
TASKING VX-toolset for MCS
User Guide

MA162-800 (v1.2) May 22, 2013



Copyright © 2013 Altium Limited.

All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium,
TASKING, and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All
other registered or unregistered trademarks referenced herein are the property of their respective owners and no
trademark rights to the same are claimed.



Table of Contents
1. Assembly Language ....................................................................................................... 1

1.1. Assembly Syntax ................................................................................................. 1
1.2. Assembler Significant Characters ........................................................................... 2
1.3. Operands of an Assembly Instruction ...................................................................... 3
1.4. Symbol Names ................................................................................................... 3

1.4.1. Predefined Preprocessor Symbols ............................................................... 4
1.5. Registers ........................................................................................................... 4
1.6. Assembly Expressions ......................................................................................... 5

1.6.1. Numeric Constants ................................................................................... 6
1.6.2. Strings .................................................................................................... 6
1.6.3. Expression Operators ................................................................................ 7

1.7. Working with Sections .......................................................................................... 8
1.8. Built-in Assembly Functions ................................................................................... 9
1.9. Assembler Directives and Controls ........................................................................ 14

1.9.1. Assembler Directives ............................................................................... 15
1.9.2. Assembler Controls ................................................................................. 52

1.10. Macro Operations ............................................................................................ 63
1.10.1. Defining a Macro ................................................................................... 63
1.10.2. Calling a Macro ..................................................................................... 63
1.10.3. Using Operators for Macro Arguments ....................................................... 64

2. Using the Assembler ..................................................................................................... 69
2.1. Assembly Process ............................................................................................. 69
2.2. Calling the Assembler ......................................................................................... 70
2.3. How the Assembler Searches Include Files ............................................................. 71
2.4. Assembler Optimizations ..................................................................................... 72
2.5. Generating a List File ......................................................................................... 72
2.6. Assembler Error Messages .................................................................................. 73

3. Using the Linker ........................................................................................................... 75
3.1. Linking Process ................................................................................................. 75

3.1.1. Phase 1: Linking ..................................................................................... 77
3.1.2. Phase 2: Locating ................................................................................... 78

3.2. Calling the Linker ............................................................................................... 79
3.3. Incremental Linking ............................................................................................ 80
3.4. Importing Binary Files ......................................................................................... 81
3.5. Linker Optimizations ........................................................................................... 81
3.6. Controlling the Linker with a Script ........................................................................ 82

3.6.1. Purpose of the Linker Script Language ........................................................ 83
3.6.2. Eclipse and LSL ...................................................................................... 83
3.6.3. Structure of a Linker Script File .................................................................. 85
3.6.4. The Architecture Definition ........................................................................ 90
3.6.5. The Derivative Definition ........................................................................... 92
3.6.6. The Processor Definition ........................................................................... 94
3.6.7. The Memory Definition ............................................................................. 94
3.6.8. The Section Layout Definition: Locating Sections ........................................... 96

3.7. Linker Labels .................................................................................................... 97
3.8. Generating a Map File ........................................................................................ 98
3.9. Linker Error Messages ........................................................................................ 99

4. Using the Utilities ........................................................................................................ 101

iii



4.1. Control Program .............................................................................................. 101
4.2. Make Utility mkmcs .......................................................................................... 102

4.2.1. Calling the Make Utility ........................................................................... 104
4.2.2. Writing a Makefile .................................................................................. 104

4.3. Make Utility amk .............................................................................................. 113
4.3.1. Makefile Rules ...................................................................................... 113
4.3.2. Makefile Directives ................................................................................. 115
4.3.3. Macro Definitions ................................................................................... 115
4.3.4. Makefile Functions ................................................................................. 118
4.3.5. Conditional Processing ........................................................................... 118
4.3.6. Makefile Parsing .................................................................................... 119
4.3.7. Makefile Command Processing ................................................................ 120
4.3.8. Calling the amk Make Utility ..................................................................... 120

4.4. Archiver ......................................................................................................... 121
4.4.1. Calling the Archiver ................................................................................ 122
4.4.2. Archiver Examples ................................................................................. 123

4.5. Bosch MCS Assembly to TASKING Assembly Converter .......................................... 124
5. Tool Options .............................................................................................................. 125

5.1. Assembler Options ........................................................................................... 127
5.2. Linker Options ................................................................................................. 164
5.3. Control Program Options ................................................................................... 209
5.4. Make Utility Options .......................................................................................... 242
5.5. Parallel Make Utility Options ............................................................................... 270
5.6. Archiver Options .............................................................................................. 284

6. List File Formats ......................................................................................................... 299
6.1. Assembler List File Format ................................................................................. 299
6.2. Linker Map File Format ..................................................................................... 300

7. Linker Script Language (LSL) ........................................................................................ 305
7.1. Structure of a Linker Script File ........................................................................... 305
7.2. Syntax of the Linker Script Language ................................................................... 307

7.2.1. Preprocessing ....................................................................................... 307
7.2.2. Lexical Syntax ...................................................................................... 308
7.2.3. Identifiers and Tags ................................................................................ 308
7.2.4. Expressions ......................................................................................... 309
7.2.5. Built-in Functions ................................................................................... 309
7.2.6. LSL Definitions in the Linker Script File ...................................................... 311
7.2.7. Memory and Bus Definitions .................................................................... 311
7.2.8. Architecture Definition ............................................................................ 314
7.2.9. Derivative Definition ............................................................................... 316
7.2.10. Processor Definition and Board Specification ............................................. 317
7.2.11. Section Layout Definition and Section Setup .............................................. 317

7.3. Expression Evaluation ....................................................................................... 322
7.4. Semantics of the Architecture Definition ................................................................ 322

7.4.1. Defining an Architecture .......................................................................... 323
7.4.2. Defining Internal Buses ........................................................................... 323
7.4.3. Defining Address Spaces ........................................................................ 324
7.4.4. Mappings ............................................................................................. 326

7.5. Semantics of the Derivative Definition .................................................................. 329
7.5.1. Defining a Derivative .............................................................................. 330
7.5.2. Instantiating Core Architectures ................................................................ 330

iv

TASKING VX-toolset for MCS User Guide



7.5.3. Defining Internal Memory and Buses ......................................................... 332
7.6. Semantics of the Board Specification ................................................................... 333

7.6.1. Defining a Processor .............................................................................. 334
7.6.2. Instantiating Derivatives .......................................................................... 334
7.6.3. Defining External Memory and Buses ........................................................ 334

7.7. Semantics of the Section Setup Definition ............................................................. 335
7.7.1. Setting up a Section ............................................................................... 336

7.8. Semantics of the Section Layout Definition ............................................................ 336
7.8.1. Defining a Section Layout ........................................................................ 337
7.8.2. Creating and Locating Groups of Sections .................................................. 338
7.8.3. Creating or Modifying Special Sections ...................................................... 343
7.8.4. Creating Symbols .................................................................................. 347
7.8.5. Conditional Group Statements ................................................................. 348

v

TASKING VX-toolset for MCS User Guide



vi

TASKING VX-toolset for MCS User Guide



Chapter 1. Assembly Language
This chapter describes the most important aspects of the TASKING assembly language for the Multi
Channel Sequencer (MCS). For a complete overview of the MCS, refer to the Generic Timer Module
(GTM) chapter in the AURIX TC27x 32-Bit Single-Chip Microcontroller Target Specification [V2.4, 2011-08,
Infineon].

1.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label[:]] [instruction | directive | macro_call] [;comment]

A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (_). The first character cannot be a digit. The label can also be a
number. A label which is prefixed by whitespace (spaces or tabs) has to be
followed by a colon (:). The size of an identifier is only limited by the amount of
available memory.

number is a number ranging from 1 to 255.This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:

   LAB1:   ; This label is followed by a colon and
           ; can be prefixed by whitespace
LAB1       ; This label has to start at the beginning
           ; of a line
1: jmp 1p  ; This is an endless loop
           ; using numeric labels

label

An instruction consists of a mnemonic and zero, one or more operands. It must
not start in the first column.

Operands are described in Section 1.3, Operands of an Assembly Instruction.
The instructions are described in the Target Specification Manual.

instruction

1



With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 1.9, Assembler Directives and Controls.

directive

A call to a previously defined macro. It must not start in the first column. See
Section 1.10, Macro Operations.

macro_call

Comment, preceded by a ; (semicolon).comment

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called 'control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$control

For more information on controls see Section 1.9, Assembler Directives and Controls.

1.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 1.6.3, Expression Operators. Other special assembler characters
are:

DescriptionCharacter

Start of a comment;

Line continuation character or macro operator: argument concatenation\

Macro operator: return decimal value of a symbol?

Macro operator: return hex value of a symbol%

Macro operator: override local label^

Macro string delimiter or quoted string .DEFINE expansion character”

String constants delimiter'

Start of a built-in assembly function@

Location counter substitution*

Constant number#

String concatenation operator++

Substring delimiter[ ]

2

TASKING VX-toolset for MCS User Guide



1.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

DescriptionOperand

A symbolic name as described in Section 1.4, Symbol Names. Symbols can also occur
in expressions.

symbol

Any valid register as listed in Section 1.5, Registers.register

Any valid expression as described in Section 1.6, Assembly Expressions.expression

A combination of expression, register and symbol.address

Addressing modes

The MCS assembly language has several addressing modes. These addressing modes are used for
indirect memory addressing or indirect ARU addressing. For details see the AURIX TC27x 32-Bit
Single-Chip Microcontroller Target Specification [V2.4, 2011-08, Infineon].

1.4. Symbol Names

User-defined symbols

A user-defined symbol can consist of letters, digits and underscore characters (_). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case
of these characters is significant.You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 1.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels. It is allowed to use reserved symbols as
labels as long as the label is followed by a colon.

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example
for directives or section names). Instructions and registers are also reserved. The case of these built-in
symbols is insignificant.

Examples

Valid symbol names:

3

Assembly Language



loop_1
ENTRY
a_B_c
_aBC

Invalid symbol names:

1_loop     ; starts with a number
r1         ; reserved register name
.DEFINE    ; reserved directive name

1.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

DescriptionSymbol

Identifies the assembler.You can use this symbol to flag parts of the source
which must be recognized by the asmcs assembler only. It expands to 1.

__ASMCS__

Identifies the build number of the assembler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, __BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__BUILD__

Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0r1 -> 1, v1.0rb -> -1

__REVISION__

Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.

__TASKING__

Identifies the version number of the assembler. For example, if you use
version 2.1r1 of the assembler, __VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

__VERSION__

Example

.if @defined('__ASMCS__')
  ; this part is only for the asmcs assembler
...
.endif

1.5. Registers

The following register names, either uppercase or lowercase, should not be used for user-defined symbol
names in an assembly language source file:

4

TASKING VX-toolset for MCS User Guide



R0  .. R7   (general purpose registers)
STA         (status register)
ACB         (ARU control bit register)
CTRG        (clear trigger bits register)
STRG        (set trigger bits register)
TBU_TS0     (TBU timestamp TS0 register)
TBU_TS1     (TBU timestamp TS1 register)
TBU_TS2     (TBU timestamp TS2 register)
MHB         (memory high byte register)

1.6. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer or floating-point values), and
any combination of integers, floating-point numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker. Relocatable expressions can only
contain integral functions; floating-point functions and numbers are not supported by the ELF/DWARF
object format.

The assembler evaluates expressions with 64-bit precision in two's complement.

The syntax of an expression can be any of the following:

• numeric constant

• string

• symbol

• expression binary_operator expression

• unary_operator expression

• (expression)

• function call

All types of expressions are explained in separate sections.

5

Assembly Language



1.6.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes can be used in either lowercase or uppercase.

ExampleDescriptionBase

0B1101
0b11001010

A 0b or 0B prefix followed by binary digits (0,1).Binary

0X12FF
0x45
0xfa10

A 0x or 0X prefix followed by hexadecimal digits (0-9, A-F, a-f).Hexadecimal

12
1245

Decimal digits (0-9).Decimal integer

1.6.2. Strings

ASCII characters, enclosed in single (') or double (”) quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a .DEFINE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 4 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. Null strings have a value of 0.

Square brackets ([ ]) delimit a substring operation in the form:

[string,offset,length]

offset is the start position within string. length is the length of the desired substring. Both values may not
exceed the size of string.

Examples

'ABCD'              ; (0x41424344)
'''79'              ; to enclose a quote double it
"A\"BC"             ; or to enclose a quote escape it
'AB'+1              ; (0x4143) string used in expression
''                  ; null string
.word 'abcdef'      ; (0x64636261) 'ef' are ignored
                    ; warning: string value truncated
'abc'++'de'         ; you can concatenate 
                    ; two strings with the '++' operator.
                    ; This results in 'abcde'
['TASKING',0,4]     ; results in the substring 'TASK'

6

TASKING VX-toolset for MCS User Guide



1.6.3. Expression Operators

The next table shows the assembler operators.They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Most assembler operators can be used with both integer and floating-point values. If one operand has
an integer value and the other operand has a floating-point value, the integer is converted to a floating-point
value before the operator is applied. The result is a floating-point value.

DescriptionNameOperatorType

Expressions enclosed by parenthesis are evaluated
first.

parenthesis( )

Returns the value of its operand.plus+Unary

Returns the negative of its operand.minus-

Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

one's complement~

Returns 1 if the operands' value is 0; otherwise 0.
For example, if buf is 0 then !buf is 1. If buf has
a value of 1000 then !buf is 0.

logical negate!

Yields the product of its operands.multiplication*Arithmetic

Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

division/

Integer only.This operator yields the remainder from
the division of the first operand by the second.

modulo%

Yields the sum of its operands.addition+

Yields the difference of its operands.subtraction-

Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.

shift left<<Shift

Integer only. Causes the left operand to be shifted
to the right by the number of bits specified by the
right operand. The sign bit will be extended.

shift right>>

7

Assembly Language



DescriptionNameOperatorType

Returns an integer 1 if the indicated condition is
TRUE or an integer 0 if the indicated condition is
FALSE.

For example, if D has a value of 3 and E has a value
of 5, then the result of the expression D<E is 1, and
the result of the expression D>E is 0.

Use tests for equality involving floating-point values
with caution, since rounding errors could cause
unexpected results.

less than<Relational

less than or equal<=

greater than>

greater than or equal>=

equal==

not equal!=

Integer only.Yields the bitwise AND function of its
operand.

AND&Bit and
Bitwise

Integer only.Yields the bitwise OR function of its
operand.

OR|

Integer only.Yields the bitwise exclusive OR function
of its operands.

exclusive OR^

Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.

logical AND&&Logical

Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

logical OR||

The relational operators and logical operators are intended primarily for use with the conditional assembly
.if directive, but can be used in any expression.

1.7. Working with Sections

Sections are absolute or relocatable blocks of contiguous memory that can contain code or data. Some
sections contain code or data that your program declared and uses directly, while other sections are
created by the linker and contain debug information or code or data to initialize your application. These
sections can be named in such a way that different modules can implement different parts of these
sections. These sections are located in memory by the linker (using the linker script language, LSL) so
that concerns about memory placement are postponed until after the assembly process.

All instructions and directives which generate data or code must be within an active section.The assembler
emits a warning if code or data starts without a section definition and activation. If you program in assembly
you have to define sections yourself.

For more information about locating sections see Section 3.6.8, The Section Layout Definition: Locating
Sections.

Section definition

Sections are defined with the .SDECL directive and have a name. A section may have attributes to instruct
the linker to place it on a predefined starting address, or that it may be overlaid with another section.

8

TASKING VX-toolset for MCS User Guide



  .SDECL "name",  type  [, attribute ]...  [AT address]

See the description of the .SDECL directive for a complete description of all possible attributes.

Section activation

Sections are defined once and are activated with the .SECT directive.

  .SECT "name"

The linker will check between different modules and emits an error message if the section attributes do
not match.The linker will also concatenate all matching section definitions into one section. So, all "code"
sections will be linked into one big "code" chunk which will be located in one piece. A .SECT directive
referring to an earlier defined section is called a continuation. Only the name can be specified.

Examples

  .SDECL  ".mcstext.code",CODE
  .SECT   ".mcstext.code"

Defines and activates a relocatable section in CODE memory. Other parts of this section, with the same
name, may be defined in the same module or any other module. Other modules should use the same
.SDECL statement. When necessary, it is possible to give the section an absolute starting address.

  .SDECL  ".mcsdata.data", data at 0x100
  .SECT   ".mcsdata.data"

Defines and activates an absolute section named .mcsdata.data starting at address 0x100.

1.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support string comparison and macro testing.
You can use functions as terms in any expression.

Syntax of an assembly function

@function_name([argument[,argument]...])

Functions start with the '@' character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name
and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

Overview of mathematical functions

DescriptionFunction

Returns the sign of an expression as -1, 0 or 1@SGN(expr)

9

Assembly Language



Overview of conversion functions

DescriptionFunction

Reverse order of bits in field@RVB(expr[,exprN])

Overview of string functions

DescriptionFunction

Concatenate str1 and str2@CAT(str1,str2)

Length of string@LEN(string)

Position of str2 in str1@POS(str1,str2[,start])

Compare str1 with str2@SCP(str1,str2)

Return substring@SUB(str,expr1,expr2)

Overview of macro functions

DescriptionFunction

Test if macro argument is present@ARG('symbol' | expr)

Return number of macro arguments@CNT()

Test if macro is defined@MAC(symbol)

Test if macro expansion is active@MXP()

Overview of address calculation functions

DescriptionFunction

Least significant byte of the expression@LSB(expr)

Most significant byte of the expression@MSB(expr)

Overview of assembler mode functions

DescriptionFunction

Test if CPU type is selected@CPU('cpu')

Returns 1 if symbol has been defined@DEF('symbol' | symbol)

Expression check@EXP(expr)

Integer check@INT(expr)

LIST control flag value@LST()

10

TASKING VX-toolset for MCS User Guide



Detailed Description of Built-in Assembly Functions

@ARG('symbol' | expression)

Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

You can specify the argument with a symbol name (the name of a macro argument enclosed in single
quotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

.IF @ARG('TWIDDLE') ;is argument twiddle present?

.IF @ARG(1)         ;is first argument present?

@CAT(string1,string2)

Concatenates the two strings into one string.The two strings must be enclosed in single or double quotes.

Example:

.DEFINE  ID  "@CAT('TASK','ING')"   ;ID = 'TASKING'

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

ARGCOUNT .SET @CNT() ; reserve argument count

@CPU(string)

Returns integer 1 if string corresponds to the selected CPU type; 0 otherwise. See also assembler option
--cpu (Select CPU).

Example:

@DEF('symbol' | symbol)

Returns 1 if symbol has been defined, 0 otherwise. symbol can be any symbol or label not associated
with a .MACRO or .SDECL directive. If symbol is quoted, it is looked up as a .DEFINE symbol; if it is not
quoted, it is looked up as an ordinary symbol or label.

Example:

.IF @DEFINED('ANGLE')         ;is symbol ANGLE defined?

.IF @DEFINED(ANGLE)           ;does label ANGLE exist?

11

Assembly Language



@EXP(expression)

Returns 0 if the evaluation of expression would normally result in an error. Returns 1 if the expression
can be evaluated correctly. With the @EXP function, you prevent the assembler from generating an error
if the expression contains an error. No test is made by the assembler for warnings. The expression may
be relative or absolute.

Example:

.IF  !@EXP(3/0)       ;Do the IF on error
                      ;assembler generates no error

.IF  !(3/0)           ;assembler generates an error

@INT(expression)

Returns integer 1 if expression has an integer result; otherwise, it returns a 0. The expression may be
relative or absolute.

Example:

.IF  @INT(TERM)     ;Test if result is an integer

@LEN(string)

Returns the length of string as an integer.

Example:

SLEN   .SET  @LEN('string')   ;SLEN = 6

@LSB(expression)

Returns the least significant byte of the result of the expression.The result of the expression is calculated
as 16 bit.

Example:

VAR1   .SET @LSB(0x34)        ;VAR1 = 0x34
VAR2   .SET @LSB(0x1234)      ;VAR2 = 0x34
VAR3   .SET @LSB(0x654321)    ;VAR3 = 0x21

@LST()

Returns the value of the $LIST ON/OFF control flag as an integer. Whenever a $LIST ON control is
encountered in the assembler source, the flag is incremented; when a $LIST OFF control is encountered,
the flag is decremented.

Example:

.DUP   @ABS(@LST())           ;list unconditionally

12

TASKING VX-toolset for MCS User Guide



@MAC(symbol)

Returns integer 1 if symbol has been defined as a macro name, 0 otherwise.

Example:

.IF    @MAC(DOMUL)              ;does macro DOMUL exist?

@MSB(expression)

Returns the most significant byte of the result of the expression.The result of the expression is calculated
as 16 bit.

Example:

VAR1   .SET @MSB(0x34)          ;VAR1 = 0x00
VAR2   .SET @MSB(0x1234)        ;VAR2 = 0x12
VAR3   .SET @MSB(0x654321)      ;VAR3 = 0x43

@MXP()

Returns integer 1 if the assembler is expanding a macro, 0 otherwise.

Example:

.IF    @MXP()                   ;macro expansion active?

@POS(string1,string2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in string1, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1. Note that the first position in a string is position 0.

Example:

ID1  .EQU  @POS('TASKING','ASK')  ; ID1 = 1
ID2  .EQU  @POS('ABCDABCD','B',2) ; ID2 = 5
ID3  .EQU  @POS('TASKING','BUG')  ; ID3 = 7

@RVB(expression1,expression2)

Reverse the order of bits in expression1 delimited by the number of bits in expression2. If expression2
is omitted the field is bounded by the target word size. Both expressions must be 16-bit integer values.

Example:

VAR1 .SET @RVB(0x200)   ;reverse all bits, VAR1=0x40
VAR2 .SET @RVB(0xB02)   ;reverse all bits, VAR2=0x40D0

13

Assembly Language



VAR3 .SET @RVB(0xB02,2) ;reverse bits 0 and 1,
                        ;VAR3=0xB01

@SCP(string1,string2)

Returns integer 1 if the two strings compare, 0 otherwise.The two strings must be separated by a comma.

Example:

.IF @SCP(STR,'MAIN')  ; does STR equal 'MAIN'?

@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative, 0 if zero, 1 if positive. The
expression may be relative or absolute.

Example:

VAR1  .SET @SGN(-1.2e-92)   ;VAR1 = -1
VAR2  .SET @SGN(0)          ;VAR2 =  0
VAR3  .SET @SGN(28.382)     ;VAR3 =  1

@SUB(string,expression1,expression2)

Returns the substring from string as a string. expression1 is the starting position within string, and
expression2 is the length of the desired string. The assembler issues an error if either expression1 or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

.DEFINE  ID  "@SUB('TASKING',3,4)"  ;ID = 'KING'

1.9. Assembler Directives and Controls

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

• Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

• Assembly control directives

• Symbol definition and section directives

• Data definition / Storage allocation directives

14

TASKING VX-toolset for MCS User Guide



• High Level Language (HLL) directives

• Directives that are interpreted by the macro preprocessor.These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled.You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all.

• Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option.The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the controls $LIST ON
and $LIST OFF you overrule this option for a part of the code that you do not want to appear in the
list file. Controls always appear on a separate line and start with a '$' sign in the first column.

The following controls are available:

• Assembly listing controls

• Miscellaneous controls

Each assembler directive or control has its own syntax.You can use assembler directives and controls
in the assembly code as pseudo instructions.

Some assembler directives can be preceded with a label. If you do not precede an assembler directive
with a label, you must use white space instead (spaces or tabs).The assembler recognizes both uppercase
and lowercase for directives.

1.9.1. Assembler Directives

Overview of assembly control directives

DescriptionDirective

Start comment lines.You cannot use this directive in .IF/.ELSE/.ENDIF
constructs and .MACRO/.DUP definitions.

.COMMENT

Indicates the end of an assembly module.END

Programmer generated error message.FAIL

Include file.INCLUDE

Programmer generated message.MESSAGE

Programmer generated warning message.WARNING

Overview of symbol definition and section directives

DescriptionDirective

Set permanent value to a symbol.EQU

Import global section symbol.EXTERN

Declare global section symbol.GLOBAL

15

Assembly Language



DescriptionDirective

Declare local section symbol.LOCAL

Initialize memory space and location counters to create a nameless section.ORG

Declare a section with name, type and attributes.SDECL

Activate a declared section.SECT

Set temporary value to a symbol.SET

Set size of symbol in the ELF symbol table.SIZE

Set symbol type in the ELF symbol table.TYPE

Mark a symbol as 'weak'.WEAK

Overview of data definition / storage allocation directives

DescriptionDirective

Align location counter.ALIGN

Define ASCII string without / with ending NULL byte.ASCII, .ASCIIZ

Define storage (32 bits).SPACE

Define word (32 bits).WORD

Overview of macro preprocessor directives

DescriptionDirective

Define substitution string.DEFINE

Duplicate sequence of source lines.DUP, .ENDM

Duplicate sequence with arguments.DUPA, .ENDM

Duplicate sequence with characters.DUPC, .ENDM

Duplicate sequence in loop.DUPF, .ENDM

Conditional assembly directive.IF, .ELIF, .ELSE

End of conditional assembly directive.ENDIF

Exit macro.EXITM

Define macro.MACRO, .ENDM

Undefine (purge) macro.PMACRO

Undefine .DEFINE symbol.UNDEF

16

TASKING VX-toolset for MCS User Guide



.ALIGN

Syntax

.ALIGN expression

Description

With the .ALIGN directive you instruct the assembler to align the location counter. By default the assembler
aligns on four bytes.

When the assembler encounters the .ALIGN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs).The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.

A label is not allowed before this directive.

Example

  .sdecl '.mcstext.code',code
  .sect  '.mcstext.code'
  .ALIGN 16    ; the assembler aligns

instruction  ; this instruction at 16 MAUs and
               ; fills the 'gap' with NOP instructions.

  .sdecl '.mcstext.code',code
  .sect  '.mcstext.code'
  .ALIGN 12    ; WRONG: not a power of two, the

instruction  ; assembler aligns this instruction at
               ; 16 MAUs and issues a warning.

17

Assembly Language



.ASCII, .ASCIIZ

Syntax

[label:] .ASCII string[,string]...

[label:] .ASCIIZ string[,string]...

Description

With the .ASCII or .ASCIIZ directive the assembler allocates and initializes memory for each string
argument. The last word will be padded with 0x00. Use commas to separate multiple strings.

There is only a difference between .ASCII and .ASCIIZ when the string has a size that is a multiple of
four characters. In that case the .ASCIIZ directive adds a word with all zeros.The "z" in .ASCIIZ stands
for "zero"

Example

STRING:  .ASCII  "Hello world"   ; = 0x48656C6C
                                 ;   0x6F20776F
                                 ;   0x726C6400
STRINGZ: .ASCIIZ "Hello world"   ; = 0x48656C6C
                                 ;   0x6F20776F
                                 ;   0x726C6400
STR4:    .ASCII  "Four"          ; = 0x466F7572
STR8:    .ASCIIZ "Four"          ; = 0x466F7572
                                 ;   0x00000000

Related Information

.SPACE (Define Storage)

18

TASKING VX-toolset for MCS User Guide



.COMMENT

Syntax

.COMMENT delimiter
  .
  .

delimiter

Description

With the .COMMENT directive you can define one or more lines as comments.The first non-blank character
after the .COMMENT directive is the comment delimiter.The two delimiters are used to define the comment
text. The line containing the second comment delimiter will be considered the last line of the comment.
The comment text can include any printable characters and the comment text will be produced in the
source listing as it appears in the source file.

A label is not allowed before this directive.

Example

  .COMMENT  + This is a one line comment +
  .COMMENT  * This is a multiple line 
              comment. Any number of lines
              can be placed between the two
              delimiters.
            *

19

Assembly Language



.DEFINE

Syntax

.DEFINE symbol  string

Description

With the .DEFINE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. .DEFINE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active .DEFINE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

A label is not allowed before this directive.

Example

Suppose you defined the symbol LEN with the substitution string "32":

  .DEFINE LEN "32"

Then you can use the symbol LEN for example as follows:

  .SPACE LEN
  .MESSAGE "The length is: LEN"

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

  .SPACE 32
  .MESSAGE "The length is: 32"

Related Information

.UNDEF (Undefine a .DEFINE symbol)

.MACRO, .ENDM (Define a macro)

20

TASKING VX-toolset for MCS User Guide



.DUP, .ENDM

Syntax

[label:] .DUP expression
    ....

.ENDM

Description

With the .DUP/.ENDM directive you can duplicate a sequence of assembly source lines. With expression
you specify the number of duplications. If the expression evaluates to a number less than or equal to 0,
the sequence of lines will not be included in the assembler output. The expression result must be an
absolute integer and cannot contain any forward references (symbols that have not already been defined).
The .DUP directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

In this example the loop is repeated three times. Effectively, the preprocessor repeats the source lines
(.WORD 10) three times, then the assembler assembles the result:

  .DUP 3
  .WORD 10  ; assembly source lines
  .ENDM

Related Information

.DUPA, .ENDM (Duplicate sequence with arguments)

.DUPC, .ENDM (Duplicate sequence with characters)

.DUPF, .ENDM (Duplicate sequence in loop)

.MACRO, .ENDM (Define a macro)

21

Assembly Language



.DUPA, .ENDM

Syntax

[label:] .DUPA formal_arg,argument[,argument]...
    ....

.ENDM

Description

With the .DUPA/.ENDM directive you can repeat a block of source statements for each argument. For
each repetition, every occurrence of the formal_arg parameter within the block is replaced with each
succeeding argument string. If an argument includes an embedded blank or other assembler-significant
character, it must be enclosed with single quotes.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

Consider the following source input statements,

  .DUPA  VALUE,12,,32,34
  .WORD  VALUE
  .ENDM

This is expanded as follows:

  .WORD  12
  .WORD  VALUE  ; results in a warning
  .WORD  32
  .WORD  34

The second statement results in a warning of the assembler that the local symbol VALUE is not defined
in this module and is made external.

Related Information

.DUP, .ENDM (Duplicate sequence of source lines)

.DUPC, .ENDM (Duplicate sequence with characters)

.DUPF, .ENDM (Duplicate sequence in loop)

.MACRO, .ENDM (Define a macro)

22

TASKING VX-toolset for MCS User Guide



.DUPC, .ENDM

Syntax

[label:] .DUPC formal_arg,string
    ....

.ENDM

Description

With the .DUPC/.ENDM directive you can repeat a block of source statements for each character within
string. For each character in the string, the formal_arg parameter within the block is replaced with that
character. If the string is empty, then the block is skipped.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

Consider the following source input statements,

  .DUPC  VALUE,'123'
  .WORD  VALUE
  .ENDM

This is expanded as follows:

  .WORD  1
  .WORD  2
  .WORD  3

Related Information

.DUP, .ENDM (Duplicate sequence of source lines)

.DUPA, .ENDM (Duplicate sequence with arguments)

.DUPF, .ENDM (Duplicate sequence in loop)

.MACRO, .ENDM (Define a macro)

23

Assembly Language



.DUPF, .ENDM

Syntax

[label:] .DUPF formal_arg,[start],end[,increment]
    ....

.ENDM

Description

With the .DUPF/.ENDM directive you can repeat a block of source statements (end - start) + 1 / increment
times. start is the starting value for the loop index; end represents the final value. increment is the increment
for the loop index; it defaults to 1 if omitted (as does the start value). The formal_arg parameter holds the
loop index value and may be used within the body of instructions.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

Consider the following source input statements,

  .DUPF  NUM,0,7
  .WORD  NUM
  .ENDM

This is expanded as follows:

  .WORD  0
  .WORD  1
  .WORD  2
  .WORD  3
  .WORD  4
  .WORD  5
  .WORD  6
  .WORD  7

24

TASKING VX-toolset for MCS User Guide



Related Information

.DUP, .ENDM (Duplicate sequence of source lines)

.DUPA, .ENDM (Duplicate sequence with arguments)

.DUPC, .ENDM (Duplicate sequence with characters)

.MACRO, .ENDM (Define a macro)

25

Assembly Language



.END

Syntax

.END

Description

With the optional .END directive you tell the assembler that the end of the module is reached. If the
assembler finds assembly source lines beyond the .END directive, it ignores those lines and issues a
warning.

You cannot use the .END directive in a macro expansion.

The assembler does not allow a label with this directive.

Example

       ; source lines
    .END                ; End of assembly module

Related Information

-

26

TASKING VX-toolset for MCS User Guide



.EQU

Syntax

symbol .EQU expression

Description

With the .EQU directive you assign the value of expression to symbol permanently. The expression can
be relocatable or absolute and forward references are allowed. Once defined, you cannot redefine the
symbol. With the .GLOBAL directive you can declare the symbol global.

Example

To assign the value 0x400 permanently to the symbol MYSYMBOL:

MYSYMBOL .EQU  0x4000

You cannot redefine the symbol MYSYMBOL after this.

Related Information

.SET (Set temporary value to a symbol)

27

Assembly Language



.EXITM

Syntax

.EXITM

Description

With the .EXITM directive the assembler will immediately terminate a macro expansion. It is useful when
you use it with the conditional assembly directive .IF to terminate macro expansion when, for example,
error conditions are detected.

A label is not allowed before this directive.

Example

CALC  .MACRO  XVAL,YVAL
      .IF     XVAL<0
      .FAIL   'Macro parameter value out of range'
      .EXITM  ;Exit macro
      .ENDIF
        .
        .
        .
      .ENDM

Related Information

.DUP, .ENDM (Duplicate sequence of source lines)

.DUPA, .ENDM (Duplicate sequence with arguments)

.DUPC, .ENDM (Duplicate sequence with characters)

.DUPF, .ENDM (Duplicate sequence in loop)

.MACRO, .ENDM (Define a macro)

28

TASKING VX-toolset for MCS User Guide



.EXTERN

Syntax

.EXTERN symbol[,symbol]...

Description

With the .EXTERN directive you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the .GLOBAL
directive.

If you do not use the .EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the .EXTERN directive.

A label is not allowed with this directive.

Example

     .EXTERN AA,CC,DD      ;defined elsewhere
     .sdecl ".mcstext.code", code
     .sect  ".mcstext.code"
     .
     .
     movl R3,AA    ; AA is used here
     .

