TASKING.

TASKING VX-toolset for C166
User Guide

MA119-800 (v4.0) December 09, 2015

Copyright © 2015 Altium BV.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium BV. Unauthorized duplication of this work may also be prohibited by local statute.
Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, TASKING,
and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other
registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark
rights to the same are claimed.

Table of Contents

I O 1= T o > T TS 1
L1 DALA TYPES e 1
1.2. Changing the Alignment: __unaligned and __packed__cccooiiiiii 3
1.3, ACCESSING MEBMIOIY ..ottt et e e e e e e e e 4

1.3.1. Memory Type QUAlIfIErS ... 5
1.3.2. MeMOrY MOGEIS ...t 8
1.3.3. Placing an Object at an Absolute Address: __at()cooovvviiiiiiiiiiiee e 10
1.3.4. ACCESSING BilS ..vititii i 11
1.3.5. Accessing Hardware from C ... 13
1.4, STALIC ASSEITIONS ...ttt et 18
1.5, Shift JIS Kanji SUPPOIT ... e e e e e e 18
1.6. Using Assembly in the C Source: _ asm() ..o.iuiriririroriii e aas 19
O 1] o (=P 24
1.8. Pragmas to Control the ComPIler ..o e 28
1.9. Predefined PreproCesSSOr MACIOSi.i.iiiiiie e e et ae e e 35
L.00. VANTADIES ...eeeeieee e e 37
1.10.1. Initialized Variables ... 37
1.10.2. Non-Initialized Variablesoviiii 38
I O 1 1 o PP 38
1,12, CONSEANT DATAvee et e e 39
1.13. SWILCHh SEAIEMENTttt 40
O 0 Tod 1o PP 41
7 3 I @ |1 To T @] 01Y7=T i o] o H PPN 42
1.14.2. REGISIEI USAQE . vutiiiiiieii ittt e e e e e ettt aaans 44
1.14.3. Inlining FUNCHONS: INIINE ... vt 45
1.14.4. INterrupt FUNCHIONS .. .ouieiii e e e aen 46
1.14.5. INtriNSIC FUNCHONS ...euitiii et 49
1.15. FIoating-PoOiNt Traping ... eeinitit ettt e e e et e 60
1.15.1. Handling Floating-Point Traps in a C Applicationccoviviiiiiiiiiiiiiien, 61
1.15.2. IEEE-754 Compliant Error Handlingcoovviiiiiiiiiccce e 62
ST Y X O o 1 ST o] o To I PP 63
1.16.1. MAC Code Generation from Native Cccviiiiiiiiiiiiiii e 63
1.16.2. Manual MAC Qualification: __ MaCc.ovvuiiiiiii i 65
1.16.3. MAC Support by INtrinsic FUNCLIONSoviiiiiii e 66
1.16.4. Using the MAC Status WOIdc.iuiriniiiie e e 67
1.16.5. Evaluation of a Single EXPresSSion ... 68
1.16.6. HArdwWare LOOPSouiuititititititet ettt e e e e e aaaans 68
1.16.7. Considerations when Using the MACcooiiiiiiiiiiii e 69
Y= Yo i o A= T o PP 69
1.18. TASKING Volatile Implementationcooiiiiiii e e 70

B O - o 1 =T = 73
2.1. C++ Language EXtension KEYWOISc.iuiiiiiiiiiiii e aaan 73
2.2. CH+ DialeCt ACCEPIEA ...oteiii it e 73

2.2.1. Default CHd MOUE ...eeieiie e 74
2.2.2. GNU CHt MOGE ...eniicee e e 75
2.2.3. ANachronisms ACCEPIEAvititit it 76
2.3. NAMESPACE SUPPOIT ...ttt ettt et et et et e ettt ettt et e e e et aeens 77
2.4. Template INStANtALION ... e 79

TASKING VX-toolset for C166 User Guide

2.4.1. InStantiation MOGESot 80
2.4.2. Instantiation #pragma DIF€CHVESoiuiiieiiiiii e 80
2.4.3. IMPLCIE INCIUSION .. eeee e e et 82
2.5.INlNING FUNCHIONS ..o et 82
2.6. EXtern INline FUNCHONSuitiii e et 83
2.7. Pragmas to Control the C++ COMPIIETcvieiii e 84
2.7.1. C pragmas Supported by the C++ compiler ..o 84

2.8. Predefined MACIOS ...t 85
2.9. Precompiled HEAAEIScuiiiie e e 89
2.9.1. Automatic Precompiled Header ProCessingc.covuviuiiiiiiiiiiniiiiiinieneennen 89
2.9.2. Manual Precompiled Header ProCessingcocuveuvriiiiiiniiieiieiieeeean 92
2.9.3. Other Ways to Control Precompiled Headerscoooviiiiiiiiniiiiiien 92
2.9.4. PerfOrMAanCE ISSUESuuiuitiiiii ettt eae e 93

3. ASSEMDIY LANGUAGE ...eeieitiie et et ettt 95
3.1 ASSEMDBIY SYNTAX .. eeteeitie e 95
3.2. Assembler Significant CharaCtersc.ouiiiiii e 96
3.3. Operands of an Assembly INSTFUCHIONc.eniiiei e 97
3.4, SYMDOI NGIMES .ot 97
3.4.1. Predefined Preprocessor SYMDOISc.ouiiniiiiiii e 98

3D RO OIS ..ttt 929
3.6. Special FUNCLION REJISEISt 929
3.7. ASSEMDIY EXPIESSIONS ...viiiitiiie ettt et e 100
3.7.1. NUMEFIC CONSLANTS ...ttt ettt et et neae e 101
BT SIS -ttt ettt e 101
3.7.3. EXPresSioN OPEIALOISuueutinetietiee et e ettt e nees 101
3.7.4. Symbol Types and EXPression TYPES ...c.vniuiriniiietiee e e 104

3.8. BUilt-in ASSEMDBIY FUNCHONS ...oeieiitiii e e 107
3.9. Assembler Directives and CONIOISc.ivuiiieiei e 113
3.9.1. ASSEMDIET DIFECHIVESeeieeieteeet et 114
3.9.2. ASSEMDIEr CONLIOISviei e e 158

I RO IV F- T (o @] o [=T = o] I PRI 177
3.10.1. DEfiNING @ MACKO .. eueiitee ettt 177
3.10.2. CAlliNG @ MBCTO ...eneeeteie ettt 177
3.10.3. Using Operators for Macro ArgUMENTScuveuiiieiiirieiieeeeeeeeeeaeneenes 178

3.11. GENETIC INSIIUCLIONS ... etieteeet ettt ettt et ettt et e e e enenas 181
4.USING the C COMPIIET ...oeeei e et eenes 185
4. 1. CoMPIlALION PIOCESS ... eniiiieei ettt 185
4.2. Calling the C COMPIIET ...t eeaes 186
4.3.The C STArtUP COOEvniiiiieie et ettt et e e e 188
4.3.1. ICACHE SUPPOIT « .ottt et et 191

4.4. How the Compiler Searches Include Files ..o 193
4.5. Compiling fOr DEDUGGING ... vuereeeeei e 194
4.6. Compiler OPtMIZALIONSttt e 194
4.6.1. Generic Optimizations (frontend)c.ooiiiiiiii e 196
4.6.2. Core Specific Optimizations (backend)c.oooiiiiiiii 199
4.6.3. Optimize for Code Size or EXecution Speedccoeviiiiiiiiiiiiiiiieeeen 201

4.7. StatiC COUE ANAIYSIS ...ttt 205
4.7.1. C Code Checking: CERT €uvuiriiiiieiie ettt 206
4.7.2. C Code Checking: MISRA C ...t 208

4.8. C ComPIler ErrOr MESSAGES ... cuuvuititii ettt ettt ettt et e eaenes 209

TASKING VX-toolset for C166 User Guide

5.USING the CH+ COMPIIET ..ot e 211
5.1. Calling the CH+ COMPIIETveei e 211
5.2. How the C++ Compiler Searches Include Filescooiiiiiiiiii e 213
5.3. C++ CoMPIlEr ErrOr MESSAQES ... vueuiiiiitiei et 214

6. USING the ASSEMDIET ... e 217
6.1. ASSEMDIY PrOCESS ...ttt e 217
6.2. Calling the ASSEMDIET ..o e 218
6.3. How the Assembler Searches Include Fles ..o, 219
6.4. Assembler OPtiMIZAtiONSieie e 220
6.5. Generating @ LISt File ... 221
6.6. ASSEMDIET EITOr MESSAUES .. .vueniieiteiet ettt e 221

7. USING The LINKET ...t e et 223
7.1, LINKING PrOCESS ...ttt ettt 223

7.0.1. Ph@se 1: LINKING ..enenitiiee et ettt 225
7.0.2. Phase 2: LOCALING ... etenineteiete ettt et 226
7.2. CalliNg the LINKET ... e e 227
7.3. LiNKiNg WIth LIDFarieso e 228
7.3.1. How the Linker Searches LIbrariescoooiiiiiiiiii e 231
7.3.2. How the Linker Extracts Objects from Librariescoooveiiiiiiiiiniiinienn. 231
7.4, Incremental LINKINGo.oeie e e e 232
7.5.1Mporting BiNAry FilES ... 232
7.6. LINKer OPtMIZALIONSiviiiteei e e e 233
7.7. Controlling the Linker With @ SCFPtvuiii e 235
7.7.1. Purpose of the Linker Script LAanQUagecovuviiniiiiiiiiiiieeneeieeeeen 235
T7.7.2. EClPSE @NA LSL ...eiitiiie e e 235
7.7.3. Structure of a Linker SCript Fileooieiiii e 237
7.7.4. The Architecture Definitioncooiiiiiii e 240
7.7.5. The Derivative Definitionooiiiii e 244
7.7.6. The Processor Definitioncc.oviiiiinii e 245
7.7.7.The Memory Definitionociiiii e 245
7.7.8. The Section Layout Definition: Locating SeCtionScovvviiiiiieiiniiinieinnn. 247
7.7.9. Copying Code Sections to PSRAM at Startupcooooviiiiiiiiiiiii 249
7.7.20. PSRAM MIITOIS ...ttt et 249
7.7.11. ICACHE Support and Named Memory Mappingscccveeerveernienienieannennns 251
7.7.12. Duplicate Section Removal and Mirrorsooevviiiiiiiiiiiee e 257
7.8, LINKEr LAbEIS ... 258
7.9.Generating aMap File ... 259
7.10. LINKEr ErrOr MESSAUES .. cuutueiitiietieit ettt ettt et et ene e 260

8. USING the ULIIIES ... ettt et et 263
I o] o1 (o] I = (oo r= 4 o H PP 263
8.2. Make ULIlItY @IMK ...t e 265

8.2.1. MAKEFIle RUIESt 265
8.2.2. MAKETIIE DIFECHIVESv et e 267
8.2.3. MACIO DEfINItIONSoeie i 267
8.2.4. MaKefile FUNCHONSieti i 269
8.2.5. ConditioNal PrOCESSINGuviiniteiitiee et 270
8.2.6. MAKETIIE PAISINGeurieiiiee e 270
8.2.7. Makefile Command ProCESSINGvuvuirieiiiiiitet e 271
8.2.8. Calling the amk Make ULIlItYovuiriiii e 272
8.3. Make ULIlity MKLBBenieiie et et 273

TASKING VX-toolset for C166 User Guide

8.3.1. Calling the Make ULIlItYc.ouiinieiiii e 274
8.3.2.Writing a Makefile ... 275

8.4. EClipse CONSOIE ULIlILYvninieiitie e et 284
8.4.1. HeadlesSs BUIldoeii 284
8.4.2. Generating Makefiles from the Command Linecooiiiiiiiiiiiinenne, 285

8D, ATCNIVET o 287
8.5.1. Calling the ArChIVETo e 287
8.5.2. ArChiVEr EXAMPIES ..ottt 289

8.6. HLL ODbjJECE DUMIPET ...ttt et ettt e eenes 291
8.6.1. INVOCALION ...ttt et 2901
8.6.2. HLL DUMP OULPUL FOIMALeueiiieeiii e 291

8.7. EXPIre Cache ULIlILYc.ouiir e 297
9. USING the DEDUGOET ...ttt et ettt e aenes 299
9.1. Reading the Eclipse DOCUMENTALIONcuiuieieiiiee e 299
9.2. Creating a Customized Debug Configurationcooiiiiiiiiiiii 299
9.3, TrOUDIESNOOLING . ..v et 306
9.4. TASKING DebUQ PEISPECLIVE ... vttt 306
9.4.1. DEDUG VIBW .ottt ettt 307
9.4.2. BreakpPOiNtS VIEW ...ttt et et e 309
9.4.3. File System Simulation (FSS) VIEWciuiiiiiiii e 310
9.4.4. DiSASSEMDIY VIBW ...t 311
9.4.5. EXPreSSIONS VIBW ...ttt et ettt e 311
9.4.6. MEMOIY VIBW ...ttt et et et 312
9.4.7. Compare APPlICAtION VIBWouieiiei e 313
9.4.8. HEAP VIBW et 313
9.4.9. LOGUING VIBW .ttt ettt et et ettt e 314
9.4.10. RTOS VIBW ...ttt ettt ettt et ettt e e e 314
9.4.11. REQISIEIS VIBW ..ottt ettt ettt e 314
9.4.12. TrACE VIBW ..ottt et ettt et et ettt e et 315

9.5. Programming @ Flash DEVICEcuiuiiiiii e 316
10. Target BOAIrA SUPPOITeuteee et ettt et ettt et e e et e e e e e e aenes 321
10.1. Overview of SUPPOItEd BOAIAScviiieiiie e 321
5 [oTo 1 @ o1 1o o I PSPPI 323
11.1. Configuring the Command Line ENVIroNMEeNtcoouviiiiiiiiiiiieeee e 329
11.2. C COMPIIEr OPLIONS ...enietii e et e 330
11.3. C++ COMPIIEr OPLIONS ..v.eeiteiteee et e 424
11.4. ASSEMDIET OPLIONS ...ttt et 572
11,5, LINKEE OPLIONS ...ttt e ettt 617
11.6. Control Program OPLONSvuereit ettt et een e 667
11.7. Make ULIlity OPHIONS ...ttt et e 741
11.8. Parallel Make ULility OPLIONScurieieei et eeees 769
11.9. ArChiIVEr OPLIONS . ..vieit et et et 783
11.10. HLL Object DUMPET OPLIONSvuteeitieete ettt et eenes 798
11.11. Expire Cache ULility OPLONSvuitieiiiie e 822
12. Influencing the BUild TiMeouii et 833
12,0, SR FIlE et 833
12,2, MIL LINKING -+ttt et et 833
12.3. Application Wide Automatic Near AllOCAtIONccvveiiiiiiii e 834
12.4. OptiMIZation OPLIONSc..euitit e 834
12.5. AULOMALIC INNNING . .eee e 834

Vi

TASKING VX-toolset for C166 User Guide

12.6. COAE COMPACLION ...ttt et et ettt et et e eas 834
12.7. COMPIIEr CACNE ...t 835
12.8. HEAUET FlES ..ot 836
12.9. Parallel BUIloniee e e 836
12.10. NUMDEr Of SECHONS ...viiitei e e 836
L3 P0G e e 839
13.1. What is Profiling?coeii e 839
13.1.1. Methods of Profilingcooiuiriiii e 839

13.2. Profiling using Code Instrumentation (Dynamic Profiling)c.ccocoeiviiiiiiiinnen. 840
13.2.1. Step 1: Build your Application for Profilingccocoeiiiiiiiiiee 842
13.2.2. Step 2: Execute the AppliCationcooiiiiiiii e 843
13.2.3. Step 3: Displaying Profiling RESUILScooviiiiii e 845

13.3. Profiling at Compile Time (Static Profiling)cccoviiiii 848
13.3.1. Step 1: Build your Application with Static Profilingccocoiviiiiniinnnnn, 848
13.3.2. Step 2: Displaying Static Profiling ReSUItSccocoiiiiiiiii, 849

B o = T4 =T PP P PSPPI 851
14,1, LIBrary FUNCHONS ...t et 853
T4, 1.0. @SSO e 853
14.1.2. COMPIEX.N Lo 853
L4013, CStANT N o 854
14.1.4. ctype.h and WCLYPE.N ..o 855
L1415, dDG.N e 855

T4, 1.6. EITNO.N L 856

LA, L7 FONEL N e 857
L4018, NV e 857
T4.1.9. flOALN e 858
14,100 FPDIES. N oo 858
14.1.11. inttypes.h and Stdint.h ... 858
I I To Y PP 859
L4113, 0S0646.1 .ot 859
L4114, TIMIES. N e e 859
L4105, 10CAIE.IN ..o 860
T14.1.16. MAIIOC.N oo 860
14.1.17. math.h and tgmath.h ... 861
L4108, SEUMP.N 865
T14.1.09. SIGNALIN o 865
14.1.20. SEAANG.N .o 866
14.1.21. StADOOLN .o 866
14.1.22. StAAEf.N oo 866
T14.1.23. SEAINEN oo 867
14.1.24. stdio.h @and WChar.n ... 867
14.1.25. stdlib.h and Wehar.h ... 875
14.1.26. string.h and WChar.n ... 879
14.1.27. time.h and WChar.h ... 881
T14.1.28. UNISEA.N L. 883
T14.1.29. WCNAIN .o 884
14,130, WOEYPE. N o 885

14.2. C LiDrary REENIIANCYcvuiiitii ettt 886
15, LISt FIIE FOIMALS .. .oeetiit ettt ettt ettt et e e enenas 899
15.1. Assembler List File FOrMALc.ovuieiiiie e 899

Vii

TASKING VX-toolset for C166 User Guide

15.2. Linker Map File FOIMAL et 900

16. ODJECE FIle FOIMALSttt et 909
16.1. ELF/DWARF ODJECT FOIMALoeeeieiiie e 909

16.2. Intel HEX RECOIA FOIMALot 909

16.3. Motorola S-ReCOrd FOIMALieitiiie e e 912

17. Linker SCript LANGUAGE (LSL) .. euuuinitiiee ettt e 915
17.1. Structure of @ Linker SCript File 915

17.2. Syntax of the Linker SCript LANQUAGEovuirieieiiiiiii et 917
17.2.0. PrEPIrOCESSING . veuettti ettt ettt et ettt ettt 917

17.2.2. LEXICAI SYNEAX ..ttt e 918

17.2.3. 1dentifiers @nd TaGSovenie i 918

17.2.4, EXPIESSIONS ...vuittieet ettt ettt 919

17.2.5. BUIlt-IN FUNCHONS ...viei e et 919

17.2.6. LSL Definitions in the Linker SCript File ..o 922

17.2.7. Memory and Bus Definitionsc.oviuiiiiiii e 922

17.2.8. Architecture Definitioncoieeiuiiii e 924

17.2.9. Derivative Definitionc.ouiininiiii e 927

17.2.10. Processor Definition and Board Specificationocovvviiiiiiiiiiniiinnenne. 928

17.2.10. SECHON SEIUD .ontinetiet ettt et ettt 928

17.2.12. Section Layout Definitiono 928

17.3. EXPression EVAIUALIONvuiuiitiii et 933

17.4. Semantics of the Architecture Definition ..o 933
17.4.1. Defining @an ArChItECIUIEoeuieiiie e 934

17.4.2. Defining INternal BUSESouiiiiiiie e 935

17.4.3. Defining AAAreSS SPACESuiviiiiieiieie e e 935

17,44, MAPPINGS - enenetentiee ettt et et 939

17.5. Semantics of the Derivative Definitionooiiiiii 942
17.5.1. Defining @ DErVALIVEviii e 943

17.5.2. Instantiating Core ArchiteCIUIESovuiriiiriii e 943

17.5.3. Defining Internal Memory and BUSEScc.veiiiiiiiiiiieiieece e 944

17.6. Semantics of the Board SpecifiCationcocoiiiiiiii e 945
17.6.1. DefiNiNg @ PrOCESSONvnieiiieiie et 946

17.6.2. Instantiating DeriVALIVESc.iiuiiieiii e 946

17.6.3. Defining External Memory and BUSEScooeiiiiiiiiiiiiice e 947

17.7. Semantics of the Section Setup Definition ..o 948
17.7.1. SEtting UP 8 SECHION ...uvutieit ettt eeaes 948

17.8. Semantics of the Section Layout Definitionccooviiiiiiii e 949
17.8.1. Defining @ SECHON LAYOULuveitieiiei e 950

17.8.2. Creating and Locating Groups Of SECHONSccvvviiiiiiiiiiieieeeeene 951

17.8.3. Creating or Modifying Special SECHONSocovuiiiiiiiii e 957

17.8.4. Creating SYMDOIS ..o 961

17.8.5. Conditional Group StatemMENTSereeieieniie e 961

18. Debug Target Configuration FileScuiei i e 963
18.1. CUStOM BOArd SUPPOITttt et et et 963

18.2. Description of DTC Elements and AtMDULESoveiiiiiiiiii e 964

18.3. Special ResSource Identifiersc.iuiee o 967

18.4. INtialize EIBMENLSie e 968

19. CPU Problem Bypasses and CheCKSooiiiiiii e 969
20. CERT C Secure Coding StANCArdc.ouiuiniitae et naeaes 999
20.1. PreproCessor (PRE) ... e 999

viii

TASKING VX-toolset for C166 User Guide

20.2. Declarations and Initialization (DCL)vuiuiitieiii e 1000
20.3. EXPreSSIONS (EXP)uiuiiiiiii it e 1001
20,4, INEEGETS (INT) ettt ittt et 1002
20.5. Floating POINt (FLP)ei e e 1002
20.6. AITAYS (ARR) ..ottt 1003
20.7. Characters and StriNgS (STR) ...cuuuiuitiiit e 1003
20.8. Memory Management (MEM) ... e 1003
20.9. EnVIronment (ENV) ... e 1004
20.20. SIGNAIS (SIG) .. euitiiie i 1004
20.11. MIiSCElANEOUS (MSC) .. vttt et 1005
21 MISRA C RUIBS ...ttt et et es 1007
210 MISRA CiL008 ..ottt 1007
21.2. MISRA C:2004 ...t 1011
21.3. MISRA C:i2002 .ottt 1019
22. Migrating from the Classic Tool Chain to the VX-tooISetccooviiiiiiiiii, 1027
22.1. Importing an EDE Project in EClIPSEvuiuiiiiie e 1027
22.2. CONVEISION TOOI CNV2VX ...etieetiiet et et et et ettt aeaees 1029
22.3. Conversion TOOI HO2IS] 1030
22.4. Converting Command Line Options and Makefilesccocooiiiiiiiiiiiiie, 1030
22.5. C++ Compiler MIigrationcueeie it 1031
22.6. C COMPIIEr MIGIAtIONvueeitiet et e e enes 1034
22.6.1. C COMPIIEr OPLIONS ..eutenitiee et 1034
22.6.2. PragiMas .. .ueiieieie ettt e e e e e 1036
22.6.3. MEMOIY MOUEISeeiti e 1038
22.6.4. Calling CONVENTIONvuieitenitee et et eene e 1039
22.6.5. Language Implementation Migrationcovuviiirieiiiniiieneeeeenes 1039
22.6.6. Preprocessor SYMDOIS ... 1043
22.6.7. C Compiler Implementation Differencescccovviiiiiiiiiii, 1044

22.7. ASSEMDBIET MIGFatiONvieeie i e e 1048
22.7.1. ASSEMDIEr CONCEPLS ...vuieeiiete ettt et eenes 1048
22.7.2. ASSEMDIET DIFECHIVES ...ttt e 1048
22.7.3. Assembler and Macro Preprocessor CONtrolSc.vevveveiieiiiiiiniiiiiieennes 1049
22.7.4. Mapping Of CHECKCPUPYouititiee et neeaes 1051
22.7.5. Symbol Types and Predefined Symbolsccoooiiiiiiiii, 1051
22.7.6. Section Directive ANDULESouiiiiiii e 1052
22.7.7. MACIO PrEPIOCESSON ...ttt ettt ettt eenes 1054
22.7.8. Assembler Implementation Differencescocovviiiiiiiiiiiii, 1055

22.8. LINKEr MIGIAtONceeiit ettt et e 1057
22.8.1. LINKEr CONMIOISvieiieiit et 1057
22.8.2. Section, Class and Group NAMESc.iuiuiiiiiiiiiia e aaeans 1059
22.8.3. ODJECE FIlES ..ot 1060

23, MiIgrating from Keil ... 1061
23.1. Importing a Keil Project in ECIIPSEivieieiii e 1061
23.2. Conversion TOOI KEII2VXueie e e 1062
23.3. pVision to Eclipse Migrationc.oceouiieiniiii e 1063
23.4. C CoMPIIEr MIGIatiON ... vueeeeeee et 1065
23.4.1. MeMOrY MOUEISeeie e e 1065
23.4.2. Language Implementation Migrationcooviiiriiiiiniiiieneeeeeenes 1066
23.4.3. PragiMas .. .oeeieie et 1069

23.5. ASSEMDIEr MIGFatiOoneiie it 1069

TASKING VX-toolset for C166 User Guide

23.5.1. ASSEMDIEr DIFECHIVESuiititit i
23.5.2. Assembler and Macro Preprocessor CONtrolSc.vvvuveiiiiiiiniiaiieneenes

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING C compiler for c166® fully supports the ISO-C standard and add extra possibilities to
program the special functions of the target.

In addition to the standard C language, the compiler supports the following:

» keywords to specify memory types for data and functions

« attribute to specify absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

 predefined macros

« the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. Data Types

Fundamental data types

The C compiler supports the ISO C99 defined data types. The sizes of these types are shown in the
following table.

CType Size Align Limits
__bit 1 1 Oor1l
_Bool 8 8 Oorl
signed char 8 8 [-27, 27-1]
unsigned char 8 8 [0, 28-1]
short 16 16 [-27°, 27°-1)
unsigned short 16 16 [0, 216-1]
int 16 16 [-2°, 2151

TASKING VX-toolset for C166 User Guide

CType Size Align Limits
unsigned int 16 16 [0, 216-1]
enum 8 8 [-27, 2"-1] or [0, 2°-1]

16 16 [-2%°, 2°1]
long 32 16 [-2%%, 2%
unsigned long 32 16 [0, 232-1]
long long 64 16 [-25%, 2%%.1]
unsigned long long 64 16 [0, 264-1]
float (23-bit mantissa) 32 16 [-3.402E+38, —1.175E-38]

[+1.175E-38, +3.402E+38]
double 64 16 [-1.797E+308, -2.225E-308]
long double (52-bit mantissa) [+2.225E-308, +1.797E+308]
_Imaginary float 32 16 [-3.402E+38i, —1.175E-38i]
[+1.175E-38i, +3.402E+38i]

_Imaginary double 64 16 [-1.797E+308i, -2.225E-308i]
_Imaginary long double [+2.225E-308i, +1.797E+308i]
_Complex float 64 16 real part + imaginary part
_Complex double 128 16 real part + imaginary part
_Complex long double
__near pointer to data or function 16 16 [0, 216-1]
__far pointer ” 32 16 [0, 224-1]
__shuge pointer - 32 16 [0, 224-1]
__huge pointer to data or function 32 16 [0, 224-1]

"When you use the enumtype, the compiler will use the smallest suitable type (char , unsi gned
char ori nt), unless you use C compiler option --integer-enumeration (always use 16-bit integers
for enumeration).

- __far pointers are calculated using 14-bit arithmetic, __shuge pointers are calculated using
16-bit arithmetic.

Automatic bit objects never reside on the user stack, because the stack is not bit-addressable. So, it is
not possible to take the address of an automatic bit object, or to create automatic bit-arrays, because
these operations would force an object on the stack.

Aggregate and union types

Aggregate types are aligned on 16 bits by default. All members of the aggregate types are aligned as
required by their individual types as listed in the table above. The struct/union data types may contain
bit-fields. The allowed bit-field fundamental data types are _Bool , (un)si gned char and (un)si gned
i nt. The maximum bit-field size is equal to that of the type’s size. For the bit-field types the same rules

C Language
regarding to alignment and signed-ness apply as specified for the fundamental data types. In addition,
the following rules apply:

» The first bit-field is stored at the least significant bits. Subsequent bit-fields will fill the higher significant
bits.

» A bit-field of a particular type cannot cross a boundary as is specified by its maximum width. For example,
a bit-field of type short cannot cross a 16-bit boundary.

« Bit-fields share a storage unit with other bit-field members if and only if there is sufficient space in the
storage unit.

* An unnamed bit-field creates a gap that has the size of the specified width.

» As a special case, an unnamed bit-field having width 0 (zero) prevents any further bit-field from residing
in the storage unit corresponding to the type of the zero-width bit-field.

Bit structures

The __bi t data type is allowed as a struct/union member, with the restriction that no other type than
__bi t is member of this structure. This creates a bit-structure that is allocated in bit-addressable memory.
Its alignment is 1 bit.

There are a number of restrictions to bit-structures. They are described below:
« Itis not possible to pass a bit-structure argument to a function.

« Itis not possible to return a bit-structure.

* Itis not possible to make an automatic bit-structure.

The reason for these restrictions is that a bit-structure must be allocated in bit-addressable memory,
which the user stack is not.

__bitsizeof() operator

The si zeof operator always returns the size in bytes. Use the __bi t si zeof operator in a similar way
to return the size of an object or type in bits.

__bitsizeof (object | type)

1.2. Changing the Alignment: __ unaligned and __packed

Normally data, pointers and structure members are aligned according to the table in the previous section.

Suppress alignment

With the type qualifier __unal i gned you can specify to suppress the alignment of objects or structure
members. This can be useful to create compact data structures. In this case the alignment will be one bit
for bit-fields or one byte for other objects or structure members.

TASKING VX-toolset for C166 User Guide

At the left side of a pointer declaration you can use the type qualifier __unal i gned to mark the pointer
value as potentially unaligned. This can be useful to access externally defined data. However the compiler
can generate less efficient instructions to dereference such a pointer, to avoid unaligned memory access.

You can always convert a normal pointer to an unaligned pointer. Conversions from an unaligned pointer
to an aligned pointer are also possible. However, the compiler will generate a warning in this situation,
with the exception of the following case: when the logical type of the destination pointer is char orvoi d,
no warning will be generated.

Example:

struct

{

char c;
__unaligned int i; /* aligned at offset 1! */
}os;

__unaligned int * up = & s.1i;

Packed structures

To prevent alignment gaps in structures, you can use the attribute __packed__. When you use the
attribute __packed___directly after the keyword st r uct , all structure members are marked __unal i gned.

For example the following two declarations are the same:

struct _ packed__

{
char c;
int * i;
} sl
struct
{
char __unaligned c;
int * _unaligned i; /* __unaligned at right side of '*' to pack pointer menber */
} s2;

The attribute __packed__ has the same effect as adding the type qualifier __unal i gned to the
declaration to suppress the standard alignment.

You can also use __packed___in a pointer declaration. In that case it affects the alignment of the pointer
itself, not the value of the pointer. The following two declarations are the same:

int * _ unaligned p;
int * p __ packed__;

1.3. Accessing Memory

The TASKING VX-toolset for C166 internally knows the following address types:

C Language

» 32-bit linear, ‘huge’ addresses. The address notation is in bytes, starts at 0 and ends at 16M.

» 32-bit paged, ‘far’ addresses. In the address notation the high word contains the 10-bit page number

and the low word contains the 14-bit offset within the 16 kB page.

» 16-bit, ‘near’ addresses. The high 2 bits contain the DPP number and the low 14 bits are the offset
within the 16 kB page.

» 12-bit bit-addressable addresses. This embodies an 8-bit word offset in the bit-addressable space and
a 4-bit bit number.

» 8-bit SFR addresses. This is an offset within the SFR space or within the extended SFR space.

The TASKING VX-toolset for C166 has several keywords you can use in your C source to specify memory
locations. This is explained in the sub-sections that follow.

1.3.1. Memory Type Qualifiers

In the C language you can specify that a variable must lie in a specific part of memory. You can do this
with a memory type qualifier. If you do not specify a memory type qualifier, data objects get a default
memory type based on the memory model.

You can specify the following memory types:

Qualifier |Description Location Maximum Pointer Pointer Section
object size size arithmetic |name and
type
_ bit” [Bitaddressable |Bit addressable 1 bit 16-bit 12-bit bit
memory
__bita |Bit addressable |Bit addressable Size of bit 16-bit 16-bit bita
memory, in __iram addressable
area between 0xFDOO [memory
and OxFEQO
__iram |Internal RAM Internal RAM, in Size of internal | 16-bit 16-bit iram
data __near area between |RAM
0xF200 and OxFEO0O
__near [Near data In the 4 near data 16 kB 16-bit 16-bit near
pages
_ far Far data Anywhere 16 kB 32-bit 14-bit far
__shuge [Segmented Anywhere 64 kB 32-bit 16-bit shuge
huge data
__huge [Huge data Anywhere no limit 32-bit 32-bit huge

TASKING VX-toolset for C166 User Guide

" The default section name is equal to a combination of the generated section type and the object
name. You can change the section name with the #pr agma sect i on or command line option
--rename-sections.

- __bit is not areal qualifier, it is in fact a data type with an implicit memory type of type bit.

There are no SFR qualifiers. SFRs are accessible in the near address space. The compiler knows which
absolute address ranges belong to SFR areas and extended SFR areas and knows which addresses are
bit addressable. The compiler generates the appropriate SFR addressing modes for these addresses.

Examples using explicit memory types

__bita unsi gned char bitbyte;
__bita unsigned short bitword;
__near char text[] = "No snoking";
__far i nt array[10][4];

The memory type qualifiers are treated like any other data type specifier (such as unsi gned). This means
the examples above can also be declared as:

unsigned char _ _bita bi t byt e;

unsi gned short __bita bi t wor d;

char __near text[] = "No snoking";
i nt __far array[10][4];

__farand __shuge code generation

The __far and __shuge qualifiers have only very little difference in code generation. There are two
basic differences:

» Accessing __f ar objects is done using EXTP instructions and accessing __shuge objects is done
using EXTS instructions. This has no impact on code size or execution speed, and therefore it is in
general preferred to use __shuge, because objects can be as large as 64 kB, while with __f ar the
size of a single object is limited to 16 kB.

» Code generation for accessing objects on stack is a little bit more efficient for __f ar pointers than for
__shuge pointers.

1.3.1.1. Pointers with Memory Type Qualifiers
Pointers for the C166 can have two types: a 'logical' type and a memory type. For example,
char __far * _ near p;

means p has memory type __near (p itself is allocated in near data), but has logical type 'character in

target memory space far'. The memory type qualifier used to the left of the *', specifies the target memory
of the pointer, the memory type qualifier used to the right of the *', specifies the storage memory of the

pointer.

C Language

_ farand __shuge pointer comparison

By default all __f ar pointer arithmetic is 14-bit. This implies that comparison of __f ar pointers is also
done in 14-bit. For __shuge the same is true, but then with 16-bit arithmetic. This saves code significantly,
but has the following implications:

» Comparing pointers to different objects is not reliable. It is only reliable when it is known that these
objects are located in the same page.

» Comparing with NULL is not reliable. Objects that are located in another page at offset 0x0000 have
the low 14 bits (the page offset) zero and will also be evaluated as NULL. In the following example the
i f(p) isfalse, because the page offset of p is zero:

__far int i __at(0x10000);
_far int * p = &;
if(p) pt++

In most cases these restrictions will not yield any problems, but in case problems exist, the following
solutions are available:

» Cast the problematic comparison to long, e.g.:i f((long)p)

» Use the C compiler option -AF to tell the compiler to generate 32-bit pointer comparisons. Note that it
is also required to rebuild the C library if C library routines are used.

Pointer conversions
Conversions of pointers with the same qualifiers are always allowed. The following table contains the

additionally allowed pointer conversions. Other pointer conversions are not allowed to avoid possible
run-time errors.

Source pointer Destination pointer
__bita __iram
__bita __hear
__bita __far
__bita __shuge
__bita __huge
__iram __near
__iram __far
__iram __shuge
__iram __huge
__hear __far
__hear __shuge
__hear __huge
__far __shuge

TASKING VX-toolset for C166 User Guide

Source pointer Destination pointer

_ far __huge

__shuge __huge

__near,__bita, __iram(16-bit) pointer conversions to and from non-pointer types:

A conversion from a 32-bit integer to a 16-bit pointer, or from a 16-bit pointer to a 32-bit integer, is
implemented as a 32-bit linear address conversion.

All other non-pointer conversions to and from a 16-bit pointer are implemented as a conversion to or
from a 16-bit integer type.

_far (32-bit) pointer conversions to and from non-pointer types:

A conversion from a 16-bit integer to a __f ar pointer, or from a __f ar pointer to a 16-bit integer, is
implemented as a 16-bit linear address conversion. The behavior of a __f ar pointer to 16-bit integer
conversion is undefined when __f ar pointer contains an address with page number larger than 3.

A conversion from a 32-bit integer to a __f ar pointer, or from a __f ar pointer to a 32-bit integer, is
implemented as a 32-bit linear address conversion.

All other non-pointer conversions to and from a __f ar pointer are implemented as a conversion to or
from a 32-bit integer type.

_(s) huge (32-bit) pointer conversions to and from non-pointer types:

« All non-pointer conversions to and from a __ (' s) huge pointer are implemented as a conversion to or

from a 32-bit integer.

1.3.2. Memory Models

The C compiler supports four data memory models, listed in the following table.

Memory model |Letter |Default data memory type
Near n __near

Far f _ far

Segmented Huge |s __shuge

Huge h __huge

Each memory model defines a default memory type for objects that do not have a memory type qualifier
specified. By default, the C166 compiler uses the near memory model. With this memory model the most
efficient code is generated. With the C compiler option --model you can specify another memory model.

For information on the memory types, see Section 1.3.1, Memory Type Qualifiers.

C Language

__MODEL__

The compiler defines the preprocessor symbol __ MODEL___to the letter representing the selected memory
model. This can be very helpful in making conditional C code in one source module, used for different
applications in different memory models.

Example:

#if _ MODEL__ == 'f'
/* this part is only for the far menory nodel */

#endi f
DPP usage

The compiler uses EXTP/EXTS instructions to access far, shuge and huge data in all data models. This
means that it does not use DPP loads and DPP prefixes. All DPPs point to the near data space at anytime.

The advantages of not using DPPs are:
» There are always four near data pages.
* Interrupt functions will not save/restore any DPPs.

» You can use a DPP for your own purpose by letting the linker not assign the DPP to a near page. The
best way to do this is to assign the DPP in LSL to an unused page in memory and reserve that page.

 Bit 14 and bit 15 do not need to be masked when converting a pointer to stack (which is near) to far.

Near data
Near data is paged in all memory models. The linker takes care of assigning DPPs in the code.

With a trick in the LSL file (by defining the __ CONTI GUOUS_NEAR macro) it is possible to remove this
page restriction and get a linear space, even if the near data pages are scattered throughout the memory.
The linker takes care of locating the sections in such a way that the compiler can assume them to be
contiguous through the near data pages. This also implies that the linker can split sections and put parts
in non-consecutive near data pages. When this LSL trick is applied, you should be very cautious when
accessing near data with far or shuge pointers, because objects may cross page or segment boundaries.

Stack

In all memory models the stack is restricted to 16 kB and must be in-page. With a trick in the LSL file (by
defining the __ CONTI GUOUS_NEAR macro) it is possible to remove the page limitation of the stack. But
this should only be done when you do not use far, shuge or huge pointers to access objects on the stack,
because page or segment boundaries may be crossed, and the compiler will use the begin of stack to
perform casts to stack objects.

For XC16x and Super10 derivatives, multiple stacks are created in the LSL file, one for each local register
bank. The C startup code controls the creation of these stacks, by referring the begin of stack symbols.

TASKING VX-toolset for C166 User Guide

Heap

In the far, huge and segmented huge models the heap is located as huge data. The memory allocation
routines in the C library will take care of keeping the data in pages or segments for far and shuge data.
In the near data model the default heap is located as near data. Optionally a huge heap can be allocated
allocating far/shuge/huge data.

Threshold

In the far, segmented huge and huge data models the compiler supports a threshold for allocating default
objects in near data. Objects that are smaller than or equal to the threshold area automatically allocated
in near data. The threshold can be defined on the command line with option --near-threshold. By default
the threshold is 0 (off), which means that all data is allocated in the default memory space. In the far,
huge and segmented huge memory models, near data sections that result from the threshold optimization
will be marked to be located inpage, because sections may not cross page boundaries when access
through an external far, huge or shuge declaration is done.

1.3.3. Placing an Object at an Absolute Address: __ at()

Just like you can declare a variable in a specific part of memory (using memory type qualifiers), you can
also place an object or a function at an absolute address in memory.

With the attribute __at () you can specify an absolute address. The address is a 32-bit linear (huge)
address. If you use this keyword on __bi t objects or functions, the address is a bit address.

The compiler checks the address range, the alignment and if an object crosses a page boundary.
Examples
unsi gned char Display[80*24] __at(0x2000);

The array Di spl ay is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Di spl ay.

int i __at(0x1000) = 1;

The variable i is placed at address 0x1000 and is initialized.

void f(void) _ at(Oxfoff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:
» The argument of the __at () attribute must be a constant address expression.

* You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

10

C Language

» A variable that is declared ext er n, is not allocated by the compiler in the current module. Hence it is
not possible to use the keyword __at () on an external variable. Use __at () at the definition of the
variable.

* You cannot place structure members at an absolute address.

» Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

1.3.4. Accessing Bits

There are several methods to access single bits in the bit-addressable area. The compiler generates
efficient bit operations where possible.

