mount
for details.

3. Go to the directory on which the CD−ROM is mounted:

cd /cdrom

4. To install or upgrade all products at once, issue the following command:

rpm −U SW*.rpm

This will install or upgrade all products in the default installation directory
/usr/local. Every RPM package will create a single directory in the
installation directory.

The RPM packages are ’relocatable’, so it is possible to select a different
installation directory with the −−prefix option. For instance when you
want to install the products in /opt, use the following command:

rpm −U −−prefix /opt SW*.rpm

For Red Hat 6.0 users: The −−prefix option does not work with RPM
version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to
RPM verion 3.0.3 or higher, or use the .tar.gz file installation described
in the next section if you want to install in a non−standard directory.

Software Installation 1−5

• • • • • • • •

Debian Installation

1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root" or use the su command.

2. Insert the CD−ROM into the CD−ROM drive. Mount the CD−ROM on a
directory, for example /cdrom. See the Linux manual pages about mount
for details.

3. Go to the directory on which the CD−ROM is mounted:

cd /cdrom

4. To install or upgrade all products at once, issue the following command:

dpkg −i sw*.deb

This will install or upgrade all products in a subdirectory of the default
installation directory /usr/local.

Tar.gz Installation

1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root" or use the su command.

2. Insert the CD−ROM into the CD−ROM drive. Mount the CD−ROM on a
directory, for example /cdrom. See the Linux manual pages about mount
for details.

3. Go to the directory on which the CD−ROM is mounted:

cd /cdrom

4. To install the products from the .tar.gz files in the directory
/usr/local, issue the following command for each product:

tar xzf SWproduct−version.tar.gz −C /usr/local

Every .tar.gz file creates a single directory in the directory where it is
extracted.

Chapter 11−6
IN
ST
AL

LA
TI
O
N

1.2.3 INSTALLATION FOR UNIX HOSTS

1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root" or use the su command.

If you are a first time user, decide where you want to install the product.
By default it will be installed in /usr/local.

2. For CD−ROM install: insert the CD−ROM into the CD−ROM drive. Mount
the CD−ROM on a directory, for example /cdrom. Be sure to use a ISO
9660 file system with Rock Ridge extensions enabled. See the UNIX
manual pages about mount for details.

Or:

For tape install: insert the tape into the tape unit and create a directory
where the contents of the tape can be copied to. Consider the created
directory as a temporary workspace that can be deleted after installation
has succeeded. For example:

mkdir /tmp/instdir

3. For CD−ROM install: go to the directory on which the CD−ROM is
mounted:

cd /cdrom

For tape install: copy the contents of the tape to the temporary workspace
using the following commands:

cd /tmp/instdir
tar xvf /dev/tape

where tape is the name of your tape device.

If you have received a tape with more than one product, use the
non−rewinding device for installing the products.

4. Run the installation script:

sh install

and follow the instructions appearing on your screen.

Software Installation 1−7

• • • • • • • •

First a question appears about where to install the software. The default
answer is /usr/local. On certain sites you may want to select another
location.

On some hosts the installation script asks if you want to install SW000098,
the Flexible License Manager (FLEXlm). If you do not already have FLEXlm
on your system, you must install it; otherwise the product will not work on
those hosts. See section 1.4, Licensing TASKING Products.

If the script detects that the software has been installed before, the
following messages appear on the screen:

 *** WARNING ***
SWxxxxxx xxxx.xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the
following message being displayed:

=> Installation stopped on user request <=

Answering y (yes) to this question causes installation to continue. And the
final message will be:

Installation of SWxxxxxx xxxx.xxxx completed.

5. For tape install: remove the temporary installation directory with the
following commands:

cd /tmp
rm −rf instdir

6. If you purchased a protected TASKING product, license the software
product as explained in section 1.4, Licensing TASKING Products.

Chapter 11−8
IN
ST
AL

LA
TI
O
N

1.3 SOFTWARE CONFIGURATION

Now you have installed the software, you can configure both the
Embedded Development Environment and the command line environment
for Windows, Linux and UNIX.

1.3.1 CONFIGURING THE EMBEDDED DEVELOPMENT
ENVIRONMENT

After installation, the Embedded Development Environment is
automatically configured with default search paths to find the executables,
include files and libraries. In most cases you can use these settings. To
change the default settings, follow the next steps:

1. Double−click on the EDE icon on your desktop to start the Embedded
Development Environment (EDE).

2. From the Project menu, select Directories...

The Directories dialog box appears.

3. Fill in the following fields:

• In the Executable Files Path field, type the pathname of the
directory where the executables are located. The default directory is
$(PRODDIR)\bin.

• In the Include Files Path field, add the pathnames of the
directories where the compiler and assembler should look for
include files. The default directory is $(PRODDIR)\include.
Separate pathnames with a semicolon (;).

The first path in the list is the first path where the compiler and
assembler look for include files. To change the search order, simply
change the order of pathnames.

• In the Library Files Path field, add the pathnames of the
directories where the linker should look for library files. The default
directory is $(PRODDIR)\lib. Separate pathnames with a
semicolon (;).

The first path in the list is the first path where the linker looks for
library files. To change the search order, simply change the order of
pathnames.

Software Installation 1−9

• • • • • • • •

Instead of typing the pathnames, you can click on the Configure...
button.

A dialog box appears in which you can select and add directories, remove
them again and change their order.

1.3.2 CONFIGURING THE COMMAND LINE
ENVIRONMENT

To facilitate the invocation of the tools from the command line (either
using a Windows command prompt or using Linux or UNIX), you can set
environment variables.

You can set the following variables:

Environment
Variable

Description

ASMDIR With this variable you specify one or more additional
directories in which the macro preprocessor mpp51
looks for include files.

CC51INC With this variable you specify one or more additional
directories in which the C compiler cc51 looks for
include files. The compiler first looks in these
directories, then always looks in the default
include directory relative to the installation
directory.

CC51LIB With this variable you specify one or more additional
directories in which the linker link51 looks for library
files.

LM_LICENSE_FILE With this variable you specify the location of the
license data file. You only need to specify this
variable if the license file is not on its default location
(c:\flexlm for Windows,
/usr/local/flexlm/licenses for UNIX).

PATH With this variable you specify the directory in which
the executables reside. This allows you to call the
executables when you are not in the bin directory.

Usually your system already uses the PATH variable
for other purposes. To keep these settings, you
need to add (rather than replace) the path. Use a
semicolon (;) to separate pathnames.

Chapter 11−10
IN
ST
AL

LA
TI
O
N

DescriptionEnvironment
Variable

TASKING_LIC_WAIT If you set this variable, the tool will wait for a license
to become available, if all licenses are taken. If you
have not set this variable, the tool aborts with an
error message. (Only useful with floating licenses)

TMPDIR With this variable you specify the location where
programs can create temporary files. Usually your
system already uses this variable. In this case you
do not need to change it.

Table 1−1: Environment variables

The following examples show how to set an environment variable using
the CC51INC variable as an example.

See also section 4.3, Include Files in chapter Compiler Use.

Example Windows 95/98

Add the following line to your autoexec.bat file.

set CC51INC=c:\cc51\include

You can also type this line in a Command Prompt window but you will
loose this setting after you close the window.

Example Windows NT

1. Right−click on the My Computer icon on your desktop and select
Properties.

The System Properties dialog appears.

2. Select the Environment tab.

3. In the Variable edit field enter:

CC51INC

4. In the Value edit field enter:

c:\cc51\include

5. Click on the Set button, then click OK.

Software Installation 1−11

• • • • • • • •

Example Windows XP / 2000

1. Right−click on the My Computer icon on your desktop and select
Properties.

The System Properties dialog appears.

2. Select the Advanced tab and click on the Environment Variables
button.

The Environment Variables dialog appears.

3. In the System variables field, click on the New button.

The New System Variable dialog appears.

4. In the Variable name field enter:

CC51INC

5. In the Variable value field enter:

c:\cc51\include

6. Click on the OK button to accept the changes and close the dialogs.

Example for UNIX

Enter the following line (C−shell):

setenv CC1INC /usr/local/cc51/include

Chapter 11−12
IN
ST
AL

LA
TI
O
N

1.4 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software
(FLEXlm). To use a TASKING product, you must install the license key
provided by TASKING for the type of license purchased.

You can run TASKING products with a node−locked license or with a
floating license. When you order a TASKING product determine which
type of license you need (UNIX products only have a floating license).

Node−locked license (PC only)

This license type locks the software to one specific PC so you can use the
product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among
users at one site. This license type does not lock the software to one
specific PC or workstation but it requires a network. The software can then
be used on any computer in the network. The license specifies the
number of users who can use the software simultaneously. A system
allocating floating licenses is called a license server. A license manager
running on the license server keeps track of the number of users.

1.4.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License Key"
containing the license information for your software product. If you have
not received such a license key follow the steps below to obtain one.
Otherwise, you can install the license.

Windows

1. Run the License Administrator during installation and follow the steps to
Request a license key from Altium by E−mail.

2. E−mail the license request to your local TASKING sales representative. The
license key will be sent to you by E−mail.

Software Installation 1−13

• • • • • • • •

UNIX

1. If you need a floating license on UNIX, you must determine the host ID
and host name of the computer where you want to use the license
manager. Also decide how many users will be using the product. See
section 1.4.5, How to Determine the Host ID and section 1.4.6, How to
Determine the Host Name.

2. When you order a TASKING product, provide the host ID, host name and
number of users to your local TASKING sales representative. The license
key will be sent to you by E−mail.

1.4.2 INSTALLING NODE−LOCKED LICENSES

If you do not have received your license key, read section 1.4.1, Obtaining
License Information, before continuing.

1. Install the TASKING software product following the installation procedure
described in section 1.2.1, Installation for Windows, if you have not done
this already.

2. Create a license file by importing a license key or create one manually:

Import a license key

During installation you will be asked to run the License Administrator.
Otherwise, start the License Administrator (licadmin.exe) manually.

In the License Administrator follow the steps to Import a license key
received from Altium by E−mail. The License Administrator creates a
license file for you.

Create a license file manually

If you prefer to create a license file manually, create a file called
"license.dat" in the c:\flexlm directory, using an ASCII editor and
insert the license key information received by E−mail in this file. This file is
called the "license file". If the directory c:\flexlm does not exist, create
the directory.

If you wish to install the license file in a different directory, see section
1.4.4, Modifying the License File Location.

Chapter 11−14
IN
ST
AL

LA
TI
O
N

If you already have a license file, add the license key information to the
existing license file. If the license file already contains any SERVER lines,
you must use another license file. See section 1.4.4, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

1.4.3 INSTALLING FLOATING LICENSES

If you do not have received your license key, read section 1.4.1, Obtaining
License Information, before continuing.

1. Install the TASKING software product following the installation procedure
described earlier in this chapter on each computer or workstation where
you will use the software product.

2. On each PC or workstation where you will use the TASKING software
product the location of a license file must be known, containing the
information of all licenses. Either create a local license file or point to a
license file on a server:

Add a licence key to a local license file

A local license file can reduce network traffic.

On Windows, you can follow the same steps to import a license key or
create a license file manually, as explained in the previous section with the
installation of a node−locked license.

On UNIX, you have to insert the license key manually in the license file.
The default location of the license file license.dat is in directory
/usr/local/flexlm/licenses for UNIX.

If you wish to install the license file in a different directory, see section
1.4.4, Modifying the License File Location.

If you already have a license file, add the license key information to the
existing license file. If the license file already contains any SERVER lines,
make sure that the number of SERVER lines and their contents match,
otherwise you must use another license file. See section 1.4.4, Modifying
the License File Location, for additional information.

Software Installation 1−15

• • • • • • • •

Point to a license file on the server

Set the environment variable LM_LICENSE_FILE to "port@host", where
host and port come from the SERVER line in the license file. On Windows,
you can use the License Administrator to do this for you. In the License
Administrator follow the steps to Point to a FLEXlm License Server to
get your licenses.

3. If you already have installed FLEXlm v8.4 or higher (for example as part of
another product) you can skip this step and continue with step 4.
Otherwise, install SW000098, the Flexible License Manager (FLEXlm), on
the license server where you want to use the license manager.

It is not recommended to run a license manager on a Windows 95 or
Windows 98 machine. Use Windows XP, NT or 2000 instead, or use UNIX
or Linux.

4. If FLEXlm has already been installed as part of a non−TASKING product
you have to make sure that the bin directory of the FLEXlm product
contains a copy of the Tasking daemon. This file is present on every
product CD that includes FLEXlm, in directory licensing.

5. On the license server also add the license key to the license file. Follow
the same instructions as with "Add a license key to a local license file" in
step 2.

See the FLEXlm PDF manual delivered with SW000098, which is present
on each TASKING product CD, for more information.

Chapter 11−16
IN
ST
AL

LA
TI
O
N

1.4.4 MODIFYING THE LICENSE FILE LOCATION

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If you want to use another name or directory for the license file, each user
must define the environment variable LM_LICENSE_FILE.

If you have more than one product using the FLEXlm license manager you
can specify multiple license files to the LM_LICENSE_FILE environment
variable by separating each pathname (lfpath) with a ’;’ (on UNIX ’:’):

Example Windows:

set LM_LICENSE_FILE=c:\flexlm\license.dat;c:\license.txt

Example UNIX:

setenv LM_LICENSE_FILE
/usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set
LM_LICENSE_FILE to port@host; where host is the host name of the
system which runs the FLEXlm license manager and port is the TCP/IP port
number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting
with "SERVER". The fourth field on this line specifies the TCP/IP port
number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See the FLEXlm PDF manual delivered with SW000098, which is present
on each TASKING product CD, for detailed information.

Software Installation 1−17

• • • • • • • •

1.4.5 HOW TO DETERMINE THE HOST ID

The host ID depends on the platform of the machine. Please use one of
the methods listed below to determine the host ID.

Platform Tool to retrieve host ID Example host ID

HP−UX lanscan
(use the station address without
the leading ’0x’)

0000F0050185

Linux hostid 11ac5702

SunOS/Solaris hostid 170a3472

Windows licadmin (License Administrator,
or use lmhostid)

0060084dfbe9

Table 1−2: Determine the host ID

On Windows, the License Administrator (licadmin) helps you in the
process of obtaining your license key.

If you do not have the program licadmin you can download it from our
Web site at: http://www.tasking.com/support/flexlm/licadmin.zip . It is
also on every product CD that includes FLEXlm, in directory licensing.

1.4.6 HOW TO DETERMINE THE HOST NAME

To retrieve the host name of a machine, use one of the following methods.

Platform Method

UNIX hostname

Windows NT licadmin or:

Go to the Control Panel, open "Network". In the
"Identification" tab look for "Computer Name".

Windows XP/2000 licadmin or:

Go to the Control Panel, open "System". In the "Computer
Name" tab look for "Full computer name".

Table 1−3: Determine the host name

Chapter 11−18
IN
ST
AL

LA
TI
O
N

2

OVERVIEW
C
H
A
P
T
E
R

Chapter 22−2
O
VE

RV
IE
W

2

C
H
A
P
T
E
R

Overview 2−3

• • • • • • • •

2.1 INTRODUCTION TO 8051 C CROSS−COMPILER

This manual provides a functional description of the TASKING 8051 C
Cross−Compiler. This manual uses cc51 (the name of the binary) as a
shorthand notation for "TASKING 8051 C Compiler".

TASKING offers a complete toolchain for the 8051 family of
microcontroller units and their derivatives. ’8051’ is used as a shorthand
notation for this microcontroller. The toolchain contains a C compiler, a
macro preprocessor, an assembler, a linker/locator, a library manager and
a debugger.

Unlike other C−8051 compilers, cc51 is not a general C compiler, adapted
for the 8051, but it is dedicated to the microcontroller architecture of the
8051. This means that you can access all special features of the 8051 in C:
multiple address spaces (with full pointer support), bit memory, special
function registers (I/O ports), interrupt functions using bank switching and
a number of built−in (inline) functions to access special 8051 instructions.
And yet no compromise is made to the ANSI standard. It is a fast, single
pass, optimizing compiler that generates extremely fast and compact code.

cc51 generates assembly source code using the Intel assembly language
specification, which can be assembled with the TASKING 8051
Cross−Assembler (In this document we use asm51 as a shorthand notation
for ’TASKING 8051 Cross−Assembler’).

You can link the generated object with other objects and libraries by using
the TASKING link51 linker/locator (In this document we use link51 as a
shorthand notation for ’TASKING link51 linker/locator’). The software
written in C can be debugged using a TASKING high−level language
debugger. A list of supported platforms and emulators is available from
TASKING.

Target Processors:

All 8051 derivatives. Special function registers can be accessed by means
of user−definable ’sfrfile’.

Chapter 22−4
O
VE

RV
IE
W

2.2 GENERAL IMPLEMENTATION

This section describes the different phases of the compiler and the target
independent optimizations.

2.2.1 COMPILER PHASES

During the compilation of a C program, a number of phases can be
identified. These phases are divided into two groups, referred to as
frontend and backend.

frontend:

The preprocessor phase:

File inclusion and macro substitution are done by the preprocessor
before parsing of the C program starts. The syntax of the macro
preprocessor is independent of the C syntax, but also described in the
ANSI X3.159−1989 standard.

The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs
a syntactic and semantic analysis of the program, and generates an
intermediate representation of the program.

The frontend optimization phase:

Target processor independent optimization is performed by
transforming the intermediate code. The next section discusses the
frontend optimizations.

backend:

The backend optimization phase:

Performs target processor specific optimizations. Very often this means
another transformation of the intermediate code and actions like
register allocation techniques for variables, expression evaluation and
the best usage of the addressing modes. The chapter Language
Implementation discusses this item in more detail.

Overview 2−5

• • • • • • • •

The code generator phase:

This phase converts the intermediate code to an internal instruction
code, representing the 8051 assembly instructions.

The peephole optimizer phase:

This phase uses pattern matching techniques to perform peephole
optimizations on the internal code (e.g. deleting obsolete moves).
Another task of the peephole optimizer is to convert LJMP instructions
to SJMP instructions (or to reverse the condition of conditional bit jump
instructions), if the destination label is not within the REL range (−128
to 127 words). Finally, the peephole optimizer translates the internal
instruction code into assembly code for asm51. The generated
assembly does not contain any macros.

All phases (of both frontend and backend) are combined into one
program: cc51. The compiler does not use any intermediate file for
communication between the different phases of compilation. The backend
part is not called for each C statement, but is started after a complete C
function has been processed by the frontend (in memory), thus allowing
more optimization. The compiler only requires one pass over the input
file, resulting in relatively fast compilation.

2.2.2 FRONTEND OPTIMIZATIONS

The compiler performs the following optimizations on the intermediate
code. They are independent of the target processor and the code
generation strategy:

Constant folding

Expressions only involving constants are replaced by their result.

Expression rearrangement

Expressions are rearranged to allow more constant folding. E.g. 1+ (x−3)
is transformed into x + (1−3), which can be folded.

Expression simplification

Multiplication by 0 or 1 and additions or subtractions of 0 are removed.
Such useless expressions may be introduced by macros in C (#define), or
by the compiler itself.

Chapter 22−6
O
VE

RV
IE
W

Logical expression optimization

Expressions involving ’&&’, ’||’ and ’!’ are interpreted and translated into a
series of conditional jumps.

Loop rotation

With for and while loops, the expression is evaluated once at the ’top’
and then at the ’bottom’ of the loop. This optimization does not save code,
but speeds up execution.

Switch optimization

A number of optimizations of a switch statement are performed, such as
the deletion of redundant case labels or even the deletion of the switch.

Control flow optimization

By reversing jump conditions and moving code, the number of jump
instructions is minimized. This reduces both the code size and the
execution time.

Jump chaining

A conditional or unconditional jump to a label which is immediately
followed by an unconditional jump may be replaced by a jump to the
destination label of the second jump. This optimization does not save
code, but speeds up execution.

Remove useless jumps

An unconditional jump to a label directly following the jump is removed.
A conditional jump to such a label is replaced by an evaluation of the
jump condition. The evaluation is necessary because it may have side
effects.

Conditional jump reversal

A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the
code size and the execution time.

Constant/copy propagation

A reference to a variable with known contents is replaced by those
contents.

Overview 2−7

• • • • • • • •

Common subexpression elimination

The compiler has the ability to detect repeated uses of the same (sub−)
expression. Such a "common" expression may be temporarily saved to
avoid recomputation. This method is called common subexpression
elimination, abbreviated CSE.

Dead code elimination

Unreachable code can be removed from the intermediate code without
affecting the program. However, the compiler generates a warning
message, because the unreachable code may be the result of a coding
error.

Loop optimization

Invariant expressions may be moved out of a loop and expressions
involving an index variable may be reduced in strength.

Loop unrolling

Eliminate short loops by replacing them with a number of copies.

Sharing of string literals and floating point constants

String literals and floating point constants are put in ROM memory. The
compiler overlays identical strings (within the same module) and let them
share the same space, thus saving ROM space. Likewise identical floating
point constants are overlaid and allocated only once.

Chapter 22−8
O
VE

RV
IE
W

2.3 PROGRAM DEVELOPMENT FLOW

If you want to build a 8051 application you need to invoke the following
programs directly, or via the control program:

• The C compiler (cc51), which generates an assembly source file
from the file with suffix .c (or .i). The suffix of the compiler
output file is .src, which is the default for asm51. However, you
can direct the output to stdout with the −n option, or to another
file with the −o option. C source lines can be intermixed with the
generated assembly statements with the −s option. High level
language debugging information can be generated with the −g
option. You are advised not to use the −g option when inspecting
the generated assembly source code, because it contains a lot of
’unreadable’ high level language debug directives. cc51 makes only
one pass on every file. This pass checks the syntax, generates the
code and performs code optimization.

• The corresponding cross−assembler (asm51), which processes the
generated assembly source file into a relocatable object file with
suffix .obj. A full assembly listing with suffix .lst is available
after this stage.

• The link51 linker/locator, which links the generated relocatable
object files, startup code and C libraries. The result is a loadable file
in a.out type (COFF) format. A full memory map is available at
this stage.

• The ieee51 program which formats an a.out type file into a
debugger load file in IEEE−695 format.

The next figure explains the relationship between the different parts of the
TASKING 8051 toolchain:

Overview 2−9

• • • • • • • •

assembly source file
.asm

mpp51
Macro Preprocessor

assembly file
.src

asm51
Assembler

relocatable object

link51
Linker/Locator

absolute object
module a.out

ieee51
Formatter

ar51

cc51
Compiler

C source file
.c

object library
.lib

module .obj

ihex51 omf51
Formatter Formatter

Intel Hex−records IEEE−695 load module Absolute OMF51 file

List file

Linker command file

C−51 library

OMF51 libraryOMF51 relocatable
object file

.l51

List file .lst

Librarian

CrossView Pro
xfw51 8051

execution
environmentDebugger

Figure 2−1: 8051 development flow

Chapter 22−10
O
VE

RV
IE
W

The ihex51 program formats the a.out file into an Intel Hex format file.
You can load this output file into an EPROM programmer.

The omf51 program formats the a.out file into a (full symbol) absolute
Intel OMF51 format file. This output file can be loaded into a debugger.
See the appendices for examples.

The ar51 program is a librarian facility. You can use this program to create
and maintain object libraries.

The programs ieee51, ihex51, omf51 and ar51 are delivered with the
asm51/link51 package.

For a full description of all available formatter programs and other utilities,
we refer to the 8051 Cross−Assembler User’s Manual.

The name of the 8051 CrossView Pro Debugger is xfw51. For more
information check the 8051 CrossView Pro Debugger User’s Manual.

Overview 2−11

• • • • • • • •

File extensions

The following table lists the file types used by the 8051 toolchain.

Extension Description

Source files

.c C source file, input for the C compiler

.asm Assembler source file, hand coded, input for the macro
preprocessor

.sfr Special function register file

Generated source files

.src Assembler source file, generated by the C compiler or macro
preprocessor

Object files

.obj IEEE−695 relocatable object file, generated by the assembler

.lib Object library file

.omf OMF51 object file

.out Relocatable linker output file

.abs IEEE−695 absolute object file

.hex Intel Hex absolute object file

.sre Motorola S−record absolute object file

List files

.lst Assembler list file

.l51 Linker map file

Error list files

.err Compiler error messages file

Table 2−1: File extensions

Chapter 22−12
O
VE

RV
IE
W

2.4 WORKING WITH PROJECTS IN EDE

EDE is a complete project environment in which you can create and
maintain project spaces and projects. EDE gives you direct access to the
tools and features you need to create an application from your project.

A project space holds a set of projects and must always contain at least one
project. Before you can create a project you have to setup a project space.
All information of a project space is saved in a project space file (.psp):

• a list of projects in the project space

• history information

Within a project space you can create projects. Projects are bound to a
target! You can create, add or edit files in the project which together form
your application. All information of a project is saved in a project file
(.pjt):

• the target for which the project is created

• a list of the source files in the project

• the options for the compiler, assembler, linker and debugger

• the default directories for the include files, libraries and executables

• the build options

• history information

When you build your project, EDE handles file dependencies and the
exact sequence of operations required to build your application. When
you push the Build button, EDE generates a makefile, including all
dependencies, and builds your application.

Overview of steps to create and build an application

1. Create a project space

2. Add one or more projects to the project space

3. Add files to the project

4. Edit the files

5. Set development tool options

6. Build the application

Overview 2−13

• • • • • • • •

2.5 START EDE

Start EDE
• Double−click on the EDE shortcut on your desktop.

− or −

Launch EDE via the program folder created by the installation program.
Select Start −> Programs −> TASKING toolchain −> EDE.

Figure 2−2: EDE icon

The EDE screen contains a menu bar, a toolbar with command buttons,
one or more windows (default, a window to edit source files, a project
window and an output window) and a status bar.

Output Window
Contains several tabs to display
and manipulate results of EDE
operations. For example, to view
the results of builds or compiles.

Document Windows
Used to view and edit files.

Project Window
Contains several
tabs for viewing
information about
projects and other
files.

Compile Build Rebuild Debug On−line ManualsProject Options

Figure 2−3: EDE desktop

Chapter 22−14
O
VE

RV
IE
W

2.6 USING THE SAMPLE PROJECTS

When you start EDE for the first time (see section 2.5, Start EDE), EDE
opens with a ready defined project space that contains several sample
projects. Each project has its own subdirectory in the examples directory.
Each directory contains a file readme.txt with information about the
example. The default project is called demo.pjt and contains a CrossView
Pro debugger example.

Select a sample project

To select a project from the list of projects in a project space:

1. In the Project Window, right−click on the project you want to open.

A menu appears.

2. Select Set as Current Project.

The selected project opens.

3. Read the file readme.txt for more information about the selected sample
project.

Building a sample project

To build the currently active sample project:

• Click on the Execute ’Make’ command button.

Once the files have been processed you can inspect the generated messages
in the Build tab of the Output window.

Overview 2−15

• • • • • • • •

2.7 CREATE A NEW PROJECT SPACE WITH A PROJECT

Creating a project space is in fact nothing more than creating a project
space file (.psp) in an existing or new directory.

Create a new project space

1. From the File menu, select New Project Space...

The Create a New Project Space dialog appears.

2. In the the Filename field, enter a name for your project space (for
example MyProjects). Click the Browse button to select a directory first
and enter a filename.

3. Check the directory and filename and click OK to create the .psp file in
the directory shown in the dialog.

A project space information file with the name MyProjects.psp is
created and the Project Properties dialog box appears with the project space
selected.

Chapter 22−16
O
VE

RV
IE
W

Add a new project to the project space

4. In the Project Properties dialog, click on the Add new project to project
space button (see previous figure).

The Add New Project to Project Space dialog appears.

Overview 2−17

• • • • • • • •

5. Give your project a name, for example getstart\getstart.pjt (a
directory name to hold your project files is optional) and click OK.

A project file with the name getstart.pjt is created in the directory
getstart, which is also created. The Project Properties dialog box appears
with the project selected.

Add new files to the project

Now you can add all the files you want to be part of your project.

6. Click on the Add new file to project button.

The Add New File to Project dialog appears.

Chapter 22−18
O
VE

RV
IE
W

7. Enter a new filename (for example hello.c) and click OK.

A new empty file is created and added to the project. Repeat steps 6 and 7 if
you want to add more files.

8. Click OK.

The new project is now open. EDE loads the new file(s) in the editor in
separate document windows.

EDE automatically creates a makefile for the project (in this case
getstart.mak). This file contains the rules to build your application.
EDE updates the makefile every time you modify your project.

Edit your files

9. As an example, type the following C source in the hello.c document
window:

#include <stdio.h>

void main(void)
{
 printf("Hello World!\n");
}

10. Click on the Save the changed file <Ctrl−S> button.

EDE saves the file.

Overview 2−19

• • • • • • • •

2.8 SET OPTIONS FOR THE TOOLS IN THE TOOLCHAIN

The next step in the process of building your application is to select a
target processor and specify the options for the different parts of the
toolchain, such as the C compiler, assembler, linker and debugger.

Select a target processor

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Selection.

3. Optionally select a 8051 family to narrow the list of processors.

4. In the 8051 CPU name list select your target processor (for example,
8051).

5. Click OK to accept the new project settings.

Chapter 22−20
O
VE

RV
IE
W

Set tool options

1. From the Project menu, select Project Options...

The Project Options dialog appears. Here you can specify options that are
valid for the entire project. To overrule the project options for the currently
active file instead, from the Project menu select Current File Options...

2. Expand the C Compiler entry.

The C Compiler entry contains several pages where you can specify C
compiler settings.

3. For each page make your changes. If you have made all changes click OK.

The Cancel button closes the dialog without saving your changes. With
the Default... button you can restore the default project options (for the
current page, or all pages in the dialog).

4. Make your changes for all other entries (Assembler, Linker, CrossView Pro,
Flasher) of the Project Options dialog in a similar way as described above
for the C compiler.

If available, the Options string field shows the command line options
that correspond to your graphical selections.

Overview 2−21

• • • • • • • •

2.9 BUILD YOUR APPLICATION

If you have set all options, you can actually compile the file(s). This results
in an absolute IEEE−695 object file which is ready to be debugged.

Build your Application

To build the currently active project:

• Click on the Execute ’Make’ command button.

The file is compiled, assembled, linked and located. The resulting file is
getstart.abs.

The build process only builds files that are out−of−date. So, if you click
Make again in this example nothing is done, because all files are
up−to−date.

Viewing the Results of a Build

Once the files have been processed, you can see which commands have
been executed (and inspect generated messages) by the build process in
the Build tab of the Output window.

This window is normally open, but if it is closed you can open it by
selecting the Output menu item in the Window menu.

Compiling a Single File

1. Select the window (document) containing the file you want to compile or
assemble.

2. Click on the Execute ’Compile’ command button. The following button
is the execute Compile button which is located in the toolbar.

If you selected the file hello.c, this results in the compiled and assembled
file hello.obj.

Chapter 22−22
O
VE

RV
IE
W

Rebuild your Entire Application

If you want to compile, assemble and link/locate all files of your project
from scratch (regardless of their date/time stamp), you can perform a
rebuild.

• Click on the Execute ’Rebuild’ command button. The following
button is the execute Rebuild button which is located in the toolbar.

2.10 HOW TO BUILD YOUR APPLICATION ON THE
COMMAND LINE

If you are not using EDE, you can build your entire application on the
command line. The easiest way is to use the control program c51.

1. In a text editor, write the file hello.c with the following contents:

#include <stdio.h>

void main(void)
{
 printf("Hello World!\n");
}

2. Build the file getstart.abs:

c51 −g −o getstart.abs hello.c

The control program calls all tools in the toolchain. The −v option shows all
the individual steps. The resulting file is getstart.abs.

Overview 2−23

• • • • • • • •

2.10.1 USING A MAKEFILE

The examples directory contains several subdirectories with example
programs. Each subdirectory contains a makefile which can be
processed by mk51 to build the example. Also each subdirectory contains
a readme.txt file with a description of how to build the example.

To build the mesage demo example follow the steps below. This
procedure is outlined as a guide for you to build your own executables for
debugging.

1. Make the subdirectory message of the examples directory the current
working directory.

This directory contains a makefile for building the demo example. It uses
the default mk51 rules.

2. Be sure that the directory of the binaries is present in the PATH
environment variable.

3. Compile, assemble, link and locate the modules using one call to the
program builder mk51:

mk51

This command will build the example using the file makefile.

To see which commands are invoked by mk51 without actually executing
them, type:

mk51 −n

To remove all generated files type:

mk51 clean

Chapter 22−24
O
VE

RV
IE
W

2.11 DEBUGGING YOUR APPLICATION

Once the files have been compiled with symbolic debug information
enabled (option −g), assembled, linked, located and formatted they are
ready for debugging.

Start CrossView Pro
• Click on the Debug application button.

CrossView Pro is launched. CrossView Pro will automatically download the
absolute file for debugging.

How to Set the Communication Parameters of CrossView Pro ROM

When you use CrossView Pro ROM for the first time, you must setup the
communication parameters.

To set the communication parameters:

1. From the File menu, select Communication Setup...

The Communication Setup dialog appears.

2. In this dialog you need to identify the COM port (probably COM1: or
COM2:) and the baud rate (9600 for RISM).

3. Click OK to close the dialog.

How to Load an Application

You must tell CrossView Pro which program you want to debug. To do
this:

1. From the File menu, select Load Symbolic Debug Info...

The Load Symbolic Debug Info dialog box appears.

2. Click Load.

How to View and Execute an Application

To view your source while debugging, the Source Window must be open.
To open this window,

1. From the View menu, select Source−>Source lines.

Overview 2−25

• • • • • • • •

Before starting execution you have to reset the target system to its initial
state. The program counter, stack pointer and any other registers must be
set to their initial value. The easiest way to do this is:

2. From the Run menu, select Reset Target System.

To run your application step−by−step:

3. From the Run menu, select Animate.

The program message.abs is now stepping through the high level
language statements. Using the Accelerator bar or the menu bar you can
set breakpoints, monitor data, display registers, simulate I/O and much
more.

See the CrossView Pro Debugger User’s Manual for more information.

Chapter 22−26
O
VE

RV
IE
W

3

LANGUAGE
IMPLEMENTATION

C
H
A
P
T
E
R

Chapter 33−2
LA

NG
UA

G
E

3

C
H
A
P
T
E
R

Language Implementation 3−3

• • • • • • • •

3.1 INTRODUCTION

The TASKING 8051 C cross−compiler offers a new approach to high−level
language programming for the 8051 family. It conforms to the ANSI
standard, but allows the user to control the I/O registers, bit memory,
interrupts (register bank switch) and multiple address spaces of the 8051 in
C.

This chapter describes the language implementation in relation to the 8051
architecture.

The extensions to the C language in cc51 are:

_bit

You can use data type bit or _bit for the type definition of scalars and
for the return type of functions.

_bitbyte

You can declare byte variables in the bit−addressable area as _bitbyte.
You can access additional bits using the built−in functions _getbit() and
_putbit().

_sfrbit

Data type for the declaration of specific, absolute bits in special function
registers or special absolute bits in the SFR address space.

_sfrbyte / _sfrword

Data types for the declaration of Special Function Registers.

_at

You can specify a variable to be at an absolute address.

_atbit

You can specify a variable to be at a bit offset within a bitaddressable
variable.

_plmprocedure

Declaration of external PL/M−51 procedures.

_inline

Used for defining inline functions.

Chapter 33−4
LA

NG
UA

G
E

_noregaddr

You can specify a function to be independent of register banks.

storage types

Apart from a memory category (extern, static, ...) you can specify a storage
type in each declaration. This way you obtain a memory
model−independent addressing of variables in several address ranges of
the 8051 (_data, _bdat, _idat, _pdat, _xdat, _rom).

memory−specific pointers

cc51 allows you to define pointers which point to a specific target
memory. These types of pointers are very efficient and require only 1 or 2
bytes memory space.

mixed memory models

cc51 allows you to combine memory models by using a default memory
model and assigning specific memory models to functions. For example, a
program created in the large memory model can be accelerated, in which
functions are partially distributed to the small model. The keywords you
can use to specify a model for a function are: _small, _aux, _large and
_reentrant.

reentrant functions

You can selectively define functions as reentrant (_reentrant keyword).
Reentrant functions can be invoked recursively. Interrupt programs can
also call reentrant functions.

register bank

Each function may contain a specification regarding the register bank to be
used (_using keyword).

interrupt functions

You can specify interrupt functions directly through interrupt vectors in the
C language (_interrupt and __interrupt keyword). You can also
specify the register bank to be used.

Language Implementation 3−5

• • • • • • • •

3.2 ACCESSING MEMORY

cc51 offers two ways of dealing with the separate address spaces of the
8051, which can be combined. You can:

− specify a storage type (and perhaps also a target memory of a
pointer) with the declaration of a C variable

and you are able to:

− select a memory model (for a program or per function), specifying
which memory space must be used (as default) for all C variables
which do not have an explicit storage specifier. This is very useful
for compiling existing C source, which does not need to be adapted
for the 8051.

In practice the majority of the C code of a complete application is standard
C (without using any language extension). You can compile this part of
the application without any modification, using the memory model which
fits best to the requirements of the system (code density, amount of
external RAM etc.).

Only a small part of the application uses language extensions. These parts
often deal with items such as:

− I/O, using the special function registers

− high execution speed needed

− high code density needed

− access to non−default memory required (ROM, internal RAM)

− bit type needed

− C interrupt functions

3.2.1 STORAGE TYPES

cc51 supports the architecture of the 8051 microprocessors and all 8051
derivatives completely. It has full access to all hardware components of the
8051. An object other than a function or an automatic (stack) variable
cannot be referred to solely by its starting address, because this might be
valid for several address spaces. You can explicitly assign each variable to
one of the address spaces (data, bdat, idat, pdat, xdat, rom) by using
a type specifier. This specifier determines the ’storage type’ of static
objects.

Chapter 33−6
LA

NG
UA

G
E

Accessing the internal data memory (_data, _idat) is considerably faster
than accessing the external data memory (_xdat). Therefore, it is useful to
place often used variables into internal data memory, and to place larger
and less often referenced data elements into the external data memory.

cc51 recognizes the following storage type specifiers:

Storage Type Description

_data / data direct addressable on chip RAM

_bdat bitaddressable on chip RAM

_idat / idat indirect addressable on chip RAM

_pdat / pdat external RAM within 256 bytes page

_xdat / xdat external RAM

_rom / rom internal/external ROM

Table 3−1: Storage type specifiers

cc51 treats the storage specifier _rom type in a special way: it always
implies the type qualifier const.

Const Qualifier

The ANSI standard states that the type qualifier const can be used to
specify ’read−only’ objects (or: are not ’lvalues’). An ANSI C compiler may
allocate static const objects in ROM memory. However, since ROM is a
different memory space (which needs special instructions to access), this is
not possible for a 8051 C compiler. On the other hand, cc51 treats _rom
variables as if declared with a const qualifier. So, cc51 treats const just
as a type qualifier, which allows the compiler to check on illegal lvalue
use. This is exactly the way it is meant to be used in the ANSI definition.

Example:

func(i)
const int i;
{
 i++; /* results in error message from cc51 */
}

So const is no storage type specifier, but a type qualifier (like unsigned
and volatile).

Language Implementation 3−7

• • • • • • • •

Examples using explicit storage types:

_data char c;
rom char text[] = "No smoking";
_xdat int array[10][4];
idat long l;
_pdat int i;

allocating:

1 byte in direct addressable on chip RAM for c

11 bytes in ROM for the initialized character array text[]

80 bytes in external RAM for array

4 bytes in indirectly addressable on chip RAM for l

2 bytes in one page of external RAM for i

The memory type specifiers are treated like any other type specifier (e.g.
unsigned). This means the examples above can also be declared (exactly
the same):

char data c;
char _rom text[] = "No smoking";
int xdat array[10][4];
long _idat l;
int pdat i;

An object must be fully contained in a single storage section. See section
3.19, Structure Tags, for details.

3.2.2 MEMORY MODELS

cc51 has four memory models: small, auxpage, large and reentrant. You
can select one of these models with the −M option. Each model uses a
different default storage type for (non−register) automatic variables,
(non−register) parameter passing areas and declarations without an explicit
storage type. Parameter passing in the SMALL model is performed in
internal data memory. The AUXPAGE and LARGE model permit parameter
passing in external memory. The REENTRANT model permits parameter
passing via a virtual software stack in external memory.

Chapter 33−8
LA

NG
UA

G
E

cc51 also supports mixed memory models; for example, a program
created in the large memory model can be accelerated, in which functions
are partially distributed to the small model.

The following table gives an overview of the different memory models.

Memory
Model

Non−register
Parameters /
automatics

Other C variables Max
RAM
size

Default
storage
type

small direct addressable
internal RAM

direct addressable
internal RAM

128 data

auxpage one page of external
RAM

one page of external
RAM

256 pdat

large external RAM external RAM 64k xdat

reentrant virtual stack in
external RAM

external RAM 64k xdat

Table 3−2: Memory models

Parameters can also be passed in registers, see section 3.4, Function
Parameters.

Automatics and parameters may be placed in registers. See section 3.7,
Register Variables. Automatics in the auxpage and large memory models
may be placed in internal RAM also. See section 3.6, Automatic Variables
in this chapter.

Function return addresses are on the real stack. In the small memory
model all objects as well as the stack, must fit in the internal RAM. The
stack length is critical since its real length depends upon the nesting depth
of the various functions.

The auxpage model is especially interesting for derivatives supporting 256
bytes of ’external’ RAM on chip. With these derivatives, P2 can be used to
specify the external RAM page to be used for paged data (_pdat). With
other 8051 derivatives, P2 must be set to 0, and cannot be used for other
purposes in this model.

Each of the memory models has advantages and disadvantages, especially
concerning the access efficiency and the length of the address space.
Therefore, cc51 allows you to mix models.

Language Implementation 3−9

• • • • • • • •

3.2.2.1 MIXED MEMORY MODEL PROGRAMMING

It is possible to specify a memory model on one function. You can use
one of the following keywords:

_small small model
_aux auxpage model
_large large model
_reentrant reentrant model

When you use reentrant functions, a virtual stack is needed. You also need
to change your start−up code. A reentrant function can be called
recursively; in addition, calls are allowed at any time, even from interrupt
functions.

Example

Suppose the default memory model is large (option −Ml). In this case all
functions are defined _large by default. You may, however, overrule this
default behavior by specifying one of the other memory function
qualifiers. In this example the _small function qualifier is used to obtain
fast (direct) data access. All function parameters and local data are stored
in internal RAM.

/* −Ml: Default is large model */

int
diff(int first, int second)
{ /* large model */
 return(first − second);
}

int _small
sum(int first, int second)
{ /* small model */
 return(first + second);
}

Chapter 33−10
LA

NG
UA

G
E

3.2.2.2 _MODEL AND _ROMMODEL

cc51 introduces the predefined preprocessor symbols _MODEL and
_ROMMODEL. The value of _MODEL represents the memory model
selected (−M option). The value of _ROMMODEL represents the rom
model selected (−r option). These can be very helpful in making
conditional C code in one source module, used for different applications
in different memory models. See also section 3.22, Portable C Code,
explaining the include file cc51.h.

The value of _MODEL is:

small model ’s’
auxpage model ’a’
large model ’l’
reentrant model ’r’

The value of _ROMMODEL is:

small ’s’
medium ’m’
large ’l’

Example:

#if _MODEL == ’a’ || _MODEL == ’l’ /* non−small
 * static model
 */
...

#endif

#if _ROMMODEL == ’l’ /* large rom model */
...

#endif

Language Implementation 3−11

• • • • • • • •

3.2.3 THE _AT() ATTRIBUTE

In C−51 it is possible to place certain variables at absolute addresses.
Instead of writing a piece of assembly code, a variable can be placed on
an absolute address using the _at() attribute.

Example:

_xdat unsigned char Display _at(0x2000);

The example above creates a variable with the name Display at address
0x2000 in external RAM. In the generated assembly code an absolute
section will appear like ’XSEG AT 2000H’, on this position space is
reserved for the variable Display.