Related Information

.GLOBAL (Declare global section symbol)

.LOCAL (Declare local section symbol)

29

Assembly Language



.FAIL

Syntax

.FAIL {str|exp}[,{str|exp}]... 

Description

With the .FAIL directive you tell the assembler to print an error message to stderr during the assembling
process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated error. If you use expressions, the
assembler outputs the result. The assembler outputs a space between each argument.

The total error count will be incremented as with any other error. The .FAIL directive is for example
useful in combination with conditional assembly for exceptional condition checking.The assembly process
proceeds normally after the error has been printed.

With this directive the assembler exits with exit code 1 (an error).

A label is not allowed with this directive.

Example

   .FAIL  'Parameter out of range'

This results in the error:

E143: ["filename" line] Parameter out of range

Related Information

.MESSAGE (Programmer generated message)

.WARNING (Programmer generated warning)

30

TASKING VX-toolset for MCS User Guide



.GLOBAL

Syntax

.GLOBAL symbol[,symbol]...

Description

All symbols or labels defined in the current section or module are local to the module by default.You can
change this default behavior with assembler option --symbol-scope=global.

With the .GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with .GLOBAL, from another module, use the .EXTERN directive.

Only program labels and symbols defined with .EQU can be made global.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.

The assembler does not allow a label with this directive.

Example

      .sdecl  '.mcsdata.data', data
      .sect   '.mcsdata.data'
      .GLOBAL  LOOPA  ; LOOPA will be globally
                      ; accessible by other modules
LOOPA .EQU 1          ; definition of symbol LOOPA

Related Information

.EXTERN (Import global section symbol)

.LOCAL (Declare local section symbol)

31

Assembly Language



.IF, .ELIF, .ELSE, .ENDIF

Syntax

.IF expression
   .
   .
  [.ELIF expression]  ; the .ELIF directive is optional
   .
   .
  [.ELSE]           ; the .ELSE directive is optional
   .
   .
.ENDIF

Description

With the .IF/.ENDIF directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional .ELSE and/or .ELIF directives are not present, then the source statements following the
.IF directive and up to the next .ENDIF directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the .IF and the .ENDIF directives were never encountered.

If the .ELSE directive is present and expression has a nonzero result, then the statements between the
.IF and .ELSE directives will be assembled, and the statement between the .ELSE and .ENDIF directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the .IF and
.ELSE directives will be skipped, and the statements between the .ELSE and .ENDIF directives will be
assembled.

You can nest .IF directives to any level. The .ELSE and .ELIF directive always refer to the nearest
previous .IF directive.

A label is not allowed with this directive.

Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

  .IF   TEST
  ... ; code for the test version
  .ELIF DEMO
  ... ; code for the demo version
  .ELSE

32

TASKING VX-toolset for MCS User Guide



  ... ; code for the final version
  .ENDIF

Before assembling the file you can set the values of the symbols TEST and DEMO in the assembly source
before the .IF directive is reached. For example, to assemble the demo version:

TEST .SET 0
DEMO .SET 1

You can also define the symbols on the command line with the assembler option --define (-D):

asmcs --define=DEMO --define=TEST=0 test.asm

33

Assembly Language



.INCLUDE

Syntax

.INCLUDE "filename" | <filename>

Description

With the .INCLUDE directive you include another file at the exact location where the .INCLUDE occurs.
This happens before the resulting file is assembled. The .INCLUDE directive works similarly to the
#include statement in C. The source from the include file is assembled as if it followed the point of the
.INCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification.

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.

The current directory is not searched if you use the <filename> syntax.

2. The path that is specified with the assembler option --include-directory.

3. The path that is specified in the environment variable ASMCSINC when the product was installed.

4. The default include directory in the installation directory.

The assembler does not allow a label with this directive.

Example

.INCLUDE 'storage\mem.asm'    ; include file

.INCLUDE <data.asm>           ; Do not look in
                              ; current directory

34

TASKING VX-toolset for MCS User Guide



.LOCAL

Syntax

.LOCAL symbol[,symbol]...

Description

All symbols or labels defined in the current section or module are local to the module by default.You can
change this default behavior with assembler option --symbol-scope=global.

With the .LOCAL directive you declare one of more symbols as local. It means that the specified symbols
are explicitly local to the module in which you define them.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.

The assembler does not allow a label with this directive.

Example

      .SDECL  ".mcsdata.data",DATA
      .SECT   ".mcsdata.data"
      .LOCAL  LOOPA   ; LOOPA is local to this section

LOOPA .WORD   0x100   ; assigns the value 0x100 to LOOPA

Related Information

.EXTERN (Import global section symbol)

.GLOBAL (Declare global section symbol)

35

Assembly Language



.MACRO, .ENDM

Syntax

macro_name .MACRO [argument[,argument]...]
    ...

macro_definition_statements
    ...

.ENDM

Description

With the .MACRO directive you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions.You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the arguments (.MACRO directive).

• Body, which contains the code or instructions to be inserted when the macro is called.

• Terminator, which indicates the end of the macro definition (.ENDM directive).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

DescriptionNameOperator

Concatenates a macro argument with adjacent
alphanumeric characters.

Macro argument concatenation\

Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

Return decimal value of symbol?

Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

Return hex value of symbol%

Allows the use of macro arguments as literal strings.Macro string delimiter“

Prevents name mangling on labels in macros.Macro local label override^

Example

The macro definition:

36

TASKING VX-toolset for MCS User Guide



CONST24 .MACRO  reg,value                   ;header
        movl    reg,value                   ;body
        .ENDM                               ;terminator

The macro call:

    .SDECL   ".mcstext.code",code
    .SECT    ".mcstext.code"
    CONST24  r5,0x123456

The macro expands as follows:

    movl    r5,0x123456

Related Information

Section 1.10, Macro Operations

.DUP, .ENDM (Duplicate sequence of source lines)

.DUPA, .ENDM (Duplicate sequence with arguments)

.DUPC, .ENDM (Duplicate sequence with characters)

.DUPF, .ENDM (Duplicate sequence in loop)

.PMACRO (Undefine macro)

.DEFINE (Define a substitution string)

37

Assembly Language



.MESSAGE

Syntax

.MESSAGE {str|exp}[,{str|exp}]... 

Description

With the .MESSAGE directive you tell the assembler to print a message to stderr during the assembling
process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The error and warning counts will not be affected. The .MESSAGE directive is for example useful in
combination with conditional assembly to indicate which part is assembled. The assembling process
proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler.

A label is not allowed with this directive.

Example

   .DEFINE LONG "SHORT"
   .MESSAGE 'This is a LONG string'
   .MESSAGE "This is a LONG string"

Within single quotes, the defined symbol LONG is not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

Related Information

.FAIL (Programmer generated error)

.WARNING (Programmer generated warning)

38

TASKING VX-toolset for MCS User Guide



.ORG

Syntax

.ORG [abs-loc][,sect_type][,attribute]...

Description

With the .ORG directive you can specify an absolute location (abs_loc) in memory of a section. This is
the same as a .SDECL/.SECT without a section name.

This directive uses the following arguments:

Initial value to assign to the run-time location counter. abs-loc must be an absolute
expression. If abs_loc is not specified, then the value is zero.

abs-loc

An optional section type: code or datasect_type

An optional section attribute: init, noread, noclear, max, rom, group(string), cluster(string),
protect

attribute

For more information about the section types and attributes see the assembler directive .SDECL.

The section type and attributes are case insensitive. A label is not allowed with this directive.

Example

; define a section at location 100 decimal
  .org   100

; define a relocatable nameless section
  .org

; define a relocatable data section
  .org   ,data

; define a data section at 0x8000
  .org   0x8000,data

Related Information

.SDECL (Declare section name and attributes)

.SECT (Activate a declared section)

39

Assembly Language



.PMACRO

Syntax

.PMACRO symbol[,symbol]...

Description

With the .PMACRO directive you tell the assembler to undefine the specified macro, so that later uses of
the symbol will not be expanded.

The assembler does not allow a label with this directive.

Example

  .PMACRO MAC1,MAC2

This statement causes the macros named MAC1 and MAC2 to be undefined.

Related Information

.MACRO, .ENDM (Define a macro)

40

TASKING VX-toolset for MCS User Guide



.SDECL

Syntax

.SDECL "name",type[,attribute]... [AT address]

Description

With the .SDECL directive you can define a section with a name, type and optional attributes. Before any
code or data can be placed in a section, you must use the .SECT directive to activate the section.

The name specifies the name of the section. The type operand specifies the section’s type and must be
one of:

DescriptionType

Code section.CODE

Data section.DATA

Debug section.DEBUG

The section type and attributes are case insensitive.

The defined attributes are:

Allowed on typeDescriptionAttribute

CODE, DATALocate the section at the given address.AT address

DATASections are zeroed at startup.CLEAR

CODE, DATA, DEBUGCluster code sections with companion debug sections. Used
by the linker during removal of unreferenced sections. The
name must be unique for this module (not for the
application).

CLUSTER( ‘name‘
)

CODE, DATADefines that the section contains initialization data, which
is copied from ROM to RAM at program startup.

INIT

DATASections are not zeroed at startup.This is a default attribute
for data sections. This attribute is only useful with BSS
sections, which are cleared at startup by default.

NOCLEAR

CODE, DATADefines that the section contains no initialization data.NOINIT

CODEDefines that the section can be executed from but not read.NOREAD

CODE, DATATells the linker to exclude a section from unreferenced
section removal and duplicate section removal.

PROTECT

CODE, DATASection contains data to be placed in ROM.This ROM area
is not executable.

ROM

Section names

The name of a section can have a special meaning for locating sections. The name of code sections
should always start with ".mcstext". The name of data sections should always start with ".mcsdata".

41

Assembly Language



Example

  .sdecl  ".mcstext.code", code   ; declare code section
  .sect   ".mcstext.code"         ; activate section

  .sdecl  ".mcsdata.data", data   ; declare data section
  .sect   ".mcsdata.data"         ; activate section

  .sdecl  ".mcsdata.abssec", data at 0x100
                                  ; absolute section
  .sect   ".mcsdata.abssec"       ; activate section

Related Information

.SECT (Activate a declared section)

42

TASKING VX-toolset for MCS User Guide



.SECT

Syntax

.SECT "name" [,RESET] 

Description

With the .SECT directive you activate a previously declared section with the name name. Before you can
activate a section, you must define the section with the .SDECL directive.You can activate a section as
many times as you need.

With the attribute RESET you can reset counting storage allocation in data sections that have section
attribute MAX.

Example

  .sdecl  ".mcsdata.data", data   ; declare data section
  .sect   ".mcsdata.data"         ; activate section

Related Information

.SDECL (Declare section name and attributes)

43

Assembly Language



.SET

Syntax

symbol .SET expression

.SET symbol expression

Description

With the .SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the .SET directive, you can redefine that symbol in another part of the assembly source, using the
.SET directive again. Symbols that you define with the .SET directive are always local: you cannot define
the symbol global with the .GLOBAL directive.

The .SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and forward references are allowed.

Example

COUNT  .SET  0   ; Initialize count. Later on you can
                 ; assign other values to the symbol

Related Information

.EQU (Set permanent value to a symbol)

44

TASKING VX-toolset for MCS User Guide



.SIZE

Syntax

.SIZE symbol,expression

Description

With the .SIZE directive you set the size of the specified symbol to the value represented by expression.

The .SIZE directive may occur anywhere in the source file unless the specified symbol is a function. In
this case, the .SIZE directive must occur after the function has been defined.

Example

_MCS_str:  .type   object   ; object _MCS_str
       .size   _MCS_str,16  ; size of object
       .word   80
       .word   67
       .word   80
       .word   0

Related Information

.TYPE (Set symbol type)

45

Assembly Language



.SPACE

Syntax

[label:] .SPACE expression

Description

The .SPACE directive reserves a block in memory. The reserved block of memory is not initialized to any
value.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The expression specifies the number of words to be reserved, and how much the location counter will
advance. The expression must evaluate to an integer greater than zero and cannot contain any forward
references (symbols that have not yet been defined).

If you specify label, it gets the value of the location counter at the start of the directive processing.

Example

To reserve 12 words (not initialized) of memory in a RAM data section:

        .sdecl  ".mcsdata.data", data
        .sect   ".mcsdata.data"
uninit  .SPACE  12     ; Sample buffer

Related Information

.WORD (Define a constant word)

46

TASKING VX-toolset for MCS User Guide



.TYPE

Syntax

symbol .TYPE typeid

Description

With the .TYPE directive you set a symbol's type to the specified value in the ELF symbol table. Valid
symbol types are:

The symbol is associated with a function or other executable code.FUNC

The symbol is associated with an object such as a variable, an array, or a structure.OBJECT

The symbol name represents the filename of the compilation unit.FILE

Labels in code sections have the default type FUNC. Labels in data sections have the default type OBJECT.

Example

_MCS_Afunc:  .type   func

Related Information

.SIZE (Set symbol size)

47

Assembly Language



.UNDEF

Syntax

.UNDEF symbol

Description

With the .UNDEF directive you can undefine a substitution string that was previously defined with the
.DEFINE directive. The substitution string associated with symbol is released, and symbol will no longer
represent a valid .DEFINE substitution or macro.

The assembler issues a warning if you redefine an existing symbol.

The assembler does not allow a label with this directive.

Example

The following example undefines the LEN substitution string that was previously defined with the .DEFINE
directive:

  .UNDEF LEN

Related Information

.DEFINE (Define a substitution string)

48

TASKING VX-toolset for MCS User Guide



.WARNING

Syntax

.WARNING {str|exp}[,{str|exp}]... 

Description

With the .WARNING directive you tell the assembler to print a warning message to stderr during the
assembling process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated warning. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The total warning count will be incremented as with any other warning. The .WARNING directive is for
example useful in combination with conditional assembly to indicate which part is assembled. The
assembling process proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler, unless you use the assembler option
--warnings-as-errors. In that case the assembler exits with exit code 1 (an error).

A label is not allowed with this directive.

Example

   .WARNING  'Parameter out of range'

This results in the warning:

W144: ["filename" line] Parameter out of range

Related Information

.FAIL (Programmer generated error)

.MESSAGE (Programmer generated message)

49

Assembly Language



.WEAK

Syntax

.WEAK symbol[,symbol]...

Description

With the .WEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the .GLOBAL directive or the .EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a .GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with .EQU can be made weak.

Example

LOOPA .EQU 1          ; definition of symbol LOOPA
      .GLOBAL  LOOPA  ; LOOPA will be globally
                      ; accessible by other modules
      .WEAK LOOPA     ; mark symbol LOOPA as weak

Related Information

.EXTERN (Import global section symbol)

.GLOBAL (Declare global section symbol)

50

TASKING VX-toolset for MCS User Guide



.WORD

Syntax

[label:] .WORD argument[,argument]...

Description

With the .WORD directive the assembler allocates and initializes one word (32 bits) of memory for each
argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty.

Multiple arguments are stored in sets of four bytes. One or more arguments can be null (indicated by two
adjacent commas), in which case the corresponding byte location will be filled with zeros.

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a word, the assembler issues a
warning and truncates the value.

String constants

Single-character strings are stored in the most significant byte of a word, where the lower seven bits in
that byte represent the ASCII value of the character, for example:

  .WORD 'R'        ; = 0x52000000

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

  .WORD  'ABCD'         ; = 0x44434241

Related Information

.SPACE (Define Storage)

51

Assembly Language



1.9.2. Assembler Controls

Controls start with a $ as the first character on the line. Unknown controls are ignored after a warning is
issued.

Overview of assembler listing controls

DescriptionControl

Print / do not print source lines to list file$LIST ON/OFF

Generate form feed in list file$PAGE

Define page layout for assembly list file$PAGE settings

Send control string to printer$PRCTL

Set program subtitle in header of assembly list file$STITLE

Set program title in header of assembly list file$TITLE

Overview of miscellaneous assembler controls

DescriptionControl

Case sensitive user names ON/OFF$CASE ON/OFF

Generation of symbolic debug ON/OFF$DEBUG ON/OFF

Assembler treats labels by default as local or global$IDENT LOCAL/GLOBAL

Alternative name for the generated object file$OBJECT

Suppress all or some warnings$WARNING OFF [num]

52

TASKING VX-toolset for MCS User Guide



$CASE

Syntax

$CASE  ON
$CASE  OFF

Default

$CASE ON

Description

With the $CASE ON and $CASE OFF controls you specify wether the assembler operates in case sensitive
mode or not. By default the assembler operates in case sensitive mode. This means that all user-defined
symbols and labels are treated case sensitive, so LAB and Lab are distinct.

Note that the instruction mnemonics, register names, directives and controls are always treated case
insensitive.

Example

;begin of source
$CASE OFF   ; assembler in case insensitive mode

Related Information

Assembler option --case-insensitive

53

Assembly Language



$DEBUG

Syntax

$DEBUG  ON
$DEBUG  OFF

Default

$DEBUG OFF

Description

With the $DEBUG ON and $DEBUG OFF controls you turn the generation of debug information on or off.
($DEBUG ON is similar to the assembler option --debug-info=+asm,+local (-gal).

Example

;begin of source
$DEBUG ON   ; generate local symbols debug information

Related Information

Assembler option --debug-info

54

TASKING VX-toolset for MCS User Guide



$IDENT

Syntax

$IDENT LOCAL
$IDENT GLOBAL

Default

$IDENT LOCAL

Description

With the controls $IDENT LOCAL and $IDENT GLOBAL you tell the assembler how to treat symbols that
you have not specified explicitly as local or global with the assembler directives .LOCAL or .GLOBAL.

By default the assembler treats all symbols as local symbols unless you have defined them to be global
explicitly.

Example

;begin of source
$IDENT GLOBAL  ; assembly labels are global by default

Related Information

Assembler directive .GLOBAL

Assembler directive .LOCAL

Assembler option --symbol-scope

55

Assembly Language



$LIST ON/OFF

Syntax

$LIST ON
$LIST OFF

Default

$LIST ON

Description

If you generate a list file with the assembler option --list-file, you can use the $LIST ON and $LIST
OFF controls to specify which source lines the assembler must write to the list file. Without the assembler
option --list-file these controls have no effect. The controls take effect starting at the next line.

The $LIST ON control actually increments a counter that is checked for a positive value and is symmetrical
with respect to the $LIST OFF control. Note the following sequence:

; Counter value currently 1
$LIST ON         ; Counter value = 2
$LIST ON         ; Counter value = 3
$LIST OFF        ; Counter value = 2
$LIST OFF        ; Counter value = 1

The listing still would not be disabled until another $LIST OFF control was issued.

Example

   .SDECL ".mcstext.code",code
   .SECT  ".mcstext.code"
   ...  ; source line in list file
$LIST OFF
   ...  ; source line not in list file
$LIST ON
   ...  ; source line also in list file

Related Information

Assembler option --list-file

Assembler function @LST()

56

TASKING VX-toolset for MCS User Guide



$OBJECT

Syntax

$OBJECT "file"
$OBJECT OFF

Default

$OBJECT

Description

With the $OBJECT control you can specify an alternative name for the generated object file. With the
$OBJECT OFF control, the assembler does not generate an object file at all.

Example

;Begin of source
$object "x1.o"        ; generate object file x1.o

Related Information

Assembler option --output

57

Assembly Language



$PAGE

Syntax

$PAGE [pagewidth[,pagelength[,blanktop[,blankbtm[,blankleft]]]]

Default

$PAGE 132,72,0,0,0

Description

If you generate a list file with the assembler option --list-file, you can use the $PAGE control to format
the generated list file.

The arguments may be any positive absolute integer expression, and must be separated by commas.

Number of columns per line. The default is 132, the minimum is 40.pagewidth

Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

pagelength

Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) ≤ (pagelength - 10).

blanktop

Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) ≤ (pagelength - 10).

blankbtm

Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

blankleft

If you use the $PAGE control without arguments, it causes a 'formfeed': the next source line is printed on
the next page in the list file. The $PAGE control itself is not printed.

Example

$PAGE        ; formfeed, the next source line is printed
             ; on the next page in the list file.

$PAGE 96     ; set page width to 96. Note that you can
             ; omit the last four arguments.

$PAGE ,,3,3  ; use 3 line top/bottom margins.

Related Information

Assembler option --list-file

58

TASKING VX-toolset for MCS User Guide



$PRCTL

Syntax

$PRCTL exp|string[,exp|string]...

Description

If you generate a list file with the assembler option --list-file, you can use the $PRCTL control to send
control strings to the printer.

The $PRCTL control simply concatenates its arguments and sends them to the listing file (the control line
itself is not printed unless there is an error).

You can specify the following arguments:

A byte expression which may be used to encode non-printing control characters, such as ESC.expr

An assembler string, which may be of arbitrary length, up to the maximum assembler-defined
limits.

string

The $PRCTL control can appear anywhere in the source file; the assembler sends out the control string
at the corresponding place in the listing file.

If a $PRCTL control is the last line in the last input file to be processed, the assembler insures that all
error summaries, symbol tables, and cross-references have been printed before sending out the control
string. In this manner, you can use a $PRCTL control to restore a printer to a previous mode after printing
is done.

Similarly, if the $PRCTL control appears as the first line in the first input file, the assembler sends out the
control string before page headings or titles.

Example

$PRCTL  $1B,'E'  ; Reset HP LaserJet printer

Related Information

Assembler option --list-file

59

Assembly Language



$STITLE

Syntax

$STITLE "string"

Default

$STITLE ""

Description

If you generate a list file with the assembler option --list-file, you can use the $STITLE control to specify
the program subtitle which is printed at the top of all succeeding pages in the assembler list file below
the title.

The specified subtitle is valid until the assembler encounters a new $STITLE control. By default, the
subtitle is empty.

The $STITLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be truncated.

Example

$TITLE   'This is the title'
$STITLE  'This is the subtitle'

Related Information

Assembler option --list-file

Assembler control $TITLE

60

TASKING VX-toolset for MCS User Guide



$TITLE

Syntax

$TITLE "string"

Default

$TITLE ""

Description

If you generate a list file with the assembler option --list-file, you can use the $TITLE control to specify
the program title which is printed at the top of each page in the assembler list file.

The specified title is valid until the assembler encounters a new $TITLE control. By default, the title is
empty.

The $TITLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be truncated.

Example

$TITLE  'This is the title'

Related Information

Assembler option --list-file

Assembler control $STITLE

61

Assembly Language



$WARNING OFF

Syntax

$WARNING OFF [number]

Default

All warnings are reported.

Description

This control allows you to disable all or individual warnings.The number argument must be a valid warning
message number.

Example

$WARNING OFF      ; all warning messages are suppressed

$WARNING OFF 135  ; suppress warning message 135

Related Information

Assembler option --no-warnings

62

TASKING VX-toolset for MCS User Guide



1.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions.You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

1.10.1. Defining a Macro

The first step in using a macro is to define it.

The definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the arguments (.MACRO directive).

• Body, which contains the code or instructions to be inserted when the macro is called.

• Terminator, which indicates the end of the macro definition (.ENDM directive).

A macro definition takes the following form:

macro_name .MACRO [argument[,argument]...]
    ...

macro_definition_statements
    ...

.ENDM

For more information on the definition see the description of the .MACRO directive.

The .DUP, .DUPA, .DUPC, and .DUPF directives are specialized macro forms to repeat a block of source
statements.You can think of them as a simultaneous definition and call of an unnamed macro.The source
statements between the .DUP, .DUPA, .DUPC, and .DUPF directives and the .ENDM directive follow the
same rules as macro definitions.

1.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:

[label] macro_name [argument[,argument]...]  [; comment]

where,

63

Assembly Language



An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

label

The name of the macro. This may not start in the first column.macro_name

One or more optional, substitutable arguments. Multiple arguments
must be separated by commas.

argument

An optional comment.comment

The following applies to macro arguments:

• Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

• If an argument has an embedded comma or space, you must surround the argument by single quotes
(').

• You can declare a macro call argument as null in three ways:

• enter delimiting commas in succession with no intervening spaces

macroname ARG1,,ARG3 ; the second argument is a null argument

• terminate the argument list with a comma, the arguments that normally would follow, are now
considered null

macroname ARG1,      ; the second and all following arguments are null

• declare the argument as a null string

• No character is substituted in the generated statements that reference a null argument.

1.10.3. Using Operators for Macro Arguments

The assembler recognizes certain text operators within macro definitions which allow text substitution of
arguments during macro expansion.You can use these operators for text concatenation, numeric
conversion, and string handling.

DescriptionNameOperator

Concatenates a macro argument with adjacent
alphanumeric characters.

Macro argument concatenation\

Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

Return decimal value of symbol?

Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

Return hex value of symbol%

Allows the use of macro arguments as literal strings.Macro string delimiter“

Prevents name mangling on labels in macros.Macro local label override^

64

TASKING VX-toolset for MCS User Guide



Example: Argument Concatenation Operator - \

Consider the following macro definition:

MAC_A .MACRO reg,val
   movl r\reg,val
   .ENDM

The macro is called as follows:

MAC_A 0,1

The macro expands as follows:

   movl r0,1

The macro preprocessor substitutes the character '0' for the argument reg, and the character '1' for the
argument val. The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the character 'r'.

Without the '\' operator the macro would expand as:

   movl rreg,1

which results in an assembler error (invalid operand).

Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro MAC_A after the argument AVAL has been set to
1.

AVAL .SET  1
     MAC_A 0,AVAL

If you want to replace the argument val with the value of AVAL rather than with the literal string 'AVAL',
you can use the ? operator and modify the macro as follows:

MAC_A .MACRO reg,val
   movl r\reg,?val
   .ENDM

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

Consider the following macro definition:

65

Assembly Language



GEN_LAB   .MACRO  LAB,VAL,STMT
LAB\%VAL  STMT
     .ENDM

The macro is called after NUM has been set to 10:

NUM  .SET      10
     GEN_LAB   HEX,NUM,NOP

The macro expands as follows:

HEXA NOP

The %VAL argument is replaced by the character 'A' which represents the hexadecimal value 10 of the
argument VAL.

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (")
in the macro definition.

Consider the following macro definition:

STR_MAC    .MACRO  STRING
    .WORD  "STRING"
    .ENDM

The macro is called as follows:

    STR_MAC  ABCD

The macro expands as follows:

    .WORD   'ABCD'

Within double quotes .DEFINE directive definitions can be expanded.Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since .DEFINE expansion
occurs before macro substitution, any .DEFINE symbols are replaced first within a macro argument string:

    .DEFINE LONG  'short'
STR_MAC    .MACRO  STRING
    .MESSAGE 'This is a LONG STRING'
    .MESSAGE "This is a LONG STRING"
    .ENDM

If the macro is called as follows:

    STR_MAC  sentence

it expands as:

    .MESSAGE 'This is a LONG STRING'
    .MESSAGE 'This is a short sentence'

66

TASKING VX-toolset for MCS User Guide



Macro Local Label Override Operator - ^

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LAB__M_L000001).

The macro ^-operator prevents name mangling on macro local labels.

Consider the following macro definition:

STA_Z .EQU    5

INIT  .MACRO  ARG, CNT
       MOV    R5,0x1
^LAB:
       .WORD  ARG
       ADD    R5,0x1
       ATUL   R5,CNT
       JBC    STA,STA_Z,^LAB
      .ENDM

The macro is called as follows:

       INIT 2,4

The macro expands as:

       MOV    R5,0x1
LAB:
       .WORD  2
       ADD    R5,0x1
       ATUL   R5,4
       JBC    STA,STA_Z,LAB

If you would have omitted the ^ operator, the macro preprocessor would choose another name for LAB
because the label already exists. The macro would expand like:

       MOV    R5,0x1
LAB__M_L000001:
       .WORD  2
       ADD    R5,0x1
       ATUL   R5,4
       JBC    STA,STA_Z,LAB__M_L000001

67

Assembly Language



68

TASKING VX-toolset for MCS User Guide



Chapter 2. Using the Assembler
This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written assembly language programs into machine language, resulting in
object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

The following information is described:

• The assembly process.

• How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 5.1, Assembler Options.

• The various assembler optimizations.

• How to generate a list file.

• Types of assembler messages.

2.1. Assembly Process

The assembler generates relocatable output files with the extension .o. These files serve as input for
the linker.

Phases of the assembly process

• Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

• Instruction grouping and reordering

• Optimization (instruction size)

• Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 1.10, Macro Operations for more
information.

69



2.2. Calling the Assembler

The TASKING VX-toolset for MCS under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

• Build Selected File(s) ( ). This assembles the selected file(s) without calling the linker.

1. In the C/C++ Projects view, select the files you want to assemble.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

• Build Individual Project ( ).

To build individual projects incrementally, select Project » Build project.

• Rebuild Project ( ). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click OK.

• Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behaviour tab of
the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

3. From the Processor selection list, select a processor.

70

TASKING VX-toolset for MCS User Guide



To access the assembler options

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler.

4. Select the sub-entries and set the options in the various pages.

You can find a detailed description of all assembler options in Section 5.1, Assembler Options.

Invocation syntax on the command line (Windows Command Prompt):

asmcs [ [option]... [file]... ]...

The input file must be an assembly source file (.asm or .mcs).

2.3. How the Assembler Searches Include Files

When you use include files (with the .INCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

1. If the .INCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to the -I command line option).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable ASMCSINC.

4. When the assembler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example

Suppose that the assembly source file test.asm contains the following lines:

.INCLUDE 'myinc.inc'

You can call the assembler as follows:

asmcs -Imyinclude test.asm

71

Using the Assembler



First the assembler looks for the file myinc.asm, in the directory where test.asm is located. If the file
is not there the assembler searches in the directory myinclude. If it was still not found, the assembler
searches in the environment variable ASMCSINC and then in the default include directory.

2.4. Assembler Optimizations

The assembler can perform various optimizations that you can enable or disable.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » Optimization.

4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Optimize instruction size (option -Os/-OS)

When this option is enabled, the assembler tries to find the shortest possible operand encoding for
instructions. By default this option is enabled.

2.5. Generating a List File

The list file is an additional output file that contains information about the generated code.You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

To generate a list file

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » List File.

4. Enable the option Generate list file.

72

TASKING VX-toolset for MCS User Guide



5. (Optional) Enable the options to include that information in the list file.

Example on the command line (Windows Command Prompt)

The following command generates the list file test.lst:

asmcs -l test.asm

See Section 6.1, Assembler List File Format, for an explanation of the format of the list file.

2.6. Assembler Error Messages

The assembler reports the following types of error messages in the Problems view of Eclipse.

F ( Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct.You can control
warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties for menu (assembler option --no-warnings).

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

asmcs --diag=[format:]{all | number,...]

73

Using the Assembler



74

TASKING VX-toolset for MCS User Guide



Chapter 3. Using the Linker
This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files (.o
files, generated by the assembler), and libraries into a single relocatable linker object file (.out). The
locator phase assigns absolute addresses to the linker object file and creates an absolute object file which
you can load into a target processor. From this point the term linker is used for the combined linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The
target board may be of arbitrary complexity. A simple target board may contain one standard processor
with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 5.2, Linker Options.

To control the link process, you can write a script for the linker.This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

3.1. Linking Process

The linker combines and transforms relocatable object files (.o) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

75



Terms used in the linking process

DefinitionTerm

Object code in which addresses have fixed absolute values, ready to load into a
target.

Absolute object file

A specification of a location in an address space.Address

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

Address space

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

Architecture

A section created by the linker. This section contains data that specifies how the
startup code initializes the data and BSS sections. For each section the copy table
contains the following fields:

• action: defines whether a section is copied or zeroed

• destination: defines the section's address in RAM

• source: defines the sections address in ROM, zero for BSS sections

• length: defines the size of the section in MAUs of the destination space

Copy table

An instance of an architecture.Core

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Derivative

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

Library

An address as encoded in an instruction word, an address generated by a core
(CPU).

Logical address

The set of linker script files that are passed to the linker.LSL file

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

MAU

The binary machine language representation of the assembly source.Object code

An address generated by the memory system.Physical address

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Processor

Object code in which addresses are represented by symbols and thus relocatable.Relocatable object
file

The process of assigning absolute addresses.Relocation

76

TASKING VX-toolset for MCS User Guide



DefinitionTerm

Information about how the linker must modify the machine code instructions when
it relocates addresses.

Relocation
information

A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section

Attributes that define how the section should be linked or located.Section attributes

The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Target

A reference to a symbol for which the linker did not find a definition yet.Unresolved
reference

3.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

• Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

• Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

• Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

• Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

• Debug information: Other information about the object code that is used by a debugger.The assembler
optionally generates this information and can consist of line numbers, local symbols and descriptions
of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

77

Using the Linker



At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (.out). If this file contains unresolved
references, you can link this file with other relocatable object files (.o) or libraries (.a) to resolve the
remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

3.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory.The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data and BSS sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

A1 3412 0000 mov a,%eax   (a defined at 0x1234, byte reversed)
A3 0000 0000 mov %eax,b   (b is imported so the instruction refers to
                            0x0000 since its location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

A1 3412 0100 mov a,%eax   (0x10000 added to the address)
A3 129A 0000 mov %eax,b   (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats.The default ELF/DWARF format (.elf) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (.hex) and Motorola S-record format (.sre) only contain an image of the executable code and
data.You can specify a format with the options --output (-o) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker.The script language is called
the Linker Script Language (LSL). Using LSL you can define:

• The memory installed in the embedded target system:

78

TASKING VX-toolset for MCS User Guide



To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

• How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

• The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 3.6, Controlling the Linker with a Script.

3.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

• Build Individual Project ( ).

To build individual projects incrementally, select Project » Build project.

• Rebuild Project ( ). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...

2. Enable the option Start a build immediately and click OK.

79

Using the Linker



• Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behaviour tab of
the C/C++ Build page of the Project » Properties for dialog.

To access the linker options

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker.

4. Select the sub-entries and set the options in the various pages.

You can find a detailed description of all linker options in Section 5.2, Linker Options.

Invocation syntax on the command line (Windows Command Prompt):

lmcs [ [option]... [file]... ]...

When you are linking multiple files, either relocatable object files (.o) or libraries (.a), it is important to
specify the files in the right order.

Example:

lmcs -dtc27x.lsl test.o

This links and locates the file test.o and generates the file test.elf.