Masking and shifting
The classic method to extract a single bit in C is masking and shifting.

__bita unsigned short bitword;
void foo(void)

i f(bitword & 0x0004) Il bit 2 set?

{

bi tword &= ~0x0004; /Il clear bit 2
}
bi tword | = 0x0001; /'l set bit O;

}
Built-in macros __getbhit() and ___putbit()

The compiler has the built-in macros __get bi t () and __put bi t () . These macros expand to shift/and/or
combinations to perform the required result.

__bita unsigned short bw,
void foo(void)

{
if(__gethit(bw, 2))
__putbit(0, bw, 2);
}
__putbit(1, bw, 0);
}

Accessing bits using a struct/union combination

typedef __bita union

{
unsi gned short word;
struct
{
int b0 : 1;

11

TASKING VX-toolset for C166 User Guide

int bl : 1;

int b2 : 1;

int b3 : 1;

int b4 : 1;

int b5 : 1;

int b6 : 1;

int b7 : 1;

int b8 : 1;

int b9 : 1;

int bl0: 1;

int bill: 1;

int bl2: 1;

int bl3: 1;

int bl4: 1;

int bil5: 1;
} bits;
} bitword_t;

bitword_t bw;

void foo(void)

{ if(bw. bits.b3)
{ bw. bits. b3 = 0;
1{Jw.bits.bo = 1;

}

void reset(void)

i bw. word = 0;

Declaring a bit variable with __atbit() (backwards compatibility only)

For backwards compatibility, you can still use the __at bi t () keyword to define a bit symbol as an alias
for a single bit in a bit-addressable object. However, we recommend that you use one of the methods
described above to access a bit.

The syntax of __at bit () is:

__atbit(object,offset)

where object is a bit-addressable object and offset is the bit position in the object.
The following restrictions apply:

» This keyword can only be applied to __bi t type symbols.

12

C Language

» The bit must be defined vol at i | e explicitly. The compiler issues a warning if the bit is not defined
volatile and makes the bit volatile.

» The bitword can be any vol at i | e bit-addressable (__bi t a) object. The compiler issues a warning if
the bit-addressable object was not volatile and makes it volatile.

» The bit symbol cannot be used as a global symbol. An extern on the bit variable, without __at bi t (),
will lead to an unresolved external message from the linker, so therefore __at bi t () is required.

Examples

/* Module 1 */
volatile __bita unsigned short bitword;
volatile __bit b __atbit(bitword, 3);

/* Module 2 */
extern volatile __bita unsigned short bitword;
extern volatile __bit b __athit(bitword, 3);

Drawbacks of __atbit()

e __atbit() requires all involved objects to be volatile. If your application does not require these objects
to be volatile, you may see in many cases that the generated code is less optimal than when the objects
were not volatile. The reason for that is that the compiler must generate each read and write access
for volatile objects as written down in the C code. Fortunately the standard C language provides methods
to achieve the same result as with __at bi t () . The compiler is smart enough to generate efficient bit
operations where possible.

» No debug information is generated for objects defined with __at bi t (), meaning that these objects
are not visible in the debugger.

1.3.5. Accessing Hardware from C

Using Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special function register file (*. sf r and *. asf r) as symbol names for use with the compiler.
An SFR file contains the names of the SFRs and the bits in the SFRs. These SFR files are also used by
the assembler and the simulator engine. The debugger and integrated environment use the XML variants
of the SFR files. The XML files include full descriptions of the SFRs and the bit-fields. Also the bit-field
values are described. To decrease compile time the . sfr and . asf r files do not contain the descriptions.
The . sfr and . asfr files are in written C and are derived from the XML files.

SFRs in the SFR area and extended SFR area are addressed in the near address space. The compiler
knows the effective address ranges and generates SFR addressing modes for this. The generated
addressing modes to access the registers depend on the address. Some SFRs cannot be addressed
with a REG addressing mode, although they are within the SFR area or the extended SFR area. These
registers are:

RSTCON ‘OxFlEO‘

13

TASKING VX-toolset for C166 User Guide

RSTCON2 | OxF1E2
SYSSTAT |OxF1E4

The compiler will never emit REG addressing for these addresses.

You can find a list of defined SFRs and defined bits by inspecting the SFR file for a specific processor.
The files are named r egcpu. sfr andr egcpu. asf r, where cpu is the CPU specified with the C compiler
option --cpu. The compiler automatically includes this register file, unless you specify option
--no-tasking-sfr. The files are located in the sf r subdirectory of the standard i ncl ude directory.

For new devices (XC2xxx, XE16x) most SFR names use a standard naming convention prescribed by
Infineon:

* UNIT_SFRNAME for SFRs
* UNIT_SFRNAME_BITNAME for bit-fields, when using the standard . sfr files
For example:

| MB_MARO
| MB_MARO_HREADO

For some of these names aliases are defined that do not include the unit name. For example, SYSCONO
as an alias for SCU_SYSCONO. As a rule of thumb aliases are available only where needed to make the
cstart. c code generic between older and newer devices.

.sfr - the standard SFR file format

These files are read by the C++ compiler, C compiler, assembler and simulator engine. The SFRs and
SFR bit-fields are defined as C preprocessor macros using #def i ne-s. The *. sfr files are the default
for the toolset.

Example use in C (with use of alias definitions):

voi d set_sfr(void)

{

POL = 0x88; /1 use port nane

AD3 = 1; /1 use of bit nane

if (A4 == 1)

{

AD3 = 0;

}

| EN = 1; /1 use of bit nane
}

The compiler generates (with option --cpu=c167):

nmovw Oxf f 00, #0x88
bset 0xff00.3
jnb Oxff00.4, 2
bclr 0xff00.3

14

C Language

bset Oxff10.11

When the SFR contains fields, the layout of the SFR is defined by a typedef-ed union of a struct with bits,
a signed integer and an unsigned integer:

typedef volatile union __PSWunion

{
struct __ PSWstruct

{
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsigned mulip
unsi gned usr0
unsi gned usril
unsi gned bank
unsi gned hl den
unsi gned ien
unsi gned il vl

} B

int |;

unsi gned U

} __PSWtype;

ON<O S

AR RPNRRRRRPEPRERER

Read-only fields can be marked by using the const keyword.
Note that the bit-field names are in lowercase to avoid conflicts with their macro definition.

The base SFR is defined by a cast to a ‘typedef-ed union’ pointer. The SFR address is given in parenthesis.
This definition is the same inthe *. sfr and *. asf r files and is therefore also used in the C startup code
(cstart.c)

#define _ PSW(*(__PSWtype *)0xFF10)

The definition of the actual SFR name as it should be used in your code:
#define PSW __PSWuU

A bit-field is defined as:

#define PSWN PSWB.n

You can also use an alias definition for the bit-field:

#define N PSW N

Note that if the bit-field in the st r uct definition would be uppercase it would give a hame clash.

15

TASKING VX-toolset for C166 User Guide

.asfr - the alternative SFR file format

These files can optionally be used by the C compiler instead of the . sfr files. These files are named
r egcpu. asf r. This format does not contain alias definitions for SFRs and SFR bit-fields.

You can select . asf r instead of . sf r files, with option --alternative-sfr-file.
Example in C when you use this alternative format:

void set_sfr(void)

{
POL. U = 0x88; /1 use port nanme as unsigned integer
POL. 1 = 136; /1 use port name as signed integer
POL. B. AD3 = 1; /1 use of bit nane
if (POL.B. A4 == 1)
{
POL. B. AD3 = O;
}
PSWB. I EN = 1; /1 use of bit nane
}

The compiler generates (with options --cpu=c167 --alternative-sfr-file):

nmovw Oxf f 00, #0x88
nmovw Oxf f 00, #0x88
bset OxffO00.3
jnb 0Oxff00.4, 2
bclr OxffO00.3

bset Oxff10.11

When the SFR contains fields, the layout of the SFR is defined by a typedef-ed union of a struct with bits,
a signed integer and an unsigned integer:

typedef volatile union __ PSWunion

{
struct _ PSWstruct

{
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned MJLI P
unsi gned USRO
unsi gned USR1
unsi gned BANK
unsi gned HLDEN
unsi gned | EN
unsi gned | LVL

mN<OZ2

AR RPNRRRRPRPRPRERR

16

C Language

int I;
unsi gned U;
} __PSWtype;
Note that the bit-fields are in uppercase.

Read-only fields can be marked by using the const keyword.

The base SFR is defined by a cast to a ‘typedef-ed union’ pointer. The SFR address is given in parenthesis.
This definition is the same inthe *. sfr and *. asf r files and is therefore also used in the C startup code
(cstart.c)

#define _ PSW(*(__PSWtype *)0xFF10)

The definition of the actual SFR name as it should be used in your code:
#define PSW __PsSw

To access the SFRs in the alternative format, you should use the following syntax:

.U Ful | SFR, unsigned
N Ful | SFR, signed
. B. Bit-field

For example:
WDTREL. U = 0x300;

UOCO_I N0O. I = -12;
PSWB. I EN = 1;

Choosing between the standard and alternative SFR file format

It depends on the coding of the application which format can be used. It is recommended to use the
alternative SFR file format for new applications because of the following benefits:

» Less namespace pollution because of the lack of alias definitions.

In the standard SFR file format (. sf r) all bit-fields are defined as C preprocessor macros using
#def i ne. This gives namespace pollution with the risk of a name clash with the application. For
example, applications that define a macro N are not so seldom, and will give a clash with the bit-field
N.

» Faster compilation due to smaller SFR files.

The compiler needs significantly more time to process all the additional bit-field definitions in a standard
SFR file (. sfr). Processing a . asf r file may be twice as fast as processing a . sfr file. For new
devices with a large amount of SFRs this will result in measurable shorter build times.

17

TASKING VX-toolset for C166 User Guide

1.4. Static Assertions

The TASKING VX-toolset for C166 C compiler supports the ISO/IEC 9899:2011 (E) feature
_Static_assert() as alanguage extension to the ISO C99 standard.

The syntax is:
_Static_assert(constant-expression,string-literal);

The constant expression must be an integer constant expression. If the value of the constant expression
compares unequal to 0, the declaration has no effect. Otherwise, the C compiler produces a diagnostic
message that includes the text of the string literal.

For example,

void foo(void)
{
_Static_assert(1,"1 is non-zero"); // no effect
_Static_assert(1-1,"0 is zero"); /1 _Static_assert failed (0 is zero)

}

1.5. Shift JIS Kanji Support

In order to allow for Japanese character support on non-Japanese systems (like PCs), you can use the
Shift JIS Kanji Code standard. This standard combines two successive ASCII characters to represent
one Kaniji character. A valid Kanji combination is only possible within the following ranges:

« First (high) byte is in the range 0x81-0x9f or Oxe0-0Oxef.
» Second (low) byte is in the range 0x40-0x7e or 0x80-0xfc

Compiler option -Ak enables support for Shift JIS encoded Kanji multi-byte characters in strings and
(wide) character constants. Without this option, encodings with 0x5c as the second byte conflict with the
use of the backslash (\ ') as an escape character. Shift JIS in comments is supported regardless of this
option.

Note that Shift JIS also includes Katakana and Hiragana.
Example:

/1 Exanpl e usage of Shift JIS Kanji

/1 Do not switch off option -AK

/1l At the position of the italic text you can
/1 put your Shift JI'S Kanji code

int i; // put Shift JI'S Kanji here

char cl;

char c2;

unsi gned int ui;

const char nmes[]="put Shift JIS Kanji here";
const unsigned int ar[5]={"K ,"a",

n.,

18

C Language

TR
/1 5 Japanese array
voi d mai n(voi d)

{
i=(int)cl;
i++; /* put Shift JIS Kanji here\
conti nuous comment */
c2=nes[9];
ui =ar[0];
}

1.6. Using Assembly in the C Source: __asm()

With the keyword __asn{() you can use assembly instructions in the C source and pass C variables as
operands to the assembly code.

It is recommended to use constructs in C or use intrinsic functions instead of __asn() . Be aware
that C modules that contain assembly are not portable and harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and
which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be
assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

General syntax of the __asm keyword

_asn("instruction_tenpl ate”
[: output_paramli st
[@ input_paramli st
[@ register_reserve_list]]]);

instruction_template Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr
Y%parm_nr Parameter number in the range 0 .. 9.
output_param_list [["=[&]constraint_char"(C_expression)],...]
input_param_list [["constraint_char"(C_expression)],...]
& Says that an output operand is written to before the inputs are read,

so this output must not be the same register as any input.

19

TASKING VX-toolset for C166 User Guide

constraint _char Constraint character: the type of register to be used for the
C_expression.
C_expression Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.
register_reserve_list [["register_name"],...]
register_name Name of the register you want to reserve. For example because this

register gets clobbered by the assembly code. The compiler will not
use this register for inputs or outputs. You can use byte registers
RLO - RL7, RHO - RH7 and word registers RO - R15. Note that
reserving too many registers can make register allocation impossible.

Specifying registers for C variables
With a constraint character you specify the register type for a parameter.

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_reserve_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint Type Operand Remark

character

b byte register RLO - RL7, RHO - input/output constraint

RH7

w word register RO - R15 input/output constraint

i indirect address register |RO - R3 input constraint only

number type of operand it is same as %number |Input constraint only. The number must

associated with refer to an output parameter. Indicates

that %number and number are the
same register.

If an input parameter is modified by the inline assembly then this input parameter must also be
added to the list of output parameters (see Example 6). If this is not the case, the resulting code
may behave differently than expected since the compiler assumes that an input parameter is not
being changed by the inline assembly.

Loops and conditional jumps

The compiler does not detect loops with multiple __asn{) statements or (conditional) jumps across
__asn() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asn{() , the whole loop must be contained in a single __asm()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asn() statement must be in that same statement. You can use numeric labels for these purposes.

20

C Language

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asn() statement generates a contiguous sequence of instructions, then
they can be best combined to a single __asn() statement. Compiler optimizations can insert instruction(s)
in between __asn{) statements. Use newline characters ‘\n’ to continue on a new lineina __asn{()
statement. For multi-line output, use tab characters '\t' to indent instructions.

__asn("nop\n"
"\'tnop");

Example 2: using output parameters

Assign the result of inline assembly to a variable. A register is chosen for the parameter because of the
constraint b; the compiler decides which register is best to use. The %9 in the instruction template is
replaced with the name of this register. The compiler generates code to assign the result to the output
variable.

char out;
voi d addone(void)

{
__asn("MV 9@, #1"
"=b" (out));
}

Generated assembly code:

MOV rh4, #1
novb _out,rh4

Example 3: using input parameters

Assign a variable to an SFR. A word register is chosen for the parameter because of the constraint w;
the compiler decides which register is best to use. The %9 in the instruction template is replaced with the
name of this register. The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

int in;
void initsfr(void)
{
__asm("MOVW POL, %"
wo(in))
}

Generated assembly code:

movw rll, in
MOVW POL, r11

21

TASKING VX-toolset for C166 User Guide

Example 4: using input and output parameters

Multiply two C variables and assign the result to a third C variable. Word registers are necessary for the
input and output parameters (constraint w, %0 for out 1, %4 for out 2, %2 for i n1 and 98 for i n2 in the
instruction template). The compiler generates code to move the input expressions into the input registers
and to assign the result to the output variables.

int inl, in2;
long int out;
void nmultiply32(void)

{
unsigned int outl, out?2;
__asm "CoMJL %%, %3\n"
"\t CoOSTORE %9, MAL\n"
"\t CoOSTORE %4, MAH\ n"
"=w' (outl), "=w' (out?2)
"w' (inl), "w' (in2));
out = outl | (signed |ong)out2<<16;
}

Generated assembly code:

; Code generated by C conpil er
nmovw r1l, _inl
nmovw r12, _in2

; __asm statenment expansion
CoMUL r11, r12
CoSTORE r12, MAL
CoSTORE r11, MAH

; Code generated by C conpil er
movw _out, r12
movw _out +2, rl1l

Example 5: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now registers R11 and R12 are reserved registers. You can do this by adding
a reserved register list (: "R11","R12"). As you can see in the generated assembly code, registers R11
and R12 are not used (the first register used is R13).

int inl, in2;

long int out;

void multiply32(void)
{

unsigned int outl, out?2;

22

C Language

__asn("CoMJL %, 9%3\n"
" CoSTORE %0, MAL\n"
"CoSTORE %41, MAH\ n"
;o "=w' (outl), "=w' (out?2)
"w' (inl), "w' (in2)
"R11", "R12");

out = outl | (signed |ong)out2<<16;
}

Generated assembly code:

Code generated by C conpiler
nmovw rl13, _inl
nmovw r 14, _in2

__asm statenment expansion
CoMJUL r13, rl4
CoSTORE r14, NAL
CoSTORE r13, MAH

Code generated by C conpiler
nmovw _out, rl4
movw _out +2, rl13

Example 6: use the same register for input and output

As input constraint you can use a number to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline int foo(int parl, int par2, int * par3)

{

int retval ue;

__asn(

"shl 94, #2\n\t"

"add %2, 9%\ n\t"

"mov [9%2], %\ n\t"

"mov %9, %6\ n"
"=&wW' (retvalue), "=w' (parl), "=w' (par?2)
;o "1" (parl), "2" (par2), "w' (par3)
)
return retval ue;

}

int result,parm

voi d func(void)

{

23

TASKING VX-toolset for C166 User Guide

result = foo(1000, 1000, &arm ;
}

In this example the "1" constraint for the input parameter par 1 refers to the output parameter par 1, and
similar for the "2" constraint and par 2. In the inline assembly %4 (par 1) and %2 (par 2) are written. This
is allowed because the compiler is aware of this.

This results in the following generated assembly code:

movw r 11, #0x3e8
movw r12,r1l
movw r 13, # parm

shl r11, #2
add ri12,r11
nov [r12],r13
mov r14,r13

novw _result,rl4

However, when the inline assembly would have been as given below, the compiler would have assumed
that %4 (par 1) and %2 (par 2) were read-only. Because of the i nl i ne keyword the compiler knows that
par 1 and par 2 both contain 1000. Therefore the compiler can optimize and assign the same register to
% and 92. This would have given an unexpected result.

__asn(
"shl %, #2\n\t"
"add 92,94\ n\t"
"mov [9%2], 9B\ n\t"
"mov %9, %38\ n"
"=&wW' (retval ue)
"w' (parl), "w' (par2), "w' (par3)
)

Generated assembly code:

movw r 11, #0x3e8
nmovw r 12, #_parm

shl r11, #2

add r11,r11 ; same register, but is expected read-only
nmov [rl1],r12

mov rl13,r12

nmovw _result,rl13 ; contains unexpected result

1.7. Attributes

You can use the keyword __attri but e__ to specify special attributes on declarations of variables,
functions, types, and fields.

24

C Language

Syntax:
__attribute__((nane,...))
or:

name

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name. For example, you may use __nor et ur n___ instead of
__attribute__((noreturn)).

alias("symbol")

Youcanuse __attribute__ ((alias("synbol"))) to specify that the declaration appears in the
object file as an alias for another symbol. For example:

void _ f() { /* Do sonething */; }
void f() __attribute_ ((weak, alias("__f"));

declares 'f ' to be a weak alias for'__ f'.

const

Youcanuse __attribute__((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pur e.

The following kinds of functions should not be declared __const __:
A function with pointer arguments which examines the data pointed to.

« A function that calls a non-const function.

export

Youcanuse __attribute__ ((export)) to specify that a variable/function has external linkage and
should not be removed by the compiler. During MIL linking, the compiler treats external definitions at file
scope as if they were declared st at i c. As a result, unused variables/functions will be eliminated, and
the alias checking algorithm assumes that objects with static storage cannot be referenced from functions
outside the current module. During MIL linking not all uses of a variable/function can be known to the
compiler. For example when a variable is referenced in an assembly file or a (third-party) library. With
the export attribute the compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* 'i' has external |inkage */

flatten

Youcanuse __attribute_ ((flatten)) to force inlining of all function calls in a function, including
nested function calls.

25

TASKING VX-toolset for C166 User Guide

Unless inlining is impossible or disabled by __attri bute__((noinline)) for one of the calls, the
generated code for the function will not contain any function calls.

format(type,arg_string_index,arg_check_start)

Youcanuse __attribute_ ((format(type,arg_string_index,arg _check_start))) to
specify that functions take pri nt f, scanf, strfti me or st rf non style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be pri ntf, scanf,strftime or
strfnon.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strfti me-style formats, arg_check_start must be 0.

Example:
int foo(int i, const char * ny _format, ...) _ attribute__((format(printf, 2,

The format string is the second argument of the function f oo and the arguments to check start with the
third argument.

leaf

Youcanuse __attribute__ ((Ieaf)) tospecify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

malloc

Youcanuse __attribute__ ((rmalloc)) toimprove optimization and error checking by telling the
compiler that:

» The return value of a call to such a function points to a memory location or can be a null pointer.

» On return of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

» The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

26

3)));

C Language

noinline

Youcanuse __attribute__((noinline)) to preventa function from being considered for inlining.
Same as keyword __noi nl i ne or #pragnma noi nl i ne.

always_inline
With __attribute__((always_inline)) you force the compiler to inline the specified function,

regardless of the optimization strategy of the compiler itself. Same as keyword i nl i ne or #pr agna
i nline.

noreturn
Some standard C function, such as abort and exit cannot return. The C compiler knows this automatically.
Youcanuse __attribute__((noreturn)) to tell the compiler that a function never returns. For

example:

void fatal () __attribute__((noreturn));

void fatal (/* ... */)

{
/* Print error message */
exit(1);

}

The function f at al cannot return. The compiler can optimize without regard to what would happen if
f at al everdid return. This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

packed

To prevent alignment gaps in structures, you can usethe __attri bute__((packed)).When you use
the attribute directly after the keyword st r uct , all structure members are marked __unal i gned. See
Packed structures in Section 1.2, Changing the Alignment: __unaligned and __packed__.

protect

Youcanuse __attribute__ ((protect)) toexclude avariable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect”
section attribute to the symbol's section. Example:

int i __attribute__ ((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

This attribute is the same as#pr agna pr ot ect/ endpr ot ect .

27

TASKING VX-toolset for C166 User Guide

pure

Youcanuse __attribute__ ((pure)) to specify that a function has no side effects, although it may
read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const .

section("section_name")

Youcanuse __attribute__((section("nanme"))) to specify that a function must appear in the
object file in a particular section. For example:

extern void foobar(void) __attribute__ ((section("bar")));
puts the function f oobar in the section named bar .

See also #pragnma secti on.

used

Youcanuse __attribute__((used)) to prevent an unused symbol from being removed, by both the
compiler and the linker. Example:

static const char copyright[] __attribute_ ((used)) = "Copyright 2015 Al tium BV";

When there is no C code referring to the copyri ght variable, the compiler will normally remove it. The
__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute__ ((used)) implies__attribute__((protect)).

unused

Youcanuse __attribute__((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

Youcanuse __attribute__ ((weak)) tospecify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pragma weak.
1.8. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated

28

C Language
otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.
The syntax is:
#pragma [l abel :] pragma- spec pragma-argunents [on | off | default | restore]
or:
_Pragma("[I|abel :]pragna-spec pragnma-argunments [on | off | default | restore]")

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
of f switch the flag off

defaul t set the pragma to the initial value

restore restore the previous value of the pragma

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pr agna and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The r est or e argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pragnma ... rest ore after the statement.

Compared to regular pragmas, label pragmas offer the following advantages:

» The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

» The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:
#pragma | abl: optimze P
volatile int v;

void f(void)

labl: for(i=1; i<10; i++)

29

TASKING VX-toolset for C166 User Guide

{
/* the entire for loop is part of the pragma optim ze */
a +=i;

Supported pragmas
The compiler recognizes the following pragmas, other pragmas are ignored. On the command line you

can use c166 --help=pragmas to get a list of all supported pragmas. Pragmas marked with (*) support
a label prefix.

STDC FP_CONTRACT [on | off | default | restore] (*)

This is a standard 1ISO C99 pragma. With this pragma you can control the +contract flag of C compiler
option --fp-model.

alias symbol=defined_symbol
Define symbol as an alias for defined_symbol. It corresponds to an alias directive (. ALl AS) at assembly

level. The symbol should not be defined elsewhere, and defined_symbol should be defined with static
storage duration (not extern or automatic).

boolean [on | off | default | restore] (*)

This pragma is used to mark the macros "false" and "true" from the library header file st dbool . h as
"essentially BOOLEAN", which is a concept from the MISRA C:2012 standard.

clear / noclear [on | off | default | restore] (*)
By default, uninitialized global or static variables are cleared to zero on startup. With pragma nocl ear,

this step is skipped. Pragma cl ear resumes normal behavior. This pragma applies to constant data as
well as non-constant data.

See C compiler option --no-clear.

clear_bit / noclear_bit [on | off | default | restore] (*)
Same as cl ear/ nocl ear, except that it only applies to __bi t variables.

See C compiler option --no-clear-bit.

compactmaxmatch {value | default | restore} (*)
With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

30

C Language

constant_memory {space | default | restore} (*)

Controls the allocation of constants, automatic initializers and switch tables. The memory space must be
one of: __near,__far,__shuge, ___huge or nodel .

See C compiler option --constant-memory.

extension isuffix [on | off | default | restore] (*)

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _| magi nary.

extern symbol

Normally, when you use the C keyword ext er n, the compiler generates an . EXTERN directive in the
generated assembly source. However, if the compiler does not find any references to the ext er n symbol
in the C module, it optimizes the assembly source by leaving the . EXTERN directive out.

With this pragma you can force an external reference (. EXTERN assembler directive), even when the
symbol is not used in the module.

fp_negzero [on | off | default | restore] (*)
With this pragma you can control the +negzero flag of C compiler option --fp-model.

fp_nonan [on | off | default | restore] (*)

With this pragma you can control the +nonan flag of C compiler option --fp-model.

fp_rewrite [on | off | default | restore] (*¥)

With this pragma you can control the +rewrite flag of C compiler option --fp-model.

indirect_access {address[-address],... | default | restore} (*)

Specify address ranges that should only be accessed using an indirect addressing mode.

inline / noinline / smartinline [default | restore] (*)

Instead of the i nl i ne qualifier, you can also use pragma i nl i ne and pragma noi nl i ne to inline a
function body:

int wx,Y,z,

#pragma inline
int add(int a, int b)
{

int i=4;

return(a + b);

31

TASKING VX-toolset for C166 User Guide

}

#pragnma noinline

void main(void)
{
w
z

add(1,
add(x,

2);
y),
}

If a function has ani nl i ne or __noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the optimization C compiler option --optimize=+inline (-Oi), small functions that are not too often
called (from different locations), are inlined. This reduces execution time at the cost of code size. With
the pragma noi nl i ne / pragma snar ti nl i ne you can temporarily disable this optimization.

See also Section 1.14.3, Inlining Functions: inline

inline_max_incr /inline_max_size {value | default | restore} (*)

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has only effect when you have enabled the inlining optimization (--optimize=+inline (-Oi)).

See C compiler options --inline-max-incr and --inline-max-size.

integer_enumeration [on | off | default | restore] (*)

With this pragma the compiler always treats enumtypes as integers. Same as C compiler option
--integer-enumeration

linear_switch / jump_switch / binary_switch / smart_switch [default |
restore] (*)

With these pragmas you can overrule the compiler chosen switch method:

l'i near _swi tch force jump chain code. A jump chain is comparable with an if/else-if/else-if/else
construction.

jump_switch force jump table code. A jump table is a table filled with jump instructions for each
possible switch value. The switch argument is used as an index to jump within this
table.

bi nary_swi tch force binary lookup table code. A binary search table is a table filled with a value to
compare the switch argument with and a target address to jump to.

smart _switch let the compiler decide the switch method used

See also Section 1.13, Switch Statement.

32

C Language

mac / nomac [on | off | default | restore] (*)

Enable/disable automatic MAC code generation for a function. The pragma works the same as C compiler
option --mac

macro / nomacro [on | off | default | restore] (*)

Turns macro expansion on or off. By default, macro expansion is enabled.

maxcalldepth {value | default | restore} (*)

With this pragma you can control the maximum call depth. Default is infinite (-1).
See C compiler option --max-call-depth.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA C checking. Alternatively, you can specify a
comma-separated list of MISRA C rules to disable.

See C compiler option --misrac and Section 4.7.2, C Code Checking: MISRA C.
optimize [flags] / endoptimize [default | restore] (*)

You can overrule the C compiler option --optimize for the code between the pragmas opt i ni ze and
endopt i m ze. The pragma works the same as C compiler option --optimize.

See Section 4.6, Compiler Optimizations.
profile [flags] / endprofile [default | restore] (*)
Control the profile settings. The pragma works the same as C compiler option --profile. Note that this

pragma will only be checked at the start of a function. endpr of i | e switches back to the previous profiling
settings.

profiling [on | off | default | restore] (*)

If profiling is enabled on the command line (C compiler option --profile), you can disable part of your
source code for profiling with the pragmas profili ng of f and profili ng.

protect / endprotect [on | off | default | restore] (*)
With these pragmas you can protect sections against linker optimizations. This excludes a section from

unreferenced section removal and duplicate section removal by the linker. endpr ot ect restores the
default section protection.

33

TASKING VX-toolset for C166 User Guide

ramdata / noramdata [on | off | default | restore] (*)

With pragma r andat a non-automatic constant data is allocated in both ROM and RAM. At startup RAM
is initialized from ROM. This pragma affects const variables, string literals, initializers and constants that
are allocated in memory. With pragma nor andat a non-automatic constant data is allocated in ROM
only.

See also Section 1.12, Constant Data.

romdata / noromdata [on | off | default | restore] (*)

With pragma r ondat a the compiler allocates all non-automatic non-constant variables in ROM only. With
pragma nor ondat a the variables are allocated in RAM and initialized from ROM at startup.

See also Section 1.10.1, Initialized Variables.

runtime [flags | default | restore] (*)

With this pragma you can control the generation of additional code to check for a number of errors at
run-time. The pragma argument syntax is the same as for the arguments of the C compiler option --runtime.
You can use this pragma to control the run-time checks for individual statements. In addition, objects
declared when the "bounds" sub-option is disabled are not bounds checked. The "malloc" sub-option

cannot be controlled at statement level, as it only extracts an alternative malloc implementation from the
library.

savemac / nosavemac [on | off | default | restore] (*)

Enable/disable save/restore of MAC-accumulator in a function’s prologue/epilogue.

section [type=name] / endsection [default | restore] (*)
Generate code/data in a new section. See Section 1.17, Section Naming for more information.
source / nosource [on | off | default | restore] (*)

With these pragmas you can choose which C source lines must be listed as comments in assembly output.

See C compiler option --source.

stack_address_conversion mode [default | restore] (*)
Controls how stack addresses are converted. The mode can be one of:st ati ¢, fi xed- dpp ordynani c.

See C compiler option --stack-address-conversion.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #i ncl ude directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

34

C Language

string_literal_memory {space | default | restore} (*)

Controls the allocation of string literals. The memory space must be one of: __near, __far, __shuge,
__huge or nodel .

See C compiler option --string-literal-memory.

tradeoff {level | default | restore} (*)

Specify tradeoff between speed (0) and size (4).

warning [number[-number],...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (. WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.9. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

Macro Description
__BIG_ENDIAN__ Expands to 0. The processor accesses data in little-endian.
__BUILD__ Identifies the build number of the compiler, composed of decimal digits for

the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, __ BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__Cl66__ Identifies the compiler. You can use this symbol to flag parts of the source
which must be recognized by the c166 compiler only. It expands to 1.

_ CORE__ Expands to the name of the core depending on the C compiler options --cpu
and --core. The symbol expands to c16x when no --cpu and no --core is
supplied.

35

TASKING VX-toolset for C166 User Guide

Macro Description

__CORE_core___ A symbol is defined depending on the options --cpu and --core. The core
is converted to uppercase. For example, if --cpu=xc167ci is specified, the
symbol __ CORE_XC16X__is defined. When no --core or --cpu is supplied,
the compiler defines __ CORE_C16X__.

_CPU__ Expands to a string with the CPU supplied with the option --cpu. When no
--cpu is supplied, this symbol is not defined. For example, if --cpu=xc167ci
is specified, the symbol __CPU__ expands to xc167ci .

__ CPU_cpu__ A symbol is defined depending on the option --cpu=cpu. The cpu is converted
to uppercase. For example, if --cpu=xc167ci is specified, the symbol
__CPU_XC167Cl __is defined. When no --cpu is supplied, this symbol is
not defined.

__DATE__ Expands to the compilation date: “mmm dd yyyy".

_ DOUBLE_FP__ Expands to 1 if you used option --fp-model=-float, otherwise unrecognized
as macro.

__FILE__ Expands to the current source file name.

__LINE__ Expands to the line number of the line where this macro is called.

_ LITTLE_ENDIAN__

Expands to 1. The processor accesses data in little-endian.

_ MISRAC_VERSION_

Expands to the MISRA C version used 1998, 2004 or 2012 (option
--misrac-version). The default is 2004.

__ MODEL__

Identifies the memory model for which the current module is compiled. It
expands to a single character constant: 'n' (near), 'f' (far), 's' (shuge) or 'h’

(huge).

__NEAR_FUNCTIONS__

Expands to 1 if you used option --near-functions, otherwise unrecognized
as macro, meaning that huge functions are default.

__PRECISE_LIB FP__

Always expands to 1. The compiler uses precise library functions for certain
floating-point operations.

__PROF_ENABLE__

Expands to 1 if profiling is enabled, otherwise expands to 0.

__REVISION__

Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__ SFRFILE__(cpu)

This macro expands to the filename of the used SFR file, including the

pathname and the < >.The cpu is the argument of the macro. For example,
if --cpu=xc167ci is specified, the macro __SFRFI LE__(__CPU__) expands
to_ SFRFILE_(xcl167ci),whichexpandsto<sfr/regxcl67ci.sfr>.

__SILICON_BUG_num__

This symbol is defined if the number num is defined with the option
--silicon-bug.

__SINGLE_FP__ Expands to 1 if you used option --fp-model=+float (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.
__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set

option --language (Control language extensions), otherwise expands to 0.

36

C Language

Macro Description

__STDC_HOSTED__ Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_VERSION__ Identifies the 1ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

__TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

_ TASKING_SFR__ Expands to 1 if TASKING . sf r files are used. Not defined if you used option
--no-tasking-sfr.

__TIME__ Expands to the compilation time: “hh:mm:ss”

__USER_STACK__ Expands to 1 if you used option --user-stack, otherwise unrecognized as
macro.

__USMLIB__ Expands to __usmif you used option --user-stack, otherwise it expands to

__nousm You can use this macro to qualify functions explicitly.

__VERSION__ Identifies the version number of the compiler. For example, if you use version
2.1r1 of the compiler, _ VERSION__ expands to 2001 (dot and revision
number are omitted, minor version number in 3 digits).

_VX__ Identifies the VX-toolset C compiler. Expands to 1.

Example

#if __MODEL__ == 'f'
/* this part is only for the far nenory nodel */

#endi f
1.10. Variables

1.10.1. Initialized Variables

Automatic initialized variables are initialized (run-time) each time a C function is entered. Normally, this
is done by generating code which assigns the value to the automatic variable.

The I1SO C standard allows run-time initialization of automatic integral and aggregate types. To support
this feature, the C166 C compiler generates code to copy the initialization constants from ROM to RAM
each time the function is entered.

There is a lot of existing C source which use static initializations. Static initialized variables normally use
the same amount of space in both ROM and RAM. This is because the initializers are stored in ROM and
copied to RAM at start-up. The only exception is an initialized variable residing in ROM, by means of
either the #pr agma r ondat a or the const type qualifier.

const char b ='b'; /* 1 byte in ROM*/

#pr agma nor ondat a /* default, may be omtted, unless pragma
rondata was used before */

37

TASKING VX-toolset for C166 User Guide

i nt i = 100; /* 2 bytes in ROM 2 bytes in | RAM */
char a="a; /* 1 byte in ROM 1 byte in |RAM*/
char * p = "ABCD"; /* 5 bytes in ROM (for "ABCD') */
/* 2 bytes in ROM 2 bytes in | RAM
(for p)*/

#pragnma rondat a /* Needed for ROMonly allocation */
i nt j = 100; /* 2 bytes in ROM */

char * g = "WKYZ"; /* 5 bytes in ROM (for "WKYZ") */

/* 2 bytes in ROM (for p) */

1.10.2. Non-Initialized Variables

In some cases there is a need to keep variables unchanged even if power is turned off (see for an example
Section 7.7.8, The Section Layout Definition: Locating Sections). In these systems some of the RAM is
implemented in EEPROM or in a battery-powered memory device. In a simulator environment, clearing
non-initialized variables might not be wanted too. To avoid the ‘clearing’ of non-initialized variables at
startup, one of the following things should be performed:

» Define (allocate) these variables in a special C module and compile this module with option --no-clear.
From Eclipse: From the Project menu, select Properties for, expand C/C++ Build, select Settings
and open the Tool Settings tab, select C/C++ Compiler » Allocation and disable the option Clear
non-initialized global variables.

» Define (allocate) these variables between #pr agma nocl ear and #pragma cl ear.

» Use inline assembly to allocate the special variables in a special data section (NOT used by other C
variables).

» Make a separate assembly module, containing the allocation of these variables in a special data section.

1.11. Strings

In this context the word 'strings' means the separate occurrence of a string in a C program. So, array
variables initialized with strings are just initialized character arrays, which can be allocated in any memory
type, and are not considered as 'strings'.

Strings have static storage. The ISO C standard permits string literals to be put in ROM. Because there
is no difference in accessing ROM or RAM, the C166 C compiler allocates strings in ROM only. This
approach also saves RAM, which can be very scarce in an embedded (single chip) application.

As mentioned before, the C compiler offers the possibility to allocate a static initialized variable in ROM
only, when declared with the const qualifier or after a#pr agma r ondat a. This enables the initialization
of a (const) character array in ROM:

const char ronhel p[] = "hel p";
/* allocation of 5 bytes in ROMonly */

Or a pointer array in ROM only, initialized with the addresses of strings, also in ROM only:

38

C Language

char * const nessages[] = {"hello","alarn,"exit"};

Allocation of string literals

By default the C compiler allocates string literals in the memory model's default memory space. You can
overrule this with #pragma string_literal _nenory:

#pragma string_literal _nenory space

The space must be one of: __near, __far,___shuge, __huge or nodel . Instead of this pragma you
can also use the equivalent command line option --string_literal_memory.

String literals as use in:

char * s = "string";
or:
printf("formatter %\n", "string");

are affected by this pragma/option.
Example:

#pragma string_literal _menory _ huge /* allocate strings in __huge nmenory */
__huge char * txt = "text1l";

1.12. Constant Data

By default const variables, string literals, initializers, switch tables and constants allocated in memory
are stored in ROM only. You can change this behavior with #pr agna r andat a. When this pragma is
active, const variables, string literals, initializers and constants allocated in memory will be allocated in
ROM and RAM. At startup RAM will be initialized from ROM, in the same way as initialized variables. To
achieve this the "i ni t " instead of the "r ondat a" section attribute is used. The ROM copy will always
be located in the __shuge memory space.

Example:

#pragma randat a
const char * const p = "copied to RAM;
/* both p and the string literal are copied fromROMto RAM */

near__1 str .section near, byte, init, new

_1str . | abel near byt e
.db 0x63
.db Ox6f
.db 0x70
.db 0x69
.db 0x65
.db 0x64
.db 0x20

39

TASKING VX-toolset for C166 User Guide

.db 0x74
. db 0x6f
. db 0x20
.db 0x52
.db 0x41
. db 0x4d
.db 0x0
; End of section
near _p .section near, init, new
.global _p
p . | abel near wor d
. dw (_1str & Oxffff)

1.13. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a binary search table.

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
jump instructions for each possible switch value. The switch argument is used as an index to jump within
this table. A binary search table is a table filled with a value to compare the switch argument with and a
target address to jump to.

#pragma snmart_swi t ch is the default of the compiler. The compiler tries to use the switch method
which uses the least space in ROM (table size in ROMDATA plus code to do the indexing). With the C
compiler option --tradeoff you can tell the compiler to put more emphasis on speed than on ROM size.

Especially for large switch statements, the jump table approach executes faster than the binary search
table approach. Also the jump table has a predictable behavior in execution speed: independent of the
switch argument, every case is reached in the same execution time.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

You can overrule the compiler chosen switch method by using a pragma:

#pragma |inear_switch force jump chain code

#pragma junp_switch force jump table code

#pragma bi nary_switch force binary search table code

#pragma smart_switch let the compiler decide the switch method used

The switch pragmas must be placed before the swi t ch statement. Nested swi t ch statements use the
same switch method, unless the nested swi t ch is implemented in a separate function which is preceded
by a different switch pragma.

Example:

/* place pragma before function body */

40

C Language

#pragnma j unp_swi tch

voi d test(unsigned char val)
{ I'* function containing the switch */
switch (val)

{
}

/* use junp table */

1.14. Functions

Near and huge functions

By default functions are huge. With the C compiler option --near-functions you can set the default to use
near functions. But you can also use the __near or __huge function pointer qualifiers.

__hear Define function called with intra-segment calls. The sections generated for __near functions
are grouped in a group called __near _f uncti ons.

__huge Define function called with inter-segment calls.

Example:

__near nfunc(void){ /* a near function */ }

Function pointers

The size of a pointer to a __near function is two bytes. The size of a pointer to a __huge function is four
bytes. Both pointers are aligned on two bytes.

Note that you cannot cast a near function pointer to a huge function pointer due to possible run-time
errors.