A number of restrictions are in effect when placing variables on an
absolute address:

• Only global variables can be placed on absolute addresses.
Parameters of functions, or automatics within functions cannot be
placed on an absolute address.

• When declared ’extern’, the variable is not allocated by the
compiler. When the same variable is allocated within another
module but on a different address, the compiler, assembler or linker
will not notice.

• When the variable is declared ’static’, no public symbol will be
generated (normal C behavior).

• Absolute variables cannot be initialized, except for absolute
variables declared in rom.

• Functions cannot be declared absolute.

• Absolute variables cannot overlap each other, declaring two
absolute variables on the same address will cause an error
generated by the assembler or by the linker. The compiler does not
check this.

• Declaring the same absolute variable within two modules will also
produce conflicts during link time (except when one of the modules
declares the variable ’extern’).

Chapter 33−12
LA

NG
UA

G
E

3.2.4 THE _ATBIT() ATTRIBUTE

In C−51 it is possible to define bit variables within a _bitbyte or
(bitaddressable) _sfrbyte variable. This can be done with the _atbit()
attribute. The syntax is:

_atbit(bytename, offset)

where, bytename is the name of a _bitbyte or _sfrbyte variable and
offset is the bit−offset with the variable.

Examples:

_sfrbyte SCON = 0x98;
_sfrbit SM1 _atbit(SCON, 6);

_bitbyte bv; /* bitaddressable byte */
_bit myb _atbit(bv, 3);

if (myb) /* is the same as specifying */
 myb = 0;

if (_getbit(bv, 3)) /* same code generated */
 _putbit(0, bv, 3);

The first example defines an sfrbit within an sfrbyte. The second example
defines a bitaddress within a bitaddressable byte. For more information on
SFR variables see section 3.3.6, Special Function Registers. For more
information on _bitbyte variables see section 3.3.5, The _bitbyte Type.

Language Implementation 3−13

• • • • • • • •

3.3 DATA TYPES

All ANSI C data types are supported, except double and long double,
which both are evaluated as floats. In addition to these types, the
_sfrbit, _sfrbyte, _sfrword, _bit and _bitbyte types are added.
Two types of pointers are recognized. Object size and ranges:

Data Type Size
(in bytes)

Range

_bit / bit 1 bit 0 or 1

_sfrbit 1 bit 0 or 1

signed char 1 −128 to +127

unsigned char 1 0 to 255

_sfrbyte 1 0 to 255

_bitbyte 1 0 to 255 (byte in bitaddressable RAM)

_sfrword 2 0 to 65535

signed short 2 −32768 to +32767

unsigned short 2 0 to 65535

signed int 2 −32768 to +32767

unsigned int 2 0 to 65535

enum 2 0 to 65535

signed long 4 −2147483648 to +2147483647

unsigned long 4 0 to 4294967295

float 4 +/− 1.176E−38 to +/− 3.402E+38

1−byte pointer
(pointer to data,
 idat or pdat)

1 0 to 255

2−byte pointer
(pointer to xdat
or rom)

2 0 to 65535

Table 3−3: Data types

− _bit, _sfrbit, char, _sfrbyte, _bitbyte, _sfrword, short,
int and long are all integral types, supporting all implicit
(automatic) conversions.

Chapter 33−14
LA

NG
UA

G
E

− cc51 generates instructions using (8 bit) character arithmetic, when
it is correct to evaluate a character expression this way. This results
in a higher code density compared with integer arithmetic. A special
section Character Arithmetic provides details.

− the 8051 convention is used, storing variables with the most
significant part at the lower memory address (Big Endian).

− float is implemented in big endian IEEE 32−bit single precision
format.

− with the −se option small enumeration types can be treated as char
instead of int.

3.3.1 SIGNED CHARACTERS

The character type is treated as signed char by default. You can
overrule this default with the −u command line option, which sets the
default to unsigned char.

Examples:

The following declarations are idential when −u is not used.

char c;
signed char c;

The following declarations are idential when −u is used.

char c;
unsigned char c;

3.3.2 ANSI C TYPE CONVERSIONS

According to the ANSI C X3.159−1989 standard, a character, a short integer,
an integer bit field (either signed or unsigned), or an object of
enumeration type, can be used in an expression wherever an integer can
be used. If a signed int can represent all the values of the original type,
then the value is converted to signed int; otherwise the value will be
converted to unsigned int. This process is called integral promotion.

Integral promotion is also performed on function pointers and function
parameters of integral types using the old−style declaration. To avoid
problems with implicit type conversions, you are advised to use function
prototypes.

Language Implementation 3−15

• • • • • • • •

Many operators cause conversions and yield result types in a similar way.
The effect is to bring operands into a common type, which is also the type
of the result. This pattern is called the usual arithmetic conversions.

Integral promotions are performed on both operands; then, if either
operand is unsigned long, the other is converted to unsigned
long.
Otherwise, if one operand is long and the other is unsigned int,
the effect depends on whether a long can represent all values of an
unsigned int; if so, the unsigned int operand is converted to
long; if not, both are converted to unsigned long.
Otherwise, if one operand is long, the other is converted to long.
Otherwise, if either operand is unsigned int, the other is converted
to unsigned int.
Otherwise, both operands have type int.

See also section 3.3.3, Character Arithmetic.

Sometimes surprising results may occur, for example when unsigned char
is promoted to int. You can always use explicit casting to obtain the type
required. The following example makes this clear:

static unsigned char a=0xFF, b, c;

void f()
{
 b=~a;
 if (b == ~a)
 {
 /* This code is never reached because,
 * 0x0000 is compared to 0xFF00.
 * The compiler converts character ’a’ to
 * an int before applying the ~ operator
 */
 ...
 }

Chapter 33−16
LA

NG
UA

G
E

 c=a+1;
 while(c != a+1)
 {
 /* This loop never stops because,
 * 0x0000 is compared to 0x0100.
 * The compiler evaluates ’a+1’ as an
 * integer expression. As a side effect,
 * the comparison will also be an integer
 * operation
 */
 ...
 }
}

To overcome this ’unwanted’ behavior use an explicit cast:

static unsigned char a=0xFF, b, c;

void f()
{
 b=~a;
 if (b == (unsigned char)~a)
 {
 /* This code is always reached */
 ...
 }

 c=a+1;
 while(c != (unsigned char)(a+1))
 {
 /* This code is never reached */
 ...
 }
}

Keep in mind that the arithmetic conversions apply to multiplications also:

static int h, i, j;
static long k, l, m;

/* In C the following rules apply:
 * int * int result: int
 * long * long result: long
 *
 * and NOT int * int result: long
 */

Language Implementation 3−17

• • • • • • • •

void f()
{
 h = i * j; /* int * int = int */
 k = l * m; /* long * long = long */

 l = i * j; /* int * int = int,
 * afterwards promoted (sign
 * or zero extended) to long
 */
 l = (long) i * j; /* long * long = long */
 l = (long)(i * j); /* int * int = int,
 * afterwards casted to long
 */
}

3.3.3 CHARACTER ARITHMETIC

cc51 generates code using 8 bit (character) arithmetic as long as the result
of the expression is exactly the same as if it was evaluated in integer
arithmetic. This must be done, because ANSI does not know character
arithmetic and character constants. Because the 8051 is an 8 bit
microcontroller, cc51 tries to use the 8 bit instructions for character
arithmetic as much as possible. If not possible, 16 bit arithmetic is used. So
it is recommended to use character variables in expressions, because it
saves data space for allocation, and often results in a higher code density.
You can always force the compiler to use character arithmetic with a
character cast.

The following examples clarify when integer arithmetic is used and when
character arithmetic:

char a,b,c,d;
int i;

main()
{
 c = a + b; /* character arithmetic */
 i = a + b; /* integer arithmetic */
 i = (char)(a + b); /* character arithmetic */

 c = a / d; /* character arithmetic */
 c = (a + b) / d; /* integer arithmetic */
 c = ((char)(a + b)) / d; /* character arithmetic */

 c = a >> d; /* character arithmetic */
 c = (a + b) >> d; /* integer arithmetic */

Chapter 33−18
LA

NG
UA

G
E

 if (a > b) /* character arithmetic */
 c = d;
 if ((a + b) > c) /* integer arithmetic */
 c = d;
}

Signed constants between −128 and 127 and unsigned constants between 0
and 255 are treated as a character constant. This means that in:

unsigned char c,d;

if (c > 240); /* integer arithmetic */

if (d > 5 && d < 240u); /* character arithmetic */

c is compared using integer arithmetic because 240 is an integer constant.
However, d is compared using character arithmetic because both 5 and
240u are character constants.

The following rule applies to hexadecimal and octal constants:
If such a constant fits in an unsigned character it is treated as a character
constant. Thus 0xf0 is an unsigned character constant with value 240u.

This rule is derived from a similar approach of the ANSI standard for
integer constants, where 0xf000 is treated as an unsigned integer constant.

3.3.4 THE _BIT TYPE

The following rules apply to _bit type variables:

1. A _bit type variable is always unsigned.

2. A _bit type variable can be exchanged with all other integral type
variables. The compiler generates the correct conversion.

A _bit type variable is like a boolean. Therefore, converting an int type
variable to a _bit type variable does not mean the _bit type variable is the
least significant bit of the int type variable. It is 1 (true) if the int type
variable is not equal to 0, and 0 (false) if the int type variable is 0. In C:

bit_variable = int_variable;

can be seen as:

bit_variable = int_variable ? 1 : 0;

Language Implementation 3−19

• • • • • • • •

3. Pointer to _bit and array of _bit are not allowed, because the 8051 has no
instructions to indirectly access bitaddressable memory.

4. Structure of _bit is supported, with the restriction that no other type than
_bit is member of this structure. Structure of _bit is not allowed on
parameter or return value of a function.

5. A union of a _bit structure and another type is not allowed. The
_bitbyte type can be used for this purpose.

6. A _bit type variable is not allowed as a function parameter of a reentrant
function.

7. A _bit type variable is not allowed as an automatic variable of a reentrant
function. However, a local static _bit variable (within a function) is always
allowed.

8. A function may have return type _bit. However, the next rule may not be
violated.

9. Evaluation of a complex _bit expression (using non _bit types or _bit
return type of a function) is not recursive nor reentrant, because the
compiler might need temporary static bit space.

10. A _bit typed expression is not allowed as switch expression.

11. The sizeof of a _bit type is 1.

Normal C bit fields within a structure are not treated like _bit variables,
and are therefore not allocated in BIT memory, but in one of the other
memory spaces as specified during declaration. Using a structure of _bit
type variables results in much better code density, less storage allocation
and higher execution speed compared to a structure with a number of
1−bit bit field declarations.

For example:

struct bitvartag {
 /* results in allocation of 3 bits */
 /* in BIT memory. High code density */
 /* and execution speed */

 _bit a,
 b,
 c;
} bv;

Chapter 33−20
LA

NG
UA

G
E

struct bitfield {
 /* results in allocation of 16 bits */
 /* in default RAM. Low code density */
 /* and execution speed */

 unsigned int a:1,
 b:1,
 c:1;
} bf;

3.3.5 THE _BITBYTE TYPE

You can declare byte variables in the bit−addressable area as _bitbyte.
You can access individual bits using the built−in functions _getbit() and
_putbit() or declare the individual bits of this _bitbyte variable using
_atbit. A prototype for these functions is given in the include file
cc51.h.

For example:

_bitbyte bv1, bv2; /* bitaddressable bytes */

if (_getbit(bv1, 3))
 _putbit(1, bv2, 7); /* set bit 7 of bv2 */

See also section 3.2.4, The _atbit() Attribute.

The _bitbyte type is subject to the following rules.

1. A _bitbyte type variable is always unsigned.

2. A _bitbyte type variable can be exchanged with all other integral type
variables. The compiler generates the correct conversion.

3. Pointer to a _bitbyte variable and array of _bitbyte is allowed.

4. Structure of _bitbyte is supported, with the restriction that no other type
than _bitbyte is member of this structure. Structure of _bitbyte is not
allowed on parameter or return value of a function.

5. A _bitbyte type variable is not allowed as a function parameter of a
reentrant function.

Language Implementation 3−21

• • • • • • • •

6. A _bitbyte type variable is not allowed as an automatic variable of a
reentrant function. However, a local static _bitbyte variable (within a
function) is always allowed.

7. A function can not have return type _bitbyte.

8. The sizeof of a _bitbyte type is 1.

9. A _bitbyte typed expression is allowed as switch expression.

3.3.6 SPECIAL FUNCTION REGISTERS

cc51 allows direct access to all special function registers (bits, bytes and
words), as if they were C variables. These special function registers can be
used the same way as any other integral data type, including all automatic
conversions.

An _sfrbit is handled the same way as a volatile _bit variable. An
_sfrbyte is handled as a volatile unsigned char variable and an
_sfrword is handled as a volatile unsigned int variable.

In order to ’include’ a special function register definition file, you must use
the −C option. You are able to specify which cpu must be used.

For example, the command:

cc51 −C552 i2c.c

causes the compiler to look for a file named reg552.sfr, and use this
file as a special function register definition file. We deliver a number of
these definition files with cc51, but you can easily make your own one for
the 8051 derivative you are using. cc51 uses the same searching method
for these register definition files as with include files. For details, see
section 4.3, Include Files in chapter Compiler Use.

You can also declare sfr−registers within your C−source by using the data
types _sfrbit, _sfrbyte or _sfrword. The notation is as follows:

_sfrbit name _atbit(sfrbytename, offset) ;
_sfrbit name _at(bitaddress) ;
_sfrbyte name _at(byteaddress) ;
_sfrword name _at(byteaddress) ;

Chapter 33−22
LA

NG
UA

G
E

where, name must be replaced with the name of the sfr−register you want
to specify. bitaddress/byteaddress is the bit or byte address of the
sfr−register. offset is the bit−offset in an sfrbyte.

Because these registers are placed in the sfr−area of the processor, the
compiler will not allocate any storage space.

_sfrword allows access to 16−bit SFRs defined on consecutive SFR byte
addresses. For example, given two SFR bytes RCAP2L and RCAP2H on
addresses 0xCA and 0xCB, these can be accessed simultaneously using
_sfrword RCAP2. Note should be taken on the order of the separate SFR
bytes. By default, the compiler treats all integer types according to big
endianness, which means that the high byte is expected on the lower
address. In case of RCAP2 however, the high byte RCAP2H is defined on
the higher address, hence it should be treated little endian. To support this
case you can use the specifier _little on the _sfrword definition like:

_sfrword _little RCAP2 _at(0xCA);

You can use the specifier _little only on _sfrword types.

The words ’sfrbyte’, ’sfrword’ and ’sfrbit’ are not reserved words for cc51.
So, you can use these words as identifiers. cc51 does not generate
symbolic debugging information for special function registers, because
they are already known by the debugger.

Appendix B shows the contents of one of the register definition files
delivered with this package (reg51.sfr).

Because the special function registers are dealing with I/O, it is not correct
to optimize away the access to them. Therefore, cc51 deals with the
special function registers as if they were declared with the volatile
qualifier.

Language Implementation 3−23

• • • • • • • •

For example:

int i;
volatile int v;

main()
{
 i; /* optimized away */
 SBUF; /* access SBUF register (implicit volatile) */
 v; /* volatile: access variable */
}

3.4 FUNCTION PARAMETERS

cc51 supports (ANSI) prototyping of function parameters. Therefore, cc51
allows passing parameters of type char, and (in static models only) of type
_bit, without converting these parameters to int type. This results into
higher code density, higher execution speed and less RAM data space
needed for parameter passing. This is very important in single chip
applications.

For example, in the following C code:

void func(char number, _bit status, long value); int
printf(char *format, ...);

void
main(void)
{
 int i;
 char c;
 _bit b;

 func(c, b, i);
 printf("c=%d, b=%d, i=%d\n", c, b, i);
}

the code generator uses the prototype of func() and:

− passes c as a byte

− passes b as a _bit (in bit−memory)

− promotes i to long before passing it as a long

Chapter 33−24
LA

NG
UA

G
E

However, the code generator does not know anything of the printf()
arguments, because this function is declared with a variable argument list.
If there is no prototype (as with the old style K & R functions), the
compiler promotes both char type and _bit type parameters to int type, the
same way an automatic conversion is done in an assignment of a char/_bit
type variable to an int type variable. So, with the printf() call the code
generator:

− promotes c to int before passing it as int

− promotes b to int before passing it as int

− passes i as int

A lot of execution time of an application is spent transferring parameters
between functions. Therefore this is an area which is very interesting for
optimizations. cc51 has several different ways of parameter passing, which
depend on the memory model/function qualifier used and on the
parameter passing method selected. The memory model can be specified
with the command line option −M{s|a|l|r}. A memory model on a
function can be specified with one of the function qualifiers _small,
_aux, _large or _reentrant.

The fastest parameter transport is via registers. Therefore, the compiler by
default treats functions as _regparm functions. Up to three parameters can
be passed via CPU registers. If a register is no longer available for a
parameter or if a function is specified as _cdecl, parameter passing
occurs in the fixed memory areas; the address space which is used for
parameter passing is dependent on the memory model or function
qualifier used.

If functions and function prototypes are not explicitly programmed with
_regparm or _cdecl, the parameter passing method selected depends on
the option −Or/−OR. Option −Or treats those functions as _regparm
functions (default), and option −OR treats those functions as _cdecl
functions.

1. _regparm _small
first parameters in registers, next in static area using naming convention

2. _cdecl _small
in static area using naming convention

3. _regparm _auxpage
first parameters in registers, next in static area using naming convention

Language Implementation 3−25

• • • • • • • •

4. _cdecl _auxpage
first parameters in fast area, next in static area using naming convention

5. _regparm _large
first parameters in registers, next in static area using naming convention

6. _cdecl _large
first parameters in fast area, next in static area using naming convention

7. _regparm _reentrant
first parameters in registers, next via virtual stack

8. _cdecl _reentrant
via a virtual stack

Up to three parameters can be passed via CPU registers. The following
table shows how arguments are passed via the register parameter passing
protocol.

Parameter char _data/ _idat /
_pdat pointer

int _xdat/ _rom
pointer

long float

parm1 r7 r7 r67 r67 r4567 r4567

parm2 r5 r5 r45 r45 − −

parm3 r3 r3 r23 r23 − −

Table 3−4: Register usage for parameter passing

After a long or float type argument, one more argument can be placed in
r3/r23. Structures, unions and bits are never passed via registers.

The following examples clarify the parameter passing conventions:

Example with one argument:

func1(int a)

− a is the first parameter and is passed in registers r6/r7.

Example with three arguments:

func2(int b, int c, int _xdat *d)

− b (first parameter) is passed in registers r6/r7.
− c (second parameter) is passed in registers r4/r5.
− d (third parameter) is passed in registers r2/r3.

Chapter 33−26
LA

NG
UA

G
E

Example with two long/float arguments:

func3(long e, long f)

− e (first parameter) is passed in registers r4/r5/r6/r7.
− f (second parameter) cannot be passed through registers
 anymore; parameter is passed in static area using
 naming convention.

Example with one long/float and one other argument:

func4(float g, char h)

− g (first parameter) is passed in registers r4/r5/r6/r7.
− h (second parameter) is passed in registers r3 (see the note above).

For auxpage/large functions, parameters passed as _cdecl functions result
in faster parameter transport, using a static ’fast internal RAM’ area for each
register bank. This fast internal RAM is named _�_PARMx (x stands for the
register bank used). Because it is very important to optimize parameter
passing, parameters are placed in this area (4 bytes). Very often the
parameter computation can be done directly into this area. The rest of the
parameters are passed the conventional way: via the static area in
external/PDAT memory of the function, using a naming convention.

All arguments which do not fit in the registers are passed in the same
manner as for _cdecl declared functions. There is one exception to this
rule, the fast parameter area is never used for _regparm functions.

The optimization for _cdecl functions is only done if the C program
contains valid prototype declarations of the called functions and their
parameters and the called functions do not have a variable argument list
(ANSI notation of prototype declaration, using three dots, e.g.: void
f(char *, ...);. Therefore, it is very important to use function
prototypes and new style declarations, because this results in faster code.

A function that does not call any other function is called a ’leaf’ function. If
a function is a leaf function and the C code does not calculate the address
of a parameter (via the & operator), the parameters of this function do not
have to be copied to the static function parameter area. Thus, the
parameters of such a function are left in fast internal RAM.

Non−leaf functions must copy the parameter registers in the static function
parameter area at entry, as if they were placed there by the caller.

Language Implementation 3−27

• • • • • • • •

Note that run−time errors may appear if a C function is called using a valid
prototype, while the declaration of the C function itself is not using this
prototype (and vice versa).

For non−reentrant functions the parameter area of a function is allocated
static too. This introduces a limit for functions with a variable argument
list. Allocation is done by the compiler during the function definition. You
are able to specify the size (in bytes) which must be allocated by the
compiler for a variable argument list with the −a�size option. The default is
20 bytes.

For example, in a single chip application using printf() 20 bytes is
probably far too much. Therefore the printf() function is delivered in C
source and can be recompiled using the −a option, and replaced in the
library. There may also be another reason to replace the printf()
function in the library, but this is explained in section 3.10, Strings.

Example:

replacing printf() of small library with a version using less RAM data as
parameter area:

cc51 −Ms −a10 _printf.c
asm51 _printf.src noprint nodebug
ar51 crv c51s.lib _printf.obj

How to use the library manager (ar51) is described in the 8051
Cross−Assembler, Linker, Utilities User’s Manual.

The other functions having a variable argument list (sprintf(), scanf()
and sscanf()) are also delivered in C source.

Of course, a replacement as described above is likely to be done in small
static models only, because RAM data is very scarce in this model. The
reentrant model does not use static memory for parameter passing, so you
never have to use the −a option with this model. Because parameters are
passed on a (software) stack in external RAM, the only thing you have to
do with this model is to be sure the system has enough stack space. With
the auxpage/large (static) models the −a option applies, although more
RAM space is available and there is less need to use it. Of course, when
you use memory models on functions, using the _small, _aux or _large
function specifier, the −a option can be useful again.

Chapter 33−28
LA

NG
UA

G
E

3.5 FUNCTION OVERLAY

When you use non−reentrant functions, overlaying is default done by
cc51. cc51 allocates all automatics and function parameters in overlayable
(BIT and DATA) segments.

link51 is capable of overlaying these segments with overlayable segments
of other functions, when these functions have no (calling) reference to
each other. Note that the function overlay control (FO) must be specified
to link51. The overlaying mechanism deals with all RAM segments (BIT,
DATA, IDAT, PDAT and XDAT).

3.6 AUTOMATIC VARIABLES

In non−reentrant functions recursion is not possible. In these functions
automatic variables are not allocated on a stack, but in a static area. In a
reentrant function automatic variables are treated the conventional way:
passed via the stack. In static functions it is possible to force an automatic
to a specified memory by using a storage type specifier. The automatics
are still overlayable with automatics of other functions. Automatics are
subject to the memory model selected. In a static model this means static
allocation in one of the RAM memory spaces. In the reentrant model this
means dynamic allocation on the stack.

Although automatic variables are allocated in a static area with
non−reentrant functions, they are not the same as local variables (within a
function) which are declared to be static by means of the static
keyword.

The difference is:

− (as in the ’normal’ approach) it is not guaranteed that an automatic
variable still has the same value as the previous time the function
returned, because it may have been overlaid with another automatic
variable of another module.

− (as in the ’normal’ approach) it is guaranteed that the value of the
static variable is the same as the previous time the function
returned. Static variables are never overlaid.

To generate code which is as fast as possible, cc51 tries to place some
automatic variables which are used the most into internal RAM, so these
variables are treated as ’register variables’ (for auxpage and large functions
only). For leaf functions, automatic variables can be placed in registers
also. See section 3.7, Register Variables.

Language Implementation 3−29

• • • • • • • •

cc51 does this only to variables which could be defined register by the
programmer himself too (i.e. no address is taken from this variable).

The maximum amount of internal RAM that may be used for such local
variables can be changed with the −xsize option or with the extend size
pragma. The default size is 4 bytes. Note that these bytes can be allocated
for each function. These bytes are overlayable.

When some variables are defined register in the C source, these variables
are always placed in internal RAM and they reduce the number of
automatics placed in internal RAM (see the example below).

The option FUNCTIONOVERLAY should be passed to the linker, otherwise
you get the message "ADDRESS SPACE OVERFLOW". When you use this
option but still get the linker error (SPACE ’DATA’ or ’IDATA’), you can try
to reduce the usage of internal RAM (use the −x option to cc51) or use
less register/data variables in your program. Note also that the C library is
compiled with the −x4 option (default).

Examples:

All examples assume the ’large’ model is used and no objects can be
placed in real processor registers.

Example 1:

void
func(void)
{
 char c; /* used 3 times */
 int i; /* used 2 times */
 long l; /* used 4 times */
 ...
}

results: ’c’ is placed in ’xdat’;
’i’ is placed in ’xdat’;
’l’ is placed in ’data’.

Chapter 33−30
LA

NG
UA

G
E

Example 2:

void
func(void)
{
 char c; /* used 3 times */
 int i; /* used 2 times */
 long l; /* used 4 times */
 long *p=&l; /* used address of ’l’ */
 ...
}

results: ’c’ is placed in ’data’;
’i’ is placed in ’data’;
’l’ is placed in ’xdat’.
’l’ cannot be made a register variable because the address of
it is used.

Example 3:

void
func(void)
{
 register char c; /* used 3 times */
 int i; /* used 2 times */
 long l; /* used 4 times */
 ...
}

results: ’c’ is placed in ’data’, declared register;
’i’ is placed in ’data’, fits in register area next to ’c’;
’l’ is placed in ’xdat’, not enough space in register area;

Example 4:

void
func(void)
{
 register char c;
 register int i;
 register long l;
 ...
}

Language Implementation 3−31

• • • • • • • •

results: ’c’, ’i’ and ’l’ are placed in ’data’. All variables called
register are always placed in ’data’. Note that this routine
takes 7 bytes of ’data’ space, while the previous examples do
not exceed the space defined by the −x option.

3.7 REGISTER VARIABLES

In C the register type qualifier tells the compiler that the variable will
be used very often. So the code generator must try to reserve a register for
this variable and use this register instead of the data location of this
automatic variable. The 8051 has only eight registers (R0−R7, all eight bit),
which are also needed by the code generator for normal code generation
(indirection, intermediate results etc.). When possible, the compiler tries to
allocate some automatic objects or parameter objects within these registers
(or the B register). cc51 offers you the following implementation of
register variables for the different memory models:

all models: The compiler tries to place parameters and automatic
variables with the processor registers (R0−R7 and B). This is
only done for functions not calling other functions (leaf
functions). When allocating objects in registers, the code
generator gives preference to objects declared with the
register keyword. For every object not placed in registers,
the next rules apply.

small: In this model automatic variables are allocated in data,
which is directly addressable on−chip RAM. This memory is
accessed by the 8051, the same way as certain registers (e.g.
B, DPL, DPH, pushing/popping of registers: ACC, AR0− AR7).
The code using this data memory has a very high execution
speed, so in this model there is no need to treat a register
variable in a special way, because all automatic variables are
accessed with a speed comparable to a real register.

auxpage/large:
In order to increase execution speed and code density of
register variables the register keyword causes the variable
to be placed in fast internal data. These variables are
overlayable with register variables and data automatics of
other functions. Therefore, this optimization is default on
with all static models. When no register variables are used,
the compiler tries to use some automatic variables as register
variables. See section 3.6, Automatic Variables.

Chapter 33−32
LA

NG
UA

G
E

reentrant: Register variables are recognized by the compiler and treated
in a special way:

− a special area of 8 bytes in data memory is reserved by
the compiler for register variables.

− this introduces a maximum of register variables: four
integers or far pointers, eight characters, two longs or
some combination.

Language Implementation 3−33

• • • • • • • •

3.8 INITIALIZED VARIABLES

Non automatic initialized variables use the same amount of space in both
ROM and RAM (for all possible RAM memory spaces). This is because the
initializers are stored in ROM and copied to RAM at start−up. This is
completely transparent to the user. The only exception is an initialized
variable residing in ROM, by means of the _rom storage type specifier.

Examples (large memory model) :

int i = 100; /* 2 bytes in ROM and
 2 bytes in XDAT */
_rom int j = 3; /* 2 bytes in ROM */
char *p = "TEXT"; /* 7 bytes in ROM and
 7 bytes in XDAT:
 2 bytes for p,
 5 bytes for "TEXT" */
_rom char[] = "HELP"; /* 5 bytes in ROM */
_data char c = ’a’; /* 1 byte in ROM and
 1 byte in DATA */

3.9 TYPE QUALIFIER VOLATILE

You can use the volatile type qualifier when modifications on the
object have undesired side effects when they are performed in the regular
way. It may be undesired that the compiler attempts to optimize a memory
update by keeping the value in a register (e.g., a hardware register). When
a variable is declared with the volatile qualifier, the compiler disables
such optimizations. The ANSI report describes that the updates of volatile
objects follow the rules of the abstract machine (the target processor) and
thus access to a volatile object becomes implementation defined.

Example:

const volatile int real_time_clock _at(0x1200);

/* define the real time clock register;
 it is read−only (const);
 read operations must access the real memory
 location (volatile)
*/

Chapter 33−34
LA

NG
UA

G
E

3.10 STRINGS

In this section the word ’strings’ means the separate occurrence of a string
in a C program. So, array variables initialized with strings are just
initialized character arrays, which can be allocated in any memory type,
and are not considered as ’strings’. See section 3.8, Initialized Variables,
for more information on this topic.

cc51 places strings in both ROM and RAM. Where strings in RAM are
placed depends on the specified memory model. If the −S option is used,
the compiler places all strings in ROM only.

Library routines containing pointer arguments always expect the target
memory of these pointers to be the default RAM of the memory model
used to make this library.

For example:

int printf(const char *format, ...);

In large memory model, this means printf() expects the address of the
format string (the first argument) to have memory type _xdat. Therefore,
the C startup code of the large memory model copies all strings from ROM
to XDAT. So, the statement:

printf("Hello world\n");

is executed correctly, because cc51 passes the address of the allocated
XDAT area (filled at C startup time) to printf().

However, when using a microcontroller in a single chip application, you
must be able to allocate strings in ROM only, and adapt your C source
code to access these strings. The next example shows how strings can be
placed in ROM only:

rom char hello[] = "Hello\n"; /* initialized array
 in ROM only */
char *world = "world\n"; /* initialized pointer
 to string in XDAT */

With the −S option on the command line:

rom char hello[] = "Hello\n"; /* initialized array
 in ROM only */
rom char *world = "world\n"; /* initialized pointer
 to string in ROM */

Language Implementation 3−35

• • • • • • • •

The definition of pointer ’world’ should change because it is pointing to
ROM now instead of external RAM.

The third method is to use ’#pragma romstring’, for example:

#pragma romstring
rom char hello[] = "Hello\n"; /* initialized array
 in ROM only */
rom char *world = "world\n"; /* initialized pointer
 to string in ROM */

See section 4.4, Pragmas in chapter Compiler Use, for more information
about the pragmas romstring and ramstring.

These ROM typed strings can be accessed via a pointer to rom, so C
functions can be made to manipulate (copy, print) these strings in a user
friendly way. The standard library contains a number of memory
copy/move functions from and to non default memory, which all are
defined in the header file string.h.

Because standard library functions expect addresses in RAM only, these
strings cannot be passed to these functions. Therefore we deliver the
printf() function in C source, so you can recompile it, using a pointer
to ROM as format string. The only thing you have to do is to define the
following preprocessor symbol:

#define FORM_CONST

in both the _printf.c module and the header file stdio.h. How to
compile the _printf.c module and replace the old _printf.obj
module in the library has already been described in section 3.4 Function
Parameters. If FORM_CONST is defined, the following prototype is used in
stdio.h:

int printf(_rom char *format, ...);

Be aware, that when using this version of printf(), all modules calling
printf() must have target memory ROM as first argument. So when
strings are used, the −S option must be on (or pragma romstring must be
used). All other arguments of printf() always remain in the default RAM
memory of the memory model used.

Everything explained above for printf() also applies to: fprintf(),
sprintf(), vprintf(), vfprintf(), vsprintf(), scanf(),
fscanf() and sscanf().

Chapter 33−36
LA

NG
UA

G
E

ANSI string concatenation is supported: adjacent strings are concatenated −
only when they appear as primary expressions − to a single new one. The
result may not be longer than the maximum string length (509 characters).

The Standard states that identical string literals need not be distinct, i.e.
may share the same memory. Because memory can be very scarce with
microcontroller applications, cc51 overlays identical strings within the
same module.

In section 3.1.4 the Standard states that behavior is undefined if a program
attempts to modify a string literal. Because it is a common extension to
ANSI (A.6.5.5) that string literals are modifiable, there may be existing C
source modifying strings at run−time. This can be done either with
pointers, or even worse:

"st ing"[2] = ’r’;

cc51 accepts this statement when strings are in both ROM and RAM. Of
course, cc51 does not allow this statement when the −S option is used.

3.11 POINTERS

Some objects have two types: a ’logical’ type and a storage type. For
example, a function is residing in ROM (storage type), but the logical type
is the return type of this function. The most obvious C−51 type having
different storage and logical type is a pointer. For example:

_rom char *_data p; /* pointer residing in data,
 pointing to ROM */

means p has storage type data (allocated in on chip RAM), but has logical
type ’character in target memory space ROM’. The memory type specifier
used left to the ’*’, specifies the target memory of the pointer, the memory
specifier used right to the ’*’, specifies the storage memory of the pointer.

The memory type specifiers are treated like any other type specifier (like
unsigned). This means the pointer above can also be declared (exactly the
same) using:

char _rom *_data p; /* pointer residing in data,
 pointing to ROM */

Language Implementation 3−37

• • • • • • • •

If the target memory and storage memory of a pointer are not explicitly
declared, cc51 uses the default of the memory model selected. For
example, in the large model, the declaration:

char *p;

is exactly the same as:

_xdat char *_xdat p;

cc51 is very efficient in allocating pointers, because it recognizes far (2
byte) and near (1 byte) pointers. Pointers to DATA, IDAT and PDAT have a
size of 1 byte, whereas pointers to ROM, XDAT and functions (in ROM)
have a size of 2 bytes.

Another example:

data struct {
 int length;
 char _idat *p;
} s;

The structure ’s’ resides in DATA and the compiler allocates 3 bytes for
this structure, because ’s.p’ targets IDAT.

In pointer arithmetic cc51 checks, besides the type of each pointer, also
the target memory of the pointers, which must be the same. For example,
it is invalid (and has no use) to assign a pointer to data to a pointer to
XDAT. Of course, an appropriate cast corrects the error, but in this case
results remain unpredictable.

Chapter 33−38
LA

NG
UA

G
E

3.12 FUNCTION POINTERS

In C−51 it is possible to use function pointers. You can pass parameters to
indirectly called reentrant functions. You can also pass parameters with
function pointers in static memory models as long as the parameters fit in
registers.

You can specify the function model of the functions pointed to by a
function pointer object. So, in the small memory model it is possible to
have function pointers to _reentrant functions.

Note that a call to a function via a function pointer is not seen by the
linker. When you use one of the static models of C−51, you must specify
(in the linker control file) which function calls another function via a
function pointer. Without this specification link51 would overlay data of
functions that are indirectly called with other functions (when the
FUNCTIONOVERLAY control is specified). This would result in run time
errors.

You do not need to specify the function calls to _reentrant functions to
the linker, because _reentrant functions do not allocate overlayable
data.

Language Implementation 3−39

• • • • • • • •

3.13 INLINE C FUNCTIONS

With the _inline keyword, a C function can be defined to be inlined by
the compiler. An inline function must be defined in the same source file
before it is ’called’. When an inline function has to be called in several
source files, each file must include the definition of the inline function.
This is typically solved by defining the inline function in a header file.

Not using a function which is defined as an _inline function does not
produce any code. Also during a debug session, the inlined function is not
known.

Example (inline.c) mixed C and generated code:

; inline.c 1 _inline char *mystrcpy(char *s1, const char *s2)
; inline.c 2 {
; inline.c 3 register char *os1;
; inline.c 4
; inline.c 5 os1 = s1;
; inline.c 6 while (*s1 = *s2)
; inline.c 7 {
; inline.c 8 s1++;
; inline.c 9 s2++;
; inline.c 10 }
; inline.c 11 return os1;
; inline.c 12 }
; inline.c 13
; inline.c 14 _inline void nop (int count)
; inline.c 15 {
; inline.c 16 if (count > 0)
; inline.c 17 {
; inline.c 18 #pragma asm
; inline.c 19 NOP
; inline.c 20 #pragma endasm
; inline.c 21 nop(count − 1);
; inline.c 22 }
; inline.c 23 }
; inline.c 24
; inline.c 25 _inline long fib1 (long n)
; inline.c 26 {
; inline.c 27 return (n < 1 ? 1 : fib1(n − 1) + fib1(n − 2));
; inline.c 28 }
; inline.c 29

Chapter 33−40
LA

NG
UA

G
E

; inline.c 30 int main (void)
; inline.c 31 {
 PUBLIC _?main
INLINE_MAIN_DA SEGMENT DATA OVERLAY(0)
 RSEG INLINE_MAIN_DA
_10: DS 100
; $mystrcpy#1$s1 = {R7} (register automatic)
; $mystrcpy#1$s2 = {R6} (register automatic)
; buf = _10 (automatic)
; $mystrcpy$os1 (unused automatic, no space allocated)
INLINE_MAIN_PR SEGMENT CODE
 RSEG INLINE_MAIN_PR
_?main:
 USING 0
; inline.c 32 char buf[100];
; inline.c 33
; inline.c 34 mystrcpy(buf, buf+1);
 MOV R6,# LOW (_10+1)
 MOV R7,# LOW (_10)
 SJMP _9
_8:
 INC R7
 INC R6
_9:
 MOV A,R6
 MOV R1,A
 MOV A,R7
 MOV R0,A
 MOV A,@R1
 MOV @R0,A
 JNZ _8
; inline.c 35
; inline.c 36 nop(0);
; inline.c 37 nop(1);
 NOP
; inline.c 38 nop(3);
 NOP
 NOP
 NOP
; inline.c 39
; inline.c 40 return fib1(10);
 MOV R7,#090H
 MOV R6,#00H
; inline.c 41 }
 RET

The pragmas asm and endasm are allowed in inline functions. This makes
it possible to define inline assembly functions. See also section 3.14, Inline
Assembly in this chapter.

Language Implementation 3−41

• • • • • • • •

3.14 INLINE ASSEMBLY

cc51 supports inline assembly using the following pragmas:

#pragma asm Insert assembly text following this pragma.

#pragma asm_noflush As #pragma asm, but the peephole optimizer
does not flush the code buffer.

#pragma endasm Switch back to the C language.

C modules containing inline assembly are not portable and are very hard
to prototype in other environments.

The peephole optimizer in the compiler maintains a code buffer for
optimizing sequences of assembly instructions before they are written in
the output file. The compiler does not interpret the text of inline assembly.
It passes inline assembly lines directly to the output file. To prevent that
instructions in the peephole buffer, which belong to C code before the
inline assembly lines, will be written in the output file after the inline
assembly text, the compiler flushes the instruction buffer in the peephole
optimizer. All instructions in the buffer are written to the output file. If this
behavior is not desired the pragma asm_noflush starts inline assembly
without flushing the code buffer.

See also section 7.9, Assembly Language Interfacing in chapter Run−time
Environment.

Chapter 33−42
LA

NG
UA

G
E

3.15 BUILT−IN FUNCTIONS

When you want to use some specific 8051 instructions, that have no
equivalence in C, you would be forced to write assembly routines to
perform these tasks. However, cc51 offers a way of handling this in C.
Therefore, cc51 has a number of built−in functions, which are
implemented as intrinsic functions:

The names of the built−in functions all have a leading underscore, because
the ANSI specification states that public C names starting with an
underscore are implementation defined.

Examples of the built−in functions are present in a file called inline.c,
delivered with the package in the examples directory. It shows the way
these functions can be used, and the 8051 instructions generated by cc51.
You can compile the file with the options −Ms (small model) and −s
(mixed C−source).

The following built−in functions are implemented (sample C source with
generated assembly are given below):

_testclear

bit _testclear(bit semaphore);

Read and clear semaphore using the JBC instruction.

Returns 0 if semaphore was not cleared by the JBC instruction, 1
otherwise.

_bit b;
unsigned char c;

if (_testclear(b)) /* JBC instruction */
 c=1;

... Code ...
 JBC _b,_5
 SJMP _3
_5:
 MOV _c,#01H
_3:

Language Implementation 3−43

• • • • • • • •

_da

unsigned char _da(unsigned char operand);

Decimal adjust operand after addition using the ADD and DA instructions.

Returns the result.

unsigned char c;

/* decimal adjust after addition */
c = _da(c + 1);

... Code ...
 MOV A,#01H
 ADD A,_c
 DA A
 MOV _c,A

_jmp

void _jmp((void)(*)(void));

Perform a jump to the specified function.

Returns nothing.

void f(void)
{
}
void g(void)
{
 _jmp(f);

... Code ...
 JMP _?f

_nop

void _nop(void);

Generate NOP instructions.

Returns nothing.

Chapter 33−44
LA

NG
UA

G
E

_nop();

... Code ...
 NOP

_push

void _push(unsigned char address);

Push the SFR on the specified address on the system stack.

Returns nothing.

/* Push the SFR IE and on SFR address 0x89 on
 the system stack */
_push(IE);
_push(0x89)

... Code ...
 PUSH 0A8H
 PUSH 089H

_pop

void _pop(unsigned char address);

Pop the SFR on the specified address from the system stack.

Returns nothing.

/* Pop the SFR IE and on SFR address 0x89 from
 the system stack */
_pop(0x89);
_pop(IE);

... Code ...
 POP 089H
 POP 0A8H

Language Implementation 3−45

• • • • • • • •

_rol

unsigned char _rol(unsigned char operand,
 unsigned char count);

Use the RL instruction to rotate (left) operand count times.

Returns the result.

unsigned char c;
int i;
/* rotate left, using int variable */
c = _rol(c, i);

... Code ...
 MOV R2,_i+1
 INC R2
 RR A
_6:
 RL A
 DJNZ R2,_6
 MOV _c,A

_ror

unsigned char _ror(unsigned char operand,
 unsigned char count);

Use the RR instruction to rotate (right) operand count times.

Returns the result.

Chapter 33−46
LA

NG
UA

G
E

unsigned char c;
int i;
/* rotate right, using constant */
c = _ror(c, 2);
c = _ror(c, 3);
c = _ror(c, 7);

... Code ...
 RR A
 RR A
 MOV _c,A
;
 SWAP A
 RL A
 MOV _c,A
;
 RL A
 MOV _c,A

_getbit

bit _getbit(_bitbyte operand,
 ICE bitoffset);

Returns the bit at bitoffset (range 0 − 7) of the bitaddressable operand
for usage in bit expressions.

ICE denotes that the operand must be an Integral Constant Expression
rather than any type of integral expression.

_bitbyte bv1;
int i;

if (_getbit(bv1, 3))
 i = 1;

... Code ...
 JNB _bv1.3,_4
 MOV _i,#00H
 MOV _i+1,#01H
_4:

Language Implementation 3−47

• • • • • • • •

_putbit

void _putbit(bit value, _bitbyte operand,
 ICE bitoffset);

Assign value to the bit at bitoffset (range 0 − 7) of the bitaddressable
operand. ICE denotes that the operand must be an Integral Constant
Expression rather than any type of integral expression.

Returns nothing.

_bitbyte bv2;

_putbit(1, bv2, 7);
_putbit(0, bv2, 6);

... Code ...
 SETB _bv2.7
;
 CLR _bv2.6

Chapter 33−48
LA

NG
UA

G
E

3.16 INTERRUPT AND USING

A function can be declared to serve as an interrupt service routine (ISR).
Interrupt functions cannot return anything and must have a void argument
type list. Interrupt functions may be implemented directly in C, by using
the _interrupt(interrupt_id) or __interrupt(vector_address)
function qualifier. The first one takes an interrupt number as its argument,
the second one (double underscore) takes any vector address as its
argument. Both function qualifiers can be intermixed.

