TASKING VX-toolset for C166
User Guide

TASKING VX-toolset for C166 User Guide

Copyright © 2006 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium,
TASKING, and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All
other registered or unregistered trademarks referenced herein are the property of their respective owners and no
trademark rights to the same are claimed.

Table of Contents

I O 1= T o > T TS 1
1.1 DALA TYPES - 1
1.2. Changing the Alignment: __unaligned and __packed__cooiiiiiiiiii 3
1.3, ACCESSING MEBMIOIY ..ottt e et e et 4

1.3.1. Memory Type QUAlIfIErS 5
1.3.2. MeMOrY MOEISeeieiii e e 8
1.3.3. Allocate an Automatic Object in the MAC accumulatorcoovviiiiiniennn. 9
1.3.4. Placing an Object at an Absolute Address: __at() and __athit() 10
1.3.5. Accessing Hardware from C ... 13
1.4. Using Assembly in the C Source: _ asm() ..o.iuiriririririiii e aas 15
1.5. Pragmas to Control the ComPiler ... e 18
1.6. Predefined PreproCesSor MACIOSv.iuiiiiiii et aaaas 22
LL7.VANADIES .o 24
1.7.1. Initialized Variables ... 24
1.7.2. Non-Initialized Variablescouiiiiiii 24
TR 1o P 25
1.9, SWILCH STAIEMIENT ...t e e et 25
0 O 0 Tod o o PPN 26
0 T I @ {1 To T @0 01Y7=T 311 o] o PPN 27
1.10.2. REGISIET USAQE . vttt ettt e e e e e e e e et 29
1.10.3. Inlining FUNCHONS: INIINEuiut e 30
1.10.4. INterrupt FUNCHIONS ...uieitii e eaan 31
1.10.5. INtrNSIC FUNCHONS ...euitiiei ettt 33
I Y=Y i {0 A= T o PRSP 44

B O - o 1= Vo = 47
2.1. C++ Language EXtension KEYWOISc.iuiiiiiiiiiiiiiii e aeanas a7
2.2. CH+ DialeCt ACCEPIEA ..ottt a7

2.2.1. Standard Language Features ACCEPEdovvviiiiiiiiiiiiiiee e 48
2.2.2. C++0x Language Features ACCEPIEAcuiuiririiitit e a e aaes 51
2.2.3. ANachronisSmMs ACCEPIEAvitit it 52
2.2.4. Extensions Accepted in Normal C++ Modecooiviiiiiiiiiic e 53

2.3, GNU EXEENSIONS ...ttt ettt et ettt et ettt e e aees 54
2.4, NAMESPACE SUP PO ettt ettt ettt ettt e ettt et 65
2.5. Template INStANtIAtONouinieiii e 67
2.5.1. Automatic INSTANLIALIONvuieiit e 68
2.5.2. InStantiation MOGES ...t 70
2.5.3. Instantiation #pragma Dir€CHIVESoviiiiiiiii e 71
2.5.4. IMPHCIt INCIUSIONeii e e 73
2.5.5. EXpPOrted TemMPIateS ...ououiiiiiiiiie e e 73

2.6. EXtern INline FUNCHONSuiiii e 76
2.7. Pragmas to Control the C++ COMPIIErconiniiii e 77
2.8. Predefined MACIOS ...t 78
2.9. Precompiled HEAAEIScuiuiiii i 82
2.9.1. Automatic Precompiled Header Processingccoouvviiiiiiiiiiiiiiiiiiiananan 82
2.9.2. Manual Precompiled Header ProCeSSINGc.vuiuiritiiiriiiiiiii i eieieiaaean 85
2.9.3. Other Ways to Control Precompiled Headerscccoooiiiiiiiiiiiiiiiiiiieen 85
2.9.4. PerfOrManCe ISSUEScuiuiiiiiiiiieee e et aaaes 86

3. ASSEMDIY LANGUAGE ...eeinetieeie ittt et ettt e 89

TASKING VX-toolset for C166 User Guide

3.1 ASSEMDBIY SYNTAX ..ttt 89
3.2. Assembler Significant CharaCtersc.ouiiiiii e 90
3.3. Operands of an AsSsembly INSTFUCHIONo.iviiieii e 90
3.4, SYMDOI NAIMES .ot 91
3.4.1. Predefined Preprocessor SYMDOISc.ouiiniiiiiii e 91

3D RIS OIS .ttt e 92
3.6. Special FUNCLON REJISEISttt 93
3.7. ASSEMDIY EXPIrESSIONS ...ttt e e 93
3.7.1. NUMENIC CONSLANESeuitiiitiite ettt ettt e 94
372, SHIINOS ettt ettt 94
3.7.3. EXPreSSion OPEIALOIScuruiuteietitt ettt 95
3.7.4. Symbol Types and EXPresSion TYPEScvvuiuinieiiieeieae e 97

3.8. BUilt-in ASSEMDBIY FUNCHONS ...ouieiiitii e 100
3.9. Assembler Directives and CONIOIScuvuiiieii e 105
3.9.1. ASSEMDIET DIFECHIVESeeiteieeiet et e 105
3.9.2. ASSEMDIEr CONLIOISvienieie e 150

3.10. MACKIO OPEIALIONSeteeeetenete ettt et ettt et ettt e et e a e eenas 170
3.10.1. DEfiNING @ MACKO .. ettt 170
3.10.2. CAlliNG @ MBCTO ...eiieetieiee e e e 170
3.10.3. Using Operators for Macro ArgUMENTScuveuirieiiitieiiieeeeeeeneeneeneenes 171

3.11. GENETIC INSIIUCTIONS ... ettt ettt ettt ettt ettt e e enenas 174
4.USING the C COMPIIET ...ceeee et 177
4. 1. COMPIlALION PIOCESS ... enitiie et et 177
4.2. Calling the C COMPIIET ... et aeaes 178
4.3.The C STArtUP COOEuviiitiei et et ettt et e e e 180
4.4. How the Compiler Searches Include Fileso 181
4.5. Compiling fOr DEDUGGING ... vnereeieei e 182
4.6. Compiler OPtMIZALIONSttt et 183
4.6.1. Generic Optimizations (frontend)cooeiiiiii i 184
4.6.2. Core Specific Optimizations (backend)c.cooiiiiiiii s 185
4.6.3. Optimize for SiZe OF SPEEMvierii e 186
4.7.C Code Checking: MISRA-C ...t 189
4.8. C ComMPIler Error MESSAGESc.uvuitiii ettt ettt et ettt e eaenes 191
5.USING the CH+ COMPIIET . ..eiit et enes 193
5.1. C++ DeVvelopmENt SIIUCTUIEvetit it 193
5.1.1. The PrelinKer PRASEcuiiiii e 194
5.1.2. The MUNChEr PRESEo e 196

5.2. Calling the CH+ COMPIIET ..o e 196
5.3. How the C++ Compiler Searches Include Filescooiiiiiiiiii e 197
5.4. C++ Compiler ErrOr MESSAQESueuiiiiniet ettt e neaes 199
B, PrOfIlING e e 201
6.1. What is Profiling?cooonii i 201
6.1.1. Three Methods of Profilingcooviiii e 201

6.2. Profiling using Code INStrumMENtatioNociiuiiiriii e eenas 202
6.2.1. Step 1: Build your Application for Profilingcccoooiiiiiii, 203
6.2.2. Step 2: Execute the APPlICAtIONovuieiiii e 205
6.2.3. Step 3: Displaying Profiling ReSUItSccviiiiiiii e 207

7. USING the ASSEMDIETot 211
7.0 ASSEMDIY PrOCESS ... ettt ettt et et 211
7.2. Calling the ASSEMDIETo e 211

TASKING VX-toolset for C166 User Guide

7.3. How the Assembler Searches Include Filesccoiiiiiiiiii e, 213
7.4. Assembler OPtiMIZAtiONSie e 214
7.5.Generating @ LISt FIlev.eeie e 214
7.6. ASSEMDIET EITOr MESSAUES .. vieuiteite ittt ettt 215
8. USING the LINKET .. .ee e et et 217
8.1, LINKING PIOCESS ...ttt ettt et 217
8.1.1. Ph@Se 1: LINKINQGueuetiniteeie ettt et 219
8.1.2. PhaSE 2: LOCALING ... eteinitetete ettt et 220

8.2. CalliNg the LINKET ... et e 221
8.3. LIiNKiNG WIth LIBFariesoiiiri e 222
8.3.1. How the Linker Searches LIbrariescooiiiiiiiiii e 225
8.3.2. How the Linker Extracts Objects from Librariesocooiviiiiiiiniiiniennen. 225

8.4. Incremental LINKINGouinii e e e 226
8.5. LINKer OPtMIZALIONSuiiitieie et e e 226
8.6. Controlling the Linker With @ SCFPtvuiii e 228
8.6.1. Purpose of the Linker Script Languagecovuvininiiiiiiiiiieeneeeeeeea 228
8.6.2. EClIPSE @NA LSL ...eiiiiiiiie e 228
8.6.3. Structure of a Linker SCript Filecieiiiiii e 230
8.6.4. The Architecture Definitionccoiiiiiiii e 233
8.6.5. The Derivative Definitionooiiiii e 236
8.6.6. The Processor Definitionc.ovuiuiiiiiiii e 237
8.6.7.The Memory DefiNitionc.iuiiiii e 238
8.6.8. The Section Layout Definition: Locating SeCtioNSovuveiiiiiieniniiinieinnn. 239

8.7. LINKEr LADEIS ... 241
8.8.Generating aMap File ..o 242
8.9. LINKEr EITOr MESSAGTES ..ouviinetiiiiee et ettt et ettt ens 243
9. USING the ULIIEIES ... ettt e et 245
LS B o] o1 (o] I = (oo £=1 1 o H PP PP 245
9.2. MAKE UL .. eeeeeeee e e 246
9.2.1. Calling the Make ULIILYcouiiiiiii e 248
9.2.2. Writing a Makefile ... 248

0.3, ATCNIVET o 256
9.3.1. Calling the ArCRIVETo 257
9.3.2. ArChiVEr EXAMPIES ..ot e 259

9.4, G PrEliNKEY .ot 260
0T [o o @] o1 i o] o I PP 261
10.1. C COMPIIEr OPLIONS ...vieeteitee e e et 261
10.2. C++ COMPIIET OPLIONS vttt 333
10.3. ASSEMDIET OPLIONSeiieti e et 450
10.4. LINKEE OPLIONS ...ttt e ettt 493
10.5. Control Program OPLONSvuceeit ettt ettt 535
10.6. Make ULIlity OPLIONSvieeitiitet et e 603
10.7. ArCRIVEr OPLIONS . .eieie e e 631
10.8. C++ Prelinker OPLiONSuiiii e 644
S I o = 4 =T PP PUTRRPR 673
11,1, LIbrary FUNCHONS ...ttt e es 675
L0 L0, @SSO N e 675
11.1.2. COMPIEX.N Lo 675
L0030 OO AN N e e 676
11.1.4. ctype.h and WCLYPE.N ..oeiee 676

TASKING VX-toolset for C166 User Guide

1015, dBG. N e 677
L2.1.6. ITNO.N L 677

L0 L7 fONtl N e 678
1018 NV 679
L1109, FlOALN Lo 679
11.1.10. inttypes.h and Stdint.h ... 680

5 0 1 I O To Y I PP PP PRPPP 680
L11.1.02.0806468.1 ..ot 681
L2103 IMIES. N e e 681
L1104, 10CAIEN oo 681
121,105, MANIOC.H oo 682
11.1.16. math.h and tgmath.h ... 683
10107, SO ML e 687
11,108, SIgNALIN o 687
L1109, SEAANG.N e 688
11.1.20. StADOOLN .ot 688
11,120, StAAEf N oo 688
L1122, SEAINEN e 689
11.1.23. stdio.h @and WChar.h ... 689
11.1.24. stdlib.h @and WChar.h ... 696
11.1.25. string.h and weharh ... 700
11.1.26. time.h and WChar.h 702
L1127, UNISEA.N oo 705
L11.1.28. WCNAIN o 705
10,129, WY P N e 706

11.2. C Library REENIIANCYvuiiirieieei et eaenes 707
12, LISt FIlE FOIMALSeeei ettt et et ns 719
12.1. Assembler List File FOrMALovrieii e 719
12.2. Linker Map File FOIMAL et 720
13. Linker SCript LANGUAGE (LSL) .. euvuiiir ettt ettt e 725
13.1. Structure of @ Linker SCript File ... 725
13.2. Syntax of the Linker SCript LANQUAGEovuirieieiiieiiie e 727
13,20, PrePIrOCESSING . veutttti ettt ettt et et ettt et 727
13.2.2. LEXICAI SYNTAX .+ttt et 728
13.2.3. IAENTIFIEIS ..ot e 728
13.2.4. EXPIESSIONS ...ttt ettt e et 729
13.2.5. BUIlt-IN FUNCLONS ...vieieiee et 729
13.2.6. LSL Definitions in the Linker Script Fileccoooiiiiii e 731
13.2.7. Memory and Bus Definitionsc.ociuieiniiii e 731
13.2.8. Architecture Definitioncooeuiuiiii e 733
13.2.9. Derivative Definitionc.ouiiniriiii e 736
13.2.10. Processor Definition and Board Specificationccocoviviiiiiniiiniinnennn. 736
13.2.11. Section Layout Definition and Section SEtUPccvviiriiiiriiniieniieienannes 737

13.3. EXPression EVAIUALIONcuiiiitiie e e 740
13.4. Semantics of the Architecture Definition ..o 741
13.4.1. Defining an ArChiteCIUIEvuirie i 742
13.4.2. Defining INtErnal BUSESo.iiiiiieie e 742
13.4.3. Defining AAAreSS SPACESuiviiiiieieeiie e 743
L1344, MAPPINGS - vnenetentt et ettt et et 746

13.5. Semantics of the Derivative Definitioncooiiiiii e 748

Vi

TASKING VX-toolset for C166 User Guide

13.5.1. Defining @ DErVALIVEouiiiiiie e 748
13.5.2. Instantiating Core ArchitECIUIrEScevuiriiiiiie e 749
13.5.3. Defining Internal Memory and BUSEScc.veiiiiiiiiiiiiiieeieeeeeea 750

13.6. Semantics of the Board SpecifiCationcocoiiiiiii e 750
13.6.1. DefiniNg @ PrOCESSONvuieitiiie et 751
13.6.2. Instantiating DEerVALIVESc.iiuiiiiiiie e 751
13.6.3. Defining External Memory and BUSEScvviiiiiiiiiiiiiiieeceeeeeea 752

13.7. Semantics of the Section Setup Definitionc.cooiiiiiiii 753
13.7.1. Setting Up @ VECtOr TabIEoveii e 753

13.8. Semantics of the Section Layout Definitioncovviiiiiiiii e 753
13.8.1. Defining @ SECHON LAYOULc.uvuitieiiei e 754
13.8.2. Creating and Locating Groups Of SECHONSccuvviiiiiiiniiieiieieeeea 755
13.8.3. Creating or Modifying Special SECHONSociviiiiiiiiiii e 760
13.8.4. Creating SYMDOISo 763
13.8.5. Conditional Group StateMENTSereniiieiie e 764

14. CPU Problem Bypasses and CheCKSc.ouiiiiiiii e 765
15, MISRA-C RUIES ...t e ettt 793
15,1 MISRA-CILO98 ...ttt 793
15.2. MISRA-C:2004 ..ottt et 797
16. Migrating from the Classic Tool Chain to the VX-toolsetc.ocooiiiiii 807
16.1. CoNVErSION TOOI CNV2VXuiuieiiee et e aes 807
16.2. C Compiler MIQrationc.oeuieiii et 808
16.2.1. C COMPIIEr OPLIONS ...vienieieieeee e 808
16.2.2. PragMasoveeieiee ettt 810
16.2.3. MeMOIY MOGEIS ...t e 812
16.2.4. Language Implementation Migrationccovviiiiiiiiie e 813
16.2.5. PreproCessor SYMDOISvuiriiiie e 817
16.2.6. C Compiler Implementation Differencesc.cooiiiiiiiiiiiiieee 817

16.3. ASSemDbIEr MIgrationc.ouieirii e 821
16.3.1. ASSEMDIEr CONCEPLS ...uvuitieiiee ittt eenas 821
16.3.2. ASSEMDIEr DIFECHIVES ...ttt 821
16.3.3. Assembler and Macro Preprocessor CONtrolSc.covevveveiiinniiinieninnenen, 822
16.3.4. Mapping Of CHECKCPUPEvuitieieeeee et aen 824
16.3.5. Symbol Types and Predefined SymbolS ..o 824
16.3.6. Section Directive AUMDULESovieiei e 825
16.3.7. MACIO PrEPIOCESSON ... vttt ettt e eeas 827
16.3.8. Assembler Implementation Differencesooooiiiiiiiiiiii 828

16.4. LINKEr IMIGIatiONuenitie et et e et ettt et 830
16.4.1. Conversion TOOI HIO2IS] ..o 830
16.4.2. LINKEI CONIOIS ...ttt ettt e 831

Vii

TASKING VX-toolset for C166 User Guide

viii

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING C compiler(s) fully support the ISO-C standard and add extra possibilities to program the
special functions of the target.

In addition to the standard C language, the compiler supports the following:

» keywords to specify memory types for data and functions

« attribute to specify absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

 predefined macros

« the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. Data Types

Fundamental Data Types

The C compiler supports the ISO C99 defined data types. The sizes of these types are shown in the
following table.

C Type Size Align Limits

__bit 1 1 Oor1l

_Bool 8 8 Oor1l

signed char 8 8 [-0x80, +0x7F]
unsigned char 8 8 [0, OXFF]

short 16 16 [-0x8000, +0x7FFF]
unsigned short 16 16 [0, OXFFFF]

int 16 16 [-0x8000, +0x7FFF]

TASKING VX-toolset for C166 User Guide

C Type Size Align Limits
unsigned int 16 16 [0,0xFFFF]
enum 8 8 [-0x80, +0x7F] or [0, OXFF]

16 16 [-0x8000, +0x7FFF] or [0,0xFFFF]
long 32 16 [-0x80000000, +0x7FFFFFFF]
unsigned long 32 16 [0,0xFFFFFFFF]
long long 64 16 [-0x8000000000000000,

+0x7FFFFFFFFFFFFFFF]
unsigned long long 64 16 [0, OXFFFFFFFFFFFFFFFF]
float (23-bit mantissa) 32 16 [+/-1.175€"8, +/-3.402e ™7
double 64 16 [+/-2.225e % +/-1.797e"%)
long double (52-bit mantissa)
_Imaginary float 32 16 [+/-1.175e'38i, +/-3.402e+38i]
_Imaginary double 64 16 [+/-2.225e %8, +/-1.797e"°%%]]
_Imaginary long double
_Complex float 64 16 real part + imaginary part
_Complex double 128 16 real part + imaginary part
_Complex long double
__near pointer 16 16 [0,0xFFFF]
__far pointer ” 32 16 [0,0xFFFFFF]
__shuge pointer 32 16 [0,0xFFFFFF]
__huge pointer 32 16 [0,0xFFFFFF]

“When you use the enum type, the compiler will use the smallest sufficient type (char, unsigned
char or int), unless you use C compiler option --integer-enumeration (always use 16-bit integers
for enumeration).

- __far pointers are calculated using 14-bit arithmetic, __shuge pointers are calculated using
16-bit arithmetic.

Automatic bit objects never reside on the user stack, because the stack is not bit-addressable. So, it is
not possible to take the address of an automatic bit object, or to create automatic bit-arrays, because
these operations would force an object on the stack.

Aggregate and Union Types

Aggregate types are aligned on 16 bits by default. All members of the aggregate types are aligned as
required by their individual types as listed in the table above. The struct/union data types may contain
bit-fields. The allowed bit-field fundamental data types are _Bool, (un)signed char and (un)signed
int. The maximum bit-field size is equal to that of the type’s size. For the bit-field types the same rules
regarding to alignment and signed-ness apply as specified for the fundamental data types. In addition,
the following rules apply:

C Language
» The first bit-field is stored at the least significant bits. Subsequent bit-fields will fill the higher significant
bits.

» A bit-field of a particular type cannot cross a boundary as is specified by its maximum width. For example,
a bit-field of type short cannot cross a 16-bit boundary.

« Bit-fields share a storage unit with other bit-field members if and only if there is sufficient space in the
storage unit.

» An unnamed bit-field creates a gap that has the size of the specified width.

» As a special case, an unnamed bit-field having width 0 (zero) prevents any further bit-field from residing
in the storage unit corresponding to the type of the zero-width bit-field.

Bit Structures

The __bit data type is allowed as a struct/union member, with the restriction that no other type than
__bitis member of this structure. This creates a bit-structure that is allocated in bit-addressable memory.
Its alignment is 1 bit.

There are a number of restrictions to bit-structures. They are described below:
« Itis not possible to pass a bit-structure argument to a function.

« Itis not possible to return a bit-structure.

* Itis not possible to make an automatic bit-structure.

The reason for these restrictions is that a bit-structure must be allocated in bit-addressable memory,
which the user stack is not.

__bitsizeof() operator

The sizeoT operator always returns the size in bytes. Use the __bitsizeof operator in a similar way
to return the size of an object or type in bits.

__bitsizeof(object | type)
1.2. Changing the Alignment: __unaligned and ___packed

Normally data, pointers and structure members are aligned according to the table in the previous section.
With the type qualifier __unal igned you can specify to suppress the alignment of objects or structure
members. This can be useful to create compact data structures. In this case the alignment will be one bit
for bit-fields or one byte for other objects or structure members.

At the left side of a pointer declaration you can use the type qualifier __unal igned to mark the pointer
value as potentially unaligned. This can be useful to access externally defined data. However the compiler
can generate less efficient instructions to dereference such a pointer, to avoid unaligned memory access.
You can convert a normal pointer to an unaligned pointer, but not vice versa.

Example:

TASKING VX-toolset for C166 User Guide

struct

{

char c;
__unaligned int i; /* aligned at offset 1 ! */

} s

__unaligned int * up = & s.1i;

Packed structures

To prevent alignment gaps in structures, you can use the attribute ___packed__. When you use the
attribute ___packed___directly after the keyword struct, all structure members are marked __unal igned.

For example the following two declarations are the same:

struct _ packed

{
char c;
int i;
} si1;
struct
{
__unaligned char c;
__unaligned int i;
} s2;

The attribute __packed___ has the same effect as adding the type qualifier __unaligned to the
declaration to suppress the standard alignment.

You can also use __packed___in a pointer declaration. In that case it affects the alignment of the pointer
itself, not the value of the pointer. The following two declarations are the same:

int * __unaligned p;
int * p _ packed__;

1.3. Accessing Memory

The TASKING C166 toolset internally knows the following address types:
 32-bit linear, ‘huge’ addresses. The address notation is in bytes, starts at 0 and ends at 16M.

» 32-bit paged, ‘far’ addresses. In the address notation the high word contains the 10-bit page number
and the low word contains the 14-bit offset within the 16 kB page.

 16-bit, ‘near’ addresses. The high 2 bits contain the DPP number and the low 14 bits are the offset
within the 16 kB page.

» 12-bit bit-addressable addresses. This embodies an 8-bit word offset in the bit-addressable space and
a 4-bit bit number.

» 8-bit SFR addresses. This is an offset within the SFR space or within the extended SFR space.

C Language

The TASKING C166 toolset has several keywords you can use in your C source to specify memory
locations. This is explained in the sub-sections that follow.

1.3.1. Memory Type Qualifiers

In the C language you can specify that a variable must lie in a specific part of memory. You can do this
with a memory type qualifier. If you do not specify a memory type qualifier, data objects get a default
memory type based on the memory model.

You can specify the following memory types:

Quialifier | Description Location Maximum Pointer Pointer Section
object size size arithmetic |name and
type
_ bt |Bitaddressable |Bit addressable |1 bit 16-bit 12-bit bit
memory
__bita |Bit addressable |Bit addressable |Size of bit 16-bit 16-bit bita
memory addressable
memory
__iram |Internal RAM Internal RAM Size of internal |16-bit 16-bit iram
data RAM
__near [Near data In the 4 near data |16 kB 16-hit 16-hit near
pages
__far Far data Anywhere 16 kB 32-bit 14-bit far
__shuge [Segmented huge | Anywhere 64 kB 32-bit 16-bit shuge
data
__huge [Huge data Anywhere no limit 32-bit 32-bit huge

" The default section name is equal to the generated section type. You can change the section
name with the #pragma section or command line option --rename-sections.

” __bitis not areal qualifier, it is in fact a data type with an implicit memory type of type bit.

There are no SFR qualifiers. SFRs are accessible in the near address space. The compiler knows which
absolute address ranges belong to SFR and extended SFR areas and knows which addresses are bit
addressable. The compiler generates the appropriate SFR addressing modes for these addresses.

Examples using explicit memory types

__bita
__bita
__near
__Tar

unsigned char

bitbyte;

unsigned short bitword;

char
int

text[] = "No smoking
array[10][4];

The memory type qualifiers are treated like any other data type specifier (such as unsigned). This means

the examples above can also be declared as:

TASKING VX-toolset for C166 User Guide

unsigned char _ bita bitbyte;
unsigned short __bita bitword;
char _ near text[] = "No smoking";
int __far array[10]1[4];

__farand __shuge code generation

The __ far and __shuge qualifiers have only very little difference in code generation. There are two
basic differences:

» Accessing __far objects is done using EXTP instructions and accessing ___shuge objects is done
using EXTS instructions. This has no difference in code size or execution speed, and therefore it is in
general preferred to use ___shuge, because objects can be as large as 64 kB, while with __far the
size of a single object is limited to 16 kB.

» Code generation for accessing objects on stack is a little bit more efficient for __far pointers than for
__shuge pointers.

1.3.1.1. Pointers with Memory Type Qualifiers
Pointers for the C166 can have two types: a 'logical’ type and a memory type. For example,
char _ far * _ near p;

means p has memory type __near (p itself is allocated in near data), but has logical type ‘character in
target memory space far'. The memory type qualifier used left to the *, specifies the target memory of
the pointer, the memory type qualifier used right to the "', specifies the storage memory of the pointer.

__farand __shuge pointer comparison

By default all __ Far pointer arithmetic is 14- bit. This implies that comparison of __far pointers is also
done as 14-bit. For __shuge the same is true, but then with 16-bit arithmetic. This saves code significantly,
but has the following implications:

» Comparing pointers to different objects is not reliable. It is only reliable when it is known that these
objects are located in the same page.

» Comparing with NULL is not reliable. Objects that are located in another page at offset 0x0000 have
the low 14 bits (the page offset) zero and will also be evaluated as NULL. In the following example the
if(p) isfalse, because the page offset of p is zero:

__Ffar int i __at(0x10000);
__Ffar int *p = &i;
it p) p++;

In most cases these restrictions will not yield any problems, but in case problems exist, the following
solutions are available:

» Cast the problematic comparison to long, e.g.: if((long)p)

C Language
» Use the C compiler option -AF to tell the compiler to generate 32-bit pointer comparisons. Note that it
is also required to rebuild the C library, if C library routines are used.
Pointer conversions

Conversions of pointers with the same qualifiers are always allowed. The following table contains the
additionally allowed pointer conversions. Other pointer conversions are not allowed to avoid possible
run-time errors.

Source pointer Destination pointer
__bita __iram
__bita __near
__bita _ far

__ bita __shuge
__ bita __huge
__iram __hear
__iram _ far
__iram __shuge
__iram __huge
__hear _ far
__near __shuge
__near __huge
_ far __shuge
_ far __huge
__shuge __huge

__near, __bita, __iram (16-hit) pointer conversions to and from non-pointer types:

» A conversion from a 32-bit integer to a 16-bit pointer, or from a 16-bit pointer to a 32-bit integer, is
implemented as a 32-bit linear address conversion.

« All other non-pointer conversions to and from a 16-bit pointer are implemented as a conversion to or
from a 16-bit integer type.

__TFar (32-bit) pointer conversions to and from non-pointer types:

» A conversion from a 16-bit integer to a __far pointer, or from a __far pointer to a 16-bit integer, is
implemented as a 16-bit linear address conversion. The behavior of a __far pointer to 16-bit integer
conversion is undefined when __far pointer contains an address with page number larger than 3.

» A conversion from a 32-bit integer to a __far pointer, or from a __far pointer to a 32-bit integer, is
implemented as a 32-bit linear address conversion.

« All other non-pointer conversions to and from a __far pointer are implemented as a conversion to or
from a 32-bit integer type.

TASKING VX-toolset for C166 User Guide

___(s)huge (32-bit) pointer conversions to and from non-pointer types:

« All non-pointer conversions to and from a __(s)huge pointer are implemented as a conversion to or
from a 32-bit integer.

1.3.2. Memory Models

The C compiler supports four data memory models, listed in the following table.

Memory model |Letter|Default data memory type
Near n __near

Far f __far

Segmented Huge |s __shuge

Huge h __huge

Each memory model defines a default memory type for objects that do not have a memory type qualifier
specified. By default, the C166 compiler uses the near memory model. With this memory model the most
efficient code is generated. With the C compiler option --model you can specify another memory model.

For information on the memory types, see Section 1.3.1, Memory Type Qualifiers.

__MODEL__

The compiler defines the preprocessor symbol __ MODEL___to the letter representing the selected memory
model. This can be very helpful in making conditional C code in one source module, used for different
applications in different memory models.

Example:

#if __MODEL__ == "f-

/* this part is only for the far memory model */
Hendif

DPP usage

The compiler uses EXTP/EXTS instructions to access far, shuge and huge data in all data models. This
means that it does not use DPP loads and DPP prefixes. All DPPs point to the near data space at anytime.

The advantages of not using DPPs are:
» There are always four near data pages.
* Interrupt functions will not save/restore any DPPs.

» You can use a DPP for your own purpose by letting the linker not assign the DPP to a near page. The
best way to do this is to assign the DPP in LSL to an unused page in memory and reserve that page.

 Bit 14 and bit 15 do not need to be masked when converting a pointer to stack (which is near) to far.

C Language

Near data
Near data is paged in all memory models. The linker takes care of assigning DPPs in the code.

With a trick in the LSL file (by defining the __ CONTIGUOUS_NEAR macro) it is possible to remove this
page restriction and get a linear space, even if the near data pages are scattered throughout the memory.
The linker takes care of locating the sections in such a way that the compiler can assume them to be
contiguous through the near data pages. This also implies that the linker can split sections and put parts
in non-consecutive near data pages. When this LSL trick is applied, you should be very cautious when
accessing near data with far or shuge pointers, because objects may cross page or segment boundaries.

Stack

In all memory models the stack is restricted to 16 kB and must be in-page. With a trick in the LSL file (by
defining the __CONT 1GUOUS_NEAR macro) it is possible to remove the page limitation of the stack. But
this should only be done when you do not use far, shuge or huge pointers to access objects on the stack,
because page or segment boundaries may be crossed, and the compiler will use the begin of stack to
perform casts to stack objects.

For XC16x and Superl10 derivatives, multiple stacks are created in the LSL file, one for each local register
bank. The C startup code controls the creation of these stacks, by referring the begin of stack symbols.

Heap

In the far, huge and segmented huge models the heap is located as huge data. The memory allocation
routines in the C library will take care of keeping the data in pages or segments for far and shuge data.
In the near data model the default heap is located as near data. Optionally a huge heap can be allocated
allocating far/shuge/huge data.

Threshold

In the far, segmented huge and huge data models the compiler supports a threshold for allocating default
objects in near data. Objects that are smaller than or equal to the threshold area automatically allocated
in near data. The threshold can be defined on the command line (option --near-threshold) and with a
pragma. By default the threshold is 0 (off), which means that all data is allocated in the default memory
space. In the far, huge and segmented huge memory models, near data sections that result from the
threshold optimization will be marked to be located inpage, because sections may not cross page
boundaries when access through an external far, huge or shuge declaration is done.

1.3.3. Allocate an Automatic Object in the MAC accumulator

With the keyword ___mac you can allocate an automatic object in the MAC accumulator. The __mac
keyword is advisory to the compiler. It is only honoured for plain automatics and parameter objects of
type (unsigned) long. The object cannot be volatile, and it is not allowed to take the address of the object.
When the ___mac keyword is ignored, the compiler generates a warning.

