TASKING VX-toolset for 8051
User Guide

MA164-800 (v1.2) July 12, 2013

Copyright © 2013 Altium BV.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium BV. Unauthorized duplication of this work may also be prohibited by local statute.
Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, TASKING,
and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other
registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark
rights to the same are claimed.

Table of Contents

I O 1= T o > T TS 1
L1 DALA TYPES e 1
1.2, ACCESSING MEBMIOIY ..ottt e e e e e e e e e e e 3

1.2.1. Memory Type QUAlIfIErS ... 3
1.2.2. MeMOrY MOEISeeieitii e e 5
1.2.3. Placing an Object at an Absolute Address: __ at()oveveiiiiiiiiiiiiiiieeeaeans 7
1.2.4. ACCESSING BiItS ..ouiiiiiiii i 8
1.2.5. Accessing Hardware from C: __sfr, __ bsfr ... 10
1.3. Using Assembly in the C Source: _ asm() ..o.iuiririririiii e aas 11
O N] o1 (= 18
1.5. Pragmas to Control the ComPIiler ..o e 22
1.6. Predefined PreproCesSOr MACIOSu.iuiiieiii e e e et aaaas 27
LL7.VANADIES .o 28
1.7.1. AUtOMALIC VariabIes ..o 28
1.7.2. Initialized Variablesooiiiii 29
1.7.3. Non-Initialized Variableso 29
TR 1o PP 29
1.9, SWILCH STAIEMIENT ...t et e 30
O 0 Tod 1o OO 32
1.10.1. Calling CONVENTION ...uitititititetet et et et e e et e et e e e e e aean 32
1.10.2. StACK USAGE .. uiviniiiiii et 33
1.10.3. REGISIET USAQE . uuviiiiiiii ettt e e e e e e e e et 36
1.10.4. Inlining FUNCHONS: INIINEuiuiti e 37
1.10.5. INterrupt FUNCHIONS ...uieieiti e e eaan 38
1.20.6. INtrINSIC FUNCHONS ..ottt e et 41
I Y=Y i (o A= T o PP 44

2. ASSEMDBIY LANQUAGE ... vttt et e e a7
2.1 ASSEMDBIY SYNTAX ...ttt a7
2.2. Assembler Significant Charactersccoiiiiiiiiiii e 48
2.3. Operands of an Assembly INSTIUCHIONoiiini e 49
b2 S V141 o T I NN =T = 49

2.4.1. Predefined Preprocessor SYmbBOISc.ouiuiiiii i 50
2. D, RIS IS L.ttt 51
2.6. Special FUNCON REQISIEISuititit it e aaas 51
2.7, ASSEMDBIY EXPIrESSIONS . uuviiiiiii it e et 52
2.7.2. NUMEFIC CONSEANES ...ttt e et ea e 52
A S {413V 1 PSPPI 53
2.7.3. EXPression OPEIatOrSc.iuiuiiiiiiiiet ettt e e aaaans 53
2.7.4. Symbol Types and EXPresSSion TYPES ...ouiuiririrititatetetee e eaes 55
AR S TV - Tod o I o =T o] o Tod =111 o o 56
2.8.1. Defining and Calling MaCrOSvuiuiiiiie e 57
2.8.2. Local SYmboIS iN MACIOSc.iviiiiiiti et 60
2.8.3. Built-in Macro Preprocessing FUNCLONScooviiiiiiiiiiiiieeeee e 61
2.8.4. MACIO DEIIMIEIS ...ttt 91
2.8.5. Literal Mode versus Normal MOAeco.ouiiiiiiiiiiii e 94
2.8.6. Algorithm for Evaluating Macro Callscoooiiiiiie e 96
2.9. Assembler Directives and CONrOISiuieirieiii e 97
2.9.1. ASSEMDIET DIrECHIVES ...ueuiiiiiii e e e aans 98

TASKING VX-toolset for 8051 User Guide

2.9.2. ASSEMDIEr CONLIOISviei e 123

2.10. GENETIC INSIIUCTIONS ... ettt ettt ettt et ettt et et e e enenas 146
3. USING the € COMPIIET ..ot ettt 147
3.1, COMPIIALION PrOCESSviiiitieie et et ettt et et eeaas 147
3.2. Calling the C COMPIIET ... ot 148
3.3.The C StArtUP COUEeeitt e ettt aenas 150
3.4. How the Compiler Searches INclude Files ..o 152
3.5. Compiling for DEDUGGING ... vneeiie e 153
3.6. Compiler OPtIMIZAtIONSuieie e 154
3.6.1. Generic Optimizations (frontend)cc.oviiiiii e 155
3.6.2. Core Specific Optimizations (backend)cooviiiiiiiii e 156
3.6.3. Optimize for Code Size or Execution Speedccovviiiiiiiiiiiiiiieen 157

3.7. Influencing the BUIld TIME ... e 159
3.8. StatiC COUE ANAIYSIS ...ttt 161
3.8.1. C Code Checking: MISRA-C ...t 162

3.9. C Compiler ErrOr MESSAQES .. .uvutenetiet et ettt et et 164
A PIORIING et 167
4. 1. What IS Profiling? ... 167
4.2. Profiling at Compile Time (Static Profiling)cooviiiiiii e 168
4.2.1. Step 1: Build your Application with Static Profilingcocoviiiiiniiinns 168
4.2.2. Step 2: Displaying Static Profiling ReSUItSccooiiiiiiiiiia 169

5. USING the ASSEMDIETot e 173
5.1, ASSEMDIY PrOCESS ...ttt e 173
5.2. Calling the ASSEMDIET ..o 174
5.3. How the Assembler Searches Include Fles ..o 175
5.4. Assembler OptimiZatioNSveoeiiii e 176
5.5.Generating @ LISt FIle ... 176
5.6. ASSEMDIEr EFTOr MESSAUES ... vueuiteiiiiit et ettt 177
6. USING the LINKETottt et 179
B.1. LINKING PrOCESScuiiiitiei et et 179
6.1.1. Phase 1: LINKING .. .uintiniiieee et 181
6.1.2. PhaSE 2: LOCALNG ... veniniteiei ettt et 182

6.2. CalliNg the LINKETeie e 183
6.3. LinKing With LIDraries 184
6.3.1. How the Linker Searches Librariescooeiiiiiiiiie e 186
6.3.2. How the Linker Extracts Objects from Librariescooveiiiiiiiiiniinniennen. 187

6.4. Incremental LINKINGoeie e e 187
6.5. IMporting BiNary FilESouirii i 188
6.6. LINKer OPtMIZALIONSvieiiiiei e et 189
6.7. Controlling the Linker With @ SCFHPL ..o e 190
6.7.1. Purpose of the Linker Script LANQUAQEocvviiiiiiiiiiiiieenee e 190
6.7.2. EClIPSE @NA LSL ...eiiitieie et e 190
6.7.3. Structure of a Linker SCript Filecooeiiiii e 192
6.7.4. The Architecture Definitioncooiiiii e 195
6.7.5. The Derivative Definitioncooiiiiiii e 197
6.7.6. The Processor Definitioncc.ovuiriiiiii e 199
6.7.7.The Memory Definitionc.ouiiiii e 199
6.7.8. The Section Layout Definition: Locating SeCtioNScovvveviriiiininiienieninnn. 201

B.8. LINKEr LADEIS ..o 202
6.9. Generating @aMap File ..o 204

TASKING VX-toolset for 8051 User Guide

6.10. LINKEr ErrOr MESSAUES ... uuvuiitiietiett et ettt et 205
7. USING the ULIIEIES .. vttt 207
7.1, CONEIOL PrOGIaM ...ttt ettt et et ene e 207
7.2. Make ULty MKBL ... e et 209
7.2.1. Calling the Make ULIILYoouiuiiii e 210
7.2.2.Writing a Makefile ... 211

7.3. Make ULIIItY @IMK ... e 220
7.3.1. MaKefile RUIES ...t 220
7.3.2. MAKETIIE DIFECHIVES ...ttt e e 222
7.3.3. MACro DEfiNItIONS ... 222
7.3.4. MaKefile FUNCHONSeiieiiie e e 225
7.3.5. ConditioNal PrOCESSINGcuviieiietii e 225
7.3.6. MAKETIIE PAISING .. .uietieiiii e 226
7.3.7. Makefile Command ProCESSINGvuiuriiiiiiiei e 227
7.3.8. Calling the amk Make ULIlItYoviiriiii e 228

T ATCRIVEL o e 229
7.4.1. Calling the ArCRhIVET 229
7.4.2. ArChiVEr EXAMPIES ..ot 231

7.5. EXPIre Cache ULIlILYc.ouiiini e e e 233
8. USING the DEDUGOET .. .e ettt et ettt e aeaes 235
8.1. Reading the Eclipse DOCUMENTALIONcuiuiiitiiiiei et 235
8.2. DebUgQiNg @ 8051 PrOJECEuiuitieneteiee et ettt e 235
8.3. Creating a Customized Debug Configurationcocoeiiiiiiiiii e 236
8.4. TrOUDIESNOOUING . ..v ettt e 242
8.5. TASKING DebUQ PEISPECLIVEviiiiiiiitiee et neeaes 242
8.5.1. DEDUG VIBW ..ottt e 243
8.5.2. BreakpOiNtS VIEWuiieiiieie ettt e 245
8.5.3. File System Simulation (FSS) VIEWcciuiiiiiiiiiie e 246
8.5.4. DiSASSEMDBIY VIBWeiieii e 247
8.5.5. EXPreSSIONS VIBW . ..ciiiiiiii ettt e 247
8.5.6. MEIMOIY VIBW ...ttt e e e e 248
8.5.7. Compare APPLICAtION VIBWuuieii e 249
8.5.8. HEAP VIBW .o 249
8.5.9. LOGUING VIBW .. etieiie ettt et et e 250
8.5.10. RTOS VIBW ...ttt ettt et et et et ettt et e s 250
8.5.11. REGISIEIS VIBW ..ottt ettt 250
8.5.12. TrACE VIBW ..ottt ettt e e 251

LS B [0 1o] I @] o] 1To] o - PP 253
9.1. Configuring the Command Line ENVIFONMENTouiviiieiiiiiine e 257
9.2. C COMPIIET OPLIONS ...ttt ettt 259
9.3. ASSEMDIET OPLIONS ...ttt e 322
9.4, LINKET OPLIONS ...ttt ettt et 365
9.5. Control Program OPLIONSc..vueeieeie ettt e 409
9.6. Make ULIlity OPLIONSceeit ettt e et ettt 460
9.7. Parallel Make ULility OPtIONSueuireiteei et eenas 488
9.8. ArChIVET OPLIONS ...ttt ettt ettt e 502
9.9. Expire Cache ULility OPtIONSeuieeit et et neenas 516
L0, LIDIAIIES ettt 527
10.1. LIbrary FUNCHONS ...ttt es 527
F0. 1.0 @SSO N i 528

TASKING VX-toolset for 8051 User Guide

10.1.2. ctype.h and WCLYPE.N ..o 528
10.1.3.dBG. N e 529
10,14, ITNO.N L 529

L0, 1.5, fONEL N o 530
L1016, BNV Lo 530
L1017, FlOALN Lo 531
10.1.8. inttypes.h and Stdint.h 532
10,00, 100 e 532
10.1.20. SOBAB.1 ..ot 532
L0100, TMIES. N e e 533
10,122, 10CAIE.N oo 533
10.1.23. MAIIOC.N o 533
10.1.14. math.h and tgmath.h ... 534
10,105, SEUMP.N e 538
L0.1.16. SIgNALIN o 538
L0107, SEHANG.N e 539
10.1.18. SADOOLN ..o 539
10.1.19. StAAEf.N oo 540
10.1.20. SEAINEN oo e 540
10.1.21. stdio.h @and WCharh ..o 540
10.1.22. stdlib.h @and WChar.h ... 548
10.1.23. string.h and Weharh ... 551
10.1.24. time.h and WChar.h 552
10.1.25. UNISEA.N oot e 555
10.1.26. WCNAIN .o 556
10,127 WOEYPE. N e 557

10.2. C Library REENIIANCYvuiiitiiiee et aes 557
I TS O L= o g PP 569
11.1. Assembler List File FOrMALooiriei i 569
11.2. Linker Map File FOIMAL et 570
12. OBJECt File FOIMALSttt ettt 575
12.1. ELF/DWARF ODJECT FOIMALo.ieeieiei et 575
12.2. Intel HEX RECOIA FOIMALoinitiitie et e 575
12.3. Motorola S-ReCOrd FOIMALvuitiiiie e 578
13. Linker SCript LANGUAGE (LSL) .. euruiiiteei ettt 581
13.1. Structure of @ Linker SCript File ... 581
13.2. Syntax of the Linker SCript LANQUAGJEovuirieieiiieieee e 583
13,20, PrePIrOCESSING . teutttei ettt ettt et ettt ettt 583
13.2.2. LEXICAI SYNTAX .+ttt 584
13.2.3. 1dentifiers @nd TaGScverineeiie e 584
13.2.4. EXPIESSIONS ...vuiitiiet et ettt 585
13.2.5. BUIlt-IN FUNCLONSvieieiei e e 585
13.2.6. LSL Definitions in the Linker Script Filec.cooiiiii e 587
13.2.7. Memory and Bus Definitionsociuieiiiii e 587
13.2.8. Architecture Definitioncoieeiriiii e 590
13.2.9. Derivative Definitionc.ouiiniriiii e 593
13.2.10. Processor Definition and Board Specificationcocoviveiiiiniiiniinnennn. 593
13.2.10. SECHON SEIUD . ontinitiet et et ettt 594
13.2.12. Section Layout Definitioncoeviiriiii e 594

