MA039-012-00-00
Doc. ver.: 1.71

DSP56xxx v3.6

C++ COMPILER
USER’S GUIDE

al TASKING [

A publication of
Altium BV
Documentation Department

Copyright O 2008 Altium BV

All rights reserved. Reproduction in whole or part is prohibited
without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXIm is a registered trademark of Globetrotter Software, Inc.
Intel is a trademark of Intel Corporation.
Motorola is a registered trademark of Motorola, Inc.
MS-DOS and Windows are registered trademarks of Microsoft Corporation.
SUN is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com
http://www.altium.com

The information in this document bas been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
Jfor inaccuracies in this document. Furthermore, the delivery of this
information does not convey (o the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

al TASKING [

SLN3LNOO

Table of Contents

SOFTWARE INSTALLATION 1-1
1.1 Introduction 1-3
1.2 Installation for Windows 1-3
1.2.1 Setting the Environment 1-3
1.3 Installation for UNIX Hosts 1-5
131 Setting the Environment 1-7
1.4 Licensing TASKING Products 1-8
1.4.1 Obtaining License Information 1-8
1.4.2 Installing Node-Locked Licenses 1-9
1.4.3 Installing Floating Licenses 1-10
1.4.4 Starting the License Daemon 1-12
1.4.5 Setting Up the License Daemon to Run Automatically . 1-13
1.4.6 Modifying the License File Location 1-14
1.4.7 How to Determine the Hostid 1-15
1.4.8 How to Determine the Hostname 1-16

OVERVIEW 2-1
2.1 Introduction to C++ Compiler 2-3
2.2 Development Structuret 2-4
2.2.1 The Prelinker Phase 2-5
2.2.2 The Muncher Phase 2-7
2.3 Environment Variables 2-8
2.4 File EXtensions 2-10

LANGUAGE IMPLEMENTATION 3-1
3.1 Introduction 3-3
3.2 C++ Language Extension Keywords 3-3
33 C++ Dialect Accepted 3-5
33.1 New Language Features Accepted 3-5
332 New Language Features Not Accepted 3-8
3.3.3 Anachronisms Accepted 3-8
3.3.4 Extensions Accepted in Normal C++ Mode 3-10
33.5 Extensions Accepted in Cfront 2.1 Compatibility Mode — 3-12

\Y|

Table of Contents

3.3.6 Extensions Accepted in Cfront 2.1 and 3.0
Compatibility Mode, 3-16
3.4 Namespace SUPPOItot 3-22
3.5 Template Instantiation, 3-24
3.5.1 Automatic Instantiation oo 3-25
3.5.2 Instantiation Modes i 3-29
353 Instantiation #pragma Directives 3-30
3.5.4 Implicit Inclusion o 3-33
3.6 Predefined Macros, 3-34
3.7 Precompiled Headers 3-36
3.7.1 Automatic Precompiled Header Processing 3-36
372 Manual Precompiled Header Processing 3-40
3.7.3 Other Ways to Control Precompiled Headers 3-41
3.7.4 Performance ISSUESt 3-42
COMPILER USE 4-1
4.1 INVOCAHON . ..o 4-3
4.1.1 Detailed Description of the Compiler Options 4-16
4.2 Include Files i 4-112
43 Pragmas 4-115
4.4 Compiler LIMits v 4-117
COMPILER DIAGNOSTICS 5-1
5.1 Diagnostic MeSsages 5-3
5.2 Termination MeSsSages 5-5
53 Response to Signals o oo 5-6
5.4 Return Values o i, 5-6
FLEXIBLE LICENSE MANAGER (FLEXIm) A-1
1 Introduction A-3
2 License Administration A-3
2.1 OVEIVIEW .. . A-3
2.2 Providing For Uninterrupted FLEXIm Operation A5

Table of Contents VI

2.3 Daemon Options File A-7
3 License Administration Tools A-8
3.1 Imcksumo A-10
3.2 Imdiag (Windows only) A-11
3.3 Imdown A-12
3.4 Imgrd A-13
3.5 Imhostid A-15
3.6 Imremove A-16
3.7 Imreread A-17
3.8 Imstat A-18
3.9 Imswitchr (Windows only) A-20
3.10 Imver ... A-21
3.11 License Administration Tools for Windows A-22
3.11.1 LMTOOLS for Windows, A-22
3.11.2 FLEXIm License Manager for Windows A-23
4 The Daemon Log File A-25
4.1 Informational Messages A-26
4.2 Configuration Problem Messages A-29
43 Daemon Software Error Messages A-31
5 FLEXIm License Errors A-33
6 Frequently Asked Questions (FAQs) A=37
6.1 License File Questions A-37
6.2 FLEXIm Versioncooiiiiinaeaa. A-37
6.3 Windows QUeStionsoiiiioi... A-38
6.4 TASKING QUESHONS .. oo A-39
6.5 Using FLEXIm for Floating Licenses A-41
ERROR MESSAGES B-1
Introduction B-3

2 MESSAZES © . o oot e B—4

Vil

=

Table of Contents

UTILITY PROGRAMS C-1
Introduction C-3

2 Prelinker C-3
Muncher C-5

INDEX

Manual Purpose and Structure

MANUAL PURPOSE AND STRUCTURE

PURPOSE
This manual is aimed at users of the TASKING DSP56xxx Family C++

Compiler. It assumes that you are conversant with the C and C++
language.

MANUAL STRUCTURE

Related Publications
Conventions Used In This Manual

1. Software Installation
Describes the installation of the C++ Cross—Compiler for the DSP56xxx
family of processors.

2. Overview
Provides an overview of the TASKING DSP56xxx Family toolchain and
gives you some familiarity with the different parts of it and their
relationship. A sample session explains how to build an application
from your C++ file.

3. Language Implementation
Concentrates on the approach of the DSP56xxx architecture and
describes the language implementation. The C++ language itself is not
described in this document.

4. Compiler Use
Deals with invocation, command line options and pragmas.

5. Compiler Diagnostics
Describes the exit status and error/warning messages of the C++
compiler.

APPENDICES

A. Flexible License Manager (FLEXIm)
Contains a description of the Flexible License Manager.

X Manual Purpose and Structure

—

B. Error Messages
Contains an overview of the error messages.

C. Utitily Programs
Contains a description of the prelinker and the muncher which are
delivered with the C++ compiler package.

INDEX

Manual Purpose and Structure

RELATED PUBLICATIONS

The C++ Programming Language (second edition)
by Bjarne Straustrup (1991, Addison Wesley)

ISO/IEC 14882:1998 C++ standard [ANSI]
More information on the standards can be found at
http://www.ansi.org

The Annotated C++ Reference Manual
by Margaret A. Ellis and Bjarne Straustrup (1990, Addison Wesley)

The C Programming Language (second edition)
by B. Kernighan and D. Ritchie (1988, Prentice Hall)

ANSI X3.159-1989 standard [ANS]]

DSP56xxx C Cross—Compiler User’s Guide [TASKING,
MA039-002-00-00]

DSP56xxx Cross—Assembler, Linker/Locator, Utilities User’s Guide
[TASKING, MA039-000-00-00]

DSP56xxx CrossView Pro Debugger User’s Guide [TASKING,
MA039-049-00-00]

DSP56000 Digital Signal Processor Family Manual [Motorola, Inc.]
DSP56002 Digital Signal Processor User’s Manual [Motorola, Inc.]
DSP56004 Digital Signal Processor User’s Manual [Motorola, Inc.]
DSP56003/005 Digital Signal Processor User’s Manual [Motorola, Inc.]

DSP56300 24-Bit Digital Signal Processor Family Manual [Motorola,
Inc.]

DSP56301 24-Bit Digital Signal Processor User’s Manual [Motorola, Inc.]
DSP56600 Digital Signal Processor Family Manual [Motorola, Inc.]

Xl

Xl Manual Purpose and Structure

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{} Items shown inside curly braces enclose a list from which
you must choose an item.

[] Items shown inside square brackets enclose items that are
optional.

| The vertical bar separates items in a list. It can be read as
OR.

italics Items shown in italic letters mean that you have to
substitute the item. If italic items are inside square
brackets, they are optional. For example:

Sfilename

means: type the name of your file in place of the word
Sfilename.

An ellipsis indicates that you can repeat the preceding
item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete
command line which you can enter.

For example
command| option]... filename

This line could be written in plain English as: execute the command
command with the optional options option and with the file filename.

Hllustrations

The following illustrations are used in this manual:

@ This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and Structure Xl

@z This illustration indicates actions you can perform with the mouse.
This illustration indicates keyboard input.

@j This illustration can be read as “See also”. It contains a reference to
another command, option or section.

XV

MANUAL STRUCTURE

Manual Purpose and Structure

SOFTWARE
INSTALLATION

al TASKING [

d31dVHO

Software Installation

1.1 INTRODUCTION

This chapter describes how you can install the TASKING C++ Compiler for
the DSP5600x and/or DSP563xx/DSP566xx Family on Windows
95/98/NT/2000 and several UNIX hosts.

1.2 INSTALLATION FOR WINDOWS

1. Start Windows 95/98/NT/2000, if you have not already done so.
2. Insert the CD-ROM into the CD-ROM drive.

If the TASKING Showroom dialog box appears, proceed with Step 5.
3. Click the Start button and select Run...

4. In the dialog box type d:\setup (substitute the correct drive letter for
your CD-ROM drive) and click on the OK button.

The TASKING Showroom dialog box appears.
5. Select a product and click on the Install button.

6. Follow the instructions that appear on your screen.

@ You can find your serial number on the Start-up kit envelope delivered,
with the product.

7. License the software product as explained in section 1.4, Licensing
TASKING Products.

1.2.1 SETTING THE ENVIRONMENT

After you have installed the software, you can set some environment
variables to make invocation of the tools easier, when invoking the tools
from a Windows Command Prompt. When you are using EDE all settings
are configurable from within EDE. A list of all environment variables used
by the toolchain is present in the section 2.3, Environment Variables in the
chapter Overview.

Make sure that your path is set to include all of the executables you have
just installed. If you installed the software under C:\C563 , you can
include the executable directory C:\C563\BIN in your search path.

1-4

=

i+

Chapter 1

In EDE, from the Project menu, select Directories... Add one or more
executable directory paths to the Executable Files Path field.

The environment variable TMPDIR can be used to specify a directory
where programs can place temporary files. The C++ compiler uses the
environment variable CP56INC (DSP5600x) or CPS63INC
(DSP563xx/DSP560xx) to search for include files. An example of setting
this variable is given below.

See also the section Include Files in the chapter Compiler Use.

For the DSP563xx/DSP566xx family the default installation path is c563 .

Example Windows 95/98

&

Add the following line to your autoexec.bat file.

set CP563INC=c:\c563\include

You can also type this line in a Command Prompt window but you will
loose this setting after you close the window.

Example Windows NT

1.

Right—click on the My Computer icon on your desktop and select
Properties from the menu.

The System Properties dialog appears.

Select the Environment tab.

In the Variable field enter:
CP563INC

In the Value field enter:
c:\c563\include

Click on the Set button, then click OK.

Software Installation

1.3 INSTALLATION FOR UNIX HOSTS

1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root” or use the su command.