Example:
long x (int pl, int p2, long _ _mac sum)

{
sum += (signed long) pl*p2;

TASKING VX-toolset for C166 User Guide

return sum;

}
1.3.4. Placing an Object at an Absolute Address: __at() and __atbit()

Just like you can declare a variable in a specific part of memory (using memory type qualifiers), you can
also place an object at an absolute address in memory.

With the attribute __at() you can specify an absolute address. The address is a 32-bit linear (huge)
address. If you use this keyword on __bit objects, the address is a bit address.

The compiler checks the address range, the alignment and if an object crosses a page boundary.
Examples
unsigned char Display[80*24] _ at(0x2000);

The array Display is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Display.

int i _ at(0x1000) = 1;

The variable i is placed at address 0x1000 and is initialized.

void f(void) _ at(OxfOff + 1) { }

The function F is placed at address 0xf10.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:
» The argument of the __at() attribute must be a constant address expression.

» You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

» A variable that is declared extern, is not allocated by the compiler in the current module. Hence it is
not possible to use the keyword __at() on an external variable. Use __at() at the definition of the
variable.

* You cannot place structure members at an absolute address.

» Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

Declaring a bit variable with __atbit()

You can use the __atbit() keyword to define a bit symbol as an alias for a single bit in a bit-addressable
object. The syntax is:

__atbit(object ,of fset)

10

C Language

where, object is bit-addressable object and offset is the bit position in the object.
The following restrictions apply:
» This keyword can only be applied to __bit type symbols.

» The bit must be defined volati le explicitly. The compiler issues a warning if the bit is not defined
volatile and makes the bit volatile.

* The bitword can be any volati le bit-addressable (__bita) object. The compiler issues a warning if
the bit-addressable object was not volatile and makes it volatile.

» The bit symbol cannot be used as a global symbol. An extern on the bit variable will lead to an unresolved
external message from the linker.

Examples

/* Module 1 */
volatile _ bita unsigned short bitword;
volatile _ bit b __atbit(bitword, 3);

/* Module 2 */
extern volatile __bita unsigned short bitword;
volatile __bit b __atbit(bitword, 3);

Alternatives for __atbit()

The __atbit() requires all involved objects to be volatile. If your application does not require these
objects to be volatile, you may see in many cases that the generated code is less optimal than when the
objects were not volatile. The reason for that is that the compiler must generate each read and write
access for volatile objects as written down in the C code. Fortunately the standard C language provides
methods to achieve the same result as with __atbit(). The compiler is smart enough to generate
efficient bit operations where possible.

» The classic method to extract a single bit in C is masking and shifting.

__bita unsigned short bitword;
void foo(void)

{
if(bitword & 0x0004) // bit 2 set?
{
bitword &= ~0x0004; // clear bit 2
3
bitword |= 0x0001; // set bit O;
3

e The compiler has the built-in macros __getbit() and __putbit(). These macros expand to
shift/and/or combinations to perform the required result.

__bita unsigned short bw;
void foo(void)

11

TASKING VX-toolset for C166 User Guide

{
if(__getbit(bw, 2))
{
__putbit(0, bw, 2);
}
__putbit(1, bw, 0);
}

» Use a struct/union combination.

typedef __bita union
{
unsigned short word;
struct
{
int bO :
int bl :
int b2 :
int b3 :
int b4 :
int b5 :
int b6 :
int b7 :
int b8 :
int b9 :
int blo0:
int blil:
int bl2:
int bl3:
int bl4:
int bils:
} bits;
} bitword_t;

RPRRPRRPRRPRPRRRRRPRRRPRRERR

bitword_t bw;

void foo(void)

{
if(bw.bits.b3)
{
bw.bits.b3 = 0;
e
bw.bits.b0 = 1;
e
void reset(void)
{
bw.word = 0;
e

12

C Language

1.3.5. Accessing Hardware from C

Using Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special function register file (*.sfr) as symbol names for use with the compiler. An SFR file
contains the names of the SFRs and the bits in the SFRs. These SFR files are also used by the assembler,
debugger and integrated environment. The commented fields are used by the debugger and integrated
environment for information on register fields.

SFRs in the SFR area and extended SFR area are addressed in the near address space. The compiler
knows the effective address ranges and generates SFR addressing modes for this. The generated
addressing modes to access the registers depend on the address. Some SFRs cannot be addressed
with a REG addressing mode, although they are within the SFR area or the extended SFR area. These
registers are:

RSTCON |OxF1EO
RSTCON2 | OxF1E2
SYSSTAT |OxF1E4

The compiler will never emit REG addressing for these addresses.
Example use in C:

void set_sfr(void)

{

POL = 0x88; // use port name

POL_3 = 1; // use of bit name

if (POL_4 == 1)

{

POL_3 = 0;

3

IEN = 1; // use of bit name
}

The compiler generates (with option --cpu=c167):

movw OxFFOO0,#0x88

bset Oxff00.3

jnb OxFf00.4, 2

bclr Oxff00.3
_2:

bset Oxff10.11
You can find a list of defined SFRs and defined bits by inspecting the SFR file for a specific processor.
The files are named regcpu.sfr, where cpu is the CPU specified with the C compiler option --cpu. The

compiler automatically includes this register file, unless you specify option --no-tasking-sfr. The files are
located in the sfr subdirectory of the standard include directory.

13

TASKING VX-toolset for C166 User Guide

Defining Special Function Registers

SFRs are defined in SFR files and are written in C. Information that cannot be represented in C, but is
necessary for the debugger or for interactive startup code editing are represented in comments. Only the
C constructs described below are allowed, because the SFR files are also used by the assembler, debugger
and C startup code editor. Comments should only be used as the last part of the line and nested comments
are not allowed.

When the SFR contains fields, the layout of the SFR is defined by a typedef-ed struct:

typedef struct _ _psw_struct_t

{

int n : 1; /* Negative Flag */

int c : 1; /* Carry Bit Flag */

int v : 1; /* Overflow Result Flag */
int z :1; /* Zero Flag */

int e : 1; /* End of Table Flag */

int mulip - 1; /* Multiply/Divide in Progress */

int usrO : 1; /* User General Purpose */

int : 3;

int hlden : 1; /* HOLD Enable */

int ien : 1; /* Interrupt Enable Control Bit */
int ilvl : 4; /* System Interrupt Level */

} _ psw_struct_t;

Read-only fields can be marked by using the const keyword.

The SFR address is defined by a #define ADDR_SFR to the hex value of the address:
#define ADDR_PSW Oxff10

The SFR is defined by a castto a‘volatile unsigned int' pointer. Read-only SFRs are marked by
using the const keyword in the macro definition. The SFR description and initialization is placed in
comments:

#define PSW (*(volatile unsigned int *) ADDR_PSW)
/* PSW descr: Program Status Word
* PSW init: 0x0,NONE
*/

The fields of an SFR are defined as follows:

#define IEN ((*(volatile _ psw_struct_t *) ADDR_PSW).ien)

/* 1EN descr: Interrupt Enable

* 1EN value: 0, Interrupts disabled
* 1EN value: 1, Interrupts enabled
*/

The description of the field and the values and description of the values are placed in comments.

14

C Language

1.4. Using Assembly in the C Source: __asm()

With the keyword ___asm you can use assembly instructions in the C source and pass C variables as
operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

Furthermore, assembly blocks are not interpreted by the compiler: they are regarded as a black box. So,
it is your responsibility to make sure that the assembly block is syntactically correct.

General syntax of the __asm keyword

_asm("instruction_tenpl ate"

[: output_paramlist

[: input_param.li st

[: register_save_list]]]):
instruction_template Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr

Y%parm_nr
output_param_list
input_param_list

&

constraint _char

C_expression

register_save_list
register_name

Parameter number in the range 0 .. 15.

[["=[&]constraint_char"(C_expression)],...]

[["constraint_char"(C_expression)],...]

Says that an output operand is written to before the inputs are read,

so this output must not be the same register as any input.

Constraint character: the type of register to be used for the
C_expression.

Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.

[["register_name'],...]

Name of the register you want to reserve. You can use byte registers
RLO - RL7, RHO - RH7 and word registers RO - R15. Note that saving

too much registers can make register allocation impossible.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or

in the reserved register list (register_save_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint character | Type Operand Remark

b byte register RLO - RL7, RHO - RH7 |input/output constraint
w word register RO - R15 input/output constraint
i indirect address register |RO - R3 input constraint only

TASKING VX-toolset for C166 User Guide

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asm() statement generates a contiguous sequence of instructions, then
they can be best combined to a single __asm() statement. Compiler optimizations can insert instruction(s)
in between __asm() statements. Use newline characters ‘\n’ to continue on a new line ina __asm(Q)
statement.

__asm("nop\n™
"nop”);

Example 2: using output parameters

Assign the result of inline assembly to a variable. A register is chosen for the parameter because of the
constraint b; the compiler decides which register is best to use. The %0 in the instruction template is
replaced with the name of this register. The compiler generates code to assign the result to the output
variable.

int out;
void addone(void)
{

__asm("ADDB %0,#1"
: "=b"™ (out));
¥

Generated assembly code:

ADDB rh4,#1

Example 3: using input and output parameters

Multiply two C variables and assign the result to a third C variable. Word registers are necessary for the
input and output parameters (constraint w, %0 for in1, %1 for in2, %2 for outl and %3 for out2 in the
instruction template). The compiler generates code to move the input expressions into the input registers
and to assign the result to the output variables.

int inl, in2;

long int out;

void multiply32(void)
{

unsigned int outl, out2;

__asm("CoMUL %2, %3\n"
""COoSTORE %0, MAL\n"
""COoSTORE %1, MAH\n"
: U=w" (outl), "=w" (out2)
"wt (inl), "w" (in2));

out = outl | (signed long)out2<<16;

16

C Language

Generated assembly code:

; Code generated by C compiler
movw rll, _inl

movw rl2, _in2

; __asm statement expansion
CoMUL ri11, ri12

CoSTORE r12, MAL

CoSTORE ri11, MAH

; Code generated by C compiler
movw _out, ri2

movw _out+2, ril

Example 4: reserving resisters

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 3, but now registers R11 and R12 are reserved registers. You can do this by adding
a reserved register list (: "R11","R12"). As you can see in the generated assembly code, registers R11
and R12 are not used (the first register used is R13).

int inl, In2;

long int out;

void multiply32(void)
{

unsigned int outl, out2;

__asm("CoMUL %2, %3\n"
""COoSTORE %0, MAL\n"
"COoSTORE %1, MAH\n"
o "=w" (outl), "=w" (out2)
D"wt (inl), "w" (in2)
"R11","R12");

out = outl | (signed long)out2<<16;
}

Generated assembly code:

; Code generated by C compiler
movw rl1l3, _inl

movw rl4, _in2

; __asm statement expansion
CoMUL r13, rl14

CoSTORE r14, MAL

CoSTORE ri13, MAH

; Code generated by C compiler
movw _out, ril4

movw _out+2, ri3

17

TASKING VX-toolset for C166 User Guide

1.5. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:

#pragma pragma-spec [ON | OFF | DEFAULT | RESTORE]

or:

_Pragma("'pragma-spec [ON | OFF | DEFAULT | RESTORE]"™)

on switches the pragma on, this is the same as without arguments. oFf switches the pragma off.default
sets the pragma to the initial value. restore restores the previous value of the pragma.

The compiler recognizes the following pragmas, other pragmas are ignored.
alias symbol=defined_symbol
Define symbol as an alias for defined_symbol. It corresponds to an alias directive (.alias) at assembly

level. The symbol should not be defined elsewhere, and defined_symbol should be defined with static
storage duration (not extern or automatic).

clear / noclear

By default, uninitialized global or static variables are cleared to zero on startup. With pragma noclear,
this step is skipped. Pragma clear resumes normal behavior. This pragma applies to constant data as
well as non-constant data.

See C compiler option --no-clear.

compactmaxmatch value [default | restore]

With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

extension isuffix [on | off | default | restore]

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _ Imaginary.

extern symbol

Force an external reference (.extern assembler directive), even when the symbol is not used in the
module.

18

C Language

inline / noinline / smartinline

Instead of the inline qualifier, you can also use pragma inline and pragma noinline to inline a
function body:

int w,Xx,y,z;

#pragma inline
int add(int a, int b)
{
int 1=4;
return(a + b);
}

#pragma noinline

void main(void)
{
W
z

add(1, 2)
add(x, y)

X ;

If a function has an inline or __noinline function qualifier, then this qualifier will overrule the current
pragma setting.

With the optimization C compiler option --optimize=+inline (-Oi), small functions that are not too often
called (from different locations), are inlined. This reduces execution speed at the cost of code size. With
the pragma noinline / pragma smartinline you can temporarily disable this optimization.

With the C compiler options --inline-max-incr and --inline-max-size you have more control over the
function inlining process of the compiler.

See also Section 1.10.3, Inlining Functions: inline
linear_switch / jump_switch / binary_switch / smart_switch
With these pragmas you can overrule the compiler chosen switch method:

linear_switch force jump chain code. A jump chain is comparable with an if/else-if/else-if/else
construction.

Jump_switch force jump table code. A jump table is a table filled with jump instructions for each
possible switch value. The switch argument is used as an index to jump within this
table.

binary_switch force binary lookup table code. A binary search table is a table filled with a value to
compare the switch argument with and a target address to jump to.

smart_switch letthe compiler decide the switch method used

See also Section 1.9, Switch Statement.

19

TASKING VX-toolset for C166 User Guide

mac / nomac

Enable/disable automatic MAC code generation for a function. The pragma works the same as C compiler
option --mac

macro / nomacro

Turns macro expansion on or off. By default, macro expansion is enabled.

maxcalldepth value [default | restore]

With this pragma you can control the maximum call depth. Default is infinite (-1).
See C compiler option --max-call-depth.

message "'message" ...

Print the message string(s) on standard output.

optimize [flags | default | restore] / endoptimize

You can overrule the C compiler option --optimize for the code between the pragmas optimize and
endoptimize. The pragma works the same as C compiler option --optimize.

See Section 4.6, Compiler Optimizations.
profiling [on | off | default | restore]

If profiling is enabled on the command line (C compiler option --profile), you can disable part of your
source code for profiling with the pragmas profiling off and profiling.

protect [on | off | default | restore] / endprotect

With these pragmas you can protect sections against linker optimizations. This excludes a section from
unreferenced section removal and duplicate section removal by the linker. endprotect restores the
default section protection.

romdata / noromdata

With pragma romdata the compiler allocates all non-automatic variables in ROM only. With pragma
noromdata, the variables are allocated in RAM and initialized from ROM at startup.

runtime [flags | default | restore]

With this pragma you can control the generation of additional code to check for a number of errors at
run-time. The pragma argument syntax is the same as for the arguments of the C compiler option --runtime.
You can use this pragma to control the run-time checks for individual statements. In addition, objects
declared when the "bounds" sub-option is disabled are not bounds checked. The "malloc” sub-option
cannot be controlled at statement level, as it only extracts an alternative malloc implementation from the
library.

20

C Language

savemac / nosavemac

Enable/disable save/restore of MAC-accumulator in a function’s prologue/epilogue.

section [type=name | default | restore] / endsection

Generate code/data in a new section. See Section 1.11, Section Naming for more information.
source [on | off | default | restore] / nosource

With these pragmas you can choose which C source lines must be listed as comments in assembly output.
See C compiler option --source.

stdinc [on | off | default | restore]

This pragma changes the behavior of the #include directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

string_literal_memory space [default | restore]

Controls the allocation of string literals. The memory space must be one of: __near, __ far, __shuge,
__huge or model.

See C compiler option --string-literal-memory.
constant_memory space [default | restore]

Controls the allocation of constants, automatic initializers and switch tables. The memory space must be
one of: __near, _ far, ___shuge, __huge or model.

See C compiler option --constant-memory.
tradeoff level [default | restore]

Specify tradeoff between speed (0) and size (4).
warning [number,...] [default | restore]

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (.weak assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

21

TASKING VX-toolset for C166 User Guide

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.6. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

Macro Description

__BIG_ENDIAN___ Expands to 0. The processor accesses data in little-endian.

__BUILD__ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, __ BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__Cl6e6__ Identifies the compiler. You can use this symbol to flag parts of the source
which must be recognized by the c166 compiler only. It expands to 1.

__CORE__ Expands to a string with the core depending on the C compiler options --cpu
and --core. The symbol expands to “c16x” when no --cpu and no --core is
supplied.

__CORE_core___ A symbol is defined depending on the options --cpu and --core. The core
is converted to upper case. Example: if --cpu=xc167ci is specified, the
symbol __ CORE_XC16X__is defined. When no --core or --cpu is supplied,
the compiler defines __ CORE_C16X__.

__CPU__ Expands to a string with the CPU supplied with the option --cpu. When no
--cpu is supplied, this symbol is not defined.

__CPU_cpu__ A symbol is defined depending on the option --cpu=cpu. The cpu is converted
to uppercase. For example, if --cpu=xc167ci is specified the symbol
__CPU_XC167CI___is defined. When no --cpu is supplied, this symbol is
not defined.

__ DATE__ Expands to the compilation date: “mmm dd yyyy”.

_ DOUBLE_FP__ Expands to 1 if you did not use option --no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__FILE__ Expands to the current source file name.

__LINE__ Expands to the line number of the line where this macro is called.

_ MODEL__ Identifies the memory model for which the current module is compiled. It

expands to a single character constant: ‘n’ (near), ‘f’ (far), ‘s’ (shuge) or ‘b’
(huge).

__NEAR_FUNCTIONS__

Expands to 1 if the option --near-functions is used, otherwise unrecognized
as macro, meaning that huge functions are default.

_ PROF_ENABLE__

Expands to 1 if profiling is enabled, otherwise expands to 0.

22

C Language

Macro

Description

__REVISION__

Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__SFRFILE__(cpu)

This macro expands to the filename of the used SFR file, including the

pathname and the < >. The cpu is the argument of the macro. For example,
if --cpu=xc167ciis specified, the macro __ SFRFILE__ (__CPU__) expands
to__ SFRFILE__(xcl167ci), which expandsto <sfr/regxcl67ci.sfr>.

__SILICON_BUG_num__

This symbol is defined if the number num is defined with the option
--silicon-bug.

__SINGLE_FP__ Expands to 1 if you used option --no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.
__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set

option --language (Control language extensions), otherwise expands to 0.

__STDC_HOSTED__

Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_VERSION__

Identifies the 1ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

_ _TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

_ TASKING_SFR__ Expands to 1 if TASKING .sfr files are used. Not defined when option
--no-tasking-sfr is used.

__TIME__ Expands to the compilation time: “hh:mm:ss”

__USER_STACK__ Expands to r if --user-stack=+rtl is used, or R if --user-stack=-rtl is used,
otherwise unrecognized as macro.

__USMLIB___ Expands to___usmif --user-stack is used, otherwise it expands to __nousm.
You can use this macro to qualify functions explicitly.

__VERSION__ Identifies the version number of the compiler. For example, if you use version
2.1r1 of the compiler, _ VERSION__ expands to 2001 (dot and revision
number are omitted, minor version number in 3 digits).

_ VX Identifies the VX-toolset C compiler. Expands to 1.

Example

#if __MODEL__ == "f°"

/* this part is only

#endi

for the far memory model */

23

TASKING VX-toolset for C166 User Guide

1.7.Variables

1.7.1. Initialized Variables

Automatic initialized variables are initialized (run-time) each time a C function is entered. Normally, this
is done by generating code which assigns the value to the automatic variable.

The ISO C standard allows run-time initialization of automatic integral and aggregate types. To support
this feature, the TASKING C166 C compiler generates code to copy the initialization constants from ROM
to RAM each time the function is entered.

There is a lot of existing C source which use static initializations. Static initialized variables normally use
the same amount of space in both ROM and RAM. This is because the initializers are stored in ROM and
copied to RAM at start-up. The only exception is an initialized variable residing in ROM, by means of
either the #pragma romdata or the const type qualifier.

const char b = "b"; /* 1 byte in ROM */
#pragma noromdata /* default, may be omitted, unless pragma
romdata was used before */
int 1 = 100; /* 2 bytes in ROM, 2 bytes in IRAM */
char a = "a"; /* 1 byte in ROM, 1 byte 1in IRAM */
char *p = "ABCD"; /* 5 bytes in ROM (for "ABCD™) */
/* 2 bytes in ROM, 2 bytes in IRAM
(for p)*/
#pragma romdata /* Needed for ROM only allocation */
int j = 100; /* 2 bytes in ROM */
char *g = "WXYZ"; /* 5 bytes in ROM (for "WXYZ™) */

/* 2 bytes in ROM (for p) */
1.7.2. Non-Initialized Variables

In some cases there is a need to keep variables unchanged even if power is turned off (see for an example
Section 8.6.8, The Section Layout Definition: Locating Sections). In these systems some of the RAM is
implemented in EEPROM or in a battery-powered memory device. In a simulator environment, clearing
non-initialized variables might not be wanted too. To avoid the ‘clearing' of non-initialized variables at
startup, one of the following things should be performed:

» Define (allocate) these variables in a special C module and compile this module with option --no-clear.
From Eclipse: From the Project menu, select Properties, select C/C++ Build and open the Tool
Settings tab, select C/C++ Compiler » Allocation and disable the option Clear non-initialized global
variables.

» Define (allocate) these variables between #pragma noclear and #pragma clear.

» Use inline assembly to allocate the special variables in a special data section (NOT used by other C
variables).

» Make a separate assembly module, containing the allocation of these variables in a special data section.

24

C Language

1.8. Strings

In this context the word 'strings' means the separate occurrence of a string in a C program. So, array
variables initialized with strings are just initialized character arrays, which can be allocated in any memory
type, and are not considered as 'strings'.

Strings have static storage. The ISO C standard permits string literals to be put in ROM. Because there
is no difference in accessing ROM or RAM, The C166 C compiler allocates strings in ROM only. This
approach also saves RAM, which can be very scarce in an embedded (single chip) application.

As mentioned before, the C compiler offers the possibility to allocate a static initialized variable in ROM
only, when declared with the const qualifier or after a #pragma romdata. This enables the initialization
of a (const) character array in ROM:

const char romhelp[] = "help";
/* allocation of 5 bytes in ROM only */

Or a pointer array in ROM only, initialized with the addresses of strings, also in ROM only:

char * const messages[] = {"hello","alarm","exit"};
Allocation of string literals

By default the C compiler allocates string literals in the memory model's default memory space. You can
overrule this with #pragma string_literal_memory:

#pragma string_literal_memory space

The space must be one of: __near, _ far, _ shuge, __huge or model. Instead of this pragma you
can also use the equivalent command line option --string_literal_memory.

String literals as use in:

char * s = "string";

or:

printf("formatter %s\n", 'string");
are affected by this pragma/option.

Example:

#pragma string_literal_memory _ _huge /* allocate strings in __huge memory */
__huge char * txt = "textl";

1.9. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a binary search table.

25

TASKING VX-toolset for C166 User Guide

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
jump instructions for each possible switch value. The switch argument is used as an index to jump within
this table. A binary search table is a table filled with a value to compare the switch argument with and a
target address to jump to.

#pragma smart_switch is the default of the compiler. The compiler tries to use the switch method
which uses the least space in ROM (table size in ROMDATA plus code to do the indexing). With the C
compiler option --tradeoff you can tell the compiler to emphasis more on speed than on ROM size.

Especially for large switch statements, the jump table approach executes faster than the binary search
table approach. Also the jump table has a predictable behavior in execution speed: independent of the
switch argument, every case is reached in the same execution time.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

You can overrule the compiler chosen switch method by using a pragma:

#pragma linear_switch force jump chain code

#pragma jump_switch force jump table code

#pragma binary_switch force binary search table code

#pragma smart_switch let the compiler decide the switch method used

The switch pragmas must be placed before the switch statement. Nested switch statements use the
same switch method, unless the nested switch is implemented in a separate function which is preceded
by a different switch pragma.

Example:
/* place pragma before function body */
#pragma jump_switch

void test(unsigned char val)
{ /* function containing the switch */
switch (val)

{
}

/* use jump table */
}
1.10. Functions

By default functions are huge. With the C compiler option --near-functions you can set the default to use
near functions. But you can also use the __near or __huge function pointer qualifiers.

__hear Define function called with intra-segment calls. The sections generated for __near functions
are grouped in a group called __near_functions.

__huge Define function called with inter-segment calls.

26

C Language

Example:
__near nfunc(void){ /* a near function */ }

The compiler uses a ‘user stack’ to pass parameters and to allocate variables and temporary storage.
The function return addresses are placed on the system stack by the processor with a call instruction.
With the C compiler option --user-stack function return addresses are placed on the user stack. The
code compaction optimization (-Or) has no effect for functions with the return address on the user stack.

Instead of the option --user-stack, you can use the __usm or __nousm function pointer qualifiers.

__usm Use the user stack for function call return addresses.
__nousm Use the system stack for function call return addresses.

1.10.1. Calling Convention

Parameter Passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack.

The following conventions are used when passing parameters to functions.

Registers available for parameter passing are USRO, R2, R3, R4 R5, R11, R12, R13 and R14. Parameters
<= 64 bit are passed in registers except for 64-bit structures:

Parameter Type Registers used for parameters

1 bit USRO, R2.0..15, R3.0..15, R4.0..15, R5.0..15
8 bit RL2, RH2, RL3, RH3, RL4, RH4, RL5, RH5
16 bit R2, R3, R4, R5, R11, R12, R13, R14

32 bit R2R3, R4R5, R11R12, R13R14

64 bit R2R3R4R5, R11R12R13R14

The parameters are processed from left to right. The first not used and fitting register is used. Registers
are searched for in the order listed above. When a parameter is > 64 bit, or all registers are used, parameter
passing continues on the stack. The stack grows from higher towards lower address, each parameter on
the stack is stored in little-endian. The alignment on the stack depends on the data type as listed in
Section 1.1, Data Types

Example with three arguments:

funcl(int a, long b, int *c)

a (first parameter) is passed in registers R2.

b (second parameter) is passed in registers R4R5.

¢ (third parameter) is passed in registers R3.

27

TASKING VX-toolset for C166 User Guide

Variable Argument Lists

Functions with a variable argument list must have their last fixed parameter and all subsequent parameters
pushed on the stack. For parameters before the last fixed parameter the normal parameter passing rules

apply.
Function Return Values
The C compiler uses registers to store C function return values, depending on the function return types.

USRO, R2, R3, R4 and R5 are used for return values <=64 bit:

Return Type Register

1 bit USRO

8 bit RL2

16 bit R2

32 bit R2R3

64 bit R2R3R4R5

The return registers have an overlap with the parameter registers, which yields more efficient code when
passing arguments to child functions.

Return values > 64 bits are returned in a buffer, allocated on the stack. The caller must pass a pointer to
the return buffer in the last parameter register (R14). It is the caller’s responsibility to allocate and release
the space used for the return buffer. The callee will put the return value in the allocated buffer.

Stack usage

The stack on the C166 consists of a system stack and a user stack. The system stack is used for the
return addresses and for data explicitly pushed with the PUSH instruction. The compiler usually does not
push anything on the system stack, with exception to interrupt functions . The user stack is used for
parameter passing, allocation of automatics and temporary storage. The compiler uses R15 as user stack
pointer. The data on the stack is aligned depending on the data type as listed in Section 1.1, Data Types.
The stack pointer itself is always aligned at 16-bit. In the Super10/XC16x a user stack is allocated for
each local bank. The user stack grows from high to low. The user stack is always located in near memory,
the maximum size depends on the chosen memory model. The DPP register used for the user stack is
determined at link time.

The stack pointer always refers to the last occupied slot. Meaning that the stack pointer first has to be
decreased before data can be stored. A typical stack frame is outlined in the following picture:

28

C Language

J l High address
-
Optional return value E o
c
=
Z
o
o =
Argument passing area 2
o
=
p=2]
Function entry Return address (__usm) v g
........b . E
)
5
Callee saved registers =
73]
=1}
c
=
_ o
Local objects %‘
. O
Frame pointer (RS)
“ariable length arrays
Stack pointer (R15) ¥ -
Low address

Before a function call, the caller pushes the required parameters on the stack. This area is called the
argument passing area. For user stack functions the return address is saved on the user stack. After the
call has been made, the callee will save the used callee-saved registers in the "callee saved” area. Next,
the space for the local objects is allocated. After this, variable length arrays (VLAS) can be allocated. If
VLAs are used in a function, register R8 is used to access the local objects and stack parameters. If no
VLAs are used, R8 is available for other purposes. When the called function returns an object > 64 bit on
the stack, the caller must reserve a stack area to hold the return value. After the function call, the caller
must release this stack area. This also applies to the argument passing area. After the stack frame has
been built, the stack pointer points to the argument passing area.

1.10.2. Register Usage

The C compiler uses the general purpose registers according to the convention given in the following
table.

Register Class Purpose

USRO caller saves Parameter passing and return values
RO, RLO, RHO callee saves Automatic variables

R1, RL1, RH1 callee saves Automatic variables

R2, RL2, RH2 caller saves Parameter passing and return values

29

TASKING VX-toolset for C166 User Guide

Register Class Purpose

R3, RL3, RH3 caller saves Parameter passing and return values
R4, RL4, RH4 caller saves Parameter passing and return values
R5, RL5, RH5 caller saves Parameter passing and return values
R6, RL6, RH6 callee saves Automatic variables

R7, RL7, RH7 callee saves Automatic variables

R8 callee saves Automatic variables, User stack frame pointer
R9 callee saves Automatic variables

R10 callee saves Automatic variables

R11 caller saves Parameter passing

R12 caller saves Parameter passing

R13 caller saves Parameter passing

R14 caller saves Parameter passing, return buffer pointer
R15 dedicated User stack pointer

The registers are classified: caller saves, callee saves and dedicated.

caller saves

callee saves

dedicated

These registers are allowed to be changed by a function without saving the contents.
Therefore, the calling function must save these registers when necessary prior to a
function call.

These registers must be saved by the called function, i.e. the caller expects them not
to be changed after the function call.

The user stack pointer register R15 is dedicated.

The user stack frame pointer register R8 is used for functions containing variable length arrays.

Registers RO, R1, R2 and R3 can be used directly in an arithmetic instruction like: ADD Rx, [RO].

1.10.3. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords inline (ISO-C) and __noinline.

With the inline keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

3

30

C Language

If a function with the keyword inline is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noinline keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs val = -val;
return abs_val;

3

Using pragmas: inline, noinline, smartinline

Instead of the inline qualifier, you can also use #pragma inline and #pragma noinline toinline
a function body:

#pragma inline
unsigned int abs(int val)

{
unsigned int abs val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

#pragma noinline
void main(void)

{

aés(—l);

-

n

i
3

If a function has an inline/__noinline function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pragma noinline/#pragma smartinline you cantemporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

1.10.4. Interrupt Functions
The TASKING C compiler supports a number of function qualifiers and keywords to program interrupt

service routines (ISR). An interrupt service routine (or: interrupt function, interrupt handler, exception
handler) is called when an interrupt event (or: service request) occurs.

31

TASKING VX-toolset for C166 User Guide

Defining an Interrupt Service Routine: __interrupt()

With the function type qualifier __interrupt() you can declare a function as an interrupt service routine.
The function type qualifier __interrupt() takes one interrupt number (-1, 0..127) as argument(s). The
linker generates the sections with the vectors of the specified interrupt numbers.

Interrupt functions cannot return anything and must have a void argument type list:

void __interrupt(nterrupt _nunber)
isr(void)

{

}
For example:

void __interrupt(7) serial_receive(void)

{
}

GPRs are pushed on the system stack, unless you use the __registerbank() qualifier.

Interrupt Frame: __ frame()

With the function qualifier __frame () you can specify which registers and SFRs must be saved for a
particular interrupt function. Only the specified registers will be pushed and popped from the stack. If you
do not specify the function qualifier __frame(), the C compiler determines which registers must be
pushed and popped. The syntax is:

void __interrupt(i nt errupt _nunber)
_ frame(reg[, reg]...) isr(void)
{

}

The reg can be any register defined as an SFR. The compiler generates a warning if some registers are
missing which are normally required to be pushed and popped in an interrupt function prolog and epilog
to avoid run-time problems.

Example:

void __interrupt(8) _ frame(MDL, MDH) foo (void)
{

}

You can also use the __frame () qualifier in conjunction with the __registerbank() qualifier to add
code for the context switch in the interrupt frame.