3.3. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all .o modules to a relocatable object file .out. In this case the linker does not perform the locating
phase. With the second invocation, you specify both new .o files as the .out file you had created with
the first invocation.

Incremental linking is only possible on the command line.

lmcs --incremental test1.o -otest.out
lmcs test2.o test.out

80

TASKING VX-toolset for MCS User Guide



This links the file test1.o and generates the file test.out. This file is used again and linked together
with test2.o to create the file test.elf (the default name if no output filename is given in the default
ELF/DWARF 2 format).

With incremental linking it is normal to have unresolved references in the output file until all .o files are
linked and the final .out or .elf file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

3.4. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from. With the linker option
--import-object you can add raw data to your application. This makes it possible for example to display
images on a device or play audio.The linker puts the raw data from the binary file in a section.The section
is aligned on a 4-byte boundary.The section name is derived from the filename, in which dots are replaced
by an underscore. So, when importing a file called my.mp3, a section with the name my_mp3 is created.
In your application you can refer to the created section by using linker labels.

For example:

 .extern  __lc_ub_my_mp3; /* linker labels */
 .extern  __lc_ue_my_mp3;

If you want to use the export functionality of Eclipse, the binary file has to be part of your project.

3.5. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Optimization.

4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

81

Using the Linker



Delete unreferenced sections (option -Oc/-OC)

This optimization removes unused sections from the resulting object file.

First fit decreasing (option -Ol/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the
smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas.The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Delete duplicate code (option -Ox/-OX)

Delete duplicate constant data (option -Oy/-OY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

3.6. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse it is also possible to determine where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly LSL.You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

82

TASKING VX-toolset for MCS User Guide



3.6.1. Purpose of the Linker Script Language

The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files.You can use the specifications of the core architectures that Altium
has supplied in the include.lsl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid.You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #include
and #define, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Chapter 7, Linker Script Language (LSL).

3.6.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name.lsl and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name.lsl.

Because an MCS project is part of a TriCore project you only need to specify an LSL file to the TriCore
project.

To add a generated Linker Script File to your project

1. From the File menu, select File » New » TASKING TriCore C/C++ Project.

The New C/C++ Project wizard appears.

2. Fill in the project settings in each dialog and click Next > until the following dialog appears.

83

Using the Linker



3. Enable the option Add linker script file to the project and click Finish.

Eclipse creates your project and the file "project_name.lsl" in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script
File (LSL)

To change the Linker Script File in Eclipse

There are two ways of changing the LSL file in Eclipse.

• You can change the LSL file directly in an editor.

1. Double-click on the file project_name.lsl.

The project LSL file opens in the editor area.

84

TASKING VX-toolset for MCS User Guide



2. You can edit the LSL file directly in the project_name.lsl editor.

A * appears in front of the name of the LSL file to indicate that the file has changes.

3. Click  or select File » Save to save the changes.

• You can also make changes to the property pages Memory and Stack/Heap.

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Memory or Stack/Heap.

In the right pane the corresponding property page appears.

3. Make changes to memory and/or stack/heap and click OK.

The project LSL file is updated automatically according to the changes you make in the pages.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).

3.6.3. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

85

Using the Linker



The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by Altium. Altium supplies LSL files in the include.lsl directory.
The file tc_arch.lsl defines the base architecture for all cores and includes an interrupt vector table
(inttab.lsl) and an trap vector table (traptab.lsl). The files tc1v1_3.lsl, tc1v1_3_1.lsl
and tc1v1_6.lsl extend the base architecture for each TriCore core.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

Altium supplies LSL files for each derivative (derivative.lsl). When you build an ASIC or use a
derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative definition.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named 'A' of derivative 'A'.This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

86

TASKING VX-toolset for MCS User Guide



The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems.The board specification describes all characteristics of your target board's system buses, memory
devices, I/O sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

• convert a logical address to an offset within a memory device

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X'" based on the TC1V1.6.X and MCS architecture, its external
memory and how sections are located in memory, may have the following skeleton:

architecture TC1V1.6.X
{
    // Specification of the TC1V1.6.X core architecture.
    // Written by Altium.
}

architecture MCS
{
    // Specification of the MCS core architecture.
    // Written by Altium.
}

derivative X  // derivative name is arbitrary
{
    // Specification of the derivative.
    // Written by Altium.
    core tc0         // always specify the core(s)
    {
       architecture = TC1V1.6.X;
       // ...
    }

    core tc1         // always specify the core(s)
    {
       architecture = TC1V1.6.X;
       // ...

87

Using the Linker



    }

    core tc2         // always specify the core(s)
    {
       architecture = TC1V1.6.X;
       // ...
    }

    core mcs00       // always specify the core(s)
    {
       architecture = MCS;
       // ...
    }

    core mcs01       // always specify the core(s)
    {
       architecture = MCS;
       // ...
    }

    core vtc         // virtual core
    {
       architecture = TC1V1.6.X;
       import tc0;
       import tc1;
       import tc2;
    }

    bus sri          // internal bus
    {
       // maps to bus "fpi_bus" in real "tc0", "tc1", ... cores
       // and virtual core "vtc"
    }

    // internal memory
}

processor mpe        // multi-core processor name
{
    derivative = X;
}

memory ext_name
{
    // external memory definition
}

section_layout mpe:vtc:linear    // section layout
{
    // section placement statements

88

TASKING VX-toolset for MCS User Guide



    // sections are located in address space 'linear'
    // of virtual core 'vtc' of processor 'mpe'
}

See for example the file tc27x.lsl in the directory include.lsl for an actual implementation.

Overview of LSL files delivered by Altium

Altium supplies the following LSL files in the directory include.lsl.

DescriptionLSL file

Defines the base architecture (TC) for all generic TriCore cores. It includes the
files inttab.lsl and traptab.lsl.

tc_arch.lsl

Defines the base architecture (TC) for all multi-core TriCore cores.tc_mc_arch.lsl

Defines the base architecture (MCS) for all MCS cores.mcs_arch.lsl

Defines the interrupt vector table. It is included in the file tc_arch.lsl.inttab.lsl

Defines a core specific interrupt vector table. It is included in derivative LSL
files that have multi-core support.

inttab{0|1|2}.lsl

Defines the trap vector table. It is included in the file tc_arch.lsl.traptab.lsl

Defines a core specific trap vector table. It is included in derivative LSL files
that have multi-core support.

traptab{0|1|2}.lsl

Extends the base architecture for cores TC1V1.3, TC1V1.3.1, TC1V1.6 or
TC1V1.6.X. It includes the file tc_arch.lsl or tc_mc_arch.lsl and
mcs_arch.lsl.

tc1v1_3.lsl
tc1v1_3_1.lsl
tc1v1_6.lsl
tc1v1_6_x.lsl

Defines the derivative and defines a single processor. Contains a memory
definition and section layout. It includes one of the files tcversion.lsl. The
selection of the derivative is based on your CPU selection (control program
option --cpu).

derivative.lsl

Defines a user defined derivative for cores TC1V1.3, TC1V1.3.1, TC1V1.6 or
TC1V1.6.X and defines a single processor for TC1V1.3, TC1V1.3.1 and
TC1V1.6 and a multi-core processor for TC1V1.6.X.

userdef13.lsl
userdef131.lsl
userdef16.lsl
userdef16x.lsl

This file is used by Eclipse as a template for the project LSL file. It includes
the file derivative.lsl based on your CPU selection.The CPU is specified
by the __CPU__ macro.

template.lsl

Contains a default memory definition and section layout based on the tc1796b
derivative. This file is used on a command line invocation of the tools, when
no CPU is selected (no option --cpu). It includes the file extmem.lsl.

default.lsl

Template file with a specification of the external memory attached to the target
processor.

extmem.lsl

89

Using the Linker



When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the file template.lsl and names it “project_name.lsl". On the command line, the linker uses the file
default.lsl, unless you specify another file with the linker option --lsl-file (-d).

3.6.4.The Architecture Definition

Although you will probably not need to write an architecture definition (unless you are building your own
processor core) it helps to understand the Linker Script Language and how the definitions are interrelated.

Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:

• space definitions: the logical address spaces and their properties

• bus definitions: the I/O buses of the core architecture

• mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, the
TriCore's 32-bit linear address space encloses 16 24-bit sub-spaces and 16 14-bit sub-spaces. Normally,
the size of an address space is 2N, with N the number of bits used to encode the addresses.

The relation of an address space with another address space can be one of the following:

• one space is a subset of the other. These are often used for "small" absolute or relative addressing.

• the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture TC as defined in tc_mc_arch.lsl.

ELF sectionsDescriptionMAUIdSpace

.text, .bss, .data, .rodata, table, istack, ustackLinear address space.11linear

Absolute 24-bit addressable space82abs24

.zdata, .zbssAbsolute 18-bit addressable space.83abs18

csa.*Context Save Area84csa

The MCS, which is part of TriCore v1.6.x derivatives, such as TC27X, has one address space for
architecture MCS as defined in mcs_arch.lsl

ELF sectionsDescriptionMAUIdSpace

.mcstext, .mcsdataMCS address space81mcs

90

TASKING VX-toolset for MCS User Guide



The TriCore architecture in LSL notation

The best way to write the architecture definition, is to start with a drawing. The following figure shows a
part of the TriCore architecture TC as defined in tc_mc_arch.lsl:

The figure shows two address spaces called linear and abs18. The address space abs18 is a subset
of the address space linear. All address spaces have attributes like a number that identifies the logical
space (id), a MAU and an alignment. In LSL notation the definition of these address spaces looks as
follows:

space linear
{
     id = 1;
     mau = 8;

     map (src_offset=0x00000000, dest_offset=0x00000000,
          size=4G, dest=bus:fpi_bus);
}

space abs18
{
     id = 3;
     mau = 8;

     map (src_offset=0x00000000, dest_offset=0x00000000,
          size=16k, dest=space:linear);
     map (src_offset=0x10000000, dest_offset=0x10000000,
          size=16k, dest=space:linear);
     map (src_offset=0x20000000, dest_offset=0x20000000,
          size=16k, dest=space:linear);
   //...
}

The keyword map corresponds with the arrows in the drawing.You can map:

• address space => address space

• address space => bus

• memory => bus (not shown in the drawing)

• bus => bus (not shown in the drawing)

91

Using the Linker



Next the internal bus, named fpi_bus must be defined in LSL:

bus fpi_bus
{
     mau = 8;
     width = 32;  // there are 32 data lines on the bus
}

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture TC1V1.6.X
{
    // All code above goes here.
}

3.6.5.The Derivative Definition

Although you will probably not need to write a derivative definition (unless you are using multiple cores
that both access the same memory device) it helps to understand the Linker Script Language and how
the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

• core definition: an instance of a core architecture

• bus definition: the I/O buses of the core architecture

• memory definitions: internal (or on-chip) memory

Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

core mcs00
{
    architecture = MCS;
    copytable_space = vtc:linear; // use copytable from core vtc
}

In a multi-core environment you can combine multiple cores with the same architecture into a single link
task. This is done by importing one or more cores into a root core. The imported cores share a single
symbol namespace. The address spaces in each imported core must have a unique ID in the link task.
For each imported core is specified that the space IDs of the imported core start at a specific offset. If
writable sections for a core must be initialized by using the copy table of a different core, this is specified
by a copytable_space. The following example is part of tc27x.lsl delivered with the product.

core tc0 // core 0
{
    architecture = TC1V1.6.X;

92

TASKING VX-toolset for MCS User Guide



    space_id_offset = 100; // add 100 to all space IDs in
                           // the architecture definition
    copytable_space = vtc:linear; // use copytable from core vtc
}
core tc1 // core 1
{
    architecture = TC1V1.6.X;
    space_id_offset = 200; // add 200 to all space IDs in
                           // the architecture definition
    copytable_space = vtc:linear; // use copytable from core vtc
}

core tc2 // core 2
{
    architecture = TC1V1.6.X;
    space_id_offset = 300; // add 300 to all space IDs in
                           // the architecture definition
    copytable_space = vtc:linear; // use copytable from core vtc
}

core vtc
{
    architecture = TC1V1.6.X;
    import tc0; // add all address spaces of tc0 for linking
    import tc1; // add all address spaces of tc1 for linking
    import tc2; // add all address spaces of tc2 for linking
}

Bus

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
fpi_bus maps to the bus fpi_bus defined in the architecture definition of core tc:

bus fpi_bus
{
   mau = 8;
   width = 32;
   map (dest=bus:tc:fpi_bus, dest_offset=0, size=4G);
}

Memory

External memory is usually described in a separate memory definition, but you can specify on-chip memory
for a derivative. For example:

memory dspr0
{
     mau = 8;
     size = 128k;
     type = ram;
     map (dest=bus:tc0:fpi_bus, dest_offset=0xd0000000,

93

Using the Linker



          size=128k, priority=8);
     map (dest=bus:sri, dest_offset=0xd8000000, size=128k);
}

This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X    // name of derivative
{
    // All code above goes here
}

3.6.6.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor name
{
    derivative = derivative_name;
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

Altium defines a “multi processor environment” (mpe) in each derivative.lsl file. For example:

processor mpe
{
    derivative = tc27x;
}

3.6.7.The Memory Definition

Once the core architecture is defined in LSL, you may want to extend the processor with external (or
off-chip) memory.You need to specify the location and size of the physical external memory devices in
the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

memory name
{
    // memory definitions
}

94

TASKING VX-toolset for MCS User Guide



Suppose your embedded system has 16 kB of external ROM, named code_rom and 2 kB of external
NVRAM, named my_nvsram. Both memories are connected to the bus fpi_bus. In LSL this looks like:

memory code_rom
{
    mau = 8;
    size = 16k;
    type = rom;
    map( dest=bus:mpe:fpi_bus, dest_offset=0xa0000000, size=16k );
}

memory my_nvsram
{
    mau  = 8;
    size = 2k;
    type = nvram;
    map( dest=bus:mpe:fpi_bus, dest_offset=0xc0000000, size=2k );
}

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Memory.

In the right pane the Memory page appears.

3. Open the Memory tab and click on the Add... button.

The Add new memory dialog appears.

95

Using the Linker



4. Enter the memory name (for example my_nvsram), type (for example nvram) and size.

5. Click on the Add... button.

The Add new mapping dialog appears.

6. You have to specify at least one mapping. Enter the mapping name (optional), address, size and
destination and click OK.

The new mapping is added to the list of mappings.

7. Click OK.

The new memory is added to the list of memories (user memory).

8. Click OK to close the Properties dialog.

The updated settings are stored in the project LSL file.

If you make changes to the on-chip memory as defined in the architecture LSL file, the memory is copied
to your project LSL file and the line #define __REDEFINE_ON_CHIP_ITEMS is added. If you remove
all the on-chip memory from your project LSL file, also make sure you remove this define.

3.6.8.The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

Sections have a name, an indication (section type) in which address space it should be located and
attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Section placement

Suppose we want to save sections in non-volatile (battery back-upped) memory. This is the memory
my_nvsram from the example in Section 3.6.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space data:

section_layout :vtc:linear
{
    // Section placement statements
}

To locate sections, you must create a group in which you select sections from your program. For our
example, we need to define one group, which contains the section .mcsdata.non_volatile. All other
sections are located using the defaults specified in the architecture definition. Section

96

TASKING VX-toolset for MCS User Guide



.mcsdata.non_volatile should be placed in non-volatile ram.To achieve this, the run address refers
to our non-volatile memory called my_nvsram.

group ( ordered, run_addr = mem:my_nvsram )
{
     select ".mcsdata.non_volatile";
}

This completes the LSL file for the sample architecture and sample program.You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

For a complete description of the Linker Script Language, refer to Chapter 7, Linker Script Language
(LSL).

3.6.8.1. Locating Code and Data Sections in Separate Pages

When code and data are in the same memory page, this will have a negative effect on the run-time speed.
To have the best performance, code must end up in mp0 and data in mp1.

The following example shows how to do this in LSL. Note that for "code in mp0, data in mp0", the directions
need to be reversed. Only a section_layout with high_to_low is needed since low_to_high is
the default.

section_layout mpe:mcs00:mcs (direction=high_to_low) 
{
    group (contiguous) 
    {
        select ".mcstext"; 
        select ".mcstext.*"; 
    }
}

section_layout mpe:mcs00:mcs (direction=low_to_high) 
{
    group (contiguous) 
    {
        select ".mcsdata"; 
        select ".mcsdata.*"; 
    }
}

3.7. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

Linker labels are labels starting with _lc_. The linker assigns addresses to the following labels when
they are referenced:

97

Using the Linker



DescriptionLabel

Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

_lc_ub_name

_lc_b_name

End of section name. Also used to mark the end of the stack or heap._lc_ue_name

_lc_e_name

Start address of an overlay section in ROM._lc_cb_name

End address of an overlay section in ROM._lc_ce_name

Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_lc_gb_name

End of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_lc_ge_name

Variable name is mapped through memory in shared memory situations._lc_s_name

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

Additionally, the linker script file defines the following symbols:

DescriptionSymbol

Start of copy table. Same as _lc_ub_table.The copy table gives the source
and destination addresses of sections to be copied.This table will be generated
by the linker only if this label is used.

_lc_cp

Begin of heap. Same as _lc_ub_heap._lc_bh

End of heap. Same as _lc_ue_heap._lc_eh

If there is no LSL file in your project, select File » New » Linker Script File (LSL), add the lines that
define the symbol. Add the LSL file to the linker options (Tool Options » Linker » Script File » Linker
script file (.lsl)).

When the MCS linked project (.out) is linked with a TriCore project, then the TriCore LSL file also needs
this addition.

3.8. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

To generate a map file

1. From the Project menu, select Properties for

The Properties dialog appears.

98

TASKING VX-toolset for MCS User Guide



2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Map File.

4. Enable the option Generate XML map file format (.mapxml) for map file viewer.

5. (Optional) Enable the option Generate map file (.map).

6. (Optional) Enable the options to include that information in the map file.

Example on the command line (Windows Command Prompt)

The following command generates the map file test.map:

lmcs --map-file test.o

With this command the map file test.map is created.

See Section 6.2, Linker Map File Format, for an explanation of the format of the map file.

3.9. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.

F ( Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option--keep-output-files.

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct.You can control warnings in the C/C++
Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties for menu
(linker option --no-warnings).

I (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option--verbose.

99

Using the Linker



S (System errors)

System errors occur when internal consistency checks fail and should never occur.When you still receive
the system error message

S6##: message

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

lmcs --diag=[format:]{all | number,...]

100

TASKING VX-toolset for MCS User Guide



Chapter 4. Using the Utilities
The TASKING VX-toolset for MCS comes with a number of utilities:

A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from assembly source input files. Eclipse uses the control
program to call the assembler and linker.

ccmcs

A utility program to maintain, update, and reconstruct groups of programs.The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt.

mkmcs

The make utility which is used in Eclipse. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

amk

An archiver. With this utility you create and maintain library files with relocatable object
modules (.o) generated by the assembler.

armcs

A Perl script to convert Bosch MCS assembly to TASKING assembly for MCS.cnvba2ta.pl

4.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your sources without the need to invoke the assembler
and linker manually.

Eclipse uses the control program to call the assembler and linker, but you can call the control program
from the command line. The invocation syntax is:

ccmcs [ [option]... [file]... ]...

Recognized input files

• Files with a .asm or .mcs suffix are interpreted as hand-written assembly source files which have to
be passed to the assembler.

• Files with a .a suffix are interpreted as library files and are passed to the linker.

• Files with a .o suffix are interpreted as object files and are passed to the linker.

• Files with a .out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one .out file in the invocation.

• Files with a .lsl suffix are interpreted as linker script files and are passed to the linker.

Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wa, -Wl)
to pass arguments directly to tools.

101



For a complete list and description of all control program options, see Section 5.3, Control Program
Options.

Example with verbose output

ccmcs --verbose --cpu=tc27x test.asm

The control program calls all tools in the toolset and generates the absolute object file test.elf. With
option --verbose (-v) you can see how the control program calls the tools:

+ "path\asmcs" -Ctc27x -o cc3248b.o test.asm
+ "path\lmcs" -o test.elf -dtc27x.lsl
     --map-file cc3248b.o 

The control program produces unique filenames for intermediate steps in the build process (such as
cc3248b.o in the example above) which are removed afterwards, unless you specify command line
option --keep-temporary-files (-t).

Example with argument passing to a tool

ccmcs --pass-assembler=-ga test.asm

The option -ga is directly passed to the assembler.

4.2. Make Utility mkmcs

If you are working with large quantities of files, or if you need to build several targets, it is rather
time-consuming to call the individual tools to assemble, link and locate all your files.

You save already a lot of typing if you use the control program and define an options file.You can even
create a batch file or script that invokes the control program for each target you want to create. But with
these methods all files are completely assembled and linked to obtain the target file, even if you changed
just one assembly source. This may demand a lot of (CPU) time on your host.

The make utility mkmcs is a tool to maintain, update, and reconstruct groups of programs. The make
utility looks which files are out-of-date and only recreates these files to obtain the updated target.

Make process

In order to build a target, the make utility needs the following input:

• the target it should build, specified as argument on the command line

• the rules to build the target, stored in a file usually called makefile

In addition, the make utility also reads the file mkmcs.mk which contains predefined rules and
macros. See Section 4.2.2, Writing a Makefile.

102

TASKING VX-toolset for MCS User Guide



The makefile contains the relationships among your files (called dependencies) and the commands
that are necessary to create each of the files (called rules). Typically, the absolute object file (.elf) is
updated when one of its dependencies has changed. The absolute file depends on .o files and libraries
that must be linked together. The .o files on their turn depend on .asm files that must be assembled. In
the makefile this looks like:

test.o   : test.asm                  # dependency
           asmcs test.asm            # rule

test.elf : test.o
           lmcs test.o -o test.elf --map-file

You can use any command that is valid on the command line as a rule in the makefile. So, rules are
not restricted to invocation of the toolset.

Example

To build the target test.elf, call mkmcs with one of the following lines:

mkmcs test.elf

mkmcs -fmymake.mak test.elf

By default the make utility reads the file makefile so you do not need to specify it on the command line.
If you want to use another name for the makefile, use the option -f.

If you do not specify a target, mkmcs uses the first target defined in the makefile. In this example it would
build test.src instead of test.elf.

Based on the sample invocation, the make utility now tries to build test.elf based on the makefile and
performs the following steps:

1. From the makefile the make utility reads that test.elf depends on test.o.

2. If test.o does not exist or is out-of-date, the make utility first tries to build this file and reads from the
makefile that test.o depends on test.asm.

3. The make utility creates test.o by executing the rule for it: asmcs test.asm.

4. There are no other files necessary to create test.elf so the make utility now can use test.o to
create test.elf by executing the rule: lmcs test.o -o test.elf ...

The make utility has now built test.elf but it only used the assembler to update test.o and the linker
to create test.elf.

If you compare this to the control program:

ccmcs test.asm

This invocation has the same effect but now all files are reassembled, linked and located.

103

Using the Utilities



4.2.1. Calling the Make Utility

You can only call the make utility from the command line. The invocation syntax is:

mkmcs [ [option]... [target]... [macro=def]... ]

For example:

mkmcs test.elf

You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

target

Macro definition. This definition remains fixed for the mkmcs invocation. It overrides
any regular definitions for the specified macro within the makefiles and from the
environment. It is inherited by subordinate mkmcs's but act as an environment
variable for these. That is, depending on the -e setting, it may be overridden by a
makefile definition.

macro=def

For a complete list and description of all make utility options, see Section 5.4, Make
Utility Options.

option

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

4.2.2. Writing a Makefile

In addition to the standard makefile makefile, the make utility always reads the makefile mkmcs.mk
before other inputs. This system makefile contains implicit rules and predefined macros that you can use
in the makefile makefile.

With the option -r (Do not read the mkmcs.mk file) you can prevent the make utility from reading mkmcs.mk.

The default name of the makefile is makefile in the current directory. If you want to use another makefile,
use the option -f.

The makefile can contain a mixture of:

• targets and dependencies

• rules

• macro definitions or functions

• conditional processing

• comment lines

• include lines

• export lines

104

TASKING VX-toolset for MCS User Guide



To continue a line on the next line, terminate it with a backslash (\):

# this comment line is continued\
on the next line

If a line must end with a backslash, add an empty macro:

# this comment line ends with a backslash \$(EMPTY)
# this is a new line

4.2.2.1.Targets and Dependencies

The basis of the makefile is a set of targets, dependencies and rules. A target entry in the makefile has
the following format:

target ... : [dependency ...] [; rule]
       [rule]
        ...

Target lines must always start at the beginning of a line, leading white spaces (tabs or spaces) are not
allowed. A target line consists of one or more targets, a semicolon and a set of files which are required
to build the target (dependencies). The target itself can be one or more filenames or symbolic names:

all:                    demo.elf final.elf

demo.elf final.elf:     test.o demo.o final.o

You can now can specify the target you want to build to the make utility. The following three invocations
all have the same effect:

mkmcs
mkmcs all
mkmcs demo.elf final.elf

If you do not specify a target, the first target in the makefile (in this example all) is built. The target all
depends on demo.elf and final.elf so the second and third invocation have the same effect and
the files demo.elf and final.elf are built.

You can normally use colons to denote drive letters. The following works as intended:

c:foo.o : a:foo.asm

If a target is defined in more than one target line, the dependencies are added to form the target's complete
dependency list:

all:  demo.elf   # These two lines are equivalent with:
all:  final.elf  # all: demo.elf final.elf

Special targets

There are a number of special targets. Their names begin with a period.

105

Using the Utilities



DescriptionTarget

If you call the make utility with a target that has no definition in the makefile, this
target is built.

.DEFAULT

When the make utility has finished building the specified targets, it continues with
the rules following this target.

.DONE

Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying the option -i on the command line.

.IGNORE

The rules following this target are executed before any other targets are built..INIT

Dependency files mentioned for this target are never removed. Normally, if a
command in a rule returns an error or when the target construction is interrupted,
the make utility removes that target file.You can use the option -p on the command
line to make all targets precious.

.PRECIOUS

Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying the option -s on the command line.

.SILENT

This target specifies a list of file extensions. Instead of building a completely specified
target, you now can build a target that has a certain file extension. Implicit rules to
build files with a number of extensions are included in the system makefile mkmcs.mk.

If you specify this target with dependencies, these are added to the existing
.SUFFIXES target in mkmcs.mk. If you specify this target without dependencies,
the existing list is cleared.

.SUFFIXES

4.2.2.2. Makefile Rules

A line with leading white space (tabs or spaces) is considered as a rule and associated with the most
recently preceding dependency line. A rule is a line with commands that are executed to build the
associated target. A target-dependency line can be followed by one or more rules.

final.o   : final.asm                # target and dependency
            move test.asm final.asm  # rule1
            asmcs final.asm          # rule2

You can precede a rule with one or more of the following characters:

does not echo the command line, except if -n is used.@

the make utility ignores the exit code of the command. Normally the make utility stops if a
non-zero exit code is returned.This is the same as specifying the option -i on the command
line or specifying the special .IGNORE target.

-

The make utility uses a shell or Windows command prompt (cmd.exe) to execute the
command. If the '+' is not followed by a shell line, but the command is an MS-DOS command
or if redirection is used (<, |, >), the shell line is passed to cmd.exe anyway.

+

You can force mkmcs to execute multiple command lines in one shell environment. This is accomplished
with the token combination ';\'. For example:

cd c:\Tasking\bin ;\
mkmcs -V

106

TASKING VX-toolset for MCS User Guide



Note that the ';' must always directly be followed by the '\' token. Whitespace is not removed when it is at
the end of the previous command line or when it is in front of the next command line. The use of the ';'
as an operator for a command (like a semicolon ';' separated list with each item on one line) and the '\'
as a layout tool is not supported, unless they are separated with whitespace.

Inline temporary files

The make utility can generate inline temporary files. If a line contains <<LABEL (no whitespaces!) then
all subsequent lines are placed in a temporary file until the line LABEL is encountered. Next, <<LABEL
is replaced by the name of the temporary file. For example:

lmcs -o $@ -f <<EOF
     $(separate "\n" $(match .o $!))
     $(separate "\n" $(match .a $!))
     $(LKFLAGS)
EOF

The three lines between <<EOF and EOF are written to a temporary file (for example mkce4c0a.tmp),
and the rule is rewritten as: lmcs -o $@ -f mkce4c0a.tmp.

Suffix targets

Instead of specifying a specific target, you can also define a general target. A general target specifies the
rules to generate a file with extension .ex1 to a file with extension .ex2. For example:

.SUFFIXES:  .asm

.asm.o     :
            ccmcs -c $<

Read this as: to build a file with extension .o out of a file with extension .asm, call the control program
with -c $<. $< is a predefined macro that is replaced with the name of the current dependency file. The
special target .SUFFIXES: is followed by a list of file extensions of the files that are required to build the
target.

Implicit rules

Implicit rules are stored in the system makefile mkmcs.mk and are intimately tied to the .SUFFIXES
special target. Each dependency that follows the .SUFFIXES target, defines an extension to a filename
which must be used to build another file. The implicit rules then define how to actually build one file from
another. These files share a common basename, but have different extensions.

If the specified target on the command line is not defined in the makefile or has not rules in the makefile,
the make utility looks if there is an implicit rule to build the target.

Example:

OPTS =     --map-file            # macro

prog.elf:  prog.o sub.o
     lmcs  prog.o sub.o $(OPTS) -o prog.elf

prog.o:    prog.asm myinc.inc

107

Using the Utilities



     asmcs prog.asm

sub.o:     sub.asm myinc.inc
     asmcs sub.asm

This makefile says that prog.elf depends on two files prog.o and sub.o, and that they in turn depend
on their corresponding source files (prog.asm and sub.asm) along with the common file myinc.inc.

The following makefile uses implicit rules (from mkmcs.mk) to perform the same job.

LDFLAGS = --map-file           # macro used by implicit rules
prog.elf: prog.o sub.o         # implicit rule used
prog.o: prog.asm myinc.inc     # implicit rule used
sub.o:  sub.asm myinc.inc      # implicit rule used

4.2.2.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
The general form of a macro definition is:

MACRO = text
MACRO += and more text

Spaces around the equal sign are not significant. With the += operator you can add a string to an existing
macro. An extra space is inserted before the added string automatically.

To use a macro, you must access its contents:

$(MACRO)       # you can read this as
${MACRO}       # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note that the expansion is done
recursively, so the body of a macro may contain other macros. These macros are expanded when the
macro is actually used, not at the point of definition:

FOOD = $(EAT) and $(DRINK)
EAT = meat and/or vegetables
DRINK = water
export FOOD

The macro FOOD is expanded as meat and/or vegetables and water at the moment it is used in
the export line, and the environment variable FOOD is set accordingly.

Predefined macros

DescriptionMacro

Holds the value mkmcs. Any line which uses MAKE, temporarily overrides the option
-n (Show commands without executing), just for the duration of the one line. This way
you can test nested calls to MAKE with the option -n.

MAKE

108

TASKING VX-toolset for MCS User Guide



DescriptionMacro

Holds the set of options provided to mkmcs (except for the options -f and -d). If this
macro is exported to set the environment variable MAKEFLAGS, the set of options is
processed before any command line options.You can pass this macro explicitly to
nested mkmcs's, but it is also available to these invocations as an environment variable.

MAKEFLAGS

Holds the name of the directory where mkmcs is installed.You can use this macro to
refer to files belonging to the product, for example an include directory.

INCDIR = $(PRODDIR)/include

When mkmcs is installed in the directory c:/Tasking/bin this line expands to:

INCDIR = c:/Tasking/include

PRODDIR

Holds the default list of commands which are local to the SHELL. If a rule is an
invocation of one of these commands, a SHELL is automatically spawned to handle
it.

SHELLCMD

This macro translates to a dollar sign.Thus you can use "$$" in the makefile to represent
a single "$".

$

Dynamically maintained macros

There are several dynamically maintained macros that are useful as abbreviations within rules. It is best
not to define them explicitly.

DescriptionMacro

The basename of the current target.$*

The name of the current dependency file.$<

The name of the current target.$@

The names of dependents which are younger than the target.$?

The names of all dependents.$!

The $< and $* macros are normally used for implicit rules. They may be unreliable when used within
explicit target command lines. All macros may be suffixed with F to specify the Filename components
(e.g. ${*F}, ${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to specify the Directory
component.

The result of the $* macro is always without double quotes ("), regardless of the original target having
double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory component) is also always without
double quotes ("), regardless of the original contents having double quotes (") around it or not.

109

Using the Utilities



4.2.2.4. Makefile Functions

A function not only expands but also performs a certain operation. Functions syntactically look like macros
but have embedded spaces in the macro name, e.g. '$(match arg1 arg2 arg3 )'. All functions are built-in
and currently these are: match, separate, protect, exist,nexist and addprefix.

$(match suffix filename ...)

The match function yields all arguments which match a certain suffix:

$(match .o prog.o sub.o mylib.a)

yields:

prog.o sub.o

$(separate separator argument ...)

The separate function concatenates its arguments using the first argument as the separator. If the first
argument is enclosed in double quotes then '\n' is interpreted as a newline character, '\t' is interpreted as
a tab, '\ooo' is interpreted as an octal value (where, ooo is one to three octal digits), and spaces are taken
literally. For example:

$(separate "\n" prog.o sub.o)

results in:

prog.o
sub.o

Function arguments may be macros or functions themselves. So,

$(separate "\n" $(match .o $!))

yields all object files the current target depends on, separated by a newline string.

$(protect argument)

The protect function adds one level of quoting.This function has one argument which can contain white
space. If the argument contains any white space, single quotes, double quotes, or backslashes, it is
enclosed in double quotes. In addition, any double quote or backslash is escaped with a backslash.

Example:

echo $(protect I'll show you the "protect" function)

yields:

echo "I'll show you the \"protect\" function"

$(exist file | directory argument)

The exist function expands to its second argument if the first argument is an existing file or directory.

110

TASKING VX-toolset for MCS User Guide



Example:

$(exist test.asm ccmcs test.asm)

When the file test.asm exists, it yields:

ccmcs test.asm

When the file test.asm does not exist nothing is expanded.

$(nexist file|directory argument)

The nexist function is the opposite of the exist function. It expands to its second argument if the first
argument is not an existing file or directory.