13.3. EXPression EVAIUALIONvuieiiteiee et 599

Vi

TASKING VX-toolset for 8051 User Guide

13.4. Semantics of the Architecture Definitioncooiiiiii 599
13.4.1. Defining @an ArChitECIUIEieiii i e 600
13.4.2. Defining INtErNal BUSESiuiiiiiiie e 601
13.4.3. Defining AdAreSS SPACESuiriiiiitiiee e 602
1344, MAPPINGS ettt et 606

13.5. Semantics of the Derivative Definitioncooiiiiiii e, 609
13.5.1. Defining @ DErIVALIVEouiiitiie e 610
13.5.2. Instantiating Core ArchitECIUIrESo.vuiuiieiiiii e 610
13.5.3. Defining Internal Memory and BUSESccveiiiiiiiiiiiiiienee e 611

13.6. Semantics of the Board SpecifiCationcocoiiiiiiiii e 613
13.6.1. DefiniNg @ PrOCESSONeiieitieite et e 613
13.6.2. Instantiating DEeriVALIVESc.iiuiiiiii e 614
13.6.3. Defining External Memory and BUSESccveiiiiiiiiiiiiiieie e 614

13.7. Semantics of the Section Setup Definition ..o 615
13.7.1. SEttiNg UP 8 SECHIONvuitiiiteett ettt ettt e 616

13.8. Semantics of the Section Layout Definitioncovviiiiiiiii e 617
13.8.1. Defining @ SECHON LAYOULc.uvuitieiiie e e 618
13.8.2. Creating and Locating Groups Of SECHONScoviviiiiiiiiiiiieiiieieeeenen 619
13.8.3. Creating or Modifying Special SECHONSoeiviiiiiiiiiiie e 625
13.8.4. Creating SYMDOIS ..o 629
13.8.5. Conditional Group StatemMENTSeueuiiieieee e 629

L4, MISRA-C RUIBS ...t e ettt eans 631

L14.1 MISRA-C:IL1098 ..ottt et 631

L14.2. MISRA-C:2004 ..ottt et e 635

Vil

TASKING VX-toolset for 8051 User Guide

viii

Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING C compiler for 8051 fully supports the ISO-C standard and add extra possibilities to program
the special functions of the target.

In addition to the standard C language, the compiler supports the following:

» keywords to specify memory types for data and functions

« attribute to specify absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

 predefined macros

« the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. Data Types

Fundamental Data Types

The C compiler supports the ISO C99 defined data types. The sizes of these types are shown in the
following table.

CType Size Align Limits
__bit 1 1 Oor1l
_Bool 1 8 Oorl
signed char 8 8 [-27, 27-1]
unsigned char 8 8 [0, 28-1]
short 16 8 [-27°, 27°-1)
unsigned short 16 8 [0, 216-1]
int 16 8 [-2°, 2151

TASKING VX-toolset for 8051 User Guide

CType Size Align Limits
unsigned int 16 8 [0, 216-1]
enum 1 1 Oorl

8 8 [-2’, 2"-1] or [0, 28-1é

16 8 [-2%°, 28%-1] or [0, 2%°-1]
long 32 8 [-2%%, 2%
unsigned long 32 8 [0, 232-1]
long long ” 32 8 [-231, 231-1]
unsigned long long - 32 8 [0, 232-1]
float (23-bit mantissa) 32 8 [-3.402E+38, —1.175E-38]

[+1.175E-38, +3.402E+38]

double 32 8 [-3.402E+38, —1.175E-38]
long double [+1.175E-38, +3.402E+38]
pointer to __sfr, __ bsfr, _ data, 8 8 [0, 28-1]
__bdata, __idata, __pdata or __bit
pointer to function, _ xdata or __rom |16 8 [0, 216-1]

" When you use the enumtype, the compiler will use the smallest sufficient type (__bi t, char,
unsi gned char ori nt), unless you use C compiler option --integer-enumeration (always use
16-bit integers for enumeration).

" The ong | ong types are treated as | ong. The doubl e and | ong doubl e types are always
treated as f | oat .
Bit Data Type

You can use the __bi t type to define scalars in the bit-addressable area and for the return type of
functions. A struct containing bit-fields cannot be used for this purpose, for example because the struct
is aligned at a byte boundary. Unlike the _Bool type the __bi t type is aligned on a bit boundary.

The following rules apply to __bi t type variables:
« A __bit type variable is always unsigned.

« A __bit type variable can be exchanged with all other type-variables. The compiler generates the
correct conversion.

A __bit type variable is like a boolean. Therefore, if you convertani nt type variabletoa __bi t type
variable, it becomes 1 (true) if the integer is not equal to 0, and 0 (false) if the integer is 0. The next
two C source lines have the same effect:

bit_variabl e
bit_variabl e

i nt_vari abl e;
int_variable ? 1 : O;

C Language

» Pointerto __bi t is allowed, but you cannot take the address of a bit on the stack.

The __bi t type is allowed as a structure member. However, a bit structure can only contain members
of type __bi t, and you cannot push a bit structure on the stack or return a bit structure via a function.

* Aunionofa__bit structure and another type is not allowed.
 A__bit type variable is allowed as a parameter of a function.
« A__bit type variable is allowed as a return type of a function.
* A__bit typed expression is allowed as switch expression.

» The si zeof ofa__bit typeis 1.

« Aglobal or static __bi t type variable can be initialized.

« A__Dbit type variable can be declared volatile.

__bitsizeof() operator

The si zeof operator always returns the size in bytes. Use the __bi t si zeof operator in a similar way
to return the size of an object or type in bits.

__bitsizeof (object | type)

1.2. Accessing Memory

The TASKING VX-toolset for 8051 toolset has several keywords you can use in your C source to specify
memory locations. This is explained in the sub-sections that follow.

1.2.1. Memory Type Qualifiers

In the C language you can specify that a variable must lie in a specific part of memory. You can do this
with a memory type qualifier. If you do not specify a memory type qualifier, data objects get a default
memory type based on the memory model.

You can specify the following memory types:

Qualifier |Description Location Maximum Pointer |Pointer Section
object size size arithmetic |type
__bdata |Bit addressable Bit addressable Size of bit 8-bit 8-bit bdata
memory in internal |addressable
RAM memory
__data |Direct addressable |Lower 128 bytes in |128 bytes 8-bit 8-bit data
internal RAM data |internal RAM
__idata [Indirect addressable |Internal RAM Size of internal |8-bit 8-bit idata
internal RAM data RAM

TASKING VX-toolset for 8051 User Guide

Qualifier | Description Location Maximum Pointer |Pointer Section
object size size arithmetic [type

__sfr Special function Upper 128 bytes in |No allocation 8-bit 8-bit --
register internal RAM possible

__bsfr |Bit addressable Upper 128 bytes in |No allocation 8-bit 8-bit --
special function internal RAM possible
register

__xdata |External RAM data |External RAM 64 kB 16-bit 16-bit xdata

__pdata [Page in external RAM |External RAM 256 bytes 8-bit 8-bit pdata
data

__rom External ROM data |External ROM 64 kB 16-bit 16-bit rom

" The default section name is equal to the section type followed by a single underscore and the
name of the allocated object. You can change the section name with the #pr agna secti on or
command line option --rename-sections.

" Because the SFR area has a predefined layout (little-endian), it is not possible to allocate
variables in this area. The SFR area is only accessible through a direct addressing mode. Therefore,
a warning will be generated when a pointerto __sfr or __bsfr is dereferenced.

Examples using explicit memory types

__data char c;

__rom char text[] = "No snoking";
__xdata int array[10] [4];

__idata long |I;

The memory type qualifiers are treated like any other data type specifier (such as unsi gned). This means
the examples above can also be declared as:

char __data C;

char __rom text[] = "No snoking";
int _ xdata array[10][4];
long __idata |;

1.2.1.1. Pointers with Memory Type Qualifiers
Pointers for the 8051 can have two types: a 'logical’ type and a memory type. For example,
__romchar *__data p; /* pointer residing in data, pointing to ROM */

means p has memory type __dat a (p itself is allocated in on-chip RAM), but has logical type 'character
in target memory space ROM'. The memory type qualifier used to the left of the *', specifies the target
memory of the pointer, the memory type qualifier used to the right of the **, specifies the storage memory
of the pointer.

C Language

The 8051 C compiler is very efficient in allocating pointers, because it recognizes far (2 byte) and near
(1 byte) pointers. Pointers to __data, __idata, __pdata, __bdata and __bit have a size of 1 byte, whereas
pointers to __rom, __ xdata and functions (in ROM) have a size of 2 bytes.

Pointer conversions

Conversions of pointers with the same qualifiers are always allowed. The following table contains the
additionally allowed pointer conversions. Other pointer conversions are not allowed to avoid possible
run-time errors.

Source pointer Destination pointer
__bdata __data

__bdata __idata

__data __idata

__pdata __xdata

__bsfr _ sfr

1.2.1.2. Structure Tags with Memory Type Qualifiers

A tag declaration is intended to specify the layout of a structure or union. If a memory type is specified,
it is considered to be part of the declarator. The tag name itself, nor its members can be bound to any
storage area, although members having type "... pointer to" do require one. The tag may then be used
to declare objects of that type, and may allocate them in different memories. The following example
illustrates this constraint.

struct S {
__xdata int i; /* referring to storage: not correct */
__idata char *p; /* used to specify target nenory: correct */

b

In the example above the 8051 compiler ignores the erroneous __xdat a memory type qualifier (and
issues a warning message).

1.2.1.3. Typedefs with Memory Type Qualifiers

Typedef declarations follow the same scope rules as any declared object. Typedef names may be
(re-)declared in inner blocks but not at the parameter level. However, in typedef declarations, memory
type qualifiers are allowed. A typedef declaration should at least contain one type qualifier.

Example using memory types with typedefs:
typedef __idata int | DATINT; /* menory type __idata: OK */

typedef int _ data *DATAPTR /* logical type _ data,
menory type 'defaul t' */

1.2.2. Memory Models

The C compiler supports three data memory models, listed in the following table.

TASKING VX-toolset for 8051 User Guide

Memory model [Description Letter |Max RAM size |Default data memory type
Small Direct addressable s 128 bytes __data
internal RAM
Auxiliary page One page of external |a 256 bytes __pdata
RAM
Large External RAM I 64 kB __xdata

Each memory model defines a default memory type for objects that do not have a memory type qualifier
specified. By default, the 8051 compiler uses the small memory model. With the C compiler option --model
you can specify another memory model. Per memory model you can choose to use reentrancy which
enables you to call functions recursively.

You can overrule the default memory type with one of the memory type qualifiers. This allows you to
exceed the default maximum RAM size. For information on the memory types, see Section 1.2.1, Memory
Type Qualifiers.

Small memory model

By default the 8051 compiler uses the small memory model. In the small memory model all data objects
with the default memory type and the stack (used for function parameter passing) must fit in the direct
addressable area of internal RAM. Objects with an explicit memory type qualifier can exceed this limitation
(for example an object qualified as __xdat a or __pdat a). Note that the stack length depends upon the
nesting depth of the various functions. Accessing data in internal RAM is considerably faster than accessing
data in external RAM. Therefore, it is useful to place often used variables in internal data memory and
less often referenced data elements in external data memory.

Large memory model

When the compiler uses the large memory model to access data, the produced code is larger and in
some cases slower than the code for a similar operation in one of the other memory models.

Auxiliary page memory model

The auxiliary page memory model is especially interesting for derivatives with 256 bytes of 'external' RAM
on chip. All data objects with the default memory type must fit in one 256 bytes page.

Reentrancy

Optionally you can choose to enable reentrancy. If you select reentrancy, a (less efficient) virtual dynamic
stack is used which allows you to call functions recursively. With reentrancy, you can call functions at any
time, even from interrupt functions.

Select the memory model in Eclipse
To select the memory model to compile for:
1. Select C Compiler » Memory Model.

2. Select the Small, Auxiliary or Large compiler memory model.

C Language

3. Optionally enable the option Allow reentrant functions.

__MODEL__

The compiler defines the preprocessor symbol __ MODEL__ to the letter representing the selected memory
model. This can be very helpful in making conditional C code in one source module, used for different
applications in different memory models.

Example:

#if __ MODEL__ == "'s'
/* this part is only for the small nenory nodel */

#endi f
1.2.3. Placing an Object at an Absolute Address: __ at()

Just like you can declare a variable in a specific part of memory (using memory type qualifiers), you can
also place an object at an absolute address in memory.

With the attribute __at () you can specify an absolute address.
Examples

unsi gned char Display[80*24] _ at(0x2000);

The array Di spl ay is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Di spl ay.

int i __at(0x1000) = 1,

The variable i is placed at address 0x1000 and is initialized.

void f(void) __at(Oxfoff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:
* The argument of the __at () attribute must be a constant address expression.

* You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

» Avariable that is declared ext er n, is not allocated by the compiler in the current module. Hence it is
not possible to use the keyword __at () on an external variable. Use __at () at the definition of the
variable.

* You cannot place structure members at an absolute address.

TASKING VX-toolset for 8051 User Guide

» Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

1.2.4. Accessing Bits

There are several methods to access single bits in the bit-addressable area. The compiler generates
efficient bit operations where possible.

Masking and shifting
The classic method to extract a single bit in C is masking and shifting.

__bdata unsigned int bitword;
void foo(void)

if(bitword & 0x0004) /1 bit 2 set?

{

bi tword &= ~0x0004; // clear bit 2
}
bi tword | = 0x0001; // set bit O;

}
Built-in macros __getbit() and __putbit()

The compiler has the built-in macros __get bi t () and __put bi t () . These macros expand to shift/and/or
combinations to perform the required result.