Function call return addresses

The compiler uses a ‘user stack’ to pass parameters and to allocate variables and temporary storage.
The function return addresses are placed on the system stack by the processor with a call instruction.
With the C compiler option --user-stack function return addresses are placed on the user stack. The
code compaction optimization (-Or) has no effect for functions with the return address on the user stack.

Instead of the option --user-stack, you can use the __usmor __nousmfunction pointer qualifiers.

__usm Use the user stack for function call return addresses.
__nousm Use the system stack for function call return addresses.

41

TASKING VX-toolset for C166 User Guide

1.14.1. Calling Convention

Parameter passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack.

The following conventions are used when passing parameters to functions.

Registers available for parameter passing are USRO, R2, R3, R4 R5, R11, R12, R13 and R14. Parameters
<= 64 bit are passed in registers except for 64-bit structures:

Parameter Type Registers used for parameters

1 bit USRO, R2.0..15, R3.0..15, R4.0..15, R5.0..15
8 bit RL2, RH2, RL3, RH3, RL4, RH4, RL5, RH5
16 bit R2, R3, R4, R5, R11, R12, R13, R14

32 bit R2R3, R4R5, R11R12, R13R14

64 bit R2R3R4R5, R11R12R13R14

The parameters are processed from left to right. The first not used and fitting register is used. Registers
are searched for in the order listed above. When a parameter is > 64 bit, or all registers are used, parameter
passing continues on the stack. The stack grows from higher towards lower address, each parameter on
the stack is stored in little-endian. The first parameter is pushed at the lowest stack address. The alignment
on the stack depends on the data type as listed in Section 1.1, Data Types

Example with three arguments:

funcl(int a, long b, int * ¢)

a (first parameter) is passed in registers R2.

b (second parameter) is passed in registers R4R5.

¢ (third parameter) is passed in registers R3.

Variable argument lists

Functions with a variable argument list must push all parameters after the last fixed parameter on the
stack. The normal parameter passing rules apply for all fixed parameters.

Function return values
The C compiler uses registers to store C function return values, depending on the function return types.

USRO, R2, R3, R4 and R5 are used for return values <=64 bit:

Return Type Register
1 bit USRO

42

C Language

Return Type Register

8 bit RL2

16 bit R2

32 bit R2R3

64 bit R2R3R4R5

The return registers have an overlap with the parameter registers, which yields more efficient code when
passing arguments to child functions.

Return values > 64 bits are returned in a buffer, allocated on the stack. The caller must pass a pointer to
the return buffer in the last parameter register (R14). It is the caller’s responsibility to allocate and release
the space used for the return buffer. The callee will put the return value in the allocated buffer.

Stack usage

The stack on the C166 consists of a system stack and a user stack. The system stack is used for the
return addresses and for data explicitly pushed with the PUSH instruction. The compiler usually does not
push anything on the system stack, with exception to interrupt functions . The user stack is used for
parameter passing, allocation of automatics and temporary storage. The compiler uses R15 as user stack
pointer. The data on the stack is aligned depending on the data type as listed in Section 1.1, Data Types.
The stack pointer itself is always aligned at 16-bit. In the Super10/XC16x a user stack is allocated for
each local bank. The user stack grows from high to low. The user stack is always located in near memory,
the maximum size depends on the chosen memory model. The DPP register used for the user stack is
determined at link time.

The stack pointer always refers to the last occupied slot. Meaning that the stack pointer first has to be
decreased before data can be stored. A typical stack frame is outlined in the following picture:

43

TASKING VX-toolset for C166 User Guide

J l High address
-
Optional return value E o
c
=
Z
o
o =
Argument passing area 2
o
=
p=2]
Function entry Return address (__usm) v g
........b . E
)
5
Callee saved registers =
73]
=1}
c
=
_ o
Local objects %‘
. O
Frame pointer (RS)
“ariable length arrays
Stack pointer (R15) ¥ -
Low address

Before a function call, the caller pushes the required parameters on the stack. This area is called the
argument passing area. For user stack functions the return address is saved on the user stack. After the
call has been made, the callee will save the used callee-saved registers in the "callee saved” area. Next,
the space for the local objects is allocated. After this, variable length arrays (VLAS) can be allocated. If
VLAs are used in a function, register R8 is used to access the local objects and stack parameters. If no
VLAs are used, R8 is available for other purposes. When the called function returns an object > 64 bit on
the stack, the caller must reserve a stack area to hold the return value. After the function call, the caller
must release this stack area. This also applies to the argument passing area. After the stack frame has
been built, the stack pointer points to the argument passing area.

1.14.2. Register Usage

The C compiler uses the general purpose registers according to the convention given in the following
table.

Register Class Purpose

USRO caller saves Parameter passing and return values
RO, RLO, RHO callee saves Automatic variables

R1, RL1, RH1 callee saves Automatic variables

R2, RL2, RH2 caller saves Parameter passing and return values

44

C Language

Register Class Purpose

R3, RL3, RH3 caller saves Parameter passing and return values
R4, RL4, RH4 caller saves Parameter passing and return values
R5, RL5, RH5 caller saves Parameter passing and return values
R6, RL6, RH6 callee saves Automatic variables

R7, RL7, RH7 callee saves Automatic variables

R8 callee saves Automatic variables, User stack frame pointer
R9 callee saves Automatic variables

R10 callee saves Automatic variables

R11 caller saves Parameter passing

R12 caller saves Parameter passing

R13 caller saves Parameter passing

R14 caller saves Parameter passing, return buffer pointer
R15 dedicated User stack pointer

The registers are classified: caller saves, callee saves and dedicated.

caller saves These registers are allowed to be changed by a function without saving the contents.
Therefore, the calling function must save these registers when necessary prior to a
function call.

callee saves These registers must be saved by the called function, i.e. the caller expects them not
to be changed after the function call.

dedicated The user stack pointer register R15 is dedicated.

The user stack frame pointer register R8 is used for functions containing variable length arrays.

Registers RO, R1, R2 and R3 can be used directly in an arithmetic instruction like: ADD Rx, [RO].

1.14.3. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords i nl i ne (ISO-C) and __noi nl i ne.

With the i nl i ne keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

45

TASKING VX-toolset for C166 User Guide

If a function with the keyword i nl i ne is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noi nl i ne keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

Using pragmas: inline, noinline, smartinline

Instead of the i nl i ne qualifier, you can also use #pr agma i nl i ne and #pr agma noi nl i ne to inline
a function body:

#pragma inline
unsi gned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

#pragma noi nli ne
void main(void)
{ . .

int i;

i = abs(-1);
}

If a function has ani nl i ne/__noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pr agnma noi nl i ne/#pragna snarti nl i ne you can temporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

1.14.4. Interrupt Functions
The TASKING C compiler supports a number of function qualifiers and keywords to program interrupt

service routines (ISR). An interrupt service routine (or: interrupt function, interrupt handler, exception
handler) is called when an interrupt event (or: service request) occurs.

46

C Language

Defining an interrupt service routine: __isr, _interrupt()

You can use the type qualifier __i sr to declare a function as an interrupt service routine, but this does

not bind the function to an interrupt vector. You can assign an unbound function to an interrupt vector in

the linker LSL file. With the function type qualifier __i nt errupt () you can bind the function to a specific
vector in the C source. The function type qualifier __i nt errupt () takes one interrupt number (0..127)
as an argument. The linker generates the sections with the vectors of the specified interrupt numbers.

For backward compatibility, i nterrupt (-1) isthe sameas __i sr.

The __interrupt () function qualifier implies the __i sr type qualifier.

Interrupt functions cannot return anything and must have a void argument type list:

void __isr __interrupt(interrupt_nunber)
isr(void)
{
}
The __i sr type qualifier must also be used when a pointer to an interrupt function is declared.
For example:
void __interrupt(7) serial_receive(void)
{ /* __isr is added automatically by __interrupt() */
}
void __isr unbound_isr(void) /* sane as: __interrupt(-1) */
{ /* unbound ISR can be bound in LSL file */
}
extern void __isr external _isr(void);
/* reference to external interrupt function, vector nunber irrelevant */
void __isr (*pisr)(void) = external _isr;

/* declare pointer to interrupt function */

GPRs are pushed on the system stack, unless you use the __r egi st er bank() qualifier.

Interrupt frame: __ frame()

With the function qualifier __f r ame() you can specify which registers and SFRs must be saved for a
particular interrupt function. Only the specified registers will be pushed and popped from the stack. If you
do not specify the function qualifier __f r ane() , the C compiler determines which registers must be
pushed and popped. The syntax is:

void __interrupt(interrupt_numnber)
__frame(reg[, reg]...) isr(void)

{

47

TASKING VX-toolset for C166 User Guide

The reg can be any register defined as an SFR. The compiler generates a warning if some registers are
missing which are normally required to be pushed and popped in an interrupt function prolog and epilog
to avoid run-time problems.

Example:

void __interrupt(8) _ frame(MdL, MDH) foo (void)
{

}...

You can also use the __frane() qualifier in conjunction with the __r egi st er bank() qualifier to add
code for the context switch in the interrupt frame.

When you do not want the interrupt frame (saving/restoring registers) to be generated you can use the
C compiler option --no-frame. In that case you will have to specify your own interrupt frame. For this you
can use the inline capabilities of the compiler.

Register bank switching: __ registerbank()

It is possible to assign a new register bank to an interrupt function, which can be used on the processor
to minimize the interrupt latency because registers do not need to be pushed on stack. You can switch
register banks with the __r egi st er bank() function qualifier. The syntax is:

void __interrupt(interrupt_nunber)
__regi sterbank(["regbank" | |ocal bank[, "regbank"]])
isr(void)
{
}
regbank The string specifies the name of a global register bank to be used. The compiler

generates a section for the register bank. The compiler assumes that the BANK field in
the PSW register already selects a global register bank.

48

C Language

localbank The number of the local register bank to be used. With a negative number, the compiler
assumes that the register bank switch is done automatically by the processor. With a
positive number, the compiler generates code to select the local register bank. With
zero, the compiler generates code to select a global register bank. In the last case, an
extra argument can be used to specify the name of the global register bank. If omitted,
the compiler will generate a name. The following numbers are available:

-3 Use local register bank 3 but assume the hardware automatically switches the
register bank upon interrupt.

-2 Use local register bank 2 but assume the hardware automatically switches the
register bank upon interrupt.

-1 Use local register bank 1 but assume the hardware automatically switches the
register bank upon interrupt.

0 Use global register bank as usual.

Use local register bank 1 and emit instruction in interrupt frame to select the correct
local register bank.

2 Use local register bank 2 and emit instruction in interrupt frame to select the correct
local register bank.

3 Use local register bank 3 and emit instruction in interrupt frame to select the correct
local register bank.

For the Superl0XC16x a user stack is allocated for each bank. The user stack pointers
are initialized in the C startup code. For the user stack in the global register bank you
can use the linker label _| c_ub_user _st ack. For the local register banks 1, 2 and 3
use linker labels | ¢_ub_user _stackl, |c_ub_user_ stack2 and

_l c_ub_user_st ack3 respectively.

When no regbank-argument is supplied the compiler generates and uses a register bank with the name
_%$fname_regbank, where fname represents the name of the interrupt function.

Whenthe __regi st er bank() qualifier is omitted, the compiler will save the GPRs on the system stack.

When the __regi st er bank() qualifier, that selects a global register bank, is used on the reset vector
(__interrupt(0)), the context pointer will be initialized, instead of being saved.

1.14.5. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions are predefined functions
that are recognized by the compiler. The compiler generates the most efficient assembly code for these
functions. Intrinsic functions this way enable the use of these specific assembly instructions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by

hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

49

TASKING VX-toolset for C166 User Guide

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character.

Many CoXXX instructions are automatically generated if a special sequence is recognized. For example,

__CoLOAD(argl);
_ CoABY();

generates the CoABS opl, op2 instruction.

__CoMJL(argl, arg2);
__CoRNIX() ;

generates the CoMUL op1, op2, rnd instruction.

__CoSUB(argl);
__CoNEY() ;

generates the CoSUBR op1, op2 instruction.

_ CoABS

void _ CoABS(void);

Use the CoABS instruction to change the MAC accumulator's contents to its absolute value.
_ CoADD

void _ CoADD(long x);

Use the CoADD instruction to add a 32-bit value to the MAC accumulator.

_ CoADD2

void _ CoADD2(long x);

Use the CoADD?2 instruction to add a 32-bit value, multiplied by two, to the MAC accumulator.
__CoASHR

voi d _ CoASHR(unsigned int count);

Use the CoASHR instruction to (arithmetic) shift right the contents of the MAC accumulator count times.

The CoASHR instruction has a maximum value for count . Check your CPU manual for the COASHR
behavior for large arguments.

__CoCMP
unsigned int _ CoCWP(long x);

Inline code is generated by the C compiler to compare the MAC accumulator contents with a 32-bit value.
The returned value is a copy of the MSW register.

50

C Language

__CoLOAD

void _ CoLOAD(long x);

Use the CoLOAD instruction to copy a 32-bit value to the MAC accumulator.

_ CoLOAD2

void _ CoLQAD2(long x);

Use the CoLOAD?2 instruction to copy a 32-bit value, multiplied by two, to the MAC accumulator.
_ CoMAC

void __CoMAC(int x, int y);

Use the CoMAC instruction to add the multiplication result of two signed 16-bit values to the MAC
accumulator.

__ _CoMACsu
void _ CoMACsu(int x, unsigned int y);

Use the CoMACsu instruction to add the multiplication result of a signed 16-bit value with an unsigned
16-bit value to the MAC accumulator.

__ CoMACu
void _ CoMACu(unsigned int x, unsigned int y);

Use the CoMACu instruction to add the multiplication result of two unsigned 16-bit values to the MAC
accumulator.

__CoMACus
void _ CoMACu(unsigned int x, signed int y);

Use the CoMACus instruction to add the multiplication result of an unsigned 16-bit value with a signed
16-bit value to the MAC accumulator.

__CoMAC_min
void __CoMAC min(int x, int y);

Use the CoMAC- instruction to subtract the multiplication result of two signed 16-bit values from the MAC
accumulator.

__CoMACsu_min

void _ CoMACsu_min(int x, unsigned int y);

51

TASKING VX-toolset for C166 User Guide

Use the CoMACsu- instruction to subtract the multiplication result of a signed 16-bit value with an unsigned
16-bit value from the MAC accumulator.

__CoMACu_min
void _ CoMACu_min(unsigned int x, unsigned int y);

Use the CoMACu- instruction to subtract the multiplication result of two unsigned 16-bit values from the
MAC accumulator.

__CoMACus_min
void _ CoMACus_mi n(unsigned int x, signed int y);

Use the CoMACus- instruction to subtract the multiplication result of an unsigned 16-bit value with a
signed 16-bit value from the MAC accumulator.

__CoMAX
void __ CoMAX(long x);

Use the CoMAX instruction to change the MAC accumulator's contents if its value is lower than the
argument's value.

__CoMIN
void __CoMN(long x);

Use the CoMIN instruction to change the MAC accumulator's contents if its value is higher than the
argument's value.

_ CoMUL
void __ CoMJL(int x, int y);

Use the CoMUL instruction to store the multiplication result of two signed 16-bit values in the MAC
accumulator.

__CoMULsu
void _ CoMJLsu(int x, unsigned int y);

Use the CoMULsu instruction to store the multiplication result of a signed 16-bit value with an unsigned
16-bit value in the MAC accumulator.

_ CoMULu
void _ CoMJLu(unsigned int x, unsigned int y);

Use the CoMULu instruction to store the multiplication result of two unsigned 16-bit values in the MAC
accumulator.

52

C Language

__CoMULus
void _ CoMJLus(unsigned int x, signed int y);

Use the CoMULus instruction to store the multiplication result of an unsigned 16-bit value with a signed
16-bit value in the MAC accumulator.

__CoMUL_min
void __CoMJL_min(int x, int y);

Use the CoMUL- instruction to store the negated multiplication result of two signed 16-bit values in the
MAC accumulator.

__CoMULsu_min
void _ CoMJLsu_min(int x, unsigned int y);

Use the CoMULsu- instruction to store the negated multiplication result of a signed 16-bit value with an
unsigned 16-bit value in the MAC accumulator.

__CoMULu_min
void _ CoMJLu_min(unsigned int x, unsigned int y);

Use the CoMULu- instruction to store the negated multiplication result of two unsigned 16-bit values in
the MAC accumulator.

__CoMULus_min
void __ CoMJLus_m n(unsigned int x, signed int y);

Use the CoMULus- instruction to store the negated multiplication result of an unsigned 16-bit value with
a signed 16-bit value in the MAC accumulator.

_ CoNEG

void _ CoNEF void);

Use the CoNEG instruction to change the MAC accumulator's contents to its negated value.
_ _CoNOP

void __ CoNOP(void);

A CoNORP instruction is generated.

__CoRND

void _ CoRND(void);

Use the CoORND semi-instruction to change the MAC accumulator's contents to its rounded value.

53

TASKING VX-toolset for C166 User Guide

__CoSHL
void _ CoSHL(unsigned int count);
Use the CoSHL instruction to shift left the contents of the MAC accumulator count times.

The CoSHL instruction has a maximum value for count . Check your CPU manual for the CoSHL behavior
for large arguments.

__CoSHR
void _ CoSHR(unsigned int count);
Use the CoSHR instruction to (logical) shift right the contents of the MAC accumulator count times.

The CoSHR instruction has a maximum value for count . Check your CPU manual for the CoSHR behavior
for large arguments.

_ CoSTORE

long __CoSTORE(void);

Use the CoSTORE instruction to retrieve the 32-bit value, stored in the MAC accumulator MAH and MAL.
_ CoSTOREMAH

int _ CoSTOREMAH(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAH.
_ CoSTOREMAL

int _ CoSTOREMAL(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAL.
_ CoSTOREMAS

int _ CoSTOREMAS(void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAS.
_ CoSTOREMSW

int _ CoSTOREMBW void);

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MSW.
_ CoSuUB

void _ CoSUB(long x);

54

C Language

Use the CoSUB instruction to subtract a 32-bit value from the MAC accumulator.

_ CoSuUB2

void _ CoSUB2(long x);

Use the CoSUB?2 instruction to subtract a 32-bit value, multiplied by two, from the MAC accumulator.
__alloc

void __near * volatile __alloc(__size_t size);

Allocate memory on the user stack. Returns a pointer to space in external memory of size bytes length.
NULL if there is not enough space left.

__dotdotdot___
char * _ dotdotdot__(void);

Variable argument '..." operator. Used in library function va_st art () . Returns the stack offset to the
variable argument list.

__free
void volatile __free(void * p);

Deallocate the memory pointed to by p. p must point to memory earlier allocated by acallto __al | oc() .

__getsp

__near void * volatile __getsp(void);

Get the value of the user stack pointer. Returns the value of the user stack pointer.

__setsp
void volatile __setsp(__near void * value);

Set the value of the user stack pointer to val ue.
__get_return_address
__codeptr volatile __get_return_address(void);

Used by the compiler for profiling when you compile with the option --profile. Returns the return address
of a function.

__rol

unsigned int __rol(unsigned int operand,
unsi gned int count);

55

TASKING VX-toolset for C166 User Guide

Use the ROL instruction to rotate oper and left count times.

__ror

unsigned int _ _ror(unsigned int operand,
unsi gned int count);

Use the ROR instruction to rotate oper and right count times.

__testclear
__bit __testclear(__bit semaphore);

Read and clear semaphore using the JBC instruction. Returns O if semaphore was not cleared by the
JBC instruction, 1 otherwise.

__testset
__bit __testset(__bit semaphore);

Read and set semaphore using the JNBS instruction. Returns 0 if semaphore was not set by the JINBS
instruction, 1 otherwise.

__bfid

void _ _bfld(volatile unsigned int __unaligned * operand,
unsi gned short mask, unsigned short val ue);

Use the BFLDL/BFLDH instructions to assign the constant val ue to the bit-field indicated by the constant
mask of the bit-addressable oper and.

__getbit
bit _ getbit(operand, bitoffset);

Return the bit at bi t of f set of the bit-addressable oper and for usage in bit expressions.

__putbit

void __putbit(__bit value, operand, bitoffset);

Assign val ue to the bit at bi t of f set of the bit-addressable oper and.

__int166

void __ int166(intno);

Execute the C166/ST10 software interrupt specified by the interrupt number i nt no via the software trap

(TRAP) instruction. __i nt 166(0); emits an SRST (Software Reset) instruction. __i nt 166(8);
emits an SBRK (Software Break) instruction (only for super10/superl0m345/xc16x cores).

56

C Language

__idle
void __idle(void);

Use IDLE instruction to enter the idle mode. In this mode the CPU is powered down while the peripherals
remain running.

__hop

void __nop(void);

A NOP instruction is generated, before and behind the nop instruction the peephole is flushed.
__prior

unsigned int _ _prior(unsigned int value);
Use PRIOR instruction to prioritize val ue.

__pwrdn

void _ pwdn(void);

Use PWRDN instruction to enter the power down mode. In this mode, all peripherals and the CPU are
powered down until an external reset occurs.

__srvwdt

void _ srvwdt(void);

Use SRVWDT instruction to service the watchdog timer.
__diswdt

void _ diswdt(void);

Use DISWDT instruction to disable the watchdog timer.
__enwdt

void __enwdt(void);

Use ENWDT instruction to enable the watchdog timer.
__einit

void __einit(void);

Use EINIT instruction to end the initialization.

57

TASKING VX-toolset for C166 User Guide

__mul32
long __mul32(int x, int y);

Use MUL instruction to perform a 16-bit by 16-bit signed multiplication and returning a signed 32-bit result.
The overflow bit V is set by the CPU when the result cannot be represented in an i nt data type.

__mulu32

unsigned long _ mul u32(unsigned int X,
unsigned int y);

Use MULU instruction to perform a 16-bit by 16-bit unsigned multiplication and returning a unsigned 32-bit
result. The overflow bit V is set by the CPU when the result cannot be represented in an i nt data type.

_div32
int _div32(long x, int y);

Use DIVL instructions to perform a 32-bit by 16-bit signed division and returning a signed 16-bit result.
The overflow bit V is set by the CPU when the result cannot be represented in an i nt data type or when
the divisor yy was zero.

__divu32

unsigned int _ divu32(unsigned |ong x,
unsigned int y);

Use DIVLU instructions to perform a 32-bit by 16-bit unsigned division and returning an unsigned 16-bit
result. The overflow bit V is set by the CPU when the result cannot be represented in an i nt data type
or when the divisor y was zero.

__mod32
int _ nod32(long x, int y);

Use DIVL instructions to perform a 32-bit by 16-bit signed modulo and returning a signed 16-bit result.
The overflow bit V is set by the CPU when the quotient cannot be represented in an i nt data type or
when the divisor y was zero.

__modu32

unsigned int _ modu32(unsigned |ong x,
unsigned int y);

Use DIVLU instructions to perform a 32-bit by 16-bit unsigned modulo and returning a unsigned 16-bit
result. The overflow bit V is set by the CPU when the quotient cannot be represented in an i nt data type
or when the divisor y was zero.

58

C Language

__pag

unsigned int _ pag(void * p);

Inline code is generated by the C compiler to get the 10-bit page number of pointer p
__pof

unsigned int _ pof(void * p);

Inline code is generated by the C compiler to get the 14-bit page offset of pointer p
__S€g

unsigned int _ seg(void * p);

Inline code is generated by the C compiler to get the 8-bit segment number of pointer p
__sof

unsigned int _ _sof(void * p);

Inline code is generated by the C compiler to get the 16-bit segment offset of pointer p

__mkfp

void _ far * _ nkfp(unsigned int pof,
unsigned int pag);

Inline code is generated by the C compiler to make a far pointer from a page offset pof and page number
pag. The arguments pag and pof are expected to be in a valid range.

__mkhp

void _ _huge * __ nkhp(unsigned int sof,
unsi gned int seg);

Inline code is generated by the C compiler to make a huge pointer from a segment offset sof and segment
number seg. The arguments sof and seg are expected to be in a valid range.

__mksp

void __shuge * _ _nksp(unsigned int sof,
unsi gned int seg);

Inline code is generated by the C compiler to make a shuge pointer from a segment offset sof and
segment number seg. The arguments sof and seg are expected to be in a valid range.

sat

void __sat(void);

59

TASKING VX-toolset for C166 User Guide

Enable saturation. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRs).

__nosat
void _ nosat(void);

Disable saturation. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRs).

__scale
void _ scale(void);

Enable scaler. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRs).

__noscale
void _ noscale(void);

Disable scaler. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRs).

1.15. Floating-Point Trapping

Two sets of floating-point libraries are delivered with the compiler, one with a floating-point trapping
mechanism and one without a floating-point trapping mechanism (Chapter 14, Libraries explains the
naming conventions).

The floating-point libraries with a trapping mechanism call a trapping routine which is in module t r ap. obj .
You can replace this routine with your own trapping routine, or link your own trap routine to your application.
By default, the trapping routine as delivered with the floating-point libraries will never return. The infinite
loop on a public label called __f pt r apl oop is easy to find in a debug session. For the source of the
trapping routine, see filet rap. src inthel i b/ src directory of the product.

To see an example of how floating-point traps can be handled import the f pt r ap example project. In the
example all the possible exceptions are generated. You can use this example to write a program which
handles the exception without "hanging" the program.

A floating-point routine calls the trap routine if an error condition occurs. The type of error is specified by
a trap code which is passed via register R1 to the trap routine. The result of a floating-point operation is
not undefined in an error situation. On error the result will be a special floating-point number, such as
infinite, not a number etc., except when a floating point underflow or overflow occurs.

The following table lists all the trap codes and the corresponding error description and result:

Error Description Trap code Result float/integer
Undefined float 1 NAN (float result)

60

C Language

Error Description Trap code Result float/integer

Divide by zero 2 +INF or -INF or NAN (float result)
Integer overflow 3 0x7FFF or 0x8000 (integer result)
Floating overflow 4 +INF or -INF (float result)
Floating underflow 8 0.0 (float result)

Conversion error 32 0 (integer result)

INF Infinite which is the largest absolute floating-point number.

NAN Not A Number, special notation for undefined floating point number.

1.15.1. Handling Floating-Point Traps in a C Application

This section explains how program execution can be continued after a floating-point trap and how
floating-point trap codes are passed from the floating-point trap handler to a C application.

Only the floating-point libraries which perform floating-point trapping contain a floating-point trap stub.
This floating-point trap stub loops infinitely, which is very helpful when you want to find a bug in your
application. But when it is expected or allowed or even wanted that floating-point operations generate
results that are out of range, then program execution must continue after entering the floating-point trap
handler.

It is not possible to simply return from the floating-point trap handler, because the floating-point
accumulator(s) contain a value which is out of range. In the same floating-point operation or else in a
next floating-point operation there will be another call to the floating-point trap handler, because the value
in the floating-point accumulator(s) remain out of range. This results in a succession of floating-point
traps.

It is impossible to assign a value to the floating-point accumulator(s) which is in range and then continue
program execution. If you try to assign a value to the floating-point accumulators the result will always
be undefined.

Interpretation of the error condition in the floating-point trap handler and then continuing the floating-point
operation will result in most cases in a new error condition or unpredictable result. So, this is not a good
solution to handle floating-point error situations.

It is better to stop immediately the floating-point operation which causes the floating-point trap, by returning
back to your application and there decide what to do with the floating-point error condition. Therefore,
you have to predefine an environment in your application to return to. Simply jumping back is not possible
because the system stack and user stack are then corrupted. The floating-point trap code must also be
returned to the application to examine the cause of the trap.

An environment to return to in an application can be saved with the C library function set j np. The C
library function | ongj np can be used in the floating-point trap handler to return immediately to this saved
environment. The | ongj np restores the stack pointers, jumps back and passes the trap code to be
processed.

61

TASKING VX-toolset for C166 User Guide

The file f pt r ap. c in the f pt r ap example project delivered with the product shows how to save an
environment with set j np. The assembly listing of the floating-point trap handler in the file t r ap. src in
I'i b/ src shows how | ongj np is used to return to the saved environment.

There are several ways to write a C function which handles floating-point traps using set j mp and | ongj np.
Always keep in mind that the | ongj np function restores the environment saved by the most recent
invocation of the set j np function. And the environment must be saved before the | ongj np function is
called by the floating-point trap handler, else program execution will be undefined.

The floating-point trap handler checks if an environment is setin __FP_ENV to return to. When the return
address contains a NULL pointer it is supposed that there is no environment set and the trap handler
continues looping infinitely. When a return address is set, the address of the jump buffer __FP_ENV and
the trap code are passed to | ongj np. Calling the | ongj np function at the end of the trap handler restores
the environment saved in __ FP_ENV.

The data section containing the floating-point jump buffer __FP_ENV s cleared at startup. The initialization
codes for it are stored in the near _| i bf p section.

There are two entry points available in the floating-point trap handler, one for double precision floating-point
functions causing a trap (__f pt r ap8), and one for single precision floating-point functions causing a
trap (__f pt r ap4). This default trap handler is precision independent, but if you want to write a trap
handler for each precision you need these two entry points.

You can use your own floating-point trap handler by linking the object module, overruling the floating-point
trap handler of the floating-point library. Or you can replace the floating-point trap object module in the
floating-point library with the object module of your own floating-point trap handler.

1.15.2. IEEE-754 Compliant Error Handling

When you use the floating-point libraries without trapping, the routines continue calculation with erroneous
input values. This behavior is not conforming to the IEEE-754 standard, but does deliver the highest
speed because the input value checking is omitted.

If your application requires IEEE-754 compliant handling of erroneous input values, you should use the
trapping version of the floating-point libraries. But if you do not want to handle the error conditions with
a trap routine, but just continue calculation conform to IEEE-754, you can provide an empty trap function.
You can add the following trap handling code to your application to achieve this:

#i ncl ude <setjnp. h>

#pragma nocl ear
j mp_buf __ FP_ENV;

void _ _fptrap8(void) /* double precision */
{
}

void _ _fptrap4(void) /* single precision */
{
}

62

C Language

1.16. MAC Unit Support

The C166 compiler supports the MAC-unit in the XC16x/Super10 core in four ways:
1. Code generation directly from native C

2. Manual qualification.

3. Intrinsic functions.

4. Evaluation of a single expression.
1.16.1. MAC Code Generation from Native C

Implementation

In the XC16x/Superl0 cores, the MAC-unit basically consists of three SFRs that build a single accumulator
and an instruction set that operates upon it. Because there is only one accumulator the risk of spilling is
high. To spill the accumulator to GPRs, three moves are needed, and another three for the restore. This
is expensive. Furthermore, in terms of code size the MAC instruction set is not always the cheapest.

To generate code for the MAC unit, the compiler searches for local objects of type (unsigned) long. This
type is chosen, because it is closest to the 40-bit accumulator.

Next, the compiler analyzes the code associated with the objects found. For each operation, the compiler
estimates the costs for using the MAC instruction set, compared to the non-MAC instruction set.

The MAC instruction set uses the accumulator as an input, as well as to store the result. Therefore
compound expressions with an operation that maps well upon the MAC instruction set will turn out to be
the most beneficial. Other operations may be used, but they will have a negative effect upon the overall
costs of the object.

As described above there is only one accumulator and spilling is expensive. Therefore, the next step is
to perform lifetime analysis upon the selected objects. Using the lifetime analysis and the computed costs,
object(s) that are the most beneficial and that do not have overlapping lifetimes are preferred for allocation
in the accumulator. This avoids spilling.

Automatic allocation is done by assigning the __mac qualifier to an object. Example

| ong mac(const short * a, const short * b, long sqr, long * sum)

{

int i; /1 1oop counter
long dotp = *sum /1 accumul at or

for (i =0; i < 150; i++)
{
dotp += (long)b[i] * a[i];
sqr += (long)b[i] * b[i];
}

*sum = dot p;

63

TASKING VX-toolset for C166 User Guide

return sqr;
}
When compiled with--core=xc16x --mac --no-savemac, this results in:
_mac . proc far
; mac.c 11 |
; mac.c 12 int i; /1 1oop counter
; Mmac.c 13 long dotp = *sum // accumul ator
novw riz,r11
; mac. c 14
; Mmac.c 15 for (i = 0; i < 150; i++)

nmovw MRW #0x95
novw ri13,[rl2+]
CoLOAD r13,[r12]

; mac.c 16 {

; mac.c 17 dotp += (long)b[i] * a[i];
novw ri2, [r3+]

-usril CoMAC r12,[r2+]

; mac.c 18 sqr +
mul ri2,r12
addw r4, MDL
addcw r5, MDH

(long)b[i] * b[i];

jnmp cc_nusrl, 2
; Mmac.c 19 }
; mac.c 20
; mac.c 21 *sum = dot p;

CoSTORE [r11+], MAL
CoSTORE [r11], MAH

; mac.c 22 return sqr;
novw r2,ra
novw r3,r5

; mac.c 23 }

ret

As you can see, the compiler has chosen to allocate variable ‘dot p' in the accumulator.

Operation costs
The costs of operations can be measured in two ways:
1. Code size.

2. Number of cycles.

When optimize for size (-t4) is selected, costs will be computed using the code size only. When optimize
for speed (-t0) is selected only the number of cycles will be taken into account. In the latter case, the

compiler will multiply the costs by the estimated number of loop iterations.

The size in bytes and cycles are weighed with the trade-off setting:

64

C Language

Trade-off value Time Size
-t0 100% 0%
-t1 75% 25%
-t2 50% 50%
-t3 25% 75%
-t4 0% 100%

The estimated execution frequency of an instruction is multiplied by the number of cycles.

The MAC unit can perform complex operations in one cycle, which is in most cases faster than using the
non-MAC instruction set. Therefore, the MAC instruction set is more useful when speed optimization is
selected. For example, the code for shifting a long to the left is:

size cycles size cycles

CoSHL #1 4 1 addw r2,r2 2 1
addcw r3,r3 2 1

t ot al 4 1 4 2

As you can see, it will not be beneficial to use the MAC instruction here when optimizing for code size,
however when optimizing for speed it is possible to save a cycle by using the MAC instruction set.

1.16.2. Manual MAC Qualification: __mac

With the keyword __nac you can allocate an automatic object in the MAC accumulator. The __mac
keyword is advisory to the compiler. It is only honoured for plain automatics and parameter objects of
type (unsigned) long. The object cannot be volatile, and it is not allowed to take the address of the object.
The compiler will also never assign the __mac qualifier automatically if these restrictions are not met.
The compiler will never automatically choose an object for MAC allocation if it has an overlapping lifetime
with manually qualified objects. When the __nac keyword is ignored, the compiler generates a warning.

Example:
| ong mac(const short * a, const short * b, _ mac long sqr, long * sum)
{

int i; /1 1oop counter

| ong dotp = *sum /1 accunul at or

for (i = 0; i < 150; i++)

{
dotp += (long)b[i] * a[i];
sqr += (long)b[i] * b[i];
}
*sum = dot p;
return sqr;

65

TASKING VX-toolset for C166 User Guide

This is the same example as the previous example, with the exception that object 'sqr ' has now been
qualified explicitly. When compiled with--core=xc16x --mac --no-savemac, this results in:

_mac . proc far
;. mac.c 11 {
;. mac.c 12 int i; /1 1 oop counter
;. mac.c 13 long dotp = *sum // accumnul at or
movw ri2,r11
CoLOAD r4,r5
. nmac.c 14
;. mac.c 15 for (i =0; i < 150; i++)
movw MRW #0x95
novw ri3, [rl2+]
novw riz, [r12]
_2:
;. mac.c 16 {
; mac.c 17 dotp += (long)b[i] * a[i];
novw ri4,[r3]
novw r4,[r2+]
nmul rld, r4

-usrl CoMAC r14,[r3+4]
addw r13, MDL
addcw ri12, VMDH

jmp cc_nusrl, 2
; mac.c 18 sqr += (long)b[i] * Db[i];
;. mac.c 19 }
. nmac.c 20
;. mac.c 21 *sum = dot p;

novw [r11],r13
novw [r11+#0x2],r12
. nmac.c 22 return sqr;
CoSTORE 1 2, VAL
CoSTORE r 3, MAH
;. mac.c 23 }
ret

Now 'sgr ' has been allocated in the MAC accumulator. Because the lifetime of this object overlaps with
that of 'dot p’, the latter cannot be allocated in the accumulator.

1.16.3. MAC Support by Intrinsic Functions

It is also possible to use the MAC- unit by making use of intrinsic functions, which are described in
Section 1.14.5, Intrinsic Functions. As is the case with manual qualification, the compiler will not
automatically choose an object for MAC allocation when its lifetime overlaps with the intrinsic functions.
It is possible to mix-in intrinsic functions though. Example:

#pragma nac
#pr agma nosavenac
long f(int a, int b, int ¢, int d, long e)

{

66

C Language

| ong sum /* __mac qualifier assigned automatically */
sum = (long)a * b;

sum-= (long)c * d;

/*

* End lifetine of sum start lifetinme of "intrinsic functions”
*/

__CoLQAD(sum);

__CoNE(() ;

__CoRNIX() ;

/*
* End lifetinme of "intrinsic functions" start lifetine of sum
*/

sum = _ CoSTORE() + e;
sum <<= 1;

sum += (long)a * d;
return sum

}

#pragma savenac

#pragnma nonac

When compiled with --core=xc16x, this results in:

code_f .section code, new
. gl obal _f

f . proc far
CoMUL r2,r3
CoMACR r4,r5,rnd
CoADD r11,r12
CoSHL #0x1
CoMAC r2,r5
CoSTORE r 2, VAL
CoSTORE r 3, VAH
ret

From this example you can see thatthe __ CoLOAD() and __ CoSTORE() intrinsic functions are optimized
away. The CoMAC generated by the C statement: sum -= (long) ¢ * d; is combined with the
__CoNEQF() and __CoRND() intrinsic functions into a single instruction: COMACR r 4, r 5, r nd.

1.16.4. Using the MAC Status Word

Just like the PSW flags, the MSW flags are compiler resources, they are not intended for direct use from
the C code. Ifitis necessary to make decisions upon the MSW flags, use the intrinsics __ CoSTOREMSW()
or __CoCQWP() . For example:

long f(void)
{
__CoLQAD(X);
if (_CoOMP(y) & (1 << 10)) /* test the MC flag */
{
return x;

67

TASKING VX-toolset for C166 User Guide

}

return y;

}

1.16.5. Evaluation of a Single Expression

When the MAC accumulator is not used by one of the previous methods, the code generator may decide
to use the MAC unit for evaluation of a single (sub-) expression. The difference with (automatic) __mac
qualification is that an object will not actually live inside the accumulator, but the accumulator will be
temporarily used to evaluate a (complex) expression. Once the expression is evaluated, the result will
be stored immediately into a register pair. This method is only useful when an expression is complex
enough to compensate for the CoL QAD/Co STORE operations needed to initialize/unload the accumulator.

Example:

#pragma nmac
#pragma nosavenac
int * mac_shift(long value, int * buf)
{
*puf ++ = (int)(value >> 12);
return buf;
}
#pragma savenmac
#pragma nonmac

When compiled with --core=xc16x, this will generate the following code:

CoLOAD r2,r3
CoSHL #0x4
CoSTORE [r4+], MAH
nmovw r2,r4

ret

Here, 'val ue' is temporarily loaded into the MAC accumulator, shifted, and the result is stored. The
compiler can make use of the 40-bit shift instruction and the post-increment feature of the CoSTORE
instruction.

1.16.6. Hardware Loops

When MAC instructions are generated in a loop body it is sometimes possible to convert a loop into a
hardware loop. However, there are some prerequisites:

» There must be a MAC instruction on every path in the loop. This is necessary to ensure that the MRW
register is updated in every iteration.

» The compiler must be able to find the iteration register, and the instruction that updates it. Furthermore,
the update must match the update that is applied automatically to the MRW register when a MAC
instruction is passed, i.e. subtract one in each iteration.

» The loop iteration variable cannot be used inside the loop or after the loop.

68

C Language

The compiler itself will actively assist by trying to transform a loop in such a form that it can be converted
into a hardware loop. As you may have noticed in the previous examples, the loop iteration variable is
used inside the loop and yet it is converted into a hardware loop. This is possible because the compiler
has applied strength reduction to the code. This optimization replaces the subscripted array by pointers.
This eliminates the use of the loop variable inside the loop and enables the hardware loop optimization.

Loop optimizations are controlled by the option -Ol (loop transformations).

1.16.7. Considerations when Using the MAC

All MAC registers follow the callee-saves strategy. The costs for the save/restore of MAC registers in a
function's prologue/epilogue are not taken into account during the cost analysis of the automatic allocation
process. This is done on purpose, because the save/restore of MAC registers can sometimes be avoided.
To do this, it is advised to pick the functions that you want to be MAC optimized with care. You can do
this by enclosing a function in #pr agma mac/nomac directives, rather than to enable the MAC unit
application wide using the option --mac. Next, make sure that the MAC registers do not contain valid data
when the functions you have picked are called. In general this will be the case when no caller or any other
function up in the call tree that calls the MAC optimized function, uses MAC optimizations itself. It is now
relatively easy to analyze this because the MAC unit is enabled selectively instead of application wide.
When you are sure the MAC registers are not used, add #pr agna nosavemnac/savemnac to disable the
save/restore of MAC registers. By using these pragmas some significant overhead can be avoided.

1.17. Section Naming

The C compiler generates sections and uses a combination of the memory type and the object name as
section names. The memory types are: code, near, far, huge, shuge, bit, bita and iram. See also
Section 1.3.1, Memory Type Qualifiers. The section names are independent of the section attributes such
as clear, init, and romdata.

