
MA060-024-00-00

Doc. ver.: 1.3

TriCore v2.1

C Compiler,

Assembler, Linker

User's Manual

A publication of

Altium BV

Documentation Department

Copyright 2002-2004 Altium BV

All rights reserved. Reproduction in whole or part is prohibited
without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Macrovision Corporation.
Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.
MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com
http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF

CONTENTS
C

O
N

T
E

N
T

S

TriCore User's ManualIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

SOFTWARE INSTALLATION AND CONFIGURATION 1-1

1.1 Introduction 1-3.

1.2 Software Installation 1-3.

1.2.1 Installation for Windows 1-3.

1.2.2 Installation for Linux 1-4.

1.2.3 Installation for UNIX Hosts 1-6.

1.3 Software Configuration 1-7.

1.3.1 Configuring the Embedded Development Environment 1-7

1.3.2 Configuring the Command Line Environment 1-9.

1.4 Licensing TASKING Products 1-12.

1.4.1 Obtaining License Information 1-12.

1.4.2 Installing Node-Locked Licenses 1-13.

1.4.3 Installing Floating Licenses 1-14.

1.4.4 Modifying the License File Location 1-16.

1.4.5 How to Determine the Hostid 1-17.

1.4.6 How to Determine the Hostname 1-17.

GETTING STARTED 2-1

2.1 Introduction 2-3.

2.2 Working With Projects in EDE 2-7.

2.3 Start EDE 2-8.

2.4 Using the Sample Projects 2-9.

2.5 Create a New Project Space with a Project 2-9.

2.6 Set Options for the Tools in the Toolchain 2-14.

2.7 Build your Application 2-16.

2.8 How to Build Your Application on the Command Line 2-17

2.9 Debug getstart.elf 2-18.

TRICORE C LANGUAGE 3-1

3.1 Introduction 3-3.

3.2 Data Types 3-3.

3.2.1 Fundamental Data Types 3-3.

3.2.2 Fractional Data Types 3-5.

TriCore User's ManualVI
C
O
N
T
E
N
T
S

3.2.3 Bit Data Type 3-6.

3.2.4 Packed Data Types 3-8.

3.3 Memory Qualifiers 3-10.

3.3.1 Declare a Data Object in a Special Part of Memory 3-10. . .

3.3.2 Declare a Data Object at an Absolute Address:
__at() and __atbit() 3-13.

3.4 Data Type Qualifiers 3-15.

3.4.1 Circular Buffers: __circ 3-15.

3.4.2 Declare an SFR Bit field: __sfrbit16 and __sfrbit32 3-16. . . .

3.5 Intrinsic Functions 3-18.

3.6 Using Assembly in the C Source: __asm() 3-19.

3.7 Controlling the Compiler: Pragmas 3-25.

3.8 Predefined Macros 3-28.

3.9 Functions 3-29.

3.9.1 Inlining Functions: inline 3-29.

3.9.2 Interrupt and Trap Functions 3-31.

3.9.2.1 Defining an Interrupt Service Routine 3-32.

3.9.2.2 Defining a Trap Service Routine 3-33.

3.9.2.3 Defining a Trap Service Routine Class 6: __syscallfunc() 3-34

3.9.2.4 Enabling Interrupt Requests: __enable_, __bisr_() 3-36. . . .

3.9.3 Function Calling Modes: __indirect 3-37.

3.9.4 Parameter Passing and the Stack Model: __stackparm 3-37.

3.10 Compiler Generated Sections 3-41.

3.11 Switch Statement 3-44.

3.12 Libraries 3-45.

3.12.1 Overview of Libraries 3-46.

3.12.2 Printf and Scanf Formatting Routines 3-46.

3.12.3 Rebuilding Libraries 3-48.

TRICORE ASSEMBLY LANGUAGE 4-1

4.1 Introduction 4-3.

4.2 Assembly Syntax 4-3.

4.3 Assembler Significant Characters 4-4.

4.4 Operands 4-5.

Table of Contents VII

• • • • • • • •

4.4.1 Operands and Addressing Modes 4-5.

4.4.2 PCP Addressing Modes 4-8.

4.5 Symbol Names 4-8.

4.6 Assembly Expressions 4-9.

4.6.1 Numeric Constants 4-10.

4.6.2 Strings 4-11.

4.6.3 Expression Operators 4-12.

4.7 Built-in Assembly Functions 4-14.

4.8 Assembler Directives and Controls 4-17.

4.8.1 Overview of Assembler Directives 4-18.

4.8.2 Overview of Assembler Controls 4-21.

4.9 Working with Sections 4-22.

4.10 Macro Operations 4-24.

4.10.1 Defining a Macro 4-24.

4.10.2 Calling a Macro 4-25.

4.10.3 Using Operators for Macro Arguments 4-27.

4.10.4 Using the .DUP, .DUPA, .DUPC, .DUPF Directives
as Macros 4-31.

4.10.5 Conditional Assembly: .IF, .ELIF and .ELSE Directives 4-31.

USING THE COMPILER 5-1

5.1 Introduction 5-3.

5.2 Compilation Process 5-4.

5.3 Compiler Optimizations 5-5.

5.3.1 Optimize for Size or Speed 5-9.

5.4 Calling the Compiler 5-10.

5.5 How the Compiler Searches Include Files 5-15.

5.6 Compiling for Debugging 5-16.

5.7 C Code Checking: MISRA C 5-16.

5.8 C Compiler Error Messages 5-19.

TriCore User's ManualVIII
C
O
N
T
E
N
T
S

USING THE ASSEMBLER 6-1

6.1 Introduction 6-3.

6.2 Assembly Process 6-3.

6.3 Assembler Optimizations 6-4.

6.4 Calling the Assembler 6-5.

6.5 How the Assembler Searches Include Files 6-8.

6.6 Generating a List File 6-8.

6.7 Assembler Error Messages 6-9.

USING THE LINKER 7-1

7.1 Introduction 7-3.

7.2 Linking Process 7-4.

7.2.1 Phase 1: Linking 7-6.

7.2.2 Phase 2: Locating 7-7.

7.2.3 Linker Optimizations 7-9.

7.3 Calling the Linker 7-11.

7.4 Linking with Libraries 7-14.

7.4.1 Specifying Libraries to the Linker 7-15.

7.4.2 How the Linker Searches Libraries 7-16.

7.4.3 How the Linker Extracts Objects from Libraries 7-17.

7.5 Incremental Linking 7-18.

7.6 Linking the C Startup Code 7-18.

7.7 Controlling the Linker with a Script 7-20.

7.7.1 Purpose of the Linker Script Language 7-20.

7.7.2 EDE and LSL 7-21.

7.7.3 Structure of a Linker Script File 7-22.

7.7.4 The Architecture Definition: Self-Designed Cores 7-25. . . .

7.7.5 The Derivative Definition: Self-Designed Processors 7-29. .

7.7.6 The Memory Definition: Defining External Memory 7-31. . .

7.7.7 The Section Layout Definition: Locating Sections 7-33.

7.7.8 The Processor Definition: Using Multi-Processor
Systems 7-37.

7.8 Linker Labels 7-38.

7.9 Generating a Map File 7-40.

Table of Contents IX

• • • • • • • •

7.10 Linker Error Messages 7-41.

USING THE UTILITIES 8-1

8.1 Introduction 8-3.

8.2 Control Program 8-4.

8.2.1 Calling the Control Program 8-4.

8.3 Make Utility 8-9.

8.3.1 Calling the Make Utility 8-11.

8.3.2 Writing a Makefile 8-12.

8.4 Archiver 8-23.

8.4.1 Calling the Archiver 8-23.

8.4.2 Examples 8-26.

INDEX

TriCore User's ManualX
C
O
N
T
E
N
T
S

Manual Purpose and Structure XI

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

Windows Users

The documentation explains and describes how to use the TriCore
toolchain to program a TriCore DSP. The documentation is primarily aimed
at Windows users. You can use the tools either with the graphical
Embedded Development Environment (EDE) or from the command line in
a command prompt window.

UNIX Users

For UNIX the toolchain works the same as it works for the Windows
command line.

Directory paths are specified in the Windows way, with back slashes as in
.\include. Simply replace the back slashes by forward slashes for use
with UNIX: ./include.

Some characters have a special meaning in a UNIX shell. In such cases you
must escape the special characters. For example, '-?' must be specified as
'-\?' in some shells. See your UNIX documentation for more information.

Structure

The toolchain documentation consists of a User's Manual (this manual)
which includes a Getting Started section and a separate Reference Manual.

First you need to install the software. This is described in Chapter 1,
Software Installation and Configuration

After installation you are ready to follow the Getting Started in Chapter 2.

Next, move on with the other chapters which explain how to use the
compiler, assembler, linker and the various utilities.

Once you are familiar with these tools, you can use the Reference Manual
to lookup specific options and details to make full use of the TriCore
toolchain.

TriCore User's ManualXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

SHORT TABLE OF CONTENTS

Chapter 1: Software Installation and Configuration

Guides you through the installation of the software. Describes the most
important settings, paths and filenames that you must specify to get the
package up and running.

Chapter 2: Getting Started

Overview of the toolchain and its individual elements. Describes the
relation between the toolchain and specific features of the TriCore.
Explains step-by-step how to write, compile, assemble and debug your
application. Teaches how you can use projects to organize your files.

Chapter 3: TriCore C Language

The TASKING TriCore C compiler is fully compatible with ISO-C. This
chapter describes the specific TriCore features of the C language, including
language extensions that are not standard in ISO-C. For example, pragmas
are a way to control the compiler from within the C source.

Chapter 4: TriCore Assembly Language

Describes the specific features of the TriCore assembly language as well as
'directives', which are pseudo instructions that are interpreted by the
assembler.

Chapter 5: Using the Compiler

Describes how you can use the compiler. An extensive overview of all
options is included in the Reference Manual.

Chapter 6: Using the Assembler

Describes how you can use the assembler. An extensive overview of all
options is included in the Reference Manual.

Chapter 7: Using the Linker

Describes how you can use the linker. An extensive overview of all
options is included in the Reference Manual.

Chapter 8: Using the Utilities

Describes several utilities and how you can use them to facilitate various
tasks. The following utilities are included: control program, make utility
and archiver.

Manual Purpose and Structure XIII

• • • • • • • •

CONVENTIONS USED IN THIS MANUAL

Notation for syntax

The following notation is used to describe the syntax of command line
input:

bold Type this part of the syntax literally.

italics Substitute the italic word by an instance. For example:

filename

Type the name of a file in place of the word filename.

{ } Encloses a list from which you must choose an item.

[] Encloses items that are optional. For example

ctc [-?]

Both ctc and ctc -? are valid commands.

| Separates items in a list. Read it as OR.

... You can repeat the preceding item zero or more times.

,... You can repeat the preceding item zero or more times,
separating each item with a comma.

Example

ctc [option]... filename

You can read this line as follows: enter the command ctc with or without
an option, follow this by zero or more options and specify a filename. The
following input lines are all valid:

ctc test.c

ctc -g test.c

ctc -g -E test.c

Not valid is:

ctc -g

According to the syntax description, you have to specify a filename.

TriCore User's ManualXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

Icons

The following illustrations are used in this manual:

Note: notes give you extra information.

Warning: read the information carefully. It prevents you from making
serious mistakes or from loosing information.

This illustration indicates actions you can perform with the mouse. Such as
EDE menu entries and dialogs.

Command line: type your input on the command line.

Reference: follow this reference to find related topics.

Manual Purpose and Structure XV

• • • • • • • •

RELATED PUBLICATIONS

C Standards

• C A Reference Manual (fifth edition) by Samual P. Harbison and Guy L.
Steele Jr. (2002, Prentice Hall)

• The C Programming Language (second edition) by B. Kernighan and D.
Ritchie (1988, Prentice Hall)

• ISO/IEC 9899:1999(E), Programming languages - C [ISO/IEC]
More information on the standards can be found at
http://www.ansi.org

• DSP-C, An Extension to ISO/IEC 9899:1999(E),
Programming languages - C [TASKING, TK0071-14]

MISRA C

• Guidelines for the Use of the C Language in Vehicle Based Software
[MISRA]
See also http://www.misra.org.uk

TASKING Tools

• TriCore C Compiler, Assembler, Linker Reference Manual
[TASKING, MB060-024-00-00]

• TriCore C++ Compiler User's Manual
[TASKING, MA60-012-00-00]

• TriCore CrossView Pro Debugger User's Manual
[TASKING, MA060-043-00-00]

TriCore

• TriCore 1 Unified Processor Core v1.3 Architecture Manual, Doc v1.3.3
[2002-09, Infineon]

• TriCore2 Architecture Overview Handbook [2002, Infineon]

• TriCore Embedded Application Binary Interface [2000, Infineon]

TriCore User's ManualXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

1

SOFTWARE

INSTALLATION AND

CONFIGURATION
C

H
A

P
T

E
R

TriCore User's Manual1-2
IN
S
TA

L
L
A
T
IO
N

1

C
H

A
P

T
E

R

Software Installation and Configuration 1-3

• • • • • • • •

1.1 INTRODUCTION

This chapter guides you through the procedures to install the software on
a Windows system or on a Linux or UNIX host.

The software for Windows has two faces: a graphical interface (Embedded
Development Environment) and a command line interface. The Linux and
UNIX software has only a command line interface.

After the installation, it is explained how to configure the software and
how to install the license information that is needed to actually use the
software.

1.2 SOFTWARE INSTALLATION

1.2.1 INSTALLATION FOR WINDOWS

1. Start Windows 95/98/XP/NT/2000, if you have not already done so.

2. Insert the CD-ROM into the CD-ROM drive.

If the TASKING Showroom dialog box appears, proceed with Step 5.

3. Click the Start button and select Run...

4. In the dialog box type d:\setup (substitute the correct drive letter for
your CD-ROM drive) and click on the OK button.

The TASKING Showroom dialog box appears.

5. Select a product and click on the Install button.

6. Follow the instructions that appear on your screen.

You can find your serial number on the invoice, delivery note, or picking
slip delivered with the product.

7. License the software product as explained in section 1.4, Licensing
TASKING Products.

TriCore User's Manual1-4
IN
S
TA

L
L
A
T
IO
N

1.2.2 INSTALLATION FOR LINUX

Each product on the CD-ROM is available as an RPM package, Debian
package and as a gzipped tar file. For each product the following files are
present:

SWproduct-version-RPMrelease.i386.rpm

swproduct_version-release_i386.deb

SWproduct-version.tar.gz

These three files contain exactly the same information, so you only have
to install one of them. When your Linux distribution supports RPM
packages, you can install the .rpm file. For a Debian based distribution,
you can use the .deb file. Otherwise, you can install the product from the
.tar.gz file.

RPM Installation

1. In most situations you have to be "root" to install RPM packages, so either
login as "root", or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom. See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install or upgrade all products at once, issue the following command:

rpm -U SW*.rpm

This will install or upgrade all products in the default installation directory
/usr/local. Every RPM package will create a single directory in the
installation directory.

The RPM packages are 'relocatable', so it is possible to select a different
installation directory with the --prefix option. For instance when you
want to install the products in /opt, use the following command:

rpm -U --prefix /opt SW*.rpm

For Red Hat 6.0 users: The --prefix option does not work with RPM
version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to
RPM verion 3.0.3 or higher, or use the .tar.gz file installation described
in the next section if you want to install in a non-standard directory.

Software Installation and Configuration 1-5

• • • • • • • •

Debian Installation

1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root" or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom. See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install or upgrade all products at once, issue the following command:

dpkg -i sw*.deb

This will install or upgrade all products in a subdirectory of the default
installation directory /usr/local.

Tar.gz Installation

1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root" or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a
directory, for example /cdrom. See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install the products from the .tar.gz files in the directory
/usr/local, issue the following command for each product:

tar xzf SWproduct-version.tar.gz -C /usr/local

Every .tar.gz file creates a single directory in the directory where it is
extracted.

TriCore User's Manual1-6
IN
S
TA

L
L
A
T
IO
N

1.2.3 INSTALLATION FOR UNIX HOSTS

1. Login as a user.

Be sure you have read, write and execute permissions in the installation
directory. Otherwise, login as "root" or use the su command.

If you are a first time user, decide where you want to install the product.
By default it will be installed in /usr/local.

2. Insert the CD-ROM into the CD-ROM drive and mount the CD-ROM on a
directory, for example /cdrom.

Be sure to use an ISO 9660 file system with Rock Ridge extensions
enabled. See the UNIX manual pages about mount for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. Run the installation script:

sh install

Follow the instructions appearing on your screen.

First a question appears about where to install the software. The default
answer is /usr/local.

On some hosts the installation script asks if you want to install SW000098,
the Flexible License Manager (FLEXlm). If you do not already have FLEXlm
on your system, you must install it otherwise the product will not work on
those hosts. See section 1.4, Licensing TASKING Products.

If the script detects that the software has been installed before, the
following messages appear on the screen:

 *** WARNING ***

SWxxxxxx xxxx.xxxx already installed.

Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the
following message being displayed:

=> Installation stopped on user request <=

Software Installation and Configuration 1-7

• • • • • • • •

Answer y (yes) to continue with the installation. The last message will be:

Installation of SWxxxxxx xxxx.xxxx completed.

5. If you purchased a protected TASKING product, license the software
product as explained in section 1.4, Licensing TASKING Products.

1.3 SOFTWARE CONFIGURATION

Now you have installed the software, you can configure both the
Embedded Development Environment and the command line environment
for Windows, Linux and UNIX.

1.3.1 CONFIGURING THE EMBEDDED DEVELOPMENT

ENVIRONMENT

After installation on Windows, the Embedded Development Environment
is automatically configured with default search paths to find the
executables, include files and libraries. In most cases you can use these
settings. To change the default settings, follow the next steps:

1. Double-click on the EDE icon on your desktop to start the Embedded
Development Environment (EDE).

2. From the Project menu, select Directories...

The Directories dialog box appears.

3. Fill in the following fields:

• In the Executable Files Path field, type the pathname of the
directory where the executables are located. The default directory is
$(PRODDIR)\bin.

• In the Include Files Path field, add the pathnames of the
directories where the compiler and assembler should look for
include files. The default directory is $(PRODDIR)\include.
Separate pathnames with a semicolon (;).

The first path in the list is the first path where the compiler and
assembler look for include files. To change the search order, simply
change the order of pathnames.

TriCore User's Manual1-8
IN
S
TA

L
L
A
T
IO
N

• In the Library Files Path field, add the pathnames of the
directories where the linker should look for library files. The default
directory is $(PRODDIR)\lib. Separate pathnames with a
semicolon (;).

The first path in the list is the first path where the linker looks for
library files. To change the search order, simply change the order of
pathnames.

Instead of typing the pathnames, you can click on the Configure...

button.

A dialog box appears in which you can select and add directories, remove
them again and change their order.

Software Installation and Configuration 1-9

• • • • • • • •

1.3.2 CONFIGURING THE COMMAND LINE

ENVIRONMENT

To facilitate the invocation of the tools from the command line (either
using a Windows command prompt or using Linux or UNIX), you can set
environment variables.

You can set the following variables:

Environment
Variable

Description

PATH With this variable you specify the directory in which

the executables reside (for example: c:\ctc\bin).

This allows you to call the executables when you

are not in the bin directory.

Usually your system already uses the PATH variable

for other purposes. To keep these settings, you

need to add (rather than replace) the path. Use a

semicolon (;) to separate pathnames.

CTCINC With this variable you specify one or more additional

directories in which the C compiler ctc looks for

include files. The compiler first looks in these

directories, then always looks in the default

include directory relative to the installation

directory.

ASTCINC With this variable you specify one or more additional

directories in which the assembler astc looks for

include files. The assembler first looks in these

directories, then always looks in the default

include directory relative to the installation

directory.

ASPCPINC With this variable you specify one or more additional

directories in which the assembler aspcp looks for

include files. The assembler first looks in these

directories, then always looks in the default

include directory relative to the installation

directory.

CCTCBIN With this variable you specify the directory in which

the control program cctc looks for the executable

tools. The path you specify here should match the

path that you specified for the PATH variable.

CCTCOPT With this variable you specify options and/or

arguments to each invocation of the control program

cctc. The control program processes these

arguments before the command line arguments.

TriCore User's Manual1-10
IN
S
TA

L
L
A
T
IO
N

DescriptionEnvironment
Variable

LIBTC1V1_2

LIBTC1V1_3

LIBTC2

With this variable you specify one or more

alternative directories in which the linker ltc looks for

library files for a specific core. The linker first looks

in these directories, then always looks in the default

lib directory.

LM_LICENSE_FILE With this variable you specify the location of the

license data file. You only need to specify this

variable if the license file is not on its default location

(c:\flexlm for Windows,

/usr/local/flexlm/licenses for UNIX).

TASKING_LIC_WAIT If you set this variable, the tool will wait for a license

to become available, if all licenses are taken. If you

have not set this variable, the tool aborts with an

error message. (Only useful with floating licenses)

TMPDIR With this variable you specify the location where

programs can create temporary files. Usually your

system already uses this variable. In this case you

do not need to change it.

Table 1-1: Environment variables

The following examples show how to set an environment variable using
the PATH variable as an example.

Example for Windows 95/98

Add the following line to your autoexec.bat file:

set PATH=%path%;c:\ctc\bin

You can also type this line in a Command Prompt window but you will
loose this setting after you close the window.

Example for Windows NT

1. Right-click on the My Computer icon on your desktop and select
Properties from the menu.

The System Properties dialog appears.

2. Select the Environment tab.

Software Installation and Configuration 1-11

• • • • • • • •

3. In the list of System Variables select Path.

4. In the Value field, add the path where the executables are located to the
existing path information. Separate pathnames with a semicolon (;). For
example: c:\ctc\bin.

5. Click on the Set button, then click OK.

Example for Windows XP / 2000

1. Right-click on the My Computer icon on your desktop and select
Properties from the menu.

The System Properties dialog appears.

2. Select the Advanced tab.

3. Click on the Environment Variables button.

The Environment Variables dialog appears.

4. In the list of System variables select Path.

5. Click on the Edit button.

The Edit System Variable dialog appears.

6. In the Variable value field, add the path where the executables are
located to the existing path information. Separate pathnames with a
semicolon (;). For example: c:\ctc\bin.

7. Click on the OK button to accept the changes and close the dialogs.

Example for UNIX

Enter the following line (C-shell):

setenv PATH $PATH:/usr/local/ctc/bin

TriCore User's Manual1-12
IN
S
TA

L
L
A
T
IO
N

1.4 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software
(FLEXlm). To use a TASKING product, you must install the license key
provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a
floating license. When you order a TASKING product determine which
type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the
product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among
users at one site. This license type does not lock the software to one
specific PC or workstation but it requires a network. The software can then
be used on any computer in the network. The license specifies the
number of users who can use the software simultaneously. A system
allocating floating licenses is called a license server. A license manager
running on the license server keeps track of the number of users.

1.4.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License Key"
containing the license information for your software product. If you have
not received such a license key follow the steps below to obtain one.
Otherwise, you can install the license.

Windows

1. Run the License Administrator during installation and follow the steps to
Request a license key from Altium by E-mail.

2. E-mail the license request to your local TASKING sales representative. The
license key will be sent to you by E-mail.

Software Installation and Configuration 1-13

• • • • • • • •

UNIX

1. If you need a floating license on UNIX, you must determine the hostid and
hostname of the computer where you want to use the license manager.
Also decide how many users will be using the product. See section 1.4.5,
How to Determine the Hostid and section 1.4.6, How to Determine the
Hostname.

2. When you order a TASKING product, provide the hostid, hostname and
number of users to your local TASKING sales representative. The license
key will be sent to you by E-mail.

1.4.2 INSTALLING NODE-LOCKED LICENSES

If you do not have received your license key, read section 1.4.1, Obtaining
License Information, before continuing.

1. Install the TASKING software product following the installation procedure
described in section 1.2.1, Installation for Windows, if you have not done
this already.

2. Create a license file by importing a license key or create one manually:

Import a license key

During installation you will be asked to run the License Administrator.
Otherwise, start the License Administrator (licadmin.exe) manually.

In the License Administrator follow the steps to Import a license key

received from Altium by E-mail. The License Administrator creates a
license file for you.

Create a license file manually

If you prefer to create a license file manually, create a file called
"license.dat" in the c:\flexlm directory, using an ASCII editor and
insert the license key information received by E-mail in this file. This file is
called the "license file". If the directory c:\flexlm does not exist, create
the directory.

If you wish to install the license file in a different directory, see section
1.4.4, Modifying the License File Location.

TriCore User's Manual1-14
IN
S
TA

L
L
A
T
IO
N

If you already have a license file, add the license key information to the
existing license file. If the license file already contains any SERVER lines,
you must use another license file. See section 1.4.4, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

1.4.3 INSTALLING FLOATING LICENSES

If you do not have received your license key, read section 1.4.1, Obtaining
License Information, before continuing.

1. Install the TASKING software product following the installation procedure
described earlier in this chapter on each computer or workstation where
you will use the software product.

2. On each PC or workstation where you will use the TASKING software
product the location of a license file must be known, containing the
information of all licenses. Either create a local license file or point to a
license file on a server:

Add a licence key to a local license file

A local license file can reduce network traffic.

On Windows, you can follow the same steps to import a license key or
create a license file manually, as explained in the previous section with the
installation of a node-locked license.

On UNIX, you have to insert the license key manually in the license file.
The default location of the license file license.dat is in directory
/usr/local/flexlm/licenses for UNIX.

If you wish to install the license file in a different directory, see section
1.4.4, Modifying the License File Location.

If you already have a license file, add the license key information to the
existing license file. If the license file already contains any SERVER lines,
make sure that the number of SERVER lines and their contents match,
otherwise you must use another license file. See section 1.4.4, Modifying
the License File Location, for additional information.

Software Installation and Configuration 1-15

• • • • • • • •

Point to a license file on the server

Set the environment variable LM_LICENSE_FILE to "port@host", where
host and port come from the SERVER line in the license file. On Windows,
you can use the License Administrator to do this for you. In the License
Administrator follow the steps to Point to a FLEXlm License Server to

get your licenses.

3. If you already have installed FLEXlm v8.4 or higher (for example as part of
another product) you can skip this step and continue with step 4.
Otherwise, install SW000098, the Flexible License Manager (FLEXlm), on
the license server where you want to use the license manager.

It is not recommended to run a license manager on a Windows 95 or
Windows 98 machine. Use Windows XP, NT or 2000 instead, or use UNIX
or Linux.

4. If FLEXlm has already been installed as part of a non-TASKING product
you have to make sure that the bin directory of the FLEXlm product
contains a copy of the Tasking daemon. This file part of the TASKING
product installation and is present in the flexlm subdirectory of the
toolchain. This file is also on every product CD that includes FLEXlm, in
directory licensing.

5. On the license server also add the license key to the license file. Follow
the same instructions as with "Add a license key to a local license file" in
step 2.

See the FLEXlm PDF manual delivered with SW000098, which is present
on each TASKING product CD, for more information.

TriCore User's Manual1-16
IN
S
TA

L
L
A
T
IO
N

1.4.4 MODIFYING THE LICENSE FILE LOCATION

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If you want to use another name or directory for the license file, each user
must define the environment variable LM_LICENSE_FILE.

If you have more than one product using the FLEXlm license manager you
can specify multiple license files to the LM_LICENSE_FILE environment
variable by separating each pathname (lfpath) with a ';' (on UNIX ':'):

Example Windows:

set LM_LICENSE_FILE=c:\flexlm\license.dat;c:\license.txt

Example UNIX:

setenv LM_LICENSE_FILE

/usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set
LM_LICENSE_FILE to port@host; where host is the host name of the
system which runs the FLEXlm license manager and port is the TCP/IP port
number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting
with "SERVER". The fourth field on this line specifies the TCP/IP port
number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See the FLEXlm PDF manual delivered with SW000098, which is present
on each TASKING product CD, for detailed information.

Software Installation and Configuration 1-17

• • • • • • • •

1.4.5 HOW TO DETERMINE THE HOSTID

The hostid depends on the platform of the machine. Please use one of the
methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid

HP-UX lanscan
(use the station address without

the leading '0x')

0000F0050185

Linux hostid 11ac5702

SunOS/Solaris hostid 170a3472

Windows licadmin (License Administrator,

or use lmhostid)

0060084dfbe9

Table 1-2: Determine the hostid

On Windows, the License Administrator (licadmin) helps you in the
process of obtaining your license key.

If you do not have the program licadmin you can download it from our
Web site at: http://www.tasking.com/support/flexlm/licadmin.zip . It is
also on every product CD that includes FLEXlm, in directory licensing.

1.4.6 HOW TO DETERMINE THE HOSTNAME

To retrieve the hostname of a machine, use one of the following methods.

Platform Method

UNIX hostname

Windows NT licadmin or:

Go to the Control Panel, open "Network". In the

"Identification" tab look for "Computer Name".

Windows XP/2000 licadmin or:

Go to the Control Panel, open "System". In the "Computer

Name" tab look for "Full computer name".

Table 1-3: Determine the hostname

TriCore User's Manual1-18
IN
S
TA

L
L
A
T
IO
N

2

GETTING STARTED
C

H
A

P
T

E
R

TriCore User's Manual2-2
G

E
T

T
IN

G
 S

TA
R

T
E

D 2

C
H

A
P

T
E

R

Getting Started 2-3

• • • • • • • •

2.1 INTRODUCTION

With the TASKING TriCore suite you can write, compile, assemble, link
and locate applications for the several TriCore cores. The TASKING
TriCore suite conforms to Infineon's TriCore Embedded Applications
Binary Interface (EABI), which defines a set of standards to ensure
interoperability between software components.

Embedded Development Environment

The TASKING Embedded Development Environment (EDE) is a Windows
application that facilitates working with the tools in the toolchain and also
offers project management and an integrated editor.

EDE has three main functions: Edit / Project management, Build and
Debug. The figure below shows how these main functionalities relate to
each other.

makefile

make

compiler

absolute file

debugger

assembler

linker

EDE

project management

editor

tool options

toolchain selection

EDIT

BUILD

DEBUG

Figure 2-1: EDE development flow

TriCore User's Manual2-4
G

E
T

T
IN

G
 S

TA
R

T
E

D

In the Edit part you make all your changes:

- create a project space

- create and maintain one or more projects in a project space

- add, create and edit source files in a project

- set the options for each tool in the toolchain

- select another toolchain if you want to create an application for
another target than the TriCore.

In the Build part you build your files:

- a makefile (created by the Edit part) is used to invoke the needed
toolchain components, resulting in an absolute object file.

In the Debug part you can debug your project:

- call the TASKING debugger �CrossView Pro" with the generated
absolute object file.

This Getting Started Chapter guides you step-by-step through the most
important features of EDE

The TASKING EDE is an embedded environment and differs from a native
program development.

A native program development environment is often used to develop
applications for systems where the host system and the target are the
same. Therefore, it is possible to run a compiled application directly from
the development environment.

In an embedded environment, however, a simulator or target hardware is
required to run an application. TASKING offers a number of simulators
and target hardware debuggers.

Toolchain overview

You can use all tools in the toolchain from the embedded development
environment (EDE) and from the command line in a Command Prompt
window or a UNIX shell.

The next illustration shows all components of the TriCore toolchain with
their input and output files.