Example:

$(nexist test.o ccmcs test.asm)

$(addprefix prefix, argument ...)

The addprefix function adds a prefix to its arguments. It is used in mkmcs.mk for invocation of the
control program to pass arguments directly to a tool.

Example:

ccmcs $(addprefix -Wa, -gs -k) test.asm

yields:

ccmcs -Wa-gs -Wa-k test.asm

4.2.2.5. Conditional Processing

Lines containing ifdef, ifndef, else or endif are used for conditional processing of the makefile.
They are used in the following way:

ifdef macro-name
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any kind, even other ifdef, ifndef,
else and endif lines, or no lines at all.The else line may be omitted, along with the else-lines following
it.

First the macro-name after the ifdef command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an else line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

111

Using the Utilities



When you use the ifndef line instead of ifdef, the macro is tested for not being defined. These
conditional lines can be nested up to 6 levels deep.

You can also add tests based on strings. With ifeq the result is true if the two strings match, with ifneq
the result is true if the two strings do not match. They are used in the following way:

ifeq(string1,string2)
if-lines
else
else-lines
endif

4.2.2.6. Comment, Include and Export Lines

Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#" is inside a quoted string, it is
not treated as a comment. Completely blank lines are ignored.

test.o  : test.asm        # this is comment and is
          ccmcs test.asm  # ignored by the make utility

Include lines

An include line is used to include the text of another makefile (like including a .h file in a C source).
Macros in the name of the included file are expanded before the file is included.You can include several
files. Include files may be nested.

include makefile2 makefile3

Export lines

An export line is used to export a macro definition to the environment of any command executed by the
make utility.

GREETING = Hello
export GREETING

This example creates the environment variable GREETING with the value Hello. The macro is exported
at the moment the export line is read so the macro definition has to precede the export line.

112

TASKING VX-toolset for MCS User Guide



4.3. Make Utility amk

amk is the make utility Eclipse uses to maintain, update, and reconstruct groups of programs. But you
can also use it on the command line. Its features are a little different from mkmcs. The main difference
compared to mkmcs and other make utilities, is that amk features parallelism which utilizes the multiple
cores found on modern host hardware, hardening for path names with embedded white space and it has
an (internal) interface to provide progress information for updating a progress bar. It does not use an
external command shell (/bin/sh, cmd.exe) but executes commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile".

4.3.1. Makefile Rules

A makefile dependency rule is a single line of the form:

[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:

test.o : test.asm

This states that target test.o depends on prerequisite test.asm. So, whenever the latter is modified
the first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in
multiple dependency rules (circular dependencies are not allowed however).The command(s) for updating
a target when any of its prerequisites have been modified must be specified with leading white space
after any of the dependency rule(s) for the target in question. Example:

test.o :
  ccmcs test.asm   # leading white space

Command rules may contain dependencies too. Combining the above for example yields:

test.o : test.asm
  ccmcs test.asm

White space around the colon is not required. When a path name contains special characters such as
':', '#' (start of comment), '=' (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line.The default target is the first target in the makefile which
does not start with a dot.

113

Using the Utilities



Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target foo.o matches the pattern '%.o', with 'foo' as the stem. The
targets foo.asm and foo.elf do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

objects = test.o filter.o

all: $(objects)

$(objects): %.o: %.asm
    ccmcs -c $< -o $@
    echo the stem is $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@' is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.o: test.asm
    ccmcs -c test.asm -o test.o
    echo the stem is test

filter.o: filter.asm
    ccmcs -c filter.asm -o filter.o
    echo the stem is filter

Each target specified must match the target pattern; a warning is issued for each target that does not.

Special targets

There are a number of special targets. Their names begin with a period.

DescriptionTarget

If you call the make utility with a target that has no definition in the makefile, this
target is built.

.DEFAULT

114

TASKING VX-toolset for MCS User Guide



DescriptionTarget

When the make utility has finished building the specified targets, it continues with
the rules following this target.

.DONE

The rules following this target are executed before any other targets are built..INIT

The prerequisites of this target are considered to be phony targets. A phony target
is a target that is not really the name of a file. The rules following a phony target are
executed unconditionally, regardless of whether a file with that name exists or what
its last-modification time is.

For example:

.PHONY: clean

clean:
        rm *.o

With amk clean, the command is executed regardless of whether there is a file
named clean.

.PHONY

4.3.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word
"include" or "-include" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "-include" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:

include makefile2 makefile3

White spaces (tabs or spaces) in front of the directive are allowed.

4.3.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lowercase or uppercase characters, uppercase is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ':=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$'. To evaluate macros with names longer than one character put the name between parentheses '()' or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

DINNER = $(FOOD) and $(BEVERAGE)
FOOD = pizza
BEVERAGE = sparkling water
FOOD += with cheese

115

Using the Utilities



With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

Macros are evaluated recursively. Whenever $(DINNER) or ${DINNER} is mentioned after the above,
it will be replaced by the text "pizza with cheese and sparkling water". The left hand side in
a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

Evaluate the macro at the moment it is used.=

Evaluate the replacement text before defining the macro.:=

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+=' is the same as '='.The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

116

TASKING VX-toolset for MCS User Guide



DescriptionMacro

This macro translates to a dollar sign.Thus you can use "$$" in the makefile to represent
a single "$".

$

The name of the current target. When a rule has multiple targets, then it is the name
of the target that caused the rule commands to be run.

@

The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 'test.asm' then the stem is
'test' (if the target was not created via a static pattern rule).

*

The name of the first prerequisite.<

The amk path name (quoted if necessary). Optionally followed by the options -n and
-s.

MAKE

The name of the directory where amk is installed (quoted if necessary).ORIGIN

The argument of option -G. If you have nested makes with -G options, the paths are
combined. This macro is defined in the environment (i.e. default macro value).

SUBDIR

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@D) evaluates to the directory name holding the file$(@F). $(@D)/$(@F) is
equivalent to $@. Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

Note that stem calculation can cause unexpected values. For example:

$@ $*
    /home/.wine/test      /home/
    /home/test/.project   /home/test/
    /../file              /.

Macro string substitution

When the macro name in an evaluation is followed by a colon and equal sign as in

$(MACRO:string1=string2)

then amk will replace string1 at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement string1. For example:

$(MACRO:.o"=.d")

1Internally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

117

Using the Utilities



4.3.4. Makefile Functions

A function not only expands but also performs a certain operation. The following functions are available:

$(filter pattern ...,item ...)

The filter function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%',

    ${filter %.asm %.inc, test.asm test.inc test.o readme.txt .project output.asm}

results in:

    test.asm test.inc output.asm

$(filter-out pattern ...,item ...)

The filter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the filter function.

    ${filter-out %.asm %.inc, test.asm test.inc test.o readme.txt .project output.asm}

results in:

    test.o readme.txt .project

$(foreach var-name, item ..., action)

The foreach function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

    ${foreach T, test filter output, ${T}.asm ${T}.inc}

results in:

    test.asm test.inc filter.asm filter.inc output.asm output.inc

4.3.5. Conditional Processing

Lines containing ifdef, ifndef, else or endif are used for conditional processing of the makefile.
They are used in the following way:

ifdef macro-name
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any kind, even other ifdef, ifndef,
else and endif lines, or no lines at all.The else line may be omitted, along with the else-lines following
it. White spaces (tabs or spaces) in front of preprocessing directives are allowed.

118

TASKING VX-toolset for MCS User Guide



First the macro-name after the ifdef command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an else line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the ifndef line instead of ifdef, the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With ifeq the result is true if the two strings match, with ifneq
the result is true if the two strings do not match. They are used in the following way:

ifeq(string1,string2)
if-lines
else
else-lines
endif

4.3.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

# this comment line is continued\
on the next line

3. Trailing white space is removed.

4. When a line starts with white space and it is not followed by a directive or preprocessing directive, then
it is interpreted as a command for updating a target.

5. Otherwise, when a line contains the unquoted text '=', '+=' or ':=' operator, then it will be interpreted as
a macro definition.

6. Otherwise, all macros on the line are evaluated before considering the next steps.

7. When the resulting line contains an unquoted ':' the line is interpreted as a dependency rule.

8. When the first token on the line is "include" or "-include" (which by now must start on the first
column of the line), amk will execute the directive.

9. Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

119

Using the Utilities



4.3.7. Makefile Command Processing

A line with leading white space (tabs or spaces) without a (preprocessing) directive is considered as a
command for updating a target. When you use the option -j or -J, amk will execute the commands for
updating different targets in parallel. In that case standard input will not be available and standard output
and error output will be merged and displayed on standard output only after the commands have finished
for a target.

You can precede a command by one or more of the following characters:

Do not show the command. By default, commands are shown prior to their output.@

Continue upon error. This means that amk ignores a non-zero exit code of the command.-

Execute the command, even when you use option -n (dry run).+

Execute the command on the foreground with standard input, standard output and error
output available.

|

Built-in commands

DescriptionCommand

This command does nothing. Arguments are ignored.true

This command does nothing, except failing with exit code 1. Arguments are
ignored.

false

Display a line of text.echo arg...

Exit with defined code. Depending on the program arguments and/or the extra
rule options '-' this will cause amk to exit with the provided code. Please note
that 'exit 0' has currently no result.

exit code

Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first argfile argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

argfile file arg...

Remove the specified file(s). The following options are available:

Remove directories and their contents recursively.-r, --recursive

Force deletion. Ignore non-existent files, never prompt.-f, --force

Interactive. Prompt before every removal.-i, --interactive

Verbose mode. Explain what is being done.-v, --verbose

Read options from file..-m file

Show usage.-?, --help

rm [option]... file...

4.3.8. Calling the amk Make Utility

The invocation syntax of amk is:

120

TASKING VX-toolset for MCS User Guide



amk [option]... [target]... [macro=def]...

For example:

amk test.elf

You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

target

Macro definition.This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

macro=def

For a complete list and description of all amk make utility options, see Section 5.5,
Parallel Make Utility Options.

option

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

4.4. Archiver

The archiver armcs is a program to build and maintain your own library files. A library file is a file with
extension .a and contains one or more object files (.o) that may be used by the linker.

The archiver has five main functions:

• Deleting an object module from the library

• Moving an object module to another position in the library file

• Replacing an object module in the library or add a new object module

• Showing a table of contents of the library file

• Extracting an object module from the library

The archiver takes the following files for input and output:

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

121

Using the Utilities



4.4.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create a library in Eclipse

Instead of creating an MCS absolute ELF file, you can choose to create a library.You do this when you
create a new project with the New Assembly Project wizard. (File » ) select the option  in the following
dialog.

1. From the File menu, select New » TASKING MCS Assembly Project.

The New Assembly Project wizard appears.

2. Enter a project name.

3. In the Project type box, select TASKING MCS Library and clickNext >.

4. Follow the rest of the wizard and click Finish.

5. Add the files to your project.

6. Build the project as usual. For example, select Project » Build Project ( ).

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.

Command line invocation

You can call the archiver from the command line. The invocation syntax is:

armcs key_option [sub_option...] library [object_file]

With a key option you specify the main task which the archiver should perform.You
must always specify a key option.

key_option

Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

sub_option

The name of the library file on which the archiver performs the specified action.You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

library

The name of an object file.You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

object_file

Options of the archiver utility

The following archiver options are available:

122

TASKING VX-toolset for MCS User Guide



Sub-optionOptionDescription

Main functions (key options)

-a -b -c -u -v-rReplace or add an object module

-v-xExtract an object module from the library

-v-dDelete object module from library

-a -b -v-mMove object module to another position

-s0 -s1-tPrint a table of contents of the library

-pPrint object module to standard output

Sub-options

-a nameAppend or move new modules after existing module name

-b nameAppend or move new modules before existing module name

-cCreate library without notification if library does not exis

-oPreserve last-modified date from the library

-s{0|1}Print symbols in library modules

-uReplace only newer modules

-vVerbose

Miscellaneous

-?Display options

-VDisplay version header

-f fileRead options from file

-wnSuppress warnings above level n

For a complete list and description of all archiver options, see Section 5.6, Archiver Options.

4.4.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name mylib.a and add the object modules cstart.o and calc.o to it:

armcs -r mylib.a cstart.o calc.o

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

armcs -r mylib.a mod3.o

123

Using the Utilities



Print a list of object modules in the library

To inspect the contents of the library:

armcs -t mylib.a

The library has the following contents:

cstart.o
calc.o
mod3.o

Move an object module to another position

To move mod3.o to the beginning of the library, position it just before cstart.o:

armcs -mb cstart.o mylib.a mod3.o

Delete an object module from the library

To delete the object module cstart.o from the library mylib.a:

armcs -d mylib.a cstart.o

Extract all modules from the library

Extract all modules from the library mylib.a:

armcs -x mylib.a

4.5. Bosch MCS Assembly to TASKING Assembly Converter

The Perl script cnvba2ta.pl is a converter to convert Bosch MCS assembly files to TASKING VX-toolset
for MCS assembly files.You need to have Perl installed on your system.

Command line invocation

You can call the converter from the command line by using Perl. The invocation syntax is:

perl cnvba2ta.pl input_file > output_file

Without output redirection the output is sent to stdout.The converted file includes mcs_defines.inc.

For example:

perl cnvba2ta.pl bosch_mcs.mcs > tsk_mcs.asm

124

TASKING VX-toolset for MCS User Guide



Chapter 5.Tool Options
This chapter provides a detailed description of the options for the assembler, linker, control program,
make utility and the archiver.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. Open the Tool Settings tab.

You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab
open.

The following tables give an overview of all tool options on the Tool Settings tab in Eclipse with hyperlinks
to the corresponding command line options (if available).

Global Options

Description or optionEclipse option

Directory where the TASKING toolset is
installed

Use global 'product directory' preference

Control program option --warnings-as-errorsTreat warnings as errors

Control program option
--keep-temporary-files (-t)

Keep temporary files

Control program option --verbose (-v)Verbose mode of control program

Assembler

Description or optionEclipse option

Preprocessing

Assembler option --defineDefined symbols

Assembler option --include-filePre-include files

125



Description or optionEclipse option

Include Paths

Assembler option --include-directoryInclude paths

Symbols

Assembler option --debug-infoGenerate symbolic debug

Assembler option --case-insensitiveCase insensitive identifiers

Assembler option --emit-locals=+equEmit local EQU symbols

Assembler option --emit-locals=+symbolsEmit local non-EQU symbols

Assembler option --symbol-scopeSet default symbol scope to global

Optimization

Assembler option --optimize=+instr-sizeOptimize instruction size

List File

Control program option --list-filesGenerate list file

Assembler option --list-formatList ...

Assembler option --section-info=+listList section summary

Diagnostics

Assembler option --no-warnings=numSuppress warnings

Assembler option --no-warningsSuppress all warnings

Assembler option --section-info=+consoleDisplay section summary

Assembler option --error-limitMaximum number of emitted errors

Miscellaneous

Assembler optionsAdditional options

Linker

Description or optionEclipse option

Libraries

Linker option --no-rescanRescan libraries to solve unresolved externals

The libraries are added as files on the
command line.

Libraries

Linker option --library-directoryLibrary search path

Data Objects

Linker option --import-objectData objects

Script File

Linker option --defineDefined symbols

Linker option --lsl-fileLinker script file (.lsl)

Optimization

126

TASKING VX-toolset for MCS User Guide



Description or optionEclipse option

Linker option --optimize=cDelete unreferenced sections

Linker option --optimize=lUse a 'first-fit decreasing' algorithm

Linker option --optimize=tCompress copy table

Linker option --optimize=xDelete duplicate code

Linker option --optimize=yDelete duplicate data

Map File

Control program option --no-map-fileGenerate map file (.map)

Linker option --map-file=file.mapxml:XMLGenerate XML map file format (.mapxml) for map file viewer

Linker option --map-file-formatInclude ...

Diagnostics

Linker option --no-warnings=numSuppress warnings

Linker option --no-warningsSuppress all warnings

Linker option --error-limitMaximum number of emitted errors

Miscellaneous

Linker option --strip-debugStrip symbolic debug information

Linker option --case-insensitiveLink case insensitive

Linker option
--user-provided-initialization-code

Do not use standard copy table for initialization

Linker optionsAdditional options

5.1. Assembler Options

This section lists all assembler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the assembler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the assembler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Assembler » Miscellaneous.

127

Tool Options



4. In the Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wa to
pass the option via the control program directly to the assembler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -V displays version header information and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

asmcs -Ogs test.asm
asmcs --optimize=+generics,+instr-size test.asm

When you do not specify an option, a default value may become active.

128

TASKING VX-toolset for MCS User Guide



Assembler option: --case-insensitive (-c)

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.

Command line syntax

--case-insensitive

-c

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Example

When assembling case insensitive, the label LabelName is the same label as labelname.

asmcs --case-insensitive test.asm

Related information

Assembler control $CASE

129

Tool Options



Assembler option: --check

Menu entry

-

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application.

The assembler reports any warnings and/or errors.

This option is available on the command line only.

Related information

-

130

TASKING VX-toolset for MCS User Guide



Assembler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor or select User defined TriCore ....

Command line syntax

--cpu=cpu

-Ccpu

Description

With this option you define the target processor for which you create your application.

Example

To assemble the file test.asm for the TC27X processor:

asmcs --cpu=tc27x test.asm

Related information

-

131

Tool Options



Assembler option: --debug-info (-g)

Menu entry

1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.

Command line syntax

--debug-info[=flags]

-g[flags]

You can set the following flags:

Assembly source line informationa/A+/-asm

Assembler local symbols debug informationl/L+/-local

Default: --debug-info=-asm,-local

Default (without flags): --debug-info=+asm,+local

Description

With this option you tell the assembler which kind of debug information to emit in the object file.

With --debug-info=+asm the assembler generates assembly source line information.

With --debug-info=+local the assembler generates local symbols debug information.

By default the assembler does not generate any debug information.

Related information

Assembler control $DEBUG

132

TASKING VX-toolset for MCS User Guide



Assembler option: --define (-D)

Menu entry

1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the assembler preprocessor. If you only specify
a macro name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful in combination
with conditional assembly as shown in the example below.

This option has the same effect as defining symbols via the .DEFINE, .SET, and .EQU directives.
(similar to #define in the C language). With the .MACRO directive you can define more complex
macros.

Example

Consider the following assembly program with conditional code to assemble a demo program and a real
program:

.IF DEMO == 1

...        ; instructions for demo application

.ELSE

...        ; instructions for the real application

.ENDIF

133

Tool Options



You can now use a macro definition to set the DEMO flag:

asmcs --define=DEMO test.asm
asmcs --define=DEMO=1 test.asm

Note that both invocations have the same effect.

Related information

Assembler option --option-file (Specify an option file)

134

TASKING VX-toolset for MCS User Guide



Assembler option: --dep-file

Menu entry

-

Command line syntax

--dep-file[=file]

Description

With this option you tell the assembler to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to a file with extension .d. When you specify a filename, all
dependencies will be combined in the specified file.

Example

asmcs --dep-file=test.dep test.asm

The assembler assembles the file test.asm, which results in the output file test.o, and generates
dependency lines in the file test.dep.

Related information

Assembler option --make-target (Specify target name for --dep-file output)

135

Tool Options



Assembler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 244, enter:

asmcs --diag=244

This results in the following message and explanation:

W244: additional input files will be ignored

The assembler supports only a single input file. All other input files are ignored.

136

TASKING VX-toolset for MCS User Guide



To write an explanation of all errors and warnings in HTML format to file aserrors.html, use redirection
and enter:

asmcs --diag=html:all > aserrors.html

Related information

Section 2.6, Assembler Error Messages

137

Tool Options



Assembler option: --dwarf-version

Menu entry

-

Command line syntax

--dwarf-version={2|3}

Default: 3

Description

With this option you tell the assembler which DWARF debug version to generate, DWARF2 or DWARF3
(default).

Related information

-

138

TASKING VX-toolset for MCS User Guide



Assembler option: --emit-locals

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable one or both of the following options:

• Emit local EQU symbols

• Emit local non-EQU symbols

Command line syntax

--emit-locals[=flag,...]

You can set the following flags:

emit local EQU symbolse/E+/-equs

emit local non-EQU symbolss/S+/-symbols

Default: --emit-locals=ES

Default (without flags): --emit-locals=+symbols

Description

With the option --emit-locals=+equs the assembler also emits local EQU symbols to the object file.
Normally, only global symbols and non-EQU local symbols are emitted. Having local symbols in the object
file can be useful for debugging.

Related information

Assembler directive .EQU

139

Tool Options



Assembler option: --error-file

Menu entry

-

Command line syntax

--error-file[=file]

Description

With this option the assembler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the input file with extension .ers.

Example

To write errors to errors.ers instead of stderr, enter:

asmcs --error-file=errors.ers test.asm

Related information

Section 2.6, Assembler Error Messages

140

TASKING VX-toolset for MCS User Guide



Assembler option: --error-limit

Menu entry

1. Select Assembler » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax

--error-limit=number

Default: 42

Description

With this option you tell the assembler to only emit the specified maximum number of errors. When 0
(null) is specified, the assembler emits all errors. Without this option the maximum number of errors is
42.

Related information

Section 2.6, Assembler Error Messages

141

Tool Options



Assembler option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following arguments:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

asmcs -?
asmcs --help
asmcs

To see a detailed description of the available options, enter:

asmcs --help=options

Related information

-

142

TASKING VX-toolset for MCS User Guide



Assembler option: --include-directory (-I)

Menu entry

1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.

2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable ASMCSINC when the product was installed.

4. The default directory $(PRODDIR)\include.

Example

Suppose that the assembly source file test.asm contains the following lines:

.INCLUDE 'myinc.inc'

You can call the assembler as follows:

asmcs --include-directory=c:\proj\include test.asm

First the assembler looks for the file myinc.inc in the directory where test.asm is located. If it does
not find the file, it looks in the directory c:\proj\include (this option). If the file is still not found, the
assembler searches in the environment variable and then in the default include directory.

143

Tool Options



Related information

Assembler option --include-file (Include file at the start of the input file)

144

TASKING VX-toolset for MCS User Guide



Assembler option: --include-file (-H)

Menu entry

1. Select Assembler » Preprocessing.

The Pre-include files box shows the files that are currently included before the assembling starts.

2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax

--include-file=file,...

-Hfile,...

Description

With this option (set at project level) you include one extra file at the beginning of the assembly source
file.The specified include file is included before all other includes.This is the same as specifying .INCLUDE
'file' at the beginning of your assembly source.

Example

asmcs --include-file=myinc.inc test.asm

The file myinc.inc is included at the beginning of test.asm before it is assembled.

Related information

Assembler option --include-directory (Add directory to include file search path)

145

Tool Options



Assembler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the object file when errors occur during assembling.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during assembling, the resulting object file (.o) may be incomplete or incorrect. With
this option you keep the generated object file when an error occurs.

By default the assembler removes the generated object file when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated object. For example when you know that a
particular error does not result in a corrupt object file.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

146

TASKING VX-toolset for MCS User Guide



Assembler option: --list-file (-l)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax

--list-file[=file]

-l[file]

Default: no list file is generated

Description

With this option you tell the assembler to generate a list file. A list file shows the generated object code
and the relative addresses. Note that the assembler generates a relocatable object file with relative
addresses.

With the optional file you can specify an alternative name for the list file. By default, the name of the list
file is the basename of the source file with the extension .lst.

Related information

Assembler option --list-format (Format list file)

147

Tool Options



Assembler option: --list-format (-L)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax

--list-format=flag,...

-Lflags

You can set the following flags:

List section directives (.SDECL, .SECT)d/D+/-section

List symbol definition directivese/E+/-symbol

List macro definitionsm/M+/-macro

List empty source lines and comment linesn/N+/-empty-line

List conditional assemblyp/P+/-conditional

List equate and set directives (.EQU, .SET)q/Q+/-equate

List relocations characters 'r'r/R+/-relocations

List equate and set valuesv/V+/-equate-values

Wrap source linesw/W+/-wrap-lines

List macro expansionsx/X+/-macro-expansion

List cycle countsy/Y+/-cycle-count

List define expansionsz/Z+/-define-expansion

Use the following options for predefined sets of flags:

All options disabled
Alias for --list-format=DEMNPQRVWXYZ

-L0--list-format=0

All options enabled
Alias for --list-format=demnpqrvwxyz

-L1--list-format=1

Default: --list-format=dEMnPqrVwXyZ

Description

With this option you specify which information you want to include in the list file.

On the command line you must use this option in combination with the option --list-file (-l).

148

TASKING VX-toolset for MCS User Guide



Related information

Assembler option --list-file (Generate list file)

Assembler option --section-info=+list (Display section information in list file)

149

Tool Options



Assembler option: --make-target

Menu entry

-

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension .o.

Example

asmcs --dep-file --make-target=../mytarget.o test.asm

The assembler generates dependency lines with the default target name ../mytarget.o instead of
test.o.

Related information

Assembler option --dep-file (Generate dependencies in a file)

150

TASKING VX-toolset for MCS User Guide



Assembler option: --no-warnings (-w)

Menu entry

1. Select Assembler » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
201,202). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number,...]

-w[number,...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number, only the specified warning is suppressed.You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 201 and 202, enter:

asmcs test.asm --no-warnings=201,202

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

151

Tool Options



Assembler option: --optimize (-O)

Menu entry

1. Select Assembler » Optimization.

2. Select one or more of the following options:

• Optimize instruction size

Command line syntax

--optimize=flag,...

-Oflags

You can set the following flags:

Optimize instruction sizes/S+/-instr-size

Default: --optimize=s

Description

With this option you can control the level of optimization. For details about each optimization see
Section 2.4, Assembler Optimizations.

Related information

Section 2.4, Assembler Optimizations

152

TASKING VX-toolset for MCS User Guide



Assembler option: --option-file (-f)

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the assembler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the assembler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility.You can specify the option
--option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

153

Tool Options



• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--debug=+asm,-local
test.asm

Specify the option file to the assembler:

asmcs --option-file=myoptions

This is equivalent to the following command line:

asmcs --debug=+asm,-local test.asm

Related information

-

154

TASKING VX-toolset for MCS User Guide



Assembler option: --output (-o)

Menu entry

Eclipse names the output file always after the input file.

Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the assembler. Without this option,
the basename of the assembly source file is used with extension .o.

Example

To create the file relobj.o instead of asm.o, enter:

asmcs --output=relobj.o asm.asm

Related information

-

155

Tool Options



Assembler option: --page-length

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-length to the Additional options field.

Command line syntax

--page-length=number

Default: 72

Description

If you generate a list file with the assembler option --list-file, this option sets the number of lines in a page
in the list file. The default is 72, the minimum is 10. As a special case, a page length of 0 turns off page
breaks.

Related information

Assembler option --list-file (Generate list file)

Assembler control $PAGE

156

TASKING VX-toolset for MCS User Guide



Assembler option: --page-width

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-width to the Additional options field.

Command line syntax

--page-width=number

Default: 132

Description

If you generate a list file with the assembler option --list-file, this option sets the number of columns per
line on a page in the list file. The default is 132, the minimum is 40.

Related information

Assembler option --list-file (Generate list file)

Assembler control $PAGE

157

Tool Options



Assembler option: --preprocess (-E)

Menu entry

-

Command line syntax

--preprocess

-E

Description

With this option the assembler will only preprocess the assembly source file. The assembler sends the
preprocessed file to stdout.

Related information

-

158

TASKING VX-toolset for MCS User Guide



Assembler option: --preprocessor-type (-m)

Menu entry

-

Command line syntax

--preprocessor-type=type

-mtype

You can set the following preprocessor types:

No preprocessornnone

TASKING preprocessorttasking

Default: --preprocessor-type=tasking

Description

With this option you select the preprocessor that the assembler will use. By default, the assembler uses
the TASKING preprocessor.

When the assembly source file does not contain any preprocessor symbols, you can specify to the
assembler not to use a preprocessor.

Related information

-

159

Tool Options



Assembler option: --section-info (-t)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable the option List section summary.

and/or

1. Select Assembler » Diagnostics.

2. Enable the option Display section summary.

Command line syntax

--section-info[=flag,...]

-t[flags]

You can set the following flags:

Display section summary on consolec/C+/-console

List section summary in list filel/L+/-list

Default: --section-info=CL

Default (without flags): --section-info=cl

Description

With this option you tell the assembler to display section information. For each section its memory space,
size, total cycle counts and name is listed on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the section and the total accumulated
count for all repeated instructions. In the case of nested loops it is possible that the total supersedes the
section total.

Example

To writes the section information to the list file and also display the section information on stdout, enter:

asmcs --list-file --section-info asm.asm

Related information

Assembler option --list-file (Generate list file)

160

TASKING VX-toolset for MCS User Guide



Assembler option: --symbol-scope (-i)

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable the option Set default symbol scope to global.

Command line syntax

--symbol-scope=scope

-iscope

You can set the following scope:

Default symbol scope is globalgglobal

Default symbol scope is localllocal

Default: --symbol-scope=local

Description

With this option you tell the assembler how to treat symbols that you have not specified explicitly as global
or local. By default the assembler treats all symbols as local symbols unless you have defined them
explicitly as global.

Related information

Assembler directive .GLOBAL

Assembler directive .LOCAL

Assembler control $IDENT

161

Tool Options



Assembler option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The assembler ignores all other options or input files.

Related information

-

162

TASKING VX-toolset for MCS User Guide



Assembler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number,...]

Description

If the assembler encounters an error, it stops assembling. When you use this option without arguments,
you tell the assembler to treat all warnings as errors. This means that the exit status of the assembler will
be non-zero after one or more assembler warnings. As a consequence, the assembler now also stops
after encountering a warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Assembler option --no-warnings (Suppress some or all warnings)

163

Tool Options



5.2. Linker Options

This section lists all linker options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the linker. If there is no equivalent option in Eclipse, you can
specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Miscellaneous.

4. In the Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wl to
pass the option via the control program directly to the linker.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option --keep-output-files keeps files after an error occurred. When you specify this option
in Eclipse, it will have no effect because Eclipse always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

lmcs -mfkl test.o
lmcs --map-file-format=+files,+link,+locate test.o

When you do not specify an option, a default value may become active.

164

TASKING VX-toolset for MCS User Guide



Linker option: --case-insensitive

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Link case insensitive.

Command line syntax

--case-insensitive

Default: case sensitive

Description

With this option you tell the linker not to distinguish between uppercase and lowercase characters in
symbols. By default the linker considers uppercase and lowercase characters as different characters.

When you have written your own assembly code and specified to assemble it case insensitive, you must
also link the .o file case insensitive.

Related information

Assembler option --case-insensitive

165

Tool Options



Linker option: --chip-output (-c)

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file and/or Generate S-records file.

3. Enable the option Create file for each memory chip.

4. Optionally, specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--chip-output=[basename]:format[:addr_size],...

-c[basename]:format[:addr_size],...

You can specify the following formats:

Intel HexIHEX

Motorola S-recordsSREC

The addr_size specifies the size of the addresses in bytes (record length). For Intel Hex you can use the
values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records) or 4 bytes
(S3 records, default).

Description

With this option you specify the Intel Hex or Motorola S-record output format for loading into a
PROM-programmer. The linker generates a file for each ROM memory defined in the LSL file, where
sections are located:

memory memname
{  type=rom;  }

The name of the file is the name of the Eclipse project or, on the command line, the name of the memory
device that was emitted with extension .hex or .sre. Optionally, you can specify a basename which
prepends the generated file name.

The linker always outputs a debugging file in ELF/DWARF format and optionally an absolute
object file in Intel Hex-format and/or Motorola S-record format.

Example

To generate Intel Hex output files for each defined memory, enter the following on the command line:

lmcs --chip-output=myfile:IHEX test1.o

166

TASKING VX-toolset for MCS User Guide



In this case, this generates the file myfile_memname.hex.

Related information

Linker option --output (Output file)

167

Tool Options



Linker option: --core (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor or select User defined TriCore ....

3. From the Multi-core configuration list, select an MCS core.

Command line syntax

--core=MCS-core

-CMCS-core

You can specify the following MCS cores:

MCS core 0mpe:mcs00

MCS core 1mpe:mcs01

MCS core 2mpe:mcs02

MCS core 3mpe:mcs03

Default: mpe:mcs00

Description

With this option you specify the core for the target processor for which you create your application.

In a multi-task setting, use this option to tell the linker to use a specific core for a specific task. Only one
task can be assigned to a certain core. Assigning multiple tasks to a single core requires some form of
kernel functionality.

The core is specified as mpe:mcs0{0123}. For example, the file tc27x.lsl in the include.lsl
directory, contains a description of derivative tc27x and the supported MCS cores. mpe is the
multi-processor environment as specified in the LSL file.

Example

To link objects for the MCS core mpe:mcs01, enter:

lcms  -o test.elf -dtc27x.lsl --non-romable
      --user-provided-initialization-code -D__LINKONLY__
      -DCSA=0 --core=mpe:mcs01 --map-file test.o

Related information

Control program option --lsl-core (Specify LSL core)

168

TASKING VX-toolset for MCS User Guide



Linker option: --define (-D)

Menu entry

1. Select Linker » Script File.

The Defined symbols box shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the linker LSL file preprocessor. If you only
specify a macro name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like; just use the option --define (-D) multiple times. If the
command line exceeds the limit of the operating system, you can define the macros in an option file which
you then must specify to the linker with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #if, #ifdef and #ifndef, for conditional locating.

Example

To define the RESET vector, which is used in the linker script file tc27x.lsl, enter:

lmcs test.o -otest.elf --lsl-file=tc27x.lsl --define=RESET=0xa0000020

Related information

Linker option --option-file (Specify an option file)

169

Tool Options



Linker option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

With this option the linker does not link/locate any files.

Example

To display an explanation of message number 106, enter:

lmcs --diag=106

This results in the following message and explanation:

E106: unresolved external: <message>

The linker could not resolve all external symbols.

170

TASKING VX-toolset for MCS User Guide



This is an error when the incremental linking option is disabled.
The <message> indicates the symbol that is unresolved.

To write an explanation of all errors and warnings in HTML format to file lkerrors.html, use redirection
and enter:

lmcs --diag=html:all > lkerrors.html

Related information

Section 3.9, Linker Error Messages

171

Tool Options



Linker option: --error-file

Menu entry

-

Command line syntax

--error-file[=file]

Description

With this option the linker redirects error messages to a file. If you do not specify a filename, the error file
is lmcs.elk.