__bdata unsigned int bw
void foo(void)

{
if(__getbit(bw, 2))
__putbit(0, bw, 2);
}
__putbit(1, bw, 0);
}

Accessing bits using a struct/union combination

typedef __bdata union

{

unsi gned int word;

struct

{
int b0 : 1;
int bl : 1;
int b2 : 1;
int b3 : 1;
int b4 : 1;
int b5 : 1;

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

} bits;

} bitword_t;

bi tword_t

bw;

b6 :
b7 :
b8 :
b9 :
b10:
b11:
b12:
b13:
b14:
b15:

void foo(void)

RPRRPRPRPRRRRRERE

C Language

= 0;

{ if(bwbits.b3)
{ bw. bi ts. b3
];w.bits.bo =

}

void reset(void)

i bw. word = 0;

Declaring a bit variable with __atbit() (backwards compatibility only)

For backwards compatibility, you can still use the __at bi t () keyword to define a bit symbol as an alias
for a single bit in a bit-addressable object. However, we recommend that you use one of the methods
described above to access a bit.

The syntax of __at bit () is:

__atbit(object, offset)

where, object is a bit-addressable object and offset is the bit position in the object.

The following restrictions apply:

» This keyword can only be applied to __bi t type symbols.

» The bit must be defined vol at i | e explicitly. The compiler issues an error if the bit is not defined

volatile.

» The bitword can be any vol ati | e bit-addressable (__bdat a) object. The compiler issues an error if
the bit-addressable object was not volatile.

TASKING VX-toolset for 8051 User Guide

» The bit symbol cannot be used as a global symbol. An extern on the bit variable, without __at bit (),
will lead to an unresolved external message from the linker, so therefore __at bi t () is required.

Examples

/* Module 1 */
vol atile __bdata unsigned int bitword;
volatile __bit b __atbit(bitword, 3);

/* Module 2 */
extern volatile __bdata unsigned int bitword;
extern volatile __bit b __atbit(bitword, 3);

Drawbacks of __atbit()

The __at bi t () requires all involved objects to be volatile. If your application does not require these
objects to be volatile, you may see in many cases that the generated code is less optimal than when the
objects were not volatile. The reason for that is that the compiler must generate each read and write
access for volatile objects as written down in the C code. Fortunately the standard C language provides
methods to achieve the same result as with __at bi t () . The compiler is smart enough to generate
efficient bit operations where possible.

1.2.5. Accessing Hardware from C: __ sfr, __ bsfr

Using Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special function register file (*. sf r) as symbol names for use with the compiler. An SFR file
contains the names of the SFRs and the bits in the SFRs. These SFR files are also used by the assembler
and the simulator engine. The debugger and the Eclipse IDE use the XML variants of the SFR files. The
XML files include full descriptions of the SFRs and the bit-fields. Also the bit-field values are described.
To decrease compile time the . sf r files do not contain the descriptions. The . sf r files are in written C
and are derived from the XML files.

Example use in C:

#i ncl ude <regtc26x. sfr> /1 include the SFR file
voi d set_sfr(void)
{

SCON = 0x88; /'l use SFR nane

SCR POO_IN 3 = 1; /1 use of bit nane

if (SCR_POO_IN 4 == 1)

{

SCR _PO0_IN 3 = 0;

}

TCON_I E1 = 1; /1 use of bit nane
}

You can find a list of defined SFRs and defined bits by inspecting the SFR file for a specific processor.
The files are named r egcpu. sf r, where cpu is the name of the target processor. You can include the

10

C Language

register file you want use in your source manually or you can specify control program option
--include-sfr-file. The files are located in the standard i ncl ude directory.

Defining Special Function Registers

With the __sfr memory type qualifier you can define a symbol as an SFR. The compiler may assume
that special SFR operations can be performed on such symbols. The compiler can decide to use bit
instructions for those special function registers that are bit accessible, in this case use __bsf r instead
of __sfr.For example, if bits are defined in the SFR definition, these bits can be accessed using bit
instructions.

Note that the __sfr space is little-endian, while the other spaces are big-endian.

For the 8051 only the SFRs at addresses 0x80, 0x88, 0x90, 0x98, 0xa0, 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
0xdO, 0xd8, 0xe0, 0xe8, 0xfO and Oxf8 are bit addressable.

A typical definition of a special function register looks as follows:

typedef struct

_Bool b0 : 1;
_Bool bl : 1;
_Bool b2 : 1;
_Bool b3 : 1;
_Bool b4 : 1;
_Bool b5 : 1;
_Bool b6 : 1;
_Bool b7 : 1;
} __bitstruct_t;
#defi ne SP (*(__sfr volatile unsigned char *) 0x81)

#def i ne TOON (*
#define TOON ITO ((
#define TOON IEO ((

_bsfr volatile __bitstruct_t *) 0x88).__b0)

(__bsfr volatile unsigned char *) 0x88)
*
* _bitstruct_t *) 0x88).__bl)

(_
(__bsfr volatile

Because the special function registers are dealing with I/O, they are declared vol ati | e. Itis incorrect
to optimize away the access to them.

1.3. Using Assembly in the C Source: __asm()

With the keyword __asmyou can use assembly instructions in the C source and pass C variables as
operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and

11

TASKING VX-toolset for 8051 User Guide

which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be
assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

General syntax of the __asm keyword

__asn("instruction_tenplate”
[: output_paramli st
[@ input_paramli st
[: register_reserve_list]]]);

instruction_template Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr
Y%parm_nr Parameter number in the range 0 .. 9.
output_param_list [["=[&]constraint_char" (C_expression)],...]
input_param_list [["constraint_char" (C_expression)],...]
& Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.
constraint _char Constraint character: the type of register to be used for the
C_expression. See the table below.
C_expression Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.
register_reserve_list ["register_name"],...]
register_name Name of the register you want to reserve. For example because this

register gets clobbered by the assembly code. The compiler will not
use this register for inputs or outputs. Note that reserving too many
registers can make register allocation impossible.

Specifying registers for C variables
With a constraint character you specify the register type for a parameter.
You can reserve the registers that are used in the assembly instructions, either in the parameter lists or

in the reserved register list (register_reserve_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

12

C Language

Constraint |Type Operand Remark
character
r register RO - R7 input/output constraint

To be used in places where an Rn addressing
mode is allowed. It can be turned into a direct
addressing mode by using an explicit "A" prefix
in the inline assembly code.

b bit register B.0-B.7, FO, F1 input/output constraint

S indirect address RO - R1 input constraint only
register

d direct address register |/ ARO - AR7, B and |input/output constraint

the pseudo registers
To be used in places where a direct addressing

mode is allowed.

number type of operand itis |same as %number |Input constraint only. The number must refer
associated with to an output parameter. Indicates that
%number and number are the same register.

If an input parameter is modified by the inline assembly then this input parameter must also be
added to the list of output parameters (see Example 7). If this is not the case, the resulting code
may behave differently than expected since the compiler assumes that an input parameter is not
being changed by the inline assembly.

Loops and conditional jumps

The compiler does not detect loops with multiple __asn{) statements or (conditional) jumps across
__asn() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asn(), the whole loop must be contained in a single __asm()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asn() statement must be in that same statement. You can use numeric labels for these purposes.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asn() statements generates a contiguous sequence of instructions, then
they can be best combined to a single __asm() statement. Compiler optimizations can insert instruction(s)
in between __asn() statements. Use newline characters ‘\n’ to continue on a new lineina __asn()
statement. For multi-line output, use tab characters '\t' to indent instructions.

__asn("nop\n"
"\'tnop");

13

TASKING VX-toolset for 8051 User Guide

Example 2: using output parameters

Assign the result of inline assembly to a variable. A register is chosen for the parameter because of the
constraint r ; the compiler decides which register is best to use. The %9 in the instruction template is
replaced with the name of this register. The compiler generates code to assign the result to the output
variable.

__data char out;
voi d get _out(void)
{
__asn("nov %9, #Oxff"
"=r" (out));
}

Generated assembly code:

nmov RO, #0xf f
nov _out, RO

Example 3: using input parameters

Assign a variable to an SFR. A register is chosen for the parameter because of the constraint r ; the
compiler decides which register is best to use. The %@ in the instruction template is replaced with the
name of this register. The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

__data char in;
void init_sfr(void)

{
__asm "MOV PO, %"
r(in))
}
Generated assembly code:
nov RO, in
MOV PO, RO

Example 4: using input and output parameters

Add two C variables and assign the result to a third C variable. Registers are necessary for the input and
output parameters (constraint r , %@ for out , %4 for i n1, 92 for i n2 in the instruction template). The
compiler generates code to move the input expressions into the input registers and to assign the result
to the output variables.

__data char inl, in2, out;
voi d add2(void)
{
_asm "MV A %\n\t"
"ADD A, %2\n\t"

14

C Language

MOV %9, A"
"=r" (out)
"r" (inl), "r" (in2));
}
voi d mai n(voi d)
{
inl = 3;
in2 = 4,
add2();
}

Generated assembly code:

_add2:
Code generated by C conpiler
nov RO, _in2
nov R1, inl
__asm statenment expansion
MOV A RL
ADD A, RO
MOV RO, A
Code generated by C conpiler
nmov _out, RO
_mai n:
nov _inl, #3
nov _in2, #4

Example 5: using an explicit "A" prefix to turn a"r" constraint into adirect
addressing mode

__data char in, out;
void minc(void)

{
_asnm("MV %, A%\ n\t"
"INC %"
"=r" (out)
rin))
}

Generated assembly code:

_minc:

; Code generated by C conpil er
nov RO, _in

; __asm statenment expansion
MOV RO, ARO
I NC RO

; Code generated by C conpil er
mv _out, RO

15

TASKING VX-toolset for 8051 User Guide
When you use the "d" constraint a pseudo-register might also be used. GPRs will be prefixed with an "A"
automatically:

__data char in, out;
void minc2(void)

{
_asnm("MV %, dd\n\t"
"I NC %"
"=r"(out)
"d'(in));
}

Generated assembly code is the same.

Example 6: reserving registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 4, but now register RO is a reserved register. You can do this by adding a reserved
register list (: "R0"). As you can see in the generated assembly code, register RO is not used (the first
register used is R1).

__data char inl, in2, out;
voi d add2(void)

{
_asm "MV A %\n\t"
"ADD A, %2\n\t"
"MV %9, A"
"=r" (out)
"r" (inl), "r" (in2)
"RO")
}
voi d mai n(voi d)
{
inl = 3;
in2 = 4;
add2();
}

Generated assembly code:

_add2:

; Code generated by C conpil er
nov R1, _in2
nov R2, inl

; __asm statenment expansion
MOV A R2
ADD A, R1

16

C Language

MOV R1, A
; Code generated by C conpiler
nov _out, R1L
_mai n:
nov _inl, #3
nov _in2, #4

Example 7: use the same register for input and output

As input constraint you can use a number to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline char foo(char parl, char par2, char * par3)

{

int retval ue;

__asn(
"dec %d\n\t"
" mov A R\ n\t"
"add A %\n\t"
" mov AYD, 9B\ n\t"
" mov @0, A"
. "=&s" (retvalue), "=r" (parl), "=r" (par?2)
"1" (parl), "2" (par2), "r" (par3)
)
return retval ue;

}

char result, parm

voi d func(void)

{
result = foo(100, 100, &parm);

}

In this example the "1" constraint for the input parameter par 1 refers to the output parameter par 1, and
similar for the "2" constraint and par 2. In the inline assembly %4 (par 1) and %2 (par 2) are written. This
is allowed because the compiler is aware of this.

This results in the following generated assembly code:

nov RO, #100
nov AR2, RO
| ea R3, # parm

dec RO ; RO contains 99
nov A R2 ; A contains 100
add A RO ; A contains 199

nov ARL, R3

17

TASKING VX-toolset for 8051 User Guide

nov @r1, A

nov _result, Rl

However, when the inline assembly would have been as given below, the compiler would have assumed
that %4 (par 1) and 92 (par 2) were read-only. Because of the i nl i ne keyword the compiler knows that
par 1 and par 2 both contain 100. Therefore the compiler can optimize and assign the same register to
% and 92. This would have given an unexpected result.

__asn(
"dec o%d\ n\t"

" mov A %R\n\t"
"add A %\ n\t"
nmov A%, 9B\ n\t"

nmov @0, A"

"=&s" (retval ue)
(parl), "r" (par2),

r

)
Generated assembly code:

mv RO, #_parm
mv R2, #100

dec R2

mv A R2

add A R2

mv AR1, RO

nov @R, A

nov _result,RL

1.4. Attributes

r* (par3)

R2 contains 99
A contains 99
sanme register R2, but is expected read-only

cont ai ns unexpected result

You can use the keyword __attri bute__ to specify special attributes on declarations of variables,

functions, types, and fields.

Syntax:

__attribute_ ((nane,...))

or:

__hane__

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name. For example, you may use __nor et ur n___ instead of
__attribute__((noreturn)).

18

C Language

alias("symbol")

Youcanuse __attribute_ ((alias("synbol"))) to specify that the function declaration appears
in the object file as an alias for another symbol. For example:

void __f() { /* function body */; }
void f() __attribute_ ((weak, alias("__f")));

declares 'f ' to be a weak alias for'__f".

const

Youcanuse __attribute__ ((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pur e.

The following kinds of functions should not be declared __const __:
A function with pointer arguments which examines the data pointed to.

» A function that calls a non-const function.

export

Youcanuse __attribute__((export)) to specify that a variable/function has external linkage and
should not be removed. Not all uses of a variable/function can be known to the compiler. For example
when a variable is referenced in an assembly file or a (third-party) library. With the expor t attribute the
compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* "i' has external |inkage */

flatten

Youcanuse __attribute__ ((flatten)) toforce inlining of all function calls in a function, including
nested function calls.