Getting Started 2-5

• • • • • • • •

assembly file

assembler

relocatable object file

CrossView Pro

C++ compiler

C++ source file

.cc

debugger

C source file

C compiler

TriCore execution

environment

.ic

cptc

ctc

astc

relocatable object library.a

archiver

artc

xfwtc

list file .lst

.src

.o

C source file

assembly file

(hand coded)

.c

.asm

(hand coded)

error messages .ers

linker

relocatable linker object file

ltc

.out

linker map file .map

error messages .elk

linker script file

.lsl

relocatable linker object file .out

error messages .err

memory definition

.mdffile

Motorola S-record

absolute object file

.sre

Intel Hex

absolute object file

.hex

ELF/DWARF 2

absolute object file

.elf

IEEE-695

absolute object file

.abs

Figure 2-2: TriCore toolchain

TriCore User's Manual2-6
G

E
T

T
IN

G
 S

TA
R

T
E

D

The following table lists the file types used by the TriCore toolchain.

Extension Description

Source files

.cc C++ source file, input for the C++ compiler

.c C source file, input for the C compiler

.asm Assembler source file, hand coded

.lsl Linker script file using the Linker Script Language

Generated source files

.ic C source file, generated by the C++ compiler, input for the C

compiler

.src Assembler source file, generated by the C compiler, does not

contain macros

Object files

.o ELF/DWARF relocatable object file, generated by the assembler

.a Archive with ELF/DWARF object files

.abs IEEE-695 absolute object file, generated by the locating part of

the linker

.out Relocatable linker output file

.elf ELF/DWARF absolute object file, generated by the locating part

of the linker

.hex Absolute Intel Hex object file

.sre Absolute Motorola S-record object file

List files

.lst Assembler list file

.map Linker map file

.mdf Memory definition file

.mcr MISRA C report file

Error list files

.err Compiler error messages file

.ers Assembler error messages file

.elk Linker error messages file

Table 2-1: File extensions

Getting Started 2-7

• • • • • • • •

2.2 WORKING WITH PROJECTS IN EDE

EDE is a complete project environment in which you can create and
maintain project spaces and projects. EDE gives you direct access to the
tools and features you need to create an application from your project.

A project space holds a set of projects and must always contain at least one
project. Before you can create a project you have to setup a project space.
All information of a project space is saved in a project space file (.psp):

• a list of projects in the project space

• history information

Within a project space you can create projects. Projects are bound to a
target! You can create, add or edit files in the project which together form
your application. All information of a project is saved in a project file
(.pjt):

• the target for which the project is created

• a list of the source files in the project

• the options for the compiler, assembler, linker and debugger

• the default directories for the include files, libraries and executables

• the build options

• history information

When you build your project, EDE handles file dependencies and the
exact sequence of operations required to build your application. When
you push the Build button, EDE generates a makefile, including all
dependencies, and builds your application.

Overview of steps to create and build an application

1. Create a project space

2. Add one or more projects to the project space

3. Add files to the project

4. Edit the files

5. Set development tool options

6. Build the application

TriCore User's Manual2-8
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.3 START EDE

Start EDE

• Double-click on the EDE shortcut on your desktop.

- or -

Launch EDE via the program folder created by the installation program.
Select Start -> Programs -> TASKING toolchain -> EDE.

Figure 2-3: EDE icon

The EDE screen contains a menu bar, a toolbar with command buttons,
one or more windows (default, a window to edit source files, a project
window and an output window) and a status bar.

Output Window
Contains several tabs to display

and manipulate results of EDE

operations. For example, to view

the results of builds or compiles.

Document Windows
Used to view and edit files.

Project Window
Contains several

tabs for viewing

information about

projects and other

files.

Compile Build Rebuild Debug On-line ManualsProject Options

Figure 2-4: EDE desktop

Getting Started 2-9

• • • • • • • •

2.4 USING THE SAMPLE PROJECTS

When you start EDE for the first time (see section 2.3, Start EDE), EDE
opens with a ready defined project space that contains several sample
projects. Each project has its own subdirectory in the examples directory.
Each directory contains a file readme.txt with information about the
example. The default project is called demo.pjt and contains a CrossView
Pro debugger example.

Select a sample project

To select a project from the list of projects in a project space:

1. In the Project Window, right-click on the project you want to open.

A menu appears.

2. Select Set as Current Project.

The selected project opens.

3. Read the file readme.txt for more information about the selected sample
project.

Building a sample project

To build the currently active sample project:

• Click on the Execute 'Make' command button.

Once the files have been processed you can inspect the generated messages
in the Build tab of the Output window.

2.5 CREATE A NEW PROJECT SPACE WITH A PROJECT

Creating a project space is in fact nothing more than creating a project
space file (.psp) in an existing or new directory.

Create a new project space

1. From the File menu, select New Project Space...

The Create a New Project Space dialog appears.

TriCore User's Manual2-10
G

E
T

T
IN

G
 S

TA
R

T
E

D

2. In the the Filename field, enter a name for your project space (for
example MyProjects). Click the Browse button to select a directory first
and enter a filename.

3. Check the directory and filename and click OK to create the .psp file in
the directory shown in the dialog.

A project space information file with the name MyProjects.psp is
created and the Project Properties dialog box appears with the project space
selected.

Getting Started 2-11

• • • • • • • •

Add a new project to the project space

4. In the Project Properties dialog, click on the Add new project to project

space button (see previous figure).

The Add New Project to Project Space dialog appears.

TriCore User's Manual2-12
G

E
T

T
IN

G
 S

TA
R

T
E

D

5. Give your project a name, for example getstart\getstart.pjt (a
directory name to hold your project files is optional) and click OK.

A project file with the name getstart.pjt is created in the directory
getstart, which is also created. The Project Properties dialog box appears
with the project selected.

Add new files to the project

Now you can add all the files you want to be part of your project.

6. Click on the Add new file to project button.

The Add New File to Project dialog appears.

Getting Started 2-13

• • • • • • • •

7. Enter a new filename (for example hello.c) and click OK.

A new empty file is created and added to the project. Repeat steps 6 and 7 if
you want to add more files.

8. Click OK.

The new project is now open. EDE loads the new file(s) in the editor in
separate document windows.

EDE automatically creates a makefile for the project (in this case
getstart.mak). This file contains the rules to build your application.
EDE updates the makefile every time you modify your project.

Edit your files

9. As an example, type the following C source in the hello.c document
window:

#include <stdio.h>

void main(void)

{

 printf("Hello World!\n");

}

10. Click on the Save the changed file <Ctrl-S> button.

EDE saves the file.

TriCore User's Manual2-14
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.6 SET OPTIONS FOR THE TOOLS IN THE TOOLCHAIN

The next step in the process of building your application is to select a
target processor and specify the options for the different parts of the
toolchain, such as the C and/or C++ compiler, assembler, linker and
debugger.

Select a target processor

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select (for example) TC11IB.

4. Click OK to accept the new project settings.

Set tool options

1. From the Project menu, select Project Options...

The Project Options dialog appears. Here you can specify options that are
valid for the entire project. To overrule the project options for the currently
active file instead, from the Project menu select Current File Options...

Getting Started 2-15

• • • • • • • •

2. Expand the C Compiler entry.

The C Compiler entry contains several pages where you can specify C
compiler settings.

3. For each page make your changes. If you have made all changes click OK.

The Cancel button closes the dialog without saving your changes. With
the Defaults button you can restore the default project options (for the
current page, or all pages in the dialog).

4. Make your changes for all other entries (Assembler, Linker, CrossView Pro)
of the Project Options dialog in a similar way as described above for the C
compiler.

If available, the Options string field shows the command line options
that correspond to your graphical selections.

TriCore User's Manual2-16
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.7 BUILD YOUR APPLICATION

If you have set all options, you can actually compile the file(s). This results
in an absolute ELF/DWARF object file which is ready to be debugged.

Build your Application

To build the currently active project:

• Click on the Execute 'Make' command button.

The file is compiled, assembled, linked and located. The resulting file is
getstart.elf.

The build process only builds files that are out-of-date. So, if you click
Make again in this example nothing is done, because all files are
up-to-date.

Viewing the Results of a Build

Once the files have been processed, you can see which commands have
been executed (and inspect generated messages) by the build process in
the Build tab of the Output window.

This window is normally open, but if it is closed you can open it by
selecting the Output menu item in the Window menu.

Compiling a Single File

1. Select the window (document) containing the file you want to compile or
assemble.

2. Click on the Execute 'Compile' command button. The following button
is the execute Compile button which is located in the toolbar.

If you selected the file hello.c, this results in the compiled and assembled
file hello.o.

Getting Started 2-17

• • • • • • • •

Rebuild your Entire Application

If you want to compile, assemble and link/locate all files of your project
from scratch (regardless of their date/time stamp), you can perform a
rebuild.

• Click on the Execute 'Rebuild' command button. The following
button is the execute Rebuild button which is located in the toolbar.

2.8 HOW TO BUILD YOUR APPLICATION ON THE

COMMAND LINE

If you are not using EDE, you can build your entire application on the
command line. The easiest way is to use the control program cctc.

1. In a text editor, write the file hello.c with the following contents:

#include <stdio.h>

void main(void)

{

 printf("Hello World!\n");

}

2. Build the file getstart.elf:

cctc -ogetstart.elf hello.c -v

The control program calls all tools in the toolchain. The -v option shows all
the individual steps. The resulting file is getstart.elf.

TriCore User's Manual2-18
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.9 DEBUG GETSTART.ELF

The application getstart.elf is the final result, ready for execution
and/or debugging. The debugger uses getstart.elf for debugging but
needs symbolic debug information for the debugging process. This
information must be included in getstart.elf and therefore you need
to compile and assemble hello.c once again.

cctc -g -ogetstart.elf hello.c

Now you can start the debugger with getstart.elf and see how it
executes.

Start CrossView Pro

• Click on the Debug application button.

CrossView Pro is launched. CrossView Pro will automatically download the
file getstart.elf for debugging.

See the CrossView Pro Debugger User's Manual for more information.

3

TRICORE

C LANGUAGE
C

H
A

P
T

E
R

TriCore User's Manual3-2
C

 L
A

N
G

U
A

G
E

3

C
H

A
P

T
E

R

TriCore C Language 3-3

• • • • • • • •

3.1 INTRODUCTION

The TASKING C cross-compiler (ctc) fully supports the ISO C standard
and adds extra possibilities to program the special functions of the TriCore.

In addition to the standard C language, the compiler supports the
following:

• extra data types, like __fract, __laccum and __packb

• intrinsic (built-in) functions that result in TriCore specific assembly
instructions

• pragmas to control the compiler from within the C source

• predefined macros

• the possibility to use assembly instructions in the C source

• keywords to specify memory types for data and functions

• attributes to specify alignment and absolute addresses

All non-standard keywords have two leading underscores (__).

In this chapter the TriCore specific characteristics of the C language are
described, including the above mentioned extensions.

3.2 DATA TYPES

3.2.1 FUNDAMENTAL DATA TYPES

The TriCore architecture defines the following fundamental data types:

• An 8-bit byte

• A 16-bit short

• A 32-bit word

• A 64-bit double word

The next table shows the mapping between these fundamental data types
and the C language data types.

TriCore User's Manual3-4
C

 L
A

N
G

U
A

G
E

Type Keyword
Size
(bit)

Align
(bit)

Ranges

Boolean _Bool 8 8 0 or 1

Character char

signed char
8 8 -27 .. 27-1

unsigned char 8 8 0 .. 28-1

Integral short

signed short
16 16 -215 .. 215-1

unsigned short 16 16 0 .. 216-1

int

signed int

long

signed long

32 16 -231 .. 231-1

unsigned int

unsigned long
32 16 0 .. 232-1

enum 8

16

32

8

16

-27 .. 27-1

-215 .. 215-1

-231 .. 231-1

long long

signed

 long long

64 32 -263 .. -263-1

unsigned

 long long
64 32 0 .. 264-1

Pointer pointer to data

pointer to func
32 32 0 .. 232-1

Floating-

Point
float 32 16

-3.402e38 .. -1.175e-38

1.175e-38 .. 3.402e38

double

long double
64 32

-1.797e308 .. -2.225e-308

2.225e-308 .. 1.797e308

Table 3-1: Data Types

When you use the enum type, the compiler will use the smallest sufficient
integer type, unless you use compiler option --integer-enumeration

(always use 32-bit integers for enumeration).

See also the TriCore Embedded Applications Binary Interface (EABI).

TriCore C Language 3-5

• • • • • • • •

3.2.2 FRACTIONAL DATA TYPES

The TASKING TriCore C compiler ctc additionally supports the following
fractional types:

Type Keyword
Size
(bit)

Align
(bit)

Ranges

Fract __sfract 16 16 [-1, 1>

__fract 32 32 [-1, 1>

Accum __laccum 64 64 [-131072,131072>

Table 3-2: Fractional Data Types

The __sfract type has 1 sign bit + 15 mantissa bits
The __fract type has 1 sign bit + 31 mantissa bits
The __laccum type has 1 sign bit + 17 integral bits + 46 mantissa bits.

The _accum type is only included for compatibility reasons and is mapped
to __laccum.

The TASKING C compiler ctc fully supports fractional data types which
allow you to use normal expressions:

__fract f, f1, f2; /* Declaration of fractional variables */

f1 = 0.5; /* Assignment of a fractional constants */

f2 = 0.242;

f = f1 * f2; /* Multiplication of two fractionals */

The TriCore instruction set supports most basic operation on fractional
types directly. To obtain more portable code, you can use several intrinsic
functions that use fractional types. Fractional values are automatically
saturated.

Section 3.5, Intrinsic Functions explains intrinsic functions.

Section 1.5.2, Fractional Arithmetic Support in Chapter TriCore C Language
of the Reference Manual lists the intrinsic functions.

TriCore User's Manual3-6
C

 L
A

N
G

U
A

G
E

Promotion rules

For the three fractional types, the promotion rules are similar to the
promotion rules for char, short, int, long and long long. This means
that for an operation on two different fractional types, the smaller type is
promoted to the larger type before the operation is performed.

When you mix a fractional type with a float or double type, the
fractional number is first promoted to float respectively double.

When you mix an integer type with the __laccum type, the integer is first
promoted to __laccum.

Because of the limited range of __sfract and __fract, only a few
operations make sense when combining an integer with an __sfract or
__fract. Therefore, the TriCore compiler only supports the following
operations for integers combined with fractional types:

left oper right result

fractional * integer fractional

integer * fractional fractional

fractional / integer fractional

fractional << integer fractional

fractional >> integer fractional

fractional: __sfract, __fract

integer: char, short, int, long, long long

Table 3-3: Fractional operations for integers with fractional types

3.2.3 BIT DATA TYPE

The TASKING TriCore C compiler ctc additionally supports the bit data
type:

Type Keyword
Size
(bit)

Align
(bit)

Range

Bit __bit 8 8 0 or 1

Table 3-4: Bit Data Type

TriCore C Language 3-7

• • • • • • • •

The TriCore instruction set supports some operations of the __bit type
directly.

The following rules apply to __bit type variables:

• A __bit type variable is always unsigned.

• A __bit type variable can be exchanged with all other type-variables.
The compiler generates the correct conversion.

A __bit type variable is like a boolean. Therefore, if you convert an
int type variable to a __bit type variable, it becomes 1 (true) if the
integer is not equal to 0, and 0 (false) if the integer is 0. The next two
C source lines have the same effect:

 bit_variable = int_variable;

 bit_variable = int_variable ? 1 : 0;

• Pointer to __bit is not allowed when it has the __atbit() qualifier.

• The __bit type is allowed as a structure member.

• A __bit type variable is allowed as a parameter of a function.

• A __bit type variable is allowed as a return type of a function.

• A __bit typed expression is allowed as switch expression.

• The sizeof of a __bit type is 1.

• Global or static __bit type variable can be initialized.

• A __bit type variable can be declared absolute using the __atbit
attribute. See section 3.3.2 Declare a Data Object at an Absolute
Address: __at() and __atbit() for more details.

• A __bit type variable can be declared volatile.

Promotion Rules

For the __bit type, the promotion rules are similar to the promotion rules
for char, short, int, long and long long.

TriCore User's Manual3-8
C

 L
A

N
G

U
A

G
E

3.2.4 PACKED DATA TYPES

The TASKING TriCore C compiler ctc additionally supports the following
packed types:

Type Keyword
Size
(bit)

Align
(bit)

Ranges

Packed __packb

signed __packb
32 16 4x: -27 .. 27-1

unsigned __packb 32 16 4x: 0 .. 28-1

__packhw

signed __packhw
32 16 2x: -215 .. 215-1

unsigned __packhw 32 16 2x: 0 .. 216-1

Table 3-5: Fractional Data Types

A __packb value consists of four signed or unsigned char values.
A __packhw value consists of two signed or unsigned short values.

The TriCore instruction set supports a number of arithmetic operations on
packed data types directly. For example, the following function:

__packb add4 (__packb a, __packb b)

{

 return a + b;

}

results into the following assembly code:

add4:

 add.b d2,d4,d5

 ret16

Section 3.5, Intrinsic Functions explains intrinsic functions.

Section 1.5.3, Packed Data Type Support in Chapter TriCore C Language of
the Reference Manual lists the intrinsic functions.

Halfword Packed Unions and Structures

To minimize space consumed by alignment padding with unions and
structures, elements follow the minimum alignment requirements imposed
by the architecture. The TriCore arichitecture supports access to 32-bit
integer variables on halfword boundaries.

TriCore C Language 3-9

• • • • • • • •

Because only doubles, circular buffers, __laccum or pointers require the
full word access, structures that do not contain members of these types are
automatically halfword (2-bytes) packed.

Structures and unions that are divisible by 64-bit or contain members that
are divisible by 64-bit, are word packed to allow efficient access through
LD.D and ST.D instructions. These load and store operations require word
aligned structures that are divisible by 64-bit. If necessary, 64-bit divisible
structure elements are aligned or padded to make the structure 64-bit
accessible.

With #pragma pack 2 you can disable the LD.D/ST.D structure and
union copy optimization to ensure halfword structure and union packing
when possible. This "limited" halfword packing only supports structures
and unions that do not contain double, circular buffer, __laccum or
pointer type members and that are not qualified with #pragma align to
get an alignment larger than 2-byte. With #pragma pack 0 you turn off
halfword packing again.

#pragma pack 2

typedef struct {

 unsigned char uc1;

 unsigned char uc2;

 unsigned short us1;

 unsigned short us2;

 unsigned short us3;

} packed_struct;

#pragma pack 0

When you place a #pragma pack 0 before a structure or union, its
alignment will not be changed:

#pragma pack 0

packed_struct pstruct;

The alignment of data sections and stack can also affect the alignment of
the base address of a halfword packed structure. A halfword packed
structure can be aligned on a halfword boundary or larger alignment.
When located on the stack or at the beginning of a section, the alignment
becomes a word, because of the minimum required alignment of data
sections and stack objects. A stack or data section can contain any type of
object. To avoid wrong word alignment of objects in the section, the
section base is also word aligned.

TriCore User's Manual3-10
C

 L
A

N
G

U
A

G
E

3.3 MEMORY QUALIFIERS

You can use static memory qualifiers to allocate static objects in a
particular part of the addressing space of the processor.

In addition, you can place variables at absolute addresses with the
keyword __at(). If you declare an integer at an absolute address, you
can declare a single bit of that variable as bit variable with the keyword
__atbit().

3.3.1 DECLARE A DATA OBJECT IN A SPECIAL PART

OF MEMORY

With a memory qualifier you can declare a variable in a specific part of the
addressing space. You can use the following memory qualifiers:

__near The declared data object will be located in the first 16 kB of
a 256 MB block. These parts of memory are directly
addressable with the absolute addressing mode (see section
4.4.1, Operands and Addressing Modes, in Chapter TriCore
Assembly Language).

__far The data object can be located anywhere in the indirect
addressable memory region.

If you do not specify __near or __far, the compiler chooses where to
place the declared object. With the compiler option -N (maximum size in
bytes for data elements that are default located in __near sections) you
can specify the size of data objects which the compiler then by default
places in near memory.

__a0 The data object is located in a section that is addressable with
a sign-extended 16-bit offset from address register A0.

__a1 The data object is located in a section that is addressable with
a sign-extended 16-bit offset from address register A1.

__a8 The data object is located in a section that is addressable with
a sign-extended 16-bit offset from address register A8.

__a9 The data object is located in a section that is addressable with
a sign-extended 16-bit offset from address register A9.

TriCore C Language 3-11

• • • • • • • •

Address registers A0, A1, A8, and A9 are designated as system global
registers. They are not part of either context partition and are not
saved/restored across calls. They can be protected against write access by
user applications.

By convention, A0 and A1 are reserved for compiler use, while A8 and A9
are reserved for OS or application use. A0 is used as a base pointer to the
small data section, where global data elements can be accessed using
base + offset addressing. A0 is initialized by the execution environment.

A1 is used as a base pointer to the literal data section. The literal data
section is a read-only data section intended for holding address constants
and program literal values. Like A0, it is initialized by the execution
environment.

As noted, A8 and A9 are reserved for OS use, or for application use in
cases where the application and OS are tightly coupled.

All these memory qualifiers (__near, __far, __a0, __a1, __a8 and
__a9) are related to the object being defined, they influence where the
object will be located in memory. They are not part of the type of the
object defined. Therefore, you cannot use these qualifiers in typedefs, type
casts or for members of a struct or union.

Examples:

To declare a fast accessible integer in directly addressable memory:

int __near Var_in_near;

To allocate a pointer in far memory (the compiler will not use absolute
addressing mode):

__far int *Ptr_in_far;

To declare and initialize a string in A0 memory:

char __a0 string[] = "TriCore";

If you use the __near memory qualifier, the compiler generates faster
access code for those (frequently used) variables. Pointers are always
32-bit.

Functions are by default allocated in ROM. In this case you can omit the a
memory qualifier. You cannot use memory qualifiers for function return
values.

TriCore User's Manual3-12
C

 L
A

N
G

U
A

G
E

Some examples of using memory qualifiers:

int __near *p; /* pointer to int in __near memory

 (pointer has 32-bit size) */

int __far *g; /* pointer to int in __far memory

 (pointer has 32-bit size) */

g = p; /* the compiler issues a warning */

You cannot use memory qualifiers in structure declarations:

struct S {

 __near int i; /* put an integer in near

 memory: Incorrect ! */

 __far int *p; /* put an integer pointer in

 far memory: Incorrect ! */

 }

If a library function declares a variable in near memory and you try to
redeclare the variable in far memory, the linker issues an error:

extern int _near foo; /* extern int in near memory*/

int __far foo; /* int in far memory */

The usage of the variables is always without a storage specifier:

char __near example;

example = 2;

The generated assembly would be:

mov16 d15,2

st.b example,d15

All allocations with the same storage specifiers are collected in units called
'sections'. The section with the __near attribute will be located within the
first 16 kB of of each 256 MB block.

With the linker it is possible to control the location of sections manually.
See Chapter 7 Linker.

TriCore C Language 3-13

• • • • • • • •

3.3.2 DECLARE A DATA OBJECT AT AN ABSOLUTE

ADDRESS: __at() AND __atbit()

Just like you can declare a variable in a specific part of memory, you can
also place an object at an absolute address in memory. This may be useful
to interface with other programs using fixed memory schemes, or to access
special function registers.

With the attribute __at() you can specify an absolute address.

Examples

int myvar __at(0x100);

The variable myvar is placed at address 0x100.

unsigned char Display[80*24] __at(0x2000)

The array Display is placed at address 0x2000. In the generated
assembly, an absolute section is created. On this position space is reserved
for the variable Display.

Restrictions

Take note of the following restrictions if you place a variable at an
absolute address:

• You can place only global variables at absolute addresses. Parameters
of functions, or automatic variables within functions cannot be placed
at absolute addresses.

• When declared extern, the variable is not allocated by the compiler.
When the same variable is allocated within another module but on a
different address, the compiler, assembler or linker will not notice,
because an assembler external object cannot specify an absolute
address.

• When the variable is declared static, no public symbol will be
generated (normal C behavior).

• You cannot place functions at absolute addresses.

• Absolute variables cannot overlap each other. If you declare two
absolute variables at the same address, the assembler and / or linker
issues an error. The compiler does not check this.

• When you declare the same absolute variable within two modules, this
produces conflicts during link time (except when one of the modules
declares the variable 'extern').

TriCore User's Manual3-14
C

 L
A

N
G

U
A

G
E

Declaring a bit variable with __atbit()

If you have defined a 32-bits base variable (int, long) you can declare a
single bit of that variable as a bit variable with the keyword __atbit().
The syntax is:

__atbit(name, offset)

name is the name of an integer variable in which the bit is located. offset
(range 0-31) is the bit-offset within the variable.

If you have defined an absolute integer variable with the keyword
__at(), you can declare a single bit of that variable as an absolute bit
variable with __atbit().

Example

int bw __at(0x100);

__bit myb __atbit(bw, 3);

Note that the keyword __bit is used to declare the variable myb as a bit,
and that the keyword __atbit() is used to declare that variable at an
absolute offset in variable bw.

See also section 3.2.3, Bit Data Type.

Restrictions

• You can only use the __atbit() qualifier on variables of type __bit.

• When a variable is __atbit() qualified it represents an alias of a bit
in another variable. Therefore, it cannot be initialized.

• You can only use the __atbit() qualifier on variables which have
either a global scope or file scope.

TriCore C Language 3-15

• • • • • • • •

3.4 DATA TYPE QUALIFIERS

3.4.1 CIRCULAR BUFFERS: __circ

The TriCore core has support for implementing specific DSP tasks, such as
finite impulse response (FIR) and infinite impulse response (IIR) filters and
fast Fourier transforms (FFTs). For the FIR and IIR filters the TriCore
architecture supports the circular addressing mode and for the FFT the
bit-reverse addressing mode. The TriCore C compiler supports circular
buffers for these DSP tasks. This way, the TriCore C compiler makes
hardware features available at C source level instead of at assembly level
only.

A circular buffer is a linear (one dimensional) array that you can access by
moving a pointer through the data. The pointer can jump from the last
location in the array to the first, or vice-versa (the pointer wraps-around).
This way the buffer appears to be continuous. The TriCore C compiler
supports the __circ keyword (circular addressing mode) for this type of
buffer.

Example: __circ

__fract __circ circbuffer[10];

__fract __circ *ptr_to_circbuffer = circbuffer;

Here, circbuffer is declared as a circular buffer. The compiler aligns the
base address of the buffer on the access width (in this example an int, so
4 bytes). The compiler keeps the buffer size and uses it to control pointer
arithmetic of pointers that are assigned to the buffer later.

You can perform operations on circular pointers with the usual C pointer
arithmetic with the difference that the pointer will wrap. When you acces
the circular buffer with a circular pointer, it wraps at the buffer limits.
Circular pointer variables are 64 bits in size.

Example:

while(*Pptr_to_circbuf++);

Indexing in the circular buffer, using an integer index, is treated equally to
indexing in a non-circular array.

Example:

int i = circbuf[3];

TriCore User's Manual3-16
C

 L
A

N
G

U
A

G
E

The index is not calculated modulo; indexing outside the array boundaries
yields undefined results.

If you want to initialize a circular pointer with a dynamically allocated
buffer at run-time, you should use the intrinsic function __initcirc():

#define N 100

unsigned short s = sizeof(__fract);

__fract *ptr_to_circbuf = calloc(N, s);

circbuf = __initcirc(ptr_to_circbuf, N * s, 0 * s);

3.4.2 DECLARE AN SFR BIT FIELD: __sfrbit16 AND

__sfrbit32

With the data type qualifiers __sfrbit16 and __sfrbit32 you can
declare bit fields in special function registers.

According to the TriCore Embedded Applications Binary Interface, 'normal'
bit fields are accessed as char, short or int. Thus:

• fields with a width of 8-bits or less impose only byte alignments

• fields with a width from 9 to 16 bits impose halfword alignment

• fields with a width from 17 to 32 bits impose word alignment

If you declare bit fields in special function registers, this behavior is not
always desired: some special function registers require 16-bit or 32-bit
access. To force 16-bit or 32-bit access, you can use the data type
qualifiers __sfrbit16 and __sfrbit32.

For each supported target, a special function register file
(regcpu_name.sfr) is delivered with the TriCore toolchain. In normal
circumstances you should not need to declare SFR bit fields.

Example

The next example is part of an SFR file and illustrates the declaration of a
special function register using the data type qualifier __sfrbit32:

TriCore C Language 3-17

• • • • • • • •

typedef volatile union

{

 struct

 {

 unsigned __sfrbit32 SRPN : 1; /* BCU Service Priority

 Number */

 unsigned int : 2;

 unsigned __sfrbit32 TOS : 2; /* BCU Type-of-Service

 Control */

 unsigned __sfrbit32 SRE : 1; /* BCU Service Request

 Enable Control */

 unsigned __sfrbit32 SRR : 1; /* BCU SerService Request

 Flag */

 unsigned __sfrbit32 CLRR : 1; /* BCU Request Clear Bit */

 unsigned __sfrbit32 SETR : 1; /* BCU Request Set Bit */

 unsigned int : 16;

 } B;

 int I;

} BCU_SRC_type;

#define BCU_SRC (*(BCU_SRC_type*)(0xF00002FC))

 /* BCU Service Request Node */

You can now access the register and bit fields as follows:

#include <regtc10gp.sfr>

BCU_SRC.I |= 0xb32a; /* access BCU Service Request

 Control register as a whole */

BCU_SRC.B.SRE = 0x1; /* access SRE bit field of BCU

 Service Request Control register */

Restrictions

You can use the __sfrbit32 and __sfrbit16 data type qualifiers only
for int types. The compiler issues an error if you use for example
__sfrbit32 char x : 8;

When you use the __sfrbit32 and __sfrbit16 data type qualifiers for
other types than a bit field, the compiler ignores this without a warning.
For example, __sfrbit32 int global; is equal to int global;.

Structures or unions that contain a member qualified with __sfrbit16,
are zero padded to complete a halfword if necessary. The structure or
union will be halfword aligned.
Structures or unions that contain a member qualified with __sfrbit32,
are zero padded to complete a full word if necessary. The structure or
union will be word aligned.

TriCore User's Manual3-18
C

 L
A

N
G

U
A

G
E

3.5 INTRINSIC FUNCTIONS

Some specific TriCore assembly instructions have no equivalence in C.
Intrinsic functions give the possibility to use these instructions. Intrinsic
functions are predefined functions that are recognized by the compiler.
The compiler then generates the most efficient assembly code for these
functions.

The compiler always inlines the corresponding assembly instructions in the
assembly source rather than calling the function. This avoids unnecessary
parameter passing and register saving instructions which are normally
necessary when a function is called.

Intrinsic functions produce very efficient assembly code. Though it is
possible to inline assembly code by hand, registers are used even more
efficient by intrinsic functions. At the same time your C source remains
very readable.

You can use intrinsic functions in C as if they were ordinary C (library)
functions. All intrinsics begin with a double underscore character. The
following example illustrates the use of an intrinsic function and its
resulting assembly code.

x = __min(4,5);

The resulting assembly code is inlined rather than being called:

mov16 d2,#4

min d2,d2,#5

The intrinsics cover the following subjects:

• Minimum and maximum of (short) integers

• Fractional data type support

• Packed data type support

• Interrupt handling

• Insert single assembly instruction

• Register handling

• Insert / extract bitfields and bits

• Miscellaneous

For extended information about all available intrinsic functions, refer to
section 1.5, Intrinsic Functions, in Chapter TriCore C Language of the
Reference Manual.

TriCore C Language 3-19

• • • • • • • •

3.6 USING ASSEMBLY IN THE C SOURCE: __asm()

With the __asm() keyword you can use assembly instructions in the C
source and pass C variables as operands to the assembly code. Be aware
that C modules that contain assembly are not portable and harder to
compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly
code to the assembly source file. Possible errors can only be detected by
the assembler.