Section names are case sensitive. By default, the sections are not concatenated by the linker. This means
that multiple sections with the same name may exist. At link time sections with different attributes can be
selected on their attributes. The linker may remove unreferenced sections from the application.

You can rename sections with a pragma or with a command line option. The syntax is the same:
--renane-sections=[type=]format_string[,[type=]format_string]...

#pragnma section [type=]format_string[,[type=]format_string]...

With the memory type you select which sections are renamed. The matching sections will get the specified

format string for the section name. The format string can contain characters and may contain the following
format specifiers:

{attrib} section attributes, separated by underscores
{ nodul e} module name

{nane} object name, name of variable or function
{type} section type

69

TASKING VX-toolset for C166 User Guide

The default compiler generated section names are {t ype} _{ nane}.
Some examples (file t est . c):

#pragma section near={nodul e} _{type} {attrib}
__near int x;
/* Section name: test_near_near_clear */

#pragma section near=_c166_{ nodul e} _{nane}
__near int status;
/* Section name: _cl66_test_status */

#pragma secti on near =RENAMED_{ nane}
__hear int barcode;
/* Section name: RENAMED barcode */

With #pr agma endsect i on the naming convention of the previous level is restored, while with #pr agna
section defaul t the default section naming convention is restored. Nesting of pragma
section/endsection pairs will save the status of the previous level.

Examples (file exanpl e. c)

__near char a; /! allocated in 'near_a'
#pragma section near =MyNear Dat al

__near char b; /1 allocated in ' MyNear Dat al'
#pragma secti on near =MyNear Dat a2

__near char c; /1 allocated in ' MyNear Dat a2’
#pragma endsection

__near char d; /1 allocated in ' MyNear Dat al'
#pragma endsection

__near char e; /! allocated in 'near_ege'

1.18. TASKING Volatile Implementation

Volatile objects are objects defined with the keyword vol ati | e. For example:
vol atile unsigned int port;

Read and write operations on volatile variables in the C code always result in a read or write operation
from/to the object. The compiler will not cache values of volatiles in registers. Operations on volatiles are
kept in the order as they appear in the C code, even if there are no obvious relations between these
operations. For non-volatile objects the compiler may change the order of operations when there is no
dependency between these operations. This is also the case when intermixing volatile operations with
non-volatile operations. The volatile operations will be kept in the sequence they have in the C code, but
the non-volatile operations can be moved freely.

Mutual exclusion (mutex) can be used to avoid the simultaneous use of a common resource, such as a
global variable, by pieces of C code called critical sections.

For example:

70

C Language

vol atil e unsigned int updating data = 0;
unsi gned | ong dat a;

voi d foo(unsigned |ong val ue)

{
updating _data = 1;
data = value; // The conpiler can nove this assignnment
updating_data = O;

}

In this example an attempt is made to create a mutex with the volatile variable updat i ng_dat a. But the
compiler is still free to move ‘critical code’, the assignment of dat a, to earlier or later in the function,
making the protection of the assignment void.

The C compiler has an option to make the volatile operations behave as fences for other operations, the
--language=+volatile (-Av) option. In the given example the critical code can then never be moved across
the setting and clearing of the mutex, nor is it possible that any other code moves into the critical code
region.

It is quite common that when programming mutexes, a function call is used as a fence. For example:

voi d foo(unsigned | ong val ue)

{
set _mut ex(&updating_data); /'l enter the critical code
data = val ue; /1 do some safe processing
clear_nmutex(&updating_data); // leave the critical code
}

In general this has the same effect as with the volatiles and the --language=+volatile (-Av) option. Even
better, in this example the mutex updat i ng_dat a, does not need to be volatile.

However, with advanced optimizations such as automatic inlining it is possible that the functions to set
and clear the mutex will be inlined, meaning that the fences around the critical code have disappeared.
Even putting the mutex set and clear functions into another module may not be safe when MIL linking is
used in combination with automatic inlining. There are several solutions to avoid this problem:

» exclude the mutex set and clear functions from inlining, either by placing them in a module or library
that is not included in the MIL linking or by adding the __noi nl i ne keyword to the function definitions
and prototypes

* use volatile objects in combination with the --language=+volatile (-Av) option

 use fences with inline assembly, for example __asn("nop");

71

TASKING VX-toolset for C166 User Guide

72

Chapter 2. C++ Language

The TASKING C++ compiler (cp166) offers a new approach to high-level language programming for the
C166 family. The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:2003 standard.
It also accepts the language extensions of the C compiler (see Chapter 1, C Language).

This chapter describes the C++ language implementation and some specific features.

Note that the C++ language itself is not described in this document. For more information on the C++
language, see

» The C++ Programming Language (second edition) by Bjarne Straustrup (1991, Addison Wesley)
* ISO/IEC 14882:1998 C++ standard [ANSI]

» ISO/IEC 14882:2003 C++ standard [ISO/IEC]

* ISO/IEC 14882:2011 C++ standard [ISO/IEC]

» ISO/IEC 14882:2014 C++ standard [ISO/IEC]

More information on the standards can be found at http://www.iso.org/

2.1. C++ Language Extension Keywords

The C++ compiler supports the same language extension keywords as the C compiler. When option
--strict is used, the extensions will be disabled.

pragmas

The C++ compiler supports the pragmas as explained in Section 2.7, Pragmas to Control the C++ Compiler.
Pragmas give directions to the code generator of the compiler.

2.2. C++ Dialect Accepted

The C++ compiler accepts the complete C++ language as defined by the ISO/IEC 14882:2003 standard.

With option --c++11 the C++ compiler accepts the complete C++11 language as defined by the ISO/IEC
14882:2011 standard.

With option --c++14 the C++ compiler accepts the complete C++14 language as defined by the ISO/IEC
14882:2014 standard.

Command line options are also available to enable and disable anachronisms and strict
standard-conformance checking.

73

http://www.iso.org/

TASKING VX-toolset for C166 User Guide

2.2.1. Default C++ Mode

The following extensions are accepted in default C++ mode. Most of these are also accepted in any other
C++ mode (except when strict ANSI/ISO violations are diagnosed as errors or were explicitly noted):

» Afri end declaration for a class may omit the cl ass keyword:

class A {
friend B; // Should be "friend class B"

H

» Constants of scalar type may be defined within classes:

class A{
const int size = 10;
int a[size];

I

* In the declaration of a class member, a qualified name may be used:

struct A {
int A:f(); // Should be int f();

H

 Therestrict keyword is allowed.

* Aconst qualified object with file scope or namespace scope and the __at () attribute will have external
linkage, unless explicitly declared st at i ¢. Examples:

const int i = 5; /1 internal |inkage
const int j __at(0x1234) = 10; /1 external |inkage
static const int k __at(0x1236) = 15; // internal |inkage

Note that no warning is generated when 'j ' is not used.

* Implicit type conversion between a pointer to an ext ern " C' function and a pointer to an ext er n
" C++" function is permitted. Here's an example:

extern "C" void f(); // f's type has extern "C' |inkage
void (*pf)() // pf points to an extern "C++" function
= &f; /1 error unless inmplicit conversion is
/1 allowed

This extension is allowed in environments where C and C++ functions share the same calling
conventions. It is enabled by default.

« A"?" operator whose second and third operands are string literals or wide string literals can be implicitly
converted to "char *"or"wchar _t *".(Recall that in C++ string literals are const . There is a
deprecated implicit conversion that allows conversion of a string literal to "char *", dropping the const .

74

C++ Language
That conversion, however, applies only to simple string literals. Allowing it for the result of a "?" operation
is an extension.)
char *p = x ? "abc" : "def";
Default arguments may be specified for function parameters other than those of a top-level function

declaration (e.g., they are accepted on t ypedef declarations and on pointer-to-function and
pointer-to-member-function declarations).

Non-static local variables of an enclosing function can be referenced in a non-evaluated expression
(e.g., asi zeof expression) inside a local class. A warning is issued.

In default C++ mode, the friend class syntax is extended to allow nonclass types as well as class types
expressed through a typedef or without an elaborated type name. For example:

typedef struct S ST;

class C {
friend S; /1 OK (requires S to be in scope).
friend ST; /1 OK (same as "friend S;").
friend int; /1 OK (no effect).

friend S const; // Error: cv-qualifiers cannot
/1 appear directly.

b

In default C++ mode, mixed string literal concatenations are accepted. (This is a feature carried over
from C99 and also available in GNU modes).

wchar _t *str = "a" L"b"; // OK, sane as L"ab".

In default C++ mode, variadic macros are accepted. (This is a feature carried over from C99 and also
available in GNU modes.)

In default C++ mode, empty macro arguments are accepted (a feature carried over from C99).

A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enumE { e, };

2.2.2. GNU C++ Mode

The C++ compiler can be configured to support GNU C++ (command line option --g++). In GNU C++
mode, many extensions provided by the GNU C++ compiler are accepted.

Because the GNU C++ compiler frequently changes behavior between releases, the C++ compiler provides
an option (--gnu_version) to specify a specific version of GCC to emulate. Generally speaking, features
and bugs are emulated to exactly match each known version of GCC, but occasionally the emulation is
approximate and in such cases the C++ compiler is often a little more permissive than GCC on the principle
that it is more important to accept source that GCC accepts than to diagnose every case that GCC

75

TASKING VX-toolset for C166 User Guide

diagnoses. The C++ compiler does not, however, attempt to emulate every GCC command line option;
in particular, GCC options to be extra-permissive are not emulated (however, the severity of specific error
diagnostics can sometimes be decreased to accept constructs that are not by-default allowed in GNU
emulation mode).

The following GNU extensions are not supported:

The forward declaration of function parameters (so they can participate in variable-length array
parameters).

GNU-style complex integral types (complex floating-point types are supported)
Nested functions

Local structs with variable-length array fields.

2.2.3. Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled (with --anachronisms):

over | oad is allowed in function declarations. It is accepted and ignored.

Definitions are not required for static data members that can be initialized using default initialization.
The anachronism does not apply to static data members of template classes; they must always be
defined.

The number of elements in an array may be specified in an array del et e operation. The value is
ignored.

A single oper at or ++() and oper at or - - () function can be used to overload both prefix and postfix
operations.

The base class hame may be omitted in a base class initializer if there is only one immediate base
class.

Assignment to t hi s in constructors and destructors is allowed. This is allowed only if anachronisms
are enabled and the "assignment to t hi s" configuration parameter is enabled.

A bound function pointer (a pointer to a member function for a given object) can be cast to a pointer to
a function.

A nested class name may be used as a non-nested class hame provided no other class of that name
has been declared. The anachronism is not applied to template classes.

A reference to a non-const type may be initialized from a value of a different type. A temporary is
created, it is initialized from the (converted) initial value, and the reference is set to the temporary.

A reference to a non-const class type may be initialized from an rvalue of the class type or a derived
class thereof. No (additional) temporary is used.

A function with old-style parameter declarations is allowed and may participate in function overloading
as though it were prototyped. Default argument promotion is not applied to parameter types of such

76

C++ Language

functions when the check for compatibility is done, so that the following declares the overloading of
two functions named f :

int f(int);
int f(x) char x; { return x; }

Note that in C this code is legal but has a different meaning: a tentative declaration of f is followed by
its definition.

* When option --nonconst-ref-anachronism is set, a reference to a non-const class can be bound to a
class rvalue of the same type or a derived type thereof.

struct A {
A(int);
A oper at or =(A&) ;
A operat or +(const A&);

b
mei n () {

b(l)

= A(1) + A(2); /] Alowed as anachroni sm
}

2.3. Namespace Support

Namespaces are enabled by default. You can use the command line option --no-namespaces to disable
the features.

When doing name lookup in a template instantiation, some names must be found in the context of the
template definition while others may also be found in the context of the template instantiation. The C++
compiler implements two different instantiation lookup algorithms: the one mandated by the standard
(referred to as "dependent name lookup"), and the one that existed before dependent name lookup was
implemented.

Dependent name lookup is done in strict mode (unless explicitly disabled by another command line option)
or when dependent name processing is enabled by either a configuration flag or command line option.

Dependent Name Processing

When doing dependent name lookup, the C++ compiler implements the instantiation name lookup rules
specified in the standard. This processing requires that non-class prototype instantiations be done. This
in turn requires that the code be written using the t ypenane and t enpl at e keywords as required by
the standard.

Lookup Using the Referencing Context
When not using dependent name lookup, the C++ compiler uses a name lookup algorithm that

approximates the two-phase lookup rule of the standard, but does so in such a way that is more compatible
with existing code and existing compilers.

77

TASKING VX-toolset for C166 User Guide

When a name is looked up as part of a template instantiation but is not found in the local context of the
instantiation, it is looked up in a synthesized instantiation context that includes both names from the
context of the template definition and names from the context of the instantiation. Here's an example:

namespace N {
int g(int);
int x = 0;
tenpl ate <class T> struct A {
TFf(Tt) { return g(t); }
Tf() { return x; }

s
}
namespace M {
int x = 99;
doubl e g(doubl e);
N : A<int> ai;
int i =ai.f(0); Il N:A<int>:f(int) calls
/1 N :g(int)
int i2=ai.f(); Il N:A<int>:f() returns
Il 0 (= N:x)
N: : A<doubl e> ad;
double d = ad.f(0); // N :A<doubl e>::f(doubl e)
/1l calls M:g(double)
double d2 = ad.f(); // N :A<double>: :f() also
/Il returns 0 (= N :x)
}

The lookup of names in template instantiations does not conform to the rules in the standard in the
following respects:

 Although only names from the template definition context are considered for names that are not functions,
the lookup is not limited to those names visible at the point at which the template was defined.

* Functions from the context in which the template was referenced are considered for all function calls
in the template. Functions from the referencing context should only be visible for "dependent” function
calls.

Argument Dependent Lookup

When argument-dependent lookup is enabled (this is the default), functions made visible using
argument-dependent lookup overload with those made visible by normal lookup. The standard requires
that this overloading occurs even when the name found by normal lookup is a block ext er n declaration.
The C++ compiler does this overloading, but in default mode, argument-dependent lookup is suppressed
when the normal lookup finds a block ext er n.

This means a program can have different behavior, depending on whether it is compiled with or without

argument-dependent lookup --no-arg-dep-lookup, even if the program makes no use of namespaces.
For example:

78

C++ Language

struct A{ };
A operator+(A, double);
void f() {
A ail;
A operator+(A, int);
al + 1.0; // calls operator+(A, double)
/1l with arg-dependent | ookup enabl ed but
/1l otherwi se calls operator+(A, int);

2.4. Template Instantiation

The C++ language includes the concept of templates. A template is a description of a class or function
that is a model for a family of related classes or functions.® For example, one can write a template for a
St ack class, and then use a stack of integers, a stack of floats, and a stack of some user-defined type.
In the source, these might be written St ack<i nt >, St ack<f | oat >, and St ack<X>. From a single
source description of the template for a stack, the compiler can create instantiations of the template for
each of the types required.

The instantiation of a class template is always done as soon as it is needed in a compilation. However,
the instantiations of template functions, member functions of template classes, and static data members
of template classes (hereafter referred to as template entities) are not necessarily done immediately, for
several reasons:

* One would like to end up with only one copy of each instantiated entity across all the object files that
make up a program. (This of course applies to entities with external linkage.)

* The language allows one to write a specialization of a template entity, i.e., a specific version to be used
in place of a version generated from the template for a specific data type. (One could, for example,
write a version of St ack<i nt >, or of just St ack<i nt >: : push, that replaces the template-generated
version; often, such a specialization provides a more efficient representation for a particular data type.)
Since the compiler cannot know, when compiling a reference to a template entity, if a specialization for
that entity will be provided in another compilation, it cannot do the instantiation automatically in any
source file that references it.

» The language also dictates that template functions that are not referenced should not be compiled,
that, in fact, such functions might contain semantic errors that would prevent them from being compiled.
Therefore, a reference to a template class should not automatically instantiate all the member functions
of that class.

(It should be noted that certain template entities are always instantiated when used, e.g., inline functions.)

From these requirements, one can see that if the compiler is responsible for doing all the instantiations
automatically, it can only do so on a program-wide basis. That is, the compiler cannot make decisions
about instantiation of template entities until it has seen all the source files that make up a complete
program.

ISince templates are descriptions of entities (typically, classes) that are parameterizable according to the types they operate upon,
they are sometimes called parameterized types.

79

TASKING VX-toolset for C166 User Guide

This C++ compiler provides an instantiation mechanism that does automatic instantiation at link time. For
cases where you want more explicit control over instantiation, the C++ compiler also provides instantiation
modes and instantiation pragmas, which can be used to exert fine-grained control over the instantiation
process.

2.4.1. Instantiation Modes

Normally, when a file is compiled, template entities are instantiated everywhere where they are used.
The overall instantiation mode can, however, be changed by a command line option:

--instantiate=used

Instantiate those template entities that were used in the compilation. This will include all static data
members for which there are template definitions. This is the default.

--instantiate=all

Instantiate all template entities declared or referenced in the compilation unit. For each fully instantiated
template class, all of its member functions and static data members will be instantiated whether or not
they were used. Non-member template functions will be instantiated even if the only reference was a
declaration.

--instantiate=local

Similar to --instantiate=used except that the functions are given internal linkage. This is intended to
provide a very simple mechanism for those getting started with templates. The compiler will instantiate
the functions that are used in each compilation unit as local functions, and the program will link and run
correctly (barring problems due to multiple copies of local static variables.) However, one may end up
with many copies of the instantiated functions, so this is not suitable for production use. --instantiate=local
cannot be used in conjunction with automatic template instantiation. If automatic instantiation is enabled
by default, it will be disabled by the --instantiate=local option.

In the case where the cc166 command is given a single file to compile and link, e.g.,
ccl66 test.cc

the compiler knows that all instantiations will have to be done in the single source file. Therefore, it uses
the --instantiate=used mode and suppresses automatic instantiation.

2.4.2. Instantiation #pragma Directives

Instantiation pragmas can be used to control the instantiation of specific template entities or sets of
template entities. There are three instantiation pragmas:

* The instantiate pragma causes a specified entity to be instantiated.

» The do_not_instantiate pragma suppresses the instantiation of a specified entity. It is typically used
to suppress the instantiation of an entity for which a specific definition will be supplied.

» The can_instantiate pragma indicates that a specified entity can be instantiated in the current
compilation, but need not be; it is used in conjunction with automatic instantiation, to indicate potential
sites for instantiation if the template entity turns out to be required.

80

C++ Language

The argument to the instantiation pragma may be:

« atemplate class name A<i nt >

» atemplate class declaration cl ass A<i nt >

» a member function name A<i nt >: : f

* a static data member name A<i nt >: : i

« a static data declarationi nt A<int>::i

» a member function declaration voi d A<i nt>::f (int, char)
» atemplate function declaration char* f(int, fl oat)

A pragma in which the argument is a template class name (e.g., A<i nt >orcl ass A<i nt >)is equivalent
to repeating the pragma for each member function and static data member declared in the class. When

instantiating an entire class a given member function or static data member may be excluded using the

do_not_instantiate pragma. For example,

#pragma instantiate A<int>
#pragma do_not _instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an instantiation to occur.
If an instantiation is explicitly requested by use of the instantiate pragma and no template definition is
available or a specific definition is provided, an error is issued.

templ ate <class T> void f1(T); // No body provided
templ ate <class T> void g1(T); // No body provided

void f1(int) {} // Specific definition
void main()
{ . .
int i;
doubl e d;
f1(i);
f1(d);
g1(i);
g1(d);
}

#pragma instantiate void f1(int) // error - specific
/1 definition

#pragma instantiate void gl(int) // error - no body
/1 provided

f 1(doubl e) and g1(doubl e) will not be instantiated (because no bodies were supplied) but no errors
will be produced during the compilation (if no bodies are supplied at link time, a linker error will be
produced).

81

TASKING VX-toolset for C166 User Guide

A member function name (e.g., A<i nt >: : f) can only be used as a pragma argument if it refers to a
single user defined member function (i.e., not an overloaded function). Compiler-generated functions are
not considered, so a name may refer to a user defined constructor even if a compiler-generated copy
constructor of the same name exists. Overloaded member functions can be instantiated by providing the
complete member function declaration, as in

#pragma instantiate char* A<int>::f(int, char?*)

The argument to an instantiation pragma may not be a compiler-generated function, an inline function,
or a pure virtual function.

2.4.3. Implicit Inclusion

When implicit inclusion is enabled, the C++ compiler is given permission to assume that if it needs a
definition to instantiate a template entity declared in a . h file it can implicitly include the corresponding

. cc file to get the source code for the definition. For example, if a template entity ABC: : f is declared in
file xyz. h, and an instantiation of ABC: : f is required in a compilation but no definition of ABC: : f appears
in the source code processed by the compilation, the compiler will look to see if a file xyz. cc exists, and
if so it will process it as if it were included at the end of the main source file.

To find the template definition file for a given template entity the C++ compiler needs to know the path
name specified in the original include of the file in which the template was declared and whether the file
was included using the system include syntax (e.g., #i ncl ude <fi | e. h>).This information is not
available for preprocessed source containing #l i ne directives. Consequently, the C++ compiler will not
attempt implicit inclusion for source code containing #| i ne directives.

The file to be implicitly included is found by replacing the file suffix with each of the suffixes specified in
the instantiation file suffix list. The normal include search path mechanism is then used to look for the file
to be implicitly included.

By default, the list of definition file suffixes tried is . c, . cc, . cpp, and . cxx.

Implicit inclusion works well alongside automatic instantiation, but the two are independent. They can be
enabled or disabled independently, and implicit inclusion is still useful when automatic instantiation is not
done.

The implicit inclusion mode can be turned on by the command line option --implicit-include.

Implicit inclusions are only performed during the normal compilation of a file, (i.e., not when doing only
preprocessing). A common means of investigating certain kinds of problems is to produce a preprocessed
source file that can be inspected. When using implicit inclusion it is sometimes desirable for the
preprocessed source file to include any implicitly included files. This may be done using the command
line option --no-preprocessing-only. This causes the preprocessed output to be generated as part of a
normal compilation. When implicit inclusion is being used, the implicitly included files will appear as part
of the preprocessed output in the precise location at which they were included in the compilation.

2.5. Inlining Functions

The C++ compiler supports a minimal form of function inlining. When the C++ compiler encounters a call
of a function declared i nl i ne it can replace the call with the body of the function with the parameters

82

C++ Language

replaced by the corresponding arguments. When a function call occurs as a statement, the statements
of the function body are inserted in place of the call. When the function call occurs within an expression,
the body of the function is rewritten as one large expression and that expression is inserted in the proper
place in the containing expression. It is not always possible to do this sort of inlining: there are certain
constructs (e.g. loops and inline assembly) that cannot be rendered in expression form. Even when inlining
is done at the statement level, there are certain constructs that are not practical to inline. Calls that cannot
be inlined are left in their original call form, and an out-of-line copy of the function is used. When enabled,
a remark is issued.

When the C++ compiler decides not to inline a function, the keyword i nl i ne is passed to the generated
C file. This allows for the C compiler to decide again whether to inline a function or not.

A function is disqualified for inlining immediately if any of the following are true:
» The function has local static variables.

» The function has local constants.

» The function has local types.

» The function has block scopes.

» The function includes pragmas.

» The function has a variable argument list.

2.6. Extern Inline Functions

Depending on the way in which the C++ compiler is configured, out-of-line copies of ext ern inli ne
functions are either implemented using static functions, or are instantiated using a mechanism like the
template instantiation mechanism. Note that out-of-line copies of inline functions are only required in
cases where the function cannot be inlined, or when the address of the function is taken (whether explicitly
by the user, by implicitly generated functions, or by compiler-generated data structures such as virtual
function tables or exception handling tables).

When static functions are used, local static variables of the functions are promoted to global variables
with specially encoded names, so that even though there may be multiple copies of the code, there is
only one copy of such global variables. This mechanism does not strictly conform to the standard because
the address of an extern inline function is not constant across translation units.

When the instantiation mechanism is used, the address of an extern inline function is constant across
translation units, but at the cost of requiring the use of one of the template instantiation mechanisms,
even for programs that don't use templates. Definitions of extern inline functions can be provided either
through use of the automatic instantiation mechanism or by use of the --instantiate=used or
--instantiate=all instantiation modes. There is no mechanism to manually control the definition of extern
inline function bodies.

83

TASKING VX-toolset for C166 User Guide

2.7. Pragmas to Control the C++ Compiler

Pragmas are keywords in the C++ source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:
#pragma pragnme- spec

The C++ compiler supports the following pragmas:

instantiate / do_not_instantiate / can_instantiate

These are template instantiation pragmas. They are described in detail in Section 2.4.2, Instantiation
#pragma Directives.

hdrstop / no_pch

These are precompiled header pragmas. They are described in detail in Section 2.9, Precompiled Headers.

once

When placed at the beginning of a header file, indicates that the file is written in such a way that including
it several times has the same effect as including it once. Thus, if the C++ compiler sees #pr agma once
at the start of a header file, it will skip over it if the file is #included again.

A typical idiom is to place an #ifndef guard around the body of the file, with a #define of the guard variable
after the #ifndef:

#pragma once /1 optional
#i f ndef FILE_H
#define FILE H
body of the header file ...
#endi f

The #pragna once is marked as optional in this example, because the C++ compiler recognizes the
#i f ndef idiom and does the optimization even in its absence. #pr agnma once is accepted for compatibility
with other compilers and to allow the programmer to use other guard-code idioms.

2.7.1. C pragmas Supported by the C++ compiler
The C++ compiler supports the following C pragmas:

section [type=name] / endsection [default | restore]

Generate code/data in a new section. See Section 1.17, Section Naming for more information.

84

2.8. Predefined Macros

C++ Language

The C++ compiler defines a number of preprocessing macros. Many of them are only defined under
certain circumstances. This section describes the macros that are provided and the circumstances under

which they are defined.

Macro

Description

__ABI_COMPATIBILITY_VERSION

Defines the ABI compatibility version being
used. This macro is set to 9999, which means
the latest version. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_RTTI

This macro is set to TRUE, meaning that the
ABI changes for RTTI are implemented. This
macro is used when building the C++ library.

__ABI_CHANGES_FOR_ARRAY_NEW_AND_DELETE

This macro is set to TRUE, meaning that the
ABI changes for array new and delete are
implemented. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_PLACEMENT _DELETE

This macro is set to TRUE, meaning that the
ABI changes for placement delete are
implemented. This macro is used when
building the C++ library.

__ARRAY_OPERATORS

Defined when array newand del et e are
enabled. This is the default.

__BASE_FILE__ Similarto __FILE__ but indicates the primary
source file rather than the current one (i.e.,
when the current file is an included file).

_BOOL Defined when bool is a keyword. This is the
default.

__BUILD__ Identifies the build number of the C++

compiler, composed of decimal digits for the
build number, three digits for the major branch
number and three digits for the minor branch
number. For example, if you use build 1.22.1
of the compiler, _ BUILD__ expands to
1022001. If there is no branch number, the
branch digits expand to zero. For example,
build 127 results in 127000000.

__CHAR_MIN/_CHAR_MAX

Usedinlim ts. h to define the
minimum/maximum value of a plain char
respectively.

__CHAR16_T_AND_CHAR32_T

Defined when char 16_t and char 32_t are
keywords. These keywords are enabled when
you use C++ compiler option --uliterals.

85

TASKING VX-toolset for C166 User Guide

Macro

Description

__CHAR16_TYPE__

Defined as the underlying type for char 16_t
(GNU version 40400 and above, see
--ghu-version).

__CHAR32_TYPE__

Defined as the underlying type for char 32_t
(GNU version 40400 and above, see
--gnu-version).

__CP166__

Identifies the C++ compiler. You can use this
symbol to flag parts of the source which must
be recognized by the cp166 C++ compiler
only. It expands to 1.

__CORE__

Expands to a string with the core depending

on the C++ compiler options --cpu and --core.
The symbol expands to “c16x” when no --cpu
and no --core is supplied.

__ _CORE_core___

A symbol is defined depending on the C++
compiler options --cpu and --core. The core
is converted to uppercase. For example, if
--cpu=xcl67ci is specified, the symbol
__CORE_XC16X__isdefined.When no --core
or --cpu is supplied, the C++ compiler defines
__CORE_C16X__.

__cplusplus

Always defined.

CPU__

Expands to a string with the CPU supplied with
the option --cpu. When no --cpu is supplied,
this symbol is not defined. For example, if
--cpu=xcl67ci is specified, the symbol
__CPU__ expandsto xcl67ci .

_ CPU_cpu__

A symbol is defined depending on the option
--cpu.The cpu is converted to uppercase. For
example, if --cpu=xc167ci is specified, the
symbol __CPU_XC167Cl __ is defined. When
no --cpu is supplied, this symbol is not
defined.

__DATE__

Defined to the date of the compilation in the
form "Mmm dd yyyy".

__DELTA_TYPE

Defines the type of the offset field in the virtual
function table. This macro is used when
building the C++ library.

__DOUBLE_FP__

Expands to 1 if you did not use option
--no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__embedded_cplusplus

Defined as 1 in Embedded C++ mode.

_ EXCEPTIONS

Defined when exception handling is enabled
(--exceptions).

86

C++ Language

Macro Description

__FILE__ Expands to the current source file name.

__FUNCTION__ Defined to the name of the current function.
An error is issued if it is used outside of a
function.

__func__ Same as __ FUNCTION__ in GNU mode.

__IMPLICIT_USING_STD

Defined when the standard header files should
implicitly do a using-directive on the st d
namespace (--using-std).

__JMP_BUF_ELEMENT_TYPE

Specifies the type of an element of the setjmp
buffer. This macro is used when building the
C++ library.

__JMP_BUF_NUM_ELEMENTS

Defines the number of elements in the setjmp
buffer. This macro is used when building the
C++ library.

__LINE__

Expands to the line number of the line where
this macro is called.

_ MODEL__

Identifies the memory model for which the
current module is compiled. It expands to a
single character constant: ‘n’ (near), ‘f’ (far),
‘s’ (shuge) or ‘h’ (huge).

_ NAMESPACES

Defined when namespaces are supported (this
is the default, you can disable support for
namespaces with --no-namespaces).

__NO_LONG_LONG

Defined when the | ong | ong type is not
supported. This is the default.

__NULL_EH_REGION_NUMBER

Defines the value used as the null region
number value in the exception handling tables.
This macro is used when building the C++
library.

_ PLACEMENT_DELETE

Defined when placement delete is enabled.

__PRETTY_FUNCTION__

Defined to the name of the current function.
This includes the return type and parameter
types of the function. An error is issued if it is
used outside of a function.

_ PTRDIFF_MIN / __PTRDIFF_MAX

Used in st di nt . h to define the
minimum/maximum value ofaptrdi ff _t
type respectively.

__PTRDIFF_TYPE__

Defined to be the type of pt rdi ff _t.

__REGION_NUMBER_TYPE

Defines the type of a region number field in
the exception handling tables. This macro is
used when building the C++ library.

87

TASKING VX-toolset for C166 User Guide

Macro

Description

__REVISION__

Expands to the revision number of the C++
compiler. Digits are represented as they are;
characters (for prototypes, alphas, betas) are
represented by -1. Examples: v1.0r1 -> 1,
v1.0rb ->-1

__RTTI

Defined when RTTI is enabled (--rtti).

_ RUNTIME_USES_NAMESPACES

Defined when the run-time uses namespaces.

__SFRFILE__ (cpu)

This macro expands to the filename of the
used SFR file, including the pathname and the
< >.The cpu is the argument of the macro.
For example, if --cpu=xc167ci is specified,
themacro__ SFRFI LE__(__CPU_) expands
to__ SFRFI LE__(xc167ci), which expands
to<sfr/regxcl67ci.sfr>.

__SIGNED_CHARS__

Defined when plain char is signed.

__SINGLE_FP__

Expands to 1 if you used option --no-double
(Treat ‘double’ as ‘float’), otherwise
unrecognized as macro.

__SIZE_MIN/ _SIZE_MAX

Used in st di nt . h to define the
minimum/maximum value of a si ze_t type
respectively.

__SIZE_TYPE__

Defined to be the type of si ze_t.

__STDC__

Always expands to 0.

__STDC_VERSION__

Identifies the ISO-C version number. Expands
to 199901L for ISO C99, but the value may be
redefined.

_STLP_NO_IOSTREAMS

Defined when option --io-streams is not used.
This disables I/O stream functions in the
STLport C++ library.

__ TASKING__ Always defined for the TASKING C++
compiler.
__TIME__ Expands to the compilation time: “hh:mm:ss”

__TYPE_TRAITS_ENABLED

Defined when type traits pseudo-functions (to
ease the implementation of ISO/IEC TR
19768; e.g., __i s_uni on) are enabled. This
is the default in C++ mode.

VAR _HANDLE_TYPE

Defines the type of the variable-handle field
in the exception handling tables. This macro
is used when building the C++ library.

__VARIADIC_TEMPLATES

Defined when C++11 variadic templates are
supported (option --variadic-templates).

88

C++ Language

Macro Description

_ _VERSION__ Identifies the version number of the C++
compiler. For example, if you use version 2.1r1
of the compiler, _ VERSION___ expands to
2001 (dot and revision number are omitted,
minor version number in 3 digits).

__VIRTUAL_FUNCTION_INDEX_TYPE Defines the type of the virtual function index
field of the virtual function table. This macro
is used when building the C++ library.

__ WCHAR_MIN/__WCHAR_MAX Used in st di nt . h to define the
minimum/maximum value of awchar _t type
respectively.

_WCHAR_T Defined when wehar _t is a keyword.

2.9. Precompiled Headers

It is often desirable to avoid recompiling a set of header files, especially when they introduce many lines
of code and the primary source files that #i ncl ude them are relatively small. The C++ compiler provides
a mechanism for, in effect, taking a snapshot of the state of the compilation at a particular point and writing
it to a disk file before completing the compilation; then, when recompiling the same source file or compiling
another file with the same set of header files, it can recognize the "snapshot point", verify that the
corresponding precompiled header (PCH) file is reusable, and read it back in. Under the right
circumstances, this can produce a dramatic improvement in compilation time; the trade-off is that PCH
files can take a lot of disk space.

2.9.1. Automatic Precompiled Header Processing

When --pch appears on the command line, automatic precompiled header processing is enabled. This
means the C++ compiler will automatically look for a qualifying precompiled header file to read in and/or
will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the "header stop" point. The header stop
point is typically the first token in the primary source file that does not belong to a preprocessing directive,
but it can also be specified directly by #pragma hdrstop (see below) if that comes first. For example:

#i ncl ude "xxx.h"
#i ncl ude "yyy. h"
int i;

The header stop pointisi nt (the first non-preprocessor token) and the PCH file will contain a snapshot
reflecting the inclusion of xxx. h and yyy. h. If the first non-preprocessor token or the #pr agma hdr st op
appears within a #i f block, the header stop point is the outermost enclosing #i f . To illustrate, heres a
more complicated example:

#i ncl ude "xxx.h"
#i f ndef YYY_H
#define YYY H 1

89

TASKING VX-toolset for C166 User Guide

#i ncl ude "yyy. h"
#endi f

#if TEST

int i;

#endi f

Here, the first token that does not belong to a preprocessing directive is again i nt , but the header stop
point is the start of the #i f block containing it. The PCH file will reflect the inclusion of xxx. h and
conditionally the definition of YYY_Hand inclusion of yyy. h; it will not contain the state produced by #i f
TEST.

A PCH file will be produced only if the header stop point and the code preceding it (mainly, the header
files themselves) meet certain requirements:

The header stop point must appear at file scope -- it may not be within an unclosed scope established
by a header file. For example, a PCH file will not be created in this case:

/1 xxx.h
class A {

/1l xxx.C
#i ncl ude "xxx.h"
int i; };

The header stop point may not be inside a declaration started within a header file, nor (in C++) may it
be part of a declaration list of a linkage specification. For example, in the following case the header
stop point is int, but since it is not the start of a new declaration, no PCH file will be created:

/'l yyy.h
static

Il yyy.C
#i ncl ude "yyy. h"

int i;
Similarly, the header stop point may not be inside a #i f block or a #def i ne started within a header
file.

The processing preceding the header stop must not have produced any errors. (Note: warnings and
other diagnostics will not be reproduced when the PCH file is reused.)

No references to predefined macros __DATE__ or __TI ME__ may have appeared.
No use of the #l i ne preprocessing directive may have appeared.
#pragma no_pch (see below) must not have appeared.

The code preceding the header stop point must have introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers. The minimum number of declarations required
is 1.

90

C++ Language

When the host system does not support memory mapping, so that everything to be saved in the
precompiled header file is assigned to preallocated memory (MS-Windows), two additional restrictions
apply:

» The total memory needed at the header stop point cannot exceed the size of the block of preallocated
memory.

* No single program entity saved can exceed 16384, the preallocation unit.

When a precompiled header file is produced, it contains, in addition to the snapshot of the compiler state,
some information that can be checked to determine under what circumstances it can be reused. This
includes:

» The compiler version, including the date and time the compiler was built.
» The current directory (i.e., the directory in which the compilation is occurring).
* The command line options.

» The initial sequence of preprocessing directives from the primary source file, including #i ncl ude
directives.

» The date and time of the header files specified in #i ncl ude directives.

This information comprises the PCH prefix. The prefix information of a given source file can be compared
to the prefix information of a PCH file to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

/] a.cc
#i ncl ude "xxx. h"
/] Start of code
/1l b.cc
#i ncl ude "xxx.h"
/] Start of code

When a. cc is compiled with --pch, a precompiled header file named a. pch is created. Then, when b. cc
is compiled (or when a. cc is recompiled), the prefix section of a. pch is read in for comparison with the
current source file. If the command line options are identical, if xxx. h has not been modified, and so
forth, then, instead of opening xxx. h and processing it line by line, the C++ compiler reads in the rest of
a. pch and thereby establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the largest (i.e., the one
representing the most preprocessing directives from the primary source file) is used. For instance, consider
a primary source file that begins with

#i ncl ude "xxx.h"
#i ncl ude "yyy. h"
#i nclude "zzz. h"

If there is one PCH file for xxx. h and a second for xxx. h and yyy. h, the latter will be selected (assuming

both are applicable to the current compilation). Moreover, after the PCH file for the first two headers is
read in and the third is compiled, a new PCH file for all three headers may be created.

91

TASKING VX-toolset for C166 User Guide

When a precompiled header file is created, it takes the name of the primary source file, with the suffix
replaced by an implementation-specified suffix (pch by default). Unless --pch-dir is specified (see below),
it is created in the directory of the primary source file.

When a precompiled header file is created or used, a message such as
"test.cc": creating preconpiled header file "test.pch"
is issued. The user may suppress the message by using the command line option --no-pch-messages.

When the option --pch-verbose is used the C++ compiler will display a message for each precompiled
header file that is considered that cannot be used giving the reason that it cannot be used.

In automatic mode (i.e., when --pch is used) the C++ compiler will deem a precompiled header file obsolete
and delete it under the following circumstances:

« if the precompiled header file is based on at least one out-of-date header file but is otherwise applicable
for the current compilation; or

« ifthe precompiled header file has the same base name as the source file being compiled (e.g., xxx. pch
and xxx. cc) but is not applicable for the current compilation (e.g., because of different command line
options).

This handles some common cases; other PCH file clean-up must be dealt with by other means (e.g., by
the user).

Support for precompiled header processing is not available when multiple source files are specified in a
single compilation: an error will be issued and the compilation aborted if the command line includes a
request for precompiled header processing and specifies more than one primary source file.

2.9.2. Manual Precompiled Header Processing

Command line option --create-pch=file-name specifies that a precompiled header file of the specified
name should be created.

Command line option --use-pch=file-name specifies that the indicated precompiled header file should
be used for this compilation; if it is invalid (i.e., if its prefix does not match the prefix for the current primary
source file), a warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with --pch-dir, the indicated file name (which may
be a path name) is tacked on to the directory name, unless the file name is an absolute path name.

The options --create-pch, --use-pch, and --pch may not be used together. If more than one of these
options is specified, only the last one will apply. Nevertheless, most of the description of automatic PCH
processing applies to one or the other of these modes -- header stop points are determined the same
way, PCH file applicability is determined the same way, and so forth.

2.9.3. Other Ways to Control Precompiled Headers

There are several ways in which the user can control and/or tune how precompiled headers are created
and used.

92

C++ Language

» #pragma hdrstop may be inserted in the primary source file at a point prior to the first token that does
not belong to a preprocessing directive. It enables you to specify where the set of header files subject
to precompilation ends. For example,

#i ncl ude "xxx. h"
#i ncl ude "yyy. h"
#pragma hdr st op
#i nclude "zzz. h"

Here, the precompiled header file will include processing state for xxx. h and yyy. h but not zzz. h.
(This is useful if the user decides that the information added by what follows the #pragma hdrstop
does not justify the creation of another PCH file.)

» #pragma no_pch may be used to suppress precompiled header processing for a given source file.

« Command line option --pch-dir=directory-name is used to specify the directory in which to search for
and/or create a PCH file.

Moreover, when the host system does not support memory mapping and preallocated memory is used
instead, then one of the command line options --pch, --create-pch, or --use-pch, if it appears at all, must
be the first option on the command line.

2.9.4. Performance Issues

The relative overhead incurred in writing out and reading back in a precompiled header file is quite small
for reasonably large header files.

In general, it does not cost much to write a precompiled header file out even if it does not end up being
used, and if it is used it almost always produces a significant speedup in compilation. The problem is that
the precompiled header files can be quite large (from a minimum of about 250K bytes to several megabytes
or more), and so one probably does not want many of them sitting around.