The relation between the interrupt number and the vector address is:
interrupt_id = (vector_address − 3)/8.

Example with vector address:

__interrupt(0x8074) void ISR(void)
{
 return;
}

Normally when an interrupt function is called, all registers in the default
register bank that are (or could be) used in the interrupt function are
saved on the stack so the registers are available for the interrupt routine.
After returning from the interrupt routine, the original values are restored
from the stack again.

For the 8051 it is possible to assign a new register bank to an interrupt
function, which can be used on the processor to minimize the interrupt
latency because registers do not need to be pushed on stack. You can
switch register banks with the _using(bank) function qualifier. For
example, in:

_interrupt(1) _using(2) void timer(void);

An interrupt routine can also handle multiple interrupt numbers. Note that
only one _using() is allowed. For example, in:

_interrupt(1,2,3) _using(2) void isr123(void);

or:

_interrupt(1) _interrupt(2) _interrupt(3) _using(2)
 void isr123(void);

Language Implementation 3−49

• • • • • • • •

cc51 places a long−jump instruction on the address of the vector of
interrupt number 1, to the timer() routine, which switches the register
bank to bank 2 and saves some more registers. When timer() is
completed, the extra registers are popped, the bank is switched back to
the original value and a RETI instruction is executed.

For more details, see section 7.7, Interrupt Functions in chapter Run−time
Environment.

Because the vector is filled by the compiler (unless disabled by
_interrupt(−1) or by the −v option or by pragma novector), the
interrupt number must be specified. To find out which interrupt number
should be used, see section 7.7, Interrupt Functions.

You can call another C function from the interrupt C function. However,
this function must be compiled with the same _using (register bank)
attribute, because cc51 generates code which uses the addresses of the
registers R0−R7. Therefore, the _using attribute is also possible with
normal C functions (and their prototype declarations). Suppose timer()
is calling get_number(). The function prototype (and definition) of
get_number() should contain the correct _using:

_using(2) int get_number(void);

cc51 checks if a function calls another function using another register
bank, which is an error. The default register bank of a module is 0, or the
bank number specified with the −b option.

When you want to call a function from within an interrupt function, the
called function should have the same _using attribute. This has several
reasons :

− cc51 generates fast code, i.e. it may address registers indirectly by
use of their addresses in data. Because the register bank is switched,
also the register addresses are changed.

− Each function uses a static allocated data space for its parameters
and variables. When a function is called from the main C program
and by an interrupt function, the values of the variables are
overwritten.

For example, the function display is declared as :

int _cdecl display(char * str);

Chapter 33−50
LA

NG
UA

G
E

This function uses the area ’_display_BYTE’ for its parameters. An interrupt
routine calling this function immediately overwrites these values. You can
solve this problem by calling a second function ’display’ when in the
interrupt routine. So you must create a function :

int _using(2) display2(char *str)
{
 ... code ...
}

This function uses its own parameter area called ’_display2_BYTE’. The
example assumes you use register bank 2 for your interrupt routine. The
interrupt routine may now call the created routine ’display2’.

In the reentrant model, register bank switching can be done also. We
recommend using a _large, _small or _aux interrupt function and not
to call a _reentrant function from the interrupt function. In that case
you can use the standard library and there is no need to protect. When
using interrupts, the same problems occur as described above. Thus the
reentrant model provides recursion, but not reentrancy.

However, reentrancy is possible. To get real reentrancy you should not use
the _using() qualifier. Then the compiler will automatically save all
registers at every interrupt.

Besides this, you should not use static variables in your _reentrant
routines called from the interrupt handler. Using these variables in your
routine always overwrites the original contents of it.

In the reentrant model, a software stack pointer is being maintained.
Because the instructions needed to update this software stack pointer are
divisible, this stack pointer can be in an undefined state at the time of the
interrupt. This introduces a problem, when calling another C function from
the interrupt C function.

However, if interrupts are (temporarily) disabled, while updating the stack
pointer, the problem does not occur. Therefore, we deliver a stack
manager module, which disables interrupts during stack pointer updates.
This module can replace the original stack manager module in the library.
See section 7.10, Reentrant Model / _reentrant Functions in chapter
Run−time Environment, for details on this subject.

Language Implementation 3−51

• • • • • • • •

Therefore, when using the reentrant model and the standard library, it is
not possible to do any stack operations on the virtual stack; that is: access
automatics, register variables of _reentrant functions or calling another
_reentrant C function from the interrupt C function.

3.17 REGISTER BANK INDEPENDENT CODE
GENERATION

Option −noregaddr has been added to the compiler to switch to register
bank independent code generation. In order to generate very efficient
code the compiler uses absolute register addresses in its code generation.
For example a register to register ’move’. Since there is no ’MOV register,
register’ instruction, the compiler will generate a ’MOV register, direct’ with
the absolute address of the source register as the second operand.

The absolute address of a register depends on the register bank, but
sometimes this dependency is undesired. For example when a function is
called from both the main thread and an interrupt thread. If both threads
use different register banks, they cannot call a function that uses absolute
register addresses. To overcome this, the compiler can be instructed to
generate a register bank independent function that can be called from
both threads.

Example:

_noregaddr int func(int x)
{
 /* this function can be called from any function
 indepent of its register bank */
 return x+1;
}
_using(1) void f1(void)
{
 func(1);
}

_using(0) void main(void)
{
 func(0);
}

Chapter 33−52
LA

NG
UA

G
E

3.18 C CODE CHECKING: MISRA C

The C programming language is a standard for high level language
programming in embedded systems, yet it is considered somewhat
unsuitable for programming safety−related applications. Through enhanced
code checking and strict enforcement of best practice programming rules,
TASKING MISRA C code checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is
intended to be suitable for embedded automotive systems. It consists of a
set of 127 rules, defined in the document "Guidelines for the Use of the C
Language in Vehicle Based Software" published by "Motor Industry
Research Association" (MISRA).

Every MISRA C rule is classified as being either ’required’ or ’advisory’.
Required rules are mandatory requirements placed on the programmer.
Advisory rules are requirements placed on the programmer that should
normally be followed. However, they do not have the mandatory status of
required rules.

Implementation issues

The MISRA C implementation in the compiler supports most of the 127
rules. Some MISRA C rules address documentation, run−time behavior, or
other issues that cannot be checked by static source code inspection.
Therefore, some rules are not implemented. These unsupported rules are
visible in the C Compiler | MISRA C | MISRA C Rules entry of the
Project Options dialog in EDE, but cannot be selected (grayed out).

During compilation of the code, violations of the enabled MISRA C rules
are indicated with error messages and the build process is halted. For
example,

E 209: MISRA C rule 9 violation: comments shall not be nested.

You can change the level of error messages from errors to warnings on the
required MISRA C rules and the advisory MISRA C rules, with the following
C compiler command line options:

−misrac−required−warnings

−misrac−advisory−warnings

Language Implementation 3−53

• • • • • • • •

Note that not all MISRA C violations will be reported when other errors are
detected in the input source. For instance, when there is a syntax error, all
semantic checks will be skipped, including some of the MISRA C checks.
Also note that some checks cannot be performed when the optimizations
are switched off.

Apply MISRA C code checking to your application

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select MISRA C.

3. Select a MISRA C configuration. Select a predefined configuration for
conformance with the required rules in the MISRA C guidelines.

It is also possible to have a project team work with a MISRA C
configuration common to the whole project. In this case the MISRA C
configuration can be read from an external settings file.

4. (Optional) In the MISRA C Rules entry, specify the individual rules.

From the command line MISRA C can be enabled by the following
compiler option:

−misracn,n,...

where n specifies the rule(s) which must be checked.

See Appendix A, MISRA C for the supported and unsupported MISRA C
rules.

Chapter 33−54
LA

NG
UA

G
E

3.19 STRUCTURE TAGS

A tag declaration is intended to specify the lay−out of a structure or union.
If a memory type is specified, it is considered to be part of the declarator.
A tag name itself, nor its members can be bound to any storage area,
although members having type "... pointer to" do require one. A tag may
then be used to declare objects of that type, and may allocate them in
different memories (if that declaration is in the same scope). The following
example illustrates this constraint.

struct S {
 _xdat int i; /* referring to storage: not correct */
 _idat char *p; /* used to specify target memory: correct */
 };

In the example above cc51 ignores the erroneous _xdat storage specifier
(without displaying a warning message).

3.20 TYPEDEF

Typedef declarations follow the same scope rules as any declared object.
Typedef names may be (re−)declared in inner blocks but not at the
parameter level. However, in typedef declarations, memory specifiers are
allowed. A typedef declaration should at least contain one type specifier.

Examples:
typedef _idat int IDATINT; /* storage type _idat: OK */
typedef int _data *DATAPTR; /* logical type _data
 storage type ’default’ */

3.21 SWITCH STATEMENT

cc51 supports three ways of code generation for a switch statement: a
jump chain (linear switch), a jump table or a binary search table.

A jump chain is comparable with an if/else−if/else−if/else construction. A
jump table is a table filled with JMP instructions for each possible switch
value. The switch argument is used as an index to jump within this table.
A binary search table is a table filled with a value to compare the switch
argument with and a target address to jump to.

Language Implementation 3−55

• • • • • • • •

By default, the compiler will try to use the switch method which uses the
least space in ROM (i.e. table size in ROMDATA plus code to do the
indexing).

For a switch with a long type argument, only binary search table code is
used. For an int type argument, a jump table switch is only possible when
all case values are in the same 256 value range (i.e. the high byte value of
all programmed cases are the same).

It is obvious that, especially for large switch statements, the jump table
approach executes faster than the binary search table approach. Also the
jump table has a predictable behavior in execution speed. No matter the
switch argument, every case is reached in the same execution time.

With a small number of cases, the jump chain method can be faster in
execution and shorter in size.

The compiler chosen switch method can be overruled by using:

#pragma linear_switch /* force jump chain code */
#pragma jump_switch /* force jump table code */
#pragma binary_switch /* force binary search table
 code */
#pragma smart_switch /* let the compiler decide
 the switch method used */

The last one is also the default of the compiler. Using a pragma cannot
overrule the restrictions as described earlier.

The _switch pragmas must be placed before the function body
containing the switch statement. Nested switch statements use the same
switch method, unless the nested switch is implemented in a separate
function which is preceded by a different _switch pragma.

Example

/* place pragma before function body */
#pragma jump_switch

void test(unsigned char val)
{ /* function containing the switch */
 switch (val)
 {
 /* use jump table */
 }
}

Chapter 33−56
LA

NG
UA

G
E

3.22 PORTABLE C CODE

If you are developing C code for the 8051 using cc51, you might want to
test some code on the host you are working on, using a C compiler for
that host. Therefore we deliver the include file cc51.h. This header file
checks if _CC51 is defined (cc51 only), and redefines the storage type
specifiers if it is not defined.

When using this include file, you are able to use the storage type specifiers
(when needed) and yet write ’portable C code’.

Furthermore an adapted prototype of each C−51 built−in function is
present, because these functions are not known by another ANSI compiler.
If you use these functions, you should write them in C, performing the
same job as the 8051 and link these functions with your application for
simulation purposes.

3.23 HOW TO PROGRAM SMART IN C−51

If you want to get the best code out of cc51, the following guidelines
should be kept in mind:

1. If you are using the large model (because it is not possible to use the
small model or auxpage model), try to declare the most frequently used
variables (both static and automatic) with storage type data. If you want
your code to remain portable, you can use the register keyword. See
also section 3.22 Portable C Code and section 3.7 Register Variables. It is
also possible to increase the internal automatics space (−x option), so the
compiler places more variables in internal RAM.

Another approach may be even better: always use the small model, so
parameter passing is always done via internal RAM. Specify the objects you
want to be placed in XDAT.

2. Try to use the unsigned qualifier as much as possible (e.g.
for (i = 0; i < 500; i++)), because unsigned comparisons require
less code than signed comparisons.

3. Try to use the smallest data type as possible: bit for boolean usage (flags),
character for small loops and so on. See also section 3.3.3, Character
Arithmetic, and section 3.3.4, The _bit Type.

Language Implementation 3−57

• • • • • • • •

4. If execution speed is important (e.g. interrupt functions and time
consuming loops), you must use the −Of option or #pragma optimize f
or #pragma speed.

3.24 SOME EXAMPLES OF COMPLEX DECLARATORS

Because the cc51 has some extensions to support the various memory
types of the 8051 processor family, declarations of objects may need some
explanation.

First of all, declaration of simple objects is done exactly the same way as
in standard C.

For example:

char c;
int i;
long l;

When programming portable C−code, declaration of pointers is also
standard.

For example:

char *pc;
int *pi;
long *pl;

However, for code density it may be desired to place an object in another
memory area, this can be done by preceding the object type by the
requested data area specifier.

For example:

_data char dc;
_xdat int xi;
_idat long pl;

also correct is :

char _data dc;
int _xdat xi;
long _idat pl;

Now, pointers to another area than the default (specified by the memory
model, see section 3.2.2 Memory Models) are declared as follows:

Chapter 33−58
LA

NG
UA

G
E

_data char * pdc; Pointer resides in default memory, points
to a character in data.

_xdat int * pxi; Pointer resides in default memory, points
to an integer in xdat.

_idat long * ppl; Pointer resides in default memory, points
to a long in idat.

Even more difficult, these pointers may be placed in some other data area
than the default.

For example:

_data char * _xdat xpdc; Pointer resides in xdata, points to a
character in data.

_xdat int * _pdat ppxi; Pointer resides in pdata, points to an
integer in xdat.

_idat long * _idat ippl; Pointer resides in idata, points to a long
in idat.

Using objects located in data always produce less code than objects in
xdata. So the smallest code size (and often the fastest execution speed)
can be achieved by placing as many objects as possible in data. When it
is not possible to place all objects in internal RAM, select the objects which
are most referenced in the code.

Some examples of complex declarators are given below.

_data char c;
_data char * _idat p = &c;
_data char * _idat * pp = &p;
_data char * _idat * * _xdat ppp = &pp;

Now ppp is a pointer located in xdat, points to a pointer in default
memory, this points to a pointer in idat, which is a pointer to a character
in data.

int _idat * func(void);
int _idat (* _data fp)(void) = func;

Now func is a pointer located in data, points to a function with no
arguments, returning a pointer to an integer in idat.

Language Implementation 3−59

• • • • • • • •

In static memory models it is not possible to call a function indirectly by a
function pointer while passing parameters. An indirect call to a function
with a void parameter list is still possible.

Chapter 33−60
LA

NG
UA

G
E

4

COMPILER USE
C
H
A
P
T
E
R

Chapter 44−2
US

AG
E

4

C
H
A
P
T
E
R

Compiler Use 4−3

• • • • • • • •

4.1 CC51 INVOCATION

The invocation syntax of the C−51 compiler is:

cc51 [[option] ... [file] ...] ...

The input file must have the extension .c or .i. Options are preceded by
a ’−’ (minus sign). Options cannot be combined after a single ’−’. After you
have successfully compiled your C sources, the compiler has generated
assembly files, with the extension .src (the default for asm51).

When you use a UNIX shell (Bourne shell, C−shell), arguments containing
special characters (such as ’()’ and ’?’) must be enclosed with "�" or
escaped. The −? option (in the C−shell) becomes: "−?" or −\?.

A summary of the options is given below. A more detailed description is
given in the next section.

Option Description

−? Display invocation syntax

−A[flag...] Enable/disable specific language extensions

−Ccpu Use special function register definitions for cpu

−Dmacro[=def] Define preprocessor macro

−E[m] Preprocess only or emit dependencies

−Hfile Include file before starting compilation

−Idirectory Look in directory for include files

−M{s|a|l|r} Select memory model: small, auxpage, large
or reentrant

−Oflag... Control optimization

−Rmem[=name] Change segment name

−S Put strings in ROM only

−Umacro Remove preprocessor macro

−V Display version header only

−asize Change allocated space for variable argument
list

−bnumber Specify default register bank number

−banks Use bank switch segment name convention

−bpnumber Enable chip errata bypass

Chapter 44−4
US

AG
E

DescriptionOption

−csize Extend amount of internal RAM to be used as
CSE space

−e Remove output file if compiler errors occur

−err Send diagnostics to error list file (.err)

−f file Read options from file

−g[e|f|l|r]... Enable symbolic debug information

−ivo=value 16−bit base address for the interrupt vector
table

−l[i] Generate list file; optionally with include files

−mmem=size Specify memory size

−misracn,n,... Enable individual MISRA C checks

−misrac−advisory−warnings Generate warnings for advisory MISRA C rules

−misrac−required−warnings Generate warnings for required MISRA C rules

−n Send output to standard output

−nofastparm Switch off use of fast parameter area

−noregaddr Get register bank independent code
generation

−o file Specify name of output file

−pa Use dual data pointer (Atmel AT8x53,
AT89S53, AT89S4D12, AT89S8252)

−pd Use dual data pointer (Dallas
80C320/520/530, AMD 80C521)

−pp Use dual data pointer (Philips 51 family)

−ps Use multiple data pointer (Infineon
Technologies C500/C800 series)

−r{s | m | l} Select rom model: small, medium or large

−s Merge C−source code with assembly output

−se Treat small enumerated types as ’char’ instead
of ’int’

−shiftright−signfill Use sign fill on signed shift right

−t Display module summary

−u Treat all ’char’ variables as unsigned

−v Do not generate interrupt vectors

−vf Do not generate frame for interrupt handler

Compiler Use 4−5

• • • • • • • •

DescriptionOption

−vo Generate old style interrupt frame

−w[num] Suppress one or all warning messages

−wstrict Suppress warning messages 183, 196

−xsize Extend amount of internal RAM for automatics

−zpragma Identical to ’#pragma pragma’ in the C source

Table 4−1: Compiler options (alphabetical)

Description Option

Include options

Read options from file −f file

Include file before starting compilation −Hfile

Look in directory for include files −Idirectory

Preprocess options

Preprocess only or emit dependencies −E[m]

Define preprocessor macro −Dmacro[=def]

Remove preprocessor macro −Umacro

Allocation control options

Put strings in ROM only −S

Change allocated space for variable argument
list

−asize

Specify default register bank number −bnumber

Extend amount of internal RAM to be used as
CSE space

−csize

Specify memory size −mmem=size

Extend amount of internal RAM for automatics −xsize

Code generation options

Use special function register definitions for cpu −Ccpu

Select memory model: small, auxpage, large
or reentrant

−M{s|a|l|r}

Control optimization −Oflag...

Change segment name −Rmem[=name]

Chapter 44−6
US

AG
E

OptionDescription

Use bank switch segment name convention −banks

Enable chip errata bypass −bpnumber

16−bit base address for the interrupt vector
table

−ivo=value

Switch off use of fast parameter area −nofastparm

Get register bank independent code
generation

−noregaddr

Use dual data pointer (Atmel AT8x53,
AT89S53, AT89S4D12, AT89S8252)

−pa

Use dual data pointer (Dallas
80C320/520/530, AMD 80C521)

−pd

Use dual data pointer (Philips 51 family) −pp

Use multiple data pointer (Infineon
Technologies C500/C800 series)

−ps

Select rom model: small, medium or large −r{s | m | l}

Use sign fill on signed shift right −shiftright−signfill

Do not generate interrupt vectors −v

Do not generate frame for interrupt handler −vf

Generate old style interrupt frame −vo

Identical to ’#pragma pragma’ in the C source −zpragma

Language control options

Enable/disable specific language extensions −A[flag...]

Treat small enumerated types as ’char’ instead
of ’int’

−se

Treat all ’char’ variables as unsigned −u

Output file options

Remove output file if compiler errors occur −e

Send output to standard output −n

Specify name of output file −o file

Merge C−source code with assembly output −s

Diagnostic options

Display invocation syntax −?

Display version header only −V

Send diagnostics to error list file (.err) −err

Compiler Use 4−7

• • • • • • • •

OptionDescription

Enable symbolic debug information −g[e|f|l|r]...

Generate list file; optionally with include files −l[i]

Enable individual MISRA C checks −misracn,n,...

Generate warnings for advisory MISRA C rules −misrac−advisory−warnings

Generate warnings for required MISRA C rules −misrac−required−warnings

Display module summary −t

Suppress one or all warning messages −w[num]

Suppress warning messages 183, 196 −wstrict

Table 4−2: Compiler options (functional)

4.2 DETAILED DESCRIPTION OF THE C−51 OPTIONS

Option letters are listed below. Each option (except −o; see description of
the −o option) is applied to every source file. If the same option is used
more than once, the first (most left) occurrence is used. The placement of
command line options is of no importance except for the −I and −o
options. For those options having a file argument (−o and −f), the filename
may not start immediately after the option. There must be a tab or space in
between. All other option arguments must start immediately after the
option. Source files are processed in the same order as they appear on the
command line (left−to−right).

Some options have an equivalent pragma.

With options that can be set from within EDE, you will find a mouse icon
that describes the corresponding action.

Chapter 44−8
US

AG
E

−?

Option:

−?

Description:

Display an explanation of options at stdout.

Example:

cc51 −?

Compiler Use 4−9

• • • • • • • •

−A

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Language Extensions.
In the Language extensions box, select Enable all language
extensions or select Custom language extensions and enable or
disable one or more language extensions.

−A[flags]

Arguments:

Optionally one or more language extension flags.

Default:

−A1

Description:

Enable/disable language extensions. −A without any flags, specifies strict
ANSI mode; all language extensions are disabled. This is equivalent with
−ACKLNPSTUVX and −A0.

Flags which are controlled by a letter, can be switched on with the lower
case letter and switched off with the uppercase letter. Note that the usage
of these options might have effect on code density and code execution
performance. The following flags are allowed:

c Default. Perform character arithmetic. cc51 generates code using 8−bit
character arithmetic as long as the result of the expression is exactly
the same as if it was evaluated using integer arithmetic. See also section
3.3.3, Character Arithmetic.

C Disable character arithmetic.

k Default. Allow keyword language extensions without underscores. For
example, both _xdat and xdat are allowed.

K Only keyword extensions that start with an underscore, such as _xdat,
are allowed.

Chapter 44−10
US

AG
E

l Default. 120 significant characters are allowed in an identifier instead of
the minimum ANSI−C translation limit of 31 significant characters. Note:
more significant characters are truncated without any notice.

L Conform to the minimum ANSI−C translation limit of 31 significant
characters. This makes it possible to translate your code with any
ANSI−C conforming C−compiler. Note: more significant characters are
truncated without any notice.

n Default. Do not clear non−initialized global variables.

N Non−initialized global variables are cleared at startup.

p Default. Allow C++ style comments in C source code. For example:

// e.g this is a C++ comment line.

P Do not allow C++ style comments in C source code, to conform to
strict ANSI−C.

s Default. __STDC__ is defined as ’0’. The decimal constant ’0’, intended
to indicate a non−conforming implementation. When one of the
language extensions are enabled __STDC__ should be defined as ’0’.

S __STDC__ is defined as ’1’. In strict ANSI−C mode (−A) __STDC__ is
defined as ’1’.

t Default. Do not promote old−style function parameters when prototype
checking.

T Perform default argument promotions on old−style function parameters
for a strict ANSI−C implementation. char type arguments are promoted
to int type and float type arguments are then promoted to double
type.

u Default. Use type unsigned char for 0x80−0xff. The type of an
unsuffixed octal or hexadecimal constant is the first of the
corresponding list in which its value can be represented:

Character arithmetic enabled −Ac:

char, unsigned char, int, unsigned int, long,
unsigned long

Character arithmetic disabled −AC (strict ANSI−C):

int, unsigned int, long, unsigned long

Compiler Use 4−11

• • • • • • • •

U Do not use type unsigned char for 0x80−0xff. The type of an
unsuffixed octal or hexadecimal constant is the first of the
corresponding list in which its value can be represented:

Character arithmetic enabled −Ac:

char, int, unsigned int, long, unsigned long

Character arithmetic disabled −AC (strict ANSI−C):

int, unsigned int, long, unsigned long

v Allow type cast of an lvalue object with incomplete type void and
lvalue cast which does not change the type and memory of an lvalue
object.

Example:

void *p; ((int*)p)++; /* allowed */
int i; (char)i=2; /* NOT allowed */

V Default. A cast may not yield an lvalue, to conform strict ANSI−C mode.

x Default. Do not check for assignments of a constant string to a
non−constant string pointer. With this option the following example
produces no warning:

 char *p;
 void main(void) { p = "hello"; }

X Conform to ANSI−C by checking for assignments of a constant string to
a non−constant string pointer. The example above produces warning
W130: "operands of ’=’ are pointers to different types".

0 − same as −ACKLNPSTUVX (disable all)

1 − same as −Acklnpstuvx (default)

Example:

To disable character arithmetic and C++ comments enter:

cc51 −ACP test.c

Chapter 44−12
US

AG
E

−a

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Allocation. Enter a size in the
Size (in bytes) of the parameter area for non−reentrant functions
with a Variable Argument list field.

−asize

Pragma:

#pragma arglist size

Arguments:

A number of bytes.

Default:

−a20

Description:

Use size for number of bytes to be allocated for function definitions having
a variable argument list. The default is 20. This option is applied to the
non−reentrant functions only, because reentrant functions use the stack for
parameter passing.

Example:

cc51 −a10 test.c

Pragma arglist in the section 4.4, Pragmas.

Compiler Use 4−13

• • • • • • • •

−b

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Allocation. Enter a register bank
number in the Register bank number (0−3) field.

−bnumber

Arguments:

A register bank number in the range of 0 to 3.

Default:

−b0

Description:

Select the default register bank value for all functions of the module.
Notice no code is generated to switch to this register bank. The default
register bank is 0.

Example:

cc51 −b1 test.c

Section 3.16, Interrupt and Using

Chapter 44−14
US

AG
E

−banks

Option:

From the Project menu, select Project Options...
Expand the Linker entry and select Bank Switching. Specify a Number
of code banks and enable option Use alternate bank switch segment
name convention.

−banks

Description:

When you use code bank switching several limitations holds regarding
references and calls between segments located in different code banks. In
order to easen the linker process you can select a special segment naming
convention with the −banks compiler option.

It may in some situations be required to still use a different segment name
convention, you can use the compiler option −R for this.

Example:

To use the bank switch segment name convention, enter:

cc51 −banks test.c

−R

Compiler Use 4−15

• • • • • • • •

−bp

Option:

From the Project menu, select Project Options...
Expand the Processor entry and select Bypasses. Enable the option
Bypass DS80C390 erratum #6 (DIV AB preceded by ACC access).

−bpnumber

Arguments:

TASKING chip erratum bypass number.

Description:

Enable bypass for certain CPU functional problems.

Bypass number 1 bypasses DS80C390 erratum #6, and inserts an extra
NOP before any DIV AB instruction.

Example:

To bypass DS80C390 erratum #6, enter:

cc51 −bp1 test.c

See Appendix E, CPU Functional Problems for more details.

Chapter 44−16
US

AG
E

−C

Option:

From the Project menu, select Project Options...
Expand the Processor entry and select Processor Selection. Choose a
processor from the list of derivatives or select User specified CPU and
enter your own processor type.

−Ccpu

Arguments:

The CPU name which identifies your 8051 derivative.

Description:

Use special function register definitions for cpu. The filename looked for is
"regcpu.sfr" in the same way include files whose names are enclosed in ""
are searched.

Example:

To specify to the compiler to look for a file named regp8xc52.sfr, and
to use this file as a special function register definition file, enter:

cc51 −Cp8xc52 test.c

Section 3.3.6, Special Function Registers, in the previous chapter.

Compiler Use 4−17

• • • • • • • •

−c

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Allocation. Enter a size in the
Amount of DATA for optimization (overlayable) field.

−csize

Pragma:

cse size

Arguments:

A number of bytes.

Default:

−c0

Description:

With this option you can specify the maximum amount of CSE space
which may be used by a function. When no CSEs are found within a
function, no space will be allocated for it. CSE space is overlayable. The
default size is 0. Increase the size value to enable the compiler to allocate
some data space for other possible CSE values. When the size is kept ’0’,
the compiler will check for CSE values and tries to place them in register
only.

Example:

cc51 −c10 test.c

Pragma cse in the section 4.4, Pragmas.

Chapter 44−18
US

AG
E

−D

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Preprocessing. Define a macro
(syntax: macro[=def]) in the Define user macros field. You can specify
and define more macros by separating them with commas.

−Dmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro to the preprocessor, as in #define. If def is not given (’=’ is
absent), ’1’ is assumed. Any number of symbols can be defined. The
definition can be tested by the preprocessor with #if, #ifdef and #ifndef,
for conditional compilations. If the command line is getting longer than
the limit of the operating system used, the −f option is needed.

Example:

The following command defines the symbol NORAM as 1 and defines the
symbol PI as 3.1416.

cc51 −DNORAM −DPI=3.1416 test.c

Option −U

Compiler Use 4−19

• • • • • • • •

−E / −Em

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Preprocessing. Enable the
option Store the C Compiler preprocess output. Optionally, select one
or more of the sub−options.

−E[m]

Description:

Run the preprocessor of cc51 only and send the output to stdout. When
you use the −E option, use the −o option to separate the output from the
header produced by the compiler. When you use the −Em option, the
compiler generates dependency rules which can be used by a ’make’
utility.

Examples:

The following command preprocesses the file test.c and sends the
output to the file preout.

cc51 −E −o preout test.c

The following command generates dependency rules for the file test.c
which can be used by mk51 (the 8051 ’make’ utility).

cc51 −Em test.c

test.src : test.c

Chapter 44−20
US

AG
E

−e

Option:

EDE always removes the output file on errors.

−e

Description:

Remove the output file when an error has occurred. With this option the
’make’ utility always does the proper productions.

Example:

cc51 −e test.c

Compiler Use 4−21

• • • • • • • •

−err

Option:

In EDE this option is not so useful. If you would use this option you
would not see the error messages in the Build tab.

−err

Description:

Write errors to the file source.err instead of stderr.

Example:

To write errors to the file test.err instead of stderr, enter:

cc51 −err test.c

Chapter 44−22
US

AG
E

−f

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous. Add the option
to the Additional C Compiler options field.

−f file

Arguments:

A filename for command line processing. The filename "−" may be used to
denote standard input.

Description:

Use file for command line processing. To get around the limits on the size
of the command line, it is possible to use command files. These command
files contain the options that could not be part of the real command line.
Command files can also be generated on the fly, for example by the make
utility.

More than one −f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command
file.

2. To include whitespace in the argument, surround the argument with either
single or double quotes.

3. If single or double quotes are to be used inside a quoted argument, we
have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the
opposite quote around the argument. Thus, if a argument should
contain a double quote, surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such
a way that each embedded quote is surrounded by the opposite type
of quote.

Compiler Use 4−23

• • • • • • • •

Example:

 "This has a single quote ’ embedded"

or

 ’This has a double quote " embedded’

or

 ’This has a double quote " and \
 a single quote ’"’ embedded"

4. Some operating systems impose limits on the length of lines within a
text file. To circumvent this limitation it is possible to use continuation
lines. These lines end with a backslash and newline. In a quoted
argument, continuation lines will be appended without stripping any
whitespace on the next line. For non−quoted arguments, all whitespace
on the next line will be stripped.

Example:

 "This is a continuation \
 line"
 −> "This is a continuation line"

 control(file1(mode,type),\
 file2(type))
 −>
 control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file mycmds contains the following line:

−err
test.c

The command line can now be:

cc51 −f mycmds

Chapter 44−24
US

AG
E

−g

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Debug. Enable the option
Generate symbolic debug information. Optionally enable one or more
of the other options.

−g[f|e|r|l]...

Description:

Add directives to the output files, incorporating symbolic information to
facilitate high level debugging.

If −gf is used, high level language type information is also emitted for
types which are not referenced by variables. Therefore, this sub−option is
not recommended.

If −ge is used, a NOP instruction is emitted at the start of every C−line.
This option can be useful in combination with skidding emulators,
executing the instruction which is having a code breakpoint.

If −gr is used, two NOP instructions are emitted at the start of every
C−line. This option can be useful in combination with a ROM monitor
based execution environment, allowing a software breakpoint (3 byte JMP
MONITOR) on every C−line. Note that CrossView51 ROM checks and
refuses overlapping breakpoints.

If −gl is used, the compiler no longer suppresses debugging information
for (compiler generated) local assembler labels. This option is useful in
combination with the CrossView51 ROM debugger, which does not allow a
software breakpoint (3 byte JMP MONITOR) to be overlapped with a label.
So, when −gl is used, CrossView51 can do a better job, allowing software
breakpoints on safe places only. Please note that the amount of debug
information in the absolute output file will be increased, which might
increase the loading time of the debugger.

When you use a ROM monitor based execution environment (e.g.,
CrossView51 ROM), we recommend using −grl. When you use a skidding
emulator we recommend using −ge.

Compiler Use 4−25

• • • • • • • •

The −ge and −gr options are the only sub−options of −g that really affect
the code generated for a debugging session, inserting NOP(s) for every
C−line.

Examples:

To add symbolic debug information to the output files, enter:

cc51 −g test.c

To add symbolic debug information to the output files for a skidding
emulator, enter:

cc51 −ge test.c

Chapter 44−26
US

AG
E

−H

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Preprocessing. Enter a filename
in the Include this file before source field.

−Hfile

Arguments:

The name of an include file.

Description:

Include file before compiling the C source. This is the same as specifying
#include "file" at the first line of your C source.

Example:

cc51 −Hstdio.h test.c

−I

Compiler Use 4−27

• • • • • • • •

−I

Option:

From the Project menu, select Directories...
Add one or more directory paths to the Include Files Path field.

−Idirectory

Arguments:

The directory of the include file.

Description:

Change the algorithm for searching #include files whose names do not
have an absolute pathname to look in directory. Thus, #include files
whose names are enclosed in "" are searched for first in the directory of
the file containing the #include line, then in directories named in −I
options in left−to−right order. If the include file is still not found, the
compiler searches in a directory specified with the environment variable
CC51INC. CC51INC may contain more than one directory. Finally, the
directory ../include relative to the directory where the compiler binary
is located is searched. This is the standard include directory supplied with
the compiler package.

For #include files whose names are in <>, the directory of the file
containing the #include line is not searched. However, the directories
named in −I options (and the one in CC51INC and the relative path) are
still searched.

Example:

cc51 −I/proj/include test.c

Section 4.3, Include Files

Chapter 44−28
US

AG
E

−ivo

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Code Generation. Enable the
option Generate code for interrupt vector and enter a vector offset
value in the Reset/interrupt vector offset (0−0xFFFF) field.

−ivo=value

Arguments:

A 16−bit base address for the interrupt vector table.

Description:

This option specifies a 16−bit base address for the interrupt vector table.
This option is useful when running the application on an evaluation board
using the RISM ROM monitor. RISM claims non−used interrupts to user
RAM.

Example:

To specify 0x4000 as the base address of the interrupt vector table, enter:

cc51 −ivo=0x4000 test.c

−v

Compiler Use 4−29

• • • • • • • •

−l / −li

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous. Add the option
to the Additional C Compiler options field.

−l[i]

Pragma:

#pragma listinc

Description:

Generate a list file with the name of the module and .lst suffix. The list
file is only generated for use with debuggers using a list file instead of the
C source file (e.g. an ICE5100 debugger). It is not meant as a listing
generator, because other tools (e.g. pr) are available for this purpose.

Note that if the −l option is used all line number references (used in error
messages, source merging (−s), __LINE__, __FILE__, object line records,
etc.) are now referring to the list file.

If −li is used, include files are expanded in the list file. This is only useful
with include files containing executable statements.

Example:

To generate the list file test.lst, in which include files are expanded,
enter:

cc51 −li test.c

Pragmas listinc and nolistinc in the section 4.4, Pragmas.

Chapter 44−30
US

AG
E

−M

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Memory Model. Choose a Data
model.

−Mmodel

Arguments:

The memory model to be used, where model is one of:

s small (static in data)
a auxpage (static in pdat)
l large (static in xdat)
r reentrant (in xdat)

Default:

−Ms

Description:

Select memory model to be used. The default memory model is small.

Example:

cc51 −Ml test.c

Section 3.2.2, Memory Models

Compiler Use 4−31

• • • • • • • •

−m

Option:

From the Project menu, select Project Options...
Expand the Processor entry and select Memory. Select a size in the
On−chip data RAM size (0−256) field.

−mmem=size

Arguments:

A memory space with a memory size. mem can be one of:

mem Description Default size
(bytes)

bi _bit 128 (bits)

da _data 128

id _idat 128

pd _pdat 256

xd _xdat 65536

co constant (_rom) 65536

ba bitaddressable
(_bdat)

16

pr program (_rom) 65536

Table 4−3: Memory spaces

Description:

Specify the memory size (limits) to be used by the compiler for checking
static memory allocations of the file being processed. The limits used and
the space allocated by the module are reported when cc51 completes
compilation (unless −t option is used).

Chapter 44−32
US

AG
E

−misrac

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select MISRA C.
Select a MISRA C configuration. Optionally, in the MISRA C Rules entry,
specify the individual rules.

−misracn,n,....

Arguments:

The MISRA C rules to be checked.

Description:

With this option, the MISRA C rules to be checked can be specified. Refer
to Appendix A, MISRA C, for a list of supported and unsupported MISRA C
rules.

Example:

cc51 −misrac9 test.c

Will generate an error in case ’test.c’ contains nested comments.

Compiler Use 4−33

• • • • • • • •

−misrac−advisory−warnings /
−misrac−required−warnings

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select MISRA C.
Select Generate warnings instead of errors for required rules and/or
Generate warnings instead of errors for advisory rules.

−misrac−advisory−warnings
−misrac−required−warnings

Description:

With this option, you can change the error level for messages on the
required and advisory MISRA C rules to warnings. The default messages
are errors. Refer to Appendix A, MISRA C for a list of MISRA C rules.

Example:

cc51 −misrac9 −misrac−required−warnings test.c

Will generate a warning in case ’test.c’ contains nested comments.

Chapter 44−34
US

AG
E

−n

Option:

−n

Description:

Do not create output files; instead, the output is sent to stdout.

Example:

cc51 −n test.c

Compiler Use 4−35

• • • • • • • •

−nofastparm

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Allocation. Disable the option
Use fast internal RAM area for parameters. This option is only
available if you selected the auxiliary or large memory model.

−nofastparm

Description:

Switch off the use of the fast parameter area. This will shorten the
interrupt frame and therefor speedup the execution speed of interrupts.

Example:

cc51 −nofastparm test.c

You can use this feature for individual interrupt functions with
#pragma intsave NOPARMregbank. Use this pragma only if you know
that the fast parameter area is not used within the function.

Section 7.7, Interrupt Functions
Pragma intsave in the section 4.4, Pragmas.

Chapter 44−36
US

AG
E

−noregaddr

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Code Generation. Disable the
option Allow absolute register addresses (AR0−AR7) in generated
code.

−noregaddr

Description:

Get register bank independent code generation. With this option it is
possible to generate functions that can be called from any function
independent of its register bank.

Example:

cc51 −noregaddr test.c

Section 3.17, Register Bank Independent Code Generation

Compiler Use 4−37

• • • • • • • •

−O

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select an Optimization level.

If you select Custom optimization in the Optimization level box, you
can enable or disable individual optimizations in the Custom
optimizations list.

−Oflags

Pragma:

#pragma optimize flags

Arguments:

One or more optimization flags.

Default:

−O1

Description:

Control optimization. If you do not use this option, the default
optimization of cc51 is −O1, which is a compromise of code size and
compilation speed.

Flags which are controlled by a letter, can be switched on with the lower
case letter and switched off with the uppercase letter. These options are
described together.

All optimization flags can also be given in the source file after a #pragma
optimize. For example, specifying −Oc on the command line, is the same
as specifying #pragma optimize c in the source file.

An overview of the flags is given below.

Chapter 44−38
US

AG
E

a − relax alias checking
c − common subexpression elimination
d − data flow, constant/copy propagation
f − optimize for speed (increases code size)
h − peephole optimization
i − move invariant code outside loop (needs −Oc)
k − optimize into compound assignments
l − fast loops (increases code size)
m − allow code movement
p − control flow optimization
r − use register parameter passing
s − optimize initialization loops
t − turn tentative into defining occurrence
v − loop variable optimization
w − allow register variables
0 − same as −OACDFHIKLMNPRSTVW (no optim)
1 − same as −OAcdFhikLmnprstVw (default)
2 − same as −OacdFhikLmnprstvw (size)
3 − same as −Oacdfhiklmnprstvw (speed)

Example:

cc51 −OAcdFhikLmprstVw test.c

Pragma optimize in the section 4.4, Pragmas.

Compiler Use 4−39

• • • • • • • •

−Onumber

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select an Optimization level.

−Onumber

Arguments:

A number in the range 0 − 3.

Default:

−O1

Description:

Control optimization. You can specify a single number in the range 0 − 3,
to enable or disable optimization. The options are a combination of the
other optimization flags:

−O0 − same as −OACDFHIKLMNPRSTVW (no optimization)
−O1 − same as −OAcdFhikLmnprstVw (default)
−O2 − same as −OacdFhikLmnprstvw (size)
−O3 − same as −Oacdfhiklmnprstvw (speed)

The flags 0 to 3 cannot be concatenated with other flags. For example,
−Oa2c is not allowd, −OacF is allowed.

Example:

To optimize for code size, enter:

cc51 −O2 test.c

Chapter 44−40
US

AG
E

−Oa / −OA

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option Relax
alias checking.

−Oa / −OA

Pragma:

#pragma noalias
#pragma alias

#pragma optimize a
#pragma optimize A

Default:

−OA

Description:

With −Oa you relax alias checking. If you specify this option, cc51 will not
erase remembered register contents of user variables if a write operation is
done via an indirect (calculated) address. You must be sure this is not
done in your C−code (check pointers!) before turning on this option.

With −OA you specify strict alias checking. If you specify this option, cc51
erases all register contents of user variables when a write operation is
done via an indirect (calculated) address.

Example:

An example is given in section 4.5 Alias in this chapter.

Pragmas noalias, alias and optimize in the section 4.4, Pragmas.

Compiler Use 4−41

• • • • • • • •

−Oc / −OC

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option
Common subexpression elimination (CSE).

−Oc / −OC

Pragma:

#pragma optimize c
#pragma optimize C

Default:

−Oc

Description:

With −Oc you enable CSE (common subexpression elimination). With this
option specified, the compiler tries to detect common subexpressions
within the C code. The common expressions are evaluated only once, and
their result is temporarily held in registers or in data. The size of the
maximum used data area can be specified with the −csize option (default
0).

The −Oc option must be on to enable moving invariant code outside a
loop (−Oi).

With −OC you disable CSE (common subexpression elimination). With this
option specified, the compiler will not try to search for common
expressions. Also moving invariant code outside a loop will be disabled.

Chapter 44−42
US

AG
E

Example:

/*

 * Compile with −OC −O0,
 * Compile with −Oc −O0, common subexpressions are found

 * and temporarily saved.

 */

char x, y, a, b, c, d;

void

main(void)

{
 x = (a * b) − (c * d);

 y = (a * b) + (c * d); /*(a*b) and (c*d) are common */

}

−c
Pragma optimize in section 4.4, Pragmas.

Compiler Use 4−43

• • • • • • • •

−Od / −OD

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option
Constant and copy propagation (data flow).

−Od / −OD

Pragma:

#pragma optimize d
#pragma optimize D

Default:

−Od

Description:

With −Od you enable constant and copy propagation. With this option, the
compiler tries to find assignments of constant values to a variable, a
subsequent assignment of the variable to another variable can be replaced
by the constant value.

With −OD you disable constant and copy propagation.

Example:
/*
 * Compile with −OD −O0, ’i’ is actually assigned to ’j’
 * Compile with −Od −O0, 15 is assigned to ’j’, ’i’ was
 * propagated
 */

int i;
int j;

void
main(void)
{
 i = 10;
 j = i + 5;
}

Pragma optimize in section 4.4, Pragmas.

Chapter 44−44
US

AG
E

−Of / −OF

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option
Produce small code (favor code size above execution speed).