If you are a first time user decide where you want to install the product By
default it will be installed in /usr/local

2. For CD-ROM install: insert the CD-ROM into the CD-ROM drive. Mount
the CD-ROM on a directory, for example /cdrom . Be sure to use a ISO
9660 file system with Rock Ridge extensions enabled. See the UNIX
manuals page about mount for details.

Or:

For tape install: insert the tape into the tape unit and create a directory
where the contents of the tape can be copied to. Consider the created
directory as a temporary workspace that can be deleted after installation
has succeeded. For example:

mkdir /tmp/instdir

3. For CD-ROM install: go to the directory on which the CD-ROM is
mounted:

cd /cdrom

For tape install: copy the contents of the tape to the temporary workspace
using the following commands:

cd /tmp/instdir
tar xvf /dev/ tape

where tape is the name of your tape device.

@ If you have received a tape with more than one product, use the
non-rewinding device for installing the products.

4. Run the installation script:
sh install

Follow the instructions appearing on your screen.

1-6

Chapter 1

First a question appears about where to install the software. The default
answer is / usr/local . On certain sites you may want to select another
location.

On some hosts the installation script asks if you want to install SW000098,
the Flexible License Manager (FLEXIm). If you do not already have FLEXIm
on your system, you must install it; otherwise the product will not work on
those hosts. See section 1.4, Licensing TASKING Products.

If the script detects that the software has been installed before, the
following messages appear on the screen:

% WARNING ***
SWoxxxxx xxxx . xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the
following message being displayed:

=> Installation stopped on user request <=

Answering y (yes) to this question causes installation to continue. And the
final message will be:

Installation of SW XXXXXX XXXX . Xxxxx completed.

For tape install: remove the temporary installation directory with the
following commands:

cd /tmp
rm —rf instdir

If you purchased a protected TASKING product, license the software
product as explained in section 1.4, Licensing TASKING Products.

7. Logout.

Software Installation

1.3.1 SETTING THE ENVIRONMENT

After you have installed the software, you can set some environment
variables to make invocation of the tools easier. A list of all environment
variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have
just installed.

The environment variable TMPDIR can be used to specify a directory
where programs can place temporary files.

1-8

=

Chapter 1

1.4 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software
(FLEXIm). To use a TASKING product, you must install the licensing
information provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a
floating license. When you order a TASKING product determine which
type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the
product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among
users at one site. This license type does not lock the software to one
specific PC or workstation but it requires a network. The software can then
be used on any computer in the network. The license specifies the
number of users who can use the software simultaneously. A system
allocating floating licenses is called a license server. A license manager
running on the license server keeps track of the number of users.

@]j See Appendix A, Flexible License Manager (FLEXIm), for more information.

1.4.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License
Information Form” containing the license information for your software
product. If you have not received such a form follow the steps below to
obtain one. Otherwise, you can install the license.

Node-locked license (PC only)

1.

If you need a node-locked license, you must determine the hostid of the
computer where you will be using the product. See section 1.4.7, How to
Determine the Hostid.

When you order a TASKING product, provide the hostid to your local
TASKING sales representative. The License Information Form which
contains your license key information will be sent to you with the software
product.

Software Installation

Floating license

1. If you need a floating license, you must determine the hostid and
hostname of the computer where you want to use the license manager.
Also decide how many users will be using the product. See section 1.4.7,
How to Determine the Hostid and section 1.4.8, How to Determine the
Hostname.

2. When you order a TASKING product, provide the hostid, hostname and
number of users to your local TASKING sales representative. The License
Information Form which contains your license key information will be sent
to you with the software product.

1.4.2 INSTALLING NODE-LOCKED LICENSES

Keep your "License Information Form” ready. If you do not have such a
form read section 1.4.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure
described in section 1.2, Installation for Windows.

Step 2

Create a file called ”license.dat ” in the c:\flexim directory, using an
ASCII editor and insert the license information contained in the "License
Information Form” in this file. This file is called the license file”. If the
directory c:\flexim does not exist, create the directory.

If you wish to install the license file in a different directory, see section

@ 1.4.6, Modifying the License File Location.

If you already have a license file, add the license information to the
existing license file. If the license file already contains any SERVER lines,
you must use another license file. See section 1.4.6, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

ﬂj See Appendix A, Flexible License Manager (FLEXIm), for more information.

1-9

1-10

=

Chapter 1

1.4.3 INSTALLING FLOATING LICENSES

Keep your "License Information Form” ready. If you do not have such a
form read section 1.4.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure
described earlier in this chapter on the computer or workstation where
you will use the software product.

As a result of this installation two additional files for FLEXIm will be
present in the flexlm subdirectory of the toolchain:

Tasking The Tasking daemon (vendor daemon).
license.dat A template license file.

Step 2

&

If you already have installed FLEXIm v6.1 or higher for Windows or v2.4
or higher for UNIX (for example as part of another product) you can skip
this step and continue with step 3. Otherwise, install SW000098, the
Flexible License Manager (FLEXIm), on the license server where you want
to use the license manager.

The installation of the license manager on Windows also sets up the
license daemon to run automatically whenever a license server reboots.
On UNIX you have to perform the steps as described in section 1.4.5,
Setting Up the License Deaemon to Run Automatically.

It is not recommended to run a license manager on a Windows 95 or
Windows 98 machine. Use Windows NT instead (or UNIX).

Step 3

If FLEXIm has already been installed as part of a non-TASKING product
you have to make sure that the bin directory of the FLEXIm product
contains a copy of the Tasking daemon (see step 1).

Step 4

Insert the license information contained in the “License Information Form”
in the license file, which is being used by the license server. This file is
usually called license.dat . The default location of the license file is in
directory c:\flexim for Windows and in

/usr/local/flexim/licenses for UNIX.

Software Installation

&

&

If you wish to install the license file in a different directory, see section
1.4.6, Modifying the License File Location.

If the license file does not exist, you have to create it using an ASCII
editor. You can use the license file license.dat from the toolchain’s
flexim subdirectory as a template.

If you already have a license file, add the license information to the
existing license file. If the SERVER lines in the license file are the same as
the SERVER lines in the License Information Form, you do not need to add
this same information again. If the SERVER lines are not the same, you
must use another license file. See section 1.4.6, Modifying the License File
Location, for additional information.

Step 5

On each PC or workstation where you will use the TASKING software
product the location of the license file must be known. If it differs from
the default location (c:\flexim\license.dat for Windows,
[usr/local/flexlm/licenses/license.dat for UNIX), then you
must set the environment variable LM_LICENSE_FILE. See section 1.4.6,
Modifying the License File Location, for more information.

Step 6

Now all license infomation is entered, the license manager must be started
(see section section 1.4.4). Or, if it is already running you must notify the
license manager that the license file has changed by entering the
command (located in the flexIm bin directory):

Imreread

On Windows you can also use the graphical FLEXIm Tools (Imtools): Start
Imtools (if you have used the defaults this can be done by selecting Start
—> Programs —> TASKING FLEXIm -> FLEXIm Tools), fill in the current
license file location if this field is empty, click on the Reread button and
then on OK. Another option is to reboot your PC.

The software product and license file are now properly installed.

Where to go from bere?

The license manager (daemon) must always be up and running. Read
section 1.4.4 on how to start the daemon and read section 1.4.5 for
information how to set up the license daemon to run automatically.

1-11

1-12 Chapter 1

=

If the license manager is running, you can now start using the TASKING
product.

See Appendix A, Flexible License Manager (FLEXIm), for detailed
information.

1.4.4 STARTING THE LICENSE DAEMON

The license manager (daemon) must always be up and running. To start
the daemon complete the following steps on each license server:

Windows

1. From the Windows Start menu, select Programs —> TASKING FLEXIm
-> FLEXIm License Manager.

The license manager tool appears.
2. In the Control tab, click on the Start button.
3. Close the program by clicking on the OK button.
UNIX
1. Log in as the operating system administrator (usually root).

2. Change to the FLEXIm installation directory (default
[usr/local/flexIm):

cd /ustr/local/flexim
3. For C shell users, start the license daemon by typing the following:

bin/imgrd —2 —p —c licenses/license.dat >>& \
Ivar/tmpl/license.log &

Or, for Bourne shell users, start the license daemon by typing the
following:

bin/lmgrd —2 —p —c licenses/license.dat >>\
Ivar/tmpl/license.log 2>&1 &

Software Installation 1-13

In these two commands, the -2 and —p options restrict the use of the
Imdown and Imremove license administration tools to the license
administrator. You omit these options if you want. Refer to the usage of
Imgrd in Appendix A, Flexible License Manager (FLEXIm), for more
information.

1.4.5 SETTING UP THE LICENSE DAEMON TO RUN
AUTOMATICALLY

To set up the license daemon so that it runs automatically whenever a
license server reboots, follow the instructions below that are approrpiate
for your platform. steps on each license server:

Windows

1. From the Windows Start menu, select Programs -> TASKING FLEXIm
-> FLEXIm License Manager.

The license manager tool appears.
2. In the Setup tab, enable the Start Server at Power-Up check box.

3. Close the program by clicking on the OK button. If a question appears,
answer Yes to save your settings.

UNIX
In performing any of the procedures below, keep in mind the following:
* Before you edit any system file, make a backup copy.

SunOS4
1. Log in as the operating system administrator (usually root).
2. Append the following lines to the file /etc/rc.local . Replace

FLEXIMDIR by the FLEXIm installation directory (default
[usr/local/flexim):

FLEXLMDIR bin/lmgrd -2 —p — FLEXLMDIRlicenses/license.dat >> \
Ivaritmpllicense.log 2>&1 &

1-14

=

Chapter 1

SunOS5 (Solaris 2)

1.

2.

Log in as the operating system administrator (usually root).

In the directory /etc/init.d create a file named rc.Imgrd with the
following contents. Replace FLEXLMDIR by the FLEXIm installation
directory (default /usr/local/flexim):
#1/bin/sh
FLEXLMDIR bin/lmgrd —2 —p — FLEXLMDIRlicenses/license.dat >> \
Ivar/tmpl/license.log 2>&1 &
Make it executable:

chmod u+x rc.Imgrd

Create an 'S’ link in the /etc/rc3.d directory to this file and create 'K’
links in the other /etc/rc?.d directories:

In /etc/init.d/rc.Imgrd /etc/rc3.d/S nunrc.Imgrd

In /etc/init.d/rc.Imgrd /etc/rc?.d/K nunrc.Imgrd

num must be an approriate sequence number. Refer to you operating
system documentation for more information.

1.4.6 MODIFYING THE LICENSE FILE LOCATION

The default location for the license file on Windows is:
c:\flexim\license.dat

On UNIX this is:
{usr/local/flexim/licenses/license.dat

If you want to use another name or directory for the license file, each user
must define the environment variable LM_LICENSE_FILE. Do this in
autoexec.bat (Windows 95/98), from the Control Panel —> System

| Environment (Windows NT) or in a UNIX login script.