Example

To write errors to errors.elk instead of stderr, enter:

lmcs --error-file=errors.elk test.o

Related information

Section 3.9, Linker Error Messages

172

TASKING VX-toolset for MCS User Guide



Linker option: --error-limit

Menu entry

1. Select Linker » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax

--error-limit=number

Default: 42

Description

With this option you tell the linker to only emit the specified maximum number of errors. When 0 (null) is
specified, the linker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 3.9, Linker Error Messages

173

Tool Options



Linker option: --extern (-e)

Menu entry

-

Command line syntax

--extern=symbol,...

-esymbol,...

Description

With this option you force the linker to consider the given symbol as an undefined reference. The linker
tries to resolve this symbol, either the symbol is defined in an object file or the linker extracts the
corresponding symbol definition from a library.

This option is, for example, useful if the startup code is part of a library. Because your own application
does not refer to the startup code, you can force the startup code to be extracted by specifying the symbol
_START as an unresolved external.

Example

Consider the following invocation:

lmcs mylib.a

Nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through mylib.a.

lmcs --extern=_START mylib.a

In this case the linker searches for the symbol _START in the library and (if found) extracts the object that
contains _START, the startup code. If this module contains new unresolved symbols, the linker looks
again in mylib.a. This process repeats until no new unresolved symbols are found.

Related information

-

174

TASKING VX-toolset for MCS User Guide



Linker option: --first-library-first

Menu entry

-

Command line syntax

--first-library-first

Description

When the linker processes a library it searches for symbols that are referenced by the objects and libraries
processed so far. If the library contains a definition for an unresolved reference the linker extracts the
object that contains the definition from the library.

By default the linker processes object files and libraries in the order in which they appear on the command
line. If you specify the option --first-library-first the linker always tries to take the symbol definition from
the library that appears first on the command line before scanning subsequent libraries.

This is for example useful when you are working with a newer version of a library that partially overlaps
the older version. Because they do not contain exactly the same functions, you have to link them both.
However, when a function is present in both libraries, you may want the linker to extract the most recent
function.

Example

Consider the following example:

lmcs --first-library-first a.a test.o b.a

If the file test.o calls a function which is both present in a.a and b.a, normally the function in b.a
would be extracted. With this option the linker first tries to extract the symbol from the first library a.a.

Note that routines in b.a that call other routines that are present in both a.a and b.a are now
also resolved from a.a.

Related information

Linker option --no-rescan (Rescan libraries to solve unresolved externals)

175

Tool Options



Linker option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following arguments:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

lmcs -?
lmcs --help
lmcs

To see a detailed description of the available options, enter:

lmcs --help=options

Related information

-

176

TASKING VX-toolset for MCS User Guide



Linker option: --hex-format

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --hex-format to the Additional options field.

Command line syntax

--hex-format=flag,...

You can set the following flag:

Emit start address records/S+/-start-address

Default: --hex-format=s

Description

With this option you can specify to emit or omit the start address record from the hex file.

Related information

Linker option --output (Output file)

177

Tool Options



Linker option: --hex-record-size

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --hex-record-size to the Additional options field.

Command line syntax

--hex-record-size=size

Default: 32

Description

With this option you can set the size (width) of the Intel Hex data records.

Related information

Linker option --output (Output file)

178

TASKING VX-toolset for MCS User Guide



Linker option: --import-object

Menu entry

1. Select Linker » Data Objects.

The Data objects box shows the list of object files that are imported.

2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).

Use the Edit and Delete button to change a filename or to remove a data object from the list.

Command line syntax

--import-object=file,...

Description

With this option the linker imports a binary file containing raw data and places it in a section. The section
name is derived from the filename, in which dots are replaced by an underscore. So, when importing a
file called my.jpg, a section with the name my_jpg is created. In your application you can refer to the
created section by using linker labels.

Related information

Section 3.4, Importing Binary Files

179

Tool Options



Linker option: --include-directory (-I)

Menu entry

-

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in "")

2. The path that is specified with this option.

3. The default directory $(PRODDIR)\include.lsl.

Example

Suppose that your linker script file mylsl.lsl contains the following line:

#include "myinc.inc"

You can call the linker as follows:

lmcs --include-directory=c:\proj\include --lsl-file=mylsl.lsl test.o

First the linker looks for the file myinc.inc in the directory where mylsl.lsl is located. If it does not
find the file, it looks in the directory c:\proj\include (this option). Finally it looks in the directory
$(PRODDIR)\include.lsl.

Related information

Linker option --lsl-file (Specify linker script file)

180

TASKING VX-toolset for MCS User Guide



Linker option: --incremental (-r)

Menu entry

-

Command line syntax

--incremental

-r

Description

Normally the linker links and locates the specified object files. With this option you tell the linker only to
link the specified files. The linker creates a linker output file .out.You then can link this file again with
other object files until you have reached the final linker output file that is ready for locating.

In the last pass, you call the linker without this option with the final linker output file .out. The linker will
now locate the file.

Example

In this example, the files test1.o, test2.o and test3.o are incrementally linked:

1. lmcs --incremental test1.o test2.o --output=test.out

test1.o and test2.o are linked

2. lmcs --incremental test3.o test.out

test3.o and test.out are linked, task1.out is created

3. lmcs task1.out

task1.out is located

Related information

Section 3.3, Incremental Linking

181

Tool Options



Linker option: --keep-output-files (-k)

Menu entry

Eclipse always removes the output files when errors occurred.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during linking, the resulting output file may be incomplete or incorrect. With this option
you keep the generated output files when an error occurs.

By default the linker removes the generated output file when an error occurs.This is useful when you use
the make utility. If the erroneous files are not removed, the make utility may process corrupt files on a
subsequent invocation.

Use this option when you still want to use the generated file. For example when you know that a particular
error does not result in a corrupt object file, or when you want to inspect the output file, or send it to Altium
support.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

182

TASKING VX-toolset for MCS User Guide



Linker option: --library (-l)

Menu entry

1. Select Linker » Libraries.

The Libraries box shows the list of libraries that are linked with the project.

2. To add a library, click on the Add button in the Libraries box.

3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=name

-lname

Description

With this option you tell the linker to use system library libname.a, where name is a string. The linker
first searches for system libraries in any directories specified with --library-directory, then in the directories
specified with the environment variable LIBTC1V1_6_X, unless you used the option
--ignore-default-library-path.

Example

To search in the system library libc.a:

lmcs test.o mylib.a --library=c

The linker links the file test.o and first looks in library mylib.a (in the current directory only), then in
the system library libc.a to resolve unresolved symbols.

Related information

Linker option --library-directory (Additional search path for system libraries)

-

183

Tool Options



Linker option: --library-directory (-L) / --ignore-default-library-path

Menu entry

1. Select Linker » Libraries.

The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath,...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-l), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is $(PRODDIR)\lib.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables
LIBTC1V1_6_X. So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-l)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variables LIBTC1V1_6_X.

3. The default directory $(PRODDIR)\lib.

Example

Suppose you call the linker as follows:

lmcs test.o --library-directory=c:\mylibs --library=c

184

TASKING VX-toolset for MCS User Guide



First the linker looks in the directory c:\mylibs for library libc.a (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LIBTC1V1_6_X.
Then the linker looks in the default directory $(PRODDIR)\lib for libraries.

Related information

Linker option --library (Link system library)

-

185

Tool Options



Linker option: --link-only

Menu entry

-

Command line syntax

--link-only

Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information

Control program option --create=relocatable (-cl) (Stop after linking)

186

TASKING VX-toolset for MCS User Guide



Linker option: --lsl-check

Menu entry

-

Command line syntax

--lsl-check

Description

With this option the linker just checks the syntax of the LSL file(s) and exits. No linking or locating is
performed. Use the option --lsl-file to specify the name of the Linker Script File you want to test.

Related information

Linker option --lsl-file (Linker script file)

Linker option --lsl-dump (Dump LSL info)

Section 3.6, Controlling the Linker with a Script

187

Tool Options



Linker option: --lsl-dump

Menu entry

-

Command line syntax

--lsl-dump[=file]

Description

With this option you tell the linker to dump the LSL part of the map file in a separate file, independent of
the option --map-file (generate map file). If you do not specify a filename, the file lmcs.ldf is used.

Related information

Linker option --map-file-format (Map file formatting)

188

TASKING VX-toolset for MCS User Guide



Linker option: --lsl-file (-d)

Menu entry

An LSL file can be generated when you create your TriCore project in Eclipse:

1. From the File menu, select File » New » TASKING TriCore C/C++ Project.

The New C/C++ Project wizard appears.

2. Fill in the project settings in each dialog and click Next > until the TriCore Project Settings appear.

3. Enable the optionAdd linker script file to the project and click Finish.

Eclipse creates your project and the file project.lsl in the project directory.

The LSL file can be specified in the Properties dialog:

1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.lsl) field.

Command line syntax

--lsl-file=file

-dfile

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

• the architecture definition describes the core's hardware architecture.

• the memory definition describes the physical memory available in the system.

• the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file to the linker. If you do not specify this option, the linker uses
a default script file.You can specify the existing file target.lsl or the name of a manually written linker
script file.You can use this option multiple times. The linker processes the LSL files in the order in which
they appear on the command line.

Related information

Linker option --lsl-check (Check LSL file(s) and exit)

Section 3.6, Controlling the Linker with a Script

189

Tool Options



Linker option: --map-file (-M)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.

3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax

--map-file[=file][:XML]

-M[file][:XML]

Default (Eclipse): XML map file is generated

Default (linker): no map file is generated

Description

With this option you tell the linker to generate a linker map file. If you do not specify a filename and you
specified the option --output, the linker uses the same basename as the output file with the extension
.map. If you did not specify the option --output, the linker uses the file task1.map. Eclipse names the
.map file after the project.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (.o) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on
address.

Related information

Linker option --map-file-format (Format map file)

Section 6.2, Linker Map File Format

190

TASKING VX-toolset for MCS User Guide



Linker option: --map-file-format (-m)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.

3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax

--map-file-format=flag,...

-mflags

You can set the following flags:

Include call graph informationc/C+/-callgraph

Include information on removed sectionsd/D+/-removed

Include processed files informationf/F+/-files

Include information on invocation and toolsi/I+/-invocation

Include link result informationk/K+/-link

Include locate result informationl/L+/-locate

Include memory usage informationm/M+/-memory

Include information of non-alloc sectionsn/N+/-nonalloc

Include overlay informationo/O+/-overlay

Include module local symbols informationq/Q+/-statics

Include cross references informationr/R+/-crossref

Include processor and memory informations/S+/-lsl

Include locate rulesu/U+/-rules

Use the following options for predefined sets of flags:

Link information
Alias for -mcDfikLMNoQrSU

-m0--map-file-format=0

Locate information
Alias for -mCDfiKlMNoQRSU

-m1--map-file-format=1

Most information
Alias for -mcdfiklmNoQrSu

-m2--map-file-format=2

Default: --map-file-format=2

191

Tool Options



Description

With this option you specify which information you want to include in the map file.

On the command line you must use this option in combination with the option --map-file (-M).

Related information

Linker option --map-file (Generate map file)

Section 6.2, Linker Map File Format

192

TASKING VX-toolset for MCS User Guide



Linker option: --new-task

Menu entry

-

Command line syntax

--new-task

Description

With this option the linker creates an additional task. Any options that follow only apply to the new task.

The linker processes options on the command line from left to right. To know whether a certain option
belongs to a different task it uses this option. This implies that all options for a given task must be fully
specified before moving on to the next.

Related information

-

193

Tool Options



Linker option: --non-romable

Menu entry

-

Command line syntax

--non-romable

Description

With this option you tell the linker that the application must not be located in ROM. The linker will locate
all ROM sections, including a copy table if present, in RAM. When the application is started, the data
sections are re-initialized and the BSS sections are cleared as usual.

This option is, for example, useful when you want to test the application in RAM before you put the final
application in ROM. This saves you the time of flashing the application in ROM over and over again.

Related information

-

194

TASKING VX-toolset for MCS User Guide



Linker option: --no-rescan

Menu entry

1. Select Linker » Libraries.

2. Disable the option Rescan libraries to solve unresolved externals.

Command line syntax

--no-rescan

Description

When the linker processes a library it searches for symbol definitions that are referenced by the objects
and libraries processed so far. If the library contains a definition for an unresolved reference the linker
extracts the object that contains the definition from the library. The linker processes object files and
libraries in the order in which they appear on the command line.

When all objects and libraries are processed the linker checks if there are unresolved symbols left. If so,
the default behavior of the linker is to rescan all libraries in the order given at the command line. The
linker stops rescanning the libraries when all symbols are resolved, or when the linker could not resolve
any symbol(s) during the rescan of all libraries. Notice that resolving one symbol may introduce new
unresolved symbols.

With this option, you tell the linker to scan the object files and libraries only once. When the linker has
not resolved all symbols after the first scan, it reports which symbols are still unresolved. This option is
useful if you are building your own libraries. The libraries are most efficiently organized if the linker needs
only one pass to resolve all symbols.

Related information

Linker option --first-library-first (Scan libraries in given order)

195

Tool Options



Linker option: --no-rom-copy (-N)

Menu entry

-

Command line syntax

--no-rom-copy

-N

Description

With this option the linker will not generate a ROM copy for data sections. A copy table is generated and
contains entries to clear BSS sections. However, no entries to copy data sections from ROM to RAM are
placed in the copy table.

The data sections are initialized when the application is downloaded.The data sections are not re-initialized
when the application is restarted.

Related information

-

196

TASKING VX-toolset for MCS User Guide



Linker option: --no-warnings (-w)

Menu entry

1. Select Linker » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
135,136). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number,...]

-w[number,...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number, only the specified warning is suppressed.You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 135 and 136, enter:

lmcs --no-warnings=135,136 test.o

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

197

Tool Options



Linker option: --optimize (-O)

Menu entry

1. Select Linker » Optimization.

2. Select one or more of the following options:

• Delete unreferenced sections

• Use a 'first-fit decreasing' algorithm

• Compress copy table

• Delete duplicate code

• Delete duplicate data

Command line syntax

--optimize=flag,...

-Oflags

You can set the following flags:

Delete unreferenced sections from the output
file

c/C+/-delete-unreferenced-sections

Use a 'first-fit decreasing' algorithm to locate
unrestricted sections in memory

l/L+/-first-fit-decreasing

Emit smart restrictions to reduce copy table sizet/T+/-copytable-compression

Delete duplicate code sections from the output
file

x/X+/-delete-duplicate-code

Delete duplicate constant data from the output
file

y/Y+/-delete-duplicate-data

Use the following options for predefined sets of flags:

No optimization
Alias for -OCLTXY

-O0--optimize=0

Default optimization
Alias for -OcLtxy

-O1--optimize=1

All optimizations
Alias for -Ocltxy

-O2--optimize=2

Default: --optimize=1

198

TASKING VX-toolset for MCS User Guide



Description

With this option you can control the level of optimization.

Related information

For details about each optimization see Section 3.5, Linker Optimizations.

199

Tool Options



Linker option: --option-file (-f)

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the linker options you have set in the other
pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the linker.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility.You can specify the option
--option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

200

TASKING VX-toolset for MCS User Guide



• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--map-file=my.map               (generate a map file)
test.o                          (input file)
--library-directory=c:\mylibs   (additional search path for system libraries)

Specify the option file to the linker:

lmcs --option-file=myoptions

This is equivalent to the following command line:

lmcs --map-file=my.map test.o --library-directory=c:\mylibs

Related information

-

201

Tool Options



Linker option: --output (-o)

Menu entry

1. Select Linker » Output Format.

2. Enable one or more output formats.

For some output formats you can specify a number of suboptions.

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--output=[filename][:format[:addr_size][,space_name]]...

-o[filename][:format[:addr_size][,space_name]]...

You can specify the following formats:

ELF/DWARFELF

Intel HexIHEX

Motorola S-recordsSREC

Description

By default, the linker generates an output file in ELF/DWARF format, with the name task1.elf.

With this option you can specify an alternative filename, and an alternative output format. The default
output format is the format of the first input file.

You can use the --output option multiple times. This is useful to generate multiple output formats. With
the first occurrence of the --output option you specify the basename (the filename without extension),
which is used for subsequent --output options with no filename specified. If you do not specify a filename,
or you do not specify the --output option at all, the linker uses the default basename taskn.

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you can use the argument addr_size
to specify the size of addresses in bytes (record length). For Intel Hex you can use the values: 1, 2, and
4 (default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3
records).

With the argument space_name you can specify the name of the address space. The name of the output
file will be filename with the extension .hex or .sre and contains the code and data allocated in the
specified space. If they exist, any other address spaces are also emitted whereas their output files are
named filename_spacename with the extension .hex or .sre.

If you do not specify space_name, or you specify a non-existing space, the default address space is filled
in.

202

TASKING VX-toolset for MCS User Guide



Use option --chip-output (-c) to create Intel Hex or Motorola S-record output files for each chip defined
in the LSL file (suitable for loading into a PROM-programmer).

Example

To create the output file myfile.hex of the address space named linear, enter:

lmcs test.o --output=myfile.hex:IHEX:2,linear

If they exist, any other address spaces are emitted as well and are named myfile_spacename.hex.

Related information

Linker option --chip-output (Generate an output file for each chip)

Linker option --hex-format (Specify Hex file format settings)

203

Tool Options



Linker option: --strip-debug (-S)

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Strip symbolic debug information.

Command line syntax

--strip-debug

-S

Description

With this option you specify not to include symbolic debug information in the resulting output file.

Related information

-

204

TASKING VX-toolset for MCS User Guide



Linker option: --user-provided-initialization-code (-i)

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Do not use standard copy table for initialization.

Command line syntax

--user-provided-initialization-code

-i

Description

It is possible to use your own initialization code, for example, to save ROM space. With this option you
tell the linker not to generate a copy table for initialize/clear sections. Use linker labels in your source
code to access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error is emitted: it is either the
TASKING initialization routine or your own, not both.

Note that the options --no-rom-copy and --non-romable, may vary independently. The
'copytable-compression' optimization (--optimize=t) is automatically disabled when you enable this option.

Related information

Linker option --no-rom-copy (Do not generate ROM copy)

Linker option --non-romable (Application is not romable)

Linker option --optimize (Specify optimization)

205

Tool Options



Linker option: --verbose (-v)

Menu entry

-

Command line syntax

--verbose

-v

Description

With this option you put the linker in verbose mode. The linker prints the link phases while it processes
the files. The linker prints one entry for each action it executes for a task. When you use this option twice
(-vv) you put the linker in extra verbose mode. In this mode the linker also prints the filenames and it
shows which objects are extracted from libraries and it shows verbose information that would normally
be hidden when you use the normal verbose mode or when you run without verbose. With this option you
can monitor the current status of the linker.

Related information

-

206

TASKING VX-toolset for MCS User Guide



Linker option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The linker ignores all other options or input files.

Related information

-

207

Tool Options



Linker option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number,...]

Description

When the linker detects an error or warning, it tries to continue the link process and reports other errors
and warnings. When you use this option without arguments, you tell the linker to treat all warnings as
errors. This means that the exit status of the linker will be non-zero after the detection of one or more
linker warnings. As a consequence, the linker will not produce any output files.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Linker option --no-warnings (Suppress some or all warnings)

208

TASKING VX-toolset for MCS User Guide



5.3. Control Program Options

The control program ccmcs facilitates the invocation of the various components of the MCS toolset from
a single command line.

Options in Eclipse versus options on the command line

Eclipse invokes the assembler and linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the tools. The control program processes command line
options either by itself, or, when the option is unknown to the control program, it looks whether it can pass
the option to one of the other tools. However, for directly passing an option to the assembler or linker, it
is recommended to use the control program options --pass-assembler, --pass-linker.

See the previous sections for details on the options of the tools.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on', use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

ccmcs -Wa-gs test.asm
ccmcs --pass-assembler=--debug-info=+smart test.asm

When you do not specify an option, a default value may become active.

209

Tool Options



Control program option: --case-insensitive

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.

Command line syntax

--case-insensitive

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between uppercase and lowercase characters.
By default the assembler considers uppercase and lowercase characters as different characters.

Example

When assembling case insensitive, the label LabelName is the same label as labelname.

ccmcs --case-insensitive test.asm

Related information

Assembler option --case-insensitive

Assembler control $CASE

210

TASKING VX-toolset for MCS User Guide



Control program option: --check

Menu entry

-

Command line syntax

--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be assembled.

The assembler reports any warnings and/or errors.

This option is available on the command line only.

Related information

Assembler option --check (Check syntax)

211

Tool Options



Control program option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor or select User defined TriCore ....

Command line syntax

--cpu=cpu

-Ccpu

Description

With this option you define the target processor for which you create your application.

The standard list of supported processors is defined in the file processors.xml. This file defines for
each processor its full name (for example, TC27X), the base CPU name (for example, tc27x) and the
core settings (for example, mcs).

The control program passes the options to the underlaying tools. For example, --cpu=tc27x to the
assembler, or -dtc27x.lsl --core=mpe:mcs00 to the linker.

Example

To generate the file test.elf for the TC27X processor, enter:

ccmcs --cpu=tc27x test.asm

Related information

Control program option --cpu-list (Show list of processors)

Control program option --lsl-core (Specify LSL core)

Control program option --processors (Read additional processor definitions)

212

TASKING VX-toolset for MCS User Guide



Control program option: --cpu-list

Menu entry

-

Command line syntax

--cpu-list[=pattern]

Description

With this option the control program shows a list of supported processors as defined in the file
processors.xml. This can be useful when you want to select a processor name or id for the --cpu
option.

The pattern works similar to the UNIX grep utility.You can use it to limit the output list.

Example

To show a list of all processors, enter:

ccmcs --cpu-list

To show all processors of the mcs core, enter:

ccmcs --cpu-list=mcs

--- ~/cmcs/etc/processors.xml ---
    id           name                         CPU          core
    userdef16x   User defined TriCore 1.6.x   userdef16x   mcs
    tc2d5t       TC2D5T                       tc2d5t       mcs
    tc27x        TC27X                        tc27x        mcs

Related information

Control program option --cpu (Select processor)

213

Tool Options



Control program option: --create (-c)

Menu entry

-

Command line syntax

--create[=stage]

-c[stage]

You can specify the following stages:

Stop after the files are linked to a linker object file (.out)lrelocatable

Stop after the files are assembled to objects (.o)oobject

Default (without flags): --create=object

Description

Normally the control program generates an absolute object file of the specified output format from the file
you supplied as input.With this option you tell the control program to stop after a certain number of phases.

Example

To generate the object file test.o:

ccmcs --create test.asm

The control program stops after the file is assembled. It does not link nor locate the generated output.

Related information

Linker option --link-only (Link only, no locating)

214

TASKING VX-toolset for MCS User Guide



Control program option: --debug-info (-g)

Menu entry

1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.

Command line syntax

--debug-info

-g

Description

With this option you tell the control program to include debug information in the generated object file.

The control program calls the assembler with --debug-info=+local,+smart (-gls).

Related information

Assembler option --debug-info (Generate symbolic debug information)

215

Tool Options



Control program option: --define (-D)

Menu entry

1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.

2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

--define=macro_name[=macro_definition]

-Dmacro_name[=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful to assembly
conditional assembly source as shown in the example below.

The control program passes the option --define (-D) to the assembler.

Example

Consider the following program with conditional code to assemble a demo program and a real program:

  .SDECL ".mcstext.code",code
  .SECT  ".mcstext.code"
  .IF DEMO == 1
      JMP demo_part   ; assemble for the demo program
  .ELSE
      JMP real_part   ; assemble for the real program
  .ENDIF

You can now use a macro definition to set the DEMO flag:

216

TASKING VX-toolset for MCS User Guide



ccmcs --define=DEMO test.asm
ccmcs --define=DEMO=1 test.asm

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

ccmcs --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.asm

Related information

Control program option --option-file (Specify an option file)

217

Tool Options



Control program option: --dep-file

Menu entry

-

Command line syntax

--dep-file[=file]

Description

With this option you tell the assembler to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to a file with extension .d (one for every input file).When you specify
a filename, all dependencies will be combined in the specified file.

Example

ccmcs --dep-file=test.dep -t test.asm

The assembler assembles the file test.asm, which results in the output file test.o, and generates
dependency lines in the file test.dep.

Related information

-

218

TASKING VX-toolset for MCS User Guide



Control program option: --diag

Menu entry

1. From the Window menu, select Show View » Other » TASKING » Problems.

The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.

A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 103, enter:

ccmcs --diag=103

This results in message 103 with explanation.

To write an explanation of all errors and warnings in HTML format to file ccerrors.html, use redirection
and enter:

ccmcs --diag=html:all > ccerrors.html

219

Tool Options



Related information

-

220

TASKING VX-toolset for MCS User Guide



Control program option: --dry-run (-n)

Menu entry

-

Command line syntax

--dry-run

-n

Description

With this option you put the control program in verbose mode. The control program prints the invocations
of the tools it would use to process the files without actually performing the steps.

Related information

Control program option --verbose (Verbose output)

221

Tool Options



Control program option: --dwarf-version

Menu entry

-

Command line syntax

--dwarf-version={2|3}

Default: 3

Description

With this option you tell the assembler which DWARF debug version to generate, DWARF2 or DWARF3
(default).

Related information

-

222

TASKING VX-toolset for MCS User Guide



Control program option: --error-file

Menu entry

-

Command line syntax

--error-file

Description

With this option the control program tells the assembler and linker to redirect error messages to a file.

Example

To write errors to error files instead of stderr, enter:

ccmcs --error-file test.asm

Related information

Control Program option --warnings-as-errors (Treat warnings as errors)

223

Tool Options



Control program option: --help (-?)

Menu entry

-

Command line syntax

--help[=item]

-?

You can specify the following argument:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

ccmcs -?
ccmcs --help
ccmcs

To see a detailed description of the available options, enter:

ccmcs --help=options

Related information

-

224

TASKING VX-toolset for MCS User Guide



Control program option: --include-directory (-I)

Menu entry

1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.

2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--include-directory=path,...

-Ipath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory.

The control program passes this option to the assembler.

Example

Suppose that the assembly source file test.asm contains the following lines:

.INCLUDE 'myinc.inc'

You can call the control program as follows:

ccmcs --include-directory=c:\proj\include test.asm

First the assembler looks for the file myinc.inc in the directory where test.asm is located. If it does
not find the file, it looks in the directory c:\proj\include (this option). If the file is still not found, the
assembler searches in the environment variable and then in the default include directory.

Related information

Assembler option --include-directory (Add directory to include file search path)

Assembler option --include-file (Include file at the start of the input file)

225

Tool Options



Control program option: --keep-output-files (-k)

Menu entry

Eclipse always removes generated output files when an error occurs.

Command line syntax

--keep-output-files

-k

Description

If an error occurs during the assembling or linking process, the resulting output file may be incomplete
or incorrect. With this option you keep the generated output files when an error occurs.

By default the control program removes generated output files when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated files. For example when you know that a particular
error does not result in a corrupt file, or when you want to inspect the output file, or send it to Altium
support.

The control program passes this option to the assembler and linker.

Example

ccmcs --keep-output-files test.asm

When an error occurs during assembling or linking, the erroneous generated output files will not be
removed.

Related information

Assembler option --keep-output-files

Linker option --keep-output-files

226

TASKING VX-toolset for MCS User Guide



Control program option: --keep-temporary-files (-t)

Menu entry

1. Select Global Options.

2. Enable the option Keep temporary files.

Command line syntax

--keep-temporary-files

-t

Description

By default, the control program removes intermediate files like the .o file (result of the assembler phase).

With this option you tell the control program to keep temporary files it generates during the creation of
the absolute object file.

Example

ccmcs --keep-temporary-files test.asm

The control program keeps all intermediate files it generates while creating the absolute object file
test.elf.

Related information

-

227

Tool Options



Control program option: --list-files

Menu entry

-

Command line syntax

--list-files[=file]

Default: no list files are generated

Description

With this option you tell the assembler via the control program to generate a list file for each specified
input file. A list file shows the generated object code and the relative addresses. Note that the assembler
generates a relocatable object file with relative addresses.

With the optional file you can specify a name for the list file. This is only possible if you specify only one
input file to the control program. If you do not specify a file name, or you specify more than one input file,
the control program names the generated list file(s) after the specified input file(s) with extension .lst.

Note that object files and library files are not counted as input files.

Related information

Assembler option --list-file (Generate list file)

Assembler option --list-format (Format list file)

228

TASKING VX-toolset for MCS User Guide



Control program option: --lsl-core

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Select core list, select a processor core.

Command line syntax

--lsl-core=MCS-core

You can specify the following MCS cores:

MCS core 0mcs00

MCS core 1mcs01

MCS core 2mcs02

MCS core 3mcs03

Default: mcs00

Description

With this option you can specify the LSL core architecture the code is intended for. For example, the file
tc27x.lsl in the include.lsl directory, contains a description of derivative tc27x and the supported
MCS cores.

Example

To link objects for the MCS core mcs01, enter:

ccmcs --cpu=tc27x --lsl-core=mcs01 test.asm

This results in the following invocation of the tools:

+ asmcs -Ctc27x -o test.o test.asm
+ lcms  -o test.elf -dtc27x.lsl --non-romable
        --user-provided-initialization-code -D__LINKONLY__
        -DCSA=0 --core=mpe:mcs01 --map-file test.o

Related information

Linker option --core (Specify LSL core)

229

Tool Options



Control program option: --lsl-file (-d)

Menu entry

An LSL file can be generated when you create your TriCore project in Eclipse:

1. From the File menu, select File » New » TASKING TriCore C/C++ Project.

The New C/C++ Project wizard appears.

2. Fill in the project settings in each dialog and click Next > until the TriCore Project Settings appear.

3. Enable the option Add linker script file to the project and click Finish.

Eclipse creates your project and the file project.lsl in the project directory.

The LSL file can be specified in the Properties dialog:

1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.lsl) field.

Command line syntax

--lsl-file=file,...

-dfile,...

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

• the architecture definition describes the core's hardware architecture.

• the memory definition describes the physical memory available in the system.

• the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file via the control program to the linker. If you do not specify
this option, the linker uses a default script file.You can specify the existing file target.lsl or the name
of a manually written linker script file.You can use this option multiple times. The linker processes the
LSL files in the order in which they appear on the command line.

Related information

Section 3.6, Controlling the Linker with a Script

230

TASKING VX-toolset for MCS User Guide



Control program option: --make-target

Menu entry

-

Command line syntax

--make-target=name

Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension .o.

Example

ccmcs --preprocess=+make --make-target=../mytarget.o test.asm

The assembler generates dependency lines with the default target name ../mytarget.o instead of
test.o.

Related information

Control program option --dep-file (Generate dependencies in a file)

231

Tool Options



Control program option: --no-map-file

Menu entry

1. Select Linker » Map File.

2. Disable the option Generate map file.

Command line syntax

--no-map-file

Description

By default the control program tells the linker to generate a linker map file.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (.o) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on
address.

With this option you prevent the generation of a map file.

Related information

-

232

TASKING VX-toolset for MCS User Guide



Control program option: --no-warnings (-w)

Menu entry

1. Select Assembler » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.

2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537,538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-warnings[=number[-number],...]

-w[number[-number],...]

Description

With this option you can suppresses all warning messages for the various tools or specific control program
warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings of all tools are suppressed.

• If you specify this option with a number or a range, only the specified control program warnings are
suppressed.You can specify the option --no-warnings=number multiple times.

Example

To suppress all warnings for all tools, enter:

ccmcs test.asm --no-warnings

Related information

Control program option --warnings-as-errors (Treat warnings as errors)

233

Tool Options



Control program option: --option-file (-f)

Menu entry

-

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the control program.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

234

TASKING VX-toolset for MCS User Guide



--debug-info
--define=DEMO=1
test.asm

Specify the option file to the control program:

ccmcs --option-file=myoptions

This is equivalent to the following command line:

ccmcs --debug-info --define=DEMO=1 test.asm

Related information

-

235

Tool Options



Control program option: --output (-o)

Menu entry

Eclipse always uses the project name as the basename for the output file.

Command line syntax

--output=file

-o file

Description

By default, the control program generates a file with the same basename as the first specified input file.
With this option you specify another name for the resulting absolute object file.

Example

ccmcs test.asm prog.asm

The control program generates an ELF/DWARF object file (default) with the name test.elf.

To generate the file result.elf:

ccmcs --output=result.elf test.asm prog.asm

Related information

Linker option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

236

TASKING VX-toolset for MCS User Guide



Control program option: --pass (-W)

Menu entry

1. Select Assembler » Miscellaneous or Linker » Miscellaneous.

2. Add an option to the Additional options field.

Be aware that the options in the option file are added to the options you have set in the other pages.
Only in extraordinary cases you may want to use them in combination. The assembler options are
preceded by -Wa and the linker options are preceded by -Wl.

Command line syntax

Pass option directly to the assembler-Waoption--pass-assembler=option

Pass option directly to the linker-Wloption--pass-linker=option

Description

With this option you tell the control program to call a tool with the specified option. The control program
does not use or interpret the option itself, but specifies it directly to the tool which it calls.

Example

To pass the option --verbose directly to the linker, enter:

ccmcs --pass-linker=--verbose test.asm

Related information

-

237

Tool Options



Control program option: --processors

Menu entry

1. From the Window menu, select Preferences.

The Preferences dialog appears.

2. Select TASKING » MCS.

3. Click the Add button to add additional processor definition files.

Command line syntax

--processors=file

Description

With this option you can specify an additional XML file with processor definitions.

The standard list of supported processors is defined in the file processors.xml. This file defines for
each processor its full name (for example, TC27X), the base CPU name (for example, tc27x) and the
core settings (for example, mcs).

The control program reads the specified file after the file processors.xml in the product's etc directory.
Additional XML files can override processor definitions made in XML files that are read before.

Multiple --processors options are allowed.

Eclipse generates a --processors option in the makefiles for each specified XML file.