Thus, despite the faster recompilations, precompiled header processing is not likely to be justified for an
arbitrary set of files with nonuniform initial sequences of preprocessing directives. Rather, the greatest
benefit occurs when a number of source files can share the same PCH file. The more sharing, the less
disk space is consumed. With sharing, the disadvantage of large precompiled header files can be
minimized, without giving up the advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should expect to reorder the
#i ncl ude sections of their source files and/or to group #i ncl ude directives within a commonly used
header file.

Below is an example of how this can be done. A common idiom is this:

#i ncl ude "commfile.h"
#pragma hdr st op
#i nclude ...

where comfi | e. h pulls in, directly and indirectly, a few dozen header files; the #pr agma hdr st op is
inserted to get better sharing with fewer PCH files. The PCH file produced for connfi | e. h can be a bit
over a megabyte in size. Another idiom, used by the source files involved in declaration processing, is
this:

93

TASKING VX-toolset for C166 User Guide

#include "comfile.h"
#i ncl ude "decl _hdrs. h"
#pragma hdrstop

#i nclude ...

decl _hdr s. h pulls in another dozen header files, and a second, somewhat larger, PCH file is created.
In all, the source files of a particular program can share just a few precompiled header files. If disk space
were at a premium, you could decide to make commfi | e. h pull in all the header files used -- then, a
single PCH file could be used in building the program.

Different environments and different projects will have different needs, but in general, users should be

aware that making the best use of the precompiled header support will require some experimentation
and probably some minor changes to source code.

94

Chapter 3. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language. For a complete
overview of the architecture you are using, refer to the target's Core Reference Manual.

3.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label [:]] [instruction | directive | macro_call] [;conmment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits, dollar ($) and
underscore characters (). The first character cannot be a digit or a $. The label
can also be a number. A label which is prefixed by whitespace (spaces or tabs)
has to be followed by a colon (:). The size of an identifier is only limited by the
amount of available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LAB1: ; This label is followed by a colon and
; can be prefixed by whitespace
LAB1 ; This label has to start at the beginning
. of aline
1: jmp 1p ; This is an endl ess | oop

; using nuneric |abels

95

TASKING VX-toolset for C166 User Guide

instruction An instruction consists of a mnemonic and zero, one or more operands. It must
not start in the first column.

Operands are described in Section 3.3, Operands of an Assembly Instruction.
The instructions are described in the target's Core Reference Manual.

The instruction can also be a so-called 'generic instruction’. Generic instructions
are pseudo instructions (no instructions from the instruction set). Depending on
the situation in which a generic instruction is used, the assembler replaces the
generic instruction with appropriate real assembly instruction(s). For a complete
list, see Section 3.11, Generic Instructions.

directive With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 3.9, Assembler Directives and Controls.

macro_call A call to a previously defined macro. It must not start in the first column. See
Section 3.10, Macro Operations.

comment Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called ‘control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$cont rol

For more information on controls see Section 3.9, Assembler Directives and Controls.

3.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 3.7.3, Expression Operators. Other special assembler characters
are:

Character [Description

; Start of a comment

5 Unreported comment delimiter

\ Line continuation character or macro operator: argument concatenation
? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

N Macro operator: override local label

Macro string delimiter or quoted string . DEFI NE expansion character

96

Assembly Language

Character |Description

' String constants delimiter

@ Start of a built-in assembly function
$ Location counter substitution

[1 Instruction grouping operator

Immediate addressing

Note that macro operators have a higher precedence than expression operators.

3.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

Operand Description

symbol A symbolic name as described in Section 3.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 3.5, Registers.

expression Any valid expression as described in Section 3.7, Assembly Expressions.

address A combination of expression, register and symbol.

3.4. Symbol Names

User-defined symbols
A user-defined symbol can consist of letters, digits and underscore characters (). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case

of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 3.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels.

97

TASKING VX-toolset for C166 User Guide

Reserved symbols

Symbol names and other identifiers starting with a period (.) are reserved for the system (for example for
directives or section names). ldentifiers starting with an at sign ('@") are reserved for built-in assembler
functions. Instructions are also reserved. The case of these built-in symbols is insignificant.

Examples

Valid symbol names:
| oop_1

ENTRY

a_B c

_aBC

Invalid symbol names:

1 | oop ; starts with a nunber
. DEFI NE ; reserved directive nane

3.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol Description

__BUILD__ Identifies the build number of the assembler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, _ BUILD___ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__Cle6__ Identifies the assembler. You can use this symbol to flag parts of the source
which must be recognized by the as166 assembler only. It expands to 1.

__CORE__ Expands to a string with the core depending on the assembler options --cpu
and --core. The symbol expands to “c16x” when no --cpu and no --core is
supplied.

_ CORE_core___ A symbol is defined depending on the options --cpu and --core. The core
is converted to uppercase. Example: if --cpu=xc167ci is specified, the
symbol __CORE_XC16X__is defined. When no --core or --cpu is supplied,
the assembler defines _ CORE_C16X__.

CPU Expands to a string with the CPU supplied with the option --cpu. When no
--cpu is supplied, this symbol is not defined.

_ CPU_cpu__ A symbol is defined depending on the option --cpu=cpu. The cpu is converted
to uppercase. For example, if --cpu=xc167ci is specified the symbol
__CPU_XC167C __is defined. When no --cpu is supplied, this symbol is
not defined.

98

Assembly Language

Symbol Description

_ REVISION__ Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0r1 -> 1, v1.0rb -> -1

__SILICON_BUG_num___ |This symbol is defined if the number num is defined with the option

--silicon-bug.

__ _TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.

__VERSION__ Identifies the version number of the assembler. For example, if you use

version 2.1r1 of the assembler, _ VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

.if @efined('__CPU XC167ClI__")
; this part is only for the XCl167Cl

.endi f

3.5. Registers

The following register names, either uppercase or lowercase, should not be used for user-defined symbol
names in an assembly language source file:

RO .. Ri15 (general purpose registers)
RLO .. RL7 (byte registers)
RHO .. RH7 (byte registers)

3.6. Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from assembly. The
SFRs are defined in a special function register file (*.sfr) as symbol names for use with the compiler and
assembler. The assembler reads the SFR file as defined by the selected derivative with the command
line option --cpu (-C). The format of the SFR file is exactly the same as the include file for the C compiler.
For more details on the SFR files see Section 1.3.5, Accessing Hardware from C. Because the SFR file
format uses C syntax and the assembler has a limited C parser, it is important that you only use the
described constructs.

SFRs in the SFR area and extended SFR area are addressed in the near address space. Some SFRs
cannot be addressed with a REG addressing mode, although they are within the SFR area or the extended
SFR area. These registers are:

RSTCON |OxF1EO
RSTCON2 | OxF1E2
SYSSTAT |OxF1E4

99

TASKING VX-toolset for C166 User Guide

Example use in assembly:

movw POL, #0x88 ; use of port nane
bset POL_3 : use of bit nane
jnb POL_4, 2

bclr POL_3

_2:

bset | EN ;. use of bit nane

Without an SFR file the assembler only knows the general purpose registers R0-R15 and the SFRs PSW
(and its bits), DPPO, DPP1, DPP2 and DPP3.

3.7. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions may contain user-defined labels (and their associated integer values), and any combination
of integers or ASCI| literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

* symbol

» expression binary_operator expression

* unary_operator expression

 (expression)

« function call

All types of expressions are explained in separate sections.

100

Assembly Language

3.7.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes and suffixes can be used in either lowercase or uppercase.

Base Description Example
Binary A Ob prefix followed by binary digits (0,1). Or use a b or y suffix|0b1101

11001010b
Octal Octal digits (0-7) followed by a o suffix 7770
Hexadecimal A Ox prefix followed by a hexadecimal digits (0-9, A-F, a-f). Or |Ox12FF

use a h suffix 0x45

0f al0h
Decimal Decimal digits (0-9), optionally followed by a d or t 12

1245d
3.7.2. Strings

ASCII characters, enclosed in single (') or double (") quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a . DEFI NE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 8 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a . DB assembler directive; in that
case all characters result in a constant value of the specified size. Null strings have a value of 0.

Examples

' ABCD ; (0x41424344)

79 ; to enclose a quote double it
"Al"BC ; or to enclose a quote escape it
"AB' +1 ; (0x4143) string used in expression

; null string

3.7.3. Expression Operators

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

101

TASKING VX-toolset for C166 User Guide

Type Operator Name Description
O parenthesis Expressions enclosed by parenthesis are evaluated
first.
Unary + plus Returns the value of its operand.
- minus Returns the negative of its operand.
~ one's complement Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.
! logical negate Returns 1 if the operands' value is O; otherwise 0.
NOT For example, if buf is 0 then ! buf is 1. If buf has
a value of 1000 then ! buf is 0.
DPPnN: DPP override Specify the DPP number used in bit 14 and 15 of
the address. The DPPn is one of DPPO, DPP1,
DPP2, DPP3
PAG page number Returns the page number of the operand (operand
>>14), same as @ag() function.
POF page offset Returns the page offset of the operand (operand &
0x3FFF), same as @of () function.
SEG segment number Returns the segment number of the operand
(operand >> 16), same as @eg() function.
SOF segment offset Returns the segment offset of the operand (operand
& OXFFFF), same as @of () function.
BOF bit offset Returns the bit offset of a bit operand, same as
@of () function.
HIGH high byte Returns the high byte of the operand ((operand >>
8)&0xFF), same as @rsb() function.
LOW low byte Returns the low byte of the operand (operand &
0xFF), same as @ sb() function.
type type cast Any of the valid assembler symbol types can be used
as a type cast operator.
Arithmetic * multiplication Yields the product of its operands.

102

division

Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

Assembly Language

Type Operator Name Description
% modulo Used with integers, this operator yields the remainder
MOD from the division of the first operand by the second.
Used with floating-point operands, this operator
applies the following rules:
Y%Z=YifZ=0
Y % Z = X if Z <> 0, where X has the same sign as
Y, is less than Z, and satisfies the relationship: Y =
integer * Z + X
+ addition Yields the sum of its operands.
- subtraction Yields the difference of its operands.
Shift << shift left Integer only. Causes the left operand to be shifted
SHL to the left (and zero-filled) by the number of bits
specified by the right operand.
>> shift right Integer only. Causes the left operand to be shifted
SHR to the right by the number of bits specified by the
right operand. The sign bit will be extended.
Relational < less than Returns an integer 1 if the indicated condition is
LT TRUE or an integer 0 if the indicated condition is
<= less than or equal FALSE.
LE In either case, the memory space attribute of the
> greater than resultis N
GT
- reater than or equal For example, if D has a value of 3 and E has a value
G_E 9 q of 5, then the result of the expression D<Eis 1, and
the result of the expression D>E is 0.
== equal
EQ Use tests for equality involving floating-point values
= not equal with caution, since rounding errors could cause
NE unexpected results.
ULT unsigned less than | The unsigned operators are implemented as signed
ULE unsigned less than or operators that mask out the top bit of the _
equal expressions. This makes them effectively 63-bit
operators.
UGT unsigned greater than
UGE unsigned greater than
or equal
Bit and bit position Specify bit position (right operand) in a bit
Bitwise addressable byte or word (left operand).
& AND Integer only. Yields the bitwise AND function of its
AND operand.
[OR Integer only. Yields the bitwise OR function of its
OR operand.

103

TASKING VX-toolset for C166 User Guide

Type Operator Name Description
A exclusive OR Integer only. Yields the bitwise exclusive OR function
XOR of its operands.
Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.
Il logical OR Returns an integer 1 if either of the operands is

non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly

. i f directive, but can be used in any expression.

3.7.4. Symbol Types and Expression Types

Symbol Types

The type of a symbol is determined upon its definition by the directive it is defined with and by the section
in which it is defined. The following table shows the symbol types that are available.

Symbol Section type where symbol is Directive resulting in the symbol type
type defined

NEAR CODE with or after a . PROC NEAR
FAR CODE with or after a . PROC FAR
BIT BIT .dbit, .dsbit, .ds, .bit

BYTE FAR, SHUGE, HUGE .db, .ds, .dsb

WORD FAR, SHUGE, HUGE .dw, .dl, .dll, dsw, dsl, dsll
BITBYTE BIT, BITA .db, .dsb

BITWORD |BIT, BITA .dw, .dl, .dll, dsw, dsl, dslI
NEARBYTE |NEAR, IRAM .db, .ds, .dsb

NEARWORD |NEAR, IRAM .dw, .dl, .dll, dsw, dsl, dsll
DATA3 .equ, .set

DATA4 .equ, .set

DATA8 .equ, .set

DATA16 .equ, .set

INTNO CODE .proc intno

REGBANK .regbank, .label

SFR .extern (internal)

Besides the mentioned directives it is also possible to explicitly define the symbol’s type with the . LABEL
directive and with the . EXTERN directive. Labels not on the same line as the directive still are assigned
the type for that directive if they immediately precede the directive:

104

Assembly Language

farsect .section far
nyl abel: ; this label gets the WORD type
.dw 1

When you make a symbol global with the . GLOBAL directive, the symbol’s type will be stored in the object
file. The . EXTERN directive used for importing the symbol in another module must specify the same type.
If the type is omitted in the . EXTERN directive, the assembler will assume the following when using the
symbol:

Symbol used in Symbol type
bit operation BIT

byte operation BYTE

word operation WORD

left of dot operator BITWORD
generic call FAR
immediate operands DATA16

If none of the directives are used that result in a symbol type, the symbol gets a default type based on
the section it is defined in:

Section type Default symbol type Possible symbol types

BIT BIT BIT

BITA BITWORD BITWORD, BITBYTE

IRAM NEARWORD NEARWORD, NEARBYTE, REGBANK
NEAR NEARWORD NEARWORD, NEARBYTE

FAR WORD WORD, BYTE

SHUGE WORD WORD, BYTE

HUGE WORD WORD, BYTE

CODE FAR FAR, NEAR, INTNO

For creating bit addressable bytes or words with the type BITBYTE or BITWORD, BIT or BITA sections
must be used. For defining a BITBYTE the label must be byte aligned and for a BITWORD it must be
word aligned.

Example with a BITA section:

bitasect .section bita

bith .dsb 1 ;. BI TBYTE
.align 2
bitw .dsw 1 ;. Bl TWORD

The . ALI GNdirective is used here because the assembler issues a warning on unaligned word definitions.

Symbols defined with . EQU or . SET inherit the type of the expression. The result of an expression is
determined by the type of symbols used in the expression.

105

TASKING VX-toolset for C166 User Guide

Symbols of type WORD or BYTE

As you can see from the table above, the assembler cannot make a difference between a far, shuge and
a huge symbol, it only knows the symbol types WORD and BYTE as possible symbol types in a far, shuge
or huge section. As a consequence the linker also cannot know whether the symbol is far, shuge or huge.
This can result in an error from the linker, E109: addr ess space ni smat ch. For example, when a
huge symbol is located in shuge memory. To workaround this, use a secti on_I| ayout : : huge in the
LSL file to assign a value to a far or shuge symbol.

Type Checking

When you use a symbol or expression as an operand for an instruction, the assembler will check if the
type of this symbol or expression is valid for the used instruction. If it is not valid, the assembler will issue
an error. For generic instructions the assembler uses the symbol type to select the smallest instruction.

When a relocatable expression is used as a word address operand, the linker checks if the result of the
expression is word aligned. An error will be issued if this is not the case. This is done independently of
the used type.

Expression Types

When evaluating an expression, the result of the expression is determined by the operands of the
expression and the operators. The types of the symbols are divided in two groups: constant types and
address types

Constant types: DATA3, DATA4, DATA8, DATA16 and INTNO

Address types: NEAR, FAR, BIT, BYTE, WORD, BITBYTE, BITWORD, NEARBYTE, NEARWORD
and REGBANK

Address types may each relate to incompatible memory spaces. Unary operators are not allowed on
address types. A unary operator applied to a constant type will yield the same constant type as result of
the expression. The following table shows the resulting operand types for a binary operator:

Binary operator Operand combination
Constant/Constant |Address/Constant or Address/Address
Constant/Address
- (subtraction) Largest constant Address type Constant type if the address types
type are compatible.

remarks: the section
information of the address |lllegal address operation if the
operand is used for the addresses are incompatible.
result
remarks: There is no relocation if
both addresses are from the same
section.

106

Assembly Language

Binary operator Operand combination
Constant/Constant |Address/Constant or Address/Address
Constant/Address
bitwise OR, XOR |Largest constant Address type Address type
and AND type
lllegal address operation if the
addresses are incompatible.
remarks: There is no relocation if
both addresses are from the same
section.
+ (addition) Largest constant Address type Address type
type
lllegal address operation if the
addresses are incompatible.
remarks: There is no relocation if
both addresses are from the same
section.
. (dot) BIT BIT lllegal address operation
remarks: only allowed if
type of address is
BITBYTE or BITWORD
==, EQ' 1=, NE, DATA3
>=, GE, <=, LE, >,
GT, <, LT, ULT,
UGT, ULE, UGE
other binary Largest constant Address type lllegal address operation
operator type
remarks: the section
information of the address
operand is used for the
result

3.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations. You can use functions as terms in any expression.

Syntax of an assembly function
@ unction_name([argunent[, argunment]...])

Functions start with the '@' character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name
and the opening parenthesis and between the (comma-separated) arguments.

107

TASKING VX-toolset for C166 User Guide

The names of assembly functions are case insensitive.

Overview of assembly functions

Function

Description

@\BS(expr)

@\RE(' symbol' | expr)
@3l TBYTE(expr)

@Bl TWORD(expr)
@BOF(expr)

@NT()

@PP(label)

@-AR(expr)

@ SB(expr)

@-SW expr)

@vBB(expr)

@BW expr)

@NEAR(expr)

@AG expr)

@POF(expr)

@EQ expr)

@BOF(expr)

@TRCAT(strl, str2)
@TRCMP(strl, str2)
@STRCVPI (strl, str2)
@TRLEN(string)

@TRPOS(strl, str2[, start])
@UBSTR(str, exprl, expr2)

@EFI NED(' symbol' | symbol)

Absolute value

Test whether macro argument is present
Bitbyte of the expression

Bitword of the expression

Bit offset of the expression

Return number of macro arguments
Test whether symbol exists

Return DPP register to access the label
Far result of the expression

Least significant byte of the expression
Least significant word of the expression
Most significant byte of the expression
Most significant word of the expression
Near result of the expression

Page number of the expression

Page offset of the expression

Segment number of the expression
Segment offset of the expression
Concatenate strl and str2

Compare strl with str2

Compare strl with str2 case insensitive
Return length of string

Return position of str2 in strl

Return substring

108

Assembly Language

Detailed Description of Built-in Assembly Functions

@ABS(expression)
Returns the absolute value of the expression.
Example:

AVAL . SET @\BS(-2) ; AVAL = 2

@ARG('symbol’ | expression)

Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.
You can specify the argument with a symbol name (the nhame of a macro argument enclosed in single
guotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

IF @RE ' TWDDLE') ;is argunment tw ddle present?
I F @GARE(1) ;is first argunent present?

@BITBYTE(expression)

Returns the bitbyte of the result of the expression. The result of the expression must be a bit address.

@BITWORD(expression)

Returns the bitword of the result of the expression. The result of the expression must be a bit address.

@BOF(expression)

Returns the bit offset of the result of the expression. The result of the expression must be a bit address

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

ARGCOUNT . SET @NT() ; reserve argunent count

@DEFINED('symbol' | symbol)

Returns 1 if symbol has been defined, 0 otherwise. If symbol is quoted, it is looked up as a . DEFI NE
symbol; if it is not quoted, it is looked up as an ordinary symbol, macro or label.

Example:

109

TASKING VX-toolset for C166 User Guide

. | F @DEFI NED(' ANGLE') ;is symbol ANGLE defined?
. | F @DEFI NED({ ANGLE) ;does | abel ANGLE exist?
@DPP(label)

Expands to the DPP register needed to access the near label. The assembler issues an error if the label
is not of the type near. Function can be used anywhere where a short or long address can be used,
including expressions.

@FAR(expression)
Returns the far result of the expression.
@LSB(expression)

Returns the least significant byte of the result of the expression. The result of the expression is calculated
as 16 bit.

Example:
.DB @.SB(0x1234) ; stores 0x34
.DB @BB(0x1234) ; stores 0x12

@LSW(expression)

Returns the least significant word of the result of the expression. The result of the expression is calculated
as a long (32 bit).

Example:
.DW @QSW 0x12345678) ; stores 0x5678
.DW @/BW 0x123456) ; stores 0x0012

@MSB (expression)

Returns the most significant byte of the result of the expression. The result of the expression is calculated
as 16 bit.

@MSW(expression)

Returns the most significant word of the result of the expression. The result of the expression is calculated
as a long (32 bit).

@NEAR(expression)

Returns the near result of the expression.

110

Assembly Language

@PAG(expression)

Returns the page number of the result of the expression. The result of the expression is calculated as
long (32 bit).

Example:

| SEC .SECTION near,init

AWORD . DW @AG(COUNT) ; Initialize with the page nunber where COUNT is | ocated.
COUNT .DS 1

| SEC . ENDS

@POF(expression)

Returns the page offset of the result of the expression. The result of the expression is calculated as long
(32 hit).

Example:

DSEC .SECTION near,init
TAB2 .DW8
DSEC . ENDS

CSEC . SECTI ON code
MOV RO, #@OF(TAB2) ; Fill RO with the page of fset
of fset of variable TAB2
CSEC . ENDS

@SEG(expression)

Returns the segment number of the result of the expression. The result of the expression is calculated
as long (32 bit).

Example:

DSEC . SECTI ON near,init

AWORD . DW @EG TABX) ; Initialize with the segnent nunber where TABX is | ocated.
TABX .DS 1

TABY .DS 20

DSEC . ENDS

@SOF(expression)

Returns the segment offset of the result of the expression. The result of the expression is calculated as
long (32 bit).

@STRCAT(string1,string2)

Concatenates stringl and string2 and returns them as a single string. You must enclose stringl and
string2 either with single quotes or with double quotes.

111

TASKING VX-toolset for C166 User Guide

Example:

.DEFINE I D "@TRCAT(' TAS',"KING)" ; 1D = "'TASKI NG

@STRCMP(stringl,string?2)

Compares string1 with string2 by comparing the characters in the string. The function returns the difference
between the characters at the first position where they disagree, or zero when the strings are equal:

<0 if string1 < string2
0 if stringl == string2
>0 if string1 > string2
Example:

IF (@TRCMP(STR ' MAIN))==0 ; does STR equal 'MAIN ?

@STRCMPI(stringl1,string?2)

Same as @STRCMVP() , but compares strings case insensitive.

@STRLEN(string)

Returns the length of string as an integer.
Example:

SLEN . SET @TRLEN(' string') : SLEN = 6

@STRPOS(stringl,string?2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in stringl, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1.

Example:
ID.set @TRPOS(' TASKING ,"ASK') ; ID=1
ID.set @TRPOS(' TASKING ,'BUG) ; ID=7

@SUBSTR(string,expressionl,expression2)

Returns the substring from string as a string. expressionl is the starting position within string, and
expression?2 is the length of the desired string. The assembler issues an error if either expressionl or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

112

Assembly Language

.DEFINE ID "@UBSTR(' TASKING ,3,4)" ;ID="KING

3.9. Assembler Directives and Controls

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

» Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

* Assembly control directives

« Symbol definition directives

« Data definition / Storage allocation directives
¢ High Level Language (HLL) directives

« Directives that are interpreted by the macro preprocessor. These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all.

» Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the controls $LIST and
$NOLIST you overrule this option for a part of the code that you do not want to appear in the list file.
Controls always appear on a separate line and start with a '$' sign in the first column.

The following controls are available:
* Assembly listing controls
* Miscellaneous controls

Each assembler directive or control has its own syntax. You can use assembler directives and controls
in the assembly code as pseudo instructions. The assembler recognizes both uppercase and lowercase
for directives and controls.

113

TASKING VX-toolset for C166 User Guide

3.9.1. Assembler Directives

Overview of assembly control directives

Directive Description
. END Indicates the end of an assembly module
. I NCLUDE Include file

Overview of symbol definition directives

Directive Description

. ALI AS Create an alias for a symbol

. ASSUME Assume DPP usage

. CGROUP, . DGROUP Create a group of code sections or data sections
. EQU Set permanent value to a symbol

. EXTERN Import global section symbol

. GLOBAL Declare global section symbol

. LABEL Define a label of a specified type

. PRCC, . ENDP Define a procedure

. REGBANK Define register bank

. SECTI QN, . ENDS Start a new section

. SET Set temporary value to a symbol

. SOURCE Specify name of original C source file
. .EAK Mark a symbol as 'weak'

Overview of data definition / storage allocation directives

Directive Description

.ALI GN Align location counter
.DBI'T Define bit

. DB Define byte

. DW Define word (16 bits)

. DL Define long (32 bits)
.DLL Define long long (64 bits)

. DBFI LL, . DWFI LL,
. DLFI'LL, . DLLFI LL

. DBPTR, . DPPTR, . DSPTR

.DS,.DSBI T, . DSW. DSL,
. DSLL

Fill block of memory

Define pointer values in memory
Define storage

114

Assembly Language

Overview of macro and conditional assembly directives

Directive Description

. DEFI NE Define substitution string

. BREAK Break out of current macro expansion

. REPEAT, . ENDREP Repeat sequence of source lines

. FOR, . ENDFOR Repeat sequence of source lines n times

.1 F, . ELIF, . ELSE
. ENDI F

. MACRO, . ENDM

. UNDEF

Conditional assembly directive
End of conditional assembly directive
Define macro

Undefine . DEFI NE symbol or macro

Overview of HLL directives

Directive Description

. CALLS Pass call tree information and/or stack usage information
. DEBUG Pass debug information

. M SRAC Pass MISRA C information

115

TASKING VX-toolset for C166 User Guide

ALIAS

Syntax

al i as-nanme . ALI AS functi on-namne
Description

With the . ALI AS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma al i as.

Example

_malloc .ALIAS __ hmalloc

116

Assembly Language

ALIGN

Syntax

. ALI GN expression

Description

With the . ALI GNdirective you instruct the assembler to align the location counter. By default the assembler
aligns on the alignment specified with the . SECTI ON directive.

When the assembler encounters the . ALI GN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs). The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.

A label is not allowed before this directive.

Example

CSEC .section code
.ALI OGN 16 ; the assenbler aligns
instruction ; this instruction at 16 MAUs and
; fills the "gap' with NOP instructions.

CSEC2 .section code
.ALIGN 12 ; WRONG not a power of two, the
instruction ; assenbler aligns this instruction at
; 16 MAUs and issues a warning.

Example with a BIT section to create a bit addressable byte or word with the type BITBYTE or BITWORD:

bitsect .section bit,word

.ds 1 ; single bit
.ALIGN 8

bb .dsb 1 ; BI TBYTE
.ALI GN 16

bw .dsw 1 ;. BI TWORD

The section is word aligned, because of the . dswdirective. It is impossible to align the . dswdirective
correctly if the section is not aligned at word or a multiple of words. The . ALI GN directives are needed
to place the . dsb and . dswdirectives at the correct location.

117

TASKING VX-toolset for C166 User Guide

ASSUME

Syntax
. ASSUME DPPn: sectpart[, DPPn:sectpart]...
or

. ASSUME NOTHI NG

Description

You can use the . ASSUME directive to specify what the contents of the DPP registers will be at run-time.
This is done to help the assembler to ensure that the data referenced will be addressable.

The assembler checks each data memory reference for addressability based on the contents of the

. ASSUME directive. The . ASSUME directive does not initialize the DPP registers; it is used by the assembler
to help you be aware of the addressability of the data. Unless the data is addressable (as defined either
by an . ASSUME or a page override), the assembler produces an error.

Field values

DPPn

One of the C166 Data Page Pointer (DPP) registers: DPPO, DPP1, DPP2, and DPP3.
sectpart

With this field you can define a page number. It can have the following values:

* section name, as in . ASSUVE DPPO: DSEC1, DPP1: DSEC3

All variables and labels defined in section DSEC1 are addressed with DPPO and all variables defined
in the section DSEC3 are addressed with DPP1. This applies to all sections with the same name in the
current module.

e group name, as in . ASSUVE DPP2: DGRP

All variables and labels defined in sections which are member of the group DGRP are addressed with
DPP2.

» variable name or label name, as in . ASSUVE DPPO: Var Or LabNane

If the variable or label name is defined in a module internal section, all variables or labels defined in
this section are addressed with DPPO. If the variable or label name is defined in a module-external
section, only this variable can be addressed with DPPOQ.

* NOTHI NGkeyword, as in . ASSUME DPP1: NOTHI NG

This indicates that nothing is assumed in the DPP register at that time. If a DPP register is assumed
to contain nothing, the assembler does not implicitly use this DPP register for memory addressing. Also
possible is: . ASSUVE NOTHI NG This is the same as: . ASSUVE DPP1: NOTHI NG DPP1: NOTHI NG,

118

Assembly Language

DPP2: NOTHI NG, DPP3: NOTHI NGThis is the default which remains in effect until the first . ASSUME
directive is found.

» SYSTEMkeyword, as in . ASSUVE DPP1: SYSTEM

This keyword enables the addressability of system ranges (via SFR) if a SFR is used in a virtual operand
combination.

Search sequence

When you use a label that is assumed directly, via the section it is defined in or via the group of the section
it is defined in, the following sequence is searched:

1. if the used label as a DPP assumed, this DPP is used

2. if the used label does not have a DPP assumed, but the section it is defined in does have a DPP
assumed, the DPP on the section is used

3. if the used label does not have a DPP assumed and the section it is defined does not have a DPP
assumed, the assume of a DPP on the group is used if present

Example

Specify an existing processor:

DESC1
AWORD
DESC2
BYTE1
DESC3
BYTE2
CSEC

.section far
.dw 0
.section far
.db 0
.section far
.db 0
.section code

. ASSUVE DPPO: DSEC1, DPP1: DSEC3

MoV
MoV
MoV

DPPO, #PAG DSEC1
DPP1, #PAG DSEC3
DPP2, #PAG DSEC2

MV RO, AVWORD ;

MOV RL1, DPP2:BYTEl ;

MOV RL1, BYTElL ;

MOV RL2, BYTE2 ;

The .assunme covers the reference

DPPO points to the base of
section DSECl1 that contains AWORD

Explicit code. The page override
operator covers the reference
Error!: No DPP register used and
no ASSUME has been nmde

The .assunme covers the reference

119

TASKING VX-toolset for C166 User Guide

; DPP1 points to the base of
; section DSEC3 that contains BYTE2

When several DPPs are assumed to one sectpart, the lowest DPP number is used as DPP prefix. This
also happens if, for example, both a label and the section it belongs to are assumed to different DPPs,
or if both a section and the group it belongs to, are assumed to different DPPs:

. ASSUVE DPP1: AGRP, DPP2: AVARL
DSEC1 .section far, group(AGRP)
AVARL .dw 1
DESC2 .section far, group(AGRP)

CSEC . section code

MOV RO, AVARL ; DPPl is used for AVARL

. ASSUVE DPP1: NOTHI NG
MOV RO, AVAR1 ; DPP2 is used for AVARL
MOV RO, AGRP ; DPP2 is used for AGRP

RET
. ASSUME directives can forward reference a name. Also double forward references are allowed:

. ASSUME DPPO: DSEC1 ; Forward reference
. ASSUVE DPP1: Avar ; Double forward reference.
DSEC1 .section far

Avar .equ w7ar + 2
DSEC1 . section far
war .dw 0

.dw 0

120

Assembly Language

.BREAK

Syntax

. BREAK

Description

The . BREAK directive causes immediate termination of a macro expansion, a . FOR loop expansion or a
. REPEAT loop expansion. In case of nested loops or macros, the . BREAK directive returns to the previous
level of expansion.

The . BREAK directive is, for example, useful in combination with the . | F directive to terminate expansion
when error conditions are detected.

The assembler does not allow a label with this directive.

Example

. FOR MYVAR I N 10 TO 20

; assenbly source lines
I F MYVAR > 15
. BREAK

. ENDI F
. ENDFOR

121

TASKING VX-toolset for C166 User Guide

.CALLS

Syntax

. CALLS "caller’,’ callee’

or
. CALLS "caller’,’’, ssk, usk
Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The usage count can be specified for the system stack (ssk) and the
user stack (usk). The values specified are the stack usage in bytes at the time of the call including the
return address.

This information is used by the linker to compute the used user stack and system stack within the
application. The information is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Normally you will not use it in hand-coded assembly.
Example

The function _nai n calls the function _nf unc:

.CALLS ' _main', ' nfunc'

The function _mai n() uses 4 bytes on the system stack and no user stack:

.CALLS ' _main','',4,0

122

.CGROUP,

Syntax

gr oupnane
gr oupnane

Description

Assembly Language

.DGROUP

. CGROUP sectnane [, sectnane]...
. DGROUP sectnane [, sectnane]...

With the . CGROUP directive you can create a group (groupname) of code sections. All sections within the
same group will be placed within the same segment. With the . DGROUP directive you can create a group
of data sections. All data sections with one group must be within the same space (section’s space attribute).
The group will be located as follows:

Space Locate behavior

near the whole group in the same page

far the whole group in the same page

shuge the whole group in the same segment

huge no restrictions are made by the group, in LSL the sections can be selected with the group
bit no restrictions are made by the group, in LSL the sections can be selected with the group

One special sectname in a data group is the SYSTEMsection. When SYSTEMis grouped with the data
group, the whole group will be placed in the SYSTEM page, page 3. The LSL file of the locator defines
an empty SYSTEM section at the start of the system page to achieve this.

Example

CSEC1

CSEC1

CSEC2

CSEC2

CODEGRP

.section code

. ends

.section code

. ends

.CCROUP CSEC1, CSEC2 ; Goup conbination of the CODE

; sections CSECl1 and CSEC2

123

TASKING VX-toolset for C166 User Guide

.DBIT, .DB, .DW, .DL, .DLL

Syntax

[label] .DBIT argunent[, argunent]...
[label] .DB argunent[,argunent]. ..
[l abel] .DWargunent[,argunent]. ..
[label] .DL argunent[,argunent]. ..
[label] .DLL argunent[,argunent]...

Description

With these directive you can define memory. With each directive the assembler allocates and initializes
one or more bytes of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty. Multiple
arguments must be separated by commas with no intervening spaces. Empty arguments are stored as
0 (zero). For single bit initialization (. DBI T) the argument must be a positive absolute expression and
each argument represents a bit to be initialized.

Multiple arguments are stored in successive byte locations. One or more arguments can be null (indicated
by two adjacent commas), in which case the corresponding byte location will be filled with zeros.

The following table shows the number of bits initialized.

Directive Bits Alignment
.DBIT 1 1 bit

.DB 8 8 bit

. DW 16 16 bit

. DL 32 16 bit
.DLL 64 16 bit

The directive must be placed on an address that is aligned as listed in the table. A warning is issued if
the directive is not aligned properly. You can use the . ALl GN directive to align the location counter.

When these directives are used in a BIT section, each argument initializes the number of bits defined for
the used directive and the location counter of the current section is incremented with this number of bits.

The . DBI T directive can be used in a BIT section only. Each argument represents a bit to be initialized
to 0 or 1. The location counter of the current section is incremented by a number of bits equal to the
number of arguments.

The value of the arguments must be in range with the size of the directive; floating-point numbers are not

allowed. If the evaluated argument is too large to be represented in a word / long / long long, the assembler
issues a warning and truncates the value.

124

Assembly Language

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.DB 'R ;= 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

.DB "AB',,'C ; = 0x41420043 (second argunent is enpty)

Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.

For example:

WBL: .DW'ABC,,'D ; results in 0x424100004400 , the 'C is truncated
LTBL: .DL ' ABC ; results in 0x43424100

Related Information
. DBFI LL (Fill Block)

. DS (Define Storage)

125

TASKING VX-toolset for C166 User Guide

.DBFILL, .DWFILL, .DLFILL, .DLLFILL

Syntax

[l abel] .DBFILL count[,argument]
[l abel] .DWFILL count[,argument]
[label] .DLFILL count[,argumnent]
[label] .DLLFILL count[, argunent]

Description

With these directives the assembler allocates and initializes a block of memory filled with argument. The
number of items in the block is defined by the constant expression count. The width of each item and the
alignment of the block depends on the used directive:

Directive Bits Alignment
. DBFI LL 8 8 bit

. DWFI LL 16 16 bit

. DLFI LL 32 16 bit

. DLLFILL 64 16 bit

The argument can be a single- or multiple-character string constant or an expression. If you omit the
argument, the block is filled with zeros.

The value of the argument must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large, the assembler issues a warning and truncates the value.

Example
DSEC . section far

.DB 84,101, 115,116 ; initialize 4 bytes
. DBFI LL 96, OxFF ; reserve another 96 bytes, initialized with OxFF

Related Information
. DB (Define Memory)

. DS (Define Storage)

126

.DBPTR, .DPPTR, .DSPTR

Syntax

[l abel] .DBPTR argument|[, argunent]
[l abel] .DPPTR argument|[, argunent]
[l abel] .DSPTR argument|[, argunent]

Description

Assembly Language

With these directives the assembler allocates and initializes pointer values in memory. These directives

are included for backwards compatibility.

127

TASKING VX-toolset for C166 User Guide

.DEBUG

Syntax

. DEBUG section-nanme[[,] cluster nane]

Description

Create a DWARF debug section. Debug sections are not allocated by the linker. They contain high level
language information generated by the compiler. This information is required for the debugger. The debug
section names always start with a period as determined in the DWARF debug information specification

for the C166 toolset. The sections contains constants and relocations referring to line numbers, register
usage, variable lifetime and other debug information.

With ‘cluster name’ this debug section is clustered with companion debug and code sections. It is used
by the linker during removal of unreferenced sections. The name must be unique for this module (not for
the application).

Normally you will not use this directive in hand-coded assembly.

Example

. DEBUG . debug_i nfo

128

Assembly Language

.DEFINE

Syntax

. DEFI NE synmbol string

Description

With the . DEFI NE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. . DEFI NE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active . DEFI NE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

Example

Suppose you defined the symbol LEN with the substitution string "32":
. DEFI NE LEN " 32"

Then you can use the symbol LEN for example as follows:

. DS LEN
$MESSAGE(|, "The length is: LEN')

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

. DS 32
$MESSAGE(|, "The length is: 32")

Related Information
. UNDEF (Undefine a .DEFINE symbol or macro)

. MACRO, . ENDM (Define a macro)

129

TASKING VX-toolset for C166 User Guide

.DS, .DSBIT, .DSB, .DSW, .DSL, DSLL

Syntax

[l abel] .DS expression
[label] .DSBIT expression
[l abel] .DSB expression
[1abel] .DSW expression
[l abel] .DSL expression
[l abel] .DSLL expression

Description

The . DS directive reserves a block in memory. The reserved block of memory is not initialized to any
value.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The expression specifies the number of MAUs (Minimal Addressable Units) to be reserved, and how
much the location counter will advance. The expression must evaluate to an integer greater than zero
and cannot contain any forward references (symbols that have not yet been defined). In a bit section, the
MAU size is 1, thus the . DS directive will initializes a number of bits equal to the result of the expression.

The . DSB, . DSW . DSL and . DSLL directives are variants of the . DS directive. The difference is the
number of bits that are reserved per expression argument:

Directive Reserved bits Alignment
.DSBI' T 1 1 bit

. DSB 8 8 bit

. DSW 16 16 bit

. DSL 32 16 bit

. DSLL 64 16 bit

The directive must be placed on an address that is aligned as listed in the table. A warning is issued if
the directive is not aligned properly. You can use the . ALl GN directive to align the location counter.

Example

DSEC .section far
RES: .DS 5+3 ; allocate 8 bytes

Related Information
. DB (Define Memory)

. DBFI LL (Fill Block)

130

Assembly Language

.END

Syntax

. END

Description

With the . END directive you tell the assembiler that the end of the module is reached. The assembler will
not process any lines following an . END directive. If the command line option --require-end is used the
assembler will issue an error if the . END directive is not found before end of file. If a generator (e.g., a C
compiler) stops generating before finishing the assembly file, the assembler can detect this by a missing
. END directive.

The assembler does not allow a label with this directive.
Example
CSEC . section code

; source |ines

. END ; End of assenbly nodul e

Related Information

Assembler option --require-end

131

TASKING VX-toolset for C166 User Guide

.EQU
Syntax

synmbol . EQU expression

Description

With the . EQU directive you assign the value of expression to symbol permanently. The expression can
be relative or absolute. Once defined, you cannot redefine the symbol. With the . GLOBAL directive you
can declare the symbol global.

The symbol defined with the . EQU gets a type depending on the resulting type of the expression. If the
resulting type of the expression is none the symbol gets no type when the . EQUis used outside a section
and it gets the type of the section when it is defined inside a section.

Example

To assign the value 0x4000 permanently to the symbol MYSYMBOL:
MYSYMBOL . EQU 0x4000

Related Information

Section 3.7.4, Symbol Types and Expression Types

. SET (Set temporary value to a symbol)

132

Assembly Language

.EXTERN

Syntax

. EXTERN [DPPx:] synmbol [:type]
Description

With the . EXTERNdirective you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the . GLOBAL
directive.

The type of the symbol is inherited from the section in which it is defined or from the directive used to
define it. The assembler uses the type to check the symbol’s use. In other words, if the symbol does not
fit the instruction’s operand, the assembler will issue a warning. If you do not specify the type information
with the . EXTERN directive, the assembler will not check the use of the specified symbol.

You can use the DPPx prefix to specify the DPP register to be used to access the external symbol.

If you do not use the . EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the . EXTERN directive.

A label is not allowed with this directive.