32

C Language

When you do not want the interrupt frame (saving/restoring registers) to be generated you can use the
C compiler option --no-frame. In that case you will have to specify your own interrupt frame. For this you
can use the inline capabilities of the compiler.

Register Bank Switching: __ registerbank()

It is possible to assign a new register bank to an interrupt function, which can be used on the processor
to minimize the interrupt latency because registers do not need to be pushed on stack. You can switch
register banks with the __registerbank() function qualifier. The syntax is:

void __interrupt(i nterrupt_nunber)
__registerbank(["regbank™ | | ocal bank[,"regbank™]1)
isr(void)

{

¥

regbank The string specifies the name of a global register bank to be used. The compiler
generates a section for the register bank. The compiler assumes that the BANK field in
the PSW register already selects a global register bank.

localbank The number of the local register bank to be used. With a negative number, the compiler

assumes that the register bank switch is done automatically by the processor. With a
positive number, the compiler generates code to select the local register bank. With
zero, the compiler generates code select a global register bank. In the last case, an
extra argument can be used to specify the name of the global register bank. If omitted,
the compiler will generate a name.

When no regbank-argument is supplied the compiler generates and uses a register bank with the name
__fname_regbank, where fname represents the name of the interrupt function.

When the __registerbank() qualifier is omitted, the compiler will save the GPRs on the system stack.

When the __registerbank() qualifier, that selects a global register bank, is used on the reset vector
(__interrupt(0)), the context pointer will be initialized, instead of being saved.

1.10.5. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions are predefined functions
that are recognized by the compiler. The compiler generates the most efficient assembly code for these
functions. Intrinsic functions this way enable the use of these specific assembly instructions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character.

33

TASKING VX-toolset for C166 User Guide

Many CoXXX instructions are automatically generated if a special sequence is recognized. For example,

__CoLOAD(argl);
__CoABSQ);

generates the CoABS opl, op2 instruction.

__CoMUL(argl, arg2);
__CoRNDQ);

generates the CoMUL opl, op2, rnd instruction.

__CoSUB(argl);
__CoNEGQ);

generates the CoSUBR op1, op2 instruction.

__CoABS

void _ CoABS(void);

Use the CoABS instruction to change the MAC accumulator's contents to its absolute value.
__CoADD

void __ _CoADD(long X);

Use the CoADD instruction to add a 32-bit value to the MAC accumulator.

__CoADD2

void _ CoADD2(long x);

Use the CoADD?2 instruction to add a 32-bit value, multiplied by two, to the MAC accumulator.
__CoASHR

void _ CoASHR(unsigned int count);

Use the CoOASHR instruction to (arithmetic) shift right the contents of the MAC accumulator count times.

The CoASHR instruction has a maximum value for count. Check your CPU manual for the COASHR
behavior for large arguments.

__CoCMP
unsigned int _ CoCMP(long X);

Inline code is generated by the C compiler to compare the MAC accumulator contents with a 32-bit value.
The returned value is a copy of the MSW register.

34

C Language

__CoLOAD

void _ CoLOAD(long x);

Use the CoLOAD instruction to copy a 32-bit value to the MAC accumulator.

__ CoLOAD2

void _ CoLOAD2(long x);

Use the CoLOAD?2 instruction to copy a 32-bit value, multiplied by two, to the MAC accumulator.
_ CoMAC

void _ CoMAC(int x, inty);

Use the CoMAC instruction to add the multiplication result of two signed 16-bit values to the MAC
accumulator.

__CoMACsu
void _ CoMACsu(int x, unsigned int vy);

Use the CoMACsu instruction to add the multiplication result of a signed 16-bit value with an unsigned
16-bit value to the MAC accumulator.

__CoMACu
void _ CoMACu(unsigned int x, unsigned int y);

Use the CoMACu instruction to add the multiplication result of two unsigned 16-bit values to the MAC
accumulator.

__CoMACus
void _ CoMACu(unsigned int x, signed int vy);

Use the CoMACus instruction to add the multiplication result of an unsigned 16-bit value with a signed
16-bit value to the MAC accumulator.

__ CoMAC_min
void _ CoMAC_min(int x, Int vy);

Use the CoMAC- instruction to subtract the multiplication result of two signed 16-bit values from the MAC
accumulator.

__CoMACsu_min

void _ CoMACsu_min(int x, unsigned int vy);

35

TASKING VX-toolset for C166 User Guide

Use the CoMACSsu- instruction to subtract the multiplication result of a signed 16-bit value with an unsigned
16-bit value from the MAC accumulator.

___CoMACuU_min
void _ CoMACu_min(unsigned int x, unsigned inty);

Use the CoMACu- instruction to subtract the multiplication result of two unsigned 16-bit values from the
MAC accumulator.

__CoMACus_min
void _ CoMACus_min(unsigned int X, signed Iint y);

Use the CoMACus- instruction to subtract the multiplication result of an unsigned 16-bit value with a
signed 16-bit value from the MAC accumulator.

__CoMAX
void _ CoMAX(long x);

Use the CoMAX instruction to change the MAC accumulator's contents if its value is lower than the
argument’s value.

__CoMIN
void _ CoMIN(long x);

Use the CoMIN instruction to change the MAC accumulator's contents if its value is higher than the
argument's value.

__CoMUL
void _ CoMUL(int x, inty);

Use the CoMUL instruction to store the multiplication result of two signed 16-bit values in the MAC
accumulator.

__CoMULsu
void _ CoMULsu(int x, unsigned int y);

Use the CoMULsu instruction to store the multiplication result of a signed 16-bit value with an unsigned
16-bit value in the MAC accumulator.

___CoMULu
void _ CoMULu(unsigned int x, unsigned inty);

Use the CoMULu instruction to store the multiplication result of two unsigned 16-bit values in the MAC
accumulator.

36

C Language

__CoMULus
void _ CoMULus(unsigned int x, signed int vy);

Use the CoMULus instruction to store the multiplication result of an unsigned 16-bit value with a signed
16-bit value in the MAC accumulator.

___CoMUL_min
void _ CoMUL_min(int x, inty);

Use the CoMUL- instruction to store the negated multiplication result of two signed 16-bit values in the
MAC accumulator.

__CoMULsu_min
void _ CoMULsu_min(int x, unsigned int y);

Use the CoMULsu- instruction to store the negated multiplication result of a signed 16-bit value with an
unsigned 16-bit value in the MAC accumulator.

__CoMULu_min
void _ CoMULu_min(unsigned int x, unsigned inty);

Use the CoMULu- instruction to store the negated multiplication result of two unsigned 16-bit values in
the MAC accumulator.

__CoMULus_min
void _ CoMULus_min(unsigned int X, signed Iint vy);

Use the CoMULus- instruction to store the negated multiplication result of an unsigned 16-bit value with
a signed 16-bit value in the MAC accumulator.

__CoNEG

void _ CoNEG(void);

Use the CoNEG instruction to change the MAC accumulator's contents to its negated value.
__CoNOP

void __ _CoNOP(void);

A CoNOP instruction is generated.

__CoRND

void _ CoRND(void);

Use the CoRND semi-instruction to change the MAC accumulator's contents to its rounded value.

37

TASKING VX-toolset for C166 User Guide

__CoSHL
void __ CoSHL(unsigned int count);
Use the CoSHL instruction to shift left the contents of the MAC accumulator count times.

The CoSHL instruction has a maximum value for count. Check your CPU manual for the CoSHL behavior
for large arguments.

__CoSHR
void _ CoSHR(unsigned int count);
Use the CoSHR instruction to (logical) shift right the contents of the MAC accumulator count times.

The CoSHR instruction has a maximum value for count. Check your CPU manual for the CoSHR behavior
for large arguments.

__CoSTORE

long _ CoSTORE(void);

Use the CoSTORE instruction to retrieve the 32-bit value, stored in the MAC accumulator MAH and MAL.
__ CoSTOREMAH

int _ CoSTOREMAH(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAH.
__ CoSTOREMAL

int _ CoSTOREMAL(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAL.
__ CoSTOREMAS

int _ CoSTOREMAS(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAS.
__ CoSTOREMSW

int _ CoSTOREMSW(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MSW.
__CoSuB

void _ CoSUB(long X);

38

C Language

Use the CoSUB instruction to subtract a 32-bit value from the MAC accumulator.

__CoSuB2

void _ CoSUB2(long x);

Use the CoSUB?2 instruction to subtract a 32-bit value, multiplied by two, from the MAC accumulator.
__alloc

void _ _near * volatile __alloc(__size_t size);

Allocate memory on the user stack. Returns a pointer to space in external memory of size bytes length.
NULL if there is not enough space left.

__dotdotdot___

char * _ _dotdotdot__ (void);

Variable argument '..." operator. Used in library function va_start(). Returns the stack offset to the
variable argument list.

__free

void volatile _ free(void *p);

Deallocates the memory pointed to by p. p must point to memory earlier allocated by acallto __alloc().
__Qgetsp

__near void * volatile _ getsp(void);

Get the value of the user stack pointer. Returns the value of the user stack pointer.
__setsp

void volatile __setsp(__near void * value);

Set the value of the user stack pointer to value.

__get_return_address

__codeptr volatile _ _get_return_address(void);

Used by the compiler for profiling when you compile with the option --profile. Returns the return address
of a function.

rol

unsigned int ___rol(unsigned int operand,
unsigned iInt count);

39

TASKING VX-toolset for C166 User Guide

Use the ROL instruction to rotate operand left count times.

ror

unsigned int __ror(unsigned int operand,
unsigned int count);

Use the ROR instruction to rotate operand right count times.
__testclear
__bit __testclear(__bit semaphore);

Read and clear semaphore using the JBC instruction. Returns 0 if semaphore was not cleared by the
JBC instruction, 1 otherwise.

__testset
__bit __testset(__bit semaphore);

Read and set semaphore using the JINBS instruction. Returns 0 if semaphore was not set by the INBS
instruction, 1 otherwise.

__bfld
void _ bfld(volatile unsigned int _ _unaligned * operand, unsigned short mask, unsigned s

Use the BFLDL/BFLDH instructions to assign the constant value to the bit-field indicated by the constant
mask of the bit-addressable operand.

__getbit

__bit __getbit(operand, bitoffset);

Returns the bit at bi toffset of the bit-addressable operand for usage in bit expressions.
__putbit

void _ putbit(_ bit value, operand, bitoffset);

Assign value to the bit at bi toffset of the bit-addressable operand.

__int166

void __intl66(intno);

Execute the C166/ST10 software interrupt specified by the interrupt number Intno via the software trap
(TRAP) instruction. __int166(0); emits an SRST (Software Reset) instruction.___ int166(8);
emits an SBRK (Software Break) instruction (only for super10/superl0m345/xc16x cores).

40

C Language

__idle
void __idle(void);

Use IDLE instruction to enter the idle mode. In this mode the CPU is powered down while the peripherals
remain running.

__nop

void _ nop(void);

A NORP instruction is generated, before and behind the nop instruction the peephole is flushed.
__prior

unsigned int _ prior(unsigned int value);

Use PRIOR instruction to prioritize value.

__pwrdn

void __pwrdn(void);

Use PWRDN instruction to enter the power down mode. In this mode, all peripherals and the CPU are
powered down until an external reset occurs.

___srvwdt

void __ srvwdt(void);

Use SRVWDT instruction to service the watchdog timer.
__diswdt

void _ diswdt(void);

Use DISWDT instruction to disable the watchdog timer.
__enwdt

void __enwdt(void);

Use ENWDT instruction to enable the watchdog timer.

__einit

void __einit(void);

Use EINIT instruction to end the initialization.

41

TASKING VX-toolset for C166 User Guide

__mul32
long __ mul32(int x, inty);

Use MUL instruction to perform a 16-bit by 16-bit signed multiplication and returning a signed 32-bit result.
The overflow bit V is set by the CPU when the result cannot be represented in an int data type.

__mulu32

unsigned long _ mulu32(unsigned int x,
unsigned Int y);

Use MULU instruction to perform a 16-bit by 16-bit unsigned multiplication and returning a unsigned 32-bit
result. The overflow bit V is set by the CPU when the result cannot be represented in an int data type.

__div32
int _ div32(long x, int y);

Use DIVL instructions to perform a 32-bit by 16-bit signed division and returning a signed 16-bit result.
The overflow bit V is set by the CPU when the result cannot be represented in an int data type or when
the divisor yy was zero.

__divu3d2

unsigned int __divu32(unsigned long X,
unsigned int vy);

Use DIVLU instructions to perform a 32-bit by 16-bit unsigned division and returning an unsigned 16-bit
result. The overflow bit V is set by the CPU when the result cannot be represented in an int data type
or when the divisor y was zero.

__mod32
int _ mod32(long x, inty);

Use DIVL instructions to perform a 32-bit by 16-bit signed modulo and returning a signed 16-bit result.
The overflow bit V is set by the CPU when the quotient cannot be represented in an int data type or
when the divisor y was zero.

__modu32

unsigned int _ _modu32(unsigned long X,
unsigned int y);

Use DIVLU instructions to perform a 32-bit by 16-bit unsigned modulo and returning a unsigned 16-bit
result. The overflow bit V is set by the CPU when the quotient cannot be represented in an int data type
or when the divisor y was zero.

—Ppag

unsigned int _ _pag(void * p);

42

C Language

Inline code is generated by the C compiler to get the 10-bit page number of pointer p

__pof

unsigned int _ _pof(void * p);

Inline code is generated by the C compiler to get the 14-bit page offset of pointer p
__seg

unsigned int _ _seg(void * p);

Inline code is generated by the C compiler to get the 8-bit segment number of pointer p

__sof
unsigned int _ sof(void * p);
Inline code is generated by the C compiler to get the 16-bit segment offset of pointer p

__mkfp

void _ far * _ mkfp(unsigned int pof,
unsigned int pag);

Inline code is generated by the C compiler to make a far pointer from a page offset pof and page number
pag. The arguments pag and pof are expected to be in a valid range.

__mkhp

void _ _huge * _ mkhp(unsigned int sof,
unsigned int seg);

Inline code is generated by the C compiler to make a huge pointer from a segment offset sof and segment
number seg. The arguments sof and seg are expected to be in a valid range.

__mksp

void __shuge * _ mksp(unsigned int sof,
unsigned int seg);

Inline code is generated by the C compiler to make a shuge pointer from a segment offset sof and
segment number seg. The arguments sof and seg are expected to be in a valid range.

sat

void __ sat(void);

Enable saturation. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRs).

43

TASKING VX-toolset for C166 User Guide

__nosat
void _ nosat(void);

Disable saturation. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRS).

__scale
void _ scale(void);

Enable scaler. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRs).

__noscale
void _ _noscale(void);

Disable scaler. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRs).

1.11. Section Naming

The C compiler generates sections and uses the memory type as section names. The memory types are:
code, near, far, huge, shuge, bit, bita and iram. See also Section 1.3.1, Memory Type Qualifiers. The
section names are independent of the section attributes such as clear, init, and romdata.

Section names are case sensitive. By default, the sections are not concatenated by the linker. This means
that multiple sections with the same name may exist. At link time sections with different attributes can be
selected on their attributes. The linker may remove unreferenced sections from the application.

You can rename sections with a pragma or with a command line option. The syntax is the same:
--renane-sections=[type=]format _string[, [type=]format _string]--.
#pragma section [type=]format_string[, [type=]format_string]--.

With the memory type you select which sections are renamed. The matching sections will get the specified
format string for the section name. The format string can contain characters and may contain the following
format specifiers:

{attrib} section attributes, separated by underscores
{module} module name

{name} object name, name of variable or function
{type} section type

Some examples (file test.c):

#pragma section near={module} {type} {attrib}
__hear int x;

44

C Language

/* Section name: test_near_near_clear */

#pragma section near=_c166_{module}_ {name}
__near int status;
/* Section name: _cl66_test_status */

#pragma section near=RENAMED_{name}
__near int barcode;
/* Section name: RENAMED_barcode */

With the #pragma endsection the default section name is restored. Nesting of pragma
section/endsection pairs will save the status of the previous level.

Examples (file example.c)

__near char a; // allocated in "near”
#pragma section near=MyNearDatal

__near char b; // allocated in "MyNearDatal"
#pragma section near=MyNearData2

__near char c; // allocated in "MyNearData2"
#pragma endsection

__near char d; // allocated in "MyNearDatal"
#pragma endsection

__near char e; // allocated in "near”

45

TASKING VX-toolset for C166 User Guide

46

Chapter 2. C++ Language

The TASKING C++ compiler (cp166) offers a new approach to high-level language programming for the
C166 family. The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:1998 standard
and modified by TC1 for that standard. It also accepts the language extensions of the C compiler (see
Chapter 1, C Language).

This chapter describes the C++ language implementation and some specific features.

Note that the C++ language itself is not described in this document. For more information on the C++
language, see

» The C++ Programming Language (second edition) by Bjarne Straustrup (1991, Addison Wesley)

» ISO/IEC 14882:1998 C++ standard [ANSI] More information on the standards can be found at
http://www.ansi.org

2.1. C++ Language Extension Keywords

The C++ compiler supports the same language extension keywords as the C compiler. When option
--strict is used, the extensions will be disabled.

Additionally the following language extensions are supported:
attributes

Attributes, introduced by the keyword __attribute__, can be used on declarations of variables,
functions, types, and fields. The al ias, aligned, cdecl, const, constructor, deprecated,
destructor, format, format_arg, init_priority, malloc, mode, naked,
no_check_memory_usage, no_instrument_function, nocommon, noreturn, packed, pure,
section, sentinel, stdcall, transparent_union, unused, used, visibility, volatile, and
weak attributes are supported.

pragmas
The C++ compiler supports the same pragmas as the C compiler and some extra pragmas as explained

in Section 2.7, Pragmas to Control the C++ Compiler. Pragmas give directions to the code generator of
the compiler.

2.2. C++ Dialect Accepted

The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:1998 standard and modified
by TC1 for that standard.

Command line options are also available to enable and disable anachronisms and strict
standard-conformance checking.

47

TASKING VX-toolset for C166 User Guide

2.2.1. Standard Language Features Accepted

The following features not in traditional C++ (the C++ language of "The Annotated C++ Reference Manual”
by Ellis and Stroustrup (ARM)) but in the standard are implemented:

The dependent statement of an if, while, do-while, or for is considered to be a scope, and the
restriction on having such a dependent statement be a declaration is removed.

The expression tested in an if, while, do-while, or for, as the first operand of a "?" operator, or
as an operand of the "&&", ":", or "1"operators may have a pointer-to-member type or a class type that
can be converted to a pointer-to-member type in addition to the scalar cases permitted by the ARM.

Qualified names are allowed in elaborated type specifiers.
A global-scope qualifier is allowed in member references of the form x. - Az :B and p->::A: :B.
The precedence of the third operand of the "?" operator is changed.

If control reaches the end of the main() routine, and main() has an integral return type, it is treated
as if a return 0O; statement were executed.

Pointers to arrays with unknown bounds as parameter types are diagnosed as errors.

A functional-notation cast of the form A() can be used even if A is a class without a (nontrivial)
constructor. The temporary created gets the same default initialization to zero as a static object of the
class type.

A cast can be used to select one out of a set of overloaded functions when taking the address of a
function.

Template friend declarations and definitions are permitted in class definitions and class template
definitions.

Type template parameters are permitted to have default arguments.

Function templates may have nontype template parameters.

A reference to const volatile cannot be bound to an rvalue.

Quialification conversions, such as conversion from T**to T const * const * are allowed.
Digraphs are recognized.

Operator keywords (e.g., hot, and, bitand, etc.) are recognized.

Static data member declarations can be used to declare member constants.

When option --wchar_t-keyword is set, wchar_t is recognized as a keyword and a distinct type.
bool is recognized.

RTTI (run-time type identification), including dynamic_cast and the typeid operator, is implemented.

48

C++ Language

Declarations in tested conditions (in if, switch, for, and whi le statements) are supported.
Array new and delete are implemented.

New-style casts (static_cast, reinterpret_cast, and const_cast) are implemented.
Definition of a nested class outside its enclosing class is allowed.

mutable is accepted on non-static data member declarations.

Namespaces are implemented, including using declarations and directives. Access declarations are
broadened to match the corresponding using declarations.

Explicit instantiation of templates is implemented.
The typename keyword is recognized.
explicitis accepted to declare non-converting constructors.

The scope of a variable declared in the for-init-statement of a for loop is the scope of the loop
(not the surrounding scope).

Member templates are implemented.
The new specialization syntax (using "template <>") is implemented.
Cv-qualifiers are retained on rvalues (in particular, on function return values).

The distinction between trivial and nontrivial constructors has been implemented, as has the distinction
between PODs and non-PODs with trivial constructors.

The linkage specification is treated as part of the function type (affecting function overloading and
implicit conversions).

extern inline functions are supported, and the default linkage for inl ine functions is external.
A typedef name may be used in an explicit destructor call.

Placement delete is implemented.

An array allocated via a placement new can be deallocated via delete.

Covariant return types on overriding virtual functions are supported.

enum types are considered to be non-integral types.

Partial specialization of class templates is implemented.

Partial ordering of function templates is implemented.

Function declarations that match a function template are regarded as independent functions, not as
"guiding declarations" that are instances of the template.

It is possible to overload operators using functions that take enum types and no class types.

49

TASKING VX-toolset for C166 User Guide

Explicit specification of function template arguments is supported.

Unnamed template parameters are supported.

The new lookup rules for member references of the form x_A: :B and p->A: :B are supported.
The notation :: template (and ->template, etc.) is supported.

In a reference of the form F()->g(), with g a static member function, () is evaluated. The ARM
specifies that the left operand is not evaluated in such cases.

enum types can contain values larger than can be contained in an int.

Default arguments of function templates and member functions of class templates are instantiated only
when the default argument is used in a call.

String literals and wide string literals have const type.
Class name injection is implemented.
Argument-dependent (Koenig) lookup of function names is implemented.

Class and function names declared only in unqualified friend declarations are not visible except for
functions found by argument-dependent lookup.

A void expression can be specified on a return statement in a void function.

Function-try-blocks, i.e., try-blocks that are the top-level statements of functions, constructors, or
destructors, are implemented.

Universal character set escapes (e.g., \uabcd) are implemented.

On a call in which the expression to the left of the opening parenthesis has class type, overload resolution
looks for conversion functions that can convert the class object to pointer-to-function types, and each
such pointed-to "surrogate function" type is evaluated alongside any other candidate functions.

Dependent name lookup in templates is implemented. Nondependent names are looked up only in the
context of the template definition. Dependent names are also looked up in the instantiation context, via
argument-dependent lookup.

Value-initialization is implemented. This form of initialization is indicated by an initializer of "()" and
causes zeroing of certain POD-typed members, where the usual default-initialization would leave them
uninitialized.

A partial specialization of a class member template cannot be added outside of the class definition.
Qualification conversions may be performed as part of the template argument deduction process.

The export keyword for templates is implemented.

50

C++ Language

2.2.2. C++0x Language Features Accepted

The following features added in the working paper for the next C++ standard (expected to be completed
in 2009 or later) are enabled in C++0x mode (with option --c++0x). Several of these features are also
enabled in default (honstrict) C++ mode.

» A"right shift token" (>>) can be treated as two closing angle brackets. For example:

template<typename T> struct S {};
S<S<int>> s; // OK. No whitespace needed
// between closing angle brackets.

» The friend class syntax is extended to allow nonclass types as well as class types expressed through
a typedef or without an elaborated type name. For example:

typedef struct S ST;

class C {
friend S; // OK (requires S to be in scope).
friend ST; // OK (same as "friend S;").
friend int; // OK (no effect).

friend S const; // Error: cv-qualifiers cannot
// appear directly.

» Mixed string literal concatenations are accepted (a feature carried over from C99):

wchar_t *str = "a" L"b"; // OK, same as L"ab".

 Variadic macros and empty macro arguments are accepted, as in C99.

» A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enum E { e, };
« Ifthe command line option --long-long is specified, the type long long is accepted. Unsuffixed integer
literals that cannot be represented by type long, but could potentially be represented by type unsigned

long, have type long long instead (this matches C99, but not the treatment of the long long
extension in C89 or default C++ mode).

» The keyword typename followed by a qualified-id can appear outside a template declaration.

struct S { struct N {}; };
typename S::N *p; // Silently accepted
// in C++0x mode

51

TASKING VX-toolset for C166 User Guide

2.2.3. Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled (with --anachronisms):

overload is allowed in function declarations. It is accepted and ignored.

Definitions are not required for static data members that can be initialized using default initialization.
The anachronism does not apply to static data members of template classes; they must always be
defined.

The number of elements in an array may be specified in an array de lete operation. The value is
ignored.

A single operator++() and operator--() function can be used to overload both prefix and postfix
operations.

The base class name may be omitted in a base class initializer if there is only one immediate base
class.

Assignment to this in constructors and destructors is allowed. This is allowed only if anachronisms
are enabled and the "assignment to this" configuration parameter is enabled.

A bound function pointer (a pointer to a member function for a given object) can be cast to a pointer to
a function.

A nested class name may be used as a non-nested class name provided no other class of that name
has been declared. The anachronism is not applied to template classes.

A reference to a non-const type may be initialized from a value of a different type. A temporary is
created, it is initialized from the (converted) initial value, and the reference is set to the temporary.

A reference to a non-const class type may be initialized from an rvalue of the class type or a derived
class thereof. No (additional) temporary is used.

A function with old-style parameter declarations is allowed and may participate in function overloading
as though it were prototyped. Default argument promotion is not applied to parameter types of such
functions when the check for compatibility is done, so that the following declares the overloading of
two functions named f:

int f(int);
int F(x) char x; { return x; }

Note that in C this code is legal but has a different meaning: a tentative declaration of ¥ is followed by
its definition.

When option --nonconst-ref-anachronism is set, a reference to a non-const class can be bound to a
class rvalue of the same type or a derived type thereof.

struct A {
AC(int);
A operator=(A&);
A operator+(const A&);

52

C++ Language

};
main O {

A b(1);

b = A(1) + A(2); // Allowed as anachronism
}

2.2.4. Extensions Accepted in Normal C++ Mode

The following extensions are accepted in all modes (except when strict ANSI/ISO violations are diagnosed
as errors or were explicitly noted):

A friend declaration for a class may omit the class keyword:

class A {
friend B; // Should be "friend class B"

¥

Constants of scalar type may be defined within classes:

class A {
const int size = 10;
int a[size];

In the declaration of a class member, a qualified name may be used:

struct A {
int Az:f(); // Should be int fQ;

¥

The restrict keyword is allowed.

Implicit type conversion between a pointer to an extern *C* function and a pointer to an extern
""C++" function is permitted. Here's an example:

extern "C" void f(); // f"s type has extern "C" linkage
void (*pF)() // pf points to an extern "C++" function
= &fF; // error unless implicit conversion is
// allowed

This extension is allowed in environments where C and C++ functions share the same calling
conventions. It is enabled by default.

A "?" operator whose second and third operands are string literals or wide string literals can be implicitly
converted to "char *" or "wchar_t *". (Recall that in C++ string literals are const. There is a
deprecated implicit conversion that allows conversion of a string literal to "char *", dropping the const.
That conversion, however, applies only to simple string literals. Allowing it for the result of a "?" operation
is an extension.)

53

TASKING VX-toolset for C166 User Guide

char *p = x ? "abc" : "def";

» Default arguments may be specified for function parameters other than those of a top-level function
declaration (e.g., they are accepted on typedef declarations and on pointer-to-function and
pointer-to-member-function declarations).

» Non-static local variables of an enclosing function can be referenced in a non-evaluated expression
(e.g., a sizeoT expression) inside a local class. A warning is issued.

* In default C++ mode, the friend class syntax is extended to allow nonclass types as well as class types
expressed through a typedef or without an elaborated type name. For example:

typedef struct S ST;

class C {
friend S; // OK (requires S to be in scope).
friend ST; // OK (same as "friend S;'").
friend int; // 0K (no effect).

friend S const; // Error: cv-qualifiers cannot
// appear directly.

}:

* In default C++ mode, mixed string literal concatenations are accepted. (This is a feature carried over
from C99 and also available in GNU modes).
wchar_t *str = "a" L"b"; // OK, same as L"ab".

* In default C++ mode, variadic macros are accepted. (This is a feature carried over from C99 and also
available in GNU modes.)

* In default C++ mode, empty macro arguments are accepted (a feature carried over from C99).

A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enum E { e, };

2.3. GNU Extensions

The C++ compiler can be configured to support the GNU C++ mode (command line option --g++). In this
mode, many extensions provided by the GNU C++ compiler are accepted. The following extensions are
provided in GNU C++ mode.

» Extended designators are accepted
» Compound literals are accepted.

» Non-standard anonymous unions are accepted

54

C++ Language

The typeof operator is supported. This operator can take an expression or a type (like the sizeof
operator, but parentheses are always required) and expands to the type of the given entity. It can be
used wherever a typedef name is allowed

typeof(2*2.3) d; // Declares a "double™
typeof(int) i; // Declares an "int"

This can be useful in macro and template definitions.

The __extension__ keyword is accepted preceding declarations and certain expressions. It has no
effect on the meaning of a program.

__extension__ __inline__ int f(int a) {
return a > 0 ? a/2 : f(__extension__ 1-a);

}

In all GNU C modes and in GNU C++ modes with gnu_version < 30400, the type modifiers signed,
unsigned, long and short can be used with typedef types if the specifier is valid with the underlying
type of the typedefin ANSI C. E.g.:

typedef int 1I;
unsigned | *pui; // OK in GNU C++ mode;
// same as '‘unsigned int *pui"

If the command line option --long-long is specified, the extensions for the long long and unsigned
long long types are enabled.
Zero-length array types (specified by [0]) are supported. These are complete types of size zero.

C99-style flexible array members are accepted. In addition, the last field of a class type have a class
type whose last field is a flexible array member. In GNU C++ mode, flexible array members are treated
exactly like zero-length arrays, and can therefore appear anywhere in the class type.

The C99 _Pragma operator is supported.

The gcc built-in <stdarg.h> and <varargs.h> facilities (__builtin_va_list, __ builtin_va_arg, ...) are
accepted.

The sizeof operator is applicable to void and to function types and evaluates to the value one.

Variables can be redeclared with different top-level cv-qualifiers (the new qualification is merged into
existing qualifiers). For example:

extern int volatile x;
int const x = 32; // x 1s now const volatile

The "assembler name" of variables and routines can be specified. For example:

int counter __asm__ (“'counter_v1'™) = 0;

55

TASKING VX-toolset for C166 User Guide

» Register variables can be mapped on specific registers using the asm keyword.
register int i asm(eax");
// Map "i" onto register eax.
* The keyword inline is ignored (with a warning) on variable declarations and on block-extern function
declarations.
» Excess aggregate initializers are ignored with a warning.
struct S { Iint a, b; };
struct S al = {1, 2, 3 };
// 3" ignored with a warning; no error

int a2[2] = { 7, 8, 9 };
// 9" ignored with a warning; no error

» Expressions of types void*, void const*, void volatile* and void const volatile* can
be dereferenced; the result is an Ivalue.

 The __restrict__ keyword is accepted. It is identical to the C99 restrict keyword, except for its
spelling.

» Out-of-range floating-point values are accepted without a diagnostic. When IEEE floating-point is being
used, the "infinity" value is used.

» Extended variadic macros are supported.
« Dollar signs ($) are allowed in identifiers.
» Hexadecimal floating point constants are recognized.

» The __asm__ keyword is recognized and equivalent to the asm token. Extended syntax is supported
to indicate how assembly operands map to C/C++ variables.

asm('fsinx %1,%0" : "=F'(x) : "f'(d));
// Map the output operand on "x",
// and the input operand on "a".

» The \e escape sequence is recognized and stands for the ASCII "ESC" character.

» The address of a statement label can be taken by use of the prefix "&&" operator, e.g., void *a =
&&L. A transfer to the address of a label can be done by the "goto *" statement, e.g., goto *a.

» Multi-line strings are supported, e.g.,

char *p = "abc
def";

» ASCII "NULL" characters are accepted in source files.

56

C++ Language

A source file can end with a backslash ("\") character.

Case ranges (e.g., "case 'a’ ... 'z":") are supported.

A number of macros are predefined in GNU mode. See Section 2.8, Predefined Macros.
A predefined macro can be undefined.

A large number of special functions of the form __builtin_xyz (e.g., __builtin_alloca) are
predeclared.