If you have more than one product using the FLEXIm license manager you
can specify multiple license files to the LM_LICENSE_FILE environment
variable by separating each pathname (fpath) with a ’;’ (on UNIX also ’"):

Example Windows:

set LM_LICENSE_FILE=c:\flexim\license.dat;c:\license.txt

Software Installation

Example UNIX:

setenv LM_LICENSE_FILE
lusr/local/flexim/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set
LM_LICENSE_FILE to port@host; where host is the host name of the
system which runs the FLEXIm license manager and port is the TCP/IP port
number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting
with "SERVER”. The fourth field on this line specifies the TCP/IP port
number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594 @elliot

@]j See Appendix A, Flexible License Manager (FLEXIm), for detailed
information.

1.4.7 HOW TO DETERMINE THE HOSTID

The hostid depends on the platform of the machine. Please use one of the
methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid

SunOS/Solaris | hostid 170a3472

Windows tkhostid 0800200055327
(or use Imhostid)

Table 1-1: Determine the hostid

@ If you do not have the program tkhostid you can download it from our
Web site at: http://www.tasking.com/support/flexlm/tkhostid.zip . It is also
on every product CD that includes FLEXIm.

1-15

1-16

=

Chapter 1

1.4.8 HOW TO DETERMINE THE HOSTNAME

To retrieve the hostname of a machine, use one of the following methods.

Platform Method

SunOS/Solaris | hostname

Windows 95/98 | Go to the Control Panel, open "Network”, click on
"Identification”. Look for "Computer name”.

Windows NT Go to the Control Panel, open "Network”. In the
"Identification” tab look for "Computer Name”.

Table 1-2: Determine the hostname

OVERVIEW

al TASKING [

d31dVHO

Overview

2.1 INTRODUCTION TO C++ COMPILER

This manual provides a functional description of the TASKING DSP56xxx
C++ Compiler. This manual uses cp56 or cp563 (the name of the binary)
as a shorthand notation for "TASKING DSP5600x or DSP563xx/DSP566xx
C++ Compiler”. You should be familiar with the C++ language and with
the ANSI/ISO C language.

The C++ compiler can be seen as a preprocessor or front end which
accepts C++ source files or sources using C++ language features. The
output generated by ¢p563 is DSP563xx or DSP566xx C, which can be
translated with the C compiler ¢563. For the DSP5600x family the
executable names end in ’56’.

The C++ compiler is part of a complete toolchain. For details about the C
compiler see the "TASKING DSP56xxx C Compiler User’s Guide”.

The C++ compiler is normally invoked via the control program which is
part of the toolchain. The control program facilitates the invocation of
various components of the toolchain. The control program recognizes
several filename extensions. C++ source files (.cc , .cxx , .cpp or .c with
the —c++ option) are passed to the C++ compiler. C source files (.c) are
passed to the compiler. Assembly sources (.asm or .Src) are passed to
the assembler. Relocatable object files (.obj) and libraries (.a) are
recognized as linker input files. Files with extension .out and .dsc are
treated as locator input files. The control program supports options to
stop at any stage in the compilation process and has options to produce
and retain intermediate files.

The C++ compiler accepts the C++ language of the ISO/IEC 14882:1998
C++ standard, with some minor exceptions documented in the next
chapter. With the proper command line options, it alternatively accepts the
ANSI/ISO C language or traditional K&R C (B. W. Kernighan and D. M.
Ritchie). It also accepts embedded C++ language extensions.

The C++ compiler does no optimization. Its goal is to produce quickly a
complete and clean parsed form of the source program, and to diagnose
errors. It does complete error checking, produces clear error messages
(including the position of the error within the source line), and avoids
cascading of errors. It also tries to avoid seeming overly finicky to a
knowledgeable C or C++ programmer.

2-4 Chapter 2

=

2.2 DEVELOPMENT STRUCTURE

The next figure explains the relationship between the different parts of the
TASKING DSP56xxx toolchain:

C++ source file C source file assembly file
.cc .c .asm

C++ compiler

assembly file input object files
library files .a

I

| .src [

: assembler
I

I

I

relocatable object

module .obj v
| recompilation
________________ C++ prelinker
object file

linker object
.out

C++ muncher

generate termination
and initialization code

generated C file
.mc

C compiler

.ms

linker

assembler

object file
.mo

locator

absolute object
control program file

Figure 2-1: Development flow

Overview

2.2.1 THE PRELINKER PHASE

The C++ compiler provides a complete prototype implementation of an
automatic instantiation mechanism. The automatic instantiation mechanism
is a "linker feedback” mechanism. It works by providing additional
information in the object file that is used by a "prelinker” to determine
which template entities require instantiation so that the program can be
linked successfully. Unlike most aspects of the C++ compiler the automatic
instantiation mechanism is, by its nature, dependent on certain operating
system and object file format properties. In particular, the prelinker is a
separate program that accesses information about the symbols defined in
object files.

At the end of each compilation, the C++ compiler determines whether any
template entities were referenced in the translation unit. If so, an
“instantiation information” file is created, referred to for convenience as a
di file. If no template entities were referenced in the translation unit, the
Jdi file will not be created and any existing file will be removed. If an
error occurs during compilation, the state of the .ii ~ file is unchanged.

Once a complete set of object files has been generated, including the
appropriate flags, the prelinker is invoked to determine whether any new
instantiations are required or if any existing instantiations are no longer
required. The command line arguments to the prelinker include a list of
input files to be analyzed. The input files are the object files and libraries
that constitute the application. The prelinker begins by looking for
instantiation information files for each of the object files. If no instantiation
information files are present, the prelinker concludes that no further action
is required.

If there are instantiation information files, the prelinker reads the current
instantiation list from each information file. The instantiation list contains
the list of instantiations assigned to a given source file by a previous
invocation of the prelinker. The prelinker produces a list of the global
symbols that are referenced or defined by each of the input files. The
prelinker then simulates a link operation to determine which symbols must
be defined for the application to link successfully.

2-6

Chapter 2

When the link simulation has been completed, the prelinker processes
each input file to determine whether any new instantiations should be
assigned to the input file or if any existing instantiations should be
removed. The prelinker goes through the current instantiation list from the
instantiation information file to determine whether any of the existing
instantiations are no longer needed. An instantiation may be no longer
needed because the template entity is no longer referenced by the
program or because a user supplied specialization has been provided. If
the instantiation is no longer needed, it is removed from the list (internally;
the file will be updated later) and the file is flagged as requiring
recompilation.

The prelinker then examines any symbols referenced by the input file. The
responsibility for generating an instantiation of a given entity that has not
already been defined is assigned to the first file that is capable of
generating that instantiation.

Once all of the assignments have been updated, the prelinker once again
goes through the list of object files. For each, if the corresponding
instantiation information file must be updated, the new file is written. Only

source files whose corresponding .ii file has been modified will be
recompiled.
At this point each .ii ~ file contains the information needed to recompile

the source file and a list of instantiations assigned to the source file, in the
form of mangled function and static data member names.

If an error occurs during a recompilation, the prelinker exits without
updating the remaining information files and without attempting any
additional compilations.

If all recompilations complete without error, the prelink process is
repeated, since an instantiation can produce the demand for another
instantiation. This prelink cycle (finding uninstantiated templates, updating
the appropriate .i ~ files, and dispatching recompilations) continues until
no further recompilations are required.

When the prelinker is finished, the linker is invoked. Note that simply
because the prelinker completes successfully does not assure that the
linker will not detect errors. Unresolvable template references and other
linker errors will not be diagnosed by the prelinker.

Overview

2.2.2 THE MUNCHER PHASE

The C++ muncher implements global initialization and termination code.

The muncher accepts the output of the linker as its input file. It generates
a C program that defines a data structure containing a list of pointers to
the initialization and termination routines. This generated program is then
compiled and linked in with the executable. The data structure is
consulted at run—time by startup code invoked from _main , and the
routines on the list are invoked at the appropriate times.

2-7

2-8

=

Chapter 2

2.3 ENVIRONMENT VARIABLES

This section contains an overview of the environment variables used by
the DSP56xxx toolchain.

Environment Variable

Description

AS56INC

Specifies an alternative path for include files for the
assembler as56.

AS563INC

Specifies an alternative path for include files for the
assembler as563.

C56INC

Specifies an alternative path for #include files for the
C compiler c56.

C563INC

Specifies an alternative path for #include files for the
C compiler ¢563.

C56LI1B

Specifies a path to search for library files used by
the linker k56.

C563LIB

Specifies a path to search for library files used by
the linker [k563.

CC56BIN

When this variable is set, the control program, cc56,
prepends the directory specified by this variable to
the names of the tools invoked.

CC563BIN

When this variable is set, the control program,
cc563, prepends the directory specified by this
variable to the names of the tools invoked.

CC560PT

Specifies extra options and/or arguments to each
invocation of cc56. The control program processes
the arguments from this variable before the
command line arguments.

CC5630PT

Specifies extra options and/or arguments to each
invocation of cc563. The control program processes
the arguments from this variable before the
command line arguments.

CP56INC

Specifies an alternative path for #include files for the
C++ compiler cp56.

CP563INC

Specifies an alternative path for #include files for the
C++ compiler cp563.

LM_LICENSE_FILE

With this variable you specify the location of the
license data file. You only need to specify this
variable if your host uses the FLEXIm licence
manager.

Overview

Environment Variable Description

PATH With this variable you specify the directory in which
the executables reside (default: product \bin).
This allows you to call the executables when you
are not in the bin directory.

TMPDIR With this variable you specify the location where
programs can create temporary files.

Table 2-1: Environment variables

2-10

=

Chapter 2

2.4 FILE EXTENSIONS

For compatibility with future TASKING Cross-Software the following
extensions are suggested:

Source files:

.CC

.CXX

Cpp

.asm

.dsc

C++ source file, input for C++ compiler
C++ source file, input for C++ compiler
C++ source file, input for C++ compiler

C source file, input for C compiler (or for C++ compiler if
you use the —c++ option of the control program)

hand-written assembly source file, input for the assembler
description file, input for linker/locator

control file with defines for description file, input for
linker/locator

Generated source files:

Aic

.Src

.pr

Object files:
.obj

temporary C source file generated by the C++ compiler, input
for the C compiler

assembly source file generated by the C compiler, input for
the assembler

output file generated by the object reader, input for the C++
muncher

C source file generated by the C++ muncher, input for the C
compiler

assembly source file generated by the C compiler, input for
the assembler

relocatable IEEE-695 object file generated by the assembler,
input for the linker

relocatable IEEE-695 object file generated by the assembler,
input for the linker

Overview

.a object library file

.out relocatable linker output file

.abs absolute locator output file, IEEE-695 object file

.hex absolute Intel Hex output file from the locator

.sre absolute Motorola S-record output file from the locator

.cld absolute Motorola CLAS COFF output file from the locator
List files:

st assembler list file

.cal C function call graph file, output from the linker

Jdnl linker map file

.map locator map file
Error List files:

.ers assembler error messages file

.elk linker error messages file

.elc locator error messages file

2-11

2-12

OVERVIEW

Chapter 2

LANGUAGE
IMPLEMENTATION

al TASKING [

d31dVHO

Language Implementation

3.1 INTRODUCTION

The TASKING C++ compiler (cp563) offers a new approach to high-level
language programming for the DSP56xxx family. The C++ compiler
accepts the C++ language as defined by the ISO/IEC 14882:1998 standard,
with the exceptions listed in section 3.3. It also accepts the language
extensions of the C compiler.