Unless inlining is impossible or disabled by __attri bute__((noinline)) for one of the calls, the
generated code for the function will not contain any function calls.

format(type,arg_string_index,arg_check_start)

Youcanuse __attribute_ ((format(type,arg_string_index,arg_check_start))) to
specify that functions take pri ntf, scanf, strfti me or st rf non style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be pri ntf, scanf,strfti me or
strfron.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

19

TASKING VX-toolset for 8051 User Guide

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strfti me-style formats, arg_check_start must be 0.

Example:
int foo(int i, const char * ny_format, ...) __attribute__((format(printf, 2,

The format string is the second argument of the function f 0o and the arguments to check start with the
third argument.

leaf

Youcanuse __attribute_ ((leaf)) tospecify that a function is a leaf function. A leaf function is
an external function that does not call a function in the current compilation unit, directly or indirectly. The
attribute is intended for library functions to improve dataflow analysis. The attribute has no effect on
functions defined within the current compilation unit.

malloc

Youcanuse __attribute__((malloc)) toimprove optimization and error checking by telling the
compiler that:

» The return value of a call to such a function points to a memory location or can be a null pointer.

» On return of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

» The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

noinline

Youcanuse _attribute__ ((noinline)) toprevent afunction from being considered for inlining.
Same as keyword __noi nl i ne or #pragnma noi nl i ne.

always_inline
With __attribute__((always_inline)) you force the compiler to inline the specified function,

regardless of the optimization strategy of the compiler itself. Same as keyword i nl i ne or #pr agna
i nline.

20

3)));

C Language

noreturn

Some standard C function, such as abort and exit cannot return. The C compiler knows this automatically.
Youcanuse __attribute__((noreturn)) to tell the compiler that a function never returns. For
example:

void fatal () __attribute__((noreturn));
void fatal (/* ... */)

[* Print error nessage */
exit(1);
}

The function f at al cannot return. The compiler can optimize without regard to what would happen if
fat al everdid return. This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

protect

Youcanuse _attribute__ ((protect)) toexclude avariable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect"”
section attribute to the symbol's section. Example:

int i __attribute__((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

pure
Youcanuse __attribute__ ((pure)) tospecify that a function has no side effects, although it may

read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const .

section("section_name")

Youcanuse __attribute__((section("name"))) to specify that a function must appear in the
object file in a particular section. For example:

extern void foobar(void) __attribute__((section("bar")));
puts the function f oobar in the section named bar .

See also #pragma secti on.

used

Youcanuse __attribute__ ((used)) toprevent an unused symbol from being removed, by both the
compiler and the linker. Example:

21

TASKING VX-toolset for 8051 User Guide

static const char copyright[] __attribute_ ((used)) = "Copyright 2013 Al tium BV";

When there is no C code referring to the copyr i ght variable, the compiler will normally remove it. The
__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute__ ((used)) implies__attribute__((protect)).

unused

Youcanuse __attribute__((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

Youcanuse__attribute_ ((weak)) to specify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pragma weak.

1.5. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated
otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.

The syntax is:

#pragma [| abel :] pragnma-spec pragna-argunents [on | off | default | restore]

or:

_Pragma("[I| abel :] pragnma-spec pragma-argunments [on | off | default | restore]"”)

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
of f switch the flag off

def aul t set the pragma to the initial value

restore restore the previous value of the pragma

Label pragmas

Some pragmas support a label prefix of the form "label:" between #pr agma and the pragma name. Such
a label prefix limits the effect of the pragma to the statement following a label with the specified name.
The r est or e argument on a pragma with a label prefix has a special meaning: it removes the most
recent definition of the pragma for that label.

22

C Language

You can see a label pragma as a kind of macro mechanism that inserts a pragma in front of the statement
after the label, and that adds a corresponding #pragnma ... restore after the statement.

Compared to regular pragmas, label pragmas offer the following advantages:

» The pragma text does not clutter the code, it can be defined anywhere before a function, or even in a
header file. So, the pragma setting and the source code are uncoupled. When you use different header
files, you can experiment with a different set of pragmas without altering the source code.

» The pragma has an implicit end: the end of the statement (can be a loop) or block. So, no need for
pragma restore / endoptimize etc.

Example:
#pragma | abl: optimze P
volatile int v;

voi f(void)

{

labl: for(i=1; i<10; i++)
{
/* the entire for loop is part of the pragna optim ze */
a +=i;
}
vV = a;

}
Supported pragmas

The compiler recognizes the following pragmas, other pragmas are ignored. On the command line you

can use c51 --help=pragmas to get a list of all supported pragmas. Pragmas marked with (*) support a
label prefix.

alias symbol=defined_symbol
Define symbol as an alias for defined_symbol. It corresponds to an alias directive (. ALl AS) at assembly

level. The symbol should not be defined elsewhere, and defined_symbol should be defined with static
storage duration (not extern or automatic).

clear / noclear [on | off | default | restore] (*)
By default, uninitialized global or static variables are cleared to zero on startup. With pragma nocl ear,

this step is skipped. Pragma cl ear resumes normal behavior. This pragma applies to constant data as
well as non-constant data. Note however that constant data in __r omspace is never cleared. So,

23

TASKING VX-toolset for 8051 User Guide
_romint i; /* always uninitialized */
_romconst int j; /* always uninitialized */

See C compiler option --no-clear.
compactmaxmatch {value | default | restore} (*)

With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

extend {size | default | restore} (*)
Specify the maximum amount of internal RAM to be used for pseudo registers.

See C compiler option --extend and Section 1.7.1, Automatic Variables.

extern symbol

Normally, when you use the C keyword ext er n, the compiler generates an . EXTRN directive in the
generated assembly source. However, if the compiler does not find any references to the ext er n symbol
in the C module, it optimizes the assembly source by leaving the . EXTRN directive out.

With this pragma you can force an external reference (. EXTRN assembler directive), even when the
symbol is not used in the module.

inline / noinline / smartinline [default | restore] (*)
See Section 1.10.4, Inlining Functions: inline.

inline_max_incr {value | default | restore} (*)
inline_max_size {value | default | restore} (*)

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has effect only when you have enabled the inlining optimization (C compiler option --optimize=+inline).

See C compiler options --inline-max-incr / --inline-max-size.
linear_switch / jump_switch / binary_switch / smart_switch [default |
restore] (*)

With these pragmas you can overrule the compiler chosen switch method:

I'i near _swi tch force jump chain code. A jump chain is comparable with an if/else-if/else-if/else
construction.

junp_swi tch force jump table code. A jump table is a table filled with jump instructions for each
possible switch value. The switch argument is used as an index to jump within this
table.

24

C Language

bi nary_swi tch force binary lookup table code. A binary search table is a table filled with a value to
compare the switch argument with and a target address to jump to.

smart _switch letthe compiler decide the switch method used
See also Section 1.9, Switch Statement.

macro / nomacro [on | off | default | restore] (*)

Turns macro expansion on or off. By default, macro expansion is enabled.

maxcalldepth {value | default | restore} (*)
With this pragma you can control the maximum call depth. Default is infinite (-1).

See C compiler option --max-call-depth.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore] (*)

Without arguments, this pragma disables MISRA-C checking. Alternatively, you can specify a
comma-separated list of MISRA-C rules to disable.

See C compiler option --misrac and Section 3.8.1, C Code Checking: MISRA-C.

novector [on | off | default | restore] (*)

Do not generate interrupt vectors and reference to interrupt handler in run-time library. Same as C compiler
option--no-vector.

optimize [flags] / endoptimize [default | restore] (*)

You can overrule the C compiler option --optimize for the code between the pragmas opt i m ze and
endopt i m ze. The pragma works the same as C compiler option --optimize.

See Section 3.6, Compiler Optimizations.

profile [flags | default | restore] (*) / endprofile
Control the profile settings. The pragma works the same as C compiler option --profile. Note that this

pragma will only be checked at the start of a function. endpr of i | e switches back to the previous profiling
settings.

profiling [on | off | default | restore] (*)

If profiling is enabled on the command line (C compiler option --profile), you can disable part of your
source code for profiling with the pragmas profiling of f and profiling.

25

TASKING VX-toolset for 8051 User Guide

ramstring [on | off | default | restore] (*)

Allocate strings in ROM and RAM. The strings are copied to RAM at startup.
romstring [on | off | default | restore] (*)

Allocate strings in ROM only. Same as C compiler option --romstrings (-S).
section [type=name] / endsection [default | restore] (*)

Rename sections of the specified type or restore default section naming. See Section 1.11, Section
Naming for more information.

source / nosource [on | off | default | restore] (*)
With these pragmas you can choose which C source lines must be listed as comments in assembly output.

See C compiler option --source.

stdinc [on | off | default | restore] (*)

This pragma changes the behavior of the #i ncl ude directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

tradeoff {level | default | restore} (*)

Specify tradeoff between speed (0) and size (4).

vector_offset {offset | default | restore} (*)
Specify base address for interrupt vectors.

See C compiler option --vector-offset.

warning [number[-number],...] [default | restore] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (. WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

26

C Language

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.
1.6. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

Macro Description

__BIG_ENDIAN___ Expands to 1. The processor accesses data in big-endian, except for the
__sfr space which is little-endian.

__BUILD__ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, __ BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__C51_ Identifies the compiler. You can use this symbol to flag parts of the source
which must be recognized by the c51 compiler only. It expands to 1.

_ DATE___ Expands to the compilation date: “mmm dd yyyy”.

__FILE__ Expands to the current source file name.

__LINE__ Expands to the line number of the line where this macro is called.

_ LITTLE_ENDIAN__

Expands to 0. The processor accesses data in big-endian, except for the
__sfr space which is little-endian.

__ MODEL__

Identifies the memory model for which the current module is compiled. It
expands to a single character constant: ‘s’ (small), ‘a’ (auxiliary page), or ‘I
(large).

__PROF_ENABLE__

Always expands to 0 (dynamic profiling is disabled).

__REVISION__ Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__SINGLE_FP__ Always expands to 1 (8051 only has single precision floating-point).

__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set

option --language (Control language extensions), otherwise expands to 0.

_ STDC_HOSTED__

Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_VERSION__

Identifies the 1ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

_ TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.
__TIME__ Expands to the compilation time: “hh:mm:ss”

27

TASKING VX-toolset for 8051 User Guide

Macro Description

__VERSION__ Identifies the version number of the compiler. For example, if you use version
2.1r1 of the compiler, _ VERSION__ expands to 2001 (dot and revision
number are omitted, minor version number in 3 digits).

_ X Identifies the VX-toolset C compiler. Expands to 1.

Example

#ifdef __ C51_
/* this part is only conpiled for the 8051 VX-tool set conpiler */

#endi f
1.7.Variables

1.7.1. Automatic Variables

In non-reentrant functions recursion is not possible, because automatic variables are not allocated on a
stack, but in a static area. The static area of a function can be overlaid with that of another function. This
saves memory. Depending on the selected memory model the static area for automatics will be allocated
in the data, pdata or xdata memory space for the memory models small, auxiliary or large respectively.

In a reentrant function automatic variables are treated the conventional way: dynamically allocated on a
stack. As is the case for the static area the place of the stack depends upon the selected memory model,
it can be allocated in the data, pdata or xdata memory space.

Although automatic variables are allocated in a static area for non-reentrant functions, they are not the
same as local variables (within a function) which are declared to be static by means of the keyword

st ati c. When the keyword st at i ¢ is used, a variable will keep its value when a function returns and
is called again. This is not the case for automatic variables allocated in the static area, because the area
may be overlaid with the static area of another function.

To generate code which is as fast and compact as possible, the compiler tries to place some automatic
variables into registers and in the internal RAM (extended virtual registers, also known as pseudo registers).
By default, the compiler uses four bytes per function for pseudo registers. You can change this amount
by means of the C compiler option --extend=size or #pr agna ext end size.

For non-reentrant functions the static area for the pseudo registers will be overlaid, like the static area
for automatic variables.

For reentrant functions the area for the pseudo registers is as large as required for the function that uses
the most pseudo registers. Reentrant functions save/restore the pseudo registers on the stack, like they
are real registers.

The C library is built in such a way that no pseudo registers are used. l.e: it is built with the option
--extend=0.

28

C Language

1.7.2. Initialized Variables

Non automatic initialized variables use the same amount of space in both ROM and RAM (for all possible
RAM memory spaces). This is because the initializers are stored in ROM and copied to RAM at start-up.
This is completely transparent to the user. The only exception is an initialized variable residing in ROM,
by means of the __r ommemory type qualifier.

The following examples are for the 8051 VX-toolset compiler in the large memory model.

i nt i = 100; /* 2 bytes in ROM 2 bytes in XDATA */
__romint j =3 /* 2 bytes in ROM */
char *p = "TEXT"; /* 7 bytes in ROM 7 bytes in XDATA

2 bytes for p, 5 bytes for "TEXT" */
_rom char h[] = "HELP"; [/* 5 bytes in ROM*/
__data char ¢ = "a'; /* 1 byte in ROM 1 byte in DATA */

1.7.3. Non-Initialized Variables

In some cases clearing or initialization of global variables at startup is unwanted. For example when
memory contents are preserved after power is turned off (see for an example Section 6.7.8, The Section
Layout Definition: Locating Sections). This can be the case when some RAM is implemented in EEPROM
or in a battery powered memory device. To prevent a global variable from being initialized is easy: just
do not initialize it. To avoid clearing of non-initialized variables one of the following should be done:

» Define (allocate) these variables in a special C module and compile this module with option --no-clear.
From Eclipse: From the Project menu, select Properties for, expand C/C++ Build, select Settings
and open the Tool Settings tab, select C Compiler » Allocation and disable the option Clear
uninitialized global and static variables.