Example

Specify an additional processor definition file (suppose processors-new.xml contains a new processor
MCSNEW):

ccmcs --processors=processors-new.xml --cpu=MCSNEW test.c

Related information

Control program option --cpu (Select processor)

238

TASKING VX-toolset for MCS User Guide



Control program option: --verbose (-v)

Menu entry

1. Select Global Options.

2. Enable the option Verbose mode of control program.

Command line syntax

--verbose

-v

Description

With this option you put the control program in verbose mode.The control program performs it tasks while
it prints the steps it performs to stdout.

Related information

Control program option --dry-run (Verbose output and suppress execution)

239

Tool Options



Control program option: --version (-V)

Menu entry

-

Command line syntax

--version

-V

Description

Display version information. The control program ignores all other options or input files.

Related information

-

240

TASKING VX-toolset for MCS User Guide



Control program option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

--warnings-as-errors[=number[-number],...]

Description

If one of the tools encounters an error, it stops processing the file(s). With this option you tell the tools to
treat warnings as errors or treat specific control program warning messages as errors:

• If you specify this option but without numbers, all warnings are treated as errors.

• If you specify this option with a number or a range, only the specified control program warnings are
treated as an error.You can specify the option --warnings-as-errors=number multiple times.

Use one of the --pass-tool options to pass this option directly to a tool when a specific warning for that
tool must be treated as an error. For example, use --pass-assembler=--warnings-as-errors=number
to treat a specific assembler warning as an error.

Related information

Control program option --no-warnings (Suppress some or all warnings)

Control program option --pass (Pass option to tool)

241

Tool Options



5.4. Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility mkmcs to
build all your files. However, you can also use the make utility directly from the command line to build
your project.

The invocation syntax is:

mkmcs [option...] [target...] [macro=def]

This section describes all options for the make utility. The make utility is a command line tool so there
are no equivalent options in Eclipse.

For detailed information about the make utility and using makefiles see Section 4.2, Make Utility mkmcs.

242

TASKING VX-toolset for MCS User Guide



Defining Macros

Command line syntax

macro_name[=macro_definition]

Description

With this argument you can define a macro and specify it to the make utility.

A macro definition remains in existence during the execution of the makefile, even when the makefile
recursively calls the make utility again. In the recursive call, the macro acts as an environment variable.
This means that it is overruled by definitions in the recursive call. Use the option -e to prevent this.

You can specify as many macros as you like. If the command line exceeds the limit of the operating
system, you can define the macros in an option file which you then must specify to the make utility with
the option -m) file.

Defining macros on the command line is, for example, useful in combination with conditional processing
as shown in the example below.

Example

Consider the following makefile with conditional rules to build a demo program and a real program:

ifdef DEMO       # the value of DEMO is of no importance
   real.elf : demo.o main.o
              lmcs demo.o main.o -lc -lfp
else
   real.elf : real.o main.o
              lmcs real.o main.o -lc -lfp
endif

You can now use a macro definition to set the DEMO flag:

mkmcs real.elf DEMO=1

In both cases the absolute object file real.elf is created but depending on the DEMO flag it is linked
with demo.o or with real.o.

Related information

Make utility option -e (Environment variables override macro definitions)

Make utility option -m (Name of invocation file)

243

Tool Options



Make utility option: -?

Command line syntax

-?

Description

Displays an overview of all command line options.

Example

The following invocation displays a list of the available command line options:

mkmcs -?

Related information

-

244

TASKING VX-toolset for MCS User Guide



Make utility option: -a

Command line syntax

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example

mkmcs -a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

-

245

Tool Options



Make utility option: -c

Command line syntax

-c

Description

Eclipse uses this option when you create sub-projects. In this case the make utility calls another instance
of the make utility for the sub-project. With the option -c, the make utility runs as a child process of the
current make.

The option -c overrules the option -err.

Example

mkmcs -c

The make utility runs its commands as a child processes.

Related information

Make utility option -err (Redirect error message to file)

246

TASKING VX-toolset for MCS User Guide



Make utility option: -D / -DD

Command line syntax

-D
-DD

Description

With the option -D the make utility prints every line of the makefile to standard output as it is read by
mkmcs.

With the option -DD not only the lines of the makefile are printed but also the lines of the mkmcs.mk file
(implicit rules).

Example

mkmcs -D

Each line of the makefile that is read by the make utility is printed to standard output (usually your screen).

Related information

-

247

Tool Options



Make utility option: -d/ -dd

Command line syntax

-d
-dd

Description

With the option -d the make utility shows which files are out of date and thus need to be rebuild. The
option -dd gives more detail than the option -d.

Example

mkmcs -d

Shows which files are out of date and rebuilds them.

Related information

-

248

TASKING VX-toolset for MCS User Guide



Make utility option: -e

Command line syntax

-e

Description

If you use macro definitions, they may overrule the settings of the environment variables. With the option
-e, the settings of the environment variables are used even if macros define otherwise.

Example

mkmcs -e

The make utility uses the settings of the environment variables regardless of macro definitions.

Related information

-

249

Tool Options



Make utility option: -err

Command line syntax

-err file

Description

With this option the make utility redirects error messages and verbose messages to a specified file.

With the option -s the make utility only displays error messages.

Example

mkmcs -err error.txt

The make utility writes messages to the file error.txt.

Related information

Make utility option -s (Do not print commands before execution)

Make utility option -c (Run as child process)

250

TASKING VX-toolset for MCS User Guide



Make utility option: -f

Command line syntax

-f my_makefile

Description

By default the make utility uses the file makefile to build your files.

With this option you tell the make utility to use the specified file instead of the file makefile. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from stdin.

Example

mkmcs -f mymake

The make utility uses the file mymake to build your files.

Related information

-

251

Tool Options



Make utility option: -G

Command line syntax

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

Example

Suppose your makefile and other files are stored in the directory ..\myfiles.You can call the make
utility, for example, as follows:

mkmcs -G ..\myfiles

Related information

-

252

TASKING VX-toolset for MCS User Guide



Make utility option: -i

Command line syntax

-i

Description

When an error occurs during the make process, the make utility exits with a certain exit code.

With the option -i, the make utility exits without an error code, even when errors occurred.

Example

mkmcs -i

The make utility exits without an error code, even when an error occurs.

Related information

-

253

Tool Options



Make utility option: -K

Command line syntax

-K

Description

With this option the make utility keeps temporary files it creates during the make process.The make utility
stores temporary files in the directory that you have specified with the environment variable TMPDIR or
in the default 'temp' directory of your system when the TMPDIR environment variable is not specified.

Example

mkmcs -K

The make utility preserves all temporary files.

Related information

-

254

TASKING VX-toolset for MCS User Guide



Make utility option: -k

Command line syntax

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example

mkmcs -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

Make utility option -S (Undo the effect of -k)

255

Tool Options



Make utility option: -m

Command line syntax

-m file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the make utility.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option -m multiple times.

If you use '-' instead of a filename it means that the options are read from stdin.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

Note that adjacent strings are concatenated.

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-k
-err errors.txt
test.elf

256

TASKING VX-toolset for MCS User Guide



Specify the option file to the make utility:

mkmcs -m myoptions

This is equivalent to the following command line:

mkmcs -k -err errors.txt test.elf

Related information

-

257

Tool Options



Make utility option: -n

Command line syntax

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.

Example

mkmcs -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.

Related information

Make utility option -s (Do not print commands before execution)

258

TASKING VX-toolset for MCS User Guide



Make utility option: -p

Command line syntax

-p

Description

Normally, if a command in a target rule in a makefile returns an error or when the target construction is
interrupted, the make utility removes that target file. With this option you tell the make utility to make all
target files precious. This means that all dependency files are never removed.

Example

mkmcs -p

The make utility never removes target dependency files.

Related information

Special target .PRECIOUS in Section 4.2.2.1, Targets and Dependencies

259

Tool Options



Make utility option: -q

Command line syntax

-q

Description

With this option the make utility does not perform any tasks but only returns an exit code. A zero status
indicates that all target files are up to date, a non-zero status indicates that some or all target files are
out of date.

Example

mkmcs -q

The make utility only returns an error code that indicates whether all target files are up to date or not. It
does not rebuild any files.

Related information

-

260

TASKING VX-toolset for MCS User Guide



Make utility option: -r

Command line syntax

-r

Description

When you call the make utility, it first reads the implicit rules from the file mkmcs.mk, then it reads the
makefile with the rules to build your files. (The file mkmcs.mk is located in the \etc directory of the
toolset.)

With this option you tell the make utility not to read mkmcs.mk and to rely fully on the make rules in the
makefile.

Example

mkmcs -r

The make utility does not read the implicit make rules in mkmcs.mk.

Related information

-

261

Tool Options



Make utility option: -S

Command line syntax

-S

Description

With this option you cancel the effect of the option -k. This is only necessary in a recursive make where
the option -k might be inherited from the top-level make via MAKEFLAGS or if you set the option -k in
the environment variable MAKEFLAGS.

With this option you tell the make utility not to read mkmcs.mk and to rely fully on the make rules in the
makefile.

Example

mkmcs -S

The effect of the option -k is cancelled so the make utility stops with the make process after it encounters
an error.

The option -k in this example may have been set with the environment variable MAKEFLAGS or in a
recursive call to mkmcs in the makefile.

Related information

Make utility option -k (On error, abandon the work for the current target only)

262

TASKING VX-toolset for MCS User Guide



Make utility option: -s

Command line syntax

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

mkmcs -s

The make utility rebuilds your files but does not print the commands it executes during the make process.

Related information

Make utility option -n (Perform a dry run)

263

Tool Options



Make utility option: -t

Command line syntax

-t

Description

With this option you tell the make utility to touch the target files, bringing them up to date, rather than
performing the rules to rebuild them.

Example

mkmcs -t

The make utility updates out-of-date files by giving them a new date and time stamp. The files are not
actually rebuild.

Related information

-

264

TASKING VX-toolset for MCS User Guide



Make utility option: -time

Command line syntax

-time

Description

With this option you tell the make utility to display the current date and time on standard output.

Example

mkmcs -time

The make utility displays the current date and time and updates out-of-date files.

Related information

-

265

Tool Options



Make utility option: -V

Command line syntax

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

-

266

TASKING VX-toolset for MCS User Guide



Make utility option: -W

Command line syntax

-W target

Description

With this option the make utility considers the specified target file always as up to date and will not rebuild
it.

Example

mkmcs -W test.elf

The make utility rebuilds out of date targets in the makefile except the file test.elf which is considered
now as up to date.

Related information

-

267

Tool Options



Make utility option: -w

Command line syntax

-w

Description

With this option the make utility sends error messages and verbose messages to standard output.Without
this option, the make utility sends these messages to standard error.

This option is only useful on UNIX systems.

Example

mkmcs -w

The make utility sends messages to standard out instead of standard error.

Related information

-

268

TASKING VX-toolset for MCS User Guide



Make utility option: -x

Command line syntax

-x

Description

With this option the make utility shows extended error messages. Extended error messages give more
detailed information about the exit status of the make utility after errors.

Example

mkmcs -x

If errors occur, the make utility gives extended information.

Related information

-

269

Tool Options



5.5. Parallel Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility amk to build
all your files. However, you can also use the make utility directly from the command line to build your
project.

The invocation syntax is:

amk [option...] [target...] [macro=def]

This section describes all options for the parallel make utility.

For detailed information about the parallel make utility and using makefiles see Section 4.3, Make Utility
amk.

270

TASKING VX-toolset for MCS User Guide



Parallel make utility option: --always-rebuild (-a)

Command line syntax

--always-rebuild

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example

amk -a

Rebuilds all your files, regardless of whether they are out of date or not.

Related information

-

271

Tool Options



Parallel make utility option: --change-dir (-G)

Command line syntax

--change-dir=path

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

The macro SUBDIR is defined with the value of path.

Example

Suppose your makefile and other files are stored in the directory ..\myfiles.You can call the make
utility, for example, as follows:

amk -G ..\myfiles

Related information

-

272

TASKING VX-toolset for MCS User Guide



Parallel make utility option: --diag

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

HTML output.html

Rich Text Format.rtf

ASCII text.text

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify.You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 169, enter:

amk --diag=169

This results in the following message and explanation:

F169: target '%s' returned exit code %d

An error occured while executing one of the commands
of the target, and -k option is not specified.

To write an explanation of all errors and warnings in HTML format to file amkerrors.html, use redirection
and enter:

amk --diag=html:all > amkerrors.html

Related information

-

273

Tool Options



Parallel make utility option: --dry-run (-n)

Command line syntax

--dry-run

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.

Example

amk -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.

Related information

Parallel make utility option -s (Do not print commands before execution)

274

TASKING VX-toolset for MCS User Guide



Parallel make utility option: --help (-? / -h)

Command line syntax

--help[=item]

-h

-?

You can specify the following arguments:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

amk -?
amk --help

To see a detailed description of the available options, enter:

amk --help=options

Related information

-

275

Tool Options



Parallel make utility option: --jobs (-j) / --jobs-limit (-J)

Menu

1. From the Project menu, select Properties for

The Properties dialog appears.

2. In the left pane, select C/C++ Build.

In the right pane the C/C++ Build page appears.

3. On the Behaviour tab, select Use parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

Command line syntax

--jobs[=number]
-j[number]

--jobs-limit[=number]
-J[number]

Description

When these options you can limit the number of parallel jobs.The default is 1. Zero means no limit. When
you omit the number, amk uses the number of cores detected.

Option -J is the same as -j, except that the number of parallel jobs is limited by the number of cores
detected.

Example

amk -j3

Limit the number of parallel jobs to 3.

Related information

-

276

TASKING VX-toolset for MCS User Guide



Parallel make utility option: --keep-going (-k)

Command line syntax

--keep-going

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example

amk -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

-

277

Tool Options



Parallel make utility option: --list-targets (-l)

Command line syntax

--list-targets

-l

Description

With this option, the make utility lists all "primary" targets that are out of date.

Example

amk -l
list of targets

Related information

-

278

TASKING VX-toolset for MCS User Guide



Parallel make utility option: --makefile (-f)

Command line syntax

--makefile=my_makefile

-f my_makefile

Description

By default the make utility uses the file makefile to build your files.

With this option you tell the make utility to use the specified file instead of the file makefile. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from stdin.

Example

amk -f mymake

The make utility uses the file mymake to build your files.

Related information

-

279

Tool Options



Parallel make utility option: --no-warnings (-w)

Command line syntax

--no-warnings[=number,...]

-w[number,...]

Description

With this option you can suppresses all warning messages or specific warning messages.

On the command line this option works as follows:

• If you do not specify this option, all warnings are reported.

• If you specify this option but without numbers, all warnings are suppressed.

• If you specify this option with a number, only the specified warning is suppressed.You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 751 and 756, enter:

amk --no-warnings=751,756

Related information

Parallel make utility option --warnings-as-errors (Treat warnings as errors)

280

TASKING VX-toolset for MCS User Guide



Parallel make utility option: --silent (-s)

Command line syntax

--silent

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

amk -s

The make utility rebuilds your files but does not print the commands it executes during the make process.

Related information

Parallel make utility option -n (Perform a dry run)

281

Tool Options



Parallel make utility option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

-

282

TASKING VX-toolset for MCS User Guide



Parallel make utility option: --warnings-as-errors

Command line syntax

--warnings-as-errors[=number,...]

Description

If the make utility encounters an error, it stops. When you use this option without arguments, you tell the
make utility to treat all warnings as errors.This means that the exit status of the make utility will be non-zero
after one or more warnings. As a consequence, the make utility now also stops after encountering a
warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Parallel make utility option --no-warnings (Suppress some or all warnings)

283

Tool Options



5.6. Archiver Options

The archiver and library maintainer armcs is a tool to build library files and it offers the possibility to
replace, extract and remove modules from an existing library.

The invocation syntax is:

armcs key_option [sub_option...] library [object_file]

This section describes all options for the archiver. Some suboptions can only be used in combination with
certain key options. They are described together. Suboptions that can always be used are described
separately.

For detailed information about the archiver, see Section 4.4, Archiver.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters.You can abbreviate long option
names as long as it forms a unique name.You can mix short and long option names on the command
line.

Overview of the options of the archiver utility

The following archiver options are available:

Sub-optionOptionDescription

Main functions (key options)

-a -b -c -u -v-rReplace or add an object module

-o -v-xExtract an object module from the library

-v-dDelete object module from library

-a -b -v-mMove object module to another position

-s0 -s1-tPrint a table of contents of the library

-pPrint object module to standard output

Sub-options

-a nameAppend or move new modules after existing module name

-b nameAppend or move new modules before existing module name

-cCreate library without notification if library does not exist

-oPreserve last-modified date from the library

-s{0|1}Print symbols in library modules

-uReplace only newer modules

-vVerbose

Miscellaneous

284

TASKING VX-toolset for MCS User Guide



Sub-optionOptionDescription

-?Display options

-VDisplay version header

-f fileRead options from file

-wnSuppress warnings above level n

285

Tool Options



Archiver option: --delete (-d)

Command line syntax

--delete [--verbose]

-d [-v]

Description

Delete the specified object modules from a library. With the suboption --verbose (-v) the archiver shows
which files are removed.

Verbose: the archiver shows which files are removed.-v--verbose

Example

armcs --delete mylib.a obj1.o obj2.o

The archiver deletes obj1.o and obj2.o from the library mylib.a.

armcs -d -v mylib.a obj1.o obj2.o

The archiver deletes obj1.o and obj2.o from the library mylib.a and displays which files are removed.

Related information

-

286

TASKING VX-toolset for MCS User Guide



Archiver option: --dump (-p)

Command line syntax

--dump

-p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other files or tools that serve your own
purposes. Normally you do not need this option.

Example

armcs --dump mylib.a obj1.o > file.o

The archiver prints the file obj1.o to standard output where it is redirected to the file file.o. The effect
of this example is very similar to extracting a file from the library but in this case the 'extracted' file gets
another name.

Related information

-

287

Tool Options



Archiver option: --extract (-x)

Command line syntax

--extract [--modtime] [--verbose]

-x [-o] [-v]

Description

Extract an existing module from the library.

Give the extracted object module the same date as the last-modified
date that was recorded in the library. Without this suboption it
receives the last-modified date of the moment it is extracted.

-o--modtime

Verbose: the archiver shows which files are extracted.-v--verbose

Example

To extract the file obj1.o from the library mylib.a:

armcs --extract mylib.a obj1.o

If you do not specify an object module, all object modules are extracted:

armcs -x mylib.a

Related information

-

288

TASKING VX-toolset for MCS User Guide



Archiver option: --help (-?)

Command line syntax

--help[=item]

-?

You can specify the following argument:

Show extended option descriptionsoptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:

armcs -?
armcs --help
armcs

To see a detailed description of the available options, enter:

armcs --help=options

Related information

-

289

Tool Options



Archiver option: --move (-m)

Command line syntax

--move [-a posname] [-b posname]

-m [-a posname] [-b posname]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how programs are linked if a symbol is
defined in more than one member.

By default, the specified members are moved to the end of the archive. Use the suboptions -a or -b to
move them to a specified place instead.

Move the specified object module(s) after the existing module
posname.

-a
posname

--after=posname

Move the specified object module(s) before the existing
module posname.

-b
posname

--before=posname

Example

Suppose the library mylib.a contains the following objects (see option --print):

obj1.o
obj2.o
obj3.o

To move obj1.o to the end of mylib.a:

armcs --move mylib.a obj1.o

To move obj3.o just before obj2.o:

armcs -m -b obj3.o mylib.a obj2.o

The library mylib.a after these two invocations now looks like:

obj3.o
obj2.o
obj1.o

Related information

Archiver option --print (-t) (Print library contents)

290

TASKING VX-toolset for MCS User Guide



Archiver option: --option-file (-f)

Command line syntax

--option-file=file

-f file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the archiver.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file (-f) multiple times.

If you use '-' instead of a filename it means that the options are read from stdin.

Format of an option file

• Multiple arguments on one line in the option file are allowed.

• To include whitespace in an argument, surround the argument with single or double quotes.

• If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' embedded"

'This has a double quote " embedded'

'This has a double quote " and a single quote '"' embedded"

• When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

         -> "This is a continuation line"

• It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-x mylib.a obj1.o
-w5

291

Tool Options



Specify the option file to the archiver:

armcs --option-file=myoptions

This is equivalent to the following command line:

armcs -x mylib.a obj1.o -w5

Related information

-

292

TASKING VX-toolset for MCS User Guide



Archiver option: --print (-t)

Command line syntax

--print [--symbols=0|1]

-t [-s0|-s1]

Description

Print a table of contents of the library to standard output. With the suboption -s0 the archiver displays all
symbols per object file.

Displays per object the name of the object itself and all symbols in
the object.

-s0--symbols=0

Displays the symbols of all object files in the library in the form
library_name:object_name:symbol_name

-s1--symbols=1

Example

armcs --print mylib.a

The archiver prints a list of all object modules in the library mylib.a:

armcs -t -s0 mylib.a

The archiver prints per object all symbols in the library.

Related information

-

293

Tool Options



Archiver option: --replace (-r)

Command line syntax

--replace [--after=posname] [--before=posname][--create] [--newer-only] [--verbose]

-r [-a posname] [-b posname][-c] [-u] [-v]

Description

You can use the option --replace (-r) for several purposes:

• Adding new objects to the library

• Replacing objects in the library with the same object of a newer date

• Creating a new library

The option --replace (-r) normally adds a new module to the library. However, if the library already contains
a module with the specified name, the existing module is replaced. If you specify a library that does not
exist, the archiver creates a new library with the specified name.

If you add a module to the library without specifying the suboption -a or -b, the specified module is added
at the end of the archive. Use the suboptions -a or -b to insert them after/before a specified place instead.

Insert the specified object module(s) after the existing module
posname.

-a
posname

--after=posname

Insert the specified object module(s) before the existing
module posname.

-b
posname

--before=posname

Create a new library without checking whether it already
exists. If the library already exists, it is overwritten.

-c--create

Insert the specified object module only if it is newer than the
module in the library.

-u--newer-only

Verbose: the archiver shows which files are replaced.-v--verbose

The suboptions -a or -b have no effect when an object is added to the library.

Example

Suppose the library mylib.a contains the following object (see option --print):

obj1.o

To add obj2.o to the end of mylib.a:

armcs --replace mylib.a obj2.o

To insert obj3.o just before obj2.o:

armcs -r -b obj2.o mylib.a obj3.o

294

TASKING VX-toolset for MCS User Guide



The library mylib.a after these two invocations now looks like:

obj1.o
obj3.o
obj2.o

Creating a new library

To create a new library file, add an object file and specify a library that does not yet exist:

armcs --replace obj1.o newlib.a

The archiver creates the library newlib.a and adds the object obj1.o to it.

To create a new library file and overwrite an existing library, add an object file and specify an existing
library with the supoption -c:

armcs -r -c obj1.o mylib.a

The archiver overwrites the library mylib.a and adds the object obj1.o to it. The new library mylib.a
only contains obj1.o.

Related information

Archiver option --print (-t) (Print library contents)

295

Tool Options



Archiver option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The archiver ignores all other options or input files.

Related information

-

296

TASKING VX-toolset for MCS User Guide



Archiver option: --warning (-w)

Command line syntax

--warning=level

-wlevel

Description

With this suboption you tell the archiver to suppress all warnings above the specified level. The level is
a number between 0 - 9.

The level of a message is printed between parentheses after the warning number. If you do not use the
-w option, the default warning level is 8.

Example

To suppress warnings above level 5:

armcs --extract --warning=5 mylib.a obj1.o

Related information

-

297

Tool Options



298

TASKING VX-toolset for MCS User Guide



Chapter 6. List File Formats
This chapter describes the format of the assembler list file and the linker map file.

6.1. Assembler List File Format

The assembler list file is an additional output file of the assembler that contains information about the
generated code. For details on how to generate a list file, see Section 2.5, Generating a List File.

The list file consists of a page header and a source listing.

Page header

The page header is repeated on every page:

TASKING VX-toolset for MCS: MCS assembler vx.yrz Build nnn SN 00000000
Title                                                           Page 1

ADDR CODE      CYCLES  LINE SOURCE LINE

The first line contains version information. The second line can contain a title which you can specify with
the assembler control $TITLE and always contains a page number.The third line is empty and the fourth
line contains the headings of the columns for the source listing.

With the assembler controls $LIST ON/OFF, $PAGE, and with the assembler option --list-format you
can format the list file.

Source listing

The following is a sample part of a listing. An explanation of the different columns follows below.

ADDR CODE      CYCLES  LINE SOURCE LINE
                          1         ; Module start
                          .
                          .
                         33         .sdecl  '.mcstext.proc.channel1',code
0000                     34         .sect   '.mcstext.proc.channel1'
                         35         
                         36         .global process_channel1
0000                     37 process_channel1:       .type   func
0000 rrrr01A3  2    2    38         mrd     R3,chan1_par0
0004 rrrr01A2  2    4    39         mrd     R2,chan1_par1
                          .
                          .
0008                     44 buf:    .space  4
  |  RESERVED
0017

299



This column contains the memory address.The address is a hexadecimal number
that represents the offset from the beginning of a relocatable section or the absolute
address for an absolute section. The address only appears on lines that generate
object code.

ADDR

This is the object code generated by the assembler for this source line, displayed
in hexadecimal format.The displayed code need not be the same as the generated
code that is entered in the object module. The code can also be relocatable code.
In this case the letter 'r' is printed for the relocatable code part in the listing. For
lines that allocate space, the code field contains the text "RESERVED". For lines
that initialize a buffer, the code field lists one value followed by the word
"REPEATS".

CODE

The first number in this column is the number of instruction cycles needed to
execute the instruction(s) as generated in the CODE field. The second number is
the accumulated cycle count of this section.

CYCLES

This column contains the line number. This is a decimal number indicating each
input line, starting from 1 and incrementing with each source line.

LINE

This column contains the source text. This is a copy of the source line from the
assembly source file.

SOURCE LINE

For the .SET and .EQU directives the ADDR and CODE columns do not apply. The symbol value is listed
instead.

6.2. Linker Map File Format

The linker map file is an additional output file of the linker that shows how the linker has mapped the
sections and symbols from the various object files (.o) to output sections. Locate information is not
present, because that is not available for an MCS project. External symbols are listed per space with their
absolute address, both sorted on symbol and sorted on address. For details on how to generate a map
file, see Section 3.8, Generating a Map File.

With the linker option --map-file-format you can specify which parts of the map file you want to see.

In Eclipse the linker map file (project.mapxml) is generated in the output directory of the build configuration,
usually Debug or Release.You can open the map file by double-clicking on the file name.

300

TASKING VX-toolset for MCS User Guide



Each page displays a part of the map file.You can use the drop-down list or the Outline view to navigate
through the different tables and you can use the following buttons.

DescriptionActionIcon

Goes back one page in the history list.Back

Goes forward one page in the history list.Forward

Shows the next table from the drop-down list.Next Table

Shows the previous table from the drop-down list.Previous Table

When you right-click in the view, a popup menu appears (for example, to reset the layout of a table). The
meaning of the different parts is:

Tool and Invocation

This part of the map file contains information about the linker, its version header information, binary
location and which options are used to call it.

Processed Files

This part of the map file shows all processed files. This also includes object files that are extracted from
a library, with the symbol that led to the extraction.

301

List File Formats



Link Result

This part of the map file shows per object file how the link phase has mapped the sections from the various
object files (.o) to output sections.

The name of an input object file.[in] File

A section name and id from the input object file.The number between '( )' uniquely
identifies the section.

[in] Section

The size of the input section.[in] Size

The offset relative to the start of the output section.[out] Offset

The resulting output section name and id.[out] Section

The size of the output section.[out] Size

Module Local Symbols

This part of the map file shows a table for each local scope within an object file. Each table has three
columns, 1 the symbol name, 2 the address of the symbol and 3 the space where the symbol resides in.
The table is sorted on symbol name within each space.

By default this part is not shown in the map file.You have to turn this part on manually with linker option
--map-file-format=+statics (module local symbols).

Cross References

This part of the map file lists all symbols defined in the object modules and for each symbol the object
modules that contain a reference to the symbol are shown. Also, symbols that remain undefined are
shown.

Call Graph

This part is empty for the MCS.

Overlay

This part is empty for the MCS.

Processor and Memory

This part of the map file shows the processor and memory information of the linker script file.

By default this part is not shown in the map file.You have to turn this part on manually with linker option
--map-file-format=+lsl (processor and memory info).You can print this information to a separate file with
linker option --lsl-dump.

You can click the + or - sign to expand or collapse a part of the information.

302

TASKING VX-toolset for MCS User Guide



Removed Sections

This part of the map file shows the sections which are removed from the output file as a result of the
optimization option to delete unreferenced sections and or duplicate code or constant data (linker option
--optimize=cxy).

The name of the section which has been removed.Section

The name of the input object file where the section is removed from.File

The name of the library where the object file is part of.Library

The symbols that were present in the section.Symbol

The reason why the section has been removed. This can be because the section
is unreferenced or duplicated.

Reason

303

List File Formats



304

TASKING VX-toolset for MCS User Guide



Chapter 7. Linker Script Language (LSL)
To make full use of the linker, you can write a script with information about the architecture of the target
processor and locating information.The language for the script is called the Linker Script Language (LSL).
This chapter first describes the structure of an LSL file. The next section contains a summary of the LSL
syntax. In the remaining sections, the semantics of the Linker Script Language is explained.

The TASKING linker is a target independent linker/locator that can simultaneously link and locate all
programs for all cores available on a target board. The target board may be of arbitrary complexity. A
simple target board may contain one standard processor with some external memory that executes one
task. A complex target board may contain multiple standard processors and DSPs combined with
configurable IP-cores loaded in an FPGA. Each core may execute a different program, and external
memory may be shared by multiple cores.

LSL serves two purposes. First it enables you to specify the characteristics (that are of interest to the
linker) of your specific target board and of the cores installed on the board. Second it enables you to
specify how sections should be located in memory.

7.1. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the stack.

This specification is normally written by Altium. Altium supplies LSL files in the include.lsl directory.
The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

See Section 7.4, Semantics of the Architecture Definition for detailed descriptions of LSL in the architecture
definition.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

Altium provides LSL descriptions of supported derivatives. When you build an ASIC or use a derivative
that is not (yet) supported by the TASKING tools, you may have to write a derivative definition.

305



When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

See Section 7.5, Semantics of the Derivative Definition for a detailed description of LSL in the derivative
definition.

The processor definition

The processor definition describes an instance of a derivative.Typically the processor definition instantiates
one derivative only (single-core processor). A processor that contains multiple cores having the same
(homogeneous) or different (heterogeneous) architecture can also be described by instantiating multiple
derivatives of the same or different types in separate processor definitions.

See Section 7.6, Semantics of the Board Specification for a detailed description of LSL in the processor
definition.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

See Section 7.6.3, Defining External Memory and Buses, for more information on how to specify the
external physical memory layout. Internal memory for a processor should be defined in the derivative
definition for that processor.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems.The board specification describes all characteristics of your target board's system buses, memory
devices, I/O sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

• convert a logical address to an offset within a memory device

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within the whole system while locating

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given load-address or run-time address,
to place sections in a given order, and to overlay code and/or data sections.

Which object files (sections) constitute the task that will run on a given core is specified on the command
line when you invoke the linker. The linker will link and locate all sections of all tasks simultaneously.
From the section layout definition the linker can deduce where a given section may be located in memory,

306

TASKING VX-toolset for MCS User Guide



form the board specification the linker can deduce which physical memory is (still) available while locating
the section.

See Section 7.8, Semantics of the Section Layout Definition, for more information on how to locate a
section at a specific place in memory.

Skeleton of a Linker Script File

architecture architecture_name
{
    // Specification core architecture
}

derivative derivative_name
{
    // Derivative definition
}

processor processor_name
{
    // Processor definition
}

memory and/or bus definitions

section_layout space_name
{
    // section placement statements
}

7.2. Syntax of the Linker Script Language

This section describes what the LSL language looks like. An LSL document is stored as a file coded in
UTF-8 with extension .lsl. Before processing an LSL file, the linker preprocesses it using a standard
C preprocessor. Following this, the linker interprets the LSL file using a scanner and parser. Finally, the
linker uses the information found in the LSL file to guide the locating process.

7.2.1. Preprocessing

When the linker loads an LSL file, the linker processes it with a C-style prepocessor. As such, it strips C
and C++ comments.You can use the standard ISO C preprocessor directives, such as #include,
#define, #if/#else/#endif, #error.

For example:

#include "arch.lsl"

Preprocess and include the file arch.lsl at this point in the LSL file.

307

Linker Script Language (LSL)



7.2.2. Lexical Syntax

The following lexicon is used to describe the syntax of the Linker Script Language:

A is defined as B=A ::= B

A is defined as B and C; B is followed by C=A ::= B C

A is defined as B or C=A ::= B | C

zero or one occurrence of B=<B>0|1

zero of more occurrences of B=<B>>=0

one of more occurrences of B=<B>>=1

a character sequence starting with 'a'-'z', 'A'-'Z' or '_'. Following
characters may also be digits and dots '.'

=IDENTIFIER

sequence of characters not starting with \n, \r or \t=STRING

" STRING " (double quoted string)=DQSTRING

octal number, starting with a zero (06, 045)=OCT_NUM

decimal number, not starting with a zero (14, 1024)=DEC_NUM

hexadecimal number, starting with '0x' (0x0023, 0xFF00)=HEX_NUM

OCT_NUM, DEC_NUM and HEX_NUM can be followed by a k (kilo), M (mega), or G (giga).

Characters in bold are characters that occur literally. Words in italics are higher order terms that are
defined in the same or in one of the other sections.

To write comments in LSL file, you can use the C style '/* */' or C++ style '//'.

7.2.3. Identifiers and Tags

arch_name         ::= IDENTIFIER
bus_name          ::= IDENTIFIER
core_name         ::= IDENTIFIER
derivative_name   ::= IDENTIFIER
file_name         ::= DQSTRING
group_name        ::= IDENTIFIER
heap_name         ::= section_name
map_name          ::= IDENTIFIER
mem_name          ::= IDENTIFIER
proc_name         ::= IDENTIFIER
section_name      ::= DQSTRING
space_name        ::= IDENTIFIER
stack_name        ::= section_name
symbol_name       ::= DQSTRING

308

TASKING VX-toolset for MCS User Guide



tag_attr          ::= (tag<,tag>>=0)
tag               ::= tag = DQSTRING

A tag is an arbitrary text that can be added to a statement.