This chapter describes the C++ language extensions and some specific
features.

3.2 C++ LANGUAGE EXTENSION KEYWORDS

The C++ compiler supports the same language extension keywords as the
C compiler. These language extensions are enabled by default
(—embedded), but you can disable them by specifying the
—no_embedded command line option. When -A is used, the extensions
will be disabled.

The following language extensions are supported:

additional data types

In addition to the standard data types, cp563 supports the fractional type
(_fract), long fractional type (long _fract), enumerated type (enum)
and complex data type (_complex).

_at

You can specify a variable to be at an absolute address.

_nosat

You can specify a variable to wrap around instead of going into saturation
during calculations.

storage specifiers

Apart from a memory category (extern, static, ...) you can specify a storage
specifier in each declaration. This way you obtain a memory
model-independent addressing of variables in several address ranges (_X,
_Y,_L, P _near, _internal , _external). The _near , _internal

and _external modifiers can also be used on functions to force them in
a specific memory region.

Chapter 3

reentrant functions

In the mixed model (DSP5600x only) you can selectively define functions
as reentrant (_reentrant keyword). Reentrant functions can be invoked
recursively. Interrupt programs can also call reentrant functions.

interrupt functions

You can specify interrupt functions directly through interrupt vectors in the
C language (_fast_interrupt , _long_interrupt keyword).

inline C functions
You can specify to inline a function body instead of calling the function by
using the _inline keyword.

special calling conventions

With the _compatible keyword you can specify that a function must
have the same calling convention as the Motorola C compiler. The
_callee_save keyword can be used to indicate that a function must save
all registers, instead of leaving this to the caller.

circular buffers
cp563 supports the type modifier _circ for circular data structures and
pointers.

intrinsic functions

A number of pre-declared functions can be used to generate inline
assembly code at the location of the intrinsic (built-in) function call. This
avoids the overhead which is normally used to do parameter passing and
context saving before executing the called function.

pragmas
The C++ compiler supports the same pragmas as the C compiler. Pragmas
give directions to the code generator of the compiler.

All of the language extensions mentioned above are described in detail in
the C Cross—Compiler User’s Guide.

Language Implementation

3.3 C++ DIALECT ACCEPTED

The C++ compiler accepts the C++ language as defined by the ISO/IEC
14882:1998 standard, with the exceptions listed below.

The C++ compiler also has a cfront compatibility mode, which duplicates a
number of features and bugs of cfront 2.1 and 3.0.x. Complete
compatibility is not guaranteed or intended; the mode is there to allow
programmers who have unwittingly used cfront features to continue to
compile their existing code. In particular, if a program gets an error when
compiled by cfront, the C++ compiler may produce a different error or no
error at all.

Command line options are also available to enable and disable
anachronisms and strict standard-conformance checking.

3.3.1 NEW LANGUAGE FEATURES ACCEPTED

The following features not in traditional C++ (the C++ language of "7The
Annotated C++ Reference Manual” by Ellis and Stroustrup (ARM)) but in
the standard are implemented:

* The dependent statement of an if , while |, do—while | or for is
considered to be a scope, and the restriction on having such a
dependent statement be a declaration is removed.

e The expression tested in an if , while |, do—while | or for | as the
first operand of a ”?” operator, or as an operand of the "&&”, ”: ”, or
”I "operators may have a pointer—to-member type or a class type
that can be converted to a pointer—to-member type in addition to
the scalar cases permitted by the ARM.

* Qualified names are allowed in elaborated type specifiers.

* A global-scope qualifier is allowed in member references of the
form x.::A::B and p—>:A:B

e The precedence of the third operand of the "?” operator is changed.

e If control reaches the end of the main() routine, and main() has
an integral return type, it is treated as if a return O; statement
were executed.

* Pointers to arrays with unknown bounds as parameter types are
diagnosed as errors.

3-5

3-6

Chapter 3

A functional-notation cast of the form A() can be used even if A is
a class without a (nontrivial) constructor. The temporary created
gets the same default initialization to zero as a static object of the
class type.

A cast can be used to select one out of a set of overloaded
functions when taking the address of a function.

Template friend declarations and definitions are permitted in class
definitions and class template definitions.

Type template parameters are permitted to have default arguments.
Function templates may have nontype template parameters.
A reference to const volatile cannot be bound to an rvalue.

Qualification conversions, such as conversion from T**
to T const * const * are allowed.

Digraphs are recognized.
Operator keywords (e.g., not , and, bitand |, etc.) are recognized.

Static data member declarations can be used to declare member
constants.

wchar_t is recognized as a keyword and a distinct type.
bool is recognized.

RTTI (run—time type identification), including dynamic_cast and
the typeid operator, is implemented.

Declarations in tested conditions (in if , switch | for , and while
statements) are supported.

Array new and delete are implemented.

New-style casts (static_cast , reinterpret_cast , and
const_cast) are implemented.

Definition of a nested class outside its enclosing class is allowed.
mutable is accepted on non-static data member declarations.

Namespaces are implemented, including using declarations and
directives. Access declarations are broadened to match the
corresponding using declarations.

Explicit instantiation of templates is implemented.
The typename keyword is recognized.
explicit is accepted to declare non—converting constructors.

The scope of a variable declared in the for—init—statement of a
for loop is the scope of the loop (not the surrounding scope).

Member templates are implemented.

Language Implementation

The new specialization syntax (using “template <> 7) is
implemented.

Cv—qualifiers are retained on rvalues (in particular, on function
return values).

The distinction between trivial and nontrivial constructors has been
implemented, as has the distinction between PODs and non-PODs
with trivial constructors.

The linkage specification is treated as part of the function type
(affecting function overloading and implicit conversions).

extern inline functions are supported, and the default linkage
for inline functions is external.

A typedef name may be used in an explicit destructor call.
Placement delete is implemented.

An array allocated via a placement new can be deallocated via
delete.

Covariant return types on overriding virtual functions are supported.
enum types are considered to be non—integral types.

Partial specialization of class templates is implemented.

Partial ordering of function templates is implemented.

Function declarations that match a function template are regarded
as independent functions, not as “guiding declarations” that are
instances of the template.

It is possible to overload operators using functions that take enum
types and no class types.

Explicit specification of function template arguments is supported.
Unnamed template parameters are supported.

The new lookup rules for member references of the form x.A::B
and p—>A:B are supported.

The notation :: template (and —>template | etc.) is supported.
In a reference of the form f()—>g() , with g a static member
function, f() is evaluated. The ARM specifies that the left operand
is not evaluated in such cases.

enum types can contain values larger than can be contained in an
int

Default arguments of function templates and member functions of
class templates are instantiated only when the default argument is
used in a call.

String literals and wide string literals have const type.

3-7

3-8

3.3.2

Chapter 3

Class name injection is implemented.

Argument-dependent (Koenig) lookup of function names is
implemented.

Class and function names declared only in unqualified friend
declarations are not visible except for functions found by
argument—-dependent lookup.

A void expression can be specified on a return statement in a void
function.

Function-try-blocks, i.e., try-blocks that are the top-level
statements of functions, constructors, or destructors, are
implemented.

Universal character set escapes (e.g., \uabcd) are implemented.

On a call in which the expression to the left of the opening
parenthesis has class type, overload resolution looks for conversion
functions that can convert the class object to pointer—to—function
types, and each such pointed-to "surrogate function” type is
evaluated alongside any other candidate functions.

Template template parameters are implemented.

NEW LANGUAGE FEATURES NOT ACCEPTED

The following features of the C++ standard are not implemented yet:

3.3.3

Two—-phase name binding in templates, as described in [temp.res]
and [temp.dep] of the standard, is not implemented.

The export keyword for templates is not implemented.

A partial specialization of a class member template cannot be added
outside of the class definition.

ANACHRONISMS ACCEPTED

The following anachronisms are accepted when anachronisms are enabled
(with —anachronisms):

overload is allowed in function declarations. It is accepted and
ignored.

Definitions are not required for static data members that can be
initialized using default initialization. The anachronism does not
apply to static data members of template classes; they must always
be defined.

Language Implementation

The number of elements in an array may be specified in an array
delete operation. The value is ignored.

A single operator++() and operator—() function can be used
to overload both prefix and postfix operations.

The base class name may be omitted in a base class initializer if
there is only one immediate base class.

Assignment to this in constructors and destructors is allowed. This
is allowed only if anachronisms are enabled and the “assignment to
this ” configuration parameter is enabled.

A bound function pointer (a pointer to a member function for a
given object) can be cast to a pointer to a function.

A nested class name may be used as a non—-nested class name
provided no other class of that name has been declared. The
anachronism is not applied to template classes.

A reference to a non—const type may be initialized from a value of a
different type. A temporary is created, it is initialized from the
(converted) initial value, and the reference is set to the temporary.

A reference to a non—const class type may be initialized from an
rvalue of the class type or a derived class thereof. No (additional)
temporary is used.

A function with old-style parameter declarations is allowed and may
participate in function overloading as though it were prototyped.
Default argument promotion is not applied to parameter types of
such functions when the check for compatibility is done, so that the
following declares the overloading of two functions named f :

int f(int);
int f(x) char x; { return x; }

Note that in C this code is legal but has a different meaning: a
tentative declaration of f is followed by its definition.

3-9

3-10

3.3.4

Chapter 3

When —nonconst_ref_anachronism is enabled, a reference to a
non-const class can be bound to a class rvalue of the same type or
a derived type thereof.

struct A {
A(int);
A operator=(A&);
A operator+(const A&);

h
main () {

A b(1);

b = A(1) + A(2); // Allowed as anachronism
}

EXTENSIONS ACCEPTED IN NORMAL C++ MODE

The following extensions are accepted in all modes (except when strict
ANSI violations are diagnosed as errors):

A friend declaration for a class may omit the class keyword:

class A {
friend B; // Should be "friend class B”
h
Constants of scalar type may be defined within classes:
class A{
const int size = 10;
int a[size];
h
In the declaration of a class member, a qualified name may be used:
struct A {

int A::f(); // Should be int f();
h
The preprocessing symbol ¢_plusplus is defined in addition to
the standard __cplusplus
A pointer to a constant type can be delete d.

Language Implementation 3-11

* An assignment operator declared in a derived class with a parameter
type matching one of its base classes is treated as a default
assignment operator, that is, such a declaration blocks the implicit
generation of a copy assignment operator. (This is cfront behavior
that is known to be relied upon in at least one widely used library.)
Here is an example:

struct A{ };
struct B : public A {

B& operator=(A&);
h

By default, as well as in cfront—-compatibility mode, there will be no
implicit declaration of B::operator=(const B&) , whereas in
strict—-ANSI mode B::operator=(A&) is not a copy assignment
operator and B::operator=(const B&) is implicitly declared.