General syntax of the __asm keyword

__asm("instruction_template"

 [: output_param_list

 [: input_param_list

 [: register_save_list]]]);

instruction_template Assembly instructions that may contain
parameters from the input list or output list in
the form: %parm_nr

 %parm_nr[.regnum] Parameter number in the range 0 .. 9. With the
optional .regnum you can access an individual
register from a register pair or register quad. For
example, with register pair d0/d1, .0 selects
register d0.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before
the inputs are read, so this output must not be
the same register as any input.

 constraint _char Constraint character: the type of register to be
used for the C_expression.
(see table 3-6)

 C_expression Any C expression. For output parameters it must
be an lvalue, that is, something that is legal to
have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name Name of the register you want to reserve.

TriCore User's Manual3-20
C

 L
A

N
G

U
A

G
E

Typical example: multiplying two C variables using assembly

int a,b,result;

void main(void)

{

 __asm("mul\t%0,%1,%2" : "=d"(result) : "d"(a), "d"(b));

}

generated code:

ld.w d15,a

ld.w d0,b

mul d15,d15,d0

st.w result,d15

%0 corresponds to the first C variable, %1 corresponds to the second and
so on. The escape sequence \t generates a tab.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.
In the example above, the d is used to force the use of data registers for
the parameters a, b and result.

You can reserve the registers that are used in the assembly instructions,
either in the parameter lists or in the reserved register list
(register_save_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline
assembly instructions.

Constraint
character

Type Operand Remark

a Address register a0 .. a15

d Data register d0 .. d15

e Data register pair e0,e2,..,e14 e0 = pair d0/d1, e2 = d2/d3, ...

m Memory variable Stack or memory operand

number Type of operand it

is associated with

same as

%number
Indicates that %number and

number are the same register.

Table 3-6: Available input/output operand constraints

TriCore C Language 3-21

• • • • • • • •

Loops and conditional jumps

The compiler does not detect loops with multiple __asm statements or
(conditional) jumps across __asm statements and will generate incorrect
code for the registers involved.

If you want to create a loop with __asm, the whole loop must be
contained in a single __asm statement. The same counts for (conditional)
jumps. As a rule of thumb, all references to a label in an __asm statement
must be in that same statement.

Example 1: no input or output

A simple example without input or output parameters. You can just output
any assembly instruction:

__asm("nop");

Generated code:

nop

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint d a
data register is chosen for the parameter; the compiler decides which data
register it uses. The %0 in the instruction template is replaced with the
name of this data register. Finally, the compiler generates code to assign
the result to the output variable.

int result;

void main(void)

{

 __asm("mov %0,#0xFF" : "=d"(result));

}

Generated assembly code:

mov d15,#0xFF

st.w result,d15

TriCore User's Manual3-22
C

 L
A

N
G

U
A

G
E

Example 3: using input and output parameters

Multiply two C variables and assign the result to a third C variable. Data
type registers are necessary for the input and output parameters (constraint
d, %0 for result, %1 for a and %2 for b in the instruction template). The
compiler generates code to move the input expressions into the input
registers and to assign the result to the output variable.

int a, b, result;

void multiply(void)

{

 __asm("mul %0, %1, %2": "=d"(result): "d"(a), "d"(b));

}

void main(void)

{

 multiply();

}

Generated assembly code:

multiply:

 ld.w d15,a

 ld.w d0,b

 mul d15, d15, d0

 st.w result,d15

main:

 j multiply

Example 4: reserve registers

If you use registers in the __asm statement, reserve them. Same as
Example 3, but now register d0 is a reserved register. You can do this by
adding a reserved register list (: "d0") (sometimes referred to as 'clobber
list'). As you can see in the generated assembly code, register d0 is not
used (the first register used is d1).

int a, b, result;

void multiply(void)

{

 __asm("mul %0, %1, %2": "=d"(result): "d"(a), "d"(b) : "d0");

}

Generated assembly code:

ld.w d15,a

ld.w d1,b

mul d15, d15, d1

st.w result,d15

TriCore C Language 3-23

• • • • • • • •

Example 5: input and output are the same

If the input and output must be the same you must use a number
constraint. The following example inverts the value of the input variable
ivar and returns this value to ovar. Since the assembly instruction not
uses only one register, the return value has to go in the same place as the
input value. To indicate that ivar uses the same register as ovar, the
constraint '0' is used which indicates that ivar also corresponds with %0.

int ovar;

void invert(int ivar)

{

 __asm ("not %0": "=d"(ovar): "0"(ivar));

}

void main(void)

{

 invert(255);

}

Generated assembly code:

invert:

 not d4

 st.w ovar,d4

main:

 mov d4,#255

 j invert

Example 6: writing your own intrinsic function

Because you can use any assembly instruction with the __asm keyword,
you can use the __asm keyword to create your own intrinsic functions.
The essence of an intrinsic function is that it is inlined.

First write a function with assembly in the body using the keyword __asm.
We use the multiply routine from Example 3.

Next make sure that the function is inlined rather than being called. You
can do this with the function qualifier inline. This qualifier is discussed
in more detail in section 3.9.1, Inlining Functions.

TriCore User's Manual3-24
C

 L
A

N
G

U
A

G
E

int a, b, result;

inline void __my_mul(void)

{

 __asm("mul %0, %1, %2": "=d"(result): "d"(a), "d"(b));

}

void main(void)

{

 // call to function __my_mul

 __my_mul();

}

Generated assembly code:

main:

 ; __my_mul code is inlined here

 ld.w d15,a

 ld.w d0,b

 mul d15, d15, d0

 st.w result,d15

As you can see, the generated assembly code for the function __my_mul is
inlined rather than called.

Example 7: accessing individual registers in a register pair

You can access the individual registers in a register pair by adding a '.'
after the operand specifier in the assembly part, followed by the index in
the register pair.

int f1, f2;

void foo(double d)

{

 __asm ("ld.w %0, %2.0\n"

 "\tld.w %1, %2.1":"=&d"(f1),"=d"(f2):"e"(d));

}

The first ld.w instruction uses index #0 of argument 2 (which is a double
placed in a DxDx register) and the second ld.w instruction uses index #1.
The input operand is located in register pair d4/d5. The assembly output
becomes:

 ld.w d15, d4

 ld.w d0, e4,1 ; note that e4,1 corresponds to d5

 st.w f1,d15

 st.w f2,d0

 ret16

TriCore C Language 3-25

• • • • • • • •

If the index is not a valid index (for example, the register is not a register
pair, or the argument has not a register constraint), the '.' is passed into the
assembly output. This way you can still use the '.' in assembly instructions.

3.7 CONTROLLING THE COMPILER: PRAGMAS

Pragmas are keywords in the C source that control the behavior of the
compiler. Pragmas sometimes overrule compiler options and keywords. In
general pragmas give directions to the code generator of the compiler.

For example, you can set a compiler option to specify which optimizations
the compiler should perform. With the #pragma optimize flags you
can set an optimization level for a specific part of the C source. This
overrules the general optimization level that is set in the compiler options
dialog (command line option -O).

Some pragmas have an equivalent command line option. This is useful if
you want to overrule certain keywords in the C source without the need to
change the C source itself.

See section 5.1, Compiler Options, in Chapter 5, Tool Options, of the
Reference Manual.

The compiler recognizes the following pragmas, other pragmas are
ignored.

Pragma name Description

alias symbol=defined-symbol Defines an alias for a symbol

align {n|restore} Specifies object alignment.

See compiler option --align in

section 5.1, Compiler Options in

Chapter Tool Options of the

Reference Manual.

clear

noclear
Specifies 'clearing' of

non-initialized static/public

variables

CPU_functional_problem

TC112_functional_problem

TC113_functional_problem

Use software work arounds for the

specified functional problem.

See compiler option --silicon in

section 5.1, Compiler Options in

Chapter Tool Options of the

Reference Manual.

TriCore User's Manual3-26
C

 L
A

N
G

U
A

G
E

DescriptionPragma name

default_a0_size value Threshold for '__a0' allocation

default_a1_size value Threshold for '__a1' allocation

default_near_size value Threshold for '__near' allocation

extension isuffix Enables the language extension to

specify imaginary floating-point

constants by adding an 'i' to the

constant

extern symbol Forces an external reference

for_constant_data_use_memory

for_extern_data_use_memory

for_initialized_data_use_memory

for_uninitialized_data_use_memory

Specify a memory for the type of

data mentioned in the pragma. You

can specify near, far, a0, a8, a9 (or

a1 only for constant data)

indirect Generates code for indirect

function calling. See compiler

option --indirect in section 5.1,

Compiler Options in Chapter Tool
Options of the Reference Manual.

indirect-runtime Generates code for indirect

function calling to all runtime

functions. See compiler option

--indirect-runtime in section 5.1,

Compiler Options in Chapter Tool
Options of the Reference Manual.

inline

noinline

smartinline

Specifies function inlining.

See section 3.9.1, Inlining
Functions.

macro

nomacro
Turns macro expansion on

(default) or off.

message "string" ... Emits a message to standard

output

object_comment "string" Generates a .comment section

with string in the .src file which

then appears in the object file.

optimize flags
endoptimize

Controls compiler optimizations.

See section 5.3, Compiler
Optimizations in Chapter Using the
Compiler

pack {2|0} Specifies packing of structures.

See section 3.2.4, Packed Data

Types.

TriCore C Language 3-27

• • • • • • • •

DescriptionPragma name

section code_init
section const_init
section vector_init
section data_overlay

At startup copies corresponding

sections to RAM for initialization

Allow overlaying data sections

section type[=]"name"
section all

Changes section names.

See section 3.10, Compiler
Generated Sections and compiler

option -R in section 5.1, Compiler
Options in Chapter Tool Options of

the Reference Manual

source
nosource

Specifies which C source lines

must be shown in assembly

output.

See compiler option -s in section

5.1, Compiler Options in Chapter

Tool Options of the Reference
Manual.

switch {auto|jumptab|
 linear|lookup|restore}

Specifies switch statement.

See section 3.11, Switch
Statement

tradeoff level Specify tradeoff between speed (0)

and size (4). See compiler option

-t in section 5.1, Compiler Options
in Chapter Tool Options of the

Reference Manual.

warning [number,...] Disables warning messages. See

compiler option -w in section 5.1,

Compiler Options in Chapter Tool
Options of the Reference Manual.

weak symbol Marks a symbol as 'weak'

Table 3-7: Pragmas

TriCore User's Manual3-28
C

 L
A

N
G

U
A

G
E

3.8 PREDEFINED MACROS

In addition to the predefined macros required by the ISO C standard, the
TASKING TriCore C compiler supports the predefined macros as defined in
Table 3-8. The macros are useful to create conditional C code.

Macro Description

__DOUBLE_FP__ Defined when you do not use compiler option -F
(Treat double as float)

__SINGLE_FP__ Defined when you use compiler option -F (Treat

double as float)

__FPU__ Defined when you use compiler option

--fpu-present (Use hardware floating-point

instructions)

__CTC__ Identifies the compiler. You can use this symbol to flag

parts of the source which must be recognized by the

ctc compiler only. It expands to the version number of

the compiler.

__TASKING__ Identifies the compiler as the TASKING TriCore

compiler. It expands to 1.

__DSPC__ Indicates conformation to the DSP-C standard. It

expands to 1.

__DSPC_VERSION__ Expands to the decimal constant 200001L.

__VERSION__ Identifies the version number of the compiler. For

example, if you use version 2.1r1 of the compiler,

__VERSION__ expands to 2001 (dot and revision

number are omitted, minor version number in 3 digits).

__REVISION__ Identifies the revision number of the compiler. For

example, if you use version 2.1r1 of the compiler,

__REVISION__ expands to 1.

__BUILD__ Identifies the build number of the compiler, composed

of decimal digits for the build number, three digits for

the major branch number and three digits for the

minor branch number. For example, if you use build

1.22.1 of the compiler, __BUILD__ expands to

1022001. If there is no branch number, the branch

digits expand to zero. For example, build 127 results

in 127000000.

Table 3-8: Predefined macros

TriCore C Language 3-29

• • • • • • • •

3.9 FUNCTIONS

3.9.1 INLINING FUNCTIONS: INLINE

You can use the inline keyword to tell the compiler to inline the
function body instead of calling the function. Use the __noinline
keyword to tell the compiler not to inline the function body.

You must define inline functions in the same source module as in which
you call the function, because the compiler only inlines a function in the
module that contains the function definition. When you need to call the
inline function from several source modules, you must include the
definition of the inline function in each module (for example using a
header file).

The compiler inserts the function body at the place the function is called.
If the function is not called at all, the compiler does not generate code for
it.

Example: inline

int w,x,y,z;

inline int add(int a, int b)

{

 int i = 4;

 return(a + b);

}

void main(void)

{

 w = add(1, 2);

 z = add(x, y);

}

The function add() is defined before it is called. The compiler inserts
(optimized) code for both calls to the add() function. The generated
assembly is:

TriCore User's Manual3-30
C

 L
A

N
G

U
A

G
E

main:

 mov16 d15,#3

 st.w w,d15

 ld.w d15,x

 ld.w d0,y

 add16 d0,d15

 st.w z,d0

Example: #pragma inline / #pragma noinline

Instead of the inline qualifier, you can also use #pragma inline and
#pragma noinline to inline a function body:

int w,x,y,z;

#pragma inline

int add(int a, int b)

{

 int i=4;

 return(a + b);

}

#pragma noinline

void main(void)

{

 w = add(1, 2);

 z = add(x, y);

}

If a function has an inline/__noinline function qualifier, then this
qualifier will overrule the current pragma setting.

#pragma smartinline

By default, small fuctions that are not too often called, are inlined. This
reduces execution time at the cost of code size (compiler option -Oi).

With the #pragma noinline / #pragma smartinline you can
temporarily disable this optimization.

With the compiler options --inline-max-incr and --inline-max-size

you have more control over the function inlining process of the compiler.

See for more information of these options, section Compiler Options in
Chapter Tool Options of the TriCore Reference Manual.

TriCore C Language 3-31

• • • • • • • •

Combining inline with __asm to create intrinsic functions

With the keyword __asm it is possible to use assembly instructions in the
body of an inline function. Because the compiler inserts the (assembly)
body at the place the function is called, you can create your own intrinsic
function.

See section 3.6, Using Assembly in the C Source, for more information
about the __asm keyword.
Example 6 in that section shows how in combination with the inline
keyword an intrinsic function is created.

3.9.2 INTERRUPT AND TRAP FUNCTIONS

The TriCore C compiler supports a number of function qualifiers and
keywords to program interrupt service routines (ISR) or trap handlers. Trap
handlers may also be defined by the operating system if your target system
uses one.

An interrupt service routine (or: interrupt function, or: interrupt handler) is
called when an interrupt event (or: service request) occurs. This is always
an external event; peripherals or external inputs can generate an interrupt
signals to the CPU to request for service.
Unlike other interrupt systems, each interrupt has a unique interrupt
request priority number (IRPN). This number is (0 to 255) is set as the
pending interrupt priority number (PIPN) in the interrupt control register
(ICR) by the interrupt control unit. If multiple interrupts occur at the same
time, the priority number of the request with the hightest priority is set, so
this interrupt is handled.

The TriCore vector table provides an entry for each pending interrupt
priority number, not for a specific interrupt source. A request is handled if
the priority number is higher then the CPU priority number (CCPN). An
interrupt service routine can be interrupted again by another interrupt
request with a higher priority. Interrupts with priority number 0 are never
handled.

A trap service routine (or: trap function, or: trap handler) is called when a
trap event occurs. This is always an event generated within or by the
application. For example, a devide by zero or an invalid memory access.

TriCore User's Manual3-32
C

 L
A

N
G

U
A

G
E

With the following function qualifiers you can declare an interrupt handler
or trap handler:

__interrupt() __interrupt_fast()

__trap() __trap_fast()

There is one special type of trap function which you can call manually, the
system call exception (trap class 6). See section 3.9.2.3, Defining a Trap
Service Routine Class 6.

__syscallfunc()

During the execution of an interrupt service routine or trap service routine,
the system blocks the CPU from taking further interrupt requests. With the
following keywords you can enable interrupts again, immediately after an
interrupt or trap function is called:

__enable_ __bisr_()

3.9.2.1 DEFINING AN INTERRUPT SERVICE ROUTINE

Interrupt functions cannot accept arguments and do not return anything:

void __interrupt(vector) isr(void)

{

...

}

The argument vector identifies the entry into the interrupt vector table
(0..255). Unlike other interrupt systems, the priority number (PIPN) of the
interrupt now being serviced by the CPU identifies the entry into the
vector table.

For an extensive description of the TriCore interrupt system, see the
TriCore 1 Unified Processor Core v1.3 Architecture Manual, Doc v1.3.3
[2002-09, Infineon]

The compiler generates an interrupt service frame for interrupts. The
difference between a normal function and an interrupt function is that an
interrupt function ends with an RFE instruction instead of a RET, and that
the lower context is saved and restored with a pair of SVLCX / RSLCX
instructions when one of the lower context registers is used in the
interrupt handler.

TriCore C Language 3-33

• • • • • • • •

When you define an interrupt service routine with the __interrupt()
qualifier, the compiler generates an entry for the interrupt vector table.
This vector jumps to the interrupt handler.

When you define an interrupt service routine with the
__interrupt_fast() qualifier, the interrupt handler is directly placed in
the interrupt vector table, thereby eliminating the jump code. You should
only use this when the interrupt handler is very small, as there is only 32
bytes of space available in the vector table. The compiler does not check
this restriction.

Example

The next example illustrates the function definition for a function for a
software interrupt with vector number 0x30:

int c;

void __interrupt(0x30) transmit(void)

{

 c = 1;

}

3.9.2.2 DEFINING A TRAP SERVICE ROUTINE

The definition of a trap service routine is similar to the definition of an
interrupt service routine. Trap functions cannot accept arguments and do
not return anything:

void __trap(class) tsr(void)

{

...

}

The argument class identifies the entry into the trap vector table. TriCore
defines eight classes of trap functions. Each class has its own trap handler.

When a trap service routine is called, the d15 register contains the
so-called Trap Identification Number (TIN). This number identifies the
cause of the trap. In the trap service routine you can test and branch on
the value in d15 to reach the sub-handler for a specific TIN.

The next table shows the classes supported by TriCore.

TriCore User's Manual3-34
C

 L
A

N
G

U
A

G
E

Class Description

Class 0 Reset

Class 1 Internal Protection Traps

Class 2 Instruction Errors

Class 3 Context Management

Class 4 System Bus and Peripheral Errors

Class 5 Assertion Traps

Class 6 System Call

Class 7 Non-Maskable Interrupt

For a complete overview of the trap system and the meaning of the trap
identification numbers, see the TriCore 1 Unified Processor Core v1.3
Architecture Manual, Doc v1.3.3 [2002-09, Infineon]

Analogous to interrupt service routines, the compiler generates a trap
service frame for interrupts.

When you define a trap service routine with the __trap() qualifier, the
compiler generates an entry for the interrupt vector table. This vector
jumps to the trap handler.

When you define a trap service routine with the __trap_fast()
qualifier, the trap handler is directly placed in the trap vector table,
thereby eliminating the jump code. You should only use this when the
trap handler is very small, as there is only 32 bytes of space available in
the vector table. The compiler does not check this restriction.

3.9.2.3 DEFINING A TRAP SERVICE ROUTINE CLASS 6:

__syscallfunc()

A special kind of trap service routine is the system call trap. With a system
call the trap service routine of class 6 is called. For the system call trap, the
trap identification number (TIN) is taken from the immediate constant
specified with the function qualifier __syscallfunc():

__syscallfunc(TIN)

TriCore C Language 3-35

• • • • • • • •

The TIN is a value in the range 0 and 255. You can only use
__syscallfunc() in the function declaration. A function body is useless,
because when you call the function declared with __syscallfunc(), a
trap class 6 occurs which calls the corresponding trap service routine.

In case of the other traps, when a trap service routine is called, the system
places a trap identification number in d15.

Unlike the other traps, a class 6 trap service routine can contain arguments
and return a value. Arguments that are passed via the stack, remain on the
stack of the caller because it is not possible to pass arguments from the
user stack to the interrupt stack on a system call. This restriction, caused
by the TriCore's run-time behavior, cannot be checked by the compiler.

 The next example illustrates the definition of a class 6 trap service routine
and the corresponding system call:

Example

__syscallfunc(1) int syscall_a(int, int);

__syscallfunc(2) int syscall_b(int, int);

int x;

void main(void)

{

 x = syscall_a(1,2); // causes a trap class 6 with TIN = 1

 x = syscall_b(4,3); // causes a trap class 6 with TIN = 2

}

int __trap(6) trap6(int a, int b) // trap class 6 handler

{

 int tin;

 __asm("mov %0,d15" : "=d"(tin)); // put d15 in C variable tin

 switch(tin)

 {

 case 1:

 a += b;

 break;

 case 2:

 a -= b;

 break;

 default:

 break;

 }

 return a;

}

TriCore User's Manual3-36
C

 L
A

N
G

U
A

G
E

3.9.2.4 ENABLING INTERRUPT REQUESTS: __enable_,

__bisr_()

Enabling interrupt service requests

During the execution of an interrupt service routine or trap service routine,
the system blocks the CPU from taking further interrupt requests. You can
immediately re-enable the system to accept interrupt requests:

__interrupt(vector) __enable_ isr(void)

__trap(class) __enable_ tsr(void)

The compiler generates an enable instruction as first instruction in the
routine. The enable instruction sets the interrupt enable bit (ICR.IE) in the
interrupt control register.

You can also generate the enable instruction with the __enable()
intrinsic function, but it is not guaranteed that it will be the first instruction
in the routine.

Enabling interrupt service requests and setting CPU priority number

The function qualifier __bisr_() also re-enables the system to accept
interrupt requests. In addition, the current CPU priority number (CCPN) in
the interrupt control register is set:

__interrupt(vector) __bisr_(CCPN) isr(void)

__trap(class) __bisr_(CCPN) tsr(void)

The argument CCPN is a number between 0 and 255. The system accepts
all interrupt requests that have a higher pending interrupt priority number
(PIPN) than the current CPU priority number. So, if the CPU priority
number is set to 0, the system accepts all interrupts. If it is set to 255, no
interrupts are accepted.

The compiler generates a bisr instruction as first instruction in the
routine. The bisr instruction sets the interrupt enable bit (ICR.IE) and the
current CPU priority number (ICR.CCPN) in the interrupt control register.

You can also generate the bisr instruction with the __bisr() intrinsic
function, but it is not guaranteed that it will be the first instruction in the
routine.

TriCore C Language 3-37

• • • • • • • •

Setting the CPU priority number in a Class 6 trap service routine

The bisr instruction saves the lower context so passing and returning
arguments is not possible. Therefore, you cannot use the function qualifier
__bisr_() for class 6 traps.

Instead, you can use the function qualifier __enable_ to set the ICR.IE
bit, and the intrinsic function __mtcr(int, int) to set the ICR.CCPN
value at the beginning of a class 6 trap service routine (or use the intrinsic
function __mtcr() to set both the ICR.IE bit and the ICR.CCPN value).

3.9.3 FUNCTION CALLING MODES: __indirect

Functions are default called with a single word direct call. However, when
you link the application and the target address appears to be out of reach
(+/- 16 MB from the callg or jg instruction), the linker generates an
error. In this case you can use the __indirect keyword to force the less
efficient, two and a half word indirect call to the function:

int __indirect foo(void)

{

...

}

With compiler option --indirect you tell the compiler to generate far calls
for all functions.

3.9.4 PARAMETER PASSING AND THE STACK MODEL:

__stackparm

The parameter registers D4..D7 and A4..A7 are used to pass the initial
function arguments. Up to 4 arithmetic types and 4 pointers can be passed
this way. A 64-bit argument is passed in an even/odd data register pair.
Parameter registers skipped because of alignment for a 64-bit argument
are used by subsequent 32-bit arguments. Any remaining function
arguments are passed on the stack. Stack arguments are pushed in
reversed order, so that the first one is at the lowest address. On function
entry, the first stack parameter is at the address (SP+0).

void func1(int i, char *p, char c); /* D4 A4 D5 */

void func2(int i1, double d, int i2); /* D4 E6 D5 */

void func3(char c1, char c2, char c3[]); /* D4 D5 A4 */

TriCore User's Manual3-38
C

 L
A

N
G

U
A

G
E

void func4(double d1, int i1, double d2, int i2);

 /* E4 D6 stack D7 */

All function arguments passed on the stack are aligned on a multiple of 4
bytes. As a result, the stack offsets for all types except float are
compatible with the stack offsets used by a function declared without a
prototype.

Structures up to eight bytes are passed via a data register or data register
pair. Larger structures are passed via the stack.

Arithmetic function results of up to 32 bits are returned in the D2 register.
64-bit arithmetic types are returned in the register pair D2/D3 (E2).
Pointers are returned in A2, and circular pointers are returned in A2/A3.

When the function return type is a structure, it is copied to a "return area"
that is allocated by the caller. The address of this area is passed as an
implicit first argument in A4.

The following table summarize the registers used by the TriCore compiler
ctc:

Register Usage Register Usage

D0

E0

scratch A0 global

D1
E0

scratch A1 global

D2

E2

return register for

arithmetic types

A2 return register for

pointers

D3
E2

most significant part of

64 bit result

A3 scratch

D4

E4

parameter A4 parameter

D5
E4

parameter A5 parameter

D6

E6

parameter A6 parameter

D7
E6

parameter A7 parameter

D8

E8

saved register A8 global

D9
E8

saved register A9 global

D10

E10

saved register A10 stack pointer

D11
E10

saved register A11 link register

D12

E12

saved register A12 saved register

D13
E12

saved register A13 saved register

TriCore C Language 3-39

• • • • • • • •

UsageRegisterUsageRegister

D14 saved register A14 saved register

D15 E14 saved register, implicit

register

A15 saved register, implicit

pointer

Table 3-9: Register usage

Stack Model: __stackparm

The function qualifier __stackparm changes the standard calling
convention of a function into a convention where all function arguments
are passed via the stack, conforming a so-called stack model. This
qualifier is only needed for situations where you need to use an indirect
call to a function for which you do not have a valid prototype.

The compiler sets the least significant bit of the function pointer when you
take the address of a function declared with the __stackparm qualifier,
so that these function pointers can be identified at run-time. The least
significant bit of a function pointer address is ignored by the hardware.

Example

void plain_func (int);

void __stackparm stack_func (int);

void call_indirect (unsigned int fp, int arg)

{

 typedef __stackparm void (*SFP)(int);

 typedef void (*RFP)(int);

 SFP fp_stack;

 RFP fp_reg;

 if (fp & 1)

 {

 fp_stack = (SFP) fp;

 fp_stack(arg);

 }

 else

 {

 fp_reg = (RFP) fp;

 fp_reg(arg);

 }

}

TriCore User's Manual3-40
C

 L
A

N
G

U
A

G
E

void main (void)

{

 call_indirect((unsinged int) plain_func, 1);

 call_indirect((unsinged int) stack_func, 2);

}

TriCore C Language 3-41

• • • • • • • •

3.10 COMPILER GENERATED SECTIONS

The compiler generates code and data in several types of sections. The
compiler uses the following section naming convention:

section_type_prefix.module_name.symbol_name

The prefix depends on the type of the section and determines if the
section is initialized, constant or uninitialized and which addressing mode
is used. The symbol_name is either the name of an object or the name of a
function.

Type Name prefix Description

code .text program code

neardata .zdata initialized __near data

fardata .data initialized __far data

nearrom .zrodata constant __near data

farrom .rodata constant __far data

nearbss .zbss uninitialized __near data (cleared)

farbss .bss uninitialized __far data (cleared)

nearnoclear .zbss uninitialized __near data

farnoclear .bss uninitialized __far data

a0data .sdata initialized __a0 data

a0rom .srodata constant __a0 data

a0bss .sbss uninitialized __a0 data (cleared)

a1rom .ldata constant __a1 data

a8data .data_a8 initialized __a8 data

a8rom .rodata_a8 constant __a8 data

a8bss .bss_a8 uninitialized __a8 data (cleared)

a9data .data_a9 initialized __a9 data

a9rom .rodata_a9 constant __a9 data

a9bss .bss_a9 uninitialized __a9 data (cleared)

Table 3-10: Section types and name prefixes

TriCore User's Manual3-42
C

 L
A

N
G

U
A

G
E

Rename sections

You can change the default section names with one of the following
pragmas:

#pragma section type "string"

All sections of the specified type will be named "prefix.string". For
example,

#pragma section neardata "where"

all sections of type neardata have the name ".zdata.where".

#pragma section type will restore the default section naming for
sections of this type.

#pragma section type restore will restore the previous setting
of #pragma section type.

#pragma section all "string"

All sections will be named "prefix.string", unless you use a type
specific renaming pragma. For example,

#pragma section all "here"

all sections have the syntax "prefix.here". For example, sections of
type neardata have the name ".zdata.here".

#pragma section all will restore the default section naming (not
for sections that have a type specific renaming pragma).

#pragma section all restore will restore the previous setting of
#pragma section all.

Example:

#pragma section all "rename_1"

 // .text.rename_1

 // .data.rename_1

#pragma section code "rename_2"

 // .text.rename_2

 // .data.rename_1

See also compiler option -R in section Compiler Options in Chapter Tool
Options of the Reference Manual.

TriCore C Language 3-43

• • • • • • • •

Influence section definition

The following pragmas also influence the section definition:

#pragma section code_init

Code sections are copied from ROM to RAM at program startup.

#pragma section const_init

Sections with constant data are copied from ROM to RAM at program
startup.

#pragma section vector_init

Sections with interrupts and trap vectors are copied from ROM to RAM
at program startup.

#pragma section data_overlay

The nearnoclear and farnoclear sections can be overlaid by other
sections with the same name. Since default section naming never leads
to sections with the same name, you must force the same name by
using one of the section renaming pragmas. To get noclear sections
instead of BSS sections you must also use #pragma noclear.

TriCore User's Manual3-44
C

 L
A

N
G

U
A

G
E

3.11 SWITCH STATEMENT

ctc supports three ways of code generation for a switch statement: a jump
chain (linear switch), a jump table or a lookup table.

A jump chain is comparable with an if/else-if/else-if/else construction. A
jump table is a table filled with target addresses for each possible switch
value. The switch argument is used as an index within this table. A lookup
table is a table filled with a value to compare the switch argument with
and a target address to jump to. A binary search lookup is performed to
select the correct target address.

By default, the compiler will automatically choose the most efficient switch
implementation based on code and data size and execution speed. You
can influence the selection of the switch method with compiler option -t

(--tradeoff), which determines the speed/size tradeoff.

It is obvious that, especially for large switch statements, the jump table
approach executes faster than the lookup table approach. Also the jump
table has a predictable behavior in execution speed. No matter the switch
argument, every case is reached in the same execution time. However,
when the case labels are distributed far apart, the jump table becomes
sparse, wasting code memory. The compiler will not use the jump table
method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in
execution and shorter in size.

How to overrule the default switch method

You can overrule the compiler chosen switch method with a pragma:

#pragma switch linear /* force jump chain code */

#pragma switch jumptab /* force jump table code */

#pragma switch lookup /* force lookup table code */

#pragma switch auto /* let the compiler decide

 the switch method used */

#pragma switch restore /* restore previous switch

 method */

Pragma switch auto is also the default of the compiler.

On the command line you can use compiler option --switch.