7.2.4. Expressions

The expressions and operators in this section work the same as in ISO C.

number            ::= OCT_NUM
                    | DEC_NUM
                    | HEX_NUM

expr              ::= number
                    | symbol_name
                    | unary_op expr
                    | expr binary_op expr
                    | expr ? expr : expr
                    | ( expr )
                    | function_call

unary_op          ::= !    // logical NOT
                    | ~    // bitwise complement
                    | -    // negative value

binary_op         ::= ^    // exclusive OR
                    | *    // multiplication
                    | /    // division
                    | %    // modulus
                    | +    // addition
                    | -    // subtraction
                    | >>   // right shift
                    | <<   // left shift
                    | ==   // equal to
                    | !=   // not equal to
                    | >    // greater than
                    | <    // less than
                    | >=   // greater than or equal to
                    | <=   // less than or equal to
                    | &    // bitwise AND
                    | |    // bitwise OR
                    | &&   // logical AND
                    | ||   // logical OR

7.2.5. Built-in Functions

function_call     ::= absolute ( expr )
                    | addressof ( addr_id )
                    | exists ( section_name )
                    | max ( expr , expr )

309

Linker Script Language (LSL)



                    | min ( expr , expr )
                    | sizeof ( size_id )

addr_id           ::= sect : section_name
                    | group : group_name

size_id           ::= sect : section_name
                    | group : group_name
                    | mem : mem_name

• Every space, bus, memory, section or group you refer to, must be defined in the LSL file.

• The addressof() and sizeof() functions with the group or sect argument can only be used in
the right hand side of an assignment. The sizeof() function with the mem argument can be used
anywhere in section layouts.

You can use the following built-in functions in expressions. All functions return a numerical value. This
value is a 64-bit signed integer.

absolute()

int absolute( expr )

Converts the value of expr to a positive integer.

absolute( "labelA"-"labelB" )

addressof()

int addressof( addr_id )

Returns the address of addr_id, which is a named section or group. To get the offset of the section with
the name asect:

addressof( sect: "asect")

This function only works in assignments.

exists()

int exists( section_name )

The function returns 1 if the section section_name exists in one or more object file, 0 otherwise. If the
section is not present in input object files, but generated from LSL, the result of this function is undefined.

To check whether the section mysection exists in one of the object files that is specified to the linker:

exists( "mysection" )

310

TASKING VX-toolset for MCS User Guide



max()

int max( expr, expr )

Returns the value of the expression that has the largest value. To get the highest value of two symbols:

max( "sym1" , "sym2")

min()

int min( expr, expr )

Returns the value of the expression hat has the smallest value. To get the lowest value of two symbols:

min( "sym1" , "sym2")

sizeof()

int sizeof( size_id )

Returns the size of the object (group, section or memory) the identifier refers to. To get the size of the
section "asection":

sizeof( sect: "asection" )

The group and sect arguments only works in assignments. The mem argument can be used
anywhere in section layouts.

7.2.6. LSL Definitions in the Linker Script File

description       ::= <definition>>=1

definition        ::= architecture_definition
                    | derivative_definition
                    | board_spec
                    | section_definition
                    | section_setup

• At least one architecture_definition must be present in the LSL file.

7.2.7. Memory and Bus Definitions

mem_def           ::= memory mem_name <tag_attr>0|1 {  <mem_descr ;>>=0 }

• A mem_def defines a memory with the mem_name as a unique name.

mem_descr         ::= type = <reserved>0|1 mem_type
                    | mau = expr
                    | size = expr
                    | speed = number

311

Linker Script Language (LSL)



                    | priority = number
                    | exec_priority = number
                    | fill <= fill_values>0|1

                    | write_unit = expr
                    | mapping

• A mem_def contains exactly one type statement.

• A mem_def contains exactly one mau statement (non-zero size).

• A mem_def contains exactly one size statement.

• A mem_def contains zero or one priority (or speed) statement (if absent, the default value is 1).

• A mem_def contains zero or one exec_priority statement.

• A mem_def contains zero or one fill statement.

• A mem_def contains zero or one write_unit statement.

• A mem_def contains at least one mapping

mem_type          ::= rom        // attrs = rx
                    | ram        // attrs = rw
                    | nvram      // attrs = rwx
                    | blockram

fill_values       ::= expr
                    | [ expr <, expr>>=0 ]

bus_def           ::= bus bus_name {  <bus_descr ;>>=0 }

• A bus_def statement defines a bus with the given bus_name as a unique name within a core
architecture.

bus_descr         ::= mau = expr
                    | width = expr  // bus width, nr
                    |               // of data bits 
                    | mapping       // legal destination
                                    // 'bus' only

• The mau and width statements appear exactly once in a bus_descr. The default value for width is
the mau size.

• The bus width must be an integer times the bus MAU size.

• The MAU size must be non-zero.

• A bus can only have a mapping on a destination bus (through dest = bus: ).

mapping           ::= map <map_name>0|1 ( map_descr <, map_descr>>=0 )

312

TASKING VX-toolset for MCS User Guide



map_descr         ::= dest = destination
                    | dest_dbits = range
                    | dest_offset = expr
                    | size = expr
                    | src_dbits = range
                    | src_offset = expr
                    | reserved
                    | priority = number
                    | exec_priority = number
                    | tag

• A map_descr requires at least the size and dest statements.

• A map_descr contains zero or one priority statement (if absent, the default value is 0).

• A map_descr contains zero or one exec_priority statement.

• Each map_descr can occur only once.

• You can define multiple mappings from a single source.

• Overlap between source ranges or destination ranges is not allowed.

• If the src_dbits or dest_dbits statement is not present, its value defaults to the width value if
the source/destination is a bus, and to the mau size otherwise.

• The reserved statement is allowed only in mappings defined for a memory.

destination       ::= space : space_name
                    | bus : <proc_name | 

core_name :>0|1 bus_name

• A space_name refers to a defined address space.

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A bus_name refers to a defined bus.

• The following mappings are allowed (source to destination)

• space => space

• space => bus

• bus => bus

• memory => bus

range             ::= expr .. expr

• With address ranges, the end address is not part of the range.

313

Linker Script Language (LSL)



7.2.8. Architecture Definition

architecture_definition
                  ::= architecture arch_name
                      <( parameter_list )>0|1

                      <extends arch_name
                              <( argument_list )>0|1 >0|1

{ <arch_spec>>=0 }

• An architecture_definition defines a core architecture with the given arch_name as a unique
name.

• At least one space_def and at least one bus_def have to be present in an
architecture_definition.

• An architecture_definition that uses the extends construct defines an architecture that inherits
all elements of the architecture defined by the second arch_name. The parent architecture must be
defined in the LSL file as well.

parameter_list    ::= parameter <, parameter>>=0

parameter         ::= IDENTIFIER <= expr>0|1

argument_list     ::= expr <, expr>>=0

arch_spec         ::= bus_def
                    | space_def
                    | endianness_def

space_def         ::= space space_name <tag_attr>0|1 { <space_descr;>>=0 }

• A space_def defines an address space with the given space_name as a unique name within an
architecture.

space_descr       ::= space_property ;
                    | section_definition  //no space ref
                    | reserved_range

space_property    ::= id = number // as used in object
                    | mau = expr
                    | align = expr
                    | page_size = expr <[ range ] <| [ range ]>>=0>0|1

                    | page
                    | direction = direction
                    | stack_def
                    | heap_def
                    | copy_table_def
                    | start_address
                    | mapping

• A space_def contains exactly one id and one mau statement.

314

TASKING VX-toolset for MCS User Guide



• A space_def contains at most one align statement.

• A space_def contains at most one page_size statement.

• A space_def contains at least one mapping.

stack_def         ::= stack stack_name ( stack_heap_descr
                            <, stack_heap_descr >>=0 )

• A stack_def defines a stack with the stack_name as a unique name.

heap_def          ::= heap heap_name ( stack_heap_descr
                            <, stack_heap_descr >>=0 )

• A heap_def defines a heap with the heap_name as a unique name.

stack_heap_descr  ::= min_size = expr
                    | grows = direction
                    | align = expr
                    | fixed
                    | tag

• The min_size statement must be present.

• You can specify at most one align statement and one grows statement.

direction         ::= low_to_high
                    | high_to_low

• If you do not specify the grows statement, the stack and heap grow low-to-high.

copy_table_def    ::= copytable <( copy_table_descr
                            <, copy_table_descr >>=0 )>0|1

• A space_def contains at most one copytable statement.

• Exactly one copy table must be defined in one of the spaces.

copy_table_descr  ::= align = expr
                    | copy_unit = expr
                    | dest <space_name>0|1 = space_name
                    | page
                    | tag

• The copy_unit is defined by the size in MAUs in which the startup code moves data.

• The dest statement is only required when the startup code initializes memory used by another processor
that has no access to ROM.

• A space_name refers to a defined address space.

start_addr        ::= start_address ( start_addr_descr
                               <, start_addr_descr>>=0 )

315

Linker Script Language (LSL)



start_addr_descr  ::= run_addr = expr
                    | symbol = symbol_name

• A symbol_name refers to the section that contains the startup code.

reserved_range    ::= reserved <tag_attr>0|1 expr .. expr ;

• The end address is not part of the range.

endianness_def    ::= endianness { <endianness_type;>>=1 }

endianness_type   ::= big
                    | little

7.2.9. Derivative Definition

derivative_definition
                  ::= derivative derivative_name
                      <( parameter_list )>0|1

                      <extends derivative_name
                              <( argument_list )>0|1 >0|1

{ <derivative_spec>>=0 }

• A derivative_definition defines a derivative with the given derivative_name as a unique
name.

derivative_spec   ::= core_def
                    | bus_def
                    | mem_def
                    | section_definition // no processor name
                    | section_setup

core_def          ::= core core_name { <core_descr ;>>=0 }

• A core_def defines a core with the given core_name as a unique name.

• At least one core_def must be present in a derivative_definition.

core_descr        ::= architecture = arch_name
                      <( argument_list )>0|1

                    | copytable_space <core_name :>0|1 space_name
                    | endianness = ( endianness_type
                               <, endianness_type>>=0 )
                    | import core_name
                    | space_id_offset = number

• An arch_name refers to a defined core architecture.

• Exactly one architecture statement must be present in a core_def.

• Exactly one copytable_space statement must be present in a core_def, or in exactly one space
in that core, a copytable statement must be present.

316

TASKING VX-toolset for MCS User Guide



7.2.10. Processor Definition and Board Specification

board_spec        ::= proc_def
                    | bus_def
                    | mem_def

proc_def          ::= processor proc_name
{ proc_descr ; }

proc_descr        ::= derivative = derivative_name
                      <( argument_list )>0|1

• A proc_def defines a processor with the proc_name as a unique name.

• If you do not explicitly define a processor for a derivative in an LSL file, the linker defines a processor
with the same name as that derivative.

• A derivative_name refers to a defined derivative.

• A proc_def contains exactly one derivative statement.

7.2.11. Section Layout Definition and Section Setup

section_definition ::= section_layout <space_ref>0|1

                       <( space_layout_properties )>0|1

{ <section_statement>>=0 }

• A section definition inside a space definition does not have a space_ref.

• All global section definitions have a space_ref.

space_ref         ::= <proc_name>0|1 : <core_name>0|1

: space_name <| space_name>>=0

• If more than one processor is present, the proc_name must be given for a global section layout.

• If the section layout refers to a processor that has more than one core, the core_name must be given
in the space_ref.

• A proc_name refers to a defined processor.

• A core_name refers to a defined core.

• A space_name refers to a defined address space.

space_layout_properties
                  ::= space_layout_property <, space_layout_property >>=0

space_layout_property
                  ::= locate_direction
                    | tag

317

Linker Script Language (LSL)



locate_direction  ::= direction = direction

direction         ::= low_to_high
                    | high_to_low

• A section layout contains at most one direction statement.

• If you do not specify the direction statement, the locate direction of the section layout is
low-to-high.

section_statement
                  ::= simple_section_statement ;
                    | aggregate_section_statement

simple_section_statement
                  ::= assignment
                    | select_section_statement
                    | special_section_statement
                    | memcopy_statement

assignment        ::= symbol_name assign_op expr

assign_op         ::= =
                    | :=

select_section_statement
                  ::= select <ref_tree>0|1 <section_name>0|1

                      <section_selections>0|1

• Either a section_name or at least one section_selection must be defined.

section_selections
                  ::= ( section_selection
                        <, section_selection>>=0 )

section_selection
                  ::= attributes = < <+|-> attribute>>0

                    | tag

• +attribute means: select all sections that have this attribute.

• -attribute means: select all sections that do not have this attribute.

special_section_statement
                  ::= heap heap_name <stack_heap_mods>0|1

                    | stack stack_name <stack_heap_mods>0|1

                    | copytable
                    | reserved section_name <reserved_specs>0|1

• Special sections cannot be selected in load-time groups.

stack_heap_mods   ::= ( stack_heap_mod <, stack_heap_mod>>=0 )

318

TASKING VX-toolset for MCS User Guide



stack_heap_mod    ::= size = expr
                    | tag

reserved_specs    ::= ( reserved_spec <, reserved_spec>>=0 )

reserved_spec     ::= attributes
                    | fill_spec
                    | size = expr
                    | alloc_allowed = absolute | ranged

• If a reserved section has attributes r, rw, x, rx or rwx, and no fill pattern is defined, the section is
filled with zeros. If no attributes are set, the section is created as a scratch section (attributes ws, no
image).

memcopy_statement
                  ::= memcopy section_name

( memcopy_spec <, memcopy_spec>0|1 )

memcopy_spec      ::= memory = memory_reference
                    | fill_spec

• A memcopy statement must contain exactly one memory statement.

• A memcopy statement can contain at most one fill_spec.

fill_spec         ::= fill = fill_values

fill_values       ::= expr
                    | [ expr <, expr>>=0 ]

aggregate_section_statement
                  ::= { <section_statement>>=0 }
                    | group_descr
                    | if_statement
                    | section_creation_statement

group_descr       ::= group <group_name>0|1 <( group_specs )>0|1

section_statement

• For every group with a name, the linker defines a label.

• No two groups for address spaces of a core can have the same group_name.

group_specs       ::= group_spec <, group_spec >>=0

group_spec        ::= group_alignment
                    | attributes
                    | copy
                    | nocopy
                    | group_load_address
                    | fill <= fill_values>0|1

                    | group_page
                    | group_run_address

319

Linker Script Language (LSL)



                    | group_type
                    | allow_cross_references
                    | priority = number
                    | tag

• The allow-cross-references property is only allowed for overlay groups.

• Sub groups inherit all properties from a parent group.

group_alignment   ::= align = expr

attributes        ::= attributes = <attribute>>=1

attribute         ::= r    // readable sections
                    | w    // writable sections
                    | x    // executable code sections
                    | i    // initialized sections
                    | s    // scratch sections
                    | b    // blanked (cleared) sections
                    | p    // protected sections

group_load_address
                  ::= load_addr <= load_or_run_addr>0|1

group_page        ::= page <= expr>0|1

                    | page_size = expr <[ range ] <| [ range ]>>=0>0|1

group_run_address ::= run_addr <= load_or_run_addr>0|1

group_type        ::= clustered
                    | contiguous
                    | ordered
                    | overlay

• For non-contiguous groups, you can only specify group_alignment and attributes.

• The overlay keyword also sets the contiguous property.

• The clustered property cannot be set together with contiguous or ordered on a single group.

load_or_run_addr  ::= addr_absolute
                    | addr_range <| addr_range>>=0

addr_absolute     ::= expr
                    | memory_reference [ expr ]

• An absolute address can only be set on ordered groups.

addr_range        ::= [ expr .. expr ]
                    | memory_reference
                    | memory_reference [ expr .. expr ]

320

TASKING VX-toolset for MCS User Guide



• The parent of a group with an addr_range or page restriction cannot be ordered, contiguous or
clustered.

• The end address is not part of the range.

memory_reference  ::= mem : <proc_name :>0|1 mem_name </ map_name>0|1

• A proc_name refers to a defined processor.

• A mem_name refers to a defined memory.

• A map_name refers to a defined memory mapping.

if_statement      ::= if ( expr ) section_statement
                      <else section_statement>0|1

section_creation_statement
                  ::= section section_name ( section_specs )

{ <section_statement2>>=0 }

section_specs     ::= section_spec <, section_spec >>=0

section_spec      ::= attributes
                    | fill_spec
                    | size = expr
                    | blocksize = expr
                    | overflow = section_name
                    | tag

section_statement2
                  ::= select_section_statement ;
                    | group_descr2
                    | { <section_statement2>>=0 }

group_descr2      ::= group <group_name>0|1

( group_specs2 )
section_statement2

group_specs2      ::= group_spec2 <, group_spec2 >>=0

group_spec2       ::= group_alignment
                    | attributes
                    | load_addr
                    | tag

section_setup     ::= section_setup space_ref <tag_attr>0|1

{ <section_setup_item>>=0 }

section_setup_item
                  ::= reserved_range
                    | stack_def ;
                    | heap_def ;

321

Linker Script Language (LSL)



7.3. Expression Evaluation

Only constant expressions are allowed, including sizes, but not addresses, of sections in object files.

All expressions are evaluated with 64-bit precision integer arithmetic. The result of an expression can be
absolute or relocatable. A symbol you assign is created as an absolute symbol.

7.4. Semantics of the Architecture Definition

Keywords in the architecture definition

architecture
   extends
endianness          big  little
bus
   mau
   width
   map
space
   id
   mau
   align
   page_size
   page
   direction        low_to_high  high_to_low

stack
      min_size
      grows         low_to_high  high_to_low
      align
      fixed
   heap
      min_size
      grows         low_to_high  high_to_low
      align
      fixed

copytable
      align
      copy_unit
      dest
      page
reserved
start_address

      run_addr
      symbol

map

map
      dest          bus  space
      dest_dbits

322

TASKING VX-toolset for MCS User Guide



      dest_offset
      size
      src_dbits
      src_offset
      priority
      exec_priority

7.4.1. Defining an Architecture

With the keyword architecture you define an architecture and assign a unique name to it. The name
is used to refer to it at other places in the LSL file:

architecture name
{

definitions
}

If you are defining multiple core architectures that show great resemblance, you can define the common
features in a parent core architecture and extend this with a child core architecture that contains specific
features. The child inherits all features of the parent. With the keyword extends you create a child core
architecture:

architecture name_child_arch extends name_parent_arch
{

definitions
}

A core architecture can have any number of parameters. These are identifiers which get values assigned
on instantiation or extension of the architecture.You can use them in any expression within the core
architecture. Parameters can have default values, which are used when the core architecture is instantiated
with less arguments than there are parameters defined for it. When you extend a core architecture you
can pass arguments to the parent architecture. Arguments are expressions that set the value of the
parameters of the sub-architecture.

architecture name_child_arch (parm1,parm2=1)
extends name_parent_arch (arguments)

{
definitions

}

7.4.2. Defining Internal Buses

With the bus keyword you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions in an
architecture definition or derivative definition define internal buses. Some internal buses are used to
communicate with the components outside the core or processor. Such buses on a processor have
physical pins reserved for the number of bits specified with the width statements.

• The mau field specifies the MAU size (Minimum Addressable Unit) of the data bus.This field is required.

323

Linker Script Language (LSL)



• The width field specifies the width (number of address lines) of the data bus. The default value is the
MAU size.

• The map keyword specifies how this bus maps onto another bus (if so). Mappings are described in
Section 7.4.4, Mappings.

bus bus_name
{

mau = 8;
width = 8;
map ( map_description );

}

7.4.3. Defining Address Spaces

With the space keyword you define a logical address space. The space name is used to identify the
address space and does not conflict with other identifiers.

• The id field defines how the addressing space is identified in object files. In general, each address
space has a unique ID.The linker locates sections with a certain ID in the address space with the same
ID. This field is required.

• The mau field specifies the MAU size (Minimum Addressable Unit) of the space. This field is required.

• The align value must be a power of two. The linker uses this value to compute the start addresses
when sections are concatenated. An align value of n means that objects in the address space have to
be aligned on n MAUs.

• The page_size field sets the page alignment and page size in MAUs for the address space. It must
be a power of 2. The default value is 1. If one or more page ranges are supplied the supplied value
only sets the page alignment. The ranges specify the available space in each page, as offsets to the
page start, which is aligned at the page alignment.

See also the page keyword in subsection Locating a group in Section 7.8.2, Creating and Locating
Groups of Sections.

• With the optional direction field you can specify how all sections in this space should be located.
This can be either from low_to_high addresses (this is the default) or from high_to_low addresses.

• The map keyword specifies how this address space maps onto an internal bus or onto another address
space. Mappings are described in Section 7.4.4, Mappings.

Stacks and heaps

• The stack keyword defines a stack in the address space and assigns a name to it. The architecture
definition must contain at least one stack definition. Each stack of a core architecture must have a
unique name. See also the stack keyword in Section 7.8.3, Creating or Modifying Special Sections.

The stack is described in terms of a minimum size (min_size) and the direction in which the stack
grows (grows). This can be either from low_to_high addresses (stack grows upwards, this is the
default) or from high_to_low addresses (stack grows downwards). The min_size is required.

324

TASKING VX-toolset for MCS User Guide



By default, the linker tries to maximize the size of the stacks and heaps. After locating all sections, the
largest remaining gap in the space is used completely for the stacks and heaps. If you specify the
keyword fixed, you can disable this so-called 'balloon behavior'. The size is also fixed if you used a
stack or heap in the software layout definition in a restricted way. For example when you override a
stack with another size or select a stack in an ordered group with other sections.

Optionally you can specify an alignment for the stack with the argument align. This alignment must
be equal or larger than the alignment that you specify for the address space itself.

• The heap keyword defines a heap in the address space and assigns a name to it. The definition of a
heap is similar to the definition of a stack. See also the heap keyword in Section 7.8.3, Creating or
Modifying Special Sections.

Stacks and heaps are only generated by the linker if the corresponding linker labels are referenced in the
object files.

See Section 7.8, Semantics of the Section Layout Definition, for information on creating and placing stack
sections.

Copy tables

• The copytable keyword defines a copy table in the address space. The content of the copy table is
created by the linker and contains the start address and size of all sections that should be initialized
by the startup code.You must define exactly one copy table in one of the address spaces (for a core).

Optionally you can specify an alignment for the copy table with the argument align. This alignment
must be equal or larger than the alignment that you specify for the address space itself. If smaller, the
alignment for the address space is used.

The copy_unit argument specifies the size in MAUs of information chunks that are copied. If you do
not specify the copy unit, the MAU size of the address space itself is used.

The dest argument specifies the destination address space that the code uses for the copy table. The
linker uses this information to generate the correct addresses in the copy table.The memory into where
the sections must be copied at run-time, must be accessible from this destination space.

Sections generated for the copy table may get a page restriction with the address space's page size,
by adding the page argument.

Reserved address ranges

• The reserved keyword specifies to reserve a part of an address space even if not all of the range is
covered by memory. See also the reserved keyword in Section 7.8.3, Creating or Modifying Special
Sections.

Start address

• The start_address keyword specifies the start address for the position where the startup code is
located.When a processor is reset, it initializes its program counter to a certain start address, sometimes
called the reset vector. In the architecture definition, you must specify this start address in the correct

325

Linker Script Language (LSL)



address space in combination with the name of the label in the application code which must be located
here.

The run_addr argument specifies the start address (reset vector). If the core starts executing using
an entry from a vector table, and directly jumps to the start label, you should omit this argument.

The symbol argument specifies the name of the label in the application code that should be located
at the specified start address.The symbol argument is required.The linker will resolve the start symbol
and use its value after locating for the start address field in IEEE-695 files and Intel Hex files. If you
also specified the run_addr argument, the start symbol (label) must point to a section. The linker
locates this section such that the start symbol ends up on the start address.

space space_name
{

id = 1;
mau = 8;
align = 8;
page_size = 1;
stack name (min_size = 1k, grows = low_to_high);
reserved start_address .. end_address;
start_address ( run_addr = 0x0000,

symbol = "start_label" )
map ( map_description );

}

7.4.4. Mappings

You can use a mapping when you define a space, bus or memory. With the map field you specify how
addresses from the source (space, bus or memory) are translated to addresses of a destination (space,
bus). The following mappings are possible:

• space => space

• space => bus

• bus => bus

• memory => bus

With a mapping you specify a range of source addresses you want to map (specified by a source offset
and a size), the destination to which you want to map them (a bus or another address space), and the
offset address in the destination.

• The dest argument specifies the destination. This can be a bus or another address space (only for
a space to space mapping). This argument is required.

• The src_offset argument specifies the offset of the source addresses. In combination with size, this
specifies the range of address that are mapped. By default the source offset is 0x0000.

• The size argument specifies the number of addresses that are mapped. This argument is required.

326

TASKING VX-toolset for MCS User Guide



• The dest_offset argument specifies the position in the destination to which the specified range of
addresses is mapped. By default the destination offset is 0x0000.

If you are mapping a bus to another bus, the number of data lines of each bus may differ. In this case
you have to specify a range of source data lines you want to map (src_dbits = begin..end) and the
range of destination data lines you want to map them to (dest_dbits = first..last).

• The src_dbits argument specifies a range of data lines of the source bus. By default all data lines
are mapped.

• The dest_dbits argument specifies a range of data lines of the destination bus. By default, all data
lines from the source bus are mapped on the data lines of the destination bus (starting with line 0).

If you define a memory and the memory mapping must not be used by default when locating sections in
address spaces, you can specify the reserved argument. This marks all address space areas that the
mapping points to as reserved. If a section has an absolute or address range restriction, the reservation
is lifted and the section may be located at these locations. This feature is only useful when more than
one mapping is available for a range of memory addresses, otherwise the memory keyword with the same
name would be used.

For example:

memory xrom
{
    mau = 8;
    size = 1M;
    type = rom;

map     cached (dest=bus:spe:fpi_bus, dest_offset=0x80000000,
                    size=1M);

map not_cached (dest=bus:spe:fpi_bus, dest_offset=0xa0000000,
                    size=1M, reserved);
}

Mapping priority

If you define a memory you can set a locate priority on a mapping with the keywords priority and
exec_priority. The values of these priorities are relative which means they add to the priority of
memories. Whereas a priority set on the memory applies to all address space areas reachable through
any mapping of the memory, a priority set on a mapping only applies to address space areas reachable
through the mapping. The memory mapping with the highest priority is considered first when locating. To
set only a priority for non-executable (data) sections, add a priority keyword with the desired value
and an exec_priority set to zero. To set only a priority for executable (code) sections, simply set an
exec_priority keyword to the desired value.

The default for a mapping priority is zero, while the default for exec_priority is the same as the
specified priority. If you specify a value for priority in LSL it must be greater than zero. A value
for exec_priority must be greater or equal to zero.

For more information about priority values see the description of the memory priority keyword.

327

Linker Script Language (LSL)



memory dspram
{
    mau = 8;
    size = 112k;
    type = ram;

map (dest=bus:mycore_1:fpi_bus, dest_offset=0xd0000000,
              size=112k, priority=8, exec_priority=0);

map (dest=bus:sri, dest_offset=0x70000000,
              size=112k);
}

From space to space

If you map an address space to another address space (nesting), you can do this by mapping the subspace
to the containing larger space. In this example a small space of 64 kB is mapped on a large space of 16
MB.

space small
{
   id = 2;
   mau = 4;

map (src_offset = 0, dest_offset = 0,
dest = space : large, size = 64k);

}

From space to bus

All spaces that are not mapped to another space must map to a bus in the architecture:

space large
{
   id = 1;
   mau = 4;

map (src_offset = 0, dest_offset = 0,
dest = bus:bus_name, size = 16M );

}

From bus to bus

The next example maps an external bus called e_bus to an internal bus called i_bus. This internal bus
resides on a core called mycore.The source bus has 16 data lines whereas the destination bus has only
8 data lines. Therefore, the keywords src_dbits and dest_dbits specify which source data lines are
mapped on which destination data lines.

architecture mycore
{
    bus i_bus
    {
       mau = 4;
    }

328

TASKING VX-toolset for MCS User Guide



    space i_space
    {
       map (dest=bus:i_bus, size=256);
    }
}

bus e_bus
{
   mau = 16;
   width = 16;
   map (dest = bus:mycore:i_bus, src_dbits = 0..7, dest_dbits = 0..7 )
}

It is not possible to map an internal bus to an external bus.

7.5. Semantics of the Derivative Definition

Keywords in the derivative definition

derivative
   extends
core
   architecture
   import
   space_id_offset
   copytable_space
bus
   mau
   width
   map
memory
   type             reserved rom  ram  nvram  blockram
   mau
   size
   speed
   priority
   exec_priority
   fill
   write_unit
   map
section_layout
section_setup

map
      dest          bus  space
      dest_dbits
      dest_offset
      size

329

Linker Script Language (LSL)



      src_dbits
      src_offset
      priority
      exec_priority
      reserved

7.5.1. Defining a Derivative

With the keyword derivative you define a derivative and assign a unique name to it.The name is used
to refer to it at other places in the LSL file:

derivative name
{

definitions
}

If you are defining multiple derivatives that show great resemblance, you can define the common features
in a parent derivative and extend this with a child derivative that contains specific features. The child
inherits all features of the parent (cores and memories). With the keyword extends you create a child
derivative:

derivative name_child_deriv extends name_parent_deriv
{

definitions
}

As with a core architecture, a derivative can have any number of parameters. These are identifiers which
get values assigned on instantiation or extension of the derivative.You can use them in any expression
within the derivative definition.

derivative name_child_deriv (parm1,parm2=1)
extends name_parent_deriv (arguments)

{
definitions

}

7.5.2. Instantiating Core Architectures

With the keyword core you instantiate a core architecture in a derivative.

• With the keyword architecture you tell the linker that the given core has a certain architecture. The
architecture name refers to an existing architecture definition in the same LSL file.

For example, if you have two cores (called mycore_1 and mycore_2) that have the same architecture
(called mycorearch), you must instantiate both cores as follows:

core mycore_1
{

architecture = mycorearch;
}

330

TASKING VX-toolset for MCS User Guide



core mycore_2
{

architecture = mycorearch;
}

If the architecture definition has parameters you must specify the arguments that correspond with the
parameters. For example mycorearch1 expects two parameters which are used in the architecture
definition:

core mycore
{

architecture = mycorearch1 (1,2);
}

• With the keyword import you can combine multiple cores with the same architecture into a single link
task. The imported cores share a single symbol namespace.

• The address spaces in each imported core must have a unique ID in the link task. With the keyword
space_id_offset you specify for each imported core that the space IDs of the imported core start
at a specific offset.

• With the keyword copytable_space you can specify that writable sections for a core must be initialized
by using the copy table of a different core.

core mycore_1
{
    architecture = mycorearch;

space_id_offset = 100; // add 100 to all space IDs in
                           // the architecture definition

copytable_space = mycore:myspace; // use copytable from core mycore
}
core mycore_2
{
    architecture = mycorearch;

space_id_offset = 200; // add 200 to all space IDs in
                           // the architecture definition

copytable_space = mycore:myspace; // use copytable from core mycore
}

core mycore
{
    architecture = mycorearch;

import mycore_1; // add all address spaces of mycore_1 for linking
import mycore_2; // add all address spaces of mycore_2 for linking

}

331

Linker Script Language (LSL)



7.5.3. Defining Internal Memory and Buses

With the keyword memory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. It is common to define
internal memory (on-chip) in the derivative definition. External memory (off-chip memory) is usually defined
in the board specification (See Section 7.6.3, Defining External Memory and Buses).

• The type field specifies a memory type:

• rom: read-only memory - it can only be written at load-time

• ram: random access volatile writable memory - writing at run-time is possible while writing at load-time
has no use since the data is not retained after a power-down

• nvram: non volatile ram - writing is possible both at load-time and run-time

• blockram: writing is possible both at load-time and run-time. Changes are applied in RAM, so after
a full device reset the data in a blockram reverts to the original state.

The optional reserved qualifier before the memory type, tells the linker not to locate any section in
the memory by default.You can locate sections in such memories using an absolute address or range
restriction (see subsection Locating a group in Section 7.8.2, Creating and Locating Groups of Sections).

• The mau field specifies the MAU size (Minimum Addressable Unit) of the memory.This field is required.

• The size field specifies the size in MAU of the memory. This field is required.

• The priority field specifies a locate priority for a memory. The speed field has the same meaning
but is considered deprecated. By default, a memory has its priority set to 1. The memories with the
highest priority are considered first when trying to locate a rule. Subsequently, the next highest priority
memories are added if the rule was not located successfully, and so on until the lowest priority that is
available is reached or the rule is located. The lowest priority value is zero. Sections with an ordered
and/or contiguous restriction are not affected by the locate priority. If such sections also have a page
restriction, the locate priority is still used to select a page.

• If an exec_priority is specified for a memory, the regular priority (either specified or its default
value) does not apply to locate rules with only executable sections. Instead, the supplied value applies
for such rules. Additionally, the exec_priority value is used for any executable unrestricted sections,
even if they appear in an unrestricted rule together with non-executable sections.

• The map field specifies how this memory maps onto an (internal) bus. The mapping can have a name.
Mappings are described in Section 7.4.4, Mappings.

• The optional write_unit field specifies the minimum write unit (MWU). This is the minimum number
of MAUs required in a write action. This is useful to initialize memories that can only be written in units
of two or more MAUs. If write_unit is not defined the minimum write unit is 0.

• The optional fill field contains a bit pattern that the linker writes to all memory addresses that remain
unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU.

332

TASKING VX-toolset for MCS User Guide



memory mem_name
{

type = rom;
mau = 8;
write_unit = 4;
fill = 0xaa;
size = 64k;
priority = 2;
map map_name ( map_description );

}

With the bus keyword you define a bus in a derivative definition. Buses are described in Section 7.4.2,
Defining Internal Buses.

7.6. Semantics of the Board Specification

Keywords in the board specification

processor
derivative

bus
   mau
   width
   map
memory
   type             reserved  rom  ram  nvram  blockram
   mau
   size
   speed
   priority
   exec_priority
   fill
   write_unit
   map

map
      dest          bus  space
      dest_dbits
      dest_offset
      size
      src_dbits
      src_offset
      priority
      exec_priority
      reserved

333

Linker Script Language (LSL)



7.6.1. Defining a Processor

If you have a target board with multiple processors that have the same derivative, you need to instantiate
each individual processor in a processor definition. This information tells the linker which processor has
which derivative and enables the linker to distinguish between the present processors.

If you use processors that all have a unique derivative, you may omit the processor definitions.
In this case the linker assumes that for each derivative definition in the LSL file there is one
processor. The linker uses the derivative name also for the processor.

With the keyword processor you define a processor.You can freely choose the processor name. The
name is used to refer to it at other places in the LSL file:

processor proc_name
{

processor definition
}

7.6.2. Instantiating Derivatives

With the keyword derivative you tell the linker that the given processor has a certain derivative. The
derivative name refers to an existing derivative definition in the same LSL file.

For example, if you have two processors on your target board (called myproc_1 and myproc_2) that
have the same derivative (called myderiv), you must instantiate both processors as follows:

processor myproc_1
{

derivative = myderiv;
}

processor myproc_2
{

derivative = myderiv;
}

If the derivative definition has parameters you must specify the arguments that correspond with the
parameters. For example myderiv1 expects two parameters which are used in the derivative definition:

processor myproc
{

derivative = myderiv1 (2,4);
}

7.6.3. Defining External Memory and Buses

It is common to define external memory (off-chip) and external buses at the global scope (outside any
enclosing definition). Internal memory (on-chip memory) is usually defined in the scope of a derivative
definition.

334

TASKING VX-toolset for MCS User Guide



With the keyword memory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. If you define memory
parts in the LSL file, only the memory defined in these parts is used for placing sections.

If no external memory is defined in the LSL file and if the linker option to allocate memory on demand is
set then the linker will assume that all virtual addresses are mapped on physical memory.You can override
this behavior by specifying one or more memory definitions.

memory mem_name
{

type = rom;
mau = 8;
write_unit = 4;
fill = 0xaa;
size = 64k;
priority = 2;
map map_name ( map_description );

}

For a description of the keywords, see Section 7.5.3, Defining Internal Memory and Buses.

With the keyword bus you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions at the
global scope (outside any definition) define external buses.These are buses that are present on the target
board.

bus bus_name
{

mau = 8;
width = 8;
map ( map_description );

}

For a description of the keywords, see Section 7.4.2, Defining Internal Buses.

You can connect off-chip memory to any derivative: you need to map the off-chip memory to a bus and
map that bus on the internal bus of the derivative you want to connect it to.

7.7. Semantics of the Section Setup Definition

Keywords in the section setup definition

section_setup
stack

      min_size
      grows         low_to_high  high_to_low
      align
      fixed
      id
   heap

335

Linker Script Language (LSL)



      min_size
      grows         low_to_high  high_to_low
      align
      fixed
      id
reserved

7.7.1. Setting up a Section

With the keyword section_setup you can define stacks, heaps and/or reserved address ranges outside
their address space definition.

section_setup ::my_space
{

reserved address range
stack definition
heap definition

}

See the subsections Stacks and heaps and Reserved address ranges in Section 7.4.3, Defining Address
Spaces for details on the keywords stack, heap and reserved.

7.8. Semantics of the Section Layout Definition

Keywords in the section layout definition

section_layout
   direction     low_to_high  high_to_low
group

align
   attributes    + -  r w x b i s p
   copy
   nocopy

fill
ordered

   contiguous
clustered
overlay

   allow_cross_references
load_addr

      mem
run_addr

      mem
page

   page_size
priority

select
stack
   size

336

TASKING VX-toolset for MCS User Guide



heap
   size
reserved
   size
   attributes    r w x
   fill
   alloc_allowed absolute ranged
copytable
memcopy
   memory
   fill
section
   size
   blocksize
   attributes    r w x
   fill
   overflow

if
else

7.8.1. Defining a Section Layout

With the keyword section_layout you define a section layout for exactly one address space. In the
section layout you can specify how input sections are placed in the address space, relative to each other,
and what the absolute run and load addresses of each section will be.

You can define one or more section definitions. Each section definition arranges the sections in one
address space.You can precede the address space name with a processor name and/or core name,
separated by colons.You can omit the processor name and/or the core name if only one processor is
defined and/or only one core is present in the processor. A reference to a space in the only core of the
only processor in the system would look like "::my_space". A reference to a space of the only core on
a specific processor in the system could be "my_chip::my_space". The next example shows a section
definition for sections in the my_space address space of the processor called my_chip:

section_layout my_chip::my_space ( locate_direction )
{

section statements
}

Locate direction

With the optional keyword direction you specify whether the linker starts locating sections from
low_to_high (default) or from high_to_low. In the second case the linker starts locating sections at
the highest addresses in the address space but preserves the order of sections when necessary (one
processor and core in this example).

section_layout ::my_space ( direction = high_to_low )
{

section statements
}

337

Linker Script Language (LSL)



If you do not explicitly tell the linker how to locate a section, the linker decides on the basis of the
section attributes in the object file and the information in the architecture definition and memory
parts where to locate the section.

7.8.2. Creating and Locating Groups of Sections

Sections are located per group. A group can contain one or more (sets of) input sections as well as other
groups. Per group you can assign a mutual order to the sets of sections and locate them into a specific
memory part.

group ( group_specifications )
{

section_statements
}

With the section_statements you generally select sets of sections to form the group.This is described
in subsection Selecting sections for a group.

Instead of selecting sections, you can also modify special sections like stack and heap or create a reserved
section. This is described in Section 7.8.3, Creating or Modifying Special Sections.

With the group_specifications you actually locate the sections in the group. This is described in
subsection Locating a group.

Selecting sections for a group

With the keyword select you can select one or more sections for the group.You can select a section
by name or by attributes. If you select a section by name, you can use a wildcard pattern:

matches with all section names*

matches with a single character in the section name?

takes the next character literally\

matches with a single 'a', 'b' or 'c' character[abc]

matches with any single character in the range 'a' to 'z'[a-z]

group ( ... )
{

select "mysection";
select "*";

}

The first select statement selects the section with the name "mysection". The second select
statement selects all sections that were not selected yet.

A section is selected by the first select statement that matches, in the union of all section layouts for the
address space. Global section layouts are processed in the order in which they appear in the LSL file.
Internal core architecture section layouts always take precedence over global section layouts.

338

TASKING VX-toolset for MCS User Guide



• The attributes field selects all sections that carry (or do not carry) the given attribute.With +attribute
you select sections that have the specified attribute set. With -attribute you select sections that do not
have the specified attribute set.You can specify one or more of the following attributes:

• r readable sections

• w writable sections

• x executable sections

• i initialized sections

• b sections that should be cleared at program startup

• s scratch sections (not cleared and not initialized)

• p protected sections

To select all read-only sections:

group ( ... )
{

select (attributes = +r-w);
}

Keep in mind that all section selections are restricted to the address space of the section layout in which
this group definition occurs.

• With the ref_tree field you can select a group of related sections. The relation between sections is
often expressed by means of references. By selecting just the 'root' of tree, the complete tree is selected.
This is for example useful to locate a group of related sections in special memory (e.g. fast memory).
The (referenced) sections must meet the following conditions in order to be selected:

1. The sections are within the section layout's address space

2. The sections match the specified attributes

3. The sections have no absolute restriction (as is the case for all wildcard selections)

For example, to select the code sections referenced from foo1:

group refgrp (ordered, contiguous, run_addr=mem:ext_c)
{

select ref_tree "foo1" (attributes=+x);
}

If section foo1 references foo2 and foo2 references foo3, then all these sections are selected by
the selection shown above.

Locating a group

group group_name ( group_specifications )
{

339

Linker Script Language (LSL)



section_statements
}

With the group_specifications you actually define how the linker must locate the group.You can
roughly define three things: 1) assign properties to the group like alignment and read/write attributes, 2)
define the mutual order in the address space for sections in the group and 3) restrict the possible addresses
for the sections in a group.

The linker creates labels that allow you to refer to the begin and end address of a group from within the
application software. Labels _lc_gb_group_name and _lc_ge_group_name mark the begin and end
of the group respectively, where the begin is the lowest address used within this group and the end is the
highest address used. Notice that a group not necessarily occupies all memory between begin and end
address. The given label refers to where the section is located at run-time (versus load-time).

1. Assign properties to the group like alignment and read/write attributes.

These properties are assigned to all sections in the group (and subgroups) and override the attributes
of the input sections.

• The align field tells the linker to align all sections in the group and the group as a whole according
to the align value. By default the linker uses the largest alignment constraint of either the input
sections or the alignment of the address space.

• The attributes field tells the linker to assign one or more attributes to all sections in the group.
This overrules the default attributes. By default the linker uses the attributes of the input sections.
You can set the r, w, or rw attributes and you can switch between the b and s attributes.

• The copy field tells the linker to locate a read-only section in RAM and generate a ROM copy and
a copy action in the copy table.This property makes the sections in the group writable which causes
the linker to generate ROM copies for the sections.

• The effect of the nocopy field is the opposite of the copy field. It prevents the linker from generating
ROM copies of the selected sections.

2. Define the mutual order of the sections in the group.

By default, a group is unrestricted which means that the linker has total freedom to place the sections
of the group in the address space.

• The ordered keyword tells the linker to locate the sections in the same order in the address space
as they appear in the group (but not necessarily adjacent).

Suppose you have an ordered group that contains the sections 'A', 'B' and 'C'. By default the linker
places the sections in the address space like 'A' - 'B' - 'C', where section 'A' gets the lowest possible
address. With direction=high_to_low in the section_layout space properties, the linker
places the sections in the address space like 'C' - 'B' - 'A', where section 'A' gets the highest possible
address.

• The contiguous keyword tells the linker to locate the sections in the group in a single address
range.Within a contiguous group the input sections are located in arbitrary order, however the group
occupies one contiguous range of memory. Due to alignment of sections there can be 'alignment
gaps' between the sections.

340

TASKING VX-toolset for MCS User Guide



When you define a group that is both ordered and contiguous, this is called a sequential group.
In a sequential group the linker places sections in the same order in the address space as they
appear in the group and it occupies a contiguous range of memory.

• The clustered keyword tells the linker to locate the sections in the group in a number of contiguous
blocks. It tries to keep the number of these blocks to a minimum. If enough memory is available, the
group will be located as if it was specified as contiguous. Otherwise, it gets split into two or more
blocks.

If a contiguous or clustered group contains alignment gaps, the linker can locate sections that are
not part of the group in these gaps. To prevent this, you can use the fill keyword. If the group is
located in RAM, the gaps are treated as reserved (scratch) space. If the group is located in ROM,
the alignment gaps are filled with zeros by default.You can however change the fill pattern by
specifying a bit pattern.The result of the expression, or list of expressions, is used as values to write
to memory, each in MAU.

• The overlay keyword tells the linker to overlay the sections in the group. The linker places all
sections in the address space using a contiguous range of addresses. (Thus an overlay group is
automatically also a contiguous group.) To overlay the sections, all sections in the overlay group
share the same run-time address.

For each input section within the overlay the linker automatically defines two symbols. The symbol
_lc_cb_section_name is defined as the load-time start address of the section. The symbol
_lc_ce_section_name is defined as the load-time end address of the section. Assembly code
may be used to copy the overlaid sections.

If sections in the overlay group contain references between groups, the linker reports an error. The
keyword allow_cross_references tells the linker to accept cross-references. Normally, it does
not make sense to have references between sections that are overlaid.

group ovl (overlay)
{
    group a
    {
        select "my_ovl_p1";
        select "my_ovl_p2";
    }
    group b
    {
        select "my_ovl_q1";
    }
}

It may be possible that one of the sections in the overlay group already has been defined in
another group where it received a load-time address. In this case the linker does not overrule
this load-time address and excludes the section from the overlay group.

3. Restrict the possible addresses for the sections in a group.

341

Linker Script Language (LSL)



The load-time address specifies where the group's elements are loaded in memory at download time.
The run-time address specifies where sections are located at run-time, that is when the program is
executing. If you do not explicitly restrict the address in the LSL file, the linker assigns addresses to
the sections based on the restrictions relative to other sections in the LSL file and section alignments.
The program is responsible for copying overlay sections at appropriate moment from its load-time
location to its run-time location (this is typically done by the startup code).

• The run_addr keyword defines the run-time address. If the run-time location of a group is set
explicitly, the given order between groups specify whether the run-time address propagates to the
parent group or not.The location of the sections a group can be restricted either to a single absolute
address, or to a number of address ranges (not including the end address). With an expression you
can specify that the group should be located at the absolute address specified by the expression:

group (run_addr = 0xa00f0000)

You can use the '[offset]' variant to locate the group at the given absolute offset in memory:

group (run_addr = mem:A[0x1000])

A range can be an absolute space address range, written as [ expr .. expr ], a complete memory
device, written as mem:mem_name, or a memory address range, mem:mem_name[expr .. expr
]

group (run_addr = mem:my_dram)

You can use the '|' to specify an address range of more than one physical memory device:

group (run_addr = mem:A | mem:B)

When used in top-level section layouts, a memory name refers to a board-level memory.You can
select on-chip memory with mem:proc_name:mem_name. If the memory has multiple parallel
mappings towards the current address space, you can select a specific named mapping in the
memory by appending /map_name to the memory specifier. The linker then maps memory offsets
only through that mapping, so the address(es) where the sections in the group are located are
determined by that memory mapping.

group (run_addr = mem:CPU1:A/cached)

• The load_addr keyword changes the meaning of the section selection in the group: the linker
selects the load-time ROM copy of the named section(s) instead of the regular sections. Just like
run_addr you can specify an absolute address or an address range.

group (contiguous, load_addr)
{
  select "mydata";  // select ROM copy of mydata:
                    // "[mydata]"
}

The load-time and run-time addresses of a group cannot be set at the same time. If the load-time
property is set for a group, the group (only) restricts the positioning at load-time of the group's
sections. It is not possible to set the address of a group that has a not-unrestricted parent group.

342

TASKING VX-toolset for MCS User Guide



The properties of the load-time and run-time start address are:

• At run-time, before using an element in an overlay group, the application copies the sections from
their load location to their run-time location, but only if these two addresses are different. For
non-overlay sections this happens at program start-up.

• The start addresses cannot be set to absolute values for unrestricted groups.

• For non-overlay groups that do not have an overlay parent, the load-time start address equals the
run-time start address.

• For any group, if the run-time start address is not set, the linker selects an appropriate address.

• If an ordered group or sequential group has an absolute address and contains sections that have
separate page restrictions (not defined in LSL), all those sections are located in a single page. In
other cases, for example when an unrestricted group has an address range assigned to it, the
paged sections may be located in different pages.

For overlays, the linker reserves memory at the run-time start address as large as the largest element
in the overlay group.

• The page keyword tells the linker to place the group in one page. Instead of specifying a run-time
address, you can specify a page and optional a page number. Page numbers start from zero. If you
omit the page number, the linker chooses a page.

The page keyword refers to pages in the address space as defined in the architecture definition.

• With the page_size keyword you can override the page alignment and size set on the address
space. When you set the page size to zero, the linker removes simple (auto generated) page
restrictions from the selected sections. See also the page_size keyword in Section 7.4.3, Defining
Address Spaces.

• With the priority keyword you can change the order in which sections are located. This is useful
when some sections are considered important for good performance of the application and a small
amount of fast memory is available. The value is a number for which the default is 1, so higher
priorities start at 2. Sections with a higher priority are located before sections with a lower priority,
unless their relative locate priority is already determined by other restrictions like run_addr and
page.

group (priority=2)
{
  select "importantcode1";
  select "importantcode2";
}

7.8.3. Creating or Modifying Special Sections

Instead of selecting sections, you can also create a reserved section or an output section or modify special
sections like a stack or a heap. Because you cannot define these sections in the input files, you must use
the linker to create them.

343

Linker Script Language (LSL)



Stack

• The keyword stack tells the linker to reserve memory for the stack. The name for the stack section
refers to the stack as defined in the architecture definition. If no name was specified in the architecture
definition, the default name is stack.

With the keyword size you can specify the size for the stack. If the size is not specified, the linker uses
the size given by the min_size argument as defined for the stack in the architecture definition. Normally
the linker automatically tries to maximize the size, unless you specified the keyword fixed.

group ( ... )
{

stack "mystack" ( size = 2k );
}

The linker creates two labels to mark the begin and end of the stack, _lc_ub_stack_name for the
begin of the stack and _lc_ue_stack_name for the end of the stack. The linker allocates space for
the stack when there is a reference to either of the labels.

See also the stack keyword in Section 7.4.3, Defining Address Spaces.

Heap

• The keyword heap tells the linker to reserve a dynamic memory range for the malloc() function.
Each heap section has a name. With the keyword size you can change the size for the heap. If the
size is not specified, the linker uses the size given by the min_size argument as defined for the heap
in the architecture definition. Normally the linker automatically tries to maximize the size, unless you
specified the keyword fixed.

group ( ... )
{

heap "myheap" ( size = 2k );
}

The linker creates two labels to mark the begin and end of the heap, _lc_ub_heap_name for the begin
of the heap and _lc_ue_heap_name for the end of the heap. The linker allocates space for the heap
when a reference to either of the section labels exists in one of the input object files.

Reserved section

• The keyword reserved tells the linker to create an area or section of a given size. The linker will not
locate any other sections in the memory occupied by a reserved section, with some exceptions. Each
reserved section has a name. With the keyword size you can specify a size for a given reserved area
or section.

group ( ... )
{

reserved "myreserved" ( size = 2k );
}

344

TASKING VX-toolset for MCS User Guide



The optional fill field contains a bit pattern that the linker writes to all memory addresses that remain
unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU. The first MAU of the fill pattern is always the first MAU in the
section.

By default, no sections can overlap with a reserved section.With alloc_allowed=absolute sections
that are located at an absolute address due to an absolute group restriction can overlap a reserved
section.The same applies for reserved sections with alloc_allowed=ranged set. Sections restricted
to a fixed address range can also overlap a reserved section.

With the attributes field you can set the access type of the reserved section. The linker locates the
reserved section in its space with the restrictions that follow from the used attributes, r, w or x or a valid
combination of them. The allowed attributes are shown in the following table. A value between < and
> in the table means this value is set automatically by the linker.

Resulting section propertiesProperties set in LSL

contentmemoryaccessfilledattributes

executable<rom>yesx

data<rom>ryesr

scratch<rom>rnor

executable<rom>ryesrx

data<ram>rwyesrw

scratch<ram>rwnorw

executable<ram>rwyesrwx

group ( ... )
{

reserved "myreserved" ( size = 2k, 
attributes = rw, fill = 0xaa );

}

If you do not specify any attributes, the linker will reserve the given number of maus, no matter what
type of memory lies beneath. If you do not specify a fill pattern, no section is generated.

The linker creates two labels to mark the begin and end of the section, _lc_ub_name for the begin of
the section and _lc_ue_name for the end of the reserved section.

Output sections

• The keyword section tells the linker to accumulate sections obtained from object files ("input sections")
into an output section of a fixed size in the locate phase.You can select the input sections with select
statements.You can use groups inside output sections, but you can only set the align, attributes,
copy and load_addr properties and the load_addr property cannot have an address specified.

The fill field contains a bit pattern that the linker writes to all unused space in the output section.
When all input sections have an image (code/data) you must specify a fill pattern. If you do not specify
a fill pattern, all input sections must be scratch sections. The fill pattern is aligned at the start of the
output section.

345

Linker Script Language (LSL)



As with a reserved section you can use the attributes field to set the access type of the output
section.

group ( ... )
{

section "myoutput" ( size = 4k, attributes = rw,
fill = 0xaa )

   {
select "myinput1";
select "myinput2";

   }
}

The available room for input sections is determined by the size, blocksize and overflow fields.
With the keyword size you specify the fixed size of the output section. Input sections are placed from
output section start towards higher addresses (offsets). When the end of the output section is reached
and one or more input sections are not yet placed, an error is emitted. If however, the overflow field
is set to another output section, remaining sections are located as if they were selected for the overflow
output section.

group ( ... )
{
section "tsk1_data" (size=4k, attributes=rw, fill=0,

                       overflow = "overflow_data")
  {
          select ".data.tsk1.*"
  }
section "tsk2_data" (size=4k, attributes=rw, fill=0,

overflow = "overflow_data")
  {
          select ".data.tsk2.*"
  }
section "overflow_data" (size=4k, attributes=rx,

                           fill=0)
  {
  }
}

With the keyword blocksize , the size of the output section will adapt to the size of its content. For
example:

group flash_area (run_addr = 0x10000)
{

section "flash_code" (blocksize=4k, attributes=rx,
                         fill=0)
   {
     select "*.flash";
   }
}

346

TASKING VX-toolset for MCS User Guide



If the content of the section is 1 mau, the size will be 4 kB, if the content is 11 kB, the section will be
12 kB, etc. If you use size in combination with blocksize, the size value is used as default (minimal)
size for this section. If it is omitted, the default size will be of blocksize. It is not allowed to omit both
size and blocksize from the section definition.

The linker creates two labels to mark the begin and end of the section, _lc_ub_name for the begin of
the section and _lc_ue_name for the end of the output section.

When the copy property is set on an enclosing group, a ROM copy is created for the output section
and the output section itself is made writable causing it to be located in RAM by default. For this to
work, the output section and its input sections must be read-only and the output section must have a
fill property.

Copy table

• The keyword copytable tells the linker to select a section that is used as copy table. The content of
the copy table is created by the linker. It contains the start address and length of all sections that should
be initialized by the startup code.

The linker creates two labels to mark the begin and end of the section, _lc_ub_table for the begin
of the section and _lc_ue_table for the end of the copy table. The linker generates a copy table
when a reference to either of the section labels exists in one of the input object files.

Memory copy sections

• If a memory (usually RAM) needs to be initialized by a different core than the one(s) that will use it, a
copy of the contents of the memory can be placed in a section using a memcopy statement in a
section_layout. All data (including code) present in the specified memory is then placed in a new
section with the provided name and appropriate attributes. Unused areas in the memory are filled in
the section using the supplied fill pattern or with zeros if no fill pattern is specified. If the memory contains
a memory copy section the result is undefined.The actual initialization of the memory at run-time needs
to be done separately, this LSL feature only directs the linker to make the data located in the memory
available for initialization. Note that a memory of type ram cannot hold initialized data, use type
blockram instead.

7.8.4. Creating Symbols

You can tell the linker to create symbols before locating by putting assignments in the section layout
definition. Symbol names are represented by double-quoted strings. Any string is allowed, but object files
may not support all characters for symbol names.You can use two different assignment operators. With
the simple assignment operator '=', the symbol is created unconditionally. With the ':=' operator, the
symbol is only created if it already exists as an undefined reference in an object file.

The expression that represents the value to assign to the symbol may contain references to other symbols.
If such a referred symbol is a special section symbol, creation of the symbol in the left hand side of the
assignment will cause creation of the special section.

section_layout 
{
   "_lc_cp" := "_lc_ub_table";
    // when the symbol _lc_cp occurs as an undefined reference 

347

Linker Script Language (LSL)



    // in an object file, the linker generates a copy table
}

7.8.5. Conditional Group Statements

Within a group, you can conditionally select sections or create special sections.

• With the if keyword you can specify a condition. The succeeding section statement is executed if the
condition evaluates to TRUE (1).

• The optional else keyword is followed by a section statement which is executed in case the if-condition
evaluates to FALSE (0).

group ( ... )
{

if ( exists( "mysection" ) )
      select "mysection";

else
      reserved "myreserved" ( size=2k );
}

348

TASKING VX-toolset for MCS User Guide


	TASKING VX-toolset for MCS User Guide
	Table of Contents
	Chapter 1. Assembly Language
	1.1. Assembly Syntax
	1.2. Assembler Significant Characters
	1.3. Operands of an Assembly Instruction
	1.4. Symbol Names
	1.4.1. Predefined Preprocessor Symbols

	1.5. Registers
	1.6. Assembly Expressions
	1.6.1. Numeric Constants
	1.6.2. Strings
	1.6.3. Expression Operators

	1.7. Working with Sections
	1.8. Built-in Assembly Functions
	1.9. Assembler Directives and Controls
	1.9.1. Assembler Directives
	.ALIGN
	.ASCII, .ASCIIZ
	.COMMENT
	.DEFINE
	.DUP, .ENDM
	.DUPA, .ENDM
	.DUPC, .ENDM
	.DUPF, .ENDM
	.END
	.EQU
	.EXITM
	.EXTERN
	.FAIL
	.GLOBAL
	.IF, .ELIF, .ELSE, .ENDIF
	.INCLUDE
	.LOCAL
	.MACRO, .ENDM
	.MESSAGE
	.ORG
	.PMACRO
	.SDECL
	.SECT
	.SET
	.SIZE
	.SPACE
	.TYPE
	.UNDEF
	.WARNING
	.WEAK
	.WORD

	1.9.2. Assembler Controls
	$CASE
	$DEBUG
	$IDENT
	$LIST ON/OFF
	$OBJECT
	$PAGE
	$PRCTL
	$STITLE
	$TITLE
	$WARNING OFF


	1.10. Macro Operations
	1.10.1. Defining a Macro
	1.10.2. Calling a Macro
	1.10.3. Using Operators for Macro Arguments


	Chapter 2. Using the Assembler
	2.1. Assembly Process
	2.2. Calling the Assembler
	2.3. How the Assembler Searches Include Files
	2.4. Assembler Optimizations
	2.5. Generating a List File
	2.6. Assembler Error Messages

	Chapter 3. Using the Linker
	3.1. Linking Process
	3.1.1. Phase 1: Linking
	3.1.2. Phase 2: Locating

	3.2. Calling the Linker
	3.3. Incremental Linking
	3.4. Importing Binary Files
	3.5. Linker Optimizations
	3.6. Controlling the Linker with a Script
	3.6.1. Purpose of the Linker Script Language
	3.6.2. Eclipse and LSL
	3.6.3. Structure of a Linker Script File
	3.6.4. The Architecture Definition
	3.6.5. The Derivative Definition
	3.6.6. The Processor Definition
	3.6.7. The Memory Definition
	3.6.8. The Section Layout Definition: Locating Sections
	3.6.8.1. Locating Code and Data Sections in Separate Pages


	3.7. Linker Labels
	3.8. Generating a Map File
	3.9. Linker Error Messages

	Chapter 4. Using the Utilities
	4.1. Control Program
	4.2. Make Utility mkmcs
	4.2.1. Calling the Make Utility
	4.2.2. Writing a Makefile
	4.2.2.1. Targets and Dependencies
	4.2.2.2. Makefile Rules
	4.2.2.3. Macro Definitions
	4.2.2.4. Makefile Functions
	4.2.2.5. Conditional Processing
	4.2.2.6. Comment, Include and Export Lines


	4.3. Make Utility amk
	4.3.1. Makefile Rules
	4.3.2. Makefile Directives
	4.3.3. Macro Definitions
	4.3.4. Makefile Functions
	4.3.5. Conditional Processing
	4.3.6. Makefile Parsing
	4.3.7. Makefile Command Processing
	4.3.8. Calling the amk Make Utility

	4.4. Archiver
	4.4.1. Calling the Archiver
	4.4.2. Archiver Examples

	4.5. Bosch MCS Assembly to TASKING Assembly Converter

	Chapter 5. Tool Options
	5.1. Assembler Options
	Assembler option: --case-insensitive (-c)
	Assembler option: --check
	Assembler option: --cpu (-C)
	Assembler option: --debug-info (-g)
	Assembler option: --define (-D)
	Assembler option: --dep-file
	Assembler option: --diag
	Assembler option: --dwarf-version
	Assembler option: --emit-locals
	Assembler option: --error-file
	Assembler option: --error-limit
	Assembler option: --help (-?)
	Assembler option: --include-directory (-I)
	Assembler option: --include-file (-H)
	Assembler option: --keep-output-files (-k)
	Assembler option: --list-file (-l)
	Assembler option: --list-format (-L)
	Assembler option: --make-target
	Assembler option: --no-warnings (-w)
	Assembler option: --optimize (-O)
	Assembler option: --option-file (-f)
	Assembler option: --output (-o)
	Assembler option: --page-length
	Assembler option: --page-width
	Assembler option: --preprocess (-E)
	Assembler option: --preprocessor-type (-m)
	Assembler option: --section-info (-t)
	Assembler option: --symbol-scope (-i)
	Assembler option: --version (-V)
	Assembler option: --warnings-as-errors

	5.2. Linker Options
	Linker option: --case-insensitive
	Linker option: --chip-output (-c)
	Linker option: --core (-C)
	Linker option: --define (-D)
	Linker option: --diag
	Linker option: --error-file
	Linker option: --error-limit
	Linker option: --extern (-e)
	Linker option: --first-library-first
	Linker option: --help (-?)
	Linker option: --hex-format
	Linker option: --hex-record-size
	Linker option: --import-object
	Linker option: --include-directory (-I)
	Linker option: --incremental (-r)
	Linker option: --keep-output-files (-k)
	Linker option: --library (-l)
	Linker option: --library-directory (-L) / --ignore-default-library-path
	Linker option: --link-only
	Linker option: --lsl-check
	Linker option: --lsl-dump
	Linker option: --lsl-file (-d)
	Linker option: --map-file (-M)
	Linker option: --map-file-format (-m)
	Linker option: --new-task
	Linker option: --non-romable
	Linker option: --no-rescan
	Linker option: --no-rom-copy (-N)
	Linker option: --no-warnings (-w)
	Linker option: --optimize (-O)
	Linker option: --option-file (-f)
	Linker option: --output (-o)
	Linker option: --strip-debug (-S)
	Linker option: --user-provided-initialization-code (-i)
	Linker option: --verbose (-v)
	Linker option: --version (-V)
	Linker option: --warnings-as-errors

	5.3. Control Program Options
	Control program option: --case-insensitive
	Control program option: --check
	Control program option: --cpu (-C)
	Control program option: --cpu-list
	Control program option: --create (-c)
	Control program option: --debug-info (-g)
	Control program option: --define (-D)
	Control program option: --dep-file
	Control program option: --diag
	Control program option: --dry-run (-n)
	Control program option: --dwarf-version
	Control program option: --error-file
	Control program option: --help (-?)
	Control program option: --include-directory (-I)
	Control program option: --keep-output-files (-k)
	Control program option: --keep-temporary-files (-t)
	Control program option: --list-files
	Control program option: --lsl-core
	Control program option: --lsl-file (-d)
	Control program option: --make-target
	Control program option: --no-map-file
	Control program option: --no-warnings (-w)
	Control program option: --option-file (-f)
	Control program option: --output (-o)
	Control program option: --pass (-W)
	Control program option: --processors
	Control program option: --verbose (-v)
	Control program option: --version (-V)
	Control program option: --warnings-as-errors

	5.4. Make Utility Options
	Defining Macros
	Make utility option: -?
	Make utility option: -a
	Make utility option: -c
	Make utility option: -D / -DD
	Make utility option: -d/ -dd
	Make utility option: -e
	Make utility option: -err
	Make utility option: -f
	Make utility option: -G
	Make utility option: -i
	Make utility option: -K
	Make utility option: -k
	Make utility option: -m
	Make utility option: -n
	Make utility option: -p
	Make utility option: -q
	Make utility option: -r
	Make utility option: -S
	Make utility option: -s
	Make utility option: -t
	Make utility option: -time
	Make utility option: -V
	Make utility option: -W
	Make utility option: -w
	Make utility option: -x

	5.5. Parallel Make Utility Options
	Parallel make utility option: --always-rebuild (-a)
	Parallel make utility option: --change-dir (-G)
	Parallel make utility option: --diag
	Parallel make utility option: --dry-run (-n)
	Parallel make utility option: --help (-? / -h)
	Parallel make utility option: --jobs (-j) / --jobs-limit (-J)
	Parallel make utility option: --keep-going (-k)
	Parallel make utility option: --list-targets (-l)
	Parallel make utility option: --makefile (-f)
	Parallel make utility option: --no-warnings (-w)
	Parallel make utility option: --silent (-s)
	Parallel make utility option: --version (-V)
	Parallel make utility option: --warnings-as-errors

	5.6. Archiver Options
	Archiver option: --delete (-d)
	Archiver option: --dump (-p)
	Archiver option: --extract (-x)
	Archiver option: --help (-?)
	Archiver option: --move (-m)
	Archiver option: --option-file (-f)
	Archiver option: --print (-t)
	Archiver option: --replace (-r)
	Archiver option: --version (-V)
	Archiver option: --warning (-w)


	Chapter 6. List File Formats
	6.1. Assembler List File Format
	6.2. Linker Map File Format

	Chapter 7. Linker Script Language (LSL)
	7.1. Structure of a Linker Script File
	7.2. Syntax of the Linker Script Language
	7.2.1. Preprocessing
	7.2.2. Lexical Syntax
	7.2.3. Identifiers and Tags
	7.2.4. Expressions
	7.2.5. Built-in Functions
	7.2.6. LSL Definitions in the Linker Script File
	7.2.7. Memory and Bus Definitions
	7.2.8. Architecture Definition
	7.2.9. Derivative Definition
	7.2.10. Processor Definition and Board Specification
	7.2.11. Section Layout Definition and Section Setup

	7.3. Expression Evaluation
	7.4. Semantics of the Architecture Definition
	7.4.1. Defining an Architecture
	7.4.2. Defining Internal Buses
	7.4.3. Defining Address Spaces
	7.4.4. Mappings

	7.5. Semantics of the Derivative Definition
	7.5.1. Defining a Derivative
	7.5.2. Instantiating Core Architectures
	7.5.3. Defining Internal Memory and Buses

	7.6. Semantics of the Board Specification
	7.6.1. Defining a Processor
	7.6.2. Instantiating Derivatives
	7.6.3. Defining External Memory and Buses

	7.7. Semantics of the Section Setup Definition
	7.7.1. Setting up a Section

	7.8. Semantics of the Section Layout Definition
	7.8.1. Defining a Section Layout
	7.8.2. Creating and Locating Groups of Sections
	7.8.3. Creating or Modifying Special Sections
	7.8.4. Creating Symbols
	7.8.5. Conditional Group Statements