* Implicit type conversion between a pointer to an extern "C”
function and a pointer to an extern "C++” function is permitted.
Here’s an example:

extern "C” void f(); // f's type has extern "C” linkage
void (*pf)() /I pf points to an extern "C++" function
= &f; Il error unless implicit conversion is
/I allowed

This extension is allowed in environments where C and C++
functions share the same calling conventions. It is enabled by
default; it can also be enabled in cfront-compatibility mode or with
option —implicit_extern_c_type_conversion. It is disabled in
strict—ANSI mode.

e A ?” operator whose second and third operands are string literals
or wide string literals can be implicitly converted to “char * ” or
"wehar_t* 7. (Recall that in C++ string literals are const . There is
a deprecated implicit conversion that allows conversion of a string
literal to “char * 7, dropping the const . That conversion, however,
applies only to simple string literals. Allowing it for the result of a

7?7 operation is an extension.)
char *p = x ? "abc” : "def”;

e Except in strict-ANSI mode, default arguments may be specified for
function parameters other than those of a top-level function
declaration (e.g., they are accepted on typedef declarations and
on pointer—to—function and pointer-to-member-function
declarations).

3-12

=

3.3.5

Chapter 3

EXTENSIONS ACCEPTED IN CFRONT 2.1

COMPATIBILITY MODE

The following extensions are accepted in cfront 2.1 compatibility mode in
addition to the extensions listed in the 2.1/3.0 section following (i.e., these
are things that were corrected in the 3.0 release of cfront):

The dependent statement of an if , while |, do—while | or for is
not considered to define a scope. The dependent statement may not
be a declaration. Any objects constructed within the dependent
statement are destroyed at exit from the dependent statement.

Implicit conversion from integral types to enumeration types is
allowed.

A non-const member function may be called for a const object.
A warning is issued.

A const void * value may be implicitly converted to a void *
value, e.g., when passed as an argument.

When, in determining the level of argument match for overloading,
a reference parameter is initialized from an argument that requires a
non—class standard conversion, the conversion counts as a
user—-defined conversion.

When a built-in operator is considered alongside overloaded
operators in overload resolution, the match of an operand of a
built-in type against the built-in type required by the built-in
operator is considered a standard conversion in all cases (e.g., even
when the type is exactly right without conversion).

A reference to a non—const type may be initialized from a value
that is a const —qualified version of the same type, but only if the
value is the result of selecting a member from a const class object
or a pointer to such an object.

The cfront 2.1 “transitional model” for nested type support is
simulated. In the transitional model a nested type is promoted to
the file scope unless a type of the same name already exists at the
file scope. It is an error to have two nested classes of the same
name that need to be promoted to file scope or to define a type at
file scope after the declaration of a nested class of the same name.
This "feature” actually restricts the source language accepted by the
compiler. This is necessary because of the effect this feature has on
the name mangling of functions that use nested types in their
signature. This feature does not apply to template classes.

Language Implementation 3-13

* A cast to an array type is allowed; it is treated like a cast to a
pointer to the array element type. A warning is issued.

* When an array is selected from a class, the type qualifiers on the
class object (if any) are not preserved in the selected array. (In the
normal mode, any type qualifiers on the object are preserved in the
element type of the resultant array.)

e An identifier in a function is allowed to have the same name as a
parameter of the function. A warning is issued.

* An expression of type void may be supplied on the return
statement in a function with a void return type. A warning is issued.

e Cfront has a bug that causes a global identifier to be found when a
member of a class or one of its base classes should actually be
found. This bug is emulated in cfront compatibility mode. A
warning is issued when, because of this feature, a nonstandard
lookup is performed. The following conditions must be satisfied for
the nonstandard lookup to be performed:

— A member in a base class must have the same name as an
identifier at the global scope. The member may be a function,
static data member, or non-static data member. Member type
names do not apply because a nested type will be promoted to
the global scope by cfront which disallows a later declaration of
a type with the same name at the global scope.

— The declaration of the global scope name must occur between
the declaration of the derived class and the declaration of an
out-of-line constructor or destructor. The global scope name
must be a type name.

— No other member function definition, even one for an unrelated
class, may appear between the destructor and the offending
reference. This has the effect that the nonstandard lookup
applies to only one class at any given point in time. For
example:

struct B {
void func(const char*);

k

3-14

Chapter 3

struct D : public B {
public:
D();

void Init(const char*);

J#

struct func {
func(const char* msg);

h
D::D()
void D::Init(const char* t)

/IShould call B::func — calls func::func instead.
new func(t);

The global scope name must be present in a base class

(B::func in this example) for the nonstandard lookup to occur.
Even if the derived class were to have a member named func, it
is still the presence of B::func that determines how the lookup
will be performed.

A parameter of type “const void * " is allowed on operator
delete; it is treated as equivalent to "void * ”

A period (7. ”) may be used for qualification where ”:: ” should be
used. Only ”:: 7 may be used as a global qualifier. Except for the
global qualifier, the two kinds of qualifier operators may not be
mixed in a given name (i.e., you may say A::B::C or A.B.C but
not A:B.C or A.B::C). A period may not be used in a vacuous
destructor reference nor in a qualifier that follows a template
reference such as A<T>:B .

Cfront 2.1 does not correctly look up names in friend functions that
are inside class definitions. In this example function f should refer
to the functions and variables (e.g., f1 and al) from the class
declaration. Instead, the global definitions are used.

Language Implementation 3-15

int al;
int el;
void f1();
class A{
int al;
void f1();
friend void f()
{
intil = al; // cfront uses global al
f1(); // cfront uses global f1
}
3

Only the innermost class scope is (incorrectly) skipped by cfront as
illustrated in the following example.

int al;
int b1,
struct A {
static int al;
class B {
static int b1;
friend void f()

intil = al; // cfront uses A::al
intj1 = bl; // cfront uses global bl
}
h
h
e operator= may be declared as a nonmember function. (This is
flagged as an anachronism by cfront 2.1)
* A type qualifier is allowed (but ignored) on the declaration of a
constructor or destructor. For example:

class A{
A() const; // No error in cfront 2.1 mode

g

3-16

=

3.3.6

Chapter 3

EXTENSIONS ACCEPTED IN CFRONT 2.1 AND 3.0

COMPATIBILITY MODE

The following extensions are accepted in both cfront 2.1 and cfront 3.0
compatibility mode (i.e., these are features or problems that exist in both
cfront 2.1 and 3.0):

Type qualifiers on the this parameter may to be dropped in
contexts such as this example:

struct A {
void f() const;

h
void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a const function may
be put into a pointer to non—-const , because a call using the
pointer is permitted to modify the object and the function pointed
to will actually not modify the object. The opposite assignment
would not be safe.

Conversion operators specifying conversion to void are allowed.

A nonstandard friend declaration may introduce a new type. A
friend declaration that omits the elaborated type specifier is allowed
in default mode, but in cfront mode the declaration is also allowed
to introduce a new type name.

struct A {
friend B;
g
The third operand of the ? operator is a conditional expression
instead of an assignment expression as it is in the modern language.
A reference to a pointer type may be initialized from a pointer value
without use of a temporary even when the reference pointer type

has additional type qualifiers above those present in the pointer
value. For example,

int *p;
const int *&r = p; // No temporary used
A reference may be initialized with a null.

Because cfront does not check the accessibility of types, access
errors for types are issued as warnings instead of errors.

Language Implementation 3-17

* When matching arguments of an overloaded function, a const
variable with value zero is not considered to be a null pointer
constant. In general, in overload resolution a null pointer constant
must be spelled ”0” to be considered a null pointer constant (e.g.,
\0 ’ is not considered a null pointer constant).

* Inside the definition of a class type, the qualifier in the declarator
for a member declaration is dropped if that qualifier names the class
being defined.

struct S {

void S::f();

%

* An alternate form of declaring pointer—-to—-member-function
variables is supported, for example:

struct A{
void f(int);
static void sf(int);
typedef void A::T3(int); // nonstd typedef decl
typedef void T2(int); // std typedef

typedef void A:T(int); // nonstd typedef decl

T* pmf = &A:f; /I nonstd ptr—to—member decl
A:T2* pf = Au:sf; /] std ptr to static mem decl
A:T3* pmf2 = &A::f; [/ nonstd ptr—to—member decl

where T is construed to name a routine type for a non-static
member function of class A that takes an int argument and returns
void ; the use of such types is restricted to nonstandard
pointer-to-member declarations. The declarations of T and pmf in
combination are equivalent to a single standard pointer-to-member
declaration:

void (A::* pmf)(int) = &A::f;

A nonstandard pointer—to-member declaration that appears outside
of a class declaration, such as the declaration of T, is normally
invalid and would cause an error to be issued. However, for
declarations that appear within a class declaration, such as A::T3 |
this feature changes the meaning of a valid declaration. cfront
version 2.1 accepts declarations, such as T, even when A is an
incomplete type; so this case is also excepted.

e Protected member access checking is not done when the address of
a protected member is taken. For example:

3-18

Chapter 3

class B { protected: int i; };

class D : public B { void mf(); };

void D::mf() {
int B::* pmil = &B::i; // error, OK in cfront mode
int D::* pmi2 = &D::i; // OK

}

@ Protected member access checking for other operations (i.e., everything
except taking a pointer—to-member address) is done in the normal
manner.

The destructor of a derived class may implicitly call the private
destructor of a base class. In default mode this is an error but in
cfront mode it is reduced to a warning. For example:

class A {

~A();
h

class B : public A {
~BO:
h

B::~B(){} // Error except in cfront mode

When disambiguation requires deciding whether something is a
parameter declaration or an argument expression, the pattern
type-name-or—keyword(identifier...) is treated as an argument. For
example:

class A {A(); };
double d;

A x(int(d));
A(x2);

By default int(d) is interpreted as a parameter declaration (with
redundant parentheses), and so X is a function; but in
cfront-compatibility mode int(d) is an argument and X is a
variable.

The declaration A(x2); is also misinterpreted by cfront. It should
be interpreted as the declaration of an object named x2, but in
cfront mode is interpreted as a function style cast of X2 to the type
A

Similarly, the declaration

int xyz(int());

Language Implementation 3-19

declares a function named xzy , that takes a parameter of type
“function taking no arguments and returning an int ”. In cfront
mode this is interpreted as a declaration of an object that is
initialized with the value int() ~ (which evaluates to zero).

* A named bit-field may have a size of zero. The declaration is
treated as though no name had been declared.

* Plain bit fields (i.e., bit fields declared with a type of int) are
always unsigned.

e The name given in an elaborated type specifier is permitted to be a
typedef name that is the synonym for a class name, e.g.,

typedef class A T;
class T *pa; /I No error in cfront
mode

* No warning is issued on duplicate size and sign specifiers.
short short int i; // No warning in cfront mode

» Virtual function table pointer update code is not generated in
destructors for base classes of classes without virtual functions, even
if the base class virtual functions might be overridden in a
further-derived class. For example:

struct A{
virtual void f() {}
AQ
~A0 {

struct B : public A {

B0 {}
~B() {f);} // Should call A:f according to

/I ARM 12.7
h
struct C : public B {
void f() {}
e

In cfront compatibility mode, B::~B calls C::f

* An extra comma is allowed after the last argument in an argument
list, as for example in

f(1, 2,);

* A constant pointer-to-member—function may be cast to a
pointer—to—-function. A warning is issued.