TriCore C Language 3-45

• • • • • • • •

3.12 LIBRARIES

The compiler ctc comes with standard C libraries (ISO/IEC 9899:1999) and
header files with the appropriate prototypes for the library functions. The
standard C libraries are available in object format and in C or assembly
source code.

A number of standard operations within C are too complex to generate
inline code for. These operations are implemented as run-time library
functions.

The lib directory contains subdirectories with separate libraries for the
TriCore 1 and the TriCore 2. Furthermore, protected libraries are available
for the TC112 and TC113 functional problems.

The protected library sets provide software bypasses for all TC112 and
TC113 supported CPU functional problems. They must be used in
conjunction with the appropriate C compiler workarounds for CPU
functional problems. For more details refer to Chapter 9, CPU Functional
Problems in the Reference Manual.

The directory structure is:

\ctc\lib\

 tc1\ TriCore 1 libraries
 tc2\ TriCore 2 libraries
 p\

 tc112 Protected libraries for TC112 problems
 tc113 Protected libraries for TC113 problems

TriCore User's Manual3-46
C

 L
A

N
G

U
A

G
E

3.12.1 OVERVIEW OF LIBRARIES

Table 3-11 lists the libraries included in the TriCore (ctc) toolchain.

Library to link Description

libc.a C library

(Some functions require the floating-point library. Also

includes the startup code.)

libcs.a C library single precision (compiler option -F)

(Some functions require the floating-point library. Also

includes the startup code.)

libcs_fpu.a C library single precision with FPU instructions (compiler

option -F and --fpu-present)

libfp.a Floating-point library (non-trapping)

libfpt.a Floating-point library (trapping)

(Control program option --fp-trap)

libfp_fpu.a Floating-point library (non-trapping, with FPU instructions)

(Compiler option --fpu-present)

libfpt_fpu.a Floating-point library (trapping, with FPU instructions)

(Control program option --fp-trap, compiler option

--fpu-present)

librt.a Run-time library

Table 3-11: Overview of libraries

See section 2.2, Library Functions, in Chapter Libraries of the Reference
Manual for an extensive description of all standard C library functions.

3.12.2 PRINTF AND SCANF FORMATTING ROUTINES

The C library functions printf(), fprintf(), vfprintf(),
vsprintf(), ... call one single function, _doprint(), that deals with the
format string and arguments. The same applies to all scanf type functions,
which call the function _doscan(), and also for the wprintf and
wscanf type functions which call _dowprint() and _dowscan()
respectively. The C library contains three versions of these routines: int,
long and long long versions. If you use floating-point, the formatter
function for floating-point _doflt() or _dowflt() is called. Depending
on the formatting arguments you use, the correct routine is used from the
library. Of course the larger the version of the routine the larger your
produced code will be.

TriCore C Language 3-47

• • • • • • • •

Note that when you call any of the printf/scanf routines indirect, the
arguments are not known and always the long long version with
floating-point support is used from the library.

Example:

#include <stdio.h>

long L;

void main(void)

{

 printf("This is a long: %ld\n", L);

}

The linker extracts the long version without floating-point support from
the library.

Fixed point format specifiers

The printf and scanf type functions support two additional format
specifiers for the conversion of fixed-point types (fractional and
accumulator types).

For printf type functions:

%lR An __laccum argument representing a fixed-point
accumulator number is converted to decimal notation in the
style [-]ddd.ddd, where the number of digits after the
decimal-point character is equal to the precision specification.

%r A __fract argument representing a fixed-point fractional
number is converted to decimal notation in the style [-]d.ddd,
where there is one digit (which is non-zero if the argument is
-1.0) before the decimal point character and the number of
digits after it is equal to the precision.

For scanf type functions:

%lR Matches an optionally signed fixed-point accumulator number.
The corresponding argument shall be a pointer to __laccum.

%r Matches an optionally signed fixed-point fractional number.
The corresponding argument shall be a pointer to __fract.

TriCore User's Manual3-48
C

 L
A

N
G

U
A

G
E

Example:

#include <stdio.h>

__fract fvalue = 1.0/3;

__laccum lacvalue = 1.234;

void main(void)

{

 printf("fvalue is: %r\n", fvalue);

 printf("lacvalue is: %lR\n", lacvalue);

}

3.12.3 REBUILDING LIBRARIES

If you have manually changed one of the standard C library functions, you
need to recompile the standard C libraries.

'Weak' symbols are used to extract the most optimal implementation of a
function from the library. For example if your application does not use
floating-point variables the prinf alike functions do not support
floating-point types either. The compiler emits strong symbols to guide
this process. Do not change the order in which modules are placed in the
library since this may break this process.

The sources of the libraries are present in the lib\src directory. This
directory also contains subdirectories with a makefile for each type of
library:

TriCore C Language 3-49

• • • • • • • •

lib\src\

 p\

 tc112\

 libc\makefile

 libcs\makefile

 libcs_fpu\makefile

 tc113\

 libc\makefile

 libcs\makefile

 libcs_fpu\makefile

 tc1\

 libc\makefile

 libcs\makefile

 libcs_fpu\makefile

 tc2\

 libc\makefile

 libcs\makefile

 libcs_fpu\makefile

To rebuild the libraries, follow the steps below.

First make sure that the bin directory for the TriCore toolchain is included
in your PATH environment variable. (See section 1.3.2, Configuring the
Command Line Environment.

1. Make the directory lib\src\tc2\libc the current working directory.

This directory contains a makefile which also uses the default make
rules from mktc.mk from the ctc\etc directory.

2. Edit the makefile.

See section 8.3, Make Utility, in Chapter Utilities for an extensive
description of the make utility and makefiles.

3. Assuming the lib\src\tc2\libc directory is still the current working
directory, type:

mktc

to build the library.

The new library is created in the lib\src\tc2\libc directory.

4. Make a backup copy of the original library and copy the new library to
the lib\tc2 directory of the product.

TriCore User's Manual3-50
C

 L
A

N
G

U
A

G
E

4

TRICORE ASSEMBLY

LANGUAGE
C

H
A

P
T

E
R

TriCore User's Manual4-2
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4

C
H

A
P

T
E

R

TriCore Assembly Language 4-3

• • • • • • • •

4.1 INTRODUCTION

In this chapter the most important aspects of the TriCore assembly
language are described. For a complete overview of the TriCore2
architecture, refer to the TriCore2 Architecture Overview Handbook [2002,
Infineon].

4.2 ASSEMBLY SYNTAX

An assembly program consists of zero or more statements. A statement
may optionally be followed by a comment. Any source statement can be
extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line
and continuation lines) is only limited by the amount of available memory.

Mnemonics and directives are case insensitive. Labels, symbols, directive
arguments, and literal strings are case sensitive.

The syntax of an assembly statement is:

[label[:]] [instruction | directive | macro_call] [;comment]

label A label is a special symbol which is assigned the value and
type of the current program location counter. A label can
consist of letters, digits and underscore characters (_). The
first character cannot be a digit. A label which is prefixed by
whitespace (spaces or tabs) has to be followed by a colon (:).
The size of an identifier is only limited by the amount of
available memory.

Examples:

 LAB1: ; This label is followed by a colon and

 can start with a space or tab

LAB1 ; This label has to start at the beginning

 of a line

TriCore User's Manual4-4
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

instruction An instruction consists of a mnemonic and zero, one or more
operands. It must not start in the first column. Operands are
described in section 4.4, Operands of an Assembly
Instruction. The instructions are described in the TriCore
Architecture Manuals.

Examples:

 ret ; No operand

 call label ; One operand

 mov D0,#1 ; Two operands

 jne D0,#0,loop ; Three operands

 madd D2,D3,D0,D1 ; Four operands

 insert D1,D2,#3,#16,#2 ; Five operands

directive With directives you can control the assembler from within the
assembly source. These must not start in the first column.
Directives are described in section 4.8, Assembler Directives
and Controls.

macro_call A call to a previously defined macro. It must not start in the
first column. Macros are described in section 4.10 Macro
Operations.

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a
so-called 'control line' in your assembly source file. These lines start with
a $ in the first column and alter the default behavior of the assembler.

$control

For more information on controls see section 4.8, Assembler Directives and
Controls.

4.3 ASSEMBLER SIGNIFICANT CHARACTERS

You can use all ASCII characters in the assembly source both in strings and
in comments. Also the extended characters from the ISO 8859-1 (Latin-1)
set are allowed.

Some characters have a special meaning to the assembler. Special
characters associated with expression evaluation are described in section
4.6.3, Expression Operators. Other special assembler characters are:

TriCore Assembly Language 4-5

• • • • • • • •

Character Description

; Start of a comment

\ Line continuation character or

Macro operator: argument concatenation

? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

^ Macro operator: override local label

" Macro string delimiter or

Quoted string .DEFINE expansion character

' String constants delimiter

@ Start of a built-in assembly function

* Location counter substitution

Constant number

++ String concatenation operator

[] Substring delimiter

4.4 OPERANDS

In an instruction, the mnemonic is followed by zero, one or more
operands. An operand has one of the following types:

Operand Description

symbol A symbolic name as described in section 4.5, Symbol
Names. Symbols can also occur in expressions.

register Any valid register or a register pair, register quad, register

extension, register part or special function register.

expression Any valid expression as described in the section 4.6,

Assembly Expressions.

address A combination of expression, register and symbol.

4.4.1 OPERANDS AND ADDRESSING MODES

The TriCore assembly language has several addressing modes. These are
listed below with a short description. For details see the TriCore 1 Unified
Processor Core v1.3 Architecture Manual, Doc v1.3.3 [2002-09, Infineon]

TriCore User's Manual4-6
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Absolute addressing

The instruction uses an 18-bit constant as the memory address. The full
32-bit address results from moving the most significant 4 bits of the 18-bit
constant to the most significant bits of the 32-bit address. The other bits
are zero filled.

Syntax:

constant18

Base+offset

The effective address is the sum of an address register and the
sign-extended 10-bit or 16-bit offset.

Syntax:

[An]offset10
[An]offset16

Pre-increment/decrement

This addressing mode uses the sum of the address register and the offset
both as the effective address and as the value written back into the
address register. Use the minus sign for a pre-decrement.

Syntax:

[+An]offset10

Post-increment/decrement

This addressing mode uses the value of the address register as the
effective address, and then updates this register by adding the
sign-extended 10-bit offset to its previous value. Use the minus sign for a
post-decrement.

Syntax:

[An+]offset10

TriCore Assembly Language 4-7

• • • • • • • •

Circular addressing

This addressing mode is used for accessing data values in circular buffers.
It uses an address register pair to hold the state it requires. The even
register is always a base address (B). The most-significant half of the odd
register is the buffer size (L). The least significant half holds the index into
the buffer (I). The effective address is (B+I). The buffer occupies memory
from addresses B to B+L-1. The 10-bit offset is specified in the instruction
word and is a byte-offset that can be either positive or negative.

Syntax:

[An+c]offset10

Bit-reverse addressing

Bit reverse addressing is used to access arrays used in FFT algorithms.
Bit-reverse addressing uses an address register pair to hold the required
state. The even register is the base address of the array (B), the
least-significant half of the odd register is the index into the array (I), and
the most-significant half is the modifier (M) which is added to I after every
access. The effective address is B+reverse(I). The reverse() function
exchanges bit n with bit (15-n) for n = 0, ..., 7. The index, I, is
post-incremented and its new value is (I + M), where M is the most
significant half of the odd register.

Syntax:

[An+r]

Indexed addressing

The indexed addressing mode uses an address register pair to hold the
required state. The Aeven register is the base address of the array (B). The
Aodd register is divided equally between the index into the array (I), and
the modifier (N) which is added to I after every access.

Aodd

Aeven

N I

B

All load (LD.xxx) instructions, all store(ST.xxx except ST.T) instructions,
the load/modify/store (SWAP.W,LDMST) instructions and the cache
management (CACHEA.xxx) instructions are able to use the indexed
addressing mode.

Syntax:

TriCore User's Manual4-8
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

[Aa/Ab+i]

ld.w d0,[a0/a1+i] ; load word indexed addressing mode

st.w [a2/a3+i],d0 ; store word indexed addressing mode

4.4.2 PCP ADDRESSING MODES

The PCP assembly language has several addressing modes. These
addressing modes are used for FPI addressing, PRAM data indirect
addressing or flow control destination addressing. For details see the
PCP/DMA Architecture manual from Siemens.

4.5 SYMBOL NAMES

User-defined symbols

A user-defined symbol can consist of letters, digits and underscore
characters (_). The first character cannot be a digit. The size of an
identifier is only limited by the amount of available memory. The case of
these characters is significant. You can define a symbol by means of a
label declaration or an equate or set directive.

Labels

Symbols used for memory locations are referred to as labels.

Reserved symbols

Register names and names of assembler directives and controls are
reserved for the system, so you cannot use these for user-defined symbols.
The case of these built-in symbols is insignificant. Symbol names and
other identifiers beginning with a period (.) are also reserved for the
system.

TriCore Assembly Language 4-9

• • • • • • • •

The following symbols are predefined:

Symbol Description

__ASTC__ Contains the name of the assembler ("astc")

__ASPCP__ Contains the name of the PCP assembler ("aspcp")

__FPU__ Defined when you use assembler option

--fpu-present (allow use of FPU instructions)

__MMU__ Defined when you use assembler option

--mmu-present (allow use of MMU instructions)

__TC2__ Defined when you use assembler option

--is-tricore2 (allow use of TriCore 2 instructions)

Table 4-1: Predefined symbols

Examples

Valid symbol names Invalid symbol names

loop_1

ENTRY

a_B_c

_aBC

1_loop (starts with a number)
d15 (reserved register name)
.space (reserved directive name)

4.6 ASSEMBLY EXPRESSIONS

An expression is a combination of symbols, constants, operators, and
parentheses which represent a value that is used as an operand of an
assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer
or floating-point values), and any combination of integers, floating-point
numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean
arithmetic.

Expressions that can be evaluated at assembly time are called absolute
expressions. Expressions where the result is unknown until all sections
have been combined and located, are called relocatable or relative
expressions.

TriCore User's Manual4-10
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

When any operand of an expression is relocatable, the entire expression is
relocatable. Relocatable expressions are emitted in the object file and are
evaluated by the linker. Relocatable expressions can only contain integral
functions; floating-point functions and numbers are not supported by the
ELF/DWARF object format.

The assembler evaluates expressions with 64-bit precision in two's
complement.

The syntax of an expression can be any of the following:

- numeric contant

- string

- symbol

- expression binary_operator expression

- unary_operator expression

- (expression)

- function call

All types of expressions are explained in separate sections.

4.6.1 NUMERIC CONSTANTS

Numeric constants can be used in expressions. If there is no prefix, the
assembler assumes the number is a decimal number.

Base Description Example

Binary '0B' or '0b' followed by binary digits (0,1).
0B1101

0b11001010

Hexadecimal
'0X' or '0x' followed by a hexadecimal

digits (0-9, A-F, a-f).

0X12FF

0x45

0x9abc

Decimal,

integer
Decimal digits (0-9).

12

1245

Decimal,

floating-point

Includes a decimal point, or an 'E' or 'e'

followed by the exponent.

6E10

.6

3.14

2.7e10

TriCore Assembly Language 4-11

• • • • • • • •

4.6.2 STRINGS

ASCII characters, enclosed in single (') or double (″) quotes constitue an
ASCII string. Strings between double quotes allow symbol substitution by a
.DEFINE directive, whereas strings between single quotes are always
literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character
is replaced by its ASCII value). Strings in expressions can have the size of
a long word (first 4 characters) or less depending on the operand of an
instruction or directive; any subsequent characters in the string are
ignored. In this case the assembler issues a warning. An exception to this
rule is when a string longer than 4 characters is used in a .BYTE assembler
directive; in that case all characters result in a constant byte. Null strings
have a value of 0.

Square brackets ([]) delimit a substring operation in the form:

[string,offset,length]

offset is the start position within string. length is the length of the desired
substring. Both values may not exceed the size of string.

Examples

'ABCD' ; (0x41424344)

'''79' ; to enclose a quote double it

"A\"BC" ; or to enclose a quote escape it

'AB'+1 ; (0x00004143) string used in expression

'' ; null string

.word 'abcdef' ; (0x64636261) 'ef' are ignored

 ; warning: string value truncated

'abc'++'de' ; you can concatenate

 ; two strings with the '++' operator.

 ; This results in 'abcde'

['TriCore',0,3] ; results in the substring 'Tri'

TriCore User's Manual4-12
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.6.3 EXPRESSION OPERATORS

The next table shows the assembler operators. They are ordered according
to their precedence. Operators of the same precedence are evaluated left
to right. Expressions between parentheses have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and
symbols.

Most assembler operators can be used with both integer and floating-point
values. If one operand has an integer value and the other operand has a
floating-point value, the integer is converted to a floating-point value
before the operator is applied. The result is a floating-point value.

Type Oper
ator

Name Description

() parentheses Expressions enclosed by

parenthesis are evaluated first.

Unary + plus Returns the value of its operand.

- minus Returns the negative of its operand.

~ complement Returns complement, integer only

! logical negate Returns 1 if the operands' value is

1; otherwise 0. For example, if buf

is 0 then !buf is 1.

Arithmetic * multiplication Yields the product of two operands.

/ division Yields the quotient of the division of

the first operand by the second.

With integers, the divide operation

produces a truncated integer.

% modulo Integer only: yields the remainder

from a division of the first operand

by the second.

+ addtion Yields the sum of its operands.

- subtraction Yields the difference of its

operands.

TriCore Assembly Language 4-13

• • • • • • • •

DescriptionNameOper
ator

Type

Shift << shift left Integer only: shifts the left operand

to the left (zero-filled) by the

number of bits specified by the right

operand.

>> shift right Integer only: shifts the left operand

to the right (sign bit extended) by

the number of bits specified by the

right operand.

Relational <

<=

>

>=

==

!=

less than

less or equal

greater than

greater or equal

equal

not equal

If the indicated condition is:

- True: result is an integer 1

- False: result is an integer 0

Be cautious when you use

floating-point values in an equality

test; rounding errors can cause

unexpected results.

Bitwise & AND Integer only: yields bitwise AND

| OR Integer only: yields bitwise OR

^ exclusive OR Integer only: yields bitwise

exclusive OR

Logical && logical AND Returns an integer 1 if both

operands are nonzero; otherwise, it

returns an integer 0.

|| logical OR Returns an integer 1 if either of the

operands is nonzero; otherwise, it

returns an integer 1

Table 4-2: Assembly expression operators

TriCore User's Manual4-14
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.7 BUILT-IN ASSEMBLY FUNCTIONS

The assembler has several built-in functions to support data conversion,
string comparison, and math computations. You can use functions as terms
in any expression. Functions have the following syntax:

Syntax of an assembly function

@function_name([argument[,argument]...])

Functions start with the '@' character and have zero or more arguments,
and are always followed by opening and closing parentheses. White space
(a blank or tab) is not allowed between the function name and the
opening parenthesis and between the (comma-separated) arguments.

The built-in assembler functions are grouped into the following types:

• Mathematical functions comprise, among others, transcendental,
random value, and min/max functions.

• Conversion functions provide conversion between integer,
floating-point, and fixed point fractional values.

• String functions compare strings, return the length of a string, and
return the position of a substring within a string.

• Macro functions return information about macros.

• Address calculation functions return the high or low part of an
address.

• Assembler mode functions relating assembler operation.

The following tables provide an overview of all built-in assembler
functions. For a detailed description of these functions, see section 3.2,
Built-in Assembly Function, in Chapter Assembly Language of the
Reference Manual.

TriCore Assembly Language 4-15

• • • • • • • •

Overview of mathematical functions

Function Description

@ABS(expr) Absolute value

@ACS(expr) Arc cosine

@ASN(expr) Arc sine

@AT2(expr1,expr2) Arc tangent

@ATN(expr) Arc tangent

@CEL(expr) Ceiling function

@COH(expr) Hyperbolic cosine

@COS(expr) Cosine

@FLR(expr) Floor function

@L10(expr) Log base 10

@LOG(expr) Natural logarithm

@MAX(expr,[,...,exprN]) Maximum value

@MIN(expr,[,...,exprN]) Minimum value

@POW(expr1,expr2) Raise to a power

@RND() Random value

@SGN(expr) Returns the sign of an expression as -1, 0 or 1

@SIN(expr) Sine

@SNH(expr) Hyperbolic sine

@SQT(expr) Square root

@TAN(expr) Tangent

@TNH(expr) Hyperbolic tangent

@XPN(expr) Exponential function (raise e to a power)

TriCore User's Manual4-16
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of conversion functions

Function Description

@CVF(expr) Convert integer to floating-point

@CVI(expr) Convert floating-point to integer

@FLD(base,value,

 width[,start])
Shift and mask operation

@FRACT(expr) Convert floating-point to 32-bit fractional

@SFRACT(expr) Convert floating-point to 16-bit fractional

@LNG(expr) Concatenate to double word

@LUN(expr) Convert long fractional to floating-point

@RVB(expr1[,expr2]) Reverse order of bits in field

@UNF(expr) Convert fractional to floating-point

Overview of string functions

Function Description

@CAT(str1,str2) Concatenate strings

@LEN(string) Length of string

@POS(str1,str2[,start]) Position of substring in string

@SCP(str1,str2) Returns 1 if two strings are equal

@SUB(string,expr,expr) Returns substring in string

Overview of macro functions

Function Description

@ARG('symbol'|expr) Test if macro argument is present

@CNT() Return number of macro arguments

@MAC(symbol) Test if macro is defined

@MXP() Test if macro expansion is active

TriCore Assembly Language 4-17

• • • • • • • •

Overview of address calculation functions

Function Description

@HI(expr) Returns upper 16 bits of expression value

@HIS(expr) Returns upper 16 bits of expression value,

adjusted for signed addition

@LO(expr) Returns lower 16 bits of expression value

@LOS(expr) Returns lower 16 bits of expression value,

adjusted for signed addition

@LSB(expr) Get least significant byte of a word

@MSB(expr) Get most significant byte of a word

Overview of assembler mode functions

Function Description

@ASPCP() Returns the name of the PCP assembler

executable

@ASTC() Returns the name of the assembler executable

@CPU(string) Test if CPU type is selected

@DEF('symbol'|symbol) Returns 1 if symbol has been defined

@EXP(expr) Expression check

@INT(expr) Integer check

@LST() LIST control flag value

4.8 ASSEMBLER DIRECTIVES AND CONTROLS

An assembler directive is simply a message to the assembler. Assembler
directives are not translated into machine instructions. There are three
main groups of assembler directives.

• Assembler directives that tell the assembler how to go about translating
instructions into machine code. This is the most typical form of
assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow
you to initialize memory with data. When the assembly source is
assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

TriCore User's Manual4-18
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The following directives fall under this group:

- Assembly control directives

- Symbol definition directives

- Data definition / Storage allocation directives

- Debug directives

• Directives that are interpreted by the macro preprocessor. These
directives tell the macro preprocessor how to manipulate your
assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of
the code that do not match the condition, will not be assembled at all.

• Some directives act as assembler options and most of them indeed do
have an equivalent assembler (command line) option. The advantage
of using a directive is that with such a directive you can overrule the
assembler option for a particular part of the code. Directives of this
kind are called controls. A typical example is to tell the assembler with
an option to generate a list file while with the controls $LIST ON and
$LIST OFF you overrule this option for a part of the code that you do
not want to appear in the list file. Controls always appear on a separate
line and start with a '$' sign in the first column.

The following controls are available:

- Assembly listing controls

- Miscellaneous controls

Each assembler directive or control has its own syntax. You can use
assembler directives and controls in the assembly code as pseudo
instructions.

4.8.1 OVERVIEW OF ASSEMBLER DIRECTIVES

The following tables provide an overview of all assembler directives. For a
detailed description, see section 3.3.2, Detailed Description of Assembler
Directives, in Chapter Assembly Language of the Reference Manual.

TriCore Assembly Language 4-19

• • • • • • • •

Overview of assembly control directives

Directive Description

.COMMENT Start comment lines. You cannot use this directive in

.IF/.ELSE/.ENDIF constructs and .MACRO/.DUP

definitions.

.DEFINE Define substitution string

.END End of source program

.FAIL Programmer generated error message

.INCLUDE Include file

.MESSAGE Programmer generated message

.ORG Initialize memory space and location counters to

create a nameless section

.SDECL Declare a section with name, type and attributes

.SECT Activate a declared section

.UNDEF Undefine .DEFINE symbol

.WARNING Programmer generated warning

Overview of symbol definition directives

Function Description

.EQU Assigns permanent value to a symbol

.EXTERN External symbol declaration

.GLOBAL Global symbol declaration

.LOCAL Local symbol declaration

.SET Set temporary value to a symbol

.SIZE Set size of symbol in the ELF symbol table

.TYPE Set symbol type in the ELF symbol table

.WEAK Mark symbol as 'weak'

TriCore User's Manual4-20
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of data definition / storage allocation directives

Function Description

.ACCUM Define 64-bit constant in 18 + 46 bits format

.ALIGN Define alignment

.ASCII / .ASCIIZ Define ASCII string without / with ending NULL byte

.BYTE Define constant byte

.FLOAT / .DOUBLE Define a 32-bit / 64-bit floating-point constant

.FRACT / .SFRACT Define a 16-bit / 32-bit constant fraction

.SPACE Define storage

.WORD / .HALF Define a word / half-word constant

Overview of macro and conditional assembly directives

Function Description

.DUP Duplicate sequence of source lines

.DUPA Duplicate sequence with arguments

.DUPC Duplicate sequence with characters

.DUPF Duplicate sequence in loop

.ENDM End of macro or duplicate sequence

.EXITM Exit macro

.IF/.ELIF/.ELSE/.ENDIF Conditional assembly

.MACRO Define macro

.PMACRO Undefine (purge) macro

Overview of debug directives

Function Description

.CALLS Passes call information to object file. Used by the

linker to build a call graph.

TriCore Assembly Language 4-21

• • • • • • • •

4.8.2 OVERVIEW OF ASSEMBLER CONTROLS

The following tables provide an overview of all assembler controls. For a
detailed description, see section 3.3.4, Detailed Description of Assembler
Controls, in Chapter Assembly Language of the Reference Manual.

Overview of assembler listing controls

Function Description

$LIST ON/OFF Generation of assembly list file temporary ON/OFF

$LIST "flags" Exclude / include lines in assembly list file

$PAGE Generate formfeed in assembly list file

$PAGE settings Define page layout for assemly list file

$PRCTL Send control string to printer

$STITLE Set program subtitle in header of assembly list file

$TITLE Set program title in headerof assembly list file

Overview of miscellaneous assembler controls

Function Description

$CASE ON/OFF Case sensitive user names ON/OFF

$DEBUG ON/OFF Generation of symbolic debug ON/OFF

$DEBUG "flags" Generation of symbolic debug ON/OFF

$FPU Allow single precision floating-point instructions

$HW_ONLY Prevent substitution of assembly instructions by

smaller or faster instructions

$IDENT

 LOCAL/GLOBAL

Assembler treats labels by default as local or global

$MMU Allow memory management instructions

$OBJECT Alternative name for the generated object file

$TCdefect ON/OFF Enable/disable assembler check for specified

functional problem

$TC2 Allow TriCore 2 instructions

$WARNING OFF [num] Suppress all or some warnings

TriCore User's Manual4-22
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.9 WORKING WITH SECTIONS

Sections are absolute or relocatable blocks of contiguous memory that can
contain code or data. Some sections contain code or data that your
program declared and uses directly, while other sections are created by
the compiler or linker and contain debug information or code or data to
initialize your application. These sections can be named in such a way that
different modules can implement different parts of these sections. These
sections are located in memory by the linker (using the linker script
language, LSL) so that concerns about memory placement are postponed
until after the assembly process.

All instructions and directives which generate data or code must be within
an active section. The assembler emits a warning if code or data starts
without a section definition and activation. The compiler automatically
generates sections. If you program in assembly you have to define sections
yourself.

For more information about locating sections see section 7.7.7 The Section
Layout Definition: Locating Sections in chapter Using the Linker.

Section definition

Sections are defined with the .SDECL directive and have a name. A section
may have attributes to instruct the linker to place it on a predefined
starting address, or that it may be overlaid with another section.

.SDECL "name", type [, attribute]... [AT address]

See the .SDECL directive in section 3.3.2, Detailed Description of Assembler
Directives, in chapter Assembly Language of the Reference Manual, for a
complete description of all possible attributes.

Section activation

Sections are defined once and are activated with the .SECT directive.

.SECT "name"

TriCore Assembly Language 4-23

• • • • • • • •

The linker will check between different modules and emits an error
message if the section attributes do not match. The linker will also
concatenate all matching section definitions into one section. So, all "code"
sections generated by the compiler will be linked into one big "code"
chunk which will be located in one piece. By using this naming scheme it
is possible to collect all pieces of code or data belonging together into one
bigger section during the linking phase. A .SECT directive referring to an
earlier defined section is called a continuation. Only the name can be
specified.

Example 1

.SDECL ".text.hello.main",CODE

.SECT ".text.hello.main"

Defines and activates a relocatable section in CODE memory. Other parts
of this section, with the same name, may be defined in the same module
or any other module. Other modules should use the same .SDECL
statement. When necessary, it is possible to give the section an absolute
starting address with the locator description file.

Example 2

.SDECL ".CONST", CODE AT 0x1000

.SECT ".CONST"

Defines and activates an absolute section named .CONST starting on
address 0x1000.

Example 3

.SDECL ".fardata", DATA, CLEAR

.SECT ".fardata"

Defines a relocatable named section in DATA memory. The CLEAR
attribute instructs the linker to clear the memory located to this section.
When this section is used in another module it must be defined identically.
Continuations of this section in the same module are as follows:

.SECT ".fardata"

TriCore User's Manual4-24
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.10 MACRO OPERATIONS

Macros provide a shorthand method for inserting a repeated pattern of
code or group of instructions. Yuo can define the pattern as a macro, and
then call the macro at the points in the program where the pattern would
repeat.

Some patterns contain variable entries which change for each repetition of
the pattern. Others are subject to conditional assembly.

When a macro is called, the assembler executes the macro and replaces
the call by the resulting in-line source statements. 'In-line' means that all
replacements act as if they are one the same line as the macro call. The
generated statements may contain substitutable arguments. The statements
produced by a macro can be any processor instruction, almost any
assembler directive, or any previously-defined macro. Source statements
resulting from a macro call are subject to the same conditions and
restrictions as any other statements.

Macros can be nested. The assembler processes nested macros when the
outer macro is expanded.

4.10.1 DEFINING A MACRO

The first step in using a macro is to define it in the source file. The
definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the arguments.

• Body, which contains the code or instructions to be inserted when te
macro is called.

• Terminator, which indicates the end of the macro definition (.ENDM
directive).

A macro definition takes the following form:

Header: macro_name .MACRO [arg[,arg...] [; comment]

 .

Body: source statements

 .

Terminator: .ENDM

If the macro name is the same as an existing assembler directive or
mnemonic opcode, the assembler replaces the directive or mnemonic
opcode with the macro and issues a warning.

TriCore Assembly Language 4-25

• • • • • • • •

The arguments are symbolic names that the macro preprocessor replaces
with the literal arguments when the macro is expanded (called). Each
argument must follow the same rules as global symbol names. Argument
names cannot start with a percent sign (%).

Example

The macro definition:

CONSTD .MACRO reg,value ;header

 mov.u reg,#lo(value) ;body

 addih reg,reg,#hi(value)

 .ENDM ;terminator

The macro call:

 .SDECL "data",DATA

 .SECT "data"

 CONSTD d4,0x12345678

 .END

The macro expands as follows:

 mov.u d4,#lo(0x12345678)

 addih d4,d4,#hi(0x12345678)

4.10.2 CALLING A MACRO

To invoke a macro, construct a source statement with the following format:

[label] macro_name [arg[,arg...]] [; comment]

where:

label An optional label that corresponds to the value of the
location counter at the start of the macro expansion.

macro_name The name of the macro. This must be in the operation
field.

arg One or more optional, substitutable arguments. Multiple
arguments must be separated by commas.

comment An optional comment.

TriCore User's Manual4-26
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The following applies to macro arguments:

• Each argument must correspond one-to-one with the formal arguments
of the macro definition. If the macro call does not contain the same
number of arguments as the macro definition, the assembler issues a
warning.

• If an argument has an embedded comma or space, you must surround
the argument by single quotes (').

• You can declare a macro call argument as NULL in three ways:

- enter delimiting commas in succession with no intervening spaces

macroname ARG1,,ARG3 ; the second argument

 ; is a NULL argument

- terminate the argument list with a comma, the arguments that
normally would follow, are now considered NULL

macroname ARG1, ; the second and all following

 ; arguments are NULL

- declare the argument as a NULL string

• No character is substituted in the generated statements that reference a
NULL argument.

TriCore Assembly Language 4-27

• • • • • • • •

4.10.3 USING OPERATORS FOR MACRO ARGUMENTS

The assembler recognizes certain text operators within macro definitions
which allow text substitution of arguments during macro expansion. You
can use these operators for text concatenation, numeric conversion, and
string handling.

Operator Name Description

\ Macro argument

concatenation

Concatenates a macro argument with

adjacent alphanumeric characters.

? Return decimal

value of symbol

Substitutes the ?symbol sequence with a

character string that represents the decimal

value of the symbol.

% Return hex

value of symbol

Substitutes the %symbol sequence with a

character string that represents the

hexadecimal value of the symbol.

" Macro string

delimiter

Allows the use of macro arguments as literal

strings.

^ Macro local label

override

Causes local labels in its term to be evaluated

at normal scope rather than at macro scope.

Argument Concatenation Operator - \

Consider the following macro definition:

SWAP_MEM .MACRO REG1,REG2 ;swap memory contents

 LD.W D0,[A\REG1] ;use D0 as temp

 LD.W D1,[A\REG2] ;use D1 as temp

 ST.W [A\REG1],D1

 ST.W [A\REG2],D0

 .ENDM

The macro is called as follows:

 SWAP_MEM 0,1

The macro expands as follows:

 LD.W D0,[A0]

 LD.W D1,[A1]

 ST.W [A0],D1

 ST.W [A1],D0

TriCore User's Manual4-28
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The macro preprocessor substitutes the character '0' for the argument
REG1, and the character '1' for the argument REG2. The concatenation
operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the character 'A'.

Without the '\' operator the macro would expand as:

 LD.W D0,[AREG1]

 LD.W D1,[AREG2]

 ST.W [AREG1],D1

 ST.W [AREG2],D0

which results in an assembler error.

Decimal value Operator - ?

Instead of substituting the formal arguments with the actual macro call
arguments, you can also use the value of the macro call arguments.

Consider the following source code that calls the macro SWAP_SYM after
the argument AREG has been set to 0 and BREG has been set to 1.

AREG .SET 0

BREG .SET 1

 SWAP_SYM AREG,BREG

If you want to replace the arguments with the value of AREG and BREG
rather than with the literal strings 'AREG' and 'BREG', you can use the ?
operator and modify the macro as follows:

SWAP_SYM .MACRO REG1,REG2 ;swap memory contents

 LD.W D0,_lab\?REG1 ;use D0 as temp

 LD.W D1,_lab\?REG2 ;use D1 as temp

 ST.W _lab\?REG1,D1

 ST.W _lab\?REG2,D0

 .ENDM

The macro first expands as follows:

 LD.W D0,_lab\?AREG

 LD.W D1,_lab\?BREG

 ST.W _lab\?AREG,D1

 ST.W _lab\?BREG,D0

TriCore Assembly Language 4-29

• • • • • • • •

Then ?AREG is replaced by '0' and ?BREG is replaced by '1':

 LD.W D0,_lab\1

 LD.W D1,_lab\2

 ST.W _lab\1,D1

 ST.W _lab\2,D0

Because of the concatenation operator '\' the strings are concatenated:

 LD.W D0,_lab1

 LD.W D1,_lab2

 ST.W _lab1,D1

 ST.W _lab2,D0

Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?)
except that it returns the hexadecimal value of a symbol.

Consider the following macro definition:

GEN_LAB .MACRO LAB,VAL,STMT

LAB\%VAL STMT

 .ENDM

A symbol with the name NUM is set to 10 and the macro is called with
NUM as argument:

NUM .SET 10

 GEN_LAB HEX,NUM,NOP

The macro expands as follows:

HEXA NOP

The %VAL argument is replaced by the character 'A' which represents the
hexadecimal value 10 of the argument VAL.

Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the
argument string operator (") in the macro definition.

Consider the following macro definition:

STR_MAC .MACRO STRING

 .BYTE "STRING"

 .ENDM

TriCore User's Manual4-30
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The macro is called as follows:

STR_MAC ABCD

The macro expands as follows:

 .BYTE 'ABCD'

Within double quotes .DEFINE directive definitions can be expanded.
Take care when using constructions with quotes and double quotes to
avoid inappropriate expansions. Since a .DEFINE expansion occurs before
a macro substitution, all DEFINE symbols are replaced first within a macro
argument string:

 .DEFINE LONG 'short'

STR_MAC .MACRO STRING

 .MESSAGE 'This is a LONG STRING'

 .MESSAGE "This is a LONG STRING"

 .ENDM

If the macro is called as follows:

 STR_MAC sentence

The macro expands as:

.MESSAGE 'This is a LONG STRING'

.MESSAGE 'This is a short sentence'

Single quotes prevent expansion so the first .MESSAGE is not stated as is.
In the double quoted .MESSAGE, first the define LONG is expanded to
'short' and then the argument STRING is substituted by 'sentence'.

Macro Local Label Override Operator - ^

If you use labels in macros, the assembler normally generates another
unique name for the labels (such as LAB__M_L0000001).

The macro ^-operator prevents name mangling on macro local labels.

Consider the following macro definition:

INIT .MACRO ARG, CNT

 LD.W D0,1

^LAB:

 .BYTE ARG

 JNEI D0,#CNT,^LAB

 .ENDM

TriCore Assembly Language 4-31

• • • • • • • •

The macro is called as follows:

 INIT 2,4

The macro expands as:

 LD.W D0,1

LAB:

 .BYTE 2

 JNEI D0,#4,LAB

Without the ^ operator, the macro preprocessor would choose another
name for LAB because the label already exists. The macro then would
expand like:

 LD.W D0,1

LAB__M_L000001:

 .BYTE 2

 JNEI D0,#4,LAB__M_L000001

4.10.4 USING THE .DUP, .DUPA, .DUPC, .DUPF

DIRECTIVES AS MACROS

The .DUP, .DUPA, .DUPC, and .DUPF directives are specialized macro
forms to repeat a block of source statements. You can think of them as a
simultaneous definition and call of an unnamed macro. The source
statements between the .DUP, .DUPA, .DUPC, and .DUPF directives and
the .ENDM directive follow the same rules as macro definitions.

For a detailed description of these directives, see section 3.3, Assembler
Directives, in Chapter Assembly Language of the Reference Manual.

4.10.5 CONDITIONAL ASSEMBLY: .IF, .ELIF AND .ELSE

DIRECTIVES

With the conditional assembly directives you can instruct the macro
preprocessor to use a part of the code that matches a certain condition.

You can specify assembly conditions with arguments in the case of
macros, or through definition of symbols via the .DEFINE, .SET, and
.EQU directives.

TriCore User's Manual4-32
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The built-in functions of the assembler provide a versatile means of testing
many conditions of the assembly environment.

You can use conditional directives also within a macro definition to check
at expansion time if arguments fall within a certain range of values. In this
way macros become self-checking and can generate error messages to any
desired level of detail.

The conditional assembly directive .IF has the following form:

.IF expression

 .

 .

[.ELIF expression] ;(the .ELIF directive is optional)

 .

 .

[.ELSE] ;(the .ELSE directive is optional)

 .

 .

.ENDIF

The expression must evaluate to an absolute integer and cannot contain
forward references. If expression evaluates to zero, the .IF-condition is
considered FALSE. Any non-zero result of expression is considered as
TRUE.

For a detailed description of these directives, see section 3.3, Assembler
Directives, in Chapter Assembly Language of the Reference Manual.

5

USING THE

COMPILER
C

H
A

P
T

E
R

TriCore User's Manual5-2
C
O
M
P
IL
E
R

5

C
H

A
P

T
E

R

Using the Compiler 5-3

• • • • • • • •

5.1 INTRODUCTION

EDE uses a makefile to build your entire project, from C source till the
final ELF/DWARF object file which serves as input for the debugger.

Although in EDE you cannot run the compiler separately from the other
tools, this chapter discusses the options that you can specify for the
compiler.

On the command line it is possible to call the compiler separately from the
other tools. However, it is recommended to use the control program cctc

for command line invocations of the toolchain (see section 8.2, Control
Program, in Chapter Using the Utilities). With the control program it is
possible to call the entire toolchain with only one command line.

The compiler takes the following files for input and output:

assembly file

C source file

C compiler

.ic

ctc
.err

.src

C source file

(hand coded)

.c

error messages

Figure 5-1: C compiler

This chapter first describes the compilation process which consists of a
frontend and a backend part. During compilation the code is optimized in
several ways. The various optimizations are described in the second
section. Third it is described how to call the compiler and how to use its
options. An extensive list of all options and their descriptions is included
in the section 5.1, Compiler Options, in Chapter 5, Tool Options, of the
Reference Manual. Finally, a few important basic tasks are described.

TriCore User's Manual5-4
C
O
M
P
IL
E
R

5.2 COMPILATION PROCESS

During the compilation of a C program, the compiler ctc runs through a
number of phases that are divided into two groups: frontend and backend.

The backend part is not called for each C statement, but starts after a
complete C module or set of modules has been processed by the frontend
(in memory). This allows better optimization.

The compiler requires only one pass over the input file which results in
relative fast compilation.

Frontend phases

1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses
only string manipulations on the C source. The syntax for the preprocessor
is independent of the C syntax but is also described in the ISO/IEC
9899:1999(E) standard.

2. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

3. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a
syntactic and semantic analysis of the program, and generates an
intermediate representation of the program. This code is called MIL
(Medium level Intermediate Language).

4. The frontend optimization phase:

Target processor independent optimizations are performed by transforming
the intermediate code.

Using the Compiler 5-5

• • • • • • • •

Backend phases

5. Instruction selector phase:

This phase reads the MIL input and translates it into Low level
Intermediate Language (LIL). The LIL objects correspond to a TriCore
processor instruction, with an opcode, operands and information used
within the compiler.

6. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or
shorter sequences, rearranges instructions and deletes unnecessary
instructions.

7. Register allocator phase:

This phase chooses a physical register to use for each virtual register.

8. The backend optimization phase:

Performs target processor independent and dependent optimizations which
operate on the Low level Intermediate Language.

9. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly
language output.

5.3 COMPILER OPTIMIZATIONS

The compiler has a number of optimizations which you can enable or
disable. To enable or disable optimizations:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Optimization.

3. Select an optimization level in the Optimization level box.

or:

In the Optimization level box, select Custom optimization and
enable the optimizations you want in the Custom optimization box.

TriCore User's Manual5-6
C
O
M
P
IL
E
R

If you specify a certain optimization, all code in the module is subject to
that optimization. Within the C source file you can overrule the compiler
options for optimizations with #pragma optimize flag and #pragma
endoptimize. Nesting is allowed:

#pragma optimize e /* Enable expression

... simplification */

... C source ...

...

#pragma optimize c /* Enable common expression

... elimination. Expression

... C source ... simplification still enabled */

...

#pragma endoptimize /* Disable common expression

... elimination */

#pragma endoptimize /* Disable expression

... simplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described below. The
command line option for each optimization is given in brackets.

See also option -O (--optimize) in section 5.1, Compiler Options, of
Chapter Tool Options of the TriCore Reference Manual.

Generic optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)

The compiler detects repeated use of the same (sub-)expression. Such a
"common" expression is replaced by a variable that is initialized with the
value of the expression to avoid recomputation. This method is called
common subexpression elimination (CSE).

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of 0 are removed.
Such useless expressions may be introduced by macros or by the compiler
itself (for example, array subscription).

Constant propagation (option -Op/-OP)

A variable with a known constant value is replaced by that value.

Using the Compiler 5-7

• • • • • • • •

Function Inlining (option -Oi/-OI)

Small functions that are not too often called, are inlined. This reduces
execution time at the cost of code size.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing
unnecessary code and reducing the number of jumps. For example:

Switch optimization:
A number of optimizations of a switch statement are performed, such
as removing redundant case labels or even removing an entire switch.

Jump chaining:
A (conditional) jump to a label which is immediately followed by an
unconditional jump may be replaced by a jump to the destination label
of the second jump. This optimization speeds up execution.

Conditional jump reversal:
A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both
the code size and the execution time.

Dead code elimination:
Code that is never reached, is removed. The compiler generates a
warning messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-OS)

An array of pointer subscripted with a loop iterator variable (or a simple
linear function of the iterator variable), is replaced by the dereference of a
pointer that is updated whenever the iterator is updated.

Loop transformations (option -Ol/-OL)

Temporarily transform a loop with the entry point at the bottom, to a loop
with the entry point at the top. This enables constant propagation in the
initial loop test and code motion of loop invariant code by the CSE
optimization.

Forward store (option -Oo/-OO)

A temporary variable is used to cache multiple assignments (stores) to the
same non-automatic variable.

TriCore User's Manual5-8
C
O
M
P
IL
E
R

Core specific optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV
instruction) by smart use of registers. This optimizes both speed as code
size.

Peephole optimizations (option -Oy/-OY)

The generated assembly code is improved by replacing instruction
sequences by equivalent but faster and/or shorter sequences, or by
deleting unnecessary instructions.

Instruction Scheduler (option -Ok/-OK)

Instructions are rearranged with the following purposes:

• Pairing a L/S instruction with a data arithmetic instruction in order to
fill both pipelines as much as possible.

• Avoiding structural hazards by inserting another non-related
instruction.

IFconversion (option -Ov/-OV)

IF - ELSE constructions are transformed into predicated instructions. This
avoids unnecessary jumps while the predicated instructions are optimized
by the pipeline scheduler and the predicate optimization.

Software pipelining (option -Ow/-OW)

A number of techniques to optimize loops. For example, within a loop the
most efficient order of instructions is chosen by the pipeline scheduler and
it is examined what instructions can be executed parallel.

Use of SIMD instructions (option -Om/-OM)

The iteration counts of loops are reduced where possible by taking
advantage of the TriCore SIMD instructions. This optimizes speed, but
may cause a slight increase in code size.

Generic assembly optimizations (option -Og/-OG)

A set of target independent optimizations that increase speed and decrease
code size.

Using the Compiler 5-9

• • • • • • • •

5.3.1 OPTIMIZE FOR SIZE OR SPEED

You can tell the compiler to focus on execution speed or code size during
optimizations. You can do this by specifying a size/speed trade-off level
from 0 (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the
different optimization phases to influence the heuristics. The higher the
level, the more the compiler focuses on code size optimization.

To specify the size/speed trade-off optimization level:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Optimization.

3. Select a Size/speed trade-off level.

See also option -t (--tradeoff) in section 5.1, Compiler Options, in
Chapter Tool Options of the TriCore Reference Manual.

TriCore User's Manual5-10
C
O
M
P
IL
E
R

5.4 CALLING THE COMPILER

EDE uses a makefile to build your entire project. This means that you
cannot run the compiler only. If you compile a single C source file from
within EDE, the file is also automatically assembled. However, you can set
options specific for the compiler. After you have build your project, the
output files of the compilation step are available in your project directory.

To compile your program, click either one of the following buttons:

Compiles and assembles the currently selected file. This
results in a relocatable object file (.o).

Builds your entire project but looks whether there are already
files available that are needed in the building process. If so,
these files will not be generated again, which saves time.

Builds your entire project unconditionally. All steps necessary
to obtain the final .elf file are performed.

To only check for syntax errors, click the following button:

Checks the currently selected file for syntax errors, but does
not generate code.

Select a predefined target processor

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list select the target processor.

4. Click OK to accept the new project settings.

The compiler includes the register file regcpu.sfr.

Based on the target processor, the compiler includes a special function
register file regcpu.sfr. This is an include file written in C syntax which
is shared by the compiler, assembler and debugger. Once the compiler
reads an SFR file you can reference the special function registers (SFR) and
bits within an SFR using symbols defined in the SFR file.

Using the Compiler 5-11

• • • • • • • •

Define a user defined target processor

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Target processor list, select one of the (user defined ...)

entries.

4. Specify (part of) the name of the user defined SFR files.

The compiler uses this name to include the register file regname.sfr.

5. (Optional) Specify if your user defined target processor has an FPU
(Floating-Point Unit) and/or an MMU (Memory Management Unit).

6. Click OK to accept the new project settings.

Processor options affect the invocation of all tools in the toolchain. In
EDE you only need to set them once. The corresponding options for the
compiler are listed in table 5-1.

To specify the search path and include directories

1. From the Project menu, select Directories...

The Directories dialog box appears.

2. Fill in the directory path settings and click OK.

To access the compiler options

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry, fill in the various pages and click OK to
accept the compiler options.

The compiler command line equivalences of your EDE selections are
shown simultaneously in the Options string box.

TriCore User's Manual5-12
C
O
M
P
IL
E
R

The following processor options are available:

EDE options Command line

Processor definition

Target processor

User defined TriCore 2

-Ccpu
--is-tricore2

FPU present (use hardware floating point instructions) --fpu-present

Bypasses

CPU functional problem bypasses --silicon-bug= bug

Startup

Automatically add cstart.asm to your project EDE only

Bus Configuration

Initialize bus configuration registers in startup code EDE only

Table 5-1: Processor options

The following project directories can be defined:

EDE options Command line

Directories

Executable files path

Include files path

Library files path

$PATH environment

-Idir

linker option -Ldir

Table 5-2: Project directories

The following compiler options are available:

EDE options Command line

Preprocessing

Store the C compiler preprocess output (file.pre)

Keep comments

Strip #line source position info

-Eflag
-Ec
-Ep

Automatic inclusion of '.sfr' file --no-tasking-sfr

Define user macros -Dmacro[=def]

Include this file before source -Hfile

Using the Compiler 5-13

• • • • • • • •

Command lineEDE options

Language

ISO C standard 90 or 99 (default: 99) -c{90|99}

Treat 'char' variables as unsigned instead of signed -u

Use 32-bits integers for enumeration --integer-
enumeration

Single precision floating-point: treat 'double' as 'float' -F

Call functions indirect --indirect

Language extensions

Allow C++ style comments in C source

Allow relaxed const check for string literals

-Aflag
-Ap
-Ax

Debug Information

Generate symbolic debug information -g

Optimization

No optimization

Debug purpose optimization

Release purpose optimization (default)

Aggressive optimization

Custom optimization

-O0
-O1
-O2
-O3
-Oflag

Size/speed trade-off (default: speed (0)) -t{0|1|2|3|4}

All addresses available for CSE evaluation --cse-all-addresses

Maximum size increment inlining

Maximum size for functions to always inline

--inline-max-incr
--inline-max-size

Allocation

Default __near allocation for objects below treshold -Nthreshold

Default __a0 allocation for objects below treshold -Zthreshold

Default __a1 allocation for objects below treshold -Ythreshold

Warnings

Report all warnings

Suppress all warnings

Suppress specific warnings

omit option -w
-w
-wnum[,num]...

Treat warnings as errors --warnings-as-
errors

MISRA C

Disable MISRA C code checking omit option --misrac

Supported MISRA C required rules

Custom MISRA C configuration

--misrac={all | number
[-number],... }

TriCore User's Manual5-14
C
O
M
P
IL
E
R

Command lineEDE options

Use external MISRA C configuration file no option

Produce MISRA C report file linker option
--misra-c-report

Miscellaneous

Merge C source code with assembly in output file

(.src)

-s

Additional command line options options

Additional command line options options

Table 5-3: Compiler options

The following options are only available on the command line:

Description Command line

Display invocation syntax -?

Specify alignment (same as #pragma align n) --align=n

Make all addresses available for CSE --cse-all-addresses

Show description of diagnostic(s) --diag=[fmt:]{all|nr,...}

Redirect diagnostic messages to a file --error-file[=file]

Read options from file -f file

Maximum size increment inlining (in %) (default: 25) --inline-max-incr=
value

Maximum size for function to always inline

(default: 10)

--inline-max-size=
value

Always use 32-bit integers for enumeration --integer-
 enumeration

Keep output file after errors -k

Send output to standard output -n

Specify name of output file -o file

Display version header only -V

Table 5-4: Compiler options only available on the command line

Using the Compiler 5-15

• • • • • • • •

The invocation syntax on the command line is:

ctc [option]... [file]

The input file must be a C source file (.c or .ic).

ctc test.c

This compiles the file test.c and generates the file test.src which
serves as input for the assembler.

For a complete overview of all options with extensive description, see
section 5.1, Compiler Options, of Chapter Tool Options of the TriCore
Reference Manual.

5.5 HOW THE COMPILER SEARCHES INCLUDE FILES

When you use include files, you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #include statement contains a pathname, the compiler looks for this
file. If no path is specified, the compiler looks in the same directory as the
source file. This is only possible for include files that are enclosed in "".

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories
that are specified in the Directories dialog (-I option).

3. When the compiler did not find the include file (because it is not in the
specified include directory or because no directory is specified), it looks
which paths were set during installation. You can still change these paths.

See section 1.3.1, Configuring the Embedded Development Environment
and environment variable CTCINC in section 1.3.2, Configuring the
Command Line Environment, in Chapter Software Installation.

4. When the compiler still did not find the include file, it finally tries the
default include directory relative to the installation directory.

TriCore User's Manual5-16
C
O
M
P
IL
E
R

5.6 COMPILING FOR DEBUGGING

Compiling your files is the first step to get your application ready to run
on a target. However, during development of your application you first
may want to debug your application.

To create an object file that can be used for debugging, you must instruct
the compiler to include symbolic debug information in the source file.

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Debug Information.

3. Enable the option Generate symbolic debug information.

4. Click OK to accept the new project settings.

ctc -g

Due to different compiler opimizations, it might be possible that certain
debug information is optimized away. Therefore, it is best to specify No

optimization (-O0) when you want to debug your application.

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Optimization.

3. In the Optimization level box, select No optimization.

5.7 C CODE CHECKING: MISRA C

The C programming language is a standard for high level language
programming in embedded systems, yet it is considered somewhat
unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules,
TASKING MISRA C code checking helps you to produce more robust code.

Using the Compiler 5-17

• • • • • • • •

MISRA C specifies a subset of the C programming language which is
intended to be suitable for embedded automotive systems. It consists of a
set of 127 rules, defined in the document "Guidelines for the Use of the C
Language in Vehicle Based Software" published by "Motor Industry
Research Association" (MISRA).

For a complete overview of all MISRA C rules, see Chapter 10, MISRA C
Rules, in the Reference Manual.

The MISRA C implementation in the compiler supports 117 of the 127
rules. Some MISRA C rules address documentation, run-time behavior, or
other issues that cannot be checked by static source code inspection.
Therefore, the following rules are not implemented: 2, 4, 6, 15, 41, 116,
117. In addition, the rules 23, 25 and 27 are not implemented in the
compiler, because they cannot be checked without an application-wide
overview.

During compilation of the code, violations of the enabled MISRA C rules
are indicated with error messages and the build process is halted.

Note that not all MISRA C violations will be reported when other errors are
detected in the input source. For instance, when there is a syntax error, all
semantic checks will be skipped, including some of the MISRA C checks.
Also note that some checks cannot be performed when the optimizations
are switched off.

To ensure compliance to the MISRA C rules throughout the entire project,
the TASKING TriCore linker can generate a MISRA C Quality Assurance
report. This report lists the various modules in the project with the
respective MISRA C settings at the time of compilation. You can use this in
your company's quality assurance system to provide proof that company
rules for best practice programming have been applied in the particular
project.

Apply MISRA C code checking to your application

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select MISRA C.

3. Select a MISRA C configuration. Select a predefined configuration for
conformance with the required rules in the MISRA C guidelines.

4. (Optional) In the MISRA C Rules entry, specify the individual rules.

TriCore User's Manual5-18
C
O
M
P
IL
E
R

ctc --misrac={all | number [-number],...}

See compiler option --misrac in section 5.1, Compiler Options in Chapter
Tool Options of the TriCore Reference Manual.

See linker option --misra-c-report in section 5.3, Linker Options in
Chapter Tool Options of the TriCore Reference Manual.

Using the Compiler 5-19

• • • • • • • •

5.8 C COMPILER ERROR MESSAGES

The csc compiler reports the following types of error messages:

F Fatal errors

After a fatal error the compiler immediately aborts compilation.

E Errors

Errors are reported, but the compiler continues compilation. No output
files are produced unless you have set the compiler option
--keep-output-files (the resulting output file may be incomplete).

W Warnings

Warning messages do not result into an erroneous assembly output file.
They are meant to draw your attention to assumptions of the compiler for
a situation which may not be correct. You can control warnings in the C
Compiler | Warnings page of the Project | Project Options... menu
(compiler option -w).

I Information

Information messages are always preceded by an error message.
Information messages give extra information about the error.

S System errors

System errors occur when internal consistency checks fail and should
never occur. When you still receive the system error message

S9##: internal consistency check failed - please report

please report the error number and as many details as possible about the
context in which the error occurred. The following helps you to prepare
an e-mail using EDE:

1. From the Help menu, select Technical Support -> Prepare Email...

The Prepare Email form appears.

2. Fill out the the form. State the error number and attach relevant files.

3. Click the Copy to Email client button to open your email application.

A prepared e-mail opens in your e-mail application.

TriCore User's Manual5-20
C
O
M
P
IL
E
R

4. Finish the e-mail and send it.

Display detailed information on diagnostics

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or
warning message.

A description of the selected message appears.

ctc --diag=[format:]{all | number,...}

See compiler option --diag in section 5.1, Compiler Options in Chapter
Tool Options of the TriCore Reference Manual.

6

USING THE

ASSEMBLER
C

H
A

P
T

E
R

TriCore User's Manual6-2
A
S
S
E
M
B
L
E
R

6

C
H

A
P

T
E

R

Using the Assembler 6-3

• • • • • • • •

6.1 INTRODUCTION

The assembler converts hand-written or compiler-generated assembly
language programs into machine language, using the Executable and
Linking Format (ELF) for object files.

The assembler takes the following files for input and output:

assembly file

assembler

astc

.src
assembly file .asm

(hand coded)

relocatable object file

.o

list file .lst

error messages .ers

(compiler generated)

Figure 6-1: Assembler

This chapter first describes the assembly process. The various assembler
optimizations are described in the second section. Third it is described
how to call the assebmler and how to use its options. An extensive list of
all options and their descriptions is included in the Reference Manual.
Finally, a few important basic tasks are described.

6.2 ASSEMBLY PROCESS

The assembler generates relocatable output files with the extension .o.
These files serve as input for the linker.

Phases of the assembly process

1. Parsing of the source file: preprocessing of assembler directives and
checking of the syntax of instructions

2. Optimization (instruction size and generic instructions)

3. Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See section
4.10, Macro Operations, in Chapter TriCore Assembly Language for more
information.

TriCore User's Manual6-4
A
S
S
E
M
B
L
E
R

6.3 ASSEMBLER OPTIMIZATIONS

The astc assembler performs various optimizations to reduce the size of
the assembled applications. There are two options available to influence
the degree of optimization. To enable or disable optimizations:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Assembler entry and select Optimization.

You can enable or disable the optimizations described below. The
command line option for each optimization is given in brackets.

See also option -O (--optimize) in section 5.2, Assembler Options, in
Chapter Tool Options of the TriCore Reference Manual.

Allow generic instructions (option -Og/-OG)

When this option is enabled, you can use generic instructions in your
assembly source. The assembler tries to replace the generic instructions by
faster or smaller instructions. For example, the instruction
jeq d0,#0,label1 is replaced by jz d0,label1.
By default this option is enabled. Because shorter instructions may
influence the number of cycles, you may want to disable this option when
you have written timed code. In that case the assembler encodes all
instructions as they are.

Optimize instruction size (option -Os/-OS)

When this option is enabled, the assembler tries to find the shortest
possible operand encoding for instructions. By default this option is
enabled.

Using the Assembler 6-5

• • • • • • • •

6.4 CALLING THE ASSEMBLER

EDE uses a makefile to build your entire project. You can set options
specific for the assembler. After you have build your project, the output
files of the assembling step are available in your project directory.

To assemble your program, click either one of the following buttons:

Assembles the currently selected assembly file (.asm or
.src). This results in a relocatable object file (.o).

Builds your entire project but looks whether there are already
files available that are needed in the building process. If so,
these files will not be generated again, which saves time.

Builds your entire project unconditionally. All steps necessary
to obtain the final .elf file are performed.

To only check for syntax errors, click the following button:

Checks the currently selected assembly file for syntax errors,
but does not generate code.

Select a target processor (core)

Because the toolchain supports several processor cores, you need to
choose a processor type first.

To access the TriCore processor options:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Processor entry, fill in the Processor Definition page
and optionally the Startup page and click OK to accept the processor
options.

Processor options affect the invocation of all tools in the toolchain. In
EDE you only need to set them once. The corresponding options for the
assembler are listed in table 6-1.

Based on the target processor, the assembler includes a special function
register file regcpu.def. Once the assembler reads an SFR file you can
reference the special function registers (SFR) and bits within an SFR using
symbols defined in the SFR file.

TriCore User's Manual6-6
A
S
S
E
M
B
L
E
R

To access the assembler options

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Assembler entry, fill in the various pages and click OK to
accept the compiler options.

The assembler command line equivalences of your EDE selections are
shown simultaneously in the Options string box.

The following processor options are available:

EDE options Command line

Target

Target processor

User defined TriCore 2

-Ccpu
--is-tricore2

FPU present --fpu-present

MMU present --mmu-present

Bypasses

CPU functional problem bypasses --silicon-bug= bug

Startup

Automatically add cstart.asm to your project EDE only

Bus Configuration

Initialize bus configuration registers in startup code EDE only

Table 6-1: Processor options

The following assembler options are available:

EDE options Command line

Preprocessing

Select TASKING preprocessor or no preprocessor -m{t|n}

Define user macro -Dmacro[=def]

Include this file before source -Hfile

List File

Generate list file -l

Display section information -tl

Using the Assembler 6-7

• • • • • • • •

Command lineEDE options

List file format -Lflags

Debug Information

No debug information

Automatic HLL or assembly level debug information

Custom debug information

-gAHLS
-gs
-gflag

Optimization

Generic instructions

Instruction size

-Og/-OG (= on/off)

-Os/-OS

Warnings

Report all warnings

Suppress all warnings

Suppress specific warnings

omit option -w
-w
-wnum[,num]...

Treat warnings as errors --warnings-as-errors

Miscellaneous

Assemble case sensitive -c

Labels are by default:

local (default)

global

-il
-ig

Additional options options

Table 6-2: Assembler options

The following options are available on the command line, and you can set
them in EDE through the Additional options field in the Miscellaneous

page:

Description Command line

Display invocation syntax -?