−Of / −OF

Pragma:

#pragma optimize f
#pragma optimize F

Pragma:

speed / size

Default:

−OF

Description:

With −Of you produce fast code. Favour execution speed above code
density. Note that this option may increase code size. If −Of is specified,
cc51 uses inline code for a number of integer operations and index
calculations of external RAM objects instead of emitting code which calls a
run time library routine. This option is recommended for those modules
which contain code which must be executed fast (e.g. interrupt functions).

With −OF you produce small code. Favour code density above execution
speed. If −OF is specified, cc51 calls a run time library routine for a
number of integer operations and index calculations of external RAM
objects.

Compiler Use 4−45

• • • • • • • •

Example:

/*

 * Compile with −OF −O0, produce small code, call
 * run time library routine

 * Compile with −Of −O0, produce fast code

 */

extern _xdat char arr[];

void

main(void)

{
 unsigned char c;

 arr[c] = ’x’;

}

Pragmas speed, size and optimize in the section 4.4, Pragmas.

Chapter 44−46
US

AG
E

−Oh / −OH

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option
Peephole optimizer (remove redundant code).

−Oh / −OH

Pragma:

#pragma optimize h
#pragma optimize H

Default:

−Oh

Description:

With −Oh you enable peephole optimization. Remove redundant code.

With −OH you disable peephole optimization.

Example:
/*
 * Compile with −OH, unnecessary instructions found
 * Compile with −Oh, unnecessary instructions removed by
 * peephole optimizer
 *
 * Peephole optimizer searches for patterns in the generated
 * code. E.g.
 * MOVX @DPTR,A
 * MOV A, ACC
 * does not need the MOV, while the value is still in A.
 */

_xdat int i;
void
main(void)
{
 i = 0x202;
}

Pragma optimize in section 4.4, Pragmas.

Compiler Use 4−47

• • • • • • • •

−Oi / −OI

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option Move
invariant code outside loop.

−Oi / −OI

Pragma:

#pragma optimize i
#pragma optimize I

Default:

−Oi

Description:

With −Oi you move invariant code outside a loop. Note that the option
−Oc must be on to use this option.

With −OI you disable moving invariant code outside a loop.

Example:
/*
 * Compile with −OI −Oc −O0, normal cse is done
 * Compile with −Oi −Oc −O0, invariant code is found in
 * the loop, code is moved outside the loop.
 */
void
main(void)
{
 char x, y, a, b;
 int i;

 for(i=0; i<20; i++)
 {
 x = a + b;
 y = a + b;
 }
}

−Oc
Pragma optimize in section 4.4, Pragmas.

Chapter 44−48
US

AG
E

−Ok / −OK

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option
Optimize into compound assignments.

−Ok / −OK

Pragma:

#pragma optimize k
#pragma optimize K

Default:

−Ok

Description:

With −Ok you optimize into compound assignments.

With −OK you do not optimize into compound assignments.

Example:

/*

 * Compile with −OK −O0, only second statement is compound

 * assignment

 * Compile with −Ok −O0, first statement is optimized in

 * compound assignment

 */

unsigned _pdat int i;

void

main(void)

{

 i = i + 1;

 i += 1; /* compound assignment */

}

Pragma optimize in section 4.4, Pragmas.

Compiler Use 4−49

• • • • • • • •

−Ol / −OL

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option Fast
loops (more code size).

−Ol / −OL

Pragma:

#pragma optimize l
#pragma optimize L

Default:

−OL

Description:

With −Ol you enable fast loops. Duplicate the loop condition. Evaluate the
loop condition one time outside the loop, just before entering the loop,
and at the bottom of the loop. This saves one unconditional jump and
gives less code inside a loop.

With −OL you disable fast loops.

Example:
/*
 * Compile with −OL −O0
 * Compile with −Ol −O0, compiler duplicates the loop
 * condition, the unconditional jump is removed.
 */
int i;

void
main(void)
{
 for(; i<10; i++)
 {
 do_something();
 }
}

Pragma optimize in section 4.4, Pragmas.

Chapter 44−50
US

AG
E

−Om / −OM

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option Code
order rearranging in flow optimization.

−Om / −OM

Pragma:

#pragma optimize m
#pragma optimize M

Default:

−Om

Description:

With −Om you enable code rearranging. Try to move (sub)expressions to
get faster code. Some debuggers may have difficulties with such options.

With −OM you disable code rearranging.

Example:
/*
 * Compile with −OM −O0, code as written sequential
 * Compile with −Om −O0, code is rearranged
 *
 * Code rearranging enables other optimizations to
 * optimize better, e.g. CSE
 */

int i;
extern void dummy(void);

void main ()
{
 do
 {
 if (i)
 {
 i−−;
 }
 else
 {

Compiler Use 4−51

• • • • • • • •

 i++;
 break;
 }
 dummy();
 } while (i);
}

Pragma optimize in section 4.4, Pragmas.

Chapter 44−52
US

AG
E

−Op / −OP

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option Extra
flow optimization pass.

−Op / −OP

Pragma:

#pragma optimize p
#pragma optimize P

Default:

−Op

Description:

With −Op you enable control flow optimizations on the intermediate code
representation, such as jump chaining and conditional jump reversal.

With −OP you disable control flow optimizations.

Example:

/*
 * Compile with −OP −O0

 * Compile with −Op −O0, compiler finds first time ’i’ is

 * always < 10, the unconditional jump is removed.

 */

int i;

void

main(void)

{
 for(i=0; i<10; i++)

 {

 do_something();

 }

}

Pragma optimize in section 4.4, Pragmas.

Compiler Use 4−53

• • • • • • • •

−Or / −OR

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option Use
register parameter passing (R2−R7).

−Or / −OR

Pragma:

#pragma optimize r
#pragma optimize R

Default:

−Or

Description:

With −Or you specify to use real register parameter passing. cc51 will treat
all function prototypes and function declarations which are not explicitly
programmed _regparm or _cdecl as _regparm functions.

With −OR cc51 will treat all function prototypes and function declarations
which are not explicitly programmed _regparm or _cdecl as _cdecl
functions.

Example:
/* Compile with −OR −O0, parameters are passed in fixed memory areas
 * Compile with −Or −O0, compiler uses register parameter passing
 */
extern int func(char, int);

void
main(void)
{
 char c;
 int x, y;

 x = func(c, y);
}

Section Function Parameters for details on parameter passing.
Pragma optimize in section 4.4, Pragmas.

Chapter 44−54
US

AG
E

−Os / −OS

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option
Optimize initialization loops.

−Os / −OS

Pragma:

#pragma optimize s
#pragma optimize S

Default:

−Os

Description:

With −Os you optimize initialization loops. Replace an initialization loop
by a _memset() routine.

With −OS you do not optimize initialization loops.

Example:
/*
 * Compile with −OS, loop code is found
 * Compile with −Os, loop is found to be an initialization
 * loop, code is generated as for the inline ’_memset’ function
 */

char arr[20];

void
main(void)
{
 unsigned char c;

 for(c=0; c<20; c++)
 arr[c] = 0;

 _memset(arr, 0, 20);
}

Pragma optimize in section 4.4, Pragmas.

Compiler Use 4−55

• • • • • • • •

−Ot / −OT

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option Keep
variables in the order of declaration.

−Ot / −OT

Pragma:

#pragma optimize t
#pragma optimize T

Default:

−Ot

Description:

With −Ot you allocate a tentative object at the point of programming.
Normally all tentative object allocations are delayed by the compiler until
the end of the module. With this option set, the allocation is done
immediately. This enables the compiler to optimize access to the objects.
Objects are forced to remain in the same order.

With −OT you keep a tentative declaration tentative until the end of the
module. The compiler cannot optimize access to these objects.

Chapter 44−56
US

AG
E

Example:
/*
 * Compile with −OT −O0, space for ’a’ and ’b’ is
 * allocated at end of module
 * Compile with −Od −O0, space for ’a’ and ’b’ is
 * allocated at point of programming. compiler knows
 * that ’b’ is located after ’a’, so DPTR can be
 * incremented
 */
_xdat char a;
_xdat char b;

void
main(void)
{
 char c;

 c = a + 5;
 b = 10;
}

Pragma optimize in section 4.4, Pragmas.

Compiler Use 4−57

• • • • • • • •

−Ov / −OV

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option Loop
variable optimization.

−Ov / −OV

Pragma:

#pragma optimize v
#pragma optimize V

Default:

−OV

Description:

With −Ov you enable loop variable detection. With this option specified,
the compiler tries to detect within a loop which variable is the loop
variable. When possible, this variable is temporarily moved into registers.

With −OV you disable loop variable detection.

Example:
/*
 * Compile with −OV −O0, loop variable ’i’ is an automatic
 * Compile with −Ov −O0, loop variable ’i’ is temporarily
 * moved into registers.
 */
int j;

void
main(void)
{
 int i;
 for(i=0; i<10; i++)
 {
 j = 2 * i;
 }
}

−Oc
Pragma optimize in section 4.4, Pragmas.

Chapter 44−58
US

AG
E

−Ow / −OW

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Optimization.
Select the Custom optimization level. Enable or disable the option
Allow register automatic variables (R0−R7).

−Ow / −OW

Pragma:

#pragma optimize w
#pragma optimize W

Default:

−Ow

Description:

With −Ow you allow cc51 to use register variables. Of course this cannot
be done when all registers are in use.

With −OW you do not allow cc51 to use register variables.

Example:
/*
 * Compile with −OW −O0, variables are not allowed in registers
 * Compile with −Ow −O0, variables are allowed in registers.
 * ’k’ is still an automatic, because all registers are in use
 */

void
main(void)
{
 int i, j, k;

 k = i * j;
}

Pragma optimize in section 4.4, Pragmas.

Compiler Use 4−59

• • • • • • • •

−o

Option:

EDE determines the name of the output file with the same basename as
the source file and extension .src.

−o file

Arguments:

An output filename. The filename may not start immediately after the
option. There must be a tab or space in between.

Default:

Module name with .src suffix.

Description:

Use name as output file name, instead of the module name with .src
suffix. Special care must be taken when using this option, the first −o
option found acts on the first file to compile, the second −o option acts on
the second file to compile, etc.

Example:

When specified:

cc51 file1.c file2.c −o file3.src −o file2.src

two files will be created, file3.src for the compiled file file1.c and
file2.src for the compiled file file2.c.

Chapter 44−60
US

AG
E

−pa / −pd / −pp / −ps

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Code Generation. Select one of
the Data Pointer options.

−p{a|d|p|s}

Description:

The standard 8051 architecture provides just one 16−bit pointer for indirect
addressing of external memory (DPTR). At this moment there are several
architectures supporting more than just one data pointer. The Infineon
Technologies C500/C800 family has support for 8 16−bit data pointers
(−ps). The following derivatives have support for 2 16−bit data pointers:
the Atmel AT8x53/AT89S53/AT89S4D12/AT89S8252 (−pa), the Dallas
80C320/520/530 and AMD 80C521 (−pd), and the Philips 51 family (−pp).

Example:

To specify to use 8 16−bit data pointers, enter:

cc51 −ps test.c

Section Multiple Data Pointer Support in chapter Run−time Environment.

Compiler Use 4−61

• • • • • • • •

−R

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry, expand the Code Generation entry and
select Segment names. Select a memory space and optionally enter a
new name.

−Rmem[=name]

Arguments:

A memory space, optionally followed by a segment name. mem can be
one of:

mem Description

bi _bit

da _data

id _idat

pd _pdat

xd _xdat

co constant (_rom)

ba bitaddressable (_bdat)

pr program (_rom).
Note that the segment name
can only be changed in the
reentrant memory model.

Table 4−4: Memory spaces

Description:

The compiler defaults to a segment naming convention, using ’C51_’ and a
two letter memory type abbreviation: C51_PR for executable code (only in
reentrant model), C51_XD for static external RAM etc. When you select
code bank switching (option −banks) the compiler automatically uses a
different segment name convention for executable code using the module
name to allow for proper function distribution over different code banks.

In static models the default segment naming for executable code uses the
module name instead of ’C51’.

Chapter 44−62
US

AG
E

In case a module must be loaded at a fixed address or a data segment
needs a special place in memory, the −R option enables you to generate a
unique segment name. In this way the order LINK51 allocates these
segments can be specified in a linker command file.

If mem is specified without a name, the module name is used instead of
C51_, otherwise name_ is used.

Notice, that when rom size medium is used (option −rm), the compiler
implies a −Rpr, which means a (unique) code segment name is emitted
using the module name and having the INBLOCK attribute.

mem is the same as specified with the −m option.

Example:

To create a new segment name (NEW_DA) for DATA segments, enter:

cc51 −Rda=NEW test.c

−banks, −r

Compiler Use 4−63

• • • • • • • •

−r

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Memory Model. Choose a Code
size limits (ROM model) option.

−rromsize

Arguments:

A single character specifying the rom size. romsize can be one of:

s (small: 2K program)
m (medium: 2K modules, 64K program)
l (large: 64K modules, 64K program)

Default:

−rl

Description:

Select the way function calls and non short jumps are generated. cc51
always tries to use the sjmp instruction. If the distance is larger than 127
bytes, either an ajmp, generic jmp or ljmp is emitted. For function calls
(including library calls) the same decision is made: acall, generic call
or lcall. Code generated for small model is more efficient than medium
model, which in turn is more efficient than large model:

s The complete application (C run time library included) is assumed to fit
into one 2K byte block. The compiler emits acall for calls and
ajmp for non short jumps.

m This option implies a −Rpr, which means cc51 uses the module name
for the declaration of the CODE segment and assigns this segment the
INBLOCK attribute. This means link51 allocates this segment within a
2K bank. The size of the C module may of course not exceed 2048
bytes. cc51 emits generic call and jmp instructions, which are
translated by asm51 into acall/ajmp for calls and jumps within the
module (read within the same segment), and to lcall/ljmp for
external calls and jumps. This approach is only useful with a large
number of ’small’ (approx. 400 bytes) C modules, because link51 must
allocate each of these segments within a 2K bank. If larger modules are

Chapter 44−64
US

AG
E

used, a gap may be introduced. When using rom size medium, cc51
reports code size with a ’high estimate’ (worst case) remark, because it
does not know how the generic call/jmp instructions are going to be
translated by the assembler.

l The C module will be larger than 2K bytes. The compiler emits lcall
and ljmp instructions.

The −rm option is ignored for all static models.

Example:

cc51 −rm −Mr test.c

Compiler Use 4−65

• • • • • • • •

−S

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Allocation. Select the Keep
strings in ROM (use _rom keyword for a pointer to a string) radio
button.

−S

Pragma:

#pragma romstring

Description:

Put strings in ROM only.

By default, strings are allocated in both ROM and RAM. Strings are copied
from ROM to RAM by the C startup code.

Example:

cc51 −S test.c

Pragmas romstring and ramstring in the section 4.4, Pragmas.
Section Strings

Chapter 44−66
US

AG
E

−s

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous. Enable the
option Merge C source code with assembly in output file (.src).

−s

Pragma:

#pragma source

Description:

Merge C source code with generated assembly code in output file.

Example:

cc51 −s test.c

; test.c 3 int i;
 PUBLIC _i
_i: DS 2
; test.c 4
; test.c 5 main ()
; test.c 6 {
 PUBLIC _?main
TEST_MAIN_PR SEGMENT CODE
 RSEG TEST_MAIN_PR
_?main:

Pragmas source and nosource in the section 4.4, Pragmas.

Compiler Use 4−67

• • • • • • • •

−se

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Language Extensions.
Enable the option Allow enum objects of type ’char’.

−se

Description:

Treat small enumerated types as char instead of int.

Example:

cc51 −se test.c

Chapter 44−68
US

AG
E

−shiftright−signfill

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Code Generation.
Enable the option Use sign fill on signed shift right.

−shiftright−signfill

Description:

With a right−shift operation on a signed value, the compiler by default fills
the vacant bits with zero. With this option the compiler uses the value of
the sign bit instead.

Example:

/* by default the right−shift results in 511
 * with −shiftright−signfill the result is −1
 */
void f(void)
{
 int x = −128;
 x >>= 7;
}

Compiler Use 4−69

• • • • • • • •

−t

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous. Enable the
option Display module summary.

−t

Description:

Produce totals (module summary).

Example:

cc51 −t test.c

8051 C compiler vx.y rz SN00000000−015 (c) year TASKING, Inc.

MODULE SUMMARY STATIC OVERLAYABLE (LIMIT)

Code size = 49 (65536)
Constant size = 0 (65536)
Direct variable size = 4 0 (128)
Indirect variable size = 0 0 (128)
Paged auxiliary size = 0 0 (256)
Bit size = 1 0 (128)
Bit addressable size = 2 0 (16)
Auxiliary variable size = 0 0 (65536)
Interrupts used:
Register banks used: 0

processed 25 lines at 7075 lines/min

Chapter 44−70
US

AG
E

−U

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Preprocessing. Undefine one or
more of the predefined symbols _MODEL or _CC51 by disabling the
corresponding option.

−Uname

Arguments:

The name macro you want to undefine.

Description:

Remove any initial definition of identifier name as in #undef, unless it is a
predefined ANSI standard macro. ANSI specifies the following predefined
symbols to exist, which cannot be removed:

__FILE__ "current source filename"

__LINE__ current source line number (int type)

__TIME__ "hh:mm:ss"

__DATE__ "Mmm dd yyyy"

__STDC__ level of ANSI standard (because cc51 has a number of
language extensions and 8051 specific implementations, this
value is set to 0)

When cc51 is invoked, also the following predefined symbols exist:

_CC51 value represents version of TASKING C 8051 compiler.

_MODEL memory model used (see section 3.2.2, Memory Models for
details)

These symbols can be turned off with the −U option.

Example:

cc51 −UNORAM test.c

−D

Compiler Use 4−71

• • • • • • • •

−u

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Language Extensions.
Enable the option Treat ’char’ variables as unsigned.

−u

Description:

Treat ’character’ type variables as ’unsigned character’ variables. By default
char is the same as specifying signed char. With −u char is the same
as unsigned char.

Example:

With the following command char is treated as unsigned char:

cc51 −u test.c

Chapter 44−72
US

AG
E

−V

Option:

−V

Description:

Display version information.

Example:

cc51 −V

TASKING 8051 C compiler vx.yrz Build nnn
Copyright years Altium BV Serial# 00000000

Compiler Use 4−73

• • • • • • • •

−v

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Code Generation. Disable the
option Generate code for interrupt vector.

−v

Pragma:

#pragma novector

Description:

Do not generate code for interrupt vector and reference to interrupt
handler in the run−time library.

This option also disables option −ivo.

Example:

cc51 −v test.c

Options −ivo and −vf

Pragmas vector and novector in the section 4.4, Pragmas.

Section 7.7, Interrupt Functions in chapter Run−time Environment.

Chapter 44−74
US

AG
E

−vf

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Code Generation. Disable the
option Generate frame for interrupt handler.

−vf

Description:

Do not generate interrupt frame for interrupt handler.

Example:

cc51 −vf test.c

Section 7.7, Interrupt Functions in chapter Run−time Environment.

Compiler Use 4−75

• • • • • • • •

−vo

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous. Add the option
to the Additional C Compiler options field.

−vo

Description:

Generate old style interrupt frame. This option is available for backwards
compatibility only.

Example:

cc51 −vo test.c

Section 7.7, Interrupt Functions in chapter Run−time Environment.

Chapter 44−76
US

AG
E

−w / −wstrict

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Warnings.
Enable one of the options Report all warnings, Suppress all warnings,
or Suppress specific warnings and enter the numbers, separated by
commas, of the warnings you want to suppress. Optionally enable the
option Issue strict warnings.

−w[num]
−wstrict

Arguments:

Optionally the warning number to suppress.

Description:

−w suppress all warning messages. −wnum only suppresses the given
warning. −wstrict suppresses all "strict" warning messages (183, 196).

Example:

To suppress warning 135, enter:

cc51 file1.c −w135

Compiler Use 4−77

• • • • • • • •

−x

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Allocation. Enter a size in the
Amount of DATA for automatics (overlayable) field.

−xsize

Pragma:

#pragma extend size

Arguments:

A number of bytes.

Default:

−x4

Description:

Extend amount of internal RAM for automatics.

Example:

To reserve 10 bytes of internal RAM for automatics, enter:

cc51 −x10 test.c

Pragma extend in the section 4.4, Pragmas.

Option −c

Chapter 44−78
US

AG
E

−z

Option:

From the Project menu, select Project Options...
Expand the C Compiler entry and select Miscellaneous. Add the option
to the Additional C Compiler options field.

−zpragma

Arguments:

A pragma as listed in section 4.4, Pragmas.

Description:

With this option you can give a pragma on the command line. This is the
same as specifying ’#pragma pragma’ in the C source. Dashes (’−’) on the
command line in the pragma are converted to spaces. A dash prefixed by
another dash or space is never translated, so it is still possible to specify a
dash for negative numbers as pragma argument.

Example:

To issue a ’#pragma intsave R0’ using the command line, enter:

cc51 −zintsave−R0 file.c

The ’−’ between insave and R0 is converted to a space.

Section 4.4, Pragmas.

Compiler Use 4−79

• • • • • • • •

4.3 INCLUDE FILES

You may specify include files in two ways: enclosed in <> or enclosed in
"". When an #include directive is seen, cc51 uses the following algorithm
trying to open the include file:

1. If the filename is enclosed in "", and it is not an absolute pathname (does
not begin with a ’\’ for PC, or a ’/’ for UNIX), the include file is searched
for in the directory of the file containing the #include line. For example,
in:

PC:

cc51 ..\..\source\test.c

UNIX:

cc51 ../../source/test.c

cc51 first searches in the directory ..\..\source (../../source for
UNIX) for include files.

If you compile a source file in the directory where the file is located (cc51
test.c), the compiler searches for include files in the current directory.

This first step is not done for include files enclosed in <>.

2. Use the directories specified with the −I options, in a left−to−right order.
For example:

Select the Project | Directories... menu item. Add one or more
directory paths to the Include Files Path field.

PC:

cc51 −I..\..\include message.c

UNIX:

cc51 −I../../include message.c

3. Check if the environment variable CC51INC exists. If it does, use the
contents as a directory specifier for include files. You can specify more
than one directory in the environment variable CC51INC by using a
separator character. Instead of using −I as in the example above, you can
specify the same directory using CC51INC:

Chapter 44−80
US

AG
E

PC:

set CC51INC=..\..\include
cc51 message.c

UNIX:

if using the Bourne shell (sh)

 CC51INC=../../include
 export CC51INC
 cc51 message.c

or if using the C−shell (csh)

 setenv CC51INC ../../include
 cc51 message.c

4. When an include file is not found with the rules mentioned above, the
compiler tries the subdirectory include, one directory higher than the
directory containing the cc51 binary. For example:

PC:

cc51.exe is installed in the directory C:\CC51\BIN
The directory searched for the include file is C:\CC51\INCLUDE

UNIX:

cc51 is installed in the directory /usr/local/cc51/bin
The directory searched for the include file is
/usr/local/cc51/include

The compiler determines run−time which directory the binary is executed
from to find this include directory.

A directory name specified with the −I option or in CC51INC may or may
not be terminated with a directory separator, because cc51 inserts this
separator, if omitted.

When you specify more than one directory to the environment variable
CC51INC, you have to use one of the following separator characters:

PC:

; , space

e.g. set CC51INC=..\..\include;\proj\include

Compiler Use 4−81

• • • • • • • •

UNIX:

: ; , space

e.g. setenv CC51INC ../../include:/project/include

Chapter 44−82
US

AG
E

4.4 PRAGMAS

According to ANSI (3.8.6) a preprocessing directive of the form:

#pragma pragma−token−list new−line

causes the compiler to behave in an implementation−defined manner. The
compiler ignores pragmas which are not mentioned in the list below.
Pragmas give directions to the code generator of the compiler. Besides the
pragmas there are two other possibilities to steer the code generator:
command line options and keywords. The compiler acknowledges these
three groups using the following rule:

Command line options can be overruled by keywords and pragmas.
Keywords can be overruled by pragmas. So, pragmas have the highest
priority.

This approach makes it possible to set a default optimization level for a
source module, which can be overridden temporarily within the source by
a pragma. For example, on the command line you have given option −O1
(default optimizations). You can, for example, disable CSE checking in
(part of) a source module by specifying #pragma optimize C in the
source.

cc51 supports the following pragmas:

alias

Default. Same as −OA option. Perform strict alias checking. See also
section 4.5 Alias.

noalias

Same as −Oa option. Relax alias checking.

arglist size

Same as −a option. Change the allocation size for variable argument lists.
Only useful in the static models.

asm

Insert the following (non preprocessor lines) as assembly language source
code into the output file. The inserted lines are not checked for their
syntax.

Compiler Use 4−83

• • • • • • • •

asm_noflush

Same as asm, except that the peephole optimizer does not flush the code
buffer and assumes register contents remain valid.

endasm

Switch back to the C language.

cse size

Same as −c option. Change the maximum allocation size to store CSE
values in.

extend size

Same as −x option. Specify the maximum size of internal RAM to be used
for ’automatic variables’ to be made ’register variables’. See also section
3.6, Automatic Variables.

intsave registers

When using assembly in an interrupt function you can save registers that
are not automatically saved by the compiler. See also section 7.7 Interrupt
Functions in chapter Run−time Environment.

listinc

Same as −li option. Expand include files in generated list file. Only useful
with −l option and include files containing executable statements.

nolistinc

Default. Do not expand include files in list file.

linear_switch

Force the compiler to generate linear jump code for switch statements. See
also section 3.21, Switch Statement.

jump_switch

Force the compiler to generate jump tables for switch statements. See also
section 3.21, Switch Statement.

binary_switch

Force the compiler to generate binary search tables for switch statements.
See also section 3.21, Switch Statement.

Chapter 44−84
US

AG
E

smart_switch

Default. The compiler decides what code to generate on a switch
statement. In general, the compiler chooses the smallest method. See also
section 3.21, Switch Statement.

message "string" ...
message ("string" ...)

Print the message string(s) on standard output during the build process.
For example:

#pragma message("Compiling file " __FILE__)
#ifdef SHOW_DATE_AND_TIME
pragma message(" date: " __DATE__ ", time: " __TIME__)
#endif

optimize flags

Controls the amount of optimization. The remainder of the source line is
scanned for option characters, which are processed like the flags of the −O
command line option. Please refer to the −O option for a list of available
flags.

For example, specifying −Oc on the command line, is the same as
specifying #pragma optimize c at the beginning of a source file.

page
nopage

Align or do not align code segments on a 256 byte page boundary.

In the following example, the rom variable rdata is placed in a segment
with the PAGE attribute.

#pragma page
_rom char rdata[] = {1,2,3,4};
#pragma nopage

Note that in some situations the segment definition may be postponed till
later in the code generation process. So, it could be generated after a
following #pragma nopage. In such situations the #pragma
optimize t (tentative declaration) may be required.

ramstring

Default. Allocate strings in ROM and RAM. The strings are copied to RAM
at startup.

Compiler Use 4−85

• • • • • • • •

romstring

Same as −S option. Allocate strings in ROM only.

size

Default. Same as −OF option. Favour code density above execution speed.

speed

Same as −Of option. Favour execution speed above code density.

source

Same as −s option. Enable mixing C source with assembly code.

nosource

Default. Disable generation of C source within assembly code.

vector [value]

Default. Restore generation of interrupt vector after a novector pragma.
With the value this pragma is the same as the −ivo option

novector

Same as −v option. Do not emit interrupt vector and reference to interrupt
handler in run−time library.

Chapter 44−86
US

AG
E

4.5 ALIAS

By default the compiler assumes that each pointer may point to any object
created in the program, so when any pointer is dereferenced, all register
contents are assumed to be invalid afterwards.

When it is known that aliasing problems do not occur in the written
C−source, alias checking may be relaxed (use the −Oa option or
#pragma noalias). Relaxing alias checking may reduce code size.

Example 1:

void
func(int i)
{
 char * p;
 char c;
 char d;

 if(i)
 p = &c;
 else
 p = &d;

 c = 2;
 d = 3;

 p = 4; / may write to ’c’ or ’d’ */
 /* −−> aliasing object ’c’ or ’d’ */

 i = c; /* ’*p’ might have changed the value of ’c’, */
 /* so ’c’ may not be used from register */
 /* contents, but MUST be read from memory */
 /* −−> alias checking MUST be ON in this case */
}

Compiler Use 4−87

• • • • • • • •

Example 2:

void
func(int i, char *p)
{
 char c;
 char d;

 c = 2;
 d = 3;

 p = 4; / cannot write to ’c’ or ’d’, but to some other object
*/

 i = c; /* ’*p’ cannot have changed the value of ’c’, */
 /* so ’c’ may be used from register contents */
 /* −−> alias checking may be OFF in this case */
}

Chapter 44−88
US

AG
E

4.6 COMPILER LIMITS

The ANSI C standard [1−2.2.4] defines a number of translation limits, which
a C compiler must support to conform to the standard. The standard states
that a compiler implementation should be able to translate and execute a
program that contains at least one instance of every one of the following
limits, (cc51’s actual limits are given within parentheses):

• 15 nesting levels of compound statements, iteration control
structures and selection control structures

• 8 nesting levels of conditional inclusion (50)

• 12 pointer, array, and function declarators (in any combinations)
modifying an arithmetic, a structure, a union, or an incomplete type
in a declaration (12)

• 31 nesting levels of parenthesized declarators within a full
declarator

• 32 nesting levels of parenthesized expressions within a full
expression

• 31 significant characters in an external identifier (full ANSI−C
mode),
120 significant characters in an external identifier (non ANSI−C
mode)

• 511 external identifiers in one translation unit

• 127 identifiers with block scope declared in one block

• 1024 macro identifiers simultaneously defined in one translation unit

• 31 parameters in one function declaration

• 31 arguments in one function call

• 31 parameters in one macro definition

• 31 arguments in one macro call

• 509 characters in a logical source line (1500)

• 509 characters in a character string literal or wide string literal (after
concatenation) (1500)

• 8 nesting levels for #included files (50)

• 257 case labels for a switch statement, excluding those for any
nested switch statements

• 127 members in a single structure or union

• 127 enumeration constants in a single enumeration

• 15 levels of nested structure or union definitions in a single
struct−declaration−list

Compiler Use 4−89

• • • • • • • •

As far as the compiler implementation uses fixed tables, they will be large
enough to meet the standards limits. However, most of the internal
structures and tables of the compiler are dynamic. Thus the actual
compiler limits are determined by the amount of free memory in the
system.

Chapter 44−90
US

AG
E

5

COMPILER
DIAGNOSTICS

C
H
A
P
T
E
R

Chapter 55−2
DI
AG

NO
ST

IC
S

5

C
H
A
P
T
E
R

Compiler Diagnostics 5−3

• • • • • • • •

5.1 INTRODUCTION

cc51 has three classes of messages: user errors, warnings and internal
compiler errors.

Some user error messages carry extra information, which is displayed by
the compiler after the normal message. The messages with extra
information are marked with ’I’ in the list below. They never appear
without a previous error message and error number. The number of the
information message is not important, and therefore, this number is not
displayed. A user error can also be fatal (marked as ’F’ in the list below),
which means that the compiler aborts compilation immediately after
displaying the error message and may generate a ’not complete’ output
file.

The error numbers and warning numbers are divided in two groups. The
frontend part of the compiler uses numbers in the range 0 to 499, whereas
the backend (code generator) part of the compiler uses numbers in the
range 500 and higher. Note that most error messages and warning
messages are produced by the frontend.

Errors can be written directly to an error list file by using the −err option
of the compiler. See also the chapter Compiler Use.

If you program a non fatal error, cc51 displays the C source line that
contains the error, the error number and the error message on the screen.
If the error is generated by the code generator, the C source line displayed
always is the last line of the current C function, because code generation is
started when the end of the function is reached by the frontend. cc51
displays the line number causing the error before the error message. cc51
always generates the error number in the assembly output file, exactly
matching the place where the error occurred.

For example, the following program, bug.c, causes a code generator error
message:

 void
 main(void)
{
 char c;

 _testclear(c);
 }

E 544: (line 6) illegal testclear argument

Chapter 55−4
DI
AG

NO
ST

IC
S

The output file, bug.src, contains:

; bug.c 6 _testclear(c);
 ERROR C51_ERROR_544

So, when a compilation is not successful, the generated output file is not
accepted by the assembler, thus preventing a corrupt application to be
made (see also the −e option).

Warning messages do not result in an erroneous assembly output file.
They are meant to draw your attention to assumptions of the compiler, for
a not correct situation. You can control warning messages with the
−w[num] option.

The last class of messages are the internal compiler errors. The following
format is used:

S number: internal error − please report

These errors are caused by failed internal consistency checks and should
never occur. However, if such a ’SYSTEM’ error appears, please report the
occurrence to TASKING, using a Problem Report form. Please include a
diskette or tape, containing a small C program causing the error.

5.2 RETURN VALUES

cc51 returns an exit status to the operating system environment for testing.

For example,

in a MS−DOS BATCH−file you can examine the exit status of the program
executed with ERRORLEVEL:

cc51 −s %1.c
IF ERRORLEVEL 1 GOTO STOP_BATCH

In a bourne shell script, the exit status can be found in the $? variable, for
example:

cc51 $*
case $? in
0) echo ok ;;
1|2|3) echo error ;;
esac

Compiler Diagnostics 5−5

• • • • • • • •

The exit status of cc51 is one of the numbers of the following list:

0 Compilation successful, no errors
1 There were user errors, but terminated normally
2 A fatal error, or System error occurred, premature ending
3 Stopped due to user abort

Chapter 55−6
DI
AG

NO
ST

IC
S

5.3 ERRORS AND WARNINGS

Errors start with an error type, followed by a number and a message. The
error type is indicated by a letter:

I information
E error
F fatal error
S internal compiler error
W warning

Frontend

F 1 evaluation expired

Your product evaluation period has expired. Contact your local
TASKING office for the official product.

W 2 unrecognized option: ’option’

The option you specified does not exist. Check the invocation syntax
for the correct option.

E 4 expected number more ’#endif’

The preprocessor part of the compiler found the’#if’, ’#ifdef’ or ’#ifndef’
dirctive but did not find a corresponding ’#endif’ in the same source
file. Check your source file that each ’#if’, ’#ifdef’ or ’#ifndef’ has a
corresponding ’#endif’.

E 5 no source modules

You must specify at least one source file to compile.

F 6 cannot create "file"

The output file or temporary file could not be created. Check if you
have sufficient disk space and if you have write permissions in the
specified directory.

F 7 cannot open "file"

Check if the file you specified really exists. Maybe you misspelled the
name, or the file is in another directory.

F 8 attempt to overwrite input file "file"

The output file must have a different name than the input file.

Compiler Diagnostics 5−7

• • • • • • • •

E 9 unterminated constant character or string

This error can occur when you specify a string without a closing
double−quote (") or when you specify a character constant without a
closing single−quote (’). This error message is often preceded by one
or more E 19 error messages.

F 11 file stack overflow

This error occurs if the maximum nesting depth (50) of file inclusion is
reached. Check for #include files that contain other #include files. Try
to split the nested files into simpler files.

F 12 memory allocation error

All free space has been used. Free up some memory by removing any
resident programs, divid the file into several smaller source files, break
expressions into smaller subexpressions or put in more memory.

W 13 prototype after forward call or old style declaration − ignored

Check that a prototype for each function is present before the actual
call.

E 14 ’;’ inserted

An expression statement needs a semicolon. For example, after ++i in
{ int i; ++i }.

E 15 missing filename after −o option

The −o option must be followed by an output filename.

E 16 bad numerical constant

A constant must conform to its syntax. For example, 08 violates the
octal digit syntax. Also, a constant may not be too large to be
represented in the type to which it was assigned. For example,
int i = 0x1234567890; is too large to fit in an integer.

E 17 string too long

This error occurs if the maximum string size (1500) is reached. Reduce
the size of the string.

E 18 illegal character (0xhexnumber)

The character with the hexadecimal ASCII value 0xhexnumber is not
allowed here. For example, the ’#’ character, with hexadecimal value
0x23, to be used as a preprocessor command, may not be preceded by
non−white space characters. The following is an example of this error:

Chapter 55−8
DI
AG

NO
ST

IC
S

char *s = #S ; // error

E 19 newline character in constant

The newline character can appear in a character constant or string
constant only when it is preceded by a backslash (\). To break a string
that is on two lines in the source file, do one of the following:

• End the first line with the line−continuation character, a backslash
(\).

• Close the string on the first line with a double quotation mark, and
open the string on the next line with another quotation mark.

E 20 empty character constant

A character contant must contain exactly one character. Empty
character contants (’’) are not allowed.

E 21 character constant overflow

A character contant must contain exactly one character. Note that an
escape sequence (for example, \t for tab) is converted to a single
character.

E 22 ’#define’ without valid identifier

You have to supply an identifier after a ’#define’.

E 23 ’#else’ without ’#if’

’#else’ can only be used within a corresponding ’#if’, ’#ifdef’ or ’#ifndef’
construct. Make sure that there is a ’#if’, ’#ifdef’ or ’#ifndef’ statement in
effect before this statement.

E 24 ’#endif’ without matching ’#if’

’#endif’ appeared without a matching ’#if’, ’#ifdef’ or ’#ifndef’
preprocessor directive. Make sure that there is a matching ’#endif’ for
each ’#if’, ’#ifdef’ and ’#ifndef’ statement.

E 25 missing or zero line number

’#line’ requires a non−zero line number specification.

E 26 undefined control

A control line (line with a ’#identifier’) must contain one of the known
preprocessor directives.

Compiler Diagnostics 5−9

• • • • • • • •

W 27 unexpected text after control

’#ifdef’ and ’#ifndef’ require only one identifier. Also, ’#else’ and
’#endif’ only have a newline. ’#undef’ requires exactly one identifier.

W 28 empty program

The source file must contain at least one external definition. A source
file with nothing but comments is considered an empty program.

E 29 bad ’#include’ syntax

A ’#include’ must be followed by a valid header name syntax. For
example, #include <stdio.h misses the closing ’>’.

E 30 include file "file" not found

Be sure you have specified an existing include file after a ’#include’
directive. Make sure you have specified the correct path for the file.

E 31 end−of−file encountered inside comment

The compiler found the end of a file while scanning a comment.
Probably a comment was not terminated. Do not forget a closing
comment ’*/’ when using ANSI−C style comments.

E 32 argument mismatch for macro "name"

The number of arguments in invocation of a function−like macro must
agree with the number of parameters in the definition. Also, invocation
of a function−like macro requires a terminating ")" token. The
following are examples of this error:

#define A(a) 1
int i = A(1,2); /* error */

#define B(b) 1
int j = B(1; /* error */

E 33 "name" redefined

The given identifier was defined more than once, or a subsequent
declaration differed from a previous one. The following examples
generate this error:

int i;
char i; /* error */
main()
{
}

Chapter 55−10
DI
AG

NO
ST

IC
S

main()
{
 int j;
 int j; /* error */
}

W 34 illegal redefinition of macro "name"

A macro can be redefined only if the body of the redefined macro is
exactly the same as the body of the originally defined macro.

This warning can be caused by defining a macro on the command line
and in the source with a ’#define’ directive. It also can be caused by
macros imported from include files. To eliminate the warning, either
remove one of the definitions or use an ’#undef’ directive before the
second definition.

E 35 bad filename in ’#line’

The string literal of a #line (if present) may not be a "wide−char" string.
So, #line 9999 L"t45.c" is not allowed.

W 36 ’debug’ facility not installed

’#pragma debug’ is only allowed in the debug version of the compiler.

W 37 attempt to divide by zero

A divide or modulo by zero was found. Adjust the expression or test if
the second operand of a divide or modulo is zero.

E 38 +non integral switch expression

A switch condition expression must evaluate to an integral value. So,
char *p = 0; switch (p) is not allowed.

F 39 unknown error number: number

This error may not occur. If it does, contact your local TASKING office
and provide them with the exact error message.

W 40 non−standard escape sequence

Check the spelling of your escape sequence (a backslash, \, followed
by a number or letter), it contains an illegal escape character. For
example, \c causes this warning.

Compiler Diagnostics 5−11

• • • • • • • •

E 41 ’#elif’ without ’#if’

The ’#elif’ directive did not appear within an ’#if’, ’#ifdef or ’#ifndef’
construct. Make sure that there is a corresponding ’#if’, ’#ifdef’ or
’#ifndef’ statement in effect before this statement.

E 42 syntax error, expecting parameter type/declaration/statement

A syntax error occurred in a parameter list a declaration or a statement.
This can have many causes, such as, errors in syntax of numbers, usage
of reserved words, operator errors, missing parameter types, missing
tokens.

E 43 unrecoverable syntax error, skipping to end of file

The compiler found an error from which it could not recover. This
error is in most cases preceded by another error. Usually, error E 42.

I 44 in initializer "name"

Informational message when checking for a proper constant initializer.

E 46 cannot hold that many operands

The value stack may not exceed 20 operands.

E 47 missing operator

An operator was expected in the expression.

E 48 missing right parenthesis

’)’ was expected.

W 49 attempt to divide by zero − potential run−time error

An expression with a divide or modulo by zero was found. Adjust the
expression or test if the second operand of a divide or modulo is zero.

E 50 missing left parenthesis

’(’ was expected.

E 51 cannot hold that many operators

The state stack may not exceed 20 operators.

E 52 missing operand

An operand was expected.

E 53 missing identifier after ’defined’ operator

An identifier is required in a #if defined(identifier).

Chapter 55−12
DI
AG

NO
ST

IC
S

E 54 +non scalar controlling expression

Iteration conditions and ’if’ conditions must have a scalar type (not a
struct, union or a pointer). For example, after static struct {int
i;} si = {0}; it is not allowed to specify while (si) ++si.i;.

E 55 operand has not integer type

The operand of a ’#if’ directive must evaluate to an integral constant.
So, #if 1. is not allowed.

W 56 ’<debugoption><level>’ no associated action

This warning can only appear in the debug version of the compiler.
There is no associated debug action with the specified debug option
and level.

W 58 invalid warning number: number

The warning number you supplied to the −w option does not exist.
Replace it with the correct number.

F 59 sorry, more than number errors

Compilation stops if there are more than 40 errors.

E 60 label "label" multiple defined

A label can be defined only once in the same function. The following
is an example of this error:

f()
{
lab1:
lab1: /* error */
}

E 61 type clash

The compiler found conflicting types. For example, a long is only
allowed on int or double, no specifiers are allowed with struct,
union or enum. The following is an example of this error:

unsigned signed int i; /* error */

E 62 bad storage class for "name"

The storage class specifiers auto and register may not appear in
declaration specifiers of external definitions. Also, the only storage class
specifier allowed in a parameter declaration is register.

Compiler Diagnostics 5−13

• • • • • • • •

E 63 "name" redeclared

The specified identifier was already declared. The compiler uses the
second declaration. The following is an example of this error:

struct T { int i; };
struct T { long j; }; /* error */

E 64 incompatible redeclaration of "name"

The specified identifier was already declared. All declarations in the
same function or module that refer to the same object or function must
specify compatible types. The following is an example of this error:

f()
{
 int i;
 char i; /* error */
}

W 66 function "name": variable "name" not used

A variable is declared which is never used. You can remove this
unused variable or you can use the −w66 option to suppress this
warning.

W 67 illegal suboption: option

The suboption is not valid for this option. Check the invocation syntax
for a list of all available suboptions.

W 68 function "name": parameter "name" not used

A function parameter is declared which is never used. You can remove
this unused parameter or you can use the −w68 option to suppress this
warning.

E 69 declaration contains more than one basic type specifier

Type specifiers may not be repeated. The following is an example of
this error:

int char i; /* error */

E 70 +’break’ outside loop or switch

A break statement may only appear in a switch or a loop (do, for
or while). So, if (0) break; is not allowed.