3-20

Chapter 3

struct A {int f();};
main () {
int (*p)();
p = (int (*)()A::f; /I Okay, with warning

Arguments of class types that allow bitwise copy construction but
also have destructors are passed by value (i.e., like C structures),
and the destructor is not called on the "copy”. In normal mode, the
class object is copied into a temporary, the address of the temporary
is passed as the argument, and the destructor is called on the
temporary after the call returns. Note that because the argument is
passed differently (by value instead of by address), code like this
compiled in cfront mode is not calling—sequence compatible with
the same code compiled in normal mode. In practice, this is not
much of a problem, since classes that allow bitwise copying usually
do not have destructors.

A union member may be declared to have the type of a class for
which you have defined an assignment operator (as long as the
class has no constructor or destructor). A warning is issued.

When an unnamed class appears in a typedef declaration, the
typedef name may appear as the class name in an elaborated type
specifier.

typedef struct { inti, j; } S;
struct S x; // No error in cfront mode

Two member functions may be declared with the same parameter
types when one is static and the other is non-static with a function
qualifier.

class A {
void f(int) const;
static void f(int); // No error in cfront mode

g

The scope of a variable declared in the for—init—statement is
the scope to which the for statement belongs.
int f(int i) {

for (intj=0;j<i;++){/*..*}

return j; /I No error in cfront mode

}

Function types differing only in that one is declared extern "C”
and the other extern "C++” can be treated as identical:

Language Implementation 3-21

typedef void (*PF)();

extern "C” typedef void (*PCF)();
void f(PF);

void f(PCF);

PF and PCFare considered identical and void f(PCF) is treated
as a compatible redeclaration of f . (By contrast, in standard C++ PF
and PCFare different and incompatible types — PF is a pointer to

an extern "C++” function whereas PCFis a pointer to an extern
"C" function — and the two declarations of f create an overload
set.)

e Functions declared inline have internal linkage.
e enum types are regarded as integral types.

e An uninitialized const object of non-POD class type is allowed
even if its default constructor is implicitly declared:

struct A { virtual void f(); int i; };
const A a;

* A function parameter type is allowed to involve a pointer or
reference to array of unknown bounds.

e If the user declares an operator= function in a class, but not one
that can serve as the default operator= |, and bitwise assignment
could be done on the class, a default operator= is not generated,
only the user—written operator= functions are considered for
assignments (and therefore bitwise assignment is not done).

* A member function declaration whose return type is omitted (and
thus implicitly int) and whose name is found to be that of a type is
accepted if it takes no parameters:

typedef int I;

struct S {

10); I/ Accepted in Cfront mode (declares "int S::1()")
I(int); // Not accepted

h

3-22 Chapter 3

=

3.4 NAMESPACE SUPPORT

Namespaces are enabled by default except in the cfront modes. You can
use the command-line options —namespaces and —no_namespaces
to enable or disable the features.

Name lookup during template instantiations now does something that
approximates the two—-phase lookup rule of the standard. When a name is
looked up as part of a template instantiation but is not found in the local
context of the instantiation, it is looked up in a synthesized instantiation
context. The C++ compiler follows the new instantiation lookup rules for
namespaces as closely as possible in the absence of a complete
implementation of the new template name binding rules. Here is an
example:

namespace N {

int g(int);

intx =0;

template <class T> struct A {
T (T t) { return g(t); }

T f() { return x; }

h
}

namespace M {
int x = 99;
double g(double);
N::A<int> ai;
inti=ai.f(0); // N:A<int>:f(int) calls
/I N::g(int)
inti2 =ai.f(); // N:A<int>:f() returns
/10 (= N::x)
N::A<double> ad;
double d = ad.f(0); // N::A<double>::f(double)
/I calls M::g(double)
double d2 = ad.f(); // N::A<double>::f() also
/I returns 0 (= N::x)
}

The lookup of names in template instantiations does not conform to the
rules in the standard in the following respects:

e Although only names from the template definition context are
considered for names that are not functions, the lookup is not
limited to those names visible at the point at which the template
was defined.

Language Implementation 3-23

* Functions from the context in which the template was referenced
are considered for all function calls in the template. Functions from
the referencing context should only be visible for dependent
function calls.

The lookup rules for overloaded operators are implemented as specified
by the standard, which means that the operator functions in the global
scope overload with the operator functions declared extern inside a
function, instead of being hidden by them. The old operator function
lookup rules are used when namespaces are turned off. This means a
program can have different behavior, depending on whether it is compiled
with namespace support enabled or disabled:

struct A{};
A operator+(A, double);
void f() {

Aal;

A operator+(A, int);

al +1.0; // calls operator+(A, double)

/I with namespaces enabled but

} /I otherwise calls operator+(A, int);

3-24 Chapter 3

=

3.5 TEMPLATE INSTANTIATION

The C++ language includes the concept of templates. A template is a
description of a class or function that is a model for a family of related
classes or functions.! For example, one can write a template for a Stack
class, and then use a stack of integers, a stack of floats, and a stack of
some user—defined type. In the source, these might be written
Stack<int> | Stack<float> , and Stack<X> . From a single source
description of the template for a stack, the compiler can create
instantiations of the template for each of the types required.

The instantiation of a class template is always done as soon as it is needed
in a compilation. However, the instantiations of template functions,
member functions of template classes, and static data members of template
classes (hereafter referred to as template entities) are not necessarily done
immediately, for several reasons:

* One would like to end up with only one copy of each instantiated
entity across all the object files that make up a program. (This of
course applies to entities with external linkage.)

* The language allows one to write a specialization of a template
entity, i.e., a specific version to be used in place of a version
generated from the template for a specific data type. (One could,
for example, write a version of Stack<int> | or of just
Stack<int>::push , that replaces the template-generated version;
often, such a specialization provides a more efficient representation
for a particular data type.) Since the compiler cannot know, when
compiling a reference to a template entity, if a specialization for that
entity will be provided in another compilation, it cannot do the
instantiation automatically in any source file that references it.

* The language also dictates that template functions that are not
referenced should not be compiled, that, in fact, such functions
might contain semantic errors that would prevent them from being
compiled. Therefore, a reference to a template class should not
automatically instantiate all the member functions of that class.

(It should be noted that certain template entities are always instantiated
when used, e.g., inline functions.)

1 Since templates are descriptions of entities (typically, classes) that
are parameterizable according to the types they operate upon, they
are sometimes called parameterized types.

Language Implementation 3-25

From these requirements, one can see that if the compiler is responsible
for doing all the instantiations automatically, it can only do so on a
program-wide basis. That is, the compiler cannot make decisions about
instantiation of template entities until it has seen all the source files that
make up a complete program.

This C++ compiler provides an instantiation mechanism that does
automatic instantiation at link time. For cases where you want more
explicit control over instantiation, the C++ compiler also provides
instantiation modes and instantiation pragmas, which can be used to exert
fine—grained control over the instantiation process.

3.5.1 AUTOMATIC INSTANTIATION

The goal of an automatic instantiation mode is to provide painless
instantiation. You should be able to compile source files to object code,
then link them and run the resulting program, and never have to worry
about how the necessary instantiations get done.

In practice, this is hard for a compiler to do, and different compilers use
different automatic instantiation schemes with different strengths and
weaknesses:

e AT&T/USL/Novell’s ¢front product saves information about each file
it compiles in a special directory called ptrepository It
instantiates nothing during normal compilations. At link time, it
looks for entities that are referenced but not defined, and whose
mangled names indicate that they are template entities. For each
such entity, it consults the ptrepository information to find the
file containing the source for the entity, and it does a compilation of
the source to generate an object file containing object code for that
entity. This object code for instantiated objects is then combined
with the "normal” object code in the link step.

3-26

Chapter 3

If you are using c¢front you must follow a particular coding
convention: all templates must be declared in .h files, and for each
such file there must be a corresponding .cc file containing the
associated definitions. The compiler is never told about the .cc
files explicitly; one does not, for example, compile them in the
normal way. The link step looks for them when and if it needs
them, and does so by taking the .h filename and replacing its
suffix.2

This scheme has the disadvantage that it does a separate
compilation for each instantiated function (or, at best, one
compilation for all the member functions of one class). Even though
the function itself is often quite small, it must be compiled along
with the declarations for the types on which the instantiation is
based, and those declarations can easily run into many thousands of
lines. For large systems, these compilations can take a very long
time. The link step tries to be smart about recompiling instantiations
only when necessary, but because it keeps no fine-grained
dependency information, it is often forced to "recompile the world”
for a minor change in a .h file. In addition, ¢front has no way of
ensuring that preprocessing symbols are set correctly when it does
these instantiation compilations, if preprocessing symbols are set
other than on the command line.

Borland’s C++ compiler instantiates everything referenced in a
compilation, then uses a special linker to remove duplicate
definitions of instantiated functions.

If you are using Borland’s compiler you must make sure that every
compilation sees all the source code it needs to instantiate all the
template entities referenced in that compilation. That is, one cannot
refer to a template entity in a source file if a definition for that entity
is not included by that source file. In practice, this means that either
all the definition code is put directly in the .h files, or that each .h
file includes an associated .cc (actually, .cpp) file.

This scheme is straightforward, and works well for small programs.
For large systems, however, it tends to produce very large object
files, because each object file must contain object code (and
symbolic debugging information) for each template entity it
references.

2 The actual implementation allows for several different suffixes and
provides a command-line option to change the suffixes sought.

Language Implementation 3-27

Our approach is a little different. It requires that, for each instantiation
required, there is some (normal, top-level, explicitly-compiled) source file
that contains the definition of the template entity, a reference that causes
the instantiation, and the declarations of any types required for the
instantiation.3 This requirement can be met in various ways:

e The Borland convention: each .h file that declares a template entity
also contains either the definition of the entity or includes another
file containing the definition.

e Implicit inclusion: when the compiler sees a template declaration in
a .h file and discovers a need to instantiate that entity, it is given
permission to go off looking for an associated definition file having
the same base name and a different suffix, and it implicitly includes
that file at the end of the compilation. This method allows most
programs written using the ¢front convention to be compiled with
our approach. See the section on implicit inclusion.

e The ad hoc approach: you make sure that the files that define
template entities also have the definitions of all the available types,
and add code or pragmas in those files to request instantiation of
the entities there.

Our compiler’s automatic instantiation method works as follows:

1. The first time the source files of a program are compiled, no template
entities are instantiated. However, the generated object files contain
information about things that could have been instantiated in each
compilation. For any source file that makes use of a template instantiation
an associated .ii ~ file is created if one does not already exist (e.g., the
compilation of abc.cc would result in the creation of abc.i).

2. When the object files are linked together, a program called the prelinker,
prelk563 for the DSP563xx/DSP566xx (prelk56 for the DSP5600x), is
run. It examines the object files, looking for references and definitions of
template entities, and for the added information about entities that could
be instantiated.

3 Isn’t this always the case? No. Suppose that file A contains a
definition of class X and a reference to Stack<X>::push | and that
file B contains the definition for the member function push. There
would be no file containing both the definition of push and the
definition of X.

3-28

Chapter 3

If the prelinker finds a reference to a template entity for which there is no
definition anywhere in the set of object files, it looks for a file that
indicates that it could instantiate that template entity. When it finds such a
file, it assigns the instantiation to it. The set of instantiations assigned to a
given file is recorded in the associated instantiation request file (with, by
default, a .ii ~ suffix).