» Define (allocate) these variables between #pr agma nocl ear and #pragma cl ear.

» Make a separate assembly module, containing the allocation of these variables in a special data section.

1.8. Strings

In this context the word 'strings' means the separate occurrence of a string in a C program. So, array
variables initialized with strings are just initialized character arrays, which can be allocated in any memory
type, and are not considered as 'strings'.

The 8051 compiler places strings in both ROM and RAM. Where strings in RAM are placed depends on
the specified memory model. If you use the 8051 compiler option --romstrings or #pr agna r onst ri ng,
the compiler places all strings in ROM only. This is useful for single chip applications.

Example without --romstrings option:
_romchar hello[] = "Hello\n"; /* initialized array in ROMonly */
char *world = "world\n"; /* initialized pointer

to string in XDATA */

Example with --romstrings option:

29

TASKING VX-toolset for 8051 User Guide

__romchar hello[] = "Hello\n"; /* initialized array in ROMonly */
__romchar *world = "world\n"; /* initialized pointer
to string in ROM */

Example with #pr agma ronstri ng:

#pragma romstring

_romchar hello[] = "Hello\n"; /* initialized array in ROMonly */
_romchar *world = "world\n"; /* initialized pointer

to string in ROM */
#pragma ramstring

Strings in library routines

Library routines containing pointer arguments always expect the target memory of these pointers to be
the default RAM of the memory model used to make this library. For example:

int printf(const char *format, ...);

In the large memory model, this means pri nt f () expects the address of the format string (the first
argument) to have memory type __xdat a. Therefore, the C startup code of the large memory model
copies all strings from ROM to XDATA. So, the statement:

printf("Hello world\n");

is executed correctly, because the 8051 compiler passes the address of the allocated XDATA area (filled
at C startup time) to pri ntf ().

With the --romstrings option specified, the string is put in ROM only and the standard printf/scanf like
library routines will fail. You will need to create your own __r omqualified versions. All library sources are
delivered. For example, you can use the source of pri nt f () (in module printf. c)to create a
__romprintf().The prototype could be:

int __romprintf(__romchar *format, ...);
Modifying string literals

The 8051 accepts that string literals are modifiable when strings are in both ROM and RAM. You can do
this with pointers, or even with a construct like:

"st ing"[2] ="r";

Of course, when you use the --romstrings option this statement is not allowed.

1.9. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a binary search table.

30

C Language

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
jump instructions for each possible switch value. The switch argument is used as an index to jump within
this table. A binary search table is a table filled with a value to compare the switch argument with and a
target address to jump to.

#pragma smart_swi t ch is the default of the compiler. The compiler tries to use the switch method
which uses the least space in ROM (table size in ROMDATA plus code to do the indexing). With the C
compiler option --tradeoff you can tell the compiler to emphasis more on speed than on ROM size.

For a switch with a long type argument, only binary search table code is used.

For an int type argument, a jump table switch is only possible when all case values are in the same 256
value range (the high byte value of all programmed cases are the same).

Especially for large switch statements, the jump table approach executes faster than the binary search
table approach. Also the jump table has a predictable behavior in execution speed: independent of the
switch argument, every case is reached in the same execution time.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

You can overrule the compiler chosen switch method by using a pragma:

#pragma |inear_swi tch force jump chain code

#pragma junp_switch force jump table code

#pragma bi nary_swi tch force binary search table code

#pragma smart_switch let the compiler decide the switch method used

Using a pragma cannot overrule the restrictions as described earlier.

The switch pragmas must be placed before the swi t ch statement. Nested swi t ch statements use the
same switch method, unless the nested swi t ch is preceded by a different switch pragma.

Example:

voi d test(unsigned char val)

{

/* place pragma before the switch statenent */
#pragma junp_swi tch
switch (val)

{
}

/* use junmp table */

31

TASKING VX-toolset for 8051 User Guide

1.10. Functions

Static and Reentrant Functions

For the 8051 VX-toolset functions in C can either be static or reentrant. In static functions parameters
and automatic variables are not allocated on a stack, but in a static area. Reentrant functions use a less
efficient virtual dynamic stack which allows you to call functions recursively. With reentrancy, you can call
functions at any time, even from interrupt functions. The compiler can overlay parameters and automatics
of static functions, but not of reentrant functions.

See also Section 1.7.1, Automatic Variables.

You can use the function qualifiers __stati c or__reentrant to specify a function as static or reentrant,
respectively. If you do not specify a function qualifier, the compiler assumes that those functions are static.
If you specify the compiler option --reentrant the default for functions without a function qualifier is
reentrant.

Example:

void f_static(void)

{ /* this function is by default _ static */
}
__reentrant int f_reentrant (void)
{ . .
int i;
/* variable i is placed on a virtual stack */
}

1.10.1. Calling Convention

Parameter Passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack (a static or
reentrant stack depending on the __r eent r ant function qualifier).

The following conventions are used when passing parameters to functions.

Registers available for parameter passing are B.0 .. B.7, R2, R3, R4, R5, R6, and R7. Parameters <= 32
bit are passed in registers:

Parameter Type Registers used for parameters

1 bit B.0, B.1, B.2, B.3,B.4, B.5, B.6, B.7
8 bit R7, R5, R3, R6, R4, R2

16 bit R67, R45, R23

32

C Language

Parameter Type Registers used for parameters
32 bit R4567

The parameters are processed from left to right. The first not used and fitting register is used. Registers
are searched for in the order listed above. When a parameter is > 32 bit, or all registers are used, parameter
passing continues on the stack. Data on the stack is always byte aligned.

Example with three arguments:

funcl(int a, long b, int *c)

a (first parameter) is passed in registers R67.

b (second parameter) is passed on the stack. (R67 from R4567 is already used)

¢ (third parameter) is passed in registers R45.

Variable Argument Lists

Functions with a variable argument list must push all parameters after the last fixed parameter on the
stack. The normal parameter passing rules apply for all fixed parameters.

Function Return Values
The C compiler uses registers to store C function return values, depending on the function return types.

C, A, R4, R5, R6 and R7 are used for return values <=32 bit:

Return Type Register Description

1 bit C carry

8 bit A accumulator

16 bit R67 R6 high byte, R7 low byte

32 bit R4567 R45 high word, R67 low word

The return registers have an overlap with the parameter registers, which yields more efficient code when
passing arguments to child functions.

1.10.2. Stack Usage

The stack consists of a system stack in __i dat a, two virtual dynamic stacks (in __xdat aand __pdat a)
and three static stacks (static areasin __dat a, __xdat a and __pdat a). The system stack and all static
stacks grow up, the virtual stacks grow down. The system stack pointer and virtual stack pointers always
point to the last valid byte.

The following figures show the layout of the system stack and the virtual stack.

33

TASKING VX-toolset for 8051 User Guide

Stack pointer (SF) High address
Ll "';')
Callee saved registers g
T
. c
[ei] [=]
@ =
o = o
Automatic wariables o =
f=2]
=]
Function ent M z
unction entr . =
y-— Return address =
-
[
o =
_ £ w
Argument passing area E
5
o
&
Low address
Figure 1.1. System stack layout
High address
—x
(i}
g 5
b B
Argument passing area g =
=
. =
Function entry ¥ E
A z
i 2
: f=2]
5
Automatic variables o =
= ua]
T
@
2
) o
Callee saved registers o
Stack pointer (S ¥ +
Low address

Figure 1.2. Virtual stack layout

The following shows the stack usage per memory model.

Stack usage in small memory model

The following applies to functions implicitly or explicitly qualified __reentrant:

34

C Language

Saved value Stack Offset (from function entry) Stack pointer
Parameters system - (size of parameters + 1) SP
Return address system -1 SP
Automatic variables |system +1 SP
Saved registers system size of automatic variables + 1 SP

The following applies to functions implicitly or explicitly qualified __st ati c:

variables

Saved value Stack Offset Stack pointer
Return address system -1 SP

Registers static stack in __dat a 0 label
Automatic variables |static stack in __dat a size of registers label
Parameters static stack in __dat a size of registers + size of automatic |label

Stack usage in large memory model

The following applies to functions implicitly or explicitly qualified __r eentrant:

Saved value Stack Offset Stack pointer
Return address system -1 SP
Saved registers virtual stack in __xdat a - size of automatic variables and |__SP

saved registers
Automatic variables |virtual stack in __xdat a - size of automatic variables __SP
Parameters virtual stack in __xdat a 0 SP

The following applies to functions implicitly or explicitly qualified __st ati c:

Saved value Stack Offset Stack pointer
Return address system -1 SP

Automatic variables |static stack in __xdat a 0 label
Parameters static stack in __xdat a size of automatic variables label
Registers static stack in __dat a 0 label

Stack usage in auxiliary page memory model

The following applies to functions implicitly or explicitly qualified __r eentrant:

Saved value

Stack

Offset

Stack pointer

Return address

system

-1

SP

Saved registers

virtual stack in __pdat a

- size of automatic variables and
saved registers

SP

35

TASKING VX-toolset for 8051 User Guide

Saved value Stack

Offset

Stack pointer

Automatic variables |virtual stack in __pdat a

- size of automatic variables

_SP

Parameters

virtual stack in __pdat a 0

SP

Same virtual stack picture as with the large memory model, but then in __pdat a instead of in __xdat a.

The following applies to functions implicitly or explicitly qualified __stati c:

Saved value Stack Offset Stack pointer
Return address system -1 SP

Automatic variables |static stack in __pdat a 0 label
Parameters static stack in __pdat a size of automatic variables label
Registers static stack in __dat a 0 label

1.10.3. Register Usage

The C compiler uses the general purpose registers and pseudo registers according to the convention
given in the following table (for normal functions).

Register Class Purpose

A caller saves Return value

B caller saves Parameter passing

DPL caller saves

DPH caller saves

RO caller saves

R1 caller saves

R2 caller saves Parameter passing

R3 caller saves Parameter passing

R4 caller saves Parameter passing and return values
R5 caller saves Parameter passing and return values
R6 caller saves Parameter passing and return values
R7 caller saves Parameter passing and return values
PSW caller saves Program Status Word register
pseudo registers |callee saves Automatic variables

%__REG+reg

SP dedicated Stack pointer

The registers are classified: caller saves, callee saves and dedicated.

36

C Language

caller saves These registers are allowed to be changed by a function without saving the contents.
Therefore, the calling function must save these registers when necessary prior to a
function call.

callee saves These registers must be saved by the called function, i.e. the caller expects them not
to be changed after the function call.

dedicated The stack pointer register SP is dedicated.

For interrupt functions (see Section 1.10.5, Interrupt Functions), except for the reset vector, the following
registers are used for callee saves:

A, B, DPH, DPL, RO .. R7, PSW, pseudo registers %__ REG+reg

There are no caller saves registers for interrupt functions.

1.10.4. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords i nl i ne (ISO-C) and __noi nl i ne.

With the i nl i ne keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs val;

}

If a function with the keyword i nl i ne is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noi nl i ne keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsigned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

37

TASKING VX-toolset for 8051 User Guide

Using pragmas: inline, noinline, smartinline

Instead of the i nl i ne qualifier, you can also use #pr agma i nl i ne and #pr agma noi nl i ne to inline
a function body:

#pragma inline
unsi gned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

#pragma noi nline
void main(void)
{ . .

int i;

i = abs(-1);
}

If a function has ani nl i ne/__noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pr agma noi nl i ne/#pragnma smartinl i ne you can temporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

1.10.5. Interrupt Functions

The TASKING C compiler supports a number of function qualifiers and keywords to program interrupt
service routines (ISR). An interrupt service routine (or: interrupt function, interrupt handler, exception
handler) is called when an interrupt event (or: service request) occurs.

The difference between a normal function and an interrupt function is that an interrupt function ends with
a RETI instruction instead of a RET instruction, and that all registers that might possibly be corrupted
during the execution of the interrupt function are saved on function entry (this is called the interrupt frame)
and restored on function exit.

1.10.5.1. Defining an Interrupt Service Routine: __isr, __interrupt()

You can use the type qualifier __i sr to declare a function as an interrupt service routine, but this does
not bind the function to an interrupt vector. With the function qualifier __i nt errupt () you can bind the
function to a specific vector. The function qualifier __i nt errupt () takes one or more vector addresses
as argument(s). All supplied vector addresses will be initialized to point to the interrupt function.

The __i nterrupt () function qualifier implies the __i sr type qualifier.
Interrupt functions cannot return anything and must have a voi d argument type list:
void __interrupt(vector_address[, vector_address]...)

isr(void)

{

38

C Language

}

The __i sr type qualifier must also be used when a pointer to an interrupt function is declared.

For example:

void __interrupt(Ox23) serial _receive(void)

{ /* __isr is added automatically by __interrupt() */

}

extern void __isr external _isr(void); /* reference to external */
/* interrupt function, vector address irrelevant */

void __isr (*pisr)(void) = external _isr;

/* declare pointer to interrupt function */

Suppress generation of interrupt vectors

When you define an interrupt service routine, the compiler generates the appropriate interrupt vector,
consisting of an instruction jumping to the interrupt function. You can suppress this with the C compiler
option--no-vector or the #pr agma novect or.

Specify another vector offset

For certain ROM monitors it is necessary to specify an offset for all interrupt vectors. For this you can use
the C compiler option --vector-offset=value. Suppose a ROM monitor has the interrupt table at offset
0x4000. When you compile with - - vect or - of f set =0x4000 interrupt vector 1 (vector address 11) is
being located at address 0x400B instead of OxB.