Chapter 55−14
DI
AG

NO
ST

IC
S

E 71 illegal type specified

The type you specified is not allowed in this context. For example, you
cannot use the type void to declare a variable. The following is an
example of this error:

void i; /* error */

W 72 duplicate type modifier

Type qualifiers may not be repeated in a specifier list or qualifier list.
The following is an example of this warning:

{ long long i; } /* error */

E 73 object cannot be bound to multiple memories

Use only one memory attribute per object. For example, specifying
both rom and ram to the same object is not allowed.

E 74 declaration contains more than one class specifier

A declaration may contain at most one storage class specifier. So,
register auto i; is not allowed.

E 75 +’continue’ outside a loop

continue may only appear in a loop body (do, for or while). So,
switch (i) {default: continue;} is not allowed.

E 76 duplicate macro parameter "name"

The given identifier was used more than one in the formatl parameter
list of a macro definition. Each macro parameter must be uniquely
declared.

E 77 parameter list should be empty

An identifier list, not part of a function definition, must be empty. For
example, int f (i, j, k); is not allowed on declaration level.

E 78 ’void’ should be the only parameter

Within a function protoype of a function that does not except any
arguments, void may be the only parameter. So, int f(void,
int); is not allowed.

E 79 +constant expression expected

A constant expression may not contain a comma. Also, the bit field
width, an expression that defines an enum, array−bound constants and
switch case expressions must all be integral contstant expressions.

Compiler Diagnostics 5−15

• • • • • • • •

E 80 ’#’ operator shall be followed by macro parameter

The ’#’ operator must be followed by a macro argument.

E 81 ’##’ operator shall not occur at beginning or end of a macro

The ’##’ (token concatenation) operator is used to paste together
adjacent preprocessor tokens, so it cannot be used at the beginning or
end of a macro body.

W 86 escape character truncated to 8 bit value

The value of a hexadicimal escape sequence (a backslash, \, followed
by a ’x’ and a number) must fit in 8 bits storage. The number of bits
per character may not be greater than 8. The following is an example
of this warning:

char c = ’\xabc’; /* error */

E 87 concatenated string too long

The resulting string was longer than the limit of 1500 characters.

W 88 "name" redeclared with different linkage

The specified identifier was already declared. This warning is issued
when you try to redeclare an object with a different basic storage class,
and both objects are not declared extern or static. The following is an
example of this warning:

int i;
int i(); /* error E 64 and warning */

E 89 illegal bitfield declarator

A bit field may only be declared as an integer, not as a pointer or a
function for example. So, struct {int *a:1;} s; is not allowed.

E 90 #error message

The message is the descriptive text supplied in a ’#error’ preprocessor
directive.

W 91 no prototype for function "name"

Each function should have a valid function prototype.

W 92 no prototype for indirect function call

Each function should have a valid function prototype.

Chapter 55−16
DI
AG

NO
ST

IC
S

I 94 hiding earlier one

Additional message which is preceded by error E 63. The second
declaration will be used.

F 95 protection error: message

Something went wrong with the protection key initialization. The
message could be: "Key is not present or printer is not correct.", "Can’t
read key.", "Can’t initialize key.", or "Can’t set key−model".

E 96 syntax error in #define

#define id(requires a right−parenthesis ’)’.

E 97 "..." incompatible with old−style prototype

If one function has a parameter type list and another function, with the
same name, is an old−style declaration, the parameter list may not have
ellipsis. The following is an example of this error:

int f(int, ...);
int f(); /* error, old−style */

E 98 function type cannot be inherited from a typedef

A typedef cannot be used for a function definition. The following is
an example of this error:

typedef int INTFN();
INTFN f {return (0);} /* error */

F 99 conditional directives nested too deep

’#if’, ’#ifdef’ or ’#ifndef’ directives may not be nested deeper than 50
levels.

E 100 +case or default label not inside switch

The case: or default: label may only appear inside a switch.

E 101 vacuous declaration

Something is missing in the declaration. The declaration could be
empty or an incomplete statement was found. You must declare array
declarators and struct, union, or enum members. The following are
examples of this error:

int ; /* error */

static int a[2] = { }; /* error */

Compiler Diagnostics 5−17

• • • • • • • •

E 102 +duplicate case or default label

Switch case values must be distinct after evaluation and there may be
at most one default: label inside a switch.

E 103 may not subtract pointer from scalar

The only operands allowed on subtraction of pointers is pointer −
pointer, or pointer − scalar. So, scalar − pointer is not allowed. The
following is an example of this error:

int i;
int *pi = &i;
ff(1 − pi); /* error */

E 104 left operand of operator has not struct/union type

The first operand of a ’.’ or ’−>’ must have a struct or union type.

E 105 zero or negative array size − ignored

Array bound constants must be greater than zero. So, char a[0]; is
not allowed.

E 106 different constructors

Compatible function types with parameter type lists must agree in
number of parameters and in use of ellipsis. Also, the corresponding
parameters must have compatible types. This error is usually followed
by informational message I 111. The following is an example of this
error:

int f(int);
int f(int, int); /* error different
 parameter list */

E 107 different array sizes

Corresponding array parameters of compatible function types must
have the same size.This error is usually followed by informational
message I 111. The following is an example of this error:

int f(int [][2]);
int f(int [][3]); /* error */

Chapter 55−18
DI
AG

NO
ST

IC
S

E 108 different types

Corresponding parameters must have compatible types and the type of
each prototype parameter must be compatible with the widened
definition parameter. This error is usually followed by informational
message I 111. The following is an example of this error:

int f(int);
int f(long); /* error different type
 in parameter list */

E 109 floating point constant out of valid range

A floating point constant must have a value that fits in the type to
which it was assigned. See section Data Types for the valid range of a
floating point constant. The following is an example of this error:

float d = 10E9999; /* error, too big */

E 110 function cannot return arrays or functions

A function may not have a return type that is of type array or function.
A pointer to a function is allowed. The following are examples of this
error:

typedef int F(); F f(); /* error */

typedef int A[2]; A g(); /* error */

I 111 parameter list does not match earlier prototype

Check the parameter list or adjust the prototype. The number and type
of parameters must match. This message is preceded by error E 106, E
107 or E 108.

E 112 parameter declaration must include identifier

If the declarator is a prototype, the declaration of each parameter must
include an identifier. Also, an identifier declared as a typedef name
cannot be a parameter name. The following are examples of this error:

int f(int g, int) {return (g);} /* error */

typedef int int_type;
int h(int_type) {return (0);} /* error */

E 114 incomplete struct/union type

The struct or union type must be known before you can use it. The
following is an example of this error:

Compiler Diagnostics 5−19

• • • • • • • •

extern struct unknown sa, sb;
sa = sb; /* ’unknown’ does not have a
 defined type */

The left side of an assignment (the lvalue) must be modifiable.

E 115 label "name" undefined

A goto statement was found, but the specified label did not exist in
the same function or module. The following is an example of this error:

f1() { a: ; } /* W 116 */
f2() { goto a; } /* error, label ’a:’ is
 not defined in f2() */

W 116 label "name" not referenced

The given label was defined but never referenced. The reference of the
label must be within the same function or module. The following is an
example of this warning:

f() { a: ; } /* ’a’ is not referenced */

E 117 "name" undefined

The specified identifier was not defined. A variable’s type must be
specified in a declaration before it can be used. This error can also be
the result of a previous error. The following is an example of this
error:

unknown i; /* error, ’unknown’ undefined */
i = 1; /* as a result, ’i’ is also
 undefined */

W 118 constant expression out of valid range

A constant expression used in a case label may not be too large. Also
when converting a floating point value to an integer, the floating point
constant may not be too large. This warning is usually preceded by
error E 16 or E 109. The following is an example of this warning:

int i = 10E88; /* error and warning */

E 119 cannot take ’sizeof’ bitfield or void type

The size of a bit field or void type is not known. So, the size of it
cannot be taken.

Chapter 55−20
DI
AG

NO
ST

IC
S

E 120 cannot take ’sizeof’ function

The size of a function is not known. So, the size of it cannot be taken.

E 121 not a function declarator

This is not a valid function. This may be due to a previous error. The
following is an example of this error:

int f() return 0; /* missing ’{ }’ */
int g() { } /* error, ’g’ is not a
 formal parameter and
 therefore, this is not a
 valid function declaration */

E 122 unnamed formal parameter

The parameter must have a valid name.

W 123 function should return something

A return in a non−void function must have an expression.

E 124 array cannot hold functions

An array of functions is not allowed.

E 125 +function cannot return anything

A return with an expression may not appear in a void function.

W 126 missing return (function "name")

A non−void function with a non−empty function body must have a
return statement.

E 129 cannot initialize "name"

Declarators in the declarator list may not contain initializations. Also, an
extern declaration may have no initializer. The following are
examples of this error:

{ extern int i = 0; } /* error */
int f(i) int i=0; /* error */

W 130 operands of operator are pointers to different types

Pointer operands of an operator or assignment (’=’), must have the
same type. For example, the following code generates this warning:

Compiler Diagnostics 5−21

• • • • • • • •

long *pl;
int *pi = 0;
pl = pi; /* warning */

E 131 bad operand type(s) of operator

The operator needs an operand of another type. The following is an
example of this error:

int *pi;
pi += 1.; /* error, pointer on left; needs
 integral value on right */

W 132 value of variable "name" is undefined

This warning occurs if a variable is used before it is defined. For
example, the following code generates this warning:

int a,b;
a = b; /* warning, value of b unknown */

E 133 illegal struct/union member type

A function cannot be a member of a struct or union. Also, bit fields
may only have type int or unsigned.

E 134 bitfield size out of range − set to 1

The bit field width may not be greater than the number of bits in the
type and may not be negative. The following example generates this
error:

struct i { unsigned i : 999; }; /* error */

W 135 statement not reached

The specified statement will never be executed. This is for example the
case when statements are present after a return.

E 138 illegal function call

You cannot perform a function call on an object that is not a function.
The following example generates this error:

int i, j;
j = i(); /* error, i is not a function */

Chapter 55−22
DI
AG

NO
ST

IC
S

E 139 operator cannot have aggregate type

The type name in a (cast) must be a scalar (not a struct, union or a
pointer) and also the operand of a (cast) must be a scalar. The
following are examples of this error:

static union ui {int a;} ui ;
ui = (union ui)9; /* cannot cast to union */
ff((int)ui); /* cannot cast a union
 to something else */

E 140 type cannot be applied to a register/bit/bitfield object or
builtin/inline function

For example, the ’&’ operator (address) cannot be used on registers
and bit fields. So, func(&r6); and func(&bitf.a); are invalid.

E 141 operator requires modifiable lvalue

The operand of the ’++’, or ’−−’ operator and the left operand of an
assignment or compound assignment (lvalue) must be modifiable. The
following is an example of this error:

const int i = 1;
i = 3; /* error, const cannot be
 modified */

E 143 too many initializers

There may be no more initializers than there are objects. The
following is an example of this error:

static int a[1] = {1, 2}; /* error,
 only one object can be initialized */

W 144 enumerator "name" value out of range

An enum constant exceeded the limit for an int. The following is an
example of this warning:

enum { A = INT_MAX, B }; /* warning,
 B does not fit in an int anymore */

E 145 requires enclosing curly braces

A complex initializer needs enclosing curly braces. For example, int
a[] = 2; is not valid, but int a[] = {2}; is.

E 146 argument #number: memory spaces do not match

With prototypes, the memory spaces of arguments must match.

Compiler Diagnostics 5−23

• • • • • • • •

W 147 argument #number: different levels of indirection

With prototypes, the types of arguments must be assignment
compatible. The following code generates this warning:

int i; void func(int,int);
func(1, &i); /* warning, argument 2 */

W 148 argument #number: struct/union type does not match

With prototypes, both the prototyped function argument and the actual
argument was a struct or union., but they have different tags. The
tag types should match. The following is an example of this warning:

f(struct s); /* prototype */
main()
{
 struct { int i; } t;
 f(t); /* t has other type than s */
}

E 149 object "name" has zero size

A struct or union may not have a member with an incomplete type.
The following is an example of this error:

struct { struct unknown m; } s; /* error */

W 150 argument #number: pointers to different types

With prototypes, the pointer types of arguments must be compatible.
The following example generates this warning:

int f(int*);
long *l;
f(l); /* warning */

W 151 ignoring memory specifier

Memory specifiers for a struct, union or enum are ignored.

E 152 operands of operator are not pointing to the same memory
space

Be sure the operands point to the same memory space. This error
occurs, for example, when you try to assign a pointer to a pointer from
a different memory space.

Chapter 55−24
DI
AG

NO
ST

IC
S

E 153 ’sizeof’ zero sized object

An implicit or explicit sizeof operation references an object with an
unkown size. This error is usually preceded by error E 119 or E 120,
cannot take ’sizeof’.

E 154 argument #number: struct/union mismatch

With prototypes, only one of the prototyped function argument or the
actual argument was a struct or union. The types should match. The
following is an example of this error:

f(struct s); /* prototype */

main()
{
 int i;
 f(i); /* i is not a struct */
}

E 155 casting lvalue ’type’ to ’type’ is not allowed

The operand of the ’++’, or ’−−’ operator or the left operand of an
assignment or compound assignment (lvalue) may not be cast to
another type. The following is an example of this error:

int i = 3;
++(unsigned)i; /* error, cast expression
 is not an lvalue */

E 157 "name" is not a formal parameter

If a declarator has an identifier list, only its identifiers may appear in
the declarator list. The following is an example of this error:

int f(i) int a; /* error */

E 158 right side of operator is not a member of the designated
struct/union

The second operand of ’.’ or ’−>’ must be a member of the designated
struct or union.

E 160 pointer mismatch at operator

Both operands of operator must be a valid pointer. The following
example generates this error:

int *pi = 44; /* right side not a pointer */

Compiler Diagnostics 5−25

• • • • • • • •

E 161 aggregates around operator do not match

The contents of the structs, unions or arrays on both sides of the
operator must be the same. The following example causes this error:

struct {int a; int b;} s;
struct {int c; int d; int e;} t;
s = t; /* error */

E 162 operator requires an lvalue or function designator

The ’&’ (address) operator requires an lvalue or function designator.
The following is an example of this error:

int i;
i = &(i = 0);

W 163 operands of operator have different level of indirection

The types of pointers or addresses of the operator must be assignment
compatible. The following is an example of this warning:

char **a;
char *b;
a = b; /* warning */

E 164 operands of operator may not have type ’pointer to void’

The operands of operator may not have operand (void *).

W 165 operands of operator are incompatible: pointer vs. pointer to
array

The types of pointers or addresses of the operator must be assignment
compatible. A pointer cannot be assigned to a pointer to array. The
following is an example of this warning:

main()
{
 typedef int array[10];
 array a;
 array *ap = a; /* warning */
}

E 166 operator cannot make something out of nothing

Casting type void to something else is not allowed. The following
example generates this error:

Chapter 55−26
DI
AG

NO
ST

IC
S

void f(void);
main()
{
 int i;

 i = (int)f(); /* error */
}

E 170 recursive expansion of inline function "name"

An _inline function may not be recursive. The following example
generates this error:

_inline int a (int i)
{
 a(i); /* recursive call */
 return i;
}
main()
{
 a(1); /* error */
}

E 171 +too much tail−recursion in inline function "name"

If the function level is greater than or equal to 40 this error is given.
The following example generates this error:

_inline void a ()
{
 a();
}
main()
{
 a();
}

W 172 adjacent strings have different types

When concatenating two strings, they must have the same type. The
following example generates this warning:

char b[] = L"abc""def"; /* strings have
 different types */

E 173 ’void’ function argument

A function may not have an argument with type void.

Compiler Diagnostics 5−27

• • • • • • • •

E 174 not an address constant

A constant address was expected. Unlike a static variable, an automatic
variable does not have a fixed memory location and therefore, the
address of an automatic is not a constant. The following is an example
of this error:

int *a;
static int *b = a; /* error */

E 175 not an arithmetic constant

In a constant expression no assignment operators, no ’++’ operator, no
’−−’ operator and no functions are allowed. The following is an
example of this error:

int a;
static int b = a++; /* error */

E 176 address of automatic is not a constant

Unlike a static variable, an automatic variable does not have a fixed
memory location and therefore, the address of an automatic is not a
constant. The following is an example of this error:

int a; /* automatic */
static int *b = &a; /* error */

W 177 static variable "name" not used

A static variable is declared which is never used. To eliminate this
warning remove the unused variable.

W 178 static function "name" not used

A static function is declared which is never called. To eliminate this
warning remove the unused function.

E 179 +inline function "name" is not defined

Possibly only the prototype of the inline function was present, but the
actual inline function was not. The following is an example of this
error:

Chapter 55−28
DI
AG

NO
ST

IC
S

_inline int a(void); /* prototype */

main()
{
 int b;
 b = a(); /* error */
};

E 180 illegal target memory (memory) for pointer

The pointer may not point to memory. For example, a pointer to
bitaddressable memory is not allowed.

E 181 invalid cast to function

A cast to type function is not allowed. A cast to a function pointer type
is allowed.

W 182 argument #number: different types

With prototypes, the types of arguments must be compatible.

W 183 variable ’name’ possibly uninitialized

Possibly an initialization statement is not reached, while a function
should return something. The following is an example of this warning:

int a;

int f(void)
{
 int i;

 if (a)
 {
 i = 0; /* statement not reached */
 }
 return i; /* warning */
}

W 184 empty pragma name in −z option − ignored

The −z option requires a pragma name.

I 185 (prototype synthesized at line number in "name")

This is an informational message containing the source file position
where an old−style prototype was synthesized. This message is
preceded by error E 146, W 147, W 148, W 150, E 154, W 182 or E 203.

Compiler Diagnostics 5−29

• • • • • • • •

E 186 array of type bit is not allowed

An array cannot contain bit type variables.

E 187 illegal structure definition

A structure can only be defined (initialized) if its members are known.
So, struct unknown s = { 0 }; is not allowed.

E 188 structure containing bit−type fields is forced into bitaddressable
area

This error occurs when you use a bitaddressable storage type for a
structure containing bit−type members.

E 189 pointer is forced to bitaddressable, pointer to bitaddressable is
illegal

A pointer to bitaddressable memory is not allowed.

W 190 "long float" changed to "float"

In ANSI C floating point constants are treated having type double,
unless the constant has the suffix ’f’. If you have specified an option to
use float constants, a long floating point constant such as 123.12fl is
changed to a float.

E 191 recursive struct/union definition

A struct or union cannot contain itself. The following example
generates this error:

struct s { struct s a; } b; /* error */

E 192 missing filename after −f option

The −f option requires a filename argument.

E 194 cannot initialize typedef

You cannot assign a value to a typedef variable. So, typedef i=2; is
not allowed.

W 195 constant expression out of range −− truncated

The resulting constant expression is too large to fit in the specified data
type. The value is truncated. The following example generates this
warning:

int i = 140000L; /* warning, value is too large
 to fit in an int */

Chapter 55−30
DI
AG

NO
ST

IC
S

W 196 constant expression out of range due to signed/unsigned type
mismatch

The resulting constant expression is too large to fit in the specified data
type. The following example generates this warning:

int i = 40000U; /* the unsigned value is too large
 to fit in a signed int */
 /* unsigned int i = 40000U; is OK */

W 197 unrecognized −w argument: argument

The −w option only accepts a warning number or the text ’strict’ as an
argument. See the description of the −w option for details.

W 198 trigraph sequence replaced

Trigraphs are used in the C language to create special characters on
obsolete terminals with a limited character set. When they are replaced
in your source, e.g. in a string, they may give rise to very obscure
errors.

F 199 demonstration package limits exceeded

The demonstration package has certain limits which are not present in
the full version. Contact TASKING for a full version.

W 200 unknown pragma − ignored

The compiler ignores pragmas that are not known. For example,
#pragma unknown.

W 201 name cannot have storage type − ignored

A register variable or an automatic/parameter cannot have a storage
type. To eliminate this warning, remove the storage type or place the
variable outside a function�.

E 202 ’name’ is declared with ’void’ parameter list

You cannot call a function with an argument when the function does
not accept any (void parameter list). The following is an example of
this error:

Compiler Diagnostics 5−31

• • • • • • • •

int f(void); /* void parameter list */

main()
{
 int i;
 i = f(i); /* error */
 i = f(); /* OK */
}

E 203 too many/few actual parameters

With prototyping, the number of arguments of a function must agree
with the protoype of the function. The following is an example of this
error:

int f(int); /* one parameter */

main()
{
 int i;
 i = f(i,i); /* error, one too many */
 i = f(i); /* OK */
}

W 204 U suffix not allowed on floating constant − ignored

A floating point constant cannot have a ’U’ or ’u’ suffix.

W 205 F suffix not allowed on integer constant − ignored

An integer constant cannot have a ’F’ or ’f’ suffix.

E 206 ’name’ named bit−field cannot have 0 width

A bit field must be an integral contstant expression with a value greater
than zero.

E 207 list of rule numbers expected after "−misrac" option

Add the numbers of the MISRA C rules to the −misrac option to specifiy
the rules that must be checked. See Appendix B MISRA C

W 208 unsupported MISRA C rule number number.

Specified MISRA C rule number is not supported.

E 209 +MISRA C rule number violation: rule_description

A specified MISRA C rule is violated.

Chapter 55−32
DI
AG

NO
ST

IC
S

E 212 "name": missing static function definition

A function with a static prototype misses its definition.

W 213 invalid string/character constant in non−active part of source

This part of the source is skipped.

E 214 second occurrence of #pragma asm or asm_noflush

#pragma asm/#pragma endasm blocks cannot be nested. Use
#pragma endasm before starting a new #pragma asm/#pragma
endasm block.

E 215 "#pragma endasm" without a "#pragma asm"

A #pragma endasm must always have a corresponding #pragma asm
or #pragma asm_noflush.

W 216 suggest parentheses around assignment used as truth value

Generated when the argument of an if statement is actually an
assignment (might indicate a typing error).

In the example below W 216 will be generated because of a suspicious
assignment within an if condition.

int func(int a, int b, int c)
{
 if (a = b)
 {
 return c;
 }
 return a;
}

W 225 dereferencing void pointer

A void pointer cannot be dereferenced. The following is an example of
this warning:

volatile void * p;

void f(void)
{
 *p;
 return;
}

Compiler Diagnostics 5−33

• • • • • • • •

W 227 MISRA C rule number violation: rule

F 228 MISRA C rule number violation: rule

A specified MISRA C rule is violated.

W 303 variable ’name’ uninitialized

Possibly an initialization statement is not reached, while a function
should return something. The following is an example of this warning:

int a;

int f(void)
{
 int i;

 if (a)
 {
 i = 0; /* statement not reached */
 }
 return i; /* warning */
}

E 327 too many arguments to pass in registers for _asmfunc ’name’

An _asmfunc function uses a fixed register−based interface between C
and assembly, but the number of arguments that can be passed is
limited by the number of available registers. With function name this
limit was reached.

Chapter 55−34
DI
AG

NO
ST

IC
S

Backend

W 501 initializer was truncated

When a value does not fit in a character, structure or integer, the value
is truncated.

E 502 fail to generate code for type

The compiler could not generate code for this type.

F 504 object doesn’t fit in memory: memory

The object is too large for the specified memory type.

E 519 no indirection allowed on bit type

Bitaddressable memory is only direct addressable. Pointer to _bit and
array of _bit are not allowed.

E 521 out of temporary bit storage, simplify expression

The expression used too many static bit temporaries.

E 527 move to read−only field

Of course you can only read from a read−only field.

E 531 restriction: impossible to convert to ’type’

A structure or union cannot be converted to type bit, char, float,
int or long.

E 539 operator not allowed on type type

Some operators are not allowed on type _bit.

E 540 "function" is not a ’plmprocedure’

You cannot write plmprocedures within ’C’, only a call is possible.

E 541 not allowed to switch on pointer type

A pointer type is not allowed as switch expression.

E 542 switch only possible on char/int/long type

A _bit typed expression is not allowed as switch expression.

E 543 static model: non−register parameters not allowed with function
pointer

Static passing does not allow parameters with function pointers.

Compiler Diagnostics 5−35

• • • • • • • •

E 544 illegal testclear argument

See the description of the intrinsic function testclear for the correct
syntax.

W 545 no address available for variable argument list

There is no address reference available for va_start.

E 547 calling an interrupt routine is not allowed

It is never allowed to call an interrupt function.

E 550 assignment/parameter/return not allowed with bit−structure

A _bit structure can only contain members of type _bit.

F 551 illegal bank number

The register bank number must be a number in the range 0 to 3.

F 552 illegal rom model

Only the rom models ’s’, ’m’ and ’l’ are allowed.

F 553 illegal memory model

Only the memory models ’s’, ’a’, ’l’ and ’r’ are allowed.

F 554 illegal memory type specified

See the description of the −R option or the −m option for the correct
syntax.

F 555 illegal memory size given

The argument of the −m option can only contain numerical values

W 556 _plmprocedure is in conflict with _regparm

_regparm and _plmprocedure cannot be used together.

W 558 static model (overlaying) disables −rm (rom medium) −ignored

The −rm option is useless in the static model because each function
has its own code segment.

E 559 impossible to save structure result, simplify expression

The structure or union could not be saved on stack.

W 560 reentrant interrupt function ("name") with local variables: adjust
library

Use the protected version of the library.

Chapter 55−36
DI
AG

NO
ST

IC
S

W 561 interrupt function calling a reentrant function: adjust library

A reentrant function cannot be called from an interrupt function.

E 562 bit−type parameter/automatic only allowed in static models

_bit parameters/automatics are not allowed in _reentrant functions.

W 563 automatic cannot have storage type rom − ignored

It is not possible to store automatic variables in rom. The rom type is
removed.

E 564 ’name’ is illegal memory for function

A function can have return type _bit or program code. A function
cannot have return type _bitbyte.

W 565 conversion of long address to short address

The conversion of xdat to pdat pointer is allowed: same physical space.

F 566 illegal number in option option

The argument of the −a, −b, −c and −x option can only contain
numerical values.

E 570 Cannot take address of bit−variable or bit−structure

You cannot take the address of a bit−variable or bit−structure.

W 575 ’reg’−field (CSE−administration : number) not empty

The CSE administation is cleaned up and compilation continues.

E 576 _at() expects a constant address

You can only use an expression that evaluates to a numerical address.

E 577 _at() address out of range for this type of object

The absolute address is not present in the specified memory space.

E 578 _at() only valid for global variables

Only global variables can be placed on absolute addresses.

E 579 ’bitoffset’ for ’name’ must be a constant value between 0 and
number

The bitoffset wihin a bitbyte must be a constant value between 0 and
(size_of_bitbyte * 8) − 1.

Compiler Diagnostics 5−37

• • • • • • • •

E 580 specified object not bitaddressable

_bitbyte can only be used on bitaddressable memory. Also, the SFR
must be bitaddressable.

E 581 different register bank (’using’)

The register bank numbers of the calling and called function must be
the same.

E 583 _at() only allowed on non initialized variables

Absolute variables cannot be initialized.

W 585 duplicate function qualifier − ’interrupt(number)/
using(number)/ plmprocedure()’ ignored

Only one function qualifier is allowed.

W 586 R2/R3 contained a CSE, which could have been used once more

The CSE in the R2 or R3 register can be used once more.

W 587 ’number’ illegal name number (0 to max) − ignored

An _interrupt number must be a number between 0 and 16. An
_using number must be a number between 0 and 3.

E 589 interrupt function must have void result and void parameter list

A function declared with _interrupt(n) is not allowed to have any
arguments and must not return anything.

E 591 conflict in ’interrupt’ attribute

The attributes of the current function qualifier declaration and the
previous function qualifier declaration are not the same.

E 592 different ’interrupt/using/plmprocedure’ number

The interrupt/using/plmprocedure number of the current function
qualifier declaration and the previous function qualifier declaration are
not the same.

W 593 function qualifier used with non−function

A function qualifier can only be used on functions.

W 594 duplicate or conflicting function qualifier − ’name’ ignored

Only one function qualifier is allowed.

Chapter 55−38
DI
AG

NO
ST

IC
S

W 595 _at() has no effect on external declaration

When declared extern the variable is not allocated by the compiler.

E 596 function models (_small/_aux/_large/_reentrant) do not match

The function and the prototype of the function must have the same
model qualifier.

E 597 parameter passing attributes (_regparm/_cdecl) do not match

The function and the prototype of the function must have the same
parameter passing attributes.

E 598 _atbit() only possible on objects, not on constant addresses

_atbit() is not possible on constant addresses, they are only possible
on _bitbyte or _sfrbyte objects.

E 599 _atbit() only possible on _bitbyte/_sfrbyte objects

_atbit() only accepts _bitbyte or _sfrbyte objects as an
argument.

E 600 _atbit() only possible for _bit/_sfrbit objects

Only _bit and _sfrbit objects can be declared with _atbit().

E 601 _atbit() object must have same storage as target object

The storage class of both _atbit() objects must be the same.

E 602 _sfrbit object can only have _atbit() on an _sfrbyte object
_bit object can only have _atbit() on a _bitbyte object

You cannot specify a _sfrbit object with _atbit() on a _bitbyte
object, and you cannot specify a _bit object with _atbit() on a
_sfrbyte object.

E 603 in space _bdat only integral objects are allowed

Space _bdat is bitaddressable ram. In this space you can only use
integral objects.

E 604 illegal interrupt option, specify −ivo=<value>

Only the −ivo option is allowed. Check the syntax of your −ivo option.

E 605 illegal interrupt vector option, specify −v or −vf

Only the −v or −vf option are allowed. Check the syntax of your −v
option.

Compiler Diagnostics 5−39

• • • • • • • •

E 606 unknown register name: "name"

You specified a non−existing register name to pragma intsave.
Correct the name.

E 607 register name expected

Pragma intsave requires a register name.

E 608 ’_frame()’ without ’_interrupt()’

The _frame function qualifier can only be used on _interrupt
functions.

E 609 different _frame() lists

The list of registers/SFRs of the current _frame function qualifier
declaration and the previous _frame function qualifier declaration are
not the same.

E 611 code generation attribute _noregaddr does not match

The attribute _noregaddr does not match with the prototype of the
function.

E 612 _inline useless on interrupt function

Interrupt functions cannot be defined as _inline functions.

E 613 _sfrbit/byte only allowed for global variables

Only global variables can be placed on absolute addresses.

F 614 code generation stopped

The compiler found an unresolvable error and cannot continue.

E 617 _atbit() not possible on type: "name"

You cannot use: struct / union members, tags, labels, parameters or
inline function locals as a base symbol to define bits in.

W 619 interrupt uses default register bank

The interrupt function was specified to use the default register bank
(usually register bank 0). For example the following may result in a
run−time error if 0 is the default register bank:

 void _interrupt(1) _using(0) ISR(void);

Choose another register bank for the interrupt function.

Chapter 55−40
DI
AG

NO
ST

IC
S

E 622 interrupt address hexvalue already used for function name

Each interrupt function must use a unique interrupt address.

E 627 _push()/_pop(): expecting SFR or constant parameter

The _push() and _pop() intrinsic functions require an SFR or a
constant address parameter, e.g. _push(ACC) or _pop(0x80).

E 628 _jmp(): expecting function identifier

The _jmp() intrinsic function requires a function identifier argument.

F 629 option has been deprecated

The specified option is no longer supported.

W 630 probable endianness mismatch in _sfrword sfr definition

There is a possible endianness mismatch in the _sfrword definition
for sfr and the corresponding low and hight byte _sfrbyte
definitions. Probably you should use the _little specifier on the
_sfrword declaration.

W 632 inconsistent _sfrbyte definitions for _sfrword sfr

There is a possible inconsistency in the naming of the low and/or high
byte _sfrbyte corresponding to _sfrword sfr.

6

LIBRARIES
C
H
A
P
T
E
R

Chapter 66−2
LI
BR

AR
IE
S

6

C
H
A
P
T
E
R

Libraries 6−3

• • • • • • • •

6.1 INTRODUCTION

This chapter describes the library functions delivered with the compiler.
Some functions (e.g. printf(), scanf()) can be edited to match your
needs. cc51 comes with libraries in object format per memory model and
with header files containing the appropriate prototype of the library
functions. The library functions are also shipped in source code (C or
assembly).

A number of standard operations within C are too complex to generate
inline code for (e.g. 16 bit signed divide). These operations are
implemented as run−time library functions. The run−time library routines
are added to the C library.

6.2 HEADER FILES

The following header files are delivered with the C compiler:

<assert.h> assert

<cc51.h> Special file with cc51 definitions. No C functions.

<ctype.h> isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower,
isprint, ispunct, isspace, isupper, isxdigit, toascii, _tolower,
tolower, _toupper, toupper

<errno.h> Error numbers. No C functions.

<float.h> Constants related to floating point arithmetic.

<keil.h> Support for migration from Keil C−51 to TASKING C−51.

<limits.h> Limits and sizes of integral types. No C functions.

<math.h> acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh

<setjmp.h> longjmp, setjmp

<simio.h> _simi, _simo

<stdarg.h> va_arg, va_end, va_start

<stddef.h> offsetof, definition of special types.

Chapter 66−4
LI
BR

AR
IE
S

<stdio.h> fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, fwrite, getc,
getchar, gets, _ioread, _iowrite, printf, putc, putchar, puts,
scanf, sprintf, sscanf, ungetc, vfprintf, vprintf, vsprintf

<stdlib.h> abs, atof, atoi, atol, bsearch, calloc, div, exit, free, labs, ldiv,
malloc, qsort, rand, realloc, strtod, strtol, strtoul, srand

<string.h> memchr, memcmp, memcpy, memmove, memset, strcat,
strchr, strcmp, strcpy, strcspn, strlen, strncat, strncmp,
strncpy, strpbrk, strrchr, strspn, strstr, strtok, ididcpy,
ididmove, idxdcpy, idxdmove, romidcpy, romidmove,
romxdcpy, romxdmove, xdidcpy, xdidmove, xdxdcpy,
xdxdmove

<time.h> clock, time. All functions are delivered as skeletons.

6.3 C LIBRARIES

The C library contains C library functions. All C library functions are
described in this chapter. These functions are only called by explicit
function calls in your application program.

The C library uses the following name syntax:

Compiler Model Library to link

Non−protected Protected

Small (default) (−Ms) c51s.lib c51sp.lib

Small for 751 derivative (−Ms −rs) c751s.lib c751sp.lib

Auxpage (−Ma) c51a.lib c51ap.lib

Large (−Ml) c51l.lib c51lp.lib

Reentrant (−Mr) c51r.lib c51rp.lib

Table 6−1: C library name syntax

The c751s.lib library is made especially for the 80751/80752 derivatives,
(containing a small amount of ROM, no extern RAM is possible). All
routines which use pdat or xdat variables are removed from this library.

Use the protected libraries to prevent the occurrence of interrupts while
updating the virtual stack pointer.

Libraries 6−5

• • • • • • • •

In EDE you can select a protected library by enabling the option Use
protection on virtual stack pointer updates in the Linker |
Stack/Heap entry of the Project | Project Options... dialog.

Description Library to link

For all models:

Floating Point Library (needs external RAM) float.lib

Floating Point Library (basic fp operations,
no external RAM neeeded)

floats.lib

Table 6−2: Floating point library name syntax

See section 6.3.3, Printf and Scanf Formatting Routines, for the name
syntax of the delivered printf and scanf libraries.

See section 7.8, Multiple Data Pointer Support in chapter Run−time
Environment, for the name syntax of the multiple data pointer libraries.

When you use a derivative without external RAM (like the 80751/80752)
you cannot use the default floating point library float.lib, since that
library uses external RAM. In that case use the floating point library
floats.lib instead.

When you use floating point, the library float.lib must always be the
last library linked, it should be placed after the, C library. For further
explanation how to link your application, see section 7.11 Linking an
Application in chapter Run−time Environment.

The floating point library floats.lib does not need any external RAM.
When you use this library you have to change the startup code to place
the floating point stack in internal RAM. Arithmetic routines link sin(),
cos(), etc. are not present in this library, only basic floating point
operations can be done.

Using the reentrant model, you might need to change some routines. See
section 7.10, Reentrant Model / _reentrant Functions in chapter Run−time
Environment.

In order to allow the library functions to use a NULL pointer as an illegal
address, you should avoid memory location xdat:0 to be referred to by
a pointer. You can achieve this by either using the linker RESERVE control
(e.g. reserve 1 byte: RESERVE(xdata(0,0))), or be sure that this
memory location is occupied by a plain (static) variable (which is not
pointed to by a pointer).

Chapter 66−6
LI
BR

AR
IE
S

In EDE you can prevent pointers on address 0 by enabling the option
Reserve first byte of XDATA to prevent pointers on
address0 in the Linker | Reserved Areas entry of the Project |
Project Options... dialog.

6.3.1 C LIBRARY IMPLEMENTATION DETAILS

A detailed description of the delivered C library is shown in the following
list.

Explanation :

Y − Fully implemented
I − Implemented, but need some user written low level routine
L − Delivered as a skeleton

File Imple−
mented

Routine name Description / Reason

assert.h Y ’assert()’ macro Macro definition

ctype.h Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
tolower
toupper
_tolower
_toupper
isascii
toascii

Most of the routines are
delivered as macro AND as
function (as prescribed by
ANSI).

Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI

errno.h Y Only Macros

float.h Y

limits.h Y Only Macros

Libraries 6−7

• • • • • • • •

Description / ReasonRoutine nameImple−
mented

File

math.h Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

acos
asin
atan
atan2
ceil
cos
cosh
exp
fabs
floor
fmod
frexp
ldexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh

setjmp.h Y
Y
Y

longjmp
setjmp

stdarg.h Y
Y
Y
Y

va_arg
va_end
va_start

stddef.h Y Only Macros

stdio.h Y

I
I
I
I
I
I
I
I

fgetc
fgets
fprintf
fputc
fputs
fread
fscanf
fwrite

Due to ’stdarg.h/varargs.h’ conflicts,
the routines ’vprintf()’, ’vfprintf()’,
’vsprintf()’ are not ANSI yet.
Needs _ioread
Needs _ioread
Needs _iowrite
Needs _iowrite
Needs _iowrite
Needs _ioread
Needs _ioread
Needs _iowrite

Chapter 66−8
LI
BR

AR
IE
S

Description / ReasonRoutine nameImple−
mented

File

I
I
I
I
I
I
I
I
Y
Y
Y
I
I
Y
I
I

getc
getchar
gets
printf
putc
putchar
puts
scanf
sprintf
sscanf
ungetc
vfprintf
vprintf
vsprintf
_ioread
_iowrite

Needs _ioread
Needs _ioread
Needs _ioread
Needs _iowrite
Needs _iowrite
Needs _iowrite
Needs _iowrite
Needs _ioread

Needs _iowrite
Needs _iowrite

Low level input routine
Low level output routine

stdlib.h Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

abs
atof
atoi
atol
bsearch
calloc
div
exit
free
labs
ldiv
malloc
qsort
rand
realloc
strtod
strtol
strtoul
srand

Calls __EXIT in cstart

Libraries 6−9

• • • • • • • •

Description / ReasonRoutine nameImple−
mented

File

string.h Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

memchr
memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcpy
strcspn
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtok
ididcpy
ididmove
idxdcpy
idxdmove
romidcpy
romidmove
romxdcpy
romxdmove
xdidcpy
xdidmove
xdxdcpy
xdxdmove

Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI

time.h Y
I
I

clock
time

real time clock not supported
Uses SFRs 0xC1 to 0xC4

Chapter 66−10
LI
BR

AR
IE
S

6.3.2 C LIBRARY INTERFACE DESCRIPTION

_ioread

#include <stdio.h>
_regparm int _ioread(FILE *fp);

Low level input function. The delivered library contains a call to "_simi()".
To perform real I/O, you must customize this function. _ioread is used by
all input functions (scanf, getc, gets, etc.). See the file _ioread.c in the
lib\src directory demonstrating an example implementation of this low
level input function using the CrossView Pro I/O Simulation input feature.

_iowrite

#include <stdio.h>
_regparm int _iowrite(int c, FILE *fp);

Low level output function. The delivered library contains a call to
"_simo()". To perform real I/O, you must customize this function. _iowrite
is used by all output functions (printf, putc, puts, etc.). See the file
_iowrite.c in the lib\src directory demonstrating an example
implementation of this low level output function using the CrossView Pro
I/O Simulation output feature.

_simi

#include <simio.h>
void _regparm
_simi(unsigned char stream, char *port,
 unsigned char len);

CrossView Pro I/O Simulation input interface function.

See also "_ioread()".

Libraries 6−11

• • • • • • • •

_simo

#include <simio.h>
void _regparm
_simo(unsigned char stream, char *port,
 unsigned char len);

CrossView Pro I/O Simulation output interface function.

See also "_iowrite()".

_tolower

#include <ctype.h>
_regparm int _tolower(int c);

Converts c to a lowercase character, does not check if c really is an
uppercase character. This is a non−ANSI function.

Returns the converted character.

_toupper

#include <ctype.h>
_regparm int _toupper(int c);

Converts c to an uppercase character, does not check if c really is a
lowercase character. This is a non−ANSI function.

Returns the converted character.

abs

#include <stdlib.h>
_regparm int abs(int n);

Returns the absolute value of the signed int argument.

Chapter 66−12
LI
BR

AR
IE
S

acos

#include <math.h>
_regparm double acos(double x);

Returns the arccosine cos−1(x) of x in the range [0, π],
x ∈ [−1, 1].

asin

#include <math.h>
_regparm double asin(double x);

Returns the arcsine sin−1(x) of x in the range [−π/2, π/2],
x ∈ [−1, 1].

assert

#include <assert.h>
_regparm void assert(int expr);

When compiled with NDEBUG, this is an empty macro. When compiled
without NDEBUG defined, it checks if expr is true. If it is true, then a line
like:

"Assertion failed: expression, file filename, line num"

is printed.

Returns nothing.

atan

#include <math.h>
_regparm double atan(double x);

Returns the arctangent tan−1(x) of x in the range [−π/2, π/2].
x ∈ [−1, 1].

Libraries 6−13

• • • • • • • •

atan2

#include <math.h>
_regparm double atan2(double y, double x);

Returns the result of: tan−1(y/x) in the range [−π, π].

atof

#include <stdlib.h>
_regparm double atof(const char *s);

Converts the given string to a double value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the double value.

atoi

#include <stdlib.h>
_regparm int atoi(const char *s);

Converts the given string to an integer value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the integer value.

atol

#include <stdlib.h>
_regparm long atol(const char *s);

Converts the given string to a long value. White space is skipped,
conversion is terminated at the first unrecognized character.

Returns the long value.

Chapter 66−14
LI
BR

AR
IE
S

bsearch

#include <stdlib.h>
_regparm _reentrant void *bsearch(
 const void *key, const void *base, size_t n,
 size_t size, _regparm _reentrant int (* cmp)
 (const void *, const void *));

This function searches in an array of n members, for the object pointed to
by ptr. The initial base of the array is given by base. The size of each
member is specified by size. The given array must be sorted in ascending
order, according to the results of the function pointed to by cmp.

Returns a pointer to the matching member in the array, or NULL
when not found.

calloc

#include <stdlib.h>
_regparm void xdat *calloc(size_t nobj,
 size_t size);

The allocated space is filled with zeros. The maximum space that can be
allocated can be changed by customizing the heap size (see section 7.5,
Heap). By default no heap is allocated. When "calloc()" is used while no
heap is defined, the linker gives an error.

Be aware, for ’small’ and ’aux’ model, pointers to the allocated area must
be declared as pointing to xdat.

Returns a pointer to space in external memory for nobj items of
size bytes length.
NULL if there is not enough space left.

ceil

#include <math.h>
_regparm double ceil(double x);

Returns the smallest integer not less than x, as a double.

Libraries 6−15

• • • • • • • •

clock

#include <time.h>
clock_t clock(void);

Determines the processor time used.

Returns number of microseconds since the last reset, assuming a 12
MHz cpu.

cos

#include <math.h>
_regparm double cos(double x);

Returns the cosine of x.

cosh

#include <math.h>
_regparm double cosh(double x);

Returns the hyperbolic cosine of x.

div

#include <stdlib.h>
_regparm div_t div(int num, int denom);

Both arguments are integers. The returned quotient and remainder are also
integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

Chapter 66−16
LI
BR

AR
IE
S

exit

#include <stdlib.h>
_regparm void exit(int status);

Terminates the program normally. Acts as if ’main()’ returns with status
as the return value.