Example

. EXTERN DPP2: AVAR: WORD ; extern declaration

CSEC . section code
MOV RO, AVAR : AVAR is used here

Related Information
See Section 3.7.4, Symbol Types and Expression Types for more information on the type keywords.

. GLOBAL (Declare global section symbol)

133

TASKING VX-toolset for C166 User Guide

.FOR, .ENDFOR

Syntax

[label] .FOR var IN expression[,expression]...
| ENDFOR

or:

[label] .FOR var IN start TO end [STEP st ep]
. ENDFOR
Description

With the . FOR/ . ENDFOR directive you can repeat a block of assembly source lines with an iterator. As
shown by the syntax, you can use the . FOR/ . ENDFOR in two ways.

1. In the first method, the block of source statements is repeated as many times as the number of
arguments following | N. If you use the symbol var in the assembly lines between . FORand . ENDFOR,
for each repetition the symbol var is substituted by a subsequent expression from the argument list. If
the argument is a null, then the block is repeated with each occurrence of the symbol var removed. If
an argument includes an embedded blank or other assembler-significant character, it must be enclosed
with single quotes.

2. In the second method, the block of source statements is repeated using the symbol var as a counter.
The counter passes all integer values from start to end with a step. If you do not specify step, the
counter is increased by one for every repetition.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In the following example the block of source statements is repeated 4 times (there are four arguments).
With the . DB directive you allocate and initialize a byte of memory for each repetition of the loop (a word
for the . DWdirective). Effectively, the preprocessor duplicates the . DB and . DWdirectives four times in
the assembly source.

.FOR VARL IN 1,2+3, 4,12
. DB VARL
. DW (VARL* VAR1)

. ENDFOR

In the following example the loop is repeated 16 times. With the . DWdirective you allocate and initialize
four bytes of memory for each repetition of the loop. Effectively, the preprocessor duplicates the . DW
directive 16 times in the assembled file, and substitutes VAR2 with the subsequent numbers.

_FOR VAR2 IN 1 to 0x10
. DW (VARL* VAR1)
. ENDFOR

134

Assembly Language

Related Information

. REPEAT, . ENDREP (Repeat sequence of source lines)

135

TASKING VX-toolset for C166 User Guide

.GLOBAL

Syntax

. GLOBAL synbol [, synbol]. ..
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with . GLOBAL, from another module, use the . EXTERN directive.

Only program labels and symbols defined with . EQU can be made global.

The assembler does not allow a label with this directive. The type of the global symbol is determined by
its definition.

Example
LOOPA . EQU 1 ; definition of synbol LOOPA
.GLOBAL LOOPA ; LOOPA will be globally
; accessi bl e by other nodul es

Related Information

. EXTERN (Import global section symbol)

136

Assembly Language

IF, .ELIF, .ELSE, .ENDIF

Syntax

.1 F expression

[.ELIF expression] ; the .ELIF directive is optional
[. ELSE] ; the .ELSE directive is optional
. ENDI F

Description

With the . | F/. ENDI F directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional . ELSE and/or . ELI F directives are not present, then the source statements following the
. | Fdirective and up to the next . ENDI F directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the . | F and the . ENDI F directives were never encountered.

If the . ELSE directive is present and expression has a nonzero result, then the statements between the
. | Fand . ELSE directives will be assembled, and the statement between the . ELSE and . ENDI F directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the . | F and
. ELSE directives will be skipped, and the statements between the . ELSE and . ENDI F directives will be
assembled.

You can nest . | F directives to any level. The . ELSE and . ELI F directive always refer to the nearest
previous . | F directive.

A label is not allowed with this directive.
Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

I F TEST
. ; code for the test version
. ELI F DEMO

. ; code for the denp version
. ELSE

137

TASKING VX-toolset for C166 User Guide
; code for the final version
. ENDI F

Before assembling the file you can set the values of the symbols TEST and DEMOin the assembly source
before the . | F directive is reached. For example, to assemble the demo version:

TEST .SET 0O
DEMO . SET 1

138

Assembly Language

.INCLUDE

Syntax

. I NCLUDE "fil ename" | <fil enane>

Description

With the . | NCLUDE directive you include another file at the exact location where the . | NCLUDE occurs.
This happens before the resulting file is assembled. The . | NCLUDE directive works similarly to the

#i ncl ude statement in C. The source from the include file is assembled as if it followed the point of the
. | NCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification. If you omit a
filename extension, the assembler assumes the extension . asm

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.
The current directory is not searched if you use the <filename> syntax.
2. The path that is specified with the assembler option --include-directory.
3. The path that is specified in the environment variable AS1661 NC when the product was installed.
4. The default i ncl ude directory in the installation directory.
The assembler does not allow a label with this directive.

The state of the assembler is not changed when an include file is processed. The lines of the include file
are inserted just as if they belong to the file where it is included. The assembler always opens an include
file, even if the . | NCLUDE directive is in between an inactive . | F/ . ENDI F:

if 0
.include "foo.asnt
.endif

This means that the include file always should be present.

Example

It is allowed to start a new section in an included file. If this file is included somewhere in another section,
the contents of that section following the included file will belong to the section started in the include file:

o file incfile.asm
i nsect .section near

.db 5
.db 6

139

TASKING VX-toolset for C166 User Guide

file minfile.asm

mai nsect .section near
.db 1
.db 2
. I NCLUDE "incfile.asnt
.db 3
.db 4

The resulting sections have the following contents:

mai nsect: 0x01 0x02
incsect: 0x05 0x06 0x03 0x04

140

Assembly Language

.LABEL

Syntax

| abel .LABEL type

Description

Define a label of the specified type. The label is assigned the current location counter.

A label can be a code label, ending with a semicolon (e.g. cl abl:), or a data label, without a semicolon.

Example

DSEC . SECTI ON NEAR

AVWORD . LABEL WORD ; label of type WORD
LOMBYTE .DB 1

HBYTE . LABEL BYTE ; label of type BYTE

H GHBYTE .DB 1
Related Information

See Section 3.7.4, Symbol Types and Expression Types for more information on the type keywords.

141

TASKING VX-toolset for C166 User Guide

#line

Syntax

#[1ine] linenunber ["filename"]
Description

The line directive is the only directive not starting with a dot, but with a hash sign. It allows passing on
line number information from higher level sources. This linenumber is used when generating errors. When
this directive is encountered, the internal line number count is reset to the specified number and counting
continues after the directive. The line after the directive is assumed to originate on the specified line
number. The optional file name will, when specified, reset the module file name for purposes of error
generation.

This directive is generated by the preprocessor phase of the C compiler. Normally you will not use it in
hand-coded assembly.

Example

#line 1

142

Assembly Language

.MACRO, .ENDM

Syntax

macr o_nhame . MACRO [argument [, argument]...]
rracr o_definition_statenents
. ENDM

Description

With the . MACROdirective you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions. You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (. MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

« Terminator, which indicates the end of the macro definition (. ENDMdirective).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

Operator |[Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

Example
The macro definition:

macro_a .MACRO argl, arg2 ; header
.db argl ; body

143

TASKING VX-toolset for C166 User Guide
.dw (argl*arg2)
. ENDM

The macro call:

DSEC .section .data
macro_a 2,3

The macro expands as follows:

.db 2
Cdw (2*3)

Related Information
Section 3.10, Macro Operations

. DEFI NE (Define a substitution string)

144

;term nator

Assembly Language

.MISRAC

Syntax

. M SRAC string

Description

The C compiler can generate the . M SRAC directive to pass the compiler's MISRA C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

.M SRAC ' M SRA- C: 2004, 64, e2, Ob, e, el1, 27, 6, ef 83, el, ef , 66,
cb75,af 1, ef f, e7, e7f, 8d, 63, 87ff7, 6ff 3, 4'

Related Information
Section 4.7.2, C Code Checking: MISRA C

C compiler option --misrac

145

TASKING VX-toolset for C166 User Guide

.PROC, .ENDP

Syntax

| abel . PROC NEAR
[[Iabel] .ENDP]

| abel . PROC FAR
[[1abel] . ENDP]

| abel .PROC | NTNO [[nane] =] [nunber]
[[Iabel] . ENDP]

Description

Define a procedure with the name label. The following type of procedures can be defined:

Procedure [Description

type

near Near procedures are called using the CALLA instruction and must have a RETN as return
instruction.

far Far procedures are called using the CALLS instruction and must have a RETS as return
instruction.

intno Interrupt procedures, requiring RETI as return instruction. The interrupt can be assigned
with a name and a number, used to define the interrupt vector table at link time.

The procedure type is applied to all labels that follow the . PROC directive until the procedure is ended.
The label gets the defined procedure type. For interrupt functions the labels do not get a type because
interrupt functions cannot be called.

The . ENDP ends the procedure, but is optional. The procedure also ends when a new . PRCC is started
in the same section or when the section ends.

Example

The following example defines and calls a far procedure:

GLOBALCCDE . section code

AFARPROC . PRCC FAR ; far procedure
RETS ; far return

AFARPROC . ENDP

SPECSEC .section code

CALLS AFARPROC ; far intra segnment call.

146

Assembly Language

Definition of an interrupt (trap) function:

_tfunc .PROC INTNO tfunc_trap = -1

RETI

147

TASKING VX-toolset for C166 User Guide

.REGBANK

Syntax

bank- nane . REGBANK [regi ster-range]

Description

With the . REGBANK directive you can define a register bank with name bank-name. The registers used
in the instructions must be defined in the . REGBANK directive. The assembler does not check this. The
directive generates a section named bank-name with the iram section.

The label bank-name gets the type REGBANK and is placed at the location where RO is positioned, even
if RO is not part of the register-range. The assembler checks if the GPRs being used in the source match
those specified in the . REGBANK directive. Multiple . REGBANK directives per source file are allowed.

A section generated by the . REGBANK directive is defined from the lowest up to and including the highest
register in the register range. If RO is not in the register range, the section label will lie outside of the
regbank section. When two modules use the same register bank name, the register banks are overlaid
(section with MAX attribute). The linker overlays the start of the register banks, even if that location does
not refer to the same register. This can be used for simple register bank sharing as follows:

nodul el:
bankname . REGBANK RO- R5

nodul e2:
bankname . REGBANK R10- R15

In this case, the section banknane is overlaid. Both modules use a local label called bankname when
they need to load the context pointer. The final register bank has a size of 6 words, pointing to either
RO-R5 for nodul el or to R10-R15 for nodul e2.

The assembler allows multiple definitions of the same register bank (with the same register range) in one
module, which results in a single register bank:

nodul e3:

banknanme . REGBANK RO- R5

banknane . REGBANK RO- R15 o K
banknane . REGBANK R5- R10 . error

Complex register bank definitions without .REGBANK

To make complex register bank definitions it is recommended not to use the . REGBANK directive. Instead
you should create an iram section. All symbols in such a section must get the type r egbank. For example:

banks .section iram
: bank1 bank?2 bank3
bank1 . | abel regbank
. dsw 1 ;. 0
bank?2 . | abel regbank
. dsw 1 1 0
. dsw 1 ;2 1

148

bank3

banks

Example

. NEW

.dsw 1 ;3
.dsw 1 ;4

. | abel regbank
.dsw 1 ;5
.dsw 15 ; 6-15
. ends

4
6-15

0
1-15

Assembly Language

149

TASKING VX-toolset for C166 User Guide

.REPEAT, .ENDREP

Syntax

[l abel] . REPEAT expression
. ENDREP

Description

With the . REPEAT/. ENDREP directive you can repeat a sequence of assembly source lines. With expression
you specify the number of times the loop is repeated. If the expression evaluates to a number less than
or equal to 0, the sequence of lines will not be included in the assembler output. The expression result
must be an absolute integer and cannot contain any forward references (symbols that have not already
been defined). The . REPEAT directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

In this example the loop is repeated 3 times. Effectively, the preprocessor repeats the source lines (. DB
10) three times, then the assembler assembles the result:

. REPEAT 3
.DB 10 ; assenbly source |lines
. ENDFOR

Related Information

. FOR, . ENDFOR (Repeat sequence of source lines n times)

150

Assembly Language

.SECTION, .ENDS
Syntax

name . SECTION type[,attribute...][,'classname']

[[name] . ENDS]
Description

Use this directive to define section names and declaration attributes and for activating the section. For
compatibility reasons, the commas between the operands of the . SECTI ON directive are optional. By
default, the assembler tries to resume a previous section with the same name. If no such section exists,
it creates a new section.

The name specifies the name of the section. The type operand specifies the section’s space and must
be one of:

Type Description

BIT Located in the bit addressable area. The section locator counts in bits.

BITA Located in the bit addressable area. The section locator counts in bytes.

IRAM Located in the internal RAM.

NEAR Data section in a 64 kB address space. The underlying pages can be mapped anywhere
in memory.

FAR Data section that can be located anywhere in memory. Sections cannot be larger than 16
kB and cannot cross page boundaries.

SHUGE Data section that can be located anywhere in memory. Sections cannot be larger than 64
kB and cannot cross segment boundaries.

HUGE Data section that can be located anywhere in memory.

CODE Code section that can be located anywhere in memory. Sections cannot be larger than 64

kB and cannot cross segment boundaries.

The type of the labels in a code section depends on the used . PROC directive. Labels
defined in a code section outside the . PROC directive get the type FAR. This can be
overruled with the . LABEL directive and . PROC directive.

The section type and attributes are case insensitive.

The defined attributes are:

Attribute Description

AT address Locate the section at the given address.

BYTE Make the section byte aligned.

CLASS Adds the classname to section hame, separated with a dot (name.classname).
‘classname’

151

TASKING VX-toolset for C166 User Guide

Attribute

Description

CLEAR

Sections are zeroed at startup.

CLUSTER ‘name’

Cluster code sections with companion debug sections. Used by the linker during
removal of unreferenced sections. The name must be unique for this module (not
for the application).

DWORD

Align the section on a double word boundary.

GLOBAL

Tells the linker to combine sections with the same name and attributes to one single
section.

GROUP ‘group

Used to group sections, for example for placing in the same page. You can also use
the . CGROUP or . DGROUP directive for this.

INIT Defines that the section contains initialization data, which is copied from ROM to
RAM at program startup.

INPAGE Defines that the section must be located within a page and cannot cross page
boundaries. Only applicable to near, far, shuge and huge sections.

INSEGMENT Defines that the section must be located with a segment and cannot cross page

boundaries. Only applicable to shuge and huge sections.

LINKONCE ‘tag’

For internal use only.

MAX

When data sections with the same name occur in different object modules with the
MAX attribute, the linker generates a section of which the size is the maximum of
the sizes in the individual object modules

NEW Tells the assembler to start a new section. Use this for example when this section’s
name is equal to a previously started section with the same or different attributes.

NOCLEAR Not zeroed at startup. This is a default attribute for data sections.

NOINIT Defines that the section contains no initialization data. This is a default attribute for
all data sections.

PAGE Align the section on a page boundary. When you want to start locating at the first
address in the page, you must also define the symbol __ PAGE_START=0 to the
linker. You can do this in the LSL file with #def i ne __PAGE_START 0 or you can
specify command line option -D__PAGE_START=0 to the linker. See also the file
arch_c166. | sl inthe directory i ncl ude. | sl .

PRIVATE Tells the linker not to combine this section with sections with the same name and
attributes. This is the default.

PROTECT Tells the linker to exclude a section from unreferenced section removal and duplicate
section removal.

ROMDATA Section contains data to be placed in ROM

SEGMENT Align the section on a segment boundary.

WORD Make the section word aligned. This is the default for all sections.

152

Assembly Language

Section names

The GROUP attribute results in an extended section name. This is similar to using the . CGROUP or
. DGROUP directives. The classname is added to the section’s name and makes it possible to select
sections in the LSL file for locating. The name resulting from the section directive is as follows:

section- name[. cl ass- nanme] [@r oup]
Example
DSEC . SECTION near,init
TAB2 .DWS8 ; initialized section
DSEC . ENDS

ABSSEC . SECTION far, at 0x100
; absolute section

Related Information

Section 3.7.4, Symbol Types and Expression Types.

153

TASKING VX-toolset for C166 User Guide

SET

Syntax

symbol . SET expression
.SET synbol expression

Description

With the . SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the . SET directive, you can redefine that symbol in another part of the assembly source, using the
. SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the . GLOBAL directive.

The . SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and cannot include a symbol that is not yet defined (no forward references are allowed).

Example

COUNT .SET O ; Initialize count. Later on you can
; assign other values to the synbol

Related Information

. EQU (Set permanent value to a symbol)

154

Assembly Language

.SOURCE

Syntax

. SOURCE string

Description

With the . SOURCE directive you specify the name of the original C source module. This directive is
generated by the C compiler. You do not need this directive in hand-written assembly.

Example

. SOURCE "nai n. c"

Related Information

155

TASKING VX-toolset for C166 User Guide

.UNDEF

Syntax

. UNDEF synbol

Description

With the . UNDEF directive you can undefine a macro or a substitution string that was previously defined
with the . DEFI NE directive. The substitution string associated with symbol is released, and symbol will
no longer represent a valid . DEFI NE substitution or macro.

The assembler issues a warning if you undefine a non-existing symbol.
The assembler does not allow a label with this directive.
Example

The following example undefines the LEN substitution string that was previously defined with the . DEFI NE
directive:

. UNDEF LEN
Related Information
. DEFI NE (Define a substitution string)

. MACRO, . ENDM (Define a macro)

156

Assembly Language

WEAK

Syntax

. EAK synbol [, synbol]. ..
Description

With the . VEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the . GLOBAL directive or the . EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a . GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.

Example

LOOPA . EQU 1 ; definition of synbol LOOPA
.GLOBAL LOOPA ; LOOPA will be globally
; accessi bl e by other nodul es
. VEAK LOGPA ; mark synbol LOOPA as weak

Related Information
. EXTERN (Import global section symbol)

. GLOBAL (Declare global section symbol)

157

TASKING VX-toolset for C166 User Guide

3.9.2. Assembler Controls

Controls start with a $ as the first character on the line. Unknown controls are ignored after a warning is
issued. The arguments of controls can optionally be enclosed in braces (). All controls have abbreviations
of 2 characters (or 4 characters for the $no.. variant).

Overview of assembler controls

Control Description

$[NO ASMLI NEI NFO Generate source line information for assembly files
$[NQ CHECK Enable or disable the check for a silicon bug
$DATE Set the date in the list file page header

$[NO DEBUG Control debug information generation

$EJECT Generate form feed in list file page header

$[NQ LI ST Print / do not print source lines to list file

$[NO LOCALS Control generation of local symbols

$MESSAGE Programmer generated message

$[NO OPTI M ZE Control optimization

$PAGELENGTH Set list file page length

$PAGEW DTH Set list file page width

$[NO PAG NG Control pagination of list file

$[NO RETCHECK Control checking of return instruction

$SAVE /| $RESTORE Save and restore the current value of the $LI ST / $NOLI ST controls
$[NO SYMB Control generation of symbolic debug information
$TABS Specify tab size

$TI TLE Set program title in header of assembly list file

$[NO WARNI NG Enable or disable a warning

158

Assembly Language

$ASMLINEINFO / $SNOASMLINEINFO

Syntax

$ASMLI NEI NFO
$NOASMLI NEI NFO

Default

$NOASMLI NEI NFO

Abbreviation

$AL / $NOAL

Description

With the $ASMLI NEI NFOcontrol the assembler generates assembly level debug information. This matches
the effect of the --debug-info=+asm (-ga) command line option. When you use the command line option,
it sets the default, but the control will override its effect.

Example

$ASMLI NEI NFO
;generate line and file debug information
MOV RO, R12

$NOASMLI NEI NFO
;stop generating line and file information

Related Information
Assembler option --debug-info

Assembler control $DEBUG

159

TASKING VX-toolset for C166 User Guide

$CHECK / $NOCHECK

Syntax

$CHECK(nunber)
$NOCHECK] (nunber)]

Default

$NOCHECK (for all numbers)
Abbreviation

$CH / $NOCH
Description

The $CHECK control enables the check for silicon problem with index number. For the list of numbers,
see Chapter 19, CPU Problem Bypasses and Checks. You can use the $NOCHECK control to disable the
check of a specific silicon problem number.

Example

To specify to check for silicon bug 18 from within the assembly source, specify:
$CHECK(18)

Related Information

Assembler option --silicon-bug

Chapter 19, CPU Problem Bypasses and Checks

160

Assembly Language

$DATE

Syntax

$DATE(st ri ng)

Abbreviation

$DA

Description

This control sets the date as subtitle of the list file page header. When no $DATE is used the assembler
uses the date and time when the list file was generated. The string argument of the $DATE control is not

checked for a valid date, in fact any string can be used.

Example

;. Feb 03 2006 in header of list file
$dat e(' Feb 03 2006')

Related Information

Assembler option --list-file

161

TASKING VX-toolset for C166 User Guide

$DEBUG / SNODEBUG

Syntax

$DEBUG
$NODEBUG

Default
$NODEBUG
Abbreviation
$DB / $NODB
Description

With the $DEBUG control you enable the assembler to generate debug information. If no high-level language
debug information is present, debug information on assembly level is generated. This control also generates
debug information on local symbols. This matches the effect of the --debug-info=+local,+smart (-gls)
command line option. When you use the command line option, it sets the default, but the control will
override its effect.

Example

$DEBUG
;generate smart debug informati on and information on | ocal synbols
MOV RO, R12

Related Information

Assembler option --debug-info
Assembler control $ASMLINEINFO
Assembler control $LOCALS

Assembler control $SYMB

162

Assembly Language

$EJECT

Syntax

$EJECT

Default

A new page is started when the page length is reached.

Abbreviation

$EJ

Description

If you generate a list file with the assembler option --list-file, with the $EJECT control the list file generation

advances to a new page by inserting a form feed. The new page is started with a new page header. The
$EJECT control generates empty lines when $NOPAG NGis set.

Example

; assenbl er source |lines

$EJECT ; generate a fornfeed

Related Information
Assembler option --list-file

Assembler control SPAGING

163

TASKING VX-toolset for C166 User Guide

SLIST / $NOLIST

Syntax

$LI ST
$NOLI ST

Default

$LI ST

Abbreviation
$LI / $NOLI
Description

If you generate a list file with the assembler option --list-file, you can use the $LI ST/ $NCLI ST controls
to specify which source lines the assembler must write to the list file. Without the assembler option --list-file
these controls have no effect. The controls take effect starting at the next line.

Example

.. ; source line in list file
$NOLI ST

.. ; source line not inlist file
$LI ST

; source line alsoin list file

Related Information
Assembler option --list-file

Assembler control $SAVE / SRESTORE

164

Assembly Language

$LOCAL / $NOLOCALS

Syntax

$LOCALS
$NOLOCALS

Default
$LOCALS
Abbreviation

$LC / $NOLC

Description

With the $LOCALS control the assembler generates debug information on local symbol records. This
matches the effect of the --debug-info=+local (-gl) command line option. When you use the command
line option, it sets the default, but the control will override its effect.

Example

$NOLOCALS ; the assenbl er keeps no | ocal synbol information
; of the follow ng source |ines

Related Information

Assembler option --debug-info
Assembler control $ASMLINEINFO
Assembler control SDEBUG

Assembler control $SYMB

165

TASKING VX-toolset for C166 User Guide

$MESSAGE

Syntax

$MESSAGE(type, {str|exp}[,{str|exp}]...)
Abbreviation

$SME

Description

With the $MESSAGE control you tell the assembler to print a message to st der r during the assembling
process.

With type you can specify the following types of messages:

I Information message. Error and warning counts are not affected and the assembler continues
the assembling process.

wW Warning message. Increments the warning count and the assembler continues the assembling
process.

Error message. Increments the error count and the assembler continues the assembling process.

F Fatal error message. The assembler immediately aborts the assembling process and generates
no object file or list file.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. Each subsequent argument
is printed directly after the previous argument.

The $MESSAGE control is for example useful in combination with conditional assembly to indicate which
part is assembled.

Example

$MESSACGE(|, ' Generating tables')

ID.EQU 4
$MESSAGE(E, ' The value of IDis ',1D)

. DEFI NE LONG " SHORT"
$MESSAGE(!, ' This is a LONG string')
$MESSAGE(Il, "This is a LONG string")

Within single quotes, the defined symbol LONGis not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

166

Assembly Language

$OPTIMIZE / SNOOPTIMIZE

Syntax

$OPTI M ZE
$NOOPTI M ZE

Default

$OPTI M ZE

Abbreviation

$OP / $NOOP

Description

With these controls you can turn on or off conditional jump optimization, expansion of generic instructions,
jump chain optimizations and instruction size optimizations. This control overrules the --optimize (-O)
command line option.

Please note that all instructions that have a word and a byte variant (and sometimes a bit variant) are
implemented as generic instructions. Use the mnemonic ending in ‘W’ for word variants and the mnemonic
ending in ‘B’ for byte variants. Combining $NOOPTI M ZE and generic instructions causes syntax errors.

Example

$noop
; turn optim zation off
; source lines
$op
; turn optim zation back on
; source lines

Related Information

Assembler option --optimize

167

TASKING VX-toolset for C166 User Guide

$PAGELENGTH

Syntax

$PAGELENGTH(pagel engt h[, bl ankt op, bl ankbtm])
Default

$PAGELENGTH(72, 0, 0)

Abbreviation

$PL

Description

If you generate a list file with the assembler option --list-file, the $PAGELENGTH control sets the number
of lines in a page in the list file and the top and bottom margins of a page.

The arguments may be any positive absolute integer expression, and must be separated by commas.

pagelength Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

blanktop Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankbtm Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

Example
$PL(55) ; page length is 55 with no top and bottom margin
$PL(55,4,2) ; page length is 55 with 4 blank lines at the top

; and 2 at the bottom

Related Information
Assembler option --list-file

Assembler control $PAGEWIDTH

168

Assembly Language

$PAGEWIDTH

Syntax

$PAGEW DTH(pagewi dt h[, bl ankl eft])
Default

$PAGEW DTH(132, 0)
Abbreviation

$PW

Description

If you generate a list file with the assembler option --list-file, the $PAGEW DTH control sets the width of
a page in the list file and the left margin of the page.

The arguments may be any positive absolute integer expression, and must be separated by a comma.

pagewidth Number of columns per line. The default is 132, the minimum is 40.

blankleft Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

Example

$PW 80, 8) ; set the pagewidth to 80 characters and start with 8 spaces

Related Information
Assembler option --list-file

Assembler control $PAGELENGTH

169

TASKING VX-toolset for C166 User Guide

$PAGING / SNOPAGING

Syntax

$PAG NG
$NOPAG NG

Default
$NOPAG NG
Abbreviation
$PA / $NOPA
Description

If you generate a list file with the assembler option --list-file, you can use these controls to turn the
generation of form feeds in the list file on or off.

Example

$pa
; turn paging on: fornfeed before each page header

Related Information
Assembler option --list-file

Assembler control $EJECT

170

Assembly Language

$RETCHECK / $NORETCHECK

Syntax

$RETCHECK
$NORETCHECK

Default

$NORETCHECK
Abbreviation
$RC / $NORC
Description

$RETCHECK turns on the checking for the correct return instruction from a routine. For example, an
interrupt function must be returned from with a RETI instruction. If the assembler finds another return
instruction within the interrupt function an error will be generated. $NORETCHECK turns off the checking
for the correct return instruction from a subroutine.

Example

$RETCHECK

PRC . PROC I NTNO i sr=1
; source |lines

RETS ; error, RETI expected

The assembler will give an error on the RETS instruction, because an interrupt procedure must be ended
with a RETI instruction.

Related Information

Assembler option --retcheck

171

TASKING VX-toolset for C166 User Guide

$SAVE / SRESTORE

Syntax

$SAVE
$RESTORE

Abbreviation

$SA /| $RE

Description

The $SAVE control stores the current value of the $LI ST / $NOLI ST controls onto a stack. The SRESTORE
control restores the most recently saved value; it takes effect starting at the next line. You can nest $SAVE
controls to a depth of 16.

Example
$nol i st
: source |ines
$save ; save values of $LIST / $NOLI ST
$list
$restore ; restore value ($nolist)

Related Information
Assembler option --list-file

Assembler control $LIST

172

Assembly Language

$SYMB / SNOSYMB

Syntax

$SYMB
$NOSYMB

Default

$NOSYMB

Abbreviation

$SB / $NCSB

Description

With the $SYMB control the assembler enables generation of high-level language debug information. This
matches the effect of the --debug-info=+hll (-gh) command line option. When you use the command

line option, it sets the default, but the control will override its effect.

Example

$SYMB
;generate high-1evel |anguage debug information

Related Information
Assembler option --debug-info

Assembler control $DEBUG

173

TASKING VX-toolset for C166 User Guide

$TABS

Syntax

$TABS(nunber)
Default

$TABS(8)
Abbreviation
$TA

Description

$TABS specifies the tab positions in the list file. For each tab character a maximum of number of blanks
is inserted until the next tab position is reached.

Example

$TABS(4)
; use 4 spaces for a tab

Related Information

Assembler option --list-file

174

Assembly Language

$TITLE

Syntax

$TI TLE([string])

Default

The module name.

Abbreviation

$TT

Description

The $TI TLE initializes the program title to the string specified in the operand field. The program title will
be printed after the banner at the top of all succeeding pages of the source listing until another $T1 TLE

control is encountered. An exception to this is the first $TI TLE control, which sets the title of the first and
following pages in the listing until the next $TI TLE control is encountered.

A $TI TLE with no string argument causes the current title to be blank. The title is initially the name of the
module. The $TI TLE control will not be printed in the source listing.

Example

$TITLE("This is the newtitle in the list file")

Related Information

Assembler option --list-file

175

TASKING VX-toolset for C166 User Guide

SWARNING / SNOWARNING

Syntax

$WARNI NG nunber)
NOMRNI NG nunber)

Default
$VWARNI NG
Abbreviation
$WA / $NOWA
Description

This control allows you to enable or disable all or individual warnings. The number argument can have
the following values:

0 Select no warning messages

1,2 Select all warning messages

>2 Select a specific warning message number.

Example

SNOMARNI NG(1) ; disable all warnings
$WARNI NG(1) ; enable all warnings
SNOMARNI NG(735) ; di sabl e warning W735

Related Information

Assembler option --no-warnings

176

Assembly Language

3.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

3.10.1. Defining a Macro
The first step in using a macro is to define it.
The definition of a macro consists of three parts:
» Header, which assigns a name to the macro and defines the arguments (. MACROdirective).
» Body, which contains the code or instructions to be inserted when the macro is called.
» Terminator, which indicates the end of the macro definition (. ENDMdirective).
A macro definition takes the following form:
macr o_nanme . MACRO [argunent[, argunent]...]
lm.a;:ro_defi nition_statenments
- ENDM
For more information on the definition see the description of the . MACRO directive.

3.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:

[l abel] macro_name [argunent[,argunent]...] [; conment]

where,

label An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first column.

177

TASKING VX-toolset for C166 User Guide

argument

comment

One or more optional, substitutable arguments. Multiple arguments
must be separated by commas.

An optional comment.

The following applies to macro arguments:

» Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

« If an argument has an embedded comma or space, you must surround the argument by single quotes

().

» You can declare a macro call argument as null in three ways:

« enter delimiting commas in succession with no intervening spaces

macr onane ARGL, , ARG ;

the second argunent is a null argument

« terminate the argument list with a comma, the arguments that normally would follow, are now
considered null

macr onane ARGL, ; the second and all follow ng argunents are null

 declare the argument as a null string

» No character is substituted in the generated statements that reference a null argument.

3.10.3. Using Operators for Macro Arguments

The assembler recognizes certain text operators within macro definitions which allow text substitution of
arguments during macro expansion. You can use these operators for text concatenation, numeric
conversion, and string handling.

Return decimal value of symbol

Operator [Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

?

Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

Return hex value of symbol

Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

Macro string delimiter

Allows the use of macro arguments as literal strings.

Macro local label override

Prevents name mangling on labels in macros.

Example: Argument Concatenation Operator -\

Consider the following macro definition:

178

Assembly Language

MAC A . MACRO reg, val
nmov r\reg, #val
. ENDM

The macro is called as follows:

MAC A O, 1

The macro expands as follows:
nmov ro0, #1

The macro preprocessor substitutes the character '0' for the argument r eg, and the character '1' for the
argument val . The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the character 'r'.

Without the '\' operator the macro would expand as:
nov rreg, #1

which results in an assembler error (invalid operand).

Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro MAC_A after the argument AVAL has been set to
1.

AVAL .SET 1
MAC_A 0, AVAL

If you want to replace the argument val with the value of AVAL rather than with the literal string ' AVAL' ,
you can use the ? operator and modify the macro as follows:

MAC_A . MACRO reg, val
mov r\reg, #?val
. ENDM

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

Consider the following macro definition:

GEN_LAB . MACRO LAB, VAL, STMI
LAB\ %/AL STMT
. ENDM

The macro is called after NUMhas been set to 10:

179

TASKING VX-toolset for C166 User Guide
NUM . SET 10
GEN_LAB HEX, NUM NOP
The macro expands as follows:
HEXA NOP

The %/AL argument is replaced by the character ‘A’ which represents the hexadecimal value 10 of the
argument VAL.

Example: Argument String Operator - *

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (*)
in the macro definition.

Consider the following macro definition:

STR_MAC . MACRO STRI NG
. DB " STRI NG'
. ENDM

The macro is called as follows:
STR_MAC ABCD

The macro expands as follows:
. DB " ABCD

Within double quotes . DEFI NE directive definitions can be expanded. Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since . DEFI NE expansion
occurs before macro substitution, any . DEFI NE symbols are replaced first within a macro argument string:

. DEFINE LONG 'short'
STR_MAC . MACRO STRI NG
$MESSAGE(|, ' This is a LONG STRING)
$MESSAGE(|, "This is a LONG STRI NG')
. ENDM

If the macro is called as follows:
STR_MAC sentence
it expands as:

SMESSAGE(I, "' This is a LONG STRING)
$MESSAGE(|, ' This is a short sentence')

Macro Local Label Override Operator -~

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LOCAL__M_L000001).

180

Assembly Language

The macro ~-operator prevents name mangling on macro local labels.
Consider the following macro definition:

INNT . MACRO addr
LOCAL: nov r0, “addr
. ENDM

The macro is called as follows:

LOCAL.:
I NI T LOCAL

The macro expands as:
LOCAL__M L0O00001: nov rO, LOCAL

If you would not have used the ~ operator, the macro preprocessor would choose another name for LOCAL
because the label already exists. The macro would expand like:

LOCAL__M LO0O0O0O1: nov ro, LOCAL__M L0O00001

3.11. Generic Instructions

The assembler supports so-called 'generic instructions'. Generic instructions are pseudo instructions (no
instructions from the instruction set). Depending on the situation in which a generic instruction is used,
the assembler replaces the generic instruction with appropriate real assembly instruction(s).

The assembler knows the following generic instructions:

CALL

» CALLR -> If the target address operand has the type NEAR and the address fits within the relative
range.

» CALLA -> If the target address operand has the type NEAR and the address does not fit within the
relative range.

» CALLS -> If the target address operand type is FAR or if 2 non-address operands are used (segment
and segment offset).

e CALLI -> If an indirect operand is used.
» PCALL ->If the first operand is a register to be pushed.

If a condition code is omitted, the cc_UC condition code is used.

JMP

* JMPR -> If the target address fits within the relative range within the same section or when the target
address is a label with the SHORT type.

181

TASKING VX-toolset for C166 User Guide
« JMPA -> If the target address has the type NEAR or if the target address operand does not fit within
the relative range.

* JMPS -> If the target address operand has the type FAR or if 2 non-address operands are used (segment
and segment offset).

* JMPI -> If the operand is indirect.

If a condition code is specified only JMPR or JMPA can be chosen and FAR target address operands
are not allowed. If a condition code is omitted, the cc_UC condition code is used.

JB

Results in JB if the target address is within the relative range. If the target is not within the relative range,
a combination of INB/JMPA (NEAR type operand) or INB/JMPS (FAR type operand) is used.

JNB

Results in JNB if the target address is within the relative range. If the target is not within the relative range,
a combination of JB/JMPA (NEAR type operand) or JB/JMPS (FAR type operand) is used.

RET

Results in a return instruction, depending on the procedure type specified with the . PROC directive:
* RETN -> For . proc near

* RETS ->For. proc far

e RETI->For. proc intno

Jump optimizations that cannot be done by the assembler are postponed to the linker.

RETV

RETV is a virtual return instruction. It disables generation of the warning message "procedure
procedure-name contains no RETurn instruction”. No code is generated for this instruction. You can put
this instruction just before the . ENDP directive of the procedure that caused the warning message.

ADD, ADDC, AND, CMP, CPL, MQV, NEG, OR, SUB, SUBC, XOR

When word, byte or (for some) bit operands are supplied, these instructions result in their respective
word, byte or bit variants. Forcing a specific variant is done by appending a ‘W’ for word-variant or a ‘B’
for byte-variant or by prepending a ‘B’ for the bit-variant. This yields four variants of each instruction.

Example with the AND:
* AND -> Generic, can result in ANDW, ANDB or BAND depending on its operands.

» ANDW -> Word instruction, requires word operands.

182

Assembly Language

« ANDB -> Byte instruction, requires byte operands.
* BAND -> Bit instruction, requires bit operands.

When both word and byte variants are possible, the word variant is chosen. This occurs for the double
indirect addressing modes (i.e.nov [R1], [R2]) and the REG, IMM addressing mode (i.e. nov
DPPO, #2). If word aligned labels are used, the word variant is chosen, even though the byte variant would
fit as well (i.,e. mrov DPPO, _| abel).

183

TASKING VX-toolset for C166 User Guide

184

Chapter 4. Using the C Compiler

This chapter describes the compilation process and explains how to call the C compiler.

The TASKING VX-toolset for C166 under Eclipse uses the TASKING makefile generator and make utility
to build your entire embedded project, from C source till the final ELF/DWARF object file which serves
as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 8.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:

Csource file
.C
1 .
compiler
Ccompiler intermediate file
|] - .mil
assembly file

. 8IC

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 11.2, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

4.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.
Frontend phases
1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses only string manipulations

on the C source. The syntax for the preprocessor is independent of the C syntax but is also described
in the ISO/IEC 9899:1999(E) standard.

185

TASKING VX-toolset for C166 User Guide

. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases

1.

Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

. Register allocator phase:

This phase chooses a physical register to use for each virtual register.

. The backend optimization phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

4.2. Calling the C Compiler

The TASKING VX-toolset for C166 under Eclipse uses the TASKING makefile generator and make utility
to build your entire project. After you have built your project, the output files are available in a subdirectory
of your project directory, depending on the active configuration you have set in the C/C++ Build » Settings
page of the Project » Properties for dialog.

186

Using the C Compiler

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (3. This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

See also Chapter 12, Influencing the Build Time.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration. Based on the target processor, the compiler includes a special function register file. This
is a regular include file which enables you to use virtual registers that are located in memory.

You can specify the target processor when you create a new project with the New C/C++ Project wizard
(File » New » TASKING C166 C/C++ Project), but you can always change the processor in the project
properties dialog.

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.
3. From the Configuration list, select a configuration or select[Al l configurations].

4. From the Processor selection list, select a processor.

187

TASKING VX-toolset for C166 User Guide

To access the C/C++ compiler options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[Al Il configurations].
4. On the Tool Settings tab, select C/C++ Compiler.
5. Select the sub-entries and set the options in the various pages.
Note that the C/C++ compiler options are used to create an object file from a C or C++ file. The

options you enter in the Assembler page are not only used for hand-coded assembly files, but
also for intermediate assembly files.

You can find a detailed description of all C compiler options in Section 11.2, C Compiler Options.

Invocation syntax on the command line:

cl66 [[option]... [file]...]...

4.3.The C Startup Code

You need the run-time startup code to build an executable application. The startup code consists of the
following components:

« Initialization code. This code is executed when the program is initiated and before the function mai n()
is called. It initializes the processor's registers and the application C variables.

 Exit code. This controls the close down of the application after the program's main function terminates.

188

Using the C Compiler

To add the C startup code to your project

When you create a new project with the New C/C++ Project wizard (File » New » TASKING C166 C/C++
Project), fill in the dialogs and enable the option Add startup file(s) to the project in the following dialog
(this is the default setting).

tj Mew C/C++ Project = @
C166 Project Settings F—

€% Select a processor to centinue

Processor selection

> [Inf?neon C166 Familg.,r
- [] Infineon XC186 Family
.+ [] Infincon XC2000 Family
> [7] Infineon XE166 Family
> [] STMicroelectronics ST10
- [Miscellaneous
> [] Custom

Actions

Add startup file(s) to the project
Add linker script file to the project

/_\I

This adds the files cst art. c and cst art . h to your project. These files are copies of
lib/src/cstart.candinclude/cstart. h.If youdo notadd the startup code here, you can always
add it later with File » New » Startup Files.

To change the C startup code configuration and registers
The project Properties dialog contains two pages where you can change the C startup code.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Startup Configuration or Startup Registers.

In the right pane the Startup Configuration page or Startup Registers page appears.

189

TASKING VX-toolset for C166 User Guide

{2} Properties for myproject o (5|
type filter text Startup Configuration (=1 T
Resource
Builders Startup files
4 C/C++ Build Startup source file directory: S{workspace_loc/S{ProjName}} Browse...
Build Variables
Environment Startup header file directory: ${workspace_loc:/${ProjName}} Browse...
599‘"9 Settings
smen 7 Enable interrupts
Processor
Settings V| Execute EINIT instruction
Stack/Heap Enable passing argc/argy to main()
Startup Cenfiguration Buffer size for argw: 256

Startup Registers
Vector Table

C/C++ General

Project References Initialize user stack pointer of local registerbank 1

/| Set VECSEG to the segment of the vector table in the LSL file
/| Set SPSEG to the segment of the system stack in the LSL file

Run/Debug Settings Initialize user stack pointer of local registerbank 2

(1) Settings are stored in the project startup header file: cstarth

Restare Defaults Apply
@ S

3. Onthe Startup Configuration page, you can make changes to the C startup code configuration.
For example, you can choose to disable interrupts.