1.10.5.2. Register Bank Switching: __bankx / __nobank

It is possible to assign a new register bank to an interrupt function, which can be used on the processor
to minimize the interrupt latency because registers do not need to be pushed on stack. You can switch
register banks with the __bank0, __bank1, _bank2 or __bank3 function qualifier. The syntax is:

void __interrupt(vector_address[, vector_address]...)
__bankbanknr
isr(void)

{

When you do not specify a __bankx qualifier for an interrupt function, the compiler assumes the default
register bank, as set by the compiler option --registerbank. In this case the compiler saves the GPRs by
using push/pop instructions and generates code to switch to the selected register bank.

With an explicit __bankx qualifier, the compiler will only generate code to switch to the selected register
bank. The registers RO - R7 are implicitly saved when the register bank is being switched. When the
__bankx qualifier is the same as the default, the compiler generates a warning.

39

TASKING VX-toolset for 8051 User Guide

Example:

#define __INTNO(nr) ((8*nr)+3) /* use nunber instead of vector address */

__interrupt(__INTNO(1)) __bank2 void tiner(void);

The compiler places a long-jump instruction on the vector address 11 of interrupt number 1, tothe t i ner ()
routine, which switches the register bank to bank 2 and saves some more registers. When ti ner () is
completed, the extra registers are popped, the bank is switched back to the original value and a RETI
instruction is executed.

You can call another C function from the interrupt C function. However, this function must be compiled
with the same __bankx qualifier, because the compiler generates code which uses the addresses of the
registers RO-R7. Therefore, the __bankx qualifier is also possible with normal C functions (and their
prototype declarations).

Example:

Suppose ti ner (), from the previous example, is calling get _nunber () . The function prototype (and
definition) of get _nunber () should contain the correct__bankx qualifier.

__bank2 int get_nunber(void);

Register bank independent code generation

In order to generate efficient code the compiler uses absolute register addresses in its code generation.
For example, since there is no instruction to move a register to a register, the compiler will use a direct
addressing mode: "MOV Rn,direct". In the second operand the absolute address of a register will be
used.

The absolute address of a register depends upon the selected register bank. Sometimes this dependency
is unwanted, for example when a function is called from both the main thread and an interrupt thread. If
both threads use different register banks, they cannot call a function that uses absolute register addresses.
To overcome this, you can instruct the compiler to generate the code for a function in a register bank
independent way. To do this, you can use the __nobank qualifier (or use compiler option
--registerbank=none).

When the code in an interrupt function needs to be generated in a register bank independent way, the
compiler will always push/pop the used GPRs. The used register bank will not be switched in this case.

Example:

__nobank int func(int x)

{

/* this function can be called fromany function
i ndependent of its register bank */
return x+1;

}
__bankl void f1(void)
{

}

func(1);

40

C Language

__bankO void main(void)

{
}

1.10.5.3. Reset Vector

func(0);

The compiler treats the reset vector (__i nterrupt (0))as aspecial case. For this vector the compiler
will never push/pop any registers. Also the PSW register will not be saved/restored before initializing it
with the selected register bank. Furthermore, the compiler will not warn when an explicit __bankx qualifier
is the same as the default.

Because of the special treatment, the reset vector cannot be combined with other interrupt vectors. E.qg:
__interrupt(11, 0, 19) is not allowed.

1.10.5.4. Interrupt Frame: __ frame()

With the function qualifier __f r ame() you can specify which registers and SFRs must be saved for a
particular interrupt function. Only the specified registers will be pushed and popped from the stack. If you
do not specify the function qualifier __f r ame() , the C compiler determines which registers must be
pushed and popped. The syntax is:

void __interrupt(vector_address[, vector_address]...)
__frame(reg[, reg]...) isr(void)

{

}

The reg can be any register defined as an SFR. The compiler generates a warning about registers that
are not listed in __f rame() but are used in the interrupt function. When the compiler would save GPRs
using push/pop instructions it will warn about missing GPRs in __f rame() also. The compiler does not
generate a warning when an explicit __bankx qualifier is used because the compiler would not push/pop
GPRs itself.

Example:

void __interrupt(0x10) _ frame(A RO, Rl) foo (void)
{

}...

Normally when an interrupt function is called, all registers in the default register bank that are (or could
be) used in the interrupt function are saved on the stack so the registers are available for the interrupt
routine. After returning from the interrupt routine, the original values are restored from the stack again.

1.10.6. Intrinsic Functions
Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to

use these instructions. Intrinsic functions are predefined functions that are recognized by the compiler.
The compiler generates the most efficient assembly code for these functions.

41

TASKING VX-toolset for 8051 User Guide

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by
hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character (__).

The TASKING VX-toolset for 8051 C compiler recognizes the following intrinsic functions:

__alloc
void * volatile __alloc(__size_t size);
Allocate memory. Returns a pointer to space in external memory of size bytes length. NULL if there is

not enough space left. This function is used internally for variable length arrays, it is not to be used by
end users.

__dotdotdot___
char * volatile __dotdotdot__(void);

Variable argument '..." operator. Used in library function va_st art () . Returns the stack offset to the
variable argument list.

__free
void volatile _ _free(void *p);

Deallocates the memory pointed to by p. p must point to memory earlier allocated by acallto __al | oc() .

__getbit
bit _ getbit(operand, bitoffset);

Returns the bit at bi t of f set (range 0-7 for a char, 0-15 for an int or 0-31 for a long) of the bit-addressable
oper and for usage in bit expressions. bi t of f set must be an integral constant expression.

Example:

__bdata unsigned char byte;
int i;

if (_gethit(byte, 3))
i = 1;

___putbit

void __putbit(__bit value, operand, bitoffset);

42

C Language
Assign val ue to the bit at bi t of f set (range 0-7 for a char, 0-15 for an int or 0-31 for a long) of the
bit-addressable oper and. bi t of f set must be an integral constant expression.
Example:
__bdata unsigned int word;

__putbit(0, word, 10);

__get_return_address
__codeptr __get_return_address(void);

Returns the return address of a function.

__hop
void __nop(void);
Generates a NOP instruction.

__rol

unsi gned char __rol (unsigned char operand,
unsi gned char count);

Use the RL instruction to rotate oper and left count times. Returns the rotated value.

ror

unsi gned char __ror(unsigned char operand,
unsi gned char count);

Use the RR instruction to rotate oper and right count times. Returns the rotated value.

__testclear
__bit __testclear(__bit *semaphore);

Read and clear sermaphor e using the JBC instruction. Returns 0 if semaphor e was not cleared by the
JBC instruction, 1 otherwise.

Example:

__bit b;
unsi gned char c;

if (__testclear(&)) /* JBCinstruction */
c=1,

43

TASKING VX-toolset for 8051 User Guide

_VsSp__

bit __vsp__(void);

Virtual stack pointer used. Used in library function va_ar g() . Returns 1 if the virtual stack pointer is
used, 0 otherwise.

1.11. Section Naming

The C compiler generates sections and uses a combination of the memory type and the object name as
section names. The memory types are: code, rom, bit, bdata, data, idata, pdata and xdata. See also
Section 1.2.1, Memory Type Qualifiers. The section names are independent of the section attributes such
as clear, init, and romdata.

Section names are case sensitive. By default, the sections are not concatenated by the linker. This means
that multiple sections with the same name may exist. At link time sections with different attributes can be
selected on their attributes. The linker may remove unreferenced sections from the application.

You can rename sections with a pragma or with a command line option. The syntax is the same:
--renane-sections=[type=]format_string[,[type=]format_string]...
#pragma section [type=]format_string[,[type=]format_string]...

With the memory type you select which sections are renamed. The matching sections will get the specified
format string for the section name. The format string can contain characters and may contain the following
format specifiers:

{attrib} section attributes, separated by underscores
{ rodul e} module name

{nane} object name, name of variable or function
{type} section type

The default compiler generated section names are {t ype} _{ nane}.
Itis not possible to change the name of overlay sections, max sections and interrupt vector table sections.
Some examples (file t est . c):

#pragma section data={nodul e} _{type} {attrib}
__data int x;
/* Section name: test _data_data_clear */

#pragma section data=_8051_{nodul e} _{nane}
__data int status;
/* Section name: 8051 test status */

#pragma section pdat a=RENAVED { nane}

44

__pdata int barcode;

/* Section name: RENAMED barcode */

C Language

With #pr agna endsect i on the naming convention of the previous level is restored, while with #pr agna
section defaul t the default section naming convention is restored. Nesting of pragma
section/endsection pairs will save the status of the previous level.

Examples (file exanpl e. c)

__data char a; /1 allocated
#pragma section data=MyDat al
__data char b; /1 allocated
#pragma secti on dat a=MyDat a2
__data char c; /1 allocated
#pragma endsection

__data char d; /1 allocated
#pragma endsection

__data char e; /1 allocated

in 'data_a'
in'MbDatal
in ' MData2
in'MbDatal
in 'data_e'

45

TASKING VX-toolset for 8051 User Guide

46

Chapter 2. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language. For a complete
overview of the architecture you are using, refer to the target's Core Reference Manual.

2.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label [:]] [instruction | directive | macro_call] [;conmment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits, dollar ($) and
underscore characters (). The first character cannot be a digit or a $. The label
can also be a number. A label which is prefixed by whitespace (spaces or tabs)
has to be followed by a colon (:). The size of an identifier is only limited by the
amount of available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LAB1: ; This label is followed by a colon and
; can be prefixed by whitespace
LAB1 ; This label has to start at the begi nning
;o of aline

1: jmp 1p ; This is an endl ess | oop
; using nuneric |abels

47

TASKING VX-toolset for 8051 User Guide

instruction An instruction consists of a mnemonic and zero, one or more operands. It must
not start in the first column.

Operands are described in Section 2.3, Operands of an Assembly Instruction.
The instructions are described in the target's Core Reference Manual.

The instruction can also be a so-called 'generic instruction’. Generic instructions
are pseudo instructions (no instructions from the instruction set). Depending on
the situation in which a generic instruction is used, the assembler replaces the
generic instruction with appropriate real assembly instruction(s). For a complete
list, see Section 2.10, Generic Instructions.

directive With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 2.9, Assembler Directives and Controls.

macro_call A call to a previously defined macro. It must not start in the first column. See
Section 2.8, Macro Preprocessing.

comment Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called ‘control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$cont rol

For more information on controls see Section 2.9, Assembler Directives and Controls.

2.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 2.7.3, Expression Operators. Other special assembler characters
are:

Character |Description

; Start of a comment

5 Unreported comment delimiter

\ Line continuation character
% Start of a built-in assembly function, or a macro call
* Literal character, used in % DEFI NE

String constants delimiter

String constants delimiter

48

Assembly Language

Character |Description

$ Location counter substitution

Immediate addressing

Note that macro operators have a higher precedence than expression operators.

2.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

Operand Description

symbol A symbolic name as described in Section 2.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 2.5, Registers.

expression Any valid expression as described in Section 2.7, Assembly Expressions.

address A combination of expression, register and symbol.

2.4. Symbol Names

User-defined symbols
A user-defined symbol can consist of letters, digits and underscore characters (). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case

of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 2.4.1, Predefined Preprocessor Symbols.

Labels
Symbols used for memory locations are referred to as labels.

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example
for directives or section names). Instructions are also reserved. The case of these built-in symbols is
insignificant.

49

TASKING VX-toolset for 8051 User Guide

Examples
Valid symbol names:

| oop_1
ENTRY
aBc
_aBC

Invalid symbol names:

1 | oop ; starts with a nunber
. DEFI NE ; reserved directive nanme

2.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol Description

_ BUILD__ Identifies the build number of the assembler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, __ BUILD___ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__C51 Identifies the assembler. You can use this symbol to flag parts of the source
which must be recognized by the as51 assembler only. It expands to 1.

__REVISION___ Expands to the revision number of the assembler. Digits are represented
as they are; characters (for prototypes, alphas, betas) are represented by
-1. Examples: v1.0rl1 -> 1, v1.0rb -> -1

_ TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.
_ _VERSION__ Identifies the version number of the assembler. For example, if you use

version 2.1r1 of the assembler, _ VERSION___ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

if @efined(' __C51_ ")
; this part is only for the 8051 assenbl er

.endif

50

Assembly Language

2.5. Registers

The following register names, either uppercase or lowercase, should not be used for user-defined symbol
names in an assembly language source file:

A C DPTR
RO R1 R2 R3 R4 R5 R6 R7
ARO ARl AR2 AR3 AR4 AR5 ARG AR7Y

The following special function registers should also not be used as symbol names in an assembly language
source file. However it is allowed to redefine them.

ACC B DPH DPL PSW SP
AC CY FO F1 P OV RSO RS1

2.6. Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from assembly. The
SFRs are defined in a special function register file (*.sfr) as symbol names for use with the compiler and
assembler. The assembler reads the SFR file with the command line option --sfr-file . If you use Eclipse
or the control program you can specify that the SFR file should be included based on the selected processor
automatically (--asm-sfr-file). The format of the SFR file is exactly the same as the include file for the C
compiler. For more details on the SFR files see Section 1.2.5, Accessing Hardware from C: __sfr, _ bsfr.
Because the SFR file format uses C syntax and the assembler has a limited C parser, it is important that
you only use the described constructs.

Example use in assembly (with option --sfr-file=regtc26x.sfr):

nov SCON, #0x88 ;. use of SFR name

setb SCR POO_IN 3 ; use of bit nane

gjnb SCR POO_IN 4, 2

clr SCR P00 _IN_ 3

_2:
setb TCON_IE1l ; use of bit nane

Without an SFR file the assembler only knows the registers and SFRs as specified in Section 2.5, Registers.

Built into the assembler are a number of symbol definitions for various 8051 addresses in bit and data
memory space. These symbols are treated by the assembler as if they were defined with the . BI T or
. DATA directives.