Some expressions are considered to be constant-expressions even though they are not so considered
in standard C and C++. Examples include "((char *)&((struct S *)0)->c[0]) - (char
*)0"and "(int)""Hello" & 0"

The macro ___GNUC___is predefined to the major version number of the emulated GNU compiler.
Similarly, the macros __ GNUC_MINOR___ and __GNUC_PATCHLEVEL___ are predefined to the
corresponding minor version number and patch level. Finally, _ VERSION___is predefined to a string
describing the compiler version.

The __thread specifier can be used to indicate that a variable should be placed in thread-local storage
(requires gnu_version >= 30400).

An extern inline function that is referenced but not defined is permitted (with a warning).
Trigraphs are ignored (with a warning).

Non-standard casts are allowed in null pointer constants, e.g., (int) (int *)0 is considered a null
pointer constant in spite of the pointer cast in the middle.

Statement expressions, e.g., ({int j; J = f(Q; Jj:;)} are accepted. Branches into a statement
expression are not allowed. In C++ mode, branches out are also not allowed. Variable-length arrays,
destructible entities, try, catch, local non-POD class definitions, and dynamically-initialized local static
variables are not allowed inside a statement expression.

Labels can be declared to be local in statement expressions by introducing them with a ___label ___
declaration.

{ _label__ lab; int i = 4; lab: i = 2*i-1; if (1(i%17)) goto lab; i; })

Not-evaluated parts of constant expressions can contain non-constant terms:

int i;

int a[l 1 |] i]; /7 Accepted in g++ mode

Casts on an Ivalue that don't fall under the usual "lvalue cast" interpretation (e.g., because they cast

to a type having a different size) are ignored, and the operand remains an Ivalue. A warning is issued.

int i;
(short)i = 0; // Accepted,cast is ignored; entire int is set

57

TASKING VX-toolset for C166 User Guide

* Variable length arrays (VLAs) are supported. GNU C also allows VLA types for fields of local structures,
which can lead to run-time dependent sizes and offsets. The C++ compiler does not implement this,
but instead treats such arrays as having length zero (with a warning); this enables some popular
programming idioms involving fields with VLA types.

void f(int n) {
struct {
int a[n]; // Warning: n ignored and
// replaced by zero
};

» Complex type extensions are supported (these are the same as the C99 complex type features, with

the elimination of _Imaginary and the addition of __complex, _ real, __imag, the use of "~" to
denote complex conjugation, and complex literals such as "1.2i").

« If an explicit instantiation directive is preceded by the keyword extern, no (explicit or implicit)
instantiation is for the indicated specialization.

» An explicit instantiation directive that names a class may omit the class keyword, and may refer to a
typedef.

» An explicit instantiation or extern template directive that names a class is accepted in an invalid
namespace.

» std: :type_info does not need to be introduced with a special pragma.

» A special keyword __nul I expands to the same constant as the literal "0", but is expected to be used
as a null pointer constant.

» When gnu_version < 30400, names from dependent base classes are ignored only if another name
would be found by the lookup.

const int n = 0;
template <class T> struct B {
static const Int m = 1; static const Int n = 2;
}:
template <class T> struct D : B<T> {
int fQ { return m + n; }
// B::m + I:n in g++ mode

}:

« A non-static data member from a dependent base class, which would usually be ignored as described
above, is found if the lookup would have otherwise found a nonstatic data member of an enclosing
class (when gnu_version is < 30400).

template <class T> struct C {
struct A { int i; };
struct B: public A {
void fQ {

58

C++ Language

i =0; // g++ uses A::i not C::i

nt i;

A new operation in a template is always treated as dependent (when gnu_version >= 30400).

template <class T > struct A {
void fQ {
void *p = 0;
new (&p) int(0); // calls operator new
// declared below
}
}:

void* operator new(size_t, void* p);

When doing name lookup in a base class, the injected class name of a template class is ignored.

namespace N {
template <class T> struct A {};

}

struct A {
int i;

};

struct B : N::A<int> {
BO { Ax; x.i =1; } // g++ uses ::A, not N::A
};

The injected class name is found in certain contexts in which the constructor should be found instead.

struct A {
AGnt) {};

}:

A::A a(l);

In a constructor definition, what should be treated as a template argument list of the constructor is
instead treated as the template argument list of the enclosing class.

template <int ul> struct A { };
template <> struct A<1> {

template<class T> A(T i, iInt j);
};

template <> A<1>::A<1>(int i, int j) { }
// accepted in g++ mode

59

TASKING VX-toolset for C166 User Guide

» A difference in calling convention is ignored when redeclaring a typedef.

typedef void FQ;

extern "C" {
typedef void F(Q); // Accepted in GNU C++ mode
// (error otherwise)

» The macro __GNUG___is defined identically to __ GNUC___ (i.e., the major version number of the GNU
compiler version that is being emulated).

» The macro _GNU_SOURCE is defined as "1".

» Guiding declarations (a feature present in early drafts of the standard, but not in the final standard) are
disabled.

* Namespace std is predeclared.

» No connection is made between declarations of identical names in different scopes even when these
names are declared extern *"'C".E.g.,

extern "C" { void f(int); }
namespace N {
extern "C" {
void fQ {} // Warning (not error) in g++ mode
}

nt mainQ) { f(1); }

This example is accepted by the C++ compiler, but it will emit two conflicting declarations for the function
f.

¥
1

* When a using-directive lookup encounters more than one extern ''C' declaration (created when
more than one namespace declares an extern ''C' function of a given name, as described above),
only the first declaration encountered is considered for the lookup.

extern "C" int f(void);
extern "C" int g(void);
namespace N {
extern "C" int f(void); // same type
extern "C" void g(void); // different type
}:
using namespace N;
int i = FQ); // calls
int j a(Q; // calls

» The definition of a member of a class template that appears outside of the class definition may declare
a nontype template parameter with a type that is different than the type used in the definition of the
class template. A warning is issued (GNU version 30300 and below).

60

C++ Language

template <int I> struct A { void fQ; };
template <unsigned int 1> void A<I>::fO{}

» A class template may be redeclared with a nontype template parameter that has a type that is different
than the type used in the earlier declaration. A warning is issued.

template <int I> class A;
template <unsigned int I> class A {};

» A friend declaration may refer to a member typedef.

class A {
class B {};
typedef B my_b;
friend class my_b;

* When a friend class is declared with an unqualified name, the lookup of that name is not restricted to
the nearest enclosing namespace scope.

struct S;
namespace N {
class C {
friend struct S; // ::S in g++ mode,
// N::S in default mode

» A friend class declaration can refer to names made visible by using-directives.

namespace N { struct A { }; }
using namespace N;
struct B {
void fQ { A a; }
friend struct A; // in g++ mode N::A,
¥ // not a new declaration of ::A

» An inherited type name can be used in a class definition and later redeclared as a typedef.

struct A { typedef int I; };
struct B : A {

typedef 1 J; // Refers to A::1l
typedef double 1; // Accepted in g++ mode
}; // (introduces B::1I)

 In a catch clause, an entity may be declared with the same name as the handler parameter.

61

TASKING VX-toolset for C166 User Guide

try { }

catch(int e) {
char e;

}

» The diagnostic issued for an exception specification mismatch is reduced to a warning if the previous
declaration was found in a system header.

» The exception specification for an explicit template specialization (for a function or member function)
does not have to match the exception specification of the corresponding primary template.

» Atemplate argument list may appear following a constructor name in constructor definition that appears
outside of the class definition:

template <class T> struct A {

AQ;
}:

template <class T> A<T>::A<T>Q{}

* When gnu_version < 30400, an incomplete type can be used as the type of a nonstatic data member
of a class template.

class B;

template <class T> struct A {
B b;

}:

» A constructor need not provide an initializer for every nonstatic const data member (but a warning is
still issued if such an initializer is missing).

struct S {
int const ic;
SO {3 // Warning only in GNU C++ mode
// (error otherwise).

}:

» Exception specifications are ignored on function definitions when support for exception handling is
disabled (normally, they are only ignored on function declarations that aren't definitions).

» A friend declaration in a class template may refer to an undeclared template.

template <class T> struct A {
friend void f<>(A<T>);

}:

* When gnu_version is < 30400, the semantic analysis of a friend function defined in a class template is
performed only if the function is actually used and is done at the end of the translation unit (instead of
at the point of first use).

62

C++ Language

» A function template default argument may be redeclared. A warning is issued and the default from the
initial declaration is used.

template<class T> void f(int
template<class T> void f(int
int mainQ) {

f<void>Q);

= 1);
=23

}
» A definition of a member function of a class template that appears outside of the class may specify a
default argument.
template <class T> struct A { void f(T); };
template <class T> void A<T>::f(T value = TQ) { }
» Function declarations (that are not definitions) can have duplicate parameter names.

void f(int i, int i); // Accepted in GNU C++ mode

» Default arguments are retained as part of deduced function types.
» A namespace member may be redeclared outside of its namespace.
* Atemplate may be redeclared outside of its class or namespace.

namespace N {
template< typename T > struct S {};
}

template< typename T > struct N::S;

» The injected class name of a class template can be used as a template template argument.

template <template <class> class T> struct A {};
template <class T> struct B {
A a;

}:

» A partial specialization may be declared after an instantiation has been done that would have used the
partial specialization if it had been declared earlier. A warning is issued.
template <class T> class X {};

X<int*> xi;
template <class T> class X<T*> {};

« The "." or "->" operator may be used in an integral constant expression if the result is an integral or
enumeration constant:

63

TASKING VX-toolset for C166 User Guide

struct A { enum { el =1 }; };
int main O {

A a;
int x[a.el]; // Accepted in GNU C++ mode
return O;

» Strong using-directives are supported.

using namespace debug __ attribute__((strong));

« Partial specializations that are unusable because of nhondeducible template parameters are accepted
and ignored.

template<class T> struct A {class C { }:;};
template<class T> struct B {enum {e = 1}; };
template <class T> struct B<typename A<T>::C> {enum {e = 2}; };
int main(int argc, char **argv) {
printf(""%d\n"", B<int>::e);
printf(""%d\n", B<A<int>::C>::e);

» Template parameters that are not used in the signature of a function template are not ignored for partial
ordering purposes (i.e., the resolution of core language issue 214 is not implemented) when gnu_version
is < 40100.

template <class S, class T> void (T t);
template <class T> void (T t);
int main() {
f<int>(3); // not ambiguous when gnu_version
// is < 40100

» Prototype instantiations of functions are deferred until the first actual instantiation of the function to
allow the compilation of programs that contain definitions of unusable function templates (gnu_version
30400 and above). The example below is accepted when prototype instantiations are deferred.

class A {};
template <class T> struct B {
B O {}; 7/ error: no initializer for
// reference member "B<T>::a"
A& a;
};

» When doing nonclass prototype instantiations (e.g., gnu_version 30400 and above), the severity of the
diagnostic issued if a const template static data member is defined without an initializer is reduced to
a warning.

64

C++ Language

template <class T> struct A {
static const int i;
};

template <class T> const int A<T>::i;

» When doing nonclass prototype instantiations (e.g., gnu_version 30400 and above), a template static
data member with an invalid aggregate initializer is accepted (the error is diagnosed if the static data
member is instantiated).

struct A {
A(double val);

};

template <class T> struct B {
static const A I[1];

};

template <class T> const A B<T>::I1[1]= {
{1.,0.,0.,0.}

};

The following GNU extensions are not currently supported:

» The forward declaration of function parameters (so they can participate in variable-length array
parameters).

* GNU-style complex integral types (complex floating-point types are supported)

» Nested functions

2.4. Namespace Support

Namespaces are enabled by default. You can use the command line option --no-namespaces to disable
the features.

When doing name lookup in a template instantiation, some names must be found in the context of the
template definition while others may also be found in the context of the template instantiation. The C++
compiler implements two different instantiation lookup algorithms: the one mandated by the standard
(referred to as "dependent name lookup"), and the one that existed before dependent name lookup was
implemented.

Dependent name lookup is done in strict mode (unless explicitly disabled by another command-line option)
or when dependent name processing is enabled by either a configuration flag or command-line option.

Dependent Name Processing
When doing dependent hame lookup, the C++ compiler implements the instantiation name lookup rules
specified in the standard. This processing requires that non-class prototype instantiations be done. This

in turn requires that the code be written using the typename and template keywords as required by
the standard.

65

TASKING VX-toolset for C166 User Guide

Lookup Using the Referencing Context

When not using dependent name lookup, the C++ compiler uses a name lookup algorithm that
approximates the two-phase lookup rule of the standard, but does so in such a way that is more compatible
with existing code and existing compilers.

When a name is looked up as part of a template instantiation but is not found in the local context of the
instantiation, it is looked up in a synthesized instantiation context that includes both names from the
context of the template definition and names from the context of the instantiation. Here's an example:

namespace N {
int g(int);
int x = 0;
template <class T> struct A {
T (T t) { return g(t); }
T fQ { return x; }

};
}
namespace M {
int x = 99;
double g(double);
N::A<int> ai;
int i = ai.f(0); // N::A<int>::f(int) calls
// N::g(int)
int i2 = ai.fQ; // N::A<int>::f() returns
// 0 (= N::x)
N: :A<double> ad;
double d = ad.f(0); // N::A<double>::f(double)
// calls M::g(double)
double d2 = ad.f(); // N::A<double>::f() also
// returns 0 (= N::x)
}

The lookup of names in template instantiations does not conform to the rules in the standard in the
following respects:

 Although only names from the template definition context are considered for names that are not functions,
the lookup is not limited to those names visible at the point at which the template was defined.

» Functions from the context in which the template was referenced are considered for all function calls
in the template. Functions from the referencing context should only be visible for "dependent” function
calls.

Argument Dependent Lookup

When argument-dependent lookup is enabled (this is the default), functions made visible using
argument-dependent lookup overload with those made visible by normal lookup. The standard requires
that this overloading occurs even when the name found by normal lookup is a block extern declaration.
The C++ compiler does this overloading, but in default mode, argument-dependent lookup is suppressed
when the normal lookup finds a block extern.

66

C++ Language

This means a program can have different behavior, depending on whether it is compiled with or without
argument-dependent lookup --no-arg-dep-lookup, even if the program makes no use of namespaces.
For example:

struct A { };
A operator+(A, double);
void QO {
A al;
A operator+(A, int);
al + 1.0; // calls operator+(A, double)
// with arg-dependent lookup enabled but
// otherwise calls operator+(A, int);

}
2.5. Template Instantiation

The C++ language includes the concept of templates. A template is a description of a class or function
that is a model for a family of related classes or functions.® For example, one can write a template for a
Stack class, and then use a stack of integers, a stack of floats, and a stack of some user-defined type.
In the source, these might be written Stack<int>, Stack<float>, and Stack<X>. From a single
source description of the template for a stack, the compiler can create instantiations of the template for
each of the types required.

The instantiation of a class template is always done as soon as it is needed in a compilation. However,
the instantiations of template functions, member functions of template classes, and static data members
of template classes (hereafter referred to as template entities) are not necessarily done immediately, for
several reasons:

» One would like to end up with only one copy of each instantiated entity across all the object files that
make up a program. (This of course applies to entities with external linkage.)

» The language allows one to write a specialization of a template entity, i.e., a specific version to be used
in place of a version generated from the template for a specific data type. (One could, for example,
write a version of Stack<int>, or of just Stack<int>: : push, that replaces the template-generated
version; often, such a specialization provides a more efficient representation for a particular data type.)
Since the compiler cannot know, when compiling a reference to a template entity, if a specialization for
that entity will be provided in another compilation, it cannot do the instantiation automatically in any
source file that references it.

» C++templates can be exported (i.e., declared with the keyword export). Such templates can be used
in a translation unit that does not contain the definition of the template to instantiate. The instantiation
of such a template must be delayed until the template definition has been found.

» The language also dictates that template functions that are not referenced should not be compiled,
that, in fact, such functions might contain semantic errors that would prevent them from being compiled.
Therefore, a reference to a template class should not automatically instantiate all the member functions
of that class.

!Since templates are descriptions of entities (typically, classes) that are parameterizable according to the types they operate upon,
they are sometimes called parameterized types.

67

TASKING VX-toolset for C166 User Guide

(It should be noted that certain template entities are always instantiated when used, e.g., inline functions.)

From these requirements, one can see that if the compiler is responsible for doing all the instantiations
automatically, it can only do so on a program-wide basis. That is, the compiler cannot make decisions
about instantiation of template entities until it has seen all the source files that make up a complete
program.

This C++ compiler provides an instantiation mechanism that does automatic instantiation at link time. For
cases where you want more explicit control over instantiation, the C++ compiler also provides instantiation
modes and instantiation pragmas, which can be used to exert fine-grained control over the instantiation
process.

2.5.1. Automatic Instantiation

The goal of an automatic instantiation mode is to provide painless instantiation. You should be able to
compile source files to object code, then link them and run the resulting program, and never have to worry
about how the necessary instantiations get done.

In practice, this is hard for a compiler to do, and different compilers use different automatic instantiation
schemes with different strengths and weaknesses:

» AT&T/USL/Novell's cfront product saves information about each file it compiles in a special directory
called ptrepository. It instantiates nothing during normal compilations. At link time, it looks for
entities that are referenced but not defined, and whose mangled names indicate that they are template
entities. For each such entity, it consults the ptrepository information to find the file containing the
source for the entity, and it does a compilation of the source to generate an object file containing object
code for that entity. This object code for instantiated objects is then combined with the "normal” object
code in the link step.

If you are using cfront you must follow a particular coding convention: all templates must be declared
in _h files, and for each such file there must be a corresponding - cc file containing the associated
definitions. The compiler is never told about the . cc files explicitly; one does not, for example, compile
them in the normal way. The link step looks for them when and if it needs them, and does so by taking
the _h filename and replacing its suffix.

This scheme has the disadvantage that it does a separate compilation for each instantiated function
(or, at best, one compilation for all the member functions of one class). Even though the function itself
is often quite small, it must be compiled along with the declarations for the types on which the instantiation
is based, and those declarations can easily run into many thousands of lines. For large systems, these
compilations can take a very long time. The link step tries to be smart about recompiling instantiations
only when necessary, but because it keeps no fine-grained dependency information, it is often forced
to "recompile the world" for a minor change in a . h file. In addition, cfront has no way of ensuring that
preprocessing symbols are set correctly when it does these instantiation compilations, if preprocessing
symbols are set other than on the command line.

» Borland's C++ compiler instantiates everything referenced in a compilation, then uses a special linker
to remove duplicate definitions of instantiated functions.

If you are using Borland's compiler you must make sure that every compilation sees all the source code
it needs to instantiate all the template entities referenced in that compilation. That is, one cannot refer

>The actual implementation allows for several different suffixes and provides a command-line option to change the suffixes sought.

68

C++ Language

to a template entity in a source file if a definition for that entity is not included by that source file. In
practice, this means that either all the definition code is put directly in the _h files, or that each . h file
includes an associated - cc (actually, - cpp) file.

This scheme is straightforward, and works well for small programs. For large systems, however, it tends
to produce very large object files, because each object file must contain object code (and symbolic
debugging information) for each template entity it references.

Our approach is a little different. It requires that, for each instantiation of a non-exported template, there
is some (normal, top-level, explicitly-compiled) source file that contains the definition of the template
entity, a reference that causes the instantiation, and the declarations of any types required for the
instantiation.® This requirement can be met in various ways:

The Borland convention: each . h file that declares a template entity also contains either the definition
of the entity or includes another file containing the definition.

Implicit inclusion: when the compiler sees a template declaration in a . h file and discovers a need to
instantiate that entity, it is given permission to go off looking for an associated definition file having the
same base name and a different suffix, and it implicitly includes that file at the end of the compilation.
This method allows most programs written using the cfront convention to be compiled with our approach.
See Section 2.5.4, Implicit Inclusion.

The ad hoc approach: you make sure that the files that define template entities also have the definitions
of all the available types, and add code or pragmas in those files to request instantiation of the entities
there.

Exported templates are also supported by our automatic instantiation method, but they require additional
mechanisms explained further on.

Our C++ compiler's automatic instantiation method works as follows for non-exported templates:

1.

The first time the source files of a program are compiled, template entities are instantiated wherever
they are used. Template information files (with a . ti suffix) are generated and contain information
about things that could have been instantiated in each compilation.

. When the object files are linked together, a program called the prelinker, prelk166, is run. It examines

the object files, looking for references and definitions of template entities, and for the added information
about entities that could be instantiated.

. If the prelinker finds a reference to a template entity for which there is no definition anywhere in the

set of object files, it looks for a file that indicates that it could instantiate that template entity. When it
finds such a file, it assigns the instantiation to it. The set of instantiations assigned to a given file is
recorded in the associated instantiation request file (with, by default, a - 1 i suffix).

. The prelinker then executes the compiler again to recompile each file for which the instantiation request

file . 11 file was changed. The original compilation command-line options (saved in the template
information file) are used for the recompilation.

3Isn't this always the case? No. Suppose that file A contains a definition of class X and a reference to Stack<X>: :push, and that
file B contains the definition for the member function push. There would be no file containing both the definition of push and the
definition of X.

69

TASKING VX-toolset for C166 User Guide

5. When the compiler compiles a file, it reads the . i i file for that file and obeys the instantiation requests
therein. It produces a new object file containing the requested template entities (and all the other things
that were already in the object file).

6. The prelinker repeats steps 3-5 until there are no more instantiations to be adjusted.
7. The object files are linked together. The linker discards duplicate definitions of template entities.

Once the program has been linked correctly, the . i i files contain a complete set of instantiation
assignments. From then on, whenever source files are recompiled, the compiler will consult the _ i i files
and do the indicated instantiations as it does the normal compilations. That means that, except in cases
where the set of required instantiations changes, the prelink step from then on will find that all the necessary
instantiations are present in the object files and no instantiation assignment adjustments need be done.
That's true even if the entire program is recompiled.

If you provide a specialization of a template entity somewhere in the program, the specialization will be
seen as a definition by the prelinker. Since that definition satisfies whatever references there might be to
that entity, the prelinker will see no need to request an instantiation of the entity. If you add a specialization
to a program that has previously been compiled, the prelinker will notice that too and remove the
assignment of the instantiation from the proper i i file.

The . i1 files should not, in general, require any manual intervention. One exception: if a definition is
changed in such a way that some instantiation no longer compiles (it gets errors), and at the same time
a specialization is added in another file, and the first file is being recompiled before the specialization file
and is getting errors, the . i file for the file getting the errors must be deleted manually to allow the
prelinker to regenerate it.

If you supplied the -v option to the control program cc166, and the prelinker changes an instantiation
assignment, the prelinker will issue messages like:

C++ prelinker: A<int>::f() assigned to file test.obj
C++ prelinker: executing: ccl66 -c test.cc

The automatic instantiation scheme can coexist with partial explicit control of instantiation by you through
the use of pragmas or command-line specification of the instantiation mode. See the following sections.

Instantiations are normally generated as part of the object file of the translation unit in which the
instantiations are performed. But when "one instantiation per object" mode is specified, each instantiation
is placed in its own object file. One-instantiation-per-object mode is useful when generating libraries that
need to include copies of the instances referenced from the library. If each instance is not placed in its
own object file, it may be impossible to link the library with another library containing some of the same
instances. Without this feature it is necessary to create each individual instantiation object file using the
manual instantiation mechanism.

The automatic instantiation mode is enabled by default. It can be turned off by the command line option

--no-auto-instantiation. If automatic instantiation is turned off, the extra information about template
entities that could be instantiated in a file is not put into the object file.

2.5.2. Instantiation Modes

Normally, when a file is compiled, template entities are instantiated everywhere where they are used.
The overall instantiation mode can, however, be changed by a command line option:

70

C++ Language

--instantiate=none
Do not automatically create instantiations of any template entities.
--instantiate=used

Instantiate those template entities that were used in the compilation. This will include all static data
members for which there are template definitions. This is the default.

--instantiate=all

Instantiate all template entities declared or referenced in the compilation unit. For each fully instantiated
template class, all of its member functions and static data members will be instantiated whether or not
they were used. Non-member template functions will be instantiated even if the only reference was a
declaration.

--instantiate=local

Similar to --instantiate=used except that the functions are given internal linkage. This is intended to
provide a very simple mechanism for those getting started with templates. The compiler will instantiate
the functions that are used in each compilation unit as local functions, and the program will link and run
correctly (barring problems due to multiple copies of local static variables.) However, one may end up
with many copies of the instantiated functions, so this is not suitable for production use. --instantiate=local
cannot be used in conjunction with automatic template instantiation. If automatic instantiation is enabled
by default, it will be disabled by the --instantiate=local option.

In the case where the cc166 command is given a single file to compile and link, e.g.,
ccl66 test.cc

the compiler knows that all instantiations will have to be done in the single source file. Therefore, it uses
the --instantiate=used mode and suppresses automatic instantiation.

2.5.3. Instantiation #pragma Directives

Instantiation pragmas can be used to control the instantiation of specific template entities or sets of
template entities. There are three instantiation pragmas:

» The instantiate pragma causes a specified entity to be instantiated.

» The do_not_instantiate pragma suppresses the instantiation of a specified entity. It is typically used
to suppress the instantiation of an entity for which a specific definition will be supplied.

» The can_instantiate pragma indicates that a specified entity can be instantiated in the current
compilation, but need not be; it is used in conjunction with automatic instantiation, to indicate potential
sites for instantiation if the template entity turns out to be required.

The argument to the instantiation pragma may be:
» atemplate class name A<int>

» atemplate class declaration class A<int>

71

TASKING VX-toolset for C166 User Guide

» a member function name A<int>::f

* a static data member name A<int>::i

 astatic data declaration int A<int>::i

» a member function declaration void A<int>::f(int,char)
» atemplate function declaration char* f(int, float)

A pragma in which the argument is a template class name (e.g., A<int>or class A<int>)is equivalent
to repeating the pragma for each member function and static data member declared in the class. When

instantiating an entire class a given member function or static data member may be excluded using the

do_not_instantiate pragma. For example,

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an instantiation to occur.
If an instantiation is explicitly requested by use of the instantiate pragma and no template definition is
available or a specific definition is provided, an error is issued.

template <class T> void f1(T); // No body provided
template <class T> void gl1(T); // No body provided

void F1(int) {} // Specific definition
void main()
{ - -
int 1;
double d;
T1(i);
f1(d);
g1(i);
g1(d);
¥

#pragma instantiate void f1(int) // error - specific
// definition

#pragma instantiate void gl(int) // error - no body
// provided

fl(double) and g1 (double) will not be instantiated (because no bodies were supplied) but no errors
will be produced during the compilation (if no bodies are supplied at link time, a linker error will be
produced).

A member function name (e.g., A<int>::f) can only be used as a pragma argument if it refers to a
single user defined member function (i.e., not an overloaded function). Compiler-generated functions are
not considered, so a name may refer to a user defined constructor even if a compiler-generated copy
constructor of the same name exists. Overloaded member functions can be instantiated by providing the
complete member function declaration, as in

#pragma instantiate char* A<int>::f(int, char¥*)

72

C++ Language

The argument to an instantiation pragma may not be a compiler-generated function, an inline function,
or a pure virtual function.

2.5.4. Implicit Inclusion

When implicit inclusion is enabled, the C++ compiler is given permission to assume that if it needs a
definition to instantiate a template entity declared in a . h file it can implicitly include the corresponding
-cc file to get the source code for the definition. For example, if a template entity ABC: = F is declared in
file xyz . h, and an instantiation of ABC: : f is required in a compilation but no definition of ABC: : ¥ appears
in the source code processed by the compilation, the compiler will look to see if a file Xyz . cc exists, and
if so it will process it as if it were included at the end of the main source file.

To find the template definition file for a given template entity the C++ compiler needs to know the path
name specified in the original include of the file in which the template was declared and whether the file
was included using the system include syntax (e.g., #include <file.h>). This information is not
available for preprocessed source containing #1 ine directives. Consequently, the C++ compiler will not
attempt implicit inclusion for source code containing #1 ine directives.

The file to be implicitly included is found by replacing the file suffix with each of the suffixes specified in
the instantiation file suffix list. The normal include search path mechanism is then used to look for the file
to be implicitly included.

By default, the list of definition-file suffixes tried is .c, -cc, .cpp, and . cxx.

Implicit inclusion works well alongside automatic instantiation, but the two are independent. They can be
enabled or disabled independently, and implicit inclusion is still useful when automatic instantiation is not
done.

The implicit inclusion mode can be turned on by the command line option --implicit-include.

Implicit inclusions are only performed during the normal compilation of a file, (i.e., not when doing only
preprocessing). A common means of investigating certain kinds of problems is to produce a preprocessed
source file that can be inspected. When using implicit inclusion it is sometimes desirable for the
preprocessed source file to include any implicitly included files. This may be done using the command
line option --no-preprocessing-only. This causes the preprocessed output to be generated as part of a
normal compilation. When implicit inclusion is being used, the implicitly included files will appear as part
of the preprocessed output in the precise location at which they were included in the compilation.

2.5.5. Exported Templates

Exported templates are templates declared with the keyword export. Exporting a class template is
equivalent to exporting each of its static data members and each of its non-inline member functions. An
exported template is special because its definition does not need to be present in a translation unit that
uses that template. In other words, the definition of an exported (non-class) template does not need to
be explicitly or implicitly included in a translation unit that instantiates that template. For example, the
following is a valid C++ program consisting of two separate translation units:

// File 1:
#include <stdio.h>
static void trace() { printf("File 1\n"); }

73

TASKING VX-toolset for C166 User Guide

export template<class T> T const& min(T const&, T const&);

int mainQ
{
trace();
return min(2, 3);
}
// File 2:

#include <stdio.h>
static void trace() { printf("File 2\n"); }

export template<class T> T const& min(T const &a, T const &b)
{

trace();

return a<b? a: b;

}

Note that these two files are separate translation units: one is not included in the other. That allows the
two functions trace() to coexist (with internal linkage).

Support for exported templates is enabled by default, but you can turn it off with command line option
--no-export.

2.5.5.1. Finding the Exported Template Definition

The automatic instantiation of exported templates is somewhat similar (from a user's perspective) to that
of regular (included) templates. However, an instantiation of an exported template involves at least two
translation units: one which requires the instantiation, and one which contains the template definition.

When a file containing definitions of exported templates is compiled, a file with a - et suffix is created
and some extra information is included in the associated . ti file. The . et files are used later by the C++
compiler to find the translation unit that defines a given exported template.

When afile that potentially makes use of exported templates is compiled, the compiler must be told where
to look for . et files for exported templates used by a given translation unit. By default, the compiler looks
in the current directory. Other directories may be specified with the command line option
--template-directory. Strictly speaking, the . et files are only really needed when it comes time to generate
an instantiation. This means that code using exported templates can be compiled without having the
definitions of those templates available. Those definitions must be available by the time prelinking is done
(or when explicit instantiation is done).

The .et files only inform the C++ compiler about the location of exported template definitions; they do
not actually contain those definitions. The sources containing the exported template definitions must
therefore be made available at the time of instantiation (usually, when prelinking is done). In particular,
the export facility is not a mechanism for avoiding the publication of template definitions in source form.

2.5.5.2. Secondary Translation Units
An instantiation of an exported template can be triggered by the prelinker, by an explicit instantiation

directive, or by the command line option --instantiate=used. In each case, the translation unit that contains
the initial point of instantiation will be processed as the primary translation unit. Based on information it

74

C++ Language

finds in the . et files, the C++ compiler will then load and parse the translation unit containing the definition
of the template to instantiate. This is a secondary translation unit. The simultaneous processing of the
primary and secondary translation units enables the C++ compiler to create instantiations of the exported
templates (which can include entities from both translation units). This process may reveal the need for
additional instantiations of exported templates, which in turn can cause additional secondary translation
units to be loaded®.

When secondary translation units are processed, the declarations they contain are checked for consistency.
This process may report errors that would otherwise not be caught. Many these errors are so-called "ODR
violations" (ODR stands for "one-definition rule"). For example:

// File 1:
struct X {
int x;

¥

int mainQ) {
return min(2, 3);

}
// File 2:
struct X {
unsigned x; // Error: X::x declared differently
// in File 1
}:

export template<class T> T const& min(T const &a, T const &b)

{
}

If there are no errors, the instantiations are generated in the output associated with the primary translation
unit (or in separate associated files in one-instantiation-per-object mode). This may also require that
entities with internal linkage in secondary translation units be "externalized" so they can be accessed
from the instantiations in the primary translation unit.

return a<b? a: b;

2.5.5.3. Libraries with Exported Templates

Typically a (non-export) library consists of an include directory and a 1ib directory. The include
directory contains the header files required by users of the library and the 1ib directory contains the
object code libraries that client programs must use when linking programs.