4. Onthe Startup Registers page, you can specify the registers and their settings that must be known
to the startup code. Enable the option Initialize in startup code to add a register setting to the startup
code. For some registers you can also enable the option Use mask for initialization. A define ending
on _DO MASK s set in the file cst ar t . h. This will mask out bits in the register in cst art . c that
could have been set by hardware. If you made changes to a register and you want to reset the register
to its original value, click on the Default button. See Section 4.3.1, ICACHE Support for an example.

5. Click OK.
The file cstart.h in your project is updated with the new values.
The values of the startup registers for a project are only set to their default values at project
creation for the at that time selected processor.

When you switch to a different processor afterwards, in the Project » Properties for » C/C++
Build » Processor property page, the registers are not set to their defaults again. The reason for
that is that you may have set specific values in the startup registers that you want to keep.

If you want to set all registers to their default values for the selected processor, you can do that
any time by clicking on the Restore Defaults button on the Project » Properties for » C/C++
Build » Startup Registers property page.

When you use Import Board Configuration wizard to import (register) settings required for a certain
board, only the registers needed to get the board going in the default situation are changed.

190

Using the C Compiler

To change the C startup code in Eclipse manually

1. Double-click onthe filecstart.corcstart. h.

The file ope

(] estart.c &
@** FILE

#ifndef

pragma
#endif

#include
#include

ns in the editor area.

cstart.c -
LITE /* the Lite edition

nomisrac /* Suppress MISRA-C

<stdlib.h>
<_cptable.h>

#ifdef _ CPU__

#include

#endif
#include

* libra
#if
extern
#endif

#pragma
extern

#pragma
#pragma
T

__SFRFILE__(__CPU_) /* include SFR file
/* (gives indexer wa

"estart.h” /* include configura

ry references

__ PROF_ENABLE
void _ prof_init(woid);

extern main

int main(int argc, char *argv[]);

weak exit
extern _Exit -
1 3

2. You can edit the C startup code directly in the editor.

A * appears in front of the name of the file to indicate that the file has changes.

3.

Click =] or select File » Save to save the changes.

4.3.1. ICACHE Support

Some of the newer Infineon devices, such as the XC2268I have a cache on the flash memory, the so-called

ICACHE. To use

the ICACHE it must be enabled in the C startup code and the linker script file must be

modified to get sections located in the memory ranges that are covered by the ICACHE (see Section 7.7.11,

ICACHE Suppor

To use the ICAC
| CACHE_CTRL.

To enable the

t and Named Memory Mappings).

HE it must be enabled on the processor at startup. You can do this by setting the
I CEN bit. The C startup code, cst art . ¢, can initialize the | CACHE_CTRL SFR.

ICACHE in Eclipse

1. From the Project menu, select Properties for

The Propert

ies dialog appears.

2. Inthe left pane, expand C/C++ Build and select Startup Registers.

191

TASKING VX-toolset for C166 User Guide

In the right pane the Startup Registers page appears.

{2} Properties for myproject = @
type filter text Startup Registers [=Rs - -
» R
B xc2268i Registers ICACHE_CTRL: ICACHE Control Register (defautt: 0:0004)
uilders
4 C/C++ Build - CAPCOM2 Value: 0«7 | Default V| Initialize in startup code
Build Variables 4 CPU Use mask for initizlization
Environment CPUCONL: CPU Centrol REg!stErl Bit¢ Description Value Access
Logging CPUCONZ: CPU Centrol Register 2
Memory EBC 0 ICACHE_CTRL_ICEMN: ICACHE Enable ICACHE enabled w
Processor FLASH 1 ICACHE_CTRL_BPICEN: Bit Protection .. ICEN is updated with the written value w
Settings GPTL2 2 ICACHE_CTRL_CLRV: ClearValid Flag ~ Write: Invalidate instruction cache; Read: .. rwh
Stack/Heap 4 ICACHE El ICACHE_CTRL_CLREDF: Clear Error Det... ICACHE_EDCOMN.SED/DED not changed w
Startup Configuration ICACHE_CTRL: ICACHE Control Reg
Startup Registers ICACHE_DACOM: ICACHE Data Acce
Vector Table ICACHE_EDCON: ICACHE Errer Dete
» C/C++ General » 0CDS
Project References RTC
- Run/Debug Settings scu
] m »
(1) Settings are stored in the project startup header file: cstarth
Restore Defaults | | Apply |
@ e

3. Expand the ICACHE registers.
4, Select| CACHE_CTRL.
5. Set the field ICACHE_CTRL_IEN: ICACHE_Enable to "I CACHE enabl ed"”

6. Setthe fieldICACHE_CTRL_BPICEN: Bit Protection for ICACHE_Enableto "l CEN i s updat ed
with the witten val ue”

7. Enable option Initialize in startup code to add the setting to the startup code.
8. Click OK.
The file cstart.h in your project is updated with the new values.

The | CACHE_CTRL register is only available on devices that have an ICACHE. If you do not see
this register, then select the appropriate processor first.

To enable the ICACHE manually
1. Make sure the latestcstart. c and cst art . hfiles are included in your project.
2. Openthefile cstart. hinan editor.

3. Searchfor | CACHE CTRL.

192

Using the C Compiler

4. Change the macro definitions as follows:
#define | CACHE CTRL_INIT 1
#define | CACHE CTRL_VALUE Ox7

When the __ | CACHE_CTRL_I NI T macro is set to 1 the | CACHE_CTRL SFR will be initialized at startup
The __| CACHE_CTRL_VALUE macro defines the initialization value.

If you already have acstart. c and cst art . h file from a version v2.4 or older in your project,
you must update these files to obtain ICACHE support. You can find the files in the product's
installation directory: i ncl ude/ cstart. handlib/src/cstart.c.

4.4. How the Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #i ncl ude statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only

possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified in the C/C++
Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-)).

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable C1661 NC.

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory (unless you specified option --no-stdinc).

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the compiler as follows:
c166 -1 nmyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable C1661 NC and then in the default
i ncl ude directory.

193

TASKING VX-toolset for C166 User Guide

The compiler now looks for the file nyi nc. h, in the directory where t est . c is located. If the file is not
there the compiler searches in the directory myi ncl ude. If it was still not found, the compiler searches
in the environment variable C1661 NC and then in the default i ncl ude directory.

4.5. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

To include symbolic debug information
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.

Debug and optimizations
Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce

the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 4.6, Compiler Optimizations.

Invocation syntax on the command line
The invocation syntax on the command line is:

cl66 -g file.c

4.6. Compiler Optimizations
The compiler has a number of optimizations which you can enable or disable.
1. From the Project menu, select Properties for

The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

194

Using the C Compiler

In the right pane the Settings appear.

From the Configuration list, select a configuration or select[Al configurations].
On the Tool Settings tab, select C/C++ Compiler » Optimization.

Select an optimization level in the Optimization level box.

or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.

Optimization pragmas

If you specify a certain optimization, all code in the module is subject to that optimization. Within the C
source file you can overrule the C compiler options for optimizations with #pr agma. opti m ze fl ag
and #pragnma endopt i m ze. Nesting is allowed:

#pragma optim ze e /* Enabl e expression
sinmplification */
C source ...
#pragma optinize c /* Enabl e conmon expression

elimnation. Expression
C source ... sinplification still enabled */

#pragme endoptimze /* Disable comon expression

elimnation */

#pragma endoptinize /* Disable expression

sinmplification */

195

TASKING VX-toolset for C166 User Guide

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

4.6.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)
The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced

by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of O are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscripting).

Constant propagation (option -Op/-OP)
A variable with a known value is replaced by that value.
Automatic function inlining (option -Oi/-Ol)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

» Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

» Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

» Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

» Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-OS)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

196

Using the C Compiler

Loop transformations (option -OI/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo/-O0)

A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.
Branch prediction (option -O-predict/-O+predict)

A prediction is done if branches are likely to be taken or not. Based on this, other optimizations can take
place.

MIL linking (Control program option --mil-link)

The frontend phase performs its optimizations on the MIL code. When all C modules and/or MIL modules
of an application are given to the C compiler in a single invocation, the C compiler will link MIL code of
the modules to a complete application automatically. Next, the frontend will run its optimizations again
with application scope. After this, the MIL code is passed on to the backend, which will generate a single
. sr ¢ file for the whole application. Linking with the run-time library, floating-point library and C library is
still necessary. Linking with the C library is required because this library contains some hand-coded
assembly functions, that are not linked in at MIL level.

In the ISO C99 standard a "translation unit" is a preprocessed source file together with all the headers
and source files included via the preprocessing directive #i ncl ude. After MIL linking the compiler will
treat the linked sources files as a single translation unit, allowing global optimizations to be performed,
that otherwise would be limited to a single module.

Cfile1 Cfile 2 Cfile N
——e— _‘._._ _..*._ _.*._._._

il C compiler (FE) [l C compiler (FE) S C compiler (FE) [
| I
| MIL file 1 MIL file 2 o MIL file & ' |I

linker

197

TASKING VX-toolset for C166 User Guide

MIL splitting (option --mil-split)

When you specify that the C compiler has to use MIL splitting, the C compiler will first link the application
at MIL level as described above. However, after rerunning the optimizations the MIL code is not passed
on to the backend. Instead the frontend writes a . ns file for each input file or library. A . ns file has the
same formatasa. mi | file. Only. ns files that really change are updated. The advantage of this approach
is that it is possible to use the make utility to translate only those parts of the application to a . sr ¢ file
that really have changed. MIL splitting is therefore a more efficient build process than MIL linking. The
penalty for this is that the code compaction optimization in the backend does not have application scope.
As with MIL linking, it is still required to link with the normal libraries to build an ELF file.

1
Qptional MIL file 1 e MIL libs
MIL split
files

C compiler (BE

asm
sources

assembler
I ohject I object
files libs

To read more about how MIL linking influences the build process of your application, see Section 12.2,
MIL Linking.

MIL split
file 1

MIL split
file 2

MIL split
file N

asm
source 1

asm
source 2

assembler assembler assembler

Note that with both --mil-link and --mil-split some extra strict type checking is done that can cause
building to fail in a way that is unforeseen and difficult to understand. For example, when you use one of
these options in combination with option --uchar and you link the MIL library, you might get the following
error:

c166 E289: ["..\..\..\strlen.c" 14/1] "strlen" redeclared with a different type

c166 1802: ["installation-dir\include\string.h" 44/17]
previ ous decl aration of "strlen"
1 errors, O warnings

This is caused by the fact that the MIL library is built without --uchar. You can workaround this problem
by rebuilding the MIL libraries.

Also note that static variables may get promoted to global. If static variables (or functions) use the same
name in different compilation units, and option --mil-split or control program option --mil-link is used,

198

Using the C Compiler

the variables will be renamed to prevent name clashes. One of the names remains unchanged, the others
get a unique name suffix with a dot (.) and a number. The dot is converted to a dollar sign when assembly
output is generated. Do not rely on the linker sel ect statement to identify any of these static variables.

4.6.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed and code size.

Interprocedural register optimization (option -Ob/-OB)

Register allocation is improved by taking note of register usage in functions called by a given function.
Peephole optimizations (option -Oy/-QY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

Instruction Scheduler (option -Ok/-OK)

The instruction scheduler is a backend optimization that acts upon the generated instructions. When two
instructions need the same machine resource - like a bus, register or functional unit - at the same time,

they suffer a structural hazard, which stalls the pipeline. This optimization tries to rearrange instructions
to avoid structural hazards, for example by inserting another non-related instruction.

First the instruction stream is partitioned into basic blocks. A new basic block starts at a label, or right
after a jump instruction. Unschedulable instructions and, when -Av is enabled, instructions that access
volatile objects, each get their own basic block. Next, the scheduler searches the instructions within a
basic block, looking for places where the pipeline stalls. After identifying these places it tries to rebuild
the basic block using the existing instructions, while avoiding the pipeline stalls. In this process data
dependencies between instructions are honoured.

Note that the function inlining optimization happens in the frontend of the compiler. The instruction
scheduler has no knowledge about the origin of the instructions.

Code compaction (reverse inlining) (option -Or/-OR)
Compaction is the opposite of inlining functions: chunks of code that occur more than once, are transformed
into a function. This reduces code size at the cost of execution speed. The size of the chunks of code to

be inlined depends on the setting of the C compiler option --tradeoff (-t). See the subsection Code
Compaction in Section 4.6.3, Optimize for Code Size or Execution Speed.

Generic assembly optimizations (option -Og/-OG)

A set of target independent optimizations that increase speed and decrease code size.

199

TASKING VX-toolset for C166 User Guide

Automatic near data allocation (application wide) (option --automatic-near)

In the far, shuge and huge memory models this optimization tries to move objects to the near memory
space automatically. In addition, pointers to these objects will also be qualified near automatically.
Because near memory can be accessed more efficiently than far/shuge/huge this will save code and the
generated code will be faster. This optimization can only be used together with the MIL linking or MIL
splitting build process, because it needs application scope. Only objects and pointers that are in the
default memory space are affected, objects and pointers explicitly qualified as __far/__shuge/__huge
are not a candidate for this optimization.

Because the C compiler must allocate objects in the near memory space, it needs to know how much
near memory is available, which parts of it are ROM and RAM, etc. To obtain this information, the C
compiler reads the LSL file. This must be the same LSL file as the linker uses. The C compiler only
considers the near memory space and expects it to be free. This will be verified using the LSL file. It is
possible to define heap, stack, vector table and reserved areas, select them and locate them at an absolute
address. Because the C compiler does not have information about assembly sections, it is not possible
to select other sections, and try to locate them in the address range of the near memory space.

Limitations

For the qualification of pointers and objects this optimization uses a special pointer qualifier that is not
available at C level: __near 32. A __near 32 pointer behaves like a __near pointer, but will take 32 bits
of storage in memory/stack. The upper 16 bits of a __near 32 pointer are not used. The reason for this
storage inefficiency is that the si zeof () operator must return the same value for the pointer rewritten
to 'near' by the automatic near data optimization as for a far/shuge/huge pointer.

When an object/pointer is rewritten by the optimization, the debugger will show a __near 32 pointer.
Other limitations of the automatic near data optimization are:

 pointers that are passed to a function in a variable argument list cannot be rewritten.

 pointers that are a struct/union member cannot be rewritten.

* the optimization cannot trace pointers with more than one indirection level.

Note that also pointers related to the pointers in the cases above will not be rewritten. For example
(test.c):

struct

{

char * p;
}os;
char * q;
char c;

void main(void)

q = &c;
S.p =4

200

Using the C Compiler

Invocation:
ccl66 test.c -M --mil-split --automatic-near

Because 'q'is assigned to 's. p' both pointers will be not be rewritten, and therefore 'c' cannot be relocated
tothe __near 32 space. Because 's' and 'q' are both unrelated, the storage of these objects will be moved
to __near 32.

4.6.3. Optimize for Code Size or Execution Speed

You can tell the compiler to focus on execution speed or code size during optimizations. You can do this
by specifying a size/speed trade-off level from 0 (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

Optimization hint: Optimizing for size has a speed penalty and vice versa. It takes an average
of 42% more code to gain 8% speed (measured with the near model for xc16x, using option -02).
This is largely caused by the Code Compaction optimization. The advice is to optimize for size
by default and only optimize those areas for speed that are critical for the application with respect
to speed. Using the tradeoff options -t0, -t1 and -t2 globally for the application is not recommended.

To specify the size/speed trade-off optimization level:
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Optimization.
4. Select a trade-off level in the Trade-off between speed and size box.

See also C compiler option --tradeoff (-t)

Instruction Selection
Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.

Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.

201

TASKING VX-toolset for C166 User Guide

Switch Jump Chain versus Jump Table

Instruction selection for the swi t ch statements follows different trade-off rules. A switch statement can
result in a jump chain or a jump table. The compiler makes the decision between those by measuring
and weighing bytes and cycles. This weigh is controlled with the trade-off values:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%
3 25% 75%
4 0% 100%

Subscript Strength Reduction
The trade-off limits the total number of additional pointers of a particular type in a particular loop.

The C166 has 14 registers that you can use as 16-bit pointers (14 word registers) or as 32-bit pointers
(7 double-word registers).

The performance always increases when more subscript pointers can be allocated for an ideal situation.
Ideal is when no registers are needed for other objects than subscripts. This is rarely the case, therefore
we control the number of word registers with the trade-off option.

Trade-off value Number of word registers
0 12

1 10

2

3

4

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps
over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Trade-off value Try to rewrite top-loops to [Optimize loops for
bottom-loops size/speed
no speed
yes speed

202

Using the C Compiler

Trade-off value Try to rewrite top-loops to [Optimize loops for
bottom-loops size/speed
yes speed
yes size
yes size

Example:

int a;

voidi(int I, int m)

{

int i;
for (i =m i <|1; i++)
{
a++;
}
return;

}

Coded as a bottom loop (compiled with --tradeoff=4) is:

jmp 2 ;; unconditional junp to loop test at bottom

_3:

subw _a, ONES
addw r3, #0x1
_2: ;; loop entry point

cnpw r3,r2
jmp cc_slt, 3

Coded as a top loop (compiled with --tradeoff=0) is:

movw rll, a
subw r2,r3

cmpw 12, #0x0 ;; test for at least one loop iteration
jmp cc_sle, 4 ;; can be om tted when nunber of iterations is known
_3: ;; loop entry point

addw r11, #0x1

subw r2, #0x1

jmp cc_ne, 3
4:

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pr agna
optim ze +inline.This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas i nl i ne_max_i ncr / inline_nmax_si ze) to control automatic inlining.

203

TASKING VX-toolset for C166 User Guide

By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

Trade-off value inline-max-incr inline-max-size
0 360 22
1 270 19
2 180 16
3 90 13
4 0 10

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 19 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 270%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

MAC Optimizations

The compiler tries to judge what the gain will be if MAC instructions are used instead of regular instructions.
This is measured in bytes and cycles. For the resulting gain, the size in bytes and cycles are weighed
with the trade-off setting:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%
3 25% 75%
4 0% 100%

The estimated execution frequency of an instruction is multiplied by the number of cycles.
When the compiler generates MAC instructions, it has the following favors:
» Trade-off levels 0, 1 and 2: speed

» Trade-off levels 3 and 4: size

Code Compaction
Trade-off levels 0 and 1: code compaction is disabled.

Trade-off level 2: only code compaction of matches outside loops.

204

Using the C Compiler
Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.
For the execution frequency the compiler also accounts nested loops.

See C compiler option --compact-max-size

4.7. Static Code Analysis

Static code analysis (SCA) is a relatively new feature in compilers. Various approaches and algorithms
exist to perform SCA, each having specific pros and cons.

SCA Implementation Design Philosophy
SCA is implemented in the TASKING compiler based on the following design criteria:

» An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-compile-debug cycle.

» SCA is implemented in the compiler front-end. Therefore, no new makefiles or work procedures have
to be developed to perform SCA.

» The number of emitted false positives is kept to a minimum. A false positive is a message that indicates
that a correct code fragment contains a violation of a rule/recommendation. A number of warnings is
issued in two variants, one variant when it is guaranteed that the rule is violated when the code is
executed, and the other variant when the rules is potentially violated, as indicated by a preceding
warning message.

For example see the following code fragment:

extern int some_condition(int);
void f(void)

{
char buf[10];

int i;
for (i = 0; i <= 10; i++)
{

if (some_condition(i))

{
}

buf[i] = 0; /* subscript may be out of bounds */

205

TASKING VX-toolset for C166 User Guide

As you can see in this example, if i =10 the array buf [] might be accessed beyond its upper boundary,
depending on the result of sone_condi ti on(i).If the compiler cannot determine the result of this
function at run-time, the compiler issues the warning "subscript is possibly out of bounds" preceding
the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array”. If the compiler
can determine the result, or ifthe i f statement is omitted, the compiler can guarantee that the "subscript
is out of bounds".

» The SCA implementation has real practical value in embedded system development. There are no real
objective criteria to measure this claim. Therefore, the TASKING compilers support well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

Effect of optimization level on SCA results
The SCA implementation in the TASKING compilers has the following limitations:

» Some violations of rules will only be detected when a particular optimization is enabled, because they
rely on the analysis done for that optimization, or on the transformations performed by that optimization.
In particular, the constant propagation and the CSE/PRE optimizations are required for some checks.
It is preferred that you enable these optimizations. These optimizations are enabled with the default
setting of the optimization level (-O2).

» Some checks require cross-module inspections and violations will only be detected when multiple
source files are compiled and linked together by the compiler in a single invocation.

4.7.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the TASKING compiler reflect the version of the CERT
web site as of June 1 2009.

The following rules/recommendations implemented by the TASKING compiler, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 20, CERT C Secure Coding Standard.

206

https://www.securecoding.cert.org/confluence/display/c/CERT+C+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html

Using the C Compiler

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

* severity - how serious are the consequences of the rule being ignored
1. low (denial-of-service attack, abnormal termination)
2. medium (data integrity violation, unintentional information disclosure)
3. high (run arbitrary code)

« likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1. unlikely
2. probable
3. likely
» remediation cost - how expensive is it to comply with the rule
1. high (manual detection and correction)
2. medium (automatic detection and manual correction)
3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The TASKING compiler checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 20, CERT C Secure Coding Standard.

To apply CERT C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » CERT C Secure Coding.

4. Make a selection from the CERT C secure code checking list.

207

TASKING VX-toolset for C166 User Guide

5. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

On the command line you can use the option --cert.
cl166 --cert={all | nanme [-nane],...]

With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to
list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

4.7.2. C Code Checking: MISRA C

The C programming language is a standard for high level language programming in embedded systems,
yet it is considered somewhat unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA C code
checking helps you to produce more robust code.

MISRA C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA C:1998, the first version of MISRA C and MISRA C: 2012, the latest
version of MISRA C. You can select the version with the following C compiler option:

--m srac-versi on=1998
--m srac-versi on=2004
--m srac-version=2012

In your C source files you can check against the MISRA C version used. For example:

#f __ M SRAC VERSION__ == 1998
#elif __ M SRAC_VERSION__ == 2004
#elif __ M SRAC_VERSION__ == 2012
#endi f

For a complete overview of all MISRA C rules, see Chapter 21, MISRA C Rules.

Implementation issues

The MISRA C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA C rules are indicated with error messages
and the build process is halted.

208

Using the C Compiler

MISRA C rules are divided in mandatory rules, required rules and advisory rules. If rules are violated,
errors are generated causing the compiler to stop. With the following options warnings, instead of errors,
are generated:

--m srac- nandat or y- war ni ngs

--m srac-required-warni ngs
--m srac-advi sory-war ni ngs

Note that not all MISRA C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA C rules throughout the entire project, the TASKING linker can
generate a MISRA C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA C settings at the time of compilation. You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » MISRA C.
4. Select the MISRA C version (1998, 2004 or 2012).

5. Inthe MISRA C checking box select a MISRA C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA C guidelines.

6. (Optional) In the Custom 1998, Custom 2004 or Custom 2012 entry, specify the individual rules.

c166 --misrac={all | nunber [-nunber],...]

4.8. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

209

TASKING VX-toolset for C166 User Guide

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct. You can control warnings
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties for menu (C compiler option --no-warnings).

| (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

SO##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

cl66 --diag=[format:]{all | nunber,...]

210

Chapter 5. Using the C++ Compiler

This chapter describes the compilation process and explains how to call the C++ compiler. You should
be familiar with the C++ language and with the ISO C language.

The C++ compiler can be seen as a preprocessor or front end which accepts C++ source files or sources
using C++ language features. The output generated by the C++ compiler (cp166) is intermediate C, which
can be translated with the C compiler (c166).

The C++ compiler is part of a complete toolset, the TASKING VX-toolset for C166. For details about the
C compiler see Chapter 4, Using the C Compiler.

The C++ compiler takes the following files for input and output:

CHsource file
.CC
1

CH+ campiler

I
intermediate Cfile
Jic

Although in Eclipse you cannot run the C++ compiler separately from the other tools, this section discusses
the options that you can specify for the C++ compiler.

On the command line it is possible to call the C++ compiler separately from the other tools. However, it
is recommended to use the control program for command line invocations of the toolset (see Section 8.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line. Eclipse also uses the control program to call the C++ compiler. Files with the extensions . cc, . cpp
or . cxx are seen as C++ source files and passed to the C++ compiler.

The C++ compiler accepts the C++ language of the ISO/IEC 14882:2003 C++ standard, with some minor
exceptions documented in Chapter 2, C++ Language. It also accepts embedded C++ language extensions.

The C++ compiler does no optimization. Its goal is to produce quickly a complete and clean parsed form
of the source program, and to diagnose errors. It does complete error checking, produces clear error
messages (including the position of the error within the source line), and avoids cascading of errors. It
also tries to avoid seeming overly finicky to a knowledgeable C or C++ programmer.

5.1. Calling the C++ Compiler
Under Eclipse you cannot run the C++ compiler separately. However, you can set options specific for the
C++ compiler. After you have built your project, the output files are available in a subdirectory of your

project directory, depending on the active configuration you have set in the C/C++ Build » Settings page
of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

211

TASKING VX-toolset for C166 User Guide

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration. Based on the target processor, the compiler includes a special function register file. This
is a regular include file which enables you to use virtual registers that are located in memory.

1.

3.

4.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

From the Configuration list, select a configuration or select[All configurations].

From the Processor selection list, select a processor.

To access the C/C++ compiler options

1.

From the Project menu, select Properties for
The Properties dialog appears.
In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

212

Using the C++ Compiler

3. From the Configuration list, select a configuration or select[All configurations].
4. On the Tool Settings tab, select C/C++ Compiler.
5. Select the sub-entries and set the options in the various pages.

Note that C++ compiler options are only enabled if you have added a C++ file to your project, a
file with the extension . cc, . cpp or . cxx.

Note that the options you enter in the Assembler page are also used for intermediate assembly
files.

You can find a detailed description of all C++ compiler options in Section 11.3, C++ Compiler Options.

Invocation syntax on the command line:

cpl66 [[option]... [file]...]...

5.2. How the C++ Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The C++ compiler searches the specified locations in the following order:

1. If the #i ncl ude statement contains an absolute pathname, the C++ compiler looks for this file. If no
path or a relative path is specified, the C++ compiler looks in the same directory as the source file.

This is only possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the C++ compiler did not find the include file, it looks in the directories that are specified in the
C/C++ Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the
Project Properties dialog (equivalent to the --include-directory (-I) command line option).

3. When the C++ compiler did not find the include file (because it is not in the specified include directory
or because no directory is specified), it looks in the path(s) specified in the environment variable
CP1661 NC.

4. When the C++ compiler still did not find the include file, it finally tries the default i ncl ude. cpp and
i ncl ude directory relative to the installation directory.

5. If the include file is still not found, the directories specified in the --sys-include option are searched.

If the include directory is specified as -, e.g., -I-, the option indicates the point in the list of -1 or
--include-directory options at which the search for file names enclosed in <. . . > should begin. That is,
the search for <. . . > names should only consider directories named in -1 or --include-directory options

213

TASKING VX-toolset for C166 User Guide
following the -I-, and the directories of items 3 and 4 above. -I- also removes the directory containing the
current input file (item 1 above) from the search path for file names enclosed in". . . "

An include directory specified with the --sys-include option is considered a "system" include directory.
Warnings are suppressed when processing files found in system include directories.

If the filename has no suffix it will be searched for by appending each of a set of include file suffixes.
When searching in a given directory all of the suffixes are tried in that directory before moving on to the
next search directory. The default set of suffixes is, no extension and . st dh. The default can be overridden
using the --incl-suffixes command line option. A null file suffix cannot be used unless it is present in the
suffix list (that is, the C++ compiler will always attempt to add a suffix from the suffix list when the filename
has no suffix).

Example

Suppose that the C++ source file t est . cc contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the C++ compiler as follows:
cpl66 -1 nyinclude test.cc

First the C++ compiler looks for the file st di 0. h in the directory nmyi ncl ude relative to the current
directory. If it was not found, the C++ compiler searches in the environment variable CP1661 NC and then
in the defaulti ncl ude directory.

The C++ compiler now looks for the file myi nc. h, in the directory where t est . cc is located. If the file
is not there the C++ compiler searches in the directory nyi ncl ude. If it was still not found, the C++

compiler searches in the environment variable CP1661 NC and then in the default i ncl ude. cpp and
i ncl ude directories.

5.3. C++ Compiler Error Messages
The C++ compiler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

Catastrophic errors, also called 'fatal errors', indicate problems of such severity that the compilation cannot
continue. For example: command-line errors, internal errors, and missing include files. If multiple source
files are being compiled, any source files after the current one will not be compiled.

E (Errors)

Errors indicate violations of the syntax or semantic rules of the C++ language. Compilation continues,
but object code is not generated.

214

Using the C++ Compiler

W (Warnings)

Warnings indicate something valid but questionable. Compilation continues and object code is generated
(if no errors are detected). You can control warnings in the C/C++ Build » Settings » Tool Settings »
C/C++ Compiler » Diagnostics page of the Project » Properties for menu (C++ compiler option
--no-warnings).

R (Remarks)

Remarks indicate something that is valid and probably intended, but which a careful programmer may
want to check. These diagnostics are not issued by default. Compilation continues and object code is
generated (if no errors are detected). To enable remarks, enable the option Issue remarks on C++ code
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties for menu (C++ compiler option --remarks).

S (Internal errors)

Internal compiler errors are caused by failed internal consistency checks and should never occur. However,
if such a 'SYSTEM' error appears, please report the occurrence to Altium. Please include a small C++
program causing the error.

Message format

By default, diagnostics are written in a form like the following:

cpl66 E0020: ["test.cc" 3] identifier "nane" is undefined

With the command line option --error-file=file you can redirect messages to a file instead of st derr.

Note that the message identifies the file and line involved. Long messages are wrapped to additional lines
when necessary.

With the option C/C++ Build » Settings » Tool Settings » Global Options » Treat warnings as errors
(option --warnings-as-errors) you can change the severity of warning messages to errors.

With the command line option --diag you can see a list of all messages.
For some messages, a list of entities is useful; they are listed following the initial error message:

cpl66 E0308: ["test.cc" 4] nore than one instance of overl oaded
function "f" matches the argument |ist:
function "f(int)"
function "f(float)"
argunent types are: (double)

In some cases, some additional context information is provided; specifically, such context information is
useful when the C++ compiler issues a diagnostic while doing a template instantiation or while generating
a constructor, destructor, or assignment operator function. For example:

cpl66 E0265: ["test.cc" 7] "A:A()" is inaccessible
detected during inplicit generation of "B::B()" at line 7

215

TASKING VX-toolset for C166 User Guide

Without the context information, it is very hard to figure out what the error refers to.

Termination Messages

The C++ compiler writes sign-off messages to st der r (the Problems view in Eclipse) if errors are detected.
For example, one of the following forms of message

n errors detected in the conpilation of "file".
1 catastrophic error detected in the conpilation of "file".

n errors and 1 catastrophic error detected in the conpilation of "file".

is written to indicate the detection of errors in the compilation. No message is written if no errors were
detected. The following message

Error limt reached.

is written when the count of errors reaches the error limit (see the option --error-limit); compilation is
then terminated. The message

Conpi | ation term nated.

is written at the end of a compilation that was prematurely terminated because of a catastrophic error.
The message

Conpi | ati on aborted

is written at the end of a compilation that was prematurely terminated because of an internal error. Such
an error indicates an internal problem in the compiler. If such an internal error appears, please report the
occurrence to Altium. Please include a small C++ program causing the error.

216

Chapter 6. Using the Assembler

This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

assembly file
. 5ICC
assembly file . asm ¥ |
¢hand coded? | w= listfile .1st
assemhbler

-———MF QITOrmessages ers

relocatahle object file
.ohj

The following information is described:

» The assembly process.

» How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 11.4, Assembler Options.

» The various assembler optimizations.
» How to generate a list file.

» Types of assembler messages.

6.1. Assembly Process

The assembler generates relocatable output files with the extension . obj . These files serve as input for
the linker.

Phases of the assembly process

 Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

» Optimization (instruction size and generic instructions)
» Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 3.10, Macro Operations for more
information.

217

TASKING VX-toolset for C166 User Guide

6.2. Calling the Assembler

The TASKING VX-toolset for C166 under Eclipse uses the TASKING makefile generator and make utility
to build your entire project. After you have built your project, the output files are available in a subdirectory
of your project directory, depending on the active configuration you have set in the C/C++ Build » Settings
page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behavior tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you need to set them for each
configuration. Based on the target processor, the compiler includes a special function register file. This
is a regular include file which enables you to use virtual registers that are located in memory.

1.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

From the Configuration list, select a configuration or select[All configurations].

218

Using the Assembler

4. From the Processor selection list, select a processor.

To access the assembler options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[All configurations].
4. On the Tool Settings tab, select Assembler.
5. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

You can find a detailed description of all assembler options in Section 11.4, Assembler Options.

Invocation syntax on the command line:
asl66 [[option]... [file]...]...

The input file must be an assembly source file (. asmor . src).

6.3. How the Assembler Searches Include Files

When you use include files (with the . | NCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

1. If the . | NCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to option --include-directory (-)).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable AS1661 NC.

4. When the assembler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

219

TASKING VX-toolset for C166 User Guide

Example

Suppose that the assembly source file t est . asmcontains the following lines:
. I NCLUDE ' nyi nc. i nc'

You can call the assembler as follows:

asl66 -1 nyinclude test.asm

First the assembler looks for the file myi nc. asm in the directory where t est . asmis located. If the file
is not there the assembler searches in the directory nyi ncl ude. If it was still not found, the assembler
searches in the environment variable AS1661 NC and then in the default i ncl ude directory.

6.4. Assembler Optimizations
The assembler can perform various optimizations that you can enable or disable.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Optimization.
4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Allow JMPA+/JMPA- for speed optimizations (option -Oa/-OA)

This optimization is only available for XC16x and Super10 targets. When this option is enabled, the generic
instructions JMP, JMP+, JMP-, JB+ and JB- can lead to an optimized JMPA+ or JMPA- instruction. When
this optimization is disabled, JMPR is used in all situations. This leads to a smaller code size. By default
this option is enabled.

Allow generic instructions (option -Og/-OG)

When this option is enabled, you can use generic instructions in your assembly source. The assembler
tries to replace instructions by faster or smaller instructions.

By default this option is enabled. If you turn off this optimization, generic instructions are not allowed. In
that case you have to use hardware instructions.

220

Using the Assembler

Optimize jump chains (option -Oj/-0J)

When this option is enabled, the assembler replaces chained jumps by a single jump instruction. For
example, a jump from a to b immediately followed by a jump from b to c, is replaced by a jump from a to
c. Note that this optimization has no effect on compiled C files, because jump chains are already optimized
by the compiler. By default this option is disabled.

Optimize instruction size (option -Os/-0OS)

When this option is enabled, the assembler tries to find the shortest possible operand encoding for
instructions. By default this option is enabled.

6.5. Generating a List File

The list file is an additional output file that contains information about the generated code. You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

To generate alist file

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » List File.

4. Enable the option Generate list file.

5. (Optional) Enable the options to include that information in the list file.

Example on the command line
The following command generates the list file t est . | st :
asle6 -1 test.asm

See Section 15.1, Assembler List File Format, for an explanation of the format of the list file.

6.6. Assembler Error Messages

The assembler reports the following types of error messages in the Problems view of Eclipse.

221

TASKING VX-toolset for C166 User Guide

F (Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct. You can control
warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties for menu (assembler option --no-warnings).

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

asl66 --diag=[format:]{all | nunber,...]

222

Chapter 7. Using the Linker

This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files

(. obj files, generated by the assembler), and libraries into a single relocatable linker object file (. out).
The locator phase assigns absolute addresses to the linker object file and creates an absolute object file
which you can load into a target processor. From this point the term linker is used for the combined
linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The

target board may be of arbitrary complexity. A simple target board may contain one standard processor

with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:
relocatable objectfiles . ohj

relocatahle linker ohjectfile . out —‘ ’— relocatable object library . 1ih
linkerscriptfile .11 — ink == linkermap file . map
inker
----- - errormessages | elk
relocatable linker objectfile . out J I—" memary definition
file .mdf
| 1 '
Intel Hex ELFDWARF 2 Iotorola S-record
ahsolute ohjectfile absolute obhject file absolute obhject file
Chesx .elf . &5re

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 11.5, Linker Options.

To control the link process, you can write a script for the linker. This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

7.1. Linking Process

The linker combines and transforms relocatable object files (. obj) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

223

TASKING VX-toolset for C166 User Guide

Terms used in the linking process

Term

Definition

Absolute object file

Address
Address space

Architecture

Copy table

Core
Derivative

Library

Logical address

LSL file
MAU

Object code
Physical address
Processor

Relocatable object
file

Relocation

224

Object code in which addresses have fixed absolute values, ready to load into a
target.

A specification of a location in an address space.

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

A section created by the linker. This section contains data that specifies how the
startup code initializes the data sections. For each section the copy table contains
the following fields:

« action: defines whether a section is copied or zeroed
» destination: defines the section's address in RAM
* source: defines the sections address in ROM

« length: defines the size of the section in MAUs of the destination space

An instance of an architecture.

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

An address as encoded in an instruction word, an address generated by a core
(CPU).

The set of linker script files that are passed to the linker.

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

The binary machine language representation of the C source.
An address generated by the memory system.

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Object code in which addresses are represented by symbols and thus relocatable.

The process of assigning absolute addresses.

Using the Linker

Term Definition

Relocation Information about how the linker must modify the machine code instructions when

information it relocates addresses.

Section A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section attributes Attributes that define how the section should be linked or located.

Target The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Unresolved A reference to a symbol for which the linker did not find a definition yet.

reference

7.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

» Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

» Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

» Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

» Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

» Debug information: Other information about the object code that is used by a debugger. The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

225

TASKING VX-toolset for C166 User Guide

At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (. out). If this file contains unresolved
references, you can link this file with other relocatable object files (. obj) or libraries (. | i b) to resolve
the remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

7.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory. The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

Al 3412 0000 nov a, %eax (a defined at 0x1234, byte reversed)
A3 0000 0000 rmov %ax, b (b is inported so the instruction refers to
0x0000 since its |location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

Al 3412 0100 nov a, %eax (0x10000 added to the address)
A3 129A 0000 nov %ax, b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default ELF/DWARF format (. el f) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (. hex) and Motorola S-record format (. sr €) only contain an image of the executable code and
data. You can specify a format with the options --output (-0) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker. The script language is called
the Linker Script Language (LSL). Using LSL you can define:

» The memory installed in the embedded target system:

226

Using the Linker

To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

» How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

» The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 7.7, Controlling the Linker with a Script.

7.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

* Build Individual Project (&T),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click OK.

227

TASKING VX-toolset for C166 User Guide
 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behavior tab of
the C/C++ Build page of the Project » Properties for dialog.

To access the linker options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. From the Configuration list, select a configuration or select[Al configurations].
4. On the Tool Settings tab, select Linker.
5. Select the sub-entries and set the options in the various pages.

You can find a detailed description of all linker options in Section 11.5, Linker Options.

Invocation syntax on the command line:
I k166 [[option]... [file]...]...

When you are linking multiple files, either relocatable object files (. obj) or libraries (. | i b), itis important
to specify the files in the right order. This is explained in Section 7.3, Linking with Libraries.

Example:
| k166 -dxcl6x.|sl test.obj

This links and locates the file t est . obj and generates the filet est . el f.

7.3. Linking with Libraries
There are two kinds of libraries: system libraries and user libraries.
System library

System libraries are stored in the directories:

<Cl166 installation path>\1ib\[p]1l (c16x/st10/st10nmac |ibraries)
<C166 installation path>\lib\2 (xcl6x/ super 10/ super 10845 | i brari es)

The p1 directory contains the protected libraries for CPU functional problems.

228

Using the Linker

An overview of the system libraries is given in the following table:

Libraries

Description

cl166cm[n][u][s].lib

C libraries for each model m: n (near), f (far), s (shuge), h (huge)
Optional letters:

n = near functions

u = user stack

s = single precision floating-point (control program option
--fp-model=+float)

c166fpm[n][u]t].lib

Floating-point libraries for each model m: n, f, s, h
Optional letters:

n = near functions

u = user stack

t = trapping (control program option --fp-model=+trap)

c166rtm[n][u].lib

Run-time libraries for each model m: n, f, s, h
Optional letters:

n = near functions

u = user stack

c166pbm[n][u].lib
c166pcm[n][u].lib
cl166pctm[n][u].lib
c166pdm[n][u].lib
c166ptm[n][u].lib

Profiling libraries for each model m: n, f, s, h
pb = block/function counter

pc = call graph
pct = call graph and timing
pd = dummy

pt = function timing
Optional letters:

n = near functions
u = user stack

cl166cpm(u][x].lib

C++ libraries for each model m: n, f, s, h
Optional letters:

u = user stack

X = exception handling

c166stim[u]x.lib ~

STLport C++ libraries for each model m: n, f, s, h
Optional letters:

u = user stack

X = exception handling

" From the STLport C++ library only the near model variant is delivered ready-to-use. The other

STLport C++ libraries are delivered in source. You can build them yourself when you need them.