The prelinker then executes the compiler again to recompile each file for
which the .ii file was changed. The original compilation command-line
options (saved in the template information file) are used for the
recompilation.

When the compiler compiles a file, it reads the .ii file for that file and
obeys the instantiation requests therein. It produces a new object file
containing the requested template entities (and all the other things that
were already in the object file).

The prelinker repeats steps 3-5 until there are no more instantiations to be
adjusted.

The object files are linked together.

Once the program has been linked correctly, the .ii ~ files contain a
complete set of instantiation assignments. From then on, whenever source
files are recompiled, the compiler will consult the .ii ~ files and do the

indicated instantiations as it does the normal compilations. That means
that, except in cases where the set of required instantiations changes, the
prelink step from then on will find that all the necessary instantiations are
present in the object files and no instantiation assignment adjustments
need be done. That’s true even if the entire program is recompiled.

If you provide a specialization of a template entity somewhere in the
program, the specialization will be seen as a definition by the prelinker.
Since that definition satisfies whatever references there might be to that
entity, the prelinker will see no need to request an instantiation of the
entity. If you add a specialization to a program that has previously been
compiled, the prelinker will notice that too and remove the assignment of
the instantiation from the proper .ii ~ file.

The .ii files should not, in general, require any manual intervention. One
exception: if a definition is changed in such a way that some instantiation
no longer compiles (it gets errors), and at the same time a specialization is
added in another file, and the first file is being recompiled before the
specialization file and is getting errors, the .ii ~ file for the file getting the
errors must be deleted manually to allow the prelinker to regenerate it.

Language Implementation 3-29

If you supplied the =v option to the control program cc563, and the
prelinker changes an instantiation assignment, the prelinker will issue
messages like:

C++ prelinker: A<int>::f() assigned to file test.o
C++ prelinker: executing: cc563 —c test.cc

The automatic instantiation scheme can coexist with partial explicit control
of instantiation by you through the use of pragmas or command-line
specification of the instantiation mode. See the following sections.

Instantiations are normally generated as part of the object file of the
translation unit in which the instantiations are performed. But when “one
instantiation per object” mode is specified, each instantiation is placed in
its own object file. One-instantiation—per—object mode is useful when
generating libraries that need to include copies of the instances referenced
from the library. If each instance is not placed in its own object file, it may
be impossible to link the library with another library containing some of
the same instances. Without this feature it is necessary to create each
individual instantiation object file using the manual instantiation
mechanism.

The automatic instantiation mode is enabled by default. It can be turned
off by the command-line option —no_auto_instantiation. If automatic
instantiation is turned off, the extra information about template entities that
could be instantiated in a file is not put into the object file.

3.5.2 INSTANTIATION MODES

Normally, when a file is compiled, no template entities are instantiated
(except those assigned to the file by automatic instantiation). The overall
instantiation mode can, however, be changed by a command line option:

—instantiate none
Do not automatically create instantiations of any template
entities. This is the default. It is also the usually appropriate
mode when automatic instantiation is done.

—instantiate used
Instantiate those template entities that were used in the
compilation. This will include all static data members for
which there are template definitions.

3-30 Chapter 3

=

—instantiate all
Instantiate all template entities declared or referenced in the
compilation unit. For each fully instantiated template class, all
of its member functions and static data members will be
instantiated whether or not they were used. Non-member
template functions will be instantiated even if the only
reference was a declaration.

—instantiate local
Similar to —instantiate used except that the functions are
given internal linkage. This is intended to provide a very
simple mechanism for those getting started with templates.
The compiler will instantiate the functions that are used in
each compilation unit as local functions, and the program
will link and run correctly (barring problems due to multiple
copies of local static variables.) However, one may end up
with many copies of the instantiated functions, so this is not
suitable for production use. —instantiate local can not be
used in conjunction with automatic template instantiation. If
automatic instantiation —instantiate local option. If
automatic instantiation is not enabled by default, use of
—instantiate local and —auto_instantiation is an error.

In the case where the ¢¢563 command is given a single file to compile
and link, e.g.,

cch63 test.cc

the compiler knows that all instantiations will have to be done in the
single source file. Therefore, it uses the —instantiate used mode and
suppresses automatic instantiation.

3.5.3 INSTANTIATION #PRAGMA DIRECTIVES

Instantiation pragmas can be used to control the instantiation of specific
template entities or sets of template entities. There are three instantiation
pragmas:

* The instantiate pragma causes a specified entity to be instantiated.

* The do_not_instantiate pragma suppresses the instantiation of a
specified entity. It is typically used to suppress the instantiation of
an entity for which a specific definition will be supplied.

Language Implementation 3-31

* The can_instantiate pragma indicates that a specified entity can be
instantiated in the current compilation, but need not be; it is used in
conjunction with automatic instantiation, to indicate potential sites
for instantiation if the template entity turns out to be required.

The argument to the instantiation pragma may be:

a template class name A<int>

a template class declaration class A<int>
a member function name A<int>::f

a static data member name A<int>:i

a static data declaration int A<int>::i

a member function declaration void A<int>::f(int,char)
a template function declaration char* f(int, float)

A pragma in which the argument is a template class name (e.g., A<int>

or class A<int>) is equivalent to repeating the pragma for each
member function and static data member declared in the class. When
instantiating an entire class a given member function or static data member
may be excluded using the do_not_instantiate pragma. For example,

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the
compilation for an instantiation to occur. If an instantiation is explicitly
requested by use of the instantiate pragma and no template definition is
available or a specific definition is provided, an error is issued.

template <class T> void f1(T); // No body provided
template <class T> void g1(T); // No body provided

3-32

Chapter 3

void f1(int) {} // Specific definition

void main()
{ . .
int i
double d;
f1(i);
f1(d);
g1(i);
g1(d);
}
#pragma instantiate void f1(int) // error — specific
/I definition
#pragma instantiate void g1(int) // error — no body
/I provided

f1(double) and gl(double) will not be instantiated (because no
bodies were supplied) but no errors will be produced during the
compilation (if no bodies are supplied at link time, a linker error will be
produced).

A member function name (e.g., A<int>:f) can only be used as a
pragma argument if it refers to a single user defined member function (i.e.,
not an overloaded function). Compiler-generated functions are not
considered, so a name may refer to a user defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded
member functions can be instantiated by providing the complete member
function declaration, as in

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated
function, an inline function, or a pure virtual function.

Language Implementation 3-33

3.5.4 IMPLICIT INCLUSION

When implicit inclusion is enabled, the C++ compiler is given permission
to assume that if it needs a definition to instantiate a template entity
declared in a .h file it can implicitly include the corresponding .cc file to
get the source code for the definition. For example, if a template entity
ABC::f is declared in file xyz.h , and an instantiation of ABC::f is
required in a compilation but no definition of ABC::f appears in the
source code processed by the compilation, the compiler will look to see if
a file xyz.cc exists, and if so it will process it as if it were included at the
end of the main source file.

To find the template definition file for a given template entity the C++
compiler needs to know the full path name of the file in which the
template was declared and whether the file was included using the system
include syntax (e.g., #include <file.h>). This information is not
available for preprocessed source containing #line directives.
Consequently, the C++ compiler will not attempt implicit inclusion for
source code containing #line directives.

By default, the list of definition—file suffixes tried is .cc , .cpp , and .cxx .
If —c++ is supplied to the control program ¢c563, .c is also used as C++
file.

Implicit inclusion works well alongside automatic instantiation, but the two
are independent. They can be enabled or disabled independently, and
implicit inclusion is still useful when automatic instantiation is not done.

The implicit inclusion mode can be turned on by the command-line
option —implicit_include.

Implicit inclusions are only performed during the normal compilation of a
file, (i.e., not when doing only preprocessing). A common means of
investigating certain kinds of problems is to produce a preprocessed
source file that can be inspected. When using implicit inclusion it is
sometimes desirable for the preprocessed source file to include any
implicitly included files. This may be done using the —no_preproc_only
command line option. This causes the preprocessed output to be
generated as part of a normal compilation. When implicit inclusion is
being used, the implicitly included files will appear as part of the
preprocessed output in the precise location at which they were included
in the compilation.

3-34 Chapter 3

=

3.6 PREDEFINED MACROS

The C++ compiler defines a number of preprocessing macros. Many of
them are only defined under certain circumstances. This section describes
the macros that are provided and the circumstances under which they are
defined.

All C predefined macros are also defined.

_ STDC _ Defined in ANSI C mode and in C++ mode. In C++ mode the
value may be redefined. Not defined when embedded C++

is used.
_ FILE “current source filename”
__LINE__ current source line number (int type)
_ TIME “hh:mm:ss”
__ DATE "Mmm dd yyyy”

_MODEL identifies for which memory model the module is compiled.
_DEFMEM identifies the default data memory.

_STKMEM identifies the data memory used for the stack; this is either
default data memory, or L memory.

__cplusplus Defined in C++ mode.

¢ _plusplus Defined in default C++ mode, but not in strict mode.

__STDC_VERSION__
Defined in ANSI C mode with the value 199409L. The name
of this macro, and its value, are specified in Normative
Addendum 1 of the ISO C Standard.

__SIGNED _CHARS__
Defined when plain char is signed. This is used in the

<limits.h> header file to get the proper definitions of
CHAR_MAXind CHAR_MIN

_WCHAR T Defined in C++ mode when wchar_t is a keyword.

_BOOL Defined in C++ mode when bool is a keyword.

Language Implementation 3-35

___ARRAY_OPERATORS
Defined in C++ mode when array new and delete are
enabled.

__EXCEPTIONS
Defined in C++ mode when exception handling is enabled.

__RTTI Defined in C++ mode when RTTI is enabled.

__PLACEMENT DELETE
Defined in C++ mode when placement delete is enabled.

__ NAMESPACES
Defined in C++ mode when namespaces are supported
(—mnamespaces).

_ TSW_RUNTIME USES NAMESPACES
Defined in C++ mode when the configuration flag
RUNTIME USES NAMESPACES is TRUE. The name of this
predefined macro is specified by a configuration flag.
__EDG_RUNTIME_USES_NAMESPACES is the default.

__TSW_IMPLICIT_USING_STD

Defined in C++ mode when the configuration flag
RUNTIME USES NAMESPACES is TRUE and when the
standard header files should implicitly do a using—directive
on the std namespace (—using_std).

__TSW_CPP__
Always defined.

__TSW_CPP_VERSION
Defined to an integral value that represents the version
number of the C++ front end. For example, version 2.37 is
represented as 237.

__embedded_cplusplus
Defined as 1 in Embedded C++ mode.

3-36 Chapter 3

=

3.7 PRECOMPILED HEADERS

It is often desirable to avoid recompiling a set of header files, especially
when they introduce many lines of code and the primary source files that
#include them are relatively small. The C++ compiler provides a
mechanism for, in effect, taking a snapshot of the state of the compilation
at a particular point and writing it to a disk file before completing the
compilation; then, when recompiling the same source file or compiling
another file with the same set of header files, it can recognize the
“snapshot point”, verify that the corresponding precompiled header (PCH)
file is reusable, and read it back in. Under the right circumstances, this can
produce a dramatic improvement in compilation time; the trade—-off is that
PCH files can take a lot of disk space.