Emit local symbols --emit-locals

Redirect diagnostic messages to a file --error-file[=file]

Read options from file -f file

Keep output file after errors -k

Specify name of output file -o file

Display version header only -V

Table 6-3: Assembler command line options

TriCore User's Manual6-8
A
S
S
E
M
B
L
E
R

The invocation syntax on the command line is:

astc [option]... [file]

The input file must be an assembly source file (.asm or .src).

astc test.asm

This assembles the file test.asm for and generates the file test.o
which serves as input for the linker.

For a complete overview of all options with extensive description, see
section 5.2, Assembler Options, of Chapter Tool Options of the TriCore
Reference Manual.

6.5 HOW THE ASSEMBLER SEARCHES INCLUDE FILES

When you use include files, you can specify their location in several ways.
The assembler searches the specified locations in the following order:

1. The absolute pathname, if specified in the .INCLUDE directive. Or, if no
path or a relative path is specified, the same directory as the source file.

2. The directories that are specified in the Project | Directories dialog (-I

option).

3. The paths which were set during installation. You can still change these
paths.

See section 1.3.1, Configuring the Embedded Development Environment
and environment variable ASTCINC in section 1.3.2, Configuring the
Command Line Environment, in Chapter Software Installation.

4. The default include directory relative to the installation directory.

6.6 GENERATING A LIST FILE

The list file is an additional output file that contains information about the
generated code. You can also customize the amount and form of
information.

If the assembler generates errors or warnings, these are reported in the list
file just below the source line that caused the error or warning.

Using the Assembler 6-9

• • • • • • • •

To generate a list file

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select List File.

3. Enable the option Generate list file.

4. (Optional) Enable the options you want to include in the list file.

EDE generates a list file for each source file in your project. A list file gets
the same basename as the source file but with extension .lst.

Example on the command line

The following command generates the list file test.lst.

astc -l test.src

See section 6.1, Assembler List File Format, in Chapter List File Formats of
the Reference Manual for an explanation of the format of the list file.

6.7 ASSEMBLER ERROR MESSAGES

The assembler produces error messages of the following types:

F Fatal errors

After a fatal error the assembler immediately aborts the assembling
process.

E Errors

Errors are reported, but the assembler continues assembling. No output
files are produced unless you have set the assembler option
--keep-output-files (the resulting output file may be incomplete).

W Warnings

Warning messages do not result into an erroneous assembly output file.
They are meant to draw your attention to assumptions of the assembler for
a situation which may not be correct. You can control warnings in the
Assembler | Warnings page of the Project | Project Options... menu
(assembler option -w).

TriCore User's Manual6-10
A
S
S
E
M
B
L
E
R

Display detailed information on diagnostics

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or
warning message.

A description of the selected message appears.

astc --diag=[format:]{all | number,...}

See assembler option --diag in section 5.2, Assembler Options in Chapter
Tool Options of the TriCore Reference Manual.

7

USING THE LINKER
C

H
A

P
T

E
R

TriCore User's Manual7-2
L
IN
K
E
R

7

C
H

A
P

T
E

R

Using the Linker 7-3

• • • • • • • •

7.1 INTRODUCTION

The linker ltc is a combined linker/locator. The linker phase combines
relocatable object files (.o files, generated by the assembler), and libraries
into a single relocatable linker object file (.out). The locator phase assigns
absolute addresses to the linker object file and creates an absolute object
file which you can load into a target processor. From this point the term
linker is used for the combined linker/locator.

The linker takes the following files for input and output:

relocatable object file

linker

relocatable linker object file

ltc

.o

.out

linker map file .map

error messages .elk

relocatable object library.a

Motorola S-record

absolute object file

.sre

Intel Hex

absolute object file

.hex

ELF/DWARF 2

absolute object file

.elf

linker script file .lsl

relocatable linker object file .out

IEEE-695

absolute object file

.abs

memory definition

.mdffile

Figure 7-1: ltc Linker

This chapter first describes the linking process. Then it describes how to
call the linker and how to use its options. An extensive list of all options
and their descriptions is included in section 5.3, Linker Options, of the
Reference Manual.

To gain even more control over the link process, you can write a script for
the linker. This chapter shortly describes the purpose and basic principles
of the Linker Script Language (LSL) on the basis of an example. A
complete description of the LSL is included in Chapter 8, Linker Script
Language, of the Reference Manual.

The end of the chapter describes how to generate a map file and contains
an overview of the different types of messages of the linker.

TriCore User's Manual7-4
L
IN
K
E
R

7.2 LINKING PROCESS

The linker combines and transforms relocatable object files (.o) into a
single absolute object file. This process consists of two phases: the linking
phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files
and libraries into a single relocatable object file. In the second phase, the
linker assigns absolute addresses to the object file so it can actually be
loaded into a target.

Glossary of terms

Term Definition

Absolute object file Object code in which addresses have fixed absolute

values, ready to load into a target.

Address A specification of a location in an address space.

Address space The set of possible addresses. A core can support

multiple spaces, for example in a Harvard architecture

the addresses that identify the location of an instruction

refer to code space, whereas addresses that identify the

location of a data object refer to a data space.

Architecture A description of the characteristics of a core that are of

interest for the linker. This encompasses the logical

address space(s) and the internal bus structure. Given

this information the linker can convert logical addresses

into physical addresses.

Copy table A section created by the linker. This section contains

data that specifies how the startup code initializes the

data and BSS sections. For each section the copy table

contains the following fields:

- action: defines whether a section is copied or zeroed

- destination: defines the section's address in RAM.

- source: defines the sections address in ROM,

 zero for BSS sections

- length: defines the size of the section in MAUs

 of the destination space

Core An instance of a core architecture.

Derivative The design of a processor. A description of one or more

cores including internal memory and any number of

buses.

Library Collection of relocatable object files. Usually each

object file in a library contains one symbol definition

(for example, a function).

Using the Linker 7-5

• • • • • • • •

DefinitionTerm

Logical address An address as encoded in an instruction word, an

address generated by a core (CPU).

LSL file The set of linker script files that are passed to the linker.

MAU Minimum Addressable Unit. For a given processor the

number of bits loaded between an address and the next

address. This is not necessarily a byte or a word.

Object code The binary machine language representation of the

C source.

Physical address An addresses generated by the memory system.

Processor An instance of a derivative. Usually implemented as a

(custom) chip, but can also be implemented in an

FPGA, in which case the derivative can be designed by

the developer.

Relocatable object

file

Object code in which addresses are represented by

symbols and thus relocatable.

Relocation The process of assigning absolute addresses.

Relocation

information

Information about how the linker must modify the

machine code instructions when it relocates addresses.

Section A group of instructions and/or data objects that occupy

a contiguous range of addresses.

Section attributes Attributes that define how the section should be linked

or located.

Target The hardware board on which an application is

executing. A board contains at least one processor.

However, a complex target may contain multiple

processors and external memory that may be shared

between processors.

Unresolved

reference

A reference to a symbol for which the linker did not find

a definition yet.

Table 7-1: Glossary of terms

TriCore User's Manual7-6
L
IN
K
E
R

7.2.1 PHASE 1: LINKING

The linker takes one or more relocatable object files and/or libraries as
input. A relocatable object file, as generated by the assembler, contains the
following information:

• Header information: Overall information about the file, such as the
code size, name of the source file it was assembled from, and creation
date.

• Object code: Binary code and data, divided into various named
sections. Sections are contiguous chunks of code or data that have to
be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

• Symbols: Some symbols are exported - defined within the file for use
in other files. Other symbols are imported - used in the file but not
defined (external symbols). Generally these symbols are names of
routines or names of data objects.

• Relocation information: A list of places with symbolic references that
the linker has to replace with actual addresses. When in the code an
external symbol (a symbol defined in another file or in a library) is
referenced, the assembler does not know the symbol's size and
address. Instead, the assembler generates a call to a preliminary
relocatable address (usually 0000), while stating the symbol name.

• Debug information: Other information about the object code that is
used by a debugger. The assembler optionally generates this
information and can consist of line numbers, C source code, local
symbols and descriptions of data structures.

The linker resolves the external references between the supplied
relocatable object files and/or libraries and combines the supplied
relocatable object files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files
and libraries. If the linker encounters an unresolved symbol, it remembers
its name and continues scanning. The symbol may be defined elsewhere
in the same file, or in one of the other files or libraries that you specified
to the linker. If the symbol is defined in a library, the linker extracts the
object file with the symbol definition from the library. This way the linker
collects all definitions and references of all of the symbols.

Using the Linker 7-7

• • • • • • • •

With this information, the linker combines the object code of all
relocatable object files. The linker combines sections with the same section
name and attributes into single sections, starting each section at address
zero. The linker also substitutes (external) symbol references by
(relocatable) numerical addresses where possible. At the end of the linking
phase, the linker either writes the results to a file (a single relocatable
object file) or keeps the results in memory for further processing during
the locating phase.

The resulting file of the linking phase is a single relocatable object file
(.out). If this file contains unresolved references, you can link this file
with other relocatable object files (.o) or libraries (.a) to resolve the
remaining unresolved references.

With the linker command line option --link-only, you can tell the linker
to only perform this linking phase and skip the locating phase. The linker
complains if any unresolved references are left.

7.2.2 PHASE 2: LOCATING

In the locating phase, the linker assigns absolute addresses to the object
code, placing each section in a specific part of the target memory. The
linker also replaces references to symbols by the actual address of those
symbols. The resulting file is an absolute object file which you can actually
load into a target memory. Optionally, when the resulting file should be
loaded into a ROM device the linker creates a so-called copy table section
which is used by the startup code to initialize the data and BSS sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to
modify this code according to certain rules or relocation expressions to
reflect the new addresses. These relocation expressions are stored in the
relocatable object file. Consider the following snippet of x86 code that
moves the contents of variable a to variable b via the eax register:

A1 3412 0000 mov a,%eax (a defined at 0x1234, byte reversed)
A3 0000 0000 mov %eax,b (b is imported so the instruction refers to
 0x0000 since its location is unknown)

Now assume that the linker links this code so that the section in which a
is located is relocated by 0x10000 bytes, and b turns out to be at 0x9A12.
The linker modifies the code to be:

TriCore User's Manual7-8
L
IN
K
E
R

A1 3412 0100 mov a,%eax (0x10000 added to the address)
A3 129A 0000 mov %eax,b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers
in the data part of a relocatable object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default
ELF/DWARF2 format (.elf) contains an image of the executable code and
data, and can contain additional debug information. The Intel-Hex format
(.hex) and Motorola S-record format (.sre) only contain an image of the
executable code and data. You can specify a format with the options -F

(--format) and -c (--chip-output).

Controlling the linker

Via a so-called linker script file you can gain complete control over the
linker. The script language used to describe these features is called the
Linker Script Language (LSL). You can define:

• The types of memory that are installed in the embedded target system:

To assign locations to code and data sections, the linker must know
what memory devices are actually installed in the embedded target
system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible
(RAM) or read-only accessible (ROM).

• How and where code and data should be placed in the physical
memory:

Embedded systems can have complex memory systems. If for example
on-chip and off-chip memory devices are available, the code and data
located in internal memory is typically accessed faster and with
dissipating less power. To improve the performance of an application,
specific code and data sections should be located in on-chip memory.
By writing your own LSL file, you gain full control over the locating
process.

• The underlying hardware architecture of the target processor.

Using the Linker 7-9

• • • • • • • •

To perform its task the linker must have a model of the underlying
hardware architecture of the processor you are using. For example the
linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device
(a physical address). In most linkers this model is hard coded in the
executable and can not be modified. For the ltc linker this hardware
model is described in the linker script file. This solution is chosen to
support configurable cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the
standard linker script files with architecture descriptions delivered with the
product.

See also section 7.7, Controlling the Linker with a Script.

7.2.3 LINKER OPTIMIZATIONS

During the linking and locating phase, the linker looks for opportunities to
optimize the object code. Both code size and execution speed can be
optimized. To enable or disable optimizations:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Optimization.

You can enable or disable the optimizations described below. The
command line option for each optimization is given in brackets.

See also option -O (--optimize) in section 5.3, Linker Options, in Chapter
Tool Options of the TriCore Reference Manual.

First fit decreasing (option -Ol/-OL)

When the physical memory is fragmented or when address spaces are
nested it may be possible that a given application cannot be located
although the size of available physical memory is larger than the sum of
the section sizes. Enable the first-fit-decreasing optimization when this
occurs and re-link your application.

TriCore User's Manual7-10
L
IN
K
E
R

The linker's default behavior is to place sections in the order that is
specified in the LSL file. This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located
that is larger than the remainder of this range, then the section and all
subsequent sections are placed in a next memory range. As a result of this
gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first
place the largest sections in the smallest memory ranges that can contain
the section. Small sections are located last and can likely fit in the
remaining gaps.

Copy table compression (option -Ot/-OT)

The startup code initializes the application's data and BSS areas. The
information about which memory addresses should be zeroed (bss) and
which memory ranges should be copied from ROM to RAM is stored in the
copy table.

When this optimization is enabled the linker will try to locate sections in
such a way that the copy table is as small as possible thereby reducing the
application's ROM image.

This optimization reduces both memory and startup speed.

Delete unreferenced code sections (option -Oc/-OC)

Delete unreferenced data sections (option -Od/-OD)

These two optimizations remove unused sections from the resulting object
file. Because debug information normally refers to all sections, these
optimizations have no effect until you compile your project without debug
information or use linker option --strip-debug to remove the debug
information.

Delete unreferenced symbols (option -Os/-OS)

This optimization tells the linker to remove all unreferenced symbols, such
as local assembler symbols.

Delete duplicate code sections (option -Ox/-OX)

Delete duplicate data sections (option -Oy/-OY)

These two optimizations remove code and constant data that is defined
more than once, from the resulting object file.

Using the Linker 7-11

• • • • • • • •

7.3 CALLING THE LINKER

EDE uses a makefile to build your entire project. This means that you
cannot run only the linker. However, you can set options specific for the
linker. After you have built your project, the output files of the linking step
are available in your project directory, unless you specified an alternative
output directory in the Build Options dialog.

To link your program, click either one of the following buttons:

Builds your entire project but only updates files that are
out-of-date or have been changed since the previous build,
which saves time.

Builds your entire project unconditionally. All steps necessary
to obtain the final .elf file are performed.

To get access to the linker options:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry. Select the subentries and set the options in
the various pages.

The command line variant is shown simultaneously.

TriCore User's Manual7-12
L
IN
K
E
R

The following linker options are available:

EDE options Command line

Output Format

Output formats -o[filename][:format
[:addr_size][,space]]

-c[basename]:format
[:addr_size]

Script File

Select linker script file -dfile

Map File

Generate a map file (.map) -M

Suboptions for the Generate a map file option -mflags

Libraries

Link default C libraries

Use non-trapping floating-point library

Use trapping floating-point library

-lx
-lfp
-lfpt

Rescan libraries to solve unresolved exernals --no-rescan

Libraries library files

Optimization

Use a 'first fit decreasing' algorithm

Use copy table compression

Delete unreferenced symbols

Delete unreferenced code sections

Delete unreferenced data sections

Delete duplicate code

Delete duplicate constant data

-Ol/-OL (= on/off)

-Ot/-OT
-Os/-OS
-Oc/-OC
-Od/-OD
-Ox/-OX
-Oy/-OY

Warnings

Report all warnings

Suppress all warnings

Suppress specific warnings

omit option -w
-w
-wnum[,num]...

Treat warnings as errors --warnings-as-errors

Miscellaneous

(Do not) include symbolic debug information -S (strip debug)

Print the name of each file as it is processed -v

Link case sensitive (required for C language) --case-sensitive

Using the Linker 7-13

• • • • • • • •

Command lineEDE options

Dump processor and memory info from LSL file --lsl-dump[=file]

Additional options options

Table 7-2: Linker options

The following options are only available on the command line:

Description Command line

Display invocation syntax -?

Define preprocessor macro -Dmacro[=def]

Specify a symbol as unresolved external -esymbol

Redirect errors to a file with extension .elk --error-file[=file]

Read options from file -f file

Scan libraries in given order --first-library-first

Search only in -L directories, not in default path --ignore-default-
library-path

Keep output files after errors -k

Link only, do not locate --link-only

Check LSL file(s) and exit --lsl-check

Do not generate ROM copy -N

Locate all ROM sections in RAM --non-romable

Link incrementally -r

Display version header only -V

Table 7-3: Linker command line options

The invocation syntax on the command line is:

ltc [option]... [file]...]...

When you are linking multiple files (either relocatable object files (.o) or
libraries (.a), it is important to specify the files in the right order. This is
explained in Section 7.4.1, Specifying Libraries to the Linker

For a complete overview of all options with extensive description, see
section 5.3, Linker Options, of the Reference Manual.

TriCore User's Manual7-14
L
IN
K
E
R

7.4 LINKING WITH LIBRARIES

There are two kinds of libraries: system libraries and user libraries.

System library

The system libraries are installed in subdirectories of the lib directory of
the toolchain. An overview of the system libraries is given in the following
table.

Library to link Description

libc.a C library

(Some functions require the floating-point library. Also

includes the startup code.)

libcs.a C library single precision (compiler option -F)

(Some functions require the floating-point library. Also

includes the startup code.)

libcs_fpu.a C library single precision with FPU instructions (compiler

option -F and --fpu-present)

libfp.a Floating-point library (non-trapping)

libfpt.a Floating-point library (trapping)

(Control program option --fp-trap)

libfp_fpu.a Floating-point library (non-trapping, with FPU instructions)

(Compiler option --fpu-present)

libfpt_fpu.a Floating-point library (trapping, with FPU instructions)

(Control program option --fp-trap, compiler option

--fpu-present)

librt.a Run-time library

Table 7-4: Overview of libraries

For more information on these libraries see section 3.12, Libraries, in
Chapter TriCore C Language.

When you want to link system libraries, you must specify this with the
option -l. With the option -lc you specify the system library libc.a.

User library

You can also create your own libraries. Section 8.4, Archiver, in Chapter
Using the Utilities, describes how you can use the archiver to create your
own library with object modules. To link user libraries, specify their
filenames on the command line.

Using the Linker 7-15

• • • • • • • •

7.4.1 SPECIFYING LIBRARIES TO THE LINKER

In EDE you can specify both system and user libraries.

Link a system library with EDE

To specify to link the default C libraries:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Libraries.

3. Select Link default C libraries.

4. Select a floating-point library: non-trapping or trapping.

5. (Optional) Add the name part of the system libraries to the Libraries

field. For example, enter c to specify the system library libc.a.

6. Click OK to accept the linker options.

When you want to link system libraries from the command line, you must
specify this with the linker option -l. With the option -lc you specify the
system library libc.a. For example:

ltc -lc start.o

Link a user library in EDE

To specify your own libraries, you have to add the library files to your
project:

1. From the Project menu, select Properties...

The Project Properties dialog box appears.

2. In the Members tab, click on the Add existing files to project

button.

3. Select the libraries you want to add and click Open.

4. Click OK to accept the new project settings.

The invocation syntax on the command line is for example:

ltc start.o mylib.a

TriCore User's Manual7-16
L
IN
K
E
R

If the library resides in a subdirectory, specify that directory with the
library name:

ltc start.o mylibs\mylib.a

Library order

The order in which libraries appear on the command line is important. By
default the linker processes object files and libraries in the order in which
they appear on the command line. Therefore, when you use a weak
symbol construction, like printf, in an object file or your own library,
you must position this object/library before the C library.

With the option --first-library-first you can tell the linker to scan the
libraries from left to right, and extract symbols from the first library where
the linker finds it. This can be useful when you want to use newer
versions of a library routine.

Example:

ltc --first-library-first a.a test.o b.a

If the file test.o calls a function which is both present in a.a and b.a,
normally the function in b.a would be extracted. With this option the
linker first tries to extract the symbol from the first library a.a.

7.4.2 HOW THE LINKER SEARCHES LIBRARIES

System libraries

You can specify the location of system libraries (specified with option -l)
in several ways. The linker searches the specified locations in the
following order:

1. The linker first looks in the directories that are specified in the Project |

Directories dialog (-L option). If you specify the -L option without a
pathname, the linker stops searching after this step.

2. When the linker did not find the library (because it is not in the specified
library directory or because no directory is specified), it looks which paths
were set during installation. You can still change these paths if you like.

See environment variables LIBTC1V1_2, LIBTC1V1_3 and LIBTC2 in
section 1.3.2, Configuring the Command Line Environment, in Chapter
Software Installation.

Using the Linker 7-17

• • • • • • • •

3. When the linker did not find the library, it tries the default lib directory
which was created during installation (or a processor specific
sub-directory).

User library

If you use your own library, the linker searches the library in the current
directory only.

7.4.3 HOW THE LINKER EXTRACTS OBJECTS FROM

LIBRARIES

A library built with artc always contains an index part at the beginning of
the library. The linker scans this index while searching for unresolved
externals. However, to keep the index as small as possible, only the
defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the
corresponding object file is extracted from the library and is processed.
After processing the object file, the remaining library index is searched. If
after a complete search of the library unresolved externals are introduced,
the library index will be scanned again. After all files and libraries are
processed, and there are still unresolved externals and you did not specify
the linker option --no-rescan, all libraries are rescanned again. This way
you do not have to worry about the library order. However, this
rescanning does not work for 'weak symbols'. If you use a weak symbol
construction, like printf, in an object file or your own library, you must
position this object/library before the C library

The -v option shows how libraries have been searched and which objects
have been extracted.

Resolving symbols

If you are linking from libraries, only the objects that contain symbol
definition(s) to which you refer, are extracted from the library. This implies
that if you invoke the linker like:

ltc mylib.a

nothing is linked and no output file will be produced, because there are
no unresolved symbols when the linker searches through mylib.a.

TriCore User's Manual7-18
L
IN
K
E
R

It is possible to force a symbol as external (unresolved symbol) with the
option -e:

ltc -e main mylib.a

In this case the linker searches for the symbol main in the library and (if
found) extracts the object that contains main. If this module contains new
unresolved symbols, the linker looks again in mylib.a. This process
repeats until no new unresolved symbols are found.

7.5 INCREMENTAL LINKING

With the TriCore linker ltc it is possible to link incrementally. Incremental
linking means that you link some, but not all .o modules to a relocatable
object file .out. In this case the linker does not perform the locating
phase. With the second invocation, you specify both new .o files and the
.out file you had created with the first invocation.

Incremental linking is only possible on the command line.

ltc -r test1.o -otest.out

ltc test2.o test.out

This links the file test1.o and generates the file test.out. This file is
used again and linked together with test2.o to create the file
task1.elf (the default name if no output filename is given in the default
ELF/DWARF 2 format).

With incremental linking it is normal to have unresolved references in the
output file until all .o files are linked and the final .out or .elf file has
been reached. The option -r for incremental linking also suppresses
warnings and errors because of unresolved symbols.

7.6 LINKING THE C STARTUP CODE

You need the run-time startup code to build an executable application.
The default startup code consists of the following components:

• Initialization code. This code is executed when the program is
initiated and before the function main() is called.

• Exit code. This controls the closedown of the application after the
program's main function terminates.

Using the Linker 7-19

• • • • • • • •

• The trap vector table. This contains default trap vectors. See also
section 3.9.2, Interrupt and Trap Functions in Chapter TriCore C
Language.

The startup code is part of the C library libc.a, and the source is present
in the file cstart.asm in the directory lib\src. If the default run-time
startup code does not match your configuration, you need to modify the
startup code accordingly.

To link the default startup code

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Libraries.

3. Enable the option Link default C libraries.

4. Click OK to accept the linker options.

To use your own startup code

1. Make a copy (backup) of the file lib\src\cstart.asm.

2. From the Project menu, select Project Options...

The Project Options dialog box appears.

3. Expand the Processor entry and select Startup.

4. Enable the option Automatically copy and link cstart.asm to your

project.

5. Modify the file cstart.asm to match your configuration.

EDE adds the startup code to your project, before the libraries. So, the
linker finds your startup code first.

See section 4.2, Startup Code, in Chapter Run-time Environment of the
Reference Manual for an extensive description of the C startup code.

TriCore User's Manual7-20
L
IN
K
E
R

7.7 CONTROLLING THE LINKER WITH A SCRIPT

With the options on the command line you can control the linker's
behavior to a certain degree. From EDE it is also possible to determine
where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. EDE passes these locating
directions to the linker via a script file. If you want even more control over
the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly
LSL. You can specify the script file to the linker, which reads it and locates
your application exactly as defined in the script. If you do not specify your
own script file, the linker always reads a standard script file which is
supplied with the toolchain.

7.7.1 PURPOSE OF THE LINKER SCRIPT LANGUAGE

The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture
and its internal memory (this is called the derivative). These definitions
are written by Altium and supplied with the toolchain.

2. It provides the linker with a specification of the external memory
attached to the target processor. The template extmem.lsl is supplied
with the toolchain.

3. It provides the linker with information on how your application should
be located in memory. This gives you, for example, the possibility to
create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the
TriCore architectures and derivatives that Altium has supplied in the
include.lsl directory. Do not change these files.

If you attached external memory to a derivative you must specify this in a
separate LSL file and pass both the LSL file that describes the derivative's
architecture and your LSL file that contains the memory specification to the
linker. Next you may also want to specify how sections should be located
and overlaid. You can do this in the same file or in another LSL file.

Using the Linker 7-21

• • • • • • • •

LSL has its own syntax. In addition, you can use the standard C
preprocessor keywords, such as #include and #define, because the
linker sends the script file first to the C preprocessor before it starts
interpreting the script.

The complete syntax is described in Chapter 8, Linker Script Language, in
the Reference Manual.

7.7.2 EDE AND LSL

In EDE you can specify the size of the stack and heap; the physical
memory attached to the processor; identify that particular address ranges
are reserved; and specify which sections are located where in memory.
EDE translates your input into an LSL file that is stored in the project
directory under the name _project.lsl and passes this file to the linker.

If you want to learn more about LSL you can inspect the generated file
_project.lsl.

To change the LSL settings

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Script File.

3. In each of the pages make your changes.

Each time you close the Project Options dialog the file _project.lsl is
updated and you can immediately see how your settings are encoded in
LSL.

Note that EDE supports ChromaCoding (applying color coding to text) and
template expansion when you edit LSL files.

Specify your own LSL file

If you want to write your own linker script file, you can use the EDE
generated file _project.lsl as an example. Specify this file to EDE as
follows:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

TriCore User's Manual7-22
L
IN
K
E
R

2. Expand the Linker entry and select Script File.

3. Select Use project specific memory and section LSL file and add
your own file in the edit field.

7.7.3 STRUCTURE OF A LINKER SCRIPT FILE

A script file consists of several definitions. The definitions can appear in
any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should
convert logical addresses into physical addresses for a given type of core.
If the core supports multiple address spaces, then for each space the linker
must know how to perform this conversion. In this context a physical
address is an offset on a given internal or external bus. Additionally the
architecture definition contains information about items such as the
(hardware) stack and the interrupt vector table.

This specification is normally written by Altium. For each TriCore core
architecture, a separate LSL file is provided. These are tc1v1_2.lsl,
tc1v1_3.lsl, and tc2.lsl. These files include and extend the generic
architecture file tc_arch.lsl. The generic file tc_arch.lsl includes an
interrupt vector table (inttab.lsl) and an trap vector table
(traptab.lsl).

The architecture definition of the LSL file should not be changed by you
unless you also modify the core's hardware architecture. If the LSL file
describes a multi-core system an architecture definition must be available
for each different type of core.

The derivative definition (required)

The derivative definition describes the configuration of the internal
(on-chip) bus and memory system. Basically it tells the linker how to
convert offsets on the buses specified in the architecture definition into
offsets in internal memory. A derivative definition must be present in an
LSL file. Microcontrollers and DSPs often have internal memory and I/O
sub-systems apart from one or more cores. The design of such a chip is
called a derivative.

Using the Linker 7-23

• • • • • • • •

Altium provides LSL descriptions of supported derivatives, along with "SFR
files", which provide easy access to registers in I/O sub-systems from C
and assembly programs. When you build an ASIC or use a derivative that
is not (yet) supported by the TASKING tools, you may have to write a
derivative definition.

When you want to use multiple cores of the same type, you must
instantiate the cores in a derivative definition, since the linker
automatically instantiates only a single core for an unused architecture.

The processor definition

The processor definition describes an instance of a derivative. A processor
definition is only needed in a multi-processor embedded system. It allows
you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker
automatically creates a processor named 'A' of derivative 'A'. This is why
for single-processor applications it is enough to specify the derivative in
the LSL file, for example with -dtc1920b.lsl.

The memory and bus definitions (optional)

Memory and bus definition are used within the context of a derivative
definition to specify internal memory and on-chip buses. In the context of
a board specification the memory and bus definitions are used to define
external (off-chip) memory and buses. Given the above definitions the
linker can convert a logical address into an offset into an on-chip or
off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a
board specification. LSL provides language constructs to easily describe
single-core and heterogeneous or homogeneous multi-core systems. The
board specification describes all characteristics of your target board's
system buses, memory devices, I/O sub-systems, and cores that are of
interest to the linker. Based on the information provided in the board
specification the linker can for each core:

• convert a logical address to a physical addresses (offsets within a
memory device)

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within
the whole system while locating

TriCore User's Manual7-24
L
IN
K
E
R

The section layout definition (optional)

The optional section layout definition enables you to exactly control
where input sections are located. Features are provided such as: the ability
to place sections at a given load-address or run-time address, to place
sections in a given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X'" based on the TC1V1.3
architecture, its external memory and how sections are located in memory,
may have the following skeleton:

architecture TC1V1.3

{

 // Specification of the TC1v1.3 core architecture.

 // Written by Altium.

}

derivative X // derivative name is arbitrary

{

 // Specification of the derivative.

 // Written by Altium.

 core tc // always specify the core

 {

 architecture = TC1V1.3;

 }

 bus fpi_bus // internal bus

 {

 // maps to fpi_bus in "tc" core

 }

 // internal memory

}

processor spe // processor name is arbitrary

{

 derivative = X;

 // You can omit this part, except if you use a

 // multi-core system.

}

Using the Linker 7-25

• • • • • • • •

memory ext_name

{

 // external memory definition

}

section_layout spe:tc:linear // section layout

{

 // section placement statements

 // sections are located in address space 'linear'

 // of core 'tc' of processor 'spe'

}

7.7.4 THE ARCHITECTURE DEFINITION:

SELF-DESIGNED CORES

Although you will probably not need to program the architecture
definition (unless you are building your own processor core) it helps to
understand the Linker Script Language and how the definitions are
interrelated.

Within an architecture definition the characteristics of a target processor
core that are important for the linking process are defined. These include:

• space definitions: the logical address spaces and their properties

• bus definitions: the I/O buses of the core architecture

• mappings: the address translations between logical address spaces, the
connections between logical address spaces and buses and the address
translations between buses

Address spaces

A logical address space is a memory range for which the core has a
separate way to encode an address into instructions. For example, the
Tricore's 32-bit linear address space encloses 16 24-bit sub-spaces and 16
14-bit sub-spaces. See also the Tricore Architecture Manual sections
"Memory Model" and "Addressing Model".

Most microcontrollers and DSPs support multiple address spaces. An
address space is a range of addresses starting from zero. Normally, the size
of an address space is to 2N, with N the number of bits used to encode the
addresses.

TriCore User's Manual7-26
L
IN
K
E
R

The relation of an address space with another address space can be one of
the following:

• one space is a subset of the other. These are often used for "small"
absolute, and relative addressing.