See Chapter 14, Libraries for more information.

To link the default C (system) libraries

1. From the Project menu, select Properties for

The Properties dialog appears.

229

TASKING VX-toolset for C166 User Guide

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Enable the option Link default libraries.

When you want to link system libraries from the command line, you must specify this with the option
--library (-1). For example, to specify the system library c166¢f . | i b, type:

| k166 --1ibrary=cf test.obj

User library

You can create your own libraries. Section 8.5, Archiver describes how you can use the archiver to create
your own library with object modules.

To link user libraries

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their flenames on the
command line:

I k166 start.obj nylib.lib
If the library resides in a sub-directory, specify that directory with the library name:
| k166 start.obj nylibs\nmylib.lib

If you do not specify a directory, the linker searches the library in the current directory only.

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use

a weak symbol construction, like pri nt f, in an object file or your own library, you must position this
object/library before the C library.

230

Using the Linker

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

| k166 --first-library-first a.lib test.obj b.lib

If the file t est . obj calls a function which is both presentina. | i b and b. | i b, normally the function in
b. |i b would be extracted. With this option the linker first tries to extract the symbol from the first library
a.lib.

Note that routines in b. | i b that call other routines that are present in botha. | i b and b. | i b are now
also resolved from a. | i b.

7.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways. The linker searches the specified locations
in the following order:

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the
option --library-directory (-L)). If you specify the -L option without a pathname, the linker stops
searching after this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variable LI BC166.

3. When the linker did not find the library, it tries the default | i b directory relative to the installation
directory.

User library

If you use your own library, the linker searches the library in the current directory only.

7.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver ar166 always contains an index part at the beginning of the
library. The linker scans this index while searching for unresolved externals. However, to keep the index
as small as possible, only the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals
and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the
libraries. However, this rescanning does not work for ‘weak symbols'. If you use a weak symbol construction,
like pri nt f, in an object file or your own library, you must position this object/library before the C library.

The option --verbose (-v) shows how libraries have been searched and which objects have been extracted.

231

TASKING VX-toolset for C166 User Guide

Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

I k166 nylib.lib

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through nmyl i b. i b.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):
| k166 --extern=main nylib.lib

In this case the linker searches for the symbol rmai n in the library and (if found) extracts the object that
contains mai n.

If this module contains new unresolved symbols, the linker looks again in nyl i b. | i b. This process
repeats until no new unresolved symbols are found.

7.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all . obj modules to a relocatable object file . out . In this case the linker does not perform the
locating phase. With the second invocation, you specify both new . obj files as the . out file you had
created with the first invocation.

Incremental linking is only possible on the command line.

| k166 -dxcl6x.lsl --increnmental testl.obj -otest.out
| k166 -dxcl6x.|sl test2.obj test.out

This links the filet est 1. obj and generates thefilet est . out . This file is used again and linked together

witht est 2. obj tocreatethefilet est . el f (the default name if no output filename is given in the default
ELF/DWARF format).

With incremental linking it is normal to have unresolved references in the output file until all . obj files
are linked and the final . out or . el f file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

7.5. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from.

Add a data object in Eclipse

1. Select Linker » Data Objects.

232

Using the Linker

The Data objects box shows the list of object files that are imported.
2. To add a data object, click on the Add button in the Data objects box.
3. Type or select a binary file (including its path).
On the command line you can add raw data to your application with the linker option --import-object.

This makes it possible for example to display images on a device or play audio. The linker puts the raw
data from the binary file in a section. The section is aligned on a 2-byte boundary. The section name is
derived from the filename, in which dots are replaced by an underscore. So, when importing a file called
ny. np3, a section with the name my_np3 is created. In your application you can refer to the created
section by using linker labels.

For example:

#i ncl ude <stdio. h>

__huge extern char _lc_ub_ny_nmp3; /* linker |abels */
__huge extern char _lc_ue_ny_np3;

__huge char* mp3 = & |l c_ub_my_np3;

voi d mai n(voi d)

{
int size = &lc_ue_nmy_m3 - & Ilc_ub_ny_np3;
int i;
for (i=0;i<size;i++)
put char (nmp3[i]);
}

Because the compiler does not know in which space the linker will locate the imported binary, you
have to make sure the symbols refer to the same space in which the linker will place the imported
binary. You do this by using the memory type qualifier __huge, otherwise the linker cannot bind
your linker symbols.

Also note that if you want to use the export functionality of Eclipse, the binary file has to be part
of your project.

7.6. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations
1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

233

TASKING VX-toolset for C166 User Guide

In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Optimization.
4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)

This optimization removes unused sections from the resulting object file.

First fit decreasing (option -OI/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the

smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas. The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Delete duplicate code (option -Ox/-OX)

Delete duplicate constant data (option -Oy/-QY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

Compress ROM sections of copy table items (option -Oz/-OZ)

Reduces the size of the application's ROM image by compressing the ROM image of initialized data
sections. At application startup time the ROM image is decompressed and copied to RAM.

234

Using the Linker

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

7.7. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse itis also possible to determine where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly LSL. You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

7.7.1. Purpose of the Linker Script Language
The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the core architectures that Altium
has supplied in the i ncl ude. | sl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid. You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #i ncl ude
and #def i ne, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Chapter 17, Linker Script Language (LSL).

7.7.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name. | sl and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name. | sl .

235

TASKING VX-toolset for C166 User Guide

To add a generated Linker Script File to your project
1. From the File menu, select File » New » TASKING C166 C/C++ Project.
The New C/C++ Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the following dialog appears.

{2J Mew C/C++ Project B= @
C166 Project Settings =

€3 Select a processor to continue

Processor selection
> [Inf!neon C166 Famll)l.r
>] Infineon XC166 Family
. [F] Infineon XC2000 Family
> [] Infineon XE166 Family
>] STMicroelectronics ST10
> 7] Miscellaneous
>] Custom

Actions
[] Add startup file(s) to the project
[] Add linker script file to the project

3. Enable the option Add linker script file to the project and click Finish.
Eclipse creates your project and the file "project_name. | sl " in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script
File (LSL).

To change the Linker Script File in Eclipse
There are two ways of changing the LSL file in Eclipse.
* You can change the LSL file directly in an editor.

1. Double-click on the file project_name. | sl .

236

Using the Linker

The project LSL file opens in the editor area.

el myproject.lsl &2 = 8
7

Linker script file for the VX-toolset for C166

// Define the near page addresses. Each DPP will peint to a near page.
/f It is recommended to keep _ DPP3_ADDR at @x88Ceae

#define _ DPP@_ADDR @x820008

#define _ DPP1_ADDR @x284208

#define _ DPP2_ADDR @x818008

#define _ DPP3Z_ADDR @x82C008

m

#if defined(_ CPU_XC2287M_)
#include "xc2287m.1s1"
derivative my_xc2287m extends xc2287m

i
-}
@ felsel]

/{ Define interrupt vector table
section_setup ::code

vector_table "vector_table" { vector_size = 4, size = 128, run_addr = @8x800008,
template="_ vector_template”, template_symbol="__ lc_vector target",
wvector_prefix=".vecter.", fill = loop)

{

b
} -

7|

vector (id=8, fill="_ cstart");

2. You can edit the LSL file directly in the project_name. | sl editor.
A * appears in front of the name of the LSL file to indicate that the file has changes.

3. click =] or select File » Save to save the changes.

» You can also make changes to the property pages Memory, Stack/Heap and Vector Table.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory, or Stack/Heap or Vector Table.
In the right pane the corresponding property page appears.
3. Make changes to memory, stack/heap and/or vector table and click OK.

The project LSL file is updated automatically according to the changes you make in the pages.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).

7.7.3. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

237

TASKING VX-toolset for C166 User Guide

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by Altium. Altium supplies LSL files in the i ncl ude. | sl directory.
The file ar ch_c166. | s| defines the base architecture for all cores. The files ar ch_cor e. | sl extend
the base architecture for cor e.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

Altium supplies common derivatives for each core in the files ar ch_cor e. | s| and supplies LSL files
for each derivative (deri vati ve. | sl) which extends the common derivative.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named 'A' of derivative 'A'. This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

238

Using the Linker

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

» convert a logical address to an offset within a memory device
* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

architecture c166

{

/1 Specification of the c166 core architecture.
/1 Witten by Altium

}

architecture xcl6bx extends cl66
{ /1 xcl6x inherits all features of c166

}
derivative X // derivative nane is arbitrary
{
/'l Specification of the derivative.
/1 Witten by Altium
core xcl6x /1 always specify the core
{
architecture = xcl6x;
}
bus address /'l internal bus
{
/1 maps to bus "address" in "xcl6x" core
}
/'l internal menory
}
processor spe /1 processor nane is arbitrary
{

239

TASKING VX-toolset for C166 User Guide

derivative

/1l You can omt this part, except if you use a
/1l multi-core system

}
menory ext_nane
{
/1l external menory definition
}
section_| ayout spe: xcl6x: shuge /1 section |ayout
{
/1 section placenent statenments
/1 sections are located in address space 'shuge
/1l of core 'xcl6x' of processor 'spe'
}

Overview of LSL files delivered by Altium

Altium supplies the following LSL files in the directory i ncl ude. | si .

LSL file

Description

arch_c166. | sl

Defines the base architecture for all cores.

arch_core.| sl

Extends the base architecture for core and defines a common derivative. It
includes the file arch_c166. | sl .

derivative. |l sl

Extends the common derivative as defined for core and defines a single
processor. It includes the file ar ch_core. | sl .

tenpl ate. | sl

This file is used by Eclipse as a template for the project LSL file. It includes
thefile deri vati ve. | sl based onyour CPU selection. The CPU is specified
by the __ CPU__ macro.

default.| sl

Contains a default memory definition and section layout. It includes the file
derivati ve. | s| based on your CPU selection. The CPU is specified by the
___CPU__ macro. If you invoke the control program without a CPU specification,
the linker is called with -D__CPU__=c16x.

When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the file t enpl at e. | s| and names it "project_name. | sl ". On the command line, the linker uses the file
def aul t. | sl , unless you specify another file with the linker option --Isl-file (-d).

7.7.4.The Architecture Definition

Although you will probably not need to write an architecture definition (unless you are building your own
processor core) it helps to understand the Linker Script Language and how the definitions are interrelated.

Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:

240

Using the Linker

» space definitions: the logical address spaces and their properties
 bus definitions: the I/O buses of the core architecture

* mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, separate
spaces for code and data. Normally, the size of an address space is 2N, with N the number of bits used
to encode the addresses.

The relation of an address space with another address space can be one of the following:
* one space is a subset of the other. These are often used for "small" absolute or relative addressing.

« the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture c166 as defined in arch_c166. | sl .

Space Id MAU Description

bit 1 1 Select all bit sections. This space starts at address OxFDO0O and is 0x800
bits long, ending at OXFDFF.

bita 2 8 Bit-addressable space.

iram 3 8 Internal memory, usually Dual Port RAM. The size is always 3 kB and ranges
from OxF200 to OXFDFF.

near 4 8 Near data space, 4 16 kB pages anywhere in memory. All four DPPs each

point to one of these 4 pages. DPP3 is fixed to page 3 (0xC000) to facilitate
access of SFRs through the MEM addressing mode. DPPO, DPP1 and DPP2
can be assigned to any page in memory. It also defines a user stack and a
heap (nheap).

far 5 8 Far data, also used for grouped 'SYSTEM' sections.

shuge 6 8 Segmented huge data, contains definitions for copy table and system stack.
huge 7 8 Huge data, also defines a heap (hheap) and linker symbols.

code 8 8 Code address space, specifies the start address at the beginning of the

vector table.

By default the near space is ‘paged’ in pages of 16 kB. The first byte in each space is reserved to avoid
NULL pointer comparison problems with objects allocated at the beginning of the page. It is possible to
remove the page restriction in the near space by defining the __ CONTI GUOUS_NEAR macro. This makes
it possible to allocate objects larger that 16 kB or to make a user stack larger than 16 kB. But with this

241

TASKING VX-toolset for C166 User Guide

page restriction removed, you should not cast a near to a far or shuge pointer in C, unless you are
absolutely sure that the section of the object pointed to does not cross a page boundary.

The spaces are nested in such a way that the locate algorithm uses the right order. The linker starts with
locating the sections that are most far away from the bus definition, which means that sections for spaces
with the highest memory range restriction will be located first. The following space nesting is used:

bus: addr ess

\---huge
:---code
{---shuge
{---far
{---near
{---iram
{---bita

I
\---bit

The C166 architecture in LSL notation

The best way to write the architecture definition, is to start with a drawing. The figure below shows a part
of the architecture c166, it shows an example of how the near linear pages are mapped into memory.

Space far

Space near
OOFFFF __ .-—— OLBFFF
DFR3 R s
e 1 0le000
017FFF
DPPE
e Tl ee—— 014000
DIPL
L .. -~ DOFFFF
DPPO
oooooo——, “— nocooo
" OD3FFF
L oooooo

242

Using the Linker

The figure shows two address spaces called near and f ar . All address spaces have attributes like a
number that identifies the logical space (id), a MAU and an alignment. In LSL notation the definition of
these address spaces looks as follows:

#define __DPPO_ADDR 0x000000
#define __ DPP1_ADDR 0x014000
#define __DPP2_ADDR 0x018000

space near

{
id
mau
page;

4;
8;

map(src_of fset
map(src_of fset
map(src_of fset
map(src_of fset
I

0x0000, dest offset
0x4000, dest offset
0x8000, dest offset
0xC000, dest offset

__DPPO_ADDR, dest=space:far, size=16k);
__DPP1_ADDR, dest=space:far, size=16k);
__DPP2_ADDR, dest=space:far, size=16k);
0xC000, dest=space:far, size=16k);

}

space far
{
id
mau
page;
page_si ze

S5;
8;

0x4000 [__PAGE_START..0x4000 - __ PAGE_END|;

map(size

}

16M dest = space: shuge);

space huge
{
id 7;
mau 8;
page_si ze

0x1000000 [__PAGE_START..0x1000000 - __ PAGE_END|;

map(size 16M dest = bus:address);

}

The keyword map corresponds with the dotted lines in the drawing. You can map:
» address space => address space

» address space => bus (not shown in the drawing)

* memory => bus (not shown in the drawing)

 bus => bus (not shown in the drawing)

Next the internal bus named addr ess must be defined in LSL:

243

TASKING VX-toolset for C166 User Guide

bus address

{
24; /] there are 24 data lines on the bus

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture c166

{
}

/1 Al code above goes here.

7.7.5.The Derivative Definition

Although you will probably not need to write a derivative definition (unless you are using multiple cores
that both access the same memory device) it helps to understand the Linker Script Language and how
the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

» core definition: an instance of a core architecture
* bus definition: the 1/0 buses of the core architecture

* memory definitions: internal (or on-chip) memory

Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

core Xxcléx

{
}

architecture = xcl6x;

Bus

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
addr ess maps to the bus addr ess defined in the architecture definition of core xc16x:

bus address

{

mau = 8;

w dth = 24;

map(dest =bus: xc16x: addr ess, dest_of fset=0, size=16M);
}

244

Using the Linker

Memory

Memory is usually described in a separate memory definition, but you can specify on-chip memory for a
derivative. For example:

nmenory dpram

{

mau = 8;

type = ram

size = 2k;

map(dest =bus: xc16x: address, src_offset = 0, dest_offset = OxF600, size = 2k);
}

This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X /1l name of derivative

/1 Al code above goes here

}

7.7.6.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor nane

{
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

derivative = derivative_nang;

Altium defines a “single processor environment” (spe) in each deri vati ve. | sl file. For example:

processor spe

{
}

derivative = xc2287m

7.7.7.The Memory Definition

Once the core architecture is defined in LSL, you may want to extend the processor with memory. You
need to specify the location and size of the physical external memory devices in the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

nenory nane

{

245

TASKING VX-toolset for C166 User Guide

}

/1 menory definitions

Suppose your embedded system has 128 kB of external ROM, named xr om 64 kB of external RAM,
named xr amand 16 kB of external NVRAM, named my_nvr am All memories are connected to the bus
addr ess. In LSL this looks like:

menory ny_nvram

{

}

mau = 8;
type = nvram
size = 16k;

map(dest =bus: spe: address, src_offset 0, dest_offset = 16k, size = 16k);

nmenory Xrom

{

}

mau = 8;
type = rom
size = 128k;

map(dest =bus: spe: address, src_offset 0, dest_offset = 64k, size = 128k);

nmenory Xram

{

}

mau = 8;
type = ram
size = 64k;

map(dest =bus: spe: address, src_offset 0, dest_offset = 192k, size = 64k);

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse

1.

246

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Memory.

In the right pane the Memory page appears.

Open the Memory tab and click on the Add... button.

The Add new memory dialog appears.

Enter the memory name (for example ny_nvr anj, type (for example nvr an) and size.

Click on the Add... button.

Using the Linker

The Add new mapping dialog appears.

6. You have to specify at least one mapping. Enter the mapping name (optional), address, size and
destination and click OK.

The new mapping is added to the list of mappings.
7. Click OK.

The new memory is added to the list of memories (user memory).
8. Click OK to close the Properties dialog.

The updated settings are stored in the project LSL file.

If you make changes to the on-chip memory as defined in the architecture LSL file, the memory is copied
to your project LSL file and the line #defi ne __ REDEFI NE_ON_CHI P_I TEMS is added. If you remove
all the on-chip memory from your project LSL file, also make sure you remove this define.

7.7.8.The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat . ¢) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#def i ne BATTERY_BACKUP_TAG O0xa5f0
#i ncl ude <stdi o. h>

int wuninitialized data;

int initialized data = 1;
#pragma section near=non_vol atile
#pragma nocl ear

int battery_backup_tag;

int battery_backup_i nvok;
#pragma cl ear

#pragma endsection

void main (void)
if (battery_backup_tag != BATTERY_BACKUP_TAG)

/1 battery back-upped nenory area contains invalid data

247

TASKING VX-toolset for C166 User Guide

/1 initialize the nenory
battery_backup_tag = BATTERY_BACKUP_TAG
battery_backup_i nvok = 0;
}
printf("This application has been invoked % tines\n",
battery_backup_i nvok++);

}

The compiler assigns names and attributes to sections. With the #pr agma sect i on and #pr agna
endsect i on the compiler's default section naming convention is overruled and a section with the name
non_vol ati | e is defined. In this section the battery back-upped data is stored.

By default the compiler creates a section with the name "near" of section type "near" carrying section
attributes "clear" and "new" to store uninitialized data objects. The section type and attributes tell the
linker to locate the section in address space near and that the section content should be filled with zeros
at startup.

As aresult of the #pr agna secti on near=non_vol ati | e, the data objects between the pragma
pair are placed in a section with the name "non_volatile". Note that the compiler sets the "clear" attribute.
However, battery back-upped sections should not be cleared and therefore we used #pr agna nocl ear .

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory nmy_nvr amfrom the example in Section 7.7.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space near :

section_l ayout ::near

/1 Section placenent statenments

}

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section non_vol ati | e. All
other sections are located using the defaults specified in the architecture definition. Sectionnon_vol ati |l e
should be placed in non-volatile ram. To achieve this, the run address refers to our non-volatile memory
called my_nvram

group (ordered, run_addr = nmem my_nvram)

{
}

This completes the LSL file for the sample architecture and sample program. You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

sel ect "non_vol atile";

248

Using the Linker

7.7.9. Copying Code Sections to PSRAM at Startup

For fast performance or preparing power-down modes it could be necessary to copy some (critical) code
portions from flash memory to PSRAM. You can do this easily from the LSL file by using the copy attribute.

section_|l ayout ::code

{
group(ordered, copy)
{
sel ect "code_libc";
}
}

This creates a ROM copy of all sections named "code_| i bc". For each selected section a ROM section
and a RAM section is created. The ROM section is named "[code_l i bc] ", while the RAM section is
named "code_| i bc". For these sections entries will be created in the copy table, resulting in the contents
of the ROM section (in flash) being copied to RAM.

See the tables in Section 7.7.11, ICACHE Support and Named Memory Mappings for an overview of
which memory ranges are available for code (ROM and RAM).

7.7.10. PSRAM Mirrors

All XC2000/XE166 devices have on-chip Program SRAM (PSRAM), starting at address OxE00000. A
mirror of the PSRAM is always located starting at address OXE80000. This mirror has timing parameters
that correspond to flash timing. This mirror is therefore called Emulated PSRAM (EPSRAM). PSRAM and
EPSRAM both support code and data access.

On devices with an ICACHE there is also a second mirror of PSRAM, starting at 0xA00000. This mirror
only supports code access.

In the device specific LSL file in the product’'s i ncl ude. | sl directory, and on the Eclipse Memory
properties page you will see only a single PSRAM memory. This definition includes a mappings for each
mirrored area. For a device with ICACHE the LSL memory definition may look like this:

menory PSRAM

{
mau = 8,
type = ram
si ze = 64k;
priority = 1;
map max_speed (dest=bus: xcl6x: address, dest_offset = OxE00000,
size = 64k);
map flash_timng (dest=bus:xcl6x: address, dest_offset = O0xE80000,
size = 64k, reserved);
map mrror (dest=bus: xcl6x: address, dest_offset = 0xA00000,
size = 64k, reserved);
}

The mirrors at OXE80000 and 0XA00000 are reserved. This means that by default no sections will be
located in these areas. Only absolute sections and sections with a fixed memory range can be located

249

TASKING VX-toolset for C166 User Guide

in these areas. You can define an absolute section in the source file with the __at () attribute, or you
can use an LSL gr oup statement. A section can get a fixed memory range if you use an LSL gr oup
statement with an address range.

The addresses occupied by a section in one of the areas automatically implies that the same offsets in
the mirrored area(s) are occupied.

Example:

section_layout ::code

{
group(run_addr = nmem spe: PSRAM nmirror, copy)
{
sel ect "code_mmin";
}
}

In this example the r un_addr specifies the full address range of the mirror at 0XA00000. The copy
attribute is used to create a copy of the section in flash, which will be copied to PSRAM at startup.

When you want to use one of the mirrors as the default range, you can exchange the r eser ved keyword
on the mappings. To do so, you will have to copy the device specific LSL file from the product’s

i ncl ude. | sl directory to your project. Or when you use Eclipse you can simply modify the PSRAM
memory definition in the Project » Properties for » C/C++ Build » Memory » Memory page. Eclipse
will then take care of making these settings in your project LSL file.

Example:

menory PSRAM

{
mau = 8;
type = ram
size = 64k;
priority = 1;
map max_speed (dest=bus: xcl6x: address, dest_offset = 0xE00000,
size = 64k, reserved);
map flash_timng (dest=bus:xcl6x: address, dest_offset = O0xE80000,
size = 64k, reserved);
map mrror (dest=bus: xcl6x: address, dest_offset = 0xA00000,
size = 64k);
}

This makes the mirror at 0XA00000 the default.

You can use EPSRAM as if it is flash by modifying the memory type from r amto r omand reserving all
ranges except the f [ash_t i mi ng range:

menory PSRAM

{
mau = 8;
type = rom
si ze = 64k;

250

Using the Linker

priority = 1;

map max_speed (dest=bus: xcl6x: address, dest_offset = 0xE00000,
size = 64k, reserved);

map flash_timng (dest=bus:xcl6x: address, dest_offset = 0xE80000,
size = 64k);

map mrror (dest=bus: xcl6x: address, dest_offset = 0xA00000,

size = 64k, reserved);

}
7.7.11. ICACHE Support and Named Memory Mappings

Some of the newer Infineon devices, such as the XC2268I have a cache on the flash memory, the so-called
ICACHE. To use the ICACHE it must be enabled in the C startup code (see Section 4.3.1, ICACHE
Support) and the linker script file must be modified to get sections located in the memory ranges that are
covered by the ICACHE.

Devices with ICACHE have two memory areas that are mapped to the on-chip flash. The standard flash
area, starting at 0xC00000, is not cached. For code that must be fetched through the cache, you must
use the area starting at 0x800000. The cached area is a mirror of the not cached area. Code located in
either of these areas is available at the other area at the same offset to the start address of the area. In
the cached area the processor can only execute code. No data shall be located in that area.

The standard linker script files (from the product's i ncl ude. | sl directory) have special provisions for
these areas. In general your project's LSL file includes the standard linker script file for the selected
processor. This standard linker script file defines the on-chip memories, reserved areas and other processor
architecture related stuff.

At the lowest level there is separation in ranges for code and data. This varies per core. The areas are

listed in the following tables. These mappings are defined in the file ar ch_c166. | sl in the product's
i ncl ude. | sl directory.

XC16x, XC2xxx, XE16x devices without ICACHE

Start |End Size Code |Data |Description
C00000 | FFFFFF |4M X X Flash, PSRAM, EPSRAM

010000 | BFFFFF | 12M-64k |x X External memory and 1/O
00F200 | 00FDFF | 3k - X DPRAM
008000 | 00DFFF | 24k - X DSRAM

X

000000 |007FFF |32k X

External memory

XC16x, XC2xxx, XE16x devices with ICACHE

Start |End Size Code |Data |Description

C00000 | FFFFFF |4M X X Flash, PSRAM, EPSRAM
080000 | AFFFFF | 3M X - Flash and PSRAM mirrors
010000 | 7FFFFF | 8M-64k |x X External memory and I/O

251

TASKING VX-toolset for C166 User Guide

Start |End Size Code |Data |Description
00F200 | 0OFDFF | 3k - X DPRAM

008000 | 00DFFF | 24k - X DSRAM

000000 | 007FFF |32k X X External memory

For all other devices the full memory is mapped for code and data.

The above address mappings do not reflect the actual (on-chip) memories. The on-chip memories are
defined in the device specific LSL file in the product's i ncl ude. | sl directory. A memory definition can
contain multiple named address mappings. An example of a flash memory definition for a device with
ICACHE support:

nenory Fl ash0

{
mau = 8;
type = rom
size = 256k;
map not _cached (dest=bus: xcl6x: address, dest_offset = 0xC00000,
size = 256k);
map cached (dest=bus: xcl6x: address, dest_offset = 0x800000,
size = 256k, reserved);
}

The map statements specify the addresses where this memory can be found. In the example above a
mirror is defined. Both maps have the same size, but a different destination offset (dest _of f set). The
source offset (sr c_of f set) is unspecified, which implies that it is 0, meaning that both maps are starting
at the same position, effectively forming a mirror.

With the keyword r eser ved the map is not available for sections to be automatically located in the
memory area of the map. Only 'absolute’ or 'ranged' sections can then be located in the memory area
specified with this map. Absolute sections can be defined in the C code (using the keyword __at), in
assembly code (using the attribute 'at ' on the . sect i on directive) or in the linker script file with the

gr oup statement. Ranged sections are sections that are selected in the LSL file inside a group statement
with an address range.

The keyword r eser ved is placed on the map of the cached area by default. If you want to place sections
into the cached area, there are two options:

1. Make the sections absolute or ranged with an address in the cached area.
For example:

section_|l ayout ::code

{
group(run_addr = mem spe: Fl ash0/ cached)
{
select "* _code";
}
}

252

Using the Linker

The nem spe: Fl ash/ cached specification represents an address range equal to the cached map.
With the sel ect statement in this example all sections ending at"_code" are selected. You could
also use:

section_l ayout ::code

{
group(run_addr = nem spe: Fl ash0/ cached)
{
select "[a-z]*" (attributes=+x);
}
}

The "[a-z] *" inthe sel ect statement prevents selection of the . vect or * sections generated
for the interrupt vector table. These vector sections already have an absolute address and the linker
will issue warnings when trying to set a new absolute address using the group/select statement. The
+x attribute selects all executable sections.

Once selected with a sel ect statement, sections will not be selected in a later sel ect
statement. So, if a code section must be placed at a special address, this must be done before
the gr oup statement that uses a wildcard selection.

The total flash memory of the processor consists of multiple flash arrays. In the standard LSL files
each flash array has its own memory definition. In the gr oup statement it is possible to specify an
address range that covers multiple flash arrays. For example:

section_|l ayout ::code

{
group(run_addr = nmem spe: Fl ash0/ cached|
mem spe: Fl ashl/ cached|
mem spe: Fl ash2/ cached)
{
select "[a-z]*" (attributes=+x);
}
}

Remove the keyword r eser ved from the cached map and place it on the not_cached map.

An alternative solution is copying the processor's specific LSL file from the product's i ncl ude. | sl
directory to your project. Then change the location of the keyword r eser ved on the map statements
in the flash memory. For example:

nmenory Fl ash0

{
mau = 8;
type = rom
size = 256k;
map not _cached (dest=bus:xcl6x: address, dest_offset = 0xC00000,
size = 256k, reserved);
map cached (dest=bus:xcl6x: address, dest_offset = 0x800000,

253

TASKING VX-toolset for C166 User Guide
size = 256k);
}

Now code sections will be located in the cached map for FI ashO by default. You need to make this
modification for all flash arrays that you want to be cached.

In Eclipse you can do this in the Edit existing memory dialog (Project » Properties for » C/C++
Build » Memory » Memory » Edit...), by clicking on the Use cached button.

{:] Memory Properties @

Edit existing memory

Memeory name: FlashQ

Memory type: rom -

[] Reserve memory (only allow absolute and ranged selections)
Memory size (Bytes): 256k

Memory priority : 14

Memery mapping(s):

Mame Address Size Reserved Destination Priority Add..

neot_cached 0xC00000 256k yes busixclBxaddr., —

cached 0x800000 256k ne busxclGeaddr... -
Remove

'/?:' I OK ‘ I Cancel I

If you click the Use not cached button, the not cached memory is used again.

It is possible to specify per flash array what the default is, cached or not cached. The linker will then
freely distribute the sections over the flash memories. If you want to control which sections are located
in cached memory and which sections are located in not cached memory it is required to use the
group/ sel ect statements. With that in mind, it is recommended to have the flash memories either
all set to cached or all set to not-cached. You can then use gr oup/ sel ect statements only for those
sections that should not be placed in the default area.

Updating DPP addresses
When the application contains near ROM data sections, there must be at least one DPP pointing to a

ROM memory. For devices with ICACHE support it is not allowed to locate data in the cached areas. The
DPP must therefore point to a page in the not cached range.

254

Using the Linker
The DPP addresses are defined in the project's LSL file with the macros __DPPO_ADDRO, __DPP1_ADDR,
__DPP2_ADDR and __DPP3_ADDR. For example:

#defi ne __ DPPO_ADDR 0xC00000 /1 points to not cached area
#define __ DPP1_ADDR 0xC04000 /1 points to not cached area
#def i ne __DPP2_ADDR 0x008000
#define __ DPP3_ADDR 0x00C000

When no DPP is assigned to a ROM memory range the linker will create a RAM copy of the near ROM
data sections.

Example 1: Partial caching of a flash array

If you want to have only a part of a flash array cached, you should use gr oup/ sel ect statements. In
this example there are two sets of code sections: a set of sections that must be cached and a set of
sections that shall not be cached. The section names are defined with #pr agma sect i on in the C code:

#pragnma secti on code=cached_{nane}
/1l ... functions that shall be located in cached nmenory ...

#pragnma secti on code=not_cached_{nane}
/1l ... functions that shall be located in not cached nmenory ...

In the LSL file the following section layout can be defined:

section_|l ayout ::code

{
group(run_addr = nem spe: Fl ash0/ cached)
{
sel ect "cached_*";
}
group(run_addr = nmem spe: Fl ash0/ not _cached)
{
sel ect "not_cached_*";
}
}

In this example the linker is free to choose where to put the sections in the full FI ash0 range. The locations
of sections that are located in the cached range are also occupied in the not _cached mirror and vice
versa.

Instead of specifying the memory range with the mem reference, you can also specify fixed ranges. This
also allows you to separate the memory ranges strictly:

section_| ayout ::code

{
group(run_addr = [0x800000..0x81FFFF])
{
sel ect "cached_*";
}

group(run_addr = [0xC20000..0xC3FFFF])

255

TASKING VX-toolset for C166 User Guide

sel ect "not_cached_*";

}

Keep in mind that once a section is selected, it will not be selected again with a subsequent sel ect
statement. For example, if you want section “cached_f 00" to be located at an absolute address, say
0x810000, this must be done before the wild-card selection:

section_l ayout ::code

{
group(run_addr = 0x810000)
{
sel ect "cached_foo";
}
group(run_addr = [0x800000..0x81FFFF])
{
sel ect "cached_*";
}
group(run_addr = [0xC20000..0xC3FFFF])
{
sel ect "not_cached_*";
}
}

Example 2: Mixing cached code and data in the same flash area

In this example the DPP address mappings are set as follows:

« DPPO => 0xC00000

« DPP1 => 0xC04000

» DPP2 => 0x008000

» DPP3 => 0x00C000

This means that the area of 0xC000000..0xCO7FFF must be used for near romdata.
In the memory definition, the mappings for Fl ashO are set as follows:

* not _cached memory at address 0xC00000 is reserved

« cached memory at address 0x800000 is not reserved

This effectively implies romdata addressed with DPPO and DPP1 cannot be located freely because this
address range is reserved (the not _cached memory range is reserved). To locate near romdata in this
address range you must locate it explicitly by using an absolute address or address range:

section_layout ::near // selections apply to near sections only

{
group(run_addr = [0xC00000..0xCO7FFF])

256

Using the Linker

/1 select all near ROM sections
select (attributes=+r-w);

}

A similar example can be made for far, shuge and huge sections.

An alternative method is to make both the cached memory mappings and the not _cached memory
mappings not reserved. The linker is then free to locate code sections either in the cached or the not
cached area. The linker usually uses the lowest address first, but may be directed otherwise by LSL
statements. Therefore, this method requires that you inspect the generated map file carefully.

7.7.12. Duplicate Section Removal and Mirrors

When the linker detects that sections have equal contents it removes all duplicates and it lets all references
point to the remaining section. When explicitly locating sections into mirrored ranges, it may happen that
a section has a duplicate located in one of the mirrors. The linker removes one of the duplicates, with the
result that the section is only located in one of the ranges: the original range or a mirror.

Example:
Say there are two identical functions f oo() and bar (), defined as follows:

#pragma section code=cached_{nane}
int foo(int a)

{
}

return(10*a);

#pragma section code=not _cached_{nane}
int bar(int a)

{
}

Here f oo() and bar () are clearly the same.

return(10*a);

The LSL defined for locating the generated sections looks as follows:

section_| ayout ::code

{
group(run_addr = mem spe: Fl ash0/ cached)
{
sel ect "cached_*";
}
group(run_addr = nem spe: Fl ash0/ not _cached)
{
sel ect "not_cached_*";
}
}

257

TASKING VX-toolset for C166 User Guide

The linker detects that the sections generated for f oo() and for bar () are identical and decides to
remove the section (not _cached_bar) generated for the function bar () . The references, i.e., function
calls to bar () now point to f oo(), which is valid because it is identical. However, we intended to put
bar () into not cached memory, while f 0o() is in cached memory. Effectively bar () now also resides
in cached memory.

You can avoid this linker optimization by using the #pr agma pr ot ect in the C code:

#pragma section code=cached_{nane}
int foo(int a)

{
}

return(10*a);

#pragma section code=not_cached_{nane}
#pragma protect
int bar(int a)

{
}

#pragma protect restore

return(10*a);

7.8. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

Linker labels are labels starting with __| ¢_. The linker assigns addresses to the following labels when
they are referenced:

Label Description

__lc_ub_nane Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

__lc_b_nane

__lc_ue_nane End of section name. Also used to mark the end of the stack or heap.

__lc_e nane

__lc_cb_nane Start address of an overlay section in ROM.

__lc_ce_nane End address of an overlay section in ROM.

__lc_gb_name Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

__lc_ge_nane End of group name. This label appears in the output file even if no reference
to the label exists in the input file.

258

Using the Linker

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

At C level, all linker labels start with one leading underscore (the compiler adds an extra
underscore).

Additionally, the linker script file defines the following symbols:

Symbol Description

__lc_base_dpp0 Alias for __DPPO_ADDR.

__lc_base_dppl Alias for __ DPP1_ADDR.

__lc_base_dpp2 Alias for __DPP2_ADDR.

__lc_base_dpp3 Alias for __ DPP3_ADDR.

__lc_copy_table Start of copy table. Same as __| ¢c_ub_t abl e. The copy table gives the
source and destination addresses of sections to be copied. This table will be
generated by the linker only if this label is used.

__lc_vector_tabl e |[Startof vectortable. Sameas__|c_vb _vector_table_O.

Example: refer to the stack

Suppose in an LSL file a stack section is defined with the name "user _st ack" (with the keyword st ack).
You can refer to the begin and end of the stack from your C source as follows (labels have one leading
underscore):

#i ncl ude <stdio. h>

extern char _lc_ub_user_stack[];
extern char _lc_ue_user_stack[];
voi d mai n()

{
printf("Size of stack is %\n",
_lc_ub_user_stack - _lc_ue_user_stack);
/* stack grows fromhigh to | ow */
}

From assembly you can refer to the end of the stack with:

.extern __|Ic_ue user_stack ; end of user stack
7.9. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

259

TASKING VX-toolset for C166 User Guide

To generate a map file
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Map File.
4. Enable the option Generate XML map file format (.mapxml) for map file viewer.
5. (Optional) Enable the option Generate map file (.map).

6. (Optional) Enable the options to include that information in the map file.

Example on the command line

The following command generates the map file t est . map:
| k166 --map-file test.obj

With this command the map file t est . map is created.

See Section 15.2, Linker Map File Format, for an explanation of the format of the map file.

7.10. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option --keep-output-files.

W (Warnings)
Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct. You can control warnings in the C/C++

Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties for menu
(linker option --no-warnings).

260

Using the Linker

| (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option --verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S6##. nmessage

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics
1. From the Window menu, select Show View » Other » TASKING » Problems.
The Problems view is added to the current perspective.
2. In the Problems view right-click on a message.
A popup menu appears.
3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.
On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

| k166 --diag=[format:]{all | nunber,...]

261

TASKING VX-toolset for C166 User Guide

262

Chapter 8. Using the Utilities

The TASKING VX-toolset for C166 comes with a number of utilities:

cclé6 A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from C and/or assembly source input files. Eclipse uses
the control program to call the compiler, assembler and linker.

amk A make utility to maintain, update, and reconstruct groups of programs. The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

mk166 A make utility for backwards compatibility with older versions of the toolset. Not
recommended for new projects.

eclipsec The Eclipse console utility. You can use it to perform a headless build or generate makefiles
from the command line without starting the IDE.

arl66 An archiver. With this utility you create and maintain library files with relocatable object
modules (. obj) generated by the assembler.

hldump166 A high level language (HLL) object dumper. With this utility you can dump information about
an absolute object file (. el f). Key features are a disassembler with HLL source intermixing
and HLL symbol display and a HLL symbol listing of static and global symbols.

expirel66 A utility to limit the size of the cache by removing all files older than a few days or by
removing older files until the total size of the cache is smaller than a specified size.

8.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C/C++ sources without the need to invoke the compiler,
assembler and linker manually.

Eclipse uses the control program to call the C++ compiler, C compiler, assembler and linker, but you can
call the control program from the command line. The invocation syntax is:

ccl66 [[option]... [file]l...]...

Recognized input files

» Fileswith a . cc, . cxx or. cpp suffix are interpreted as C++ source programs and are passed to the
C++ compiler.

» Files with a . ¢ suffix are interpreted as C source programs and are passed to the compiler.

 Files with a . asmsuffix are interpreted as hand-written assembly source files which have to be passed
to the assembler.

* Files with a . sr ¢ suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

263

TASKING VX-toolset for C166 User Guide

Files with a . | i b suffix are interpreted as library files and are passed to the linker.

Files with a . obj suffix are interpreted as object files and are passed to the linker.

Files with a . out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one . out file in the invocation.

Files with a . | sl suffix are interpreted as linker script files and are passed to the linker.
Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wcp, -Wc,
-Wa, -WI) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 11.6, Control Program
Options.

Example with verbose output
ccl6e6 --verbose test.c

The control program calls all tools in the toolset and generates the absolute object file t est . el f . With
option --verbose (-v) you can see how the control program calls the tools:

+ "path\c166" -Mh -0 cc3248a.src test.c

+ "path\asl166" -0 cc3248b. obj cc3248a.src

+ "path\1 k166" -0 test.elf -D _CPU__=cl6x --map-file
cc3248b.obj -lcn -l1fpn -Irtn "-Lpath\lib\1"

The control program produces unique filenames for intermediate steps in the compilation process (such

as cc3248a. src and cc3248b. obj in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool
ccl66 --pass-c=-Cc test.c

The option -Oc is directly passed to the compiler.

264

Using the Utilities

8.2. Make Utility amk

amk is a make utility that you can use to maintain, update, and reconstruct groups of programs. amk
features parallelism which utilizes the multiple cores found on modern host hardware, hardening for path
names with embedded white space and it has an (internal) interface to provide progress information for
updating a progress bar. It does not use an external command shell (/ bi n/ sh, cnd. exe) but executes
commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile”.

8.2.1. Makefile Rules

A makefile dependency rule is a single line of the form:
[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:
test.obj : test.c

This states that target t est . obj depends on prerequisite t est . c. So, whenever the latter is modified
the first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in
multiple dependency rules (circular dependencies are not allowed however). The command(s) for updating
a target when any of its prerequisites have been modified must be specified with leading white space
after any of the dependency rule(s) for the target in question. Example:

test. obj
ccl66 test.c # | eadi ng white space

Command rules may contain dependencies too. Combining the above for example yields:

test.obj : test.c
cclé6 test.c

White space around the colon is not required. When a path name contains special characters such as
"', '#' (start of comment), '=" (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself