TASKING VX-toolset for PCP
User Guide

MA161-800 (v3.3) November 25, 2009

TASKING VX-toolset for PCP User Guide

Copyright © 2009 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium,
TASKING, and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All
other registered or unregistered trademarks referenced herein are the property of their respective owners and no
trademark rights to the same are claimed.

Table of Contents

I O 1= T o > T TS 1
1.1 DALA TYPES - 1
1.1.1. Changing the Alignment: _ align()covoviiiiii e 2

1.2, ACCESSING MEBMIOIY ..ottt e e e e e e e et et 3
1.2.1. Memory Type QUAlIfIErSovirii i 3
O =011 (= £ P 4
1.2.3. Placing an Object at an Absolute Address: __ at()oveveviiiiiiiiiiiiiie e, 5
1.2.4. Accessing Hardware from C ... 6

1.3. Using Assembly in the C SOUIrCe: _ aSM() .uvuiuinininiiiti it e e aaaas 7
O N] o1 (=P 11
1.5. Pragmas to Control the ComPiler ... e 12
1.6. Predefined PreproCesSor MACIOSv.iuiiiiiii et aaaas 16
ST (o g RS - 1= 111 0| PP 17
08 T T Tt 1o S 18
1.8.1. Calling CONVENLIONuiuiiii e aaans 18
1.8.2. REGISIEI USAQE ..uuiiiiiiiit it 19
1.8.3. Inlining FUNCLONS: INlINEouieii s 20
1.8.4. INtErrUPt FUNCHIONS ...ttt aaaas 21
1.8.5. INtriNSIC FUNCHONS ...\iutiii et 23

1.9. PCP COUE GENETALIONttt e ettt et eea s 30
1.9.1. Non-interruptible Code GENErationccvuiiiiiiiiiiii e 31
1.9.2. Interruptible Code GENEratioNnccoiiiiii e 31

1.10. Compiler Generated SECHONSviii it 33
1.10.1. RENAME SECLOMNS ...vuititiiit ettt eeaes 34

2. ASSEMBIY LANQUAGE ... vttt e e e e e et e ettt aas 37
2.0 ASSEMDBIY SYNTAX ..ttt 37
2.2. Assembler Significant CharaCterscccouiiiiiiiiii e 38
2.3. Operands of an Assembly INSTIUCHIONiiiii e 38
b2 V1] o Yo I NN =T = 39
2.4.1. Predefined Preprocessor SYmbBOISc.ouiuiiiiii e 40

2. D, RIS IS Lttt ittt 40
2.5.1. Special FUNCLION REQISIEISttt 40

2.6. ASSEMDIY EXPIrESSIONS . vuvniiiiti it 41
2.6.1. NUMEIIC CONSEANESetieiiitiiit e et 41

b S (14T 1 PPN 42
2.6.3. EXPression OPEIatOrSc.c.iuiuiiiiiiet ettt aaans 43

2.7. WOrKing With SECHONS ... vttt e e e 44
2.8. Built-in Assembly FUNCLIONS ..o 45
2.9. Assembler Directives and CONLIOISc.iuieiiiiiii e 57
2.9.1. ASSEMDIET DIFECLVESviiiitii e e 58
2.9.2. AssembIEr CONLIOISouiee e 105

b2 (O I V= Vo (o T @ o =T - [0 1 PP 119
2.10.1. DEfiNING @ MACIO ...iuiiititiiee e 119
2.10.2. CalliNg @ MACKO ...vuiiieie ittt e e e e 119
2.10.3. Using Operators for Macro ArgUumENtScueuiririeieieiiiieieieieieeeiaaananns 120

2.11. GENENIC INSIIUCLIONS ... ettt e ettt et e enenes 124
3. USING the € COMPIIET ..t 127
3.1, COMPIIALION PrOCESS ...ttt ettt et e 127

TASKING VX-toolset for PCP User Guide

3.2. Calling the C COMPIIETt 128
3.3.The C StArtUP COUEeeit e e et aenas 130
3.4. How the Compiler Searches INclude Files ..o 130
3.5. Compiling for DEDUGGING ... vueiii e 131
3.6. Compiler OPtIMIZAtIONSuie e e 132
3.6.1. Generic Optimizations (frontend)ovuiiiiii e 133
3.6.2. Core Specific Optimizations (backend)cooiiiiiiiiiii 136
3.6.3. Optimize for Siz€ OF SPEEAc.iviieiiie e 137
3.6.4. Static Stack Alignment OptimIZationsoouviiiriiiiii e 140

3.7. StAtiC COUE ANAIYSIS ...ttt 140
3.7.1. C Code Checking: CERT C ...cuiiiiiiiiiiie e 142
3.7.2. C Code Checking: MISRA-C ...t 143

3.8. C Compiler ErrOr MESSAQES .. .uvuteniiiet et ettt et et 145
4. USING the ASSEMDIET ...t 147
4.1, ASSEMDBIY PrOCESS ...ttt e 147
4.2. Calling the ASSEMDIET e 148
4.3. How the Assembler Searches Include Filescoooiiiiiiiii e 149
4.4, Assembler OPtMIZALIONS c.uieet et eenas 150
4.5.Generating a LISt File ... e 150
4.6. ASSEMDIET ErrOr MESSAGES .. enittet ettt et et et ettt 151
5. USING The LINKET ..o ettt 153
5.1, LINKING PrOCESS ...ttt e et et 153
5.1.1. Ph@se L: LINKING ..vuintiniie et et et 155
5.1.2. PhaSE 2: LOCALNG ...ttt ettt et 156

5.2. CalliNg the LINKET ... e et 157
5.3. LinKing WIth LIDraries ...t 158
5.3.1. How the Linker Searches LIbrariescooooiiiiiiiii e 160
5.3.2. How the Linker Extracts Objects from Librariescoooveiiiiiiiiiniiininennen. 160

5.4. Incremental LINKINGc.eie e e 161
5.5.Importing BiNary FilESouirii i 162
5.6. LiNKer OPtMIZALIONSviiiiiiei et e 162
5.7. Controlling the Linker With @ SCHPLouieii e 163
5.7.1. Purpose of the Linker Script LAaNQUAQEcevuieiiiiiiinii e 164
5.7.2. EClIPSE @NA LSL ...eiiitiii e e 164
5.7.3. Structure of a Linker SCript Filecoveiiiii e 166
5.7.4. The Architecture Definitioncooiieiiiii e 169
5.7.5. The Derivative Definition ..o 172
5.7.6. The Processor Definitioncc.oviriiinii e 174
5.7.7.The Memory Definitionc.ouiiiiii e 174
5.7.8. The Section Layout Definition: Locating SeCtionscocoveviriiieieniiinieninnn. 176

5.8, LINKEr LADEIS ..o 178
5.9.Generating @aMap File ... 181
5.10. LINKEr ErrOr MESSAUES ...uuviiiiiiietiet et ettt et e eene e 182
6. USING the ULIIIESeeeeeie e et et ene e 185
Lo OTo o1 (o] I ol (o r=1 1 o H PP 185
6.2. Make ULIlItY MKDCP . ..eviniei e et 186
6.2.1. Calling the Make ULIItYcouiiiniii e 188
6.2.2. Writing a Makefile ... 188

6.3. Make ULIlItY @IMK ... e 197
6.3.1. MaKEfIle RUIES ...t 197

TASKING VX-toolset for PCP User Guide

6.3.2. MAKETIIE DIFECHIVES ...t e 199
6.3.3. MacCro DEfiNItIONSce e 199
6.3.4. MaKefile FUNCHIONSttt 200
6.3.5. ConditioNal PrOCESSINGuviiniiititi et 201
6.3.6. MAKETIIE PAISINGieeiiii i 202
6.3.7. Makefile Command ProCeSSINGcuuiuiiiniiiiiiie e 202
6.3.8. Calling the amk Make ULIlItYcoviriiii e 203

B.4. ATCNIVET . e 204
6.4.1. Calling the ArChIVET ..o 204
6.4.2. ArChiVer EXAMPIES ... e 206

7. USING the DEDUGGET .. .ce ettt ettt et ettt e aeaes 209
7.1. Reading the Eclipse DOCUMENTALIONvuiuitieiiiie et 209
7.2. Creating a Customized Debug Configurationccoooeiiiiiiiiii e 209
7.3. TrOUDIESNOOUING . ..veieee e 215
7.4. TASKING DebUQ PEISPECLIVEvieiiiiiieei et 216
T4 1. DEDUG VIBW .ottt e 217
7.4.2. BreakpOointS VIEBWuiieiiiie ettt e 219
7.4.3. File System Simulation (FSS) VIEWociuiiiiiiii e 220
7.4.4. DiSaSSEMDBIY VIBW ..ot 221
745, EXPrESSIONS VIBW ..ottt ettt et et 221
T4.6. MEMOTY VIBW ...ttt e ettt 222
7.4.7. Compare APPlICAtION VIEWouieii e 223
T.4.8. HEAP VIBW .ottt 223
T.4.9. LOGUING VIBW .ttt ettt e 223
T.4.20. RTOS VIBW ...ttt ettt et et ettt e e e 223
7.4.11. TASKING REQISLEIS VIEBW ...ttt et 224

T4 12, TrACE VIBW ..ottt ettt et et ettt 225

7.5. PCP Simulator Configurationco.veiiiii e 225
T [oTo] I @] o] 1To] o 1SR 227
8.1. C COMPIIEr OPLIONS .. .vetieiet ettt ettt et 231
8.2. ASSEMDIET OPLIONS ...ttt e 292
8.3, LINKEI OPLIONS ...ttt ettt ettt et e 329
8.4. Control Program OPLIONSttt et 375
8.5. MaKe ULIlity OPLIONSceeit ettt e ettt 420
8.6. Parallel Make ULility OPLIONSvuireiteei ettt e neenas 448
8.7. ArChIVEN OPLIONS ...ttt et et et et 458
LS I o] = L= PP 473
9.1, Library FUNCHONS ... et e 473
0. d. S EIE N i 473
9.1.2, COMPIEX.N e 473
9.0.3. CSHAIT N e 475
9.1.4. ctype.h and WCLYPE.N ... 475
0. L. 5. AN e 476
9.1.6. BITNO.N e 476

0. L. 7 Ot N 477

0. L8, BNV N e 477
9.1.9. flOALN <o 478
9.1.10. inttypes.h and Stdint.n ... 479
0. L. AL 0. e 479

9.1, 12.IS0646.1N ..t 479

TASKING VX-toolset for PCP User Guide

9.1 13, MIES. N e 480

0.1 14, 10CAIE.N <. 480
9.1.15. MAIIOC.N . 480
9.1.16. math.h and tgmath.h ... 481
0. L. L7, S M. N e 485
9.1.18. SIGNALIN o 485
9.1.19. SEAANG. N e 486
9.1.20. StADOOLN ..o 486
9.1.21. SEAETN e 487
9.1.22. SEAINE N Lo 487
9.1.23. stdio.h and WChar.h ... 487
9.1.24. stdlib.h and weharh ... 494
9.1.25. string.h and weharh ... 497
9.1.26. time.h and WCharn ... 499

9.1, 27, UNISE. N e 502
9.1.28. WCNAIN o 502
9.0.20. WY PN o 503

9.2. C LiBrary REENITANCYiutieiiiiet et et ettt e eenas 504
10, LISt FIIE FOIMALS ...ttt ettt ettt e nns 517
10.1. Assembler List File FOrMALoouieieiii e 517
10.2. Linker Map File FOIMALt 518
11. Linker SCript LANGUAGE (LSL) .. euuiitiitt ettt ettt e 523
11.1. Structure of @ Linker SCript File ... 523
11.2. Syntax of the Linker SCript LANQUAJEovuirieieiiieieiee et 525
11,20, PrePrOCESSING . vueuetetiet ettt et et ettt ettt 525
11.2.2. LEXICAI SYNTAX ..ttt ettt e 526
11.2.3. 1dentifiers @nd TAGSovenie i 526
112,48, EXPIESSIONS ...viititte ettt ettt 527
11.2.5. BUIlt-IN FUNCLONS ...ttt et 527
11.2.6. LSL Definitions in the Linker Script File ..o 529
11.2.7. Memory and Bus Definitionsc.oeiuieiiiii e 529
11.2.8. Architecture Definitioncoieeiniiii e 531
11.2.9. Derivative Definitionc.ouiiniriiii e 534
11.2.10. Processor Definition and Board Specificationccccovvviiiiiiiiniicnnenns. 535
11.2.11. Section Layout Definition and Section SEtupccovevvriiiiriiiiieeiieienennes 535

11.3. EXPression EVAIUALIONvuieiiteiee e et 539
11.4. Semantics of the Architecture Definition ..o 540
11.4.1. Defining an ArChiteCIUIEcieiri i e 541
11.4.2. Defining INtErnal BUSESouiiiitieie e e 542
11.4.3. Defining AAAreSS SPACESuiviiiiiiiieetie e 542
I BV = To] o T £ PSPPI 546

11.5. Semantics of the Derivative Definitioncooiiiii 548
11.5.1. Defining @ DErIVALIVEc.eiiiiii e 548
11.5.2. Instantiating Core ArchiteCIUIrEScveieiiiiiee e 549
11.5.3. Defining Internal Memory and BUSEScveiiiiiiiiiiiiiieeieeieeeeea 549

11.6. Semantics of the Board SpecifiCationocoiiiiiiii e 550
11.6.1. Defining @ PrOCESSONvuieieieiiie e 551
11.6.2. Instantiating DerVALIVESc.iiuiiieii e 551
11.6.3. Defining External Memory and BUSESc.oeviiiiiiiiiiiiiieece e 552

11.7. Semantics of the Section Setup Definitionc.cooiiiiiiiii e 553

Vi

TASKING VX-toolset for PCP User Guide

11.7.1. SEttiNg UP @ SECHION ...uvuitiiit ettt ettt et e 553

11.8. Semantics of the Section Layout Definitionccovviiiiii e 554
11.8.1. Defining @ SECHON LAYOULc.uveitieiiei e e 555

11.8.2. Creating and Locating Groups Of SECHONSccvveiiiiiiiiieiiieeeen 555

11.8.3. Creating or Modifying Special SECHONSc.oeiviiiiiiiiiiie e 561

11.8.4. Creating SYMDOISo 564

11.8.5. Conditional Group StatemMENTScuiniiiiieiiee e 565

12. Debug Target Configuration FileSoiuieiiiiiii e 567
12.1. CuStOM BOArd SUPPOITttt et et 567

12.2. Description of DTC Elements and AtMDULESoviiiiiii e 568

12.3. Special Resource Identifiers ... 570

12.4. INItIAliZe EIBMENLS ...onie e e 571

13. CPU Problem Bypasses and CheCKSo 573
14. CERT C Secure CodiNg StaNCardc.ouuieieiiiatiet et 577
14.1. PreproCeSSOr (PRE) . ..u ittt e 577

14.2. Declarations and Initialization (DCL)c.vuiriiniiiiiii e 578

14.3. EXPreSSIONS (EXP) ..ottt e e 579

L., INEEOETS (INT) oottt ettt ettt 580

14.5. Floating POINt (FLP) ... o e e 580

T4.6. AITAYS (ARR) ..ot 580

14.7. Characters and StringS (STR) ...uvuitiii e 581

14.8. Memory Management (MEM) ...t e 581

14.9. ENVIroNMENt (ENV) ... e 582
14.10. SIGNAIS (SIG) .neutiiiiit et 582
14.11. MiISCEllaN@0US (MSC) ...niiitiiiet et e e 582

15, MISRA-C RUIES ...ttt ettt 583
15,1 MISRA-CILO98 ..ottt et et e 583

15.2. MISRA-CI2004 ..ottt ettt ettt 587

Vii

TASKING VX-toolset for PCP User Guide

viii

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING C compiler(s) fully support the ISO-C standard and add extra possibilities to program the
special functions of the target.

In addition to the standard C language, the compiler supports the following:

» keywords to specify memory types for data and functions

« attribute to specify alignment and absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

 predefined macros

« the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. Data Types

The C compiler supports the ISO C99 defined data types. The sizes of these types are shown in the
following table.

C Type Size Align Limits
_Bool 32 32 Oor1l

_ far __mau8 signed char i 8 8 [-27, 27-1]
signed char 32 32 [-231, 231-1]
__far __mau8 unsigned char i 8 8 [0, 28-1]
unsigned char 32 32 [0, 232-1]
__far __mau8 short 16 16 [-27°, 255
short 32 32 [-23, 23]
__far __mau8 unsigned short ’ 16 16 [0, 216-1]
unsigned short 32 32 [0, 232-1]
int 32 32 [-2° 2%

TASKING VX-toolset for PCP User Guide

C Type Size Align Limits

unsigned int 32 32 [0, 232-1]

enum 32 32 [-2°%, 2%1.1)

long 32 32 [-2%%, 2%

unsigned long 32 32 [0, 232-1]

long long 32 32 -2, 2%

unsigned long long 32 32 [0, 232-1]

float (23-bit mantissa) 32 32 [-3.402E+38, —1.175E-38]
[+1.175E-38, +3.402E+38]

double 32 32 [-3.402E+38, —1.175E-38]

long double (23-bit mantissa) [+1.175E-38, +3.402E+38]

pointer to data - " 32 32 [0, 214-1]

pointer to function (code pointer) [0, 216-1]

__far pointer [0, 232-1]

"You can use the type qualifier __mau8 only on objects that have the __ far qualifier, because
only objects located in the FPI space can have byte access.

" Pointers are calculated using 32-bit arithmetic and compared as 14-bit values (data pointers),
16-bit values (code pointers) or 32-bit values (__far pointers).

Aggregate and Union Types

Aggregate types are aligned on 32 bits by default. All members of the aggregate types are aligned as
required by their individual types as listed in the table above. The struct/union data types may contain
bit-fields. The allowed bit-field fundamental data types are _Bool, (un)signed char and (un)signed
int. The maximum bit-field size is equal to that of the type’s size. For the bit-field types the same rules
regarding to alignment and signed-ness apply as specified for the fundamental data types. In addition,
the following rules apply:

» The first bit-field is stored at the least significant bits. Subsequent bit-fields fill the higher significant bits.

A bit-field of a particular type cannot cross a boundary as is specified by its maximum width. For example,
a bit-field of type int cannot cross a 32-bit boundary.

« Bit-fields share a storage unit with other bit-field members if and only if there is sufficient space in the
storage unit.

« An unnamed bit-field creates a gap that has the size of the specified width. As a special case, an

unnamed bit-field having width 0 (zero) prevents any further bit-field from residing in the storage unit
corresponding to the type of the zero-width bit-field.

1.1.1. Changing the Alignment: __align()

By default the PCP compiler aligns objects to the minimum alignment required by the architecture. With
the attribute __align() you can change the object alignment that is located in the FPI space. Objects

2

C Language
qualified with __Far are located in the FPI space. The alignment must be a power of two. __align()
has no effect on object located in the PRAM space of the PCP.

Example:
int __align(8) _ far src[4];

The compiler generates the following assembly:

.sdecl “_.bss.linear®, data, linear, clear
.sect " _.bss.linear”
-global _PCP_src
.align 8
_PCP_src: -type object
.size _PCP_src,16
.Space 16

Instead of the attribute __align() you can also use #pragma align.

1.2. Accessing Memory

You can use static memory type qualifiers to allocate static objects in a particular part of the addressing
space of the processor.

In addition, you can place variables at absolute addresses with the keyword __at().

1.2.1. Memory Type Qualifiers

In the C language you can specify that a variable must lie in a specific part of memory. You can do this
with a memory type qualifier. If you do not specify a memory type qualifier, data objects get a default
memory type.

You can specify the following memory type qualifiers:

Quialifier Description Location Maximum Pointer Pointer Section
object size size arithmetic type
__hear Data PRAM space |64 kB 32-bit 14-hit data
__far i Far data FPl space |4 GB 32-bit 32-bit linear
_ far Allow 8-bit or FPI space 8-bit or 16-bit |32-bit 32-bit linear
__mau8 16-bit data
allocation

"I you do not specify __far, the compiler chooses where to place the declared object.

Data objects are located by default in the PRAM space of the PCP (__near is the default). The
Memory Access Unit (MAU) of PRAM is 32-hit. All objects located in the PRAM always have a

size of 32

bits.

TASKING VX-toolset for PCP User Guide

Data objects that are qualified __far are located in the FPI space. The FPI space is the TriCore® linear
address space. The Memory Access Unit (MAU) of the FPI is 8-bit. By default the object size of __far
qualified objects is 32-bit, because the default data type size is 32-bits on the PCP for PRAM and FPI.

___fFar data objects with type char or short can have type modifier __mau8 to allow 8-bit and 16-bit
data allocation on the FPI. FPI instructions are generated to access objects that are qualified __far.

Examples

char «c; // 32-bit object in PRAM
short s; // 32-bit object in PRAM
int i; // 32-bit object in PRAM
char text[] = "No smoking"™; // 11 words in PRAM

__far char c; // 32-bit object in FPI
__far short s; // 32-bit object in FPI
__far int i; // 32-bit object in FPI
__far char text[] = "No smoking"™; // 11 words in FPI

far __mau8 char c; // 8-bit object in FPI

far __mau8 short s; // 16-bit object in FPI

far __mau8 int i; // 32-bit object in FPI

far __mau8 char text[] = "No smoking'; // 11 bytes in FPI

1.2.2. Pointers

The PCP compiler supports code and data pointers as shown in the following table.

Pointer Location Maximum object size |Pointer size | Section type
__near data pointer |PRAM space |64 kB 14-bit data

__far data pointer |FPI space 4GB 32-bit linear

code pointer CMEM space |128 kB 16-bit code

The default section name is equal to the generated section type that is prefixed with . pcptext. for code
in CMEM and .pcpdata. for data in PRAM. The default code section name is . pcptext.code and
the default PRAM data section name is . pcpdata.data. The default FPI data section name uses a
prefix conform the TriCore C compiler. E.g. __far int i; islocated in a section with name
-bss.linear.You can change section names with #pragma section or with the command line option
--rename-sections.

Pointers with memory type qualifiers
Pointers for the PCP can have two types: a 'logical' type and a memory type. For example,
char __far * p;

means p has memory type PRAM (p itself is allocated in PRAM, PRAM is the default), but has logical
type 'character in target memory space FPI (__far)'. The memory type qualifier used left to the **,
specifies the target memory of the pointer, the memory type qualifier used right to the ™', specifies the
storage memory of the pointer.

4

C Language

Examples:

int *p; // pointer "p" located in PRAM pointing to int in PRAM
int _ far *q; // pointer "q" located in PRAM pointing to int in FPI
int * _ far r; // pointer "r" located in FPI pointing to int in PRAM
int __far * _ far s; // pointer "s® located in FPI pointing to int in FPI

A PRAM pointer cannot be converted to an FPI (__far) pointer or visa versa.

1.2.3. Placing an Object at an Absolute Address: __ at()

Just like you can declare a variable in a specific part of memory (using memory type qualifiers), you can
also place an object at an absolute address in memory.

With the attribute __at() you can specify an absolute address. The address is a 32-hit linear address.
Examples
unsigned char Display[80*24] __ at(0x2000);

The array Display is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Display.

int i _ at(0x1000) = 1;

The variable 1 is placed at address 0x1000 and is initialized.

void f(void) _ at(OxfOff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:
» The argument of the __at() attribute must be a constant address expression.

* You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

» A variable that is declared extern, is not allocated by the compiler in the current module. Hence it is
not possible to use the keyword __at() on an external variable. Use __at() at the definition of the
variable.

* You cannot place structure members at an absolute address.

» Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

TASKING VX-toolset for PCP User Guide

1.2.4. Accessing Hardware from C

Using Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special function register file (*.sfr) as symbol names for use with the compiler. An SFR file
contains the names of the SFRs and the bits in the SFRs.

Example use in C (SFRs from regtc1165.sfr):

void set_sfr(void)

{
LBCU_SRC.1 |= Oxb32a; /* access LBCU Service Request
Control register as a whole */
LBCU_SRC.B.SRE = 0Ox1; /* access SRE bit-field of LBCU
Service Request Control register */
3

You can find a list of defined SFRs and defined bits by inspecting the SFR file for a specific processor.
The files are named regcpu.sfr, where cpu is the CPU specified with the C compiler option --cpu (you
can use the compiler option --cpu=tc1165 to compile the example above). The compiler automatically
includes this register file, unless you specify option --no-tasking-sfr. The files are located in the standard
include directory.

Defining Special Function Registers: __ sfrbit32

SFRs are defined in SFR files and are written in C. With the data type qualifier __sfrbit32 you can
declare bit-fields in special function registers.

According to the TriCore Embedded Applications Binary Interface, 'normal’ bit-fields are accessed as
char, short or int. Bit-fields are aligned according to the table in Section 1.1, Data Types.

If you declare bit-fields in special function registers, this behavior is not always desired: some special
function registers require 32-bit access. To force 32-bit access, you can use the data type qualifier
__sfrbit32.

When the SFR contains fields, the layout of the SFR is defined by a typedef-ed union. The next example
is part of an SFR file and illustrates the declaration of a special function register using the data type
qualifier __sfrbit32:

typedef volatile union

{
struct
{
unsigned __ sfrbit32 SRPN : 8; /* Service Priority Number */
unsigned __sfrbit32 :2;

unsigned __sfrbit32 TOS : 2; /* Type-of-Service Control */
unsigned _ sfrbit32 SRE : 1; /* Service Request Enable Control */
unsigned __sfrbit32 SRR : 1; /* Service Request Flag */

unsigned __ sfrbit32 CLRR : 1; /* Request Flag Clear Bit */

C Language

unsigned _ sfrbit32 SETR : 1; /* Request Flag Set Bit */
unsigned _ sfrbit32 : 16;
} B;

int I;
unsigned int U;
} LBCU_SRC_type;

Read-only fields can be marked by using the const keyword.

The SFR is defined by a cast to a ‘typedef-ed union’ pointer. The SFR address is given in parenthesis.
Read-only SFRs are marked by using the const keyword in the macro definition.

#define LBCU_SRC (*(LBCU_SRC_type*)(OxF87FFEFCu))
/* LBCU Service Control Register */

Restrictions

» You can use the __sfrbit32 data type qualifier only for int types. The compiler issues an error if
you use for example __sfrbit32 char x : 8;

* When you use the __sfrbit32 data type qualifier for other types than a bit-field, the compiler ignores
this without a warning. For example, __sfrbit32 int global; is equalto int global;.

* Structures or unions that contain a member qualified with __sfrbit32, are zero padded to complete
a full word if necessary. The structure or union will be word aligned.

1.3. Using Assembly in the C Source: __asm()

With the keyword ___asm you can use assembly instructions in the C source and pass C variables as

operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

General syntax of the __asm keyword

_asm("instruction_tenpl ate"
[: output_paramlist
[: input_paramli st
[: register_save_list]]]):

instruction_template Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr
%parm_nr Parameter number in the range 0 .. 9.
output_param_list [["=[&]constraint_char"(C_expression)],...]
input_param_list [["constraint_char"(C_expression)],...]

TASKING VX-toolset for PCP User Guide

& Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

constraint _char Constraint character: the type of register to be used for the
C_expression. See the table below.

C_expression Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.

register_save_list [["register_name'],...]
register_name Name of the register you want to reserve. Note that saving too much

registers can make register allocation impossible.

Specifying registers for C variables
With a constraint character you specify the register type for a parameter.
You can reserve the registers that are used in the assembly instructions, either in the parameter lists or

in the reserved register list (register_save_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint Type Operand Remark
character
r register r0..r7
number type of operand it is same as %number | Input constraint only. The number must
associated with refer to an output parameter. Indicates
that %enumber and number are the same
register.

Loops and conditional jumps

The compiler does not detect loops with multiple __asm() statements or (conditional) jumps across
__asm() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asm(), the whole loop must be contained in a single __asm()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asm() statement must be in that same statement. You can use numeric labels for these purposes.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asm() statements generates a contiguous sequence of instructions, then
they can be best combined to a single ___asm() statement. Compiler optimizations can insert instruction(s)
in between __asm() statements. Use newline characters ‘\n’ to continue on a new lineina __asm(Q)
statement.

__asm(""nop\n"
"nop”);

C Language

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint r a register is chosen for the
parameter; the compiler decides which register it uses. The %0 in the instruction template is replaced with
the name of this register. The compiler generates code to assign the result to the output variable.

int out;
void addone(void)
{

__asm("add.i %0,#1"
D U"=r" (out));
¥

Generated assembly code:

add.1 r5,#1
Idl.il r7,@DPTR(_PCP_out)
st._pi r5, [_PCP_out]

Example 3: using input parameters

Assign a variable to a register. A register is chosen for the parameter because of the constraint r; the
compiler decides which register is best to use. The %0 in the instruction template is replaced with the
name of this register. The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

int in;
void initreg(void)
{

__asm("MOV RO,%0,cc_Zz"

re@in));
¥

Generated assembly code:

Idl_il r7,@DPTR(_PCP_in)
Id.pi r5,[_PCP_in]
MOV RO,r5,cc Z

Example 4: using input and output parameters

Multiply two C variables and assign the result to a third C variable. Registers are necessary for the input
and output parameters (constraint r, %0 for out, %1 for in1, %2 for in2 in the instruction template). The
compiler generates code to move the input expressions into the input registers and to assign the result
to the output variable.

int inl, in2, out;

void multiply(void)
{

TASKING VX-toolset for PCP User Guide

__asm("minit\t%l,%2\n""
"\tmstep.u\t%0,%2\n""
"\tmstep.u\t%0,%2\n""
"\tmstep.u\t%0,%2\n""
"\tmstep.u\t%0, %2""

: "=r" (out)
> "r" (inl), "r" (in2));
3

Generated assembly code:

_PCP_multiply: .type func
Idl.il r7,@DPTR(_PCP_inl)
Id.pi r5,[_PCP_inl]
Id.pi rl,[_PCP_in2]
minit r5,rl
mstep.u r5,rl
mstep.u r5,rl
mstep.u r5,rl
mstep.u r5,rl

Idl.il r7,@DPTR(_PCP_out)
st.pi r5,[_PCP_out]

Example 5: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register r1 is a reserved register. You can do this by adding a reserved
register list (: ""r1'). As you can see in the generated assembly code, register rl is not used (register
r3is used instead).

int inl, in2, out;

void multiply(void)
{

__asm("minit\t%l,%2\n""
"\tmstep.u\t%0,%2\n""
"\tmstep.u\t%0,%2\n""
“"\tmstep.u\t%0,%2\n""
"\tmstep.u\t%0, %2""
 "=r” (out)

D Urt (inl), “r (in2)
SENDE
}

Generated assembly code:

10

C Language

_PCP_multiply: .type func
Idl.il r7,@DPTR(_PCP_inl)
Id.pi r5,[_PCP_inl]
Id.pi r3,[_PCP_in2]
minit r5,r3
mstep.u r5,r3
mstep.u r5,r3
mstep.u r5,r3
mstep.u r5,r3

Idl.il r7,@DPTR(_PCP_out)
st.pi r5,[_PCP_out]

Example 6: input and output are the same

If the input and output must be the same you must use a number constraint. The following example inverts
the value of the input variable invar and returns this value to outvar. Parameter %0 corresponds to
outvar.To indicate that invar uses the same register as outvar, the input constraint '0' is used which
indicates that invar also corresponds to %0.

int outvar;

static inline void invert(int invar)
/* "static inline" makes assembly easier to read */

{
__asm (""'not %0,%1,cc_SGT": "=r"(outvar): "0"(invar));
3
void main(void)
{
invert(255);
3

Generated assembly code:

Id.i r5,0x3f

Idl.il r5,0xff

not r5,r5,cc_SGT

Idl.il r7,@DPTR(_PCP_outvar)
st.pi r5, [_PCP_outvar]

1.4. Attributes

Attributes, introduced by the keyword __attribute__, can be used on declarations of variables,
functions, types, and fields. The al ias, always_inline, const, export, format, malloc, noinline,
noreturn, pure, section, unique, unused, used, and weak attributes are supported.

11

TASKING VX-toolset for PCP User Guide

export

You can use __attribute__((export)) to specify that a variable/function has external linkage and
should not be removed. During MIL linking, the compiler treats external definitions at file scope as if they
were declared static. As a result, unused variables/functions will be eliminated, and the alias checking
algorithm assumes that objects with static storage cannot be referenced from functions outside the current
module. During MIL linking not all uses of a variable/function can be known to the compiler. For example
when a variable is referenced in an assembly file or a (third-party) library. With the export attribute the
compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* "i" has external linkage */

protect

You canuse __attribute__ ((protect)) to exclude a variable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect”
section attribute to the symbol's section. Example:

int i _ attribute__((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

This attribute is the same as #pragma protect/endprotect.
used

You can use __attribute__ ((used)) to prevent an unused symbol from being removed, by both the
compiler and the linker. Example:

static const char copyright[] _ attribute_ ((used)) = "Copyright 2009 Altium BV";

When there is no C code referring to the copyright variable, the compiler will normally remove it. The
__attribute__ ((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute__ ((used)) implies __attribute__((protect)).

1.5. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated
otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.

The syntax is:
#pragma pragma- spec pragma-argunents [on | off | default | restore]
or:

_Pragma("pragnma-spec pragma-argunments [on | off | default | restore]”)

12

C Language

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
off switch the flag off

default set the pragma to the initial value

restore restore the previous value of the pragma

Some pragmas have an equivalent command line option. This is useful if you want to overrule certain
keywords in the C source without the need to change the C source itself.

The compiler recognizes the following pragmas, other pragmas are ignored.
alias symbol=defined_symbol
Define symbol as an alias for defined_symbol. It corresponds to a . ALIAS directive at assembly level.

The symbol should not be defined elsewhere, and defined_symbol should be defined with static storage
duration (not extern or automatic).

align {value | default | restore}

Change the alignment of objects located in the FPI space. By default the PCP compiler aligns objects to
the minimum alignment required by the architecture. With this pragma you can increase this alignment
for objects of four bytes or larger. The value must be a power of two.

See Section 1.1.1, Changing the Alignment: __align().

clear / noclear

By default, uninitialized global or static variables are cleared to zero on startup. With pragma noclear,
this step is skipped. Pragma clear resumes normal behavior. This pragma applies to constant data as
well as non-constant data.

See C compiler option --no-clear.

compactmaxmatch {value | default | restore}

With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

extension isuffix [on | off | default | restore]

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _Imaginary.

float 0.5i

13

TASKING VX-toolset for PCP User Guide

extern symbol

Normally, when you use the C keyword extern, the compiler generates an .EXTERN directive in the
generated assembly source. However, if the compiler does not find any references to the extern symbol
in the C module, it optimizes the assembly source by leaving the .EXTERN directive out.

With this pragma you can force an external reference (.EXTERN assembler directive), even when the
symbol is not used in the module.

inline / noinline / smartinline

See Section 1.8.3, Inlining Functions: inline.

inline_max_incr {value | default | restore}
inline_max_size {value | default | restore}

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has effect only when you have enable the inlining optimization (C compiler option --optimize=+inline).

See C compiler options --inline-max-incr / --inline-max-size.
linear_switch / jump_switch / binary_switch / smart_switch
With these pragmas you can overrule the compiler chosen switch method:

linear_switch force jump chain code. A jump chain is comparable with an if/else-if/else-if/else
construction.

Jump_switch force jump table code. A jump table is a table filled with jump instructions for each
possible switch value. The switch argument is used as an index to jump within this
table.

binary_switch force binary lookup table code. A binary search table is a table filled with a value to
compare the switch argument with and a target address to jump to.

smart_switch letthe compiler decide the switch method used

See also Section 1.7, Switch Statement.

macro / nomacro [on | off | default | restore]

Turns macro expansion on or off. By default, macro expansion is enabled.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore]

Without arguments, this pragma disables MISRA-C checking. Alternatively, you can specify a
comma-separated list of MISRA-C rules to disable.

14

C Language

See C compiler option --misrac and Section 3.7.2, C Code Checking: MISRA-C.

novector value [default | restore]

With this pragma you tell the compiler not to generate code for channel vectors and channel context.
See C compiler option --no-vector.

optimize [flags | default | restore] / endoptimize

You can overrule the C compiler option --optimize for the code between the pragmas optimize and
endoptimize. The pragma works the same as C compiler option --optimize.

See Section 3.6, Compiler Optimizations.

protect [on | off | default | restore] / endprotect

With these pragmas you can protect sections against linker optimizations. This excludes a section from
unreferenced section removal and duplicate section removal by the linker. endprotect restores the
default section protection.

section [type=name | default | restore] / endsection

Changes section names. See Section 1.10, Compiler Generated Sections and C compiler option
--rename-sections for more information.

source [on | off | default | restore] / nosource

With these pragmas you can choose which C source lines must be listed as comments in assembly output.
See C compiler option --source.

stdinc [on | off | default | restore]

This pragma changes the behavior of the #include directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

tradeoff {level | default | restore}
Specify tradeoff between speed (0) and size (4). See C compiler option --tradeoff
warning [number,...] [default | restore]

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (.WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

15

TASKING VX-toolset for PCP User Guide

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.6. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

Macro Description

_ BIG_ENDIAN__ Expands to 0. The processor accesses data in little-endian.

__BUILD__ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, __ BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

_ CORE__ Expands to the name of the core depending on the C compiler options --cpu
and --core. The symbol expands to pcp2 when no --cpu and no --core is
supplied.

__CORE_core___ A symbol is defined depending on the options --cpu and --core. The core
is converted to upper case. For example, if --cpu=tc1165 is specified, the
symbol ___CORE_PCP2___is defined. When no --core or --cpu is supplied,
the compiler defines __ CORE_PCP2__.

__CPU__ Expands to the name of the CPU supplied with the option --cpu. When no
--cpu is supplied, this symbol is not defined. For example, if --cpu=tc1165
is specified, the symbol __CPU___ expands to tc1165.

_ CPU_cpu__ A symbol is defined depending on the option --cpu=cpu. The cpu is converted
to uppercase. For example, if --cpu=tc1165 is specified, the symbol
_ CPU_TC1165__is defined. When no --cpu is supplied, this symbol is not
defined.

_ DATE__ Expands to the compilation date: “mmm dd yyyy".

__FILE__ Expands to the current source file name.

__LINE___ Expands to the line number of the line where this macro is called.

_ REVISION__ Expands to the revision number of the compiler. Digits are represented as

they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__SFRFILE__(cpu)

This macro expands to the filename of the used SFR file, including the < >.
The cpu is the argument of the macro. For example, if --cpu=tc1165 is
specified, the macro __ SFRFILE__ (__CPU__) expands to

_ SFRFILE__ (tcl1165), which expands to <regtcl1165.sfr>.

__SINGLE_FP__

Expands to 1 (‘double’ is always treated as ‘float’).

16

C Language

Macro Description

__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set
option --language (Control language extensions), otherwise expands to 0.

__STDC_HOSTED__ Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_VERSION_ Identifies the 1ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

__TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

__ TASKING_SFR__ Expands to 1 if TASKING .sfr files are used. Not defined when option
--no-tasking-sfr is used.

__TIME__ Expands to the compilation time: “hh:mm:ss”

__VERSION__ Identifies the version number of the compiler. For example, if you use version

2.1r1 of the compiler, _ VERSION__ expands to 2001 (dot and revision
number are omitted, minor version number in 3 digits).

Example

#ifdef _ CORE_PCP1_
/* this part is only valid for a PCP1 core */

#endif
1.7. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a binary search table.

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
jump instructions for each possible switch value. The switch argument is used as an index to jump within
this table. A binary search table is a table filled with a value to compare the switch argument with and a
target address to jump to.

By default, the compiler will automatically choose the most efficient switch implementation based on code
and data size and execution speed. With the C compiler option --tradeoff you can tell the compiler to
emphasis more on speed than on ROM size.

Especially for large switch statements, the jump table approach executes faster than the lookup table
approach. Also the jump table has a predictable behavior in execution speed: independent of the switch
argument, every case is reached in the same execution time. However, when the case labels are distributed
far apart, the jump table becomes sparse, wasting code memory. The compiler will not use the jump table
method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

17

TASKING VX-toolset for PCP User Guide

How to overrule the default switch method
You can overrule the compiler chosen switch method by using a pragma:

#pragma linear_switch force jump chain code

#pragma jump_switch force jump table code

#pragma binary_switch force binary search table code

#pragma smart_switch let the compiler decide the switch method used (this is the default)

The switch pragmas must be placed before the switch statement. Nested swi tch statements use the
same switch method, unless the nested switch is implemented in a separate function which is preceded
by a different switch pragma.

Example:
/* place pragma before function body */
#pragma jump_switch

void test(unsigned char val)
{ /* function containing the switch */
switch (val)

{
}

/* use jump table */
}
1.8. Functions

1.8.1. Calling Convention

Parameter Passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack.

Registers available for parameter passing are R1, R3, R4, R6, R0O. The parameters are processed from
left to right. The first unused register is used. Registers are searched for in the order listed above. When
a parameter is larger than 32 bit, or when all registers are used, parameter passing continues on the
stack. The stack grows from higher towards lower addresses, each parameter on the stack is stored in
little endian. The alignment on the stack depends on the data type as listed in Section 1.1, Data Types.

Structures up to four bytes are passed via a register. Larger structures are passed via the stack.

The PCP compiler uses a static stack, which restricts the number of arguments passed for an indirect
function call. Parameters of an indirect function call can only be passed in registers and not via the static
stack.

18

C Language

Example with three arguments:

funcl(int a, long b, char c)

a (first parameter) is passed in register R1.

b (second parameter) is passed in register R3.
¢ (third parameter) is passed in register R4.
Variable Argument Lists

For functions with a variable argument list, the last fixed parameter and all subsequent parameters must
be pushed on the stack. For parameters before the last fixed parameter the normal parameter passing
rules apply.

Variable arguments are not supported for indirect function calls, due to the static stack implementation.
Function Return Values
The C compiler uses register R1 to store C function return values.

When the function return type is a structure, it is copied to a "return area" that is allocated by the caller.
The address of this area is passed as an implicit first argument in R6.

Stack usage
The stack is used for parameter passing, allocation of automatics, temporary storage and storing the

function return address. The compiler uses a static stack. Overlay sections are generated by the compiler
to contain the stack objects. The overlay sections are overlayed by the linker using a call graph.

1.8.2. Register Usage

The PCP C compiler uses registers according to the convention given in the following table.

Register Class Purpose

RO caller saves Parameter passing and automatic variables

R1 caller saves Parameter passing, automatic variables and return values

R2 callee saves Automatic variables, stack frame pointer and function return
address

R3 caller saves Parameter passing and automatic variables

R4 caller saves Parameter passing and automatic variables

R5 caller saves Automatic variables and function return address of code
compaction functions

R6 caller saves Parameter passing, automatic variables and return buffer

R7 special purpose PC, CC, DPTR

The registers are classified: caller saves, callee saves and special purpose.

19

TASKING VX-toolset for PCP User Guide

caller saves These registers are allowed to be changed by a function without saving the contents.
Therefore, the calling function must save these registers when necessary prior to a
function call.

callee saves These registers must be saved by the called function, i.e. the caller expects them not
to be changed after the function call.

special purpose The purpose of R7 is defined by the PCP core.

1.8.3. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords inline (ISO-C) and __noinline.

With the inline keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs val = -val;
return abs val;

ke

If a function with the keyword inline is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noinl ine keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

Using pragmas: inline, noinline, smartinline

Instead of the inline qualifier, you can also use #pragma inline and #pragma noinline toinline
a function body:

#pragma inline
unsigned int abs(int val)

{

unsigned int abs val = val;
if (val < 0) abs val = -val;

20

C Language

return abs_val;
3
#pragma noinline
void main(void)

{

aés(—l);

-

n

i
}

If a function has an inline/__noinline function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pragma noinline/#pragma smartinline you cantemporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

With the C compiler options --inline-max-incr and --inline-max-size you have more control over the
automatic function inlining process of the compiler.

Combining inline with __asm to create intrinsic functions

With the keyword ___asm it is possible to use assembly instructions in the body of an inline function.
Because the compiler inserts the (assembly) body at the place the function is called, you can create your
own intrinsic function. See Section 1.8.5, Intrinsic Functions.

1.8.4. Interrupt Functions

The PCP has an unusual programming model. The best way to think of PCP programming is that there
is a series of autonomous programs, or tasks that are called channel programs. These can be very short
and simple, or very complex and long, and these can be mixed together. The PCP has a channel program
associated with each interrupt number (SRPN). This could be thought of as the interrupt routine for a
given interrupt source. When an interrupt of number “n” is received by the PCP core, it restores the context
associated with number “n” from PRAM, and begins executing Channel Program “n” from Code Memory
until it encounters a terminating condition - usually an EXIT instruction. At that point it saves the current
context for number “n” back into the PRAM. If there is a new pending interrupt it starts this process again.
If there is no pending new interrupt, the PCP stops until there is a new interrupt to process.

The PCP C compiler only supports the Full Context Model. Full context means that there are eight registers
per channel available for the compiler.

For an extensive description of the PCP channel operation, see chapter Peripheral Control Processor
(PCP) in the User's Manual of the TriCore [Infineon].

1.8.4.1. Defining an Interrupt Service Routine: __interrupt()
With the function type qualifier __interrupt() you can declare a function as an interrupt function
(interrupt service routine or channel program). The function type qualifier __interrupt() takes one

channel number (0..255) as argument.

Interrupt functions cannot return anything and must have a void argument type list:

21

TASKING VX-toolset for PCP User Guide

void __interrupt(channel _nunber)
isr(void)
{

}

The argument channel_number is an 8-bit channel number that defines the channel entry table address
and the context address. The channel number must be in range [0..255]. Channel number 0 is not used
on the PCP; for interrupts with channel number 0 the channel entry table and the channel context are not
generated.

For "Channel Start at Context PC" mode (CS.RCB=0) the compiler generates a section containing the
context of the appropriate channel. The PC context (R7.PC) is initialized with the start address of interrupt
service routine. The Channel Enable (R7.CEN) context is set to 1. The Enable Interrupt Control context
is by default set to zero, because a channel cannot be interrupted by another channel. With the C compiler
option --interrupt-enable you can set the Interrupt Control context to allow the channel to be interrupted.
Channels that have interrupts enabled must be linked separately, because they cannot share static stack.
See Section 1.9, PCP Code Generation. The remainder of the R7 context is cleared also
(Z,N,C,V,.CN1Z,DPTR).

All other context registers (R0O..R6) are initialized to zero.

For "Channel Start at Base" mode (CS.RCB=1) the compiler generates a section with the channel entry
table entry of the appropriate channel. The channel table entry contains a jump to the interrupt service
routine.

At interrupt function return, an EXIT instruction is generated. The arguments of the EXIT instruction
generated are: EC=0, ST=1, INT=0, EP=1, cc_UC.

Example

void __interrupt(1) isr(void)
{

}
1.8.4.2. Setting the Current PCP Priority Number: __cppn()

With the function qualifier __cppn() you can define the interrupt priority of an interruptible function.
__cppn() can only be used on functions that are qualified __interrupt, and the functions must be
interruptible (option --interrupt-enable). The CPPN is superfluous for functions that have interrupts
disabled (R7.IEN=0).

void __interrupt(channel _nunmber) _ cppn(CPPN) isr(void)
{

}

The function qualifier takes one argument CPPN. The CPPN (Current PCP interrupt Priority Number) is
an 8-bit channel interrupt priority number in the range [0..255]. The channel interrupt priority number is
defined in the register context R6.CPPN. At interrupt EXIT R6.CPPN is restored to this value.

22

C Language

1.8.4.3. Shared Data: __share

Shared data between PCP channels

Global data can be shared between separately linked channels with the keyword __share. Only global
and external variables can be qualified with the keyword __share.

For example, in one channel the following variable is defined:
int _ share channell_shared_PCP_PRAM = 0;

In another channel you can reference this variable as:
extern int __share channell_shared_PCP_PRAM;

__share variables get application scope instead of channel scope. __share global variables get the
Ic linker prefix instead of the default _PCP_ symbol prefix.

To link channels separately use linker option --link-only.
Shared data between TriCore and PCP

The __share qualifier is not only used for sharing data between PCP channels but also for sharing global
data with the TriCore CPU.

For example, in the TriCore source tc_main.c of the pcp-multi-start example delivered with the
product, the following variable is defined:

volatile int _ far _ share shared_CPU_FPI;

In the PCP source channell1.c of the pcp-multi-chl example delivered with the product, this variable
is referenced as:

extern int _ far _ share shared_CPU_FPI;

To access PCP PRAM data from the TriCore CPU you can use the keyword __pram in the TriCore
source. Also see the linker share label _lIc_s_.

1.8.5. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to
use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by

hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

23

TASKING VX-toolset for PCP User Guide

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).

The following example illustrates the use of an intrinsic function and its resulting assembly code.
__nopQ);

The resulting assembly code is inlined rather than being called:

nop

Writing your own intrinsic function

Because you can use any assembly instruction with the __asm() keyword, you can use the __asm()
keyword to create your own intrinsic functions. The essence of an intrinsic function is that it is inlined.

1. Firstwrite a function with assembly in the body using the keyword __asm(). See Section 1.3, Using
Assembly in the C Source: __asm()

2. Next make sure that the function is inlined rather than being called. You can do this with the function
qualifier inline. This qualifier is discussed in more detail in Section 1.8.3, Inlining Functions: inline.

int inl, in2, out;

inline void __my mul(void)

{

__asm("minit\t%1l,%2\n""
"\tmstep.u\t%0,%2\n""
"\tmstep.u\t%0,%2\n""
"\tmstep.u\t%0,%2\n""
"\tmstep.u\t%0, %2""

: "=r" (out)
D Urt (inl), Yr (in2));
}
void main(void)
{
// call to function __my mul
_my_mulQ;
}

Generated assembly code:

_PCP_main: _type func
; _my mul code is inlined here
Idl_il r7,@DPTR(_PCP_inl)
Id.pi r5,[_PCP_inl]
Id.pi rl,[PCP_in2]
minit r5,rl1
mstep.u r5,rl1
mstep.u r5,rl1
mstep.u r5,rl1

24

C Language

mstep.u r5,rl

Idl.il r7,@DPTR(_PCP_out)
st.pi r5, [_PCP_out]

As you can see, the generated assembly code for the function ___my_mul is inlined rather than called.
Supported intrinsic functions

You can use the following intrinsic functions in your C source:

__alloc

__alloc_t volatile __alloc(__size_ t size);

Allocate memory. Same as C library function mal loc(). Returns a pointer to space in external memory
of size bytes length. Returns NULL if there is not enough space left. This function is used internally for
variable length arrays, it is not to be used by end users.

__bcopy

void volatile _ bcopy(void _ far * dst, void _ far * src,
const signed int DSTINCDEC, const signed int SRCINCDEC,
const unsigned int CNC, const unsigned int CNTO,
unsigned int CNT1);

This intrinsic generates a BCOPY instruction. The BCOPY instruction moves a block of data (always
32-bit data) from source (src=R[4]) location on the FPI bus to destination (dst= R[5]) on the FPI bus.
Constant arguments DSTINCDEC and SRCINCDEC determine if source and destination pointer are
incremented or decremented, 1 for increment, -1 for decrement and O for no change. Constant arguments
CNC and CNTO are conform the argument values of the BCOPY instruction. CNT1 is loaded in R6.CNT1
if the value of CNC is 1 or 2. If CNC is 1 this intrinsic generates a outer loop.

The BCOPY instruction use FPI Burst mode (CNT0=2, 4 or 8 words), which requires alignment of source
and destination data blocks. Use the attribute __al ign({8] 16| 32}) to specify the data block alignment.
E.g.unsigned int __align(8) _ far array[2];

Example:

int __align(8) _ far src[4], dst[4];
void bcopy(void)

// bcopy dst, src, +, +, CNC=2, CNT0=2, CNT1=2
__bcopy(dst, src, 1, 1, 2, 2, 2);

generates:

Idl_iu r5,@HI(_PCP_dst)
Idl_.il r5,@LO(_PCP_dst)
Idl_.iu r4,@HI(_PCP_src)
Idl_.il r4,@LO(_PCP_src)

25

TASKING VX-toolset for PCP User Guide

Id.i ré,0ox2
bcopy dst+,src+,cnc=0x2,cnt0=0x2

cen

void _ _cen(const unsigned int value);

Set or clear the CEN flag. You can use this intrinsic safely only when the R7 flags are preserved by the
compiler (--preserve-r7-flags).

—_Ccopy

void volatile _ _copy(void _ far * dst, void _ far * src,
const signed int DSTINCDEC, const signed int SRCINCDEC,
const unsigned int CNC, const unsigned int CNTO,
unsigned int CNT1, const unsigned int SIZE);

This intrinsic generates a COPY instruction. The COPY instruction moves content of source (src=R[4])
location on the FPI bus to destination (dst= R[5]) on the FPI bus. Constant arguments DSTINCDEC
and SRCINCDEC determine if source and destination pointer are incremented or decremented, 1 for
increment, -1 for decrement and O for no change. Constant arguments CNC, CNTO and S1ZE are conform
the argument values of the COPY instruction. CNT1 is loaded in R6.CNT1 if the value of CNC is 1 or 2. If
CNC is 1 this intrinsic generates a outer loop.

Example:

int _ far src[4], dst[4];
void copy(void)

// copy dst, src, +, +, CNC=1, CNTO=2, CNT1=8 SI1ZE=8
_ copy(dst, src, 1, 1, 1, 2, 8, 8);

generates:
Idl_.iu r5,@HI(_PCP_dst)
Idl.il r5,@LO(_PCP_dst)
Idl_.iu r4,@HI(_PCP_src)
Idl_.il r4,@LO(_PCP_src)
Id.1 ré,0x8
_loop:
copy dst+,src+,cnc=0x1,cnt0=0x2,size=0x8
Jjg _loop,cc_cnn
__debug

void __debug(const unsigned int eda, const unsigned int dac,
const unsigned int rta, const unsigned int sdb);

This intrinsic generates a DEBUG instruction for the PCP2. The generated DEBUG instruction
unconditionally cause a debug event. Optionally stop the channel execution (sdb=1), generate an external
debug event (eda=1), disable further channel invocation (rta=0) or disable the PCP for operation (dac=1).

26

C Language

Example:

void __interrupt(4) channel_4(void)

{
/* DEBUG instruction that stops unconditionally the PCP,
* prevents the serving of any other interrupt and generates
* an "lllegal Operation Error™.
*/
__debug(1,1,0,1);
}
generates:
debug eda=0x1,sdb=0x1,dac=0x1, rta=0x0,cc_uc
__dotdotdot__

char * __dotdotdot__ (void);

Variable argument '..." operator. Used in C library function va_start(). Returns the stack offset to the
variable argument list.

__exit
void __exit(const unsigned long srpn);

To allow rearbitration of interrupts, a 'voluntary exiting' scheme is supported via the intrinsic __exit().
This intrinsic generates an EXIT instruction with the following settings: EC=0, ST=0, INT=1, EP=1, cc_UC.

The R6.TOS is set for a PCP service request and the srpn value is loaded in R6.SRPN. It is your
responsibility not to use this intrinsic in combination with the 'Channel Start at Base' mode.

The srpn value must be in range 0..255. If R6.SRPN is set to zero, it causes an illegal operation error
on the PCP.When srpn is set to zero, no code is generated for loading R6.SRPN and the interrupt flag
in the EXIT instruction is disabled (EXIT EC=0, ST=0, INT=0, EP=1, cc_UC).

The __exit() intrinsic function is kept simple as apposed to the EXIT instruction. The concept
of the program flow in C (and any high level language), is that you have a routine that starts at
the top and runs to the end (return), and then the initiative is past to the 'caller' side again. The
flow can be interrupted by an interrupt. With the EXIT instructions however, other interrupts can
be started (in fact anything is possible), enabling all kind of 'unwanted' flow.

__exit_cpu
void __exit_cpu(const unsigned long srpn);

To service TriCore CPU interrupts, a 'voluntary exiting' scheme is supported via the intrinsic
__exit_cpu(). This intrinsic generates an EXIT instruction with the following settings: EC=0, ST=0,
INT=1, EP=1, cc_UC.The R6.TOS is set for a TriCore CPU service request and the srpn value is loaded
in R6.SRPN.

27

TASKING VX-toolset for PCP User Guide

__Exit
void __ Exit(int status);
Exit unconditionally. Same as C library function _Exit(). This intrinsic generates an EXIT instruction

with the following settings: EC=0, ST=1, INT=0, EP=0, cc_UC. The CEN flag is cleared. Returns with
status as the return value.

__free
void volatile _ free(__alloc_t buffer);

Deallocates the memory pointed to by buffer. buffer must point to memory earlier allocated by a call
to__alloc(). Same as library function free().

__get_return_address

__codeptr volatile __get return_address(void);
Returns the return address of a function.

__ien

void __ien(const unsigned int value);

Set or clear the IEN flag. You can use this intrinsic safely only when the R7 flags are preserved by the
compiler (--preserve-r7-flags).

__1d32_fpi
unsigned long volatile __ 1d32_fpi(unsigned long addr);

Load a 32-bit value from a 32-bit FPI address using the Id . f instruction with size=32. Returns a 32-bit
value for FPI memory address.

Example:

#include <regtcl775b.sfr>
unsigned int 1d32(void)

{
return __ 1d32_fpi((unsigned long)(&(P10_0UT.U)));
3
generates:
Idl.iu r5,@HI(0xf0003210)
Idl.il r5,@LO(0xF0003210)
Id.f rl,[r5], size=32
__hop

void __nop(void);

28

C Language

A NOP instruction is generated.

__pri

unsigned int _ pri(unsigned int value);

Use PRI R[b], R[a], cc_UC instruction to prioritize value.
_rl

unsigned int _ rI(unsigned int value,
unsigned int count);

Rotate value left count times. This intrinsic uses RL R[a], Imm5 instruction(s). Returns the rotated
value.

rr

unsigned int _ rr(unsigned int value,
unsigned int count);

Rotate value right count times. This intrinsic uses RR R[a], Imm5 instruction(s). Returns the rotated
value.

__st32_fpi

void volatile __st32_fpi(unsigned long addr,
unsigned long value);

Store a 32-bit value on a 32-bit FPI address using the st. f instruction with size=32.
Example:

#include <regtcl775b.sfr>
void st32(unsigned int value)

{

__st32_fpi((unsigned long)(&(P10_0OUT.U)), value);
3
generates:

Idl.iu r5,@H1(0xF0003210)
Idl.il r5,@LO(0xF0003210)
st.f rl,[r5], size=32

___Xchf8

unsigned int volatile _ xchf8(unsigned int value,
unsigned int _ far * address);

Exchange the 8-bit contents of register value and FPI variable. address must be a constant FPI address
expression. This intrinsic generates a XCH.F R[b], [R[al] instruction.

29

TASKING VX-toolset for PCP User Guide

Returns: 8-bit contents of FPI address

___Xchfl6

unsigned int volatile _ xchfl6(unsigned int value,
unsigned int _ far * address);

Exchange the 16-bit contents of register value and FPI variable. address must be a constant FPI
address expression. This intrinsic generates a XCH.F R[b], [R[a]] instruction.

Returns: 16-bit contents of FPI address
__Xchf32

unsigned int volatile _ xchf32(unsigned int value,
unsigned int __ far * address);

Exchange the 32-bit contents of register value and FPI variable. address must be a constant FPI
address expression. This intrinsic generates a XCH.F R[b], [R[al] instruction.

Returns: 32-bit contents of FPI address
___Xchpi

unsigned int volatile _ xchpi(unsigned int value,
unsigned int _ _near * address);

Exchange the 32-bit contents of register value and PRAM variable. address must be a constant PRAM
address expression. This intrinsic generates a XCH.P1 R[a], [#offset6] instruction.

Returns: 32-bit contents of PRAM address

1.9. PCP Code Generation

The effectiveness of the code generated by the PCP C compiler strongly depends on its stack
implementation which is a static one. This means automatic stack variables, function stack parameters
and temporary data are stored in overlayable static data areas.

A dynamic stack cannot be supported because the PCP instruction set does not have push and pop
instructions. Simulating push and pop instructions is not an option because that requires registers by
itself. This might force the compiler to abort in cases where a register must be pushed but all registers
are in use.

A static stack poses the restriction that functions cannot be reentrant or recursive. Additionally, function
pointer prototypes are limited to register parameters as the remaining parameters require a dynamic
stack. Because the PCP does not have a hardware stack, function return addresses are stored on the
static stack as well.

30

C Language

1.9.1. Non-interruptible Code Generation

By default the compiler supports code generation for high(est) priority non-interruptible functions. Functions
using a static stack are implicitly not interruptible, because they are not reentrant. The interrupt flag is
disabled and must be kept disabled (IEN=0).

Lower priority interruptible functions can only be supported when they do not share static stack space,
which means that they can not have common functions. See Section 1.9.2, Interruptible Code Generation.

Preserving R7.IEN and R7.CEN when updating DPTR for PRAM access is superfluous if functions are
not interruptible. For example, when accessing global variable "x" in PRAM the next code is generated.

Idl.il r7,@DPTR(_PCP_x) ; load R7.DPTR, R7.[7..0] flags are cleared
st.pi r5,[_PCP_x]

Not preserving the IEN and CEN reduces the amount of generated code substantially, an average of
45%" of the code size is saved. The CEN flag is not explicitly set for each PRAM access, although it
would not cost any extra code for direct PRAM access in the above example, but for each indirect PRAM
access an extra set bit instruction is required to keep the CEN enabled.

A non-interruptible function can voluntarily exit, by using an __exit() intrinsic function. The __exit()
SRPN argument specifies the interrupt channel that needs to be serviced. This can be itself or another
interrupt. If another interrupt is serviced this interrupt cannot use the same functions that use the static
stack, because functions using a static stack are not reentrant. Ignoring this requirement will result in
undefined run-time behavior. The same interrupt can be serviced without any restrictions.

The IEN flag in the channel context, generated by the compiler for __interrupt() qualified functions,
is set to zero, because functions are not interruptible by default. The interrupt priority of the channel
R6.CPPN is set to zero, because channels that do not allow interrupts do not need a interrupt priority
value. Channels that have IEN disabled in the channel context are serviced if their channel number is
higher than the priority of the currently running channel.

The CEN flag in the context channel is set. For each PRAM access CEN is cleared. CEN is re-set at
interrupt function return or at voluntary exit when using the __exit() intrinsic.

Depending on the channels start mode the channel continues execution at the next PC or restarts. The
channels start at context PC mode is the default of the PCP (CS.RCB=0), the channel continues on the
next PC after a voluntary exit (EP=1). Voluntary exit and channel start at base is not supported, it may
lead to undefined run-time behavior. See the exit() intrinsic function.

1.9.2. Interruptible Code Generation

Interruptible functions can only be supported when they do not share static stack space, which means
that they cannot have common functions that use the static stack. The static stack is not only used for
user defined functions, but also for compiler run-time functions and C library functions.

Each interrupt channel must be linked separately when they have commonly used functions. The linker
option --link-only is used to link a single channel without locating it. Several linked channels can be
located with the linker to a single PCP application. Functions that are used in different interrupt channels
are duplicated, their names need to be unique to avoid duplicate name conflicts. With the compiler option

LThis average is statistically determined on a large number of test programs.

31

TASKING VX-toolset for PCP User Guide

--symbol-prefix="name" you can prefix all global variables with name. You need to rebuild the libraries
with the prefix that corresponds to the channel. Each channel needs its own prefixed library functions. It
is not required to create C libraries for each channel when C libraries are linked in the compiler with the
option --mil.

To share global variables between PCP channels the qualifier __share needs to be used on the (external)
definition. E.g. extern int __share variable. __share variables get application scope instead
of channel scope, using the _Ic linker label prefix.

To share global functions between PCP channels the PCP can post channel requests to itself using the
___exit(SRPN) intrinsic function. For servicing TriCore CPU interrupts the __exit_cpu(SRPN) intrinsic
need to be used. The SRPN is the channel number to service, which can be an interruptible or
non-interruptible channel.

The IEN flag in the channel context, generated by the compiler for __interrupt() qualified functions,
is set to one, when interruptible code generation is enabled with the PCP C compiler option
--interrupt-enable.

The PCP interrupt priority CPPN can be set using __cppn(CPPN) interrupt function qualifier. The
__cppn() function qualifier can only be used for __interrupt() qualified functions and have interrupting
enabled. The R6.CPPN value is restored at function exit, because R6 is used by the PCP C compiler as
general purpose register to store local objects.

Functions that are interruptible need to keep the IEN flag enabled or need to preserve its state. With the
PCP C compiler option --interrupt-enable the IEN flag is kept enabled.

With PCP C compiler option --preserve-r7-flags code is generated for PRAM access that does not write
any of the R7.0..7 flags. Preserving the R7 flags increases the generated code substantially, but the state
of the IEN and CEN flags can be changed anywhere in the C code. For example the interrupts can be
temporary turned off in the code to call a non-interruptible function and turn it on afterwards. Also the
channel can be turned off to prevent servicing the channel anymore. The code generated for accessing
global PRAM variable "x" is:

Id.i rl1,0x3f
Idl.il r1,0xff

and r7,rl,cc_uc
Idi_il r1,@DPTR(_PCP_x)
or r7,rl,cc_uc ; load R7.DPTR

st.pi r5,[PCP_x]

With the intrinsics __ien() and __cen() the IEN and CEN flags can be set or cleared in the code.
These intrinsics can only be safely used when the r7 flags are preserved by the compiler.

When --preserve-r7-flags is not used and --interrupt-enable is used code is generated by the PCP C
compiler that keeps the IEN and CEN flags enabled when accessing PCP PRAM. For example, when
accessing global variable "x" in PRAM next code is generated.

Idl.ilf r7,@DPTR_FLAGS(_PCP_x,0x60) ; load R7.DPTR, IEN=1 and CEN=1
st.pi r5,[_PCP_x]

For direct PRAM access the generated code is comparable for interruptible and un-interruptible code
generation (--interrupt-enable). Indirect PRAM access is smaller and faster for un-interruptible code

32

C Language

generation, because for interruptible code generation the IEN and CEN flags are set for every indirect
PRAM access. For example, the next indirect PRAM access is generated for --interrupt-enable.

Idl.il r3,0x3fcO

and r3,rl,cc_uc

shl r3,0x2

set r3,0x5 ; set IEN

set r3,0x6 ; set CEN

mov r7,r3,cc_uc ; load R7.DPTR

st.p r5,[rl],cc_uc

The generated code with --interrupt-enable averages 1.5% larger in code size and 1.3% slower in
performance than the default code generation. With --preserve-r7-flags the generated code increases
an average of 45%°.

1.10. Compiler Generated Sections

The compiler generates code and data in several types of sections. The compiler uses the following
section naming convention:

section_type_prefix.section_type

The default section name is equal to the generated section type that is prefixed with . pcptext. for code
in CMEM and .pcpdata. for data in PRAM. The default code section name is . pcptext.code and
the default PRAM data section name is .pcpdata.data. The default FPI data section name uses a
prefix conform the TriCore C compiler. E.g. __far int i; islocated in a section with name
-bss_linear.You can change section names with #pragma section or with the command line option
--rename-sections.

The following table lists the section types and name prefixes.

Section type |Name prefix Description

code .pcptext program code

data .pcpdata initialized __near data
linear conform TriCore |initialized __far data

The section names are independent of the section attributes such as clear, init, max, and overlay.

Section names are case sensitive. By default, the sections are not concatenated by the linker. This means
that multiple sections with the same name may exist. At link time, sections with different attributes can
be selected by their attributes. The linker may remove unreferenced sections from the application.

Overlay sections

For static stack overlay sections the compiler uses a different section naming convention. The section
name equals the function name in which the overlay section is allocated.

function_nane

*This average is statistically determined on a large number of test programs.

33

TASKING VX-toolset for PCP User Guide

For example, for function main, the section name will be:

_PCP_main

1.10.1. Rename Sections

You can rename sections with a pragma or with a command line option. The syntax is the same:
--renane-sections=[type=]1f ormat _string[, [type=1f ormat _string].-..-

#pragma section [type=]format_string[, [type=]format _string].--.

With the memory type you select which sections are renamed. The matching sections will get the specified

format string for the section name. The format string can contain characters and may contain the following
format specifiers:

{attrib} section attributes, separated by underscores
{module} module name

{name} object name, name of variable or function
{type} section type

Some examples (file test.c):

#pragma section data={module} {type} {attrib}
int x;
/* Section name: .pcpdata.test _data data_clear */

#pragma section data=cpcp_{module}_ {name}
int status;
/* Section name: .pcpdata.cpcp_test status */

#pragma section data=RENAMED_{name}
int barcode;
/* Section name: .pcpdata.RENAMED barcode */

section_type_prefix.nmodul e_nane.pragma_val ue
#pragma endsection

With the #pragma endsection the default section name is restored. Nesting of pragma
section/endsection pairs will save the status of the previous level.

Examples (file example.c)

char a; // allocated in ".pcpdata.data”
#pragma section data=MyDatal

char b; // allocated in " .pcpdata.MyDatal®
#pragma section data=MyData2

char c; // allocated in " .pcpdata.MyData2*
#pragma endsection

34

C Language

char d; // allocated in " .pcpdata.MyDatal®
#pragma endsection
char e; // allocated in ".pcpdata.data”

35

TASKING VX-toolset for PCP User Guide

36

Chapter 2. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language for the PCP. For
a complete overview of the PCP2 architecture, refer to the PCP2 Target Specification [V 1.0, 2000-06,
Infineon).

2.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[l abel [:]] [instruction | directive | macro_call] [;coment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits and underscore
characters (). The first character cannot be a digit. The label can also be a
number. A label which is prefixed by whitespace (spaces or tabs) has to be
followed by a colon (:). The size of an identifier is only limited by the amount of
available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LAB1: ; This label is followed by a colon and

; can be prefixed by whitespace

LAB1 ; This label has to start at the beginning
; of a line

1: b 1p ; This is an endless loop
; using numeric labels

instruction An instruction consists of a mnemonic and zero, one or more operands. It must

not start in the first column.
Operands are described in Section 2.3, Operands of an Assembly Instruction.
The instructions are described in the target's core Architecture Manual.

directive With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 2.9, Assembler Directives and Controls.

37

TASKING VX-toolset for PCP User Guide

macro_call A call to a previously defined macro. It must not start in the first column. See
Section 2.10, Macro Operations.

comment Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called ‘control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$cont r ol

For more information on controls see Section 2.9, Assembler Directives and Controls.

2.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1SO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 2.6.3, Expression Operators. Other special assembler characters
are:

Character [Description

Start of a comment

\ Line continuation character or macro operator: argument concatenation
? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

n Macro operator: override local label

" Macro string delimiter or quoted string - DEFINE expansion character

' String constants delimiter

@ Start of a built-in assembly function
* Location counter substitution

Constant number

++ String concatenation operator

[] Substring delimiter

2.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

38

Assembly Language

Operand Description

symbol A symbolic name as described in Section 2.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 2.5, Registers.

expression Any valid expression as described in Section 2.6, Assembly Expressions.

address A combination of expression, register and symbol.

Addressing modes

The PCP assembly language has several addressing modes. These addressing modes are used for FPI
addressing, PRAM data indirect addressing or flow control destination addressing. For details see the
PCP2 Target Specification [V 1.0, 2000-06, Infineon].

2.4. Symbol Names

User-defined symbols

A user-defined symbol can consist of letters, digits and underscore characters (). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case
of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 2.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels. It is allowed to use reserved symbols as
labels as long as the label is followed by a colon.

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example
for directives or section names). Instructions and registers are also reserved. The case of these built-in
symbols is insignificant.

Examples

Valid symbol names:
loop_1

ENTRY

aBc

_aBC

Invalid symbol names:

39

TASKING VX-toolset for PCP User Guide

1 loop ; starts with a number
rl ; reserved register name
-DEFINE ; reserved directive name

2.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol Description

__ASPCP__ Identifies the assembler. You can use this symbol to flag parts of the source
which must be recognized by the aspcp assembler only. It expands to 1.

__BUILD__ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, _ BUILD___ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

_ REVISION__ Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.
__VERSION__ Identifies the version number of the assembler. For example, if you use

version 2.1r1 of the assembler, _ VERSION__ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

.if @defined("_ASPCP_ ")
; this part is only for the aspcp assembler

_endif
2.5. Registers

The following register names, either upper or lower case, should not be used for user-defined symbol
names in an assembly language source file:

RO .. RY (general purpose registers)

2.5.1. Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from assembly. The
SFRs are defined in a special function register definition file (*.def) as symbol names for use assembler.

The assembler reads the SFR definition file as defined by the selected derivative with the command line
option --cpu (-C). SFRs are defined with .EQU directives.

40

Assembly Language

For example (from regtc1165.def):
PC -equ OxFEO8

Without an SFR file the assembler only knows the general purpose registers RO-R7.

2.6. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer or floating-point values), and
any combination of integers, floating-point numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker. Relocatable expressions can only
contain integral functions; floating-point functions and numbers are not supported by the ELF/DWARF
object format.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

» symbol

» expression binary_operator expression

* unary_operator expression

* (expression)

« function call

All types of expressions are explained in separate sections.

2.6.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes can be used in either lower or upper case.

41

TASKING VX-toolset for PCP User Guide

Base Description Example
Binary A Ob or 0B prefix followed by binary digits (0,1). 0B1101

0b11001010
Hexadecimal A Ox or 0X prefix followed by hexadecimal digits (0-9, A-F, a-f). |OX12FF

0x45

Oxfal0
Decimal integer Decimal digits (0-9). 12

1245
Decimal Decimal digits (0-9), includes a decimal point, or an 'E' or ‘e’ 6E10
floating-point followed by the exponent. -6

3.14

2.7e10

2.6.2. Strings

ASCII characters, enclosed in single (‘) or double () quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a . DEFINE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII

value). Strings in expressions can have a size of up to 4 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a .BYTE assembler directive; in

that case all characters result in a constant value of the specified size. Null strings have a value of 0.

Square brackets ([]) delimit a substring operation in the form:

[string,of fset,

offset is the start position within string. length is the length of the desired substring. Both values may not

| engt h]

exceed the size of string.

Examples

"ABCD*"
~=e7g-
"A\"BC"
"AB"+1

.word "abcdef*

"abcT"++"de"

["TASKING",0,4]

42

; (0x41424344)
; to enclose a quote double it

; or to enclose a quote escape it

(0x4143) string used iIn expression

; null string

(0x64636261) "ef" are ignored

; warning: string value truncated

; you can concatenate

; two strings with the "++" operator.
; This results in "abcde”

results in the substring "TASK®

2.6.3. Expression Operators

Assembly Language

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Most assembler operators can be used with both integer and floating-point values. If one operand has
an integer value and the other operand has a floating-point value, the integer is converted to a floating-point
value before the operator is applied. The result is a floating-point value.

Type Operator Name Description

O parenthesis Expressions enclosed by parenthesis are evaluated
first.

Unary + plus Returns the value of its operand.

- minus Returns the negative of its operand.

~ one's complement Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

! logical negate Returns 1 if the operands' value is O; otherwise 0.
For example, if buf is 0 then 'buf is 1. If buf has
a value of 1000 then 'bufis 0.

Arithmetic * multiplication Yields the product of its operands.

/ division Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

% modulo Integer only. This operator yields the remainder from
the division of the first operand by the second.

+ addition Yields the sum of its operands.

- subtraction Yields the difference of its operands.

Shift << shift left Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.

>> shift right Integer only. Causes the left operand to be shifted
to the right by the number of bits specified by the
right operand. The sign bit will be extended.

43

TASKING VX-toolset for PCP User Guide

Type Operator Name Description
Relational < less than Returns an integer 1 if the indicated condition is
-— less than or equal TRUE or an integer 0 if the indicated condition is
FALSE.
> greater than
- greater than or equal For example, if D has a value of 3 qnd E ha; avalue
of 5, then the result of the expression D<E is 1, and
== equal the result of the expression D>E is 0.
I= not equal

Use tests for equality involving floating-point values
with caution, since rounding errors could cause
unexpected results.

Bit and & AND Integer only. Yields the bitwise AND function of its
Bitwise operand.
[OR Integer only. Yields the bitwise OR function of its
operand.
A exclusive OR Integer only. Yields the bitwise exclusive OR function

of its operands.

Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.

[logical OR Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly
- if directive, but can be used in any expression.

2.7.Working with Sections

Sections are absolute or relocatable blocks of contiguous memory that can contain code or data. Some
sections contain code or data that your program declared and uses directly, while other sections are
created by the compiler or linker and contain debug information or code or data to initialize your application.
These sections can be named in such a way that different modules can implement different parts of these
sections. These sections are located in memory by the linker (using the linker script language, LSL) so
that concerns about memory placement are postponed until after the assembly process.

All instructions and directives which generate data or code must be within an active section. The assembler
emits a warning if code or data starts without a section definition and activation. The compiler automatically
generates sections. If you program in assembly you have to define sections yourself.

For more information about locating sections see Section 5.7.8, The Section Layout Definition: Locating
Sections.

Section definition

Sections are defined with the . SDECL directive and have a name. A section may have attributes to instruct
the linker to place it on a predefined starting address, or that it may be overlaid with another section.

.SDECL "nane", type [, attribute]... [AT address]

44

Assembly Language

See the description of the . SDECL directive for a complete description of all possible attributes.
Section activation
Sections are defined once and are activated with the . SECT directive.

.SECT "nane"

The linker will check between different modules and emits an error message if the section attributes do
not match. The linker will also concatenate all matching section definitions into one section. So, all "code"
sections generated by the compiler will be linked into one big "code" chunk which will be located in one
piece. A . SECT directive referring to an earlier defined section is called a continuation. Only the name
can be specified.

Examples

.SDECL " _pcptext.code",CODE
-SECT " _pcptext.code™

Defines and activates a relocatable section in CODE memory. Other parts of this section, with the same
name, may be defined in the same module or any other module. Other modules should use the same
-SDECL statement. When necessary, it is possible to give the section an absolute starting address.

.SDECL ".pcpdata.data', data at 0x100
.SECT " _pcpdata.data"

Defines and activates an absolute section named . pcpdata.data starting at address 0x100.

2.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations. You can use functions as terms in any expression.

Syntax of an assembly function

@f uncti on_nane([ar gunent [,argunment]...1)

Functions start with the '@’ character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name

and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

Overview of mathematical functions

Function Description
@ABS(expr) Absolute value
@ACS(expr) Arc cosine
@ASN(expr) Arc sine

45

TASKING VX-toolset for PCP User Guide

Function Description

@AT2(exprl,expr2) Arc tangent of exprl / expr2
@ATN(expr) Arc tangent

@CEL (expr) Ceiling function

@COH(expr) Hyperbolic cosine

@COS(expr) Cosine

@FLR(expr) Floor function

@L10(expr) Log base 10

@LOG(expr) Natural logarithm

@MAX(expri[, - - -, exprN]) Maximum value

@MIN(exprl[, - - - ,exprN]) Minimum value

@POW(exprl,expr2) Raise to a power

@RNDQO Random value

@SGN(expr) Returns the sign of an expression as -1, 0 or 1
@SIN(expr) Sine

@SNH(expr) Hyperbolic sine

@SQT (expr) Square root

@TAN(expr) Tangent

@TNH(expr) Hyperbolic tangent

@XPN(expr) Exponential function (raise e to a power)

Overview of conversion functions

Function Description

@CVF(expr) Convert integer to floating-point
@CV1(expr) Convert floating-point to integer
@FLD(base,value,,width[, start]) Shift and mask operation

@FRACT (expr) Convert floating-point to 32-bit fractional
@SFRACT (expr) Convert floating-point to 16-bit fractional
@LNG(exprl,expr2) Concatenate to double word
@LUN(expr) Convert long fractional to floating-point
@RVB(expr[,exprN]) Reverse order of bits in field
@UNF(expr) Convert fractional to floating-point
Overview of string functions

Function Description

@CAT(strl,str2) Concatenate strl and str2

46

Assembly Language

Function Description
@LEN(string) Length of string
@POS(str1, str2[, start]) Position of str2 in strl
@SCP(str1,str2) Compare strl with str2

@SUB(str, exprl,expr2)

Return substring

Overview of macro functions

Function Description

@ARG("symbol* | expr) Test if macro argument is present
@CNTQO Return number of macro arguments
@MAC (symbol) Test if macro is defined

@MXPQO Test if macro expansion is active

Overview of address calculation functions

Function Description

@DPTR(expr) Returns bits 6-13 of the pcpdata address

@DPTRBIT(expr) Returns single negated bit in the range 6-13 of the pcpdata
address

@HI (expr) Returns upper 16 bits of expression value

@INIT_R7(start, dptr,flags) Returns the 32-bit value to initialize R7

@LO(expr) Returns lower 16 bits of expression value

@LSB(expr) Least significant byte of the expression

@MSB(expr) Most significant byte of the expression

Overview of assembler mode functions

Function Description

@ASPCPQ) Returns the name of the PCP assembler executable
@CPU("cpu™) Test if CPU type is selected

@DEF("symbol® | symbol) Returns 1 if symbol has been defined

@EXP (expr) Expression check

@INT (expr) Integer check

@LSTO LIST control flag value

47

TASKING VX-toolset for PCP User Guide

Detailed Description of Built-in Assembly Functions

@ABS(expression)
Returns the absolute value of the expression as an integer value.
Example:

AVAL _SET @ABS(-2.1) ; AVAL = 2
@ACS(expression)

Returns the arc cosine of expression as a floating-point value in the range zero to pi. The result of
expression must be between -1 and 1.

Example:

ACOS .SET @ACS(-1.0) ;ACOS = 3.1415926535897931

@ARG('symbol’ | expression)

Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

You can specify the argument with a symbol name (the name of a macro argument enclosed in single
guotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

-IF @QARG("TWIDDLE®") ;is argument twiddle present?
_IF @ARG(2) ;is First argument present?

@ASN(expression)

Returns the arc sine of expression as a floating-point value in the range -pi/2 to pi/2. The result of
expression must be between -1 and 1.

Example:

ARCSINE _.SET @ASN(-1.0) ;ARCSINE = -1.570796

@ASPCP()

Returns the name of the assembler executable. This is ‘aspcp' for the PCP assembler.
Example:

ANAME: _byte @ASPCPQ) ;ANAME = "aspcp*®

48

Assembly Language

@AT2(expressionl,expression2)

Returns the arc tangent of expressionl/expression2 as a floating-point value in the range -pi to pi.
expressionl and expression2 must be separated by a comma.

Example:

ATAN2 _EQU @AT2(-1.0,1.0) ;ATAN2 = -0.7853982

@ATN(expression)

Returns the arc tangent of expression as a floating-point value in the range -pi/2 to pi/2.

Example:

ATAN _SET @ATN(1.0) ;ATAN = 0.78539816339744828

@CAT(string1,string2)

Concatenates the two strings into one string. The two strings must be enclosed in single or double quotes.
Example:

-DEFINE ID "@CAT("TASK","ING")" ;1D = "TASKING®

@CEL(expression)

Returns a floating-point value which represents the smallest integer greater than or equal to expression.
Example:

CEIL _.SET @CEL(-1.05) ;CEIL = -1.0

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:

ARGCOUNT _SET @CNT() ; reserve argument count
@COH(expression)

Returns the hyperbolic cosine of expression as a floating-point value.
Example:

HYCOS _EQU @COH(VAL) ;compute hyperbolic cosine

49

TASKING VX-toolset for PCP User Guide

@COS(expression)
Returns the cosine of expression as a floating-point value.
Example:

_WORD -@COS(@CVF(COUNT)*FREQ) ;compute cosine value

@CPU(string)

Returns integer 1 if string corresponds to the selected CPU type; 0 otherwise. See also assembler option
--cpu (Select CPU).

Example:

_IF @CPU("'pcp'™) ;PCP specific part
@CVF(expression)

Converts the result of expression to a floating-point value.
Example:

FLOAT .SET @CVF(5) ;FLOAT = 5.0

@CVI(expression)

Converts the result of expression to an integer value. This function should be used with caution since the
conversions can be inexact (e.g., floating-point values are truncated).

Example:
INT _SET @CVI(-1.05) JINT = -1
@DEF('symbol’ | symbol)

Returns 1 if symbol has been defined, 0 otherwise. symbol can be any symbol or label not associated
with a .MACRO or .SDECL directive. If symbol is quoted, it is looked up as a -DEFINE symbol; if it is not
quoted, it is looked up as an ordinary symbol or label.

Example:
- IF @DEFINED("ANGLE™) ;is symbol ANGLE defined?
- 1F @DEFINED(ANGLE) ;does label ANGLE exist?

@DPTR(expression)
Returns bits 6-13 of the pcpdata address provided. This is equivalent to ((expression>>6) & Oxff).
Example:

Idl.il r7,@DPTR(pcp_data_a0)

50

Assembly Language

@DPTRBIT(expression)

Returns a single negated bit in the range 6-13 of the pcpdata address provided. This is equivalent to
((expression>>n-8+6) ~0x1), where n=8..15.The bit returned is defined by the BMOVN instruction.

Example:

bmovn r7,8,@DPTRBIT(label) ; bmovn R7,8,((label>>6)"0x1)
@EXP(expression)

Returns 0 if the evaluation of expression would normally result in an error. Returns 1 if the expression
can be evaluated correctly. With the @EXP function, you prevent the assembler from generating an error
if the expression contains an error. No test is made by the assembler for warnings. The expression may
be relative or absolute.

Example:

-1IF 1@EXP(3/0) ;Do the IF on error
;assembler generates no error

-1IF 1(3/70) ;assembler generates an error

@FLD(base,value,width[,start])

Shift and mask value into base for width bits beginning at bit start. If start is omitted, zero (least significant
bit) is assumed. All arguments must be positive integers and none may be greater than the target word
size. Returns the shifted and masked value.

Example:

VAR1 _EQU @FLD(0,1,1) ;turn bit 0 on, VAR1=1

VAR2 _EQU @FLD(0,3,1) ;turn bit 0 on, VAR2=1

VAR3 .EQU @FLD(0,3,2) ;turn bits 0 and 1 on, VAR3=3

VAR4 _EQU @FLD(0,3,2,1) ;turn bits 1 and 2 on, VAR4=6
VAR5 _EQU @FLD(0,1,1,7) ;turn eighth bit on, VAR5=0x80

@FLR(expression)

Returns a floating-point value which represents the largest integer less than or equal to expression.
Example:

FLOOR .SET @FLR(2.5) ;FLOOR = 2.0

@FRACT(expression)

Returns the 32-bit fractional representation of the floating-point expression. The expression must be in
the range [-1,+1>.

Example:

51

TASKING VX-toolset for PCP User Guide

.WORD @FRACT(0.1), @FRACT(1.0)
@Hl(expression)

Returns the upper 16 bits of a value. @HI (expression) is equivalent to ((expression>>16) &
OxFFff).

Example:

Idl_iu r5,#@H1(COUNT) ;upper 16 bits of COUNT
Idl.il r5,#@LO(COUNT)

@INIT_R7(start,dptr,flags)

Returns the 32-bit value needed to initialize R7. This is equivalent to (start<<16) +
(((dptr&ox3fFff)>>6)<<8) + (Flags & OxFF).

Example:
.WORD @INIT_R7(start_0O,pcp_data_0,7)
@INT(expression)

Returns integer 1 if expression has an integer result; otherwise, it returns a 0. The expression may be
relative or absolute.

Example:
IF @INT(TERM) ;Test if result is an integer
@L10(expression)

Returns the base 10 logarithm of expression as a floating-point value. expression must be greater than
zero.

Example:

LOG .EQU @L10(100.0) ;LOG = 2
@LEN(string)

Returns the length of string as an integer.

Example:

SLEN .SET @LEN("string®) ;SLEN = 6
@LNG(expressionl,expression2)

Concatenates the 16-bit expressionl and expression2 into a 32-bit word value such that expressionl is
the high half and expression2 is the low half.

52

Assembly Language

Example:

LWORD _WORD @LNG(HI,LO) ;build long word

@LO(expression)

Returns the lower 16 bits of a value. @LO(expression) is equivalent to (expression & OxFfFff).

Example:

Idl_iu r5,#@H1(COUNT)
Idi_il r5,#@LO(COUNT) ;lower 16 bits of COUNT

@LOG(expression)

Returns the natural logarithm of expression as a floating-point value. expression must be greater than
zero.

Example:

LOG .EQU @LOG(100.0) ;LOG = 4.605170
@LSB(expression)

Returns the least significant byte of the result of the expression. The result of the expression is calculated
as 16 hit.

Example:
VAR1 -SET @LSB(0x34) ;VARL = 0x34
VAR2 -SET @LSB(0x1234) ;VAR2 = 0x34
VAR3 -SET @LSB(0x654321) ;VAR3 = 0x21
@LST()

Returns the value of the SLIST ON/OFF control flag as an integer. Whenever a $LIST ON control is
encountered in the assembler source, the flag is incremented; when a $LIST OFF control is encountered,
the flag is decremented.

Example:
.DUP @ABS(@LSTQ) ;list unconditionally

@LUN(expression)

Converts the 32-bit expression to a floating-point value. expression should represent a binary fraction.

Example:

DBLFRC1 _EQU @LUN(Ox40000000) ;DBLFRC1 = 0.5
DBLFRC2 _EQU @LUN(3928472) ;DBLFRC2 = 0.007354736
DBLFRC3 _EQU @LUN(OXEO000000) ;DBLFRC3 = -0.75

53

TASKING VX-toolset for PCP User Guide

@MAC(symbol)

Returns integer 1 if symbol has been defined as a macro name, 0 otherwise.
Example:

IF @MAC(DOMUL) ;does macro DOMUL exist?
@MAX(expressionl[,expressionN],...)

Returns the maximum value of expressionl, ..., expressionN as a floating-point value.
Example:

MAX: -BYTE @MAX(1,-2.137,3.5) ;MAX = 3.5
@MIN(expressionl[,expressionN],...)

Returns the minimum value of expressionl, ..., expressionN as a floating-point value.
Example:

MIN: -BYTE @MIN(1,-2.137,3.5) ;MIN = -2.137
@MSB(expression)

Returns the most significant byte of the result of the expression. The result of the expression is calculated
as 16 bit.

Example:

VAR1 -SET @MSB(0x34) ;VARL1 = 0x00

VAR2 -SET @MSB(0x1234) ;VAR2 = 0x12

VAR3 -SET @MSB(0x654321) ;VAR3 = 0x43

@MXP()

Returns integer 1 if the assembler is expanding a macro, O otherwise.
Example:

_IF @MXPQO ;macro expansion active?

@POS(stringl,string2[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in stringl, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of stringl. Note that the first position in a string is position 0.

Example:

54

Assembly Language

ID1 .EQU @POS("TASKING®","ASK") ; ID1
ID2 .EQU @POS("ABCDABCD®,"B",2) ; ID2
ID3 .EQU @POS("TASKING®,"BUG") ; ID3

nouo
~N ok

@POW(expressionl,expression2)

Returns expressionl raised to the power expression2 as a floating-point value. expressionl and
expression2 must be separated by a comma.

Example:

BUF _EQU @CVI(@POW(2.0,3.0)) ;BUF = 8

@RND()

Returns a random value in the range 0.0 to 1.0.

Example:

SEED .EQU @RNDQO ;save initial SEED value

@RVB(expressionl,expression2)

Reverse the order of bits in expressionl delimited by the number of bits in expression2. If expression2
is omitted the field is bounded by the target word size. Both expressions must be 16-bit integer values.

Example:

VAR1 .SET @RVB(0x200) ;reverse all bits, VAR1=0x40

VAR2 _SET @RVB(0xB02) ;reverse all bits, VAR2=0x40D0

VAR3 .SET @RVB(0xB02,2) ;reverse bits 0 and 1,
;VAR3=0xB01

@SCP(stringl,string?2)

Returns integer 1 if the two strings compare, 0 otherwise. The two strings must be separated by a comma.
Example:

-IF @SCP(STR, "MAIN") ; does STR equal "MAINT"?

@SFRACT (expression)

This function returns the 16-bit fractional representation of the floating-point expression. The expression
must be in the range [-1,+1>.

Example:

_WORD @SFRACT(0.1), @SFRACT(1.0)

55

TASKING VX-toolset for PCP User Guide

@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative, O if zero, 1 if positive. The
expression may be relative or absolute.

Example:

VAR1 _.SET @SGN(-1.2e-92) ;VARL = -1
VAR2 _SET @SGN(O) ;VAR2 = O
VAR3 _SET @SGN(28.382) ;VAR3 = 1

@SIN(expression)

Returns the sine of expression as a floating-point value.

Example:

-WORD @SIN(@CVF(COUNT)*FREQ) ;compute sine value
@SNH(expression)

Returns the hyperbolic sine of expression as a floating-point value.
Example:

HSINE _EQU @SNH(VAL) shyperbolic sine
@SQT(expression)

Returns the square root of expression as a floating-point value. expression must be positive.

Example:
SQRT1 _EQU @SQT(3.5) ;SOQRT1 = 1.870829
SQRT2 _EQU @SQT(16) ;SQRT2 = 4

@SUB(string,expressionl,expression2)

Returns the substring from string as a string. expressionl is the starting position within string, and
expression?2 is the length of the desired string. The assembler issues an error if either expressionl or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

_DEFINE ID "@SUB("TASKING",3,4)" ;ID = "KING"
@TAN(expression)

Returns the tangent of expression as a floating-point value.

Example:

56

Assembly Language

TANGENT .SET @TAN(1.0) ;TANGENT = 1.5574077
@TNH(expression)
Returns the hyperbolic tangent of expression as a floating-point value.

Example:

HTAN _SET @TNH(1) ;HTAN = 0.76159415595

@UNF(expression)
Converts expression to a floating-point value. expression should represent a 16-bit binary fraction.
Example:

FRC _EQU @UNF(0x4000) ;FRC = 0.5
@XPN(expression)
Returns the exponential function (base e raised to the power of expression) as a floating-point value.

Example:

EXP .EQU @XPN(1.0) ;EXP = 2.718282

2.9. Assembler Directives and Controls

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

» Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

* Assembly control directives

< Symbol definition and section directives

« Data definition / Storage allocation directives
* High Level Language (HLL) directives

« Directives that are interpreted by the macro preprocessor. These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all.

57

TASKING VX-toolset for PCP User Guide

» Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the controls $LIST ON
and $LIST OFF you overrule this option for a part of the code that you do not want to appear in the
list file. Controls always appear on a separate line and start with a '$' sign in the first column.

The following controls are available:
« Assembly listing controls
* Miscellaneous controls

Each assembler directive or control has its own syntax. You can use assembler directives and controls
in the assembly code as pseudo instructions.

Some assembler directives can be preceded with a label. If you do not precede an assembler directive
with a label, you must use white space instead (spaces or tabs). The assembler recognizes both upper
and lower case for directives.

2.9.1. Assembler Directives

Overview of assembly control directives

Directive Description

-COMMENT Start comment lines. You cannot use this directive in .IF/.ELSE/.ENDIF
constructs and .MACRO/.DUP definitions.

-END Indicates the end of an assembly module

-FAIL Programmer generated error message

- INCLUDE Include file

-MESSAGE Programmer generated message

-WARNING Programmer generated warning message

Overview of symbol definition and section directives

Directive Description

-ALIAS Create an alias for a symbol

-EQU Set permanent value to a symbol

-EXTERN Import global section symbol

-GLOBAL Declare global section symbol

-LOCAL Declare local section symbol

-NAME Specify name of original C source file

.ORG Initialize memory space and location counters to create a nameless section
-SDECL Declare a section with name, type and attributes

58

Assembly Language

Directive Description

-SECT Activate a declared section

-SET Set temporary value to a symbol

_SIZE Set size of symbol in the ELF symbol table
-TYPE Set symbol type in the ELF symbol table
-WEAK Mark a symbol as 'weak’

Overview of data defi

nition / storage allocation directives

Directive Description

-ACCUM Define 64-bit constant of 18 + 46 bits format
-ALIGN Align location counter

-ASCI1, _ASCIlIZz Define ASCII string without / with ending NULL byte
.BYTE Define byte

-DOUBLE Define a 64-bit floating-point constant
-FLOAT Define a 32-bit floating-point constant
-FRACT Define a 32-bit constant fraction

-HALF Define half-word (16 bits)

-SFRACT Define a 16-bit constant fraction

-SPACE Define storage

-WORD Define word (32 bits)

Overview of macro preprocessor directives

Directive Description

-DEFINE Define substitution string

-DUP, _ENDM Duplicate sequence of source lines
-DUPA, _ENDM Duplicate sequence with arguments
.DUPC, .ENDM Duplicate sequence with characters
-DUPF, _ENDM Duplicate sequence in loop

- IF, _.ELIF, .ELSE Conditional assembly directive
-ENDIF End of conditional assembly directive
-EXITM Exit macro

-MACRO, .ENDM Define macro

-PMACRO Undefine (purge) macro

-UNDEF Undefine .DEFINE symbol

59

TASKING VX-toolset for PCP User Guide

Overview of HLL directives

Directive Description
-CALLS Pass call tree information and/or stack usage information
-MISRAC Pass MISRA-C information

60

Assembly Language

ACCUM

Syntax

[1 abel :]. ACCUM expr essi on[, expression]...
Description

With the . ACCUM directive the assembler allocates and initializes two words of memory (64 bits) for each
argument. Use commas to separate multiple arguments.

An expression can be:

« afractional fixed point expression (range [-217, 2!

>)
* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of two bytes. If an argument is
NULL its corresponding address location is filled with zeros.

If the evaluated expression is out of the range [-217, 217>, the assembler issues a warning and saturates
the fractional value.

Example

ACC: _ACCUM 0.1,0.2,0.3

Related Information

.FRACT, .SFRACT (Define 32-bit/16-bit constant fraction)

-SPACE (Define Storage)

61

TASKING VX-toolset for PCP User Guide

ALIAS

Syntax

al i as-name . ALI AS functi on- nane
Description

With the _ALIAS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma alias.

Example

exit _ALIAS _Exit

62

Assembly Language

ALIGN
Syntax

. ALI GN expressi on
Description

With the . ALIGN directive you instruct the assembler to align the location counter. By default the assembler
aligns on one byte.

When the assembler encounters the .ALIGN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs). The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.
A label is not allowed before this directive.

Example

-sdecl " _pcptext.code”,code
.sect " _pcptext.code”
.ALIGN 16 ; the assembler aligns
instruction ; this instruction at 16 MAUs and
; Fills the "gap” with NOP instructions.
-sdecl " _pcptext.code”,code
.sect " _pcptext.code”
.ALIGN 12 ; WRONG: not a power of two, the
instruction ; assembler aligns this instruction at
; 16 MAUs and issues a warning.

63

TASKING VX-toolset for PCP User Guide

ASCII, .ASClIZ

Syntax

[label:] .ASCIl string[,string]---
[label :] .ASCI1Z string[,string]---
Description

With the _ASCI1 1 or _.ASCI1 1Z directive the assembler allocates and initializes memory for each string
argument.

The _ASCI 1 directive does not add a NULL byte to the end of the string. The .ASCI 1Z directive does
add a NULL byte to the end of the string. The "z" in . ASCI 1Z stands for "zero". Use commas to separate
multiple strings.

Example

STRING: _.ASCIl1 *Hello world"
STRINGZ: _.ASCI1Z "Hello world"

Note that with the _BYTE directive you can obtain exactly the same effect:

STRING: .BYTE "Hello world"
STRINGZ: .BYTE "Hello world",0

without a NULL byte
with a NULL byte

Related Information
-BYTE (Define a constant byte)

.SPACE (Define Storage)

64

Assembly Language

.BYTE

Syntax

[l abel :] . BYTE argunent [, argunent J. ..

Description

With the _.BYTE directive the assembler allocates and initializes a byte of memory for each argument.
An argument can be:

 asingle or multiple character string constant

* an integer expression

* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive byte locations. If an argument is NULL its corresponding
byte location is filled with zeros.

If you specify label, it gets the value of the location counter at the start of the directive processing.

Integer arguments are stored as is, but must be byte values (within the range 0-255); floating-point
numbers are not allowed. If the evaluated expression is out of the range [-256, +255] the assembler issues
an error. For negative values within that range, the assembler adds 256 to the specified value (for example,
-254 is stored as 2).

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

-BYTE "R*" ; = 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

-BYTE "AB",,"C" ; = 0x41420043 (second argument is empty)
Example

TABLE .BYTE “two",0,"strings”,0
CHARS .BYTE *A*","B","C","D"

Related Information
-ASCI1, _ASCII1Z (Define ASCII string without/with ending NULL)
-WORD, .HALF (Define a word / halfword)

.SPACE (Define Storage)

65

TASKING VX-toolset for PCP User Guide

.CALLS

Syntax

. CALLS °caller”, “call ee”

or

. CALLS ’caller”, ”7, stack_usage[,---1
Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The value specified is the stack usage in bytes at the time of the call
including the return address. A function can use multiple stacks.

This information is used by the linker to compute the used stack within the application. The information
is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Normally you will not use it in hand-coded assembly.
A label is not allowed before this directive.
Example
.CALLS "main®,"nfunc*
Indicates that the function main calls the function nfunc.
.CALLS "main®,"",8

The function main uses 8 bytes on the stack.

66

Assembly Language

.COMMENT
Syntax

. COMMVENT delimter

delinmter
Description

With the . COMMENT directive you can define one or more lines as comments. The first non-blank character
after the . COMMENT directive is the comment delimiter. The two delimiters are used to define the comment
text. The line containing the second comment delimiter will be considered the last line of the comment.
The comment text can include any printable characters and the comment text will be produced in the
source listing as it appears in the source file.

A label is not allowed before this directive.
Example

.COMMENT + This is a one line comment +

.COMMENT * This is a multiple line
comment. Any number of lines
can be placed between the two
delimiters.

67

TASKING VX-toolset for PCP User Guide

.DEFINE
Syntax

. DEFI NE synbol string
Description

With the . DEFINE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. . DEFINE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active .DEFINE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

A label is not allowed before this directive.

Example

Suppose you defined the symbol LEN with the substitution string "32":
-DEFINE LEN "32"

Then you can use the symbol LEN for example as follows:

-SPACE LEN
-.MESSAGE "The length is: LEN"

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

-SPACE 32
-MESSAGE "The length is: 32"

Related Information
-UNDEF (Undefine a .DEFINE symbol)

-MACRO, .ENDM (Define a macro)

68

Assembly Language

.DUP, .ENDM
Syntax

[l abel :] . DUP expression

. ENDM
Description

With the _.DUP/_ENDM directive you can duplicate a sequence of assembly source lines. With expression
you specify the number of duplications. If the expression evaluates to a number less than or equal to 0O,
the sequence of lines will not be included in the assembler output. The expression result must be an
absolute integer and cannot contain any forward references (symbols that have not already been defined).
The .DUP directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

In this example the loop is repeated three times. Effectively, the preprocessor repeats the source lines
(-BYTE 10) three times, then the assembler assembles the result:

.DUP 3
-BYTE 10 ; assembly source lines
-.ENDM

Related Information

.DUPA, _ENDM (Duplicate sequence with arguments)
.DUPC, .ENDM (Duplicate sequence with characters)
-DUPF, _ENDM (Duplicate sequence in loop)

-MACRO, .ENDM (Define a macro)

69

TASKING VX-toolset for PCP User Guide

.DUPA, .ENDM

Syntax

[l abel :] . DUPA formal _arg, argunment [, argunent]...

. ENDM
Description

With the .DUPA/.ENDM directive you can repeat a block of source statements for each argument. For
each repetition, every occurrence of the formal_arg parameter within the block is replaced with each
succeeding argument string. If an argument includes an embedded blank or other assembler-significant
character, it must be enclosed with single quotes.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

-DUPA VALUE,12,,32,34

-BYTE VALUE

-ENDM

This is expanded as follows:

.BYTE 12
.BYTE VALUE ; results in a warning
.BYTE 32
.BYTE 34

The second statement results in a warning of the assembler that the local symbol VALUE is not defined
in this module and is made external.

Related Information

.DUP, .ENDM (Duplicate sequence of source lines)
.DUPC, .ENDM (Duplicate sequence with characters)
-DUPF, .ENDM (Duplicate sequence in loop)

-MACRO, .ENDM (Define a macro)

70

Assembly Language

.DUPC, .ENDM
Syntax

[l abel :] .DUPC formal _arg, string

. ENDM
Description

With the .DUPC/_.ENDM directive you can repeat a block of source statements for each character within
string. For each character in the string, the formal_arg parameter within the block is replaced with that
character. If the string is empty, then the block is skipped.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

-DUPC VALUE, "123*

-.BYTE VALUE

-ENDM

This is expanded as follows:

.BYTE 1
.BYTE 2
.BYTE 3

Related Information

-DUP, _ENDM (Duplicate sequence of source lines)
-DUPA, _ENDM (Duplicate sequence with arguments)
.DUPF, .ENDM (Duplicate sequence in loop)

.MACRO, .ENDM (Define a macro)

71

TASKING VX-toolset for PCP User Guide

.DUPF, .ENDM
Syntax

[l abel :] . DUPF formal _arg, [start], end[, i ncrenent]

. ENDM
Description

With the . DUPF/_ENDM directive you can repeat a block of source statements (end - start) + 1/ increment
times. start is the starting value for the loop index; end represents the final value. increment is the increment
for the loop index; it defaults to 1 if omitted (as does the start value). The formal_arg parameter holds the
loop index value and may be used within the body of instructions.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
Consider the following source input statements,

.DUPF NUM,0,7
-BYTE NUM
-ENDM

This is expanded as follows:

-BYTE
-BYTE
-BYTE
-BYTE
-BYTE
-BYTE
-BYTE
-BYTE

~N~NoohwWNPEFE O

72

Assembly Language

Related Information

-DUP, _.ENDM (Duplicate sequence of source lines)
-DUPA, _ENDM (Duplicate sequence with arguments)
.DUPC, .ENDM (Duplicate sequence with characters)

-.MACRO, .ENDM (Define a macro)

73

TASKING VX-toolset for PCP User Guide

.END
Syntax

. END
Description

With the optional . END directive you tell the assembler that the end of the module is reached. If the
assembler finds assembly source lines beyond the _END directive, it ignores those lines and issues a
warning.

You cannot use the .END directive in a macro expansion.
The assembler does not allow a label with this directive.
Example

; source lines
.END ; End of assembly module

Related Information

74

Assembly Language

.EQU

Syntax

synbol . EQU expression
Description

With the _EQU directive you assign the value of expression to symbol permanently. The expression can
be relocatable or absolute and forward references are allowed. Once defined, you cannot redefine the
symbol. With the .GLOBAL directive you can declare the symbol global.

Example

To assign the value 0x400 permanently to the symbol MYSYMBOL:
MYSYMBOL _EQU 0x4000

You cannot redefine the symbol MYSYMBOL after this.

Related Information

-SET (Set temporary value to a symbol)

75

TASKING VX-toolset for PCP User Guide

EXITM
Syntax

. EXITM
Description

With the _EX1TM directive the assembler will immediately terminate a macro expansion. It is useful when
you use it with the conditional assembly directive . 1F to terminate macro expansion when, for example,
error conditions are detected.

A label is not allowed before this directive.
Example

CALC _MACRO XVAL,YVAL
IF XVAL<O
-FAIL "Macro parameter value out of range”
-EXITM ;Exit macro
-ENDIF

- EI;IDM
Related Information
.DUP, .ENDM (Duplicate sequence of source lines)
.DUPA, _ENDM (Duplicate sequence with arguments)
.DUPC, .ENDM (Duplicate sequence with characters)
-DUPF, _ENDM (Duplicate sequence in loop)

-MACRO, .ENDM (Define a macro)

76

Assembly Language

.EXTERN
Syntax

. EXTERN synbol [,synbol]-..
Description

With the . EXTERN directive you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the .GLOBAL
directive.

If you do not use the .EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the _.EXTERN directive.

A label is not allowed with this directive.

Example
-EXTERN AA,CC,DD ;defined elsewhere
.sdecl ".pcptext.code", code
.sect ".pcptext.code"

LD.1 R5,AA ; AA is used here

Related Information
-GLOBAL (Declare global section symbol)

-LOCAL (Declare local section symbol)

77

TASKING VX-toolset for PCP User Guide

.FAIL
Syntax

.FAIL {str]exp}L[,{str |exp}]---
Description

With the . FAIL directive you tell the assembler to print an error message to stderr during the assembling
process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated error. If you use expressions, the
assembler outputs the result. The assembler outputs a space between each argument.

The total error count will be incremented as with any other error. The . FALL directive is for example
useful in combination with conditional assembly for exceptional condition checking. The assembly process
proceeds normally after the error has been printed.

With this directive the assembler exits with exit code 1 (an error).
A label is not allowed with this directive.
Example
-FAIL “Parameter out of range”
This results in the error:
E143: ['fil enane"” |ine] Parameter out of range
Related Information
-MESSAGE (Programmer generated message)

-WARNING (Programmer generated warning)

78

Assembly Language

.FLOAT, .DOUBLE

Syntax

[l abel :]. FLOAT expression[, expression]...
[! abel :]. DOUBLE expression[, expression]- ..
Description

With the . FLOAT or .DOUBLE directive the assembler allocates and initializes a floating-point number
(32 hits) or a double (64 bits) in memory for each argument.

An expression can be:
« afloating-point expression
* NULL (indicated by two adjacent commas: ,,)

You can represent a constant as a signed whole number with fraction or with the 'e’ format as used in the
C language. For example, 12.457 and +0.27E-13 are legal floating-point constants.

If the evaluated argument is too large to be represented in a single word / double-word, the assembler
issues an error and truncates the value.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

FLT: .FLOAT 12.457,+0.27E-13
DBL: .DOUBLE 12.457,+0.27E-13

Related Information

-SPACE (Define Storage)

79

TASKING VX-toolset for PCP User Guide

.FRACT, .SFRACT

Syntax

[1 abel :]. FRACT expression[, expression]...
[! abel :]. SFRACT expression[, expression]--.
Description

With the .FRACT or . SFRACT directive the assembler allocates and initializes a 32-bit or 16-bit constant
fraction in memory for each argument. Use commas to separate multiple arguments.

An expression can be:
« afractional fixed point expression (range [-1, +1>)
* NULL (indicated by two adjacent commas: ,,)

Multiple arguments are stored in successive address locations in sets of two bytes. If an argument is
NULL its corresponding address location is filled with zeros.

If the evaluated expression is out of the range [-1, +1>, the assembler issues a warning and saturates
the fractional value.

Example
FRCT: -FRACT 0.1,0.2,0.3
SFRCT: ._.SFRACT 0.1,0.2,0.3

Related Information
-ACCUM (Define 64-bit constant fraction in 18+46 bits format)

-SPACE (Define Storage)

80

Assembly Language

.GLOBAL

Syntax
. GLOBAL synbol [,synbol]-..
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the .GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with .GLOBAL, from another module, use the _EXTERN directive.

Only program labels and symbols defined with .EQU can be made global.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.

Example

.sdecl "_pcpdata.data®, data

.sect " .pcpdata.data*

.GLOBAL LOOPA ; LOOPA will be globally
accessible by other modules
definition of symbol LOOPA

LOOPA .EQU 1
Related Information
-EXTERN (Import global section symbol)

-LOCAL (Declare local section symbol)

81

TASKING VX-toolset for PCP User Guide

AF, .ELIF, .ELSE, .ENDIF
Syntax

.1 F expression

[. ELIF expression] ; the .ELIF directive is optional

[. ELSE] ; the _ELSE directive is optional

. ENDI F
Description

With the . IF/_ENDIF directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional .ELSE and/or -ELIF directives are not present, then the source statements following the
- IF directive and up to the next . ENDIF directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the . IF and the .ENDIF directives were never encountered.

If the .ELSE directive is present and expression has a nonzero result, then the statements between the
. IF and . ELSE directives will be assembled, and the statement between the .ELSE and .ENDIF directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the . IF and
-ELSE directives will be skipped, and the statements between the .ELSE and .ENDIF directives will be
assembled.

You can nest . IF directives to any level. The .ELSE and .ELIF directive always refer to the nearest
previous . IF directive.

A label is not allowed with this directive.
Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

AF TEST

... ; code for the test version
-ELIF DEMO

... ; code for the demo version
-ELSE

82

Assembly Language
... ; code for the final version
-ENDIF

Before assembling the file you can set the values of the symbols TEST and DEMO in the assembly source
before the . IF directive is reached. For example, to assemble the demo version:

TEST .SET O
DEMO .SET 1

You can also define the symbols on the command line with the assembler option --define (-D):

aspcp --define=DEMO --define=TEST=0 test.src

83

TASKING VX-toolset for PCP User Guide

INCLUDE

Syntax

.INCLUDE "fil enane"™ | <fil enane>
Description

With the . INCLUDE directive you include another file at the exact location where the . INCLUDE occurs.
This happens before the resulting file is assembled. The . INCLUDE directive works similarly to the

#include statement in C. The source from the include file is assembled as if it followed the point of the
- INCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification.

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.
The current directory is not searched if you use the <filename> syntax.
2. The path that is specified with the assembler option --include-directory.
3. The path that is specified in the environment variable ASPCP INC when the product was installed.
4. The default include directory in the installation directory.

The assembler does not allow a label with this directive.

Example
- INCLUDE *"storage\mem.asm*” ; include file
. INCLUDE <data.asm> ; Do not look in

; current directory

84

Assembly Language

.LOCAL
Syntax

. LOCAL synbol [,synmbol ...
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . LOCAL directive you declare one of more symbols as local. It means that the specified symbols
are explicitly local to the module in which you define them.

If the symbols that appear in the operand field are not used in the module, the assembler gives a warning.
The assembler does not allow a label with this directive.
Example

.SDECL " ._pcpdata.data’,DATA

-SECT " _pcpdata.data’
.LOCAL LOOPA ; LOOPA is local to this section

LOOPA .HALF 0x100 ; assigns the value 0x100 to LOOPA
Related Information
-EXTERN (Import global section symbol)

-GLOBAL (Declare global section symbol)

85

TASKING VX-toolset for PCP User Guide

.MACRO, .ENDM
Syntax
nmacr o_nanme . MACRO [argunent [,argument]...]

macro_definition_statenments

. ENDM
Description

With the .MACRO directive you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions. You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (-MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

» Terminator, which indicates the end of the macro definition (. ENDM directive).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

Operator |[Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

Example

The macro definition:

CONST.D .MACRO reg,value ;header
Idl.iu reg,@HI(value) ;body

86

Idl.il reg,@LO(value)
-ENDM

The macro call:

.SDECL " .pcptext.code',code
.SECT " .pcptext.code"
CONST.D r5,0x12345678

The macro expands as follows:

Idl.iu r5,@HI(0x12345678)
IdI.il r5,0L0(0x12345678)

Related Information

Section 2.10, Macro Operations

-DUP, _.ENDM (Duplicate sequence of source lines)
-DUPA, _ENDM (Duplicate sequence with arguments)
.DUPC, .ENDM (Duplicate sequence with characters)
.DUPF, .ENDM (Duplicate sequence in loop)
-PMACRO (Undefine macro)

-DEFINE (Define a substitution string)

;terminator

Assembly Language

87

TASKING VX-toolset for PCP User Guide

.MESSAGE
Syntax

. MESSACE {str |exp}[,{str |exp}]---
Description

With the _.MESSAGE directive you tell the assembler to print a message to stderr during the assembling
process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The error and warning counts will not be affected. The .MESSAGE directive is for example useful in
combination with conditional assembly to indicate which part is assembled. The assembling process
proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembiler.
A label is not allowed with this directive.
Example

-DEFINE LONG "'SHORT"
-MESSAGE "This is a LONG string~
-MESSAGE "This is a LONG string"

Within single quotes, the defined symbol LONG is not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

Related Information
-FAIL (Programmer generated error)

-WARNING (Programmer generated warning)

88

Assembly Language

.MISRAC
Syntax

.M SRAC string
Description

The C compiler can generate the . MISRAC directive to pass the compiler's MISRA-C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

-MISRAC "MISRA-C:2004,64,e2,0b,e,ell1,27,6,ef83,el,
ef,66,cb75,afl,eff,e7,e7¥,8d,63,87FfF7,6FF3,4"

Related Information
Section 3.7.2, C Code Checking: MISRA-C

C compiler option --misrac

89

TASKING VX-toolset for PCP User Guide

.NAME
Syntax

. NAME string
Description

With the . NAME directive you specify the name of the original C source module. This directive is generated
by the C compiler. You do not need this directive in hand-written assembly.

Example

-.NAME "main.c"

90

Assembly Language

.ORG
Syntax

. ORG [abs-1oc][,sect_type][,attribute].-..
Description

With the .ORG directive you can specify an absolute location (abs_loc) in memory of a section. This is
the same as a . SDECL/ . SECT without a section name.

This directive uses the following arguments:

abs-loc Initial value to assign to the run-time location counter. abs-loc must be an absolute
expression. If abs_loc is not specified, then the value is zero.

sect_type |An optional section type: code or data

attribute An optional section attribute: init, noread, noclear, max, rom, group(string), cluster(string),
protect

For more information about the section types and attributes see the assembler directive . SDECL.
The section type and attributes are case insensitive. A label is not allowed with this directive.
Example

; define a section at location 100 decimal
.org 100

; define a relocatable nameless section
.org

; define a relocatable data section
.org ,data

; define a data section at 0x8000
.org 0x8000,data

Related Information
.SDECL (Declare section name and attributes)

-SECT (Activate a declared section)

91

TASKING VX-toolset for PCP User Guide

.PMACRO
Syntax

. PMACRO synbol [,synbol]-..
Description

With the .PMACRO directive you tell the assembler to undefine the specified macro, so that later uses of
the symbol will not be expanded.

The assembler does not allow a label with this directive.
Example
-PMACRO MAC1,MAC2
This statement causes the macros named MAC1 and MAC2 to be undefined.
Related Information

-MACRO, -ENDM (Define a macro)

92

Assembly Language

.SDECL
Syntax

. SDECL "nane",type[,attribute]... [AT address]
Description

With the . SDECL directive you can define a section with a name, type and optional attributes. Before any
code or data can be placed in a section, you must use the .SECT directive to activate the section.

The name specifies the name of the section. The type operand specifies the section’s type and must be
one of:

Type Description
CODE |Code section.
DATA |Data section.
DEBUG | Debug section.

The section type and attributes are case insensitive.

The defined attributes are:

Attribute Description Allowed on type
AT address Locate the section at the given address. CODE, DATA
CLEAR Sections are zeroed at startup. DATA
CLUSTER(‘name*) |Cluster code sections with companion debug sections. Used | CODE, DATA,
by the linker during removal of unreferenced sections. The |DEBUG
name must be unique for this module (not for the application).
GROUP(‘group') |Used to group sections. DATA
INIT Defines that the section contains initialization data, which is [CODE, DATA
copied from ROM to RAM at program startup.
LINEAR Section in the FPI space (TriCore linear address space). DATA
MAX When data sections with the same name occur in different |DATA
object modules with the MAX attribute, the linker generates
a section of which the size is the maximum of the sizes in the
individual object modules.
NOCLEAR Sections are not zeroed at startup. This is a default attribute | DATA
for data sections. This attribute is only useful with BSS
sections, which are cleared at startup by default.
NOINIT Defines that the section contains no initialization data. CODE, DATA
NOREAD Defines that the section can be executed from but not read. | CODE
OVERLAY(‘name*) |Static stack overlay. Automatic stack variables, function stack | DATA
parameters and temporary data are stored here.

93

TASKING VX-toolset for PCP User Guide

Attribute Description Allowed on type
PROTECT Tells the linker to exclude a section from unreferenced section| CODE, DATA
removal and duplicate section removal.
ROM Section contains data to be placed in ROM. This ROM area |CODE, DATA
is not executable.

Section names

The name of a section can have a special meaning for locating sections. The name of code sections
should always start with " . pcptext". The name of data sections in PRAM should always start with
"_pcpdata". With data sections in FPI space (data, linear), the prefix in the name is important. The prefix
determines if the section is initialized, constant or uninitialized and which addressing mode is used. See
the following table.

Section name for linear data | Type of section
.data.linear initialized __far data
.rodata.linear constant __far data
.bss.linear uninitialized __far data

Note that the compiler uses the following name convention by default:
prefix.space

where space can be code, data or linear: In the C language you can overrule the default section name
with #pragma section.

For static stack overlay sections the compiler uses a different section naming convention. The section
name equals the function name in which the overlay section is allocated.

Group names

The GROUP attribute results in an extended section name. The name resulting from the . SDECL directive
is as follows:

secti on- nane[@group]
For example:
.sdecl "._pcpdata.data',data,group(“groupname®)

results in a section named: . pcpdata.data@groupname.

Example
.sdecl "_pcptext.code", code ; declare code section
.sect " _pcptext.code" ; activate section
.sdecl "_pcpdata.data', data ; declare data section
.sect " _pcpdata.data"” ; activate section

94

Assembly Language

.sdecl " _PCP_main®", data, overlay("stack data")
; declare overlay section
.sect " PCP_main® ; activate section

.sdecl ".pcpdata.abssec', data at 0x100
; absolute section
.sect " _pcpdata.abssec" ; activate section

Related Information
-SECT (Activate a declared section)

-ORG (Initialize a nameless section)

95

TASKING VX-toolset for PCP User Guide

SECT
Syntax

. SECT "name" [, RESET]
Description

With the . SECT directive you activate a previously declared section with the name name. Before you can
activate a section, you must define the section with the . SDECL directive. You can activate a section as
many times as you need.

With the attribute RESET you can reset counting storage allocation in data sections that have section
attribute MAX.

Example
.sdecl "_pcpdata.data"™, data ; declare data section
.sect "' _pcpdata.data' ; activate section

Related Information
.SDECL (Declare section name and attributes)

-ORG (Initialize a nameless section)

96

Assembly Language

SET

Syntax

synbol . SET expression

.SET synbol expression
Description

With the . SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the _SET directive, you can redefine that symbol in another part of the assembly source, using the
- SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the .GLOBAL directive.

The _SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and forward references are allowed.

Example

COUNT _SET O Initialize count. Later on you can

assign other values to the symbol
Related Information

-EQU (Set permanent value to a symbol)

97

TASKING VX-toolset for PCP User Guide

SIZE
Syntax
. Sl ZE synbol, expression
Description
With the . SIZE directive you set the size of the specified symbol to the value represented by expression.

The .SI1ZE directive may occur anywhere in the source file unless the specified symbol is a function. In
this case, the . SIZE directive must occur after the function has been defined.

Example

_PCP_str: _type object ; object PCP_str

.size _PCP_str,4 ; size of object
-word 80
-word 67
.word 80
-word 0

Related Information

-TYPE (Set symbol type)

98

Assembly Language

.SPACE

Syntax

[l abel :] . SPACE expression
Description

The .SPACE directive reserves a block in memory. The reserved block of memory is not initialized to any
value.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The expression specifies the number of MAUs (Minimal Addressable Units) to be reserved, and how
much the location counter will advance. The expression must evaluate to an integer greater than zero
and cannot contain any forward references (symbols that have not yet been defined). For the TriCore the
MAU size is 8 (1 byte).

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example
To reserve 12 bytes (not initialized) of memory in a PRAM data section:

.sdecl "_pcpdata.data", data
.sect " _pcpdata.data"
uninit _SPACE 12 ; Sample buffer
Related Information

-BYTE (Define a constant byte)

99

TASKING VX-toolset for PCP User Guide

.TYPE

Syntax

synbol .TYPE typeid
Description

With the . TYPE directive you set a symbol's type to the specified value in the ELF symbol table. Valid
symbol types are:

FUNC The symbol is associated with a function or other executable code.
OBJECT The symbol is associated with an object such as a variable, an array, or a structure.
FILE The symbol name represents the filename of the compilation unit.

Labels in code sections have the default type FUNC. Labels in data sections have the default type OBJECT.
Example

_PCP_Afunc: _type func

Related Information

-SIZE (Set symbol size)

100

Assembly Language

.UNDEF
Syntax

. UNDEF synbol
Description

With the .UNDEF directive you can undefine a substitution string that was previously defined with the
-DEFINE directive. The substitution string associated with symbol is released, and symbol will no longer
represent a valid . DEFINE substitution or macro.

The assembler issues a warning if you redefine an existing symbol.
The assembler does not allow a label with this directive.
Example

The following example undefines the LEN substitution string that was previously defined with the . DEFINE
directive:

.UNDEF LEN
Related Information

-DEFINE (Define a substitution string)

101

TASKING VX-toolset for PCP User Guide

WARNING
Syntax

. WARNI NG {str |exp}[,{str]exp}]---
Description

With the _.WARNING directive you tell the assembler to print a warning message to stderr during the
assembling process.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated warning. If you use expressions,
the assembler outputs the result. The assembler outputs a space between each argument.

The total warning count will be incremented as with any other warning. The .WARNING directive is for
example useful in combination with conditional assembly to indicate which part is assembled. The
assembling process proceeds normally after the message has been printed.

This directive has no effect on the exit code of the assembler, unless you use the assembler option
--warnings-as-errors. In that case the assembler exits with exit code 1 (an error).

A label is not allowed with this directive.
Example
-WARNING “Parameter out of range®
This results in the warning:
W144: ["fil enane™ |ine] Parameter out of range
Related Information
-FAIL (Programmer generated error)

-MESSAGE (Programmer generated message)

102

Assembly Language

WEAK
Syntax

. EAK synbol [,synbol ...
Description

With the _WEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the .GLOBAL directive or the .EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a . GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.
Example

LOOPA .EQU 1
-GLOBAL LOOPA

definition of symbol LOOPA
LOOPA will be globally
accessible by other modules
mark symbol LOOPA as weak

-WEAK LOOPA
Related Information
-EXTERN (Import global section symbol)

-GLOBAL (Declare global section symbol)

103

TASKING VX-toolset for PCP User Guide

WORD, .HALF
Syntax

[l abel -] . WORD argunent [,argunent J. ..
[l abel -] . HALF argunent [,argunent]. ..

Description

With the .WORD or .HALF directive the assembler allocates and initializes one word (32 bits) or a halfword
(16 bits) of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty.

Multiple arguments are stored in sets of four or two bytes. One or more arguments can be null (indicated
by two adjacent commas), in which case the corresponding byte location will be filled with zeros.

The value of the arguments must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large to be represented in a word / halfword, the assembler
issues a warning and truncates the value.

String constants

Single-character strings are stored in the most significant byte of a word / halfword, where the lower seven
bits in that byte represent the ASCII value of the character, for example:

-WORD "R*
-HALF "R*

0x52000000
0x5200

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

-WORD “ABCD" ; = 0x44434241
Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.
For example:

HTBL: _HALF “ABC-,,"D"
WTBL: .WORD "ABC*

results in 0x424100004400 , the "C" is truncated
results in 0x43424100

Related Information
-BYTE (Define a constant byte)

-SPACE (Define Storage)

104

Assembly Language

2.9.2. Assembler Controls

Controls start with a $ as the first character on the line. Unknown controls are ignored after a warning is
issued.

Overview of assembler listing controls

Control Description

$LIST ON/OFF Print / do not print source lines to list file

$LIST *flags" Exclude / include lines in assembly list file

$PAGE Generate form feed in list file

$PAGE settings Define page layout for assembly list file

$PRCTL Send control string to printer

$STITLE Set program subtitle in header of assembly list file
$TITLE Set program title in header of assembly list file

Overview of miscellaneous assembler controls

Control Description

$CASE ON/OFF Case sensitive user names ON/OFF

$DEBUG ON/OFF Generation of symbolic debug ON/OFF

$DEBUG "‘flags"" Select debug information

$HW_ONLY Prevent substitution of assembly instructions by smaller or faster instructions
$IDENT LOCAL/GLOBAL |Assembler treats labels by default as local or global

$OBJECT Alternative name for the generated object file

$WARNING OFF [num] Suppress all or some warnings

105

TASKING VX-toolset for PCP User Guide

$CASE
Syntax

$CASE ON
$CASE OFF

Default

$CASE ON

Description

With the $CASE ON and $CASE OFF controls you specify wether the assembler operates in case sensitive
mode or not. By default the assembler operates in case sensitive mode. This means that all user-defined

symbols and labels are treated case sensitive, so LAB and Lab are distinct.

Note that the instruction mnemonics, register names, directives and controls are always treated case
insensitive.

Example

;begin of source
$CASE OFF ; assembler in case insensitive mode

Related Information

Assembler option --case-insensitive

106

Assembly Language

$DEBUG
Syntax

$DEBUG ON
$DEBUG OFF
$DEBUG "fl ags"

Default
$DEBUG " AhLS"
Description

With the $DEBUG ON and $DEBUG OFF controls you turn the generation of debug information on or off.
($DEBUG ON is similar to the assembler option --debug-info=+local (-gl).

If you use the $DEBUG control with flags, you can set the following flags:

a/A Assembly source line information

h/H Pass high level language debug information (HLL)
L Assembler local symbols debug information

s/S Smart debug information

You cannot specify $DEBUG "ah'. Either the assembler generates assembly source line information, or
it passes HLL debug information.

Debug information that is generated by the C compiler, is always passed to the object file.

Example

;begin of source
$DEBUG ON ; generate local symbols debug information

Related Information

Assembler option --debug-info

107

TASKING VX-toolset for PCP User Guide

$HW_ ONLY

Syntax

$HW ONLY

Description

Normally the assembler replaces instructions by other, smaller or faster instructions.

With the $HW_ONLY control you instruct the assembler to encode all instruction as they are. The assembler
does not substitute instructions with other, faster or smaller instructions.

Example

;begin of source

$HW_ONLY ; the assembler does not substitute
instructions with other, smaller or
faster instructions.

Related Information

Assembler option --optimize=+generics

108

Assembly Language

SIDENT
Syntax

$I DENT LOCAL
$I DENT GLOBAL

Default
$I DENT LOCAL
Description

With the controls $IDENT LOCAL and $I1DENT GLOBAL you tell the assembler how to treat symbols that
you have not specified explicitly as local or global with the assembler directives . LOCAL or .GLOBAL.

By default the assembler treats all symbols as local symbols unless you have defined them to be global
explicitly.

Example

;begin of source
$IDENT GLOBAL ; assembly labels are global by default

Related Information
Assembler directive .GLOBAL
Assembler directive .LOCAL

Assembler option --symbol-scope

109

TASKING VX-toolset for PCP User Guide

$LIST ON/OFF
Syntax

$LI ST ON
$LI ST OFF

Default
$LI ST ON

Description

If you generate a list file with the assembler option --list-file, you can use the $LIST ON and $LIST
OFF controls to specify which source lines the assembler must write to the list file. Without the assembler
option --list-file these controls have no effect. The controls take effect starting at the next line.

The SLIST ON control actually increments a counter that is checked for a positive value and is symmetrical
with respect to the $LIST OFF control. Note the following sequence:

; Counter value currently 1

$LIST ON
$LIST ON
$LIST OFF
$LIST OFF

; Counter value
; Counter value
; Counter value
; Counter value

PNWN

The listing still would not be disabled until another $LIST OFF control was issued.

Example

-SDECL " .pcptext.code",code
-SECT " _pcptext.code"

... source
$LIST OFF

... source
$LIST ON

... source

Related Information

line in list file

line not in list file

line also in list file

Assembler option --list-file

Assembler control $LIST "flags™

Assembler function @LST()

110

Assembly Language

$LIST "flags"
Syntax
$LI ST "fl ags"

You can set the following flags:

d/D List section directives (.SDECL, .SECT)
elE List symbol definition directives
a/G List expansion of generic instructions
i/l List generic instructions
m/M List macro definitions
n/N List empty source lines (newline)
p/P List conditional assembly
q/Q List equate and set directives (-EQU, .SET)
r’R List relocations characters 'r'
vIiV List equate and set values
w/W Wrap source lines
XIX List macro expansions
yIY List cycle counts
z/lZ List define expansions
Default

$LI ST "dEG MPgr VwXyZ"
Description

If you generate a list file with the assembler option --list-file, you can use the $LIST control to specify
which type of source lines the assembler must exclude from the list file. Without the assembler option
--list-file this control has no effect.

To switch a flag 'on’, use a lowercase letter. To switch a flag off, use an uppercase letter.
Example
The following example also includes macro definitions and equate and set values in the list file:

;begin of source
$LIST "mv"

Related Information
Assembler option --list-file

Assembler control $LIST ON/OFF

111

TASKING VX-toolset for PCP User Guide

Assembler option --list-format

112

Assembly Language

$OBJECT
Syntax

$OBJECT "file"
$OBJECT OFF

Default
$OBJECT
Description

With the $OBJECT control you can specify an alternative name for the generated object file. With the
$0OBJECT OFF control, the assembler does not generate an object file at all.

Example

;Begin of source
$object ""x1.0" ; generate object file x1.0

Related Information

Assembler option --output

113

TASKING VX-toolset for PCP User Guide

$PAGE

Syntax

$PAGE [pagewi dt h[,pagel engt h[,bl ankt op[,bl ankbt m[,bl ankl eft 1111

Default

$PACGE 132,72,0,0,0

Description

If you generate a list file with the assembler option --list-file, you can use the $PAGE control to format

the generated list file.

The arguments may be any positive absolute integer expression, and must be separated by commas.

pagewidth

Number of columns per line. The default is 132, the minimum is 40.

pagelength

Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

blanktop

Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankbtm

Number of blank lines at the bottom of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankleft

Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

If you use the $PAGE control without arguments, it causes a 'formfeed': the next source line is printed on
the next page in the list file. The $PAGE control itself is not printed.

Example

$PAGE

$PAGE 96

$PAGE ,,3,3

Related Information

Assembler option --list-file

114

formfeed, the next source line is printed
on the next page in the list file.

set page width to 96. Note that you can
omit the last four arguments.

use 3 line top/bottom margins.

Assembly Language

$PRCTL

Syntax

$PRCTL exp]string[,exp]string]-..
Description

If you generate a list file with the assembler option --list-file, you can use the $PRCTL control to send
control strings to the printer.

The $PRCTL control simply concatenates its arguments and sends them to the listing file (the control line
itself is not printed unless there is an error).

You can specify the following arguments:

expr A byte expression which may be used to encode non-printing control characters, such as ESC.

string An assembler string, which may be of arbitrary length, up to the maximum assembler-defined
limits.

The $PRCTL control can appear anywhere in the source file; the assembler sends out the control string
at the corresponding place in the listing file.

If a $PRCTL control is the last line in the last input file to be processed, the assembler insures that all
error summaries, symbol tables, and cross-references have been printed before sending out the control
string. In this manner, you can use a $PRCTL control to restore a printer to a previous mode after printing
is done.

Similarly, if the $PRCTL control appears as the first line in the first input file, the assembler sends out the
control string before page headings or titles.

Example
$PRCTL $1B,"E" ; Reset HP LaserlJet printer
Related Information

Assembler option --list-file

115

TASKING VX-toolset for PCP User Guide

$STITLE

Syntax

$STI TLE "string"
Default

$STI TLE ""
Description

If you generate a list file with the assembler option --list-file, you can use the $STITLE control to specify
the program subtitle which is printed at the top of all succeeding pages in the assembler list file below
the title.

The specified subtitle is valid until the assembler encounters a new $STITLE control. By default, the
subtitle is empty.

The $STITLE control itself will not be printed in the source listing.
If the page width is too small for the title to fit in the header, it will be truncated.
Example

$TITLE "This is the title"
$STITLE “"This is the subtitle”

Related Information
Assembler option --list-file

Assembler control $TITLE

116

Assembly Language

$TITLE

Syntax

$TI TLE "string"
Default

$TI TLE ""
Description

If you generate a list file with the assembler option --list-file, you can use the $TITLE control to specify
the program title which is printed at the top of each page in the assembler list file.

The specified title is valid until the assembler encounters a new $TI1TLE control. By default, the title is
empty.

The $TITLE control itself will not be printed in the source listing.

If the page width is too small for the title to fit in the header, it will be truncated.
Example

$TITLE “This is the title"

Related Information

Assembler option --list-file

Assembler control $STITLE

117

TASKING VX-toolset for PCP User Guide

$SWARNING OFF
Syntax

$WARNI NG OFF [nunber]
Default

All warnings are reported.
Description

This control allows you to disable all or individual warnings. The number argument must be a valid warning
message number.

Example

$WARNING OFF ; all warning messages are suppressed
$WARNING OFF 135 ; suppress warning message 135
Related Information

Assembler option --no-warnings

118

Assembly Language

2.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

2.10.1. Defining a Macro

The first step in using a macro is to define it.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (.MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

» Terminator, which indicates the end of the macro definition (- ENDM directive).

A macro definition takes the following form:

macr o_name . MACRO [argument [,argument]...]
macro_definition_statenents

. ENDM
For more information on the definition see the description of the .MACRO directive.

The .DUP, .DUPA, .DUPC, and .DUPF directives are specialized macro forms to repeat a block of source
statements. You can think of them as a simultaneous definition and call of an unnamed macro. The source
statements between the .DUP, .DUPA, .DUPC, and .DUPF directives and the .ENDM directive follow the
same rules as macro definitions.

2.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:
[l abel 7 macro_nane [argunent [,argunent]...] [; comment]

where,

119

TASKING VX-toolset for PCP User Guide

label An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first column.

argument One or more optional, substitutable arguments. Multiple arguments

must be separated by commas.

comment An optional comment.

The following applies to macro arguments:

Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

If an argument has an embedded comma or space, you must surround the argument by single quotes
0-
You can declare a macro call argument as null in three ways:
« enter delimiting commas in succession with no intervening spaces
macroname ARG1, ,ARG3 ; the second argument is a null argument
 terminate the argument list with a comma, the arguments that normally would follow, are now

considered null

macroname ARG1, ; the second and all following arguments are null

« declare the argument as a null string

No character is substituted in the generated statements that reference a null argument.

2.10.3. Using Operators for Macro Arguments

The assembler recognizes certain text operators within macro definitions which allow text substitution of
arguments during macro expansion. You can use these operators for text concatenation, numeric
conversion, and string handling.

Operator [Name Description

\

Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

120

Assembly Language

Example: Argument Concatenation Operator -\

Consider the following macro definition:

SWAP_MEM _MACRO REG1,REG2 ;swap memory contents
LD.P R4,[R\REG1],CC_UC ;use R4 as temp
LD.P R5,[R\REG2],CC_UC ;use R5 as temp

ST.P R5,[R\REG1],CC_UC
ST.P R4, [R\REG2],CC_UC
.ENDM

The macro is called as follows:
SWAP_MEM 0,1
The macro expands as follows:

LD.P R4,[R0],CC_UC
LD.P R5,[R1],CC_UC
ST.P R5,[R0O],CC_UC
ST.P R4,[R1],CC_UC

The macro preprocessor substitutes the character '0' for the argument REG1, and the character '1' for the
argument REG2. The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the character 'A'.

Without the '\' operator the macro would expand as:

LD.P R4, [RREG1],CC_UC
LD.P R5,[RREG2],CC_UC
ST.P R5,[RREG1],CC_UC
ST.P R4,[RREG2],CC_UC

which results in an assembler error (invalid operand).
Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro SWAP_SYM after the argument AREG has been
set to 0 and BREG has been set to 1.

AREG .SET 0
BREG .SET 1
SWAP_SYM AREG,BREG

If you want to replace the arguments with the value of AREG and BREG rather than with the literal strings
"AREG" and "BREG", you can use the ? operator and modify the macro as follows:

SWAP_SYM .MACRO REG1,REG2 ;Swap memory contents
LD.P R4,[R\?REG1],CC_UC ;use R4 as temp

121

TASKING VX-toolset for PCP User Guide

LD.P R5,[R\?REG2],CC_UC ;use R5 as temp
ST.P R5,[R\?REG1],CC_UC

ST.P R4,[R\?REG2],CC_UC

-ENDM

The macro first expands as follows:

LD.P R4, [R\?AREG],CC_UC
LD.P R5,[R\?BREG],CC_UC
ST.P R5,[R\?AREG],CC_UC
ST.P R4,[R\?BREG],CC_UC

Then ?AREG is replaced by '0' and ?BREG is replaced by "1

LD.P R4,[R\1],CC_UC
LD.P RS5,[R\2],CC_UC
ST.P R5,[R\1].CC_UC
ST.P R4,[R\2],CC_UC

Because of the concatenation operator '\' the strings are concatenated:

LD.P R4,[R1],CC_UC
LD.P RS5,[R2].,CC_UC
ST.P R5,[R1].CC_UC
ST.P R4,[R2],CC_UC

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

Consider the following macro definition:

GEN_LAB -.MACRO LAB,VAL,STMT
LAB\WAL STMT
-ENDM

The macro is called after NUM has been set to 10:

NUM _SET 10
GEN_LAB HEX,NUM,NOP

The macro expands as follows:
HEXA NOP

The %VAL argument is replaced by the character 'A" which represents the hexadecimal value 10 of the
argument VAL.

122

Assembly Language

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (*)
in the macro definition.

Consider the following macro definition:

STR_MAC -MACRO STRING
-BYTE " STRING"
-ENDM

The macro is called as follows:
STR_MAC ABCD

The macro expands as follows:
-BYTE “"ABCD"

Within double quotes . DEFINE directive definitions can be expanded. Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since .DEFINE expansion
occurs before macro substitution, any . DEFINE symbols are replaced first within a macro argument string:

-DEFINE LONG “short*

STR_MAC -MACRO STRING
-MESSAGE "This is a LONG STRING"
-MESSAGE "This is a LONG STRING"
-ENDM

If the macro is called as follows:
STR_MAC sentence
it expands as:

-.MESSAGE "This is a LONG STRING*"
-MESSAGE "This is a short sentence”

Macro Local Label Override Operator -

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LAB__M_L000001).

The macro "-operator prevents name mangling on macro local labels.
Consider the following macro definition:

INIT .MACRO ARG, CNT
LD.1 R5,0x1
~LAB:
-WORD ARG
ADD.1 R5,0x1
COMP.1 R5,#CNT

123

TASKING VX-toolset for PCP User Guide

JC ~LAB,CC_NZ
-ENDM

The macro is called as follows:
INIT 1,2
The macro expands as:

LD.1 R5,0x1
LAB:

_WORD 2

ADD.1 R5,0x1

COMP.1 R5,#4

Jc LAB,CC_NZ

If you would have omitted the ~ operator, the macro preprocessor would choose another name for LAB
because the label already exists. The macro would expand like:

LD. 1 R5,0x1
LAB__M_LOOOO0O1:

_WORD 2

ADD.1 R5,0x1

COMP.1 RS5,#4

Jc LAB__M_L000001,CC_NZ

2.11. Generic Instructions

The assembler supports so-called 'generic instructions'. Generic instructions are pseudo instructions (no
instructions from the instruction set). Depending on the situation in which a generic instruction is used,
the assembler replaces the generic instruction with appropriate real assembly instruction(s).

Generic jump JG

The PCP C compiler only generates generic direct jumps. Generic jJump instructions are optimized by the
PCP assembler to the real jump instructions depending on the operands. The PCP assembler supports
the following generic jump:

Jjg _label [,cc_X] ; Jump Generic to label if condition cc_X is true
This generic jump is translated to:
» JC -> If the target address fits within the relative range of +/- 32 instructions.

« JL -> If condition code is cc_UC and the target address fits within the relative range of +/- 512
instructions.

» JC.A -> If the target address does not fit within the relative range.

If a condition code is omitted, the cc_UC condition code is used.

124

Assembly Language

The indirect jumps JC.I and JC.IA are directly generated by the PCP compiler. Indirect jumps cannot be
optimized by PCP assembler.

Generic bit handling instruction

bmovn R[a],#imm5,#imml

This instruction moves the negated bit to a single bitin R[a]. If imm1is O a set single bitin R[a] is done
base on imm5. If imm1 is 1 a clr single bit in R[a] is done based on imm5. (imm5 == [8..15]).

For example:

bmovn R7,8,@DPTRBIT(label) ; bmovn R7,8,((label>>6)"0x1)

Generic load 10-bit immediate long instruction
LDL.I1IL R[a], #imm8, #imm2

This instruction loads the long 10-bit immediate data following into the lower 16-bit of R[a]. The imm8

is loaded into most significant 8-bits of the lower 16-bit of R[a] (R[a] -8-R[a] - 15). The imm2 is loaded
at bit offset 5 and 6 of R[a]. The bits in the lower 8-bit of R[a] are cleared. The most significant 16-bits
of R[a] are unaffected. This generic instruction is compiled by the assembler to a LDL . IL PCP instruction.

Example:
Idl.iil r7,@DPTR(label),0x3

This loads the page number of label in R7_DPTR and sets R7. 1EN (R7.5) and R7.CEN (R7.6) to 1,
bit 7 and bit 0-4 are cleared. The most significant 16-bits of R7 are unaffected.

125

TASKING VX-toolset for PCP User Guide

126

Chapter 3. Using the C Compiler

This chapter describes the compilation process and explains how to call the C compiler.

The TASKING VX-toolset for PCP under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire embedded project, from C source till the final
ELF/DWARF object file which serves as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 6.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:

Csource file
.C
1 .
compiler
Ccompiler intermediate file
|] - .mil
assembly file

. 8IC

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 8.1, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

3.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.
Frontend phases
1. The preprocessor phase:
The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described

in the ISO/IEC 9899:1999(E) standard.

2. The scanner phase:

127

TASKING VX-toolset for PCP User Guide

The scanner converts the preprocessor output to a stream of tokens.
3. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

4. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate code.

Backend phases

1. Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

2. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

3. Register allocator phase:
This phase chooses a physical register to use for each virtual register.
4. The backend optimization phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

5. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

3.2. Calling the C Compiler

The TASKING VX-toolset for PCP under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.

1. In the C/C++ Projects view, select the files you want to compile.

128

Using the C Compiler

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

Build Individual Project (1),

To build individual projects incrementally, select Project » Build Project.

Rebuild Project (). This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1.

3.

From the Project menu, select Properties

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

From the Processor Selection list, select a processor.

To access the C compiler options

1.

From the Project menu, select Properties

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

On the Tool Settings tab, select C Compiler.

Select the sub-entries and set the options in the various pages.

129

TASKING VX-toolset for PCP User Guide

Note that the C compiler options are used to create an object file from a C file. The options you
enter in the Assembler page are not only used for hand-coded assembly files, but also for
intermediate assembly files.

You can find a detailed description of all C compiler options in Section 8.1, C Compiler Options.
Invocation syntax on the command line (Windows Command Prompt):
cpcp [[option]-.. [file]---]---

3.3.The C Startup Code

You need the startup code to build an executable application. Just as the PCP is part of the TriCore
processor, a PCP application is part of a TriCore application. However, the PCP application runs as an
interrupt service routine which is activated by the TriCore application.

The TriCore C startup initializes and clears all global data as required, initializes the PCP compiler stack
pointer, PRAM data page pointer and PCP status and control registers for each PCP interrupt function.

The PCP C startup code acts as a 'wrapper' which places the PCP main() application into an interrupt
service routine on interrupt channel 1.

When this interrupt is activated, it executes in parallel with the TriCore application and returns the exit
code of the PCP main() function after finishing execution.

The PCP C startup code is part of the library and needs no further configuration.

For details on how to add or change the TriCore C startup code to your TriCore project, see the equivalent
section in the TASKING VX-toolset for TriCore User Guide.

3.4. How the Compiler Searches Include Files

When you use include files (with the #include statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #include statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only
possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified in the C
Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to the -1 command line option).

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable CPCP INC.

130

Using the C Compiler

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory (unless you specified option --no-stdinc).

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the compiler as follows:
cpcp -Imyinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable CPCP INC and then in the default
include directory.

The compiler now looks for the file myinc.h, in the directory where test.c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable CPCP INC and then in the default include directory.

3.5. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

To include symbolic debug information

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce

the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 3.6, Compiler Optimizations.

131

TASKING VX-toolset for PCP User Guide

Invocation syntax on the command line (Windows Command Prompt)

The invocation syntax on the command line is:

cpcp -g file.c

3.6. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.

1.

From the Project menu, select Properties

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

On the Tool Settings tab, select C Compiler » Optimization.
Select an optimization level in the Optimization level box.
or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

Level O - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.

Optimization pragmas

If you specify a certain optimization, all code in the module is subject to that optimization. Within the C
source file you can overrule the C compiler options for optimizations with #pragma optimize fl ag
and #pragma endoptimize. Nesting is allowed:

132

Using the C Compiler

#pragma optimize e /* Enable expression
simplification */
... C source ...

#pragma optimize c /* Enable common expression
elimination. Expression

... C source ... simplification still enabled */

#pragma endoptimize /* Disable common expression

elimination */
#pragma endoptimize /* Disable expression
simplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

3.6.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)

The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced
by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of O are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscription).

Constant propagation (option -Op/-OP)
A variable with a known value is replaced by that value.
Automatic function inlining (option -Oi/-Ol)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

Code compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: large chunks of code that occur more than once, are
transformed into a function. This reduces code size at the cost of execution speed.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

133

TASKING VX-toolset for PCP User Guide

» Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

* Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

» Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

» Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-0S)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

Loop transformations (option -Ol/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo/-00)
A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.
MIL linking (Control program option --mil-link)

The frontend phase performs its optimizations on the MIL code. When all C modules and/or MIL modules
of an application are given to the C compiler in a single invocation, the C compiler will link MIL code of
the modules to a complete application automatically. Next, the frontend will run its optimizations again
with application scope. After this, the MIL code is passed on to the backend, which will generate a single
-src file for the whole application. Linking with the run-time library, floating-point library and C library is
still necessary. Linking with the C library is required because this library contains some hand-coded
assembly functions, that are not linked in at MIL level.

In the ISO C99 standard a "translation unit" is a preprocessed source file together with all the headers
and source files included via the preprocessing directive #include. After MIL linking the compiler will
treat the linked sources files as a single translation unit, allowing global optimizations to be performed,
that otherwise would be limited to a single module.

134

Using the C Compiler

Optional

....... + _._._._._._*

linker

MIL splitting (option --mil-split)

When you specify that the C compiler has to use MIL splitting, the C compiler will first link the application
at MIL level as described above. However, after rerunning the optimizations the MIL code is not passed
on to the backend. Instead the frontend writes a . ms file for each input module. A .ms file has the same
format as a .mi I file. Only _ms files that really change are updated. The advantage of this approach is
that it is possible to use the make utility to translate only those parts of the application to a . src file that
really have changed. MIL splitting is therefore a more efficient build process than MIL linking. The penalty
for this is that the code compaction optimization in the backend does not have application scope. As with
MIL linking, it is still required to link with the normal libraries to build an ELF file.

135

TASKING VX-toolset for PCP User Guide

Cfile 1 Cfile 2 L Cfile N

:

MIL file 1 MIL file 2

MIL file &

MIL split
file 1

MIL split
file 2

asm
source 1

asm
source 2

ssembler ssembler

3.6.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-0OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed as code size.

Interprocedural register optimization (option -Ob/-OB)
Register allocation is improved by taking note of register usage in functions called by a given function.
Peephole optimizations (option -Oy/-QY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

Generic assembly optimizations (option -Og/-0G)

A set of target independent optimizations that increase speed and decrease code size.

Automatic memory partitioning (option --no-partition)

The PCP has 256 pages of memory. Global variables are accessed by means of a page pointer (DPTR).
With this optimization the compiler tries to allocate the global variables together in a page to reduce the

loading of the page pointer. So, this optimization reduces code size. This optimization is enabled by
default.

136

Using the C Compiler

3.6.3. Optimize for Size or Speed

You can tell the compiler to focus on execution speed or code size during optimizations. You can do this
by specifying a size/speed trade-off level from O (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

To specify the size/speed trade-off optimization level:
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » Optimization.
4. Select a trade-off level in the Trade-off between speed and size box.
See also C compiler option --tradeoff (-t)
Instruction Selection
Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.
Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.
Switch Jump Chain versus Jump Table

Instruction selection for the swi tch statements follows different trade-off rules. A switch statement can
result in a jump chain or a jump table. The compiler makes the decision between those by measuring
and weighing bytes and cycles. This weigh is controlled with the trade-off values:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%
3 25% 75%
4 0% 100%

137

TASKING VX-toolset for PCP User Guide

Subscript Strength Reduction

Subscript strength reduction is turned off by default, because it is not possible for the PCP to automatically

determine if it improves the generated code.

The total number of additional pointers of a particular type in a particular loop is limited to 4 for the PCP.

The performance increases when more subscript pointers can be allocated for an ideal situation. Ideal is
when no registers are needed for other objects than subscripts. This is rarely the case, therefore the

maximum number of registers is set to 4 GPRs.

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps

over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Trade-off value Try to rewrite top-loops to |Optimize loops for
bottom-loops size/speed

0 no speed

1 yes speed

2 yes speed

3 yes size

4 yes size

Example

int a;

{
int i;
for (i =m; i <1; i++)
{
a++;
3
return;
3
Coded as a bottom loop (compiled with --tradeoff=4) is:
jg 2 ;5 unconditional jump to loop test

Id.i r5,0x1

138

at bottom

Using the C Compiler

Idl.il r7,@DPTR(_PCP_a)
add.pi r5,[_PCP_a]
st.pi r5,[_PCP_a]
add.i r3,0x1
2: ;; loop entry point
comp r3,rl,cc_uc
jg _3,cc_slt

Coded as a top loop (compiled with --tradeoff=0) is:

Idl.il r7,@DPTR(_PCP_a)
Id.pi r5,[_PCP_a]

comp r3,rl,cc_uc ;; test for at least one loop iteration
jg _2,cc_sge ;; can be omitted when number of iterations is known
_3: ;; loop entry point

add.i r5,0x1

add.i r3,0x1

comp r3,rl,cc_uc

jg _3,cc_slt
2:

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pragma
optimize +inline. This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas inline_max_incr / inline_max_size) to control automatic inlining.
By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

Trade-off value inline-max-incr inline-max-size
0 999 50

1 50 25

2 20 20

3 10 10

4 0 0

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 25 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 50%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

139

TASKING VX-toolset for PCP User Guide

Code Compaction
Trade-off levels 0 and 1: code compaction is disabled.
Trade-off level 2: only code compaction of matches outside loops.

Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.

For the execution frequency the compiler also accounts nested loops.

3.6.4. Static Stack Alignment Optimizations

The compiler aligns static stack sections so that they are not located over a PRAM page boundary. The
linker locates the begin of the static stack at a PRAM page boundary to ensure that all aligned static stack
sections are not located over a page boundary. This alignment restriction saves code by not having to
reload the DPTR pointer when it already contains the correct page. The compiler can optimize DPTR
updates for static stack accesses to static stack objects that are located in the same page.

The disadvantage is that data space is spilled for the alignment restriction. With the C compiler option
--align-stack you can prevent or reduce the alignment gaps on the static stack. Of course less or no
page pointer updates can then be optimized by the compiler which increasing the code size. This is a
typical data size versus code size optimization.

By default all static stack sections are aligned on a power of 2 depending on its size. The static stack
maximum alignment value must be a power of two in the range [1..64].

--align-stack=val ue

A value of 1 equals to no alignment optimizations. The default value is 64, which aligns all static stack
sections. Also static stack sections that are larger than 64 get an alignment of 64.

3.7. Static Code Analysis

Static code analysis (SCA) is a relatively new feature in compilers. Various approaches and algorithms
exist to perform SCA, each having specific pros and cons.

SCA Implementation Design Philosophy

SCA is implemented in the TASKING compiler based on the following design criteria:

» An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-compile-debug cycle.

» SCA is implemented in the compiler front-end. Therefore, no new makefiles or work procedures have
to be developed to perform SCA.

140

Using the C Compiler

» The number of emitted false positives is kept to a minimum. A false positive is a message that indicates
that a correct code fragment contains a violation of a rule/recommendation. A number of warnings is
issued in two variants, one variant when it is guaranteed that the rule is violated when the code is
executed, and the other variant when the rules is potentially violated, as indicated by a preceding
warning message.

For example see the following code fragment:

extern int some_condition(int);
void f(void)

{
char buf[10];
int i;
for (i = 0; i <= 10; i++)
{
it (some_condition(i))
{
buf[i] = 0; /* subscript may be out of bounds */
}
}
}

As you can see in this example, if =10 the array buf[] might be accessed beyond its upper boundary,
depending on the result of some_condition(i). If the compiler cannot determine the result of this
function at run-time, the compiler issues the warning "subscript is possibly out of bounds" preceding
the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array". If the compiler
can determine the result, or if the i f statement is omitted, the compiler can guarantee that the "subscript
is out of bounds".

» The SCA implementation has real practical value in embedded system development. There are no real
objective criteria to measure this claim. Therefore, the TASKING compilers support well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

Effect of optimization level on SCA results

The SCA implementation in the TASKING compilers has the following limitations:

» Some violations of rules will only be detected when a particular optimization is enabled, because they
rely on the analysis done for that optimization, or on the transformations performed by that optimization.
In particular, the constant propagation and the CSE/PRE optimizations are required for some checks.
It is preferred that you enable these optimizations. These optimizations are enabled with the default
setting of the optimization level (-02).

» Some checks require cross-module inspections and violations will only be detected when multiple
source files are compiled and linked together by the compiler in a single invocation.

141

TASKING VX-toolset for PCP User Guide

3.7.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the TASKING compiler reflect the version of the CERT
web site as of June 1 2009.

The following rules/recommendations implemented by the TASKING compiler, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 14, CERT C Secure Coding Standard.

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

* severity - how serious are the consequences of the rule being ignored
1. low (denial-of-service attack, abnormal termination)
2. medium (data integrity violation, unintentional information disclosure)
3. high (run arbitrary code)

« likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1. unlikely
2. probable
3. likely
» remediation cost - how expensive is it to comply with the rule
1. high (manual detection and correction)

2. medium (automatic detection and manual correction)

142

https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html

Using the C Compiler

3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The TASKING compiler checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 14, CERT C Secure Coding Standard.

To apply CERT C code checking to your application
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » CERT C Secure Coding.
4. Make a selection from the CERT C secure code checking list.

5. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

On the command line you can use the option --cert.
cpcp --cert={all | name [-nane],---]

With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to
list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

3.7.2. C Code Checking: MISRA-C

The C programming language is a standard for high level language programming in embedded systems,
yet it is considered somewhat unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA-C code
checking helps you to produce more robust code.

MISRA-C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA-C:1998, the first version of MISRA-C. You can select this version with
the following C compiler option:

--m srac-versi on=1998

143

TASKING VX-toolset for PCP User Guide

For a complete overview of all MISRA-C rules, see Chapter 15, MISRA-C Rules.
Implementation issues

The MISRA-C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA-C rules are indicated with error messages
and the build process is halted.

MISRA-C rules are divided in required rules and advisory rules. If rules are violated, errors are generated
causing the compiler to stop. With the following options warnings, instead of errors, are generated for
either or both the required rules and the advisory rules:

--m srac-required-warni ngs

--m srac-advi sory-war ni ngs

Note that not all MISRA-C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA-C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA-C rules throughout the entire project, the TASKING linker can
generate a MISRA-C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA-C settings at the time of compilation. You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA-C code checking to your application
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C Compiler » MISRA-C.
4. Select the MISRA-C version (2004 or 1998).

5. In the MISRA-C checking box select a MISRA-C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA-C guidelines.

6. (Optional) In the Custom 2004 or Custom 1998 entry, specify the individual rules.

On the command line you can use the option --misrac.

144

Using the C Compiler

cpcp --msrac={all | nunber [-nunber],...]
3.8. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.
F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct. You can control warnings
in the C/C++ Build » Settings » Tool Settings » C Compiler » Diagnostics page of the Project »
Properties menu (C compiler option --no-warnings).

| (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

SO##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » General » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

A dialog box appears with additional information.

145

TASKING VX-toolset for PCP User Guide
On the command line you can use the C compiler option --diag to see an explanation of a diagnostic

message:

cpcp --diag=[format :]J{all | nunber,...]

146

Chapter 4. Using the Assembler

This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

assembly file
. 5ICC
assembly file . asm ¥ |
¢hand coded? | w= listfile .1st
assemhbler

-———MF QITOrmessages ers

relocatahle object file
.0

The following information is described:
» The assembly process.

» How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 8.2, Assembler Options.

» The various assembler optimizations.
» How to generate a list file.

» Types of assembler messages.

4.1. Assembly Process

The assembler generates relocatable output files with the extension . o. These files serve as input for
the linker.

Phases of the assembly process

 Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

« Instruction grouping and reordering
» Optimization (instruction size and generic instructions)
» Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 2.10, Macro Operations for more
information.

147

TASKING VX-toolset for PCP User Guide

4.2. Calling the Assembler

The TASKING VX-toolset for PCP under Eclipse can use the internal builder (default) or the TASKING
makefile generator (external builder) to build your entire project. After you have built your project, the
output files are available in a subdirectory of your project directory, depending on the active configuration
you have set in the C/C++ Build » Settings page of the Project » Properties dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build Project.

Rebuild Project (%), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

3. From the Processor Selection list, select a processor.

148

Using the Assembler

To access the assembler options
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler.
4. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

You can find a detailed description of all assembler options in Section 8.2, Assembler Options.
Invocation syntax on the command line (Windows Command Prompt):

aspcp [[option]... [file]---]---

The input file must be an assembly source file (.asm or .src).

4.3. How the Assembler Searches Include Files

When you use include files (with the . INCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

1. If the . INCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to the - command line option).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable ASPCPINC.

4. When the assembiler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example
Suppose that the assembly source file test.asm contains the following lines:
- INCLUDE “myinc.inc*

You can call the assembler as follows:

149

TASKING VX-toolset for PCP User Guide

aspcp -Imyinclude test.asm

First the assembler looks for the file myinc.asm, in the directory where test.asm is located. If the file
is not there the assembler searches in the directory myinclude. If it was still not found, the assembler
searches in the environment variableASPCP INC and then in the default include directory.

4.4. Assembler Optimizations
The assembler can perform various optimizations that you can enable or disable.
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Optimization.
4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Allow generic instructions (option -Og/-0OG)

When this option is enabled, you can use generic instructions in your assembly source. The assembler
tries to replace instructions by faster or smaller instructions. For example, the instruction jg _label
[,cc_X] isreplaced by a jc, j1 or jc.a instruction.

By default this option is enabled. Because shorter instructions may influence the number of cycles, you

may want to disable this option when you have written timed code. In that case the assembler encodes
all instructions as they are.

Optimize instruction size (option -Os/-0OS)

When this option is enabled, the assembler tries to find the shortest possible operand encoding for
instructions. By default this option is enabled.

4.5. Generating a List File

The list file is an additional output file that contains information about the generated code. You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

To generate a list file

1. From the Project menu, select Properties

150

Using the Assembler

The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » List File.
4. Enable the option Generate list file.
5. (Optional) Enable the options to include that information in the list file.
Example on the command line (Windows Command Prompt)
The following command generates the list file test. Ist:
aspcp -1 test.asm

See Section 10.1, Assembler List File Format, for an explanation of the format of the list file.

4.6. Assembler Error Messages
The assembler reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct. You can control
warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties menu (assembler option --no-warnings).

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » General » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.

151

TASKING VX-toolset for PCP User Guide

A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

aspcp --diag=[format :J{all | nunber,...]

152

Chapter 5. Using the Linker

This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files (.o
files, generated by the assembler), and libraries into a single relocatable linker object file (- out). The

locator phase assigns absolute addresses to the linker object file and creates an absolute object file which
you can load into a target processor. From this point the term linker is used for the combined linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The

target board may be of arbitrary complexity. A simple target board may contain one standard processor

with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:
relocatahle objectfiles . o

relocatahle linker object file . out —‘ ’— relocatable object library . a
linkerscriptfile . 151 ———n] inker ——=- linker map file . map
----- = errormessages . elk
relocatable linker objectfile . cut J I—' mermaory definition
file .mdf
{ ~ }
Intel Hex ELFDWARF 2 Motarola 5-record
abszolute ohjectfile ahsolute objectfile ahsolute objectfile
Chex .elf =]

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 8.3, Linker Options.

To control the link process, you can write a script for the linker. This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

5.1. Linking Process

The linker combines and transforms relocatable object files (- 0) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

153

TASKING VX-toolset for PCP User Guide

Terms used in the linking process

Term

Definition

Absolute object file

Address
Address space

Architecture

Copy table

Core
Derivative

Library

Logical address

LSL file
MAU

Object code
Physical address
Processor

Relocatable object
file

Relocation

154

Object code in which addresses have fixed absolute values, ready to load into a
target.

A specification of a location in an address space.

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

A section created by the linker. This section contains data that specifies how the
startup code initializes the data and BSS sections. For each section the copy table
contains the following fields:

« action: defines whether a section is copied or zeroed
» destination: defines the section's address in RAM
* source: defines the sections address in ROM, zero for BSS sections

« length: defines the size of the section in MAUs of the destination space

An instance of an architecture.

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

An address as encoded in an instruction word, an address generated by a core
(CPU).

The set of linker script files that are passed to the linker.

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

The binary machine language representation of the C source.
An address generated by the memory system.

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Object code in which addresses are represented by symbols and thus relocatable.

The process of assigning absolute addresses.

Using the Linker

Term Definition

Relocation Information about how the linker must modify the machine code instructions when

information it relocates addresses.

Section A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section attributes Attributes that define how the section should be linked or located.

Target The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Unresolved A reference to a symbol for which the linker did not find a definition yet.

reference

5.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

* Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

» Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

« Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

» Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

» Debug information: Other information about the object code that is used by a debugger. The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

155

TASKING VX-toolset for PCP User Guide

At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (. out). If this file contains unresolved
references, you can link this file with other relocatable object files (. 0) or libraries (. a) to resolve the
remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

5.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory. The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data and BSS sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

Al 3412 0000 mov a,%eax (a defined at 0x1234, byte reversed)
A3 0000 0000 mov %eax,b (b 1s imported so the instruction refers to
0x0000 since its location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

Al 3412 0100 mov a,%eax (0x10000 added to the address)
A3 129A 0000 mov %eax,b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default ELF/DWARF 2 format (. e 1 F) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (. hex) and Motorola S-record format (. sre) only contain an image of the executable code and
data. You can specify a format with the options --output (-0) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker. The script language is called
the Linker Script Language (LSL). Using LSL you can define:

» The memory installed in the embedded target system:

156

Using the Linker

To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

» How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

» The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 5.7, Controlling the Linker with a Script.

5.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties dialog.

Building a project under Eclipse

You have several ways of building your project:

* Build Individual Project (&),

To build individual projects incrementally, select Project » Build Project.

Rebuild Project (%), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

157

TASKING VX-toolset for PCP User Guide

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item.

To access the linker options
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker.
4. Select the sub-entries and set the options in the various pages.

You can find a detailed description of all linker options in Section 8.3, Linker Options.
Invocation syntax on the command line (Windows Command Prompt):

lpcp [[option]-.. [file]---]---

When you are linking multiple files, either relocatable object files (. 0) or libraries (. a), it is important to
specify the files in the right order. This is explained in Section 5.3, Linking with Libraries.

Example:
Ipcp -dtcl165.1sl test.o

This links and locates the file test.o and generates the file test.elf.

5.3. Linking with Libraries
There are two kinds of libraries: system libraries and user libraries.
System library

System libraries are stored in the directories:

<PCP installation path>\lib\pcpl (PCP 1 libraries)
<PCP installation path>\lib\pcpl5 (PCP 1.5 libraries)
<PCP installation path>\lib\pcp2 (PCP 2 libraries)

An overview of the system libraries is given in the following table:

Libraries Description

libc[f].a C libraries
Optional letter:
f = library compiled for __far memory

158

Using the Linker

Libraries Description

libfp[tfl.a Floating-point libraries

Optional letter:

t = trapping (control program option --fp-trap)
f = library compiled for __far memory

To link the default C (system) libraries
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Libraries.
4. Enable the option Link default libraries.
5. Enable or disable the option Use trapped floating-point library.

When you want to link system libraries from the command line, you must specify this with the option
--library (-1). For example, to specify the system library Fibc.a, type:

Ipcp --library=c test.o
User library

You can create your own libraries. Section 6.4, Archiver describes how you can use the archiver to create
your own library with object modules.

To link user libraries

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their filenames on the
command line:

Ipcp start.o mylib.a

If the library resides in a sub-directory, specify that directory with the library name:

159

TASKING VX-toolset for PCP User Guide

Ipcp start.o mylibs\mylib.a

If you do not specify a directory, the linker searches the library in the current directory only.

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use
a weak symbol construction, like printf, in an object file or your own library, you must position this
object/library before the C library.

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

Ipcp --first-library-first a.a test.o b.a

If the file test.o calls a function which is both present in a.a and b.a, normally the function in b.a
would be extracted. With this option the linker first tries to extract the symbol from the first library a . a.

Note that routines in b . a that call other routines that are present in both a.a and b.a are now also
resolved from a.a.

5.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways. The linker searches the specified locations
in the following order:

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the -L
command line option). If you specify the -L option without a pathname, the linker stops searching after
this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variables LIBTC1V1_2
/ LIBTC1V1_3 / LIBTC1V1_3_1 / LIBTC1V1_6.

3. When the linker did not find the library, it tries the default 1ib directory relative to the installation
directory (or a processor specific sub-directory).

User library

If you use your own library, the linker searches the library in the current directory only.

5.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver arpcp always contains an index part at the beginning of the

library. The linker scans this index while searching for unresolved externals. However, to keep the index
as small as possible, only the defined symbols of the library members are recorded in this area.

160

Using the Linker

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals
and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the
libraries. However, this rescanning does not work for ‘weak symbols'. If you use a weak symbol construction,
like printfF, in an object file or your own library, you must position this object/library before the C library.

The option--verbose (-v) shows how libraries have been searched and which objects have been extracted.
Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

Ipcp mylib.a

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through mylib.a.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):
Ipcp --extern=main mylib.a

In this case the linker searches for the symbol main in the library and (if found) extracts the object that
contains main.

If this module contains new unresolved symbols, the linker looks again in mylib.a. This process repeats
until no new unresolved symbols are found.

5.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all .o modules to a relocatable object file . out. In this case the linker does not perform the locating
phase. With the second invocation, you specify both new .o files as the _out file you had created with
the first invocation.

Incremental linking is only possible on the command line.

Ipcp --incremental testl.o -otest.out
Ipcp test2.0 test.out

This links the file testl.o and generates the file test.out. This file is used again and linked together
with test2.o to create the file test.el T (the default name if no output filename is given in the default
ELF/DWARF 2 format).

With incremental linking it is normal to have unresolved references in the output file until all .o files are
linked and the final .out or .elf file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

161

TASKING VX-toolset for PCP User Guide

5.5. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from. With the linker option
--import-object you can add raw data to your application. This makes it possible for example to display
images on a device or play audio. The linker puts the raw data from the binary file in a section. The section
is aligned on a 4-byte boundary. The section name is derived from the filename, in which dots are replaced
by an underscore. So, when importing a file called my .mp3, a section with the name my_mp3 is created.
In your application you can refer to the created section by using linker labels.

For example:

#include <stdio.h>
_ Far extern char _lc_ub_my mp3; /* linker labels */
__Far extern char _lc_ue_my mp3;
char* mp3 = & lc_ub_my_mp3;
void main(void)
{

int size = & Ic_ue_my mp3 - & lc_ub_my_mp3;

int i;

for (i=0;i<size;i++)

putchar(mp3[i]);

Because the compiler does not know in which space the linker will locate the imported binary, you
have to make sure the symbols refer to the same space in which the linker will place the imported
binary. You do this by using the memory qualifier __Ffar, otherwise the linker cannot bind your
linker symbols.

Also note that if you want to use the export functionality of Eclipse, the binary file has to be part

of your project.

5.6. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Optimization.

162

Using the Linker

4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)

This optimization removes unused sections from the resulting object file.

First fit decreasing (option -OIl/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the
sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the
smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas. The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Delete duplicate code (option -Ox/-OX)
Delete duplicate constant data (option -Oy/-QY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

5.7. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse it is also possible to determine where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

163

TASKING VX-toolset for PCP User Guide

The language for the script is called the Linker Script Language, or shortly LSL. You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

5.7.1. Purpose of the Linker Script Language

The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the core architectures that Altium
has supplied in the include. Isl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid. You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #include
and #define, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Linker Script Language.

5.7.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name. Isl and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name. Isl.

Because a PCP project is part of a TriCore project you only need to specify an LSL file to the TriCore
project.

To add a generated Linker Script File to your project
1. From the File menu, select File » New » TASKING VX-toolset for TriCore C/C++ Project.
The New C/C++ Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the following dialog appears.

164

TriCore Project Settings .

Set opkions to create a TriCore project |

New C/C++ Project 9 [=11E3

Add C startup code ko the project
Add Linker scripk file to the project

@j [Firish l [Cancel

]

3. Enable the option Add Linker script file to the project and click Finish.

Using the Linker

Eclipse creates your project and the file "project_name. | sl " in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script

File (LSL)
To change the Linker Script File in Eclipse

1. Double-click on the file project_name. Isl.

The project LSL file opens in the editor area with several tabs.

165

TASKING VX-toolset for PCP User Guide

ks myprojeck. sl &3 =0
memory xrom b -~
{
man = §;

gize = BEl1Zk;

type = rom;

map (dest=bus:spe:fpi_bus, dest_offset=0xb0000000, size=512k);
i

memory Mram b
{

mau = 5;

size = 445k;

type = ram;

map (degt=busg:spe:fpi bus, dest offget=0xb0030000, size=448k):;
¥

memory vecttabhle
{
mau = 3;
size = 9k;
type = rom;
map (dest=bus:spe:fpi_bus, dest_ offset=0xb00£f0000, size=5k):;
H “
£ b
Memary | Sections | Reserved | StackfHeap | Special Areas | myproject.lsl

2. You can edit the LSL file directly in the project_name. Isl tab or make changes to the other tabs
(Memory, Sections, ...).

The LSL file is updated automatically according to the changes you make in the tabs. A * appears
in front of the name of the LSL file to indicate that the file has changes.

3. click 5 or select File » Save to save the changes.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).
5.7.3. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by Altium. Altium supplies LSL files in the include. Isl directory.
The file tc_arch. Isl defines the base architecture for all cores and includes an interrupt vector table
(inttab. Isl) and an trap vector table (traptab.1sl). The files tclvl_2_1Isl, tclvl_3.1Isl,
tclvl_3 1.1Isl and tclvl_6. Isl extend the base architecture for each TriCore core.

166

Using the Linker

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

Altium supplies LSL files for each derivative (deri vati ve . Isl), along with "SFR files", which provide
easy access to registers in /O sub-systems from C and assembly programs. When you build an ASIC
or use a derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative
definition.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named ‘A’ of derivative 'A'. This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

» convert a logical address to an offset within a memory device
* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating

167

TASKING VX-toolset for PCP User Guide

The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X based on the TC1V1.3 architecture, its external memory
and how sections are located in memory, may have the following skeleton:

architecture TC1V1.3

{
// Specification of the TC1V1.3 core architecture.
// Written by Altium.
}
derivative X // derivative name is arbitrary
{
// Specification of the derivative.
// Written by Altium.
core tc // always specify the core
{
architecture = TC1V1.3;
}
bus fpi_bus // internal bus
{
// maps to bus "fpi_bus" in "tc" core
}
// internal memory
}
processor spe // processor name is arbitrary
{
derivative = X;
// You can omit this part, except if you use a
// multi-core system.
}
memory ext_nane
{
// external memory definition
}
section_layout spe:tc:linear // section layout
{

// section placement statements

168

Using the Linker

// sections are located in address space "linear”
// of core "tc" of processor "spe-

}

Overview of LSL files delivered by Altium

Altium supplies the following LSL files in the directory include. Isl.

LSL file

Description

tc_arch.lIsl

Defines the base architecture (TC) for all cores. It includes the files
inttab. Isl and traptab.Isl.

inttab.lIsl

Defines the interrupt vector table. It is included in the file tc_arch_1sl.

traptab.Isl

Defines the trap vector table. It is included in the file tc_arch. Isl.

tclvl 2.1sl
tclvl 3.1sl
tclvl_3 1.1sl
tclvl_6.1Isl

Extends the base architecture for cores TC1V1.2, TC1V1.3, TC1V1.3.1 and
TC1V1.6. It includes the file tc_arch.lIsl.

derivative.lsl

Defines the derivative and defines a single processor. Contains a memory
definition and section layout. It includes one of the files tcver si on.1sl or
pxbver si on. Isl. The selection of the derivative is based on your CPU
selection (control program option --cpu).

userdefi2.1Isl
userdef13.1Isl
userdef131.1sl
userdefl6.Isl

Defines a user defined derivative for cores TC1V1.2, TC1V1.3, TC1V1.3.1 or
TC1V1.6 and defines a single processor.

template.lsl

This file is used by Eclipse as a template for the project LSL file. It includes
thefilederi vati ve. Isl based on your CPU selection and contains a default
specification of the external memory attached to the target processor.

default.lIsl

Contains a default memory definition and section layout based on the tc1920b
derivative. This file is used on a command line invocation of the tools, when
no CPU is selected (no option --cpu).

extmem. Isl

Template file with a specification of the external memory attached to the target
processor.

When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the file template. Isl and names it “project_name. Isl". On the command line, the linker uses the file
default._lIsl, unless you specify another file with the linker option --Isl-file (-d).

5.7.4.The Architecture Definition

Although you will probably not need to program the architecture definition (unless you are building your
own processor core) it helps to understand the Linker Script Language and how the definitions are

interrelated.

Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:

169

TASKING VX-toolset for PCP User Guide

» space definitions: the logical address spaces and their properties
* bus definitions: the I/O buses of the core architecture

* mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, the
PCP has separate spaces for code and data. Normally, the size of an address space is 2N, with N the
number of bits used to encode the addresses.

The relation of an address space with another address space can be one of the following:
* one space is a subset of the other. These are often used for "small" absolute, and relative addressing.

 the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture TC as defined in tc_arch. Isl.

Space Id [MAU |Description ELF sections

linear 1 Linear address space. .text, .bss, .data, .rodata, table, istack, ustack
abs24 2 Absolute 24-bit addressable space

abs18 3 Absolute 18-bit addressable space. |.zdata, .zbss

csa 418 Context Save Area csa.*

pcp_code (8 |16 |PCP code .pcptext

pcp_data [9 |32 |PCP data .pcpdata

The TriCore architecture in LSL notation

The best way to program the architecture definition, is to start with a drawing. The following figure shows
a part of the TriCore architecture:

170

Using the Linker

space linear bus fai_tus
LT 0 — — ——
|rspace ahs18-i_" man = 8
| g=g | width =32
I rnaw =5 |
| Lol
L1
256k
i =1 s
m 4G
SpAcE pop_tode ks pop_code_kus
L
i =38 ran = 8
tmau = 16
————— -

004000000

The figure shows three address spaces called I inear, abs18 and pcp_code. The address space abs18
is a subset of the address space Iinear. All address spaces have attributes like a number that identifies
the logical space (id), a MAU and an alignment. In LSL notation the definition of these address spaces
looks as follows:

space linear

{
id = 1;
mau = 8;
map (src_offset=0x00000000, dest_offset=0x00000000,
size=4G, dest=bus:fpi_bus);
}
space absl18
{
id = 3;
mau = 8;
map (src_offset=0x00000000, dest_offset=0x00000000,
size=16k, dest=space:linear);
map (src_offset=0x10000000, dest_offset=0x10000000,
size=16k, dest=space:linear);
map (src_offset=0x20000000, dest_offset=0x20000000,
size=16k, dest=space:linear);
//. ..
}
space pcp_code
{
id = 8;
mau = 16;
map (src_offset=0x00000000, dest_ offset=0,
size=0x04000000, dest=bus:pcp_code_bus);
}

171

TASKING VX-toolset for PCP User Guide

The keyword map corresponds with the arrows in the drawing. You can map:
» address space => address space

» address space => bus

* memory => bus (not shown in the drawing)

* bus => bus (not shown in the drawing)

Next the two internal buses, named fpi_bus and pcp_code_bus must be defined in LSL:

bus fpi_bus
{
mau = 8;
width = 32; // there are 32 data lines on the bus
}
bus pcp_code_bus
{
mau = 8;
width = 8;
}

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture TC1V1.3

// All code above goes here.

}
5.7.5.The Derivative Definition

Although you will probably not need to program the derivative definition (unless you are using multiple
cores) it helps to understand the Linker Script Language and how the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

+ core definition: an instance of a core architecture

* bus definition: the I/O buses of the core architecture

* memory definitions: internal (or on-chip) memory (in Eclipse this is called 'System memory')
Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

172

Using the Linker

core tc

{
}

Bus

architecture = TC1V1.3;

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
fpi_bus maps to the bus fpi_bus defined in the architecture definition of core tc:

bus fpi_bus
{

mau = 8;

width = 32;

map (dest=bus:tc:fpi_bus, dest offset=0, size=4G);
}

Memory

External memory is usually described in a separate memory definition, but you can specify on-chip memory
for a derivative. For example:

0xFOO20000
>

hY
A
AS
\\ .,
K

\\ \\ peode

P, o

| omaw =8

- ———

Ox04000

According to the drawing, the TriCore contains internal memory called pcode with a size 0x04000 (16
kB). This is physical memory which is mapped to the internal bus pcp_code_bus and to the fpi_bus,
so both the tc unit and the PCP can access the memory:

memory pcode

{
mau = 8;
size = 16k;
type = ram;
map (dest=bus:tc:fpi_bus, dest offset=0xF0020000,
size=16Kk);
map (dest=bus:tc:pcp_code_ bus, size=16k);
}

173

TASKING VX-toolset for PCP User Guide
This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X // name of derivative

// All code above goes here

}
5.7.6.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor nane

{
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

derivative = derivative_nane;

Altium defines a “single processor environment” (spe) in each deri vati ve . Isl file. For example:

processor spe

{
}
5.7.7.The Memory Definition

derivative = tcl920b;

Once the core architecture is defined in LSL, you may want to extend the processor with external (or
off-chip) memory. You need to specify the location and size of the physical external memory devices in
the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

memory nane

{
}

// memory definitions

174

Using the Linker

Frigtvary code_rom

- —— —]| 0
mad = 8
-]
16k
1._'-‘_—\--_
7 — 0

FREMMARY Y _Hiskar

Suppose your embedded system has 16 kB of external ROM, named code_rom and 2 kB of external
NVRAM, named my_nvsram. Both memories are connected to the bus fpi_bus. In LSL this looks like:

memory code_rom

{

mau = 8;

size = 16k;

type = rom;

map(dest=bus:spe:fpi_bus, dest_offset=0xa0000000, size=16k);
ks
memory my_nvsram
{

mau = 8;

size = 2Kk;

type = ram;

map(dest=bus:spe:fpi_bus, dest_offset=0xc0000000, size=2k);
ks

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse
1. Double-click on the file project. Isl.
The project LSL file opens in the editor area with several tabs.
2. Open the Memory tab and click on the Add button.
A new line is added to the list of Memory.
3. Click in each field to change the type, name (for example my _nvsram) and sizes.

The LSL file is updated automatically according to the changes you make.

175

TASKING VX-toolset for PCP User Guide

4. click [or select File » Save to save the changes.

A (& in front of a memory chip means that you cannot change this memory, because it is defined is a
system LSL file.

5.7.8. The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat.c) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#define BATTERY_BACKUP_TAG Oxa5f0
#include <stdio.h>

int uninitialized_data;

int initialized_data = 1;

#pragma section data="non_volatile"
#pragma noclear

int battery_backup_tag;

int battery_backup_invok;

#pragma clear

#pragma endsection

void main (void)

if (battery backup_tag !'= BATTERY_BACKUP_TAG)

{
// battery back-upped memory area contains invalid data
// initialize the memory
battery_backup_tag = BATTERY_BACKUP_TAG;
battery_backup_invok = O;

3

printf("This application has been invoked %d times\n",
battery_backup_invok++);

}

The compiler assigns names and attributes to sections. With the #pragma section
data=non_volati le the compiler's default section naming convention is overruled and a section with
the name .pcpdata.non_volati le is defined. In this section the battery back-upped data is stored.

176

Using the Linker

By default the compiler creates a section with the name ". pcpdata.data" of section type data to store
uninitialized data objects. The attribute clear tells the linker that the section content should be filled with
zeros at startup.

As aresult of the #pragma section data=non_volati le, the data objects between the pragma
pair are placed in a section with the name ”_pcpdata.non_volatile". Note that uninitialized data
sections are cleared at startup. However, battery back-upped sections should not be cleared and therefore
we used #pragma noclear.

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory my_nvsram from the example in Section 5.7.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space pcp_data:

section_layout ::pcp_data

{
}

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section
-pcpdata.non_volati le. All other sections are located using the defaults specified in the architecture
definition. Section .pcpdata.non_volati le should be placed in non-volatile ram. To achieve this, the
run address refers to our non-volatile memory called my _nvsram.

// Section placement statements

group (ordered, run_addr = mem:my_nvsram)

{
}

Section placement from Eclipse

select "_pcpdata.non_volatile";

1. Double-click on the file project. Isl.

The project LSL file opens in the editor area with several tabs.
2. Open the Sections tab and click on the Add... button.

The Add New LSL Element dialog appears.

3. Inthe New element box, select Section Layout and click Finish.

A new section layout t appears. In the Section layout properties you can specify its characteristics.
Note that you can add 'tags', which is just arbitrary text that can be added to a statement.

4. Inthe Space field of the Section layout properties, enter pcp_data.

5. Click on the pcp_data section layout and click on the Add... button.

177

TASKING VX-toolset for PCP User Guide
6. Inthe New element box, select Group and in the Parent box select section_layout ::pcp_data.
Click Finish.

An empty group element {*} is added to the section layout. In the Group properties you can specify
its characteristics.

7. Click in the Run address field of the group and enter mem:my_nvsram.
8. Inthe Group properties part, select Ordered.

9. Click the Add... button, select Select Section(s) and in the Parent box select the corresponding
group. Click Finish.

A default select section element with the name "section_name" is added to the group. In the Section
selection properties you can specify its characteristics.

10. Click on the section_name and change it to . pcpdata.non_valatile.

The LSL file is updated automatically according to the changes you make.

11. click [or select File » Save to save the changes.

This completes the LSL file for the sample architecture and sample program. You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

For a complete description of the Linker Script Language, refer to Chapter 11, Linker Script Language
(LSL).

5.8. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

Linker labels are labels starting with _Ic_. The linker assigns addresses to the following labels when
they are referenced:

Label Description

_lc_ub_nane Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

_Ic_b_nane

_Ic_ue_nane End of section name. Also used to mark the end of the stack or heap.

_Ic_e nane

_lc_cb_nane Start address of an overlay section in ROM.

_lIc_ce _nane End address of an overlay section in ROM.

_lc_gb_nane Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

178

Using the Linker

Label Description

_lc_ge_nane End of group name. This label appears in the output file even if no reference
to the label exists in the input file.

_Ic_s nane Variable name is mapped through memory in shared memory situations.

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

At C level, all linker labels start with _Ic_ (the PCP C compiler adds the label prefix _PCP and

an extra underscore).

If you want to use linker labels in your C source for sections that have a dot (.) in the name, you
have to replace all dots by underscores.

Additionally, the linker scri

pt file defines the following symbols:

Symbol Description

_lc_cp Start of copy table. Same as _Ic_ub_table. The copy table gives the source
and destination addresses of sections to be copied. This table will be generated
by the linker only if this label is used.

_Ic_bh Begin of heap. Same as _Ic_ub_heap.

_Ic_eh End of heap. Same as _lc_ue_heap.

_PCP__Ic_ub_heap_far

Begin of PCP heap in TriCore address space linear. Same as
_lc_ub_pcp_heap_far.

_PCP_Ic_ue_heap_far

End of PCP heap in TriCore address space linear. Same as
_lc_ue_pcp_heap_far.

_PCP__Ic_ub_heap

Begin of PCP heap in address space pcp_data. Same as _Ic_ub_pcp_heap.

_PCP__Ic_ue_heap

End of PCP heap in address space pcp_data. Same as _Ic_ue_pcp_heap.

Example: refer to a label with section name with dots from C

Suppose the C source file 00 . c contains the following:

#pragma section myname

int myfunc(int a)
{
/* some source
return 1;

}

#pragma endsection

lines */

This results in a section with the name . pcptext._myname.

In the following source file main.c all dots of the section name are replaced by underscores:

179

TASKING VX-toolset for PCP User Guide

#include <stdio.h>
extern char _lc_ub__ pcptext_myname[];

void main(void)

{

printf(""The function myfunc is located at %x\n",
& Ic_ub__pcptext_myname);
3

To prevent the linker error EFL06: unresolved external: _PCP__lIc_ub__ pcptext_myname, you
must define this symbol in the LSL file as follows:

section_layout ::pcp_code

" PCP__Ic_ub__pcptext_myname"™ := "_Ic_ub__pcptext_myname";

}

If there is no LSL file in your project, select File » New » Linker Script File (LSL), add the lines that
define the symbol. Add the LSL file to the linker options (Tool Options » Linker » Script File » Linker
script file (.Isl)).

When the PCP linked project (-out) is linked with a TriCore project, then the TriCore LSL file also needs
this addition.

Example: refer to a PCP variable from TriCore C source

When memory is shared between two or more cores, for instance TriCore and PCP, the addresses of
variables (or functions) on that memory may be different for the cores. For the TriCore the variable will
be defined and you can access it in the usual way. For the PCP, when you would use the variable directly
in your TriCore source, this would use an incorrect address (PCP address). The linker can map the
address of the variable from one space to another, if you prefix the variable name with _| c_s_.

When a symbol foo is defined in a PCP assembly source file, by default it gets the symbol name foo.
To use this symbol from a TriCore C source file, write:

extern long _lIc_s foo;

void main(int argc, char **argv)

{
}

Example: refer to the heap

_Ic_s foo = 7;

The heap is only needed when you use one or more of the dynamic memory management library functions:
malloc(), calloc(), free() and realloc(). The heap is a reserved area in memory. Only if you
use one of the memory allocation functions listed above, the linker automatically allocates a heap. In the
LSL file tc_arch.1sl a heap section is defined with the name "pcp_heap" (with the keyword heap).
Symbol _PCP__Ic_ub_heapis mappedto _Ic_ub_pcp_heap. You can refer to the begin and end of
the heap from your C source as follows:

180

Using the Linker

#include <stdio.h>

extern char _lc_ub_heap[]; /7* the compiler prefixes the label with _PCP_ */
extern char _lc_ue_heap[];

void main()

{
printf("Size of heap is %d\n",
_Ic_ue_heap - _Ic_ub_heap);

}

In the C library the linker labels _Ic_ub_heap and _lc_ue_heap are used in the function _sbrk()
which is called by mal loc() when memory is needed from the heap.

The special pcp_heap section is only allocated when its linker labels are used in the program.
From assembly you can refer to the end of the heap with:

.extern _PCP__lIc_ue_heap ; end of pcp_heap

5.9. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

To generate a map file
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Map File.
4. Enable the option Generate XML map file format (.mapxml) for map file viewer.
5. (Optional) Enable the option Generate map file (.map).
6. (Optional) Enable the options to include that information in the map file.
Example on the command line (Windows Command Prompt)
The following command generates the map file test._map:
Ipcp --map-file test.o
With this command the map file test.map is created.

See Section 10.2, Linker Map File Format, for an explanation of the format of the map file.

181

TASKING VX-toolset for PCP User Guide

5.10. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.

F (Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option--keep-output-files.

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct. You can control warnings in the C/C++
Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties menu (linker
option --no-warnings).

| (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option--verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S6##: nessage

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » General » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

182

Using the Linker

| pcp --diag=[format :]{all | nunber,...]

183

TASKING VX-toolset for PCP User Guide

184

Chapter 6. Using the Utilities

The TASKING VX-toolset for PCP comes with a number of utilities:

ccpcep A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from C and/or assembly source input files. Eclipse uses
the control program to call the compiler, assembler and linker.

mkpcp A utility program to maintain, update, and reconstruct groups of programs. The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt.

amk The make utility which is used in Eclipse. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

arpcp An archiver. With this utility you create and maintain library files with relocatable object
modules (.0) generated by the assembler.

6.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C sources without the need to invoke the compiler,
assembler and linker manually.

Eclipse uses the control program to call the C compiler, assembler and linker, but you can call the control
program from the command line. The invocation syntax is:

ccpep [[option].-.. [file]---]---
Recognized input files
» Arguments with a . c suffix are interpreted as C source programs and are passed to the compiler.

 Files with a .asm suffix are interpreted as hand-written assembly source files which have to be passed
to the assembler.

* Files with a . src suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

» Files with a .a suffix are interpreted as library files and are passed to the linker.
 Files with a .o suffix are interpreted as object files and are passed to the linker.

» Files with a . out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one . out file in the invocation.

« Files with a . Isl suffix are interpreted as linker script files and are passed to the linker.
Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option

185

TASKING VX-toolset for PCP User Guide
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wc, -Wa,
-WI) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 8.4, Control Program
Options.

Example with verbose output

ccpep --verbose --cpu=tcl920b test.c

The control program calls all tools in the toolset and generates the absolute object file test.elf. With
option --verbose (-v) you can see how the control program calls the tools:

+ "pat h\cpcp™ -Ctcl920b -0 cc3248a.src test.c

+ "pat h\aspcp' -Ctcl1920b -0 cc3248b.o cc3248a.src

+ "pat h\lpcp” -o test.elf -dextmem.lsl -dtcl920b.Isl --map-file
cc3248b.o "-Lpat h\lib\pcp2" -lIc -Ifp

The control program produces unique filenames for intermediate steps in the compilation process (such
as cc3248a.src and cc3248b .0 in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool
ccpep --pass-compiler=-0c test.c

The option -Oc is directly passed to the compiler.

6.2. Make Utility mkpcp

If you are working with large quantities of files, or if you need to build several targets, it is rather
time-consuming to call the individual tools to compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program and define an options file. You can even
create a batch file or script that invokes the control program for each target you want to create. But with
these methods all files are completely compiled, assembled and linked to obtain the target file, even if
you changed just one C source. This may demand a lot of (CPU) time on your host.

The make utility mkpcp is a tool to maintain, update, and reconstruct groups of programs. The make
utility looks which files are out-of-date and only recreates these files to obtain the updated target.

Make process
In order to build a target, the make utility needs the following input:
« the target it should build, specified as argument on the command line

* the rules to build the target, stored in a file usually called makefile

186

Using the Utilities

In addition, the make utility also reads the file mkpcp -mk which contains predefined rules and
macros. See Section 6.2.2, Writing a Makefile.

The makefi le contains the relationships among your files (called dependencies) and the commands
that are necessary to create each of the files (called rules). Typically, the absolute object file (.elf) is
updated when one of its dependencies has changed. The absolute file depends on .o files and libraries
that must be linked together. The .o files on their turn depend on . src files that must be assembled and
finally, .src files depend on the C source files (. c) that must be compiled. In the makeFi le this looks
like:

test.src : test.c # dependency
cpcp test.c # rule
test.o . test.src

aspcp test.src

test.elf : test.o
Ipcp test.o -0 test.elf --map-file -lc -Ifp

You can use any command that is valid on the command line as a rule in the makefile. So, rules are
not restricted to invocation of the toolset.

Example

To build the target test.elf, call mkpcp with one of the following lines:
mkpcp test.elf

mkpcp -fmymake._mak test_elf

By default the make utility reads the file makefi le so you do not need to specify it on the command line.
If you want to use another name for the makefile, use the option -f.

If you do not specify a target, mkpcp uses the first target defined in the makefile. In this example it would
build test.src instead of test.elf.

Based on the sample invocation, the make utility now tries to build test.elf based on the makefile and
performs the following steps:

1. From the makefile the make utility reads that test_elf depends on test.o.

2. If test.o does not exist or is out-of-date, the make utility first tries to build this file and reads from the
makefile that test.o depends on test.src.

3. If test_src does exist, the make utility now creates test.o by executing the rule for it: aspcp
test.src.

4. There are no other files necessary to create test.elf so the make utility now can use test.o to
create test.el T by executing the rule: Ipcp test.o -o test.elf ...

187

TASKING VX-toolset for PCP User Guide

The make utility has now built test.el T but it only used the assembler to update test.o and the linker
to create test.elf.

If you compare this to the control program:

ccpcp test.c

This invocation has the same effect but now all files are recompiled (assembled, linked and located).

6.2.1. Calling the Make Utility

You can only call the make utility from the command line. The invocation syntax is:
nkpcp [[option]... [target]... [macro=def]...]

For example:

mkpcp test.elf

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the mkpcp invocation. It overrides
any regular definitions for the specified macro within the makefiles and from the
environment. It is inherited by subordinate mkpcp's but act as an environment variable
for these. That is, depending on the -e setting, it may be overridden by a makefile
definition.

option For a complete list and description of all make utility options, see Section 8.5, Make
Utility Options.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

6.2.2. Writing a Makefile

In addition to the standard makefile makefile, the make utility always reads the makefile mkpcp . mk
before other inputs. This system makefile contains implicit rules and predefined macros that you can use
in the makefile makefile.

With the option -r (Do not read the mkpcp - mk file) you can prevent the make utility from reading mkpcp - mk.

The default name of the makefile is makefi e in the current directory. If you want to use another makefile,
use the option -f.

The makefile can contain a mixture of:
« targets and dependencies

e rules

188

Using the Utilities

» macro definitions or functions

« conditional processing

e comment lines

* include lines

» export lines

To continue a line on the next line, terminate it with a backslash (\):

this comment line is continued\
on the next line

If a line must end with a backslash, add an empty macro:

this comment line ends with a backslash \$(EMPTY)
this is a new line

6.2.2.1. Targets and Dependencies

The basis of the makefile is a set of targets, dependencies and rules. A target entry in the makefile has
the following format:

target ... I [dependency ...] [; rule]
[rul e]

Target lines must always start at the beginning of a line, leading white spaces (tabs or spaces) are not
allowed. A target line consists of one or more targets, a semicolon and a set of files which are required
to build the target (dependencies). The target itself can be one or more filenames or symbolic names:

all: demo.elf final.elf

demo.elf final.elf: test.o demo.o final.o

You can now can specify the target you want to build to the make utility. The following three invocations
all have the same effect:

mkpcp
mkpcp all
mkpcp demo.elf final._elf

If you do not specify a target, the first target in the makefile (in this example all) is built. The target al l
depends on demo.elf and final el f so the second and third invocation have the same effect and
the files demo.el ¥ and Final .elf are built.

You can normally use colons to denote drive letters. The following works as intended:

c:foo.o : a:foo.c

189

TASKING VX-toolset for PCP User Guide
If a target is defined in more than one target line, the dependencies are added to form the target's complete
dependency list:

all: demo.elf # These two lines are equivalent with:
all: final.elf # all: demo.elf final.elf

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

-DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

-DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

- IGNORE Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying the option -i on the command line.

SINIT The rules following this target are executed before any other targets are built.

-PRECIOUS Dependency files mentioned for this target are never removed. Normally, if a

command in a rule returns an error or when the target construction is interrupted,
the make utility removes that target file. You can use the option -p on the command
line to make all targets precious.

-SILENT Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying the option -s on the command line.

-SUFFIXES This target specifies a list of file extensions. Instead of building a completely specified
target, you now can build a target that has a certain file extension. Implicit rules to
build files with a number of extensions are included in the system makefile mkpcp - mk.

If you specify this target with dependencies, these are added to the existing
- SUFFIXES target in mkpcp . mk. If you specify this target without dependencies,
the existing list is cleared.

6.2.2.2. Makefile Rules

A line with leading white space (tabs or spaces) is considered as a rule and associated with the most
recently preceding dependency line. A rule is a line with commands that are executed to build the
associated target. A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency
move test.c final.c # rulel
cpcp Final.c # rule2

You can precede a rule with one or more of the following characters:

@ does not echo the command line, except if -n is used.

- the make utility ignores the exit code of the command. Normally the make utility stops if a
non-zero exit code is returned. This is the same as specifying the option -i on the command
line or specifying the special . IGNORE target.

190

Using the Utilities

+ The make utility uses a shell or Windows command prompt (cmd . exe) to execute the
command. If the '+' is not followed by a shell line, but the command is an MS-DOS command
or if redirection is used (<, |, >), the shell line is passed to cmd . exe anyway.

You can force mkpcp to execute multiple command lines in one shell environment. This is accomplished
with the token combination ';\'. For example:

cd c:\Tasking\bin ;\
mkpcp -V

Note that the ;' must always directly be followed by the '\' token. Whitespace is not removed when it is at
the end of the previous command line or when it is in front of the next command line. The use of the '}’
as an operator for a command (like a semicolon ';' separated list with each item on one line) and the '\
as a layout tool is not supported, unless they are separated with whitespace.

Inline temporary files

The make utility can generate inline temporary files. If a line contains <<LABEL (no whitespaces!) then
all subsequent lines are placed in a temporary file until the line LABEL is encountered. Next, <<LABEL
is replaced by the name of the temporary file. For example:

Ipcp -0 $@ - <<EOF
$(separate "\n" $(match .o $1))
$(separate "\n" $(match .a $!))
$(LKFLAGS)

EOF

The three lines between <<EOF and EOF are written to a temporary file (for example mkce4cOa. tmp),
and the rule is rewritten as: Ipcp -0 $@ -f mkce4cOa.tmp.

Suffix targets

Instead of specifying a specific target, you can also define a general target. A general target specifies the
rules to generate a file with extension .ex1 to a file with extension .ex2. For example:

-SUFFIXES: .c
.c.o :
ccpep -c $<

Read this as: to build a file with extension .o out of a file with extension . c, call the control program with
-c $<. $<is a predefined macro that is replaced with the name of the current dependency file. The special
target . SUFFIXES: is followed by a list of file extensions of the files that are required to build the target.

Implicit rules

Implicit rules are stored in the system makefile mkpcp.mk and are intimately tied to the . SUFFIXES
special target. Each dependency that follows the . SUFFIXES target, defines an extension to a filename
which must be used to build another file. The implicit rules then define how to actually build one file from
another. These files share a common basename, but have different extensions.

If the specified target on the command line is not defined in the makefile or has not rules in the makefile,
the make utility looks if there is an implicit rule to build the target.

191

TASKING VX-toolset for PCP User Guide

Example:

LIB = -Ic -Ifp # macro

prog.elf: prog.o sub.o
Ipcp prog.o sub.o $(LIB) -0 prog.elf

prog.o: prog-c inc.h

cpcp prog-c
aspcp prog.src

sub.o: sub.c inc.h
cpcp sub.c
aspcp sub.src

This makefile says that prog - el ¥ depends on two files prog . o and sub . 0, and that they in turn depend
on their corresponding source files (prog-c and sub.c) along with the common file inc.h.

The following makefile uses implicit rules (from mkpcp -mk) to perform the same job.

LDFLAGS = -1c -Ifp # macro used by implicit rules
prog.elf: prog.o sub.o # implicit rule used
prog.o: prog.c inc.h # implicit rule used
sub.o: sub.c inc.h # implicit rule used

6.2.2.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lower case or upper case characters, upper case is an accepted convention.
The general form of a macro definition is:

MACRO = text
MACRO += and more text

Spaces around the equal sign are not significant. With the += operator you can add a string to an existing
macro. An extra space is inserted before the added string automatically.

To use a macro, you must access its contents:

$(MACRO) # you can read this as
${MACRO} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note that the expansion is done
recursively, so the body of a macro may contain other macros. These macros are expanded when the
macro is actually used, not at the point of definition:

FOOD = $(EAT) and $(DRINK)
EAT = meat and/or vegetables
DRINK = water

export FOOD

192

Using the Utilities

The macro FOOD is expanded as meat and/or vegetables and water at the momentitis used in
the export line, and the environment variable FOOD is set accordingly.

Predefined macros

Macro Description

MAKE Holds the value mkpcp. Any line which uses MAKE, temporarily overrides the option
-n (Show commands without executing), just for the duration of the one line. This way
you can test nested calls to MAKE with the option -n.

MAKEFLAGS Holds the set of options provided to mkpcp (except for the options -f and -d). If this
macro is exported to set the environment variable MAKEFLAGS, the set of options is
processed before any command line options. You can pass this macro explicitly to
nested mkpcp's, but it is also available to these invocations as an environment variable.

PRODDIR Holds the name of the directory where mkpcp is installed. You can use this macro to
refer to files belonging to the product, for example a library source file.

DOPRINT = $(PRODDIR)/1ib/src/_doprint.c
When mkpcp is installed in the directory c:/Tasking/bin this line expands to:

DOPRINT = c:/Tasking/lib/src/_doprint.c

SHELLCMD Holds the default list of commands which are local to the SHELL. If a rule is an
invocation of one of these commands, a SHELL is automatically spawned to handle
it.

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

Dynamically maintained macros

There are several dynamically maintained macros that are useful as abbreviations within rules. It is best
not to define them explicitly.

Macro Description

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.
$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be unreliable when used within
explicit target command lines. All macros may be suffixed with F to specify the Filename components
(e.g. ${*F}, ${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to specify the Directory
component.

The result of the $* macro is always without double quotes ("), regardless of the original target having
double quotes (") around it or not.

193

TASKING VX-toolset for PCP User Guide

The result of using the suffix F (Filename component) or D (Directory component) is also always without
double quotes ("), regardless of the original contents having double quotes (") around it or not.

6.2.2.4. Makefile Functions

A function not only expands but also performs a certain operation. Functions syntactically look like macros
but have embedded spaces in the macro name, e.g. '$(match argl arg2 arg3)'. All functions are built-in
and currently there are five of them: match, separate, protect, exist and nexist.

match

The match function yields all arguments which match a certain suffix:
$(match .o prog.o sub.o mylib.a)

yields:

prog.o sub.o

separate

The separate function concatenates its arguments using the first argument as the separator. If the first
argument is enclosed in double quotes then \n' is interpreted as a hewline character, \t' is interpreted as
atab, "\ooo0'is interpreted as an octal value (where, 0oo is one to three octal digits), and spaces are taken
literally. For example:

$(separate "\n" prog.o sub.o)
results in:

prog.o
sub.o

Function arguments may be macros or functions themselves. So,

$(separate '\n" $(match .o $!))

yields all object files the current target depends on, separated by a newline string.
protect

The protect function adds one level of quoting. This function has one argument which can contain white
space. If the argument contains any white space, single quotes, double quotes, or backslashes, it is
enclosed in double quotes. In addition, any double quote or backslash is escaped with a backslash.

Example:
echo $(protect 1711 show you the "protect”™ function)
yields:

echo 111 show you the \"protect\" function”

194

Using the Utilities

exist

The exist function expands to its second argument if the first argument is an existing file or directory.
Example:

$(exist test.c ccpcp test.c)

When the file test.c exists, it yields:

ccpep test.c

When the file test.c does not exist nothing is expanded.

nexist

The nexist function is the opposite of the exist function. It expands to its second argument if the first
argument is not an existing file or directory.

Example:

$(nexist test.src ccpcp test.c)
6.2.2.5. Conditional Processing

Lines containing 1 fdef, ifndef, else or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-lines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even other i fde¥f, i fndef,
else and endiflines, or no lines at all. The el se line may be omitted, along with the else-lines following
it.

First the macro-name after the i fdef command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an else line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the ifndeT line instead of ifdeT, the macro is tested for not being defined. These
conditional lines can be nested up to 6 levels deep.

You can also add tests based on strings. With 1 feq the result is true if the two strings match, with i fneq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl,string2)

if-lines
el se

195

TASKING VX-toolset for PCP User Guide

el se-1ines
endi f

6.2.2.6. Comment, Include and Export Lines
Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#" is inside a quoted string, it is
not treated as a comment. Completely blank lines are ignored.

test.src : test.c # this is comment and is
ccpcp test.c # ignored by the make utility

Include lines

An include line is used to include the text of another makefile (like including a - h file in a C source).
Macros in the name of the included file are expanded before the file is included. You can include several
files. Include files may be nested.

include makefile2 makefile3
Export lines

An export line is used to export a macro definition to the environment of any command executed by the
make utility.

GREETING = Hello
export GREETING

This example creates the environment variable GREET ING with the value Hel 1o. The macro is exported
at the moment the export line is read so the macro definition has to precede the export line.

196

Using the Utilities

6.3. Make Utility amk

amk is the make utility Eclipse uses to maintain, update, and reconstruct groups of programs. But you
can also use it on the command line. Its features are a little different from mkpcp. The main difference
compared to mkpcp and other make utilities, is that amk features parallelism which utilizes the multiple
cores found on modern host hardware, hardening for path names with embedded white space and it has
an (internal) interface to provide progress information for updating a progress bar. It does not use an
external command shell (/bin/sh, cmd . exe) but executes commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile”.

6.3.1. Makefile Rules

A makefile dependency rule is a single line of the form:
[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:
test.o : test.c

This states that target test.o depends on prerequisite test.c. So, whenever the latter is modified the
first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in multiple
dependency rules (circular dependencies are not allowed however). The command(s) for updating a
target when any of its prerequisites have been modified must be specified with leading white space after
any of the dependency rule(s) for the target in question. Example:

test.o :
ccpcp test.c # leading white space

Command rules may contain dependencies too. Combining the above for example yields:

test.o : test.c
ccpep test.c

White space around the colon is not required. When a path name contains special characters such as
"', '#' (start of comment), '=" (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line. The default target is the first target in the makefile which
does not start with a dot.

197

TASKING VX-toolset for PCP User Guide

Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target foo .0 matches the pattern '%. o', with 'foo' as the stem. The
targets foo.c and foo.elf do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

objects = test.o filter.o

all: $(objects)

$(objects): %.o: %.c
ccpep -c $< -0 $@

echo the stem is $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@' is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.o: test.c
ccpcp -c test.c -0 test.o
echo the stem is test

filter.o: filter.c
ccpcp -c Filter.c -o filter.o
echo the stem is filter
Each target specified must match the target pattern; a warning is issued for each target that does not.

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

-DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

198

Using the Utilities

Target Description

-DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

SINIT The rules following this target are executed before any other targets are built.

6.3.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word
"include” or "-include" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "-include" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:

include makefile2 makefile3

6.3.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lower case or upper case characters, upper case is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ':=' or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$". To evaluate macros with names longer than one character put the name between parentheses '()' or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

DINNER = $(FOOD) and $(BEVERAGE)
FOOD = pizza

BEVERAGE = sparkling water

FOOD += with cheese

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

Macros are evaluated recursively. Whenever $(DINNER) or ${DINNER} is mentioned after the above,
it will be replaced by the text "pizza with cheese and sparkling water". The left hand side in
a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

= Evaluate the macro at the moment it is used.
i= Evaluate the replacement text before defining the macro.

Subsequent '+=' assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+='is the same as '=". The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

199

TASKING VX-toolset for PCP User Guide

Macro Description

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

@ The name of the current target. When a rule has multiple targets, then it is the name

of the target that caused the rule commands to be run.

* The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 'test.c' then the stem is
'test’ (if the target was not created via a static pattern rule).

< The name of the first prerequisite.

MAKE The amk path name (quoted if necessary). Optionally followed by the options -n and
-S.

ORIGIN The name of the directory where amk is installed (quoted if necessary).

SUBDIR The argument of option -G. If you have nested makes with -G options, the paths are

combined. This macro is defined in the environment (i.e. default macro value).

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $(@D) evaluates to the directory name holding the file$(@F). $(@D)/$(@F) is
equivalent to $@. Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

Note that stem calculation can cause unexpected values. For example:

$@ $*

/home/ .wine/test /home/
/home/test/.project /home/test/
/.. /File /.

Macro string substitution
When the macro name in an evaluation is followed by a colon and equal sign as in
$(MACRO:stringl=string2)

then amk will replace stringl at the end of every word in $(MACRO) by string2 during evaluation. When
$(MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement stringl. For example:

$(MACRO: .0"=_d")
6.3.4. Makefile Functions

A function not only expands but also performs a certain operation. The following functions are available:

1Internally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

200

Using the Utilities

$(filter pattern ...,item ...)

The Fi l'ter function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%',

${filter %.c %.h, test.c test.h test.o readme.txt .project output.c}
results in:

test.c test.h output.c

$(filter-out pattern ... item ...)

The Filter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the Fi I'ter function.

${filter-out %.c %.h, test.c test.h test.o readme.txt .project output.c}
results in:

test.o readme.txt _project
$(foreach var-name, item ..., action)

The Foreach function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

${foreach T, test filter output, ${T}.c ${T}.h}
results in:

test.c test.h filter.c Filter.h output.c output.h

6.3.5. Conditional Processing

Lines containing 1 fdef, ifndef, else or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nanme

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even other i fdef, i fndef,
else and endiflines, or no lines at all. The el se line may be omitted, along with the else-lines following
it.

First the macro-name after the ifdef command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;

201

TASKING VX-toolset for PCP User Guide
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i fndeT line instead of i fdef, the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With 1 feq the result is true if the two strings match, with ifneq
the result is true if the two strings do not match. They are used in the following way:

i feqg(stringl,string2)

if-l1ines
el se

el se-1ines
endi f

6.3.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

this comment line is continued\
on the next line
3. Trailing white space is removed.
4. When a line starts with white space then it is interpreted as a command for updating a target.

5. Otherwise, when a line contains the unquoted text '=', '+=' or ":=' operator, then it will be interpreted as
a macro definition.

6. Otherwise, all macros on the line are evaluated before considering the next steps.
7. When the resulting line contains an unquoted ":' the line is interpreted as a dependency rule.

8. When the first token on the line is "include" or "-include" (which by now must start on the first
column of the line), amk will execute the directive.

9. Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

6.3.7. Makefile Command Processing

A line with leading white space (tabs or spaces) is considered as a command for updating a target. When
you use the option -j or -J, amk will execute the commands for updating different targets in parallel. In

202

Using the Utilities

that case standard input will not be available and standard output and error output will be merged and
displayed on standard output only after the commands have finished for a target.

You can precede a command by one or more of the following characters:

@ Do not show the command. By default, commands are shown prior to their output.
- Continue upon error. This means that amk ignores a non-zero exit code of the command.
+ Execute the command, even when you use option -n (dry run).

| Execute the command on the foreground with standard input, standard output and error
output available.

Built-in commands

Command Description

true This command does nothing. Arguments are ignored.

false This command does nothing, except failing with exit code 1. Arguments are
ignored.

echo arg... Display a line of text.

exit code Exit with defined code. Depending on the program arguments and/or the extra

rule options '-' this will cause amk to exit with the provided code. Please note
that 'exit 0'has currently no result.

argfilefile arg... Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first argfi le argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

6.3.8. Calling the amk Make Utility

The invocation syntax of amk is:

ank [option]... [target]... [macro=def]...
For example:

amk test.elf

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

option For a complete list and description of all amk make utility options, see Section 8.6,
Parallel Make Utility Options.

203

TASKING VX-toolset for PCP User Guide

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

6.4. Archiver

The archiver arpcp is a program to build and maintain your own library files. A library file is a file with
extension .a and contains one or more object files (. 0) that may be used by the linker.

The archiver has five main functions:

» Deleting an object module from the library

* Moving an object module to another position in the library file

» Replacing an object module in the library or add a new object module
» Showing a table of contents of the library file

» Extracting an object module from the library

The archiver takes the following files for input and output:

assemhbler

T
l—— relocatable ohjectfile
—= .o

|

archiver

relocatable object library
.a linker

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

6.4.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create a library in Eclipse

Instead of creating a PCP absolute ELF file, you can choose to create a library. You do this when you
create a new project with the New C/C++ Project wizard. (File ») select the option in the following dialog.

1. From the File menu, select New » TASKING VX-toolset for PCP C Project.
The New C/C++ Project wizard appears.
2. Enter a project name.

3. Inthe Project type box, select TASKING PCP Library and clickNext >.

204

Using the Utilities

4. Follow the rest of the wizard and click Finish.
5. Add the files to your project.

6. Build the project as usual. For example, select Project » Build Project (1),

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.
Command line invocation
You can call the archiver from the command line. The invocation syntax is:
arpcp key option [sub_option...] library [object _file]
key_option With a key option you specify the main task which the archiver should perform. You

must always specify a key option.

sub_option Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

library The name of the library file on which the archiver performs the specified action. You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

object_file The name of an object file. You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-u-v
Extract an object module from the library -X -V

Delete object module from library -d -V

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0 -s1
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Create library without notification if library does not exis -C

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

Replace only newer modules -u

205

TASKING VX-toolset for PCP User Guide

Description Option Sub-option

Verbose -V

Miscellaneous

Display options -?
Display version header -V
Read options from file -f file
Suppress warnings above level n -wn

For a complete list and description of all archiver options, see Section 8.7, Archiver Options.
6.4.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name mylib.a and add the object modules cstart.o and calc.otoit:

arpcp -r mylib.a cstart.o calc.o
Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

arpcp -r mylib.a mod3.o

Print a list of object modules in the library

To inspect the contents of the library:

arpcp -t mylib.a

The library has the following contents:

cstart.o

calc.o

mod3.0

Move an object module to another position

To move mod3. o to the beginning of the library, position it just before cstart.o:
arpcp -mb cstart.o mylib.a mod3.o

Delete an object module from the library

To delete the object module cstart.o from the library mylib.a:

arpcp -d mylib.a cstart.o

206

Using the Utilities

Extract all modules from the library
Extract all modules from the library mylib.a:

arpcp -x mylib.a

207

TASKING VX-toolset for PCP User Guide

208

Chapter 7. Using the Debugger

This chapter describes the debugger and how you can run and debug a C or C++ application. This chapter
only describes the TASKING specific parts.

7.1. Reading the Eclipse Documentation

Before you start with this chapter, it is recommended to read the Eclipse documentation first. It provides
general information about the debugging process. This chapter guides you through a number of examples
using the TASKING debugger with simulation as target.

You can find the Eclipse documentation as follows:
1. Start Eclipse.
2. From the Help menu, select Help Contents.
The help screen overlays the Eclipse Workbench.
3. Inthe left pane, select C/C++ Development User Guide.
4. Open the Getting Started entry and select Debugging projects.

This Eclipse tutorial provides an overview of the debugging process. Be aware that the Eclipse
example does not use the TASKING tools and TASKING debugger.

7.2. Creating a Customized Debug Configuration

Before you can debug a project, you need a Debug launch configuration. Such a configuration, identified
by a name, contains all information about the debug project: which debugger is used, which project is
used, which binary debug file is used, which perspective is used, ... and so forth.

When you created your project, a default launch configuration for the TASKING simulator is available. If
you used the Target Board Configuration wizard, also a default debug launch configuration for your target
board is available. At any time you can change this configuration or create a custom debug configuration.

To debug or run a project, you need at least one opened and active project in your workbench.
In this chapter, it is assumed that the myproject is opened and active in your workbench.

Customize your debug configuration
To change or create your own debug configuration follow the steps below.
1. From the Run menu, select Debug Configurations...
The Debug Configurations dialog appears.
2. Inthe left pane, select the configuration you want to change, for example, TASKING Embedded

C/C++ Application » myproject.simulator.

209

TASKING VX-toolset for PCP User Guide

Or: click the New launch configuration button (f) to add a new configuration.

The next dialog appears.

The dialog shows several tabs.

Main tab

On the Main tab, you can set the properties for the debug configuration such as a name for the configuration
and the project and the application binary file which are used when you choose this configuration.

B Debug Configurations @

CEX B3

| bype filker text

E C/C++ Application
[T] Cjc++ Attach to Applicatic
E C/C++ Postrorkemn Debug
=-[E] TASKING Embedded C/c+4
E myproject.board

myproject. simulator

Create, manage, and run configurations
TASKING Embedded C/C++ Application

Marne: | myproject. sinulator

Main .)= Arguments | %5 Debugger | B Source | B Comman

Project:

| myprojeck | [Erowse. ..]
C/C++ application:
| ${praject_lacH$4build_confighiriyproject . elf | [Search Project...] [Erowse. ..]

[Use linker flocator memary map File {.mdf For memary map

[Debug l [Close]

« Name is the name of the configuration. By default, this is the name of the project, optionally appended
with simulator or board. You can give your configuration any name you want to distinguish it from

the project name.

* In the Project field, you can choose the project for which you want to make a debug configuration.
Because the project myproject is the active project, this project is filled in automatically. Click the
Browse... button to select a different project. Only the opened projects in your workbench are listed.

* In the C/C++ Application field, you can choose the binary file to debug. The file myproject._elfis
automatically selected from the active project.

210

Using the Debugger

* You can use the option Use linker/locator memory map file (.mdf) for memory map to find errors
in your application that cause access to non-existent memory or cause an attempt to write to read-only
memory. When building your project, the linker/locator creates a memory description file (.md¥) file
which describes the memory regions of the target you selected in your project properties. The debugger
uses this file to initialize the debugging target.

This option is only useful in combination with a simulator as debug target. The debugger may fail to
start if you use this option in combination with other debugging targets than a simulator.

Arguments tab

If your application's main() function takes arguments, you can pass them in this tab. Arguments are
conventionally passed in the argv[] array. Because this array is allocated in target memory, make sure
you have allocated sufficient memory space for it.

 In the C/C++ perspective double-click to open the file cstart.c in the Startup Code Editor view. At
the bottom of the view select the Configuration tab, enable the option Enable passing argc/argv to
main() and specify a Buffer size for argv.

B Debug Configurations @

Create, manage, and run configurations
TASKING Embedded Cf/C++ Application

CEX 6%

| type Filker text

Mame: | iy project, simulator |

Main |)= Arguments 3& Debugger Eﬂ Source | =] Commaon
E C/C++ Application

[E] cjc++ Attach to Applicatic

E C}C++ Postmortem Debug

argl arg2

=-[E] TASKING Embedded C/C+1 o3 ot
E myproject.board

CJ/C++ Program Arguments:

E myproject, simulator
Use default waorking directary
< >
™
@) Debug] [Close

211

TASKING VX-toolset for PCP User Guide

Debugger tab
On the Debugger tab you can set the debugger options. You can choose which debugger should be
used and with what options it should work. The Debugger tab itself contains several tabs.

B Debug Configurations g|

Create, manage, and run configurations
TASKING Embedded C/C++ Application

LIRS

| type filter text

Mame: | myproject, simulator

Main | ()= Arguments | %% Debugger 'EV Source |] Comman
E C/C++ Application

[T] Cjc++ Attach to Applicatic Execution Environment | Comrunication Setup | Initialization | Miscellaneous
E CJC++ Postmorkern Debug
= E TASKING Embedded C/C+4 Target: |TriCore 1 Instruction Set Simulator v|
Communicakion: |TSIM1 Simulator v|
< >
™
@J [Debug] [Close]

» Onthe Execution Environment tab you can select on which target the application should be debugged.
An application may run on an external evaluation board, or on a simulator using your own PC. For the
evaluation board these settings should be the same as you specified in the Target Board Configuration
wizard.

On the Communication Setup tab you can select the type of communication (RS-232, TCP/IP, CAN)
for execution environments. This tab is grayed out for the simulator.

On the Initialization tab enable one or more of the following options:
« Initial download of program

If enabled, the target application is downloaded onto the target. If disabled, only the debug information
in the file is loaded, which may be useful when the application has already been downloaded (or
flashed) earlier. If downloading fails, the debugger will shut down.

« Verify download of program

212

Using the Debugger
If enabled, the debugger verifies whether the code and data has been downloaded successfully. This
takes some extra time but may be useful if the connection to the target is unreliable.
Program flash when downloading

If enabled, also flash devices are programmed (if necessary). Flash programming will not work when
you use a simulator.

Reset target
If enabled, the target is immediately reset after downloading has completed.
Goto main

If enabled, only the C startup code is processed when the debugger is launched. The application
stops executing when it reaches the first C instruction in the function main(). Usually you enable
this option in combination with the option Reset Target.

Break on exit
If enabled, the target halts automatically when the exit() function is called.
Reduce target state polling

If you have set a breakpoint, the debugger checks the status of the target every number of seconds
to find out if the breakpoint is hit. In this field you can change the polling frequency.

On the Miscellaneous tab you can specify several file locations.

Debugger location

The location of the debugger itself. This should not be changed.

FSS root directory

The initial directory used by file system simulation (FSS) calls. See the description of the FSS view.
ORTI file and KSM module

If you wish to use the debugger's special facilities for OSEK kernels, specify the name of your ORTI
file and that of your KSM module (shared library) in the appropriate edit boxes. See also the description
of the RTOS view.

GDlI log file and Debug instrument log file

You can use the options GDI log file and Debug instrument log file (if applicable) to control the
generation of internal log files. These are primarily intended for use by or at the request of Altium
support personnel.

Cache target access

Except when using a simulator, the debugger's performance is generally strongly dependent on the
throughput and latency of the connection to the target. Depending on the situation, enabling this
option may result in a noticeable improvement, as the debugger will then avoid re-reading registers

213

TASKING VX-toolset for PCP User Guide

and memory while the target remains halted. However, be aware that this may cause the debugger
to show the wrong data if tasks with a higher priority or external sources can influence the halted
target's state.

Source tab

On the Source tab, you can add additional source code locations in which the debugger should search
for debug data.

B Debug Configurations

Create, manage, and run configurations
TASKING Embedded C/C++ Application

CEX B3

| bype filker text

Mame: | myproject. sinulator

Main | ()= Arguments #& Debugger 'ﬁy SOurce = Commaon

E CIC++ Application Source Lookup Path:
[E] Cjc++ attach to Applicatic

[E] C/c++ Pastmortem Debugr = Default Add. .
=[] TASKING Embedded CJC+4

[E] myproject.board

ject simulakor Remove

[5earch For duplicate source files on the path

|
2

@ Debug l [Close

» Usually, the default source code location is correct.
Common tab

On the Common tab you can set additional launch configuration settings.

214

B Debug Configurations

EEX| B %

| bype Filker text

E C/C++ Application
[E] Cjc++ attach to Applicatic
E C/C++ Postmortem Debug
=-[€] TASKING Embedded CJC+4
E myproject.board

Create, manage, and run configurations
TASKING Embedded CfC++ Application

Using the Debugger

Marne: | myproject. simulator

Main | (4= Arguments | %5 Debugger | B2 Source | £ Comman

3ave as
O Local file
(%) Project File

() Shared File: |

Displat in Favorites menu

[] % Debug
O @ run

Standard Input and Oukput

Allocate Console {necessary for input)

Console Encoding
() Default {Cp1252)

) Other

CIFile: |

Launch in background

Debug l [Close

7.3. Troubleshooting

If the debugger does not launch properly, this is likely due to mistakes in the settings of the execution
environment or to an improper connection between the host computer and the execution environment.
Always read the notes for your particular execution environment.

Some common problems you may check for, are:

Problem

Solution

configuration

Wrong device name in the launch

Make sure the specified device name is correct.

Invalid baud rate

Specify baud rate that matches the baud rate the execution
environment is configured to expect.

environment.

No power to the execution

Make sure the execution environment or attached probe is powered.

Wrong type of RS—232 cable.

Make sure you are using the correct type of RS-232 cable.

Cable connected to the wrong port
on the execution environment or host.

Some target machines and hosts have several ports. Make sure

you connect the cable to the correct port.

215

TASKING VX-toolset for PCP User Guide

Problem Solution
Conflict between communication A device driver or background application may use the same
ports. communications port on the host system as the debugger. Disable

any service that uses the same port-number or choose a different
port-number if possible.

Port already in use by another user. | The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process. Some target machines
and hosts have several ports. Make sure you connect the cable to
the correct port.

If the program state shown by the debugger appears to deviate from the true state, check that the linker
option ‘'Include debugger synchronization utility' is enabled.

7.4. TASKING Debug Perspective

After you have launched the debugger, you are either asked if the TASKING Debug perspective should
be opened or it is opened automatically. The Debug perspective consists of several views.

To open views in the Debug perspective:

1. Make sure the Debug perspective is opened

2. From the Window menu, select Show View »

3. Select a view from the menu or choose Other... for more views.

By default, the Debug perspective is opened with the following views:

216

Using the Debugger

i TASKING Debug - myproject/myproject.c - TASKING ¥X-toolset for, TriCore

File Edit Refactor MNavigate Search Project Run Mode ‘Window Help
Big-E-E-G MR B@-® F0 o~ B9 %5 Tasna oebug | >
%5 Debug 22 = O || 9= variables 52 % Breakpoints = O | 1 TASKING Registers I3 B =0
= =% 3| § | Name Yalue U
A
9 04 O S i+ I Name value sioi GPR
i SIMULATOR
=i <no skorage assigned> ey
B4 Peripheral Control Frocsssor
AL
= [2] myproject.simulstor [TASKING Embedded C/C++ Application] for CSFR
=& TASKING Debugger (9/12/07 5:47 PIM) (Suspended) it SCULL
= o Thread [1:1:t4] (Suspended: Ereakpaint hit,] < 5 :;:A‘ SECULL
= 2 main{) myproject.c:3 Dxa000012c suai 5TH
= B cerberus
= 1 _start) estart.c:515 Oxal0040ec -

o MSCOLL v
< b < bd
myproject.c &3 =0 Disassembly 52 . BT Qutine =0

#include <stdio.h> ™
Address:| 0xa000012c
int main(void | int main{ void)]
{ ®»0xa000012c 0820 sub.a sp,#0xE
int i; for (i=1; i<=3; i++)
for (i=1; i<=3; i++) 0xal0001Ze Oida o dib, #0x1
i Ox=a0000130 2fal mov.s all,#0x2
printf("sdin",i): printfi "xdin",1i j;
) Oxa0000132 af74 st.w [sp] ., d13
princf("Hello world, ™) 0xal000134 00Z0a4cs lea a4, 0xal0000z0
printf{ "this is \n"); Ox=a0000138 2356006d call Oxad004344
printf({ "a small 3dstin”,i-3): for (i=1; i<=3; i++}
printf("debugging example.\n"); b O0xal00013c 1fc2 add di5, #0x1
v
B console 53 ¥ Tasks wiE| o B9 = O 8 memory 2 i) | <] B[S =0
Debug [myprojsct.simulator] Manitrs & Renderings Es
Launchiny configuration: myproject.similator ~
Using Debug Target Configuration:
Target: TriCore 1 Instruction Set Simulator
Selected CPU type: Lclles
Register file: regtoclléS.sfr
Communication: TSIN1 Simulator hd
< b
Fé

7.4.1. Debug View

The Debug view shows the target information in a tree hierarchy shown below with a sample of the
possible icons:

Icon Session item Description

Launch instance

]

Launch configuration name and launch type

Debugger instance

Debugger name and state

Thread instance |Thread number and state

o @ &P

Stack frame
instance

Stack frame number, function, file name, and file line number

T

The number beside the thread label is a reference counter, not a thread identification number (TID).

Stack display

During debugging (running) the actual stack is displayed as it increases or decreases during program
execution. By default, all views present information that is related to the current stack item (variables,
memory, source code etc.). To obtain the information from other stack items, click on the item you want.

217

TASKING VX-toolset for PCP User Guide

The Debug view displays stack frames as child elements. It displays the reason for the suspension beside
the thread, (such as end of stepping range, breakpoint hit, and signal received). When a program exits,

the exit code is displayed.

The Debug view contains numerous functions for controlling the individual stepping of your programs and
controlling the debug session. You can perform actions such as terminating the session and stopping the
program. All functions are available from the right-click menu, though commonly used functions are also
available from the toolbar in the Debug view.

Controlling debug sessions

Icon Action Description
) Remove all Removes all terminated launches.
) Restart Restarts the application. The target system is not reset.
| Reset target Resets the target system and restarts the application.
system
0B Resume R_esumes the application after it was suspended (manually, breakpoint,
signal).
oo Suspend Suspends the application (pause). Use the Resume button to continue.
i Right-click menu. Restarts the selected debug session when it was
@, Relaunch terminated. If the debug session is still running, a new debug session is
launched.
4 Reload current Reloads the current application without restarting the debug session. The
. application application does restart of course.
. Ends the selected debug session and/or process. Use Relaunch to restart
= Terminate - : ;
this debug session, or start another debug session.
[| Terminate all Right-click menu. As terminate. Ends all debug sessions.
@, | Terminate and Right-click menu. Ends the debug session and removes it from the Debug
®lremove view.
@ | Terminate and Right-click menu. Ends the debug session and relaunches it. This is the
*|Relaunch same as choosing Terminate end then Relaunch.
v Disconnect Detaches the debugger from the selected process (useful for debugging
attached processes)
Stepping through the application
Icon Action Description
= Step into Steps to the next source line or instruction
_ Steps over a called function. The function is executed and the application
Ly Step over . .
suspends at the next instruction after the call.
I Step return Executes the current function. The application suspends at the next

instruction after the return of the function.

218

Using the Debugger

Icon Action Description

i Instruction Toggle. If enabled, the stepping functions are performed on instruction level
stepping instead of on C source line level.

I Interrgpt aware Toggle. If enabled, the stepping functions do not step into an interrupt when
stepping it occurs.

Miscellaneous

Icon Action Description

Right-click menu. Copies the stack as text to the windows clipboard. You

= Copy Stack can paste the copied selection as text in, for example, a text editor.
=l Edit project... Right-click menu. O_pens_the debug configuration dialog to let you edit the
current debug configuration.
5, Edit Source Right-click menu. Opens the Edit Source Lookup Path window to let you
Lookup... edit the search path for locating source files.

7.4.2. Breakpoints View

You can add, disable and remove breakpoints by clicking in the marker bar (left margin) of the Editor
view. This is explained in the Getting Started manual.

Description

The Breakpoints view shows a list of breakpoints that are currently set. The button bar in the Breakpoints
view gives access to several common functions. The right-most button = opens the Breakpoints menu.

Types of breakpoints
To access the breakpoints dialog, add a breakpoint as follows:

1. Click the Add TASKING Breakpoint button (&).

The Breakpoints dialog appears.
Each tab lets you set a breakpoint of a special type. You can set the following types of breakpoints:
 File breakpoint

The target halts when it reaches the specified line of the specified source file. Note that it is possible
that a source line corresponds to multiple addresses, for example when a header file has been included
into two different source files or when inlining has occurred. If so, the breakpoint will be associated with
all those addresses.

* Function

The target halts when it reaches the first line of the specified function. If no source file has been specified
and there are multiple functions with the given name, the target halts on all of those. Note that function
breakpoints generally will not work on inlined instances of a function.

219

TASKING VX-toolset for PCP User Guide

* Address
The target halts when it reaches the specified instruction address.
» Stack
The target halts when it reaches the specified stack level.
» Data
The target halts when the given variable is read or written to, as specified.
* Instruction
The target halts when the given number of instructions has been executed.
* Cycle
The target halts when the given number of clock cycles has elapsed.
e Timer
The target halts when the given amount of time elapsed.
In addition to the type of the breakpoint, you can specify the condition that must be met to halt the program.

In the Condition field, type a condition. The condition is an expression which evaluates to ‘true’' (non-zero)
or ‘false' (zero). The program only halts on the breakpoint if the condition evaluates to 'true’.

In the Ignore count field, you can specify the number of times the breakpoint is ignored before the program
halts. For example, if you want the program to halt only in the fifth iteration of a while-loop, type '4": the
first four iterations are ignored.

7.4.3. File System Simulation (FSS) View

Description

The File System Simulation (FSS) view is automatically opened when the target requests FSS input or
generates FSS output. The virtual terminal that the FSS view represents, follows the VT100 standard. If
you right-click in the view area of the FSS view, a menu is presented which gives access to some
self-explanatory functions.

VT100 characteristics

The queens example demonstrates some of the VT100 features. (You can find the queens example in
the <TriCore installation path>\examples directory from where you can import it into your
workspace.) Per debugging session, you can have more than one FSS view, each of which is associated
with a positive integer. By default, the view "FSS #1" is associated with the standard streams stdin,
stdout, stderr and stdaux. Other views can be accessed by opening a file named "terminal window
<number>", as shown in the example below.

220

Using the Debugger

FILE * f3 = fopen(“"terminal window 3", "rw'");
fprintf(f3, "Hello, window 3.\n");
fclose(f3);

You can set the initial working directory of the target application in the Debug configuration dialog (see
also Section 7.2, Creating a Customized Debug Configuration):

1. On the Debugger tab, select the Miscellaneous sub-tab.
2. In the FSS root directory field, specify the FSS root directory.

The FSS implementation is designed to work without user intervention. Nevertheless, there are some
aspects that you need to be aware of.

First, the interaction between the C library code (in the files dbg*.c and dbg* . h; see Section 9.1.5,
dbg.h) and the debugger takes place via a breakpoint, which incidentally is not shown in the Breakpoints
view. Depending on the situation this may be a hardware breakpoint, which may be in short supply.

Secondly, proper operation requires certain code in the C library to have debug information. This debug
information should normally be present but might get lost when this information is stripped later in the
development process.

7.4.4. Disassembly View

The Disassembly view shows target memory disassembled into instructions and / or data. If possible, the
associated C / C++ source code is shown as well. The Address field shows the address of the current
selected line of code.

To view the contents of a specific memory location, type the address in the Address field. If the address
is invalid, the field turns red.

7.4.5. Expressions View

The Expressions view allows you to evaluate and watch regular C expressions.

To add an expression:

Click OK to add the expression.

1. Right-click in the Expressions View and select Add Watch Expression.
The Add Watch Expression dialog appears.

2. Enter an expression you want to watch during debugging, for example, the variable name "i

If you have added one or more expressions to watch, the right-click menu provides options to Remove
and Edit or Enable and Disable added expressions.

» You can access target registers directly using #NAME. For example "arr[#R0 << 3]" or "#TIMER3
= m++". If a register is memory-mapped, you can also take its address, for example, "&#ADCIN".

» Expressions may contain target function calls like for example "g1 + invert(&g2)". Be aware that
this will not work if the compiler has optimized the code in such a way that the original function code

221

TASKING VX-toolset for PCP User Guide

does not actually exist anymore. This may be the case, for example, as a result of inlining. Also, be

aware that the function and its callees use the same stack(s) as your application, which may cause
problems if there is too little stack space. Finally, any breakpoints present affect the invoked code in
the normal way.

7.4.6. Memory View

Use the Memory view to inspect and change process memory. The Memory view supports the same
addressing as the C and C++ languages. You can address memory using expressions such as:

» 0x0847d3c

. (&y)+1024

e *ptr

Monitors

To monitor process memory, you need to add a monitor:

1. Inthe Debug view, select a debug session. Selecting a thread or stack frame automatically selects
the associated session.

2. Click the Add Memory Monitor button in the Memory Monitors pane.
The Monitor Memory dialog appears.
3. Type the address or expression that specifies the memory section you want to monitor and click OK.

The monitor appears in the monitor list and the Memory Renderings pane displays the contents of
memory locations beginning at the specified address.

To remove a monitor:

1. Inthe Monitors pane, right-click on a monitor.

2. From the popup menu, select Remove Memory Monitor.
Renderings

You can inspect the memory in so-called renderings. A rendering specifies how the output is displayed:
hexadecimal, ASCII, signed integer or unsigned integer. You can add or remove renderings per monitor.
Though you cannot change a rendering, you can add or remove them:

1. Click the Add Rendering button in the Memory Renderings pane.

The Add Memory Rendering dialog appears.
2. Select the rendering you want (Hex, ASCII, Signed Integer or Unsigned Integer) and click OK.
To remove a rendering:

1. Right-click on a memory address in the rendering.

222

Using the Debugger

2. From the popup menu, select Remove Rendering.
Changing memory contents

In a rendering you can change the memory contents. Simply type a new value.

Warning: Changing process memory can cause a program to crash.

The right-click popup menu gives some more options for changing the memory contents or to change the
layout of the memory representation.

7.4.7. Compare Application View

You can use the Compare Application view to check if the downloaded application matches the application
in memory. Differences may occur, for example, if you changed memory addresses in the Memory view.

» To check for differences, click the Compare button.
7.4.8. Heap View

With the Heap view you can inspect the status of the heap memory. This can be illustrated with the
following example:

string = (char *) malloc(100);
strcpy (string, 'abcdefgh");
free (string);

If you step through these lines during debugging, the Heap view shows the situation after each line has
been executed. Before any of these lines has been executed, there is no memory allocated and the Heap
view is empty.

« After the first line the Heap view shows that memory is occupied, the description tells where the block
starts, how large it is (100 MAUs) and what its content is (Ox0, 0x0, ...).

» After the second line, "abcdefgh" has been copied to the allocated block of memory. The description
field of the Heap view again shows the actual contents of the memory block (0x61, 0x62,...).

» The third line frees the memory. The Heap view is empty again because after this line no memory is
allocated anymore.

7.4.9. Logging View

Use the Logging view to control the generation of internal log files. This view is intended mainly for use
by or at the request of Altium support personnel.

7.4.10. RTOS View

The debugger has special support for debugging real-time operating systems (RTOSSs). This support is
implemented in an RTOS-specific shared library called a kernel support module (KSM) or RTOS-aware
debugging module (RADM). Specifically, the TASKING VX-toolset for TriCore ships with a KSM supporting

223

TASKING VX-toolset for PCP User Guide

the OSEK standard. You have to create your own OSEK Run Time Interface (ORTI) and specify this file
on the Miscellaneous sub tab while configuring a customized debug configuration (see also Section 7.2,
Creating a Customized Debug Configuration):

1.

3.

4.

From the Run menu, select Debug Configurations...
The Debug Configurations dialog appears.

In the left pane, select the configuration you want to change, for example, TASKING Embedded
C/C++ Application » myproject.simulator.

Or: click the New launch configuration button (L) to add a new configuration.
On the Debugger tab, select the Miscellaneous tab

In the ORTI file field, specify the name of your own ORTI file.

The debugger supports ORTI specifications v2.0 and v2.1.

7.4.11. TASKING Registers View

When first opened, the TASKING Registers view shows a humber of register groups, which together
contain all known registers. You can expand each group to see which registers they contain and examine
the register's values while stepping through your application. This view has a number of features:

While you step through the application, the registers involved in the step turn yellow.
You can change each register's value.

You can copy registers and/or groups to the windows clipboard: select the groups and/or individual
registers, right-click on a register(group) and from the popup menu choose Copy Registers. You can
paste the copied selection as text in, for example, a text editor.

You can change the way the register value is displayed: right-click on a register(group) and from the
popup menu choose the desired display mode (Natural, Hexadecimal, Decimal, Binary, Octal)

For registers that are depicted with the icon &%, the menu entry Symbolic Representation is available
in their right-click popup menu. This opens a new view which shows the internal fields of the register.
(Alternatively, you can double-click on a register). For example, the SBCU_CON register from the Slow
FPI Bus group may be shown as follows:

224

Using the Debugger

il COn X = B8

SECU_COM

Yalue: D 00SFFFF pdate
Bit# | Description Yalue
0-15 ToUT D:fFFF
16 DBG oM
15 PSE OFF
19 SPE oM
24-31 SPC x40

In this view you can set the individual values in the register, either by selecting a value from a drop-down
box or by simply entering a value depending on the chosen field. To update the register with the new
values, click the Update button.

» You can fully organize the register groups as you like: right-click on a register and from the popup menu
use the menu items Add Register Group..., Edit Register Group... or Remove Register Group. This
way you not only can choose which groups should be visible in the Register view, you can also create
your own groups to which you add the registers of your interest.

To restore the original groups: right-click on a register and from the popup menu choose Restore
Register Groups. Be aware: groups you have created will be removed, groups you have edited are
restored to their original and groups you have deleted are placed back!

Viewing a register group in a separate view

For a better overview, you can open a register group in a separate view. To do so, double-click on the
register group name. A new Register view is opened, showing all registers from the group. You can
consider this view as a sub view of the Register view with roughly the same features.

7.4.12. Trace View

If tracing is enabled, the Trace view shows the code was most recently executed. For example, while you
step through the application, the Trace view shows the executed code of each step. To enable tracing:

* From the Run menu, select Trace.
A check mark appears when tracing is enabled.

The view has three tabs, Source, Instruction and Raw, each of which represents the trace in a different
way. However, not all target environments will support all three of these. The view is updated automatically
each time the target halts.

7.5. PCP Simulator Configuration

To simulate the Peripheral Control Processor (PCP), the standard TriCore Instruction Set Simulator (ISS)
starts a PCP plugin simulator (pcp). This is set up in a configuration file named DConfig that is located
in the etc directory. This file tells the TriCore ISS to start up the PCP plugin with the specified options.

225

TASKING VX-toolset for PCP User Guide

The available command line options for the PCP plugin simulator are:

Option Description Default
-cmem_base address|Code memory address configuration 0xf0020000
-cmem_size size Code memory size configuration 0x4000
-pram_base address |Parameter memory address configuration 0xf0010000
-pram_size size Parameter memory size configuration 0x1000
-preg_base address |PCP register memory address configuration 0xf0003f00
-preg_size size PCP register memory size configuration Oxcd
-psrn_base address |PCP service register node memory address configuration |0xf0003fd0
-psrn_size size PCP service register node memory size configuration 0x30

If a non default derivative is used, it might be necessary to change the options in this file. The default
derivative for the simulator is the tc1920b.

226

Chapter 8. Tool Options

This chapter provides a detailed description of the options for the compiler, assembler, linker, control
program, make utility and the archiver.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. Open the Tool Settings tab.
You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab
open.

The following tables give an overview of all tool options on the Tool Settings tab in Eclipse with hyperlinks
to the corresponding command line options (if available).

Global Options

Eclipse option Description or option

Use global 'product directory' preference Directory where the TASKING toolset is
installed

Link the MIL representation of all modules Control program option --mil-link / --mil-split

Treat warnings as errors Control program option --warnings-as-errors

Keep temporary files Control program option
--keep-temporary-files (-t)

Verbose mode of control program Control program option --verbose (-v)

Channel Configuration

Prefix for global symbols C compiler option --symbol-prefix

Allow channel to be interruptible C compiler option --interrupt-enable

Preserve R7 flags 0..7 C compiler option --preserve-r7-flags

227

TASKING VX-toolset for PCP User Guide

C Compiler

Eclipse option

Description or option

Preprocessing

Automatic inclusion of '.sfr' file

C compiler option --no-tasking-sfr

Store preprocessor output in <file>.pre

Control program option --preprocess (-E) /
--no-preprocessing-only

Keep comments in preprocessor output

Control program option
--preprocess=+comments

Keep #line info in preprocessor output

Control program option
--preprocess=-noline

Defined symbols

C compiler option --define

Pre-include files

C compiler option --include-file

Include Paths

Include paths

C compiler option --include-directory

Language

Comply to C standard

C compiler option --iso

Allow GNU C extensions

C compiler option --language=+gcc

Allow // comments in ISO C90 mode

C compiler option --language=+comments

Check assignment of string literal to non-const string pointer

C compiler option --language=-strings

Treat “char” variables as unsigned

C compiler option --uchar

Treat “int” bit-fields as signed

C compiler option --signed-bitfields

Allow optimization across volatile access

C compiler option --language=-volatile

Code Generation

Maximum size for stack sections to align

C compiler option --align-stack

Generate channel entry table

C compiler option --no-channel-entry-table

Generate channel vectors

C compiler option --no-vector

Allocation

Clear non-initialized global and static variables

C compiler option --no-clear

Optimization

Optimization level

C compiler option --optimize

Trade-off between speed and size

C compiler option --tradeoff

Maximum size for code compaction

C compiler option --compact-max-size

Always inline function calls

C compiler option --inline

Maximum size increment when inlining (in %)

C compiler option --inline-max-incr

Maximum size for functions to always inline

C compiler option --inline-max-size

Custom Optimization

C compiler option --optimize

228

Tool Options

Eclipse option

|Description or option

Debugging

Generate symbolic debug information

‘C compiler option --debug-info

MISRA-C

MISRA-C checking

C compiler option --misrac

MISRA-C version

C compiler option --misrac-version

Warnings instead of errors for required rules

C compiler option
--misrac-required-warnings

Warnings instead of errors for advisory rules

C compiler option
--misrac-advisory-warnings

Custom 1998 / Custom 2004

C compiler option --misrac

CERT C Secure Coding

CERT C secure code checking

C compiler option --cert

Warnings instead of errors

C compiler option --warnings-as-errors

Custom CERT C

C compiler option --cert

Diagnostics

Suppress C compiler warnings

C compiler option --no-warnings=num

Suppress all warnings

C compiler option --no-warnings

Perform global type checking on C code

C compiler option --global-type-checking

Miscellaneous

Merge C source code with generated assembly

C compiler option --source

Additional options

C compiler options, Control program options

Assembler

Eclipse option

Description or option

Preprocessing

Automatic inclusion of '.def' file

Assembler option --no-tasking-sfr

Defined symbols

Assembler option --define

Pre-include files

Assembler option --include-file

Include Paths

Include paths

Assembler option --include-directory

Symbols

Generate symbolic debug

Assembler option --debug-info

Case insensitive identifiers

Assembler option --case-insensitive

Emit local EQU symbols

Assembler option --emit-locals=+equ

Emit local non-EQU symbols

Assembler option --emit-locals=+symbols

229

TASKING VX-toolset for PCP User Guide

Eclipse option

Description or option

Set default symbol scope to global

Assembler option --symbol-scope

Optimization

Optimize generic instructions

Assembler option --optimize=+generics

Optimize instruction size

Assembler option --optimize=+instr-size

List File
Generate list file Control program option --list-files
List ... Assembler option --list-format

List section summary

Assembler option --section-info=+list

Diagnostics

Suppress warnings

Assembler option --no-warnings=num

Suppress all warnings

Assembler option --no-warnings

Display section summary

Assembler option --section-info=+console

Maximum number of emitted errors

Assembler option --error-limit

Miscellaneous

Additional options

|Assembler options

Linker

Eclipse option

|Description or option

Libraries

Use trapped floating-point library

Control program option --fp-trap

Link default libraries

Control program option --no-default-libraries

Rescan libraries to solve unresolved externals

Linker option --no-rescan

Libraries

The libraries are added as files on the
command line.

Library search path

Linker option --library-directory

Data Objects

Data objects

Linker option --import-object

Script File

Defined symbols

Linker option --define

Linker script file (.Isl)

Linker option --Isl-file

Optimization

Delete unreferenced sections

Linker option --optimize=c

Use a 'first-fit decreasing' algorithm

Linker option --optimize=I

Compress copy table

Linker option --optimize=t

Delete duplicate code

Linker option --optimize=x

230

Tool Options

Eclipse option

Description or option

Delete duplicate data

Linker option --optimize=y

Map File

Generate map file (.map)

Control program option --no-map-file

Generate XML map file format (.mapxml) for map file viewer

Linker option --map-file=file.mapxml: XML

Include ...

Linker option --map-file-format

Diagnostics

Suppress warnings

Linker option --no-warnings=num

Suppress all warnings

Linker option --no-warnings

Maximum number of emitted errors

Linker option --error-limit

Miscellaneous

Strip symbolic debug information

Linker option --strip-debug

Link case insensitive

Linker option --case-insensitive

Do not use standard copy table for initialization

Linker option
--user-provided-initialization-code

Include debugger synchronization utility

Linker option --extern=_PCP_sync_on_halt

Additional options

Linker options

8.1. C Compiler Options

This section lists all C compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the compiler via the control program. Therefore, it uses the syntax of
the control program to pass options and files to the C compiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties

The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

3. On the Tool Settings tab, select C Compiler » Miscellaneous.

4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wc to pass the
option via the control program directly to the C compiler.

231

TASKING VX-toolset for PCP User Guide

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -n sends output to stdout instead of a file and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

cpcp -Oac test.c
cpcp --optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

232

Tool Options

C compiler option: --align-stack

Menu entry

1. Select C Compiler » Code Generation.

2. Enter a value in the Maximum size for stack sections to align field.

Command line syntax

--align-stack=val ue

Default: --align-stack=64

Description

Align static stack sections with size smaller than or equal to value so that these sections are not located
over a page boundary. This optimization saves code because the DPTR does not have to be reloaded
when it already contains the right page number.

The disadvantage is that data space is spilled for the alignment. The alignment must be a power of two
in the range [1..64]. 1 equals to no alignment optimizations. The default value 64 turns on alignment
optimization for all static sections.

Example

To align static stack sections with a size smaller than or equal to 32, enter:

cpcp --align-stack=32 test.c

The following invocation is not allowed, value is not a power of 2:

cpcp --align-stack=20 test.c // not allowed

Related information

233

TASKING VX-toolset for PCP User Guide

C compiler option: --cert

Menu entry
1. Select C Compiler » CERT C Secure Coding.
2. Make a selection from the CERT C secure code checking list.

3. Ifyou selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

Command line syntax

--cert={all | nanme[-nane],...}

Default format: all

Description

With this option you can enable one or more checks for CERT C Secure Coding Standard
recommendations/rules. When you omit the argument, all checks are enabled. name is the name of a
CERT recommendation/rule, consisting of three letters and two digits. Specify only the three-letter
mnemonic to select a whole category. For the list of names you can use, see Chapter 14, CERT C Secure
Coding Standard.

On the command line you can use --diag=cert to see a list of the available checks, or you can use a
three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists all
supported preprocessor checks.

Example

To enable the check for CERT rule STR30-C, enter:

cpcp --cert=str30 test.c

Related information

Chapter 14, CERT C Secure Coding Standard

C compiler option --diag (Explanation of diagnostic messages)

234

Tool Options

C compiler option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler reports any warnings and/or errors.
This option is available on the command line only.
Related information

Assembler option --check (Check syntax)

235

TASKING VX-toolset for PCP User Guide

C compiler option: --compact-max-size

Menu entry

1. Select C Compiler » Optimization.

2. Inthe Maximum size for code compaction field, enter the maximum size of a match.
Command line syntax

- - conpact - max- si ze=val ue

Default: 200

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more

than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

However, in the process of finding sequences of matching instructions, compile time and compiler memory
usage increase quadratically with the number of instructions considered for code compaction. With this
option you tell the compiler to limit the number of matching instructions it considers for code compaction.

Example

To limit the maximum number of instructions in functions that the compiler generates during code
compaction:

cpcp --optimize=+compact --compact-max-size=100 test.c
Related information

C compiler option --optimize=+compact (Optimization: code compaction)

236

C compiler option: --core

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --core to the Additional options field.

Command line syntax
--core=core

You can specify the following core arguments:

pcpl PCP 1 syntax
pcpl_5 PCP TC1775 syntax
pcp2 PCP 2 syntax

Default: derived from - - cpu

Description

Tool Options

With this option you specify the core architecture for a custom target processor for which you create your

application. By default the PCP toolset derives the core from the processor you selected.

For more information see C compiler option --cpu.
Example

Specify a custom core:

cpcp --core=pcp2 test.c

Related information

C compiler option --cpu (Select processor)

237

TASKING VX-toolset for PCP User Guide

C compiler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor or select User defined TriCore
Command line syntax

- -cpu=cpu

- Ccpu

Description

With this option you define the target processor for which you create your application. Make sure you
choose a target processor with PCP!

Based on this option the compiler always includes the special function register file regcpu.sfr, unless
you disable the option Automatic inclusion of '.sfr' file on the Preprocessing page (option
--no-tasking-sfr).

To avoid conflicts, make sure you specify the same target processor to the assembler (Eclipse and the
control program do this automatically).

Example

To compile the file test. c for the TC1165 processor and use the SFR file regtc1165.sfr:
cpcp --cpu=tcll65 test.c

Related information

C compiler option --core (Select the PCP core)

C compiler option --no-tasking-sfr (Do not include SFR file)

Section 1.2.4, Accessing Hardware from C

238

Tool Options

C compiler option: --debug-info (-g)
Menu entry

1. Select C Compiler » Debugging.

2. To generate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax
- -debug-i nf o[=subopti on]
-g[suboption]

You can set the following suboptions:

small l/c Emit small set of debug information.
default 2/d Emit default symbolic debug information.
all 3/a Emit full symbolic debug information.

Default: - - debug- i nf o (same as - - debug- i nf o=def aul t)

Description

With this option you tell the compiler to add directives to the output file for including symbolic information.
This facilitates high level debugging but increases the size of the resulting assembler file (and thus the
size of the object file). For the final application, compile your C files without debug information.

Small set of debug information

With this suboption only DWARF call frame information and type information are generated. This enables
you to inspect parameters of nested functions. The type information improves debugging. You can perform
a stack trace, but stepping is not possible because debug information on function bodies is not generated.
You can use this suboption, for example, to compact libraries.

Default debug information

This provides all debug information you need to debug your application. It meets the debugging
requirements in most cases without resulting in oversized assembler/object files.

Full debug information

With this information extra debug information is generated. In extraordinary cases you may use this debug
information (for instance, if you use your own debugger which makes use of this information). With this
suboption, the resulting assembler/object file increases significantly.

Related information

239

TASKING VX-toolset for PCP User Guide

C compiler option: --define (-D)
Menu entry
1. Select C Compiler » Preprocessing.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_name[=macro_definition]
- Dmacr o_nane[=nmacro_definition]
Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

Example
Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#if DEMO

demo_func(Q); /* compile for the demo program */
#else

real_func(); /* compile for the real program */
#endif
}

You can now use a macro definition to set the DEMO flag:

240

Tool Options
cpcp --define=DEMO test.c
cpcp --define=DEMO=1 test.c
Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

cpcp --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.c
Related information
C compiler option --undefine (Remove preprocessor macro)

C compiler option --option-file (Specify an option file)

241

TASKING VX-toolset for PCP User Guide

C compiler option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension .d (one for every input file).
Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
cpcp --dep-file=test.dep test.c

The compiler compiles the file test. c, which results in the output file test.src, and generates
dependency lines in the file test.dep.

Related information

C compiler option --preprocess=+make (Generate dependencies for make)

242

Tool Options

C compiler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » Basic » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format :]{all | nsg[-nmsg],---}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text
Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The compiler does
not compile any files. You can specify the following formats: html, rtf or text (default). To create a file
with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given (except for the CERT checks). If
you want the description of one or more selected error messages, you can specify the error message
numbers, separated by commas, or you can specify a range.

With --diag=cert you can see a list of the available CERT checks, or you can use a three-letter mnemonic
to list only the checks in a particular category. For example, --diag=pre lists all supported preprocessor
checks.

Example
To display an explanation of message number 282, enter:
cpcp --diag=282

This results in the following message and explanation:

243

TASKING VX-toolset for PCP User Guide

E282: unterminated comment

Make sure that every comment starting with /* has a matching */.
Nested comments are not possible.

To write an explanation of all errors and warnings in HTML format to file cerrors._html, use redirection
and enter:

cpcp --diag=html:all > cerrors.html
Related information
Section 3.8, C Compiler Error Messages

C compiler option --cert (Enable individual CERT checks)

244

Tool Options

C compiler option: --error-file
Menu entry

Command line syntax
--error-file[=file]

Description

With this option the compiler redirects error messages to a file. If you do not specify a filename, the error
file will be named after the input file with extension .err.

Example
To write errors to errors.err instead of stderr, enter:

cpcp --error-file=errors.err test.c

Related information

245

TASKING VX-toolset for PCP User Guide

C compiler option: --global-type-checking
Menu entry

1. Select C Compiler » Diagnostics.

2. Enable the option Perform global type checking on C code.
Command line syntax

--gl obal -t ype-checki ng

Description

The C compiler already performs type checking within each module. Use this option when you want the
linker to perform type checking between modules.

Related information

246

Tool Options

C compiler option: --help (-?)
Menu entry
Command line syntax

--hel p[=item]

-2

You can specify the following arguments:

intrinsics i Show the list of intrinsic functions

options o Show extended option descriptions

pragmas p Show the list of supported pragmas

typedefs t Show the list of predefined typedefs
Description

Displays an overview of all command line options. With an argument you can specify which extended
information is shown.

Example

The following invocations all display a list of the available command line options:
cpcp -?

cpcp --help

cpcp

The following invocation displays a list of the available pragmas:

cpcp --help=pragmas

Related information

247

TASKING VX-toolset for PCP User Guide

C compiler option: --include-directory (-I)

Menu entry
1. Select C Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source (only for #include files that are
enclosed in ")

2. The path that is specified with this option.

3. The path that is specified in the environment variable CPCP INC when the product was installed.
4. The default directory $(PRODDIR)\include (unless you specified option --no-stdinc).
Example

Suppose that the C source file test. c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the compiler as follows:
cpcp --include-directory=myinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

248

Tool Options

The compiler now looks for the file myinc.h in the directory where test. c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-file (Include file at the start of a compilation)

C compiler option --no-stdinc (Skip standard include files directory)

249

TASKING VX-toolset for PCP User Guide

C compiler option: --include-file (-H)
Menu entry
1. Select C Compiler » Preprocessing.
The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #include "Ffile" at the beginning of each of your C sources.

Example

cpcp --include-file=stdio.h testl.c test2.c

The file stdio.his included at the beginning of both testl.c and test2.c.
Related information

C compiler option --include-directory (Add directory to include file search path)

250

Tool Options

C compiler option: --inline

Menu entry

1. Select C Compiler » Optimization.

2. Enable the option Always inline function calls.
Command line syntax

--inline

Description

With this option you instruct the compiler to inline calls to functions without the __noinline function
qualifier whenever possible. This option has the same effect as a #pragma inline at the start of the
source file.

This option can be useful to increase the possibilities for code compaction (C compiler option
--optimize=+compact).

Example

To always inline function calls:

cpcp --optimize=+compact --inline test.c

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

Section 1.8.3, Inlining Functions: inline

251

TASKING VX-toolset for PCP User Guide

C compiler option: --inline-max-incr / --inline-max-size

Menu entry

1. Select C Compiler » Optimization.

2. In the Maximum size increment when inlining field, enter a value (default -1).

3. Inthe Maximum size for functions to always inline field, enter a value (default -1).
Command line syntax

--inline-max-incr=percentage (default: -1)
--inline-max-si ze=t hreshol d (default: -1)

Description

With these options you can control the automatic function inlining optimization process of the compiler.
These options have only effect when you have enabled the inlining optimization (option --optimize=+inline
or Optimize most).

Regardless of the optimization process, the compiler always inlines all functions that have the
function qualifier inline.

With the option --inline-max-size you can specify the maximum size of functions that the compiler inlines
as part of the optimization process. The compiler always inlines all functions that are smaller than the
specified threshold. The threshold is measured in compiler internal units and the compiler uses this
measure to decide which functions are small enough to inline. The default threshold is -1, which means
that the threshold depends on the option --tradeoff.

After the compiler has inlined all functions that have the function qualifier inline and all functions that
are smaller than the specified threshold, the compiler looks whether it can inline more functions without
increasing the code size too much. With the option --inline-max-incr you can specify how much the code
size is allowed to increase. The default value is -1, which means that the value depends on the option
--tradeoff.

Example

cpcp --inline-max-incr=40 --inline-max-size=15 test.c

The compiler first inlines all functions with the function qualifier inline and all functions that are smaller
than the specified threshold of 15. If the code size has still not increased with 40%, the compiler decides
which other functions it can inline.

Related information

C compiler option --optimize=+inline (Optimization: automatic function inlining)

Section 1.8.3, Inlining Functions: inline
Section 3.6.3, Optimize for Size or Speed

252

Tool Options

C compiler option: --interrupt-enable

Menu entry

1. Select Global Options » Channel Configuration.

2. Enable the option Allow channel to be interruptible.

Command line syntax

--interrupt-enabl e

Description

With this option the interrupt flag of a channel is enabled. The code generated is interruptible for channels
that do not have common functions using static stack. The R7.IEN flag is enabled in the register context
table of a channel. The IEN flag and CEN flag are set for each PRAM access or they are preserved when

you specify C compiler option --preserve-r7-flags.

Channels that have interrupts enabled must be linked separately. See linker option --link-only or C
compiler option --mil.

Related information
Section 1.8.4.1, Defining an Interrupt Service Routine: __interrupt()

Section 1.9.2, Interruptible Code Generation

253

TASKING VX-toolset for PCP User Guide

C compiler option: --iso (-c)

Menu entry

1. Select C Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.
Command line syntax

--is0={90]99}

-c{90]99}

Default: - - i s0=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Example

To select the ISO C90 standard on the command line:
cpcp --iso=90 test.c

Related information

C compiler option --language (Language extensions)

254

Tool Options

C compiler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the .src file when errors occur during compilation.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during compilation, the resulting . src file may be incomplete or incorrect. With this
option you keep the generated output file (. src) when an error occurs.

By default the compiler removes the generated output file (. src) when an error occurs. This is useful
when you use the make utility. If the erroneous files are not removed, the make utility may process corrupt
files on a subsequent invocation.

Use this option when you still want to inspect the generated assembly source. Even if it is incomplete or
incorrect.

Example

cpcp --keep-output-Files test.c

When an error occurs during compilation, the generated output file test.src will not be removed.
Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

255

TASKING VX-toolset for PCP User Guide

C compiler option: --language (-A)
Menu entry
1. Select C Compiler » Language.
2. Enable or disable one or more of the following options:
» Allow GNU C extensions
* Allow // comments in ISO C90 mode
» Check assignment of string literal to non-const string pointer

 Allow optimization across volatile access

Command line syntax
- -l anguage=[f I ags]
-A[fl ags]

You can set the following flags:

+/-gcc g/G enable a number of gcc extensions

+/-comments p/P /I comments in ISO C90 mode

+/-volatile viV don't optimize across volatile access

+/-strings XIX relaxed const check for string literals
Default: - AGoVx

Default (without flags): - AGPVX
Description

With this option you control the language extensions the compiler can accept. By default the PCP C
compiler allows all language extensions, except for gcc extensions.

The option --language (-A) without flags disables all language extensions.
GNU C extensions
The --language=+gcc (-Ag) option enables the following gcc language extensions:

» The identifier __ FUNCTION__ expands to the current function name.

Alternative syntax for variadic macros.
« Alternative syntax for designated initializers.

 Allow zero sized arrays.

256

Tool Options

* Allow empty struct/union.

» Allow empty initializer list.

« Allow initialization of static objects by compound literals.

» The middle operand of a ? : operator may be omitted.

» Allow a compound statement inside braces as expression.

« Allow arithmetic on void pointers and function pointers.

» Allow a range of values after a single case label.

» Additional preprocessor directive #warning.

 Allow comma operator, conditional operator and cast as Ivalue.
« An inline function without "static" or "extern" will be global.
* An"extern inline" function will not be compiled on its own.

* An__ attribute__ directly following a struct/union definition relates to that tag instead of to the
objects in the declaration.

For a more complete description of these extensions, you can refer to the UNIX gcc info pages (info
gcc).

Comments in ISO C90 mode

With --language=+comments (-Ap) you tell the compiler to allow C++ style comments (//) in ISO C90
mode (option --is0=90). In ISO C99 mode this style of comments is always accepted.

Check assignment of string literal to non-const string pointer

With --language=+strings (-Ax) you disable warnings about discarded const qualifiers when a string
literal is assigned to a non-const pointer.

char *p;
void main(void) { p = "hello"; }

Optimization across volatile access

With the --language=+volatile (-Av) option, the compiler will block optimizations when reading or writing
a volatile object, by treating the access as a call to an unknown function. With this option you can prevent
for example that code below the volatile object is optimized away to somewhere above the volatile object.

Example:

extern unsigned int variable;
extern volatile unsigned int access;

void TestFunc(unsigned int flag)
{

257

TASKING VX-toolset for PCP User Guide

access = 0;
variable |= flag;
if(variable == 3)
{

}
variable |= 0x8000;
access = 1;

variable = 0;

}
Result with --language=-volatile (default):
_TestFunc .proc far
movw rll, variable ; <== Moved across volatile access
movw _access,ZEROS ; <== Volatile access
orw ril,r2
cmpw r11,#0x3
Jjmp cc_ne, 2

movw ril,#0x0

bset ri1.15
movw ri2,#0x1

movw _access,ril2 ; <== Volatile access
movw _variable,rll ; <== Moved across volatile access
ret

Result with --language=+volatile:

_TestFunc .proc far
movw _access,ZEROS ; <== Volatile access
orw _variable,r2
movw r11,#0x3
cmpw rll, variable
Jjmp cc_ne, 2
movw _variable,ZEROS

2:
movw r11,#0x8000
orw _variable,rll
movw ri1,#0x1
movw _access,rill ; <== Volatile access
ret

Example

cpcp --language=-comments,+strings --iso=90 test.c
cpcp -APx -c90 test.c

The compiler compiles in ISO C90 mode, accepts assignments of a constant string to a non-constant
string pointer and does not allow C++ style comments.

258

Tool Options

Related information

C compiler option --iso (ISO C standard)

259

TASKING VX-toolset for PCP User Guide

C compiler option: --make-target

Menu entry

Command line syntax

- -make-t ar get =nane

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension .o.

Example

cpcp --preprocess=+make --make-target=mytarget.o test.c

The compiler generates dependency lines with the default target name mytarget.o instead of test.o.
Related information

C compiler option --preprocess=+make (Generate dependencies for make)

C compiler option --dep-file (Generate dependencies in a file)

260

Tool Options

C compiler option: --mil / --mil-split

Menu entry

Command line syntax

il
—-mil-split[=file,...]

Description

With option --mil the C compiler skips the code generator phase and writes the optimized intermediate
representation (MIL) to a file with the suffix .mi 1. The C compiler accepts -.mi | files as input files on the
command line.

Option --mil-split does the same as option --mil, but in addition, the C compiler splits the MIL representation
and writes it to separate files with suffix .ms. One file is written for each input file or MIL library specified
on the command line. The .ms files are only updated on a change. The C compiler accepts .ms files as
input files on the command line.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time.

Optionally, you can specify another filename for the .ms file the C compiler generates. Without an
argument, the basename of the C source file is used to create the .ms filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Related information

Section 3.1, Compilation Process

Control program option --mil-link / --mil-split

261

TASKING VX-toolset for PCP User Guide

C compiler option: --misrac

Menu entry
1. Select C Compiler » MISRA-C.
2. Make a selection from the MISRA-C checking list.

3. If you selected Custom, expand the Custom 2004 or Custom 1998 entry and enable one or more
individual rules.

Command line syntax
--misrac={all | nr[-nr]},---
Description

With this option you specify to the compiler which MISRA-C rules must be checked. With the option
--misrac=all the compiler checks for all supported MISRA-C rules.

Example

cpcp --misrac=9-13 test.c

The compiler generates an error for each MISRA-C rule 9, 10, 11, 12 or 13 violation in file test.c.
Related information

Section 3.7.2, C Code Checking: MISRA-C

C compiler option --misrac-advisory-warnings

C compiler option --misrac-required-warnings

Linker option --misrac-report

262

Tool Options

C compiler option: --misrac-advisory-warnings / --misrac-required-warnings
Menu entry

1. Select C Compiler » MISRA-C.

2. Make a selection from the MISRA-C checking list.

3. Enable one or both options Warnings instead of errors for required rules and Warnings instead
of errors for advisory rules.

Command line syntax

--m srac-advi sory-war ni ngs
--m srac-required-warni ngs
Description

Normally, if an advisory rule or required rule is violated, the compiler generates an error. As a consequence,
no output file is generated. With this option, the compiler generates a warning instead of an error.

Related information
Section 3.7.2, C Code Checking: MISRA-C
C compiler option --misrac

Linker option --misrac-report

263

TASKING VX-toolset for PCP User Guide

C compiler option: --misrac-version

Menu entry

1. Select C Compiler » MISRA-C.

2. Select the MISRA-C version: 2004 or 1998.

Command line syntax

--m srac-versi on={1998]2004%}

Default: 2004

Description

MISRA-C rules exist in two versions: MISRA-C:1998 and MISRA-C:2004. By default, the C source is
checked against the MISRA-C:2004 rules. With this option you can specify to check against the
MISRA-C:1998 rules.

Related information

Section 3.7.2, C Code Checking: MISRA-C

C compiler option --misrac

264

Tool Options

C compiler option: --no-channel-entry-table

Menu entry

1. Select C Compiler » Code Generation.

2. Disable the option Generate channel entry table.

Command line syntax

--no-channel -entry-tabl e

Description

When you use this option no channel start instruction is generated in the Channel Entry Table for an
interrupt function. You can use this option when "Channel Start at Context PC" is used (CS.RCB=False)
and no EXIT instruction resets the PC to the Channel Entry Table location of that interrupt channel (EP=0).

Related information

Section 1.8.4.1, Defining an Interrupt Service Routine: __interrupt()

265

TASKING VX-toolset for PCP User Guide

C compiler option: --no-clear

Menu entry

1. Select C Compiler » Allocation.

2. Disable the option Clear non-initialized global and static variables.
Command line syntax

--no-cl ear

Description

Normally global/static variables are cleared at program startup. With option --no-clear you tell the compiler
to generate code to prevent non-initialized global/static variables from being cleared at program startup.

This option applies to constant as well as non-constant variables.
Related information

Pragmas clear/noclear

266

Tool Options

C compiler option: --no-partition

Menu entry

1. Select C Compiler » Optimization.

2. In the Optimization level box, select Custom Optimization.
3. Select C Compiler » Optimization » Custom Optimization.
4. Disable the option Automatic memory partitioning.
Command line syntax

--no-partition

Description

With this option you tell the compiler to disable automatic memory partitioning.
Related information

C compiler option --optimize (Specify optimization level)

Section 3.6.2, Core Specific Optimizations (backend)

267

TASKING VX-toolset for PCP User Guide

C compiler option: --no-stdinc

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --no-stdinc to the Additional options field.

Command line syntax

--no-stdinc

Description

With this option you tell the compiler not to look in the default include directory relative to the installation
directory, when searching for include files. This way the compiler only searches in the include file search
paths you specified.

Related information

C compiler option --include-directory (Add directory to include file search path)

Section 3.4, How the Compiler Searches Include Files

268

Tool Options

C compiler option: --no-tasking-sfr

Menu entry

1. Select C Compiler » Preprocessing.

2. Disable the option Automatic inclusion of *.sfr" file.

Command line syntax

- - no-tasking-sfr

Description

Normally, the compiler includes a special function register (SFR) file before compiling. The compiler
automatically selects the SFR file belonging to the target you selected on the Processor page (C compiler
option --cpu).

With this option the compiler does not include the register file regcpu.sfr as based on the selected
target processor.

Use this option if you want to use your own set of SFR files.
Related information
C compiler option --cpu (Select processor)

Section 1.2.4, Accessing Hardware from C

269

TASKING VX-toolset for PCP User Guide

C compiler option: --no-vector

Menu entry

1. Select C Compiler » Code Generation.

2. Disable the option Generate channel vectors.

Command line syntax

--no-vect or

Description

With this option you tell the compiler not to generate code for channel vectors and channel context.

Related information

270

Tool Options

C compiler option: --no-warnings (-w)
Menu entry
1. Select C Compiler » Diagnostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537,538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- -no-war ni ngs[=nunmber [-nunber],...]

-w[nunber [-nunber],...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number or a range, only the specified warnings are suppressed. You
can specify the option --no-warnings=number multiple times.

Example

To suppress warnings 537 and 538, enter:

cpcp test.c --no-warnings=537,538

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

Pragma warning

271

TASKING VX-toolset for PCP User Guide

C compiler option: --optimize (-O)

Menu entry

1. Select C Compiler » Optimization.

2. Select an optimization level in the Optimization level box.
Command line syntax

--optim ze[=fl ags]

-Ofl ags

You can set the following flags:

+/-coalesce alA Coalescer: remove unnecessary moves
+/-ipro b/B Interprocedural register optimizations
+/-cse c/C Common subexpression elimination
+/-expression elE Expression simplification

+/-flow fIF Control flow simplification

+/-glo ag/G Generic assembly code optimizations
+/-inline i/l Automatic function inlining

+/-loop I/L Loop transformations

+/-forward o/O Forward store

+/-propagate p/P Constant propagation

+/-compact r'R Code compaction (reverse inlining)
+/-subscript SIS Subscript strength reduction
+/-peephole ylIY Peephole optimizations

Use the following options for predefined sets of flags:

--optimize=0 -O0 No optimization
Alias for -OaBCEFGILOPRSY

No optimizations are performed except for the coalescer (to allow better debug information). The compiler
tries to achieve an optimal resemblance between source code and produced code. Expressions are
evaluated in the same order as written in the source code, associative and commutative properties are
not used.

--optimize=1 -O1 Optimize
Alias for -OabcefgILOPRSy

Enables optimizations that do not affect the debug ability of the source code. Use this level when you
encounter problems during debugging your source code with optimization level 2.

272

Tool Options

--optimize=2 -02 Optimize more (default)
Alias for -OabcefgllopRSy

Enables more optimizations to reduce code size and/or execution time. This is the default optimization
level.

--optimize=3 -O3 Optimize most
Alias for -OabcefgiloprSy

This is the highest optimization level. Use this level to decrease execution time to meet your real-time
requirements.

Default: - - opti mi ze=2
Description

With this option you can control the level of optimization. If you do not use this option, the default
optimization level is Optimize more (option --optimize=2 or --optimize).

When you use this option to specify a set of optimizations, you can overrule these settings in your C
source file with #pragma optimize fl ag/#pragma endoptimize.

In addition to the option --optimize, you can specify the option --tradeoff (-t). With this option you specify
whether the used optimizations should optimize for more speed (regardless of code size) or for smaller
code size (regardless of speed).

Example
The following invocations are equivalent and result all in the default optimization set:
cpcp test.c

cpcp --optimize=2 test.c
cpcp -02 test.c

cpcp --optimize test.c
cpcp -0 test.c

cpcp -OabcefgllopRSy test.c

cpcp --optimize=+coalesce,+ipro,+cse,+expression,+flow,
+glo,-inline,+loop,+forward, +propagate,
+compact,+subscript,+peephole test.c

Related information

C compiler option --tradeoff (Trade off between speed and size)

Pragma optimize/endoptimize

Section 3.6, Compiler Optimizations

273

TASKING VX-toolset for PCP User Guide

C compiler option: --option-file (-f)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the C compiler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...
Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

» Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"
"This has a double quote ' embedded*
"This has a double quote " and a single quote """ embedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This is a continuation line"

274

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--debug-info
--define=DEMO=1
test.c

Specify the option file to the compiler:

cpcp --option-file=myoptions

This is equivalent to the following command line:
cpcp —debug-info --define=DEMO=1 test.c

Related information

Tool Options

275

TASKING VX-toolset for PCP User Guide

C compiler option: --output (-0)

Menu entry

Eclipse names the output file always after the C source file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the compiler. Without this option
the basename of the C source file is used with extension .src.

Example

To create the file output.src instead of test.src, enter:

cpcp --output=output.src test.c

Related information

276

Tool Options

C compiler option: --preprocess (-E)

Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.
4. (Optional) Enable the option Keep #line info in preprocessor output.
Command line syntax

--preprocess[=fl ags]

-E[fl ags]

You can set the following flags:

+/-comments c/C keep comments

+/-includes i/l generate a list of included source files
+/-list /L generate a list of macro definitions
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information

Default; - ECI LMP
Description

With this option you tell the compiler to preprocess the C source. Under Eclipse the compiler sends the
preprocessed output to the file name . pre (where name is the name of the C source file to compile).
Eclipse also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout. To capture the information in
a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files. The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions. The preprocessor output
is discarded.

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The preprocessor output is discarded. The default target name is the basename of the input file, with the
extension .o. With the option --make-target you can specify a target name which overrules the default

target name.

277

TASKING VX-toolset for PCP User Guide

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #1 ine). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

cpcp --preprocess=+comments,-make,-noline test.c --output=test.pre

The compiler preprocesses the file test.c and sends the output to the file test.pre. Comments are

included but no dependencies are generated and the line source position information is not stripped from
the output file.

Related information
C compiler option --dep-file (Generate dependencies in a file)

C compiler option --make-target (Specify target name for -Em output)

278

Tool Options

C compiler option: --preserve-r7-flags

Menu entry

1. Select Global Options » Channel Configuration.

2. Enable the option Preserve R7 flags 0..7.

Command line syntax

--preserve-r7-flags

Description

With this option the R7 flags are preserved for PRAM access. When accessing the PRAM, which requires
loading of R7.DPTR, the IEN and CEN flags in register R7 are preserved. By default the R7 flag registers
are not preserved, all flags are cleared for each PRAM access.

Related information

C compiler option --interrupt-enable (enable interrupts)

279

TASKING VX-toolset for PCP User Guide

C compiler option: --rename-sections (-R)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Add the option --rename-sections to the Additional options field.

Command line syntax

--renane-sections=[type=]format _string[, [type=]format _string]--.
-R[type=]format _string[, [type=]format_string]-..

Description

In case a module must be loaded at a fixed address, or a data section needs a special place in memory,
you can use this option to generate different section names. You can then use this unique section name
in the linker script file for locating.

With the memory type you select which sections are renamed. The matching sections will get the specified
format_string for the section name. The types you can use are: data and code. The format string can
contain characters and may contain the following format specifiers:

{attrib} section attributes, separated by underscores
{module} module name

{name} object name, name of variable or function
{type} section type

Instead of this option you can also uses the pragmas section/endsection in the C source.
Example

To rename sections of memory type data to .pcpdata.cpcp_test_variable_name:

cpcp --rename-sections=data=cpcp_{module}_ {name} test.c

Related information

See assembler directive . SDECL for a list of section types and attributes.

Pragmas section/endsection

Section 1.10, Compiler Generated Sections

280

Tool Options

C compiler option: --signed-bitfields

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat "int" bit-fields as signed.

Command line syntax

--signed-bitfields

Description

For bit-fields it depends on the implementation whether a plain intis treated as signed intorunsigned
int. By default an int bit-field is treated as unsigned int. This offers the best performance. With this
option you tell the compiler to treat int bit-fields as signed int. In this case, you can still add the
keyword unsigned to treat a particular int bit-field as unsigned.

Related information

Section 1.1, Data Types

281

TASKING VX-toolset for PCP User Guide

C compiler option: --silicon-bug

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor.

The CPU Problem Bypasses and Checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.
4. Click Select All or select one or more individual options.
Command line syntax

--silicon-bug=arg,...

You can give the following argument:

pcp-tc038 Workaround for CPU_TC.038

Description

With this option you specify for which hardware problems the compiler should generate workarounds.
Please refer to Chapter 13, CPU Problem Bypasses and Checks for more information about the individual
problems and workarounds.

Example

To enable workarounds for problem PCP_TC.038, enter:

cpcp --silicon-bug=pcp-tc038 test.c

Related information

Chapter 13, CPU Problem Bypasses and Checks

Assembler option --silicon-bug

282

Tool Options

C compiler option: --source (-S)

Menu entry

1. Select C Compiler » Miscellaneous.

2. Enable the option Merge C source code with generated assembly.
Command line syntax

--source

-s

Description

With this option you tell the compiler to merge C source code with generated assembly code in the output
file. The C source lines are included as comments.

Related information

Pragmas source/nosource

283

TASKING VX-toolset for PCP User Guide

C compiler option: --static

Menu entry

Command line syntax
--static
Description

With this option, the compiler treats external definitions at file scope (except for main) as if they were
declared static. As a result, unused functions will be eliminated, and the alias checking algorithm
assumes that objects with static storage cannot be referenced from functions outside the current module.

This option only makes sense when you specify all modules of an application on the command line.

To overrule this option for a specific function or variable, you can use the export attribute. For example,
when a variable is accessed from assembly:

int i __attribute__((export)); /* "i" has external linkage */

With the export attribute the compiler will not perform optimizations that affect the unknown code.
Example

cpcp --static modulel.c module2.c module3.c ...

Related information

284

Tool Options

C compiler option: --stdout (-n)

Menu entry

Command line syntax

- -stdout

-n

Description

With this option you tell the compiler to send the output to stdout (usually your screen). No files are
created. This option is for example useful to quickly inspect the output or to redirect the output to other

tools.

Related information

285

TASKING VX-toolset for PCP User Guide

C compiler option: --symbol-prefix
Menu entry

1. Select Global Options » Channel Configuration.
2. Enter a Prefix for global symbols.

Command line syntax

- -synbol - pr ef i x=namne

Default: --symbol-prefix=_PCP

Description

With this option you can define what prefix is used for global symbols. When you link a TriCore application
with a PCP application it is required to prefix the PCP global symbols to avoid duplicate name conflicts
between the TriCore and PCP application parts. By default global symbols are prefixed with _PCP. When
you link multiple PCP channels separately it is required that each channel uses its own global symbol

prefix.

Note that the compiler adds an extra underscore to this prefix. For example, the function main will get

the symbol name _PCP_main.
Related information

Assembler option --symbol-prefix

286

Tool Options

C compiler option: --tradeoff (-t)

Menu entry

1. Select C Compiler » Optimization.

2. Select a trade-off level in the Trade-off between speed and size box.
Command line syntax

--tradeof f={0]1]2]3]4}

-t{01112]3]4}

Default: - - t r adeof f =4

Description

If the compiler uses certain optimizations (option --optimize), you can use this option to specify whether
the used optimizations should optimize for more speed (regardless of code size) or for smaller code size
(regardless of speed).

By default the compiler optimizes for code size (--tradeoff=4).

If you have not specified the option --optimize, the compiler uses the default Optimize more
optimization. In this case it is still useful to specify a trade-off level.

Example
To set the trade-off level for the used optimizations:
cpcp --tradeoff=2 test.c

The compiler uses the default Optimize more optimization level and balances speed and size while
optimizing.

Related information
C compiler option --optimize (Specify optimization level)

Section 3.6.3, Optimize for Size or Speed

287

TASKING VX-toolset for PCP User Guide

C compiler option: --uchar (-u)

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.
Command line syntax

--uchar

-u

Description

By default char is the same as specifying signed char.With this option char is the same as unsigned
char.

Related information

Section 1.1, Data Types

288

Tool Options

C compiler option: --undefine (-U)
Menu entry
1. Select C Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
- -undefi ne=macr o_nane
- Uracr o_nane
Description

With this option you can undefine an earlier defined macro as with #undetf. This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE current source filename

__LINE__ current source line number (int type)
__TIME__ hh:mm:ss

_ DATE___ Mmm dd yyyy

__STDC__ level of ANSI standard

Example

To undefine the predefined macro __ TASKING__:
cpcp --undefine=__TASKING__ test.c
Related information

C compiler option --define (Define preprocessor macro)

Section 1.6, Predefined Preprocessor Macros

289

TASKING VX-toolset for PCP User Guide

C compiler option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The compiler ignores all other options or input files.
Example

cpcp --version

The compiler does not compile any files but displays the following version information:

TASKING VX-toolset for PCP: C compiler vx.yrz Build nnn
Copyright 2006-year Altium BV Serial# 00000000

Related information

290

Tool Options

C compiler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as- errors[=nunber [-nunber],...]

Description

If the compiler encounters an error, it stops compiling. When you use this option without arguments, you
tell the compiler to treat all warnings as errors. This means that the exit status of the compiler will be
non-zero after one or more compiler warnings. As a consequence, the compiler now also stops after

encountering a warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers
or ranges.

Related information

C compiler option --no-warnings (Suppress some or all warnings)

201

TASKING VX-toolset for PCP User Guide

8.2. Assembler Options

This section lists all assembler options.
Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the assembler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the assembler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.
Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wa to

pass the option via the control program directly to the assembler.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -V displays version header information and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

aspcp -0gs test.src
aspcp --optimize=+generics,+instr-size test.src

When you do not specify an option, a default value may become active.

292

Assembler option: --case-insensitive (-C)

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax
--case-insensitive

-C

Default: case sensitive

Description

Tool Options

With this option you tell the assembler not to distinguish between upper and lower case characters. By

default the assembler considers upper and lower case characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label Labe IName is the same label as labelname.

aspcp --case-insensitive test.src
Related information

Assembler control $CASE

293

TASKING VX-toolset for PCP User Guide

Assembler option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application.

The assembler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

294

Assembler option: --core

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --core to the Additional options field.

Command line syntax
--core=core

You can specify the following core arguments:

pcpl PCP 1 syntax
pcpl_5 PCP TC1775 syntax
pcp2 PCP 2 syntax

Default: derived from - - cpu

Description

Tool Options

With this option you specify the core architecture for a custom target processor for which you create your

application. By default the PCP toolset derives the core from the processor you selected.

For more information see assembler option --cpu.
Example

Specify a custom core:

aspcp --core=pcp2 test.asm

Related information

Assembler option --cpu (Select processor)

295

TASKING VX-toolset for PCP User Guide

Assembler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor or select User defined TriCore
Command line syntax

- -cpu=cpu

- Ccpu

Description

With this option you define the target processor for which you create your application.

Based on this option the assembler always includes the special function register file regcpu.def, unless
you disable the option Automatic inclusion of '.def' file on the Preprocessing page (option
--no-tasking-sfr).

To avoid conflicts, make sure you specify the same target processor as you did for the compiler (Eclipse
and the control program do this automatically).

Example

To assemble the file test_asm for the TC1165 processor and use the register file regtc1165._def:
aspcp --cpu=tcll65 test.asm

Related information

Assembler option --core (Select the core)

Assembler option --no-tasking-sfr (Do not include .def file)

Section 2.5.1, Special Function Registers

296

Tool Options

Assembler option: --debug-info (-g)

Menu entry

1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.
Command line syntax

--debug-i nfo[=fl ags]

-g[fl ags]

You can set the following flags:

+/-asm a/A Assembly source line information

+/-hll h/H Pass high level language debug information (HLL)
+/-local /L Assembler local symbols debug information
+/-smart sIS Smart debug information

Default: - - debug- i nf o=+hl |

Default (without flags): - - debug- i nf o=+smart

Description
With this option you tell the assembler which kind of debug information to emit in the object file.

You cannot specify --debug-info=+asm,+hll. Either the assembler generates assembly source line
information, or it passes HLL debug information.

When you specify --debug-info=+smart, the assembler selects which flags to use. If high level language
information is available in the source file, the assembler passes this information (same as
--debug-info=-asm,+hll,-local). If not, the assembler generates assembly source line information (same
as --debug-info=+asm,-hll,+local).

With --debug-info=AHLS the assembler does not generate any debug information.
Related information

Assembler control $DEBUG

297

TASKING VX-toolset for PCP User Guide

Assembler option: --define (-D)

Menu entry
1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_name[=macro_definition]
- Dmacr o_nane[=nmacro_definition]
Description

With this option you can define a macro and specify it to the assembler preprocessor. If you only specify
a macro name (no macro definition), the macro expands as '1".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful in combination
with conditional assembly as shown in the example below.

This option has the same effect as defining symbols via the .DEFINE, .SET, and . EQU directives.
(similar to #define in the C language). With the .MACRO directive you can define more complex
macros.

Example

Consider the following assembly program with conditional code to assemble a demo program and a real
program:

.IF DEMO ==

instructions for demo application
-ELSE

instructions for the real application
-ENDIF

298

You can now use a macro definition to set the DEMO flag:

aspcp --define=DEMO test.src
aspcp --define=DEMO=1 test.src

Note that both invocations have the same effect.
Related information

Assembler option --option-file (Specify an option file)

Tool Options

299

TASKING VX-toolset for PCP User Guide

Assembler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » Basic » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format :]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the

following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 244, enter:
aspcp --diag=244

This results in the following message and explanation:

W244: additional input files will be ignored

The assembler supports only a single input file. All other input files are ignored.

300

Tool Options

To write an explanation of all errors and warnings in HTML format to file aserrors. html, use redirection
and enter:

aspcp --diag=html:all > aserrors.html
Related information

Section 4.6, Assembler Error Messages

301

TASKING VX-toolset for PCP User Guide

Assembler option: --emit-locals

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable one or both of the following options:
» Emit local EQU symbols

* Emit local non-EQU symbols

Command line syntax
--emt-locals[=flag,...]
You can set the following flags:

+/-equs e/lE emit local EQU symbols
+/-symbols s/S emit local non-EQU symbols

Default: - - eni t -1 ocal s=ES

Default (without flags): - - eni t - | ocal s=+synbol s

Description

With the option --emit-locals=+equs the assembler also emits local EQU symbols to the object file.
Normally, only global symbols and non-EQU local symbols are emitted. Having local symbols in the object
file can be useful for debugging.

Related information

Assembler directive .EQU

302

Tool Options

Assembler option: --error-file
Menu entry

Command line syntax
--error-file[=file]
Description

With this option the assembler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the input file with extension -ers.

Example
To write errors to errors.ers instead of stderr, enter:

aspcp --error-file=errors.ers test.src
Related information

Section 4.6, Assembler Error Messages

303

TASKING VX-toolset for PCP User Guide

Assembler option: --error-limit

Menu entry

1. Select Assembler » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.

Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the assembler to only emit the specified maximum number of errors. When 0
(null) is specified, the assembler emits all errors. Without this option the maximum number of errors is
42.

Related information

Section 4.6, Assembler Error Messages

304

Tool Options

Assembler option: --help (-?)

Menu entry

Command line syntax

--hel p[=item]

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
aspcp -?

aspcp --help

aspcp

To see a detailed description of the available options, enter:

aspcp --help=options

Related information

305

TASKING VX-toolset for PCP User Guide

Assembler option: --include-directory (-I)

Menu entry
1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable ASPCP INC when the product was installed.
4. The default directory $(PRODDIR)\include.

Example

Suppose that the assembly source file test.src contains the following lines:

-INCLUDE "myinc.inc*

You can call the assembler as follows:

aspcp --include-directory=c:\proj\include test.src

First the assembler looks for the file myinc. inc in the directory where test.src is located. If it does
not find the file, it looks in the directory c:\proj\include (this option). If the file is still not found, the
assembler searches in the environment variable and then in the default include directory.

306

Tool Options

Related information

Assembler option --include-file (Include file at the start of the input file)

307

TASKING VX-toolset for PCP User Guide

Assembler option: --include-file (-H)

Menu entry
1. Select Assembler » Preprocessing.

The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax

--include-file=file,...

-Hile,...

Description

With this option (set at project level) you include one extra file at the beginning of the assembly source
file. The specified include file is included before all other includes. This is the same as specifying . INCLUDE
"file" at the beginning of your assembly source.

Example

aspcp --include-file=myinc.inc test.src

The file myinc. inc is included at the beginning of test.src before it is assembled.

Related information

Assembler option --include-directory (Add directory to include file search path)

308

Tool Options

Assembler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the object file when errors occur during assembling.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during assembling, the resulting object file (. 0) may be incomplete or incorrect. With
this option you keep the generated object file when an error occurs.

By default the assembler removes the generated object file when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated object. For example when you know that a
particular error does not result in a corrupt object file.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

309

TASKING VX-toolset for PCP User Guide

Assembler option: --list-file (-1)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.

Command line syntax

--list-file[=file]

-l [file]

Default: no list file is generated

Description

With this option you tell the assembler to generate a list file. A list file shows the generated object code
and the relative addresses. Note that the assembler generates a relocatable object file with relative
addresses.

With the optional file you can specify an alternative name for the list file. By default, the name of the list
file is the basename of the source file with the extension . Ist.

Related information

Assembler option --list-format (Format list file)

310

Assembler option: --list-format (-L)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.
Command line syntax

--list-format=flag,.-.

-Lfl ags

You can set the following flags:

+/-section d/D List section directives (. SDECL, .SECT)
+/-symbol e/E List symbol definition directives
+/-generic-expansion g/G List expansion of generic instructions
+/-generic i/l List generic instructions

+/-macro m/M List macro definitions

+/-empty-line n/N List empty source lines (newline)
+/-conditional p/P List conditional assembly

+/-equate g/Q List equate and set directives (.EQU, .SET)
+/-relocations r/R List relocations characters 'r'
+/-equate-values v/V List equate and set values
+/-wrap-lines w/W Wrap source lines
+/-macro-expansion X/X List macro expansions

+/-cycle-count y/Y List cycle counts

+/-define-expansion z/Z List define expansions

Use the following options for predefined sets of flags:

--list-format=0 -LO All options disabled

Alias for --list-format=DEGIMNPQRVWXYZ

--list-format=1 -L1 All options enabled

Alias for --list-format=degimnpqrvwxyz

Default: - - | i st - f or mat =dEG MhPqr VinXyZ

Description

With this option you specify which information you want to include in the list file.

Tool Options

311

TASKING VX-toolset for PCP User Guide

On the command line you must use this option in combination with the option --list-file (-1).
Related information
Assembler option --list-file (Generate list file)

Assembler option --section-info=+list (Display section information in list file)

312

Tool Options

Assembler option: --no-tasking-sfr

Menu entry

1. Select Assembler » Preprocessing.

2. Disable the option Automatic inclusion of '.def file.
Command line syntax

- - no-tasking-sfr

Description

Normally, the assembler includes a special function register (SFR) file before assembling. The assembler
automatically selects the SFR file belonging to the target you select on the Processor page (assembler
option --cpu).

With this option the assembler does not include the register file regcpu.def as based on the selected
target processor.

Use this option if you want to use your own set of SFR files.
Example

aspcp --cpu=tcll65 --no-tasking-sfr test.src
The register file regtc1165._def is not included.
Related information

Assembler option --cpu (Select processor)

313

TASKING VX-toolset for PCP User Guide

Assembler option: --no-warnings (-w)

Menu entry
1. Select Assembler » Diagnostics.

The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
201,202). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a humber from the list.

Command line syntax

- -no-war ni ngs[=nunber ,...]

-w[nunber ,...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 201 and 202, enter:

aspcp test.src --no-warnings=201,202
Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

314

Assembler option: --optimize (-O)

Menu entry

1. Select Assembler » Optimization.

2. Select one or more of the following options:

» Optimize generic instructions

» Optimize instruction size

Command line syntax
--optinmze=flag,...

-Of |l ags

You can set the following flags:

+/-generics g/G
+/-instr-size s/S

Default: - - opti m ze=gs

Description

Allow generic instructions
Optimize instruction size

Tool Options

With this option you can control the level of optimization. For details about each optimization see
Section 4.4, Assembler Optimizations.

Related information

Assembler control $HW_ONLY

Section 4.4, Assembler Optimizations

315

TASKING VX-toolset for PCP User Guide

Assembler option: --option-file (-f)

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the assembler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...
Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the assembler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
» Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"
"This has a double quote ' embedded*
"This has a double quote " and a single quote """ embedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This is a continuation line"

316

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--debug=+asm, -local
test.src

Specify the option file to the assembler:
aspcp --option-file=myoptions
This is equivalent to the following command line:

aspcp --debug=+asm,-local test.src

Related information

Tool Options

317

TASKING VX-toolset for PCP User Guide

Assembler option: --output (-0)

Menu entry

Eclipse names the output file always after the input file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the assembler. Without this option,
the basename of the assembly source file is used with extension .o.

Example
To create the file relobj .o instead of asm. o, enter:

aspcp --output=relobj.o asm.src

Related information

318

Assembler option: --page-length

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-length to the Additional options field.

Command line syntax
- - page- | engt h=nunber
Default: 72

Description

Tool Options

If you generate a list file with the assembler option --list-file, this option sets the number of lines in a page
in the list file. The default is 72, the minimum is 10. As a special case, a page length of 0 turns off page

breaks.
Related information

Assembler option --list-file (Generate list file)

Assembler control $PAGE

319

TASKING VX-toolset for PCP User Guide

Assembler option: --page-width

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-width to the Additional options field.
Command line syntax

- - page-w dt h=nunber

Default: 132

Description

If you generate a list file with the assembler option --list-file, this option sets the number of columns per
line on a page in the list file. The default is 132, the minimum is 40.

Related information
Assembler option --list-file (Generate list file)

Assembler control $PAGE

320

Tool Options

Assembler option: --preprocess (-E)
Menu entry

Command line syntax

- - preprocess

-E

Description

With this option the assembler will only preprocess the assembly source file. The assembler sends the
preprocessed file to stdout.

Related information

321

TASKING VX-toolset for PCP User Guide

Assembler option: --preprocessor-type (-m)

Menu entry

Command line syntax

- - preprocessor-type=type

-nmtype

You can set the following preprocessor types:

none n No preprocessor
tasking t TASKING preprocessor

Default: - - pr epr ocessor - t ype=t aski ng
Description

With this option you select the preprocessor that the assembler will use. By default, the assembler uses
the TASKING preprocessor.

When the assembly source file does not contain any preprocessor symbols, you can specify to the
assembler not to use a preprocessor.

Related information

322

Tool Options

Assembler option: --section-info (-t)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable the option List section summary.
and/or

1. Select Assembler » Diagnostics.

2. Enable the option Display section summary.
Command line syntax
--section-info[=flag,---]

-t [fl ags]

You can set the following flags:

+/-console c/C Display section summary on console
+/-list I/L List section summary in list file

Default: - - secti on-i nf o=CL
Default (without flags): - - sect i on-i nf o=cl
Description

With this option you tell the assembler to display section information. For each section its memory space,
size, total cycle counts and name is listed on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the section and the total accumulated
count for all repeated instructions. In the case of nested loops it is possible that the total supersedes the
section total.

Example

To writes the section information to the list file and also display the section information on stdout, enter:
aspcp --list-file --section-info asm.src

Related information

Assembler option --list-file (Generate list file)

323

TASKING VX-toolset for PCP User Guide

Assembler option: --silicon-bug

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor Selection list, select a processor.

The CPU Problem Bypasses and Checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.
4. Click Select All or select one or more individual options.
Command line syntax

--silicon-bug=arg,...

You can give one or more of the following arguments:

pcp-tc034 Check for PCP_TC.034
pcp-tc038 Check for PCP_TC.038
Description

With this option you specify for which hardware problems the assembler should check or generate
workarounds. Please refer to Chapter 13, CPU Problem Bypasses and Checks for more information about
the individual problems and workarounds.

Example

To check for problems PCP_TC.034 and PCP_TC.038, enter:

aspcp --silicon-bug=pcp-tc034,pcp-tc038 test.src

Related information

Chapter 13, CPU Problem Bypasses and Checks

C compiler option --silicon-bug

324

Tool Options

Assembler option: --symbol-prefix (-P)

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --symbol-prefix to the Additional options field.

Command line syntax

--synbol - prefix=prefix

- Pprefix

Description

With this option you can specify a prefix to use for global and external symbols. When you link a TriCore
application with a PCP application it is required to prefix the PCP global symbols to avoid duplicate name
conflicts between the TriCore and PCP application parts. When you link multiple PCP channels separately
it is required that each channel uses its own global symbol prefix.

Note that the C compiler by default adds the prefix _PCP_.

Example

To add the prefix _PCP__to global/external symbols, enter:

aspcp --symbol-prefix=_PCP_ test.asm

Related information

C compiler option --symbol-prefix

325

TASKING VX-toolset for PCP User Guide

Assembler option: --symbol-scope (-i)

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable the option Set default symbol scope to global.
Command line syntax

- - synbol - scope=scope

-i scope

You can set the following scope:

global g Default symbol scope is global
local | Default symbol scope is local

Default: - - synbol - scope=I ocal

Description

With this option you tell the assembler how to treat symbols that you have not specified explicitly as global
or local. By default the assembler treats all symbols as local symbols unless you have defined them
explicitly as global.

Related information
Assembler directive .GLOBAL
Assembler directive .LOCAL

Assembler control $IDENT

326

Assembler option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The assembler ignores all other options or input files.
Example

aspcp --version

The assembler does not assemble any files but displays the following version information:

TASKING VX-toolset for PCP: PCP assembler vx.yrz Build nnn
Copyright 2002-year Altium BV Serial# 00000000

Related information

Tool Options

327

TASKING VX-toolset for PCP User Guide

Assembler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs-as-errors[=nunber,...]

Description

If the assembler encounters an error, it stops assembling. When you use this option without arguments,
you tell the assembiler to treat all warnings as errors. This means that the exit status of the assembler will
be non-zero after one or more assembler warnings. As a consequence, the assembler now also stops
after encountering a warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Assembler option --no-warnings (Suppress some or all warnings)

328

Tool Options

8.3. Linker Options

This section lists all linker options.
Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the linker. If there is no equivalent option in Eclipse, you can
specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -WI to
pass the option via the control program directly to the linker.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option --keep-output-files keeps files after an error occurred. When you specify this option
in Eclipse, it will have no effect because Eclipse always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

Ipcp -mfkl test.o
Ipcp --map-file-format=+files,+link,+locate test.o

When you do not specify an option, a default value may become active.

329

TASKING VX-toolset for PCP User Guide

Linker option: Include debugger synchronization utility

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Include debugger synchronization utility.

Command line syntax

--extern=_PCP_sync_on_hal t

Description

When the debugger stops the TriCore, this does not automatically flush all the states in the CPU's pipeline
and caches. In order to be able to correctly show the program state, the debugger therefore needs to
execute special flushing code every time the CPU halts. When you enable the option Include debugger
synchronization utility this causes extra code (_PCP_sync_on_halt and other symbols) to be linked
in. If you are not going to use the debugger, you can save a few tens of bytes by disabling this option.

Related information

Linker option --extern

330

Tool Options

Linker option: --case-insensitive

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Link case insensitive.
Command line syntax
--case-insensitive

Default: case sensitive

Description

With this option you tell the linker not to distinguish between upper and lower case characters in symbols.
By default the linker considers upper and lower case characters as different characters.

Assembly source files that are generated by the compiler must always be assembled and thus linked
case sensitive. When you have written your own assembly code and specified to assemble it case
insensitive, you must also link the .o file case insensitive.

Related information

Assembler option --case-insensitive

331

TASKING VX-toolset for PCP User Guide

Linker option: --chip-output (-c)
Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Enable the option Create file for each memory chip.
4. Optionally, specify the Size of addresses.
Eclipse always uses the project name as the basename for the output file.
Command line syntax
--chi p- out put =[basenane]: f or mat [: addr _si ze], - - -
- c[basenane]: f or mat [: addr _si ze], - - -
You can specify the following formats:

IHEX Intel Hex
SREC Motorola S-records

The addr_size specifies the size of the addresses in bytes (record length). For Intel Hex you can use the
values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records) or 4 bytes
(S3 records, default).

Description

With this option you specify the Intel Hex or Motorola S-record output format for loading into a
PROM-programmer. The linker generates a file for each ROM memory defined in the LSL file, where
sections are located:

memory menmane
{ type=rom; }

The name of the file is the name of the Eclipse project or, on the command line, the name of the memory
device that was emitted with extension .hex or . sre. Optionally, you can specify a basename which
prepends the generated file name.

The linker always outputs a debugging file in ELF/DWARF format and optionally an absolute
object file in Intel Hex-format and/or Motorola S-record format.

Example
To generate Intel Hex output files for each defined memory, enter the following on the command line:

Ipcp --chip-output=myfile:IHEX testl.o

332

Tool Options

In this case, this generates the file myfi le_memname.hex.
Related information

Linker option --output (Output file)

333

TASKING VX-toolset for PCP User Guide

Linker option: --define (-D)
Menu entry
1. Select Linker » Script File.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_name[=macro_definition]
- Dmacr o_nane[=nmacro_definition]
Description

With this option you can define a macro and specify it to the linker LSL file preprocessor. If you only
specify a macro hame (no macro definition), the macro expands as '1".

You can specify as many macros as you like; just use the option --define (-D) multiple times. If the
command line exceeds the limit of the operating system, you can define the macros in an option file which
you then must specify to the linker with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #i F, #i fdef and #ifndef, for conditional locating.
Example

To define the RESET vector, which is used in the linker script file tclvl_3.1Isl, enter:

Ipcp test.o -otest.elf --Isl-file=tclvl_3.Isl --define=RESET=0xa0000000
Related information

Linker option --option-file (Specify an option file)

334

Tool Options

Linker option: --diag

Menu entry

1. From the Window menu, select Show View » Other » Basic » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format :]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

With this option the linker does not link/locate any files.
Example

To display an explanation of message number 106, enter:
Ipcp --diag=106

This results in the following message and explanation:
E106: unresolved external: <message>

The linker could not resolve all external symbols.

335

TASKING VX-toolset for PCP User Guide

This is an error when the incremental linking option is disabled.
The <message> indicates the symbol that is unresolved.

To write an explanation of all errors and warnings in HTML format to file Ikerrors._html, use redirection
and enter:

Ipcp --diag=html:all > lkerrors.html
Related information

Section 5.10, Linker Error Messages

336

Tool Options

Linker option: --error-file

Menu entry
Command line syntax
--error-file[=file]
Description

With this option the linker redirects error messages to a file. If you do not specify a filename, the error file
is Ipcp-elk.

Example
To write errors to errors.elk instead of stderr, enter:

Ipcp --error-file=errors.elk test.o

Related information

Section 5.10, Linker Error Messages

337

TASKING VX-toolset for PCP User Guide

Linker option: --error-limit

Menu entry

1. Select Linker » Diagnostics.

2. Enter a value in the Maximum number of emitted errors field.
Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the linker to only emit the specified maximum number of errors. When 0 (null) is
specified, the linker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 5.10, Linker Error Messages

338

Tool Options

Linker option: --extern (-e)

Menu entry

Command line syntax
--extern=synbol ,...
-esynbol , ...
Description

With this option you force the linker to consider the given symbol as an undefined reference. The linker
tries to resolve this symbol, either the symbol is defined in an object file or the linker extracts the
corresponding symbol definition from a library.

This option is, for example, useful if the startup code is part of a library. Because your own application
does not refer to the startup code, you can force the startup code to be extracted by specifying the symbol
_START as an unresolved external.

Example
Consider the following invocation:
Ipcp mylib.a

Nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through mylib_a.

Ipcp --extern=_START mylib.a

In this case the linker searches for the symbol _START in the library and (if found) extracts the object that
contains _START, the startup code. If this module contains new unresolved symbols, the linker looks
again in mylib_a. This process repeats until no new unresolved symbols are found.

Related information

Section 5.3, Linking with Libraries

339

TASKING VX-toolset for PCP User Guide

Linker option: --first-library-first

Menu entry

Command line syntax
--first-library-first
Description

When the linker processes a library it searches for symbols that are referenced by the objects and libraries
processed so far. If the library contains a definition for an unresolved reference the linker extracts the
object that contains the definition from the library.

By default the linker processes object files and libraries in the order in which they appear on the command
line. If you specify the option --first-library-first the linker always tries to take the symbol definition from
the library that appears first on the command line before scanning subsequent libraries.

This is for example useful when you are working with a newer version of a library that partially overlaps
the older version. Because they do not contain exactly the same functions, you have to link them both.

However, when a function is present in both libraries, you may want the linker to extract the most recent
function.

Example
Consider the following example:
Ipcp --first-library-first a.a test.o b.a

If the file test. o calls a function which is both present in a.a and b.a, normally the functioninb.a
would be extracted. With this option the linker first tries to extract the symbol from the first library a.a.

Note that routines in b . a that call other routines that are present in both a.a and b.a are now
also resolved from a.a.

Related information

Linker option --no-rescan (Rescan libraries to solve unresolved externals)

340

Tool Options

Linker option: --global-type-checking
Menu entry

Command line syntax

--gl obal -t ype-checki ng

Description

Use this option when you want the linker to check the types of variable and function references against
their definitions, using DWARF 2 or DWARF 3 debug information.

This check should give the same result as the C compiler when you use MIL linking.

Related information

341

TASKING VX-toolset for PCP User Guide

Linker option: --help (-?)
Menu entry

Command line syntax

--hel p[=item]

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
Ipcp -7

Ipcp --help

Ipcp

To see a detailed description of the available options, enter:

Ipcp --help=options

Related information

342

Tool Options

Linker option: --hex-format

Menu entry
1. Select Linker » Miscellaneous.
2. Add the option --hex-format to the Additional options field.
Command line syntax
--hex-format=flag, - .-
You can set the following flag:
+/-start-address s/S Emit start address record
Default: - - hex- f or mat =s
Description
With this option you can specify to emit or omit the start address record from the hex file.
Related information

Linker option --output (Output file)

343

TASKING VX-toolset for PCP User Guide

Linker option: --hex-record-size

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --hex-record-size to the Additional options field.
Command line syntax

--hex-record-si ze=si ze

Default: 32

Description

With this option you can set the size (width) of the Intel Hex data records.
Related information

Linker option --output (Output file)

344

Tool Options

Linker option: --import-object
Menu entry
1. Select Linker » Data Objects.
The Data objects box shows the list of object files that are imported.
2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).

Use the Edit and Delete button to change a filename or to remove a data object from the list.

Command line syntax

--import-object=file,...

Description

With this option the linker imports a binary file containing raw data and places it in a section. The section
name is derived from the filename, in which dots are replaced by an underscore. So, when importing a
file called my . jpg, a section with the name my_jpg is created. In your application you can refer to the
created section by using linker labels.

Related information

Section 5.5, Importing Binary Files

345

TASKING VX-toolset for PCP User Guide

Linker option: --include-directory (-1)

Menu entry

Command line syntax
--include-directory=path,...
-lpath, ...

Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in ™)

2. The path that is specified with this option.

3. The default directory $(PRODDIR)\include.Isl.

Example

Suppose that your linker script file myIsl . Isl contains the following line:

#include "myinc.inc"

You can call the linker as follows:

Ipcp --include-directory=c:\proj\include --Isl-file=mylsl_Isl test.o

First the linker looks for the file myinc. inc in the directory where mylsl _Isl is located. If it does not
find the file, it looks in the directory c:\proj\include (this option). Finally it looks in the directory
$(PRODDIR)\include.lsl.

Related information

Linker option --Isl-file (Specify linker script file)

346

Tool Options

Linker option: --incremental (-r)

Menu entry
Command line syntax
--increnental

-r

Description

Normally the linker links and locates the specified object files. With this option you tell the linker only to
link the specified files. The linker creates a linker output file . out. You then can link this file again with
other object files until you have reached the final linker output file that is ready for locating.

In the last pass, you call the linker without this option with the final linker output file .out. The linker will
now locate the file.

Example
In this example, the files testl.o, test2.0 and test3.o are incrementally linked:
1. Ipcp --incremental testl.o test2.o0 --output=test.out
testl.o and test2.0 are linked
2. Ipcp --incremental test3.0 test.out
test3.0 and test.out are linked, taskl.out is created
3. Ipcp taskl.out
taskl.out is located
Related information

Section 5.4, Incremental Linking

347

TASKING VX-toolset for PCP User Guide

Linker option: --keep-output-files (-k)

Menu entry

Eclipse always removes the output files when errors occurred.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during linking, the resulting output file may be incomplete or incorrect. With this option
you keep the generated output files when an error occurs.

By default the linker removes the generated output file when an error occurs. This is useful when you use
the make utility. If the erroneous files are not removed, the make utility may process corrupt files on a
subsequent invocation.

Use this option when you still want to use the generated file. For example when you know that a particular
error does not result in a corrupt object file, or when you want to inspect the output file, or send it to Altium
support.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

348

Tool Options

Linker option: --library (-I)
Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=nane
-l nane
Description

With this option you tell the linker to use system library Iibname.a, where name is a string. The linker
first searches for system libraries in any directories specified with --library-directory, then in the directories
specified with the environment variables LIBTC1vV1 2 / LIBTC1vl 3 / LIBTC1Vl 3 1 /
LIBTC1V1_6, unless you used the option --ignore-default-library-path.

Example
To search in the system library Fibc.a (C library):
Ipcp test.o mylib.a --library=c

The linker links the file test.o and first looks in library mylib.a (in the current directory only), then in
the system library libc.a to resolve unresolved symbols.

Related information
Linker option --library-directory (Additional search path for system libraries)

Section 5.3, Linking with Libraries

349

TASKING VX-toolset for PCP User Guide

Linker option: --library-directory (-L) / --ignore-default-library-path
Menu entry
1. Select Linker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path, ...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is $(PRODDIR)\1ib\[pcpl][pcpl5][pcp2].

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables
LIBTC1V1_2 / LIBTC1V1_3 / LIBTC1V1_3_1 / LIBTC1V1_6. So, the linker ignores steps 2 and
3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-1)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variables LIBTC1V1_2 / LIBTC1V1_3 /
LIBTC1V1_3 1 / LIBTC1V1_6.

3. The default directory $(PRODDIR)\1ib\[pcpl][pcpl5][pcp2].
Example
Suppose you call the linker as follows:

Ipcp test.o --library-directory=c:\mylibs --library=c

350

Tool Options

First the linker looks in the directory c:\myl ibs for library Libc.a (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LIBTC1V1_2 /
LIBTC1V1_3 / LIBTC1V1l_3 1 / LIBTC1V1_6. Then the linker looks in the default directory
$(PRODDIR)\I1ib\[pcpl][pcpl5][pcp2] for libraries.

Related information

Linker option --library (Link system library)

Section 5.3.1, How the Linker Searches Libraries

351

TASKING VX-toolset for PCP User Guide

Linker option: --link-only
Menu entry

Command line syntax
--link-only

Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information

Control program option --create=relocatable (-cl) (Stop after linking)

352

Tool Options

Linker option: --Isl-check

Menu entry
Command line syntax
--1sl-check
Description

With this option the linker just checks the syntax of the LSL file(s) and exits. No linking or locating is
performed. Use the option --Isl-file to specify the name of the Linker Script File you want to test.

Related information
Linker option --Isl-file (Linker script file)
Linker option --Isl-dump (Dump LSL info)

Section 5.7, Controlling the Linker with a Script

353

TASKING VX-toolset for PCP User Guide

Linker option: --Isl-dump
Menu entry

Command line syntax
--1sl-dunp[=file]
Description

With this option you tell the linker to dump the LSL part of the map file in a separate file, independent of
the option --map-file (generate map file). If you do not specify a filename, the file Ipcp. 1df is used.

Related information

Linker option --map-file-format (Map file formatting)

354

Tool Options

Linker option: --Isl-file (-d)

Menu entry

An LSL file can be generated when you create your TriCore project in Eclipse:

1. From the File menu, select File » New » TASKING VX-toolset for TriCore C/C++ Project.
The New C/C++ Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the TriCore Project Settings appear.

3. Enable the optionAdd Linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.

The LSL file can be specified in the Properties dialog:

1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field.

Command line syntax

--Isl-file=file

-dfile

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
» the memory definition describes the physical memory available in the system.
« the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file to the linker. If you do not specify this option, the linker uses
a default script file. You can specify the existing file target. Isl or the name of a manually written linker
script file. You can use this option multiple times. The linker processes the LSL files in the order in which
they appear on the command line.

Related information

Linker option --Isl-check (Check LSL file(s) and exit)

Section 5.7, Controlling the Linker with a Script

355

TASKING VX-toolset for PCP User Guide

Linker option: --map-file (-M)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.

3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax

--map-file[=file][: X\M.]

-Mfile]l: XMm]

Default (Eclipse): XML map file is generated

Default (linker): no map file is generated

Description

With this option you tell the linker to generate a linker map file. If you do not specify a flename and you
specified the option --output, the linker uses the same basename as the output file with the extension

-map. If you did not specify the option --output, the linker uses the file taskl.map. Eclipse names the
-map file after the project.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. 0) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on
address.

Related information

Linker option --map-file-format (Format map file)

Section 10.2, Linker Map File Format

356

Tool Options

Linker option: --map-file-format (-m)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.
3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax

--map-file-format=flag,---

-nfl ags

You can set the following flags:

+/-callgraph c/C Include call graph information

+/-removed d/D Include information on removed sections
+/-files fIF Include processed files information
+/-invocation i/l Include information on invocation and tools
+/-link k/K Include link result information

+/-locate /L Include locate result information
+/-memory m/M Include memory usage information
+/-nonalloc n/N Include information of non-alloc sections
+/-overlay 0/O Include overlay information

+/-statics q/Q Include module local symbols information
+/-crossref r'R Include cross references information

+/-Isl s/S Include processor and memory information
+/-rules u/U Include locate rules

Use the following options for predefined sets of flags:

--map-file-format=0 -mO0 Link information

Alias for -mcDfikLMNoQrSuU
--map-file-format=1 -m1l Locate information

Alias for -mCDfiKIMNoOQRSU
--map-file-format=2 -m2 Most information

Alias for -mcdfikilmNoQrSu

Default: - - map-fi |l e- f or mat =2

357

TASKING VX-toolset for PCP User Guide

Description

With this option you specify which information you want to include in the map file.

On the command line you must use this option in combination with the option --map-file (-M).
Related information

Linker option --map-file (Generate map file)

Section 10.2, Linker Map File Format

358

Tool Options

Linker option: --misra-c-report

Menu entry

Command line syntax

--msra-c-report [=file]

Description

With this option you tell the linker to create a MISRA-C Quality Assurance report. This report lists the
various modules in the project with the respective MISRA-C settings at the time of compilation. If you do

not specify a filename, the file basename.mcr is used.

Related information

C compiler option --misrac (MISRA-C checking)

359

TASKING VX-toolset for PCP User Guide

Linker option: --non-romable

Menu entry

Command line syntax

--non-romabl e

Description

With this option you tell the linker that the application must not be located in ROM. The linker will locate
all ROM sections, including a copy table if present, in RAM. When the application is started, the data

sections are re-initialized and the BSS sections are cleared as usual.

This option is, for example, useful when you want to test the application in RAM before you put the final
application in ROM. This saves you the time of flashing the application in ROM over and over again.

Related information

360

Tool Options

Linker option: --no-rescan

Menu entry
1. Select Linker » Libraries.

2. Disable the option Rescan libraries to solve unresolved externals.
Command line syntax

--no-rescan
Description

When the linker processes a library it searches for symbol definitions that are referenced by the objects
and libraries processed so far. If the library contains a definition for an unresolved reference the linker
extracts the object that contains the definition from the library. The linker processes object files and
libraries in the order in which they appear on the command line.

When all objects and libraries are processed the linker checks if there are unresolved symbols left. If so,
the default behavior of the linker is to rescan all libraries in the order given at the command line. The
linker stops rescanning the libraries when all symbols are resolved, or when the linker could not resolve
any symbol(s) during the rescan of all libraries. Notice that resolving one symbol may introduce new
unresolved symbols.

With this option, you tell the linker to scan the object files and libraries only once. When the linker has
not resolved all symbols after the first scan, it reports which symbols are still unresolved. This option is
useful if you are building your own libraries. The libraries are most efficiently organized if the linker needs
only one pass to resolve all symbols.

Related information

Linker option --first-library-first (Scan libraries in given order)

361

TASKING VX-toolset for PCP User Guide

Linker option: --no-rom-copy (-N)

Menu entry

Command line syntax

--no-rom copy

-N

Description

With this option the linker will not generate a ROM copy for data sections. A copy table is generated and
contains entries to clear BSS sections. However, no entries to copy data sections from ROM to RAM are
placed in the copy table.

The data sections are initialized when the application is downloaded. The data sections are not re-initialized
when the application is restarted.

Related information

362

Tool Options

Linker option: --no-warnings (-w)
Menu entry
1. Select Linker » Diagnostics.
The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
135,136). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- -no-war ni ngs[=nunber ,...]

-wlnunber ,...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 135 and 136, enter:

Ipcp --no-warnings=135,136 test.o
Related information

Linker option --warnings-as-errors (Treat warnings as errors)

363

TASKING VX-toolset for PCP User Guide

Linker option: --optimize (-O)

Menu entry

1.

2.

Command line syntax

Select Linker » Optimization.

Select one or more of the following options:

» Delete unreferenced sections

» Use a "first-fit decreasing' algorithm

» Compress copy table

Delete duplicate code

Delete duplicate data

--optinmze=flag,---

-Of I ags

You can set the following flags:

+/-delete-unreferenced-sections c/C

+/-first-fit-decreasing

+/-copytable-compression

+/-delete-duplicate-code

+/-delete-duplicate-data

I/L

uT
XIX

yIY

Use the following options for predefined sets of flags:

--optimize=0

--optimize=1

--optimize=2

Default: - - opti m ze=1

364

No optimization

Delete unreferenced sections from the output
file

Use a 'first-fit decreasing' algorithm to locate
unrestricted sections in memory

Emit smart restrictions to reduce copy table size
Delete duplicate code sections from the output
file

Delete duplicate constant data from the output
file

Alias for -OCLTXY
Default optimization

Alias for -OcLtxy

All optimizations
Alias for -Ocltxy

Tool Options

Description
With this option you can control the level of optimization.
Related information

For details about each optimization see Section 5.6, Linker Optimizations.

365

TASKING VX-toolset for PCP User Guide

Linker option: --option-file (-f)

Menu entry

1. Select Linker » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the linker options you have set in the other
pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...
Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the linker.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
» Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"
"This has a double quote ' embedded*
"This has a double quote " and a single quote """ embedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This is a continuation line"

366

Tool Options

« Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

--map-Ffile=my.map (generate a map file)

test.o (input Ffile)

--library-directory=c:\mylibs (additional search path for system libraries)
Specify the option file to the linker:

Ipcp --option-file=myoptions

This is equivalent to the following command line:

Ipcp --map-file=my._.map test.o --library-directory=c:\mylibs

Related information

367

TASKING VX-toolset for PCP User Guide

Linker option: --output (-0)
Menu entry
1. Select Linker » Output Format.
2. Enable one or more output formats.
For some output formats you can specify a number of suboptions.
Eclipse always uses the project name as the basename for the output file.
Command line syntax
--out put=[fil enane][: format [: addr _si ze][, space_nane]]- - -
-o[filenane][: format [: addr_si ze][, space_nane]]- .-

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

By default, the linker generates an output file in ELF/DWARF format, with the name taskl.elf.

With this option you can specify an alternative filename, and an alternative output format. The default
output format is the format of the first input file.

You can use the --output option multiple times. This is useful to generate multiple output formats. With
the first occurrence of the --output option you specify the basename (the filename without extension),
which is used for subsequent --output options with no filename specified. If you do not specify a filename,
or you do not specify the --output option at all, the linker uses the default basename taskn.

IHEX and SREC formats

If you specify the Intel Hex format or the Motorola S-records format, you can use the argument addr_size
to specify the size of addresses in bytes (record length). For Intel Hex you can use the values: 1, 2, and
4 (default). For Motorola S-records you can specify: 2 (S1 records), 3 (S2 records, default) or 4 bytes (S3
records).

With the argument space_name you can specify the name of the address space. The name of the output
file will be filename with the extension .hex or .sre and contains the code and data allocated in the
specified space. If they exist, any other address spaces are also emitted whereas their output files are
named filename_spacename with the extension .hex or _sre.

If you do not specify space_name, or you specify a non-existing space, the default address space is filled
in.

368

Tool Options

Use option --chip-output (-c) to create Intel Hex or Motorola S-record output files for each chip defined
in the LSL file (suitable for loading into a PROM-programmer).

Example

To create the output file myFi le_hex of the address space named linear, enter:

Ipcp test.o --output=myfile.hex:IHEX:2,linear

If they exist, any other address spaces are emitted as well and are named myFfi le_spacename . hex.
Related information

Linker option --chip-output (Generate an output file for each chip)

Linker option --hex-format (Specify Hex file format settings)

369

TASKING VX-toolset for PCP User Guide

Linker option: --strip-debug (-S)
Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Strip symbolic debug information.

Command line syntax

--strip-debug

-S

Description

With this option you specify not to include symbolic debug information in the resulting output file.

Related information

370

Tool Options

Linker option: --user-provided-initialization-code (-i)

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Do not use standard copy table for initialization.

Command line syntax

--user-provided-initialization-code

-i

Description

It is possible to use your own initialization code, for example, to save ROM space. With this option you
tell the linker not to generate a copy table for initialize/clear sections. Use linker labels in your source
code to access the positions of the sections when located.

If the linker detects references to the TASKING initialization code, an error is emitted: it is either the
TASKING initialization routine or your own, not both.

Note that the options --no-rom-copy and --non-romable, may vary independently. The
‘copytable-compression’ optimization (--optimize=t) is automatically disabled when you enable this option.

Related information
Linker option --no-rom-copy (Do not generate ROM copy)
Linker option --non-romable (Application is not romable)

Linker option --optimize (Specify optimization)

371

TASKING VX-toolset for PCP User Guide

Linker option: --verbose (-v) / --extra-verbose (-vv)

Menu entry

Command line syntax

--verbose / --extra-verbose

-v [-vv

Description

With this option you put the linker in verbose mode. The linker prints the link phases while it processes
the files. In the extra verbose mode, the linker also prints the filenames and it shows which objects are

extracted from libraries. With this option you can monitor the current status of the linker.

Related information

372

Tool Options

Linker option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The linker ignores all other options or input files.
Example

Ipcp --version

The linker does not link any files but displays the following version information:

TASKING VX-toolset for PCP: object linker vx.yrz Build nnn
Copyright 2006-year Altium BV Serial# 00000000

Related information

373

TASKING VX-toolset for PCP User Guide

Linker option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs-as-errors[=nunber,...]

Description

When the linker detects an error or warning, it tries to continue the link process and reports other errors
and warnings. When you use this option without arguments, you tell the linker to treat all warnings as
errors. This means that the exit status of the linker will be non-zero after the detection of one or more
linker warnings. As a consequence, the linker will not produce any output files.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.

Related information

Linker option --no-warnings (Suppress some or all warnings)

374

Tool Options

8.4. Control Program Options

The control program ccpcp facilitates the invocation of the various components of the PCP toolset from
a single command line.

Options in Eclipse versus options on the command line

Eclipse invokes the compiler, assembler and linker via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the tools. The control program processes command

line options either by itself, or, when the option is unknown to the control program, it looks whether it can
pass the option to one of the other tools. However, for directly passing an option to the compiler, assembler
or linker, itis recommended to use the control program options --pass-c, --pass-assembler, --pass-linker.

See the previous sections for details on the options of the tools.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

ccpcp -We-0ac test.c
ccpcp --pass-c=--optimize=+coalesce,+cse test.c

When you do not specify an option, a default value may become active.

375

TASKING VX-toolset for PCP User Guide

Control program option: --address-size

Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Specify the Size of addresses.
Eclipse always uses the project name as the basename for the output file.
Command line syntax
- - addr ess-si ze=addr _si ze
Description

If you specify IHEX or SREC with the control option --format, you can additionally specify the record
length to be emitted in the output files.

With this option you can specify the size of the addresses in bytes (record length). For Intel Hex you can
use the values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records)
or 4 bytes (S3 records, default).

If you do not specify addr_size, the default address size is generated.

Example

To create the SREC file test.sre with S1 records, type:

ccpcp --format=SREC --address-size=2 test.c

Related information

Control program option --format (Set linker output format)

Control program option --output (Output file)

376

Tool Options

Control program option: --case-insensitive

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax
--case-insensitive

Default: case sensitive

Description

With this option you tell the assembler not to distinguish between upper and lower case characters. By
default the assembler considers upper and lower case characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label Labe IName is the same label as 1abelname.
ccpcp --case-insensitive test.src

Related information

Assembler option --case-insensitive

Assembler control $CASE

377

TASKING VX-toolset for PCP User Guide

Control program option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler/assembler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

378

Tool Options

Control program option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor Selection list, select a processor or select User defined TriCore
Command line syntax

--cpu=cpu

- Ccpu

Description

With this option you define the target processor for which you create your application.

Based on this option the compiler always includes the special function register file regcpu.sfr, and the
assembiler includes the file regcpu.deT, unless you specifyoption --no-tasking-sfr.

Example

To generate the file test.elf for the TC1165 processor, enter:
ccpcp --cpu=tcll65 test.c

Related information

Control program option --no-tasking-sfr (Do not include SFR file)

Section 1.2.4, Accessing Hardware from C

379

TASKING VX-toolset for PCP User Guide

Control program option: --create (-C)

Menu entry

Command line syntax
--creat e[=st age]
-c[stage]

You can specify the following stages:

relocatable | Stop after the files are linked to a linker object file (. out)
mil m Stop after C files are compiled to MIL (.mi)

object o] Stop after the files are assembled to objects (- 0)
assembly s Stop after C files are compiled to assembly (-.src)

Default (without flags): - - cr eat e=obj ect
Description

Normally the control program generates an absolute object file of the specified output format from the file
you supplied as input. With this option you tell the control program to stop after a certain number of phases.

Example

To generate the object file test.o:

ccpcp --create test.c

The control program stops after the file is assembled. It does not link nor locate the generated output.
Related information

Linker option --link-only (Link only, no locating)

380

Tool Options

Control program option: --debug-info (-g)

Menu entry
1. Select C Compiler » Debugging.

2. To generate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax

--debug-info

-9

Description

With this option you tell the control program to include debug information in the generated object file.

The control program passes the option --debug-info (-g) to the C compiler and calls the assembler with
--debug-info=+smart,+local (-gsl).

Related information
C compiler option --debug-info (Generate symbolic debug information)

Assembler option --debug-info (Generate symbolic debug information)

381

TASKING VX-toolset for PCP User Guide

Control program option: --define (-D)

Menu entry
1. Select C Compiler » Preprocessing and/or Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, demo=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_name[=macro_definition]
- Dmacr o_nane[=nmacro_definition]
Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

The control program passes the option --define (-D) to the compiler and the assembler.
Example
Consider the following C program with conditional code to compile a demo program and a real program:

void main(void)

{
#if DEMO

demo_func(Q); /* compile for the demo program */
#else

real_func(Q; /* compile for the real program */
#endif
}

You can now use a macro definition to set the DEMO flag:

382

Tool Options
ccpcp --define=DEMO test.c
ccpcp --define=DEMO=1 test.c
Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

ccpcp --define="MAX(A,B)=((A) > (B) ? (A) : (B))" test.c
Related information
Control program option --undefine (Remove preprocessor macro)

Control program option --option-file (Specify an option file)

383

TASKING VX-toolset for PCP User Guide

Control program option: --dep-file

Menu entry

Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to

the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
ccpcp --dep-file=test.dep -t test.c

The compiler compiles the file test. c, which results in the output file test._src, and generates
dependency lines in the file test.dep.

Related information

Control program option --preprocess=+make (Generate dependencies for make)

384

Tool Options

Control program option: --diag

Menu entry

1. From the Window menu, select Show View » Other » General » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format :]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text
Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 103, enter:
ccpcp --diag=103

This results in message 103 with explanation.

To write an explanation of all errors and warnings in HTML format to file ccerrors . html, use redirection
and enter:

ccpcp --diag=html:all > ccerrors.html

385

TASKING VX-toolset for PCP User Guide

Related information

Section 3.8, C Compiler Error Messages

386

Tool Options

Control program option: --dry-run (-n)
Menu entry

Command line syntax

--dry-run

-Nn

Description

With this option you put the control program in verbose mode. The control program prints the invocations
of the tools it would use to process the files without actually performing the steps.

Related information

Control program option --verbose (Verbose output)

387

TASKING VX-toolset for PCP User Guide

Control program option: --error-file

Menu entry
Command line syntax
--error-file
Description

With this option the control program tells the compiler, assembler and linker to redirect error messages
to a file.

Example
To write errors to error files instead of stderr, enter:

ccpcp --error-file test.c

Related information

Control Program option --warnings-as-errors (Treat warnings as errors)

388

Tool Options

Control program option: --format

Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Optionally, specify the Size of addresses.

Eclipse always uses the project name as the basename for the output file.
Command line syntax
- - for mat =f or mat

You can specify the following formats:

ELF ELF/DWARF

IHEX Intel Hex

SREC Motorola S-records
Description

With this option you specify the output format for the resulting (absolute) object file. The default output
format is ELF/DWAREF, which can directly be used by the debugger.

If you choose IHEX or SREC, you can additionally specify the address size of the chosen format (option
--address-size).

Example

To generate a Motorola S-record output file:

ccpcp --format=SREC testl.c test2.c --output=test.sre

Related information

Control program option --address-size (Set address size for linker IHEX/SREC files)
Control program option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

389

TASKING VX-toolset for PCP User Guide

Control program option: --fp-trap

Menu entry

1. Select Linker » Libraries.

2. Enable the option Use trapped floating-point library.
Command line syntax

--fp-trap

Description

By default the control program uses the non-trapping floating-point library (I ibfp.a). With this option
you tell the control program to use the trapping floating-point library (I ibfpt.a).

If you use the trapping floating-point library, exceptional floating-point cases are intercepted and can be
handled separately by an application defined exception handler. Using this library decreases the execution
speed of your application.
Related information

Section 5.3, Linking with Libraries

390

Tool Options

Control program option: --help (-?)

Menu entry

Command line syntax

--hel p[=item]

-?

You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
ccpep -?

ccpcp --help

ccpep

To see a detailed description of the available options, enter:

ccpcp --help=options

Related information

391

TASKING VX-toolset for PCP User Guide

Control program option: --include-directory (-I)

Menu entry
1. Select C Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath,...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory.

The control program passes this option to the compiler and the assembler.
Example
Suppose that the C source file test. c contains the following lines:

#include <stdio.h>
#include "myinc.h"

You can call the control program as follows:
ccpcp --include-directory=myinclude test.c

First the compiler looks for the file stdio.h in the directory myinclude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

The compiler now looks for the file myinc.h in the directory where test.c is located. If the file is not
there the compiler searches in the directory myinclude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-directory (Add directory to include file search path)

C compiler option --include-file (Include file at the start of a compilation)

392

Tool Options

Control program option: --iso

Menu entry

1. Select C Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.
Command line syntax

--is0={90]99}

Default: - - i s0=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Independent of the chosen ISO standard, the control program always links libraries with C99 support.
Example

To select the ISO C90 standard on the command line:

ccpcp --1s0=90 test.c

Related information

C compiler option --iso (ISO C standard)

393

TASKING VX-toolset for PCP User Guide

Control program option: --keep-output-files (-k)
Menu entry

Eclipse always removes generated output files when an error occurs.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during the compilation, assembling or linking process, the resulting output file may be
incomplete or incorrect. With this option you keep the generated output files when an error occurs.

By default the control program removes generated output files when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated files. For example when you know that a particular
error does not result in a corrupt file, or when you want to inspect the output file, or send it to Altium
support.

The control program passes this option to the compiler, assembler and linker.
Example
ccpcp --keep-output-files test.c

When an error occurs during compiling, assembling or linking, the erroneous generated output files will
not be removed.

Related information
C compiler option --keep-output-files
Assembler option --keep-output-files

Linker option --keep-output-files

394

Tool Options

Control program option: --keep-temporary-files (-t)
Menu entry

1. Select Global Options.

2. Enable the option Keep temporary files.

Command line syntax

--keep-tenporary-files

-t

Description

By default, the control program removes intermediate files like the . src file (result of the compiler phase)
and the .o file (result of the assembler phase).

With this option you tell the control program to keep temporary files it generates during the creation of
the absolute object file.

Example
ccpcp --keep-temporary-files test.c

The control program keeps all intermediate files it generates while creating the absolute object file
test.elf.

Related information

395

TASKING VX-toolset for PCP User Guide

Control program option: --library (-I)

Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=nane
-l nane
Description

With this option you tell the linker via the control program to use system library Iibname .a, where name
is a string. The linker first searches for system libraries in any directories specified with --library-directory,
then in the directories specified with the environment variables LIBTC1V1 2 / LIBTC1vVl1 3 /
LIBTC1V1_3 1 / LIBTC1V1_6, unless you used the option --ignore-default-library-path.

Example
To search in the system library libc.a (C library):
ccpcp test.o mylib.a --library=c

The linker links the file test.o and first looks in library mylib_a (in the current directory only), then in
the system library libc.a to resolve unresolved symbols.

Related information
Control program option --no-default-libraries (Do not link default libraries)
Control program option --library-directory (Additional search path for system libraries)

Section 5.3, Linking with Libraries

396

Tool Options

Control program option: --library-directory (-L) /
--ignore-default-library-path

Menu entry
1. Select Linker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-1), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is $(PRODDIR)\Iib\[pcpl][pcpl5][pcp2].
If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variables

LIBTC1V1_2 / LIBTC1V1_3 / LIBTC1vl1_3 1 / LIBTC1V1_6. So, the linker ignores steps 2 and
3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-1)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variables LIBTC1V1_2 / LIBTC1V1_3 /
LIBTC1V1_3_1 / LIBTC1V1_6.

3. The default directory $(PRODDIR)\1ib\[pcpl][pcpl5][pcp2].
Example

Suppose you call the control program as follows:

397

TASKING VX-toolset for PCP User Guide

ccpcp test.c --library-directory=c:\mylibs --library=c

First the linker looks in the directory c:\myl ibs for library Fibc.a (this option). If it does not find the
requested libraries, it looks in the directory that is set with the environment variables LIBTC1V1 2 /
LIBTC1V1_3 / LIBTC1V1_3_1 / LIBTC1V1_6. Then the linker looks in the default directory
$(PRODDIR)\Nib\[pcpl][pcpl5][pcp2] for libraries.

Related information

Control program option --library (Link system library)

Section 5.3.1, How the Linker Searches Libraries

398

Tool Options

Control program option: --list-files

Menu entry

Command line syntax
--list-files[=file]
Default: no list files are generated
Description

With this option you tell the assembler via the control program to generate a list file for each specified
input file. A list file shows the generated object code and the relative addresses. Note that the assembler
generates a relocatable object file with relative addresses.

With the optional file you can specify a name for the list file. This is only possible if you specify only one
input file to the control program. If you do not specify a file name, or you specify more than one input file,
the control program names the generated list file(s) after the specified input file(s) with extension . Ist.
Note that object files and library files are not counted as input files.

Related information

Assembler option --list-file (Generate list file)

Assembler option --list-format (Format list file)

399

TASKING VX-toolset for PCP User Guide

Control program option: --Isl-file (-d)

Menu entry

An LSL file can be generated when you create your TriCore project in Eclipse:

1. From the File menu, select File » New » TASKING VX-toolset for TriCore C/C++ Project.
The New C/C++ Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the TriCore Project Settings appear.

3. Enable the option Add Linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.

The LSL file can be specified in the Properties dialog:

1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field.

Command line syntax

--Isl-file=file,...

-dfile,...

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
» the memory definition describes the physical memory available in the system.
« the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file via the control program to the linker. If you do not specify
this option, the linker uses a default script file. You can specify the existing file target. sl or the name
of a manually written linker script file. You can use this option multiple times. The linker processes the
LSL files in the order in which they appear on the command line.

Related information

Section 5.7, Controlling the Linker with a Script

400

Tool Options

Control program option: --make-target

Menu entry

Command line syntax

- - make-t ar get =nane

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension .o.

Example

ccpcp --preprocess=+make --make-target=../mytarget.o test.c

The compiler generates dependency lines with the default target name . ./mytarget.o instead of
test.o.

Related information
Control program option --preprocess=+make (Generate dependencies for make)

Control program option --dep-file (Generate dependencies in a file)

401

TASKING VX-toolset for PCP User Guide

Control program option: --mil-link / --mil-split
Menu entry

1. Select Global Options.

2. Enable the option Link the MIL representation of all modules.
Command line syntax

—-mil-link
~-mil-split[=file,...]

Description

With option --mil-link the C compiler links the optimized intermediate representation (MIL) of all input
files and MIL libraries specified on the command line in the compiler. The result is one single module that
is optimized another time.

Option --mil-split does the same as option --mil-link, but in addition, the resulting MIL representation is
written to a file with the suffix .mi 1l and the C compiler also splits the MIL representation and writes it to
separate files with suffix .ms. One file is written for each input file or MIL library specified on the command
line. The _ms files are only updated on a change.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time.

Optionally, you can specify another filename for the .ms file the C compiler generates. Without an
argument, the basename of the C source file is used to create the .ms filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Related information

Section 3.1, Compilation Process

C compiler option --mil / --mil-split

402

Tool Options

Control program option: --no-default-libraries

Menu entry

1. Select Linker » Libraries.

2. Disable the option Link default libraries.
Command line syntax

--no-default-libraries
Description

By default the control program specifies the standard C libraries (C99) and run-time library to the linker.
With this option you tell the control program not to specify the standard C libraries and run-time library to
the linker.

In this case you must specify the libraries you want to link to the linker with the option --library=library_name

or pass the libraries as files on the command line. The control program recognizes the option --library
(-) as an option for the linker and passes it as such.

Example
ccpcp --no-default-libraries test.c

The control program does not specify any libraries to the linker. In normal cases this would result in
unresolved externals.

To specify your own libraries (1 ibc.a) and avoid unresolved externals:
ccpcp --no-default-libraries --library=c test.c
Related information

Control program option --library (Link system library)

Section 5.3.1, How the Linker Searches Libraries

403

TASKING VX-toolset for PCP User Guide

Control program option: --no-map-file

Menu entry

1. Select Linker » Map File.

2. Disable the option Generate map file.

Command line syntax

--no-map-file

Description

By default the control program tells the linker to generate a linker map file.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. 0) to the linked object file. A locate part shows the absolute position of each section.
External symbols are listed per space with their absolute address, both sorted on symbol and sorted on
address.

With this option you prevent the generation of a map file.

Related information

404

Control program option: --no-tasking-sfr

Menu entry
1. Select C Compiler » Preprocessing.
2. Disable the option Automatic inclusion of *.sfr" file.

3. Select Assembler » Preprocessing.

4. Disable the option Automatic inclusion of ".def" file.

Command line syntax
- - no-tasking-sfr

Description

Tool Options

Normally, the C compiler and assembler includes a special function register (SFR) file before
compiling/assembling. The compiler and assembler automatically select the SFR file belonging to the

target you selected on the Processor page (control program option --cpu).

With this option the compiler and assembler do not include the register file regcpu.sfr as based on the

selected target processor.

Use this option if you want to use your own set of SFR files.

Related information
Control program option --cpu (Select processor)

Section 1.2.4, Accessing Hardware from C

405

TASKING VX-toolset for PCP User Guide

Control program option: --no-warnings (-w)
Menu entry
1. Select C Compiler » Diagnostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537,538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a humber from the list.

Command line syntax

- -no-war ni ngs[=nunmber [-nunber],...]
-w[nunber [-nunber], .. .]

Description

With this option you can suppresses all warning messages for the various tools or specific control program
warning messages.

On the command line this option works as follows:
« If you do not specify this option, all warnings are reported.
* If you specify this option but without numbers, all warnings of all tools are suppressed.

« If you specify this option with a number or a range, only the specified control program warnings are
suppressed. You can specify the option --no-warnings=number multiple times.

Example

To suppress all warnings for all tools, enter:
ccpcp test.c --no-warnings
Related information

Control program option --warnings-as-errors (Treat warnings as errors)

406

Tool Options

Control program option: --option-file (-f)

Menu entry

Command line syntax

--option-file=file,...

-f file,...

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the control program.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

Multiple arguments on one line in the option file are allowed.
To include whitespace in an argument, surround the argument with single or double quotes.

If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"

"This has a double quote " embedded”

"This has a double quote " and a single quote """ embedded"

When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

“This 1Is a continuation \
line"

-> "This is a continuation line"

It is possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

407

TASKING VX-toolset for PCP User Guide

--debug-info

--define=DEMO=1

test.c

Specify the option file to the control program:
ccpcp --option-file=myoptions

This is equivalent to the following command line:

ccpcp --debug-info --define=DEMO=1 test.c

Related information

408

Tool Options

Control program option: --output (-0)

Menu entry

Eclipse always uses the project name as the basename for the output file.
Command line syntax

--output=file

-o file

Description

By default, the control program generates a file with the same basename as the first specified input file.
With this option you specify another name for the resulting absolute object file.

The default output format is ELF/DWARF, but you can specify another output format with option --format.
Example

ccpep test.c prog.-c

The control program generates an ELF/DWARF object file (default) with the name test.elf.

To generate the file result_elT:

ccpcp --output=result.elf test.c prog.c

Related information

Control program option --format (Set linker output format)

Linker option --output (Output file)

Linker option --chip-output (Generate an output file for each chip)

409

TASKING VX-toolset for PCP User Guide

Control program option: --pass (-W)
Menu entry
1. Select C Compiler » Miscellaneous or Assembler » Miscellaneous or Linker » Miscellaneous.
2. Add an option to the Additional options field.
Be aware that the options in the option file are added to the options you have set in the other pages.
Only in extraordinary cases you may want to use them in combination. The assembler options are

preceded by -Wa and the linker options are preceded by -WI. For the C options you have to do this
manually.

Command line syntax

--pass-assembler=option -Waoption Pass option directly to the assembler

--pass-c=option -Wcoption Pass option directly to the C compiler

--pass-linker=option -Wloption Pass option directly to the linker
Description

With this option you tell the control program to call a tool with the specified option. The control program
does not use or interpret the option itself, but specifies it directly to the tool which it calls.

Example
To pass the option --verbose directly to the linker, enter:

ccpcp --pass-linker=--verbose test.c

Related information

410

Tool Options

Control program option: --preprocess (-E) / --no-preprocessing-only
Menu entry

1. Select C Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.

4. (Optional) Enable the option Keep #line info in preprocessor output.

Command line syntax

--preprocess[=fl ags]

-E[fl ags]

- - no- preprocessi ng-only

You can set the following flags:

+/-comments c/C keep comments

+/-includes i/l generate a list of included source files
+/-list L generate a list of macro definitions
+/-make m/M generate dependencies for make
+/-noline p/P strip #line source position information

Default; - ECI LMP

Description

With this option you tell the compiler to preprocess the C source. The C compiler sends the preprocessed
output to the file name . pre (where name is the name of the C source file to compile). Eclipse also
compiles the C source.

On the command line, the control program stops after preprocessing. If you also want to compile the C
source you can specify the option --no-preprocessing-only. In this case the control program calls the
compiler twice, once with option --preprocess and once for a regular compilation.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files. The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions. The preprocessor output
is discarded.

411

TASKING VX-toolset for PCP User Guide

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The information is written to a file with extension .d. The preprocessor output is discarded. The default
target name is the basename of the input file, with the extension . o. With the option --make-target you
can specify a target name which overrules the default target name.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #1 ine). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

ccpep --preprocess=+comments,-make,-noline --no-preprocessing-only test.c

The compiler preprocesses the file test.c and sends the output to the file test.pre. Comments are
included but no dependencies are generated and the line source position information is not stripped from
the output file. Next, the control program calls the compiler, assembler and linker to create the final object
file test.elf

Related information

Control program option --dep-file (Generate dependencies in a file)

Control program option --make-target (Specify target name for -Em output)

412

Tool Options

Control program option: --silicon-bug

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor Selection list, select a processor.

The CPU Problem Bypasses and Checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.
4. Click Select All or select one or more individual options.
Command line syntax

--silicon-bug=arg,...

For a list of available arguments refer to the description of option --silicon-bug of the compiler and
assembler. Depending on the available arguments this option is passed to the compiler and/or assembler.

Description

With this option the control program tells the compiler/assembler to use software workarounds for some
CPU functional problems. Please refer to Chapter 13, CPU Problem Bypasses and Checks for more
information about the individual problems and workarounds.

Example

To enable workarounds for problem PCP_TC.038, enter:

cctc --silicon-bug=pcp-tc038 test.c

Related information

Chapter 13, CPU Problem Bypasses and Checks

C compiler option --silicon-bug

Assembler option --silicon-bug

413

TASKING VX-toolset for PCP User Guide

Control program option: --static

Menu entry

Command line syntax

--static

Description

This option is directly passed to the compiler.

With this option, the compiler treats external definitions at file scope (except for main) as if they were
declared static. As a result, unused functions will be eliminated, and the alias checking algorithm
assumes that objects with static storage cannot be referenced from functions outside the current module.

This option only makes sense when you specify all modules of an application on the command line.
Example
ccpcp --static modulel.c module2.c module3.c ...

Related information

414

Control program option: --uchar (-u)

Menu entry

1. Select C Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.

Command line syntax
- -uchar
-u

Description

Tool Options

By default char is the same as specifying signed char.With this option char is the same as unsigned

char.
Related information

Section 1.1, Data Types

415

TASKING VX-toolset for PCP User Guide

Control program option: --undefine (-U)

Menu entry
1. Select C Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
--undefi ne=nmacr o_nane
- Uracr o_nane
Description

With this option you can undefine an earlier defined macro as with #undef¥. This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE current source filename

__LINE__ current source line number (int type)
__TIME__ hh:mm:ss

__ DATE___ Mmm dd yyyy

__STDC__ level of ANSI standard

The control program passes the option --undefine (-U) to the compiler.
Example

To undefine the predefined macro __ TASKING__:

ccpcp --undefine=__ TASKING__ test.c

Related information

Control program option --define (Define preprocessor macro)

Section 1.6, Predefined Preprocessor Macros

416

Tool Options

Control program option: --verbose (-v)
Menu entry

1. Select Global Options.

2. Enable the option Verbose mode of control program.
Command line syntax

--verbose

-v

Description

With this option you put the control program in verbose mode. The control program performs it tasks while
it prints the steps it performs to stdout.

Related information

Control program option --dry-run (Verbose output and suppress execution)

417

TASKING VX-toolset for PCP User Guide

Control program option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The control program ignores all other options or input files.

Related information

418

Tool Options

Control program option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.
Command line syntax

- -war ni ngs- as- errors[=nunber [-nunber],...]

Description

If one of the tools encounters an error, it stops processing the file(s). With this option you tell the tools to
treat warnings as errors or treat specific control program warning messages as errors:

« If you specify this option but without numbers, all warnings are treated as errors.

« If you specify this option with a number or a range, only the specified control program warnings are
treated as an error. You can specify the option --warnings-as-errors=number multiple times.

Use one of the --pass-tool options to pass this option directly to a tool when a specific warning for that
tool must be treated as an error. For example, use --pass-c=--warnings-as-errors=number to treat a
specific C compiler warning as an error.

Related information

Control program option --no-warnings (Suppress some or all warnings)

Control program option --pass (Pass option to tool)

419

TASKING VX-toolset for PCP User Guide

8.5. Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility mkpcp to
build all your files. However, you can also use the make utility directly from the command line to build
your project.

The invocation syntax is:
nkpcp [option...] [target...] [macro=def]

This section describes all options for the make utility. The make utility is a command line tool so there
are no equivalent options in Eclipse.

For detailed information about the make utility and using makefiles see Section 6.2, Make Utility mkpcp.

420

Tool Options

Defining Macros

Command line syntax

macr o_nane[=nacr o_defini tion]

Description

With this argument you can define a macro and specify it to the make utility.

A macro definition remains in existence during the execution of the makefile, even when the makefile
recursively calls the make utility again. In the recursive call, the macro acts as an environment variable.
This means that it is overruled by definitions in the recursive call. Use the option -e to prevent this.

You can specify as many macros as you like. If the command line exceeds the limit of the operating
system, you can define the macros in an option file which you then must specify to the make utility with
the option -m) file.

Defining macros on the command line is, for example, useful in combination with conditional processing
as shown in the example below.

Example
Consider the following makefile with conditional rules to build a demo program and a real program:

i fdef DEMO # the value of DEMO is of no importance
real .elf : demo.o main.o
Ipcp demo.o main.o -Ic -Ifp
el se
real .elf : real.o main.o
Ipcp real.o main.o -Ic -Ifp
endi f

You can now use a macro definition to set the DEMO flag:
mkpcp real.elf DEMO=1

In both cases the absolute object file real .el T is created but depending on the DEMO flag it is linked
with demo . o or with real .o.

Related information

Make utility option -e (Environment variables override macro definitions)

Make utility option -m (Name of invocation file)

421

TASKING VX-toolset for PCP User Guide

Make utility option: -?

Command line syntax

-?

Description

Displays an overview of all command line options.

Example
The following invocation displays a list of the available command line options:
mkpcp -?

Related information

422

Tool Options

Make utility option: -a
Command line syntax
-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example
mkpcp -a
Rebuilds all your files, regardless of whether they are out of date or not.

Related information

423

TASKING VX-toolset for PCP User Guide

Make utility option: -c

Command line syntax

-C

Description

Eclipse uses this option when you create sub-projects. In this case the make utility calls another instance
of the make utility for the sub-project. With the option -c, the make utility runs as a child process of the
current make.

The option -c overrules the option -err.

Example

mkpcp -c

The make utility runs its commands as a child processes.

Related information

Make utility option -err (Redirect error message to file)

424

Tool Options

Make utility option: -D / -DD
Command line syntax

-D
- DD

Description

With the option -D the make utility prints every line of the makefile to standard output as it is read by
mkpcp.

With the option -DD not only the lines of the makefile are printed but also the lines of the mkpcp - mk file
(implicit rules).

Example
mkpcp -D
Each line of the makefile that is read by the make utility is printed to standard output (usually your screen).

Related information

425

TASKING VX-toolset for PCP User Guide

Make utility option: -d/ -dd
Command line syntax

-d
- dd

Description

With the option -d the make utility shows which files are out of date and thus need to be rebuild. The
option -dd gives more detail than the option -d.

Example
mkpcp -d
Shows which files are out of date and rebuilds them.

Related information

426

Tool Options

Make utility option: -e
Command line syntax
-e

Description

If you use macro definitions, they may overrule the settings of the environment variables. With the option
-e, the settings of the environment variables are used even if macros define otherwise.

Example
mkpcp -e
The make utility uses the settings of the environment variables regardless of macro definitions.

Related information

427

TASKING VX-toolset for PCP User Guide

Make utility option: -err
Command line syntax
-err file

Description

With this option the make utility redirects error messages and verbose messages to a specified file.
With the option -s the make utility only displays error messages.

Example

mkpcp -err error.txt

The make utility writes messages to the file error . txt.

Related information

Make utility option -s (Do not print commands before execution)

Make utility option -¢ (Run as child process)

428

Tool Options

Make utility option: -f
Command line syntax
-f my_nmakefile
Description

By default the make utility uses the file makefi le to build your files.

With this option you tell the make utility to use the specified file instead of the file makefi le. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from stdin.
Example

mkpcp -f mymake

The make utility uses the file mymake to build your files.

Related information

429

TASKING VX-toolset for PCP User Guide

Make utility option: -G

Command line syntax

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.
With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

Example

Suppose your makefile and other files are stored in the directory . .\myfi les. You can call the make
utility, for example, as follows:

mkpcp -G ..\myFfiles

Related information

430

Tool Options

Make utility option: -i
Command line syntax
-

Description

When an error occurs during the make process, the make utility exits with a certain exit code.
With the option -i, the make utility exits without an error code, even when errors occurred.
Example

mkpcp -1

The make utility exits without an error code, even when an error occurs.

Related information

431

TASKING VX-toolset for PCP User Guide

Make utility option: -K

Command line syntax

-K

Description

With this option the make utility keeps temporary files it creates during the make process. The make utility
stores temporary files in the directory that you have specified with the environment variable TMPDIR or
in the default 'temp' directory of your system when the TMPDIR environment variable is not specified.
Example

mkpcp -K

The make utility preserves all temporary files.

Related information

432

Tool Options

Make utility option: -k
Command line syntax
-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example
mkpcp -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

Make utility option -S (Undo the effect of -k)

433

TASKING VX-toolset for PCP User Guide

Make utility option: -m

Command line syntax

-mfile

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the make utility.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option -m multiple times.

If you use '-' instead of a filename it means that the options are read from stdin.

Format of an option file

Multiple arguments on one line in the option file are allowed.
To include whitespace in an argument, surround the argument with single or double quotes.

If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote " embedded"
"This has a double quote ' embedded*

"This has a double quote and a single quote """ embedded"
Note that adjacent strings are concatenated.

When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This is a continuation line"

* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myoptions contains the following lines:

-k
-err errors.txt
test.elf

434

Specify the option file to the make utility:

mkpcp -m myoptions

This is equivalent to the following command line:

mkpcp -k -err errors.txt test.elf

Related information

Tool Options

435

TASKING VX-toolset for PCP User Guide

Make utility option: -n
Command line syntax
-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.
Example

mkpcp -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.
Related information

Make utility option -s (Do not print commands before execution)

436

Tool Options

Make utility option: -p

Command line syntax

-p

Description

Normally, if a command in a target rule in a makefile returns an error or when the target construction is
interrupted, the make utility removes that target file. With this option you tell the make utility to make all
target files precious. This means that all dependency files are never removed.

Example

mkpcp -p

The make utility never removes target dependency files.

Related information

Special target .PRECIOUS in Section 6.2.2.1, Targets and Dependencies

437

TASKING VX-toolset for PCP User Guide

Make utility option: -q

Command line syntax

-q

Description

With this option the make utility does not perform any tasks but only returns an exit code. A zero status
indicates that all target files are up to date, a non-zero status indicates that some or all target files are
out of date.

Example

mkpcp -q

The make utility only returns an error code that indicates whether all target files are up to date or not. It
does not rebuild any files.

Related information

438

Tool Options

Make utility option: -r
Command line syntax
-r

Description

When you call the make utility, it first reads the implicit rules from the file mkpcp - mk, then it reads the
makefile with the rules to build your files. (The file mkpcp -mk is located in the \etc directory of the
toolset.)

With this option you tell the make utility not to read mkpcp -mk and to rely fully on the make rules in the
makefile.

Example
mkpcp -r
The make utility does not read the implicit make rules in mkpcp . mk.

Related information

439

TASKING VX-toolset for PCP User Guide

Make utility option: -S

Command line syntax

-S

Description

With this option you cancel the effect of the option -k. This is only necessary in a recursive make where
the option -k might be inherited from the top-level make via MAKEFLAGS or if you set the option -k in

the environment variable MAKEFLAGS.

With this option you tell the make utility not to read mkpcp . mk and to rely fully on the make rules in the
makefile.

Example
mkpcp -S

The effect of the option -k is cancelled so the make utility stops with the make process after it encounters
an error.

The option -k in this example may have been set with the environment variable MAKEFLAGS or in a
recursive call to mkpcp in the makefile.

Related information

Make utility option -k (On error, abandon the work for the current target only)

440

Tool Options

Make utility option: -s
Command line syntax
-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

mkpcp -s

The make utility rebuilds your files but does not print the commands it executes during the make process.
Related information

Make utility option -n (Perform a dry run)

441

TASKING VX-toolset for PCP User Guide

Make utility option: -t
Command line syntax
-t

Description

With this option you tell the make utility to touch the target files, bringing them up to date, rather than
performing the rules to rebuild them.

Example
mkpcp -t

The make utility updates out-of-date files by giving them a new date and time stamp. The files are not
actually rebuild.

Related information

442

Tool Options

Make utility option: -time

Command line syntax

-time

Description

With this option you tell the make utility to display the current date and time on standard output.
Example

mkpcp -time

The make utility displays the current date and time and updates out-of-date files.

Related information

443

TASKING VX-toolset for PCP User Guide

Make utility option: -V

Command line syntax

-V

Description

Display version information. The make utility ignores all other options or input files.
Example

mkpcp -V

The make utility displays the version information but does not perform any tasks.

TASKING VX-toolset for PCP: program builder wvx.yrz Build nnn
Copyright 2006-year Altium BV Serial# 00000000

Related information

444

Tool Options

Make utility option: -W
Command line syntax
-Wtar get

Description

With this option the make utility considers the specified target file always as up to date and will not rebuild
it.

Example
mkpcp -W test.elf

The make utility rebuilds out of date targets in the makefile except the file test.el T which is considered
now as up to date.

Related information

445

TASKING VX-toolset for PCP User Guide

Make utility option: -w
Command line syntax
-wW

Description

With this option the make utility sends error messages and verbose messages to standard output. Without
this option, the make utility sends these messages to standard error.

This option is only useful on UNIX systems.

Example
mkpcp -w
The make utility sends messages to standard out instead of standard error.

Related information

446

Tool Options

Make utility option: -x
Command line syntax

- X

Description

With this option the make utility shows extended error messages. Extended error messages give more
detailed information about the exit status of the make utility after errors.

Example
mkpcp -X
If errors occur, the make utility gives extended information.

Related information

447

TASKING VX-toolset for PCP User Guide

8.6. Parallel Make Utility Options

When you build a project in Eclipse, Eclipse generates a makefile and uses the make utility amk to build
all your files. However, you can also use the make utility directly from the command line to build your
project.

The invocation syntax is:
ank [option...] [target...] [macro=def]
This section describes all options for the parallel make utility.

For detailed information about the parallel make utility and using makefiles see Section 6.3, Make Utility
amk.

448

Tool Options

Parallel make utility option: -?
Command line syntax

-?

Description

Displays an overview of all command line options.

Example
The following invocation displays a list of the available command line options:

amk -?

Related information

449

TASKING VX-toolset for PCP User Guide

Parallel make utility option: -a
Command line syntax

-a

Description

Normally the make utility rebuilds only those files that are out of date. With this option you tell the make
utility to rebuild all files, without checking whether they are out of date.

Example
amk -a
Rebuilds all your files, regardless of whether they are out of date or not.

Related information

450

Tool Options

Parallel make utility option: -f
Command line syntax

-f my_nmakefile

Description

By default the make utility uses the file makefi le to build your files.

With this option you tell the make utility to use the specified file instead of the file makefi le. Multiple -f
options act as if all the makefiles were concatenated in a left-to-right order.

If you use '-' instead of a makefile name it means that the information is read from stdin.
Example
amk - mymake

The make utility uses the file mymake to build your files.

Related information

451

TASKING VX-toolset for PCP User Guide

Parallel make utility option: -G

Command line syntax

-G path

Description

Normally you must call the make utility from the directory where your makefile and other files are stored.

With the option -G you can call the make utility from within another directory. The path is the path to the
directory where your makefile and other files are stored and can be absolute or relative to your current
directory.

The macro SUBDIR is defined with the value of path.
Example

Suppose your makefile and other files are stored in the directory . .\myfi les. You can call the make
utility, for example, as follows:

amk -G ..\myFiles

Related information

452

Tool Options

Parallel make utility option: -j / -J

Menu
1. From the Project menu, select Properties
The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.
In the right pane the C/C++ Build page appears.
3. Onthe Behaviour tab, select Use parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

Command line syntax
-j [nunber]

-J[nunber]
Description

When these options you can limit the number of parallel jobs. The default is 1. Zero means no limit. When
you omit the number, amk uses the number of cores detected.

Option -J is the same as -j, except that the number of parallel jobs is limited by the number of cores
detected.

Example
amk -j3
Limit the number of parallel jobs to 3.

Related information

453

TASKING VX-toolset for PCP User Guide

Parallel make utility option: -k

Command line syntax

-k

Description

When during the make process the make utility encounters an error, it stops rebuilding your files.

With the option -k, the make utility only stops building the target that produced the error. All other targets
defined in the makefile are built.

Example
amk -k

If the make utility encounters an error, it stops building the current target but proceeds with the other
targets that are defined in the makefile.

Related information

454

Tool Options

Parallel make utility option: -n
Command line syntax

-n

Description

With this option you tell the make utility to perform a dry run. The make utility shows what it would do but
does not actually perform these tasks.

This option is for example useful to quickly inspect what would happen if you call the make utility.
Example

amk -n

The make utility does not perform any tasks but displays what it would do if called without the option -n.
Related information

Parallel make utility option -s (Do not print commands before execution)

455

TASKING VX-toolset for PCP User Guide

Parallel make utility option: -s
Command line syntax

-s

Description

With this option you tell the make utility to perform its tasks without printing the commands it executes.
Error messages are normally printed.

Example

amk -s

The make utility rebuilds your files but does not print the commands it executes during the make process.
Related information

Parallel make utility option -n (Perform a dry run)

456

Tool Options

Parallel make utility option: -V

Command line syntax

-V

Description

Display version information. The make utility ignores all other options or input files.

Related information

457

TASKING VX-toolset for PCP User Guide

8.7. Archiver Options

The archiver and library maintainer arpcp is a tool to build library files and it offers the possibility to
replace, extract and remove modules from an existing library.

The invocation syntax is:
arpcp key_option [sub_option...] library [object_file]

This section describes all options for the archiver. Some suboptions can only be used in combination with
certain key options. They are described together. Suboptions that can always be used are described
separately.

For detailed information about the archiver, see Section 6.4, Archiver.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option

names as long as it forms a unique name. You can mix short and long option names on the command
line.

Overview of the options of the archiver utility

The following archiver options are available:

Description ‘Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-u-v
Extract an object module from the library -X -0 -v
Delete object module from library -d -V

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0 -s1
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Create library without notification if library does not exist -C

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -V

Miscellaneous

458

Tool Options

Description Option Sub-option
Display options -?

Display version header -V

Read options from file -f file

Suppress warnings above level n -wn

459

TASKING VX-toolset for PCP User Guide

Archiver option: --delete (-d)

Command line syntax
--del ete [--verbose]
-d [-v]

Description

Delete the specified object modules from a library. With the suboption --verbose (-v) the archiver shows
which files are removed.

--verbose -v Verbose: the archiver shows which files are removed.
Example
arpcp --delete mylib.a objl.o0 obj2.0
The archiver deletes obj1.0 and obj2 .o from the library mylib.a.
arpcp -d -v mylib.a objl.o0 obj2.0
The archiver deletes obj1.0 and obj2 .o from the library mylib_a and displays which files are removed.

Related information

460

Tool Options

Archiver option: --dump (-p)

Command line syntax

--dunp

-p

Description

Print the specified object module(s) in the library to standard output.

This option is only useful when you redirect or pipe the output to other files or tools that serve your own
purposes. Normally you do not need this option.

Example
arpcp --dump mylib.a objl.o > file.o

The archiver prints the file obj 1. o to standard output where it is redirected to the file Fi le.o. The effect
of this example is very similar to extracting a file from the library but in this case the 'extracted' file gets
another name.

Related information

461

TASKING VX-toolset for PCP User Guide

Archiver option: --extract (-x)
Command line syntax
--extract [--nodtinme] [--verbose]
-x [-o] [-v]
Description
Extract an existing module from the library.
--modtime -0 Give the extracted object module the same date as the last-modified

date that was recorded in the library. Without this suboption it
receives the last-modified date of the moment it is extracted.

--verbose -V Verbose: the archiver shows which files are extracted.

Example

To extract the file obj 1.0 from the library mylib.a:

arpcp --extract mylib.a objl.o

If you do not specify an object module, all object modules are extracted:
arpcp -x mylib.a

Related information

462

Tool Options

Archiver option: --help (-?)

Command line syntax

--hel p[=item]

-2

You can specify the following argument:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
arpcp -?

arpcp --help

arpcp

To see a detailed description of the available options, enter:

arpcp --help=options

Related information

463

TASKING VX-toolset for PCP User Guide

Archiver option: --move (-m)

Command line syntax

--nove [-a posnane] [-b posnane]

-m [-a posnane] [-b posnane]

Description

Move the specified object modules to another position in the library.

The ordering of members in a library can make a difference in how programs are linked if a symbol is
defined in more than one member.

By default, the specified members are moved to the end of the archive. Use the suboptions -a or -b to
move them to a specified place instead.

--after=posname -a Move the specified object module(s) after the existing module
posname poshame.

--before=posname -b Move the specified object module(s) before the existing
posname module poshame.

Example

Suppose the library mylib.a contains the following objects (see option --print):
objl.o

obj2.0

obj3.0

To move objl.0to the end of mylib.a:

arpcp --move mylib.a objl.o

To move obj3.0 just before obj2.o:

arpcp -m -b obj3.0 mylib.a obj2.0

The library mylib.a after these two invocations now looks like:
obj3.0

obj2.0

objl.o

Related information

Archiver option --print (-t) (Print library contents)

464

Tool Options

Archiver option: --option-file (-f)
Command line syntax
--option-file=file

-f file

Description

Instead of typing all options on the command line, you can create an option file which contains all options
and flags you want to specify. With this option you specify the option file to the archiver.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file (-f) multiple times.

If you use '-' instead of a filename it means that the options are read from stdin.

Format of an option file

» Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote * embedded"
"This has a double quote " embedded*

"This has a double quote and a single quote """ embedded"

» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
line"

-> "This 1s a continuation line

* Itis possible to nest command line files up to 25 levels.
Example

Suppose the file myoptions contains the following lines:

-x mylib.a objl.0
-w5

465

TASKING VX-toolset for PCP User Guide

Specify the option file to the archiver:

arpcp --option-file=myoptions

This is equivalent to the following command line:
arpcp -x mylib.a objl.o0 -w5

Related information

466

Tool Options

Archiver option: --print (-t)
Command line syntax
--print [--synbol s=0]1]

-t [-sO]-s1]

Description

Print a table of contents of the library to standard output. With the suboption -s0 the archiver displays all
symbols per object file.

--symbols=0 -s0 Displays per object the name of the object itself and all symbols in
the object.
--symbols=1 -sl Displays the symbols of all object files in the library in the form

library_name:object_name:symbol_name

Example

arpcp --print mylib.a

The archiver prints a list of all object modules in the library mylib.a:
arpcp -t -s0 mylib.a

The archiver prints per object all symbols in the library. For example:

cstart.o
symbols:
_PCP__context_8
_PCP___cstart
_PCP_channel_2
printf.o
symbols:
_PCP__data__printf
_PCP_printf

Related information

467

TASKING VX-toolset for PCP User Guide

Archiver option: --replace (-r)

Command line syntax

--replace [--after=posnane] [--before=posnane][--create] [--newer-only] [--verbose]
-r [-a posnane] [-b posname][-c] [-u]l [-Vv]

Description

You can use the option --replace (-r) for several purposes:

» Adding new objects to the library

» Replacing objects in the library with the same object of a newer date

» Creating a new library

The option --replace (-r) normally adds a new module to the library. However, if the library already contains
a module with the specified name, the existing module is replaced. If you specify a library that does not
exist, the archiver creates a new library with the specified name.

If you add a module to the library without specifying the suboption -a or -b, the specified module is added
at the end of the archive. Use the suboptions -a or -b to insert them after/before a specified place instead.

--after=posname -a Insert the specified object module(s) after the existing module
posname poshame.

--before=posname -b Insert the specified object module(s) before the existing
posname module posname.

--Create -C Create a new library without checking whether it already
exists. If the library already exists, it is overwritten.

--newer-only -u Insert the specified object module only if it is newer than the
module in the library.

--verbose -v Verbose: the archiver shows which files are replaced.
The suboptions -a or -b have no effect when an object is added to the library.
Example
Suppose the library mylib.a contains the following object (see option --print):
objl.o
To add obj2.o0 to the end of mylib.a:
arpcp --replace mylib.a obj2.0
To insert obj 3.0 just before obj2.o:

arpcp -r -b obj2.o mylib.a obj3.0

468

Tool Options

The library my 1ib.a after these two invocations now looks like:

objl.o

obj3.0

obj2.0

Creating a new library

To create a new library file, add an object file and specify a library that does not yet exist:
arpcp --replace objl.o newlib.a

The archiver creates the library newl ib.a and adds the object obj1.0 toit.

To create a new library file and overwrite an existing library, add an object file and specify an existing
library with the supoption -c:

arpcp -r -c objl.o mylib.a

The archiver overwrites the library mylib.a and adds the object obj1.0 to it. The new library mylib.a
only contains obj1.o0.

Related information

Archiver option --print (-t) (Print library contents)

469

TASKING VX-toolset for PCP User Guide

Archiver option: --version (-V)

Command line syntax

--version

-V

Description

Display version information. The archiver ignores all other options or input files.
Example

arpcp -V

The archiver displays the version information but does not perform any tasks.

TASKING VX-toolset for PCP: ELF archiver wvx.yrz Build nnn
Copyright 2006-year Altium BV Serial# 00000000

Related information

470

Tool Options

Archiver option: --warning (-w)

Command line syntax
- -war ni ng=l evel

-w evel

Description

With this suboption you tell the archiver to suppress all warnings above the specified level. The level is
a number between O - 9.

The level of a message is printed between parentheses after the warning number. If you do not use the
-w option, the default warning level is 8.

Example

To suppress warnings above level 5:

arpcp --extract --warning=5 mylib.a objl.o

Related information

471

TASKING VX-toolset for PCP User Guide

472

Chapter 9. Libraries

This chapter contains an overview of all library functions that you can call in your C source. This includes
all functions of the standard C library (ISO C99) and some functions of the floating-point library.

Section 9.1, Library Functions, gives an overview of all library functions you can use, grouped per header
file. A number of functions declared in wchar . h are parallel to functions in other header files. These are
discussed together.

Section 9.2, C Library Reentrancy, gives an overview of which functions are reentrant and which are not.

The following libraries are included in the PCP toolset. Both Eclipse and the control program ccpcp
automatically select the appropriate libraries depending on the specified options.

C library
Libraries Description
libc[f].a C libraries
Optional letter:
f = library compiled for __far memory
libfp[tf].a Floating-point libraries
Optional letter:
t = trapping (control program option --fp-trap)
f = library compiled for __far memory

9.1. Library Functions

The tables in the sections below list all library functions, grouped per header file in which they are declared.
Some functions are not completely implemented because their implementation depends on the context
where your application will run. These functions are for example all /O related functions. Where possible,
these functions are implemented using file system simulation (FSS). This system can be used by the
debugger to simulate an 1/0 environment which enables you to debug your application.

9.1.1. assert.h
assert(expr) Prints a diagnostic message if NDEBUG is not defined. (Implemented as macro)

9.1.2. complex.h

The complex number z is also written as x+yi where x (the real part) and y (the imaginary part) are real
numbers of types fFloat, double or long double. The real and imaginary part can be stored in structs
or in arrays. This implementation uses arrays because structs may have different alignments.

The header file complex. h also defines the following macros for backward compatibility:

473

TASKING VX-toolset for PCP User Guide

complex _Complex /* C99 keyword */
imaginary _Imaginary /* C99 keyword */

Parallel sets of functions are defined for double, float and long double. They are respectively named
function, functionf, functionl. All long type functions, though declared in complex.h, are implemented
as the doubl e type variant which nearly always meets the requirement in embedded applications.

This implementation uses the obvious implementation for complex multiplication; and a more sophisticated
implementation for division and absolute value calculations which handles underflow, overflow and infinities
with more care. The ISO C99 #pragma CX_LIMITED_RANGE therefore has no effect.

Trigonometric functions

csin csinf csinl Returns the complex sine of z.

ccos ccosf ccosl Returns the complex cosine of z.

ctan ctanf ctanl Returns the complex tangent of z.

casin casinf casinl Returns the complex arc sine sin'l(z).
cacos cacosf cacosl Returns the complex arc cosine cos'l(z).
catan catanf catanl Returns the complex arc tangent tan'l(z).
csinh csinhf csinhl Returns the complex hyperbolic sine of z.
ccosh ccoshf ccoshl Returns the complex hyperbolic cosine of z.
ctanh ctanhf ctanhl Returns the complex hyperbolic tangent of z.

casinh casinhf casinhl Returnsthe complex arc hyperbolic sinus of z.
cacosh cacoshf cacoshl Returnsthe complex arc hyperbolic cosine of z.
catanh catanhf catanhl Returns the complex arc hyperbolic tangent of z.

Exponential and logarithmic functions

cexp cexpf cexpl Returns the result of the complex exponential function e”.
clog clogf clogl Returns the complex natural logarithm.

Power and absolute-value functions

cabs cabsf cabsl Returns the complex absolute value of z (also known as norm,
modulus or magnitude).

cpow cpowf cpowl Returns the complex value of x raised to the power y (x’) where
both x and y are complex humbers.

csqgrt csqrtf csqrtl Returns the complex square root of z.
Manipulation functions

carg cargf cargl Returns the argument of z (also known as phase angle).

cimag cimagf cimagl Returns the imaginary part of z as a real (respectively as adouble,
float, long double)

474

Libraries

conj conjf conjl Returns the complex conjugate value (the sign of its imaginary part
is reversed).

cproj cprojf cprojl Returns the value of the projection of z onto the Riemann sphere.

creal crealf creall Returns the real part of z as a real (respectively as a double,

float, long double)

9.1.3. cstart.h

The header file cstart. h controls the system startup code's general settings and register initializations.
It contains defines only, no functions.

9.1.4. ctype.h and wctype.h

The header file ctype - h declares the following functions which take a character ¢ as an integer type
argument. The header file wctype . h declares parallel wide-character functions which take a character
c of the wchar_t type as argument.

ctype.h wctype.h Description

isalnum iswalnum Returns a non-zero value when c is an alphabetic character or a
number ([A-Z][a-z][0-9]).

isalpha iswalpha Returns a non-zero value when c is an alphabetic character
([A-Z][a-z)).

isblank iswblank Returns a non-zero value when c is a blank character (tab, space...)

iscntrl iswentrl Returns a non-zero value when c is a control character.

isdigit iswditit Returns a non-zero value when c is a numeric character ([0-9]).

isgraph iswgraph Returns a non-zero value when c is printable, but not a space.

islower iswlower Returns a non-zero value when c is a lowercase character ([a-z]).

isprint iswprint Returns a non-zero value when c is printable, including spaces.

ispunct iswpunct Returns a non-zero value when c is a punctuation character (such
as', ",).

isspace iswspace Returns a non-zero value when c is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

isupper iswupper Returns a non-zero value when c is an uppercase character ([A-Z]).

isxdigit iswxdigit Returns a non-zero value when c is a hexadecimal digit
([0-9][A-F][a-f]).

tolower towlower Returns c converted to a lowercase character if it is an uppercase

character, otherwise c is returned.

toupper towupper Returns ¢ converted to an uppercase character if it is a lowercase
character, otherwise c is returned.

_tolower - Converts c to a lowercase character, does not check if c really is
an uppercase character. Implemented as macro. This macro
function is not defined in ISO C99.

475

TASKING VX-toolset for PCP User Guide

ctype.h wctype.h Description

_toupper - Converts ¢ to an uppercase character, does not check if ¢ really
is a lowercase character. Implemented as macro. This macro
function is not defined in ISO C99.

isascil Returns a non-zero value when c is in the range of 0 and 127. This
function is not defined in ISO C99.
toascii Converts c to an ASCII value (strip highest bit). This function is

not defined in ISO C99.

9.1.5.dbg.h

The header file dbg - h contains the debugger call interface for file system simulation. It contains low level
functions. This header file is not defined in ISO C99.

_dbg_trap Low level function to trap debug events

_argcv(const char Low level function for command line argument passing
*buf ,size_t size)

9.1.6. errno.h

int errno External variable that holds implementation defined error codes.

The following error codes are defined as macros in errno.h:

EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
EINTR 3 Interrupted system call
EI0 4 I/O error

EBADF 5 Bad file number
EAGAIN 6 No more processes
ENOMEM 7 Not enough core
EACCES 8 Permission denied
EFAULT 9 Bad address

EEXIST 10 File exists

ENOTDIR 11 Not a directory

EISDIR 12 Is a directory

EINVAL 13 Invalid argument
ENFILE 14 File table overflow
EMFILE 15 Too many open files
ETXTBSY 16 Text file busy

ENOSPC 17 No space left on device
ESPIPE 18 lllegal seek

EROFS 19 Read-only file system
EPIPE 20 Broken pipe

ELOOP 21 Too many levels of symbolic links
ENAMETOOLONG 22 File name too long

476

Libraries

Floating-point errors

EDOM 23 Argument too large
ERANGE 24 Result too large

Errors returned by printf/scanf

ERR_FORMAT 25 lllegal format string for printf/scanf
ERR_NOFLOAT 26 Floating-point not supported
ERR_NOLONG 27 Long not supported
ERR_NOPOINT 28 Pointers not supported

Encoding errors set by functions like fgetwc, getwc, mbrtowc, etc ...
EILSEQ 29 Invalid or incomplete multibyte or wide character

Errors returned by RTOS

ECANCELED 30 Operation canceled
ENODEV 31 No such device
9.1.7. fcntl.h

The header file fcntl . h contains the function open(), which calls the low level function _open(), and
definitions of flags used by the low level function _open(). This header file is not defined in ISO C99.

open Opens a file a file for reading or writing. Calls _open.
(FSS implementation)

9.1.8. fenv.h

Contains mechanisms to control the floating-point environment. The functions in this header file are not
implemented.

fegetenv Stores the current floating-point environment. (Not implemented)

feholdexept Saves the current floating-point environment and installs an environment
that ignores all floating-point exceptions. (Not implemented)

fesetenv Restores a previously saved (fegetenv or feholdexcept) floating-point
environment. (Not implemented)

feupdateenv Saves the currently raised floating-point exceptions, restores a previously
saved floating-point environment and finally raises the saved exceptions.
(Not implemented)

feclearexcept Clears the current exception status flags corresponding to the flags specified
in the argument. (Not implemented)

fegetexceptflag Stores the current setting of the floating-point status flags. (Not implemented)

feraiseexcept Raises the exceptions represented in the argument. As a result, other

exceptions may be raised as well.
(Not implemented)

477

TASKING VX-toolset for PCP User Guide

fesetexceptflag Sets the current floating-point status flags.
(Not implemented)

fetestexcept Returns the bitwise-OR of the exception macros corresponding to the
exception flags which are currently set and are specified in the argument.
(Not implemented)

For each supported exception, a macro is defined. The following exceptions are defined:

FE_DIVBYZERO FE_INEXACT FE_INVALID
FE_OVERFLOW FE_UNDERFLOW FE_ALL_ EXCEPT
fegetround Returns the current rounding direction, represented as one of the values of

the rounding direction macros.
(Not implemented)

fesetround Sets the current rounding directions. (Not implemented)
Currently no rounding mode macros are implemented.
9.1.9. float.h

The header file Float.h defines the characteristics of the real floating-point types float, double and
long double.

float.h used to contain prototypes for the functions copysign(f), isinf(f), isFinite(f),
isnan(f) and scalb(f). These functions have accordingly to the ISO C99 standard been moved
to the header file math.h. See also Section 9.1.16, math.h and tgmath.h.

The following functions are only available for ISO C90:

copysignf(float f ,float s) Copies the sign of the second argument s to the value of the first
argument f and returns the result.

copysign(double d,double s) Copies the sign of the second argument s to the value of the first
argument d and returns the result.

isinff(float f) Test the variable f on being an infinite (IEEE-754) value.
isinf(double d); Test the variable d on being an infinite (IEEE-754) value.
isfinitef(float f) Test the variable f on being a finite (IEEE-754) value.
isfinite(double d) Test the variable d on being a finite (IEEE-754) value.
isnanf(float f) Test the variable f on being NaN (Not a Number, IEEE-754) .
isnan(double d) Test the variable d on being NaN (Not a Number, IEEE-754) .
scalbf(float f ,int p) Returns f * 27p for integral values without computing 2"*N.
scalb(double d,int p) Returns d * 27p for integral values without computing 2*N. (See

also scalbn in Section 9.1.16, math.h and tgmath.h)

478

Libraries

9.1.10. inttypes.h and stdint.h

The header files stdint.h and inttypes.h provide additional declarations for integer types and have
various characteristics. The stdint.h header file contains basic definitions of integer types of certain
sizes, and corresponding sets of macros. This header file clearly refers to the corresponding sections in
the ISO C99 standard.

The inttypes.h header file includes stdint . h and adds portable formatting and conversion functions.
Below the conversion functions from inttypes_h are listed.

imaxabs(intmax_t j) Returns the absolute value of j

imaxdiv(intmax_t numer, Computes numer/denomand numer % denom.The resultis stored
intmax_t denom) in the quot and rem components of the imaxdiv_t structure type.
strtoimax(const char * Convert string to maximum sized integer. (Compare strtoll)

restrict nptr, char **
restrict endptr, int base)

strtoumax(const char * Convert string to maximum sized unsigned integer. (Compare
restrict nptr, char ** strtoull)
restrict endptr, int base)

wcstoimax(const wchar_t * Convertwide string to maximum sized integer. (Compare wcstol)
restrict nptr, wchar_t **
restrict endptr, int base)

wcstoumax(constwchar_t * Convert wide string to maximum sized unsigned integer. (Compare
restrict nptr, wchar_t ** wcstoull)
restrict endptr, int base)

9.1.11.i0.h

The header file 10 . h contains prototypes for low level I/O functions. This header file is not defined in ISO
C99.

_close(fd) Used by the functions close and fclose. (FSS implementation)

_Iseek(fd,of fset ,whence) Used by all file positioning functions: fgetpos, fseek, fsetpos,
ftell, rewind. (FSS implementation)

_open(fd,fl ags) Used by the functions fopen and Freopen. (FSS implementation)
_read(fd,*buff ,cnt) Reads a sequence of characters from a file. (FSS implementation)
_unlink(*nane) Used by the function remove. (FSS implementation)
_write(fd,*buffer ,cnt) Writes a sequence of characters to a file. (FSS implementation)

9.1.12. is0646.h

The header file 1s0646 . h adds tokens that can be used instead of regular operator tokens.

#define and &&
#define and_eq &=
#define bitand &
#deFfine bitor |

479

TASKING VX-toolset for PCP User Guide

#define compl
#define not
#define not_eq
#define or
#define or_eq
#define xor
#define xor_eq "=

9.1.13. limits.h

S -]
||]

Contains the sizes of integral types, defined as macros.
9.1.14. locale.h

To keep C code reasonable portable across different languages and cultures, a number of facilities are
provided in the header file Iocal -h.

char *setl ocal e(int category, const char *locale)

The function above changes locale-specific features of the run-time library as specified by the category
to change and the name of the locale.

The following categories are defined and can be used as input for this function:

LC_ALL 0 LC_NUMERIC 3
LC_COLLATE 1 LC_TIME 4
LC_CTYPE 2 LC_MONETARY 5

struct lIconv *| ocal econv(void)

Returns a pointer to type struct lconv with values appropriate for the formatting of numeric
guantities according to the rules of the current locale. The struct lIconv in this header file is
conforming the ISO standard.

9.1.15. malloc.h

The header file mal loc . h contains prototypes for memory allocation functions. This include file is not
defined in ISO C99, it is included for backwards compatibility with ISO C90. For ISO C99, the memory
allocation functions are part of stdlib.h. See Section 9.1.24, stdlib.h and wchar.h.

malloc(si ze) Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the
allocated space.

calloc(nobj ,si ze) Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to
the allocated space.

free(*ptr) Deallocates the memory space pointed to by ptr which should be
a pointer earlier returned by the mal loc or cal l1oc function.

480

realloc(*ptr ,si ze)

Libraries

Deallocates the old object pointed to by ptr and returns a pointer
to a new object with size size, while preserving its contents.
If the new size is smaller than the old size, some contents at the
end of the old region will be discarded. If the new size is larger than
the old size, all of the old contents are preserved and any bytes in
the new object beyond the size of the old object will have
indeterminate values.

9.1.16. math.h and tgmath.h

The header file math.h contains the prototypes for many mathematical functions. Before ISO C99, all
functions were computed using the double type (the float was automatically converted to double, prior to
calculation). In this ISO C99 version, parallel sets of functions are defined for double, float and long
double. They are respectively named function, functionf, functionl. All long type functions, though
declared in math.h, are implemented as the double type variant which nearly always meets the
requirement in embedded applications.

The header file tgmath . h contains parallel type generic math macros whose expansion depends on the
used type. tgmath_h includes math_h and the effect of expansion is that the correct math .h functions
are called. The type generic macro, if available, is listed in the second column of the tables below.

Trigonometric and hyperbolic functions

math.h tgmath.h Description

sin sinf sinl sin Returns the sine of x.

cos cosfT cosl cos Returns the cosine of x.

tan tanf tanl tan Returns the tangent of x.

asin asinf asinl asin Returns the arc sine sin'l(x) of x.

acos acosft acosl acos Returns the arc cosine cos'l(x) of x.
atan atanf atanl atan Returns the arc tangent tan'l(x) of x.
atan2 atan2f atan2l atan2 Returns the result of: tan'l(y/x).

sinh sinhf sinhl sinh Returns the hyperbolic sine of x.

cosh coshf coshl cosh Returns the hyperbolic cosine of x.
tanh tanhf tanhl tanh Returns the hyperbolic tangent of x.
asinh asinhf asinhl asinh Returns the arc hyperbolic sine of x.
acosh acoshf acoshl acosh Returns the non-negative arc hyperbolic cosine of x.
atanh atanhf atanhl atanh Returns the arc hyperbolic tangent of x.

Exponential and logarithmic functions

All of these functions are new in ISO C99, except for exp, 1og and 10g10.

math.h

tgmath.h Description

exp

expf

expl

exp

Returns the result of the exponential function e*.

481

TASKING VX-toolset for PCP User Guide

math.h tgmath.h Description

exp2 exp2f expz2l exp2 Returns the result of the exponential function 2*. (Not
implemented)

expml expmlf expmll expml Returns the result of the exponential function €*-1. (Not
implemented)

log logf logl log Returns the natural logarithm In(x), x>0.

logl10 logl0f 1logl0l 1ogl0 Returns the base-10 logarithm of x, x>0.

loglp loglpf loglpl loglp Returns the base-e logarithm of (1+x).x <> -1.(Not
implemented)

log2 log2f log21 log2 Returns the base-2 logarithm of x. x>0. (Not implemented)

ilogb ilogbf ilogbl ilogb Returns the signed exponent of x as an integer. x>0. (Not
implemented)

logb logbf logbl logb Returns the exponent of x as a signed integer in value in

frexp, ldexp, modf, scalbn, scalbln

floating-point notation. x > 0. (Not implemented)

math.h tgmath.h Description

frexp frexpf frexpl frexp Splits a float x into fraction f and exponent n, so that:
f=0.00r 0.5<|f|<1.0 and 2" = x. Returns f, stores n.

Idexp Idexpf Idexpl ldexp Inverse of Frexp. Returns the result of x*2".
(x and n are both arguments).

modf modff modfl - Splits a float x into fraction f and integer n, so that:
| f| < 1.0 and f+n=x. Returns f, stores n.

scalbn scalbnf scalbnl scalbn Computes the result of x*FLT_RADIX". efficiently, not
normally by computing FLT_RADIX" explicitly.

scalbln scalblnf scalblnl scalbln Same as scalbn but with argument n as long int.

Rounding functions

math.h tgmath.h Description

ceil ceilf ceill ceil Returns the smallest integer not less than x, as a double.

floor floorf floorl floor Returns the largest integer not greater than x, as a double.

rint rintf rintl rint Returns the rounded integer value as an int according
to the current rounding direction. See fenv.h. (Not
implemented)

Irint Irintf Irintl Irint Returns the rounded integer value as a long int
according to the current rounding direction. See fenv . h.
(Not implemented)

Ilrint Irintf Irintl [Ilrint Returnstherounded integervalue asa long long iInt

482

according to the current rounding direction. See fenv _h.
(Not implemented)

Libraries

tgmath.h Description

nearbyint nearbyintf nearbyintl

nearbyint Returns the rounded integer value as a floating-point

Iroundf Ilroundl

truncf truncl

Remainder after division

according to the current rounding direction. See fenv.h.
(Not implemented)

Returns the nearest integer value of x as int.
(Not implemented)

Returns the nearest integer value of x as long int.
(Not implemented)

Returns the nearest integer value of x as long long int.
(Not implemented)

Returns the truncated integer value x. (Not implemented)

Description

remainder remainderf remainderl

remquof remquol

Returns the remainder r of x-ny. n is chosen as
trunc(x/y). r has the same sign as x.

Returns the remainder r of x-ny. n is chosen as
trunc(x/y). r may not have the same sign as x. (Not
implemented)

Same as remainder. In addition, the argument *quo is
given a specific value (see ISO). (Not implemented)

Power and absolute-value functions

tgmath.h Description

Returns the real cube root of x (:xl/ 3). (Not implemented)

Returns the absolute value of x (] x]). (abs, labs, 11abs,
div, Idiv, 1ldiv are defined in stdlib.h)

Floating-point multiply add. Returns x*y+z. (Not
implemented)

Returns the square root of x>+y?.
Returns x raised to the power y (x¥).
Returns the non-negative square root of x. x 0.

Manipulation functions: copysign, nan, nextafter, nexttoward

tgmath.h Description

copysign copysignf copysignll copysign Returns the value of x with the sign of y.

Returns a quiet NaN, if available, with content indicated
through t agp.
(Not implemented)

483

TASKING VX-toolset for PCP User Guide

math.h tgmath.h Description

nextafter nextafterf nextafterl nextafter Returns the next representable value in the specified
format after x in the direction of y. Returns y is x=y.
(Not implemented)

nexttonard nextionardf nexttonardl nexttonard Same as nextafter, except that the second argument
in all three variants is of type long double. Returns y if
X=Y.
(Not implemented)

Positive difference, maximum, minimum

math.h tgmath.h Description

fdim fdimf fdiml fdim Returns the positive difference between: | x-y].
(Not implemented)

fmax fmaxF fmaxl fmax Returns the maximum value of their arguments.
(Not implemented)

fmin fminf fminl fmin Returns the minimum value of their arguments.
(Not implemented)

Error and gamma (Not implemented)

math.h tgmath.h Description

erf erff erfl erf Computes the error function of x.
(Not implemented)

erfc erfcf erfcl erc Computes the complementary error function of x.
(Not implemented)

lIgamma Igammaf Igammal Igamma Computes the *loge T (X) |
(Not implemented)

tgamma tgammaf tgammal tgamma Computes I'(x)
(Not implemented)

Comparison macros
The next are implemented as macros. For any ordered pair of numeric values exactly one of the

relationships - less, greater, and equal - is true. These macros are type generic and therefor do not have
a parallel function in tgmath _h. All arguments must be expressions of real-floating type.

math.h tgmath.h Description

isgreater - Returns the value of (xX) > (y)
isgreaterequal - Returns the value of (xX) >= (y)

isless - Returns the value of (xX) < (y)

islessequal - Returns the value of (xX) <= (y)
islessgreater - Returns the value of (X) < () |l) > ()

484

Libraries

math.h tgmath.h Description

isunordered - Returns 1 if its arguments are unordered, 0 otherwise.

Classification macros

The next are implemented as macros. These macros are type generic and therefor do not have a parallel
function in tgmath.h. All arguments must be expressions of real-floating type.

math.h tgmath.h Description

fpclassify - Returns the class of its argument:
FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL or
FP_ZERO

isfinite - Returns a nonzero value if and only if its argument has a finite
value

isinf - Returns a nonzero value if and only if its argument has an infinite
value

isnan - Returns a nonzero value if and only if its argument has NaN value.

isnormal - Returns a nonzero value if an only if its argument has a normal
value.

signbit - Returns a nonzero value if and only if its argument value is
negative.

9.1.17. setjmp.h

The setjmp and longjmp in this header file implement a primitive form of non-local jumps, which may
be used to handle exceptional situations. This facility is traditionally considered more portable than
signal.h

int setjmp(mp_buf Records its caller's environment in env and returns O.
env)

void longjmp(gmp_buf Restores the environment previously saved with a call to setjmp().
env, int status)

9.1.18. signal.h

Signals are possible asynchronous events that may require special processing. Each signal is named by
a number. The following signals are defined:

SIGINT 1 Receipt of an interactive attention signal

SIGILL 2 Detection of an invalid function message

SIGFPE 3 An erroneous arithmetic operation (for example, zero divide, overflow)
SIGSEGY 4 Aninvalid access to storage

SIGTERM 5 A termination request sent to the program

SIGABRT 6 Abnormal termination, such as is initiated by the abort function

485

TASKING VX-toolset for PCP User Guide

The next function sends the signal sig to the program:

int rai se(int sig)

The next function determines how subsequent signals will be handled:
signalfunction *signal (int, signalfunction *);

The first argument specifies the signal, the second argument points to the signal-handler function or has
one of the following values:

SIG_DFL Default behavior is used

SIG_IGN The signal is ignored

The function returns the previous value of signalfunction for the specific signal, or SIG_ERR if an
error occurs.

9.1.19. stdarg.h

The facilities in this header file gives you a portable way to access variable arguments lists, such as
needed for as fprintf and vfprintf. va_copy is new in ISO C99. This header file contains the
following macros:

va_arg(va_list ap,type) Returns the value of the next argument in the variable argument list.
It's return type has the type of the given argument type. A next call to
this macro will return the value of the next argument.

va_copy(va_list dest, This macro duplicates the current state of src in dest, creating a

va_list src) second pointer into the argument list. After this call, va_arg() may be
used on src and dest independently.

va_end(va_list ap) This macro must be called after the arguments have been processed.
It should be called before the function using the macro 'va_start' is
terminated.

va_start(va_list ap, This macro initializes ap. After this call, each call to va_arg() will return

lastarg) the value of the next argument. In our implementation, va_ I ist cannot

contain any bit type variables. Also the given argument lastarg must
be the last non-bit type argument in the list.

9.1.20. stdbool.h

This header file contains the following macro definitions. These names for boolean type and values are
consistent with C++. You are allowed to #undefine or redefine the macros below.

#define bool _Bool
#define true 1
#define false 0
#define _ bool_true_false_are_defined 1

486

Libraries

9.1.21. stddef.h
This header file defines the types for common use:

ptrdiff_t Signed integer type of the result of subtracting two pointers.
size_t Unsigned integral type of the result of the sizeof operator.

wchar_t Integer type to represent character codes in large character sets.

Besides these types, the following macros are defined:

NULL Expands to O (zero).
offsetof(_type, Expands to an integer constant expression with type size_t that is the offset
_member) in bytes of _member within structure type _type.

9.1.22. stdint.h

See Section 9.1.10, inttypes.h and stdint.h
9.1.23. stdio.h and wchar.h
Types

The header file stdio.h contains functions for performing input and output. A number of functions also
have a parallel wide character function or macro, defined in wchar . h. The header file wchar . h also
includes stdio.h.

In the C language, many 1/O facilities are based on the concept of streams. The stdio.h header file
defines the data type FI LE which holds the information about a stream. A FILE object is created with
the function fopen. The pointer to this object is used as an argument in many of the in this header file.
The FILE object can contain the following information:

« the current position within the stream
* pointers to any associated buffers

* indications of for read/write errors
 end of file indication

The header file also defines type fpos_t as an unsigned long.

Macros

stdio.h Description

NULL Expands to O (zero).

BUFSI1Z Size of the buffer used by the setbuf/setvbuf function: 512
EOF End of file indicator. Expands to -1.

487

TASKING VX-toolset for PCP User Guide

stdio.h Description
WEOF End of file indicator. Expands to UINT_MAX (defined in Ilimits.h)
NOTE: WEOF need not to be a negative number as long as its value does not
correspond to a member of the wide character set. (Defined in wchar _h).
FOPEN_MAX Number of files that can be opened simultaneously: 10
FILENAME_MAX Maximum length of a filename: 100
_10FBF Expand to an integer expression, suitable for use as argument to the setvbuf function.
_I0LBF
_IONBF
L_tmpnam Size of the string used to hold temporary file names: 8 (tmpxxxxx)
TMP_MAX Maximum number of unique temporary filenames that can be generated: 0x8000
SEEK_CUR Expand to an integer expression, suitable for use as the third argument to the fseek
SEEK_END function.
SEEK_SET
stderr Expressions of type "pointer to FILE" that point to the FILE objects associated with
stdin standard error, input and output streams.
stdout
File access
stdio.h Description
fopen(nane, node) Opens a file for a given mode. Available modes are:
"r' read; open text file for reading
w write; create text file for writing;
if the file already exists, its contents is discarded
a' append; open existing text file or
create new text file for writing at end of file
"r+" open text file for update; reading and writing
"w+" create text file for update; previous
contents if any is discarded
"a+'" append; open or create text file for update,
writes at end of file
(FSS implementation)
fclose(nane) Flushes the data stream and closes the specified file that was previously
opened with fopen. (FSS implementation)
fflush(nane) If stream is an output stream, any buffered but unwritten date is written.
Else, the effect is undefined. (FSS implementation)
freopen(nane,node, Similar to fopen, but rather than generating a new value of type FILE *,
stream) the existing value is associated with a new stream. (FSS implementation)

setbuf(stream,buf f er) If bufferis NULL, buffering is turned off for the stream. Otherwise, setbuf

488

is equivalentto: (void) setvbuf(stream,buffer, 10FBF,BUFSIZ).

Libraries

stdio.h Description
setvbuf(st reambuf f er ,node, Controls buffering for the stream; this function must be called before reading
si ze) or writing. Mode can have the following values:

_10FBF causes full buffering

__IOLBF causes line buffering of text files

__IONBF causes no buffering.

If buffer is not NULL, it will be used as a buffer; otherwise a buffer will be
allocated. size determines the buffer size.

Formatted input/output

The format string of pri nt f related functions can contain plain text mixed with conversion specifiers.
Each conversion specifier should be preceded by a '%' character. The conversion specifier should be
built in order:

» Flags (in any order):

- specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.
+ has higher precedence than space.

space a negative number is preceded with a sign, positive numbers with a space.
0 specifies padding to the field width with zeros (only for numbers).

specifies an alternate output form. For o, the first digit will be zero. For x or X, "0x" and "0X"
will be prefixed to the number. For e, E, f, g, G, the output always contains a decimal point,
trailing zeros are not removed.

* A number specifying a minimum field width. The converted argument is printed in a field with at least
the length specified here. If the converted argument has fewer characters than specified, it will be
padded at the left side (or at the right when the flag '-' was specified) with spaces. Padding to numeric
fields will be done with zeros when the flag '0' is also specified (only when padding left). Instead of a
numeric value, also *' may be specified, the value is then taken from the next argument, which is
assumed to be of type int.

» A period. This separates the minimum field width from the precision.

» A number specifying the maximum length of a string to be printed. Or the number of digits printed after
the decimal point (only for floating-point conversions). Or the minimum number of digits to be printed
for an integer conversion. Instead of a numeric value, also '*' may be specified, the value is then taken
from the next argument, which is assumed to be of type int.

« Alength modifier 'h', *hh', 'I', 'II', 'L', '}', 'z" or 't'. 'h" indicates that the argument is to be treated as a short
orunsigned short. 'hh'indicates that the argument is to be treated as a char or unsigned char.
'I'should be used if the argument is a long integer, 'llI' for a long long. 'L’ indicates that the argument
isa long double.'j indicates a pointer to intmax_t or uintmax_t, 'z' indicates a pointer to size_t
and 't indicates a pointer to ptrdiff_t.

489

TASKING VX-toolset for PCP User Guide

Flags, length specifier, period, precision and length modifier are optional, the conversion character is not.
The conversion character must be one of the following, if a character following '%' is not in the list, the
behavior is undefined:

Character Printed as

d,i int, signed decimal

o] int, unsigned octal

X, X int, unsigned hexadecimal in lowercase or uppercase respectively

u int, unsigned decimal

c int, single character (converted to unsigned char)

S char *, the characters from the string are printed until a NULL character is found. When the
given precision is met before, printing will also stop

f double

e E double

g,G double

a, A double

n int *, the number of characters written so far is written into the argument. This should be a
pointer to an integer in default memory. No value is printed.

p pointer

% No argument is converted, a ‘%' is printed.

printf conversion characters

All arguments to the scanf related functions should be pointers to variables (in default memory) of the
type which is specified in the format string.

The format string can contain :

» Blanks or tabs, which are skipped.

* Normal characters (not '%"), which should be matched exactly in the input stream.
» Conversion specifications, starting with a '%' character.

Conversion specifications should be built as follows (in order) :

* A meaning that no assignment is done for this field.

* A number specifying the maximum field width.

» The conversion characters d, 1, n, 0, u and x may be preceded by 'h' if the argument is a pointer to
short rather than int, or by 'hh' if the argument is a pointer to char, or by 'I' (letter ell) if the argument
is a pointer to long or by 'll' for a pointer to long long, 'j' for a pointer to intmax_t or uintmax_t,
'z' for a pointer to size_t or 't' for a pointer to ptrdiff_t. The conversion characters e, f, and g
may be preceded by 'I' if the argument is a pointer to doubl e rather than float, and by ‘L' for a pointer
toa long double.

490

Libraries

» A conversion specifier. *', maximum field width and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a character following '%' is not in the
list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character is not. The conversion character
must be one of the following, if a character following ‘%' is not in the list, the behavior is undefined.

Character Scanned as

d
i

nw O X < O

..

%

int, signed decimal.

int, the integer may be given octal (i.e. a leading 0 is entered) or hexadecimal (leading "0x"
or "0X"), or just decimal.

int, unsigned octal.

int, unsigned decimal.

int, unsigned hexadecimal in lowercase or uppercase.
single character (converted to unsigned char).

char *, a string of non white space characters. The argument should point to an array of
characters, large enough to hold the string and a terminating NULL character.

float

float

float

float

int *, the number of characters written so far is written into the argument. No scanning is done.
pointer; hexadecimal value which must be entered without Ox- prefix.

Matches a string of input characters from the set between the brackets. A NULL character is
added to terminate the string. Specifying []...] includes the ']' character in the set of scanning
characters.

Matches a string of input characters not in the set between the brackets. A NULL character
is added to terminate the string. Specifying ["]...] includes the '] character in the set.

Literal '%', no assignment is done.

scanf conversion characters

stdio.h wchar.h Description
fscanf(stream, fwscanf(st ream, Performs a formatted read from the given stream.
format, ...) format, ...) Returns the number of items converted

successfully. (FSS implementation)

scanf(format ,...) wscanf(format, ...) Performs aformatted read from stdin. Returns

the number of items converted successfully. (FSS
implementation)

sscanf(*s, format, swscanf(*s, format, Performs aformatted read from the string s.

-2

R Returns the number of items converted
successfully.

491

TASKING VX-toolset for PCP User Guide

stdio.h wchar.h Description
vfscanf(stream, vfwscanf(stream, Same as Fscanf/fwscanf, but extra arguments
format , arg) format , arg) are given as variable argument list arg. (See

vscanf(format , arg) vwscanf(fornat, arg)

vsscanf(*s, format , vswscanf(*s, format ,

arg) arg)
fprintf(stream, fwprintf(stream,
format, ...) format, ...)

printfF(format, ...) wprintf(format, ...)

sprintf(*s, format ,

--)
snprintf(*s, n, swprintf(*s, n,
format, ...) format, ...)

vfprintf(stream, viwprintf(stream,
format , arg) format , arg)

vprintf(format , arg) vwprintf(format ,
arg)

vsprintf(*s, format , vswprintf(*s,
arg) format , arg)

Character input/output

Section 9.1.19, stdarg.h)

Same as sscanf/swscanf, but extra arguments
are given as variable argument list arg. (See
Section 9.1.19, stdarg.h)

Same as scanf/wscanf, but extra arguments
are given as variable argument list arg. (See
Section 9.1.19, stdarg.h)

Performs a formatted write to the given stream.
Returns EOF/WEOF on error. (FSS
implementation)

Performs a formatted write to the stream stdout.
Returns EOF/WEOF on error. (FSS
implementation)

Performs a formatted write to string s. Returns
EOF/WEOF on error.

Same as sprintf, but n specifies the maximum
number of characters (including the terminating
null character) to be written.

Same as fprintf/fwprintf, but extra
arguments are given as variable argument list
arg. (See Section 9.1.19, stdarg.h) (FSS
implementation)

Same as printf/wprintf, but extra arguments
are given as variable argument list arg. (See
Section 9.1.19, stdarg.h) (FSS implementation)

Same as sprintf/swprintf, but extra
arguments are given as variable argument list
arg. (See Section 9.1.19, stdarg.h)

stdio.h wchar.h Description

fgetc(stream) fgetwc(stream) Reads one character from stream. Returns the
read character, or EOF/WEOF on error. (FSS
implementation)

getc(stream) getwc(stream) Same as fgetc/fgetwc except that is

492

implemented as a macro.

(FSS implementation)

NOTE: Currently #defined as
getchar()/getwchar() because FILE I/O is
not supported. Returns the read character, or
EOF/WEOF on error.

Libraries

stdio.h wchar.h Description

getchar(stdin) getwchar(stdin) Reads one character from the stdin stream.
Returns the character read or EOF/WEOF on
error. Implemented as macro.
(FSS implementation)

fgets(*s, n, stream) fgetws(*s, n, Reads at most the next n-1 characters from the
stream) stream into array s until a newline is found.
Returns s or NULL or EOF/WEOF on error. (FSS
implementation)

Reads at most the next n-1 characters from the
stdin stream into array s. A newline is ignored.
Returns s or NULL or EOF/WEOF on error. (FSS
implementation)

gets(*s, n, stdin)

ungetc(c, stream) ungetwc(c, stream) Pushes character c back onto the input stream.
Returns EOF/WEOF on error.

fputc(c, strean) fputwc(c, stream) Put character c onto the given stream. Returns
EOF/WEOF on error. (FSS implementation)

putc(c, stream) putwc(c, strean) Same as fpuc/fputwc except that is

implemented as a macro. (FSS implementation)

putchar(c, stdout) putwchar(c, stdout) Putcharactercontothe stdout stream.Returns
EOF/WEOF on error.
Implemented as macro. (FSS implementation)

fputs(*s, stream) fputws(*s, stream) Writes string s to the given stream. Returns
EOF/WEOF on error. (FSS implementation)

puts(*s) - Writes string s to the stdout stream. Returns
EOF/WEOF on error. (FSS implementation)

Direct input/output

stdio.h Description

fread(ptr,size,nobj,stream) Reads nobj members of size bytes from the given stream into
the array pointed to by ptr. Returns the number of elements
successfully read. (FSS implementation)

fwrite(ptr,size,nobj,stream) Writes nobj members of size bytes from to the array pointed to
by ptr to the given stream. Returns the number of elements
successfully written. (FSS implementation)

Random access

stdio.h Description

fseek(stream, of fset, Sets the position indicator for stream. (FSS implementation)
origin)

When repositioning a binary file, the new position origin is given by the following macros:

493

TASKING VX-toolset for PCP User Guide

SEEK_SET 0 offset characters from the beginning of the file
SEEK_CUR 1 offset characters from the current position in the file
SEEK_END 2 offset characters from the end of the file

ftell(stream) Returns the current file position for stream, or -1L on error.
(FSS implementation)

rewind(strean) Sets the file position indicator for the stream to the beginning of the file. This
function is equivalent to:
(void) fseek(stream,OL,SEEK_SET);
clearerr(stream);
(FSS implementation)

fgetpos(stream,pos) Stores the current value of the file position indicator for stream in the object
pointed to by pos. (FSS implementation)

Tsetpos(st r eam,pos) Positions st r eamat the position recorded by fgetpos in *pos. (FSS
implementation)

Operations on files

stdio.h Description

remove(fil e) Removes the named file, so that a subsequent attempt to open it fails. Returns a
non-zero value if not successful.

rename(ol d,new) Changes the name of the file from old name to new name. Returns a non-zero
value if not successful.

tmpFileQ) Creates a temporary file of the mode "wb+" that will be automatically removed when
closed or when the program terminates normally. Returns a fi le pointer.

tmpnam(buf f er) Creates new file names that do not conflict with other file names currently in use.
The new file name is stored in a buffer which must have room for L_tmpnam
characters. Returns a pointer to the temporary name. The file names are created
in the current directory and all start with "tmp". At most TMP_MAX unique file names
can be generated.

Error handling

stdio.h Description

clearerr(stream) Clears the end of file and error indicators for stream.

ferror(stream) Returns a non-zero value if the error indicator for stream is set.
feof(stream) Returns a non-zero value if the end of file indicator for stream is set.
perror(*s) Prints s and the error message belonging to the integer errno. (See

Section 9.1.6, errno.h)

9.1.24. stdlib.h and wchar.h

The header file stdlib . h contains general utility functions which fall into the following categories (Some
have parallel wide-character, declared in wchar .h)

494

Libraries

* Numeric conversions

* Random number generation

* Memory management

» Environment communication

» Searching and sorting

* Integer arithmetic

» Multibyte/wide character and string conversions.

Macros

EXIT_SUCCES Predefined exit codes that can be used in the exit function.
0

EX1T_FAILURE

1

RAND_MAX Highest number that can be returned by the rand/srand function.
32767

MB_CUR_MAX 1 Maximum number of bytes in a multibyte character for the extended character set
specified by the current locale (category LC_CTYPE, see Section 9.1.14, locale.h).

Numeric conversions

The following functions convert the initial portion of a string *s to a double, int, long intand long
long int value respectively.

double atof(*s)
int atoi (*s)
long atol (*s)

long long atoll (*s)

The following functions convert the initial portion of the string *s to a float, double and long double value
respectively. *endp will point to the first character not used by the conversion.

stdlib.h wchar.h

float strtof(*s,**endp) float westof(*s,**endp)
double strtod(*s,**endp) double westod(*s, **endp)
long double strtold(*s,**endp) long double wcstold(*s,**endp)

The following functions convert the initial portion of the string *s to a long, long long, unsigned
long and unsigned long long respectively. Base specifies the radix. *endp will point to the first
character not used by the conversion.

495

TASKING VX-toolset for PCP User Guide

stdlib.h

wchar.h

long strtol (*s,**endp,base)
long long strtoll
(*s,**endp, base)
unsigned long strtoul
(*s,**endp,base)
unsigned long long strtoull
(*s,**endp, base)

Random number generation

long wcstol (*s,**endp,base)
long long wcstoll
(*s,**endp,base)
unsigned long wcstoul
(*s,**endp,base)
unsigned long long wcstoull
(*s,**endp, base)

rand

Returns a pseudo random integer in the range 0 to RAND_MAX.

srand(seed) Same as rand but uses seed for a new sequence of pseudo random numbers.

Memory management

malloc(si ze)

calloc(nobj ,si ze)

free(*ptr)

realloc(*ptr ,size)

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the allocated space.

Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to the allocated
space.

Deallocates the memory space pointed to by ptr which should be a pointer
earlier returned by the mal loc or cal loc function.

Deallocates the old object pointed to by ptr and returns a pointer to a new
object with size size, while preserving its contents.

If the new size is smaller than the old size, some contents at the end of the
old region will be discarded. If the new size is larger than the old size, all of
the old contents are preserved and any bytes in the new object beyond the
size of the old object will have indeterminate values.

Environment communication

abort()
atexit(*func)

exit(status)

_Exit(status)

getenv(*s)

496

Causes abnormal program termination. If the signal SIGABRT is caught, the
signal handler may take over control. (See Section 9.1.18, signal.h).

func points to a function that is called (without arguments) when the program
normally terminates.

Causes normal program termination. Acts as if main() returns with status as
the return value. Status can also be specified with the predefined macros
EXIT_SUCCES or EXIT_FAILURE.

Same as exit, but not registered by the atexit function or signal handlers
registered by the signal function are called.

Searches an environment list for a string s. Returns a pointer to the contents
of s.
NOTE: this function is not implemented because there is no OS.

Libraries

system(*s) Passes the string s to the environment for execution.
NOTE: this function is not implemented because there is no OS.

Searching and sorting

bsearch(*key, This function searches in an array of n members, for the object pointed to by
*base, n, si ze, key. The initial base of the array is given by base. The size of each member
*cnp) is specified by size. The given array must be sorted in ascending order,

according to the results of the function pointed to by cmp. Returns a pointer
to the matching member in the array, or NULL when not found.

gsort(*base, n, This function sorts an array of n members using the quick sort algorithm. The

si ze, *cnp) initial base of the array is given by base. The size of each member is specified
by size. The array is sorted in ascending order, according to the results of the
function pointed to by cmp.

Integer arithmetic

int abs() Compute the absolute value of an int, long int, and long long intj
long labs(j) respectively.

long long llabs()

div_t div(x,y) Compute x/y and x%y in a single operation. X and y have respectively type

Idiv_t Idiv(x,y) int, long intand long long int.The resultis stored in the members
11div_t 1ldiv(x,y) quotand remof struct div_t, Idiv_t and Il1div_t which have the
same types.

Multibyte/wide character and string conversions

mblen(*s,n) Determines the number of bytes in the multi-byte character pointed to by s. At
most n characters will be examined. (See also mbrlen in Section 9.1.28,
wchar.h).

mbtowc(*pwc ,*s,n) Converts the multi-byte character in s to a wide-character code and stores it
in pwc. At most n characters will be examined.

wctomb(*s ,wc) Converts the wide-character wc into a multi-byte representation and stores it
in the string pointed to by s. At most MB_CUR_MAX characters are stored.

mbstowcs(*pwes ,*s ,n) Converts a sequence of multi-byte characters in the string pointed to by s into
a sequence of wide characters and stores at most n wide characters into the
array pointed to by pwcs. (See also mbsrtowcs in Section 9.1.28, wchar.h).

wcstombs(*s ,*pwecs ,n) Converts a sequence of wide characters in the array pointed to by pwcs into
multi-byte characters and stores at most n multi-byte characters into the string
pointed to by s. (See also wcsrtowmb in Section 9.1.28, wchar.h).

9.1.25. string.h and wchar.h

This header file provides numerous functions for manipulating strings. By convention, strings in C are
arrays of characters with a terminating null character. Most functions therefore take arguments of type
*char. However, many functions have also parallel wide-character functions which take arguments of
type *wchar_t. These functions are declared in wchar . h.

497

TASKING VX-toolset for PCP User Guide

Copying and concatenation functions

string.h wchar.h Description

memcpy(*sl,*s2,n) wmemcpy(*sl,*s2,n) Copies n characters from *s2 into *s1 and returns *s1. If
*s1 and *s2 overlap the result is undefined.

memmove(*s1,*s2,n) wmenmmove(*s1,*s2,n) Same as memcpy, but overlapping strings are handled
correctly. Returns *s1.

strcpy(*sl,*s2) wescpy(*sl,*s2) Copies *s2 into *s1 and returns *sl. If *s1 and *s2 overlap
the result is undefined.

strncpy(*s1,*s2,n) wesncpy(*sl,*s2,n) Copies not more than n characters from *s2 into *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

strcat(*sl,*s2) wcscat(*sl,*s2) Appends a copy of *s2 to *s1 and returns *s1. If *s1 and
*s2 overlap the result is undefined.

strncat(*sl,*s2,n) wesncat(*sl1,*s2,n) Appends not more than n characters from *s2 to *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

Comparison functions

string.h wchar.h Description

memecmp(*s1,*s2,n) wmememp(*sl,*s2,n) Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or >0 if *s1 > *s2.

stremp(*sl,*s2) wescmp(*sl,*s2) Compares string *s1 to *s2. Returns < 0 if *s1 < *s2, 0 if *s1
==*s2,0r>0if *s1 > *s2.

strncmp(*s1,*s2,n) wesnemp(*sl,*s2,n) Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2.

strcoll(*s1,*s2) wescoll(*s1,*s2) Performs a local-specific comparison between string *s1
and string *s2 according to the LC_COLLATE category of
the current locale. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2. (See Section 9.1.14, locale.h)

strxfrm(*s1,*s2,n) wesxfm(*s1,*s2,n) Transforms (a local) string *s2 so that a comparison
between transformed strings with strcmp gives the same
result as a comparison between non-transformed strings
with strcol l. Returns the transformed string *s1.

Search functions

string.h wchar.h Description

memchr(*s,c,n) wmemchr(*s,c,n) Checks the first n characters of *s on the occurrence of
character c. Returns a pointer to the found character.

strchr(*s,c) wecschr(*s,c) Returns a pointer to the first occurrence of character c in
*s or the null pointer if not found.

498

string.h wchar.h

Libraries

Description

strrchr(*s,c) wesrchr(*s,c)
strspn(*s,*set) wcsspn(*s,*set)
strcspn(*s,*set) wescspn(*s,*set)
strpbrk(*s,*set) wcspbrk(*s,*set)
strstr(*s,*sub) wcsstr(*s,*sub)

strtok(*s,*dl m) wcstok(*s,*dl m)

Miscellaneous functions

string.h wchar.h

Returns a pointer to the last occurrence of character cin *s
or the null pointer if not found.

Searches *s for a sequence of characters specified in *set.
Returns the length of the first sequence found.

Searches *s for a sequence of characters not specified in
*set. Returns the length of the first sequence found.

Same as strspn/wcsspn but returns a pointer to the first
character in *s that also is specified in *set.

Searches for a substring *sub in *s. Returns a pointer to the
first occurrence of *sub in *s.

A sequence of calls to this function breaks the string *s into
a sequence of tokens delimited by a character specified in
*dlm. The token found in *s is terminated with a null
character. Returns a pointer to the first position in *s of the
token.

Description

memset(*s,c,n) wmemset(*s,c,n)

strerror(errno) -

strilen(*s) weslen(*s)

9.1.26. time.h and wchar.h

Fills the first n bytes of *s with character ¢ and returns *s.

Typically, the values for errno come from Int errno. This
function returns a pointer to the associated error message.
(See also Section 9.1.6, errno.h)

Returns the length of string *s.

The header file time.h provides facilities to retrieve and use the (calendar) date and time, and the
process time. Time can be represented as an integer value, or can be broken-down in components. Two
arithmetic data types are defined which are capable of holding the integer representation of times:

clock_t unsigned long long
time_t unsigned long

The type struct tm below is defined according to ISO C99 with one exception: this implementation
does not support leap seconds. The struct tm type is defines as follows:

struct tm

{
int tm_sec; /* seconds after the minute - [0, 59] */
int tm_min; /* minutes after the hour - [0, 59] */
int tm_hour; /* hours since midnight - [0, 23] */
int tm_mday; /* day of the month - [1, 31] */
int tm_mon; /* months since January - [0, 11] */
int tm_year; /* year since 1900 */
int tm_wday; /* days since Sunday - [0, 6] */

499

TASKING VX-toolset for PCP User Guide

int tm_yday;

/* days since January 1 - [0, 365] */

int tm_isdst; /* Daylight Saving Time flag */

}:

Time manipulation

clock

difftime(t1,t0)
mktime(tm *tp)

time(C*tiner)

Time conversion

asctime(tm *t p)
ctime(*tiner)
gmtime(*ti nmer)

localtime(*ti ner)

Formatted time

The next function has

time.h

Returns the application's best approximation to the processor time used by the
program since it was started. This low-level routine is not implemented because it
strongly depends on the hardware. To determine the time in seconds, the result of
clock should be divided by the value defined by CLOCKS_PER_SEC.

Returns the difference t1-t0 in seconds.

Converts the broken-down time in the structure pointed to by tp, to a value of type
time_t. The return value has the same encoding as the return value of the time
function.

Returns the current calendar time. This value is also assigned to *timer.

Converts the broken-down time in the structure pointed to by tp into a string in the
form Mon Jan 22 16:15:14 2007\n\O0. Returns a pointer to this string.

Converts the calender time pointed to by timer to local time in the form of a string.
This is equivalent to: asctime(localtime(timer))

Converts the calender time pointed to by timer to the broken-down time, expressed
as UTC. Returns a pointer to the broken-down time.

Converts the calendar time pointed to by timer to the broken-down time, expressed
as local time. Returns a pointer to the broken-down time.

a parallel function defined in wchar . h:

wchar.h

strftime(*s,smax,*f nt ,tm wstrftime(*s,smax,*fnt ,tm *t p)

*tp)

Formats date and time information from struct tm *tp into *s according to the specified format *fmt.
No more than smax characters are placed into *s. The formatting of strftime is locale-specific using
the LC_TIME category (see Section 9.1.14, locale.h).

You can use the next conversion specifiers:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

500

%c
%C
%d
%D
%e
%F
%g
%G
%h
%H
%l
%j
%m
%M
%n
%p
%r
%R
%S
%t
%T
%u
%U
%V
%w
%W
%X
%X
%y
%Y
%z
%Z
%%

locale-specific date and time representation (same as %a %b %e %T %Y)

last two digits of the year

day of the month (01-31)

same as %m/%d/%y

day of the month (1-31), with single digits preceded by a space
ISO 8601 date format: %Y-%m-%d

last two digits of the week based year (00-99)

week based year (0000—9999)

same as %b

hour, 24-hour clock (00-23)

hour, 12-hour clock (01-12)

day of the year (001-366)

month (01-12)

minute (00-59)

replaced by newline character

locale's equivalent of AM or PM

locale's 12-hour clock time; same as %1 :%M:%S %p

same as %H - %M

second (00-59)

replaced by horizontal tab character

ISO 8601 time format: %H %M : %S

ISO 8601 weekday number (1-7), Monday as first day of the week
week number of the year (00-53), week 1 has the first Sunday
ISO 8601 week number (01-53) in the week-based year
weekday (0-6, Sunday is 0)

week number of the year (00-53), week 1 has the first Monday
local date representation

local time representation

year without century (00-99)

year with century

ISO 8601 offset of time zone from UTC, or nothing

time zone name, if any

%

Libraries

501

TASKING VX-toolset for PCP User Guide

9.1.27. unistd.h

The file unistd.h contains standard UNIX I/O functions. These functions are all implemented using file
system simulation. Except for Istat and fstat which are not implemented. This header file is not
defined in ISO C99.

access(*nane,node) Use file system simulation to check the permissions of a file on the host. mode
specifies the type of access and is a bit pattern constructed by a logical OR of
the following values:

R_OK Checks read permission.

W_OK Checks write permission.

X_OK Checks execute (search) permission.
F_OK Checks to see if the file exists.

(FSS implementation)

chdir(*pat h) Use file system simulation to change the current directory on the host to the
directory indicated by path. (FSS implementation)
close(fd) File close function. The given file descriptor should be properly closed. This

function calls _close(). (FSS implementation)

getcwd(*buf ,si ze) Use file system simulation to retrieve the current directory on the host. Returns
the directory name. (FSS implementation)

Iseek(f d,of f set ,whence) Moves read-write file offset. Calls _Iseek(). (FSS implementation)

read(f d,*buf f ,cnt) Reads a sequence of characters from a file. This function calls _read(). (FSS
implementation)

stat(*nane,*buf f) Use file system simulation to stat() a file on the host platform. (FSS
implementation)

Istat(*nane,*buf f) This function is identical to stat(), except in the case of a symbolic link, where
the link itself is 'stat’-ed, not the file that it refers to. (Not implemented)

fstat(fd,*buff) This function is identical to stat(), except that it uses a file descriptor instead
of a name. (Not implemented)

unlink(*nane) Removes the named file, so that a subsequent attempt to open it fails. (FSS
implementation)

write(fd,*buf f ,cnt) Write a sequence of characters to a file. Calls _write(). (FSS implementation)

9.1.28. wchar.h

Many functions in wchar . h represent the wide-character variant of other functions so these are discussed
together. (See Section 9.1.23, stdio.h and wchar.h, Section 9.1.24, stdlib.h and wchar.h, Section 9.1.25,
string.h and wchar.h and Section 9.1.26, time.h and wchar.h).

The remaining functions are described below. They perform conversions between multi-byte characters
and wide characters. In these functions, ps points to struct mbstate_t which holds the conversion state
information necessary to convert between sequences of multibyte characters and wide characters:

typedef struct
{

502

Libraries

wchar_t wc_value; /* wide character value solved
so far */

unsigned short n_bytes; /* number of bytes of solved
multibyte */

unsigned short encoding; /* encoding rule for wide
character <=> multibyte
conversion */

} mbstate_t;

When multibyte characters larger than 1 byte are used, this struct will be used to store the conversion
information when not all the bytes of a particular multibyte character have been read from the source. In
this implementation, multi-byte characters are 1 byte long (MB_CUR_MAX and MB_LEN_MAX are defined
as 1) and this will never occur.

mbsinit(*ps) Determines whether the object pointed to by ps, is an initial conversion
state. Returns a non-zero value if so.

mbsrtoncs(pwes ,**sr c,n,*ps) Restartable version of mbstowcs. See Section 9.1.24, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input sequence
of multibyte characters is specified indirectly by src.

wesrtombs(*s ,**sr c,n,*ps) Restartable version of wcstombs. See Section 9.1.24, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input wide
string is specified indirectly by src.

mbrtowc(*pwc ,*s ,n,*ps) Converts a multibyte character *s to a wide character *pwc according to
conversion state ps. See also mbtowc in Section 9.1.24, stdlib.h and

wchar.h.

wcrtomb(*s ,wc ,*ps) Converts a wide character wc to a multi-byte character according to
conversion state ps and stores the multi-byte character in *s.

btowc(c) Returns the wide character corresponding to character c. Returns WEOF
on error.

wctob(c) Returns the multi-byte character corresponding to the wide character c.

The returned multi-byte character is represented as one byte. Returns
EOF on error.

mbrien(*s,n,*ps) Inspects up to n bytes from the string *s to see if those characters
represent valid multibyte characters, relative to the conversion state held
in *ps.

9.1.29. wctype.h

Most functions in wctype . h represent the wide-character variant of functions declared in ctype.h and
are discussed in Section 9.1.4, ctype.h and wctype.h. In addition, this header file provides extensible,
locale specific functions and wide character classification.

wctype(*property) Constructs a value of type wctype_t that describes a class of wide characters
identified by the string *property. If property identifies a valid class of wide characters
according to the LC_TYPE category (see Section 9.1.14, locale.h) of the current
locale, a non-zero value is returned that can be used as an argument in the
iswctype function.

503

TASKING VX-toolset for PCP User Guide

iswctype(wc ,desc) Tests whether the wide character wc is a member of the class represented by
wctype_t desc. Returns a non-zero value if tested true.

Function Equivalent to locale specific test

iswalnum(wc) iswctype(wc,wctype(*"'alnum'))
iswalpha(wc) iswctype(wc,wctype(“alpha'™))
iswentri(we) iswctype(wc,wctype('cntrl™))
iswdigit(we) iswctype(wc,wctype(*'digit'))
iswgraph(wc) iswctype(wc,wctype(*'graph™))
iswlower(wc) iswctype(wc,wctype(*'lower'™))
iswprint(we) iswctype(wc,wctype("'print'))
iswpunct(we) iswctype(wc,wctype(*'punct'))
iswspace(wc) iswctype(wc,wctype(*'space'))
iswupper(wc) iswctype(wc,wctype(*'upper™))
iswxditig(we) iswctype(wc,wctype(*'xdigit'))

wectrans(*property) Constructs a value of type wctype_t that describes a mapping between wide
characters identified by the string *property. If property identifies a valid mapping
of wide characters according to the LC_TYPE category (see Section 9.1.14, locale.h)
of the current locale, a non-zero value is returned that can be used as an argument
in the towctrans function.

towctrans(we ,desc) Transforms wide character wc into another wide-character, described by desc.

Function Equivalent to locale specific transformation

towlower(we) towctrans(wec ,wctrans(*"tolower"™)
towupper(we) towctrans(wec ,wctrans('"toupper')

9.2. C Library Reentrancy

Some of the functions in the C library are reentrant, others are not. The table below shows the functions
in the C library, and whether they are reentrant or not. A dash means that the function is reentrant. Note
that some of the functions are not reentrant because they set the global variable 'errno’ (or call other
functions that eventually set 'errno’). If your program does not check this variable and errno is the only
reason for the function not being reentrant, these functions can be assumed reentrant as well.

The explanation of the cause why a function is not reentrant sometimes refers to a footnote because the
explanation is to lengthy for the table.

Function Not reentrant because

_close Uses global File System Simulation buffer, _dbg_request
_doflt Uses I/O functions which modify iob[]. See (1).
_doprint Uses indirect access to static iob[] array. See (1).

504

Libraries

Function Not reentrant because

_doscan Uses indirect access to iob[] and calls ungetc (access to local static
ungetc]] buffer). See (1).

_Exit See exit.

_Filbuf Uses iob[], which is not reentrant. See (1).

_Flsbuf Uses iob[]. See (1).

_getfilt Uses iob[]. See (1).

_iob Defines static iob[. See (1).

_Iseek Uses global File System Simulation buffer, _dbg_request

_open Uses global File System Simulation buffer, _dbg_request

_read Uses global File System Simulation buffer, _dbg_request

_unlink Uses global File System Simulation buffer, _dbg_request

_write Uses global File System Simulation buffer, _dbg_request

abort Calls exit

abs labs llabs
access

acos acosfT acosl
acosh acoshf acoshl
asctime

asin asinf asinl
asinh asinhf asinhl
atan atanf atanl
atan2 atan2f atanzl
atanh atanhf atanhl
atexit

atof

atoi

atol

bsearch

btowc

cabs cabsf cabsl
cacos cacosf cacosl
cacosh cacosh cfacoshl
calloc

carg cargf cargl
casin casinf casinl

Uses global File System Simulation buffer, _dbg_request
Sets errno.

Sets errno via calls to other functions.

asctime defines static array for broken-down time string.
Sets errno.

Sets errno via calls to other functions.

Sets errno via calls to other functions.

atexit defines static array with function pointers to execute at exit of
program.

Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
calloc uses static buffer management structures. See malloc (5).

Sets errno via calls to other functions.

505

TASKING VX-toolset for PCP User Guide

Function

Not reentrant because

casinh casinh cfasinhl
catan catanf catanl
catanh catanhf catanhl
cbrt cbrtf cbrtl

ccos ccosT ccosl

ccosh ccoshf ccoshl
ceil ceilf ceill

cexp cexpf cexpl

chdir

cimag cimagf cimagl
cleanup

clearerr

clock

clog clogf clogl

close

conj conjf conjl

copysign copysignf
copysignl

cos cosf cosl
cosh coshf coshl

cpow cpowf cpowl
cproj cprojf cprojl
creal crealf creall
csin csinf csinl
csinh csinhf csinhl
csqgrt csqrtf csqrtl
ctan ctanf ctanl
ctanh ctanhf ctanhl
ctime

difftime

div Idiv Ildiv

erf erfl erff

erfc erfcf erfcl

Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
(Not implemented)

Sets errno via calls to other functions.
Sets errno via calls to other functions.

Sets errno via calls to other functions.

Uses global File System Simulation buffer, _dbg_request

Calls fclose. See (1)
Modifies iob[]. See (1)

Uses global File System Simulation buffer, _dbg_request

Sets errno via calls to other functions.

Calls _close

cosh calls exp(), which sets errno. If errno is discarded, cosh is

reentrant.
Sets errno via calls to other functions.

Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Sets errno via calls to other functions.
Calls asctime

(Not implemented)
(Not implemented)

exit Calls fclose indirectly which uses iob[] calls functions in _atexit
array. See (1). To make exit reentrant kernel support is required

506

Function

Libraries

Not reentrant because

exp expf expl
exp2 exp2f exp2l
expml expmlf expmll
fabs fabsf fabsl
fclose

fdim fdimf fdiml
feclearexcept
fegetenv
fegetexceptflag
fegetround
feholdexept
feof
feraiseexcept
ferror

fesetenv
fesetexceptflag
fesetround
fetestexcept
feupdateenv
fflush

fgetc fgetwc
fgetpos

fgets fgetws
floor floorf floorl
fma fmaf fmal
fmax fmaxf fmaxl
fmin fminf fminl
fmod fmodf fmodl
fopen
fpclassifty
fprintf fwprintf
fputc fputwc
fputs fputws
fread

free

Sets errno.

(Not implemented)

(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

Uses values in iob[]. See (1).
(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)
Modifies iob[]. See (1).

Uses pointer to iob[]. See (1).
Sets the variable errno and uses pointer to iob[]. See (1) / (2).
Uses iob[]. See (1).

(Not implemented)

(Not implemented)

(Not implemented)

Uses iob[] and calls malloc when file open for buffered 0. See (1)
Uses iob[]. See (1).

Uses iob[]. See (2).

Uses iob[]. See (1).

Calls fgetc. See (1).

free uses static buffer management structures. See malloc (5).

507

TASKING VX-toolset for PCP User Guide

Function

Not reentrant because

freopen

frexp frexpf frexpl
fscanf fwscanf
fseek

fsetpos

fstat

ftell

fwrite

getc getwc
getchar getwchar
getcwd

getenv

gets getws
gmtime

hypot hypotf hypotl
ilogb ilogbf ilogbl
imaxabs

imaxdiv

isalnum iswalnum
isalpha iswalpha
isascii iswascii
iscntrl iswcntrl
isdigit iswdigit
isfinite

isgraph iswgraph
isgreater
isgreaterequal
isinf

isless
islessequal
islessgreater
islower iswlower
ishan

isnormal

isprint iswprint

508

Modifies iob[]. See (1).

Uses iob[]. See (1)

Uses iob[] and calls _Iseek. Accesses ungetc|] array. See (1).
Uses iob[] and sets errno. See (1) / (2).

(Not implemented)

Uses iob[] and sets errno. Calls _Iseek. See (1) / (2).
Uses iob[]. See (1).

Uses iob[]. See (1).

Uses iob[]. See ().

Uses global File System Simulation buffer, _dbg_request
Skeleton only.

Uses iob[]. See (1).

gmtime defines static structure

Sets errno via calls to other functions.

(Not implemented)

Function

Libraries

Not reentrant because

ispunct iswpunct
isspace iswspace
isunordered

isupper iswupper
iswalnum

iswalpha

iswentrl

iswctype

iswdigit

iswgraph

iswlower

iswprint

iswpunct

iswspace

iswupper

iswxditig

isxdigit iswxdigit
ldexp ldexpf Idexpl
Igamma lgammaf Igammal
Ilrint Irintf Irintl

Ilround Ilroundf Ilroundl

localeconv
localtime

log logf logl

1og10 loglO0f logl0l
loglp loglpf loglpl
log2 log2f log2l
logb logbf logbl
longjmp

Irint Irintf Irintl
Iround lroundf lroundl
Iseek

Istat

malloc

mblen

Sets errno. See (2).

(Not implemented)

(Not implemented)

(Not implemented)

N.A.; skeleton function

Sets errno. See (2).

Sets errno via calls to other functions.
(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

(Not implemented)

Calls _Iseek

(Not implemented)

Needs kernel support. See (5).

N.A., skeleton function

509

TASKING VX-toolset for PCP User Guide

Function Not reentrant because
mbrlen Sets errno.

mbrtowc Sets errno.

mbsinit -

mbsrtowcs Sets errno.

mbstowcs N.A., skeleton function
mbtowc N.A., skeleton function

memchr wmemchr
memcmp wmemcmp
memcpy wmemcpy
memmove wmemmove
memset wmemset
mktime

modf modff modfl
nan nanf nanl

nearbyint nearbyintf
nearbyintl

nextafter nextafterf
nextafterl

nexttoward nexttowardf

nexttowardl
offsetof

open

perror

pow powf powl
printf wprintf
putc putwc
putchar putwchar

(Not implemented)
(Not implemented)

(Not implemented)

(Not implemented)

Calls _open

Uses errno. See (2)
Sets errno. See (2)
Uses iob[]. See (1)
Uses iob[]. See (1)
Uses iob[]. See (1)

puts Uses iob[]. See (1)

gsort -

raise Updates the signal handler table

rand Uses static variable to remember latest random number. Must
diverge from ISO C standard to define reentrant rand. See (4).

read Calls _read

realloc See malloc (5).

remainder remainderf
remainderl

(Not implemented)

510

Libraries

Function Not reentrant because

remove Uses global File System Simulation buffer, _dbg_request
remquo remquof remquol (Not implemented)

rename Uses global File System Simulation buffer, _dbg_request

rewind
rint rintf rintl

round roundf roundl

scalbln scalbInf scalblnl
scallbn scalbnf scalbnl

scanf wscanf
setbuf

setjmp
setlocale
setvbuf

signal

signbit

sin sinf sinl
sinh sinhf sinhl
snprintf swprintf
sprintf

sqgrt sqrtf sqrtl
srand

sscanf swscanf
stat

strcat wcscat
strchr wcschr
strcmp wescmp
strcoll wcscoll
strcpy wcscpy
strcspn wescspn
strerror
strftime wstrftime
strlen wcslen
strncat wcsncat
strncmp wcsncmp

strncpy wcsncpy

Eventually calls _Iseek
(Not implemented)
(Not implemented)

Uses iob[], calls _doscan. See (1).
Sets iob[]. See (1).

N.A.; skeleton function

Sets iob and calls malloc. See (1) / (5).
Updates the signal handler table

Sets errno via calls to other functions.
Sets errno. See (2).

Sets errno. See (2).

Sets errno. See (2).

See rand

Sets errno via calls to other functions.

Uses global File System Simulation buffer, _dbg_request

TASKING VX-toolset for PCP User Guide

Function

Not reentrant because

strpbrk wcspbrk
strrchr wcsrchr
strspn wcsspn
strstr wcsstr
strtod wcstod
strtof wcstof
strtoimax
strtok wcstok

strtol wcstol
strtold wcstold
strtoul wcstoul
strtoull wcstoull
strtoumax
strxfrm wesxfrm
system

tan tanf tanl
tanh tanhf tanhl

tgamma tgammaf tgammal

time
tmpfile
tmpnam

toascii

tolower

toupper

towctrans

towlower

towupper

trunc truncf truncl

ungetc ungetwc

unlink
vfprintf vfwprintf
vfscanf vfwscanf

512

Sets errno via calls to other functions.

strtok saves last position in string in local static variable. This function
is not reentrant by design. See (4).

Sets errno. See (2).

Sets errno. See (2).

Sets errno. See (2).

Sets errno via calls to other functions.

N.A; skeleton function

Sets errno. See (2).

Sets errno via call to other functions.

(Not implemented)

Uses static variable which defines initial start time
Uses iob[]. See (1).

Uses local buffer to build filename.
Function can be adapted to use user buffer. This makes the function
non ISO C. See (4).

(Not implemented)

Uses static buffer to hold unget characters for each file. Can be
moved into iob structure. See (1).

Uses global File System Simulation buffer, _dbg_request
Uses iob[]. See (1).
Calls _doscan

Libraries

Function Not reentrant because

vprintf vwprintf Uses iob[]. See (1).

vscanf vwscanf Calls _doscan

vsprintf vswprintf Sets errno.

vsscanf vswscanf Sets errno.

wcrtomb Sets errno.

wcsrtombs Sets errno.

wcstoimax Sets errno via calls to other functions.
wcstombs N.A.; skeleton function

wcstoumax Sets errno via calls to other functions.
wctob -

wctomb N.A.; skeleton function

wctrans -

wctype -

write Calls _write

Table: C library reentrancy
Several functions in the C library are not reentrant due to the following reasons:
» The 1ob[] structure is static. This influences all 1/O functions.

» The ungetc[] array is static. This array holds the characters (one for each stream) when ungetc()
is called.

» The variable errno is globally defined. Numerous functions read or modify errno

e _doprint and _doscan use static variables for e.g. character counting in strings.

» Some string functions use locally defined (static) buffers. This is prescribed by ANSI.
« mal loc uses a static heap space.

The following description discusses these items into more detail. The numbers at the begin of each
paragraph relate to the number references in the table above.

(1) iob structures

The 1/O part of the C library is not reentrant by design. This is mainly caused by the static declaration of
the iob[] array. The functions which use elements of this array access these elements via pointers (
FILE *).

Building a multi-process system that is created in one link-run is hard to do. The C language scoping
rules for external variables make it difficult to create a private copy of the iob[] array. Currently, the
iob[] array has external scope. Thus it is visible in every module involved in one link phase. If these
modules comprise several tasks (processes) in a system each of which should have its private copy of

513

TASKING VX-toolset for PCP User Guide

iob[], itis apparent that the 1ob[] declaration should be changed. This requires adaptation of the
library to the multi-tasking environment. The library modules must use a process identification as an index
for determining which iob[] array to use. Thus the library is suitable for interfacing to that kernel only.

Another approach for the 1ob[] declaration problem is to declare the array static in one of the modules
which create a task. Thus there can be more than one iob[] array is the system without having conflicts
at link time. This brings several restrictions: Only the module that holds the declaration of the static iob[]
can use the standard file handles stdin, stdout and stderr (which are the first three entries in iob[]).
Thus all I/O for these three file handles should be located in one module.

(2) errno declaration

Several functions in the C library set the global variable errno. After completion of the function the user
program may consult this variable to see if some error occurred. Since most of the functions that set
errno already have a return type (this is the reason for using errno) it is not possible to check successful
completion via the return type.

The library routines can set errno to the values defined in errno.h. See the file errno.h for more
information.

errno can be set to ERR_FORMAT by the print and scan functions in the C library if you specify illegal
format strings.

errno will never be set to ERR_NOLONG or ERR_NOPOINT since the C library supports long and
pointer conversion routines for input and output.

errno can be set to ERANGE by the following functions: exp(), strtol (), strtoul () and tan().
These functions may produce results that are out of the valid range for the return type. If so, the result of
the function will be the largest representable value for that type and errno is set to ERANGE.

errno is set to EDOM by the following functions: acos(), asin(), log(), pow() and sqrt(). If the
arguments for these functions are out of their valid range (e.g. sqrt(-1)), errno is set to EDOM.

errno can be setto ERR_POS by the file positioning functions ftel 1 (), fsetpos() and fgetpos().
(3) ungetc

Currently the ungetc buffer is static. For each file entry in the 1ob[] structure array, there is one character
available in the buffer to unget a character.

(4) local buffers

tmpnam() creates a temporary filename and returns a pointer to a local static buffer. This is according
to the ANSI definition. Changing this function such that it creates the name in a user specified buffer
requires another calling interface. Thus the function would be no longer portable.

strtok() scans through a string and remembers that the string and the position in the string for
subsequent calls. This function is not reentrant by design. Making it reentrant requires support of a kernel
to store the information on a per process basis.

514

Libraries

rand() generates a sequence of random numbers. The function uses the value returned by a previous
call to generate the next value in the sequence. This function can be made reentrant by specifying the
previous random value as one of the arguments. However, then it is no longer a standard function.

(5) malloc

Malloc uses a heap space which is assigned at locate time. Thus this implementation is not reentrant.
Making a reentrant malloc requires some sort of system call to obtain free memory space on a per process
basis. This is not easy to solve within the current context of the library. This requires adaptation to a
kernel.

This paragraph on reentrancy applies to multi-process environments only. If reentrancy is required
for calling library functions from an exception handler, another approach is required. For such a
situation it is of no use to allocate e.g. multiple 1ob[] structures. In such a situation several pieces
of code in the library have to be declared ‘atomic': this means that interrupts have to be disabled
while executing an atomic piece of code.

515

TASKING VX-toolset for PCP User Guide

516

Chapter 10. List File Formats

This chapter describes the format of the assembler list file and the linker map file.

10.1. Assembler List File Format

The assembiler list file is an additional output file of the assembler that contains information about the
generated code. For details on how to generate a list file, see Section 4.5, Generating a List File.

The list file consists of a page header and a source listing.
Page header

The page header is repeated on every page:

TASKING VX-toolset for PCP: PCP assembler vx.yrz Build nnn SN 00000000
Title Page 1

ADDR CODE CYCLES LINE SOURCE LINE

The first line contains version information. The second line can contain a title which you can specify with
the assembler control $TITLE and always contains a page number. The third line is empty and the fourth
line contains the headings of the columns for the source listing.

With the assembler controls $LI1ST, $PAGE, and with the assembler option --list-format you can format
the list file.

Source listing

The following is a sample part of a listing. An explanation of the different columns follows below.

ADDR CODE CYCLES LINE SOURCE LINE
1 ; Module start

0003 93COrrrr 27 Idl_il r7,@DPTR(_PCP_world)
0005 53rr 28 Id.pi r5,[_PCP_world]
0006 93COrrrr 29 Idl_.il r7,@DPTR(_PCP__data__printf)
0008 55rr 30 st._pi r5,[_PCP__data__printf]
0000 44 buf: -.space 4

| RESERVED
0003
ADDR This column contains the memory address. The address is a hexadecimal number

that represents the offset from the beginning of a relocatable section or the absolute
address for an absolute section. The address only appears on lines that generate
object code.

517

TASKING VX-toolset for PCP User Guide

CODE This is the object code generated by the assembler for this source line, displayed
in hexadecimal format. The displayed code need not be the same as the generated
code that is entered in the object module. The code can also be relocatable code.
In this case the letter 'r' is printed for the relocatable code part in the listing. For
lines that allocate space, the code field contains the text "RESERVED". For lines
that initialize a buffer, the code field lists one value followed by the word
"REPEATS".

CYCLES The first number in this column is the number of instruction cycles needed to
execute the instruction(s) as generated in the CODE field. The second number is
the accumulated cycle count of this section.

LINE This column contains the line number. This is a decimal humber indicating each
input line, starting from 1 and incrementing with each source line.

SOURCE LINE This column contains the source text. This is a copy of the source line from the
assembly source file.

For the .SET and .EQU directives the ADDR and CODE columns do not apply. The symbol value is listed
instead.

10.2. Linker Map File Format

The linker map file is an additional output file of the linker that shows how the linker has mapped the
sections and symbols from the various object files (. 0) to output sections. Locate information is not
present, because that is not available for a PCP project. External symbols are listed per space with their
absolute address, both sorted on symbol and sorted on address. For details on how to generate a map
file, see Section 5.9, Generating a Map File.

With the linker option --map-file-format you can specify which parts of the map file you want to see.

In Eclipse the linker map file (project.mapxml) is generated in the output directory of the build configuration,
usually Debug or Release. You can open the map file by double-clicking on the file name.

518

[E) mypraject mapxml £3

=] Select table:

[in] File
myproject, o
mypraject. o
myproject. o
myproject, o
mypraject. o
myproject, o
myproject. o
myprajeckt.o
myproject, o
mypraject. o
mypraject.o
myproject, o
mypraject. o
myproject. o
myproject, o
mypraject. o
myproject, o
mypraject. o
mypraject.o
myproject, o
4

List File Formats

=g EE Qutling 2 =0
9 Toal and Invacation
— Link Result
Call araph
= Creerlay

[in] Section [in] Size (MALY | [out] OFfset | [out] Section #* Crverlay: popdata.stack_daka (438)
pcpdata.data (4) 0x00000005 00 .pcpdata.data Paths
.pepdata.data (87) 0x0000000d 00 .pcpdata.data Removed Sections
.pcpdata.data (58) Ox 00000050 00 .pcpdata.data
pcpdata.data (897 0x00000050 00 pcpdata.data
.pcpdata, data@page0_rmyproject (14) 0x00000015 00 .pcpdata.data
.pepdata, data@pagel_myproject (56) 0x00000005 0x0 .pcpdata.data
.peptext.code (2) 0x0000000e 00 .peptext.code
.pcptext.code {3) Ox 00000020 00 .pcptext.code
.peptext.code (5) 0x0000000d 00 pcptext.code
peptext.code (6) 0x00000002 00 .peptext.code
.pcptext.code (7) Ox00000013 00 .pcptext.code
peptext.code (107 0x0000003a 00 peptext.code
peptext.code (113 0x00000047 00 .peptext.code
.peptext.code (12) Ox 00000007 00 .pcptext.code
peptext.code (16) 0x00000028 00 peptext.code
.peptext.code (17) 000000045 0x0 .peptext.code
peptext.code (223 0x0000003F 00 pcptext.code
peptext.code (233 0x0000011F 00 .peptext.code
.pcptext.code (243 Ox 00000005 00 .pcptext.code
peptext.code (273 0x000000a1 00 peptext.code

>

Each page displays a part of the map file. You can use the drop-down list or the Outline view to navigate
through the different tables and you can use the following buttons.

Icon Action Description

=) Back Goes back one page in the history list.

I Forward Goes forward one page in the history list.

=) Next Table Shows the next table from the drop-down list.

=3 Previous Table Shows the previous table from the drop-down list.

When you right-click in the view, a popup menu appears (for example, to reset the layout of a table). The
meaning of the different parts is:

Tool and Invocation

This part of the map file contains information about the linker, its version header information, binary
location and which options are used to call it.

Processed Files

This part of the map file shows all processed files. This also includes object files that are extracted from
a library, with the symbol that led to the extraction. This part is not available when you use MIL linking
(control program option --mil-link).

519

TASKING VX-toolset for PCP User Guide

Link Result

This part of the map file shows per object file how the link phase has mapped the sections from the various
object files (. 0) to output sections.

[in] File The name of an input object file.

[in] Section A section name and id from the input object file. The number between '()' uniquely
identifies the section.

[in] Size The size of the input section.

[out] Offset The offset relative to the start of the output section.

[out] Section The resulting output section name and id.

[out] Size The size of the output section.

Module Local Symbols

This part of the map file shows a table for each local scope within an object file. Each table has three
columns, 1 the symbol name, 2 the address of the symbol and 3 the space where the symbol resides in.
The table is sorted on symbol name within each space.

By default this part is not shown in the map file. You have to turn this part on manually with linker option
--map-file-format=+statics (module local symbols).

Cross References

This part of the map file lists all symbols defined in the object modules and for each symbol the object
modules that contain a reference to the symbol are shown. Also, symbols that remain undefined are
shown. This part is not available when you use MIL linking (control program option --mil-link).

Call Graph

This part of the map file contains a schematic overview that shows how (library) functions call each other.
To obtain call graph information, the assembly file must contain . CALLS directives.

You can click the + or - sign to expand or collapse a single node. Use the '+ / = buttons to expand/collapse
all nodes in the call graph.

Icon Meaning Description

This function is the top of the call graph. If there are interrupt handlers, there
can be several roots.

el Root

This function is referenced by several No leaf functions. Right-click on the
B Callee function and select Expand all References to see all functions that
reference this function. Select Back to Caller to return to the calling function.

o Node A normal node (function) in the call graph.

This function calls a function which is listed separately in the call graph.
= Caller Right-click on the function and select Go to Callee to see the callee. Hover
the mouse over the function to see a popup with all callees.

520

List File Formats

Overlay

This part of the map file shows how the stack is organized. This part also shows the locate overlay
information if you used overlay groups in the linker script file.

Processor and Memory

This part of the map file shows the processor and memory information of the linker script file.

By default this part is not shown in the map file. You have to turn this part on manually with linker option
--map-file-format=+Isl (processor and memory info). You can print this information to a separate file with
linker option --Isl-dump.

You can click the + or - sign to expand or collapse a part of the information.

Removed Sections

This part of the map file shows the sections which are removed from the output file as a result of the

optimization option to delete unreferenced sections and or duplicate code or constant data (linker option
--optimize=cxy).

Section The name of the section which has been removed.

File The name of the input object file where the section is removed from.

Library The name of the library where the object file is part of.

Symbol The symbols that were present in the section.

Reason The reason why the section has been removed. This can be because the section

is unreferenced or duplicated.

521

TASKING VX-toolset for PCP User Guide

522

Chapter 11. Linker Script Language (LSL)

To make full use of the linker, you can write a script with information about the architecture of the target
processor and locating information. The language for the script is called the Linker Script Language (LSL).
This chapter first describes the structure of an LSL file. The next section contains a summary of the LSL
syntax. In the remaining sections, the semantics of the Linker Script Language is explained.

The TASKING linker is a target independent linker/locator that can simultaneously link and locate all
programs for all cores available on a target board. The target board may be of arbitrary complexity. A
simple target board may contain one standard processor with some external memory that executes one
task. A complex target board may contain multiple standard processors and DSPs combined with
configurable IP-cores loaded in an FPGA. Each core may execute a different program, and external
memory may be shared by multiple cores.

LSL serves two purposes. First it enables you to specify the characteristics (that are of interest to the
linker) of your specific target board and of the cores installed on the board. Second it enables you to
specify how sections should be located in memory.

11.1. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by Altium. Altium supplies LSL files in the include. Isl directory.
The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

See Section 11.4, Semantics of the Architecture Definition for detailed descriptions of LSL in the architecture
definition.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

Altium provides LSL descriptions of supported derivatives, along with "SFR files", which provide easy
access to registers in /O sub-systems from C and assembly programs. When you build an ASIC or use
a derivative that is not (yet) supported by the TASKING tools, you may have to write a derivative definition.

523

TASKING VX-toolset for PCP User Guide

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

See Section 11.5, Semantics of the Derivative Definition for a detailed description of LSL in the derivative
definition.

The processor definition

The processor definition describes an instance of a derivative. Typically the processor definition instantiates
one derivative only (single-core processor). A processor that contains multiple cores having the same
(homogeneous) or different (heterogeneous) architecture can also be described by instantiating multiple
derivatives of the same or different types in separate processor definitions.

See Section 11.6, Semantics of the Board Specification for a detailed description of LSL in the processor
definition.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to
define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

See Section 11.6.3, Defining External Memory and Buses, for more information on how to specify the
external physical memory layout. Internal memory for a processor should be defined in the derivative
definition for that processor.

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

» convert a logical address to an offset within a memory device
* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating
The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given load-address or run-time address,
to place sections in a given order, and to overlay code and/or data sections.

Which object files (sections) constitute the task that will run on a given core is specified on the command
line when you invoke the linker. The linker will link and locate all sections of all tasks simultaneously.
From the section layout definition the linker can deduce where a given section may be located in memory;,

524

Linker Script Language (LSL)

form the board specification the linker can deduce which physical memory is (still) available while locating
the section.

See Section 11.8, Semantics of the Section Layout Definition, for more information on how to locate a
section at a specific place in memory.

Skeleton of a Linker Script File

architecture architecture_nane

{

// Specification core architecture
}
derivative derivative_nane
{

// Derivative definition
}
processor processor_nane
{

// Processor definition
}

nmenory and/or bus definitions

section_layout space_nane

{
}

// section placement statements

11.2. Syntax of the Linker Script Language

This section describes what the LSL language looks like. An LSL document is stored as a file coded in
UTF-8 with extension . Isl. Before processing an LSL file, the linker preprocesses it using a standard
C preprocessor. Following this, the linker interprets the LSL file using a scanner and parser. Finally, the
linker uses the information found in the LSL file to guide the locating process.

11.2.1. Preprocessing

When the linker loads an LSL file, the linker processes it with a C-style prepocessor. As such, it strips C
and C++ comments. You can use the standard ISO C preprocessor directives, such as #include,
#deFfine, #if/#else/#endif.

For example:

#include "arch.lIsl"

Preprocess and include the file arch. Isl at this point in the LSL file.

525

TASKING VX-toolset for PCP User Guide

11.2.2. Lexical Syntax

The following lexicon is used to describe the syntax of the Linker Script Language:

A::=B = Aisdefined as B

A::=BC = Ais defined as B and C; B is followed by C

A::=B] C = AisdefinedasBorC

0It = zero or one occurrence of B

>70 = zero of more occurrences of B

>"1 = one of more occurrences of B

| DENTI FI ER = acharacter sequence starting with 'a’-'z', 'A’-'’Z' or '_". Following
characters may also be digits and dots "'

STRI NG = sequence of characters not starting with \n, \r or \t

DQSTRI NG = " STRING " (double quoted string)

CCT_NUM = octal number, starting with a zero (06, 045)

DEC_NUM = decimal number, not starting with a zero (14, 1024)

HEX_NUM = hexadecimal number, starting with '0x' (0x0023, OxFF0O0)

OCT_NUM DEC_NUMand HEX_NUMcan be followed by a k (kilo), M (mega), or G (giga).

Characters in bold are characters that occur literally. Words in italics are higher order terms that are
defined in the same or in one of the other sections.

To write comments in LSL file, you can use the C style '/* */' or C++ style '//'.

11.2.3. Identifiers and Tags

ar ch_nane = | DENTI FI ER
bus_nane = | DENTI FI ER
cor e_nane = | DENTI FI ER
derivative_nane = | DENTI FI ER
file_name = DQSTRI NG
group_nane := | DENTI FI ER
heap_nane = section_nane
mem_namnme = | DENTI FI ER
proc_narme := | DENTI FI ER
section_nane = DQSTRI NG
space_nane := | DENTI FI ER
stack_nane = section_nane
synbol _narme = DQSTRI NG

526

Linker Script Language (LSL)

(tag<, tag>""0)
tag = DQSTRI NG

tag_attr
t ag

A tag is an arbitrary text that can be added to a statement.

11.2.4. Expressions

The expressions and operators in this section work the same as in ISO C.

nunber COCT_NUM
DEC_NUM

HEX_NUM

nunber

synbol _nane
unary_op expr

expr binary_op expr
expr ? expr : expr
(expr)
function_cal

expr

unary_op ! // logical NOT
~ // bitwise complement

- // negative value

bi nary_op A // exclusive OR

* // multiplication

/ // division

% // modulus

+ // addition

- // subtraction

>> // right shift

<< // left shift

== // equal to

// not equal to

> // greater than

< // less than

>= // greater than or equal to
<= // less than or equal to
& // bitwise AND

[// bitwise OR

&& // logical AND

[] // logical OR

11.2.5. Built-in Functions
function_call = absolute (expr)

| addressof (addr_id)

| exists (section_nane)
| max (expr , expr)

527

TASKING VX-toolset for PCP User Guide

| min (expr , expr)
| sizeof (size_id)

addr _id = sect : section_nane
| group : group_nane
size_id = sect : section_nane

group : group_nane
mem : mem nane

» Every space, bus, memory, section or group your refer to, must be defined in the LSL file.

» The addressof() and sizeof() functions with the gr oup or sect argument can only be used in
the right hand side of an assignment. The sizeof () function with the nemargument can be used
anywhere in section layouts.

You can use the following built-in functions in expressions. All functions return a numerical value. This
value is a 64-bit signed integer.

absolute()

int absolute(expr)

Converts the value of expr to a positive integer.
absolute("labelA"-"l1abelB")
addressof()

int addressof(addr _id)

Returns the address of addr_id, which is a named section or group. To get the offset of the section with
the name asect:

addressof(sect: "asect')

This function only works in assignments.

exists()
int exists(section_nane)

The function returns 1 if the section section_name exists in one or more object file, O otherwise. If the
section is not present in input object files, but generated from LSL, the result of this function is undefined.

To check whether the section mysection exists in one of the object files that is specified to the linker:

exists("mysection")

528

Linker Script Language (LSL)

max()

int max(expr, expr)

Returns the value of the expression that has the largest value. To get the highest value of two symbols:
max("'syml"™ , *‘'sym2')

min()

int min(expr, expr)

Returns the value of the expression hat has the smallest value. To get the lowest value of two symbols:
min("'syml"™ , ''sym2')

sizeof()

int sizeof(size_id)

Returns the size of the object (group, section or memory) the identifier refers to. To get the size of the
section "asection":

sizeof(sect: "asection”)

The gr oup and sect arguments only works in assignments. The memargument can be used
anywhere in section layouts.

11.2.6. LSL Definitions in the Linker Script File
description ::= <definition>""1

architecture_definition
derivative_definition
boar d_spec
section_definition
section_setup

definition o:

» Atleastone architecture_definition mustbe presentin the LSL file.

11.2.7. Memory and Bus Definitions
mem def ::= nemory nemname <tag attr>°11 { <memdescr ;> }
 Anem def defines a memory with the nem _nane as a unique name.
mem descr 1= type = <reserved>°l nem type
| mau = expr

| size = expr
| speed = nunber

529

TASKING VX-toolset for PCP User Guide

| fill <= fill_values>°I*

| mappi ng
 Anem def contains exactly one t ype statement.
 Anmem def contains exactly one nmau statement (non-zero size).
* Anmem def contains exactly one si ze statement.
« Anem_def contains zero or one speed statement (if absent, the default speed value is 1).
« Anem def contains zerooronefil | statement.

 Anmem def contains at least one mappi ng

nmem type = rom // attrs = rx

| ram // attrs = rw

| nvram // attrs = rwx
fill_val ues II= expr

| [expr <, expr>"70]
bus_def ::= bus bus_nanme { <bus_descr ;>0 }

» Abus_def statement defines a bus with the given bus_nane as a unique name within a core
architecture.

bus_descr II= mau = expr
| wiwdth = expr // bus width, nr
| // of data bits
| mappi ng // legal destination

// "“bus® only

The mau and wi dt h statements appear exactly once in a bus_descr . The default value for wi dt h is
the mau size.

The bus width must be an integer times the bus MAU size.
* The MAU size must be non-zero.

» A bus can only have a nappi ng on a destination bus (through dest = bus:).

mappi ng 2= map (map_descr <, matp_descr>>:O)
dest = destination

dest _dbits = range

dest _offset = expr

size = expr

src_dbits = range

src_offset = expr

| tag

map_descr I

« A mappi ng requires at least the si ze and dest statements.

530

Linker Script Language (LSL)

» Each map_descr can occur only once.
» You can define multiple mappings from a single source.
» Overlap between source ranges or destination ranges is not allowed.

« Ifthe src_dbits ordest _dbits statement is not present, its value defaults to the wi dt h value if
the source/destination is a bus, and to the nau size otherwise.

destination II= space : space_nane
| bus : <proc_name |
core_nane :>°1' pus_nane

» A space_nane refers to a defined address space.
* A proc_nane refers to a defined processor.
» Acore_nane refers to a defined core.
« A bus_nane refers to a defined bus.
» The following mappings are allowed (source to destination)

* space => space

e space => bus

* bus => bus

e memory => bus
range II= expr .. expr
» With address ranges, the end address is not part of the range.

11.2.8. Architecture Definition

architecture_definition
= architecture arch_nane
<(paraneter_list)>0I
<extends arch_nane
<(argunent |ist)>C11 50l
{ <arch_spec>"70}

1

 Anarchitecture_definition defines a core architecture with the given ar ch_nane as a unique
name.

» Atleast one space_def and at least one bus_def have to be presentin an
architecture_definition.

 Anarchitecture_definitionthatusesthe ext ends construct defines an architecture that inherits
all elements of the architecture defined by the second ar ch_nan®e. The parent architecture must be
defined in the LSL file as well.

531

TASKING VX-toolset for PCP User Guide

parameter_|i st 1= parameter <, paraneter>""

IDENTIFIER <= expr>°1?

par anet er

expr <, expr>>79

argunent _|i st

arch_spec = bus_def
| space_def
| endi anness_def
space_def II= space space_nane <t ag_attr>°|1 { <space_descr; >}

» Aspace_def defines an address space with the given space_nane as a uniqgue name within an
architecture.

space_descr 1= space_property ;
section_definition //no space ref
vect or _t abl e_st at emrent

reserved_range

id = nunber // as used in object
mu = expr
align = expr

space_property i

page_size = expr <[range] <| [range]>>7>0I%
page

direction = direction

st ack_def

heap_def

copy_t abl e_def
start _address

mappi ng

» Aspace_def contains exactly one i d and one mau statement.
» Aspace_def contains at most one al i gn statement.

» Aspace_def contains at most one page_si ze statement.

» Aspace_def contains at most one mappi ng.

st ack_def ::= stack stack_nane (stack_heap_descr
<, stack_heap_descr >>70)

» Astack_def defines a stack with the st ack_nan® as a unique name.

heap_def ::= heap heap_nane (stack_heap_descr
<, stack_heap_descr >0)

* Aheap_def defines a heap with the heap_nane as a unique name.
stack_heap_descr ::= min_size = expr

| grows = direction
| align = expr

532

Linker Script Language (LSL)

| fixed
| id = expr
| tag

* The m n_si ze statement must be present.
» You can specify at most one al i gn statement and one gr ows statement.

» Each stack definition has its own unique i d, the number specified corresponds to the index in the
-CALLS directive as generated by the compiler.

direction ::= low_to_high

| high_to_ | ow
« If you do not specify the gr ows statement, the stack and heap grow | ow t o- hi gh.

copy_t abl e_def ::= copytable <(copy_table_descr
<, copy_table_descr >0)>0l1

» Aspace_def contains at most one copyt abl e statement.
» Exactly one copy table must be defined in one of the spaces.

copy_table_descr ::= align = expr

| copy_unit = expr

| dest <space _nane>°l! = space_name
| page

| tag

» The copy_uni t is defined by the size in MAUs in which the startup code moves data.

» The dest statementis only required when the startup code initializes memory used by another processor
that has no access to ROM.

* A space_nane refers to a defined address space.

start_addr ::= start_address (start_addr_descr
<, start_addr_descr>>)

start_addr_descr ::= run_addr = expr
| synbol = synbol _nane

» Asynbol _nane refers to the section that contains the startup code.

vector _tabl e_statenent
::= vector_table section_nane
(vecttab_spec <, vecttab_spec>
{ <vector_def>>0}

>=0)

vecttab_spec 1= vector_size = expr

| size = expr

| i d_synbol _prefix = synbol _nane
|

run_addr = addr_absol ute

533

TASKING VX-toolset for PCP User Guide

tenpl ate = section_nane
tenpl at e_synbol = synbol _nane
vector_prefix = section_nane

fill = vector_val ue
no_inline
copy
tag
vect or _def ::= vector (vector_spec <, vector_spec>>:0);

vect or _spec

id = vector_id_spec
fill = vector_val ue
opti onal

tag

nunber
[range | <, [range]>>7°

vector _id_spec

vect or _val ue

synbol _nane
[number <, number>>7]
loop <[expr]>°I*

reserved_range ::= reserved <tag attr>°1% expr .. expr ;
» The end address is not part of the range.
endi anness_def ::= endi anness { <endi anness_type; >t }

endi anness_t ype s

11.2.9. Derivative Definition

derivative_definition
::= derivative derivative_nane
<(paranmeter_list)>0I
<ext ends derivative_nane
<(argument _|ist)>C01t 5011
{ <derivative_spec>""C }

 Aderivative_definition defines a derivative with the given deri vati ve_nane as a unique
name.

derivative_spec ::= core_def

| bus_def

| mem def

| section_definition // no processor name
| section_setup

core_def ::= core core_nane { <core_descr : >>70 }

» Acore_def defines a core with the given cor e_nane as a unigue name.

534

Linker Script Language (LSL)

» Atleast one cor e_def must be presentinaderivative_definition.
core_descr ::= architecture = arch_nane
<(argunent _list)>0I
| endi anness = (endi anness_type
<, endi anness_type>"70)
* An ar ch_nane refers to a defined core architecture.

» Exactly one ar chi t ect ur e statement must be presentin a cor e_def .

11.2.10. Processor Definition and Board Specification

boar d_spec ::= proc_def
| bus_def
| mem def
proc_def II= processor proc_nane
{ proc_descr ; }
proc_descr ::= derivative = derivative_nane

<(argunent_|ist)>0It
» Aproc_def defines a processor with the pr oc_nane as a unique name.

« If you do not explicitly define a processor for a derivative in an LSL file, the linker defines a processor
with the same name as that derivative.

A derivati ve_nane refers to a defined derivative.

* Aproc_def contains exactly one deri vat i ve statement.

11.2.11. Section Layout Definition and Section Setup
section_definition ::= section_|layout <space_ref>C0It

<(space_l ayout _properties)>0l1

{ <section_statement>"" }
A section definition inside a space definition does not have a space_r ef .

« All global section definitions have a space_r ef .

space_r ef ::= <proc_nane>’1' : <core_name>°I*
space_name

« If more than one processor is present, the pr oc_nane must be given for a global section layout.

« If the section layout refers to a processor that has more than one core, the cor e_namne must be given
in the space_ref.

* A proc_nane refers to a defined processor.

» A core_nane refers to a defined core.

535

TASKING VX-toolset for PCP User Guide

* A space_nane refers to a defined address space.

space_| ayout _properties

::= space_l ayout _property <, space_| ayout_property >0
space_| ayout _property

::= locate_direction

| tag
| ocate direction =::= direction = direction
direction 2= low_to_high

| high_to_low
» A section layout contains at most one di r ect i on statement.

« If you do not specify the di r ect i on statement, the locate direction of the section layout is
| owt o- hi gh.

section_stat enent
:= sinple_section_statenent ;
| aggregat e_secti on_st at enent

si npl e_section_st at enent
1= assi gnment
| sel ect _section_statenent
| special _section_statenent

assi gnnent ::= synbol _name assign_op expr

assi gn_op s

sel ect _section_statenent
1= select <ref tree>’lt <section_name>°lt
<section_sel ections>%l*

» Either asecti on_nane or at least one sect i on_sel ecti on must be defined.
section_sel ections
::= (section_selection

<, section_sel ection>)

section_sel ection
::= attributes = < <+|-> attribute>™
| tag

» +attribute means: select all sections that have this attribute.
» -attribute means: select all sections that do not have this attribute.

speci al _secti on_st at ement
::= heap heap_nane <stack_heap_nods>°I*

536

Linker Script Language (LSL)

| stack stack_name <stack_heap_nods>°l*
| copytable
| reserved section_nane <reserved_specs>l1

» Special sections cannot be selected in load-time groups.
st ack_heap_nods ::= (stack_heap_nod <, stack_heap_nod>""0)

st ack_heap_nod Ii= size = expr

| tag
reserved_specs ::= (reserved_spec <, reserved_spec>""C)

= attributes
| fill_spec

| size = expr

| alloc_all owed = absolute | ranged

reserved_spec s

» Ifareserved section has attributes r, rw, X, rx or rwx, and no fill pattern is defined, the section is
filled with zeros. If no attributes are set, the section is created as a scratch section (attributes ws, no
image).

fill_spec = fill = fill _values

fill _val ues II= expr
| [expr <, expr>70]

aggr egat e_secti on_st at ement

::= { <section_statenent>"70 }
group_descr
i f _statenent
section_creation_statenent

S0l1 S0J1

= group <group_namne <(group_specs)
section_st at ement

group_descr

» For every group with a name, the linker defines a label.

» No two groups for address spaces of a core can have the same gr oup_nane.

gr oup_specs ::1= group_spec <, group_spec >0

group_al i gnment
attributes

group_spec s

|

| copy

| nocopy

| group_Il oad_address

| fill <= fill_val ues>°l*
| group_page

| group_run_address

| group_type

|

al l ow_cross_references

537

TASKING VX-toolset for PCP User Guide
| priority = nunber
| tag
» The al | ow cross-r ef er ences property is only allowed for overlay groups.

» Sub groups inherit all properties from a parent group.

group_al i gnment = align = expr
attributes ::= attributes = <attribute>""!
attribute = // readable sections

| w // writable sections

| x // executable code sections

| i // initialized sections

| s // scratch sections

| b // blanked (cleared) sections

group_| oad_addr ess
::= |l oad_addr <= | oad_or_run_addr>°l%

page <= expr>°l?
page_size = expr <[range] <| [range]>

gr oup_page
>=0,,0]1

S0I1

group_run_address ::= run_addr <= |oad_or_run_addr

cl ustered
cont i guous
ordered
overl ay

group_type

» For non-contiguous groups, you can only specify gr oup_al i gnnent and attri but es.
» The over | ay keyword also sets the cont i guous property.
» The cl ust er ed property cannot be set together with cont i guous or or der ed on a single group.

| oad_or _run_addr ::= addr_absol ute

| addr_range <| addr_range>""°

addr _absol ute II= expr
| menory_reference [expr]

» An absolute address can only be set on ordered groups.
addr _range = [expr .. expr]
| menory_reference
| menory_reference [expr .. expr]

» The parent of a group with an addr _r ange or page restriction cannot be or der ed, cont i guous or
clustered.

» The end address is not part of the range.

538

Linker Script Language (LSL)

nmemory_reference ::= mem: <proc_nane :>°1 nem nane
* A proc_nane refers to a defined processor.

« A nem _nane refers to a defined memory.

i f_statenent = if (expr) section_statenent

<el se section_statenent >°I*
section_creation_statenment
::= section section_nane (section_specs)
{ <section_statenent2>>70 }

section_specs 1= section_spec <, section_spec >
section_spec = attributes
| fill_spec
| size = expr
| bl ocksize = expr
| overflow = section_nane
| tag
section_statement 2
::= sel ect_section_statenent ;
| group_descr?2
| { <section_statement2>>0 }
group_descr2 ::= group <group_nane>°l*
(group_specs2)
section_statenment 2
group_specs2 II= group_spec2 <, group_spec2 >>=0
group_spec? = group_al i gnnent
| attributes
| | oad_addr
| tag
secti on_set up ::= section_setup space _ref <tag attr>°l!

{ <section_setup_item™0 }
section_setup_item
::= vector_tabl e_statenent
| reserved_range
| stack_def ;
| heap_def ;

11.3. Expression Evaluation

Only constant expressions are allowed, including sizes, but not addresses, of sections in object files.

539

TASKING VX-toolset for PCP User Guide

All expressions are evaluated with 64-bit precision integer arithmetic. The result of an expression can be
absolute or relocatable. A symbol you assign is created as an absolute symbol.

11.4. Semantics of the Architecture Definition

Keywords in the architecture definition

architecture
extends
endianness big little
bus
mau
width
map
space
id
mau
align
page_size
page
direction low_to_high high_to_low
stack
min_size
grows low_to_high high_to_low
align
fixed
id
heap
min_size
grows low_to_high high_to_low
align
fixed
id
copytable
align
copy_unit
dest
page
vector_table
vector_size
size
id_symbol_prefix
run_addr
template
template_symbol
vector_prefix
fill
no_inline
copy
vector

540

Linker Script Language (LSL)

id
fill loop
optional
reserved
start_address
run_addr
symbol
map

map
dest bus space
dest _dbits
dest_offset
size
src_dbits
src_offset

11.4.1. Defining an Architecture

With the keyword ar chi t ect ur e you define an architecture and assign a unique name to it. The name
is used to refer to it at other places in the LSL file:

archi tecture nane

{
}

If you are defining multiple core architectures that show great resemblance, you can define the common
features in a parent core architecture and extend this with a child core architecture that contains specific
features. The child inherits all features of the parent. With the keyword extends you create a child core
architecture:

definitions

architecture nane_chil d_arch extends name_parent _arch

{
}

A core architecture can have any number of parameters. These are identifiers which get values assigned
on instantiation or extension of the architecture. You can use them in any expression within the core
architecture. Parameters can have default values, which are used when the core architecture is instantiated
with less arguments than there are parameters defined for it. When you extend a core architecture you
can pass arguments to the parent architecture. Arguments are expressions that set the value of the
parameters of the sub-architecture.

definitions

architecture nane_chil d_arch (parni, par n2=1)
ext ends nane_parent _arch (argunents)

{
}

definitions

541

TASKING VX-toolset for PCP User Guide

11.4.2. Defining Internal Buses

With the bus keyword you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions in an
architecture definition or derivative definition define internal buses. Some internal buses are used to
communicate with the components outside the core or processor. Such buses on a processor have
physical pins reserved for the number of bits specified with the wi dt h statements.

» The mau field specifies the MAU size (Minimum Addressable Unit) of the data bus. This field is required.

» The wi dt h field specifies the width (number of address lines) of the data bus. The default value is the
MAU size.

» The map keyword specifies how this bus maps onto another bus (if so). Mappings are described in
Section 11.4.4, Mappings.

bus bus_nane

{

mau = 8;

w dth = 8;

map (map_description);
}

11.4.3. Defining Address Spaces

With the space keyword you define a logical address space. The space name is used to identify the
address space and does not conflict with other identifiers.

» The i d field defines how the addressing space is identified in object files. In general, each address
space has a unique ID. The linker locates sections with a certain ID in the address space with the same
ID. This field is required.

» The nau field specifies the MAU size (Minimum Addressable Unit) of the space. This field is required.

* The al i gn value must be a power of two. The linker uses this value to compute the start addresses
when sections are concatenated. An align value of n means that objects in the address space have to
be aligned on n MAUSs.

* The page_si ze field sets the page alignment and page size in MAUs for the address space. It must
be a power of 2. The default value is 1. If one or more page ranges are supplied the supplied value
only sets the page alignment. The ranges specify the available space in each page, as offsets to the
page start, which is aligned at the page alignment.

See also the page keyword in subsection Locating a group in Section 11.8.2, Creating and Locating
Groups of Sections.

» With the optional di r ect i on field you can specify how all sections in this space should be located.
This can be either from | ow_t o_hi gh addresses (this is the default) or from hi gh_t o_| owaddresses.

» The map keyword specifies how this address space maps onto an internal bus or onto another address
space. Mappings are described in Section 11.4.4, Mappings.

542

Linker Script Language (LSL)

Stacks and heaps

* The st ack keyword defines a stack in the address space and assigns a hame to it. The architecture
definition must contain at least one stack definition. Each stack of a core architecture must have a
unique name. See also the st ack keyword in Section 11.8.3, Creating or Modifying Special Sections.

The stack is described in terms of a minimum size (m n_si ze) and the direction in which the stack
grows (gr ows). This can be either from | ow_t o_hi gh addresses (stack grows upwards, this is the
default) or from hi gh_t o_| owaddresses (stack grows downwards). The mi n_si ze is required.

By default, the linker tries to maximize the size of the stacks and heaps. After locating all sections, the
largest remaining gap in the space is used completely for the stacks and heaps. If you specify the
keyword f i xed, you can disable this so-called 'balloon behavior'. The size is also fixed if you used a
stack or heap in the software layout definition in a restricted way. For example when you override a
stack with another size or select a stack in an ordered group with other sections.

The i d keyword matches stack information generated by the compiler with a stack name specified in
LSL. This value assigned to this keyword is strongly related to the compiler’'s output, so users are not
supposed to change this configuration.

Optionally you can specify an alignment for the stack with the argument al i gn. This alignment must
be equal or larger than the alignment that you specify for the address space itself.

» The heap keyword defines a heap in the address space and assigns a name to it. The definition of a
heap is similar to the definition of a stack. See also the heap keyword in Section 11.8.3, Creating or
Modifying Special Sections.

Stacks and heaps are only generated by the linker if the corresponding linker labels are referenced in the
object files.

See Section 11.8, Semantics of the Section Layout Definition, for information on creating and placing
stack sections.

Copy tables

» The copyt abl e keyword defines a copy table in the address space. The content of the copy table is
created by the linker and contains the start address and size of all sections that should be initialized
by the startup code. You must define exactly one copy table in one of the address spaces (for a core).

Optionally you can specify an alignment for the copy table with the argument al i gn. This alignment
must be equal or larger than the alignment that you specify for the address space itself. If smaller, the
alignment for the address space is used.

The copy_uni t argument specifies the size in MAUs of information chunks that are copied. If you do
not specify the copy unit, the MAU size of the address space itself is used.

The dest argument specifies the destination address space that the code uses for the copy table. The
linker uses this information to generate the correct addresses in the copy table. The memory into where
the sections must be copied at run-time, must be accessible from this destination space.

Sections generated for the copy table may get a page restriction with the address space's page size,
by adding the page argument.

543

TASKING VX-toolset for PCP User Guide

Vector table

» The vect or _t abl e keyword defines a vector table with n vectors of size m (This is an internal LSL
object similar to an LSL group.) The r un_addr argument specifies the location of the first vector (id=0).
This can be a simple address or an offset in memory (see the description of the run-time address in
subsection Locating a group in Section 11.8.2, Creating and Locating Groups of Sections). A vector
table defines symbols _Ic_ub_foo and _Ic_ue_Too pointing to start and end of the table.

vector_table *"vtable"™ (vector_size=m, size=n, run_addr=x, ...)
See the following example of a vector table definition:

vector_table "vtable"™ (vector_size = 4, size = 256, run_addr=0,
template=""_text.vector_template",
template_symbol=""_lc_vector_target",
vector_prefix="_text._vector.",
id_symbol_prefix="foo",
no_inline,
/* default: empty, or */
fill="foo", /* or */
fill=[1,2,3,4], /* or */

fill=loop)
{
vector (id=23, fill="main", optional);
vector (id=12, fill=[Oxab, 0x21, 0x32, 0x43]);
vector (id=[1..11], fill=[0]);
vector (id=[18..23], fill=loop);
}

The t enpl at e argument defines the name of the section that holds the code to jump to a handler
function from the vector table. This template section does not get located and is removed when the
locate phase is completed. This argument is required.

Thet enpl at e_synbol argumentis the symbol reference in the template section that must be replaced
by the address of the handler function. This symbol name should start with the linker prefix for the
symbol to be ignored in the link phase. This argument is required.

The vect or _pr ef i x argument defines the names of vector sections: the section for a vector with id
vector_id is $(vector_prefix)$(vector_id). Vectors defined in C or assembly source files that should be
included in the vector table must have the correct symbol name. The compiler uses the prefix that is
defined in the default LSL file(s); if this attribute is changed, the vectors declared in C source files are
not included in the vector table. When a vector supplied in an object file has exactly one relocation, the
linker will assume it is a branch to a handler function, and can be removed when the handler is inlined
in the vector table. Otherwise, no inlining is done. This argument is required.

With the optional no_i nl i ne argument the vectors handlers are not inlined in the vector table.

With the optional copy argument a ROM copy of the vector table is made and the vector table is copied
to RAM at startup.

544

Linker Script Language (LSL)

With the optional i d_symnbol _pr ef i x argument you can set an internal string representing a symbol
name prefix that may be found on symbols in vector handler code. When the linker detects such a
symbol in a handler, the symbol is assigned the vector number. If the symbol was already assigned a
vector number, a warning is issued.

The fi || argument sets the default contents of vectors. If nothing is specified for a vector, this setting
is used. See below. When no default is provided, empty vectors may be used to locate large vector
handlers and other sections. Only one fi | | argument is allowed.

The vect or field defines the content of vector with the number specified by i d. If a range is specified
forid ([p--qd,s--t]) all vectors in the ranges (inclusive) are defined the same way.

With fi | | =symbol_name, the vector must jump to this symbol. If the section in which the symbol is
defined fits in the vector table (size may be >m), locate the section at the location of the vector.
Otherwise, insert code to jump to the symbol's value. A template interrupt handler section name +
symbol name for the target code must be supplied in the LSL file.

fill=[value(s)], fills the vector with the specified MAU values.

Withfi | | =l oop the vector jumps to itself. With the optional [offset] you can specify an offset from the
vector table entry.

When the keyword opt i onal is set on a vector specification with a symbol value and the symbol is
not found, no error is reported. A default fill value is used if the symbol was not found. With other values
the attribute has no effect.

Reserved address ranges

» The r eser ved keyword specifies to reserve a part of an address space even if not all of the range is
covered by memory. See also the r eser ved keyword in Section 11.8.3, Creating or Modifying Special
Sections.

Start address

» The st art _addr ess keyword specifies the start address for the position where the C startup code is
located. When a processor is reset, it initializes its program counter to a certain start address, sometimes
called the reset vector. In the architecture definition, you must specify this start address in the correct
address space in combination with the name of the label in the application code which must be located
here.

The run_addr argument specifies the start address (reset vector). If the core starts executing using
an entry from a vector table, and directly jumps to the start label, you should omit this argument.

The synmbol argument specifies the name of the label in the application code that should be located
at the specified start address. The synbol argument is required. The linker will resolve the start symbol
and use its value after locating for the start address field in IEEE-695 files and Intel Hex files. If you
also specified the r un_addr argument, the start symbol (label) must point to a section. The linker
locates this section such that the start symbol ends up on the start address.

space space_nane

545

TASKING VX-toolset for PCP User Guide

mau = 8;

align = 8;

page_size = 1;

stack nanme (mn_size = 1k, grows = low_to_high);
reserved start_address .. end_address;
start_address (run_addr = 0x0000,

synbol = "start_Ilabel ")
map (map_description);

}
11.4.4. Mappings

You can use a mapping when you define a space, bus or memory. With the map field you specify how
addresses from the source (space, bus or memory) are translated to addresses of a destination (space,
bus). The following mappings are possible:

* space => space
* space => bus

* bus => bus

* memory => bus

With a mapping you specify a range of source addresses you want to map (specified by a source offset
and a size), the destination to which you want to map them (a bus or another address space), and the
offset address in the destination.

» The dest argument specifies the destination. This can be a bus or another address space (only for
a space to space mapping). This argument is required.

» The src_of f set argument specifies the offset of the source addresses. In combination with size, this
specifies the range of address that are mapped. By default the source offset is 0x0000.

» The si ze argument specifies the number of addresses that are mapped. This argument is required.

» The dest _of f set argument specifies the position in the destination to which the specified range of
addresses is mapped. By default the destination offset is 0x0000.

If you are mapping a bus to another bus, the number of data lines of each bus may differ. In this case
you have to specify a range of source data lines you want to map (sr c_dbi t s =begi n. . end) and the
range of destination data lines you want to map them to (dest _dbits =first.. | ast).

* The src_dbi t s argument specifies a range of data lines of the source bus. By default all data lines
are mapped.

» The dest _dbi t s argument specifies a range of data lines of the destination bus. By default, all data
lines from the source bus are mapped on the data lines of the destination bus (starting with line 0).

546

Linker Script Language (LSL)

From space to space

If you map an address space to another address space (nesting), you can do this by mapping the subspace
to the containing larger space. In this example a small space of 64 kB is mapped on a large space of 16
MB.

space small

{
id = 2;
mau = 4;
map (src_offset = 0, dest_offset = 0,
dest = space : large, size = 64k);
3

From space to bus
All spaces that are not mapped to another space must map to a bus in the architecture:

space large

{
id = 1;
mau = 4;
map (src_offset = 0, dest_offset = 0,
dest = bus:bus_name, size = 16M);
¥

From bus to bus

The next example maps an external bus called e_bus to an internal bus called i_bus. This internal bus
resides on a core called mycore. The source bus has 16 data lines whereas the destination bus has only
8 data lines. Therefore, the keywords sr c_dbi t s and dest _dbi t s specify which source data lines are
mapped on which destination data lines.

architecture mycore

{
bus i_bus
{
mau = 4;
}
space i_space
{
map (dest=bus:i_bus, size=256);
}
}
bus e_bus
{
mau = 16;
width = 16;

547

TASKING VX-toolset for PCP User Guide

map (dest = bus:mycore:i_bus, src_dbits = 0..7, dest_dbits = 0..7)
}

It is not possible to map an internal bus to an external bus.

11.5. Semantics of the Derivative Definition

Keywords in the derivative definition

derivative
extends
core
architecture
bus
mau
width
map
memory
type reserved rom ram nvram
mau
size
speed
Fill
map
section_layout
section_setup

map
dest bus space
dest_dbits
dest_offset
size
src_dbits
src_offset

11.5.1. Defining a Derivative

With the keyword der i vat i ve you define a derivative and assign a unique name to it. The name is used
to refer to it at other places in the LSL file:

derivative nane

{
}

If you are defining multiple derivatives that show great resemblance, you can define the common features
in a parent derivative and extend this with a child derivative that contains specific features. The child
inherits all features of the parent (cores and memories). With the keyword ext ends you create a child
derivative:

definitions

548

Linker Script Language (LSL)

derivative nane_child_deriv extends nane_parent _deriv

{
}

As with a core architecture, a derivative can have any number of parameters. These are identifiers which
get values assigned on instantiation or extension of the derivative. You can use them in any expression
within the derivative definition.

definitions

derivative nane_child_deriv (parndl, parn2=1)
ext ends nane_parent _deriv (argunents)
{

}

11.5.2. Instantiating Core Architectures

definitions

With the keyword cor e you instantiate a core architecture in a derivative.

» With the keyword ar chi t ect ur e you tell the linker that the given core has a certain architecture. The
architecture name refers to an existing architecture definition in the same LSL file.

For example, if you have two cores (called mycore_1 and mycore_2) that have the same architecture
(called mycorearch), you must instantiate both cores as follows:

core mycore_1

{

architecture = mycorearch;
}
core mycore_2
{

architecture = mycorearch;
}

If the architecture definition has parameters you must specify the arguments that correspond with the
parameters. For example mycorearchl expects two parameters which are used in the architecture
definition:

core mycore

{
}

architecture = mycorearchl (1,2);

11.5.3. Defining Internal Memory and Buses

With the nenor y keyword you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. It is common to define
internal memory (on-chip) in the derivative definition. External memory (off-chip memory) is usually defined
in the board specification (See Section 11.6.3, Defining External Memory and Buses).

549

TASKING VX-toolset for PCP User Guide

The t ype field specifies a memory type:
< rom read-only memory - it can only be written at load-time

« ramrandom access volatile writable memory - writing at run-time is possible while writing at load-time
has no use since the data is not retained after a power-down

e nvr am non volatile ram - writing is possible both at load-time and run-time

The optional r eser ved qualifier before the memory type, tells the linker not to locate any section in
the memory by default. You can locate sections in such memories using an absolute address or range
restriction (see subsection Locating a group in Section 11.8.2, Creating and Locating Groups of Sections).

The mau field specifies the MAU size (Minimum Addressable Unit) of the memory. This field is required.
The si ze field specifies the size in MAU of the memory. This field is required.

The speed field specifies a symbolic speed for the memory (1..4): 1 is the slowest, 4 the fastest. The
linker uses the relative speed of the memories in such a way, that faster memory is used before slower
memory. The default speed is 1.

The map field specifies how this memory maps onto an (internal) bus. Mappings are described in
Section 11.4.4, Mappings.

The optional fi | | field contains a bit pattern that the linker writes to all memory addresses that remain
unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU.

nenory nmem nanme

{

}

type = rom;
mau = 8;
fill = Oxaa
size = 64k;
speed = 2;

map (map_description);

With the bus keyword you define a bus in a derivative definition. Buses are described in Section 11.4.2,
Defining Internal Buses.

11.6. Semantics of the Board Specification

Keywords in the board specification

processor

derivative

bus

mau
width
map

550

Linker Script Language (LSL)

memory
type reserved rom ram nvram
mau
size
speed
fill
map

map
dest bus space
dest _dbits
dest_offset
size
src_dbits
src_offset

11.6.1. Defining a Processor

If you have a target board with multiple processors that have the same derivative, you need to instantiate
each individual processor in a processor definition. This information tells the linker which processor has
which derivative and enables the linker to distinguish between the present processors.

If you use processors that all have a unique derivative, you may omit the processor definitions.
In this case the linker assumes that for each derivative definition in the LSL file there is one
processor. The linker uses the derivative name also for the processor.

With the keyword pr ocessor you define a processor. You can freely choose the processor name. The
name is used to refer to it at other places in the LSL file:

processor proc_nane

{
}

11.6.2. Instantiating Derivatives

processor definition

With the keyword der i vat i ve you tell the linker that the given processor has a certain derivative. The
derivative name refers to an existing derivative definition in the same LSL file.

For example, if you have two processors on your target board (called myproc_1 and myproc_2) that
have the same derivative (called myderiv), you must instantiate both processors as follows:

processor myproc_1

{
derivative = myderiv;
b
processor myproc_2
{

551

TASKING VX-toolset for PCP User Guide

derivative = myderiv;

}

If the derivative definition has parameters you must specify the arguments that correspond with the
parameters. For example myderiv1 expects two parameters which are used in the derivative definition:

processor myproc

{
}

11.6.3. Defining External Memory and Buses

derivative = myderivl (2,4);

It is common to define external memory (off-chip) and external buses at the global scope (outside any
enclosing definition). Internal memory (on-chip memory) is usually defined in the scope of a derivative
definition.

With the keyword menory you define physical memory that is present on the target board. The memory
name is used to identify the memory and does not conflict with other identifiers. If you define memory
parts in the LSL file, only the memory defined in these parts is used for placing sections.

If no external memory is defined in the LSL file and if the linker option to allocate memory on demand is
set then the linker will assume that all virtual addresses are mapped on physical memory. You can override
this behavior by specifying one or more memory definitions.

menory nmem name

{

type = rom;

mau = 8;

fill = Oxaa

size = 64k;

speed = 2;

map (map_description);
}

For a description of the keywords, see Section 11.5.3, Defining Internal Memory and Buses.

With the keyword bus you define a bus (the combination of data and corresponding address bus). The
bus name is used to identify a bus and does not conflict with other identifiers. Bus descriptions at the
global scope (outside any definition) define external buses. These are buses that are present on the target
board.

bus bus_nane

{

mau = 8;

w dth = 8;

map (map_description);
}

For a description of the keywords, see Section 11.4.2, Defining Internal Buses.

552

Linker Script Language (LSL)

You can connect off-chip memory to any derivative: you need to map the off-chip memory to a bus and

map that bus on the internal bus of the derivative you want to connect it to.

11.7. Semantics of the Section Setup Definition

Keywords in the section setup definition

section_setup
stack
min_size

grows low_to_high high_to_low

align
fixed
id

heap
min_size

grows low_to_high high_to_low

align
fixed
id
vector_table
vector_size
size
id_symbol_prefix
run_addr
template
template_symbol
vector_prefix
fill
no_inline
copy
vector
id
fill loop
optional
reserved

11.7.1. Setting up a Section

With the keyword sect i on_set up you can define stacks, heaps, vector tables, and/or reserved address

ranges outside their address space definition.

section_setup ::my_space

{
vector table statenents
reserved address range
stack definition
heap definition

3

553

TASKING VX-toolset for PCP User Guide

See the subsections Stacks and heaps, Vector table and Reserved address ranges in Section 11.4.3,
Defining Address Spaces for details on the keywords st ack, heap, vect or _t abl e and r eser ved.

11.8. Semantics of the Section Layout Definition

Keywords in the section layout definition

section_layout
direction low_to_high high_to_low
group
align
attributes + - rwxbis
copy
nocopy
fill
ordered
contiguous
clustered
overlay
allow_cross_references
load_addr
mem
run_addr
mem
page
page_size
priority
select
stack
size
heap
size
reserved
size
attributes rw Xx
fill
alloc_allowed absolute ranged
copytable
section
size
blocksize
attributes rw Xx
fill
overflow

if
else

554

Linker Script Language (LSL)

11.8.1. Defining a Section Layout

With the keyword sect i on_| ayout you define a section layout for exactly one address space. In the
section layout you can specify how input sections are placed in the address space, relative to each other,
and what the absolute run and load addresses of each section will be.

You can define one or more section definitions. Each section definition arranges the sections in one
address space. You can precede the address space name with a processor name and/or core name,
separated by colons. You can omit the processor name and/or the core name if only one processor is
defined and/or only one core is present in the processor. A reference to a space in the only core of the
only processor in the system would look like ": :my_space". A reference to a space of the only core on
a specific processor in the system could be "my_chip: :my_space". The next example shows a section
definition for sections in the my_space address space of the processor called my_chip:

section_l ayout my chip::my_space (|locate_direction)

{
}

With the optional keyword di r ect i on you specify whether the linker starts locating sections from

| ow_t o_hi gh (default) or from hi gh_t o_| ow. In the second case the linker starts locating sections at
the highest addresses in the address space but preserves the order of sections when necessary (one
processor and core in this example).

section statenents

section_| ayout ::my_space (direction = high_to_low)

{
}

section statenents

If you do not explicitly tell the linker how to locate a section, the linker decides on the basis of the
section attributes in the object file and the information in the architecture definition and memory
parts where to locate the section.

11.8.2. Creating and Locating Groups of Sections

Sections are located per group. A group can contain one or more (sets of) input sections as well as other
groups. Per group you can assign a mutual order to the sets of sections and locate them into a specific
memory part.

group (group_specifications)

{
}

Withthe sect i on_st at enent s you generally select sets of sections to form the group. This is described
in subsection Selecting sections for a group.

section_statenments

Instead of selecting sections, you can also modify special sections like stack and heap or create a reserved
section. This is described in Section 11.8.3, Creating or Modifying Special Sections.

555

TASKING VX-toolset for PCP User Guide

With the gr oup_speci fi cati ons you actually locate the sections in the group. This is described in
subsection Locating a group.

Selecting sections for a group

With the keyword sel ect you can select one or more sections for the group. You can select a section
by name or by attributes. If you select a section by name, you can use a wildcard pattern:

* matches with all section names
? matches with a single character in the section name
\ takes the next character literally

[abc] matches with a single 'a’, 'b' or 'c' character
[a-z] matches with any single character in the range 'a' to 'z'

group C -.-)

{
sel ect "mysection';
sel ect ""*";

}

The first sel ect statement selects the section with the name "mysection”. The second sel ect
statement selects all sections that were not selected yet.

A section is selected by the first select statement that matches, in the union of all section layouts for the
address space. Global section layouts are processed in the order in which they appear in the LSL file.
Internal core architecture section layouts always take precedence over global section layouts.

» Theattri but es field selects all sections that carry (or do not carry) the given attribute. With +attribute
you select sections that have the specified attribute set. With -attribute you select sections that do not
have the specified attribute set. You can specify one or more of the following attributes:

 rreadable sections

e W writable sections

¢ X executable sections

* iinitialized sections

« b sections that should be cleared at program startup
« s scratch sections (not cleared and not initialized)

To select all read-only sections:

group (...)
{

}

select (attributes = +r-w);

556

Linker Script Language (LSL)
Keep in mind that all section selections are restricted to the address space of the section layout in which
this group definition occurs.

» With theref _t ree field you can select a group of related sections. The relation between sections is
often expressed by means of references. By selecting just the 'root’ of tree, the complete tree is selected.
This is for example useful to locate a group of related sections in special memory (e.g. fast memory).
The (referenced) sections must meet the following conditions in order to be selected:

1. The sections are within the section layout's address space

2. The sections match the specified attributes

3. The sections have no absolute restriction (as is the case for all wildcard selections)
For example, to select the code sections referenced from fool:

group refgrp (ordered, contiguous, run_addr=mem:ext_c)

{
}

If section ool references foo2 and foo2 references fo03, then all these sections are selected by
the selection shown above.

select ref_tree "fool" (attributes=+x);

Locating a group

group group_name (group_specifications)

{
}

With the gr oup_speci fi cati ons you actually define how the linker must locate the group. You can
roughly define three things: 1) assign properties to the group like alignment and read/write attributes, 2)
define the mutual order in the address space for sections in the group and 3) restrict the possible addresses
for the sections in a group.

section_statenments

The linker creates labels that allow you to refer to the begin and end address of a group from within the
application software. Labels _| ¢_gb_group_nane and _| c_ge_gr oup_nane mark the begin and end
of the group respectively, where the begin is the lowest address used within this group and the end is the
highest address used. Notice that a group not necessarily occupies all memory between begin and end
address. The given label refers to where the section is located at run-time (versus load-time).

1. Assign properties to the group like alignment and read/write attributes.

These properties are assigned to all sections in the group (and subgroups) and override the attributes
of the input sections.

» The al i gn field tells the linker to align all sections in the group and the group as a whole according
to the align value. By default the linker uses the largest alignment constraint of either the input
sections or the alignment of the address space.

557

TASKING VX-toolset for PCP User Guide

The at t ri but es field tells the linker to assign one or more attributes to all sections in the group.
This overrules the default attributes. By default the linker uses the attributes of the input sections.
You can set the r, w, or rw attributes and you can switch between the b and s attributes.

The copy field tells the linker to locate a read-only section in RAM and generate a ROM copy and
a copy action in the copy table. This property makes the sections in the group writable which causes
the linker to generate ROM copies for the sections.

The effect of the nocopy field is the opposite of the copy field. It prevents the linker from generating
ROM copies of the selected sections.

2. Define the mutual order of the sections in the group.

By default, a group is unrestricted which means that the linker has total freedom to place the sections
of the group in the address space.

558

The or der ed keyword tells the linker to locate the sections in the same order in the address space
as they appear in the group (but not necessarily adjacent).

Suppose you have an ordered group that contains the sections 'A’, 'B' and 'C'. By default the linker
places the sections in the address space like ‘A’ - 'B' - 'C', where section 'A’ gets the lowest possible
address. With di rect i on=hi gh_t o_| owin the secti on_| ayout space properties, the linker
places the sections in the address space like 'C' - 'B' - 'A’, where section 'A’ gets the highest possible
address.

The cont i guous keyword tells the linker to locate the sections in the group in a single address
range. Within a contiguous group the input sections are located in arbitrary order, however the group
occupies one contiguous range of memory. Due to alignment of sections there can be ‘alignment
gaps' between the sections.

When you define a group that is both or der ed and cont i guous, this is called a sequential group.
In a sequential group the linker places sections in the same order in the address space as they
appear in the group and it occupies a contiguous range of memory.

The cl ust er ed keyword tells the linker to locate the sections in the group in a number of contiguous
blocks. It tries to keep the number of these blocks to a minimum. If enough memory is available, the
group will be located as if it was specified as cont i guous. Otherwise, it gets split into two or more
blocks.

If a contiguous or clustered group contains alignment gaps, the linker can locate sections that are
not part of the group in these gaps. To prevent this, you can use the fi | | keyword. If the group is
located in RAM, the gaps are treated as reserved (scratch) space. If the group is located in ROM,
the alignment gaps are filled with zeros by default. You can however change the fill pattern by
specifying a bit pattern. The result of the expression, or list of expressions, is used as values to write
to memory, each in MAU.

The over | ay keyword tells the linker to overlay the sections in the group. The linker places all
sections in the address space using a contiguous range of addresses. (Thus an overlay group is
automatically also a contiguous group.) To overlay the sections, all sections in the overlay group
share the same run-time address.

Linker Script Language (LSL)

For each input section within the overlay the linker automatically defines two symbols. The symbol
_lc_cb_section_nane is defined as the load-time start address of the section. The symbol
_lc_ce_section_nane is defined as the load-time end address of the section. C (or assembly)
code may be used to copy the overlaid sections.

If sections in the overlay group contain references between groups, the linker reports an error. The
keyword al | ow_cr oss_r ef er ences tells the linker to accept cross-references. Normally, it does
not make sense to have references between sections that are overlaid.

group ovl (overl ay)

{
group a
{
select "my_ovl_pl";
select "my_ovl_p2";
}
group b
{
select "my_ovl_qgl";
}
}

It may be possible that one of the sections in the overlay group already has been defined in
another group where it received a load-time address. In this case the linker does not overrule
this load-time address and excludes the section from the overlay group.

3. Restrict the possible addresses for the sections in a group.

The load-time address specifies where the group's elements are loaded in memory at download time.
The run-time address specifies where sections are located at run-time, that is when the program is
executing. If you do not explicitly restrict the address in the LSL file, the linker assigns addresses to
the sections based on the restrictions relative to other sections in the LSL file and section alignments.
The program is responsible for copying overlay sections at appropriate moment from its load-time
location to its run-time location (this is typically done by the startup code).

* Therun_addr keyword defines the run-time address. If the run-time location of a group is set
explicitly, the given order between groups specify whether the run-time address propagates to the
parent group or not. The location of the sections a group can be restricted either to a single absolute
address, or to a number of address ranges (not including the end address). With an expression you
can specify that the group should be located at the absolute address specified by the expression:

group (run_addr = 0xa00f0000)
You can use the '[of f set]' variant to locate the group at the given absolute offset in memory:
group (run_addr = mem A[0x1000])

A range can be an absolute space address range, writtenas [expr .. expr], acomplete memory
device, written as mem mem_nane, or a memory address range, mem mem_name[expr .. expr

]

559

TASKING VX-toolset for PCP User Guide

group (run_addr = nmem my_dram)
You can use the '|' to specify an address range of more than one physical memory device:

group (run_addr = nem A | nem B)

» The |l oad_addr keyword changes the meaning of the section selection in the group: the linker
selects the load-time ROM copy of the named section(s) instead of the regular sections. Just like
run_addr you can specify an absolute address or an address range.

group (contiguous, | oad_addr)
{
select "mydata'; // select ROM copy of mydata:
// "[mydata]”
}

The load-time and run-time addresses of a group cannot be set at the same time. If the load-time
property is set for a group, the group (only) restricts the positioning at load-time of the group’s
sections. It is not possible to set the address of a group that has a not-unrestricted parent group.

The properties of the load-time and run-time start address are:

« Atrun-time, before using an element in an overlay group, the application copies the sections from
their load location to their run-time location, but only if these two addresses are different. For
non-overlay sections this happens at program start-up.

e The start addresses cannot be set to absolute values for unrestricted groups.

« For non-overlay groups that do not have an overlay parent, the load-time start address equals the
run-time start address.

< For any group, if the run-time start address is not set, the linker selects an appropriate address.

« If an ordered group or sequential group has an absolute address and contains sections that have
separate page restrictions (not defined in LSL), all those sections are located in a single page. In
other cases, for example when an unrestricted group has an address range assigned to it, the
paged sections may be located in different pages.

For overlays, the linker reserves memory at the run-time start address as large as the largest element
in the overlay group.

» The page keyword tells the linker to place the group in one page. Instead of specifying a run-time
address, you can specify a page and optional a page number. Page numbers start from zero. If you
omit the page number, the linker chooses a page.

The page keyword refers to pages in the address space as defined in the architecture definition.

» With the page_si ze keyword you can override the page alignment and size set on the address
space. When you set the page size to zero, the linker removes simple (auto generated) page
restrictions from the selected sections. See also the page_si ze keyword in Section 11.4.3, Defining
Address Spaces.

560

Linker Script Language (LSL)

» With the pri ori ty keyword you can change the order in which sections are located. This is useful
when some sections are considered important for good performance of the application and a small
amount of fast memory is available. The value is a number for which the default is 1, so higher
priorities start at 2. Sections with a higher priority are located before sections with a lower priority,
unless their relative locate priority is already determined by other restrictions like r un_addr and

page.

group (priority=2)

{
select "importantcodel™;
select "importantcode2";

}

11.8.3. Creating or Modifying Special Sections

Instead of selecting sections, you can also create a reserved section or an output section or modify special
sections like a stack or a heap. Because you cannot define these sections in the input files, you must use
the linker to create them.

Stack

» The keyword st ack tells the linker to reserve memory for the stack. The name for the stack section
refers to the stack as defined in the architecture definition. If no name was specified in the architecture
definition, the default name is stack.

With the keyword si ze you can specify the size for the stack. If the size is not specified, the linker uses
the size given by the m n_si ze argument as defined for the stack in the architecture definition. Normally
the linker automatically tries to maximize the size, unless you specified the keyword f i xed.

group (...)
{

}

The linker creates two labels to mark the begin and end of the stack, _| c_ub_st ack_nane for the
begin of the stack and _| c_ue_st ack_nane for the end of the stack. The linker allocates space for
the stack when there is a reference to either of the labels.

stack "mystack" (size = 2k);

See also the st ack keyword in Section 11.4.3, Defining Address Spaces.

Heap

» The keyword heap tells the linker to reserve a dynamic memory range for the mal loc() function.
Each heap section has a name. With the keyword si ze you can change the size for the heap. If the
si ze is not specified, the linker uses the size given by the m n_si ze argument as defined for the heap
in the architecture definition. Normally the linker automatically tries to maximize the size, unless you
specified the keyword f i xed.

group (C ---)
{

561

TASKING VX-toolset for PCP User Guide

heap "myheap" (size = 2k);
}

The linker creates two labels to mark the begin and end of the heap, _| c_ub_heap_nan® for the begin
of the heap and _| ¢c_ue_heap_nane for the end of the heap. The linker allocates space for the heap
when a reference to either of the section labels exists in one of the input object files.

Reserved section

* The keyword r eser ved tells the linker to create an area or section of a given size. The linker will not
locate any other sections in the memory occupied by a reserved section, with some exceptions. Each
reserved section has a hame. With the keyword si ze you can specify a size for a given reserved area
or section.

group (...)
{
reserved "myreserved" (size = 2k);
}
The optional f i | | field contains a bit pattern that the linker writes to all memory addresses that remain

unoccupied during the locate process. The result of the expression, or list of expressions, is used as
values to write to memory, each in MAU. The first MAU of the fill pattern is always the first MAU in the
section.

By default, no sections can overlap with a reserved section. With al | oc_al | owed=absol ut e sections
that are located at an absolute address due to an absolute group restriction can overlap a reserved
section. The same applies for reserved sections with al | oc_al | owed=r anged set. Sections restricted
to a fixed address range can also overlap a reserved section.

With the at t ri but es field you can set the access type of the reserved section. The linker locates the
reserved section in its space with the restrictions that follow from the used attributes, r, w or x or a valid
combination of them. The allowed attributes are shown in the following table. A value between < and
> in the table means this value is set automatically by the linker.

Properties set in LSL |Resulting section properties
attributes |filled access |memory |content

X yes <rom> executable
r yes r <rom> data

r no r <rom> scratch

rx yes r <rom> executable
rw yes rw <ram> data

w no rw <ram> scratch
rwx yes rw <ram> executable
group (...)

{

reserved "myreserved" (size = 2k,

562

Linker Script Language (LSL)

attributes = rw, fill = Oxaa);

}

If you do not specify any attributes, the linker will reserve the given number of maus, no matter what
type of memory lies beneath. If you do not specify a fill pattern, no section is generated.

The linker creates two labels to mark the begin and end of the section, _I ¢_ub_name for the begin of
the section and _I c_ue_nane for the end of the reserved section.

Output sections

» The keyword sect i on tells the linker to accumulate sections obtained from object files (“input sections™)
into an output section of a fixed size in the locate phase. You can select the input sections with sel ect
statements. You can use groups inside output sections, but you can only setthe al i gn, attri but es
and | oad_addr attributes.

Thefill field contains a bit pattern that the linker writes to all unused space in the output section.
When all input sections have an image (code/data) you must specify a fill pattern. If you do not specify
a fill pattern, all input sections must be scratch sections. The fill pattern is aligned at the start of the
output section.

As with a reserved section you can use the at t ri but es field to set the access type of the output
section.

group (---)
{
section "myoutput” (size = 4k, attributes = rw,
fill = Oxaa)
{
sel ect "myinputl™;
sel ect "myinput2™;
}

}

The available room for input sections is determined by the si ze, bl ocksi ze and over f | owfields.
With the keyword si ze you specify the fixed size of the output section. Input sections are placed from
output section start towards higher addresses (offsets). When the end of the output section is reached
and one or more input sections are not yet placed, an error is emitted. If however, the over f | owfield
is set to another output section, remaining sections are located as if they were selected for the overflow
output section.

group (-..)
{
section "tskl_data" (size=4k, attributes=rw, fill=0,
overflow = "overflow_data')
{
select ".data.tskl.*"
b
section "tsk2_data" (size=4k, attributes=rw, fill=0,
overfl ow = "overflow_data')
{

563

TASKING VX-toolset for PCP User Guide

select ".data.tsk2.*"

}
section "overflow_data" (size=4k, attributes=rx,
fill=0)
{
}
}

With the keyword bl ocksi ze , the size of the output section will adapt to the size of its content. For
example:

group flash_area (run_addr = 0x10000)

{
section "flash_code" (bl ocksi ze=4k, attributes=rx,
fill=0)
{
select "*_flash';
}
}

If the content of the section is 1 mau, the size will be 4 kB, if the content is 11 kB, the section will be
12 kB, etc. If you use si ze in combination with bl ocksi ze, the si ze value is used as default (minimal)
size for this section. If it is omitted, the default size will be of bl ocksi ze. It is not allowed to omit both
si ze and bl ocksi ze from the section definition.

The linker creates two labels to mark the begin and end of the section, _| ¢_ub_nane for the begin of
the section and _| c_ue_nane for the end of the output section.

Copy table

The keyword copyt abl e tells the linker to select a section that is used as copy table. The content of
the copy table is created by the linker. It contains the start address and length of all sections that should
be initialized by the startup code.

The linker creates two labels to mark the begin and end of the section, _| c_ub_t abl e for the begin
of the section and _| ¢c_ue_t abl e for the end of the copy table. The linker generates a copy table
when a reference to either of the section labels exists in one of the input object files.

11.8.4. Creating Symbols

You can tell the linker to create symbols before locating by putting assignments in the section layout
definition. Symbol names are represented by double-quoted strings. Any string is allowed, but object files
may not support all characters for symbol names. You can use two different assignment operators. With
the simple assignment operator '=', the symbol is created unconditionally. With the ":=' operator, the
symbol is only created if it already exists as an undefined reference in an object file.

The expression that represents the value to assign to the symbol may contain references to other symbols.
If such a referred symbol is a special section symbol, creation of the symbol in the left hand side of the
assignment will cause creation of the special section.

564

Linker Script Language (LSL)

section_layout

{
" Ic_cp"” := "_Ic_ub_table";
// when the symbol _Ic_cp occurs as an undefined reference
// in an object file, the linker generates a copy table

3

11.8.5. Conditional Group Statements
Within a group, you can conditionally select sections or create special sections.

» With the if keyword you can specify a condition. The succeeding section statement is executed if the
condition evaluates to TRUE (1).

» The optional else keyword is followed by a section statement which is executed in case the if-condition
evaluates to FALSE (0).

group (---)
{
if (exists("mysection”))
select "mysection';
el se
reserved "myreserved"” (size=2k);

565

TASKING VX-toolset for PCP User Guide

566

Chapter 12. Debug Target Configuration Files

DTC files (Debug Target Configuration files) define all possible configurations for a debug target. A debug
target can be target hardware such as an evaluation board or a simulator. The DTC files are used by
Eclipse to configure the project and the debugger. The information is used by the Target Board
Configuration wizard and the debug configuration. DTC files are located in the etc directory of the installed
product and use .dtc as filename suffix.

Based on the DTC files, the Target Board Configuration wizard adjust the project's LSL file and creates
a debug launch configuration.

12.1. Custom Board Support

When you need support for a custom board and the board requires a different configuration than those
that are in the product, it is necessary to create a dedicated DTC file.

To add a custom board

1. From the etc directory of the product, make a copy of a .dtc file and put it in your project directory
(in the current workspace).

In Eclipse, the DTC file should now be visible as part of your project.
2. Edit the file and give it a name that reflects the custom board.

The Target Board Configuration wizard in Eclipse adds DTC files that are present in your current project
to the list of available target boards.

Syntax of a DTC file

DTC files are XML files. Use a delivered .dtc file as a starting point for creating a custom board
specification.

Basically a DTC file consists of the definition of the debug target (debugTarget element) which embodies
one or more communication methods (communicationMethod element). Within each communication
method, you can define multiple configurations (configuration element). The Target Board Configuration
wizard in Eclipse reflects the structure of the DTC file. The elements that determine the settings that are
applied by the wizard, can be found at any level in the DTC file. The wizard will apply all elements that
are within the path to the selected configuration. This is best explained by an example of a DTC file with
the following basic layout:

debugTarget: Infineon TriBoard TC1165
clzsr:wmunicationMethod: DAS over MiniWigglerll
clzirlwfiguration: Single Chip
communic;:::onMethod: DAS over USB-Wiggler
clzirlwfiguration: Single Chip

567

TASKING VX-toolset for PCP User Guide

Isl
Isl

In this example there is an LSL element at every level. If, in the Target Board Configuration wizard in
Eclipse, you set the debug target configuration to "DAS over MiniWigglerll" -> "Single Chip", the wizard
puts the following LSL parts into the project's LSL file in this order:

the Isl part under the debugTarget element

the Isl part under the communi cationMethod "DAS over MiniWigglerll" element

the Isl part under the configuration "Single Chip" in the communicationMethod "DAS over
MiniWigglerll" element

« the Isl part in the debugTarget element at the end of the DTC file

The same applies to all other elements that determine the underlying settings.

DTC macros in LSL

To protect the Target Board Configuration wizard from changing the LSL file, you can protect the LSL file
by adding the macro ___DTC_IGNORE. This can be useful for projects that need the same LSL file, but
still need to run on different target boards.

#define _ DTC_IGNORE

The following DTC macros can be present in the LSL file:

LSL Define Description

__DTC_IGNORE If defined, protects the LSL file against changes by the Target Board
Configuration wizard.

__DTC_START The LSL part that is between these macros can be replaced by LSL text

__DTC_END from the DTC file. If the macros are not present in the LSL file, the Target
Board Configuration wizard will add them.

12.2. Description of DTC Elements and Attributes

The following table contains a description of the DTC elements and attributes. For each element a list of
allowed elements is listed and the available attributes are described.

Element / Attribute Description Allowed Elements
debugTarget The debug target. flashChips, Isl,
name The name of the configuration. communicationMethod,
def, processor,
manufacturer The manufacturer of the debug target. resource, initialize
processor Defines a processor that can be presenton |-
the debug target. Multiple processor definitions
are allowed. The user should select the actual
processor on the debug target.

568

Debug Target Configuration Files

Element / Attribute

Description

Allowed Elements

name

cpu

A descriptive name of the processor derivative.

Defines the CPU name, as for example
supplied with the option --cpu of the C
compiler.

communicationMethod

name

debuglnstrument

gdiMethod

Defines a communication method. A
communication method is the channel that is
used to communicate with the target.

A descriptive name of the communication
method.

The debug instrument DLL/Shared library file
to be used for this communication method. Do
not supply a path or a filename suffix.

This is the method used for communication.
Allowed values: rs232, tcpip, can, hone

ref, resource, initialize,
configuration, Isl,
processor

def

id

Define a set of elements as a macro. The
macro can be expanded using the ref
element.

The macro name.

Isl, resource, initialize,
ref, configuration,
flashMonitor

resource

value

Defines a resource definition that can be used
by Eclipse, the debugger or by the debug
instrument.

The identifier name used by the debugger or
debug instrument to retrieve the value.

The value assigned to the resource.

ref

id

Reference to a macro defined with a def
element. The elements contained in the def
element with the same name will be expanded
at the location of the ref. Multiple refs to the
same def are allowed.

The name of the referenced macro.

configuration

name

Defines a configuration.

The descriptive name of the configuration.

ref, initialize, resource,
Isl, flashMonitor,
processor

resourceld

This element defines an initialization
expression. Each initialize element contains a
resourceld attribute. If the DI requests this
resource the debugger will compose a string
from all initialize elements with the same
resourceld. This DI can use this string to
initialize registers by passing it to the debugger
as an expression to be evaluated.

The name of the resource to be used.

569

TASKING VX-toolset for PCP User Guide

available on this debug target.

Element / Attribute Description Allowed Elements
name The name of the register to be initialized.
value When the cstart attribute is false, this is the
value to be used, otherwise, it is the default
value when using this configuration. It will be
used by the startup code editor to set the
default register values.
cstart A boolean value. If true the debugger should
ask the C startup code editor for the value,
otherwise the contents of the value attribute is
used. The default value is true.
flashMonitor This element specifies the flash programming |-
monitor to be used for this configuration.
monitor Filename of the monitor, usually an Intel Hex
or S-Record file.
workspaceAddress The address of the workspace of the flash
programming monitor.
FlashSectorBufferSize|Specifies the buffer size for buffering a flash
sector.
chip This element defines a flash chip. It must be |debugTarget
used by the flash properties page to add it on
request to the list of flash chips.
vendor The vendor of this flash chip.
chip The name of the chip.
width The width of the chip in bits.
chips The number of chips present on the board.
baseAddress The base address of the chip.
chipSize The size of the chip in bytes.
flashChips Specify a list of flash chips that can be chip

Isl

Defines LSL pieces belonging to the
configuration part. The LSL text must be
defined between the start and end tag of this
element. All LSL texts of the active selection
will be placed in the project's LSL file.

12.3. Special Resource Identifiers

The following resource IDs are available in the TASKING VX-toolset for TriCore:

570

Debug Target Configuration Files

DAS debug instrument (DI): gdi2das

Resource Name

Description

Possible Values

in milliseconds. The default is 0x4000.

AccessPort The port used to connect to the wiggler. JTAG1, USBO
DASserver The DAS Server used for communication. JTAG JDRV LPT
JTAG over USB Box
JTAG over USB Chip
DasTimeOut The timeout value for communication with the DAS server

RegisterFile

The core register file that is used by the debug instrument.
This is usually "regbase_f7el.dat" or "regbase_ffff.dat",
depending on the register base address.

TerminateServer

Terminate the DAS server when the session is closed.

0,1

12.4. Initialize Elements

The initialize elements are used to initialize SFRs at startup. This is also done using a resource of
the debug instrument. The following resource Ids exist for the DAS debug instrument (gdi2das):

Resource Name

Description

einit

Initialize an SFR that is protected with the ENDINIT flag.

init

Initialize an SFR that is not protected with the ENDINIT flag.

571

TASKING VX-toolset for PCP User Guide

572

Chapter 13. CPU Problem Bypasses and
Checks

Infineon Technologies regularly publishes microcontroller errata sheets for reporting both functional
problems and deviations from the electrical and timing specifications.

For some of these functional problems in the microcontroller itself, the TASKING VX-toolset for PCP
provides workarounds. In fact these are software workarounds for hardware problems.

Support to deal with CPU functional problem is provided in three areas:

* Whenever possible and relevant, compiler bypasses will modify the code in order to avoid the identified
erroneous code sequences;

» The assembler gives warnings for suspicious or erroneous code sequences;

» Ready-built, 'protected’ standard C libraries with bypasses for all identified PCP CPU functional problems
are included in the toolset.

This chapter lists a summary of functional problems which can be bypassed by the TASKING VX-toolset
for PCP. Please refer to the Infineon errata sheets for the CPU step you are using, to verify if you need
to use one of these bypasses.

To set a CPU bypass or check

1. From the Project menu, select Properties
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

3. From the Processor Selection list, select a processor.

The CPU Problem Bypasses and Checks box shows the available workarounds/checks available
for the selected processor.

4. (Optional) Select Show all CPU problem bypasses and checks.

5. Click Select All or select one or more individual options.
Overview of the CPU problem bypasses and checks
The following table contains an overview of the silicon bugs you can provide to the C compiler option

--silicon-bug and the assembler option --silicon-bug. WA means a workaround by the compiler or
assembler, CK means a check by the compiler or assembler.

573

TASKING VX-toolset for PCP User Guide

CPU Problem |Description Compiler |Assembler |CPU

PCP TC.034 |Usage of R7 requires delays between CK TC1767, TC1797
operations

PCP TC.038 |PCP atomic PRAM operations may operate |WA CK TC1767,TC1797
incorrectly

574

CPU Problem Bypasses and Checks

PCP_TC.034

Command line option
--silicon-bug=pcp-tc034
Description
If the following instruction sequence is used:
instr witing to R7
directly followed by
instr reading fromR7
then the second instruction will fail, providing wrong data. The write will be successful anyway.
The assembler issues a warning if the above sequence occurs.
Workaround

Add a NOP between a write to R7 followed by a read from R7.

575

TASKING VX-toolset for PCP User Guide

PCP_TC.038

Command line option
--silicon-bug=pcp-tc038
Description

PCP atomic PRAM instructions (XCH.PI, MSET.PI, MCLR.PI) may operate incorrectly due to external
FPI read-modify-write operations.

To bypass this CPU functional problem, the C compiler does not generate these atomic instructions.

The assembler issues a warning when one of the atomic PRAM instructions appear.

576

Chapter 14. CERT C Secure Coding Standard

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

This chapter contains an overview of the CERT C Secure Coding Standard recommendations and rules
that are supported by the TASKING VX-toolset.

For details see the CERT C Secure Coding Standard web site. For general information about CERT
secure coding, see www.cert.org/secure-coding.

Identifiers

Each rule and recommendation is given a unique identifier. These identifiers consist of three parts:
 athree-letter mnemonic representing the section of the standard

» atwo-digit numeric value in the range of 00-99

* the letter "C" indicates that this is a C language guideline

The three-letter mnemonic is used to group similar coding practices and to indicate to which category a
coding practice belongs.

The numeric value is used to give each coding practice a unique identifier. Numeric values in the range
of 00-29 are reserved for recommendations, while values in the range of 30-99 are reserved for rules.

C compiler invocation
With the C compiler option --cert you can enable one or more checks for the CERT C Secure Coding
Standard recommendations/rules. With --diag=cert you can see a list of the available checks, or you can

use a three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists
all supported checks in the preprocessor category.

14.1. Preprocessor (PRE)

PREO1-C Use parentheses within macros around parameter names

Parenthesize all parameter names in macro definitions to avoid precedence problems.

577

https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
http://www.cert.org/secure-coding
http://doc.tasking.com/cert/pre01.html

TASKING VX-toolset for PCP User Guide

PREO2-C

PRE10-C

PRE11-C

Macro replacement lists should be parenthesized

Macro replacement lists should be parenthesized to protect any lower-precedence operators
from the surrounding expression. The example below is syntactically correct, although the
1= operator was omitted. Enclosing the constant -1 in parenthesis will prevent the incorrect
interpretation and force a compiler error:

#define EOF -1 // should be (-1)
int getchar(void);
void f(void)

{
it (getchar() EOF) // = operator omitted
{
/* ... %/
}
}

Wrap multi-statement macros in a do-while loop

When multiple statements are used in a macro, enclose them in a do-whi le statement, so
the macro can appear safely inside i f clauses or other places that expect a single statement
or a statement block. Braces alone will not work in all situations, as the macro expansion is
typically followed by a semicolon.

Do not conclude a single statement macro definition with a semicolon
Macro definitions consisting of a single statement should not conclude with a semicolon. If

required, the semicolon should be included following the macro expansion. Inadvertently
inserting a semicolon can change the control flow of the program.

14.2. Declarations and Initialization (DCL)

DCL30-C

DCL31-C

DCL32-C

578

Declare objects with appropriate storage durations

The lifetime of an automatic object ends when the function returns, which means that a
pointer to the object becomes invalid.

Declare identifiers before using them

The ISO C90 standard allows implicit typing of variables and functions. Because implicit
declarations lead to less stringent type checking, they can often introduce unexpected and
erroneous behavior or even security vulnerabilities. The ISO C99 standard requires type
identifiers and forbids implicit function declarations. For backwards compatibility reasons,
the VX-toolset C compiler assumes an implicit declaration and continues translation after
issuing a warning message (W505 or W535).

Guarantee that mutually visible identifiers are unique

The compiler encountered two or more identifiers that are identical in the first 31 characters.
The ISO C99 standard allows a compiler to ignore characters past the first 31 in an identifier.
Two distinct identifiers that are identical in the first 31 characters may lead to problems when
the code is ported to a different compiler.

http://doc.tasking.com/cert/pre02.html
http://doc.tasking.com/cert/pre10.html
http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/dcl30.html
http://doc.tasking.com/cert/dcl31.html
http://doc.tasking.com/cert/dcl32.html

DCL35-C

CERT C Secure Coding Standard

Do not invoke a function using a type that does not match the function definition

This warning is generated when a function pointer is set to refer to a function of an
incompatible type. Calling this function through the function pointer will result in undefined
behavior. Example:

void my_function(int a);
int main(void)
{
int (*new_function)(int a) = my_function;
return (*new_function)(10); /* the behavior is undefined */

}

14.3. Expressions (EXP)

EXPO1-C

EXP12-C

EXP30-C

EXP32-C

EXP33-C

EXP34-C

Do not take the size of a pointer to determine the size of the pointed-to type

The size of the object(s) allocated by malloc(), calloc() or realloc() should be a multiple of
the size of the base type of the result pointer. Therefore, the sizeof expression should be
applied to this base type, and not to the pointer type.

Do not ignore values returned by functions
The compiler gives this warning when the result of a function call is ignored at some place,
although it is not ignored for other calls to this function. This warning will not be issued when

the function result is ignored for all calls, or when the result is explicitly ignored with a (void)
cast.

Do not depend on order of evaluation between sequence points

Between two sequence points, an object should only be modified once. Otherwise the behavior
is undefined.

Do not access a volatile object through a non-volatile reference

If an attempt is made to refer to an object defined with a volatile-qualified type through use

of an Ivalue with non-volatile-qualified type, the behavior is undefined.

Do not reference uninitialized memory

Uninitialized automatic variables default to whichever value is currently stored on the stack

or in the register allocated for the variable. Consequently, uninitialized memory can cause a

program to behave in an unpredictable or unplanned manner and may provide an avenue
for attack.

Ensure a null pointer is not dereferenced

Attempting to dereference a null pointer results in undefined behavior, typically abnormal
program termination.

579

http://doc.tasking.com/cert/dcl35.html
http://doc.tasking.com/cert/exp01.html
http://doc.tasking.com/cert/exp12.html
http://doc.tasking.com/cert/exp30.html
http://doc.tasking.com/cert/exp32.html
http://doc.tasking.com/cert/exp33.html
http://doc.tasking.com/cert/exp34.html

TASKING VX-toolset for PCP User Guide

EXP37-C

EXP38-C

Call functions with the arguments intended by the API

When a function is properly declared with function prototype information, an incorrect call
will be flagged by the compiler. When there is no prototype information available at the call,
the compiler cannot check the number of arguments and the types of the arguments. This
message is issued to warn about this situation.

Do not call offsetof() on bit-field members or invalid types

The behavior of the offsetof() macro is undefined when the member designator parameter
designates a bit-field.

14.4. Integers (INT)

INT30-C

INT34-C

INT35-C

Ensure that unsigned integer operations do not wrap

A constant with an unsigned integer type is truncated, resulting in a wrap-around.
Do not shift a negative number of bits or more bits than exist in the operand
The shift count of the shift operation may be negative or greater than or equal to the size of

the left operand. According to the C standard, the behavior of such a shift operation is
undefined. Make sure the shift count is in range by adding appropriate range checks.

Evaluate integer expressions in a larger size before comparing or assigning to that size

If an integer expression is compared to, or assigned to a larger integer size, that integer
expression should be evaluated in that larger size by explicitly casting one of the operands.

14.5. Floating Point (FLP)

FLP30-C

FLP35-C

FLP36-C

Do not use floating point variables as loop counters

To avoid problems with limited precision and rounding, floating point variables should not be
used as loop counters.

Take granularity into account when comparing floating point values

Floating point arithmetic in C is inexact, so floating point values should not be tested for exact
equality or inequality.

Beware of precision loss when converting integral types to floating point

Conversion from integral types to floating point types without sufficient precision can lead to
loss of precision.

14.6. Arrays (ARR)

ARRO1-C Do not apply the sizeof operator to a pointer when taking the size of an array

580

A function parameter declared as an array, is converted to a pointer by the compiler. Therefore,
the sizeof operator applied to this parameter yields the size of a pointer, and not the size of
an array.

http://doc.tasking.com/cert/exp37.html
http://doc.tasking.com/cert/exp38.html
http://doc.tasking.com/cert/int30.html
http://doc.tasking.com/cert/int34.html
http://doc.tasking.com/cert/int35.html
http://doc.tasking.com/cert/flp30.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/arr01.html

ARR34-C

ARR35-C

CERT C Secure Coding Standard

Ensure that array types in expressions are compatible

Using two or more incompatible arrays in an expression results in undefined behavior.
Do not allow loops to iterate beyond the end of an array

Reading or writing of data outside the bounds of an array may lead to incorrect program
behavior or execution of arbitrary code.

14.7. Characters and Strings (STR)

STR30-C

STR33-C

STR34-C

STR36-C

Do not attempt to modify string literals

Writing to a string literal has undefined behavior, as identical strings may be shared and/or
allocated in read-only memory.

Size wide character strings correctly

Wide character strings may be improperly sized when they are mistaken for narrow strings
or for multi-byte character strings.

Cast characters to unsigned types before converting to larger integer sizes

A signed character is sign-extended to a larger signed integer value. Use an explicit cast, or
cast the value to an unsigned type first, to avoid unexpected sign-extension.

Do not specify the bound of a character array initialized with a string literal

The compiler issues this warning when the character buffer initialized by a string literal does
not provide enough room for the terminating null character.

14.8. Memory Management (MEM)

MEMO0-C

MEMO08-C

MEM30-C

Allocate and free memory in the same module, at the same level of abstraction

The compiler issues this warning when the result of the call to malloc(), calloc() or realloc()
is discarded, and therefore not free()d, resulting in a memory leak.

Use realloc() only to resize dynamically allocated arrays

Only use realloc() to resize an array. Do not use it to transform an object to an object of a
different type.

Do not access freed memory

When memory is freed, its contents may remain intact and accessible because it is at the
memory manager's discretion when to reallocate or recycle the freed chunk. The data at the
freed location may appear valid. However, this can change unexpectedly, leading to

unintended program behavior. As a result, it is necessary to guarantee that memory is not
written to or read from once it is freed.

581

http://doc.tasking.com/cert/arr34.html
http://doc.tasking.com/cert/arr35.html
http://doc.tasking.com/cert/str30.html
http://doc.tasking.com/cert/str33.html
http://doc.tasking.com/cert/str34.html
http://doc.tasking.com/cert/str36.html
http://doc.tasking.com/cert/mem00.html
http://doc.tasking.com/cert/mem08.html
http://doc.tasking.com/cert/mem30.html

TASKING VX-toolset for PCP User Guide

MEM31-C

MEM32-C

MEM33-C

MEM34-C

MEM35-C

Free dynamically allocated memory exactly once

Freeing memory multiple times has similar consequences to accessing memory after it is
freed. The underlying data structures that manage the heap can become corrupted. To
eliminate double-free vulnerabilities, it is necessary to guarantee that dynamic memory is
freed exactly once.

Detect and handle memory allocation errors

The result of realloc() is assigned to the original pointer, without checking for failure. As a
result, the original block of memory is lost when realloc() fails.

Use the correct syntax for flexible array members

Use the ISO C99 syntax for flexible array members instead of an array member of size 1.
Only free memory allocated dynamically

Freeing memory that is not allocated dynamically can lead to corruption of the heap data
structures.

Allocate sufficient memory for an object

The compiler issues this warning when the size of the object(s) allocated by malloc(), calloc()
or realloc() is smaller than the size of an object pointed to by the result pointer. This may be
caused by a sizeof expression with the wrong type or with a pointer type instead of the object

type.

14.9. Environment (ENV)

ENV32-C

All atexit handlers must return normally

The compiler issues this warning when an atexit() handler is calling a function that does not
return. No atexit() registered handler should terminate in any way other than by returning.

14.10. Signals (SIG)

SIG30-C
SIG32-C

Call only asynchronous-safe functions within signal handlers
Do not call longjmp() from inside a signal handler
Invoking the longjmp() function from within a signal handler can lead to undefined behavior

if it results in the invocation of any non-asynchronous-safe functions, likely compromising
the integrity of the program.

14.11. Miscellaneous (MSC)

MSC32-C

582

Ensure your random number generator is properly seeded

Ensure that the random number generator is properly seeded by calling srand().

http://doc.tasking.com/cert/mem31.html
http://doc.tasking.com/cert/mem32.html
http://doc.tasking.com/cert/mem33.html
http://doc.tasking.com/cert/mem34.html
http://doc.tasking.com/cert/mem35.html
http://doc.tasking.com/cert/env32.html
http://doc.tasking.com/cert/sig30.html
http://doc.tasking.com/cert/sig32.html
http://doc.tasking.com/cert/msc32.html

Chapter 15. MISRA-C Rules

This chapter contains an overview of the supported and unsupported MISRA C rules.

15.1. MISRA-C:1998

This section lists all supported and unsupported MISRA-C:1998 rules.
See also Section 3.7.2, C Code Checking: MISRA-C.

A number of MISRA-C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory
rule.

1. (R) The code shall conform to standard C, without language extensions
X 2. (A) Other languages should only be used with an interface standard

3. (A) Inline assembly is only allowed in dedicated C functions
X 4, (A) Provision should be made for appropriate run-time checking

5. (R) Only use characters and escape sequences defined by ISO C
X 6. (R) Character values shall be restricted to a subset of ISO 106460-1

7. (R) Trigraphs shall not be used

8. (R) Multibyte characters and wide string literals shall not be used

9. (R) Comments shall not be nested

10. (A) Sections of code should not be "commented out"

In general, it is not possible to decide whether a piece of comment is C code that is
commented out, or just some pseudo code. Instead, the following heuristics are used
to detect possible C code inside a comment:

* aline ends with ;', or

« aline starts with '}', possibly preceded by white space

11. (R) Identifiers shall not rely on significance of more than 31 characters
12. (A) The same identifier shall not be used in multiple name spaces
13. (A) Specific-length typedefs should be used instead of the basic types
14. (R) Use 'unsigned char' or 'signed char' instead of plain ‘char'

X 15. (A) Floating-point implementations should comply with a standard

16. (R) The bit representation of floating-point numbers shall not be used
A violation is reported when a pointer to a floating-point type is converted to a pointer
to an integer type.

17. (R) "typedef' names shall not be reused

583

TASKING VX-toolset for PCP User Guide

584

18.

19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
20.
30.

31.
32.
33.
34.
35.
36.
37.
38.

39.
40.
41.
42.
43.
44,
45,
46.

47.

(A)

R
R
(R
(A)
(A)
R
R
R
(A)
(A)
R
R

R
R
R
(R
R
(A)
(R)
R

(R)
(A)
(A)
R
(R
(A)
R
R

QY

Numeric constants should be suffixed to indicate type
A violation is reported when the value of the constant is outside the range indicated
by the suffixes, if any.

Octal constants (other than zero) shall not be used

All object and function identifiers shall be declared before use
Identifiers shall not hide identifiers in an outer scope
Declarations should be at function scope where possible

All declarations at file scope should be static where possible
Identifiers shall not have both internal and external linkage
Identifiers with external linkage shall have exactly one definition
Multiple declarations for objects or functions shall be compatible
External objects should not be declared in more than one file
The "register" storage class specifier should not be used

The use of a tag shall agree with its declaration

All automatics shall be initialized before being used

This rule is checked using worst-case assumptions. This means that violations are
reported not only for variables that are guaranteed to be uninitialized, but also for
variables that are uninitialized on some execution paths.

Braces shall be used in the initialization of arrays and structures
Only the first, or all enumeration constants may be initialized
The right hand operand of && or || shall not contain side effects
The operands of a logical && or || shall be primary expressions
Assignment operators shall not be used in Boolean expressions
Logical operators should not be confused with bitwise operators
Bitwise operations shall not be performed on signed integers

A shift count shall be between 0 and the operand width minus 1 This violation will
only be checked when the shift count evaluates to a constant value at compile time.

The unary minus shall not be applied to an unsigned expression
"sizeof" should not be used on expressions with side effects

The implementation of integer division should be documented
The comma operator shall only be used in a "for" condition

Don't use implicit conversions which may result in information loss
Redundant explicit casts should not be used

Type casting from any type to or from pointers shall not be used

The value of an expression shall be evaluation order independent

This rule is checked using worst-case assumptions. This means that a violation will
be reported when a possible alias may cause the result of an expression to be
evaluation order dependent.

No dependence should be placed on operator precedence rules

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.
68.
69.
70.

71.
72.
73.
74.
75.
76.
77.
78.
79.
80.

(A)
(A)
R
(A)
R
R
R
(A)
R
(R
R
R
(A)
R
R
(A)
R
R
(A)

(A)
R
R
R

R
R
R
R
R
R
R
R
R
R

MISRA-C Rules

Mixed arithmetic should use explicit casting

Tests of a (hon-Boolean) value against 0 should be made explicit
F.P. variables shall not be tested for exact equality or inequality
Constant unsigned integer expressions should not wrap-around
There shall be no unreachable code

All non-null statements shall have a side-effect

A null statement shall only occur on a line by itself

Labels should not be used

The "goto" statement shall not be used

The "continue" statement shall not be used

The "break" statement shall not be used (except in a "switch")
An "if" or loop body shall always be enclosed in braces

All "if", "else if" constructs should contain a final "else"

Every non-empty "case" clause shall be terminated with a "break”
All "switch" statements should contain a final "default" case

A "switch" expression should not represent a Boolean case
Every "switch" shall have at least one "case"

Floating-point variables shall not be used as loop counters

A "for" should only contain expressions concerning loop control
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

Iterator variables should not be modified in a "for" loop
Functions shall always be declared at file scope
Functions with variable number of arguments shall not be used

Functions shall not call themselves, either directly or indirectly

A violation will be reported for direct or indirect recursive function calls in the source
file being checked. Recursion via functions in other source files, or recursion via
function pointers is not detected.

Function prototypes shall be visible at the definition and call

The function prototype of the declaration shall match the definition
Identifiers shall be given for all prototype parameters or for none
Parameter identifiers shall be identical for declaration/definition
Every function shall have an explicit return type

Functions with no parameters shall have a "void" parameter list
An actual parameter type shall be compatible with the prototype
The number of actual parameters shall match the prototype

The values returned by "void" functions shall not be used

Void expressions shall not be passed as function parameters

585

TASKING VX-toolset for PCP User Guide

586

81.
82.
83.
84.
85.
86.

87.
88.
89.
90.
91.
92.
93.
94.
95.

96.
97.
98.
99.

100.
101.
102.

103.

104.
105.
106.
107.

108.

(A)
(A)
R
(R)
(A)
(A)

(R
R
R
(R)
(R
(A)
(A)
R
R

R
(A)
R
R

(R)
(A)
(A)

R

R
(R
R
R

R

"const" should be used for reference parameters not modified

A function should have a single point of exit

Every exit point shall have a "return” of the declared return type
For "void" functions, "return" shall not have an expression
Function calls with no parameters should have empty parentheses

If a function returns error information, it should be tested
A violation is reported when the return value of a function is ignored.

#include shall only be preceded by other directives or comments
Non-standard characters shall not occur in #include directives
#include shall be followed by either <filename> or "filename”
Plain macros shall only be used for constants/qualifiers/specifiers
Macros shall not be #define'd and #undef'd within a block

#undef should not be used

A function should be used in preference to a function-like macro
A function-like macro shall not be used without all arguments

Macro arguments shall not contain pre-preprocessing directives
A violation is reported when the first token of an actual macro argument is '#'.

Macro definitions/parameters should be enclosed in parentheses
Don't use undefined identifiers in pre-processing directives
A macro definition shall contain at most one # or ## operator

All uses of the #pragma directive shall be documented
This rule is really a documentation issue. The compiler will flag all #pragma directives
as violations.

"defined" shall only be used in one of the two standard forms
Pointer arithmetic should not be used

No more than 2 levels of pointer indirection should be used
A violation is reported when a pointer with three or more levels of indirection is
declared.

No relational operators between pointers to different objects

In general, checking whether two pointers point to the same object is impossible. The
compiler will only report a violation for a relational operation with incompatible pointer
types.

Non-constant pointers to functions shall not be used

Functions assigned to the same pointer shall be of identical type

Automatic address may not be assigned to a longer lived object

The null pointer shall not be de-referenced
A violation is reported for every pointer dereference that is not guarded by a NULL
pointer test.

All struct/union members shall be fully specified

MISRA-C Rules

109. (R) Overlapping variable storage shall not be used A violation is reported for every ‘union’
declaration.

110. (R) Unions shall not be used to access the sub-parts of larger types
A violation is reported for a 'union' containing a 'struct' member.

111. (R) bit-fields shall have type "unsigned int" or "signed int"

112. (R) bit-fields of type "signed int" shall be at least 2 bits long

113. (R) All struct/union members shall be named

114. (R) Reserved and standard library names shall not be redefined
115. (R) Standard library function names shall not be reused

116. (R) Production libraries shall comply with the MISRA C restrictions
117. (R) The validity of library function parameters shall be checked
118. (R) Dynamic heap memory allocation shall not be used

119. (R) The error indicator "errno” shall not be used

120. (R) The macro "offsetof" shall not be used

121. (R) <locale.h> and the "setlocale" function shall not be used

122. (R) The "setjmp" and "longjmp" functions shall not be used

123. (R) The signal handling facilities of <signal.h> shall not be used
124. (R) The <stdio.h> library shall not be used in production code

125. (R) The functions atof/atoi/atol shall not be used

126. (R) The functions abort/exit/getenv/system shall not be used

127. (R) The time handling functions of library <time.h> shall not be used

15.2. MISRA-C:2004

This section lists all supported and unsupported MISRA-C:2004 rules.
See also Section 3.7.2, C Code Checking: MISRA-C.

A number of MISRA-C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

X means that the rule is not supported by the TASKING C compiler. (R) is a required rule, (A) is an advisory
rule.

Environment

1.1 (R) All code shall conform to ISO 9899:1990 "Programming languages - C", amended
and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

1.2 (R) No reliance shall be placed on undefined or unspecified behavior.

587

TASKING VX-toolset for PCP User Guide

X 1.3
X 1.4
X 1.5

(R

R

(A)

Multiple compilers and/or languages shall only be used if there is a common defined
interface standard for object code to which the languages/compilers/assemblers
conform.

The compiler/linker shall be checked to ensure that 31 character significance and
case sensitivity are supported for external identifiers.

Floating-point implementations should comply with a defined floating-point standard.

Language extensions

2.1
2.2
2.3
24

R
R
(R)
(A)

Assembly language shall be encapsulated and isolated.
Source code shall only use /* ... */ style comments.
The character sequence /* shall not be used within a comment.

Sections of code should not be "commented out". In general, it is not possible to
decide whether a piece of comment is C code that is commented out, or just some
pseudo code. Instead, the following heuristics are used to detect possible C code
inside a comment: - a line ends with *;', or - a line starts with '}, possibly preceded by
white space

Documentation

3.1
3.2
3.3

3.4

3.5

R
R
(A)

R

R

(R

All usage of implementation-defined behavior shall be documented.
The character set and the corresponding encoding shall be documented.

The implementation of integer division in the chosen compiler should be determined,
documented and taken into account.

All uses of the #pragma directive shall be documented and explained. This rule is
really a documentation issue. The compiler will flag all #pragma directives as
violations.

The implementation-defined behavior and packing of bit-fields shall be documented
if being relied upon.

All libraries used in production code shall be written to comply with the provisions of
this document, and shall have been subject to appropriate validation.

Character sets

41 (R)
42 (R

Identifiers
51 (R
52 (R)

588

Only those escape sequences that are defined in the ISO C standard shall be used.
Trigraphs shall not be used.

Identifiers (internal and external) shall not rely on the significance of more than 31
characters.

Identifiers in an inner scope shall not use the same name as an identifier in an outer
scope, and therefore hide that identifier.

53 (R)
54 (R)
55 (A
56 (A)
57 (A
Types
6.1 (R)
6.2 (R)
6.3 (A
64 (R)
65 (R)
Constants
71 (R)

MISRA-C Rules

A typedef name shall be a unique identifier.
A tag name shall be a unique identifier.
No object or function identifier with static storage duration should be reused.

No identifier in one name space should have the same spelling as an identifier in
another name space, with the exception of structure and union member names.

No identifier name should be reused.

The plain char type shall be used only for storage and use of character values.

signed and unsigned char type shall be used only for the storage and use of
numeric values.

typedeTs that indicate size and signedness should be used in place of the basic
types.
bit-fields shall only be defined to be of type unsigned intorsigned int.

bit-fields of type signed int shall be at least 2 bits long.

Octal constants (other than zero) and octal escape sequences shall not be used.

Declarations and definitions

81 (R
82 (R
83 (R
84 (R
85 (R
86 (R
8.7 (R
88 (R
89 (R
x 810 (R)
8.11 (R)
8.12 (R)

Functions shall have prototype declarations and the prototype shall be visible at both
the function definition and call.

Whenever an object or function is declared or defined, its type shall be explicitly
stated.

For each function parameter the type given in the declaration and definition shall be
identical, and the return types shall also be identical.

If objects or functions are declared more than once their types shall be compatible.
There shall be no definitions of objects or functions in a header file.
Functions shall be declared at file scope.

Objects shall be defined at block scope if they are only accessed from within a single
function.

An external object or function shall be declared in one and only one file.
An identifier with external linkage shall have exactly one external definition.

All declarations and definitions of objects or functions at file scope shall have internal
linkage unless external linkage is required.

The static storage class specifier shall be used in definitions and declarations of
objects and functions that have internal linkage.

When an array is declared with external linkage, its size shall be stated explicitly or
defined implicitly by initialization.

589

TASKING VX-toolset for PCP User Guide

Initialization

9.1

9.2

9.3

R

R

R

All automatic variables shall have been assigned a value before being used. This rule
is checked using worst-case assumptions. This means that violations are reported
not only for variables that are guaranteed to be uninitialized, but also for variables
that are uninitialized on some execution paths.

Braces shall be used to indicate and match the structure in the non-zero initialization
of arrays and structures.

In an enumerator list, the "=" construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

Arithmetic type conversions

10.1

10.2

10.3

10.4

10.5

10.6

(R

R

(R
R

(R)

R

The value of an expression of integer type shall not be implicitly converted to a different
underlying type if:

a) it is not a conversion to a wider integer type of the same signedness, or

b) the expression is complex, or

¢) the expression is not constant and is a function argument, or

d) the expression is not constant and is a return expression.

The value of an expression of floating type shall not be implicitly converted to a
different type if:

a) it is not a conversion to a wider floating type, or

b) the expression is complex, or

c) the expression is a function argument, or

d) the expression is a return expression.

The value of a complex expression of integer type may only be cast to a type of the
same signedness that is no wider than the underlying type of the expression.

The value of a complex expression of floating type may only be cast to a type that is
no wider than the underlying type of the expression.

If the bitwise operators ~ and << are applied to an operand of underlying type
unsigned char orunsigned short, the result shall be immediately cast to the
underlying type of the operand.

A "U" suffix shall be applied to all constants of unsigned type.

Pointer type conversions

590

111

11.2

11.3
114

115

R

R

(A)
(A)

R

Conversions shall not be performed between a pointer to a function and any type
other than an integral type.

Conversions shall not be performed between a pointer to object and any type other
than an integral type, another pointer to object type or a pointer to void.

A cast should not be performed between a pointer type and an integral type.

A cast should not be performed between a pointer to object type and a different pointer
to object type.

A cast shall not be performed that removes any const or volati le qualification
from the type addressed by a pointer.

Expressions

121 (A
122 (R)
123 (R)
124 (R)
125 (R)
126 (A
127 (R)
128 (R)
129 (R)
12.10 (R)
12.11 (A)
12.12 (R)
12.13 (A)

MISRA-C Rules

Limited dependence should be placed on C's operator precedence rules in
expressions.

The value of an expression shall be the same under any order of evaluation that the
standard permits. This rule is checked using worst-case assumptions. This means
that a violation will be reported when a possible alias may cause the result of an
expression to be evaluation order dependent.

The sizeoT operator shall not be used on expressions that contain side effects.
The right-hand operand of a logical && or | | operator shall not contain side effects.
The operands of a logical && or | | shall be primary-expressions.

The operands of logical operators (&&, | | and !) should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to operators
other than (&&, | | and 1).

Bitwise operators shall not be applied to operands whose underlying type is signed.

The right-hand operand of a shift operator shall lie between zero and one less than
the width in bits of the underlying type of the left-hand operand. This violation will only
be checked when the shift count evaluates to a constant value at compile time.

The unary minus operator shall not be applied to an expression whose underlying
type is unsigned.

The comma operator shall not be used.
Evaluation of constant unsigned integer expressions should not lead to wrap-around.

The underlying bit representations of floating-point values shall not be used. A violation
is reported when a pointer to a floating-point type is converted to a pointer to an
integer type.

The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

Control statement expressions

131
13.2

13.3
13.4

13.5

13.6

13.7

R
(A)

R
R

R

R

R

Assignment operators shall not be used in expressions that yield a Boolean value.

Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean.

Floating-point expressions shall not be tested for equality or inequality.

The controlling expression of a for statement shall not contain any objects of floating
type.

The three expressions of a for statement shall be concerned only with loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

Numeric variables being used within a for loop for iteration counting shall not be
modified in the body of the loop.

Boolean operations whose results are invariant shall not be permitted.

591

TASKING VX-toolset for PCP User Guide

Control flow

141 (R)
142 (R)
143 (R)
144 (R)
145 (R)
146 (R)
147 (R)
148 (R)
149 (R)
14.10 (R)

There shall be no unreachable code.

All non-null statements shall either:
a) have at least one side effect however executed, or
b) cause control flow to change.

Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment provided that the first character following the null statement
is a white-space character.

The goto statement shall not be used.
The continue statement shall not be used.

For any iteration statement there shall be at most one break statement used for loop
termination.

A function shall have a single point of exit at the end of the function.

The statement forming the body of a switch, while,do ... while or for
statement be a compound statement.

An if (expressi on) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another i f
statement.

All i ... else if constructs shall be terminated with an else clause.

Switch statements

151 (R)
152 (R)
153 (R)
154 (R)
155 (R)

Functions
16.1 (R)
16.2 (R)
16.3 (R)
16.4 (R)
16,5 (R)
16.6 (R)

592

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

An unconditional break statement shall terminate every non-empty switch clause.
The final clause of a switch statement shall be the default clause.

A switch expression shall not represent a value that is effectively Boolean.

Every switch statement shall have at least one case clause.

Functions shall not be defined with variable numbers of arguments.

Functions shall not call themselves, either directly or indirectly. A violation will be
reported for direct or indirect recursive function calls in the source file being checked.
Recursion via functions in other source files, or recursion via function pointers is not
detected.

Identifiers shall be given for all of the parameters in a function prototype declaration.
The identifiers used in the declaration and definition of a function shall be identical.
Functions with no parameters shall be declared with parameter type void.

The number of arguments passed to a function shall match the number of parameters.

16.7 (A
16.8 (R)
16.9 (R)
16.10 (R)

MISRA-C Rules

A pointer parameter in a function prototype should be declared as pointer to const
if the pointer is not used to modify the addressed object.

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

If a function returns error information, then that error information shall be tested. A
violation is reported when the return value of a function is ignored.

Pointers and arrays

X 171

X 17.2

17.3

17.4
175

17.6

R

R

R

R
(A)

R

Pointer arithmetic shall only be applied to pointers that address an array or array
element.

Pointer subtraction shall only be applied to pointers that address elements of the
same array.

>, >=, <, <= shall not be applied to pointer types except where they point to the same
array. In general, checking whether two pointers point to the same object is impossible.
The compiler will only report a violation for a relational operation with incompatible
pointer types.

Array indexing shall be the only allowed form of pointer arithmetic.

The declaration of objects should contain no more than 2 levels of pointer indirection.
A violation is reported when a pointer with three or more levels of indirection is
declared.

The address of an object with automatic storage shall not be assigned to another
object that may persist after the first object has ceased to exist.

Structures and unions

18.1
18.2
X 18.3
18.4

R
R
R
R

All structure or union types shall be complete at the end of a translation unit.
An object shall not be assigned to an overlapping object.

An area of memory shall not be reused for unrelated purposes.

Unions shall not be used.

Preprocessing directives

19.1

19.2

X 19.3

19.4

(A)
(A)
R

(R)

#include statements in a file should only be preceded by other preprocessor
directives or comments.

Non-standard characters should not occur in header file names in #include
directives.

The #include directive shall be followed by either a <filename> or "flename"
sequence.

C macros shall only expand to a braced initializer, a constant, a parenthesized
expression, a type qualifier, a storage class specifier, or a do-while-zero construct.

593

TASKING VX-toolset for PCP User Guide

19.5

19.6

19.7

19.8

19.9

19.10

19.11

19.12

19.13
19.14

19.15

19.16

19.17

(R
R
(A)
R
R
(R
R
R

(A)
(R

(R)
R

(R)

Macros shall not be #define'd or #undef'd within a block.

#undef shall not be used.

A function should be used in preference to a function-like macro.

A function-like macro shall not be invoked without all of its arguments.

Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives. A violation is reported when the first token of an actual macro argument
is #.

In the definition of a function-like macro each instance of a parameter shall be enclosed
in parentheses unless it is used as the operand of # or ##.

All macro identifiers in preprocessor directives shall be defined before use, except in
#ifdef and #ifndef preprocessor directives and the defined() operator.

There shall be at most one occurrence of the # or ## preprocessor operators in a
single macro definition.

The # and ## preprocessor operators should not be used.

The defined preprocessor operator shall only be used in one of the two standard
forms.

Precautions shall be taken in order to prevent the contents of a header file being
included twice.

Preprocessing directives shall be syntactically meaningful even when excluded by
the preprocessor.

All #else, #el 1T and #endi T preprocessor directives shall reside in the same file
as the #if or #i fdef directive to which they are related.

Standard libraries

594

20.1

20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
20.10

20.11

20.12

R

R
(R
(R
R
(R
R
(R
R
R

(R

R

Reserved identifiers, macros and functions in the standard library, shall not be defined,
redefined or undefined.

The names of standard library macros, objects and functions shall not be reused.
The validity of values passed to library functions shall be checked.

Dynamic heap memory allocation shall not be used.

The error indicator errno shall not be used.

The macro offsetof, in library <stddef.h>, shall not be used.

The setjmp macro and the longjmp function shall not be used.

The signal handling facilities of <signal . h> shall not be used.

The input/output library <stdio.h> shall not be used in production code.

The library functions atof, atoi and atol from library <stdlib.h> shall not be
used.

The library functions abort, exit, getenv and system from library <stdlib.h>
shall not be used.

The time handling functions of library <time.h> shall not be used.

MISRA-C Rules

Run-time failures

X 211 (R) Minimization of run-time failures shall be ensured by the use of at least one of:
a) static analysis tools/techniques;
b) dynamic analysis tools/techniques;
c) explicit coding of checks to handle run-time faults.

595

TASKING VX-toolset for PCP User Guide

596

	TASKING VX-toolset for PCP User Guide
	Table of Contents
	Chapter 1. C Language
	1.1. Data Types
	1.1.1. Changing the Alignment: __align()

	1.2. Accessing Memory
	1.2.1. Memory Type Qualifiers
	1.2.2. Pointers
	1.2.3. Placing an Object at an Absolute Address: __at()
	1.2.4. Accessing Hardware from C

	1.3. Using Assembly in the C Source: __asm()
	1.4. Attributes
	1.5. Pragmas to Control the Compiler
	1.6. Predefined Preprocessor Macros
	1.7. Switch Statement
	1.8. Functions
	1.8.1. Calling Convention
	1.8.2. Register Usage
	1.8.3. Inlining Functions: inline
	1.8.4. Interrupt Functions
	1.8.4.1. Defining an Interrupt Service Routine: __interrupt()
	1.8.4.2. Setting the Current PCP Priority Number: __cppn()
	1.8.4.3. Shared Data: __share

	1.8.5. Intrinsic Functions

	1.9. PCP Code Generation
	1.9.1. Non-interruptible Code Generation
	1.9.2. Interruptible Code Generation

	1.10. Compiler Generated Sections
	1.10.1. Rename Sections

	Chapter 2. Assembly Language
	2.1. Assembly Syntax
	2.2. Assembler Significant Characters
	2.3. Operands of an Assembly Instruction
	2.4. Symbol Names
	2.4.1. Predefined Preprocessor Symbols

	2.5. Registers
	2.5.1. Special Function Registers

	2.6. Assembly Expressions
	2.6.1. Numeric Constants
	2.6.2. Strings
	2.6.3. Expression Operators

	2.7. Working with Sections
	2.8. Built-in Assembly Functions
	2.9. Assembler Directives and Controls
	2.9.1. Assembler Directives
	.ACCUM
	.ALIAS
	.ALIGN
	.ASCII, .ASCIIZ
	.BYTE
	.CALLS
	.COMMENT
	.DEFINE
	.DUP, .ENDM
	.DUPA, .ENDM
	.DUPC, .ENDM
	.DUPF, .ENDM
	.END
	.EQU
	.EXITM
	.EXTERN
	.FAIL
	.FLOAT, .DOUBLE
	.FRACT, .SFRACT
	.GLOBAL
	.IF, .ELIF, .ELSE, .ENDIF
	.INCLUDE
	.LOCAL
	.MACRO, .ENDM
	.MESSAGE
	.MISRAC
	.NAME
	.ORG
	.PMACRO
	.SDECL
	.SECT
	.SET
	.SIZE
	.SPACE
	.TYPE
	.UNDEF
	.WARNING
	.WEAK
	.WORD, .HALF

	2.9.2. Assembler Controls
	$CASE
	$DEBUG
	$HW_ONLY
	$IDENT
	$LIST ON/OFF
	$LIST "flags"
	$OBJECT
	$PAGE
	$PRCTL
	$STITLE
	$TITLE
	$WARNING OFF

	2.10. Macro Operations
	2.10.1. Defining a Macro
	2.10.2. Calling a Macro
	2.10.3. Using Operators for Macro Arguments

	2.11. Generic Instructions

	Chapter 3. Using the C Compiler
	3.1. Compilation Process
	3.2. Calling the C Compiler
	3.3. The C Startup Code
	3.4. How the Compiler Searches Include Files
	3.5. Compiling for Debugging
	3.6. Compiler Optimizations
	3.6.1. Generic Optimizations (frontend)
	3.6.2. Core Specific Optimizations (backend)
	3.6.3. Optimize for Size or Speed
	3.6.4. Static Stack Alignment Optimizations

	3.7. Static Code Analysis
	3.7.1. C Code Checking: CERT C
	3.7.2. C Code Checking: MISRA-C

	3.8. C Compiler Error Messages

	Chapter 4. Using the Assembler
	4.1. Assembly Process
	4.2. Calling the Assembler
	4.3. How the Assembler Searches Include Files
	4.4. Assembler Optimizations
	4.5. Generating a List File
	4.6. Assembler Error Messages

	Chapter 5. Using the Linker
	5.1. Linking Process
	5.1.1. Phase 1: Linking
	5.1.2. Phase 2: Locating

	5.2. Calling the Linker
	5.3. Linking with Libraries
	5.3.1. How the Linker Searches Libraries
	5.3.2. How the Linker Extracts Objects from Libraries

	5.4. Incremental Linking
	5.5. Importing Binary Files
	5.6. Linker Optimizations
	5.7. Controlling the Linker with a Script
	5.7.1. Purpose of the Linker Script Language
	5.7.2. Eclipse and LSL
	5.7.3. Structure of a Linker Script File
	5.7.4. The Architecture Definition
	5.7.5. The Derivative Definition
	5.7.6. The Processor Definition
	5.7.7. The Memory Definition
	5.7.8. The Section Layout Definition: Locating Sections

	5.8. Linker Labels
	5.9. Generating a Map File
	5.10. Linker Error Messages

	Chapter 6. Using the Utilities
	6.1. Control Program
	6.2. Make Utility mkpcp
	6.2.1. Calling the Make Utility
	6.2.2. Writing a Makefile
	6.2.2.1. Targets and Dependencies
	6.2.2.2. Makefile Rules
	6.2.2.3. Macro Definitions
	6.2.2.4. Makefile Functions
	6.2.2.5. Conditional Processing
	6.2.2.6. Comment, Include and Export Lines

	6.3. Make Utility amk
	6.3.1. Makefile Rules
	6.3.2. Makefile Directives
	6.3.3. Macro Definitions
	6.3.4. Makefile Functions
	6.3.5. Conditional Processing
	6.3.6. Makefile Parsing
	6.3.7. Makefile Command Processing
	6.3.8. Calling the amk Make Utility

	6.4. Archiver
	6.4.1. Calling the Archiver
	6.4.2. Archiver Examples

	Chapter 7. Using the Debugger
	7.1. Reading the Eclipse Documentation
	7.2. Creating a Customized Debug Configuration
	7.3. Troubleshooting
	7.4. TASKING Debug Perspective
	7.4.1. Debug View
	7.4.2. Breakpoints View
	7.4.3. File System Simulation (FSS) View
	7.4.4. Disassembly View
	7.4.5. Expressions View
	7.4.6. Memory View
	7.4.7. Compare Application View
	7.4.8. Heap View
	7.4.9. Logging View
	7.4.10. RTOS View
	7.4.11. TASKING Registers View
	7.4.12. Trace View

	7.5. PCP Simulator Configuration

	Chapter 8. Tool Options
	8.1. C Compiler Options
	C compiler option: --align-stack
	C compiler option: --cert
	C compiler option: --check
	C compiler option: --compact-max-size
	C compiler option: --core
	C compiler option: --cpu (-C)
	C compiler option: --debug-info (-g)
	C compiler option: --define (-D)
	C compiler option: --dep-file
	C compiler option: --diag
	C compiler option: --error-file
	C compiler option: --global-type-checking
	C compiler option: --help (-?)
	C compiler option: --include-directory (-I)
	C compiler option: --include-file (-H)
	C compiler option: --inline
	C compiler option: --inline-max-incr / --inline-max-size
	C compiler option: --interrupt-enable
	C compiler option: --iso (-c)
	C compiler option: --keep-output-files (-k)
	C compiler option: --language (-A)
	C compiler option: --make-target
	C compiler option: --mil / --mil-split
	C compiler option: --misrac
	C compiler option: --misrac-advisory-warnings / --misrac-required-warnings
	C compiler option: --misrac-version
	C compiler option: --no-channel-entry-table
	C compiler option: --no-clear
	C compiler option: --no-partition
	C compiler option: --no-stdinc
	C compiler option: --no-tasking-sfr
	C compiler option: --no-vector
	C compiler option: --no-warnings (-w)
	C compiler option: --optimize (-O)
	C compiler option: --option-file (-f)
	C compiler option: --output (-o)
	C compiler option: --preprocess (-E)
	C compiler option: --preserve-r7-flags
	C compiler option: --rename-sections (-R)
	C compiler option: --signed-bitfields
	C compiler option: --silicon-bug
	C compiler option: --source (-s)
	C compiler option: --static
	C compiler option: --stdout (-n)
	C compiler option: --symbol-prefix
	C compiler option: --tradeoff (-t)
	C compiler option: --uchar (-u)
	C compiler option: --undefine (-U)
	C compiler option: --version (-V)
	C compiler option: --warnings-as-errors

	8.2. Assembler Options
	Assembler option: --case-insensitive (-c)
	Assembler option: --check
	Assembler option: --core
	Assembler option: --cpu (-C)
	Assembler option: --debug-info (-g)
	Assembler option: --define (-D)
	Assembler option: --diag
	Assembler option: --emit-locals
	Assembler option: --error-file
	Assembler option: --error-limit
	Assembler option: --help (-?)
	Assembler option: --include-directory (-I)
	Assembler option: --include-file (-H)
	Assembler option: --keep-output-files (-k)
	Assembler option: --list-file (-l)
	Assembler option: --list-format (-L)
	Assembler option: --no-tasking-sfr
	Assembler option: --no-warnings (-w)
	Assembler option: --optimize (-O)
	Assembler option: --option-file (-f)
	Assembler option: --output (-o)
	Assembler option: --page-length
	Assembler option: --page-width
	Assembler option: --preprocess (-E)
	Assembler option: --preprocessor-type (-m)
	Assembler option: --section-info (-t)
	Assembler option: --silicon-bug
	Assembler option: --symbol-prefix (-P)
	Assembler option: --symbol-scope (-i)
	Assembler option: --version (-V)
	Assembler option: --warnings-as-errors

	8.3. Linker Options
	Linker option: Include debugger synchronization utility
	Linker option: --case-insensitive
	Linker option: --chip-output (-c)
	Linker option: --define (-D)
	Linker option: --diag
	Linker option: --error-file
	Linker option: --error-limit
	Linker option: --extern (-e)
	Linker option: --first-library-first
	Linker option: --global-type-checking
	Linker option: --help (-?)
	Linker option: --hex-format
	Linker option: --hex-record-size
	Linker option: --import-object
	Linker option: --include-directory (-I)
	Linker option: --incremental (-r)
	Linker option: --keep-output-files (-k)
	Linker option: --library (-l)
	Linker option: --library-directory (-L) / --ignore-default-library-path
	Linker option: --link-only
	Linker option: --lsl-check
	Linker option: --lsl-dump
	Linker option: --lsl-file (-d)
	Linker option: --map-file (-M)
	Linker option: --map-file-format (-m)
	Linker option: --misra-c-report
	Linker option: --non-romable
	Linker option: --no-rescan
	Linker option: --no-rom-copy (-N)
	Linker option: --no-warnings (-w)
	Linker option: --optimize (-O)
	Linker option: --option-file (-f)
	Linker option: --output (-o)
	Linker option: --strip-debug (-S)
	Linker option: --user-provided-initialization-code (-i)
	Linker option: --verbose (-v) / --extra-verbose (-vv)
	Linker option: --version (-V)
	Linker option: --warnings-as-errors

	8.4. Control Program Options
	Control program option: --address-size
	Control program option: --case-insensitive
	Control program option: --check
	Control program option: --cpu (-C)
	Control program option: --create (-c)
	Control program option: --debug-info (-g)
	Control program option: --define (-D)
	Control program option: --dep-file
	Control program option: --diag
	Control program option: --dry-run (-n)
	Control program option: --error-file
	Control program option: --format
	Control program option: --fp-trap
	Control program option: --help (-?)
	Control program option: --include-directory (-I)
	Control program option: --iso
	Control program option: --keep-output-files (-k)
	Control program option: --keep-temporary-files (-t)
	Control program option: --library (-l)
	Control program option: --library-directory (-L) / --ignore-default-library-path
	Control program option: --list-files
	Control program option: --lsl-file (-d)
	Control program option: --make-target
	Control program option: --mil-link / --mil-split
	Control program option: --no-default-libraries
	Control program option: --no-map-file
	Control program option: --no-tasking-sfr
	Control program option: --no-warnings (-w)
	Control program option: --option-file (-f)
	Control program option: --output (-o)
	Control program option: --pass (-W)
	Control program option: --preprocess (-E) / --no-preprocessing-only
	Control program option: --silicon-bug
	Control program option: --static
	Control program option: --uchar (-u)
	Control program option: --undefine (-U)
	Control program option: --verbose (-v)
	Control program option: --version (-V)
	Control program option: --warnings-as-errors

	8.5. Make Utility Options
	Defining Macros
	Make utility option: -?
	Make utility option: -a
	Make utility option: -c
	Make utility option: -D / -DD
	Make utility option: -d/ -dd
	Make utility option: -e
	Make utility option: -err
	Make utility option: -f
	Make utility option: -G
	Make utility option: -i
	Make utility option: -K
	Make utility option: -k
	Make utility option: -m
	Make utility option: -n
	Make utility option: -p
	Make utility option: -q
	Make utility option: -r
	Make utility option: -S
	Make utility option: -s
	Make utility option: -t
	Make utility option: -time
	Make utility option: -V
	Make utility option: -W
	Make utility option: -w
	Make utility option: -x

	8.6. Parallel Make Utility Options
	Parallel make utility option: -?
	Parallel make utility option: -a
	Parallel make utility option: -f
	Parallel make utility option: -G
	Parallel make utility option: -j / -J
	Parallel make utility option: -k
	Parallel make utility option: -n
	Parallel make utility option: -s
	Parallel make utility option: -V

	8.7. Archiver Options
	Archiver option: --delete (-d)
	Archiver option: --dump (-p)
	Archiver option: --extract (-x)
	Archiver option: --help (-?)
	Archiver option: --move (-m)
	Archiver option: --option-file (-f)
	Archiver option: --print (-t)
	Archiver option: --replace (-r)
	Archiver option: --version (-V)
	Archiver option: --warning (-w)

	Chapter 9. Libraries
	9.1. Library Functions
	9.1.1. assert.h
	9.1.2. complex.h
	9.1.3. cstart.h
	9.1.4. ctype.h and wctype.h
	9.1.5. dbg.h
	9.1.6. errno.h
	9.1.7. fcntl.h
	9.1.8. fenv.h
	9.1.9. float.h
	9.1.10. inttypes.h and stdint.h
	9.1.11. io.h
	9.1.12. iso646.h
	9.1.13. limits.h
	9.1.14. locale.h
	9.1.15. malloc.h
	9.1.16. math.h and tgmath.h
	9.1.17. setjmp.h
	9.1.18. signal.h
	9.1.19. stdarg.h
	9.1.20. stdbool.h
	9.1.21. stddef.h
	9.1.22. stdint.h
	9.1.23. stdio.h and wchar.h
	9.1.24. stdlib.h and wchar.h
	9.1.25. string.h and wchar.h
	9.1.26. time.h and wchar.h
	9.1.27. unistd.h
	9.1.28. wchar.h
	9.1.29. wctype.h

	9.2. C Library Reentrancy

	Chapter 10. List File Formats
	10.1. Assembler List File Format
	10.2. Linker Map File Format

	Chapter 11. Linker Script Language (LSL)
	11.1. Structure of a Linker Script File
	11.2. Syntax of the Linker Script Language
	11.2.1. Preprocessing
	11.2.2. Lexical Syntax
	11.2.3. Identifiers and Tags
	11.2.4. Expressions
	11.2.5. Built-in Functions
	11.2.6. LSL Definitions in the Linker Script File
	11.2.7. Memory and Bus Definitions
	11.2.8. Architecture Definition
	11.2.9. Derivative Definition
	11.2.10. Processor Definition and Board Specification
	11.2.11. Section Layout Definition and Section Setup

	11.3. Expression Evaluation
	11.4. Semantics of the Architecture Definition
	11.4.1. Defining an Architecture
	11.4.2. Defining Internal Buses
	11.4.3. Defining Address Spaces
	11.4.4. Mappings

	11.5. Semantics of the Derivative Definition
	11.5.1. Defining a Derivative
	11.5.2. Instantiating Core Architectures
	11.5.3. Defining Internal Memory and Buses

	11.6. Semantics of the Board Specification
	11.6.1. Defining a Processor
	11.6.2. Instantiating Derivatives
	11.6.3. Defining External Memory and Buses

	11.7. Semantics of the Section Setup Definition
	11.7.1. Setting up a Section

	11.8. Semantics of the Section Layout Definition
	11.8.1. Defining a Section Layout
	11.8.2. Creating and Locating Groups of Sections
	11.8.3. Creating or Modifying Special Sections
	11.8.4. Creating Symbols
	11.8.5. Conditional Group Statements

	Chapter 12. Debug Target Configuration Files
	12.1. Custom Board Support
	12.2. Description of DTC Elements and Attributes
	12.3. Special Resource Identifiers
	12.4. Initialize Elements

	Chapter 13. CPU Problem Bypasses and Checks
	PCP_TC.034
	PCP_TC.038

	Chapter 14. CERT C Secure Coding Standard
	14.1. Preprocessor (PRE)
	14.2. Declarations and Initialization (DCL)
	14.3. Expressions (EXP)
	14.4. Integers (INT)
	14.5. Floating Point (FLP)
	14.6. Arrays (ARR)
	14.7. Characters and Strings (STR)
	14.8. Memory Management (MEM)
	14.9. Environment (ENV)
	14.10. Signals (SIG)
	14.11. Miscellaneous (MSC)

	Chapter 15. MISRA-C Rules
	15.1. MISRA-C:1998
	15.2. MISRA-C:2004