• the addresses in the two address spaces represent different locations so
they do not overlap. This means the core must have separate sets of
address lines for the address spaces. For example, in Harvard
architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units
(MAU), alignment restrictions, and page sizes. All address spaces have a
number that identifies the logical space (id). The following table lists the
different address spaces for the TriCore as defined in the LSL file
tc_arch.lsl.

Space Id MAU ELF sections

linear 1 8 .text, .bss, .data, .rodata, table, istack, ustack

abs24 2 8

abs18 3 8 .zdata, .zbss

csa 4 8 csa.* (Context Save Area)

pcp_code 8 16 .pcptext

pcp_data 9 32 .pcpdata

Table 7-5: TriCore address spaces

Using the Linker 7-27

• • • • • • • •

The TriCore architecture in LSL notation

The best way to program the architecture definition, is to start with a
drawing. The following figure shows a part of the TriCore architecture:

0

4G

0

256k

space linear

space pcp_code

space abs18

bus fpi_bus

bus pcp_code_bus

id = 8

mau = 16

id = 3

mau = 8

id = 1

mau = 8

mau = 8

width=32

mau = 8

0x04000000

Figure 7-2: Scheme of (part of) the TriCore architecture

The figure shows three address spaces called linear, abs18 and
pcp_code. The address space abs18 is a subset of the address space
linear. All address spaces have attributes like a number that identifies the
logical space (id), a MAU and an alignment. In LSL notation the definition
of these address spaces looks as follows:

space linear

{

 id = 1;

 mau = 8;

 map (src_offset=0x00000000, dest_offset=0x00000000,

 size=4G, dest=bus:fpi_bus);

}

TriCore User's Manual7-28
L
IN
K
E
R

space abs18

{

 id = 3;

 mau = 8;

 map (src_offset=0x00000000, dest_offset=0x00000000,

 size=16k, dest=space:linear);

 map (src_offset=0x10000000, dest_offset=0x10000000,

 size=16k, dest=space:linear);

 map (src_offset=0x20000000, dest_offset=0x20000000,

 size=16k, dest=space:linear);

 //...

}

space pcp_code

{

 id = 8;

 mau = 16;

 map (src_offset=0x00000000, dest_offset=0,

 size=0x04000000, dest=bus:pcp_code_bus);

}

The keyword map corresponds with the arrows in the drawing. You can
map:

• address space => address space

• address space => bus

• memory => bus (not shown in the drawing)

• bus => bus (not shown in the drawing)

Next the two internal buses, named fpi_bus and pcp_code_bus must
be defined in LSL:

bus fpi_bus

{

 mau = 8;

 width = 32; // there are 32 data lines on the bus

}

bus pcp_code_bus

{

 mau = 8;

 width = 8;

}

Using the Linker 7-29

• • • • • • • •

This completes the LSL code in the architecture definition. Note that all
code above goes into the architecture definition, thus between:

architecture TC1V1.3

{

 All code above goes here.

}

7.7.5 THE DERIVATIVE DEFINITION: SELF-DESIGNED

PROCESSORS

Although you will probably not need to program the derivative definition
(unless you are using multiple cores) it helps to understand the Linker
Script Language and how the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or
FPGA). It comprises one or more cores and on-chip memory. The
derivative definition includes:

• core definition: the core architecture

• bus definition: the I/O buses of the core architecture

• memory definitions: internal (or on-chip) memory

Core

Each derivative must have a specification of its core architecture. This core
architecture must be defined somewhere in the LSL file(s).

core tc

{

 architecture = TC1V1.3;

}

Bus

Each derivative must contain a bus definition for connecting external
memory. In this example, the bus fpi_bus maps to the bus fpi_bus
defined in the architecture definition of core tc:

bus fpi_bus

{

 mau = 8;

 width = 32;

 map (dest=bus:tc:fpi_bus, dest_offset=0, size=4G);

}

TriCore User's Manual7-30
L
IN
K
E
R

Memory

0

4G

0

256k

space linear

space pcp_code

space abs18

bus fpi_bus

bus pcp_code_bus

id = 8

mau = 16

id = 3

mau = 8

id = 1

mau = 8

mau = 8

width=32

mau = 8

0x04000000

mau = 8

0

pcode

0x04000

0xF0020000

Figure 7-3: Internal memory definition for a derivative

According to the drawing, the TriCore contains internal memory called
pcode with a size 0x04000 (16k). This is physical memory which is
mapped to the internal bus pcp_code_bus and to the fpi_bus, so both
the tc unit and the pcp can access the memory:

memory pcode

{

 mau = 8;

 size = 16k;

 type = ram;

 map (dest=bus:tc:fpi_bus, dest_offset=0xF0020000,

 size=16k);

 map (dest=bus:tc:pcp_code_bus, size=16k);

}

This completes the LSL code in the derivative definition. Note that all code
above goes into the derivative definition, thus between:

derivative X // name of derivative

{

 All code above goes here.

}

Using the Linker 7-31

• • • • • • • •

If you want to create a custom derivative and you want to use EDE to
select sections, the core of the derivative must be called "tc", since EDE
uses this name in the generated LSL file. If you want to specify external
memory in EDE, the custom derivative must contain a bus named
"fpi_bus" for the same reason. In EDE you have to define a target
processor as specified in section 5.4, Calling the Compiler, in Chapter
Using the Compiler.

EDE places a copy of the selected derivative LSL file in your project
directory. Any changes you make to the derivative in EDE, for example
internal memory, are made to this file.

7.7.6 THE MEMORY DEFINITION: DEFINING EXTERNAL

MEMORY

Once the core architecture is defined in LSL, you may want to extend the
processor with external (or off-chip) memory. You need to specify the
location and size of the physical external memory devices in the target
system.

The principle is the same as defining the core's architecture but now you
need to fill the memory definition:

memory name

{

 External memory definitions.

}

TriCore User's Manual7-32
L
IN
K
E
R

0

4G

0

256k

space linear

space pcp_code

space abs18

bus fpi_bus

bus pcp_code_bus

id = 8

mau = 16

id = 3

mau = 8

id = 1

mau = 8

mau = 8

width=32

mau = 8 mau = 8

0

pcode

0x04000000

16k

0

memory code_rom

mau = 8

2k

0
mau = 8

memory my_nvsram

0x04000

Figure 7-4: Adding external memory to the TriCore architecture

Suppose your embedded system has 16k of external ROM, named
code_rom and 2k of external NVRAM, named my_nvsram. (See figure
above.) Both memories are connected to the bus fpi_bus. In LSL this
looks like follows:

memory code_rom

{

 type = rom;

 mau = 8;

 size = 16k;

 map (dest=bus:X:fpi_bus, dest_offset=0xa0000000,

 size=16k);

}

The memory my_nvsram is connected to the bus with an offset of
0xc0000000:

memory my_nvsram

{

 mau = 8;

 size = 2k;

 type = ram;

 map (dest=bus:X:fpi_bus, dest_offset=0xc0000000,

 size=2k);

}

Using the Linker 7-33

• • • • • • • •

If you use a different memory layout than described in the LSL file
supplied for the target core, you can specify this in EDE or you can specify
this in a separate LSL file and pass both the LSL file that describes the core
architecture and your LSL file that contains the memory specification to the
linker.

Adding memory using EDE

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry.

3. Expand the Script File entry and open the External Memory page.

4. Add your memory. Specify a name (for example my_nvsram), type,
start address and size, and specify if sections can be located in this
memory by default, or not.

7.7.7 THE SECTION LAYOUT DEFINITION: LOCATING

SECTIONS

Once you have defined the internal core architecture and optional external
memory, you can actually define where your application must be located
in the physical memory.

During compilation, the compiler divides the application into sections.
Sections have a name, an indication in which address space it should be
located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections
are placed in address spaces, relative to each other, and what their
absolute run-time and load-time addresses will be. To illustrate section
placement the following example of a C program is used:

Example: section propagation through the toolchain

To illustrate section placement, the following example of a C program
(bat.c) is used. The program saves the number of times it has been
executed in battery back-upped memory, and prints the number.

TriCore User's Manual7-34
L
IN
K
E
R

#define BATTERY_BACKUP_TAG 0xa5f0

#include <stdio.h>

int uninitialized_data;

int initialized_data = 1;

#pragma section all "non_volatile"

#pragma noclear

int battery_backup_tag;

int battery_backup_invok;

#pragma clear

#pragma section all

void main (void)

{

 if (battery_backup_tag != BATTERY_BACKUP_TAG)

 {

 // battery back-upped memory area contains invalid data

 // initialize the memory

 battery_backup_tag = BATTERY_BACKUP_TAG;

 battery_backup_invok = 0;

 }

 printf("This application has been invoked %d times\n",

 battery_backup_invok++);

}

The compiler assigns names and attributes to sections. With the #pragma
section all "name" the compiler's default section naming convention
is overruled and a section with the name non_volatile is defined. In
this section the battery back-upped data is stored.

By default the compiler creates the section .zbss.bat.
uninitialized_data to store uninitialized data objects. The section
prefix ".zbss" tells the linker to locate the section in address space abs18
and that the section content should be filled with zeros at startup.

As a result of the #pragma section all "non_volatile", the data
objects between the pragma pair are placed in .zbss.non_volatile.
Note that ".zbss" sections are cleared at startup. However, battery
back-upped sections should not be cleared and therefore we used the
#pragma noclear.

The generated assembly may look like:

 .name "bat"

 .extern printf

 .extern __printf_int

 .sdecl ".text.bat.main",CODE

 .sect ".text.bat.main

 .align 4

Using the Linker 7-35

• • • • • • • •

 .global main

; Function main

 .extern _start

main: .type func

 sub16.a a10,#8

 mov.u d15,#42480

 ld.w d0,battery_backup_tag

 jeq d15,d0,L_2

 .

 .

 .

 j printf

main_function_end:

 .size main,main_function_end-main

 ; End of function

 ; End of section

 .sdecl ".zbss.bat.uninitialized_data",DATA

 .sect ".zbss.bat.uninitialized_data"

 .align 4

 .global uninitialized_data

 .align 2

uninitialized_data: .type object

 .size uninitialized_data,4

 .space 4

 ; End of section

 .sdecl ".zdata.bat.initialized_data",DATA

 .sect ".zdata.bat.initialized_data"

 .align 4

 .global initialized_data

 .align 2

initialized_data: .type object

 .size initialized_data,4

 .word 1

 ; End of section

 .sdecl ".zbss.non_volatile",DATA,NOCLEAR

 .sect ".zbss.non_volatile"

 .align 4

 .global battery_backup_tag

 .align 2

battery_backup_tag: .type object

 .size battery_backup_tag,4

 .space 4

 .global battery_backup_invok

 .align 2

battery_backup_invok: .type object

 .size battery_backup_invok,4

 .space 4

 ; End of section

TriCore User's Manual7-36
L
IN
K
E
R

 .sdecl ".rodata.bat..1.ini",DATA,ROM

 .sect ".rodata.bat..1.ini"

 .align 2

_1_ini: .type object

 .size _1_ini,44

 .byte 84 /* T */

 .byte 104 /* h */

 ; This application has been invoked %d times\n

 .byte 10 /* \n */

 .byte 0 /* NULL */

 ; End of section

 ; Module end

Section placement

The number of invocations of the example program should be saved in
non-volatile (battery back-upped) memory. This is the memory
my_nvsram from the example in the previous section.

To control the locating of sections, you need to write one or more section
definitions in the LSL file. At least one for each address space where you
want to change the default behavior of the linker. In our example, we
need to locate sections in the address space abs18:

section_layout ::abs18

{

 Section placement statements

}

To locate sections, you must create a group in which you select sections
from your program. For the battery back-up example, we need to define
one group, which contains the section .zbss_non_volatile. All other
sections are located using the defaults specified in the architecture
definition. Section .zbss_non_volatile should be placed in
non-volatile ram. To achieve this, the run address refers to our
non-volatile memory called my_nvsram:

group (ordered, run_addr = mem:my_nvsram)

{

 select ".zbss.non_volatile";

}

Section placement from EDE

To specify the above settings using EDE, follow these steps:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

Using the Linker 7-37

• • • • • • • •

2. Expand the Linker entry.

3. Expand the Script File entry and open the Sections page.

Here you can specify where sections are located in memory.

4. In the Space field, select abs18.

5. In the Sections field, enter .zbss.non_volatile.

6. In the Group field, select ordered.

7. In the Copy field, select NO.

8. In the Alloc field, select extmem. This adds the mem: prefix to the
location.

9. In the Location field, enter my_nvsram.

10. Optionally enter a group Name.

11. Click OK.

This completes the LSL file for the sample architecture and sample
program. You can now call the linker with this file and the sample
program to obtain an application that works for this architecture.

For a complete description of the Linker Script Language, refer to Chapter
8, Linker Script Language, in the Reference Manual.

7.7.8 THE PROCESSOR DEFINITION: USING

MULTI-PROCESSOR SYSTEMS

The processor definition is only needed when you write an LSL-file for a
multi-processor embedded system. The processor definition explicitly
instantiates a derivative, allowing multiple processors of the same type.

processor proc_name

{

 derivative = deriv_name

}

If no processor definition is available that instantiates a derivative, a
processor is created with the same name as the derivative.

TriCore User's Manual7-38
L
IN
K
E
R

7.8 LINKER LABELS

The linker creates labels that you can use to refer to from within the
application software. Some of these labels are real labels at the beginning
or the end of a section. Other labels have a second function, these labels
are used to address generated data in the locating phase. The data is only
generated if the label is used.

Linker labels are labels starting with _lc_. The linker assigns addresses to
the following labels when they are referenced:

Label Description

_lc_cp Start of copy table. Same as _lc_ub_table. The copy

table gives the source and destination addresses of

sections to be copied. This table will be generated by the

linker only if this label is used.

_lc_bh Begin of heap. Same as _lc_ub_heap.

_lc_eh End of heap. Same as _lc_ue_heap.

_lc_u_name User defined label. The label must be defined in the LSL

file. For example,

 "_lc_u_int_tab" = (INTTAB);

_lc_ub_name

_lc_b_name

Begin of section name. Also used to mark the begin of the

stack or heap or copy table.

_lc_ue_name

_lc_e_name

End of section name. Also used to mark the begin of the

stack or heap.

_lc_cb_name Start address of an overlay section in ROM.

_lc_ce_name End address of an overlay section in ROM.

_lc_gb_name Begin of group name. This label appears in the output file

even if no reference to the label exist in the input file.

_lc_ge_name End of group name. This label appears in the output file

even if no reference to the label exist in the input file.

Table 7-6: Linker labels

The linker only allocates space for the stack and/or heap when a reference
to either of the section labels exists in one of the input object files.

If you want to use linker labels in your C source for sections that have a
dot (.) in the name, you have to replace all dots by underscores.

Using the Linker 7-39

• • • • • • • •

Example: refer to a label with section name with dots from C

Suppose the C source file foo.c contains the following:

int myfunc(int a)

{

 /* some source lines */

}

This results in a section with the name .text.foo.myfunc

In the following source file main.c all dots of the section name are
replaced by underscores:

extern void *_lc_ub__text_foo_myfunc;

int main(void)

{

 printf("The function myfunc is located at %X\n",

 &_lc_ub__text_foo_myfunc);

}

Example: refer to the stack

Suppose in an LSL you have defined a user stack section with the name
"ustack" (with the keyword stack). You can refer to the begin and end
of the stack from your C source as follows:

#include <stdio.h>

extern char *_lc_ub_ustack;

extern char *_lc_ue_ustack;

int main()

{

 printf("Size of user stack is %d\n",

 _lc_ue_ustack - _lc_ub_ustack);

}

From assembly you can refer to the end of the user stack with:

.extern _lc_ue_ustack ; user stack end

TriCore User's Manual7-40
L
IN
K
E
R

7.9 GENERATING A MAP FILE

The map file is an additional output file that contains information about
the location of sections and symbols. You can customize the type of
information that should be included in the map file.

To generate a map file

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Map File.

3. Select Generate a map file (.map)

4. (Optional) Enable the options to include that information in the map
file.

Example on the command line

ltc -Mtest.map test.o

With this command the list file test.map is created.

See section 6.2, Linker Map File Format, in Chapter List File Formats of the
Reference Manual for an explanation of the format of the map file.

Using the Linker 7-41

• • • • • • • •

7.10 LINKER ERROR MESSAGES

The linker produces error messages of the following types:

F Fatal errors

After a fatal error the linker immediately aborts the link/locate process.

E Errors

Errors are reported, but the linker continues linking and locating. No
output files are produced unless you have set the linker option
--keep-output-files.

W Warnings

Warning messages do not result into an erroneous output file. They are
meant to draw your attention to assumptions of the linker for a situation
which may not be correct. You can control warnings in the Linker |

Warnings page of the Project | Project Options... menu (linker option
-w).

I Information

Verbose information messages do not indicate an error but tell something
about a process or the state of the linker. To see verbose information, use
the linker option -v.

S System errors

System errors occur when internal consistency checks fail and should
never occur. When you still receive the system error message

S6##: message

please report the error number and as many details as possible about the
context in which the error occurred. The following helps you to prepare
an e-mail using EDE:

1. From the Help menu, select Technical Support -> Prepare Email...

The Prepare Email form appears.

2. Fill out the the form. State the error number and attach relevant files.

3. Click the Copy to Email client button to open your email application.

A prepared e-mail opens in your e-mail application.

TriCore User's Manual7-42
L
IN
K
E
R

4. Finish the e-mail and send it.

Display detailed information on diagnostics

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or
warning message.

A description of the selected message appears.

ltc --diag=[format:]{all | number,...}

See linker option --diag in section 5.3, Linker Options in Chapter Tool
Options of the TriCore Reference Manual.

8

USING THE

UTILITIES
C

H
A

P
T

E
R

TriCore User's Manual8-2
U
T
IL
IT
IE
S

8

C
H

A
P

T
E

R

Using the Utilities 8-3

• • • • • • • •

8.1 INTRODUCTION

The TASKING toolchain for the TriCore processor family comes with a
number of utilities that provide useful extra features.

cctc A control program for the TriCore toolchain. The control
program invokes all tools in the toolchain and lets you
quickly generate an absolute object file from C source input
files.

mktc A utility program to maintain, update, and reconstruct groups
of programs. The make utility looks whether files are out of
date, rebuilds them and determines which other files as a
consequence also need to be rebuild.

artc An ELF archiver. With this utility you create and maintain
object library files.

TriCore User's Manual8-4
U
T
IL
IT
IE
S

8.2 CONTROL PROGRAM

The control program cctc is a tool that invokes all tools in the toolchain
for you. It provides a quick and easy way to generate the final absolute
object file out of your C sources without the need to invoke the compiler,
assembler and linker manually.

8.2.1 CALLING THE CONTROL PROGRAM

You can only call the control program from the command line. The
invocation syntax is

cctc [[option]... [file]...]...

For example:

cctc -v test.c

The control program calls all tools in the toolchain and generates the
absolute object file test.elf. With the control program option -v you
can see how the control program calls the tools:

+ c:\ctc\bin\ctc -o test.src test.c

+ c:\ctc\bin\astc -o test.o test.src

+ c:\ctc\bin\ltc -o test.elf -ddefault.lsl

 -dextmem.lsl --map-file test.o -Lc:\ctc\lib\tc1

 -lc -lfp -lrt

By default, the control program removes the intermediate output files
(test.src and test.o in the example above) afterwards, unless you
specify the command line option -t (--keep-temporary-files).

Recognized input files

The control program recognizes the following input files:

• Files with a .cc, .cxx or .cpp suffix are interpreted as C++ source
programs and are passed to the C++ compiler.

• Files with a .c suffix are interpreted as C source programs and are
passed to the compiler.

• Files with a .asm suffix are interpreted as hand-written assembly
source files which have to be passed to the assembler.

• Files with a .src suffix are interpreted as compiled assembly source
files. They are directly passed to the assembler.

Using the Utilities 8-5

• • • • • • • •

• Files with a .a suffix are interpreted as library files and are passed to
the linker.

• Files with a .o suffix are interpreted as object files and are passed to
the linker.

• Files with a .out suffix are interpreted as linked object files and are
passed to the locating phase of the linker. The linker accepts only one
.out file in the invocation.

• An argument with a .lsl suffix is interpreted as a linker script file and
is passed to the linker.

Options of the control program

The following control program options are available:

Description Option

Information

Display invocation options -?

Display version header -V

Check the source but do not generate code --check

Show description of diagnostics --diag=[fmt:]{all|nr}

Verbose option: show commands invoked

Verbose option: show commands without executing

-v
-n

Suppress all warnings -w

Treat warnings as errors --warnings-as-
errors

Show C and assembly warnings for C++

compilations

--show-c++-
warnings

C Language

ISO C standard 90 or 99 (default: 99) --iso={90|99}

Language extensions

Allow C++ style comments in C source

Check assignment constant string to

non constant string pointer

-Aflag
-Ap
-Ax

Treat external definitions as "static" --static

Single precision floating-point -F

C++ Language

Treat C++ files as C files --force-c

Force C++ compilation and linking --force-c++

TriCore User's Manual8-6
U
T
IL
IT
IE
S

OptionDescription

Force invocation of C++ muncher --force-munch

Force invocation of C++ prelinker --force-prelink

Show the list of object files handled by the C++

prelinker

--list-object-files

Copy C++ prelink (.ii) files from outside the current

directory

--prelink-copy-
if-nonlocal

Use only C++ prelink files in the current directory --prelink-local-only

Remove C++ instantiation flags after prelinking --prelink-remove-
instantiation-flags

Enable C++ exception handling --exceptions

C++ instantiation mode --instantiate=type

C++ instantiation directory --instantiation-dir=
dir

C++ instantiation file --instantiation-file=
file

Disable automatic C++ instantiation --no-auto-
instantiation

Allow multiple instantiations in a single object file --no-one-instantiat
ion-per-object

Preprocessing

Define preprocessor macro -Dmacro[=def]

Remove preprocessor macro -Umacro

Store the C compiler preprocess output (file.pre) -Eflag

Code generation

Select CPU type -Ccpu

Generate symbolic debug information -g

Use hardware floating-point instructions --fpu-present

Allow use of TriCore2 instructions --is-tricore2

Allow use of MMU instructions --mmu-present

Enable silicon bug workaround --silicon-bug=arg,...

Libraries

Add library directory -Ldir

Add library -llib

Using the Utilities 8-7

• • • • • • • •

OptionDescription

Ignore the default search path for libraries --ignore-default-
library-path

Do not include default list of libraries --no-default-
libraries

Use trapped floating-point library --fp-trap

Input files

Specify linker script file -d file

Read options from file -f file

Add include directory -Idir

Do not include the SFR file as indicated by -C --no-tasking-sfr

Output files

Redirect diagnostic messages to a file --error-file

Select final output file:

 C file

 relocatable output file

 object file(s)

 assembly file(s)

-cc
-cl
-co
-cs

Specify linker output format (ELF, IEEE) --format=type

Set the address size for linker IHEX/SREC files --address-size=n

Set linker output space name --space=name

Keep output file(s) after errors -k

Do not generate linker map file --no-map-file

Specify name of output file -o file

Do not delete intermediate (temporary) files -t

Table 8-1: Overview of control program options

For a complete list and description of all control program options, see
section 5.4, Control Program Options, in Chapter Tool Options of the
Reference Manual.

The options in table 8-1 are options that the control program interprets
itself. The control program however can also pass an option directly to a
tool. Such an option is not interpreted by the control program but by the
tool itself. The next example illustrates how an option is passed directly to
the linker to link a user defined library:

cctc -Wlk-lmylib test.c

TriCore User's Manual8-8
U
T
IL
IT
IE
S

Use the following options to pass arguments to the various tools:

Description Option

Pass argument directly to the C++ compiler

Pass argument directly to the C++ pre-linker

Pass argument directly to the C compiler

Pass argument directly to the assembler

Pass argument directly to the PCP assembler

Pass argument directly to the linker

-Wcparg
-Wplarg
-Wcarg
-Waarg
-Wpcparg
-Wlarg

Table 8-2: Control program options to pass an option directly to a tool

If you specify an unknown option to the control program, the control
program looks if it is an option for a specific tool. If so, it passes the
option directly to the tool. However, it is recommended to use the control
program options to passing arguments directly to tools.

With the environment variable CCTCOPT you can define options and/or
arguments that the control programs always processes before the command
line arguments.

For example, if you use the control program always with the option
--no-map-file (do not generate a linker map file), you can specify
"--no-map-file" to the environment variable CCTCOPT.

See section 1.3.2, Configuring the Command Line Environment, in Chapter
Software Installation.

Using the Utilities 8-9

• • • • • • • •

8.3 MAKE UTILITY

If you are working with large quantities of files, or if you need to build
several targets, it is rather time-consuming to call the individual tools to
compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program cctc and
define an options file. You can even create a batch file or script that
invokes the control program for each target you want to create. But with
these methods all files are completely compiled, assembled, linked and
located to obtain the target file, even if you changed just one C source.
This may demand a lot of (CPU) time on your host.

The make utility mktc is a tool to maintain, update, and reconstruct
groups of programs. The make utility looks which files are out-of-date
and only recreates these files to obtain the updated target.

Make process

In order to build a target, the make utility needs the following input:

• the target it should build, specified as argument on the command line

• the rules to build the target, stored in a file usually called makefile

In addition, the make utility also reads the file mktc.mk which contains
predefined rules and macros. See section 8.3.2, Writing a Makefile.

The makefile contains the relationships among your files (called
dependencies) and the commands that are necessary to create each of the
files (called rules). Typically, the absolute object file (.elf) is updated
when one of its dependencies has changed. The absolute file depends on
.o files and libraries that must be linked together. The .o files on their
turn depend on .src files that must be assembled and finally, .src files
depend on the C source files (.c) that must be compiled. In the makefile
makefile this looks like:

test.src : test.c # dependency

 ctc test.c # rule

test.o : test.src

 astc test.src

test.elf : test.o

 ltc -otest.elf test.o -lc -lfp -lrt

TriCore User's Manual8-10
U
T
IL
IT
IE
S

You can use any command that is valid on the command line as a rule in
the makefile. So, rules are not restricted to invocation of the toolchain.

Example

To build the target test.elf, call mktc with one of the following lines:

mktc test.elf

mktc -f mymake.mak test.elf

By default, the make utility reads makefile so you do not need to specify
it on the command line. If you want to use another name for the makefile,
use the option -f my_makefile.

If you do not specify a target, mktc uses the first target defined in the
makefile. In this example it would build test.src instead of test.elf.

The make utility now tries to build test.elf based on the makefile
and peforms the following steps:

1. From the makefile the make utility reads that test.elf depends on
test.o.

2. If test.o does not exist or is out-of-date, the make utility first tries to
build this file and reads from the makefile test.o depends on
test.src.

3. If test.src does exist, the make utility now creates test.o by
executing the rule for it: astc test.src.

4. There are no other files necessary to create test.elf so the make
utility now can use test.o to create test.elf by executing the rule
ltc -otest.elf test.o -lc -lfp -lrt.

The make utility has now built test.elf but it only used the assembler
to update test.o and the linker to create test.elf.

If you compare this to the control program:

cctc test.c

This invocation has the same effect but now all files are recompiled
(assembled, linked and located).

Using the Utilities 8-11

• • • • • • • •

8.3.1 CALLING THE MAKE UTILITY

You can only call the make utility from the command line. The invocation
syntax is

mktc [[options] [targets] [macro=def]...]

For example:

mktc test.elf

target You can specify any target that is defined in the makefile.
A target can also be one of the intermediate files specified
in the makefile.

macro=def Macro definition. This definition remains fixed for the
mktc invocation. It overrides any regular definitions for
the specified macro within the makefiles and from the
environment. It is inherited by subordinate mktc's but act
as an environment variable for these. That is, depending
on the -e setting, it may be overridden by a makefile
definition.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an
error. Otherwise it returns an exit status of 0.

Options of the make utility

The following make utility options are available:

Description Option

Display options

Display version header

-?
-V

Verbose

Print makefile lines while being read

Display time comparisons which indicate a target is out of date

Display current date and time

Verbose option: show commands without executing (dry run)

Do not show commands before execution

Do not build, only indicate whether target is up-to-date

-D/-DD
-d/-dd
-time
-n
-s
-q

TriCore User's Manual8-12
U
T
IL
IT
IE
S

OptionDescription

Input files

Use makefile instead of the standard makefile makefile
Change to directory before reading the makefile

Read options from file

Do not read the mktc.mk file

-f makefile
-G path
-m file
-r

Process

Always rebuild target without checking whether it is out-of-date

Run as a child process

Environment variables override macro definitions

Do not remove temporary files

On error, only stop rebuilding current target

Overrule the option -k (only stop rebuilding current target)

Make all target files precious

Touch the target files instead of rebuilding them

Treat target as if it has just been reconstructed

-a
-c
-e
-K
-k
-S
-p
-t
-W target

Error messages

Redirect error messages and verbose messages to a file

Ignore error codes returned by commands

Redirect messages to standard out instead of standard error

Show extended error messages

-err file
-i
-w
-x

Table 8-3: Overview of control program options

For a complete list and description of all control program options, see
section 5.5, Make Utility Options, in Chapter Tool Options of the Reference
Manual.

8.3.2 WRITING A MAKEFILE

In addition to the standard makefile makefile, the make utility always
reads the makefile mktc.mk before other inputs. This system makefile
contains implicit rules and predefined macros that you can use in the
makefile makefile.

With the option -r (Do not read the mktc.mk file) you can prevent the
make utility from reading mktc.mk.

The default name of the makefile is makefile in the current directory. If
on a UNIX system this file is not found, the file Makefile is used as the
default. If you want to use other makefiles, use the option -f my_makefile.

Using the Utilities 8-13

• • • • • • • •

The makefile can contain a mixture of:

• targets and dependencies

• rules

• macro definitions or functions

• comment lines

• include lines

• export lines

To continue a line on the next line, terminate it with a backslash (\):

this comment line is continued\

on the next line

If a line must end with a backslash, add an empty macro.

this comment line ends with a backslash \$(EMPTY)

this is a new line

Targets and dependencies

The basis of the makefile is a set of targets, dependencies and rules. A
target entry in the makefile has the following format:

target ... : [dependency ...] [; rule]

 [rule]

 ...

Target lines must always start at the beginning of a line, leading white
spaces (tabs or spaces) are not allowed. A target line consists of one or
more targets, a semicolon and a set of files which are required to build the
target (dependencies). The target itself can be one or more filenames or
symbolic names.:

all: demo.elf final.elf

demo.elf final.elf: test.o demo.o final.o

You can now can specify the target you want to build to the make utility.
The following three invocations all have the same effect:

mktc

mktc all

mktc demo.elf final.elf

TriCore User's Manual8-14
U
T
IL
IT
IE
S

If you do not specify a target, the first target in the makefile (in this
example all) is build. The target all depends on demo.elf and
final.elf so the second and third invocation have also the same effect
and the files demo.elf and final.elf are built.

In MS-Windows you can normally use colons to denote drive letters. The
following works as intended: c:foo.o : a:foo.c

If a target is defined in more than one target line, the dependencies are
added to form the target's complete dependency list:

all: demo.elf # These two lines are equivalent with:

all: final.elf # all: demo.elf final.elf

For target lines, macros and functions are expanded at the moment they
are read by the make utility. Normally macros are not expanded until the
moment they are actually used.

Special Targets

There are a number of special targets. Their names begin with a period.

.DEFAULT: If you call the make utility with a target that has no definition
in the makefile, this target is built.