Returns zero, on successful termination.

exp

#include <math.h>
_regparm double exp(double x);

Returns the result of the exponential function ex.

fabs

#include <math.h>
_regparm double fabs(double x);

Returns the absolute double value of x. |x|

fgetc

#include <stdio.h>
_regparm int fgetc(FILE *stream);

Reads one character from the given stream.

Returns the read character, or EOF on error.

Libraries 6−17

• • • • • • • •

fgets

#include <stdio.h>
_regparm char *fgets(char *s, int n,
 FILE *stream);

Reads at most the next n−1 characters from the given stream into the
array s until a newline is found.

Returns s, or NULL on EOF or error.

floor

#include <math.h>
_regparm double floor(double x);

Returns the largest integer not greater than x, as a double.

fmod

#include <math.h>
_regparm double fmod(double x, double y);

Returns the floating−point remainder of x/y, with the same sign as x.
If y is zero, the result is implementation−defined.

fprintf

#include <stdio.h>
_regparm int fprintf(FILE *stream,
 const char *format, ...);

Performs a formatted write to the given stream.

See also "printf()", "_iowrite()" and section 6.3.3, Printf and Scanf
Formatting Routines.

Chapter 66−18
LI
BR

AR
IE
S

fputc

#include <stdio.h>
_regparm int fputc(int c, FILE *stream);

Puts one character onto the given stream.

See also "_iowrite()".

Returns EOF on error.

fputs

#include <stdio.h>
_regparm int fputs(const char *s,
 FILE *stream);

Writes the string to a stream. The terminating NULL character is not
written.

See also "_iowrite()".

Returns NULL if successful, or EOF on error.

fread

#include <stdio.h>
_regparm size_t fread(void *ptr, size_t size,
 size_t nobj, FILE *stream);

Reads nobj members of size bytes from the given steam into the array
pointed to by ptr.

See also "_ioread()".

Returns the number of successfully read objects.

Libraries 6−19

• • • • • • • •

free

#include <stdlib.h>
_regparm void free(void xdat *p);

Deallocates the space pointed to by p. p Must point to space earlier
allocated by a call to "calloc()", "malloc()" or "realloc()". Otherwise the
behavior is undefined.

See also "calloc()", "malloc()" and "realloc()".

Returns nothing

frexp

#include <math.h>
_regparm double frexp(double x, int *exp);

Splits x into a normalized fraction in the interval [1/2, 1>, which is
returned, and a power of 2, which is stored in *exp. If x is zero, both
parts of the result are zero. For example: frexp(4.0, &var) results in
0.5·23. The function returns 0.5, and 3 is stored in var.

Returns the normalized fraction.

fscanf

#include <stdio.h>
_regparm int fscanf(FILE *stream,
 const char *format, ...);

Performs a formatted read from the given stream.

See also "scanf()", "_ioread()" and section 6.3.3, Printf and Scanf
Formatting Routines.

Returns the number of items converted successfully.

Chapter 66−20
LI
BR

AR
IE
S

fwrite

#include <stdio.h>
_regparm size_t fwrite(const void *ptr,
 size_t size, size_t nobj,
 FILE *stream);

Writes nobj members of size bytes to the given stream from the array
pointed to by ptr.

Returns the number of successfully written objects.

getc

#include <stdio.h>
_regparm int getc(FILE *stream);

Reads one character out of the given stream. Currently #defined as
getchar(), because FILE I/O is not supported.

See also "_ioread()".

Returns the character read or EOF on error.

getchar

#include <stdio.h>
_regparm int getchar(void);

Reads one character from standard input.

See also "_ioread()".

Returns the character read or EOF on error.

Libraries 6−21

• • • • • • • •

gets

#include <stdio.h>
_regparm char *gets(char *s);

Reads all characters from standard input until a newline is found. The
newline is replaced by a NULL−character.

See also "_ioread()".

Returns a pointer to the read string or NULL on error.

ididcpy

#include <string.h>
_regparm void idat * ididcpy(idat void *cs,
 idat void *ct,
 size_t n);

Copies n bytes of data from idat memory to idat memory without
worrying if data spaces overlap.

Returns a pointer to ct.

The compiler is able to handle different types of memory, i.e. idat, data,
pdat, xdat, const. Sometimes it is necessary to have the possibility to
copy data from one memory to another. Therefore the next functions have
been created and placed in the C library :

ididcpy() idxdcpy()
xdidcpy() xdxdcpy()
romidcpy() romxdcpy()
ididmove() idxdmove()
xdidmove() xdxdmove()
romidmove() romxdmove()

The functions xxxxcpy() copy data from one memory to another memory
without worrying if data spaces overlap. The functions xxxxmove() first
check if the data spaces overlap and then copy in the correct direction.
When it is desired to copy to/from data, use the functions for idat (use
a cast with the arguments). Moving data to pdat can be done by using the
functions for xdat (use a cast with the arguments).

Chapter 66−22
LI
BR

AR
IE
S

ididmove

#include <string.h>
_regparm void idat *ididmove(idat void *cs,
 idat void *ct,
 size_t n);

Moves n bytes of data from idat memory to idat memory. Overlapping
spaces are handled correctly.

See also "ididcpy()".

idxdcpy

#include <string.h>
_regparm void xdat *idxdcpy(xdat void *cs,
 const idat void *ct,
 size_t n);

Copies n bytes of data from idat memory to xdat memory.

See also "ididcpy()".

idxdmove

#include <string.h>
_regparm void xdat *idxdmove(xdat void *cs,
 const idat void *ct,
 size_t n);

Moves n bytes of data from idat memory to xdat memory.

See also "ididcpy()".

isalnum

#include <ctype.h>
_regparm int isalnum(int c);

Returns a non−zero value when c is an alphabetic character or a
number ([A−Z][a−z][0−9]).

Libraries 6−23

• • • • • • • •

isalpha

#include <ctype.h>
_regparm int isalpha(int c);

Returns a non−zero value when c is an alphabetic character
([A−Z][a−z]).

isascii

#include <ctype.h>
_regparm int isascii(int c);

Returns a non−zero value when c is in the range of 0 and 127. This is
a non−ANSI function.

iscntrl

#include <ctype.h>
_regparm int iscntrl(int c);

Returns a non−zero value when c is a control character.

isdigit

#include <ctype.h>
_regparm int isdigit(int c);

Returns a non−zero value when c is a numeric character ([0−9]).

isgraph

#include <ctype.h>
_regparm int isgraph(int c);

Returns a non−zero value when c is printable, but not a space.

Chapter 66−24
LI
BR

AR
IE
S

islower

#include <ctype.h>
_regparm int islower(int c);

Returns a non−zero value when c is a lowercase character ([a−z]).

isprint

#include <ctype.h>
_regparm int isprint(int c);

Returns a non−zero value when c is printable, including spaces.

ispunct

#include <ctype.h>
_regparm int ispunct(int c);

Returns a non−zero value when c is a punctuation character (such as
’.’, ’,’, ’!’, etc.).

isspace

#include <ctype.h>
_regparm int isspace(int c);

Returns a non−zero value when c is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

isupper

#include <ctype.h>
_regparm int isupper(int c);

Returns a non−zero value when c is an uppercase character ([A−Z]).

Libraries 6−25

• • • • • • • •

isxdigit

#include <ctype.h>
_regparm int isxdigit(int c);

Returns a non−zero value when c is a hexadecimal digit
([0−9][A−F][a−f]).

labs

#include <stdlib.h>
_regparm long labs(long n);

Returns the absolute value of the signed long argument.

ldexp

#include <math.h>
_regparm double ldexp(double x, int n);

Returns the result of: x·2n.

ldiv

#include <stdlib.h>
_regparm ldiv_t ldiv(long num, long denom);

Both arguments are long integers. The returned quotient and remainder
are also long integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

log

#include <math.h>
_regparm double log(double x);

Returns the natural logarithm ln(x), x>0.

Chapter 66−26
LI
BR

AR
IE
S

log10

#include <math.h>
_regparm double log10(double x);

Returns the base 10 logarithm log10(x), x>0.

longjmp

#include <setjmp.h>
_regparm void longjmp(jmp_buf env, int val);

Restores the environment previously saved with a call to setjmp(). The
function calling the corresponding call to setjmp() may not be terminated
yet. The value of val should not be zero.

Returns nothing.

malloc

#include <stdlib.h>
_regparm void xdat *malloc(size_t size);

The allocated space is not initialized. The maximum space that can be
allocated can be changed by customizing the heap size (see section 7.5,
Heap). By default no heap is allocated. When "malloc()" is used while no
heap is defined, the linker gives an error.

Be aware, for ’small’ and ’aux’ model, pointers to the allocated area must
be declared as pointing to xdat.

Returns a pointer to space in external memory of size bytes length.
NULL if there is not enough space left.

Libraries 6−27

• • • • • • • •

memchr

#include <string.h>
_regparm void *memchr(const void *cs, int c,
 size_t n);

Checks the first n bytes of cs on the occurrence of character c.

Returns NULL when not found, otherwise a pointer to the found
character is returned.

memcmp

#include <string.h>
_regparm int memcmp(const void *cs,
 const void *ct, size_t n);

Compares the first n bytes of cs with the contents of ct.

Returns a value < 0 if cs < ct,
0 if cs = = ct,
or a value > 0 if cs > ct.

memcpy

#include <string.h>
_regparm void *memcpy(void *s,
 const void *ct, size_t n);

Copies n characters from ct to s. No care is taken if the two objects
overlap.

Returns s

Chapter 66−28
LI
BR

AR
IE
S

memmove

#include <string.h>
_regparm void *memmove(void *s,
 const void *ct, size_t n);

Copies n characters from ct to s. Overlapping objects will be handled
correctly.

Returns s

memset

#include <string.h>
_regparm void *memset(void *s, int c,
 size_t n);

Fills the first n bytes of s with character c.

Returns s

modf

#include <math.h>
_regparm double modf(double x, double *ip);

Splits x into integral and fractional parts, each with the same sign as x. It
stores the integral part in *ip.

Returns the fractional part.

offsetof

#include <stddef.h>
_regparm int offsetof(type, member);

Returns the offset for the given member in an object of type.

Libraries 6−29

• • • • • • • •

Be aware, offsetof() for bitstructures/unions may give unpredictable
results. Also the offsetof() of a bit field is undefined.

pow

#include <math.h>
_regparm double pow(double x, double y);

A domain error occurs if x=0 and y<=0, or if x<0 and y is not an integer.

Returns the result of x raised to the power of y: xy.

printf

#include <stdio.h>
_regparm int printf(const char *format, ...);

Performs a formatted write to the standard output stream.

See also "_iowrite()" and section 6.3.3, Printf and Scanf Formatting
Routines.

Returns the number of characters written to the output stream.

The format string may contain plain text mixed with conversion
specifiers. Each conversion specifier should be preceded by a ’%’
character. The conversion specifier should be build in order:

− Flags (in any order):

− specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.
+ has higher precedence as space.

spacea negative number is preceded with a sign, positive numbers
with a space.

0 specifies padding to the field width with zeros (only for
numbers).

specifies an alternate output form. For o, the first digit will be
zero. For x or X, "0x" and "0X" will be prefixed to the
number. For e, E, f, g, G, the output always contains a
decimal point, trailing zeros are not removed.

Chapter 66−30
LI
BR

AR
IE
S

− A number specifying a minimum field width. The converted
argument is printed in a field with at least the length specified here.
If the converted argument has fewer characters than specified, it will
be padded at the left side (or at the right when the flag ’−’ was
specified) with spaces. Padding to numeric fields will be done with
zeros when the flag ’0’ is also specified (only when padding left).
Instead of a numeric value, also ’*’ may be specified, the value is
then taken from the next argument, which is assumed to be of type
int.

− A period. This separates the minimum field width from the
precision.

− A number specifying the maximum length of a string to be printed.
Or the number of digits printed after the decimal point (only for
floating point conversions). Or the minimum number of digits to be
printed for an integer conversion. Instead of a numeric value, also
’*’ may be specified, the value is then taken from the next
argument, which is assumed to be of type int.

− A length modifier ’h’, ’l’ or ’L’. ’h’ indicates that the argument is to
be treated as a short or unsigned short number. ’l’ should be used if
the argument is a long integer. ’L’ indicates that the argument is a
long double.

Flags, length specifier, period, precision and length modifier are optional,
the conversion character is not. The conversion character must be one of
the following, if a character following ’%’ is not in the list, the behavior is
undefined:

Character Printed as

d, i int, signed decimal

o int, unsigned octal

x, X int, unsigned hexadecimal in lowercase or uppercase
respectively

u int, unsigned decimal

c int, single character (converted to unsigned char)

s char *, the characters from the string are printed until
a NULL character is found. When the given precision
is met before, printing will also stop

f double

e, E double

g, G double

Libraries 6−31

• • • • • • • •

Printed asCharacter

n int *, the number of characters written so far is written
into the argument. This should be a pointer to an inte�
ger in default memory. No value is printed.

% No argument is converted, a ’%’ is printed.

Table 6−3: Printf conversion characters

The ’p’ conversion character is not supported because the formatter is
unable to know to which memory the pointer is pointing to. However, you
can print pointers as unsigned decimal (’u’ conversion character).

putc

#include <stdio.h>
_regparm int putc(int c, FILE *stream);

Puts one character onto the given stream.

See also "_iowrite()".

Returns EOF on error.

putchar

#include <stdio.h>
_regparm int putchar(int c);

Puts one character onto standard output.

See also "_iowrite()".

Returns the character written or EOF on error.

puts

#include <stdio.h>
_regparm int puts(const char *s);

Writes the string to stdout, the string is terminated by a newline.

See also "_iowrite()".

Chapter 66−32
LI
BR

AR
IE
S

Returns NULL if successful, or EOF on error.

qsort

#include <stdlib.h>
_regparm _reentrant void qsort(void *base,
 size_t n, size_t size,
 _regparm _reentrant int (* cmp)(const void *,
 const void *));

This function sorts an array of n members. The initial base of the array is
given by base. The size of each member is specified by size. The given
array is sorted in ascending order, according to the results of the function
pointed to by cmp.

rand

#include <stdlib.h>
_regparm int rand(void);

Returns a sequence of pseudo−random integers, in the range 0 to
RAND_MAX.

realloc

#include <stdlib.h>
_regparm void xdat *realloc(void *p,
 size_t size);

Reallocates the space for the object pointed to by p. The contents of the
object will be the same as before calling realloc().The maximum space that
can be allocated can be changed by customizing the heap size (see section
7.5, Heap). By default no heap is allocated. When "realloc()" is used while
no heap is defined, the linker gives an error.

See also "malloc()".

Returns NULL and *p is not changed, if there is not enough space for
the new allocation. Otherwise a pointer to the newly
allocated space for the object is returned.

Libraries 6−33

• • • • • • • •

romidcpy

#include <string.h>
_regparm void idat *romidcpy(idat void *cs,
 const rom void *ct,
 size_t n);

Copies n bytes of data from ROM memory to idat memory.

See also "ididcpy()".

romidmove

#include <string.h>
_regparm void idat *romidmove(idat void *cs,
 const rom void *ct,
 size_t n);

Moves n bytes of data from ROM memory to idat memory.

See also "ididcpy()".

romxdcpy

#include <string.h>
_regparm void xdat *romxdcpy(xdat void *cs,
 const rom void *ct,
 size_t n);

Copies n bytes of data from ROM memory to xdat memory.

See also "ididcpy()".

Chapter 66−34
LI
BR

AR
IE
S

romxdmove

#include <string.h>
_regparm void xdat *romxdmove(xdat void *cs,
 const rom void *ct,
 size_t n);

Moves n bytes of data from ROM memory to xdat memory.

See also "ididcpy()".

scanf

#include <stdio.h>
_regparm int scanf(const char *format, ...);

Performs a formatted read from the standard input stream.

See also "_ioread()" and section 6.3.3, Printf and Scanf Formatting
Routines.

Returns the number of items converted successfully.

All arguments to this function should be pointers to variables (in default
memory) of the type which is specified in the format string.

The format string may contain :

− Blanks or tabs, which are skipped.

− Normal characters (not ’%’), which should be matched exactly in the
input stream.

− Conversion specifications, starting with a ’%’ character.

Conversion specifications should be build as follows (in order) :

− A ’*’, meaning that no assignment is done for this field.

− A number specifying the maximum field width.

− A length modifier ’h’, ’l’ or ’L’. ’h’ indicates the argument is to be
treated as a short or unsigned short number. ’l’ should be used if
the argument is a long integer. ’L’ indicates that the argument is a
long double.

Libraries 6−35

• • • • • • • •

− A conversion specifier. ’*’, maximum field width and length modifier
are optional, the conversion character is not. The conversion
character must be one of the following, if a character following ’%’
is not in the list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a
character following ’%’ is not in the list, the behavior is undefined.

Character Scanned as

d int, signed decimal.

i int, the integer may be given octal (i.e. a leading 0 is
entered) or hexadecimal (leading "0x" or "0X"), or just
decimal.

o int, unsigned octal.

u int, unsigned decimal.

x int, unsigned hexadecimal in lowercase or upper�
case.

c single character (converted to unsigned char).

s char *, a string of non white space characters. The
argument should point to an array of characters,
large enough to hold the string and a terminating
NULL character.

f float

e, E float

g, G float

n int *, the number of characters written so far is written
into the argument. No scanning is done.

[...] Matches a string of input characters from the set be�
tween the brackets. A NULL character is added to
terminate the string. Specifying []...] includes the ’]’
character in the set of scanning characters.

[^...] Matches a string of input characters not in the set
between the brackets. A NULL character is added to
terminate the string. Specifying [^]...] includes the ’]’
character in the set.

% Literal ’%’, no assignment is done.

Table 6−4: Scanf conversion characters

Chapter 66−36
LI
BR

AR
IE
S

The ’p’ specifier is not supported because the formatter is unable to know
to which memory the pointer is pointing to.

setjmp

#include <setjmp.h>
_regparm int setjmp(jmp_buf env);

Saves the current environment for a subsequent call to longjmp.

Returns the value 0 after a direct call to setjmp(). Calling the function
"longjmp()" using the saved env will restore the current
environment and jump to this place with a non−zero return
value.

See also "longjmp()".

sin

#include <math.h>
_regparm double sin(double x);

Returns the sine of x.

sinh

#include <math.h>
_regparm double sinh(double x);

Returns the hyperbolic sine of x.

sprintf

#include <stdio.h>
_regparm int sprintf(char *s,
 const char *format, ...);

Performs a formatted write to a string.

See also "printf()" and section 6.3.3, Printf and Scanf Formatting Routines.

Libraries 6−37

• • • • • • • •

sqrt

#include <math.h>
_regparm double sqrt(double x);

Returns the square root of x. √x, where x ≥ 0.

srand

#include <stdlib.h>
_regparm void srand(unsigned int seed);

This function uses seed as the start of a new sequence of pseudo−random
numbers to be returned by subsequent calls to srand(). When srand is
called with the same seed value, the sequence of pseudo−random
numbers generated by rand() will be repeated.

Returns pseudo random numbers.

sscanf

#include <stdio.h>
_regparm int sscanf(char *s,
 const char *format, ...);

Performs a formatted read from a string.

See also "scanf()" and section 6.3.3, Printf and Scanf Formatting Routines.

strcat

#include <string.h>
_regparm char *strcat(char *s,
 const char *ct);

Concatenates string ct to string s, including the trailing NULL character.

Returns s

Chapter 66−38
LI
BR

AR
IE
S

strchr

#include <string.h>
_regparm char *strchr(const char *cs, int c);

Returns a pointer to the first occurrence of character c in the string
cs. If not found, NULL is returned.

strcmp

#include <string.h>
_regparm int strcmp(const char *cs,
 const char *ct);

Compares string cs to string ct.

Returns <0 if cs < ct,
0 if cs =�= ct,
>0 if cs > ct.

strcpy

#include <string.h>
_regparm char *strcpy(char *s,
 const char *ct);

Copies string ct into the string s, including the trailing NULL character.

Returns s

strcspn

#include <string.h>
_regparm size_t strcspn(const char *cs,
 const char *ct);

Returns the length of the prefix in string cs, consisting of characters
not in the string ct.

Libraries 6−39

• • • • • • • •

strlen

#include <string.h>
_regparm size_t strlen(const char *cs);

Returns the length of the string in cs, not counting the NULL
character.

strncat

#include <string.h>
_regparm char *strncat(char *s,
 const char *ct, size_t n);

Concatenates string ct to string s, at most n characters are copied. Add a
trailing NULL character.

Returns s

strncmp

#include <string.h>
_regparm int strncmp(const char *cs,
 const char *ct, size_t n);

Compares at most n bytes of string cs to string ct.

Returns <0 if cs < ct,
0 if cs =�= ct,
>0 if cs > ct.

strncpy

#include <string.h>
_regparm char *strncpy(char *s,
 const char *ct, size_t n);

Copies string ct onto the string s, at most n characters are copied. Add a
trailing NULL character if the string is smaller than n characters.

Returns s

Chapter 66−40
LI
BR

AR
IE
S

strpbrk

#include <string.h>
_regparm char *strpbrk(const char *cs,
 const char *ct);

Returns a pointer to the first occurrence in cs of any character out of
string ct. If none are found, NULL is returned.

strrchr

#include <string.h>
_regparm char *strrchr(const char *cs,
 int c);

Returns a pointer to the last occurrence of c in the string cs. If not
found, NULL is returned.

strspn

#include <string.h>
_regparm size_t strspn(const char *cs,
 const char *ct);

Returns the length of the prefix in string cs, consisting of characters
in the string ct.

strstr

#include <string.h>
_regparm char *strstr(const char *cs,
 const char *ct);

Returns a pointer to the first occurrence of string ct in the string cs.
Returns NULL if not found.

Libraries 6−41

• • • • • • • •

strtod

#include <stdlib.h>
_regparm double strtod(const char *s,
 char **endp);

Converts the initial portion of the string pointed to by s to a double value.
Initial white spaces are skipped. When endp is not a NULL pointer, after
this function is called, *endp will point to the first character not used by
the conversion.

Returns the read value.

strtok

#include <string.h>
_regparm char *strtok(char *s,
 const char *ct);

Search the string s for tokens delimited by characters from string ct. It
terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with
s == NULL will return the next token in the string.

strtol

#include <stdlib.h>
_regparm long strtol(const char *s,
 char **endp, int base);

Converts the initial portion of the string pointed to by s to a long integer.
Initial white spaces are skipped. Then a value is read using the given
base. When base is zero, the base is taken as defined for integer
constants. I.e. numbers starting with an ’0’ are taken octal, numbers
starting with ’0x’ or ’0X’ are taken hexadecimal. Other numbers are taken
decimal. When endp is not a NULL pointer, after this function is called,
*endp will point to the first character not used by the conversion.

Returns the read value.

Chapter 66−42
LI
BR

AR
IE
S

strtoul

#include <stdlib.h>
_regparm unsigned long strtoul(const char *s,
 char **endp, int base);

Converts the initial portion of the string pointed to by s to an unsigned
long integer. Initial white spaces are skipped. Then a value is read using
the given base. When base is zero, the base is taken as defined for
integer constants. I.e. numbers starting with an ’0’ are taken octal, numbers
starting with ’0x’ or ’0X’ are taken hexadecimal. Other numbers are taken
decimal. When endp is not a NULL pointer, after this function is called,
*endp will point to the first character not used by the conversion.

Returns the read value.

tan

#include <math.h>
_regparm double tan(double x);

Returns the tangent of x.

tanh

#include <math.h>
_regparm double tanh(double x);

Returns the hyperbolic tangent of x.

time

#include <time.h>
time_t time(time_t *tp);

The return value is also assigned to *tp, if tp is not NULL.

Returns the current calendar time, or −1 if the time is not available.

Libraries 6−43

• • • • • • • •

toascii

#include <ctype.h>
_regparm int toascii(int c);

Converts c to an ascii value (strip highest bit). This is a non−ANSI
function.

Returns the converted value.

tolower

#include <ctype.h>
_regparm int tolower(int c);

Returns c converted to a lowercase character if it is an uppercase
character, otherwise c is returned.

toupper

#include <ctype.h>
_regparm int toupper(int c);

Returns c converted to an uppercase character if it is a lowercase
character, otherwise c is returned.

ungetc

#include <stdio.h>
_regparm int ungetc(int c, FILE *fin);

Pushes at the most one character back onto the input buffer.

Returns EOF on error.

Chapter 66−44
LI
BR

AR
IE
S

va_arg

#include <stdarg.h>
_regparm va_arg(va_list ap, type);

Returns the value of the next argument in the variable argument list.
It’s return type has the type of the given argument type. A
next call to this macro will return the value of the next
argument.

va_end

#include <stdarg.h>
_regparm va_end(va_list ap);

This macro must be called after the arguments have been processed. It
should be called before the function using the macro ’va_start’ is
terminated (ANSI specification).

va_start

#include <stdarg.h>
_regparm va_start(va_list ap, lastarg);

This macro initializes ap. After this call, each call to va_arg() will return
the value of the next argument. In our implementation, va_list cannot
contain any bit type variables. Also the given argument lastarg must be
the last non−bit type argument in the list.

vfprintf

#include <stdio.h>
_regparm int vfprintf(FILE *stream,
 const char *format, va_list arg);

Is equivalent to vprintf, but writes to the given stream.

See also "vprintf()", "_iowrite()" and section 6.3.3, Printf and Scanf
Formatting Routines.

Libraries 6−45

• • • • • • • •

vprintf

#include <stdio.h>
_regparm int vprintf(const char *format,
 va_list arg);

Does a formatted write to standard output. Instead of a variable argument
list as for printf(), this function expects a pointer to the list.

See also "printf()", "_iowrite()" and section 6.3.3, Printf and Scanf
Formatting Routines.

vsprintf

#include <stdio.h>
_regparm int vsprintf(char *s,
 const char *format, va_list arg);

Does a formatted write a string. Instead of a variable argument list as for
printf(), this function expects a pointer to the list.

See also "printf()", "_iowrite()" and section 6.3.3, Printf and Scanf
Formatting Routines.

xdidcpy

#include <string.h>
_regparm void idat *xdidcpy(idat void *cs,
 const xdat void *ct,
 size_t n);

Copies n bytes of data from xdat memory to idat memory.

See also "ididcpy()".

Chapter 66−46
LI
BR

AR
IE
S

xdidmove

#include <string.h>
_regparm void idat *xdidmove(idat void *cs,
 const xdat void *ct,
 size_t n);

Moves n bytes of data from xdat memory to idat memory.

See also "ididcpy()".

xdxdcpy

#include <string.h>
_regparm void xdat *xdxdcpy(xdat void *cs,
 xdat void *ct,
 size_t n);

Copies n bytes of data from xdat memory to xdat memory.

See also "ididcpy()".

xdxdmove

#include <string.h>
_regparm void xdat *xdxdmove(xdat void *cs,
 xdat void *ct,
 size_t n);

Moves n bytes of data from xdat memory to xdat memory. Overlapping
spaces are handled correctly.

See also "ididcpy()".

Libraries 6−47

• • • • • • • •

6.3.3 PRINTF AND SCANF FORMATTING ROUTINES

The functions printf(), fprintf(), vfprintf(), vsprintf(), ... call
one single function that deals with the format string and arguments. This
function is _doprint(). This is a rather big function because the number
of possibilities of the format specifiers in a format string are large. If you
do not use all the possibilities of the format specifiers a smaller
_doprint() function can be used. Three different versions exist:

LARGE the full formatter, no restrictions
MEDIUM floating point printing is not supported
SMALL as MEDIUM, but also the precision

specifier ’.’ cannot be used

The same applies to all scanf type functions, which all call the function
_doscan(). Two different versions exist:

MEDIUM the full formatter, no restrictions
SMALL floating point printing is not supported

Special versions of the formatters are installed which can handle a format
string placed in ROM.

The default printf formatter used in the C library is the MEDIUM version
(printfsm.lib). The default scanf formatter used in the C library is the
SMALL version (scanfss.lib). You can select different formatters by
linking separate libraries with your application.

The printf/scanf libraries included with the product have the following
name syntax:

printf{model}{pversion}[f].lib
scanf{model}{sversion}[f].lib

where,

 model indicates the compiler model s (small), a (auxpage), l (large)
or r (reentrant)

 pversion indicates the printf formatter version s (small), m (medium)
or l (large)

 sversion indicates the scanf formatter version s (small) or m (medium)

 f (optionally) indicates that the format string is in ROM

Chapter 66−48
LI
BR

AR
IE
S

When you use EDE, you can specify the printf/scanf libraries in the
Compiler | Printf/Scanf entry of the Project | Project
Options... dialog.

Section 3.4, Function Parameters and section 3.10, Strings.

6.4 RUN−TIME LIBRARY

Some compiler generated code contains calls to run−time library functions
that would use too much code if generated as inline code. The name of a
run−time library function always contains two leading underscores. For
example, to perform a 16 bit unsigned division on two ’register−pairs’, the
function __UDIVI is called.

Because cc51 generates assembly code (and not object code) it prepends
an underscore for the names of (public) C variables to distinguish these
symbols from 8051 registers. So if you use a function with a leading
underscore, the assembly label for this function contains two leading
underscores. This function name could cause a name conflict (double
defined) with one of the run−time library functions. However, ANSI states
that it is not portable to use names starting with an underscore for public
C variables and functions, because results are implementation defined.

All code of the run−time library functions is placed in a CODE segment
called ?C51RTL_PR.

The run−time library functions are included in the C library.

6.5 CREATING YOUR OWN C LIBRARY

There are several reasons why it is desired to have a specially adapted
C library. Therefore all C sources of all library functions are delivered with
the compiler (this file is placed in the directory cc51\lib\src when
using PC, /usr/local/cc51/lib/src when using UNIX).

When creating your own library, the order of the objects in the library file
is very important. To know the exact order in which the objects should be
placed in the library, make a list of the order in which the delivered
libraries are made by using the command ’ar51 t c51r.lib’ (or c51l.lib or
one of the other libraries).

Libraries 6−49

• • • • • • • •

The easiest method to create your own library is to make a copy of the
existing library (use the library in the same memory model you want to
create) and replace the existing objects in it by your own made objects
with the command ’ar51 crv libname objectname ...’ . This way the order
of the objects in the library will be maintained. At link time you only have
to link the newly made library to your application instead of a delivered
library.

When starting with an empty library you have to link the original library
also, because it contains all run−time routines needed to run your
application. In this case the original library must be the last file specified to
link51.

Chapter 66−50
LI
BR

AR
IE
S

7

RUN−TIME
ENVIRONMENT

C
H
A
P
T
E
R

Chapter 77−2
RU

N−
TI
M
E

7

C
H
A
P
T
E
R

Run−time Environment 7−3

• • • • • • • •

7.1 STARTUP CODE

When linking your C modules with the library, you must also link the
object module, containing the C startup code. This file is called
cstart.obj.

Because this module specifies the run−time environment of your C
application, you might want to edit it to match your needs. Therefore, this
module is delivered in assembly source in the file cstart.asm in the
lib/src subdirectory. Typically, you will copy the template startup file to
your own directory and edit it. The startup code contains preprocessor
symbols that can be interpreted by mpp51 when you want to make your
own version of the object file.

EDE is capable of generating the startup code automatically. To do this:
open the Project | Project Options dialog, expand the Processor
entry and select Startup Code. Enable the options Generate startup
code (<project>_cstart.asm) and Add startup code
(<project>_cstart.asm) to your project.

Table 7−1 shows all the macros (defines) that can be set for cstart.asm.
The defines can be set using mpp51 command line option
−Dmacro=value or within EDE in the Processor | Startup Code and
Assembler | Macro Preprocessor pages of the Project |
Project Options dialog.

Define Default Description

CLR_EA setting this define makes sure all interrupts
are disabled at startup; by default the startup
code will not clear the interrupt enable all bit
(EA)

FLOATMEM 0 define the number of floats on the floating
point stack

HEAP 0 define the heap size

MFLOAT XDATA define to IDATA when the floating point stack
is in IDAT instead of XDAT (link floats.lib in
that case instead of float.lib).

MODEL SMALL define the memory model (SMALL, AUX,
LARGE or REENTRANT)

MON51 NO define to TASKING when using the TASKING
Rom monitor define to RISM51 when using
the Intel Rism51 monitor.

Chapter 77−4
RU

N−
TI
M
E

DescriptionDefaultDefine

P2 0 set port P2 pins at startup; this defines the
external RAM page to be used for paged
data (_pdat)

PROTECT NO define YES only for reentrant model with
interrupt functions using the virtual stack

RAMSIZE 080H size of internal (IDAT) memory (128−256
bytes) to be cleared at startup

REGBANK 0 define the default register bank at startup

STACKLENGTH 20H define a (minimum) stack length

SYSCON certain Infineon Technologies derivates have
a SYSCON SFR which can be used to direct
8−bit MOVX instructions to internal XRAM.
Defining this macro to the correct value will
result in correct initialization of this SFR at
startup

VSTACK NO define YES if at least one function is
declared _reentrant while the memory model
is not reentrant

VIRT_STACK 400H define the virtual stack size (only for
reentrant model)

XDATSTART
XDATEND

0
0

specify the start and end of the XDAT area to
be cleared at startup

Table 7−1: Macros used in cstart.asm

The startup code contains macro preprocessor symbols, so you must use
mpp51 before asm51 when you want to make a new version of the
object file:

mpp51 cstart.asm
asm51 cstart noprint

Run−time Environment 7−5

• • • • • • • •

In the C startup code an absolute code segment is defined for setting up
the power on vector and the C−51 environment. The power−on vector
contains a jump to the __START label, which is placed after all other
interrupt vectors. The code space for all non used interrupt vectors may be
occupied by small user code segments. When this is not wanted, you
should allocate the space for all non used interrupt vectors in the startup
code. Thus preventing link51 from using this area for a user code
segment. If you are using interrupts, you should not allocate the space at
the addresses of the interrupt vector, because the real interrupt vectors are
loaded from the library. If you do allocate this space, link51 will warn
you with the message: "CODE SPACE MEMORY OVERLAP".

The stack is defined in a segment called ?STACK, because link51 allocates
this segment after all other IDATA segments. The public symbol
__STKSTART must be present, because it is used by both a debugger and
the library function exit(). The stack size can be controlled with the
macro preprocessor symbol STACKLENGTH, which defaults to 32 bytes.
Remember that there must be enough space allocated in this ?STACK
segment for the stack, which grows upwards.

When using the reentrant model or when some functions are programmed
_reentrant, a virtual stack is needed. The size of this stack (which is
placed in external RAM) is defined by the preprocessor symbol
VIRT_STACK. When not using the reentrant model, but some functions are
programmed _reentrant, allocation of the virtual stack and initialization
of the virtual stack pointer is forced by defining the preprocessor symbol
VSTACK.

When using the reentrant model or when functions are programmed
_reentrant, it may be needed to change the value of PROTECT in the
cstart.asm file. In that case, please read section 7.10, Reentrant Model /
_reentrant Functions.

The heap size is also defined using a macro preprocessor symbol. The
heap area is allocated in XDATA.

See section 7.5, Heap, for detailed information on heap management.

When using floating point in your application, you should define the size
of a floating point stack.

See also section 7.6, Floating Point.

Chapter 77−6
RU

N−
TI
M
E

All available internal RAM and external RAM must be cleared, because in C
all non initialized static variables are defined to have a value of 0 at
startup. This is done by the C startup code. The internal RAM size is
defined with the macro preprocessor symbol RAMSIZE, which normally
contains a value between 128 (e.g. 8051) and 256 (e.g. 8052, 80C552). The
start address and end address of external RAM are defined with the
preprocessor symbols XDATSTART and XDATEND. By default, no memory
will be cleared by the startup code. When it is needed that memory is
cleared at startup, this should be changed in the startup code.

The startup code also takes care of initialized C variables, residing in the
different RAM areas. Each memory type has a unique name for both the
ROM and the RAM segment. The startup code copies the initial values of
initialized C variables from ROM to RAM, using these special segments and
some run−time library functions. A special segment is used for strings in
ROM, which are copied to the appropriate RAM segment, depending on
the memory model used for the C modules. Therefore you must specify
the memory model you are using to mpp51 before it processes the startup
code. This can be done by defining the preprocessor symbol MODEL. The
startup file uses the define MODEL to select the RAM area used as
destination for the strings.

When everything described above has been executed, your C application
is called, using the public label _?main, which has been generated by
cc51 for the C function main().

When the C application ’returns’, which is not likely to happen in an
embedded environment, the program performs an endless loop, using the
assembly label __STOP. When using a debugger, it can be useful to set a
breakpoint on this label, indicating the program has reached the end, or
the library function exit() has been called.

Run−time Environment 7−7

• • • • • • • •

7.2 REGISTER USAGE

In all models cc51 uses the following 8051 registers for code generation:
R0−R7, A, B, DPTR and PSW. When calling a user assembly routine from
C, none of these registers need to be saved by the assembly routine,
because these registers are used for temporary results only. When one of
these registers has a temporary result, the compiler saves it on stack before
the assembly language routine is called, and restores it afterwards.

cc51 uses the following registers for C function return types:

Return type Register Description

bit C (carry)

char A (accumulator)

short/int R6−R7 (R6 high byte, R7 low byte)

long R4−R7 (R45 high word, R67 low word)

float − (Floating point stack)

near pointer A (accumulator)

far pointer R6−R7 (R6 high byte, R7 low byte)

Table 7−2: Register usage

Chapter 77−8
RU

N−
TI
M
E

7.3 SEGMENT USAGE

cc51 uses a large number of segments. This section contains a list of all
possible segment names of a complete C application:

BIT

C51_BI user C bit type variables

CINIT_RAM_BI initialized C bit variables

BSEG AT xx absolute segments for variables placed using the
_at() keyword

FP_BIT floating point data used by run−time routines

DATA

C51_DA user C variables residing in data

CINIT_RAM_DA initialized C variables residing in data

C51_BA user C variables residing in bitaddressable data

CINIT_RAM_BA initialized C variables residing in bitaddressable
data

DSEG AT xx absolute segments for variables placed using the
_at() keyword

DRSEG floating point data used by run−time routines

DBRSEG bitaddressable floating point data used by
run−time routines

IDATA

C51_I user C variables residing in idat

CINIT_RAM_DI initialized C variables residing in idat

?STACK last IDATA segment, for stack allocation

CINIT_RAM_ST for small model only, string area

ISEG AT xx absolute segments for variables placed using the
_at() keyword

Run−time Environment 7−9

• • • • • • • •

CODE

CSEG AT 0H absolute code segment for power on vector and
startup code.

STARTUP C Startup Code

C51_PR user C functions

C51LIB_PR C library functions

?C51RTL_PR run−time library functions

LIB_FP floating point run−time routines

CSEG AT xx absolute code segments for interrupt vectors

C51_CO user C variables residing in rom, switch tables
and ’romstrings’

CINIT_ROM_BI initial values of user initialized C bit variables

CINIT_ROM_DA initial values of user initialized C variables
residing in data

CINIT_ROM_BA initial values of user initialized C variables
residing in bitaddressable data

CINIT_ROM_ID initial values of user initialized C variables
residing in idat

CINIT_ROM_PD initial values of user initialized C variables
residing in pdat

CINIT_ROM_XD initial values of user initialized C variables
residing in xdat

CINIT_ROM_ST strings (residing in either idat, pdat or xdat,
depending on memory model used)

XDATA

C51_PD user C variables residing in pdat

CINIT_RAM_PD initialized C variables residing in pdat

C51_XD user C variables residing in xdat

CINIT_RAM_XD initialized C variables residing in xdat

Chapter 77−10
RU

N−
TI
M
E

?HEAP allocation of heap area

CINIT_RAM_ST for all models but small, string area

XSEG AT xx absolute segments for variables placed using the
_at() keyword

?VIRT_STACK virtual stack space used by _reentrant
functions

FP_XDAT floating point data used by run−time routines

If overlaying is used (default for non−reentrant functions), more segments
are declared containing the module name, function name, memory type
and register bank involved.

The segment CINIT_RAM_ST (RAM area for strings) is allocated in either
idat, pdat or xdat, depending on the memory model (MODEL) used in
the C startup code. Default is idat. For details on changing startup code,
see section 7.1, Startup Code.

If you use the −R option, to specify the name cc51 must use for a certain
segment, this name is added to this list. Note that link51 produces a link
map (suffix .l51) which shows the addresses of all segments used in the
application.

Segment renaming is only possible in the reentrant memory model. In
other memory models the segment names need to be fixed in order for the
overlaying mechanism to work correctly.

Run−time Environment 7−11

• • • • • • • •

7.4 STACK

The following diagrams show the structure of the stack. The first diagram
reflects the system stack. The second diagram shows the virtual stack
when using reentrant functions.

return address

sp ($sp)

idat

system stack

system stack
grows up

high memory

low memory

return address

fp ($fp)

MSB

LSB

saved registers

automatics

__SP

xdat

virtual stack

virtual stack
grows down

high memory

low memory

(reentrant functions)

parameters

non register

($vsp)

stacksize

framesize

vfp
($vfp)

Figure 7−1: Stack diagrams

Chapter 77−12
RU

N−
TI
M
E

The system stack is used (using direct internal RAM) for return addresses
only. The stack is allocated via the ?STACK segment. You can specify the
size of the stack segment in the C startup code (cstart.asm). link51
locates the ?STACK segment as the last indirect addressable internal RAM
segment (after all the user IDATA segments), because the system stack is
growing from low to high. For _small, _aux and, _large functions,
automatics and parameters are allocated in overlayable data sections, and
therefore, do not use any stack space.

In EDE you can enter the system stack size in the System stack size
field in the Linker | Stack/Heap entry of the Project | Project
Options... dialog.

The label __STKSTART (also present in cstart.asm) is used as the
absolute bottom of the system stack. If this label is not present, the system
reset value of the SP register is used (at address data:0x7).

For _reentrant functions, a virtual stack is used in external RAM.
Automatics and parameters are all accessed using a virtual stack pointer
register, allocated as a 16−bit pointer in direct addressable internal RAM
(label __SP). The stack frame also contains a so−called virtual frame
pointer, which can be seen as a frame pointer register for debugging
purposes, and therefore, is supported by CrossView Pro as a pseudo
register called $vfp. The saved registers are also accessed using a virtual
stack pointer. The virtual stack pointer can be seen as a virtual stack
pointer register, and therefore, is supported by CrossView Pro as a pseudo
register called $vsp.

In EDE you can enter the virtual stack size: enable the option
Application uses reentrant functions in the Linker |
Stack/Heap entry of the Project | Project Options... dialog and
enter a size in the Virtual stack size field.

Run time routines are called for a function’s prologue, epilogue and
automatic/parameter access.

The label __TOP_OF_VIRT_STACK (cstart.asm) is used as the absolute
top of the virtual stack. When using _reentrant functions, this label, and
of course __SP, should be present.

Run−time Environment 7−13

• • • • • • • •

7.5 HEAP

The heap is only needed when dynamic memory management library
functions are used: malloc(), calloc(), free() and realloc(). The
heap is a reserved area in external RAM with a default size of 0 bytes. If
you use one of the memory allocation functions listed above, the linker
will give errors if no heap is defined. So when you want to use one of
these routines, you must change the heap size in the startup code.

The macro preprocessor symbol HEAP is used to define the size of the
heap. A special XDAT segment called ?HEAP is used for the allocation of
the heap area. You can place the heap segment anywhere in memory,
using a linker command file specifying either the order of allocation or an
absolute address. The public assembly symbols __HEAPSTART and
__HEAPLENGTH are used by the library function sbrk(), which is called
by malloc() when memory is needed from the heap.

After editing, you must process the C startup file with both mpp51 and
asm51 to make the correct object file. For a detailed description, see
section 7.1, Startup Code.

Chapter 77−14
RU

N−
TI
M
E

7.6 FLOATING POINT

cc51 has implemented single precision floating point arithmetic, i.e.
’double’ and ’long double’ variables are treated as normal ’float’ variables.