With exported templates, users of the library must also have access to the source code of the exported
templates and the information contained in the associated . et files. This information should be placed

in a directory that is distributed along with the include and I ib directories: This is the export directory.
It must be specified using the command line option --template-directory when compiling client programs.

The recommended procedure to build the export directory is as follows:

‘Asa consequence, using exported templates may require considerably more memory that similar uses of regular (included)
templates.

75

TASKING VX-toolset for C166 User Guide

1. For each . et file in the original source directory, copy the associated source file to the export directory.

2. Concatenate all of the . et files into a single . et file (e.g., mylib.et) in the export directory. The
individual . et files could be copied to the export directory, but having all of the . et information in one
file will make use of the library more efficient.

3. Create an export_info file in the export directory. The export_info file specifies the include
search paths to be used when recompiling files in the export directory. If no export_info file is
provided, the include search path used when compiling the client program that uses the library will
also be used to recompile the library exported template files.

The export_inTo file consists of a series of lines of the form
include=x

or

sys_include=x

where X is a path name to be placed on the include search path. The directories are searched in the order
in which they are encountered in the export_info file. The file can also contain comments, which begin
with a "#", and blank lines. Spaces are ignored but tabs are not currently permitted. For example:

The include directories to be used for the xyz library

include = /diskl/xyz/include
sys_include = /disk2/abc/include
include=/disk3/jkl/include

The include search path specified for a client program is ignored by the C++ compiler when it processes
the source in the export library, except when no export_info file is provided. Command-line macro
definitions specified for a client program are also ignored by the C++ compiler when processing a source
file from the export library; the command-line macros specified when the corresponding . et file was
produced do apply. All other compilation options (other than the include search path and command-line
macro definitions) used when recompiling the exported templates will be used to compile the client
program.

When a library is installed on a new system, it is likely that the export_info file will need to be adapted
to reflect the location of the required headers on that system.

2.6. Extern Inline Functions

Depending on the way in which the C++ compiler is configured, out-of-line copies of extern inline
functions are either implemented using static functions, or are instantiated using a mechanism like the
template instantiation mechanism. Note that out-of-line copies of inline functions are only required in
cases where the function cannot be inlined, or when the address of the function is taken (whether explicitly
by the user, by implicitly generated functions, or by compiler-generated data structures such as virtual
function tables or exception handling tables).

When static functions are used, local static variables of the functions are promoted to global variables
with specially encoded names, so that even though there may be multiple copies of the code, there is

76

C++ Language

only one copy of such global variables. This mechanism does not strictly conform to the standard because
the address of an extern inline function is not constant across translation units.

When the instantiation mechanism is used, the address of an extern inline function is constant across
translation units, but at the cost of requiring the use of one of the template instantiation mechanisms,
even for programs that don't use templates. Definitions of extern inline functions can be provided either
through use of the automatic instantiation mechanism or by use of the --instantiate=used or
--instantiate=all instantiation modes. There is no mechanism to manually control the definition of extern
inline function bodies.

2.7. Pragmas to Control the C++ Compiler

Pragmas are keywords in the C++ source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:
#pragma pragnme- spec

The C++ compiler supports the following pragmas and all C compiler pragmas that are described in
Section 1.5, Pragmas to Control the Compiler

instantiate / do_not_instantiate / can_instantiate

These are template instantiation pragmas. They are described in detail in Section 2.5.3, Instantiation
#pragma Directives.

hdrstop / no_pch
These are precompiled header pragmas. They are described in detail in Section 2.9, Precompiled Headers.
once

When placed at the beginning of a header file, indicates that the file is written in such a way that including
it several times has the same effect as including it once. Thus, if the C++ compiler sees #pragma once
at the start of a header file, it will skip over it if the file is #included again.

A typical idiom is to place an #ifndef guard around the body of the file, with a #define of the guard variable
after the #ifndef:

#pragma once // optional
#ifndef FILE_H

#define FILE_H

--- body of the header file ...
#endif

The #pragma once is marked as optional in this example, because the C++ compiler recognizes the

#ifndef idiom and does the optimization even in its absence. #pragma once is accepted for compatibility
with other compilers and to allow the programmer to use other guard-code idioms.

77

TASKING VX-toolset for C166 User Guide

ident

This pragma is given in the form:
#pragma ident "'string”
or

#ident "string"”

2.8. Predefined Macros

The C++ compiler defines a number of preprocessing macros. Many of them are only defined under
certain circumstances. This section describes the macros that are provided and the circumstances under

which they are defined.

Macro

Description

__ABI_COMPATIBILITY_VERSION

Defines the ABI compatibility version being
used. This macro is set to 9999, which means
the latest version. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_RTTI

This macro is set to TRUE, meaning that the
ABI changes for RTTI are implemented. This
macro is used when building the C++ library.

__ABI_CHANGES_FOR_ARRAY_NEW_AND_DELETE

This macro is set to TRUE, meaning that the
ABI changes for array new and delete are
implemented. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_PLACEMENT_DELETE

This macro is set to TRUE, meaning that the
ABI changes for placement delete are
implemented. This macro is used when
building the C++ library.

__ARRAY_OPERATORS

Defined when array new and delete are
enabled. This is the default.

__BASE_FILE__ Similarto __FILE__ but indicates the primary
source file rather than the current one (i.e.,
when the current file is an included file).

_BOOL Defined when bool is a keyword. This is the

default.

78

C++ Language

Macro

Description

__BUILD__

Identifies the build number of the C++
compiler, composed of decimal digits for the
build number, three digits for the major branch
number and three digits for the minor branch
number. For example, if you use build 1.22.1
of the compiler, __BUILD__ expands to
1022001. If there is no branch number, the
branch digits expand to zero. For example,
build 127 results in 127000000.

__CHAR_MIN/__CHAR_MAX

Used in Iimits.h to define the
minimum/maximum value of a plain char
respectively.

__CP166__ Identifies the C++ compiler. You can use this
symbol to flag parts of the source which must
be recognized by the cp166 C++ compiler
only. It expands to 1.

__CORE__ Expands to a string with the core depending
on the C++ compiler options --cpu and --core.
The symbol expands to “c16x” when no --cpu
and no --core is supplied.

__cplusplus Always defined.

__CPU__ Expands to a string with the CPU supplied with
the option --cpu. When no --cpu is supplied,
this symbol is not defined.

__ DATE___ Defined to the date of the compilation in the
form "Mmm dd yyyy".

_ DELTA_TYPE Defines the type of the offset field in the virtual
function table. This macro is used when
building the C++ library.

_ DOUBLE_FP__ Expands to 1 if you did not use option

--no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__embedded_cplusplus

Defined as 1 in Embedded C++ mode.

_ EXCEPTIONS Defined when exception handling is enabled
(--exceptions).

__FILE__ Expands to the current source file name.

__FUNCTION__ Defined to the name of the current function.
An error is issued if it is used outside of a
function.

_ func__ Same as __FUNCTION__ in GNU mode.

__IMPLICIT_USING_STD

Defined when the standard header files should
implicitly do a using-directive on the std
namespace (--using-std).

79

TASKING VX-toolset for C166 User Guide

Macro

Description

__JMP_BUF_ELEMENT_TYPE

Specifies the type of an element of the setjmp
buffer. This macro is used when building the
C++ library.

__JMP_BUF_NUM_ELEMENTS

Defines the number of elements in the setjmp
buffer. This macro is used when building the
C++ library.

__LINE__

Expands to the line number of the line where
this macro is called.

__ MODEL__

Identifies the memory model for which the
current module is compiled. It expands to a
single character constant: ‘n’ (near), ‘f’ (far),
‘s’ (shuge) or ‘h’ (huge).

_ NAMESPACES

Defined when namespaces are supported (this
is the default, you can disable support for
namespaces with --no-namespaces).

__NO_LONG_LONG

Defined when the long long type is not
supported. This is the default.

__NULL_EH_REGION_NUMBER

Defines the value used as the null region
number value in the exception handling tables.
This macro is used when building the C++
library.

_ PLACEMENT_DELETE

Defined when placement delete is enabled.

__PRETTY_FUNCTION__

Defined to the name of the current function.
This includes the return type and parameter
types of the function. An error is issued if it is
used outside of a function.

__PTRDIFF_MIN/__PTRDIFF_MAX

Used in stdint.h to define the
minimum/maximum value of a ptrdiff_t
type respectively.

__REGION_NUMBER_TYPE

Defines the type of a region number field in
the exception handling tables. This macro is
used when building the C++ library.

__REVISION__

Expands to the revision number of the C++
compiler. Digits are represented as they are;
characters (for prototypes, alphas, betas) are
represented by -1. Examples: v1.0r1 -> 1,
v1.0rb ->-1

__RTTI

Defined when RTTI is enabled (--rtti).

__RUNTIME_USES_NAMESPACES

Defined when the run-time uses namespaces.

80

C++ Language

Macro

Description

__SFRFILE__ (cpu)

This macro expands to the filename of the
used SFR file, including the pathname and the
< >.The cpu is the argument of the macro.
For example, if --cpu=xc167ci is specified,
themacro __ SFRFILE__(__CPU_) expands
to__ SFRFILE__(xcl167ci), which expands
to <sfr/regxcl67ci.sfr>.

__SIGNED_CHARS__

Defined when plain char is signed.

__SINGLE_FP__

Expands to 1 if you used option --no-double
(Treat ‘double’ as ‘float’), otherwise
unrecognized as macro.

__SIZE_MIN/ _SIZE_MAX

Used in stdint.h to define the
minimum/maximum value of a size_t type
respectively.

__STDC__

Always defined, but the value may be
redefined.

__STDC_VERSION__

Identifies the ISO-C version number. Expands
to 199901L for ISO C99, but the value may be
redefined.

_STLP_NO_IOSTREAMS

Defined when option --io-streams is not used.
This disables I/O stream functions in the
STLport C++ library.

__TASKING__ Always defined for the TASKING C++
compiler.
__TIME__ Expands to the compilation time: “hh:mm:ss”

__TYPE_TRAITS_ENABLED

Defined when type traits pseudo-functions (to
ease the implementation of ISO/IEC TR
19768; e.g., __is_union) are enabled. This
is the default in C++ mode.

__VAR_HANDLE_TYPE

Defines the type of the variable-handle field
in the exception handling tables. This macro
is used when building the C++ library.

__VERSION__

Identifies the version number of the C++
compiler. For example, if you use version 2.1r1
of the compiler, _ VERSION___ expands to
2001 (dot and revision number are omitted,
minor version number in 3 digits).

__VIRTUAL_FUNCTION_INDEX_TYPE

Defines the type of the virtual function index
field of the virtual function table. This macro
is used when building the C++ library.

__VIRTUAL_FUNCTION_TYPE

Defines the type of the virtual function field of
the virtual function table. This macro is used
when building the C++ library.

81

TASKING VX-toolset for C166 User Guide

Macro Description

_ WCHAR_MIN/__WCHAR_MAX Used in stdint.h to define the
minimum/maximum value of a wchar_t type
respectively.

_WCHAR_T Defined when wchar_t is a keyword.

2.9. Precompiled Headers

It is often desirable to avoid recompiling a set of header files, especially when they introduce many lines
of code and the primary source files that #include them are relatively small. The C++ compiler provides
a mechanism for, in effect, taking a snapshot of the state of the compilation at a particular point and writing
it to a disk file before completing the compilation; then, when recompiling the same source file or compiling
another file with the same set of header files, it can recognize the "snapshot point", verify that the
corresponding precompiled header (PCH) file is reusable, and read it back in. Under the right
circumstances, this can produce a dramatic improvement in compilation time; the trade-off is that PCH
files can take a lot of disk space.

2.9.1. Automatic Precompiled Header Processing

When --pch appears on the command line, automatic precompiled header processing is enabled. This
means the C++ compiler will automatically look for a qualifying precompiled header file to read in and/or
will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the "header stop" point. The header stop
point is typically the first token in the primary source file that does not belong to a preprocessing directive,
but it can also be specified directly by #pragma hdrstop (see below) if that comes first. For example:

#include "xxx.h"
#include "yyy.h"
int i;

The header stop point is Int (the first non-preprocessor token) and the PCH file will contain a snapshot
reflecting the inclusion of xxx . h and yyy . h. If the first non-preprocessor token or the #pragma hdrstop
appears within a #i T block, the header stop point is the outermost enclosing #i F. To illustrate, heres a
more complicated example:

#include ""xxx.h"

#ifndef YYY_H

#define YYY_ H 1

#include "yyy.h"

#endif

#if TEST

int i;

#endif

Here, the first token that does not belong to a preprocessing directive is again int, but the header stop
point is the start of the #i ¥ block containing it. The PCH file will reflect the inclusion of xxx.h and

conditionally the definition of YYY_H and inclusion of yyy . h; it will not contain the state produced by #if
TEST.

82

C++ Language

A PCH file will be produced only if the header stop point and the code preceding it (mainly, the header
files themselves) meet certain requirements:

* The header stop point must appear at file scope -- it may not be within an unclosed scope established
by a header file. For example, a PCH file will not be created in this case:

// xxx.h
class A {

// xxx.C
#include "'xxx.h"
int i; };

* The header stop point may not be inside a declaration started within a header file, nor (in C++) may it
be part of a declaration list of a linkage specification. For example, in the following case the header
stop point is int, but since it is not the start of a new declaration, no PCH file will be created:

/7 yyy.h
static

// yyy.C
#include "yyy.h"

int i;
 Similarly, the header stop point may not be inside a #i T block or a #define started within a header
file.

» The processing preceding the header stop must not have produced any errors. (Note: warnings and
other diagnostics will not be reproduced when the PCH file is reused.)

» No references to predefined macros __DATE__ or ___TIME___ may have appeared.
* No use of the #1 ine preprocessing directive may have appeared.
» #pragma no_pch (see below) must not have appeared.

» The code preceding the header stop point must have introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers. The minimum number of declarations required
is 1.

When the host system does not support memory mapping, so that everything to be saved in the
precompiled header file is assigned to preallocated memory (MS-Windows), two additional restrictions

apply:

» The total memory needed at the header stop point cannot exceed the size of the block of preallocated
memory.

* No single program entity saved can exceed 16384, the preallocation unit.

83

TASKING VX-toolset for C166 User Guide

When a precompiled header file is produced, it contains, in addition to the snapshot of the compiler state,
some information that can be checked to determine under what circumstances it can be reused. This
includes:

» The compiler version, including the date and time the compiler was built.
» The current directory (i.e., the directory in which the compilation is occurring).
» The command line options.

» The initial sequence of preprocessing directives from the primary source file, including #include
directives.

» The date and time of the header files specified in #include directives.

This information comprises the PCH prefix. The prefix information of a given source file can be compared
to the prefix information of a PCH file to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

// a.cc
#include ""xxx.h"
. // Start of code
// b.cc
#include ""xxx.h"
. // Start of code

When a. cc is compiled with --pch, a precompiled header file named a . pch is created. Then, when b.cc
is compiled (or when a.cc is recompiled), the prefix section of a.pch is read in for comparison with the
current source file. If the command line options are identical, if xxx.h has not been modified, and so
forth, then, instead of opening xxx . h and processing it line by line, the C++ compiler reads in the rest of
a.pch and thereby establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the largest (i.e., the one
representing the most preprocessing directives from the primary source file) is used. For instance, consider
a primary source file that begins with

#include ""xxx.h"
#include "yyy.h"
#include '"zzz.h"

If there is one PCH file for xxx . h and a second for xxx . h and yyy . h, the latter will be selected (assuming
both are applicable to the current compilation). Moreover, after the PCH file for the first two headers is
read in and the third is compiled, a new PCH file for all three headers may be created.

When a precompiled header file is created, it takes the name of the primary source file, with the suffix
replaced by an implementation-specified suffix (pch by default). Unless --pch-dir is specified (see below),
it is created in the directory of the primary source file.

When a precompiled header file is created or used, a message such as

"test.cc": creating precompiled header file "test.pch"

84

C++ Language

is issued. The user may suppress the message by using the command-line option --no-pch-messages.

When the --pch-verbose option is used the C++ compiler will display a message for each precompiled
header file that is considered that cannot be used giving the reason that it cannot be used.

In automatic mode (i.e., when --pch is used) the C++ compiler will deem a precompiled header file obsolete
and delete it under the following circumstances:

« if the precompiled header file is based on at least one out-of-date header file but is otherwise applicable
for the current compilation; or

« ifthe precompiled header file has the same base name as the source file being compiled (e.g., xxx.pch
and xxx . cc) but is not applicable for the current compilation (e.g., because of different command-line
options).

This handles some common cases; other PCH file clean-up must be dealt with by other means (e.g., by
the user).

Support for precompiled header processing is not available when multiple source files are specified in a
single compilation: an error will be issued and the compilation aborted if the command line includes a
request for precompiled header processing and specifies more than one primary source file.

2.9.2. Manual Precompiled Header Processing

Command-line option --create-pch file-name specifies that a precompiled header file of the specified
name should be created.

Command-line option --use-pch file-name specifies that the indicated precompiled header file should be
used for this compilation; if it is invalid (i.e., if its prefix does not match the prefix for the current primary
source file), a warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with --pch-dir, the indicated file name (which may
be a path name) is tacked on to the directory name, unless the file name is an absolute path name.

The --create-pch, --use-pch, and --pch options may not be used together. If more than one of these
options is specified, only the last one will apply. Nevertheless, most of the description of automatic PCH
processing applies to one or the other of these modes -- header stop points are determined the same
way, PCH file applicability is determined the same way, and so forth.

2.9.3. Other Ways to Control Precompiled Headers

There are several ways in which the user can control and/or tune how precompiled headers are created
and used.

» #pragma hdrstop may be inserted in the primary source file at a point prior to the first token that does
not belong to a preprocessing directive. It enables you to specify where the set of header files subject
to precompilation ends. For example,

#include ""xxx.h"
#include "yyy.h"
#pragma hdrstop
#include "'zzz.h"

85

TASKING VX-toolset for C166 User Guide

Here, the precompiled header file will include processing state for xxx.h and yyy . h but not zzz _h.
(This is useful if the user decides that the information added by what follows the #pragma hdrstop
does not justify the creation of another PCH file.)

» #pragma no_pch may be used to suppress precompiled header processing for a given source file.

» Command-line option --pch-dir directory-name is used to specify the directory in which to search for
and/or create a PCH file.

Moreover, when the host system does not support memory mapping and preallocated memory is used
instead, then one of the command-line options --pch, --create-pch, or --use-pch, if it appears at all, must
be the first option on the command line.

2.9.4. Performance Issues

The relative overhead incurred in writing out and reading back in a precompiled header file is quite small
for reasonably large header files.

In general, it does not cost much to write a precompiled header file out even if it does not end up being
used, and if it is used it almost always produces a significant speedup in compilation. The problem is that
the precompiled header files can be quite large (from a minimum of about 250K bytes to several megabytes
or more), and so one probably does not want many of them sitting around.

Thus, despite the faster recompilations, precompiled header processing is not likely to be justified for an
arbitrary set of files with nonuniform initial sequences of preprocessing directives. Rather, the greatest
benefit occurs when a number of source files can share the same PCH file. The more sharing, the less
disk space is consumed. With sharing, the disadvantage of large precompiled header files can be
minimized, without giving up the advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should expect to reorder the
#include sections of their source files and/or to group #include directives within a commonly used
header file.

Below is an example of how this can be done. A common idiom is this:

#include "comnfile.h"
#pragma hdrstop
#include ...

where comnfile.h pulls in, directly and indirectly, a few dozen header files; the #pragma hdrstop is
inserted to get better sharing with fewer PCH files. The PCH file produced for comnfile_h can be a bit
over a megabyte in size. Another idiom, used by the source files involved in declaration processing, is
this:

#include "comnfile.h"
#include "decl_hdrs._h"
#pragma hdrstop
#include ...

decl_hdrs.h pulls in another dozen header files, and a second, somewhat larger, PCH file is created.
In all, the source files of a particular program can share just a few precompiled header files. If disk space

86

C++ Language

were at a premium, you could decide to make comnfile.h pull in all the header files used -- then, a
single PCH file could be used in building the program.

Different environments and different projects will have different needs, but in general, users should be

aware that making the best use of the precompiled header support will require some experimentation
and probably some minor changes to source code.

87

TASKING VX-toolset for C166 User Guide

88

Chapter 3. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language. For a complete
overview of the architecture you are using, refer to the target's Core Reference Manual.

3.1. Assembly Syntax

An assembly program consists of zero or more statements. A statement may optionally be followed by a
comment. Any source statement can be extended to more lines by including the line continuation character
(\) as the last character on the line. The length of a source statement (first line and continuation lines) is
only limited by the amount of available memory.

Mnemonics and directives are case insensitive. Labels, symbols, directive arguments, and literal strings
are case sensitive.

The syntax of an assembly statement is:

[l abel [:]] [instruction | directive | macro_call] [;coment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (_). The first character cannot be a digit. A label which is prefixed by
whitespace (spaces or tabs) has to be followed by a colon (:). The size of an
identifier is only limited by the amount of available memory.

Examples:
LAB1: ; This label is followed by a colon and
; can be prefixed by whitespace
LAB1 ; This label has to start at the beginning
; of a line
instruction An instruction consists of a mnemonic and zero, one or more operands. It must

not start in the first column.

Operands are described in Section 3.3, Operands of an Assembly Instruction.
The instructions are described in the target's Core Reference Manual.

The instruction can also be a so-called 'generic instruction'. Generic instructions
are pseudo instructions (no instructions from the instruction set). Depending on
the situation in which a generic instruction is used, the assembler replaces the
generic instruction with appropriate real assembly instruction(s). For a complete
list, see Section 3.11, Generic Instructions.

directive With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 3.9, Assembler Directives and Controls.

macro_call A call to a previously defined macro. It must not start in the first column. See
Section 3.10, Macro Operations.

comment Comment, preceded by a ; (semicolon).

89

TASKING VX-toolset for C166 User Guide

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called ‘control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$cont rol

For more information on controls see Section 3.9, Assembler Directives and Controls.

3.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 3.7.3, Expression Operators. Other special assembler characters
are:

Character |Description

; Start of a comment

" Unreported comment delimiter

\ Line continuation character or macro operator: argument concatenation
? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

N Macro operator: override local label

Macro string delimiter or quoted string . DEFINE expansion character

String constants delimiter

@ Start of a built-in assembly function

$ Location counter substitution

[1 Substring delimiter and instruction grouping operator
Immediate addressing

3.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

Operand Description

symbol A symbolic name as described in Section 3.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 3.5, Registers.

expression Any valid expression as described in Section 3.7, Assembly Expressions.

address A combination of expression, register and symbol.

90

Assembly Language

3.4. Symbol Names

User-defined symbols
A user-defined symbol can consist of letters, digits and underscore characters (). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case

of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 3.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels.

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example
for directives or section names). Instructions are also reserved. The case of these built-in symbols is
insignificant.

Examples

Valid symbol names:

loop_1

ENTRY

aBc

_aBC

Invalid symbol names:

1 loop ; starts with a number
.DEFINE ; reserved directive name

3.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

91

TASKING VX-toolset for C166 User Guide

Symbol

Description

__BUILD__

Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, __ BUILD___ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

_ C166__

Identifies the assembler. You can use this symbol to flag parts of the source
which must be recognized by the as166 assembler only. It expands to 1.

__CORE__

Expands to a string with the core depending on the assembler options --cpu
and --core. The symbol expands to “c16x” when no --cpu and no --core is
supplied.

__CORE_core__

A symbol is defined depending on the options --cpu and --core. The core
is converted to upper case. Example: if --cpu=xc167ci is specified, the
symbol __ CORE_XC16X___is defined. When no --core or --cpu is supplied,
the assembler defines __ CORE_C16X__.

CPU__

Expands to a string with the CPU supplied with the option --cpu. When no
--cpu is supplied, this symbol is not defined.

__CPU_cpu__

A symbol is defined depending on the option --cpu=cpu. The cpu is converted
to uppercase. For example, if --cpu=xc167ci is specified the symbol

_ CPU_XC167CI__is defined. When no --cpu is supplied, this symbol is
not defined.

__REVISION__

Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0rl -> 1, v1.0rb -> -1

__SILICON_BUG_num__

This symbol is defined if the number num is defined with the option
--silicon-bug.

_ TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.

__VERSION__ Identifies the version number of the assembler. For example, if you use
version 2.1r1 of the assembler, _ VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

.if @defined("__CPU_XC167CI__")
; this part is only for the XC167ClI

.endif

3.5. Registers

The following register names, either upper or lower case, should not be used for user-defined symbol
names in an assembly language source file:

92

Assembly Language

RO .. R15 (general purpose registers)
RLO .. RL7 (byte registers)
RHO .. RH7 (byte registers)

3.6. Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from assembly. The
SFRs are defined in a special function register file (*.sfr) as symbol names for use with the compiler and
assembler. The assembler reads the SFR file as defined by the selected derivative with the command
line option --cpu (-C). The format of the SFR file is exactly the same as the include file for the C compiler.
For more details on the SFR files see Section 1.3.5, Accessing Hardware from C. Because the SFR file
format uses C syntax and the assembler has a limited C parser, it is important that you only use the
described constructs.

SFRs in the SFR area and extended SFR area are addressed in the near address space. Some SFRs
cannot be addressed with a REG addressing mode, although they are within the SFR area or the extended
SFR area. These registers are:

RSTCON |OxF1EO
RSTCON2 | 0xF1E2
SYSSTAT |OxF1E4

Example use in assembly:

movw POL ,#0x88 use of port name

bset POL_3 use of bit name
jnb POL 4, 2

bclr POL_3

_2:

bset IEN ; use of bit name

Without an SFR file the assembler only knows the general purpose registers R0-R15 and the SFRs PSW
(and its bits), DPPO, DPP1, DPP2 and DPP3.

3.7. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions may contain user-defined labels (and their associated integer values), and any combination
of integers or ASCI| literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker.

93

TASKING VX-toolset for C166 User Guide

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric contant

* string

» symbol

» expression binary_operator expression

* unary_operator expression

* (expression)

« function call

All types of expressions are explained in separate sections.
3.7.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes and suffixes can be used in either lower or upper case.

Base Description Example
Binary A Ob prefix followed by binary digits (0,1). Or use a b or y suffix|0b1101

11001010b
Octal Octal digits (0-7) followed by a o suffix 7770
Hexadecimal A Ox prefix followed by a hexadecimal digits (0-9, A-F, a-f). Or |Ox12FF

use a h suffix 0x45

0fallh
Decimal Decimal digits (0-9), optionally followed by a d or t 12

1245d
3.7.2. Strings

ASCII characters, enclosed in single (‘) or double () quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a . DEFINE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 8 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a . DB assembler directive; in that
case all characters result in a constant value of the specified size. Null strings have a value of 0.

94

Assembly Language

Square brackets ([]) delimit a substring operation in the form:

[string,of fset,l ength]

offset is the start position within string. length is the length of the desired substring. Both values may not

exceed the size of string.

Examples

"ABCD*"
“==yg-
"A\"BC"
"AB"+1

[*TASKING*

,0,4]

(0x41424344)

to enclose a quote double it
or to enclose a quote escape it
(0x4143) string used in expression

null string

results in the substring "TASK®

3.7.3. Expression Operators

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Type Operator Name Description

O parenthesis Expressions enclosed by parenthesis are evaluated

first.
Unary + plus Returns the value of its operand.

- minus Returns the negative of its operand.

~ one's complement Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

! logical negate Returns 1 if the operands' value is O; otherwise 0.

NOT For example, if buf is 0 then 'buf is 1. If buf has
a value of 1000 then 'buf is 0.

DPPn: DPP override Specify the DPP number used in bit 14 and 15 of
the address. The DPPn is one of DPPO, DPP1,
DPP2, DPP3

PAG page number Returns the page number of the operand (operand
>> 14), same as @pag() function.

POF page offset Returns the page offset of the operand (operand &
0x3FFF), same as @pof() function.

SEG segment number Returns the segment number of the operand
(operand >> 16), same as @seg() function.

SOF segment offset Returns the segment offset of the operand (operand

& OXFFFF), same as @sof() function.

95

TASKING VX-toolset for C166 User Guide

96

Type Operator Name Description

BOF bit offset Returns the bit offset of a bit operand, same as
@bof () function.

HIGH high byte Returns the high byte of the operand ((operand >>
8)&0xFF), same as @msb () function.

LOW low byte Returns the low byte of the operand (operand &
O0xFF), same as @1sb() function.

type type cast Any of the valid assembler symbol types can be used
as a type cast operator.

Arithmetic |* multiplication Yields the product of its operands.

/ division Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

% modulo Used with integers, this operator yields the remainder

MOD from the division of the first operand by the second.
Used with floating-point operands, this operator
applies the following rules:

Y%Z=YifZz=0

Y % Z = X if Z <> 0, where X has the same sign as
Y, is less than Z, and satisfies the relationship: Y =
integer * Z + X

+ addition Yields the sum of its operands.

- subtraction Yields the difference of its operands.

Shift << shift left Integer only. Causes the left operand to be shifted

SHL to the left (and zero-filled) by the number of bits
specified by the right operand.

>> shift right Integer only. Causes the left operand to be shifted

SHR to the right by the number of bits specified by the
right operand. The sign bit will be extended.

Relational < less than Returns an integer 1 if the indicated condition is

LT TRUE or an integer 0 if the indicated condition is

<= less than or equal FALSE.

LE In either case, the memory space attribute of the

> greater than result is N

GT

- reater than or equal For example, if D has a value of 3 and E has a value

G_E 9 q of 5, then the result of the expression D<E is 1, and
the result of the expression D>E is 0.

== equal

EQ Use tests for equality involving floating-point values

= not equal with caution, since rounding errors could cause

NE unexpected results.

Assembly Language

Type Operator Name Description
ULT unsigned less than | The unsigned operators are implemented as signed
ULE unsigned less than or operators that rr_1ask out the top bit of the _
equal expressions. This makes them effectively 63-bit
operators.
UGT unsigned greater than
UGE unsigned greater than
or equal
Bit and bit position Specify bit position (right operand) in a bit
Bitwise addressable byte or word (left operand).
& AND Integer only. Yields the bitwise AND function of its
AND operand.
[OR Integer only. Yields the bitwise OR function of its
OR operand.
N exclusive OR Integer only. Yields the bitwise exclusive OR function
XOR of its operands.
Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.
I logical OR Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly
. if directive, but can be used in any expression.

3.7.4. Symbol Types and Expression Types

Symbol Types

The type of a symbol is determined upon its definition by the directive it is defined with and by the section
in which it is defined. The following table shows the symbol types that are available.

Symbol Section type where symbol is Directive resulting in the symbol type
type defined

NEAR CODE with or after a .PROC NEAR
FAR CODE with or after a .PROC FAR
BIT BIT .dbit, .dsbit, .ds, .bit

BYTE FAR, SHUGE, HUGE .db, .ds, .dsb

WORD FAR, SHUGE, HUGE .dw, .dl, .dll, dsw, dsl, dsll
BITBYTE BIT, BITA .db, .dsb

BITWORD |BIT, BITA .dw, .dl, .dll, dsw, dsl, dsll
NEARBYTE |NEAR, IRAM .db, .ds, .dsb

NEARWORD [NEAR, IRAM .dw, .dl, .dll, dsw, dsl, dsll
DATA3 .equ, .set

97

TASKING VX-toolset for C166 User Guide

Symbol Section type where symbol is Directive resulting in the symbol type
type defined

DATA4 .equ, .set

DATAS8 .equ, .set

DATA16 .equ, .set

INTNO CODE .proc intno

REGBANK .regbank, .label

SFR .extern (internal)

Besides the mentioned directives it is also possible to explicitly define the symbol’s type with the . LABEL
directive and with the .EXTERN directive. Labels not on the same line as the directive still are assigned
the type for that directive if they immediately precede the directive:

farsect .section far
mylabel: ; this label gets the WORD type
dw 1

When you make a symbol global with the . GLOBAL directive, the symbol’s type will be stored in the object
file. The _EXTERN directive used for importing the symbol in another module must specify the same type.
If the type is omitted in the .EXTERN directive, the assembler will assume the following when using the
symbol:

Symbol used in Symbol type
bit operation BIT

byte operation BYTE

word operation WORD

left of dot operator BITWORD
generic call FAR
immediate operands DATA16

If none of the directives are used that result in a symbol type, the symbol gets a default type based on
the section it is defined in:

Section type Default symbol type Possible symbol types

BIT BIT BIT

BITA BITWORD BITWORD, BITBYTE

IRAM NEARWORD NEARWORD, NEARBYTE, REGBANK
NEAR NEARWORD NEARWORD, NEARBYTE

FAR WORD WORD, BYTE

SHUGE WORD WORD, BYTE

HUGE WORD WORD, BYTE

CODE FAR FAR, NEAR, INTNO

98

Assembly Language

For creating bit addressable bytes or words with the type BITBYTE or BITWORD, BIT or BITA sections
must be used. For defining a BITBYTE the label must be byte aligned and for a BITWORD it must be
word aligned.