.DONE: When the make utility has finished building the specified
targets, it continues with the rules following this target.

.IGNORE: Non-zero error codes returned from commands are ignored.
Encountering this in a makefile is the same as specifying the
option -i on the command line.

.INIT: The rules following this target are executed before any other
targets are built.

.SILENT: Commands are not echoed before executing them.
Encountering this in a makefile is the same as specifying the
option -s on the command line.

.SUFFIXES: This target specifies a list of file extensions. Instead of
building a completely specified target, you now can build a
target that has a certain file extension. Implicit rules to build
files with a number of extensions are included in the system
makefile mktc.mk.

Using the Utilities 8-15

• • • • • • • •

If you specify this target with dependencies, these are added
to the existing .SUFFIXES target in mktc.mk. If you specify
this target without dependencies, the existing list is cleared.

.PRECIOUS: Dependency files mentioned for this target are never
removed. Normally, if a command in a rule returns an error
or when the target construction is interrupted, the make
utility removes that target file. You can use the -p command
line option to make all target files precious.

Rules

A line with leading white space (tabs or spaces) is considered as a rule
and associated with the most recently preceding dependency line. A rule
is a line with commands that are executed to build the associated target.
A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency

 mv test.c final.c # rule1

 ctc final.c # rule2

You can precede a rule with one or more of the following characters:

@ does not echo the command line, except if -n is used.

- the make utility ignores the exit code of the command (ERRORLEVEL
in MS-DOS). Normally the make utility stops if a non-zero exit code is
returned. This is the same as specifying the option -i on the command
line or specifying the special .IGNORE target.

+ The make utility uses a shell or COMMAND.COM to execute the
command. If the '+' is not followed by a shell line, but the command is
a DOS command or if redirection is used (<, |, >), the shell line is
passed to COMMAND.COM anyway. For UNIX, redirection, backquote
(`) parentheses and variables force the use of a shell.

You can force mktc to execute multiple command lines in one shell
environment. This is accomplished with the token combination ';\'. For
example:

cd c:\ctc\bin ;\

cctc -V

TriCore User's Manual8-16
U
T
IL
IT
IE
S

The ';' must always directly be followed by the '\' token. Whitespace is not
removed when it is at the end of the previous command line or when it is
in front of the next command line. The use of the ';' as an operator for a
command (like a semicolon ';' separated list with each item on one line)
and the '\' as a layout tool is not supported, unless they are separated with
whitespace.

The make utility can generate inline temporary files. If a line contains
<<LABEL (no whitespaces!) then all subsequent lines are placed in a
temporary file until the line LABEL is encountered. Next, <<LABEL is
replaced by the name of the temporary file.

Example:

ltc -o $@ -f <<EOF

$(separate "\n" $(match .o $!))

$(separate "\n" $(match .a $!))

$(LKFLAGS)

EOF

The three lines between <<EOF and EOF are written to a temporary file
(for example mkce4c0a.tmp), and the rule is rewritten as ltc -o $@ -f
mkce4c0a.tmp.

Instead of specifying a specific target, you can also define a general target.
A general target specifies the rules to generate a file with extension .ex1
to a file with extension .ex2. For example:

.SUFFIXES: .c

.c.src :

 ltc $<

Read this as: to build a file with extension .src out of a file with
extension .c, call the compiler with $<. $< is a predefined macro that is
replaced with the basename of the specified file. The special target
.SUFFIXES: is followed by a list of file extensions of the files that are
required to build the target.

Implicit Rules

Implicit rules are stored in the system makefile mktc.mk and are
intimately tied to the .SUFFIXES special target. Each dependency that
follows the .SUFFIXES target, defines an extension to a filename which
must be used to build another file. The implicit rules then define how to
actually build one file from another. These files share a common
basename, but have different extensions.

Using the Utilities 8-17

• • • • • • • •

If the specified target on the command line is not defined in the makefile
or has not rules in the makefile, the make utility looks if there is an
implicit rule to build the target.

Example

This makefile says that prog.out depends on two files prog.o and
sub.o, and that they in turn depend on their corresponding source files
(prog.c and sub.c) along with the common file inc.h.

LIB = -lc # macro

prog.elf: prog.o sub.o

 ltc prog.o sub.o $(LIB) -o prog.elf

prog.o: prog.c inc.h

 ctc prog.c

 astc prog.src

sub.o: sub.c inc.h

 ctc sub.c

 astc sub.src

The following makefile uses implicit rules (from mktc.mk) to perform the
same job.

LKFLAGS = -lc # macro used by implicit rules

prog.elf: prog.o sub.o # implicit rule used

prog.o: prog.c inc.h # implicit rule used

sub.o: sub.c inc.h # implicit rule used

Files

makefile Description of dependencies and rules.
Makefile Alternative to makefile, for UNIX.
mktc.mk Default dependencies and rules.

Diagnostics

mktc returns an exit status of 1 when it halts as a result of an error.
Otherwise it returns an exit status of 0.

Macro definitions

A macro is a symbol name that is replaced with it's definition before the
makefile is executed. Although the macro name can consist of lower case
or upper case characters, upper case is an accepted convention. The
general form of a macro definition is:

TriCore User's Manual8-18
U
T
IL
IT
IE
S

MACRO = text and more text

Spaces around the equal sign are not significant. To use a macro, you must
access it's contents:

$(MACRO) # you can read this as

${MACRO} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note
that the expansion is done recursively, so the body of a macro may
contain other macros. These macros are expanded when the macro is
actually used, not at the point of definition:

FOOD = $(EAT) and $(DRINK)

EAT = meat and/or vegetables

DRINK = water

export FOOD

The macro FOOD is expanded as meat and/or vegetables and
water at the moment it is used in the export line.

Predefined Macros

MAKE Holds the value mktc. Any line which uses MAKE,
temporarily overrides the option -n (Show commands
without executing), just for the duration of the one line. This
way you can test nested calls to MAKE with the option -n.

MAKEFLAGS
Holds the set of options provided to mktc (except for the
options -f and -d). If this macro is exported to set the
environment variable MAKEFLAGS, the set of options is
processed before any command line options. You can pass
this macro explicitly to nested mktc's, but it is also available
to these invocations as an environment variable.

PRODDIR Holds the name of the directory where mktc is installed. You
can use this macro to refer to files belonging to the product,
for example a library source file.

DOPRINT = $(PRODDIR)/lib/src/_doprint.c

When mktc is installed in the directory /ctc/bin this line
expands to:

DOPRINT = /ctc/lib/src/_doprint.c

Using the Utilities 8-19

• • • • • • • •

SHELLCMD Holds the default list of commands which are local to the
SHELL. If a rule is an invocation of one of these commands, a
SHELL is automatically spawned to handle it.

TMP_CCPROG
Holds the name of the control program: cctc. If this macro
and the TMP_CCOPT macro are set and the command line
argument list for the control program exceeds 127 characters,
then mktc creates a temporary file with the command line
arguments. mktc calls the control program with the
temporary file as command input file.

TMP_CCOPT
Holds -f, the control program option that tells it to read
options from a file. (This macro is only available for the
Windows command prompt version of mktc.)

$ This macro translates to a dollar sign. Thus you can use "$$"
in the makefile to represent a single "$".

There are several dynamically maintained macros that are useful as
abbreviations within rules. It is best not to define them explicitly.

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.

$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be
unreliable when used within explicit target command lines. All macros
may be suffixed with F to specify the Filename components (e.g. ${*F},
${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to
specify the directory component.

The result of the $* macro is always without double quotes ("), regardless
of the original target having double quotes (") around it or not.
The result of using the suffix F (Filename component) or D (Directory
component) is also always without double quotes ("), regardless of the
original contents having double quotes (") around it or not.

TriCore User's Manual8-20
U
T
IL
IT
IE
S

Functions

A function not only expands but also performs a certain operation.
Functions syntactically look like macros but have embedded spaces in the
macro name, e.g. '$(match arg1 arg2 arg3)'. All functions are built-in and
currently there are five of them: match, separate, protect, exist and
nexist.

match The match function yields all arguments which match a
certain suffix:

$(match .o prog.o sub.o mylib.a)

yields:

prog.o sub.o

separate The separate function concatenates its arguments using the
first argument as the separator. If the first argument is
enclosed in double quotes then '\n' is interpreted as a
newline character, '\t' is interpreted as a tab, '\ooo' is
interpreted as an octal value (where, ooo is one to three octal
digits), and spaces are taken literally. For example:

$(separate "\n" prog.o sub.o)

results in:

prog.o

sub.o

Function arguments may be macros or functions themselves.
So,

$(separate "\n" $(match .o $!))

yields all object files the current target depends on, separated
by a newline string.

protect The protect function adds one level of quoting. This
function has one argument which can contain white space. If
the argument contains any white space, single quotes, double
quotes, or backslashes, it is enclosed in double quotes. In
addition, any double quote or backslash is escaped with a
backslash.

Using the Utilities 8-21

• • • • • • • •

Example:

echo $(protect I'll show you the "protect"

function)

yields:

echo "I'll show you the \"protect\"

function"

exist The exist function expands to its second argument if the
first argument is an existing file or directory.

Example:

$(exist test.c cctc test.c)

When the file test.c exists, it yields:

cctc test.c

When the file test.c does not exist nothing is expanded.

nexist The nexist function is the opposite of the exist function. It
expands to its second argument if the first argument is not an
existing file or directory.

Example:

$(nexist test.src cctc test.c)

Conditional Processing

Lines containing ifdef, ifndef, else or endif are used for conditional
processing of the makefile. They are used in the following way:

ifdef macro-name
if-lines
else

else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any
kind, even other ifdef, ifndef, else and endif lines, or no lines at all.
The else line may be omitted, along with the else-lines following it.

TriCore User's Manual8-22
U
T
IL
IT
IE
S

First the macro-name after the if command is checked for definition. If
the macro is defined then the if-lines are interpreted and the else-lines are
discarded (if present). Otherwise the if-lines are discarded; and if there is
an else line, the else-lines are interpreted; but if there is no else line,
then no lines are interpreted.

When using the ifndef line instead of ifdef, the macro is tested for not
being defined. These conditional lines can be nested up to 6 levels deep.

See also Defining Macros in section 5.5, Make Utility Options, in Chapter
Tools Options of the Reference Manual.

Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#"
is inside a quoted string, it is not treated as a comment. Completely blank
lines are ignored.

test.src : test.c # this is comment and is

 ctc test.c # ignored by the make utility

Include lines

An include line is used to include the text of another makefile (like
including a .h file in a C source). Macros in the name of the included file
are expanded before the file is included. Include files may be nested.

include makefile2

Export lines

An export line is used to export a macro definition to the environment of
any command executed by the make utility.

GREETING = Hello

export GREETING

This example creates the environment variable GREETING with the value
Hello. The macros is exported at the moment the export line is read so
the macro definition has to proceed the export line.

Using the Utilities 8-23

• • • • • • • •

8.4 ARCHIVER

The archiver artc is a program to build and maintain your own library
files. A library file is a file with extension .a and contains one or more
object files (.o) that may be used by the linker.

The archiver has five main functionalities:

• Deleting an object module from the library

• Moving an object module to another position in the library file

• Replacing an object module in the library or add a new object module

• Showing a table of contents of the library file

• Extracting an object module from the library

The archiver takes the following files for input and output:

assembler

relocatable object file

linker

astc

ltc

relocatable object library

.a

archiver

artc .o

Figure 8-1: artc ELF/DWARF archiver and library maintainer

The linker optionally includes object modules from a library if that module
resolves an external symbol definition in one of the modules that are read
before.

8.4.1 CALLING THE ARCHIVER

You can only call the archiver from the command line. The invocation
syntax is:

artc key_option [sub_option...] library [object_file]

key_option With a key option you specify the main task which the
archiver should perform. You must always specify a key
option.

TriCore User's Manual8-24
U
T
IL
IT
IE
S

sub_option Sub-options specify into more detail how the archiver should
perform the task that is specified with the key option. It is
not obligatory to specify sub-options.

library The name of the library file on which the archiver performs
the specified action. You must always specify a library name,
except for the option -? and -V. When the library is not in
the current directory, specify the complete path (either
absolute or relative) to the library.

object_file The name of an object file. You must always specify an
object file name when you add, extract, replace or remove an
object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub-option

Main functions (key options)

Replace or add an object module -r -a -b -c -u -v

Extract an object module from the library -x -v

Delete object module from library -d -v

Move object module to another position -m -a -b -v

Print a table of contents of the library -t -s0 -s1

Print object module to standard output -p

Sub-options

Append or move new modules after existing

module name
-a name

Append or move new modules before

existing module name
-b name

Create library without notification if library

does not exist

-c

Preserve last-modified date from the library -o

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -v

Using the Utilities 8-25

• • • • • • • •

Sub-optionOptionDescription

Miscellaneous

Display options -?

Display version header -V

Read options from file -f file

Suppress warnings above level n -wn

Table 8-4: Overview of archiver options and sub-options

For a complete list and description of all archiver options, see section 5.6,
Archiver Options, in Chapter Tool Options of the Reference Manual.

TriCore User's Manual8-26
U
T
IL
IT
IE
S

8.4.2 EXAMPLES

Create a new library

If you add modules to a library that does not yet exist, the library is
created. To create a new library with the name mylib.a and add the
object modules cstart.o and calc.o to it:

artc -r mylib.a cstart.o calc.o

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the
end of the module. (If the module already exists in the library, it is
replaced.)

artc -r mylib.a mod3.o

Print a list of object modules in the library

To inspect the contents of the library:

artc -t mylib.a

The library has the following contents:

cstart.o

calc.o

mod3.o

Move an object module to another position

To move mod3.o to the beginning of the library, position it just before
cstart.o:

artc -mb cstart.o mylib.a mod3.o

Delete an object module from the library

To delete the object module cstart.eln from the library mylib.a:

artc -d mylib.a cstart.o

Extract all modules from the library

Extract all modules from the library mylib.a:

artc -x mylib.a

INDEX
I
N
D
E
X

TriCore User's ManualIndex-2
IN
D
E
X

I
N
D
E
X

Index Index-3

• • • • • • • •

Symbols
__asm

syntax, 3-19
writing intrinsics, 3-23

__BUILD__, 3-28
__circ, 3-15
__REVISION__, 3-28
__VERSION__, 3-28

A
absolute address, 3-13
absolute variable, 3-13
address space, 7-25
addressing modes, 4-5

absolute, 4-6
base + offset, 4-6
bit-reverse, 4-7
circular, 4-7
indexed, 4-7
PCP assembler, 4-8
post-increment, 4-6
pre-increment, 4-6

architecture definition, 7-22, 7-25
archiver, 8-23

invocation, 8-23
options (overview), 8-24

artc, 8-23
assembler, setting options, 6-6
assembler controls, overview, 4-21
assembler directives, overview, 4-18
assembler error messages, 6-9
assembler options, overview, 6-6
assembly, programming in C, 3-19
assembly syntax, 4-3

B
backend

compiler phase, 5-5
optimization, 5-5

board specification, 7-23
buffers, circular, 3-15
build, viewing results, 2-16
bus definition, 7-23

C
C prepocessor, 7-21
cctc, 8-4
CCTCOPT, 8-8
character, 4-4
circular buffers, 3-15
coalescer, 5-8
code checking, 5-16
code generator, 5-5
common subexpression elimination,

5-6
compile, 2-16
compiler

invocation, 5-10
optimizations, 5-5
setting options, 5-11

compiler error messages, 5-19
compiler options, overview, 5-12
compiler phases

backend, 5-4
code generator phase, 5-5
optimization phase, 5-5
peephole optimizer phase, 5-5
pipeline scheduler, 5-5

TriCore User's ManualIndex-4
IN
D
E
X

frontend, 5-4
optimization phase, 5-4
parser phase, 5-4
preprocessor phase, 5-4
scanner phase, 5-4

conditional assembly, 4-31
conditional jump reversal, 5-7
configuration

EDE directories, 1-7
UNIX, 1-9

constant propagation, 5-6
continuation, 4-23
control flow simplification, 5-7
control program, 8-4

invocation, 8-4
options (overview), 8-5

control program options, overview,
8-5, 8-11, 8-24

controls, 4-4
copy table, compression, 7-10
creating a makefile, 2-13
CSE, 5-6

D
data type qualifiers, 3-15
data types, 3-3

accumulator, 3-5
bit, 3-6
fractional, 3-5
fundamental, 3-3
packed, 3-8

dead code elimination, 5-7
delete duplicate code sections, 7-10
delete duplicate constant data, 7-10
delete unreferenced sections, 7-10
delete unreferenced symbols, 7-10
derivative definition, 7-22, 7-29
directive, conditional assembly, 4-31
directives, 4-4
directories, setting, 1-7, 1-9

E
EDE, 2-3

build an application, 2-16
create a project, 2-11
create a project space, 2-9
rebuild an application, 2-17
specify development tool options,

2-14
starting, 2-8

ELF/DWARF, archiver, 8-23
ELF/DWARF2 format, 7-8
Embedded Development Environment,

2-3
environment variables, 1-9

ASPCPINC, 1-9
ASTCINC, 1-9
CCTCBIN, 1-9
CCTCOPT, 1-9, 8-8
CTCINC, 1-9
LIBTC1V1_2, 1-10
LIBTC1V1_3, 1-10
LIBTC2, 1-10
LM_LICENSE_FILE, 1-10, 1-16
PATH, 1-9
TASKING_LIC_WAIT, 1-10
TMPDIR, 1-10

error messages
assembler, 6-9
compiler, 5-19
linker, 7-41

expression simplification, 5-6
expressions, 4-9

absolute, 4-9
relative, 4-9
relocatable, 4-9

F
file extensions, 2-6

Index Index-5

• • • • • • • •

first fit decreasing, 7-9
fixed-point specifiers, 3-47
floating license, 1-12
flow simplification, 5-7
formatters

printf, 3-46
scanf, 3-46

forward store, 5-7
fractional data types, operations, 3-6
frontend

compiler phase, 5-4
optimization, 5-4

function, 4-14
syntax, 4-14

function qualifiers
__bisr_, 3-36
__enable_, 3-36
__indirect, 3-37
__interrupt, 3-32
__stackparm, 3-37
__syscallfunc, 3-34
__trap, 3-33

functions, 3-29

H
hostid, determining, 1-17
hostname, determining, 1-17

I
IF conversion, 5-8
include files

default directory, 5-15, 6-8, 7-17
setting search directories, 1-7, 1-9

incremental linking, 7-18
inline assembly

__asm, 3-19
writing intrinsics, 3-23

inline functions, 3-29
inlining functions, 5-7

input specification, 4-3
installation

licensing, 1-12
Linux, 1-4

Debian, 1-5
RPM, 1-4
tar.gz, 1-5

UNIX, 1-6
Windows 95/98/XP/NT/2000, 1-3

instruction scheduler, 5-8
instructions, 4-4
Intel-Hex format, 7-8
interrupt function, 3-31
interrupt request

disabling, 3-32, 3-36
enabling, 3-36

interrupt service routine, 3-31
defining, 3-32

intrinsic functions, 3-18

J
jump chain, 3-44
jump chaining, 5-7
jump table, 3-44

L
labels, 4-3, 4-8
libraries

rebuilding, 3-48
setting search directories, 1-8, 1-10

library, user, 7-14
library maintainer, 8-23
license

floating, 1-12
node-locked, 1-12
obtaining, 1-12
wait for available license, 1-10

license file
location, 1-16

TriCore User's ManualIndex-6
IN
D
E
X

setting search directory, 1-10
licensing, 1-12
linker, optimizations, 7-9
linker error messages, 7-41
linker options, overview, 7-12
linker output formats

ELF/DWARF2 format, 7-8
Intel-Hex format, 7-8
Motorola S-record format, 7-8

linker script file, 7-8
architecture definition, 7-22, 7-25
boad specification, 7-23
bus definition, 7-23
derivative definition, 7-22, 7-29
memory definition, 7-23, 7-31
processor definition, 7-23, 7-37
section layout definition, 7-24, 7-33

linker script language (LSL), 7-8, 7-20
external memory, 7-31
internal memory, 7-29
off-chip memory, 7-31
on-chip memory, 7-29

linking process, 7-4
linking, 7-6
locating, 7-7
optimizing, 7-9

LM_LICENSE_FILE, 1-16
local label override, 4-30
lookup table, 3-44
loop transformations, 5-7
lsl, 7-20

M
macro, 4-4

argument concatenation, 4-27
argument operator, 4-27
argument string, 4-29
call, 4-25
conditional assembly, 4-31
definition, 4-24

dup directive, 4-31
local label override, 4-30
return decimal value operator, 4-28
return hex value operator, 4-29

macro argument string, 4-29
macro operations, 4-24
macros, 4-24
macros in C, 3-28
make utility, 8-9

.DEFAULT target, 8-14

.DONE target, 8-14

.IGNORE target, 8-14

.INIT target, 8-14

.PRECIOUS target, 8-15

.SILENT target, 8-14

.SUFFIXES target, 8-14
conditional processing, 8-21
dependency, 8-13
else, 8-21
endif, 8-21
exist function, 8-21
export line, 8-22
functions, 8-20
ifdef, 8-21
ifndef, 8-21
implicit rules, 8-16
invocation, 8-11
macro definition, 8-11
macro MAKE, 8-18
macro MAKEFLAGS, 8-18
macro PRODDIR, 8-18
macro SHELLCMD, 8-19
macro TMP_CCOPT, 8-19
macro TMP_CCPROG, 8-19
makefile, 8-9, 8-12
match function, 8-20
nexist function, 8-21
options (overview), 8-11
predefined macros, 8-18
protect function, 8-20
rules in makefile, 8-15
separate function, 8-20

Index Index-7

• • • • • • • •

special targets, 8-14
makefile, 8-9

automatic creation of, 2-13
updating, 2-13
writing, 8-12

memory definition, 7-23, 7-31
memory qualifiers, 3-10

__a0, 3-10
__a1, 3-10
__a8, 3-10
__a9, 3-10
__atbit(), 3-13, 3-14
__far, 3-10
__near, 3-10

MISRA C, 5-16
mktc. See make utility
Motorola S-record format, 7-8

N
node-locked license, 1-12

O
operands, 4-5
opimizations, size/speed trade-off, 5-9
optimization (backend)

coalescer, 5-8
IF conversion, 5-8
instruction scheduler, 5-8
loop transformations, 5-7
peephole optimizations, 5-8
predicate optimization, 5-8
subscript strength reduction, 5-7
use of SIMD instructions, 5-8

optimization
backend, 5-5
compiler, common subexpression

elimination, 5-6
frontend, 5-4

optimization (frontend)
conditional jump reversal, 5-7
constant propagation, 5-6
control flow simplification, 5-7
dead code elimination, 5-7
expression simplification, 5-6
flow simplification, 5-7
forward store, 5-7
inlining functions, 5-7
jump chaining, 5-7
switch optimization, 5-7

optimizations
compiler, 5-5
copy table compression, 7-10
delete duplicate code sections, 7-10
delete duplicate constant data, 7-10
delete unreferenced sections, 7-10
delete unreferenced symbols, 7-10
first fit decreasing, 7-9

P
pack pragma, 3-9
packed data types, 3-8

halfword packing, 3-8
parser, 5-4
peephole optimization, 5-5, 5-8
pipeline scheduler, 5-5
Pragmas

section, 3-42
section all, 3-42
section code_init, 3-43
section const_init, 3-43
section data_overlay, 3-43
section vector_init, 3-43

pragmas, 3-25
inline, 3-30
noinline, 3-30
pack, 3-9
smartinline, 3-30

TriCore User's ManualIndex-8
IN
D
E
X

predefined assembler symbols
__ASPCP__, 4-9
__ASTC__, 4-9
__FPU__, 4-9
__MMU__, 4-9
__TC2__, 4-9

predefined macros in C, 3-28
__CTC__, 3-28
__DOUBLE_FP__, 3-28
__DSPC__, 3-28
__DSPC_VERSION__, 3-28
__FPU__, 3-28
__SINGLE_FP__, 3-28
__TASKING__, 3-28

predefined symbols, 4-8
predicate optimization, 5-8
printf formatter, 3-46
processor, selecting a core, 5-10, 6-5
processor definition, 7-23, 7-37
project, 2-7

add new files, 2-12
create, 2-11

project file, 2-7
project space, 2-7

create, 2-9
project space file, 2-7

R
rebuilding libraries, 3-48
register allocator, 5-5
registers, 4-5, 4-8
relocatable object file, 7-3

debug information, 7-6
header information, 7-6
object code, 7-6
relocation information, 7-6
symbols, 7-6

relocation expressions, 7-7
reserved symbols, 4-8
return decimal value operator, 4-28

return hex value operator, 4-29

S
scanf formatter, 3-46
scanner, 5-4
section, 3-42
section all, 3-42
section code_init, 3-43
section data_overlay, 3-43
section layout definition, 7-24, 7-33
section names, 3-41
sections, 3-41, 4-22

absolute, 4-23
activation, 4-22
cleared, 4-23
definition, 4-22

SIMD optimizations, 5-8
software installation

Linux, 1-4
UNIX, 1-6
Windows 95/98/XP/NT/2000, 1-3

stack model, 3-37
startup code, 7-18
statement, 4-3
storage types. See memory qualifiers
string, substring, 4-11
subscript strength reduction, 5-7
substring, 4-11
switch

auto, 3-44
jumptab, 3-44
linear, 3-44
lookup, 3-44
restore, 3-44

switch optimization, 5-7
switch statement, 3-44
symbol, 4-8

predefined, 4-8
syntax of an expression, 4-10
system call, 3-34

Index Index-9

• • • • • • • •

T
temporary files, setting directory, 1-10
trap function, 3-31
trap identification number, 3-33
trap service routine, 3-31, 3-33
trap service routine class 6, 3-34

U
updating makefile, 2-13

utilities
archiver, 8-23
artc, 8-23
cctc, 8-4
control program, 8-4
make utility, 8-9
mktc, 8-9

V
verbose option, linker, 7-17

TriCore User's ManualIndex-10
IN
D
E
X

	TABLE OF CONTENTS
	1. SOFTWARE INSTALLATION AND CONFIGURATION
	1.1 Introduction
	1.2 Software Installation
	1.2.1 Installation for Windows
	1.2.2 Installation for Linux
	1.2.3 Installation for UNIX Hosts

	1.3 Software Configuration
	1.3.1 Configuring the Embedded Development Environment
	1.3.2 Configuring the Command Line Environment

	1.4 Licensing TASKING Products
	1.4.1 Obtaining License Information
	1.4.2 Installing Node-Locked Licenses
	1.4.3 Installing Floating Licenses
	1.4.4 Modifying the License File Location
	1.4.5 How to Determine the Hostid
	1.4.6 How to Determine the Hostname

	2. GETTING STARTED
	2.1 Introduction
	2.2 Working With Projects in EDE
	2.3 Start EDE
	2.4 Using the Sample Projects
	2.5 Create a New Project Space with a Project
	2.6 Set Options for the Tools in the Toolchain
	2.7 Build your Application
	2.8 How to Build Your Application on the Command Line
	2.9 Debug getstart.elf

	3. TRICORE C LANGUAGE
	3.1 Introduction
	3.2 Data Types
	3.2.1 Fundamental Data Types
	3.2.2 Fractional Data Types
	3.2.3 Bit Data Type
	3.2.4 Packed Data Types

	3.3 Memory Qualifiers
	3.3.1 Declare a Data Object in a Special Part of Memory
	3.3.2 Declare a Data Object at an Absolute Address: __at() and __atbit()

	3.4 Data Type Qualifiers
	3.4.1 Circular Buffers: __circ
	3.4.2 Declare an SFR Bit field: __sfrbit16 and __sfrbit32

	3.5 Intrinsic Functions
	3.6 Using Assembly in the C Source: __asm()
	3.7 Controlling the Compiler: Pragmas
	3.8 Predefined Macros
	3.9 Functions
	3.9.1 Inlining Functions: inline
	3.9.2 Interrupt and Trap Functions
	3.9.2.1 Defining an Interrupt Service Routine
	3.9.2.2 Defining a Trap Service Routine
	3.9.2.3 Defining a Trap Service Routine Class 6: __syscallfunc()
	3.9.2.4 Enabling Interrupt Requests: __enable_, __bisr_()

	3.9.3 Function Calling Modes: __indirect
	3.9.4 Parameter Passing and the Stack Model: __stackparm

	3.10 Compiler Generated Sections
	3.11 Switch Statement
	3.12 Libraries
	3.12.1 Overview of Libraries
	3.12.2 Printf and Scanf Formatting Routines
	3.12.3 Rebuilding Libraries

	4. TRICORE ASSEMBLY LANGUAGE
	4.1 Introduction
	4.2 Assembly Syntax
	4.3 Assembler Significant Characters
	4.4 Operands
	4.4.1 Operands and Addressing Modes
	4.4.2 PCP Addressing Modes

	4.5 Symbol Names
	4.6 Assembly Expressions
	4.6.1 Numeric Constants
	4.6.2 Strings
	4.6.3 Expression Operators

	4.7 Built-in Assembly Functions
	4.8 Assembler Directives and Controls
	4.8.1 Overview of Assembler Directives
	4.8.2 Overview of Assembler Controls

	4.9 Working with Sections
	4.10 Macro Operations
	4.10.1 Defining a Macro
	4.10.2 Calling a Macro
	4.10.3 Using Operators for Macro Arguments
	4.10.4 Using the .DUP, .DUPA, .DUPC, .DUPF Directives as Macros
	4.10.5 Conditional Assembly: .IF, .ELIF and .ELSE Directives

	5. USING THE COMPILER
	5.1 Introduction
	5.2 Compilation Process
	5.3 Compiler Optimizations
	5.3.1 Optimize for Size or Speed

	5.4 Calling the Compiler
	5.5 How the Compiler Searches Include Files
	5.6 Compiling for Debugging
	5.7 C Code Checking: MISRA C
	5.8 C Compiler Error Messages

	6. USING THE ASSEMBLER
	6.1 Introduction
	6.2 Assembly Process
	6.3 Assembler Optimizations
	6.4 Calling the Assembler
	6.5 How the Assembler Searches Include Files
	6.6 Generating a List File
	6.7 Assembler Error Messages

	7. USING THE LINKER
	7.1 Introduction
	7.2 Linking Process
	7.2.1 Phase 1: Linking
	7.2.2 Phase 2: Locating
	7.2.3 Linker Optimizations

	7.3 Calling the Linker
	7.4 Linking with Libraries
	7.4.1 Specifying Libraries to the Linker
	7.4.2 How the Linker Searches Libraries
	7.4.3 How the Linker Extracts Objects from Libraries

	7.5 Incremental Linking
	7.6 Linking the C Startup Code
	7.7 Controlling the Linker with a Script
	7.7.1 Purpose of the Linker Script Language
	7.7.2 EDE and LSL
	7.7.3 Structure of a Linker Script File
	7.7.4 The Architecture Definition: Self-Designed Cores
	7.7.5 The Derivative Definition: Self-Designed Processors
	7.7.6 The Memory Definition: Defining External Memory
	7.7.7 The Section Layout Definition: Locating Sections
	7.7.8 The Processor Definition: Using Multi-Processor Systems

	7.8 Linker Labels
	7.9 Generating a Map File
	7.10 Linker Error Messages

	8. USING THE UTILITIES
	8.1 Introduction
	8.2 Control Program
	8.2.1 Calling the Control Program

	8.3 Make Utility
	8.3.1 Calling the Make Utility
	8.3.2 Writing a Makefile

	8.4 Archiver
	8.4.1 Calling the Archiver
	8.4.2 Examples

	INDEX