Bit addresses

Symbol Address Symbol Address
P 0xDO RS1 0xD4
F1 0xD1 FO 0xD5
ov 0xD2 AC 0xD6
RSO 0xD3 CcY 0xD7

51

TASKING VX-toolset for 8051 User Guide

Data addresses

Symbol Address Symbol Address
SP 0x81 PSW 0xDO
DPL 0x82 ACC OxEO
DPH 0x83 B OxFO

2.7. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer values), and any combination
of integers or ASCI| literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

» symbol

» expression binary_operator expression

* unary_operator expression

* (expression)

« function call

All types of expressions are explained in separate sections.

2.7.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes and suffixes can be used in either lowercase or uppercase.

52

Assembly Language

Base Description Example
Binary A Ob prefix followed by binary digits (0,1). Or use a b suffix 0b1101

11001010b
Octal Octal digits (0-7) followed by a o or q suffix 7770
Hexadecimal A Ox prefix followed by a hexadecimal digits (0-9, A-F, a-f). Or |Ox12FF

use a h suffix 0x45

0f al10h
Decimal Decimal digits (0-9), optionally followed by a d 12

1245d
2.7.2. Strings

ASCII characters, enclosed in single () or double () quotes constitute an ASCII string. Strings can contain
escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 4 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a . DB, . DWor . DL assembler
directive; in that case all characters result in a constant value of the specified size. Null strings have a
value of 0.

Examples

' ABCD 7 (0x41424344)

79 ; to enclose a quote double it
"Al"BC ; or to enclose a quote escape it
"AB +1 ; (0x4143) string used in expression

v ; null string

2.7.3. Expression Operators

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Type Operator Name Description
@) parenthesis Expressions enclosed by parenthesis are evaluated
first.
Unary + plus Returns the value of its operand.
- minus Returns the negative of its operand.

53

TASKING VX-toolset for 8051 User Guide

Type Operator

Name

Description

one's complement

Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

NOT

logical negate

Returns 1 if the operands' value is O; otherwise O.
For example, if buf is 0 then ! buf is 1. If buf has
a value of 1000 then ! buf is 0.

HIGH

high byte

Returns the high byte of the operand ((operand >>
8)&0xFF).

LOW

low byte

Returns the low byte of the operand (operand &
OXFF).

type

type cast

Any of the valid assembler symbol types can be used
as a type cast operator.

*

Arithmetic

multiplication

Yields the product of its operands.

division

Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

%
MOD

modulo

Used with integers, this operator yields the remainder
from the division of the first operand by the second.
Used with floating-point operands, this operator
applies the following rules:

Y%Z=YifZz=0

Y % Z = X if Z <> 0, where X has the same sign as
Y, is less than Z, and satisfies the relationship: Y =
integer * Z + X

addition

Yields the sum of its operands.

subtraction

Yields the difference of its operands.

Shift <<
SHL

shift left

Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.

>>
SHR

shift right

Integer only. Causes the left operand to be shifted
to the right by the number of bits specified by the
right operand. The sign bit will be extended.

54

Assembly Language

Type Operator Name Description
Relational < less than Returns an integer 1 if the indicated condition is
LT TRUE or an integer 0 if the indicated condition is
<= less than or equal FALSE.
LE In either case, the memory space attribute of the
> greater than resultis N
GT
- reater than or equal For example, if D has a value of 3 and E has a value
G_E 9 q of 5, then the result of the expression D<E s 1, and
the result of the expression D>E is 0.
== equal
EQ Use tests for equality involving floating-point values
1= not equal with cauttlo(r;, sm(i:a rounding errors could cause
NE unexpected results.
Bit and bit position Specify bit position (right operand) in a bit
Bitwise addressable byte or word (left operand).
& AND Integer only. Yields the bitwise AND function of its
AND operand.
[OR Integer only. Yields the bitwise OR function of its
OR operand.
A exclusive OR Integer only. Yields the bitwise exclusive OR function
XOR of its operands.
Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.
Il logical OR Returns an integer 1 if either of the operands is
non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly
% f function, but can be used in any expression.

2.7.4. Symbol Types and Expression Types

Symbol Types

The type of a symbol is determined upon its definition by the section in which it is defined. The following
table shows the symbol types that are available.

Symbol type Type of section where symbol is defined
BIT bit address space

CODE code address space

DATA direct addressable data

IDATA indirect addressable data

PDATA auxiliary external data space

55

TASKING VX-toolset for 8051 User Guide

Symbol type Type of section where symbol is defined

XDATA external data space

Itis also possible to explicitly define the symbol’s type with the . BI T, . CODE, . DATA, . | DATAand . XDATA
directive and with the . EXTRN directive. Labels not on the same line as the directive still are assigned
the type for that directive if they immediately precede the directive:

codesect .segnment code
.rseg codesect

nyl abel: ; this |abel gets the CODE type
.dw 1

When you make a symbol global with the . PUBLI Cdirective, the symbol’s type will be stored in the object
file. The . EXTRN directive used for importing the symbol in another module must specify the same type.

Symbols defined with . EQU or . SET inherit the type of the expression. The result of an expression is
determined by the type of symbols used in the expression.

Type Checking

When you use a symbol or expression as an operand for an instruction, the assembler will check if the
type of this symbol or expression is valid for the used instruction. If it is not valid, the assembler will issue
an error. For generic instructions the assembler uses the symbol type to select the smallest instruction.

Expression Types

When evaluating an expression, the result of the expression is determined by the operands of the
expression and the operators. The section type NUMBER is used for expressions representing a typeless
number. The section type of an expression involving more than one operand is assigned according to
the following rules:

1. The section type of a unary operation (+, -, NOT, LOW, HIGH) will be the same as the section type of
the operand.

2. The section type of a binary + or - operation is NUMBER, unless one of the operands has type NUMBER,
in which case the section type will be the type of the other operand.

3. The section type of the binary operations except + and - will be NUMBER.

2.8. Macro Preprocessing

The assembler has a built-in macro preprocessor which is compatible with Intel's syntax for the 8051
macro processing language (MPL).

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

56

Assembly Language

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

2.8.1. Defining and Calling Macros

The first step in using a macro is to define it. Every macro consists of a macro_name with optional
arguments and a macro_body. The macro_name defines the name used when the macro is called; the
macro_body contains the code or instructions to be inserted when the macro is called.

A macro definition takes the following form:

% *] DEFI NE(macr o_nane[(argunent [, argunent]...)]) [LOCAL local _list]
(

macr o_body

)

The '%' character signals a macro call. This character is called the 'metacharacter' and can also be
redefined (see macro preprocessing function VETACHAR()). The "' is the optional literal character.
When you define a macro using the literal character *', as shown above, macro calls contained in the
body of the macro are not expanded until the macro is called.

The macro_name must be an identifier conform to the following rules:

» The macro name starts with an uppercase or lowercase alphabetical character (a-z, A-Z), question

mark '? or underscore ' .
» The remaining part of the name can also contain digits.

» Only the first 31 characters of a macro identifier are recognized as the unique identifier name. Uppercase
and lowercase characters are not distinguished in a macro identifier.

The macro_body may contain calls to other macros. If so, the return value is actually the fully expanded
macro body, including the return values of the call to other macros. The macro call is re-expanded each
time it is called.

With the optional argument list you can pass information to the macro body. You can see them as variables.
Each argument must be a unique macro identifier, but it may be the same as other argument names to
other macros since it has no existence outside the macro definition. Argument names may also be the
same as the names of other user macros or of macro functions. Note, however that in this case the macro
or function cannot be used within the macro body, since its name would be recognized as a parameter
instead. To reference an argument within the macro body, use its name preceded by the metacharacter
(by default the '%' character).

Arguments are separated and surrounded by a delimiter. Typically these are parentheses and commas,
but you can use other delimiters as well. See Section 2.8.4, Macro Delimiters for more information.

57

TASKING VX-toolset for 8051 User Guide

Macros can optionally contain local symbols. For each symbol in the local_list, the assembler will replace
each symbol by a unique assembly-time symbol each time the macro is called. See Section 2.8.2, Local
Symbols in Macros for more information.

Once a macro has been created, it may be redefined by a second call to DEFINE. Note, however that a
macro should not redefine itself within its body.

Calling a macro

To call a macro, you use the '%' character followed by the name of the macro (the literal character *' is
only admissible for defined macros whose call is passed to another macro as an argument; example:
%VIL(9% M2) . The preprocessor removes the call and inserts the return value of the call. If the macro body
contains any call to other macros, they are replaced with their return values.

%vracr o_name[(argument [, argunent]...)] [;comrent]

Example 1: macro definitions without arguments
Macro definition at the top of the program:

% DEFI NE (MOVE)
(MV A @R

MV @2, A
)

The macro call as it appears in the program:

MOV R1, #1
YWOVE ; <-- macro call preceded by four spaces

The program as it appears after the preprocessor of the assembler made the following expansion, where
the first expanded line is preceded by the four spaces preceding the call:

MOV R1, #1
MV A @RL
MV @2, A

Macro definition at the top of the program:

% DEFI NE (ADD5)

(MV RO, #5
MV R5, @R
ADD R5, RO

)

The macro call as it appears in the original program body:

MOV R5, #2
YADD5

The program after the macro expansion:

58

MOV RS, #2
MOV RO, #5
MOV R5, @2
ADD R5, RO

Macro definition at the top of the program:

% DEFI NE (MOVE_AND_ADD) (
Y%VOVE
%ADD5

)

The macro call as it appears in the body of the program:

MOV R, #1
9%OVE_AND_ADD

The program after the macro expansion:

MOV R, #1

MOV A @1
MV @Rz, A

MOV RO, #5
MV RS
ADD R5, RO

Example 2: macro definition with arguments

Assembly Language

The example below shows the definition of a macro with three arguments: SOURCE, DEST and COUNT.
The macro produces code to copy any number of words from one part of memory to another.

% DEFI NE (MOVE_ADD_GEN(SOURCE, DEST, COUNT))
(MOV R1, #%SOURCE
MOV RO, #YDEST
MOV R7, #YCOUNT
MV A @1
MOV
INC
INC
DINZ

)

A simple call to a macro defined above might be:
9MOVE_ADD GEN(10, 24, 8)
The above macro call produces the following code:

MOV R1, #10
MOV RO, #24

59

TASKING VX-toolset for 8051 User Guide

MOV R7, #8
MOV A @1
MOV @RO, A
INC R1L
INC RO

DINZ R7, ($-4)

2.8.2. Local Symbols in Macros

If we used a fixed label instead of the offset ($-4) in the previous example, the macro using the fixed label
can only be called once, since a second call to the macro causes a conflict in the label definitions at
assembly time. The label can be made a parameter and a different symbol name can be specified each
time the macro is called.

A preferable way to ensure a unique label for each macro call is to put the label in a local_list.
The syntax for the LOCAL construct in the DEFINE function is shown below.

% *] DEFI NE(macr o_nane[(argument [, argunent]...)]) [LOCAL |l ocal _Iist]
(

nmacr o_body

)

The local_list construct allows you to use macro identifiers to specify assembly-time symbols. Each use
of a LOCAL symbol in a macro guarantees that the symbol will be replaced by a unique assembly-time
symbol each time the symbol is called.

The macro preprocessor increments a counter once for each symbol used in the list every time your
program calls a macro that uses the LOCAL construct. Symbols in the local_list, when used in the macro
body, receive a two to five digit suffix that is the hexadecimal value of the counter. The first time you call
a macro that uses the LOCAL construct, the suffix is '00'".

The local_list is a list of valid macro identifiers separated by spaces. Since these macro identifiers are
not parameters, the LOCAL construct in a macro has no effect on a macro call.

To reference local symbols in the macro body, they must be preceded by the metacharacter (by default
the '%' character). The symbol LOCAL is not reserved; a user symbol or macro may have this name.

The next example shows a macro definition that uses a LOCAL list.

Example

9% DEFI NE (MOVE_ADD_GEN(SOURCE, DEST, COUNT)) LOCAL LAB
(MOV Rl, #%SOURCE

MOV RO, #UDEST

MOV R7, #UCOUNT

%_AB:
MV A @1
MOV @0, A
INC R1

60

Assembly Language

INC RO
DINZ R7, %.AB

)

A simple call to a macro defined above might be:
90OVE_ADD GEN(50, 100, 24)

The above macro call might produce the following code (if this is the eleventh call to a macro using a
LOCAL list):

MOV R1, #50
MOV RO, #100
MOV R7, #24
LABOA:

MV A @1

MOV @0, A

INC R1

INC RO

DINZ R7, LABOA

Any macro identifier can be used in a local_list. However, if long identifier names are used, they
should be restricted to 29 characters. Otherwise, the label suffix may cause the identifier to exceed
31 characters and these would be truncated.

2.8.3. Built-in Macro Preprocessing Functions

The macro preprocessor part of the assembler has several built-in or predefined macro functions. These
built-in functions perform many useful operations that are difficult or impossible to produce in a user-defined
macro.

We have already discussed one of these built-in functions, DEFINE. DEFINE creates user-defined macros.
DEFINE does this by adding an entry in the macro preprocessor's tables of macro definitions. Each entry
in the tables includes the macro name of the macro, its parameter list, its local list and its macro body.
Entries for the built-in functions are present when the macro preprocessor begins operation.

Other built-in functions perform numerical and logical expression evaluation, affect control flow of the
macro preprocessor, manipulate character strings, and perform console I/O.