Example with a BITA section:

bitasect .section bita

bitb .dsb 1 ; BITBYTE
.align 2
bitw .dsw 1 ; BITWORD

The _ALIGN directive is used here because the assembler issues a warning on unaligned word definitions.

Symbols defined with _EQU or .SET inherit the type of the expression. The result of an expression is
determined by the type of symbols used in the expression.

Type Checking

When you use a symbol or expression as an operand for an instruction, the assembler will check if the
type of this symbol or expression is valid for the used instruction. If it is not valid, the assembler will issue
an error. For generic instructions the assembler uses the symbol type to select the smallest instruction.

When a relocatable expression is used as a word address operand, the linker checks if the result of the
expression is word aligned. An error will be issued if this is not the case. This is done independently of
the used type.

Expression Types

When evaluating an expression, the result of the expression is determined by the operands of the
expression and the operators. The types of the symbols are divided in two groups: constant types and
address types

Constant types: DATA3, DATA4, DATA8, DATA16 and INTNO

Address types: NEAR, FAR, BIT, BYTE, WORD, BITBYTE, BITWORD, NEARBYTE, NEARWORD
and REGBANK

Address types may each relate to incompatible memory spaces. Unary operators are not allowed on

address types. A unary operator applied to a constant type will yield the same constant type as result of
the expression. The following table shows the resulting operand types for a binary operator:

99

TASKING VX-toolset for C166 User Guide

Binary operator

Operand combination

type

remarks: the section
information of the address
operand is used for the
result

Constant/Constant|Address/Constant or Address/Address
Constant/Address
- (subtraction) Largest constant Address type Constant type if the address types

are compatible.

lllegal address operation if the
addresses are incompatible.

remarks: There is no relocation if
both addresses are from the same
section.

remarks: the section
information of the address
operand is used for the
result

bitwise OR, XOR |Largest constant Address type Address type
and AND type
lllegal address operation if the
addresses are incompatible.
remarks: There is no relocation if
both addresses are from the same
section.
+ (addition) Largest constant Address type Address type
type
lllegal address operation if the
addresses are incompatible.
remarks: There is no relocation if
both addresses are from the same
section.
. (dot) BIT BIT lllegal address operation
remarks: only allowed if
type of address is
BITBYTE or BITWORD
==, EQ, !=, NE, DATA3
>=, GE, <=, LE, >,
GT, <, LT, ULT,
UGT, ULE, UGE
other binary Largest constant Address type lllegal address operation
operator type

3.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations. You can use functions as terms in any expression.

100

Assembly Language

Syntax of an assembly function
@f uncti on_nane([argunent [,argunent]...])

Functions start with the '@' character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name
and the opening parenthesis and between the (comma-separated) arguments.

@ABS(expression)

Returns the absolute value of the expression.

Example:

AVAL .SET @ABS(-2) ; AVAL = 2

@ARG('symbol’ | expression)

Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

You can specify the argument with a symbol name (the name of a macro argument enclosed in single
guotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

-1F @QARG("TWIDDLE") ;is argument twiddle present?
-1F @ARG(1) ;is First argument present?

@BITBYTE(expression)

Returns the bitbyte of the result of the expression. The result of the expression must be a bit address.
@BITWORD(expression)

Returns the bitword of the result of the expression. The result of the expression must be a bit address.
@BOF(expression)

Returns the bit offset of the result of the expression. The result of the expression must be a bit address
@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

ARGCOUNT _SET @CNT() ; reserve argument count

101

TASKING VX-toolset for C166 User Guide

@DEFINED('symbol’ | symbol)

Returns 1 if symbol has been defined, 0 otherwise. If symbol is quoted, it is looked up as a .DEFINE
symbol; if it is not quoted, it is looked up as an ordinary symbol, macro or label.

Example:

- IF @DEFINED("ANGLE™) ;is symbol ANGLE defined?
- IF @DEFINED(ANGLE) ;does label ANGLE exist?
@DPP(label)

Expands to the DPP register needed to access the near label. The assembler issues an error if the label
is not of the type near. Function can be used anywhere where a short or long address can be used,
including expressions.

@LSB(expression)

Returns the least significant byte of the result of the expression. The result of the expression is calculated
as 16 hit.

Example:

.DB @LSB(0x1234) ; stores 0x34
.DB @MSB(0x1234) ; stores 0x12

@LSW(expression)

Returns the least significant word of the result of the expression. The result of the expression is calculated
as a long (32 bit).

Example:

.DW @LSW(0x12345678) ; stores 0x5678
.DW @MSW(0x123456) ; stores 0x0012

@MSB(expression)

Returns the most significant byte of the result of the expression. The result of the expression is calculated
as 16 hit.

@MSW(expression)

Returns the most significant word of the result of the expression. The result of the expression is calculated
as a long (32 bit).

@NEAR(expression)

Returns the near result of the expression.

102

Assembly Language

@PAG(expression)

Returns the page number of the result of the expression. The result of the expression is calculated as
long (32 bit).

Example:

ISEC _SECTION near,init

AWORD .DW @PAG(COUNT) ; Initialize with the page number where COUNT is located.
COUNT .DS 1

ISEC .ENDS

@POF(expression)

Returns the page offset of the result of the expression. The result of the expression is calculated as long
(32 bit).

Example:

DSEC .SECTION near,init
TAB2 _.DW 8
DSEC .ENDS

CSEC .SECTION code
MOV RO, #@POF(TAB2) Fill RO with the page offset
offset of variable TAB2

CSEC .ENDS
@SEG(expression)

Returns the segment number of the result of the expression. The result of the expression is calculated
as long (32 bit).

Example:

DSEC .SECTION near,init

AWORD .DW @SEG(TABX) ; Initialize with the segment number where TABX is located.
TABX .DS 1

TABY .DS 20

DSEC .ENDS

@SOF(expression)

Returns the segment offset of the result of the expression. The result of the expression is calculated as
long (32 bit).

@STRCAT(string1,string2)

Concatenates stringl and string2 and returns them as a single string. You must enclose stringl and
string2 either with single quotes or with double quotes.

103

TASKING VX-toolset for C166 User Guide

Example:

.DEFINE 1D "@STRCAT("TAS","KING")" ; ID = "TASKING"
@STRCMP(stringl,string2)

Compares string1 with string2 by comparing the characters in the string. The function returns the difference
between the characters at the first position where they disagree, or zero when the strings are equal:

<0 if stringl < string2
0 if stringl == string2
>0 if stringl > string2
Example:

_IF (@STRCMP(STR,"MAIN"))==0 ; does STR equal "MAIN"?

@STRLEN(string)

Returns the length of string as an integer.
Example:

SLEN _SET @STRLEN("string~) ; SLEN = 6
@STRPOS(stringl,string2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in stringl, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1.

Example:
ID .set @STRPOS("TASKING","ASK") ; ID =1
ID .set @STRPOS("TASKING","BUG") ; ID =7

@SUBSTR(string,expressionl,expression2)

Returns the substring from string as a string. expressionl is the starting position within string, and
expression? is the length of the desired string. The assembler issues an error if either expressionl or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

.DEFINE ID ™"@SUB("TASKING",3,4)" ;ID = "KING"

104

Assembly Language

3.9. Assembler Directives and Controls

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

» Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

* Assembly control directives

« Symbol definition directives

« Data definition / Storage allocation directives
» High Level Language (HLL) directives

Directives that are interpreted by the macro preprocessor. These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all.

Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the controls $LIST and
$NOLIST you overrule this option for a part of the code that you do not want to appear in the list file.
Controls always appear on a separate line and start with a '$' sign in the first column.

The following controls are available:
« Assembly listing controls
* Miscellaneous controls

Each assembler directive or control has its own syntax. You can use assembler directives and controls

in the assembly code as pseudo instructions.

3.9.1. Assembler Directives

Overview of assembly control directives

Directive Description
-END Indicates the end of an assembly module
. INCLUDE Include file

TASKING VX-toolset for C166 User Guide

Overview of symbol definition directives

Directive Description

-ALIAS Create an alias for a symbol
-ASSUME Assume DPP usage

-CGROUP, .DGROUP Create a group of code sections or data sections
-EQU Set permanent value to a symbol
-EXTERN Import global section symbol
-GLOBAL Declare global section symbol
-LABEL Define a label of a specified type
.PROC, .ENDP Define a procedure

-REGBANK Define register bank

-SECTION, .ENDS Start a new section

-SET Set temporary value to a symbol
-SOURCE Specify name of original C source file
-WEAK Mark a symbol as 'weak’

Overview of data defi

nition / storage allocation directives

-DBFILL, .DWFILL,
DLFILL, .DLLFILL

-DBPTR, .DPPTR, .DSPTR

.DS, .DSBIT, .DSW, .DSL,
-DSLL

Directive Description

-ALIGN Align location counter
.DBIT Define bit

.DB Define byte

-Dw Define word (16 bits)
.DL Define long (32 bits)
.DLL Define long long (64 bits)

Fill block of memory

Define pointer values in memory
Define storage

Overview of macro and conditional assembly directives

106

Directive Description

.DEFINE Define substitution string

-BREAK Break out of current macro expansion
-REPEAT, .ENDREP Repeat sequence of source lines

-FOR, .ENDFOR Repeat sequence of source lines n times

Assembly Language

Directive Description

-IF, .ELIF, .ELSE Conditional assembly directive
-ENDIF End of conditional assembly directive
-MACRO, .ENDM Define macro

-UNDEF

Undefine .DEFINE symbol or macro

Overview of HLL directives

Directive Description

-CALLS Pass call tree information and/or stack usage information
-DEBUG Pass debug information

-MISRAC Pass MISRA-C information

107

TASKING VX-toolset for C166 User Guide

ALIAS

Syntax

al i as-name . ALI AS functi on- nane
Description

With the _ALIAS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma alias.

Example

_malloc _ALIAS hmalloc

108

Assembly Language

ALIGN

Syntax

. ALI GN expressi on
Description

With the . ALIGN directive you instruct the assembler to align the location counter. By default the assembler
aligns on the alignment specified with the . SECTION directive.

When the assembler encounters the .ALIGN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs). The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.
A label is not allowed before this directive.
Example

CSEC .section code

_ALIGN 16 ; the assembler aligns
instruction ; this instruction at 16 MAUs and

; Fills the "gap” with NOP instructions.

CSEC2 .section code

_ALIGN 12 ; WRONG: not a power of two, the

instruction assembler aligns this instruction at
16 MAUs and issues a warning.

Example with a BIT section to create a bit addressable byte or word with the type BITBYTE or BITWORD:

bitsect .section bit,word

.ds 1 ; single bit
.ALIGN 8

bb .dsb 1 ; BITBYTE
.ALIGN 16

bw .dsw 1 ; BITWORD

The section is word aligned, because of the .dsw directive. It is impossible to align the .dsw directive
correctly if the section is not aligned at word or a multiple of words. The .ALIGN directives are needed
to place the .dsb and .dsw directives at the correct location.

109

TASKING VX-toolset for C166 User Guide

ASSUME

Syntax

. ASSUME DPPn: sectpart[, DPPn:sectpart]...
or

. ASSUME NOTHI NG

Description

You can use the . ASSUME directive to specify what the contents of the DPP registers will be at run-time.
This is done to help the assembler to ensure that the data referenced will be addressable.

The assembler checks each data memory reference for addressability based on the contents of the
-ASSUME directive. The . ASSUME directive does not initialize the DPP registers; it is used by the assembler
to help you be aware of the addressability of the data. Unless the data is addressable (as defined either
by an .ASSUME or a page override), the assembler produces an error.

Field values

DPPn

One of the C166 Data Page Pointer (DPP) registers: DPPO, DPP1, DPP2, and DPP3.
sectpart

With this field you can define a page number. It can have the following values:

* section name, as in .ASSUME DPPO:DSEC1, DPP1:DSEC3

All variables and labels defined in section DSEC1 are addressed with DPPO and all variables defined
in the section DSEC3 are addressed with DPP1. This applies to all sections with the same name in the
current module.

e group name, as in .ASSUME DPP2:DGRP

All variables and labels defined in sections which are member of the group DGRP are addressed with
DPP2.

» variable name or label name, as in .ASSUME DPPO:VarOrLabName

If the variable or label name is defined in a module internal section, all variables or labels defined in
this section are addressed with DPPO. If the variable or label name is defined in a module-external
section, only this variable can be addressed with DPPOQ.

* NOTHING keyword, as in .ASSUME DPP1:NOTHING

This indicates that nothing is assumed in the DPP register at that time. If a DPP register is assumed
to contain nothing, the assembler does not implicitly use this DPP register for memory addressing. Also
possible is: .ASSUME NOTHING This is the same as: .ASSUME DPP1:NOTHING, DPP1:NOTHING,

110

Assembly Language
DPP2:NOTHING, DPP3:NOTHING This is the default which remains in effect until the first . ASSUME
directive is found.
» SYSTEM keyword, as in .ASSUME DPP1:SYSTEM

This keyword enables the addressability of system ranges (via SFR) if a SFR is used in a virtual operand
combination.

Search sequence

When you use a label that is assumed directly, via the section it is defined in or via the group of the section
it is defined in, the following sequence is searched:

1. if the used label as a DPP assumed, this DPP is used

2. if the used label does not have a DPP assumed, but the section it is defined in does have a DPP
assumed, the DPP on the section is used

3. if the used label does not have a DPP assumed and the section it is defined does not have a DPP
assumed, the assume of a DPP on the group is used if present

Example
Specify an existing processor:

DESC1 .section far

AWORD .dw O
DESC2 .section far
BYTE1L .db O
DESC3 .section far
BYTE2 .db O

CSEC .section code

.ASSUME DPPO:DSEC1, DPP1:DSEC3
MOV DPPO, #PAG DSEC1

MOV DPP1, #PAG DSEC3

MOV DPP2, #PAG DSEC2

MOV RO, AWORD ; The .assume covers the reference

DPPO points to the base of
section DSEC1 that contains AWORD

MOV RL1, DPP2:BYTE1l Explicit code. The page override
operator covers the reference
Error!: No DPP register used and

no ASSUME has been made

MOV RL1, BYTE1l

MOV RL2, BYTE2 ; The .assume covers the reference

111

TASKING VX-toolset for C166 User Guide

; DPP1 points to the base of
; section DSEC3 that contains BYTE2

When several DPPs are assumed to one sectpart, the lowest DPP number is used as DPP prefix. This
also happens if, for example, both a label and the section it belongs to are assumed to different DPPs,
or if both a section and the group it belongs to, are assumed to different DPPs:

-ASSUME DPP1:AGRP, DPP2:AVAR1
DSEC1 .section far, group(AGRP)
AVAR1 .dw 1
DESC2 .section far, group(AGRP)

CSEC .section code

MOV RO, AVAR1 ; DPP1 is used for AVAR1

.ASSUME DPP1:NOTHING
MOV RO, AVAR1 ; DPP2 is used for AVAR1
MOV RO, AGRP ; DPP2 is used for AGRP

RET
.ASSUME directives can forward reference a name. Also double forward references are allowed:
.ASSUME DPPO:DSEC1 ; Forward reference

.ASSUME DPP1:Avar ; Double forward reference.
DSEC1 .section far

Avar .equ wvVar + 2
DSEC1 .section far
wVar .dw O

.dw O

112

Assembly Language

.BREAK

Syntax
. BREAK
Description

The .BREAK directive causes immediate termination of a macro expansion, a - FOR loop expansion or a
-REPEAT loop expansion. In case of nested loops or macros, the . BREAK directive returns to the previous
level of expansion.

The .BREAK directive is, for example, useful in combination with the . I F directive to terminate expansion
when error conditions are detected.

The assembler does not allow a label with this directive.
Example

-.FOR MYVAR IN 10 TO 20

- ; assembly source lines
-IF MYVAR > 15
.BREAK
-.ENDIF
.ENDREP

113

TASKING VX-toolset for C166 User Guide

.CALLS

Syntax

. CALLS °caller”, “call ee”
or

. CALLS ~“caller”, ”7, ssk, usk
Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The usage count can be specified for the system stack (ssk) and the
user stack (usk). The values specified are the stack usage in bytes at the time of the call including the
return address.

This information is used by the linker to compute the used user stack and system stack within the
application. The information is found in the generated linker map file within the call graph.

This directive is generated by the C compiler. Normally you will not use it in hand-coded assembly.
Example

The function _main calls the function _nfunc:

.CALLS "_main®, "_nfunc*

The function _main() uses 4 bytes on the system stack and no user stack:

.CALLS "_main®,"",4,0

114

Assembly Language

.CGROUP, .DGROUP

Syntax

groupnane . CGROUP sectnane [,sectnane]...
groupnane . DGROUP sectnane [,sectnane]...

Description

With the . CGROUP directive you can create a group (groupname) of code sections. All sections within the
same group will be placed within the same segment. With the . DGROUP directive you can create a group
of data sections. All data sections with one group must be within the same space (section’s space attribute).
The group will be located as follows:

Space Locate behavior

near the whole group in the same page

far the whole group in the same page

shuge the whole group in the same segment

huge no restrictions are made by the group, in LSL the sections can be selected with the group
bit no restrictions are made by the group, in LSL the sections can be selected with the group

One special sectname in a data group is the SYSTEM section. When SYSTEM is grouped with the data
group, the whole group will be placed in the SYSTEM page, page 3. The LSL file of the locator defines
an empty SYSTEM section at the start of the system page to achieve this.

Example

CSEC1 .section code
CSEC1 .ends

CSEC2 .section code
CSEC2 .ends

CODEGRP .CGROUP CSEC1, CSEC2 Group combination of the CODE

sections CSEC1 and CSEC2

115

TASKING VX-toolset for C166 User Guide

.DBIT, .DB, .DW, .DL, .DLL
Syntax

[l abel] .DBIT argunent [,argunent]...
[l abel 7 . DB argunent [,argunent]...

[l abel 7 . DW argunent [,argunent]...

[l abel 7 . DL argunent [,argunent]...

[l abel 7 . DLL argunent [,argunent]...

Description

With these directive you can define memory. With each directive the assembler allocates and initializes
one or more bytes of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty. Multiple
arguments must be separated by commas with no intervening spaces. Empty arguments are stored as
0 (zero). For single bit initialization (.DBIT) the argument must be a positive absolute expression and
each argument represents a bit to be initialized.

Multiple arguments are stored in successive byte locations. One or more arguments can be null (indicated
by two adjacent commas), in which case the corresponding byte location will be filled with zeros.

The following table shows the number of bits initialized.

Directive Bits Alignment
.DBIT 1 1 bit

.DB 8 8 bit

-DW 16 16 bit

-DL 32 16 bit
-DLL 64 16 bit

The directive must be placed on an address that is aligned as listed in the table. A warning is issued if
the directive is not aligned properly. You can use the .ALIGN directive to align the location counter.

When these directives are used in a BIT section, each argument initializes the number of bits defined for
the used directive and the location counter of the current section is incremented with this number of bits.

The .DBIT directive can be used in a BIT section only. Each argument represents a bit to be initialized
to 0 or 1. The location counter of the current section is incremented by a number of bits equal to the
number of arguments.

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a word / long / long long, the assembler
issues a warning and truncates the value.

116

Assembly Language

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.DB "R* ; = 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

.DB "AB",,"C" ; = 0x41420043 (second argument is empty)
Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.
For example:

WTBL: .DW “ABC",,"D"
LTBL: .DL “ABC-

results in 0x424100004400 , the "C" is truncated
results in 0x43424100

Related Information
-DBFILL (Fill Block)

-DS (Define Storage)

117

TASKING VX-toolset for C166 User Guide

.DBFILL, .DWFILL, .DLFILL, .DLLFILL
Syntax

[l abel 7 . DBFI LL count [,ar gunent]
[l abel 7 . DWFI LL count [,ar gunent]
[l abel 7 . DLFILL count [,argunent]
[l abel 7 . DLLFI LL count [,ar gunent]

Description

With these directives the assembler allocates and initializes a block of memory filled with argument. The

number of items in the block is defined by the constant expression count. The width of each item and the
alignment of the block depends on the used directive:

Directive Bits Alignment
-DBFILL 8 8 bit
-DWFILL 16 16 bit
-DLFILL 32 16 bit
-DLLFILL 64 16 bit

The argument can be a single- or multiple-character string constant or an expression. If you omit the
argument, the block is filled with zeros.

The value of the argument must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large, the assembler issues a warning and truncates the value.

Example

DSEC .section far
.DB 84,101,115,116 ; initialize 4 bytes
.DBFILL 96,0xFF ; reserve another 96 bytes, initialized with OxFF

Related Information
-DB (Define Memory)

.DS (Define Storage)

118

.DBPTR, .DPPTR, .DSPTR
Syntax

[l abel 7 . DBPTR ar gunent [,ar gunent]
[l abel 7 . DPPTR ar gunent [,ar gunent]
[l abel 7 . DSPTR ar gunent [,ar gunent]

Description

Assembly Language

With these directives the assembler allocates and initializes pointer values in memory. These directives

are included for backwards compatibility.

119

TASKING VX-toolset for C166 User Guide

.DEBUG

Syntax

. DEBUG section-nane[[,] cluster nane]
Description

Create a Dwarf debug section. Debug sections are not allocated by the linker. They contain high level
language information generated by the compiler. This information is required for the debugger. The debug
section names always start with a period as determined in the Dwarf debug information specification for
the C166 toolset. The sections contains constants and relocations referring to line numbers, register
usage, variable lifetime and other debug information.

With ‘cluster name’ this debug section is clustered with companion debug and code sections. It is used
by the linker during removal of unreferenced sections. The name must be unique for this module (not for
the application).

Normally you will not use this directive in hand-coded assembly.
Example

.DEBUG .debug_info

120

Assembly Language

.DEFINE

Syntax

. DEFI NE synbol string
Description

With the . DEFINE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. . DEFINE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active .DEFINE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

Example

Suppose you defined the symbol LEN with the substitution string "32":
-DEFINE LEN "32"

Then you can use the symbol LEN for example as follows:

-DS LEN
$MESSAGE(l1,"The length is: LEN'")

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

.DS 32
$MESSAGE(I,""The length is: 32'")

Related Information
.UNDEF (Undefine a .DEFINE symbol or macro)

-MACRO, .ENDM (Define a macro)

121

TASKING VX-toolset for C166 User Guide

.DS, .DSBIT, .DSB, .DSW, .DSL, DSLL
Syntax

[l abel 7 . DS expression

[l abel] . DSBI T expression
[l abel 7 . DSB expressi on

[l abel 7 . DSW expr essi on

[l abel 7 . DSL expression

[l abel 7 . DSLL expression

Description

The .DS directive reserves a block in memory. The reserved block of memory is not initialized to any
value.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The expression specifies the number of MAUs (Minimal Addressable Units) to be reserved, and how
much the location counter will advance. The expression must evaluate to an integer greater than zero
and cannot contain any forward references (symbols that have not yet been defined). In a bit section, the
MAU size is 1, thus the _DS directive will initializes a number of bits equal to the result of the expression.

The .DSB, .DSW, .DSL and .DSLL directives are variants of the .DS directive. The difference is the
number of bits that are reserved per expression argument:

Directive Reserved bits Alignment
.DSBIT 1 1 bit

.DSB 8 8 bit

-DSW 16 16 bit
.DSL 32 16 bit
-DSLL 64 16 bit

The directive must be placed on an address that is aligned as listed in the table. A warning is issued if
the directive is not at aligned properly. You can use the .ALIGN directive to align the location counter.

Example

DSEC .section far
RES: .DS 5+3 ; allocate 8 bytes

Related Information
.DB (Define Memory)

_DBFILL (Fill Block)

122

Assembly Language

.END
Syntax

. END
Description

With the _END directive you tell the assembiler that the end of the module is reached. The assembler will
not process any lines following an -END directive. If the command line option --require-end is used the
assembler will issue an error if the _END directive is not found before end of file. If a generator (e.g., a C
compiler) stops generating before finishing the assembly file, the assembler can detect this by a missing
-END directive.

The assembler does not allow a label with this directive.
Example

CSEC .section code
; source lines
-.END ; End of assembly module

Related Information

Assembler option --require-end

123

TASKING VX-toolset for C166 User Guide

.EQU

Syntax

synbol . EQU expression
Description

With the _EQU directive you assign the value of expression to symbol permanently. The expression can
be relative or absolute. Once defined, you cannot redefine the symbol. With the . GLOBAL directive you
can declare the symbol global.

The symbol defined with the .EQU gets a type depending on the resulting type of the expression. If the
resulting type of the expression is none the symbol gets no type when the _EQU is used outside a section
and it gets the type of the section when it is defined inside a section.

Example

To assign the value 0x4000 permanently to the symbol MYSYMBOL:
MYSYMBOL _EQU 0x4000

Related Information

Section 3.7.4, Symbol Types and Expression Types

.SET (Set temporary value to a symbol)

124

Assembly Language

.EXTERN

Syntax

. EXTERN [DPPx:]synbol [:type]
Description

With the . EXTERN directive you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the .GLOBAL
directive.

The type of the symbol is inherited from the section in which it is defined or from the directive used to
define it. The assembler uses the type to check the symbol’s use. In other words, if the symbol does not
fit the instruction’s operand, the assembler will issue a warning. If you do not specify the type information
with the _EXTERN directive, the assembler will not check the use of the specified symbol.

You can use the DPPx prefix to specify the DPP register to be used to access the external symbol.

If you do not use the _.EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the .EXTERN directive.

A label is not allowed with this directive.
Example

.EXTERN DPP2:AVAR:WORD ; extern declaration

CSEC .section code

MOV RO, AVAR ; AVAR is used here

Related Information
See Section 3.7.4, Symbol Types and Expression Types for more information on the type keywords.

-GLOBAL (Declare global section symbol)

125

TASKING VX-toolset for C166 User Guide

.FOR, .ENDFOR
Syntax

[l abel] . FOR var | N expression[,expression]...
_ENDFCR

or:

[l abel] . FOR var IN start TO end [STEP step]
_ENDFCR

Description

With the . FOR/ .ENDFOR directive you can repeat a block of assembly source lines with an iterator. As
shown by the syntax, you can use the .FOR/ _ENDFOR in two ways.

1. In the first method, the block of source statements is repeated as many times as the number of
arguments following IN. If you use the symbol var in the assembly lines between .FOR and .ENDFOR,
for each repetition the symbol var is substituted by a subsequent expression from the argument list. If
the argument is a null, then the block is repeated with each occurrence of the symbol var removed. If
an argument includes an embedded blank or other assembler-significant character, it must be enclosed
with single quotes.

2. In the second method, the block of source statements is repeated using the symbol var as a counter.
The counter passes all integer values from start to end with a step. If you do not specify step, the
counter is increased by one for every repetition.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

In the following example the block of source statements is repeated 4 times (there are four arguments).
With the _DB directive you allocate and initialize a byte of memaory for each repetition of the loop (a word
for the .DW directive). Effectively, the preprocessor duplicates the .DB and .DW directives four times in
the assembly source.

_-FOR VARL IN 1,2+3,4,12
_.DB VAR1
_DW (VARI*VARL)
_ENDFOR

In the following example the loop is repeated 16 times. With the .DW directive you allocate and initialize
four bytes of memory for each repetition of the loop. Effectively, the preprocessor duplicates the .DW
directive 16 times in the assembled file, and substitutes VAR2 with the subsequent numbers.

_-FOR VAR2 IN 1 to Ox10
_DW (VARI*VARL)
_ENDFOR

126

Assembly Language

Related Information

-REPEAT, .ENDREP (Repeat sequence of source lines)

127

TASKING VX-toolset for C166 User Guide

.GLOBAL

Syntax

. GLOBAL synbol [,synbol]-..
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the .GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with .GLOBAL, from another module, use the .EXTERN directive.
Only program labels and symbols defined with .EQU can be made global.

The assembler does not allow a label with this directive. The type of the global symbol is determined by
its definition.

Example

LOOPA _EQU 1 ; definition of symbol LOOPA
.GLOBAL LOOPA ; LOOPA will be globally
; accessible by other modules

Related Information

-EXTERN (Import global section symbol)

128

Assembly Language

AF,.ELIF,.ELSE,.ENDIF
Syntax

.1 F expression

[. ELIF expression] ; the .ELIF directive is optional

[. ELSE] ; the _ELSE directive is optional

. ENDI F
Description

With the . IF/_ENDIF directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional .ELSE and/or -ELIF directives are not present, then the source statements following the
- IF directive and up to the next . ENDIF directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the . IF and the .ENDIF directives were never encountered.

If the .ELSE directive is present and expression has a nonzero result, then the statements between the
. IF and . ELSE directives will be assembled, and the statement between the .ELSE and .ENDIF directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the . IF and
-ELSE directives will be skipped, and the statements between the .ELSE and .ENDIF directives will be
assembled.

You can nest . IF directives to any level. The .ELSE and .ELIF directive always refer to the nearest
previous . IF directive.

A label is not allowed with this directive.
Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

IF TEST

... ; code for the test version
-.ELIF DEMO

... ; code for the demo version
-ELSE

129

TASKING VX-toolset for C166 User Guide
... ; code for the final version
-ENDIF

Before assembling the file you can set the values of the symbols TEST and DEMO in the assembly source
before the . IF directive is reached. For example, to assemble the demo version:

TEST .SET O
DEMO .SET 1

130

Assembly Language

INCLUDE

Syntax

.INCLUDE "fil enane"™ | <filenane>
Description

With the . INCLUDE directive you include another file at the exact location where the . INCLUDE occurs.
This happens before the resulting file is assembled. The . INCLUDE directive works similarly to the

#include statement in C. The source from the include file is assembled as if it followed the point of the
- INCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification. If you omit a
filename extension, the assembler assumes the extension .asm.

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.
The current directory is not searched if you use the <filename> syntax.
2. The path that is specified with the assembler option --include-directory.
3. The path that is specified in the environment variable AS166 INC when the product was installed.
4. The default include directory in the installation directory.
The assembler does not allow a label with this directive.

The state of the assembler is not changed when an include file is processed. The lines of the include file
are inserted just as if they belong to the file where it is included.

Example

It is allowed to start a new section in an included file. If this file is included somewhere in another section,
the contents of that section following the included file will belong to the section started in the include file:

; File incfile.asm

insect .section near
.db 5
.db 6

; File mainfile.asm
mainsect .section near
.db 1

.db 2
. INCLUDE "incfile.asm"

131

TASKING VX-toolset for C166 User Guide

.db 3
.db 4

The resulting sections have the following contents:

mainsect: 0x01 0x02
incsect: O0x05 0x06 0x03 0x04

132

Assembly Language

.LABEL

Syntax

| abel .LABEL type

Description

Define a label of the specified type. The label is assigned the current location counter.

A label can be a code label, ending with a semicolon (e.g. clabl:), or a data label, without a semicolon.

Example

DSEC .SECTION NEAR

AWORD -LABEL WORD ; label of type WORD
LOWBYTE .DB 1

HBYTE -LABEL BYTE ; label of type BYTE

HIGHBYTE .DB 1
Related Information

See Section 3.7.4, Symbol Types and Expression Types for more information on the type keywords.

133

TASKING VX-toolset for C166 User Guide

#line

Syntax

#[1ine] |inenunber ["fil enane']
Description

The line directive is the only directive not starting with a dot, but with a hash sign. It allows passing on
line number information from higher level sources. This linenumber is used when generating errors. When
this directive is encountered, the internal line number count is reset to the specified number and counting
continues after the directive. The line after the directive is assumed to originate on the specified line
number. The optional file name will, when specified, reset the module file name for purposes of error
generation.