3.7.1 AUTOMATIC PRECOMPILED HEADER
PROCESSING

When —pch appears on the command line, automatic precompiled
header processing is enabled. This means the C++ compiler will
automatically look for a qualifying precompiled header file to read in
and/or will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the "header
stop” point. The header stop point is typically the first token in the primary
source file that does not belong to a preprocessing directive, but it can
also be specified directly by #pragma hdrstop (see below) if that comes
first. For example:

#include "xxx.h”
#include "yyy.h”
inti;

The header stop point is int (the first non—preprocessor token) and the
PCH file will contain a snapshot reflecting the inclusion of xxx.h and
yyy.h . If the first non—preprocessor token or the #pragma hdrstop
appears within a #if block, the header stop point is the outermost
enclosing #if . To illustrate, heres a more complicated example:

Language Implementation

#include "xxx.h”
#ifndef YYY_H
#define YYY_H 1
#include "yyy.h”
#endif

#if TEST

inti;

#endif

Here, the first token that does not belong to a preprocessing directive is
again int , but the header stop point is the start of the #if block
containing it. The PCH file will reflect the inclusion of xxx.h and
conditionally the definition of YYY_Hand inclusion of yyy.h ; it will not
contain the state produced by #if TEST

A PCH file will be produced only if the header stop point and the code
preceding it (mainly, the header files themselves) meet certain
requirements:

The header stop point must appear at file scope — it may not be
within an unclosed scope established by a header file. For example,
a PCH file will not be created in this case:

Il xxx.h
class A {

11 xxx.C

#include "xxx.h”

inti; };

The header stop point may not be inside a declaration started
within a header file, nor (in C++) may it be part of a declaration list
of a linkage specification. For example, in the following case the
header stop point is int, but since it is not the start of a new
declaration, no PCH file will be created:

Il yyy.h
static

Il yyy.C

#include "yyy.h”

inti;

Similarly, the header stop point may not be inside a #if block or a
#define started within a header file.

3-37

3-38

Chapter 3

* The processing preceding the header stop must not have produced
any errors. (Note: warnings and other diagnostics will not be
reproduced when the PCH file is reused.)

e No references to predefined macros _ DATE__or _ TIME__ may
have appeared.

* No use of the #line preprocessing directive may have appeared.
* #pragma no_pch (see below) must not have appeared.

e The code preceding the header stop point must have introduced a
sufficient number of declarations to justify the overhead associated
with precompiled headers. The minimum number of declarations
required is 1.

When the host system does not support memory mapping, so that
everything to be saved in the precompiled header file is assigned to
preallocated memory (MS-Windows), two additional restrictions apply:

e The total memory needed at the header stop point cannot exceed
the size of the block of preallocated memory.

* No single program entity saved can exceed 16384, the preallocation
unit.

When a precompiled header file is produced, it contains, in addition to the
snapshot of the compiler state, some information that can be checked to
determine under what circumstances it can be reused. This includes:

* The compiler version, including the date and time the compiler was
built.

e The current directory (i.e., the directory in which the compilation is
occurring).

e The command line options.

* The initial sequence of preprocessing directives from the primary
source file, including #include directives.

* The date and time of the header files specified in #include
directives.

Language Implementation 3-39

This information comprises the PCH prefix. The prefix information of a
given source file can be compared to the prefix information of a PCH file
to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

/I a.cc
#include "xxx.h"
/I Start of code
/I b.cc
#include "xxx.h”
/I Start of code

When a.cc is compiled with —pch, a precompiled header file named
a.pch is created. Then, when b.cc is compiled (or when a.cc is
recompiled), the prefix section of a.pch is read in for comparison with
the current source file. If the command line options are identical, if xxx.h
has not been modified, and so forth, then, instead of opening xxx.h and
processing it line by line, the C++ compiler reads in the rest of a.pch and
thereby establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation.
If so, the largest (i.e., the one representing the most preprocessing
directives from the primary source file) is used. For instance, consider a
primary source file that begins with

#include "xxx.h”
#include "yyy.h”
#include "zzz.h"

If there is one PCH file for xxx.h and a second for xxx.h and yyy.h |
the latter will be selected (assuming both are applicable to the current
compilation). Moreover, after the PCH file for the first two headers is read
in and the third is compiled, a new PCH file for all three headers may be
created.

When a precompiled header file is created, it takes the name of the
primary source file, with the suffix replaced by an
implementation—specified suffix (pch by default). Unless —pch_dir is
specified (see below), it is created in the directory of the primary source
file.

When a precompiled header file is created or used, a message such as

"test.cc”; creating precompiled header file "test.pch”

3-40

Chapter 3

is issued. The user may suppress the message by using the command-line
option —no_pch_messages.

When the —pch_verbose option is used the C++ compiler will display a
message for each precompiled header file that is considered that cannot be
used giving the reason that it cannot be used.

In automatic mode (i.e., when —pch is used) the C++ compiler will deem
a precompiled header file obsolete and delete it under the following
circumstances:

» if the precompiled header file is based on at least one out-of-date
header file but is otherwise applicable for the current compilation;
or

e if the precompiled header file has the same base name as the
source file being compiled (e.g., xxx.pch and xxx.cc) but is not
applicable for the current compilation (e.g., because of different
command-line options).

This handles some common cases; other PCH file clean—up must be dealt
with by other means (e.g., by the user).

Support for precompiled header processing is not available when multiple
source files are specified in a single compilation: an error will be issued
and the compilation aborted if the command line includes a request for
precompiled header processing and specifies more than one primary
source file.

3.7.2 MANUAL PRECOMPILED HEADER PROCESSING

Command-line option —create_pch file-name specifies that a
precompiled header file of the specified name should be created.

Command-line option —use_pch file-name specifies that the indicated
precompiled header file should be used for this compilation; if it is invalid
(i.e., if its prefix does not match the prefix for the current primary source
file), a warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with —pch_dir, the
indicated file name (which may be a path name) is tacked on to the
directory name, unless the file name is an absolute path name.

Language Implementation 3-41

The —create_pch, —use_pch, and —pch options may not be used
together. If more than one of these options is specified, only the last one
will apply. Nevertheless, most of the description of automatic PCH
processing applies to one or the other of these modes — header stop
points are determined the same way, PCH file applicability is determined
the same way, and so forth.

3.7.3 OTHER WAYS TO CONTROL PRECOMPILED
HEADERS

There are several ways in which the user can control and/or tune how
precompiled headers are created and used.

* #pragma hdrstop may be inserted in the primary source file at a
point prior to the first token that does not belong to a preprocessing
directive. It enables you to specify where the set of header files
subject to precompilation ends. For example,

#include "xxx.h”
#include "yyy.h”
#pragma hdrstop
#include "zzz.h”

Here, the precompiled header file will include processing state for
xxx.h and yyy.h but not zzz.h . (This is useful if the user decides
that the information added by what follows the #pragma hdrstop
does not justify the creation of another PCH file.)

e #pragma no_pch may be used to suppress precompiled header
processing for a given source file.

e Command-line option —pch_dir directory-name is used to
specify the directory in which to search for and/or create a PCH file.

Moreover, when the host system does not support memory mapping and
preallocated memory is used instead, then one of the command-line
options —pch, —create_pch, or —use_pch, if it appears at all, must be
the first option on the command line.

3-42 Chapter 3

=

3.7.4 PERFORMANCE ISSUES

The relative overhead incurred in writing out and reading back in a
precompiled header file is quite small for reasonably large header files.

In general, it does not cost much to write a precompiled header file out
even if it does not end up being used, and if it s used it almost always
produces a significant speedup in compilation. The problem is that the
precompiled header files can be quite large (from a minimum of about
250K bytes to several megabytes or more), and so one probably does not
want many of them sitting around.

Thus, despite the faster recompilations, precompiled header processing is
not likely to be justified for an arbitrary set of files with nonuniform initial
sequences of preprocessing directives. Rather, the greatest benefit occurs
when a number of source files can share the same PCH file. The more
sharing, the less disk space is consumed. With sharing, the disadvantage of
large precompiled header files can be minimized, without giving up the
advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users
should expect to reorder the #include sections of their source files
and/or to group #include directives within a commonly used header
file.

Below is an example of how this can be done. A common idiom is this:

#include "comnfile.h”
#pragma hdrstop
#include ...

where comnfile.h pulls in, directly and indirectly, a few dozen header
files; the #pragma hdrstop is inserted to get better sharing with fewer
PCH files. The PCH file produced for comnfile.h can be a bit over a
megabyte in size. Another idiom, used by the source files involved in
declaration processing, is this:

#include "comnfile.h”
#include "decl_hdrs.h”
#pragma hdrstop
#include ...

Language Implementation 3-43

decl_hdrs.h pulls in another dozen header files, and a second,
somewhat larger, PCH file is created. In all, the source files of a particular
program can share just a few precompiled header files. If disk space were
at a premium, you could decide to make comnfile.h pull in a// the
header files used — then, a single PCH file could be used in building the
program.

Different environments and different projects will have different needs, but
in general, users should be aware that making the best use of the
precompiled header support will require some experimentation and
probably some minor changes to source code.

3-44 Chapter 3

LANGUAGE

COMPILER USE

al TASKING [

d31dVHO

Compiler Use

4.1 INVOCATION

The invocation syntax of the C++ compiler is:

cp56 [option)... file (DSP5600x)
cp563 [option)... file (DSP563xx/DSP566xX)

Invocations and examples are given for the DSP563xx/DSP566xx (cp563).
Substitute the appropriate executable name for your DSP processor type.

@ When you use a UNIX shell (Bourne shell, C-shell), arguments containing
special characters (such as ’()’ and '?") must be enclosed with ” ” or
escaped. The -? option (in the C—shell) becomes: " =?" or -\?.

The C++ compiler accepts a C++ source file name and command line
options in random order. A C++ source file must have a .cc , .cxx or
.cpp suffix.

Command line options may be specified using either single character
option codes (e.g., —0), or keyword options (e.g., —output). A single
character option specification consists of a hyphen -’ followed by one or
more option characters (e.g., =Ab). If an option requires an argument, the
argument may immediately follow the option letter, or may be separated
from the option letter by white space. A keyword option specification
consists of two hyphens followed by the option keyword (e.g., —strict).
Keyword options may be abbreviated by specifying as many of the leading
characters of the option name as are needed to uniquely identify an option
name (for example, the —wchar_t_keyword option may be abbreviated
as —wc). Note that this is not supported by the control program! If an
option requires an argument, the argument may be separated from the
keyword by white space, or the keyword may be immediately followed by
=option. When the second form is used there may not be any white space
on either side of the equals sign.

The priority of the options is left-to-right: when two options conflict, the
first (most left) one takes effect. The =D and -U options are not
considered conflicting options, so they are processed left-to-right for each
source file. You can overrule the default output file name with the
—gen_c_file_name option.

A summary of the options is given below. The next section describes the
options in more detail.

4-4

Chapter 4

Option

Description

-2

—alternative_tokens
—no_alternative_tokens

—anachronisms
—no_anachronisms

—arg_dep_lookup
—no_arg_dep_lookup

—array_new_and_delete