Floating point operators use a special floating point stack area which
should be defined within the startup code. This area is placed in external
RAM and has a default size of 0 bytes. You must change the size (in the
startup code) to be able to use floating point.

A special floating point library is delivered to support floating point
arithmetic when no external RAM is available. This library is called
floats.lib. This library uses a floating point stack in internal RAM
(idat space). When you use this library, no math functions are available
within the library. In the startup code you have to specify that the floating
point stack is located in internal RAM (see the startup file cstart.asm for
more information). If you do not change the startup code, the linker will
produce error messages. Placing the floating point stack in internal RAM
does not significantly increase floating point arithmetic.

When your application uses floating point arithmetic, be aware of the
following:

− Define a floating point stack in the startup code, all operations and
temporary results are placed on this stack. For very complex
expressions, the stack must be large enough to hold all temporary
results, but normally 5 elements will do.

− Floating point is not reentrant. No floating point arithmetic or even
assignments can be done on interrupt.

− The floating point library float.lib must be specified to the
linker as the last library in the list. Also the C library must be linked
before float.lib.

− Due to the very limited internal RAM of a 80C751 derivative (only
64 bytes), floating point is not supported.

Run−time Environment 7−15

• • • • • • • •

7.7 INTERRUPT FUNCTIONS

Interrupt functions may be implemented directly in C, by using the
_interrupt(n) or __interrupt(addr) function qualifier. A function
declared with this qualifier differs from a normal function definition in a
number of ways:

1. The appropriate interrupt vector, consisting of a JMP instruction jumping to
the interrupt function is generated. The vector may be suppressed with
_interrupt(−1) with the −v option or the #pragma novector.

2. All non R0−R7 registers A, B, DPTR and PSW that might possibly be
corrupted during the execution of the interrupt function are saved on
function entry and restored on function exit. The compiler will check the
function to see which of these registers are being used and automatically
save/restore only those registers. When the _using() qualifier is used the
registers R0−R7 are implicitly saved when the register bank is being
switched (by using the predefined symbolic register addresses AR0−AR7).
When this qualifier is not used the compiler will check the function and
save/restore only those registers.

3. The function is terminated with a RETI instruction instead of a RET
instruction.

Example:
; 8051 C compiler vx.y rz SNaaaaaa (c) year TASKING, Inc.
; options: −s
$CASE
 NAME INTRPT
; intrpt.c 1 int x,y;
 PUBLIC _x
C51_DA SEGMENT DATA
 RSEG C51_DA
_x: DS 2
 PUBLIC _y
_y: DS 2
; intrpt.c 2
; intrpt.c 3 _interrupt(17) void int17(void)
; intrpt.c 4 {
 PUBLIC _?int17
 CSEG AT 08BH
 LJMP _?int17
; free registers in this function: B DPTR R1 R2 R3
INTRPT_INT17_PR SEGMENT CODE
 RSEG INTRPT_INT17_PR
_?int17:
 USING 0
 PUSH ACC

Chapter 77−16
RU

N−
TI
M
E

 PUSH AR0
 PUSH AR4
 PUSH AR5
 PUSH AR6
 PUSH AR7
 PUSH PSW
; intrpt.c 5 x++;
 INC _x+1
 MOV A,_x+1
 JNZ _3
 INC _x
_3:
; intrpt.c 6 y += x−3;
 MOV R7,_x+1
 MOV R6,_x
 MOV R5,#03H
 MOV R4,#00H
 LCALL __MINI
 MOV R0,#_y
 LCALL __CAPLIID
; intrpt.c 7
; intrpt.c 8 return;
; intrpt.c 9 }
 POP PSW
 POP AR7
 POP AR6
 POP AR5
 POP AR4
 POP AR0
 POP ACC
 RETI

; intrpt.c 10

 EXTRN CODE(__MINI)
 EXTRN CODE(__CAPLIID)
 EXTRN CODE(SMALL)
 END

Run−time Environment 7−17

• • • • • • • •

When an interrupt occurs, the vector instructs the processor to jump to the
handler. The interrupt handler always saves PSW. When the _using()
qualifier is being used it will switch to the correct register bank by loading
a new value in PSW, based on the value specified with the _using()
qualifier. When this qualifier is not being used each of the registers R0−R7
which are (or could be) used in the interrupt routine will be saved. Each
of the non R0−R7 registers: A,B and DPTR, are also being saved when they
are used in the routine. After the context is being saved the user C
interrupt function is being executed, and when it is completed the context
is being restored. All saved registers are being popped from the stack
including PSW. By restoring the original PSW value, the correct register
bank is being restored automatically. Finally the RETI (return from
interrupt) is executed.

In the above example the C interrupt function uses the following registers:
A, R0, R4, R5, R6, R7 and PSW. All of these registers are being saved on
function entry and restored on function exit. When the using() qualifier
would have been used the compiler would omit saving/restoring register
R0 and R4−R7, but instead code would be generated to switch the register
bank (e.g. MOV PSW,#18 for register bank 3).

Because the PUSH and POP instruction require a direct address operand,
the assembler uses the predefined symbolic register addresses AR0−AR7 to
push and pop the corresponding registers R0−R7.

The relation between the interrupt number and the vector address is:
interrupt_id = (vector_address − 3)/8. In the example above, where the
interrupt number is 17, the vector address is 08BH.

You can write your own interrupt handler (and interrupt vector) in
assembly. When you don’t want the vector to be generated automatically
you can use the −v command (or #pragma novector). When you don’t
want the interrupt frame (saving/restoring registers) to be generated you
can use the −vf command. In that case you will have to specify your own
interrupt frame. For this you can use the inline capabilities of the compiler.
The example below shows an interrupt function for which only DPTR has
to be saved and restored.

Example:
; 8051 C compiler vx.y rz SNaaaa (c) year TASKING, Inc.
; options: −s −vf
$CASE
 NAME INT
; intrpt.c 1 _inline _using(1) void
; intrpt.c 2 interrupt_prolog(void)

Chapter 77−18
RU

N−
TI
M
E

; intrpt.c 3 {
; intrpt.c 4 #pragma asm
; intrpt.c 5 PUSH DPL
; intrpt.c 6 PUSH DPH
; intrpt.c 7 #pragma endasm
; intrpt.c 8 }
; intrpt.c 9
; intrpt.c 10 _inline _using(1) void
; intrpt.c 11 interrupt_epilog(void)
; intrpt.c 12 {
; intrpt.c 13 #pragma asm
; intrpt.c 14 POP DPH
; intrpt.c 15 POP DPL
; intrpt.c 16 #pragma endasm
; intrpt.c 17 }
; intrpt.c 18
; intrpt.c 19 _bit int1_flag;
 PUBLIC _int1_flag
C51_BI SEGMENT BIT
 RSEG C51_BI
_int1_flag: DBIT 1
; intrpt.c 20
; intrpt.c 21 _interrupt(1) _using(1) void
; intrpt.c 22 alarm(void)
; intrpt.c 23 {
 PUBLIC _?alarm
 CSEG AT 0BH
 JMP _?alarm
; free registers in this function: A B DPTR R0 R1 R2 R3 R4 R5 R6 R7
INT_ALARM_PR SEGMENT CODE
 RSEG INT_ALARM_PR
_?alarm:
 USING 1
; intrpt.c 24 interrupt_prolog();
 PUSH DPL
 PUSH DPH
; intrpt.c 25
; intrpt.c 26 int1_flag = 1;
 SETB _int1_flag
; intrpt.c 27
; intrpt.c 28 interrupt_epilog();
 POP DPH
 POP DPL
; intrpt.c 29 }
 RETI

; intrpt.c 30

 EXTRN CODE(SMALL)
 END

Run−time Environment 7−19

• • • • • • • •

Pragma intsave

When using assembly in an interrupt function, it might be necessary to
save registers not being saved automatically by the compiler. For this you
can use #pragma intsave registers.

Example:

#pragma intsave A R0 R1
/* the interrupt function uses registers A, R0 and R1
 */

_interrupt(1) void alarm(void)
{
#pragma asm
 MOV A,0C8H
 XCH A,R1
 MOV A,0C9H
 ADD A,R1
 MOV 0C9H,A
#pragma endasm

If an interrupt function does not use the fast parameter area, you can
instruct the compiler to generate a shorter interrupt frame with
#pragma intsave NOPARMregbank. With this pragma the compiler does
not generate code to save and restore the present data in the fast
parameter area.

Example:

#pragma intsave NOPARM0

With the option −nofastparm you can instruct the compiler to switch off
the use of the fast parameter section for all functions. In this case you do
not need #pragma intsave NOPARMregbank.

_frame function qualifier

With the _frame function qualifier you can specify which registers and
SFRs must be saved for a particular interrupt function. Only the specified
registers will be pushed and popped from the stack. The syntax is:

_frame(reg[,reg]...)

Chapter 77−20
RU

N−
TI
M
E

Example:

_interrupt(1) _frame(A,R0,R1) void alarm(void)
{
 /* an interrupt function */
}

Pragma vector

For certain ROM monitors it is necessary to specify an offset for all
interrupt vectors. For this you can use the command −ivo=value or
#pragma VECTOR value. Suppose the previous example is built for a
ROM monitor with the interrupt table at offset 0x4000. When compiling
the example with −ivo=0x4000 the vector is being located at address
0x400B instead of 0xB.

Run−time Environment 7−21

• • • • • • • •

7.8 MULTIPLE DATA POINTER SUPPORT

The standard 8051 architecture provides just one 16−bit pointer for indirect
addressing of external memory (DPTR). At this moment there are several
architectures supporting more than just one data pointer. The Infineon
Technologies C500/C800 family has support for 8 16−bit data pointers, the
Dallas 80C320/520/530 and AMD 80C521 have support for 2 16−bit data
pointers, and also the Philips 51 family has support for 2 16−bit data
pointers. Using more than one data pointer is mainly useful when copying
bytes from source to destination or when comparing different areas in
memory. Most beneficial for multiple data pointer optimization is therefore
the C library containing a lot of functions in that area. The table below
shows which 8051 C functions benefit from using multiple data pointers.

MODEL Small Aux Large Reentrant

strcmp() x x

strcpy() x x

strncmp() x x

strncpy() x x

memcmp() x x

memcpy() x x

memmove() x x

xdxdcpy() x x x x

xdxdmove() x x x x

romxdcpy() x x x x

romxdmove() x x x x

Table 7−3: Functions that benefit from multiple data pointers

All these C functions have been fully optimized for multiple data pointer
support. These optimized functions can be used by linking the multiple
data pointer library (mdptr[dps][salr]) before linking the standard C
library. That way when using one of the functions the one using multiple
data pointers will be linked instead of the standard implementation.

Chapter 77−22
RU

N−
TI
M
E

When using multiple data pointers in combination with interrupt functions
it is necessary to make sure all data pointers are being saved and restored
by the interrupt function. For the Infineon Technologies C500/C800 family
use the command −ps, for the Dallas 80C320/520/530, AMD 80C521 use
the command −pd and for the Philips 51 family use −pp in order to
generate appropriate interrupt frames. The example below shows the
interrupt frame for an interrupt function when using dual data pointer
support (Dallas 80C320/520/530, AMD 80C521).

; 8051 C compiler vx.y rz SNaaaa (c) year TASKING, Inc.
; options: −s −pd
$CASE
 NAME INTRPT
; intrpt.c 1 _bit int1_flag;
 PUBLIC _int1_flag
C51_BI SEGMENT BIT
 RSEG C51_BI
_int1_flag: DBIT 1
; intrpt.c 2
; intrpt.c 3 _interrupt(1) _using(1) void
; intrpt.c 4 alarm(void)
; intrpt.c 5 {
 PUBLIC _?alarm
 CSEG AT 0BH
 JMP _?alarm
; free registers in this function: A B DPTR R0 R1 R2 R3 R4 R5 R6 R7
INTRPT_ALARM_PR SEGMENT CODE
 RSEG INTRPT_ALARM_PR
_?alarm:
 USING 1
 PUSH ACC
 PUSH B
 PUSH DPL
 PUSH DPH
 PUSH 084H
 PUSH 085H
 PUSH 086H
 MOV 086H,#00H
 PUSH PSW
 MOV PSW,#08H
; intrpt.c 6 int1_flag = 1;
 SETB _int1_flag
; intrpt.c 7 }
 POP PSW
 POP 086H
 POP 085H
 POP 084H
 POP DPH
 POP DPL
 POP B
 POP ACC
 RETI

Run−time Environment 7−23

• • • • • • • •

; intrpt.c 8

 EXTRN CODE(SMALL)
 END

7.9 ASSEMBLY LANGUAGE INTERFACING

Assembly language functions can be called from C−51 and vice versa. The
names used by cc51 are case sensitive, so you must tell asm51 to act case
sensitive too, using the $CASE control. cc51 prepends an underscore for
the name of the C variable, to distinguish these names from the 8051
registers. So, any names used or defined in C−51 must have a leading
underscore in assembly code. Internal compiler symbols (run−time library)
use two underscores.

The assembler uses the following naming convention for C variables and
functions:

Name in C Name used in assembly

variable _variable

_cdecl function() _function

function() _?function

_regparm function() _?function

_regparm function(...)
/* function with variable
 argument list */

_??function

Table 7−4: Naming convention for variables and functions

When you call an assembly routine that has a name of e.g. 50 characters,
you get a link error "UNRESOLVED EXTERNAL". The reason for it is that
the C compiler truncates names to 32 characters, but the assembler and
linker do not. The solution is, when calling assembly routines, use names
of 31 characters or less (if you do not count the leading ’_’ for a moment).
The same rule applies when you call a C function from your assembly
code.

The following parameter passing scheme is used:

1. For functions declared _regparm (default), the first non bit arguments are
passed via registers; the __PARMx area will not be used by these functions.
This register parameter passing scheme is memory model independent.

Chapter 77−24
RU

N−
TI
M
E

2. Parameters which do NOT fit in the register passing scheme, are passed
the same way as done by _cdecl.

3. For _small, _aux and _large functions having the _cdecl qualifier, the
data locations for function parameters are in data fields with the same
name as the function itself (also prepended with an underscore), but with
_BIT or _BYTE appended to it. An assembly function with parameters
must define those data fields in a XDAT or DATA segment, depending on
the memory model used with the C modules. Of course, bit parameters
must always be defined in a BIT segment.

For _reentrant functions, _cdecl parameter passing is done using the
virtual stack.

4. For _aux and _large functions, when using _cdecl new−style
prototypes, the compiler tries to pass the first arguments in a static field in
data, called __PARMx, where x is the register bank used. To simplify the
programming of an assembly routine, prototype the routine with a _cdecl
qualifier. Now all parameters will simply be passed using the
module_function_BYTE area. However, if all parameters fit in the register
parameter passing scheme, _regparm is recommended.

For more information on parameter passing see section 3.4, Function
Parameters in chapter Language Implementation.

The quickest (and most reliable) way to make an assembly language
function, which must conform to C−51, is to make the body of this
function in C, and compile this module with the memory model used by
all other C modules. If the assembly function must return something,
specify the return type in the ’assembler function’ using C syntax, and let it
return something. If parameters are used, force code generation for
accessing these parameters with a dummy statement (e.g. an assignment)
or declare the parameter as volatile and just access it:

int assem(char volatile a, char c, int i)
{
 a;
 return(c + i);
}

Now compile this module, using the correct memory model. The compiler
makes the correct frame, and you can edit the generated assembly
module, to make the real assembly function inside this frame.

Run−time Environment 7−25

• • • • • • • •

For more information on return types see section 7.2, Register Usage in this
chapter.

A second method to create an interface to assembly is to make use of the
feature of the cc51 compiler to have inline assembly.

Assembly lines in the C−source must be introduced by a ’#pragma asm’,
the end is indicated by a ’#pragma endasm’. For example:

int assem(char c, int i)
{
 int j;
 j = i;
#pragma asm
 MOV P2,#01
#pragma endasm
 j = c;
}

When the assembly does not change any registers, like in the example
above, also ’#pragma asm_noflush’ may be used instead of ’#pragma asm’.

For an explanation of the used pragmas see section 4.4, Pragmas.

7.10 REENTRANT MODEL / _REENTRANT FUNCTIONS

When you use the reentrant model (−Mr option) or some _reentrant
functions, a virtual stack mechanism is used. A special stack pointer to this
virtual stack is made. Non register function parameters are pushed on the
virtual stack and removed after the function call.

During these actions the virtual stack pointer is updated more than once.
This operation however needs several instructions. When a program uses
interrupts, it is very well possible that an interrupt occurs during the
update of the virtual stack pointer. The not yet correct virtual stack pointer
will be changed and is thus pointing to an undefined address.

You can use the standard library as delivered with the compiler when the
virtual stack is NOT accessed during the interrupt. This is guaranteed if:

− the C interrupt function is _small, _aux or _large

and

Chapter 77−26
RU

N−
TI
M
E

− the C interrupt function is not calling (direct or indirect) a
_reentrant function

In all other cases, the update of the virtual stack pointer should prevent
interrupts to occur. This can be done by disabling and enabling the
interrupts during the update. However, this will slow down the program
and increase the interrupt response time. Therefore, the default libraries
delivered with the compiler (c51s.lib, c51a.lib, c51m.lib or
c51r.lib) do not disable interrupts during a virtual stack pointer update.
Special protected libraries are delivered for this purpose (c51sp.lib,
c51ap.lib, c51mp.lib or c51rp.lib). So, when linking replace the
normal C library with the protected version.

In EDE you can select a protected library by enabling the options
Application uses reentrant functions and Use protection
on virtual stack pointer updates in the Linker | Stack/Heap
entry of the Project | Project Options... dialog.

7.11 LINKING AN APPLICATION

This section explains how to link your C−51 application.

A typical linker command for a C−51 application looks like this:

link51 cstart.obj,your_objects, libraries to
output_name options

Note that the file cstart.obj must also be linked. For the small model, a
default cstart.obj is delivered. When you use another model, or when
you want something specific (e.g. when using ’malloc()’, specify a heap),
you have to create your own cstart.obj.

You have to make your own cstart.obj when:

• You use another model than the small model.

• You use ’malloc()’, ’calloc()’ in your application.

• You use floating point in your application.

• You want memory to be cleared on startup (i.e. ’static’ objects
should have value ’0’ at startup).

• You want to run the application in another register bank than bank
’0’.

• You want to have a larger stack size in the reentrant model.

• You need to use a protected version of the reentrant model.

Run−time Environment 7−27

• • • • • • • •

• You need to have a virtual stack.

Apart from the startup code, you have to specify all your own object files
and libraries. The last objects to link are the C library delivered with the
C−51 package. For each model a specific library is delivered, you have to
choose the one you need (see chapter 6, Libraries). If you use the
reentrant model, see also section 7.10, Reentrant Model / _reentrant
Functions.

When you have linked the wrong C library, you get an unresolved
external during the link phase. The external has the name of the model
you used in your application. I.e. ’SMALL’, ’AUX’, you will get such an
unresolved external.

When you have used floating point within your application, you have to
link the floating point run−time library too. This library must be placed
after the C−51 library. So,

link51 cstart.obj,my.obj,float.lib,c51s.lib to my.out

does NOT work (probably unresolved externals will be the result). But:

link51 cstart.obj,my.obj,c51s.lib,float.lib to my.out

is correct.

As an option to the linker, the option ’FUNCTIONOVERLAY’ (or ’FO’) must
be specified, unless the majority of the application consists of PL/M instead
of C. With this option you specify to the linker that it should overlay as
much local C data as possible, thus saving data space.

If you specify to the linker that it may overlay data, you have to specify all
indirect function calls you have used in your application (i.e. all functions
which are called by using function pointers). How to do this can be found
in the user manual of link51.

Chapter 77−28
RU

N−
TI
M
E

7.12 TROUBLESHOOTING

This section describes a number of commonly made mistakes and what
you can do about them.

7.12.1 LINKING PROBLEMS

Problem: Unresolved externals are found, among the symbols is one
(or more) of the names ’SMALL’, ’AUX’, ’LARGE’ or
’REENTRANT’.

Possible causes:
No C library is specified on the linker command line.

The wrong C library is linked.

The file cstart.obj is made for the wrong model.

One of the objects specified is compiled in the wrong model.

Problem: Unresolved externals are found, names end on _BYTE or
_BIT.

Possible cause:
Prototypes of functions are not present or do not match with
the function definition. These types of errors are detected by
the compiler. See also _cdecl and _regparm function
qualifiers (−OR and −Or).

Problem: Unresolved externals are found, names ’__HEAPSTART’ and
’__HEAPEND’ are in between.

Cause: No heap space is specified in the C startup code, the heap is
needed for ’malloc()’, ’calloc()’, ’realloc()’.

Problem: Unresolved externals are found, names are found which do
not occur in the application.

Cause: Does the application use floating point arithmetic? Maybe the
library float.lib is not linked.

Floating point arithmetic is used, but the floating point library
float.lib is not specified AFTER the C library. See also
section 7.11, Linking an Application.

Run−time Environment 7−29

• • • • • • • •

Problem: Unresolved externals are found, names ’__FLOATSTART’ and
’__FLOATEND’ are in between.

Cause: The application uses floating point, but no floating point
stack is specified within the cstart module.

Problem: Unresolved externals are found. A name like ’_function’ is in
between.

Cause: The C−application uses the function named function, but the
function itself is not linked or is not programmed as a
_cdecl function (see also the −Or option). Check the
function prototypes used in the application.

Problem: Unresolved externals are found. A name like ’_?function’ is in
between.

Cause: The C−application uses the function named function, but the
function itself is not linked or is not programmed as a
_regparm function (see also the −Or option). Check the
function prototypes used in the application.

Problem: Unresolved externals are found. A name like ’_??function’ is
in between.

Cause: The C−application uses the function named function, but the
function itself is not linked or is not programmed as a
_regparm function (see also the −Or option), or the function
is not programmed as a variable argument function. Check
the function prototypes used in the application.

7.12.2 RUN−TIME PROBLEMS

Problem: Variables and parameters of one procedure are overwritten
by another procedure.

Cause: Prototypes of functions do not match their function
definition. These types of errors are detected by the compiler.

The application uses function pointers, when calling a
function indirectly (using a function pointer), the linker is not
aware of this call. You have to specify these calls with the
’FUNCTIONOVERLAY’ control, otherwise data is illegally
overlaid.

Chapter 77−30
RU

N−
TI
M
E

Problem: Variables and parameters of some function are overwritten.

Cause: In static models, functions may never be recursive. The C−51
compiler cannot check this. Use the ’FUNCTIONOVERLAY’
option of the linker together with the ’GRAPH()’ option.
Link51 checks if recursion is found in the application,
reports the recursion in a function call graph and refuses to
continue.

Problem: Variables are not ’0’ during startup of the program.

Cause: In the C language it is defined that ’static’ variables, which
are not initialized at startup, have the value ’0’. In C−51 you
have to specify this in the startup code. Another way to get
around this problem is to initialize the variables with the
value ’0’.

Problem: Interrupts are not disabled at startup of the program.

Cause: By default, the C startup code will not clear the enable all
(EA) bit. When you define the preprocessor symbol CLR_EA
all interrupts are disabled at startup. In EDE you can define
this symbol by enabling the option Disable all
interrupts at startup in the Processor | Startup
Code entry of the Project | Project Options...
dialog.

A

MISRA C
A
P
P
E
N
D
IX

Appendix AA−2
M
IS
RA

 C

A

A
P
P
E
N
D
IX

MISRA C A−3

• • • • • • • •

Supported and unsupported MISRA C rules

x means that the rule is not supported by the TASKING C compiler.
(R) is a required rule, (A) is an advisory rule.

1. (R) The code shall conform to standard C, without language
extensions

x 2. (A) Other languages should only be used with an interface
standard

3. (A) Inline assembly is only allowed in dedicated C functions

x 4. (A) Provision should be made for appropriate run−time
checking

5. (R) Only use characters and escape sequences defined by ISO C

x 6. (R) Character values shall be restricted to a subset of ISO
106460−1

7. (R) Trigraphs shall not be used

8. (R) Multibyte characters and wide string literals shall not be
used

9. (R) Comments shall not be nested

x 10. (A) Sections of code should not be "commented out"

11. (R) Identifiers shall not rely on significance of more than 31
characters

12. (A) The same identifier shall not be used in multiple name
spaces

13. (A) Specific−length typedefs should be used instead of the basic
types

14. (R) Use ’unsigned char’ or ’signed char’ instead of plain ’char’

x 15. (A) Floating point implementations should comply with a
standard

x 16. (R) The bit representation of floating point numbers shall not be
used

17. (R) "typedef" names shall not be reused

x 18. (A) Numeric constants should be suffixed to indicate type

19. (R) Octal constants (other than zero) shall not be used

20. (R) All object and function identifiers shall be declared before
use

Appendix AA−4
M
IS
RA

 C

21. (R) Identifiers shall not hide identifiers in an outer scope

22. (A) Declarations should be at function scope where possible

x 23. (A) All declarations at file scope should be static where possible

24. (R) Identifiers shall not have both internal and external linkage

x 25. (R) Identifiers with external linkage shall have exactly one
definition

26. (R) Multiple declarations for objects or functions shall be
compatible

x 27. (A) External objects should not be declared in more than one
file

28. (A) The "register" storage class specifier should not be used

29. (R) The use of a tag shall agree with its declaration

30. (R) All automatics shall be initialized before being used

31. (R) Braces shall be used in the initialization of arrays and
structures

32. (R) Only the first, or all enumeration constants may be
initialized

33. (R) The right hand operand of && or || shall not contain side
effects

34. (R) The operands of a logical && or || shall be primary
expressions

35. (R) Assignment operators shall not be used in Boolean
expressions

x 36. (A) Logical operators should not be confused with bitwise
operators

37. (R) Bitwise operations shall not be performed on signed
integers

38. (R) A shift count shall be between 0 and the operand width
minus 1

39. (R) The unary minus shall not be applied to an unsigned
expression

40. (A) "sizeof" should not be used on expressions with side effects

x 41. (A) The implementation of integer division should be
documented

42. (R) The comma operator shall only be used in a "for" condition

MISRA C A−5

• • • • • • • •

43. (R) Don’t use implicit conversions which may result in
information loss

44. (A) Redundant explicit casts should not be used

45. (R) Type casting from any type to or from pointers shall not be
used

46. (R) The value of an expression shall be evaluation order
independent

47. (A) No dependence should be placed on operator precedence
rules

48. (A) Mixed arithmetic should use explicit casting

49. (A) Tests of a (non−Boolean) value against 0 should be made
explicit

50. (R) F.P. variables shall not be tested for exact equality or
inequality

x 51. (A) Constant unsigned integer expressions should not
wrap−around

52. (R) There shall be no unreachable code

53. (R) All non−null statements shall have a side−effect

54. (R) A null statement shall only occur on a line by itself

55. (A) Labels should not be used

56. (R) The "goto" statement shall not be used

57. (R) The "continue" statement shall not be used

58. (R) The "break" statement shall not be used (except in a
"switch")

59. (R) An "if" or loop body shall always be enclosed in braces

60. (A) All "if", "else if" constructs should contain a final "else"

61. (R) Every non−empty "case" clause shall be terminated with a
"break"

62. (R) All "switch" statements should contain a final "default" case

63. (A) A "switch" expression should not represent a Boolean case

64. (R) Every "switch" shall have at least one "case"

65. (R) Floating point variables shall not be used as loop counters

x 66. (A) A "for" should only contain expressions concerning loop
control

Appendix AA−6
M
IS
RA

 C

x 67. (A) Iterator variables should not be modified in a "for" loop

68. (R) Functions shall always be declared at file scope

69. (R) Functions with variable number of arguments shall not be
used

70. (R) Functions shall not call themselves, either directly or
indirectly

71. (R) Function prototypes shall be visible at the definition and call

72. (R) The function prototype of the declaration shall match the
definition

73. (R) Identifiers shall be given for all prototype parameters or for
none

74. (R) Parameter identifiers shall be identical for
declaration/definition

75. (R) Every function shall have an explicit return type

76. (R) Functions with no parameters shall have a "void" parameter
list

x 77. (R) An actual parameter type shall be compatible with the
prototype

78. (R) The number of actual parameters shall match the prototype

79. (R) The values returned by "void" functions shall not be used

80. (R) Void expressions shall not be passed as function parameters

x 81. (A) "const" should be used for reference parameters not
modified

82. (A) A function should have a single point of exit

83. (R) Every exit point shall have a "return" of the declared return
type

84. (R) For "void" functions, "return" shall not have an expression

85. (A) Function calls with no parameters should have empty
parentheses

x 86. (A) If a function returns error information, it should be tested

87. (R) #include shall only be preceded by other directives or
comments

88. (R) Non−standard characters shall not occur in #include
directives

MISRA C A−7

• • • • • • • •

89. (R) #include shall be followed by either <filename> or
"filename"

90. (R) Plain macros shall only be used for
constants/qualifiers/specifiers

91. (R) Macros shall not be #define’d and #undef’d within a block

92. (A) #undef should not be used

x 93. (A) A function should be used in preference to a function−like
macro

94. (R) A function−like macro shall not be used without all
arguments

x 95. (R) Macro arguments shall not contain pre−preprocessing
directives

96. (R) Macro definitions/parameters should be enclosed in
parentheses

97. (A) Don’t use undefined identifiers in pre−processing directives

98. (R) A macro definition shall contain at most one # or ##
operator

x 99. (R) All uses of the #pragma directive shall be documented

100. (R) "defined" shall only be used in one of the two standard
forms

101. (A) Pointer arithmetic should not be used

102. (A) No more than 2 levels of pointer indirection should be used

x 103. (R) No relational operators between pointers to different objects

104. (R) Non−constant pointers to functions shall not be used

105. (R) Functions assigned to the same pointer shall be of identical
type

106. (R) Automatic address may not be assigned to a longer lived
object

x 107. (R) The null pointer shall not be de−referenced

x 108. (R) All struct/union members shall be fully specified

x 109. (R) Overlapping variable storage shall not be used

x 110. (R) Unions shall not be used to access the sub−parts of larger
types

111. (R) Bit fields shall have type "unsigned int" or "signed int"

Appendix AA−8
M
IS
RA

 C

112. (R) Bit fields of type "signed int" shall be at least 2 bits long

113. (R) All struct/union members shall be named

114. (R) Reserved and standard library names shall not be redefined

115. (R) Standard library function names shall not be reused

x 116. (R) Production libraries shall comply with the MISRA C
restrictions

x 117. (R) The validity of library function parameters shall be checked

118. (R) Dynamic heap memory allocation shall not be used

119. (R) The error indicator "errno" shall not be used

120. (R) The macro "offsetof" shall not be used

121. (R) <locale.h> and the "setlocale" function shall not be used

122. (R) The "setjmp" and "longjmp" functions shall not be used

123. (R) The signal handling facilities of <signal.h> shall not be used

124. (R) The <stdio.h> library shall not be used in production code

125. (R) The functions atof/atoi/atol shall not be used

126. (R) The functions abort/exit/getenv/system shall not be used

127. (R) The time handling functions of library <time.h> shall not be
used

See also section 3.18, C Code Checking: MISRA C, in Chapter Language
Implementation.

B

SFR DEFINITION
FILE

A
P
P
E
N
D
IX

Appendix BB−2
SF

R
FI
LE

B

A
P
P
E
N
D
IX

SFR Definition File B−3

• • • • • • • •

Next is an example of a Special Function Register (SFR) definition file,
created for the 8051, 8031, 8751, 80C51, 80C31 and 87C51 derivatives. See
the −Ccpu compiler option for a list of all SFR files.

/* special function register definition file: reg51.sfr */

_sfrbyte P0 _at(0x80); _sfrbit TR1 _at(0x8E);
_sfrbyte SP _at(0x81); _sfrbit TF1 _at(0x8F);
_sfrbyte DPL _at(0x82); _sfrbit P1_0 _at(0x90);
_sfrbyte DPH _at(0x83); _sfrbit P1_1 _at(0x91);
_sfrbyte PCON _at(0x87); _sfrbit P1_2 _at(0x92);
_sfrbyte TCON _at(0x88); _sfrbit P1_3 _at(0x93);
_sfrbyte TMOD _at(0x89); _sfrbit P1_4 _at(0x94);
_sfrbyte TL0 _at(0x8A); _sfrbit P1_5 _at(0x95);
_sfrbyte TL1 _at(0x8B); _sfrbit P1_6 _at(0x96);
_sfrbyte TH0 _at(0x8C); _sfrbit P1_7 _at(0x97);
_sfrbyte TH1 _at(0x8D); _sfrbit RI _at(0x98);
_sfrbyte P1 _at(0x90); _sfrbit TI _at(0x99);
_sfrbyte SCON _at(0x98); _sfrbit RB8 _at(0x9A);
_sfrbyte SBUF _at(0x99); _sfrbit TB8 _at(0x9B);
_sfrbyte P2 _at(0xA0); _sfrbit REN _at(0x9C);
_sfrbyte IE _at(0xA8); _sfrbit SM2 _at(0x9D);
_sfrbyte P3 _at(0xB0); _sfrbit SM1 _at(0x9E);
_sfrbyte IP _at(0xB8); _sfrbit SM0 _at(0x9F);
_sfrbyte PSW _at(0xD0); _sfrbit P2_0 _at(0xA0);
_sfrbyte ACC _at(0xE0); _sfrbit P2_1 _at(0xA1);
_sfrbyte B _at(0xF0); _sfrbit P2_2 _at(0xA2);
_sfrbit P0_0 _at(0x80); _sfrbit P2_3 _at(0xA3);
_sfrbit P0_1 _at(0x81); _sfrbit P2_4 _at(0xA4);
_sfrbit P0_2 _at(0x82); _sfrbit P2_5 _at(0xA5);
_sfrbit P0_3 _at(0x83); _sfrbit P2_6 _at(0xA6);
_sfrbit P0_4 _at(0x84); _sfrbit P2_7 _at(0xA7);
_sfrbit P0_5 _at(0x85); _sfrbit EX0 _at(0xA8);
_sfrbit P0_6 _at(0x86); _sfrbit ET0 _at(0xA9);
_sfrbit P0_7 _at(0x87); _sfrbit EX1 _at(0xAA);
_sfrbit IT0 _at(0x88); _sfrbit ET1 _at(0xAB);
_sfrbit IE0 _at(0x89); _sfrbit ES _at(0xAC);
_sfrbit IT1 _at(0x8A); _sfrbit EA _at(0xAF);
_sfrbit IE1 _at(0x8B); _sfrbit P3_0 _at(0xB0);
_sfrbit TR0 _at(0x8C); _sfrbit RXD _at(0xB0);
_sfrbit TF0 _at(0x8D); _sfrbit P3_1 _at(0xB1);

Appendix BB−4
SF

R
FI
LE

_sfrbit TXD _at(0xB1); _sfrbit RS1 _at(0xD4);
_sfrbit INT0 _at(0xB2); _sfrbit F0 _at(0xD5);
_sfrbit P3_2 _at(0xB2); _sfrbit AC _at(0xD6);
_sfrbit INT1 _at(0xB3); _sfrbit CY _at(0xD7);
_sfrbit P3_3 _at(0xB3); _sfrbit ACC_0 _at(0xE0);
_sfrbit P3_4 _at(0xB4); _sfrbit ACC_1 _at(0xE1);
_sfrbit T0 _at(0xB4); _sfrbit ACC_2 _at(0xE2);
_sfrbit P3_5 _at(0xB5); _sfrbit ACC_3 _at(0xE3);
_sfrbit T1 _at(0xB5); _sfrbit ACC_4 _at(0xE4);
_sfrbit P3_6 _at(0xB6); _sfrbit ACC_5 _at(0xE5);
_sfrbit WR _at(0xB6); _sfrbit ACC_6 _at(0xE6);
_sfrbit P3_7 _at(0xB7); _sfrbit ACC_7 _at(0xE7);
_sfrbit RD _at(0xB7); _sfrbit B_0 _at(0xF0);
_sfrbit PX0 _at(0xB8); _sfrbit B_1 _at(0xF1);
_sfrbit PT0 _at(0xB9); _sfrbit B_2 _at(0xF2);
_sfrbit PX1 _at(0xBA); _sfrbit B_3 _at(0xF3);
_sfrbit PT1 _at(0xBB); _sfrbit B_4 _at(0xF4);
_sfrbit PS _at(0xBC); _sfrbit B_5 _at(0xF5);
_sfrbit P _at(0xD0); _sfrbit B_6 _at(0xF6);
_sfrbit OV _at(0xD2); _sfrbit B_7 _at(0xF7);
_sfrbit RS0 _at(0xD3);

C

RESTRICTIONS FOR
THE 80751 AND THE
80752

A
P
P
E
N
D
IX

Appendix CC−2
80
75
1/
80
75
2

C

A
P
P
E
N
D
IX

Restrictions for the 80751 and the 80752 C−3

• • • • • • • •

The 8xC751 and 8xC752 processors do not allow usage of the LCALL/LJMP
and MOVX instructions. The following actions should be taken when you
are not using EDE:

• Always call the assembler asm51 with the SMALLROM and
NOEXTERNALMEMORY controls.

The SMALLROM control translates all LCALL/LJMP to ACALL/AJMP
instructions and the NOEXTERNALMEMORY control issues an error
when a MOVX instruction is encountered.

• Always use the −rs compiler option to tell the compiler that it must
generate ACALL/AJMP instructions instead of LCALL/LJMP
instructions.

With EDE, the assembler and compiler are automatically called with the
controls and option mentioned above when you select the 8xC751 or
8xC752 processor.

The C library is delivered as c751s.lib. It contains no floating point
functions, because floating point needs xdat memory. It also contains no
run−time routines using pdat or xdat (not possible on this type of
processor).

The floating point library is not supported due to the very limited
resources of the 751 (only 64 bytes of RAM).

Appendix CC−4
80
75
1/
80
75
2

D

CONVERTING
PL/M−51
APPLICATIONS TO
C−51

A
P
P
E
N
D
IX

Appendix DD−2
PL

/M
−5
1
TO

 C
−5
1 D

A
P
P
E
N
D
IX

Converting PL/M−51 applications to C−51 D−3

• • • • • • • •

1 INTRODUCTION

This appendix describes some reasons why you should rewrite your
PL/M−51 program within C−51. Then it describes how to convert an
existing application written in PL/M−51 to C−51. It is noted what the
difficulties are when converting to C−51. This appendix is not meant to
learn the C language to a PL/M programmer.

2 WHY CONVERTING TO C−51

There has to be at least one good reason to rewrite a program into another
language. This section contains a number of reasons why an existing
application written in the PL/M−51 language should be rewritten in C−51.

• C applications are portable, switching to another processor in the
future can be done just by recompiling your sources. Only target
dependent portions of the program have to be rewritten.

• All programming constructs from the PL/M−51 language can be
rewritten to C−51, except for the ’based variable’ principle. Using
pointers within C will normally overcome this problem.

• C−51 has more different memory models. Each memory model uses
a different type of memory (data, pdat, xdat) to pass the procedure
parameters. With PL/M−51, you have no choice, variables are
always passed using internal RAM. This restricts the application in
using variables.

• C−51 delivers a large set of standard library procedures, while
PL/M−51 only has a few.

• C−51 produces code which is as small as, and most of the time even
smaller in size than, code generated by the PL/M−51 compiler. Code
also executes faster.

• C−51 supports floating point. PL/M−51 has no floating point
arithmetic available within the language.

• C−51 has a reentrant model in which you can write recursive
programs. PL/M−51 does not have such a model.

• Overlaying of data (parameters/automatics) within C−51 is done on
function/procedure base. Therefore it is not needed to place all
code within one source module to get the best overlaying results.

Appendix DD−4
PL

/M
−5
1
TO

 C
−5
1

• C−51 is able to work together with PL/M−51 modules. The main
procedure of the program MUST be written within C. Overlaying
data of PL/M−51 modules with C−51 procedures is not possible.
Mixing C−51 and PL/M−51 may cause a less optimal usage of data
memory.

3 POINTS OF ATTENTION

From here we will note a number of things you should take care of, when
converting your PL/M−51 source to C−51. Constructions not noted here are
really straightforward to convert between the two languages. You only
need to have little knowledge of the PL/M−51 language and the C
language to be able to convert those constructions.

Names and identifiers

Within C, the ’$’ character is a real character within an identifier. In
PL/M−51 this character is ignored when comparing names of identifiers.

Data types

Basic data types of PL/M−51 do also exist within C−51. Note that all data
types within PL/M−51 are unsigned types. Within C−51, you have to
specify a variable to be unsigned, while default types are signed.

Constants

C−51 does not have a notation for binary numbers. Instead you have to
use decimal, octal or hexadecimal notation.

Variables

A variable cannot be ’AT’ed at another variable within C−51. Instead you
should use union variable types. Declaring a struct of eight bits on the
same address as a character can be done with use of the _bitbyte type
variable.

Placing a variable on an absolute address is done with the _at() attribute.

Special function registers are NOT declared using the register keyword.
You can place your own special function registers using the _sfrbit and
_sfrbyte data types.

’BASED’ variables is in fact the same as using pointers from within C−51.
Pointers to bit variables do not exist.

Converting PL/M−51 applications to C−51 D−5

• • • • • • • •

Procedures

Procedures cannot be declared as nested procedures. Hiding the
occurrence of a procedure to another source module can be done using
the ’static’ attribute.

Type conversions

Type conversions within C−51 are different than in PL/M−51. In C−51,
whenever an expression contains an integer and a character, the character
is always converted to an integer. I.e. an unsigned character has a high
byte value of 0, a signed character will get sign extension in its high byte.

Expressions containing bit variables, together with other types of variables
are allowed within C−51. The bit variable will be converted to the type
required, the result of the conversion is the value 0 or 1.

Statements

The ’DO WHILE’ of PL/M−51 is the same as the ’while’ within C−51. Do
NOT use the ’do while’ construction within C−51 for this, because the test
is done afterwards, the loop will always be executed at least once.

You cannot program a GOTO from one procedure to another.

Indirect procedure call

Like in PL/M−51, within C−51 you cannot transfer parameters to a
procedure called indirectly. The one exception is when programming in
the reentrant model of C−51. Also like PL/M−51, the linker will not notice
indirectly called procedures, therefore you have to specify to the linker
which procedures do call each other indirectly, otherwise the linker will
overlay the parameter and local space of these procedures. This results in
incorrect execution behavior of the program.

It is not possible to specify a procedure to be called indirectly.

PL/M−51 built−in procedures

C−51 does not have the built−in procedures like PL/M−51. However, most
of the procedures can easily be simulated using some macro definitions.
Here the macro definitions follow, which you can use within the
C−program.

Appendix DD−6
PL

/M
−5
1
TO

 C
−5
1

#define LENGTH(x) (sizeof(x)/sizeof(x[0]))
#define LAST(x) (LENGTH(x)−1)
#define SIZE(x) (sizeof(x))
#define LOW(x) ((unsigned char)(x))
#define HIGH(x) ((unsigned char)((x) >> 8))
#define DOUBLE(x) ((unsigned int)(x))
#define BOOLEAN(x) ((x) & 0x01)
#define EXPAND(x) ((unsigned char)(x))
#define PROPAGATE(x) ((unsigned char)(0−(x)))
#define SHL(x,y) ((x) << (y))
#define SHR(x,y) ((x) >> (y))
#define DEC(x) (_da((x) −= 1))

For ’ROL’ and ’ROR’ you can use the built−in C−51 procedures ’_rol’ and
’_ror’. However these can only be used on character type variables. There
is no such procedure for integer type variables.

Instead of ’TESTCLEAR’ you should use the built−in procedure ’_testclear’
within C−51.

C−51 has no alternative to the ’TIME’ procedure. Also no alternatives are
present to the ’SCL’ and ’SCR’ procedures. Because these procedures are
not easily programmed within C (or they will need a lot of code), these
procedures can best be written within assembly (or inline assembly within
the C−program).

Note the ’DEC’ macro as written above uses the inline procedure ’_da()’ to
do the decimal adjust.