This directive is generated by the preprocessor phase of the C compiler. Normally you will not use it in
hand-coded assembly.

Example

#line 1

134

Assembly Language

.MACRO, .ENDM
Syntax

macr o_nanme . MACRO [argunent [,argunment]...]

macro_definition_statenments

. ENDM
Description

With the _.MACRO directive you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions. You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (-MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

» Terminator, which indicates the end of the macro definition (- ENDM directive).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

Operator |[Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

Example
The macro definition:
macro_a .MACRO argl,arg2 ;header

.db argl ;body

135

TASKING VX-toolset for C166 User Guide

.dw (argl*arg2)
-ENDM

The macro call:

DSEC .section far
macro_a 2,3

The macro expands as follows:

.db 2
.dw (2*3)

Related Information
Section 3.10, Macro Operations

-DEFINE (Define a substitution string)

136

;terminator

Assembly Language

.MISRAC
Syntax

. M SRAC string
Description

The C compiler can generate the . MISRAC directive to pass the compiler's MISRA-C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

-MISRAC "MISRA-C:2004,64,e2,0b,e,el1,27,6,ef83,el,ef,66,cb75,afl,eff,e7,e7f,8d,63,
Related Information
Section 4.7, C Code Checking: MISRA-C

C compiler option --misrac

137

TASKING VX-toolset for C166 User Guide

.PROC, .ENDP
Syntax

| abel . PROC NEAR
[[! abel] . ENDP]

| abel .PROC FAR
[[abel] . ENDP]

| abel .PROC | NTNO [[nane]=][nunber]
L[l abel 7 . ENDP]

Description

Define a procedure with the name label. The following type of procedures can be defined:

Procedure |Description

type

near Near procedures are called using the CALLA instruction and must have a RETN as return
instruction.

far Far procedures are called using the CALLS instruction and must have a RETS as return
instruction.

intno Interrupt procedures, requiring RETI as return instruction. The interrupt can be assigned
with a name and a number, used to define the interrupt vector table at link time.

The procedure type is applied to all labels that follow the . PROC directive until the procedure is ended.
The label gets the defined procedure type. For interrupt functions the labels do not get a type because
interrupt functions cannot be called.

The _ENDP ends the procedure, but is optional. The procedure also ends when a new .PROC is started
in the same section or when the section ends.

Example
The following example defines and calls a far procedure:

GLOBALCODE .section code

AFARPROC .PROC FAR ; far procedure

RETS ; far return
AFARPROC .ENDP

SPECSEC .section code

CALLS AFARPROC ; far intra segment call.

138

Assembly Language

Definition of an interrupt (trap) function:

_tfunc _PROC INTNO tfunc_trap = -1

RETI

139

TASKING VX-toolset for C166 User Guide

.REGBANK

Syntax

bank- nane . REGBANK [regi ster-range]
Description

With the .REGBANK directive you can define a register bank with name bank-name. The registers used
in the instructions must be defined in the _REGBANK directive. The assembler does not check this. The
directive generates a section named bank-name with the iram section.

The label bank-name gets the type REGBANK and is placed at the location where RO is positioned, even
if RO is not part of the register-range. The assembler checks if the GPRs being used in the source match
those specified in the .REGBANK directive. Multiple . REGBANK directives per source file are allowed.

A section generated by the .REGBANK directive is defined from the lowest up to and including the highest
register in the register range. If RO is not in the register range, the section label will lie outside of the
regbank section. When two modules use the same register bank name, the register banks are overlaid
(section with MAX attribute). The linker overlays the start of the register banks, even if that location does
not refer to the same register. This can be used for simple register bank sharing as follows:

modulel:
bankname .REGBANK RO-R5

module2:
bankname .REGBANK R10-R15

In this case, the section bankname is overlaid. Both modules use a local label called bankname when
they need to load the context pointer. The final register bank has a size of 6 words, pointing to either
RO-R5 for modulel or to R10-R15 for module2.

The assembler allows multiple definitions of the same register bank (with the same register range) in one
module, which results in a single register bank:

module3:

bankname .REGBANK RO-R5

bankname .REGBANK RO-R15 ; OK
bankname .REGBANK R5-R10 ; error

Complex register bank definitions without .REGBANK

To make complex register bank definitions it is recommended not to use the .REGBANK directive. Instead
you should create an iram section. All symbols in such a section must get the type regbank. For example:

banks .section iram
;bankl bank?2 bank3
bank1 -label regbank

.dsw 1 ; O

bank2 -label regbank
.dsw 1 ;1 0
.dsw 1 ;2 1

140

bank3

banks
Example

-NEW

.dsw 1 ; 3
.dsw 1 ; 4
.label regbank

.dsw 1 ; 5
.dsw 15 ;6-15
.ends

4
6-15

0]
1-15

Assembly Language

141

TASKING VX-toolset for C166 User Guide

.REPEAT,.ENDREP

Syntax

[l abel 7 . REPEAT expression
| ENDREP

Description

With the .REPEAT/.ENDREP directive you can repeat a sequence of assembly source lines. With expression
you specify the number of times the loop is repeated. If the expression evaluates to a number less than
or equal to 0, the sequence of lines will not be included in the assembler output. The expression result
must be an absolute integer and cannot contain any forward references (symbols that have not already
been defined). The .REPEAT directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

In this example the loop is repeated 3 times. Effectively, the preprocessor repeats the source lines (.DB
10) three times, then the assembler assembles the result:

-REPEAT 3
.DB 10 ; assembly source lines
-ENDFOR

Related Information

-FOR, .ENDFOR (Repeat sequence of source lines n times)

142

Assembly Language

.SECTION,.ENDS
Syntax

name . SECTI ON type[,attribute...][,"cl assname™]

[[nane] . ENDS]
Description

Use this directive to define section names and declaration attributes and for activating the section. For
compatibility reasons, the commas between the operands of the . SECTION directive are optional. By
default, the assembler tries to resume a previous section with the same name. If no such section exists,
it creates a new section.

The name specifies the name of the section. The type operand specifies the section’s space and must
be one of:

Type Description

BIT Located in the bit addressable area. The section locator counts in bits.

BITA Located in the bit addressable area. The section locator counts in bytes.

IRAM Located in the internal RAM.

NEAR Data section in a 64 kB address space. The underlying pages can be mapped anywhere
in memory.

FAR Data section that can be located anywhere in memory. Sections cannot be larger than 16
kB and cannot cross page boundaries.

SHUGE Data section that can be located anywhere in memory. Sections cannot be larger than 64
kB and cannot cross segment boundaries.

HUGE Data section that can be located anywhere in memory.

CODE Code section that can be located anywhere in memory. Sections cannot be larger than 64

kB and cannot cross segment boundaries.

The type of the labels in a code section depends on the used .PROC directive. Labels
defined in a code section outside the . PROC directive get the type FAR. This can be
overruled with the _LABEL directive and . PROC directive.

The defined attributes are:

Attribute Description

AT address Locate the section at the given address.

BYTE Make the section byte aligned.

CLASS Adds the classname to section name, separated with a dot (hame.classname).
‘classname’

CLEAR Sections are zeroed at startup.

143

TASKING VX-toolset for C166 User Guide

Attribute

Description

CLUSTER ‘name’

Cluster code sections with companion debug sections. Used by the linker during
removal of unreferenced sections. The name must be unique for this module (not
for the application).

DWORD

Align the section on a double word boundary.

GLOBAL

Tells the linker to combine sections with the same name and attributes to one single
section.

GROUP ‘group

Used to group sections, for example for placing in the same page. You can also use
the .CGROUP or .DGROUP directive for this.

INIT Defines that the section contains initialization data, which is copied from ROM to
RAM at program startup.

INPAGE Defines that the section must be located within a page and cannot cross page
boundaries. Only applicable to near, far, shuge and huge sections.

INSEGMENT Defines that the section must be located with a segment and cannot cross page

boundaries. Only applicable to shuge and huge sections.

LINKONCE ‘tag’

For internal use only.

MAX

When data sections with the same name occur in different object modules with the
MAX attribute, the linker generates a section of which the size is the maximum of
the sizes in the individual object modules

NEW Tells the assembler to start a new section. Use this for example when this section’s
name is equal to a previously started section with the same or different attributes.

NOCLEAR Not zeroed at startup. This is a default attribute for data sections.

NOINIT Defines that the section contains no initialization data. This is a default attribute for
all data sections.

PAGE Align the section on a page boundary. When you want to start locating at the first
address in the page, you must also define the symbol _ PAGE_START=0 to the
linker. You can do this in the LSL file with #define ___PAGE_START O or you can
specify command line option -D__ PAGE_START=0 to the linker. See also the file
arch_c166.1sl in the directory include. Isl.

PRIVATE Tells the linker not to combine this section with sections with the same name and
attributes. This is the default.

PROTECT Tells the linker to exclude a section from unreferenced section removal and duplicate
section removal.

ROMDATA Section contains data to be placed in ROM

SEGMENT Align the section on a segment boundary.

WORD Make the section word aligned. This is the default for all sections.

Section names

The GROUP attribute results in an extended section name. This is similar to using the . CGROUP or
-DGROUP directives. The classname is added to the section’s name and makes it possible to select
sections in the LSL file for locating. The name resulting from the section directive is as follows:

144

section-nane[.cl ass- nane][@gr oup]
Example

DSEC .SECTION near,init
TAB2 _.DW 8 ; initialized section
DSEC .ENDS

ABSSEC .SECTION far, at 0x100
; absolute section

Related Information

Section 3.7.4, Symbol Types and Expression Types.

Assembly Language

145

TASKING VX-toolset for C166 User Guide

SET

Syntax

synbol . SET expression

.SET synbol expression
Description

With the _SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the _SET directive, you can redefine that symbol in another part of the assembly source, using the
- SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the .GLOBAL directive.

The _SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and cannot include a symbol that is not yet defined (no forward references are allowed).

Example

COUNT _SET O Initialize count. Later on you can

assign other values to the symbol

Related Information

-EQU (Set permanent value to a symbol)

146

Assembly Language

.SOURCE
Syntax

. SOURCE string
Description

With the . SOURCE directive you specify the name of the original C source module. This directive is
generated by the C compiler. You do not need this directive in hand-written assembly.

Example
.SOURCE "main.c"

Related Information

147

TASKING VX-toolset for C166 User Guide

.UNDEF
Syntax

. UNDEF synbol
Description

With the _.UNDEF directive you can undefine a macro or a substitution string that was previously defined
with the _DEFINE directive. The substitution string associated with symbol is released, and symbol will
no longer represent a valid . DEFINE substitution or macro.

The assembler issues a warning if you redefine an existing symbol.
The assembler does not allow a label with this directive.
Example

The following example undefines the LEN substitution string that was previously defined with the .DEFINE
directive:

.UNDEF LEN
Related Information
-DEFINE (Define a substitution string)

-MACRO, .ENDM (Define a macro)

148

Assembly Language

WEAK

Syntax

. EAK synbol [,synbol ...
Description

With the _WEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the .GLOBAL directive or the .EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a . GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.
Example

LOOPA .EQU 1
-GLOBAL LOOPA

definition of symbol LOOPA
LOOPA will be globally
accessible by other modules
mark symbol LOOPA as weak

-WEAK LOOPA
Related Information
-EXTERN (Import global section symbol)

-GLOBAL (Declare global section symbol)

149

TASKING VX-toolset for C166 User Guide

3.9.2. Assembler Controls

Controls start with a $ as the first character on the line. Unknown controls are ignored after a warning is
issued. The arguments of controls can optionally be enclosed in braces (). All controls have abbreviations
of 2 characters (or 4 characters for the $no.. variant).

Overview of assembler controls

Control Description

$[NOJASMLINEINFO Indicates the end of an assembly module
$C_ENVIRONMENT Print / do not print source lines to list file
$[NO]JCHECK Enable or disable the check for a silicon bug
$DATE Set the date in the list file page header
$[NO]DEBUG Control debug information generation

$EJECT Generate form feed in list file page header
$[NOJLIST Print / do not print source lines to list file
$[NOJLOCALS Control generation of local symbols

$MESSAGE Programmer generated message
$[NOJOPTIMIZE Control optimization

$PAGELENGTH Set list file page length

$PAGEWIDTH Set list file page width

$[NOJPAGING Control pagination of list file

$[NOJRETCHECK Control checking of return instruction

$SAVE / $RESTORE Save and restore the current value of the $LIST / $NOLIST controls
$[NO]JSYMB Control generation of symbolic debug information
$TABS Specify tab size

$TITLE Set program title in header of assembly list file
$[NOJWARNING Enable or disable a warning

150

Assembly Language

$ASMLINEINFO / $SNOASMLINEINFO
Syntax

$ASMLI NEI NFO
$NOASMLI NEI NFO

Default

$NOASMLI NEI NFO
Abbreviation

$AL / $SNOAL
Description

With the SASML INE INFO control the assembler generates assembly level debug information. This matches
the effect of the --debug-info=+asm (-ga) command line option. When you use the command line option,
it sets the default, but the control will override its effect.

Example

$ASMLINEINFO
;generate line and file debug information
MOV RO, R12

$NOASML INEINFO
;stop generating line and file information

Related Information
Assembler option --debug-info

Assembler control $DEBUG

151

TASKING VX-toolset for C166 User Guide

$C_ENVIRONMENT

Syntax

$C_ENVI RONMENT(model [,near-functions][,user-stack][,no-doubl e])
Default

No C environment is defined by default.

Abbreviation

$CE

Description

The compiler generates the $C_ENVIRONMENT control to pass the C environment settings, such as the
memory model, to the object file. The linker can then check if all linked objects use the same environment
to avoid run-time problems due to mismatches. Normally you will not use this control in hand-coded
assembly.

The $C_ENVIRONMENT control has the following parameters:

model The compiler memory model which must be one of: near, far, shuge
or huge. This field must always be specified.

near-functions Optional argument to tell that near functions are used by default.

user-stack Optional argument to tell that functions are called with return addresses

on the user stack by default.

no-double Optional argument to tell that all double precision floating-point is treated
as single precision.

Example

$C_ENVIRONMENT(near, near-functions, user-stack, no-double)
Related Information

Assembler option --c-environment

C compiler option --near-functions

C compiler option --user-stack

C compiler option --no-double

152

Assembly Language

$CHECK / $NOCHECK
Syntax

$CHECK(nunber)
$NOCHECK[(nurber)]

Default

$NOCHECK (for all numbers)
Abbreviation

$CH / $NOCH
Description

The $CHECK control enables the check for silicon problem with index number. For the list of numbers,
see Chapter 14, CPU Problem Bypasses and Checks. You can use the $NOCHECK control to disable the
check of a specific silicon problem number.

Example

To specify to check for silicon bug 18 from within the assembly source, specify:
$CHECK(18)

Related Information

Assembler option --silicon-bug

Chapter 14, CPU Problem Bypasses and Checks

153

TASKING VX-toolset for C166 User Guide

$DATE

Syntax

$DATE(st ri ng)
Abbreviation
$DA
Description

This control sets the date as subtitle of the list file page header. When no $DATE is used the assembler
uses the date and time when the list file was generated. The string argument of the $DATE control is not
checked for a valid date, in fact any string can be used.

Example

; Feb 03 2006 in header of list file
$date("Feb 03 2006")

Related Information

Assembler option --list-file

154

Assembly Language

$DEBUG / SNODEBUG
Syntax

$DEBUG
$NODEBUG

Default
$NCDEBUG
Abbreviation
$DB / $NODB
Description

With the $DEBUG control you enable the assembler to generate debug information. If no high-level language
debug information is present, debug information on assembly level is generated. This control also generates
debug information on local symbols. This matches the effect of the --debug-info=+local,+smart (-gls)
command line option. When you use the command line option, it sets the default, but the control will
override its effect.

Example

$DEBUG
;generate smart debug information and information on local symbols
MOV RO, R12

Related Information

Assembler option --debug-info
Assembler control $ASMLINEINFO
Assembler control $LOCALS

Assembler control $SYMB

155

TASKING VX-toolset for C166 User Guide

$EJECT

Syntax

$EJECT

Default

A new page is started when the page length is reached.
Abbreviation

$EJ

Description

If you generate a list file with the assembler option --list-file, with the $EJECT control the list file generation
advances to a new page by inserting a form feed. The new page is started with a new page header. The
$EJECT control generates empty lines when $NOPAGING is set.

Example

. ; assembler source lines

$EJECT ; generate a formfeed

Related Information
Assembler option --list-file

Assembler control $PAGING

156

Assembly Language

SLIST / $NOLIST
Syntax

$LI ST
$NOLI ST

Default
$LI ST
Abbreviation
$LI / $NOLI
Description

If you generate a list file with the assembler option --list-file, you can use the $LIST/$NOLIST controls
to specify which source lines the assembler must write to the list file. Without the assembler option --list-file
these controls have no effect. The controls take effect starting at the next line.

Example

... ; source line in list file

$NOLIST

... ; source line not in list file

$LIST
... ; source line also in list file

Related Information

Assembler option --list-file

Assembler control $SAVE / SRESTORE

157

TASKING VX-toolset for C166 User Guide

$LOCAL / SNOLOCALS
Syntax

$LOCALS
$NOLOCALS

Default
$LOCALS
Abbreviation
$LC / $NOLC
Description

With the $LOCALS control the assembler generates debug information on local symbol records. This
matches the effect of the --debug-info=+local (-gl) command line option. When you use the command
line option, it sets the default, but the control will override its effect.

Example

$NOLOCALS the assembler keeps no local symbol information

of the following source lines
Related Information

Assembler option --debug-info

Assembler control $ASMLINEINFO

Assembler control SDEBUG

Assembler control $SYMB

158

Assembly Language

SMESSAGE

Syntax

SMESSAGE(type, {str|exp}[,{strlexp}]---)
Abbreviation

$SME

Description

With the $MESSAGE control you tell the assembler to print a message to stderr during the assembling
process.

With type you can specify the following types of messages:

I Information message. Error and warning counts are not affected and the assembler continues
the assembling process.

W Warning message. Increments the warning count and the assembler continues the assembling
process.

Error message. Increments the error count and the assembler continues the assembling process.

F Fatal error message. The assembler immediately aborts the assembling process and generates
no object file or list file.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. Each subsequent argument
is printed directly after the previous argument.

The $MESSAGE control is for example useful in combination with conditional assembly to indicate which
part is assembled.

Example

$MESSAGE(I, "Generating tables®)

ID _.EQU 4
$MESSAGE(E, "The value of ID is ",ID)

-DEFINE LONG ""SHORT"
$MESSAGE(I, "This is a LONG string”)
$MESSAGE(I,"This is a LONG string'™)

Within single quotes, the defined symbol LONG is not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

159

TASKING VX-toolset for C166 User Guide

$OPTIMIZE / SNOOPTIMIZE
Syntax

$OPTI M ZE
$NOOPTI M ZE

Default

$OPTI M ZE
Abbreviation
$OP / $NOOP
Description

With these controls you can turn on or off conditional jump optimization, expansion of generic instructions
and jump chain optimizations. This control overrules the --optimize (-O) command line option.

Please note that all instructions that have a word and a byte variant (and sometimes a bit variant) are
implemented as generic instructions. Use the mnemonic ending in ‘W’ for word variants and the mnemonic
ending in ‘B’ for byte variants. Combining $NOOPT IMIZE and generic instructions causes syntax errors.

Example

$noop
; turn optimization off
; source lines
$op
; turn optimization back on
; source lines

Related Information

Assembler option --optimize

160

Assembly Language

$PAGELENGTH

Syntax

$PACELENGTH(pagel engt h[,bl ankt op,bl ankbt m])
Default

$PAGELENGTH(72, 0, 0)

Abbreviation

$PL

Description

If you generate a list file with the assembler option --list-file, the $PAGELENGTH control sets the number
of lines in a page in the list file and the top and bottom margins of a page.

The arguments may be any positive absolute integer expression, and must be separated by commas.

pagelength Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

blanktop Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) (pagelength - 10).

blankbtm Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) (pagelength - 10).

Example

$PL(55) ; page length is 55 with no top and bottom margin
$PL(55,4,2) ; page length is 55 with 4 blank lines at the top and 2 at the bottom

Related Information
Assembler option --list-file

Assembler control SPAGEWIDTH

161

TASKING VX-toolset for C166 User Guide

$PAGEWIDTH

Syntax

$PAGEW DTH(pagewi dt h[,bl ankl eft])
Default

$PAGEW DTH(132, 0)

Abbreviation

$PW

Description

If you generate a list file with the assembler option --list-file, the $PAGEWIDTH control sets the width of
a page in the list file and the left margin of the page.

The arguments may be any positive absolute integer expression, and must be separated by a comma.

pagewidth Number of columns per line. The default is 132, the minimum is 40.

blankleft Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

Example

$PW(80,8) ; set the pagewidth to 80 characters and start with 8 spaces
Related Information
Assembler option --list-file

Assembler control $PAGELENGTH

162

Assembly Language

SPAGING / SNOPAGING
Syntax

$PAG NG
$NOPAG NG

Default
$NOPAG NG
Abbreviation
$PA / $NOPA
Description

If you generate a list file with the assembler option --list-file, you can use these controls to turn the
generation of form feeds in the list file on or off.

Example

$pa
; turn paging on: formfeed before each page header

Related Information
Assembler option --list-file

Assembler control $EJECT

163

TASKING VX-toolset for C166 User Guide

$RETCHECK / SNORETCHECK
Syntax

$RETCHECK
$NORETCHECK

Default
$NORETCHECK
Abbreviation
$RC / $NORC
Description

$RETCHECK turns on the checking for the correct return instruction from a routine. For example, an
interrupt function must be returned from with a RETI instruction. If the assembler finds another return
instruction within the interrupt function an error will be generated. $NORETCHECK turns off the checking
for the correct return instruction from a subroutine.

Example

$RETCHECK

PRC .PROC INTNO isr=1
; source lines
RETS ; error, RETI expected

The assembler will give an error on the RETS instruction, because an interrupt procedure must be ended
with a RETI instruction.

Related Information

Assembler option --retcheck

164

Assembly Language

$SAVE / SRESTORE
Syntax

$SAVE
$RESTORE

Abbreviation
$SA | $RE
Description

The $SAVE control stores the current value of the $LIST / $NOLIST controls onto a stack. The $SRESTORE
control restores the most recently saved value; it takes effect starting at the next line. You can nest $SAVE
controls to a depth of 16.

Example

$nolist
; source lines
$save ; save values of $LIST /7 $NOLIST

$list

$restore ; restore value ($nolist)
Related Information

Assembler option --list-file

Assembler control $LIST

165

TASKING VX-toolset for C166 User Guide

$SYMB / SNOSYMB
Syntax

$SYMB
$NOSYMB

Default

$NOSYMB

Abbreviation

$SB / $NCSB

Description

With the $SYMB control the assembler enables generation of high-level language debug information. This
matches the effect of the --debug-info=+hll (-gh) command line option. When you use the command
line option, it sets the default, but the control will override its effect.

Example

$SYMB
;generate high-level language debug information

Related Information
Assembler option --debug-info

Assembler control $DEBUG

166

Assembly Language

$TABS

Syntax

$TABS(nunber)
Default

$TABS(8)
Abbreviation
$TA
Description

$TABS specifies the tab positions in the list file. For each tab character a maximum of number of blanks
is inserted until the next tab position is reached.

Example

$TABS(4)
; use 4 spaces for a tab

Related Information

Assembler option --list-file

167

TASKING VX-toolset for C166 User Guide

$TITLE

Syntax

$TI TLE([string])
Default

The module name.
Abbreviation

$TT

Description

The $TITLE initializes the program title to the string specified in the operand field. The program title will
be printed after the banner at the top of all succeeding pages of the source listing until another $TITLE
control is encountered. An exception to this is the first $TITLE control, which sets the title of the first and
following pages in the listing until the next $TI1TLE control is encountered.

A $TITLE with no string argument causes the current title to be blank. The title is initially the name of the
module. The $TITLE control will not be printed in the source listing.

Example
$TITLE("This is the new title in the list file")
Related Information

Assembler option --list-file

168

SWARNING / $NOWARNING

Syntax

$WARNI NG nunber)
NOMRNI NG numrber)

Default

$WARNI NG

Abbreviation

$WA / $SNOWA

Description

Assembly Language

This control allows you to enable or disable all or individual warnings. The number argument can have
the following values:

0 Select no warning messages

1,2 Select all warning messages

>2 Select a specific warning message number.

Example

$NOWARNING (1) ; disable all warnings
$WARNING (1) ; enable all warnings
$NOWARNING(735) ; disable warning W 735

Related Information

Assembler option --no-warnings

169

TASKING VX-toolset for C166 User Guide

3.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.
3.10.1. Defining a Macro

The first step in using a macro is to define it.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (.MACRO directive).

» Body, which contains the code or instructions to be inserted when the macro is called.

» Terminator, which indicates the end of the macro definition (- ENDM directive).

A macro definition takes the following form:

macr o_nanme . MACRO [argunent [,argument]...]
macro_definition_statenents

. ENDM
For more information on the definition see the description of the .MACRO directive
3.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:

[l abel] macro_nane [argunent [,argunent]...] [; comment]

where,

label An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first column.

170

Assembly Language

argument One or more optional, substitutable arguments. Multiple arguments
must be separated by commas.

comment An optional comment.

The following applies to macro arguments:

» Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

« If an argument has an embedded comma or space, you must surround the argument by single quotes
0-
» You can declare a macro call argument as null in three ways:
« enter delimiting commas in succession with no intervening spaces
macroname ARG1, ,ARG3 ; the second argument is a null argument
< terminate the argument list with a comma, the arguments that normally would follow, are now

considered null

macroname ARG1, ; the second and all following arguments are null

« declare the argument as a null string

» No character is substituted in the generated statements that reference a null argument.
3.10.3. Using Operators for Macro Arguments
The assembler recognizes certain text operators within macro definitions which allow text substitution of

arguments during macro expansion. You can use these operators for text concatenation, numeric
conversion, and string handling.

Operator |[Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

N Macro local label override Prevents name mangling on labels in macros.

Example: Argument Concatenation Operator - \

Consider the following macro definition:

171

TASKING VX-toolset for C166 User Guide

MAC_A _MACRO reg,val
mov r\reg,#val
-ENDM

The macro is called as follows:

MAC_A 0,1

The macro expands as follows:
mov r0,#1

The macro preprocessor substitutes the character '0' for the argument reg, and the character '1' for the
argument val. The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the character 'r'.

Without the '\' operator the macro would expand as:
mov rreg,#1

which results in an assembler error (invalid operand).
Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro MAC_A after the argument AVAL has been set to
1.

AVAL .SET 1
MAC_A 0,AVAL

If you want to replace the argument val with the value of AVAL rather than with the literal string *AVAL",
you can use the ? operator and modify the macro as follows:

MAC_A _MACRO reg,val
mov r\reg,#?val
-ENDM

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

Consider the following macro definition:

GEN_LAB -MACRO LAB,VAL,STMT
LAB\WAL STMT
-ENDM

The macro is called after NUM has been set to 10:

172

Assembly Language
NUM _SET 10
GEN_LAB HEX,NUM,NOP
The macro expands as follows:
HEXA NOP

The %VAL argument is replaced by the character ‘A" which represents the hexadecimal value 10 of the
argument VAL.

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (*)
in the macro definition.

Consider the following macro definition:

STR_MAC -MACRO STRING
.DB "STRING™
-ENDM

The macro is called as follows:
STR_MAC ABCD

The macro expands as follows:
-bB "ABCD*

Within double quotes . DEF INE directive definitions can be expanded. Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since .DEFINE expansion
occurs before macro substitution, any . DEFINE symbols are replaced first within a macro argument string:

.DEFINE LONG “short*
STR_MAC -MACRO STRING
$MESSAGE(I, "This is a LONG STRINGT)
$MESSAGE(I,"This is a LONG STRING'™)
-ENDM

If the macro is called as follows:
STR_MAC sentence
it expands as:

$MESSAGE(I, "This is a LONG STRING™)
$MESSAGE(1, "This is a short sentence®)

Macro Local Label Override Operator -

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LOCAL__M_L000001).

173

TASKING VX-toolset for C166 User Guide

The macro "-operator prevents name mangling on macro local labels.
Consider the following macro definition:

INIT _MACRO addr
LOCAL: mov rO,addr
-.ENDM

The macro is called as follows:

LOCAL:
INIT LOCAL

The macro expands as:
LOCAL__M_L0O00001: mov rO,LOCAL

If you would not have used the ” operator, the macro preprocessor would choose another name for LOCAL
because the label already exists. The macro would expand like:

LOCAL__M_LOO0O001: mov rO,LOCAL__M_L0O0OOOO1

3.11. Generic Instructions

The assembler supports so-called 'generic instructions'. Generic instructions are pseudo instructions (no
instructions from the instruction set). Depending on the situation in which a generic instruction is used,
the assembler replaces the generic instruction with appropriate real assembly instruction(s).

The assembler knows the following generic instructions:
CALL

» CALLR -> If the target address operand has the type NEAR and the address fits within the relative
range.

» CALLA -> If the target address operand has the type NEAR and the address does not fit within the
relative range.

» CALLS -> If the target address operand type is FAR or if 2 non-address operands are used (segment
and segment offset).

e CALLI -> If an indirect operand is used.
» PCALL ->If the first operand is a register to be pushed.

If a condition code is omitted, the cc_UC condition code is used.
JMP

» JMPR -> If the target address fits within the relative range within the same section or when the target
address is a label with the SHORT type.

174

Assembly Language
« JMPA -> If the target address has the type NEAR or if the target address operand does not fit within
the relative range.

* JMPS -> If the target address operand has the type FAR or if 2 non-address operands are used (segment
and segment offset).

* JMPI -> If the operand is indirect.

If a condition code is specified only JMPR or JMPA can be chosen and FAR target address operands
are not allowed. If a condition code is omitted, the cc_UC condition code is used.

JB

Results in JB if the target address is within the relative range. If the target is not within the relative range,
a combination of INB/JMPA (NEAR type operand) or INB/JMPS (FAR type operand) is used.

JNB

Results in JNB if the target address is within the relative range. If the target is not within the relative range,
a combination of JB/JJMPA (NEAR type operand) or JB/JMPS (FAR type operand) is used.

RET

Results in a return instruction, depending on the procedure type specified with the . PROC directive:
¢ RETN -> For .proc near

* RETS -> For .proc far

e RETI-> For .proc intno

Jump optimizations that cannot be done by the assembler are postponed to the linker.
RETV

RETV is a virtual return instruction. It disables generation of the warning message "procedure
procedure-name contains no RETurn instruction”. No code is generated for this instruction. You can put
this instruction just before the .ENDP directive of the procedure that caused the warning message.

ADD, ADDC, AND, CMP, CPL, MOV, NEG, OR, SUB, SUBC, XOR

When word, byte or (for some) bit operands are supplied, these instructions result in their respective
word, byte or bit variants. Forcing a specific variant is done by appending a ‘W’ for word-variant or a ‘B’
for byte-variant or by prepending a ‘B’ for the bit-variant. This yields four variants of each instruction.

Example with the AND:
* AND -> Generic, can result in ANDW, ANDB or BAND depending on its operands.
« ANDW -> Word instruction, requires word operands.

* ANDB -> Byte instruction, requires byte operands.

175

TASKING VX-toolset for C166 User Guide

» BAND -> Bit instruction, requires bit operands.

When both word and byte variants are possible, the word variant is chosen. This occurs for the double
indirect addressing modes (i.e.mov [R1], [R2]) and the REG, IMM addressing mode (i.e. mov
DPPO, #2). If word aligned labels are used, the word variant is chosen, even though the byte variant would
fit as well (i.,e. mov DPPO, _label).

176

Chapter 4. Using the C Compiler

This chapter describes the compilation process and explains how to call the C compiler.

C166 under Eclipse uses a makefile to build your entire embedded project, from C source till the final
ELF/DWARF 2 object file which serves as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 9.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:

Csource file
.C
1 .
compiler
Ccompiler intermediate file
|] - .mil
assembly file

. 8IC

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 10.1, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

4.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.

Frontend phases

1. The preprocessor phase:
The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described
in the ISO/IEC 9899:1999(E) standard.

2. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

177

TASKING VX-toolset for C166 User Guide

3. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

4. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases
1. Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

2. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

3. Register allocator phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

4. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

4.2. Calling the C Compiler

C166 under Eclipse uses a makefile to build your entire project. This means that you cannot run the C
compiler separately. However, you can set options specific for the C compiler. After you have built your
project, the output files are available in a subdirectory of your project directory, depending on the active
configuration you have set in the C/C++ Build page of the Project » Properties dialog.

Building a project under Eclipse

You have several ways of building your project:

° Incremental Build All (lzt). Only the components affected by modified files in that particular project are
built.

To incrementally build all open projects, select Project » Build All.

Build Individual Project ().

To build individual projects incrementally, select Project » Build Project.

178

Using the C Compiler

Rebuild Project (). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.
 Build Automatically. This performs a Build All whenever any project file is saved, such as your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties

The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.

In the right pane the Configuration Settings appear.
3. On the Tool Settings tab, select Processor.

4. Select a Processor and optionally a Core .

To access the C/C++ compiler options
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the Configuration Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler.
4. Select the sub-entries and set the options in the various pages.
Note that the C/C++ compiler options are used to create an object file from a C or C++ file. This

means that the options you enter in the Assembler page are not used for intermediate assembly
files, only for hand-coded assembly files.

You can find a detailed description of all C compiler options in Section 10.1, C Compiler Options.

179

TASKING VX-toolset for C166 User Guide

Invocation syntax on the command line (Windows Command Prompt):

cl166 [[option]... [file]---]---
4.3.The C Startup Code

You need the run-time startup code to build an executable application. The startup code consists of the
following components:

« Initialization code. This code is executed when the program is initiated and before the function main()
is called. It initializes the processor's registers and the application C variables.

 Exit code. This controls the close down of the application after the program's main function terminates.
To add the C startup code to your project
When you create a new project with the New Project wizard (File » New » Other... » TASKING C/C++

» TASKING VX-toolset for C166 C/C++ Project), fill in the dialogs and enable the option Add C startup
code to the project in the following dialog (this is the default setting).

New Project E|
C166 Project Settings)
-
Set options to create a C166 project @
Select CPUL |C16? v |

Add C startup code ko the project
Add Linker script file to the project

[]=enerate 'Hello world' Framewark

@ [Finish ” Cancel]

This adds the files cstart.c and cstart.h to your project. These files are copies of
lib/src/cstart._c en include/cstart.h. If you do not add the startup code here, you can always
add it later with File » New » Other... » TASKING C/C++ » cstart.c/cstart.h Files.

180

Using the C Compiler

To change the C Startup Code in Eclipse
1. Double-click on the file cstart.c.
The cstart.c file opens in the editor area with several tabs.

=0

R R R R R A A A A A A A A A A A A A A A EEF A F AT AL AT A LA LA LA LA LA LT LT L E A A

#include <=tdlib.h>

#include <_cptable.h>

#ifdef CPU__

#include _ SFRFILE_ |(_ CPU_ | /% include SFR file for
/7 jgives indexer warni

#endif

#include "ocs=tart.hT f% inelude configuratic

IEs

* library references

w/

#if __ PROF_ENALELE

extern wvoid _ prof init(woid):

#endif

extern dint mwain(int argc, char *argv[] 1:

#pragma weak exit
#pragma extern _Exit

#pragma profiling off /% prevent profiling ir
#pragma optimize sbeefgIKlpoRsy /% preset optimization:
#pragma tradeoff 4 /% preset tradeoff leve
#pragma runtime ECH /% dizable runtime erro g
£ 4

cstart.c | Configuration | Register | cstart.h

2. You can edit the C startup code directly in the cstart.c tab or make changes to the other tabs
(Configuration, Register, cstart.h).

The file cstart.c is updated automatically according to the changes you make in the tabs. A* appears
in front of the name of the file to indicate that the file has changes.

3. cClick 5 or select File » Save to save the changes.

4.4. How the Compiler Searches Include Files

When you use include files (with the #include statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #include statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only

possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

181

TASKING VX-toolset for C166 User Guide

2. When the compiler did not find the include file, it looks in the directories that are specified in the C/C++
Compiler » Include Paths page in the C/C++ Build » Tool Settings tab of the Project Properties
dialog (equivalent to the - command line option).

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable C166 INC.

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example
Suppose that the C source file test. c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the compiler as follows:
cl66 -Imyinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable C166 INC and then in the default
include directory.

The compiler now looks for the file myinc.h, in the directory where test.c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable C166 INC and then in the default include directory.

4.5. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

To include symbolic debug information
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the Configuration Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.

182

Using the C Compiler

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce
the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 4.6, Compiler Optimizations.

Invocation syntax on the command line (Windows Command Prompt)

The invocation syntax on the command line is:

cle6 -g file.c

4.6. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the Configuration Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Optimization.
4. Select an optimization level in the Optimization level box.
or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

» Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

» Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

» Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

* Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

183

TASKING VX-toolset for C166 User Guide

» Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.
Optimization pragmas
If you specify a certain optimization, all code in the module is subject to that optimization. Within the C

source file you can overrule the C compiler options for optimizations with #pragma optimize fl ag
and #pragma endoptimize. Nesting is allowed:

#pragma optimize e /* Enable expression
simplification */
... C source ...

#pragma optimize c /* Enable common expression
elimination. Expression

... C source ... simplification still enabled */

#pragma endoptimize /* Disable common expression

elimination */
#pragma endoptimize /* Disable expression
simplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

4.6.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)

The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced
by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of 0 are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscription).

Constant propagation (option -Op/-OP)
A variable with a known value is replaced by that value.
Function Inlining (option -Oi/-Ol)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

184

Using the C Compiler

Code compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: large chunks of code that occur more than once, are
transformed into a function. This reduces code size at the cost of execution speed.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

» Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire the switch.

* Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

» Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

» Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-0S)

An array or pointers subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

Loop transformations (option -Ol/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo/-00)
A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.
Branch prediction (option -O-predict/-O+predict)

A prediction is done if branches are likely to be taken or not. Based on this, other optimizations can take
place.

4.6.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed as code size.

185

TASKING VX-toolset for C166 User Guide

Interprocedural register optimization (option -Ob/-OB)
Register allocation is improved by taking note of register usage in functions called by a given function.
Peephole optimizations (option -Oy/-QY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

Instruction Scheduler (option -Ok/-OK)

When two instructions need the same machine resource - like a bus, register or functional unit - at the
same time, they suffer a structural hazard, which stalls the pipeline. This optimization tries to rearrange
instructions to avoid structural hazards, for example by inserting another non-related instruction.

Generic assembly optimizations (option -Og/-OG)
A set of target independent optimizations that increase speed and decrease code size.
4.6.3. Optimize for Size or Speed

You can tell the compiler to focus on execution speed or code size during optimizations. You can do this
by specifying a size/speed trade-off level from 0 (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

Optimization hint: Optimizing for size has a speed penalty and vice versa. In average it takes
42% more code to gain 8% speed (measured with the near model for xc16x, using option -O2).
This is largely caused by the Code Compaction optimization. The advice is to optimize for size
by default and only optimize those areas for speed that are critical for the application with respect
to speed. Using the tradeoff options -t0, -t1 and -t2 globally for the application is not recommended.

To specify the size/speed trade-off optimization level:
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the Configuration Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Optimization.

4. Select a trade-off level in the Trade-off between speed and size box.

186

Using the C Compiler

See also C compiler option --tradeoff (-t)

Instruction Selection

Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.
Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.
Switch Jump Chain versus Jump Table

Instruction selection for the switch statements follows different trade-off rules. A switch statement can
result in a jump chain or a jump table. The compiler makes the decision between those by measuring
and weigh bytes and cycles. This weigh is controlled with the trade-off values:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%
3 25% 75%
4 0% 100%

Subscript Strength Reduction
The trade-off limits the total number of additional pointers of a particular type in a particular loop.

The C166 has 14 registers that you can use as 16-bit pointers (14 word registers) or as 32-bit pointers
(7 double-word registers).

The performance always increases when more subscript pointers can be allocated for an ideal situation.
Ideal is when no registers are needed for other objects than subscripts. This is rarely the case, therefore
we control the number of word registers with the trade-off option.

Trade-off value Number of word registers
0 12

1 10

2

3

4

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps
over the loop.

187

TASKING VX-toolset for C166 User Guide

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Trade-off value Try to rewrite top-loops to |Optimize loops for
bottom-loops size/speed

0 no speed

1 yes speed

2 yes speed

3 yes size

4 yes size

Example:

void iC int 1, int m)

{
int i;
for (i =m; i <1; i++)
{
at++;
b
return;
b

Coded as a bottom loop (compiled with --tradeoff=4) is:

jmp 5 ;:; unconditional jump to loop test at bottom

subw _a,ONES
addw r3,#0x1
5: ;:; loop entry point
cmpw r3,r2
Jjmp cc_slt, 6

Coded as a top loop (compiled with --tradeoff=0) is:

cmpw r2,#0x0 ;; test for at least one loop iteration
Jjmp cc_sle, 13 ;; can be omitted when number of iterations is known
_12: ;> loop entry point

addw ri11,#0x1

subw r2,#0x1

jmp cc_ne,_12
_13:
Automatic Function Inlining

Trade-off levels 0, 1 and 2: the compiler inlines functions as long as the function will not grow more than
the percentage specified with option --inline-max-incr.

Trade-off levels 3 and 4: no automatic inlining.

188

Using the C Compiler

The following inlining is independent of the trade-off level:

» Functions that are smaller or equal to the threshold specified with the option --inline-max-size are
always inlined.

« Static functions that are called only once, are always inlined.
MAC Optimizations
The compiler tries to judge what the gain will be if MAC instructions are used instead of regular instructions.

This is measured in bytes and cycles. For the resulting gain the size in bytes and cycles are weighted
with the trade-off setting:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%
3 25% 75%
4 0% 100%

The estimated execution frequency of an instruction is multiplied by the number of cycles.
When the compiler generates MAC instructions, it has the following favors:

» Trade-off levels 0, 1 and 2: speed

» Trade-off levels 3 and 4: size

Code Compaction

Trade-off levels 0 and 1: code compaction is disabled.

Trade-off level 2: only code compaction of matches outside loops.

Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.

For the execution frequency the compiler also accounts nested loops.

4.7. C Code Checking: MISRA-C

The C programming language is a standard for high level language programming in embedded systems,
yet itis considered somewhat unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA-C code
checking helps you to produce more robust code.

189

TASKING VX-toolset for C166 User Guide

MISRA-C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA-C:1998, the first version of MISRA-C. You can select this version with
the following C compiler option:

--m srac-versi on=1998

For a complete overview of all MISRA-C rules, see Chapter 15, MISRA-C Rules.

Implementation issues

The MISRA-C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA-C rules are indicated with error messages
and the build process is halted.

MISRA-C rules are divided in required rules and advisory rules. If rules are violated, errors are generated
causing the compiler to stop. With the following options warnings, instead of errors, are generated for
either or both the required rules and the advisory rules:

--m srac-required-warni ngs

--m srac-advi sory-warni ngs

Note that not all MISRA-C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA-C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA-C rules throughout the entire project, the TASKING linker can
generate a MISRA-C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA-C settings at the time of compilation. You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA-C code checking to your application
1. From the Project menu, select Properties

The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.

In the right pane the Configuration Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler » MISRA-C.

190

Using the C Compiler

4. Select the MISRA-C version (2004 or 1998).

5. In the MISRA-C checking box select a MISRA-C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA-C guidelines.

6. (Optional) In the Custom 2004 or Custom 1998 entry, specify the individual rules.
On the command line you can use the option --misrac.

c166 --msrac={all | nunber [-nunber],...]

4.8. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.
F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct. You can control warnings
in the C/C++ Build » Tool Settings » C/C++ Compiler » Diagnostics page of the Project » Properties
menu (C compiler option --no-warnings).

| (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

SO##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » General » Problems.

The Problems view is added to the current perspective.

191

TASKING VX-toolset for C166 User Guide

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

c166 --diag=[format :]J{all | nunber,.._]

192

Chapter 5. Using the C++ Compiler

This chapter describes the compilation process and explains how to call the C++ compiler. You should
be familiar with the C++ language and with the ISO C language.

The C++ compiler can be seen as a preprocessor or front end which accepts C++ source files or sources
using C++ language features. The output generated by the C166 C++ compiler (cp166) is C166 C, which
can be translated with the C166 C compiler (c166).

The C++ compiler is part of a complete toolset, the TASKING VX-toolset for C166. For details about the
C compiler see Chapter 4, Using the C Compiler.

Although in Eclipse you cannot run the C++ compiler separately from the other tools, this section discusses
the options that you can specify for the compiler.

On the command line it is possible to call the C++ compiler separately from the other tools. However, it
is recommended to use the control program for command line invocations of the toolset (see Section 9.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line. Eclipse also uses the control program to call the C++ compiler. Files with the extensions .cc, .cpp
or .cxx are seen as C++ source files and passed to the C++ compiler.

The C++ compiler accepts the C++ language of the ISO/IEC 14882:1998 C++ standard, with some minor
exceptions documented in Chapter 2, C++ Language. With the proper command line options, it alternatively
accepts the ANSI/ISO C language or traditional K&R C (B.W. Kernighan and D. M. Ritchie). It also accepts
embedded C++ language extensions.

The C++ compiler does no optimization. Its goal is to produce quickly a complete and clean parsed form
of the source program, and to diagnose errors. It does complete error checking, produces clear error

messages (including the position of the error within the source line), and avoids cascading of errors. It
also tries to avoid seeming overly finicky to a knowledgeable C or C++ programmer.

5.1. C++ Development Structure

The next figure explains the relationship between the different parts of the TASKING VX-toolset for C166.

193

TASKING VX-toolset for C166 User Guide

4+ source file C source file assembly file

.o C . asm
assembly file input object files

] "
|
|
|
|
|
|

relocatable object
module . obj

recampilation
L G+ + prelinker

ohject file

absolute object
file

control program

5.1.1.The Prelinker Phase

The C++ compiler provides a complete prototype implementation of an automatic instantiation mechanism.
The automatic instantiation mechanism is a "linker feedback” mechanism. It works by providing additional
information in the object file that is used by a "prelinker" to determine which template entities require
instantiation so that the program can be linked successfully. Unlike most aspects of the C++ compiler the
automatic instantiation mechanism is, by its nature, dependent on certain operating system and object
file format properties. In particular, the prelinker is a separate program that accesses information about
the symbols defined in object files.

Template information and instantiation request files

At the end of each compilation, the C++ compiler determines whether any template entities were referenced
in the translation unit. If so, a template information file (. ti) is created (or an instantiation request file
(- i1), if template information files are not being used). If no template entities were referenced in the
translation unit, the file will not be created and any existing file will be removed. When template information
files are being used, the instantiation request file is also removed if the template information file is removed.
If an error occurs during compilation, the state of the . i i file is unchanged.

Prelinker

Once a complete set of object files has been generated, including the appropriate flags, the prelinker is
invoked to determine whether any new instantiations are required or if any existing instantiations are no
longer required. The command line arguments to the prelinker include a list of input files to be analyzed.
The input files are the object files and libraries that constitute the application. The prelinker begins by
looking for template information files for each of the object files (or instantiation request files, if template
information files are not being used). If no template information (or instantiation request) files are present,
the prelinker concludes that no further action is required.

194

Using the C++ Compiler

If there are template information (or instantiation request) files, the prelinker reads the template information
file and the current instantiation list from the instantiation request file. The instantiation list is the list of
instantiations assigned to a given source file by a previous invocation of the prelinker. The prelinker
produces a list of the global symbols that are referenced or defined by each of the input files. The prelinker
then simulates a link operation to determine which symbols must be defined for the application to link
successfully.

When the link simulation has been completed, the prelinker processes each input file to determine whether
any new instantiations should be assigned to the input file or if any existing instantiations should be
removed. The prelinker goes through the current instantiation list from the instantiation request file to
determine whether any of the existing instantiations are no longer needed. An instantiation may be no
longer needed because the template entity is no longer referenced by the program or because a user
supplied specialization has been provided. If the instantiation is no longer needed, it is removed from the
list (internally; the file will be updated later) and the file is flagged as requiring recompilation.

The prelinker then examines any symbols referenced by the input file. The responsibility for generating
an instantiation of a given entity that has not already been defined is assigned to the first file that is capable
of generating that instantiation.

If a given file contains instantiations of exported templates, the template information file contains
dependency information. If a source file that is part of an exported template translation unit changes, the
dependency information is used to detect such a change so that the prelinker can recompile the file and
regenerate the instantiations of the exported templates.

Recompilation

Once all of the assignments have been updated, the prelinker once again goes through the list of object
files. For each, if the corresponding instantiation request file must be updated, the new file is written. Only
source files whose corresponding .ii file has been modified will be recompiled.

At this point the combination of the template information and instantiation request files contains the
information needed to recompile the source file and a list of instantiations assigned to the source file, in
the form of mangled function and static data member names.

When the prelinker invokes the C++ compiler, it provides a "definition list file", which contains a list of all
the external definitions found in the object files and libraries specified on the prelinker command line. The
C++ compiler reads the definition list file and determines whether each of the entries on its instantiations
required list has already been defined elsewhere. The definition list file permits the C++ compiler to
perform instantiations that have become necessary as a result of other instantiations that were assigned
by the prelinker, without requiring that the prelinker invoke the C++ compiler an additional time to perform
those instantiations. This reduces the number of iterations of the prelinker and C++ compiler that are
required to generate a complete set of instantiations for a program.

If an error occurs during a recompilation, the prelinker exits without updating the remaining information
files and without attempting any additional compilations.

[teration and termination

If all recompilations complete without error, the prelink process is repeated, since an instantiation can
produce the demand for another instantiation. This prelink cycle (finding uninstantiated templates, updating

195

TASKING VX-toolset for C166 User Guide
the appropriate .ii files, and dispatching recompilations) continues until no further recompilations are
required.

When the prelinker is finished, the linker is invoked. Note that simply because the prelinker completes
successfully does not assure that the linker will not detect errors. Unresolvable template references and
other linker errors will not be diagnosed by the prelinker.

5.1.2.The Muncher Phase

The muncher phase implements global initialization and termination code.

The muncher phase is a special part of the linker that creates sections containing a list of pointers to the
initialization and termination routines. The list of pointers is consulted at run-time by startup code invoked
from _main, and the routines on the list are invoked at the appropriate times.

5.2. Calling the C++ Compiler

Under Eclipse you cannot run the C++ compiler separately. However, you can set options specific for the
C++ compiler. After you have built your project, the output files are available in a subdirectory of your
project directory, depending on the active configuration you have set in the C/C++ Build page of the
Project » Properties dialog.

Building a project under Eclipse

You have several ways of building your project:

Incremental Build All (lzi). Only the components affected by modified files in that particular project are
built.

To incrementally build all open projects, select Project » Build All.

Build Individual Project (#).

To build individual projects incrementally, select Project » Build Project.

Rebuild Project (). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.
 Build Automatically. This performs a Build All whenever any project file is saved, such as your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item.

196

Using the C++ Compiler

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties

The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.

In the right pane the Configuration Settings appear.
3. On the Tool Settings tab, select Processor.

4. Select a Processor and optionally a Core .
To access the C/C++ compiler options
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the Configuration Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler.
4. Select the sub-entries and set the options in the various pages.

Note that C++ compiler options are only enabled if you have added a C++ file to your project, a
file with the extension .cc, -cpp or . cxx.

Note that the C/C++ compiler options are used to create an object file from a C or C++ file. This
means that the options you enter in the Assembler page are not used for intermediate assembly
files, only for hand-coded assembly files.

You can find a detailed description of all C++ compiler options in Section 10.2, C++ Compiler Options.
Invocation syntax on the command line (Windows Command Prompt):
cpl66 [[option]-.. [file]---]---

5.3. How the C++ Compiler Searches Include Files

When you use include files (with the #include statement), you can specify their location in several ways.
The C++ compiler searches the specified locations in the following order:

197

TASKING VX-toolset for C166 User Guide

1. If the #include statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the C++ compiler looks in the same directory as the source file. This is

only possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the C++ compiler did not find the include file, it looks in the directories that are specified in the
C/C++ Compiler » Include Paths page in the C/C++ Build » Tool Settings tab of the Project Properties
dialog (equivalent to the --include-directory (-I) command line option).

3. When the C++ compiler did not find the include file (because it is not in the specified include directory
or because no directory is specified), it looks in the path(s) specified in the environment variable
CP1661INC.

4. When the C++ compiler still did not find the include file, it finally tries the default include .cpp and
include directory relative to the installation directory.

5. If the include file is still not found, the directories specified in the --sys-include option are searched.

If the include directory is specified as -, e.g., -I-, the option indicates the point in the list of -1 or
--include-directory options at which the search for file hames enclosed in <. . > should begin. That is,
the search for <. . .> names should only consider directories named in -l or --include-directory options
following the -I-, and the directories of items 3 and 4 above. -I- also removes the directory containing the
current input file (item 1 above) from the search path for file names enclosed in **. . .""

An include directory specified with the --sys-include option is considered a "system" include directory.
Warnings are suppressed when processing files found in system include directories.

If the filename has no suffix it will be searched for by appending each of a set of include file suffixes.
When searching in a given directory all of the suffixes are tried in that directory before moving on to the
next search directory. The default set of suffixes is, no extension and . stdh. The default can be overridden
using the --incl-suffixes command line option. A null file suffix cannot be used unless it is present in the
suffix list (that is, the C++ compiler will always attempt to add a suffix from the suffix list when the filename
has no suffix).

Example
Suppose that the C++ source file test. cc contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the C++ compiler as follows:
cpl66 -Imyinclude test.cc

First the C++ compiler looks for the file stdio.h in the directory myinclude relative to the current
directory. If it was not found, the C++ compiler searches in the environment variable CP166 INC and then
in the default include directory.

198

Using the C++ Compiler

The C++ compiler now looks for the file myinc.h, in the directory where test.cc is located. If the file
is not there the C++ compiler searches in the directory myinclude. If it was still not found, the C++
compiler searches in the environment variable CP166 INC and then in the default include.cpp and
include directories.

5.4. C++ Compiler Error Messages

The C++ compiler reports the following types of error messages in the Problems view of Eclipse.
F (Fatal errors)

Catastrophic errors, also called 'fatal errors', indicate problems of such severity that the compilation cannot
continue. For example: command-line errors, internal errors, and missing include files. If multiple source
files are being compiled, any source files after the current one will not be compiled.

E (Errors)

Errors indicate violations of the syntax or semantic rules of the C++ language. Compilation continues,
but object code is not generated.

W (Warnings)

Warnings indicate something valid but questionable. Compilation continues and object code is generated
(if no errors are detected). You can control warnings in the C/C++ Build » Tool Settings » C/C++ Compiler
» Diagnostics page of the Project » Properties menu (C++ compiler option --no-warnings).

R (Remarks)

Remarks indicate something that is valid and probably intended, but which a careful programmer may
want to check. These diagnostics are not issued by default. Compilation continues and object code is
generated (if no errors are detected). To enable remarks, enable the option Issue remarks on C++ code
in the C/C++ Build » Tool Settings » C/C++ Compiler » Diagnostics page of the Project » Properties
menu (C++ compiler option --remarks).

S (Internal errors)
Internal compiler errors are caused by failed internal consistency checks and should never occur. However,

if such a 'SYSTEM' error appears, please report the occurrence to Altium. Please include a small C++
program causing the error.

Message format

By default, diagnostics are written in a form like the following:

cpl6é6 E0020: ["test.cc'" 3] identifier "name" is undefined

With the command line option --error-file=file you can redirect messages to a file instead of stderr.

Note that the message identifies the file and line involved. Long messages are wrapped to additional lines
when necessary.

199

TASKING VX-toolset for C166 User Guide

With the option C/C++ Build » Tool Settings » Global Options » Treat warnings as errors (option
--warnings-as-errors) you can change the severity of warning messages to errors.

For some messages, a list of entities is useful; they are listed following the initial error message:

cpl66 EO0308: ["test.cc" 4] more than one instance of overloaded
function "f" matches the argument list:
function "f(int)"
function "f(float)"
argument types are: (double)

In some cases, some additional context information is provided; specifically, such context information is
useful when the C++ compiler issues a diagnostic while doing a template instantiation or while generating
a constructor, destructor, or assignment operator function. For example:

cpl66 E0265: ["test.cc" 7] "A::A(Q" is inaccessible
detected during implicit generation of "B::B()" at line 7

Without the context information, it is very hard to figure out what the error refers to.

Termination Messages

The C++ compiler writes sign-off messages to stderr (the Problems view in Eclipse) if errors are detected.
For example, one of the following forms of message

n errors detected in the compilation of "file".
1 catastrophic error detected in the compilation of "file".

n errors and 1 catastrophic error detected in the compilation of "file".

is written to indicate the detection of errors in the compilation. No message is written if no errors were
detected. The following message

Error limit reached.

is written when the count of errors reaches the error limit (see the option --error-limit); compilation is
then terminated. The message

Compilation terminated.

is written at the end of a compilation that was prematurely terminated because of a catastrophic error.
The message

Compilation aborted

is written at the end of a compilation that was prematurely terminated because of an internal error. Such
an error indicates an internal problem in the compiler. If such an internal error appears, please report the
occurrence to Altium. Please include a small C++ program causing the error.

200

Chapter 6. Profiling

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is. This chapter
describes the TASKING profiling method with code instrumentation techniques.

6.1. What is Profiling?

Profiling is a collection of methods to gather data about your application which helps you to identify code
fragments where execution consumes the greatest amount of time.

TASKING supplies a number of profiler tools each dedicated to solve a particular type of performance
tuning problem. Performance problems can be solved by:

« Identifying time-consuming algorithms and rewrite the code using a more time-efficient algorithm.

« Identifying time-consuming functions and select the appropriate compiler optimizations for these functions
(for example, enable loop unrolling or function inlining).

« Identifying time consuming loops and add the appropriate pragmas to enable the compiler to further
optimize these loops.

A profiler helps you to find and identify the time consuming constructs and provides you this way with
valuable information to optimize your application.

TASKING employs various schemes for collecting profiling data, depending on the capabilities of the
target system and different information needs.

6.1.1. Three Methods of Profiling

There are several methods of profiling: recording by an instruction set simulator, profiling using the
debugger and profiling with code instrumentation techniques. Each method has its advantages and
disadvantages.

Profiling by an instruction set simulator

One way to gather profiling information is built into the instruction set simulator (ISS). The ISS records
the time consumed by each instruction that is executed. The debugger then retrieves this information and
correlates the time spent for individual instructions to C source statements.

Advantages
* it gives (cycle) accurate information with extreme fine granularity
« the executed code is identical to the non-profiled code

Disadvantages

» the method requires an ISS as execution environment

201

TASKING VX-toolset for C166 User Guide

Profiling with the debugger (intrusive profiling)

The second method of profiling is built into the debugger. You specify which functions you want to profile.
The debugger places breakpoints on the function entry and all its exit addresses and measures the time
spent in the function and its callees.

Advantages

« the executed code is identical to the non-profiled code

Disadvantage

» each time a profiling breakpoint is hit the target is stopped and control is passed to the debugger.
Although the debugger restarts the application immediately, the applications performance is significantly
reduced.

Profiling using code instrumentation techniques

The TASKING compiler contains an option to add code to your application which takes care of the profiling
process. This is called code instrumentation. The gathered profiling data is first stored in the target's
memory and will be written to a file when the application finishes execution or when the function
__prof_cleanup() is called.

Advantages

* it can give a complete call graph of the application annotated with the time spend in each function and
basic block

« this profiling method is execution environment independent
« the application is profiled while it executes on its aimed target taking real-life input

Disadvantage

* instrumentation code creates a significant run-time overhead, and instrumentation code and gathered
data take up target memory

This method provides a valuable complement to the other two methods and will be described into more
detail below.

6.2. Profiling using Code Instrumentation

Profiling can be used to determine which parts of a program take most of the execution time.

Once the collected data are presented, it may reveal which pieces of your code execute slower than
expected and which functions contribute most to the overall execution time of a program. It gives you
also information about which functions are called more or less often than expected. This information not
only reveal design flaws or bugs that had otherwise been unnoticed, it also reveals parts of the program
which can be effectively optimized.

202

Profiling

Important considerations

The code instrumentation method adds code to your original application which is needed to gather the
profiling data. Therefore, the code size of your application increases. Furthermore, during the profiling
process, the gathered data is initially stored into dynamically allocated memory of the target. The heap
of your application should be large enough to store this data. Since code instrumentation is done by the
compiler, assembly functions used in your program do not show up in the profile.

The profiling information is collected during the actual execution of the program. Therefore, the input of
the program influences the results. If a part/function of the program is not activated while the program is
profiled, no profile data is generated for that part/function.

Itis not possible to profile applications that are compiled with the optimization code compaction (C compiler
option --optimize=+compact). Therefore, when you turn profiling on, the compiler automatically disables
parts of the code compaction optimization.

Overview of steps to perform

To obtain a profile using code instrumentation, perform the following steps:
1. Compile and link your program with profiling enabled

2. Execute the program to generate the profile data

3. Display the profile

First you need a completed project. If you are not using your own project, use the profil ing example
as described below.

1. From the File menu, select Import...
The Import dialog appears.
2. Select General » Existing Projects into Workspace and click Next.

3. Inthe Select root directory field, browse to the examples directory <C166 installation
path>\examples and click OK.

4. Inthe Project box, disable all projects except profiling.
5. Enable the option Copy projects into workspace and click Finish

The profiling project should now be visible in the C/C++ view.
6.2.1. Step 1: Build your Application for Profiling

The first step is to add the code that takes care of the profiling, to your application. This is done with C
compiler options:

1. From the Project menu, select Properties

The Properties for profiling dialog box appears.

203

TASKING VX-toolset for C166 User Guide

2. Select C/C++ Build.
3. Expand the C/C++ Compiler entry and select Debugging.

4. Enable one or more of the following Generate profiling information options (the sample profiling
project already has profiling options enabled).

« for block counters (not in combination with Call graph or Function timers)
* to build a call graph (not in combination with Block counters)
« for function counters
« for function timers (not in combination with Block counters)
Note that the more detailed information you request, the larger the overhead in terms of execution

time, code size and heap space needed. The option Generate symbolic debug information
(--debug) does not affect profiling, execution time or code size.

Block counters (not in combination with Call graph or Time)

This will instrument the code to perform basic block counting. As the program runs, it will count how
many time it executed each branch of each if statement, each iteration of a for loop, and so on. Note
that though you can combine Block counters with Function counters, this has no effect because Function
counters is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates
the caller with the gathered profiling data.

Function counters

This will instrument the code to perform function call counting. This is a subset of the basic Block
counters.

Function timers (not in combination with Block counters)

This will instrument the code to measure the time spent in a function. This includes the time spend in
all called functions (callees).

For the command line, see the C compiler option --profile (-p).
Profiling is only possible with optimization levels 0, 1 and 2. So:

5. Open the Optimization page and set the Optimization level to 2 - Optimize more.

6. Click OK to apply the new option settings and rebuild the project (4.

204

Profiling

6.2.1.1. Profiling Modules and C Libraries
Profiling individual modules

It is possible to profile individual C modules. In this case only limited profiling data is gathered for the
functions in the modules compiled without the profiling option. When you use the suboption Call graph,
the profiling data reveals which profiled functions are called by non-profiled functions. The profiling data
does not show how often and from where the non-profiled functions themselves are called. Though this
does not affect the flat profile, it might reduce the usefulness of the call graph.

Profiling C library functions

Eclipse and/or the control program will link your program with the standard version of the C library.
Functions from this library which are used in your application, will not be profiled. If you do want to
incorporate the library functions in the profile, you must set the appropriate C compiler options in the C
library makefiles and rebuild the library.

6.2.1.2. Linking Profiling Libraries

When building your application, the application must be linked against the corresponding profile library.

Eclipse (or the control program) automatically select the correct library based on the profiling options you
specified. However, if you compile, assemble and link your application manually, make sure you specify
the correct library.

See Section 8.3, Linking with Libraries for an overview of the (profiling) libraries.

6.2.2. Step 2: Execute the Application

Once you have compiled and linked the application for profiling, it must be executed to generate the
profiling data. Run the program as usual: the program should run normally taking the same input as usual
and producing the same output as