4 USING PL/M−51 TOGETHER WITH C−51

It is possible to mix C−51 code with PL/M−51 code. Thus you are able to
rewrite parts of the program within C−51, while other parts remain written
within PL/M−51.

One restriction has to be noticed. When linking your PL/M−51 application,
normally the option OVERLAY is used. This option will overlay data of
modules which do not call each other. You have to specify to the linker
which modules do call each other indirectly.

When creating an application within C−51, normally the option
FUNCTIONOVERLAY is used to the linker. This option will overlay data of
procedures which do not call each other. Now you have to specify which
procedures call each other indirectly.

Converting PL/M−51 applications to C−51 D−7

• • • • • • • •

Because these two overlaying mechanisms are incompatible. When mixing
PL/M−51 with C−51 code you have to choose one of the overlaying
mechanisms. This results in less optimal data overlaying, because data of
C−51 modules will never be overlayed with data of PL/M−51 modules.
Thus probably more data space will be necessary in relation to the
application being completely written in one language.

Appendix DD−8
PL

/M
−5
1
TO

 C
−5
1

E

CPU FUNCTIONAL
PROBLEMS

A
P
P
E
N
D
IX

Appendix EE−2
CP

U
PR

O
BL

EM
S E

A
P
P
E
N
D
IX

CPU Functional Problems E−3

• • • • • • • •

1 INTRODUCTION

Several chip suppliers publish microcontroller errata sheets for reporting
both functional problems and deviations from the electrical and timing
specifications.

For some of these functional problems in the microcontroller itself,
TASKING’s 8051 C compiler and/or assembler can provide workarounds.
In fact these are software workarounds for hardware problems.

This appendix lists a summary of functional problems which can be
bypassed by the compiler tool kit.

Please refer to the chip supplier’s errata sheets to verify if you need to use
one of these bypasses.

Appendix EE−4
CP

U
PR

O
BL

EM
S

2 CPU FUNCTIONAL PROBLEM BYPASSES

Generate NOP instruction before DIV AB instruction

Dallas reference: Dallas DS80C390 erratum #6, revision B3 01/19/00

Use compiler option:

−bp1

or use assembler control:

BYPASS(1)

When you use the Dallas DS80C390 derivative, the DIV AB instruction may
return erroneous results if the A register is accessed immediately preceding
the DIV AB instruction.

With the compiler option −bp1 (or the assembler control BYPASS(1)) an
extra NOP is inserted before any DIV AB instruction.

F

MIGRATION FROM
KEIL, FRANKLIN OR
ARCHIMEDES

A
P
P
E
N
D
IX

Appendix FF−2
M
IG
RA

TI
O
N

F

A
P
P
E
N
D
IX

Migration from Keil, Franklin or Archimedes F−3

• • • • • • • •

1 INTRODUCTION

This appendix explains how you can migrate your C−51 application from
the Keil, Franklin or Archimedes C−51 compiler to the TASKING C−51
compiler (cc51).

There are two major areas of differences between the two compilers which
are the cause of most of the changes you will have to deal with. First of all
the C language extensions present in both compilers to support special
8051 family features. And secondly the compiler output. The Keil compiler
produces an object file as output whereas the TASKING compiler
generates an assembler file. The Keil compiler uses controls to steer the
behavior of the compiler. The TASKING compiler behavior is steered with
the more commonly used options, making command lines both shorter
and clearer.

2 ANSI−C EXTENSIONS

In the TASKING compiler all extra keywords for the 8051 extensions of
ANSI−C have an underscore prefix. The most frequently occurring
differences in keywords between the Keil compiler and the TASKING
compiler can be resolved by using preprocessor definitions. The header
file keil.h contains these definitions. This file can be ’included’ for all C
source files using the command line option "−Hkeil.h".

2.1 MEMORY TYPE QUALIFIERS

Both compilers have the same memory type qualifiers, which are used in
the same place in the grammar so a simple preprocessor definition
suffices. For this purpose the definitions listed below are included in
keil.h.

/* memory type keywords */

#define data _data
#define bdata _bdat
#define idata _idat
#define pdata _pdat
#define xdata _xdat
#define code _rom

Appendix FF−4
M
IG
RA

TI
O
N

2.2 POINTERS

The TASKING compiler does not support generic (3−byte) pointers, since it
is considered to be too costly both in execution time and memory usage.
Therefore, pointers declared without a specification of the referred
memory type will point to the default memory type (which depends on
the selected memory model) being either 1 or 2 bytes. This rule is also
valid for library functions using pointers. Sometimes you might want to
make an exception, e.g. to keep the format strings of the printf()
function and related library functions in rom. This is also supported, as is
explained in section 3.10 Strings.

2.3 ABSOLUTE VARIABLE ALLOCATION

The way of specifying the address for an absolute variable is also different
for the two compilers, as is shown below.

/* Keil compiler */ /* TASKING compiler */

char var _at_ 0x80; char var _at(0x80);

The TASKING way makes it easy to make a preprocessor define to convert
the ANSI−C extension. This is particularly useful when you want to
compile your program with a compiler for your host. Especially for this
purpose the include file cc51.h has been included in the package.

2.4 SFR REGISTERS

As with absolute variable allocation the TASKING compiler uses a different
way of specifying the address of an SFR register than the Keil compiler, as
is shown in the following example:

/* Keil compiler */ /* TASKING compiler */

sfr PSW = 0xd0; _sfrbyte PSW _at(0xd0);
sbit OV = PSW ^ 2; _sfrbit OV _atbit(PSW, 2);

However, you will rarely need to specify an SFR register, because for most
8051 derivatives a register include file is delivered with the package.

Migration from Keil, Franklin or Archimedes F−5

• • • • • • • •

The Keil sfr16 type is supported by the TASKING compiler, however the
Keil sfr16 type implicitly handles SFR registers little endian, even though
by default integers are handled big endian. To handle SFR words in little
endian the TASKING compiler supports the specifier _little, so the Keil
sfr16 type equals the TASKING _sfrword _little type.

/* Keil compiler */ /* TASKING compiler */

sfr16 RCAP2 = 0xca; _sfrword _little RCAP2 _at(0xca);

2.5 FUNCTION QUALIFIERS

For the TASKING compiler the extra qualifiers for functions defined for the
ANSI extension appear in the syntax before the function name and
parameter list. This is conform the ANSI syntax for assigning type and
other qualifiers to an object (variable or function). In contrast these
attributes appear after the function name and parameter list in the syntax
for the Keil compiler.

/* Keil compiler */

int func(char c) small interrupt 1 using 2
{
 <function_code>
}

/* TASKING compiler */

_small _interrupt(1) _using(2) int func(char c)
{
 <function_code>
}

Note that for the TASKING compiler ’reentrant’ is a separate model and
not, as for the Keil compiler, a function attribute. So, for the migration
from the Keil compiler to the TASKING compiler you should use the
_reentrant model qualifier for every function with the reentrant
qualifier. You should ignore any model qualifier you were using in
combination with the reentrant qualifier:

Appendix FF−6
M
IG
RA

TI
O
N

/* Keil compiler */

int func(char c) large reentrant

/* TASKING compiler */

_reentrant int func(char c)

The function qualifier used by both compilers to make parameter passing
for a function according to the PL/M−51 convention is placed in both
grammars before the function identifier. So, the preprocessor definition
included in keil.h, as shown below, is sufficient for an easy migration
on this point.

/* function qualifier keyword */

#define alien _plmprocedure

2.6 ASSEMBLY INTERFACE

The passing of parameters to a function via registers is exactly the same in
both compilers. The name and offset for parameters passed in memory is
incomparable between the two compilers.

The two compilers use almost the same registers for the return value of a
function, as shown in the following table.

Return Type Keil Compiler TASKING Compiler

bit Carry Carry

char /
1−byte pointer

R7 A

int /
2−byte pointer

R6−R7 R6−R7

long R4−R7 R4−R7

float R4−R7 Floating point stack

generic pointer R1−R3 −

Table F−1: Function return types

Migration from Keil, Franklin or Archimedes F−7

• • • • • • • •

2.7 BUILT−IN (INTRINSIC) FUNCTIONS

Both compilers have several built−in (intrinsic) functions. However, only
four of them have the same objective. For these four a preprocessor
definition, which is included in the header file keil.h as listed below,
will establish the migration.

/* names inline functions */

#define _crol_ _rol
#define _cror_ _ror
#define _testbit_ _testclear
#define _nop_ _nop()

For the other built−in rotate functions of the Keil compiler, namely
irol, _lrol_, _iror_ and _lror_, there are no direct replacements.

The TASKING compiler has two other built−in functions namely _getbit
and _putbit, which can be used to manipulate bits in an arbitrary
bitaddressable byte without the need to declare a separate bit identifier for
each bit.

2.8 LIBRARY ROUTINES

The prototypes of the library routines of the TASKING compiler package
are conform to the ANSI standard. This is not the case for the libraries
included in the Keil compiler package. However, in most of these cases
the Keil library uses character parameters where the TASKING library uses
integers, but due to automatic type conversions generated by the compiler
this will usually not create problems.

Both compiler packages allow you to change the I/O mechanism for all
I/O functions by changing one function for input and one for output. For
the Keil libraries these are getkey() and putchar() and for the
TASKING libraries these are _ioread() and _iowrite() respectively.
The latter two get a parameter with a stream number passed, thus allowing
you to support several independent I/O streams, each with its own
mechanism.

Appendix FF−8
M
IG
RA

TI
O
N

3 COMPILER INVOCATION

3.1 MEMORY MODELS

The Keil compiler has three memory models, namely small, compact and
large. The TASKING compiler has four models, the first three namely
small, aux and large respectively are equivalent to the Keil models. The
fourth TASKING model is reentrant.

The TASKING compiler always keeps the large virtual stack required for
reentrancy in external memory, whereas the Keil compiler keeps it in the
default memory determined by the used memory model.

Since the TASKING compiler has a reentrant model, it also has a library to
go with it. The parameter passing to the functions included in this library
use the reentrant convention, that is via the virtual stack if there are not
enough registers.

3.2 LIBRARIES

Both compiler packages contain a library for each memory model. They
both use the same naming conventions, thus the following shows the
names of equivalent libraries.

Compiler Model Keil
Compiler

TASKING
Compiler

Small c51s.lib c51s.lib

Compact/Auxpage c51c.lib c51a.lib

Large c51l.lib c51l.lib

Reentrant − c51r.lib

Table F−2: Libraries

Migration from Keil, Franklin or Archimedes F−9

• • • • • • • •

The Keil compiler package also contains a floating point library for all
three memory models. In contrast the TASKING package contains two
floating point libraries, which can be used independent of the selected
memory model. The most commonly used floating point library (called
float.lib) keeps the floating point stack in external ram (XDATA),
whereas the other one (called floats.lib) keeps it in internal ram
(IDATA). The IDATA version contains only the most basic floating point
operations. In general, the smaller one, with respect to data memory
usage, is comparable with the small model version of the Keil package
(c51fps.lib), and the other one is comparable with the large model
version of the Keil package (c51fpl.lib).

3.3 CONTROLS OR PRAGMAS

For the Keil compiler all compiler controls can also be used as a pragma
within the C source code. The TASKING compiler has some equivalent
notation for most of these directives, either as a compiler command line
option or a C source pragma or both, or as an assembler directive. The
table below shows how to convert Keil directives to an equivalent
TASKING notation.

Keil TASKING Comment

aregs
noaregs

no translation

asm
endasm

asm
endasm

compiler pragma
compiler pragma

code assembly is always generated, use −s for
mixing with source code

compact −Ma compiler option

debug
nodebug

−g compiler option

define −D compiler option

disable no translation

eject eject assembler directive

interval use assembly

intpromote
nointpromote

handled automatically by compiler

intvector use assembly

large −Ml compiler option

Appendix FF−10
M
IG
RA

TI
O
N

CommentTASKINGKeil

listinclude −li
listinc

compiler option or
compiler pragma

maxarg −a
arglist

compiler option or
compiler pragma

noamake no translation

nocond no translation

noextend −U_CC51
−Hcc51.h

compiler options

object
noobject

object
noobject

assembler directive
assembler directive

objectextend default behavior

optimize −O
optimize

compiler option or
compiler pragma
see following paragraph

order −Ot compiler option

pagelength pagelength assembler directive

pagewidth pagewidth assembler directive

preprint −E compiler option

print print assembler directive

regfile −C compiler option

registerbank registerbank assembler directive

regparms −Or compiler option

rom small
rom compact
rom large

−rs
−rm
−rl

compiler option
compiler option
compiler option

save save assembler directive

restore restore assembler directive

small −Ms compiler option

src −o compiler option

symbols use linker map file

Table F−3: Controls, pragmas and options

Migration from Keil, Franklin or Archimedes F−11

• • • • • • • •

3.4 COMPILER OPTIMIZATIONS

Both C compilers allow you to customize the compiler optimizations. The
Keil compiler uses the optimize control or pragma and the TASKING
compiler uses the −O option or the optimize pragma.

The TASKING compiler allows you to switch on or off most optimization
mechanisms independent of other optimizations. This in contrast with the
Keil compiler which only allows you to select a certain level of
optimization except for optimization seperatly on speed or size.

The following table shows which TASKING optimizations options are
comparable to the extra optimizations introduced for each Keil optimize
level. Some of the Keil optimizations, however, cannot be switched off in
the TASKING compiler, for example, constant folding (Keil level 0), data
overlaying (Keil level 2), etc.

Keil
Compiler

TASKING
Compiler

size F

speed f

0 p

1 p

2

3 h

4 w
// and a #pragma see
4.4 Pragmas for switch
statements

5 c, s

6 l

Table F−4: Optimization

The TASKING compiler offers you many more optimizations. Refer to the
description of the −O option for a detailed description.

Appendix FF−12
M
IG
RA

TI
O
N

INDEX
IN

D
E
X

IndexIndex−2
IN
DE

X

IN
D
E
X

Index Index−3

• • • • • • • •

Symbols
#define, 4−18
#include, 4−27, 4−79
#pragma, 4−82
alias, 4−82
arglist, 4−82
asm, 4−82
asm_noflush, 4−83
binary_switch, 4−83
cse, 4−83
endasm, 4−83
extend, 4−83
intsave, 4−83
jump_switch, 4−83
linear_switch, 4−83
listinc, 4−83
message, 4−84
noalias, 4−82
nolistinc, 4−83
nopage, 4−84
nosource, 4−85
novector, 4−85
optimize, 4−84
page, 4−84
ramstring, 4−84
romstring, 4−85
size, 4−85
smart_switch, 4−84
source, 4−85
speed, 4−85
vector, 4−85

#undef, 4−70
−a option, 3−27
−b option, 3−49
−C option, 3−21
−M option, 3−7, 3−42
−O option, 3−57
−S option, 3−34, 3−35, 3−36
−s option, 3−42
−v option, 3−49
__DATE__, 4−70

__FILE__, 4−70
__HEAPEND, 7−28
__HEAPLENGTH, 7−13
__HEAPSTART, 7−13, 7−28
__interrupt, 3−48
__LINE__, 4−70
__PARMx, 7−24
__PRAMx, 3−26
__SP, 7−12
__START, 7−5
__STDC__, 4−70
__STKSTART, 7−5, 7−12
__TIME__, 4−70
__TOP_OF_VIRT_STACK, 7−12
_at attribute, 3−11
_atbit attribute, 3−12
_bdat, 3−6
_BIT, 7−28
_bit, 3−13, 3−18
_bitbyte, 3−13, 3−20
_BYTE, 7−24, 7−28
_CC51, 3−56, 4−70
_cdecl, 3−24
_da, 3−43
_data, 3−6
_frame, 7−19
_getbit, 3−46
_idat, 3−6
_inline, 3−39
_interrupt, 3−48
_ioread, 6−10
_ioread.c, 6−10
_iowrite, 6−10
_iowrite.c, 6−10
_jmp, 3−43
_little, 3−22
_MODEL, 3−10, 4−70
_nop, 3−43
_pdat, 3−6
_pop, 3−44
_push, 3−44
_putbit, 3−47

IndexIndex−4
IN
DE

X
_regparm, 3−24
_rol, 3−45
_rom, 3−6
_ROMMODEL, 3−10
_ror, 3−45
_sfrbit, 3−13, 3−21
_sfrbyte, 3−13, 3−21
_sfrword, 3−13, 3−21, 3−22
_simi, 6−10
_simo, 6−11
_testclear, 3−42
_tolower, 6−11
_toupper, 6−11
_using, 3−48
_xdat, 3−6

Numbers
80751 restrictions, C−1
80752 restrictions, C−1

A
abs, 6−11
acos, 6−12
address space overflow, 3−29
address spaces, 3−5
alias, 4−40, 4−82, 4−86
ANSI C, extensions, F−3
ansi standard, 2−3, 3−3, 4−70
ar51, 2−10, 3−27, 6−48
Archimedes, migration from, F−1
arglist, 4−82
asin, 6−12
asm, 4−82
asm_noflush, 4−83
asm51, 2−8
assembly interface, F−6
assembly language interfacing, 7−23
assembly routine, 7−23
assembly source file, 2−8

assert, 6−12
assert.h, 6−3
assert, 6−12

atan, 6−12
atan2, 6−13
atof, 6−13
atoi, 6−13
atol, 6−13
automatic variables, 3−28

B
backend
compiler phase, 2−4
optimization, 2−4

bank switching, 4−14
binary search table, 3−54
binary_switch, 3−55, 4−83
bit, 3−13, 3−18, 7−8
bit field, 3−19
bsearch, 6−14
build, viewing results, 2−21
build an application, 2−22
command line, 2−22
EDE, 2−21
makefile, 2−23

built−in functions, 3−42, F−7

C
C
inline functions, 3−39
language extensions, 3−3

C library, 6−4
creating your own, 6−48
implementation details, 6−6
interface description, 6−10
name syntax, 6−4

C startup code, 3−34, 7−3
calloc, 6−14
cc51 invocation, 4−3

Index Index−5

• • • • • • • •

cc51.h, 3−56, 6−3
CC51INC, 4−27, 4−79
ceil, 6−14
character arithmetic, 3−17, 4−9
clock, 6−15
code, 7−9
code checking, 3−52
code density, 3−19, 4−44
code generator, 2−5, 3−23, 3−31
code rearranging, 4−50
command line processing, 4−22
comments, C++ style, 4−10
common subexpression elimination,

2−7
compile, 2−21
compiler, optimizations, F−11
compiler diagnostics, 5−1
compiler limits, 4−88
compiler options, F−9
−?, 4−8
−A, 4−9
−a, 4−12
−b, 4−13, 4−15
−banks, 4−14
−C, 4−16
−c, 4−17
−D, 4−18
−E, 4−19
−e, 4−20
−Em, 4−19
−err, 4−21
−f, 4−22
−g, 4−24
−ge, 4−24
−gf, 4−24
−gl, 4−24
−gr, 4−24
−H, 4−26
−I, 4−27
−ivo, 4−28
−l, 4−29
−li, 4−29
−M, 4−30

−m, 4−31, 4−63
−misrac, 4−32
−misrac−advisory−warnings, 4−33
−misrac−required−warnings, 4−33
−n, 4−34
−nofastparm, 4−35
−noregaddr, 4−36
−O, 4−37, 4−39
−o, 4−59
−Oa / −OA, 4−40
−Oc / −OC, 4−41
−Od / −OD, 4−43, 4−44
−Oh / −OH, 4−46
−Oi / −OI, 4−47
−Ok / −OK, 4−48
−Ol / −OL, 4−49
−Om / −OM, 4−50
−Op / −OP, 4−52
−Or / −OR, 4−53
−Os / −OS, 4−54
−Ot / −OT, 4−55
−Ov / −OV, 4−57
−Ow / −OW, 4−58
−pa / −pd / −pp / −ps, 4−60
−R, 4−61
−S, 4−65
−s, 4−66
−se, 4−67
−shiftright−signfill, 4−68
−t, 4−69
−U, 4−70
−u, 4−71
−V, 4−72
−v, 4−73
−vf, 4−74
−vo, 4−75
−w, 4−76
−wstrict, 4−76
−x, 4−77
−z, 4−78
detailed option description, 4−7�4−78
overview, 4−3
overview in functional order, 4−5

IndexIndex−6
IN
DE

X
compiler phases, 2−4
backend, 2−4
code generator phase, 2−5
optimization phase, 2−4
peephole optimizer phase, 2−5

frontend, 2−4
optimization phase, 2−4
parser phase, 2−4
preprocessor phase, 2−4
scanner phase, 2−4

compiler structure, 2−8
compiler use, 4−1
compound assignment, 4−48
conditional bit jump, 2−5
conditional jump reversal, 2−6, 4−52
configuration
EDE directories, 1−8
UNIX, 1−9

const, 3−6
constant, D−4
constant folding, 2−5
constant propagation, 2−6, 4−43
control flow optimization, 2−6, 4−52
controls, F−9
conversion, PL/M−51 to C−51, D−1
conversions, ANSI C, 3−14
copy propagation, 2−6, 4−43
cos, 6−15
cosh, 6−15
cpu, 3−21
creating a makefile, 2−18
cross−assembler, 2−8
CSE, 2−7, 4−17, 4−41
cse, 4−83
cstart.asm, 7−3
defines, 7−3

cstart.obj, 7−3, 7−26
ctype.h, 6−3
_tolower, 6−11
_toupper, 6−11
isalnum, 6−22
isalpha, 6−23
isascii, 6−23

iscntrl, 6−23
isdigit, 6−23
isgraph, 6−23
islower, 6−24
isprint, 6−24
ispunct, 6−24
isspace, 6−24
isupper, 6−24
isxdigit, 6−25
toascii, 6−43
tolower, 6−43
toupper, 6−43

D
data, 3−6, 7−8
data pointer, 7−21
multiple, 4−60, 7−21

data types, 3−13�3−23, D−4
_bit / bit, 3−13
_bitbyte, 3−13
_sfrbit, 3−13
_sfrbyte, 3−13
_sfrword, 3−13
1−byte pointer, 3−13
2−byte pointer, 3−13
enum, 3−13
float, 3−13
signed char, 3−13, 3−14
signed int, 3−13
signed long, 3−13
signed short, 3−13
unsigned char, 3−13, 3−14
unsigned int, 3−13
unsigned long, 3−13
unsigned short, 3−13

dead code elimination, 2−7
debug information, 4−24
debugger, starting, 2−24
derivatives, 2−3, 4−16
development flow, 2−9

Index Index−7

• • • • • • • •

directories, setting, 1−8, 1−9
directory separator, 4−80
div, 6−15
double, 7−14

E
EDE
build an application, 2−21
create a project, 2−16
create a project space, 2−15
rebuild an application, 2−22
specify development tool options,

2−19
starting, 2−13

endasm, 4−83
enum, 3−13, 4−67
environment variables, 1−9
ASMDIR, 1−9
CC51INC, 1−9, 4−27, 4−79
CC51LIB, 1−9
LM_LICENSE_FILE, 1−9, 1−16
PATH, 1−9
TASKING_LIC_WAIT, 1−10
TMPDIR, 1−10

errno.h, 6−3
error level, 5−4
errors, 5−6
backend, 5−34
frontend, 5−6

example, using the makefile, 2−23
execution speed, 3−19, 4−44
execution time, 3−24
exit, 6−16
exit status, 5−4, 5−5
exp, 6−16
expression rearrangement, 2−5
expression simplification, 2−5
extend, 4−83
extensions to C, 3−3
external RAM, 3−27

F
fabs, 6−16
fast loops, 4−49
fgetc, 6−16
fgets, 6−17
file extensions, 2−11
float, 3−13, 7−14
float.h, 6−3
floating license, 1−12
floating point, 7−14
operators, 7−14
stack, 7−5

floats.lib, 7−14
floor, 6−17
fmod, 6−17
FO option, 3−28, 7−27
FORM_CONST, 3−35
formatters
printf, 6−47
scanf, 6−47

fprintf, 6−17
fputc, 6−18
fputs, 6−18
Franklin, migration from, F−1
fread, 6−18
free, 6−19
frexp, 6−19
frontend
compiler phase, 2−4
optimization, 2−4, 2−5

fscanf, 6−19
function parameters, 3−23
function pointers, 3−38
function qualifier, _frame, 7−19
function qualifiers, F−5
function return types, 7−7
functional problems, E−3
FUNCTIONOVERLAY, 7−27
functionoverlay, 3−29, 3−38, D−6
functions
built−in, 3−42, F−7

IndexIndex−8
IN
DE

X
intrinsic, 3−42, F−7
leaf, 3−26
non−leaf, 3−26

fwrite, 6−20

G
getc, 6−20
getchar, 6−20
gets, 6−21

H
header files, 6−3
HEAP, 7−13
heap, 7−13
heap size, 7−5, 7−13
host ID, determining, 1−17
host name, determining, 1−17

I
I/O mechanism, F−7
idat, 3−6
idata, 7−8
identifier, 4−10, D−4
ididcpy, 6−21
ididmove, 6−22
idxdcpy, 6−22
idxdmove, 6−22
IEEE 32−bit single precision format,

3−14
ieee51, 2−8
ihex51, 2−10
include files, 4−79
default directory, 4−80
setting search directories, 1−8, 1−9

initialization loops, 4−54
initialized C variables, 7−6

initialized variables, 3−33
inline assembly, 3−41
inline.c, 3−42
installation
licensing, 1−12
Linux, 1−4
Debian, 1−5
RPM, 1−4
tar.gz, 1−5

UNIX, 1−6
Windows, 1−3

integral promotion, 3−14
function, inline C, 3−39
internal RAM, 3−26
interrupt functions, 7−15
interrupt handler, 7−17
interrupt vector, 4−28
interrupt vectors, 7−5
intrinsic functions, 3−42, F−7
_da, 3−43
_jmp, 3−43
_nop, 3−43
_pop, 3−44
_push, 3−44
_rol, 3−45
_ror, 3−45
_testclear, 3−42, 3−46, 3−47

introduction, 2−3
intsave, 4−83
invariant code, 4−47
invocation, compiler, 4−3
isalnum, 6−22
isalpha, 6−23
isascii, 6−23
iscntrl, 6−23
isdigit, 6−23
isgraph, 6−23
islower, 6−24
isprint, 6−24
ispunct, 6−24
isspace, 6−24
isupper, 6−24
isxdigit, 6−25

Index Index−9

• • • • • • • •

J
jump chain, 3−54
jump chaining, 2−6, 4−52
jump table, 3−54
jump_switch, 3−55, 4−83

K
Keil, migration from, F−1
keil.h, 6−3, F−3
keyword, _inline, 3−39

L
labs, 6−25
language extensions, 4−9
language implementation, 3−1
ldexp, 6−25
ldiv, 6−25
leaf function, 3−26
libraries, 6−1, F−8
C, 6−4
floating point, 6−5
name syntax, 6−4
printf, 6−47
protected, 6−4
run−time, 6−48
scanf, 6−47
setting search directories, 1−8

library routines, F−7
license
floating, 1−12
node−locked, 1−12
obtaining, 1−12
wait for available license, 1−10

license file
location, 1−16
setting search directory, 1−9

licensing, 1−12

limits, compiler, 4−88
limits.h, 6−3
linear_switch, 3−55, 4−83
link51, 2−8
linker, 2−8
linking an application, 7−26
linking problems, 7−28
list file, 4−29
listinc, 4−83
LM_LICENSE_FILE, 1−16
log, 6−25
log10, 6−26
logical expression optimization, 2−6
long double, 7−14
longjmp, 6−26
loop optimization, 2−7
loop rotation, 2−6
loop unrolling, 2−7
loop variable detection, 4−41, 4−57

M
makefile
automatic creation of, 2−18
updating, 2−18

makefiles, 2−23
malloc, 6−26
math.h, 6−3
acos, 6−12
asin, 6−12
atan, 6−12
atan2, 6−13
ceil, 6−14
cos, 6−15
cosh, 6−15
exp, 6−16
fabs, 6−16
floor, 6−17
fmod, 6−17
frexp, 6−19
ldexp, 6−25

IndexIndex−10
IN
DE

X
log, 6−25
log10, 6−26
modf, 6−28
pow, 6−29
sin, 6−36
sinh, 6−36
sqrt, 6−37
tan, 6−42
tanh, 6−42

memchr, 6−27
memcmp, 6−27
memcpy, 6−27
memmove, 6−28
memory access, 3−5
memory model, 3−7, F−8
auxpage, 3−8
large, 3−8
mixed programming, 3−9
reentrant, 3−8
small, 3−8

memory size, 4−31, 4−63
memory type, 3−36, F−3
memset, 6−28
message, 4−84
migration
from Archimedes, F−1
from Franklin, F−1
from Keil, F−1

MISRA C, 3−52, 4−32, 4−33
modf, 6−28

N
name, D−4
name syntax, C library, 6−4
names, 7−23
naming convention, 7−23
noalias, 4−82
node−locked license, 1−12
nolistinc, 4−83
nopage, 4−84

NOPARM, 7−19
nosource, 4−85
novector, 3−49, 4−85
NULL pointer, 6−5

O
offsetof, 6−28
omf51, 2−10
optimization, 4−37, 4−39
backend, 2−4
frontend, 2−4, 2−5

optimization (backend), peephole
optimizations, 2−5

optimization (frontend)
common subexpression elimination,

2−7
conditional jump reversal, 2−6
constant folding, 2−5
constant/copy propagation, 2−6
control flow optimization, 2−6
dead code elimination, 2−7
expression rearrangement, 2−5
expression simplification, 2−5
jump chaining, 2−6
logical expression optimization, 2−6
loop optimization, 2−7
loop rotation, 2−6
loop unrolling, 2−7
remove useless jumps, 2−6
sharing of string literals and floating

point constants, 2−7
switch optimization, 2−6

optimizations, F−11
optimize, 4−84
options
See also compiler options
overview, 4−3
overview in functional order, 4−5

output file, 4−59
overlaying, 3−28

Index Index−11

• • • • • • • •

overview, 2−1

P
page, 4−84
parameter passing, 3−24, 4−53, 7−23,

F−6
parameters, 3−23
parser, 2−4
pdat, 3−6
peephole optimization, 4−46
peephole optimizations, 2−5
PL/M−51
built−in procedures, D−5
converting to C, D−1
using with C, D−6

pointer
1−byte, 3−13
2−byte, 3−13

pointers, 3−36, F−4
portable C code, 3−56
pow, 6−29
power−on vector, 7−5
pragma
alias, 4−82
arglist, 4−82
asm, 3−41, 4−82
asm_noflush, 3−41, 4−83
binary_switch, 4−83
cse, 4−83
endasm, 3−41, 4−83
extend, 4−83
intsave, 4−83, 7−19
intsave NOPARM, 7−19
jump_switch, 4−83
linear_switch, 4−83
listinc, 4−83
message, 4−84
noalias, 4−82
nolistinc, 4−83
nopage, 4−84

nosource, 4−85
novector, 4−85
on command line, 4−78
optimize, 4−37, 4−84
page, 4−84
ramstring, 4−84
romstring, 4−85
size, 4−85
smart_switch, 4−84
source, 4−85
speed, 4−85
vector, 4−85

pragmas, 4−82, F−9
predefined symbols, 4−70
_CC51, 4−70
_MODEL, 4−70

printf, 6−29
printf formatter, 6−47
printf libraries, 6−47
problems
linking, 7−28
run−time, 7−29

procedure call, indirect, D−5
procedures, D−5
program development, 2−8
project, 2−12
add new files, 2−17
create, 2−16

project file, 2−12
project space, 2−12
create, 2−15

project space file, 2−12
protect, 7−5
protected libraries, 6−4
prototyping, 3−23
putc, 6−31
putchar, 6−31
puts, 6−31

IndexIndex−12
IN
DE

X

Q
qsort, 6−32

R
R0−R7, 3−31, 3−49
RAM, 3−5, 3−23, 3−27, 3−28, 3−31,

3−33, 3−34, 3−35, 3−36
ram size (internal), 4−77
RAMSIZE, 7−6
ramstring, 3−35, 4−84
rand, 6−32
realloc, 6−32
recursion, 3−28, 3−50
reentrant, 3−19, 3−27, 3−28, 3−32, 3−50,

F−5
reentrant model, 7−25
reg51.sfr, B−3
register, predefined symbolic register

address, 7−17
register bank, 3−3, 3−26, 3−49, 3−50,

4−13, 4−15
independent code, 3−51

register usage, 7−7
register variable, 4−58
register variables, 3−31
remove useless jumps, 2−6
replace function in library, 3−27
return address, 7−12
return types, 7−7, 7−24, F−6
return values, 5−4
ROM, 3−34, 3−36
rom, 3−6
ROM memory, 3−6
ROM monitor, 4−24
romidcpy, 6−33
romidmove, 6−33
romstring, 3−35, 4−85
romxdcpy, 6−33
romxdmove, 6−34

run−time, problems, 7−29
run−time library, 6−48

S
scanf, 6−34
scanf formatter, 6−47
scanf libraries, 6−47
scanner, 2−4
segment name, 4−14, 4−61
segment usage, 7−8
setjmp, 6−36
setjmp.h, 6−3
longjmp, 6−26
setjmp, 6−36

sfr, 3−21, F−4
sample file, B−1

sharing of string literals and floating
point constants, 2−7

shift right sign fill, 4−68
signed
char, 3−13, 3−14
int, 3−13
long, 3−13
short, 3−13

signed characters, 3−14
simio.h, 6−3
_simi, 6−10
_simo, 6−11

sin, 6−36
single chip application, 3−23
sinh, 6−36
size, 4−85
skidding emulator, 4−24
smart programming, 3−56
smart_switch, 3−55, 4−84
software installation
Linux, 1−4
UNIX, 1−6
Windows, 1−3

software stack, 3−27

Index Index−13

• • • • • • • •

software stack pointer, 3−50
source, 4−85
special function register definitions,

B−1
special function registers, 3−21, 4−16,

F−4
speed, 4−85
sprintf, 6−36
sqrt, 6−37
srand, 6−37
sscanf, 6−37
stack, 3−5, 3−28, 7−5, 7−11
organization of, 7−11
virtual, 7−5

stack manager module, 3−50
stack size, 7−5, 7−11
virtual stack, 7−5

STACKLENGTH, 7−5
startup code, 7−3, 7−26
defines, 7−3

statement, D−5
stdarg.h, 6−3
va_arg, 6−44
va_end, 6−44
va_start, 6−44

stddef.h, 6−3
offsetof, 6−28

stdio.h, 6−4
_ioread, 6−10
_iowrite, 6−10
fgetc, 6−16
fgets, 6−17
fprintf, 6−17
fputc, 6−18
fputs, 6−18
fread, 6−18
fscanf, 6−19
fwrite, 6−20
getc, 6−20
getchar, 6−20
gets, 6−21
printf, 6−29
putc, 6−31

putchar, 6−31
puts, 6−31
scanf, 6−34
sprintf, 6−36
sscanf, 6−37
ungetc, 6−43
vfprintf, 6−44
vprintf, 6−45
vsprintf, 6−45

stdlib.h, 6−4
abs, 6−11
atof, 6−13
atoi, 6−13
atol, 6−13
bsearch, 6−14
calloc, 6−14
div, 6−15
exit, 6−16
free, 6−19
labs, 6−25
ldiv, 6−25
malloc, 6−26
qsort, 6−32
rand, 6−32
realloc, 6−32
srand, 6−37
strtod, 6−41
strtol, 6−41
strtoul, 6−42

storage allocation, 3−19
storage type, 3−5
_bdat, 3−6
_data, 3−6
_idat, 3−6
_pdat, 3−6
_rom, 3−6, 3−33
_xdat, 3−6

strcat, 6−37
strchr, 6−38
strcmp, 6−38
strcpy, 6−38
strcspm, 6−38
string, 3−34

IndexIndex−14
IN
DE

X
string.h, 6−4
ididcpy, 6−21
ididmove, 6−22
idxdcpy, 6−22
idxdmove, 6−22
memchr, 6−27
memcmp, 6−27
memcpy, 6−27
memmove, 6−28
memset, 6−28
romidcpy, 6−33
romidmove, 6−33
romxdcpy, 6−33
romxdmove, 6−34
strcat, 6−37
strchr, 6−38
strcmp, 6−38
strcpy, 6−38
strcspn, 6−38
strlen, 6−39
strncat, 6−39
strncmp, 6−39
strncpy, 6−39
strpbrk, 6−40
strrchr, 6−40
strspn, 6−40
strstr, 6−40
strtok, 6−41
xdidcopy, 6−45
xdidmove, 6−46
xdxdcopy, 6−46
xdxdmove, 6−46

strings, 4−65
strlen, 6−39
strncat, 6−39
strncmp, 6−39
strncpy, 6−39
strpbrk, 6−40
strrchr, 6−40
strspn, 6−40
strstr, 6−40
strtod, 6−41
strtok, 6−41

strtol, 6−41
strtoul, 6−42
structure tag, 3−54
switch optimization, 2−6
switch statement, 3−54�3−55
symbols, predefined, 4−70
system stack, 7−12

T
tan, 6−42
tanh, 6−42
target memory, 3−34, 3−37
target processors, 2−3
temporary files, setting directory, 1−10
tentative object, 4−55
time, 6−42
time.h, 6−4
clock, 6−15
time, 6−42

toascii, 6−43
tolower, 6−43
toupper, 6−43
transferring parameters between

functions, 3−24
troubleshooting, 7−28
type conversion, D−5
type qualifier
const, 3−6
volatile, 3−33

typedef, 3−54

U
ungetc, 6−43
unresolved external, 7−23, 7−29
unsigned
char, 3−13, 3−14
int, 3−13
long, 3−13

Index Index−15

• • • • • • • •

short, 3−13
unsigned char, 4−71
updating makefile, 2−18

V
va_arg, 6−44
va_end, 6−44
va_start, 6−44
variable
allocation, F−4
automatic, 3−28
naming convention, 7−23
register, 3−31

variable argument list, 3−27, 4−12
variables, D−4
initialized, 3−33
initialized C, 7−6

vector, 4−85
version information, 4−72
vfprintf, 6−44
VIRT_STACK, 7−5

virtual stack, 7−12
volatile, 3−21, 3−33
vprintf, 6−45
vsprintf, 6−45
VSTACK, 7−5

W
warnings, 5−6
warnings (suppress), 4−76

X
xdat, 3−6
xdata, 7−9
XDATEND, 7−6
XDATSTART, 7−6
xdidcopy, 6−45
xdidmove, 6−46
xdxdcopy, 6−46
xdxdmove, 6−46

IndexIndex−16
IN
DE

X

	TABLE OF CONTENTS
	1. SOFTWARE INSTALLATION
	1.1 Introduction
	1.2 Software Installation
	1.2.1 Installation for Windows
	1.2.2 Installation for Linux
	1.2.3 Installation for UNIX Hosts

	1.3 Software Configuration
	1.3.1 Configuring the Embedded Development Environment
	1.3.2 Configuring the Command Line Environment

	1.4 Licensing TASKING Products
	1.4.1 Obtaining License Information
	1.4.2 Installing Node-Locked Licenses
	1.4.3 Installing Floating Licenses
	1.4.4 Modifying the License File Location
	1.4.5 How to Determine the Host ID
	1.4.6 How to Determine the Host Name

	2. OVERVIEW
	2.1 Introduction to 8051 C Cross-Compiler
	2.2 General Implementation
	2.2.1 Compiler Phases
	2.2.2 Frontend Optimizations

	2.3 Program Development Flow
	2.4 Working With Projects in EDE
	2.5 Start EDE
	2.6 Using the Sample Projects
	2.7 Create a New Project Space with a Project
	2.8 Set Options for the Tools in the Toolchain
	2.9 Build your Application
	2.10 How to Build Your Application on the Command Line
	2.10.1 Using a Makefile

	2.11 Debugging your Application

	3. LANGUAGE IMPLEMENTATION
	3.1 Introduction
	3.2 Accessing Memory
	3.2.1 Storage Types
	3.2.2 Memory Models
	3.2.2.1 Mixed Memory Model Programming
	3.2.2.2 _MODEL and _ROMMODEL

	3.2.3 The _at() Attribute
	3.2.4 The _atbit() Attribute

	3.3 Data Types
	3.3.1 Signed Characters
	3.3.2 ANSI C Type Conversions
	3.3.3 Character Arithmetic
	3.3.4 The _bit Type
	3.3.5 The _bitbyte Type
	3.3.6 Special Function Registers

	3.4 Function Parameters
	3.5 Function Overlay
	3.6 Automatic Variables
	3.7 Register Variables
	3.8 Initialized Variables
	3.9 Type Qualifier volatile
	3.10 Strings
	3.11 Pointers
	3.12 Function Pointers
	3.13 Inline C Functions
	3.14 Inline Assembly
	3.15 Built-in Functions
	3.16 Interrupt and Using
	3.17 Register Bank Independent Code Generation
	3.18 C Code Checking: MISRA C
	3.19 Structure Tags
	3.20 Typedef
	3.21 Switch Statement
	3.22 Portable C Code
	3.23 How to Program Smart in C-51
	3.24 Some Examples of Complex Declarators

	4. COMPILER USE
	4.1 cc51 Invocation
	4.2 Detailed description of the C-51 options
	-?
	-A
	-a
	-b
	-banks
	-bp
	-C
	-c
	-D
	-E / -Em
	-e
	-err
	-f
	-g
	-H
	-I
	-ivo
	-l / -li
	-M
	-m
	-misrac
	-misrac-advisory-warnings / -misrac-required-warnings
	-n
	-nofastparm
	-noregaddr
	-O
	-Onumber
	-Oa / -OA
	-Oc / -OC
	-Od / -OD
	-Of / -OF
	-Oh / -OH
	-Oi / -OI
	-Ok / -OK
	-Ol / -OL
	-Om / -OM
	-Op / -OP
	-Or / -OR
	-Os / -OS
	-Ot / -OT
	-Ov / -OV
	-Ow / -OW
	-o
	-pa / -pd / -pp / -ps
	-R
	-r
	-S
	-s
	-se
	-shiftright-signfill
	-t
	-U
	-u
	-V
	-v
	-vf
	-vo
	-w / -wstrict
	-x
	-z

	4.3 Include Files
	4.4 Pragmas
	4.5 Alias
	4.6 Compiler Limits

	5. COMPILER DIAGNOSTICS
	5.1 Introduction
	5.2 Return Values
	5.3 Errors and Warnings

	6. LIBRARIES
	6.1 Introduction
	6.2 Header Files
	6.3 C Libraries
	6.3.1 C Library Implementation Details
	6.3.2 C Library Interface Description
	6.3.3 Printf and Scanf Formatting Routines

	6.4 Run-time Library
	6.5 Creating your own C Library

	7. RUN-TIME ENVIRONMENT
	7.1 Startup Code
	7.2 Register Usage
	7.3 Segment Usage
	7.4 Stack
	7.5 Heap
	7.6 Floating Point
	7.7 Interrupt Functions
	7.8 Multiple Data Pointer Support
	7.9 Assembly Language Interfacing
	7.10 Reentrant Model / _reentrant Functions
	7.11 Linking an Application
	7.12 Troubleshooting
	7.12.1 Linking Problems
	7.12.2 Run-time Problems

	A. MISRA C
	B. SFR DEFINITION FILE
	C. RESTRICTIONS FOR THE 80751 AND THE 80752
	D. CONVERTING PL/M-51 APPLICATIONS TO C-51
	1 Introduction
	2 Why Converting to C-51
	3 Points of Attention
	4 Using PL/M-51 together with C-51

	E. CPU FUNCTIONAL PROBLEMS
	1 Introduction
	2 CPU Functional Problem Bypasses

	F. MIGRATION FROM KEIL, FRANKLIN OR ARCHIMEDES
	1 Introduction
	2 ANSI-C Extensions
	2.1 Memory Type Qualifiers
	2.2 Pointers
	2.3 Absolute Variable Allocation
	2.4 SFR Registers
	2.5 Function Qualifiers
	2.6 Assembly Interface
	2.7 Built-in (intrinsic) Functions
	2.8 Library Routines

	3 Compiler Invocation
	3.1 Memory Models
	3.2 Libraries
	3.3 Controls or Pragmas
	3.4 Compiler Optimizations

	INDEX