Overview of macro preprocessing functions

Function Description

% text' Comment function

% text end-of-line

% text Escape function: prevent macro expansion of text of n
characters long

o4 text) Bracket function: prevent macro expansion

o4 text} Group function: ensure macro expansion

61

TASKING VX-toolset for 8051 User Guide

Function

Description

UCSTS() , USES()
YERROR() , YATAL()
vEXI T

% F()

% FDEF() , % FNDEF()
% N() , Y0UT()

9% NCL UDE()

%EN()

OATCH()
YVETACHAR()

%OPTI ON()

YSET() , UEVAL()
%SUBSTR()

%NDEF()

OMHI LE() , YREPEAT()

YEQS() , YNES() , %.TS(), YES() ,

% FILE_,% LINE__

String comparing functions

Generate user error message or fatal error message

Terminate expansion of the most recently called user defined
macro

File/line info functions

Conditional control flow

Test if a macro is defined or not

Input/output functions

Include a file

Return the length of a string

Define macro identifiers

Redefine the metacharacter ‘%'

Call a command line option from within the source file
Calculating functions

Return part of a string

Undefine a previously defined macro or built-in function
Control looping functions

62

Assembly Language

Comment function: %'

Syntax
% text'
or:

%text end-of-line

Description

The macro processing language can be very subtle, and the operation of macros written in a straightforward
manner may not be immediately obvious. Therefore, it is often necessary to comment macro definitions.

The comment function always evaluates to the null string. Two terminating characters are recognized:
the apostrophe ' and the end-of-line (line-feed character, ASCIl 0AH). The second form of the call allows
macro definitions to be spread over several lines, while avoiding any unwanted end-of-lines in the return
value. In either form of the comment function, the text or comment is not evaluated for macro calls.

The literal character "*" is not accepted in connection with this function.

Example

% DEFI NE (MOVE_ADD_GEN(SOURCE, DEST, COUNT)) LOCAL LAB
(MOV R1, #YBO0URCE % This is the source address'
MOV RO, #YOEST % This is the destination'

MOV R7, #Y%COUNT % %COUNT nust be a constant'

%_AB: % This is a |ocal |abel.
% End of line is inside the conment!
MOV A @GR1L
MOV @RO, A
INC R1
INC RO

DINZ R7, %.AB
)

Call the above macro:
9MOVE_ADD GEN(50, 100, 24)
Return value from above call:

MOV R1, #50
MOV RO, #100
MOV R7, #24

LABOA:
MOV A @R1
MOV @0, A
INC R1
INC RO

DINZ R7, LABOA

63

TASKING VX-toolset for 8051 User Guide

Note that the comments that were terminated with the end-of-line removed the end-of-line character along
with the rest of the comment.

The metacharacter is not recognized as flagging a call to the macro preprocessor when it appears in the
comment function.

64

Assembly Language

Escape function: %n

Syntax

%M text

Description

The escape function prevents the macro preprocessor from processing a text string of n characters long,
where n is a decimal digit from 0 to 9. The escape function is useful for inserting a metacharacter as text,
adding a comma as part of an argument, or placing a single parenthesis in a character string that requires
balanced parentheses.

The literal character ** is not accepted in connection with this function.

Example
Bef ore Macro Expansi on After Macro Expansion
; Aver age of 20%1% ->: Average of 20%
YOTCALL(JAN 2194, 2009, -> JAN 21, 2009

AUG 129, 2009) -> AUG 12, 2009
WWCALL(1%) Option 1, -> 1) Option 1

2%) Option 2, ->2) Option 2

3%1) Option 2) -> 3) Option 3

The first example add a literal '%’ in the text. The second example keeps the date as one actual parameter
adding a literal ',". The third example adds a literal right parenthesis)’ to each parameter.

Related Information

Bracket function %4)

65

TASKING VX-toolset for 8051 User Guide

Bracket function: %()
Syntax

9%t ext)

Description

The bracket function prevents all macro preprocessor expansion of the text contained within the
parentheses. However, the escape function, the comment function, and the parameter substitution are
still recognized. Since there is no restriction for the length of the text within the bracket function, it is
usually easier to use than the escape function.

The literal character ** is not accepted in connection with this function.

Example

9% DEFI NE (DEFW LI ST, NAVE))
(YNAME . DW 9%l ST)

The macro DEFW expands .DW statements, where the variable LI ST represents the first parameter and
the expression NAME represents the second parameter.

The following expansion should be obtained by the call:
PHONE . DW 0x198, 0x3D, OxFO

If the call in the following form:

YDEFW 0x198, 0x3D, 0xFO, PHONE)

occurs, the macro preprocessor would interpret the first argument (0x198) as LIST and everything after
the first comma as the second parameter, since the first comma would be interpreted as the delimiter
separating the macro parameters.

In order to change this method of interpretation, all tokens that are to be combined for an individual
parameter must be identified as a parameter string and set in a bracket function:

YDEFW(% 0x198, 0x3D, OxFO0), PHONE)

This way the bracket function prevents the string '198H, 3DH, OFOH' from being evaluated as separate
parameters.

Related Information

Escape function %n

66

Assembly Language

Group function: %{ }
Syntax

% text}

Description

The group function does the opposite of the bracket function, it ensures that the text is expanded. The
resulting string is then interpreted itself like a macro command. This allows for definition of complex
recursive macros. Another useful application of the group function is to separate macro identifiers from
surrounding, possibly valid identifier characters.

The literal character ** is not accepted in connection with this function.

Example

Ydef i ne(TEXTA) (Text A)
Ydef i ne(TEXTB) (Text B)
Ydefi ne(TEXTC) (Text C)

%def i ne(SELECT) (B)

94 TEXTUSELECT}

The contents of the group function, TEXT%SELECT, expands to TEXTB, which on its turn is expanded as
Y EXTB resulting in Text B.

%def i ne(op) (add)
% op} _and_nove

The group function ensures that the macro op is expanded. Without it, op_and_nove would be seen as
the macro identifier.

67

TASKING VX-toolset for 8051 User Guide

%ERROR, %FATAL

Syntax

YERROR(t ext)
Y-ATAL(t ext)

Description
With these built-in functions you can generate a user error or fatal error message.

You can use the “ERROR function to trigger a user error 'E 100'. Macro preprocessing will continue after
the YERROR function. The “ERROR function expands to the null string.

You can use the %~ATAL function to trigger a user fatal error 'F 101'. Macro preprocessing will stop directly
after the %-ATAL function, and the program will exit with value 1. The %~ATAL function expands to the
null string.

Example

% FNDEF(TEMP)
THEN

(YERROR(Macr o TEMP not defi ned))
ELSE

(9%-ATAL(Macro TEMP is defined))
Fl

Related Information

$MESSAGE assembler control

68

Assembly Language

%EQS, NNES, %LTS, %LES, %GTS, %GES

Syntax

%EQS(argl, arg2)
UNES(ar g1, ar g2)
%.TS(argl, arg2)
% ES(argl, arg2)
%GTS(argl, arg2)
%CES(argl, ar g2)

Description

These string comparison functions compare two text arguments and return a logical value based on that
comparison. If the function evaluates to 'TRUE', then it returns the character string 'OffffH". If the function
evaluates to 'FALSE', then it returns '00H'. Both arguments may contain macro calls.

Function Description

YEQS Equal. TRUE if both arguments are identical.

UNES Not equal. TRUE if arguments are different in any way.

%UTS Less than. TRUE if first argument has a lower value than second argument.

% ES Less than or equal. TRUE if first argument has a lower value than second argument or if
both arguments are identical.

%USTS Greater than. TRUE if first argument has a higher value than second argument.

YCES Greater than or equal. TRUE if first argument has a higher value than second argument,
or if both arguments are identical.

Before these functions perform a comparison, both strings are completely expanded. Then the ASCII
value of the first character in the first string is compared to the ASCII value of the first character in the
second string. If they differ, then the string with the higher ASCII value is to be considered to be greater.
If the first characters are the same, the process continues with the second character in each string, and
so on. Only two strings of equal length that contain the same characters in the same order are equal.

Example

%EQS(ABC, ABC) -> OffffH (TRUE)

The character strings are identical.

%EQS(ABC, ABC) -> 00H (FALSE)

The space after the comma is part of the second argument

%.TS(CBA, cba) -> OffffH (TRUE)

The lowercase characters have a higher ASCII value than uppercase.

%GES(ABC, ABC) -> 00H (FALSE)

69

TASKING VX-toolset for 8051 User Guide

The space at the end of the second string makes the second string greater than the first one.
Y%GTS(16, 111H) -> OffffH (TRUE)

ASCII '6' is greater than ASCII '1".

The arguments can also contain macro calls:

98ATCH(NEXT, LI ST) (CAT, DOG_MOUSE)

YEQS(9NEXT, CAT) -> OffffH (TRUE)
YEQS(DOG, #BUBSTR(%L1 ST, 1,3)) -> Of fffH (TRUE)

70

Assembly Language

%EVAL

Syntax

YEVAL(expr essi on)
Description

The %EVAL function accepts an expression as its argument and returns the expression's value in
hexadecimal.

The expression argument must be a legal macro-time expression. The return value from %EVAL is built
according to macro processing rules for representing hexadecimal numbers. The trailing character is
always the hexadecimal suffix (H). The expanded value is at most 16 bits and negative numbers are
shown in two's complement form. If the leading digit of the return value is 'A’, 'B', 'C', 'D', 'E' or 'F', it is
preceded by a 0.

Example

COUNT SET %EVAL(33H + 15H + Of O0H) -> COUNT SET O0f 48H

MOV RL, #%&VAL(10H - ((13+6) *2) +7) -> MOV R1L, #Offf1H

YSET(NUML, 44) ->null string
YSET(Nume, 25) ->null string
MOV R1, #%&EVAL(YNUML LE 9&NUMR) -> MOV R1, #00H

71

TASKING VX-toolset for 8051 User Guide

%EXIT

Syntax

%EXI T

Description

The built-in function %EXI T terminates expansion of the most recently called user defined macro. It is
most commonly used to avoid infinite loops (e.g. a recursive user defined macro that never terminates).
It allows several exit points in the same macro.

Example

This example uses the %EXI T function to terminate a recursive macro when an odd number of bytes have
been added.

% DEFI NE (MEM ADD_MEM SOURCE, DEST, BYTES))
(%F(YBYTES LE 0) THEN (9&EXIT) FI

ADD A, %SOURCE

ADDC A, 9YDEST

MV 9DEST, A

%F(YBYTES EQ 1) THEN (%&EXIT) FI

MV A %SOURCE+1

ADDC A, YDEST+1

MV 9DEST+1, A

% F(YBYTES GT 2) THEN (

9%EM ADD_MEM %SOURCE+2, YDEST+2, 9BYTES- 2)) FI

)

The above example adds two pairs of bytes and stores results in DEST. As long as there is a pair of bytes
to be added, the macro MEM_ADD _MEMis expanded. When BYTES reaches a value of 1 or 0, the macro
is exited.

In the following example %&EXI T is a simple jump out of a recursive loop:

% DEFI NE (BODY)
(MOV A, %WVAR

YSET(MWAR, %WAR + 1)
)

% DEFI NE (UNTI L(CONDI TI ON, EXE_BCDY))
(Y%EXE_BODY
% F(%OCONDI TI ON)
THEN (
YEXI T)
ELSE (
QUNTI L(%CONDI TI ON, %EXE_BODY)
) FI

72

Assembly Language

%SET(WAR, 0)
QUNTI L(%WAR GT 3, 9 BODY)

Related Information
UREPEAT

\H LE

73

TASKING VX-toolset for 8051 User Guide

%_FILE__,%_LINE__
Syntax

% FILE
% LINE

Description

The % _FI LE__ macro is equivalent to the ISO C predefined macro, it translates into the name of the
current source file.

The % LI NE__ macro is equivalent to the ISO C predefined macro, it translates into the line number of
the current source line.

Example

YERROR(Error in file % _FILE _on line % _LINE)

74

Assembly Language

%IF

Syntax

% F(expression)

THEN
(textl)

[ELSE] ; the ELSE part is optional
(text?2)]

Fl

Description

With the %8 F function you can create a part of conditional assembly code. The assembler assembles
only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the result of the expression is TRUE, then the succeeding textl is expanded; if it is FALSE and the
optional ELSE clause is included in the call, then the text2 is expanded. If the expression results FALSE
and the ELSE clause is not included, the | F call returns the null string. The macro call must be terminated
by FI .

You can nest % F calls to any level. The ELSE clause refers to the most recent % F call that is still open
(not terminated by FI). FI terminates the most recent 98 F call that is still open.

Example
This is a simple example of the IF call with no ELSE clause:

%SET(VALUE, OFOH)
% F(%/ALUE GE OFFH)
THEN

(MOV R1l, #%WALUE)
Fi

This is a simple form of the IF call with an ELSE clause:

% F(%EQS(ADD, %OPERATI ON))
THEN
(ADD R7, #03H)
ELSE
(SUB R7, #03H)
F

This is an example of three nested IF calls:
% F(%EQS(%OPER, ADD)) THEN (

ADD R1, #03H
)ELSE (% F(%&EQS(%OPER, SUB)) THEN (

75

TASKING VX-toolset for 8051 User Guide

SUB R1, #03H
)ELSE (9% F(Y%EQS(%OPER, MUL)) THEN (
MOV R1, #03
JVWP MIL_LAB
) ELSE (
MOV R1, #DATUM
JVP DI V_LAB
) FI
) FI
) FI

Demonstrating conditional assembly:
YSET(DEBUG, 1)
% F(YOEBUGQ)
THEN (
MOV R1, #YDEBUG

JMP DEBUG
) F

MV Rl, R2

This expands to:

MOV R1, #01H
JMP DEBUG
MOV Rl, R2

To turn of the debug code you can change %SET to:
YSET(DEBUG, 0)
Related Information

% FDEF, % FNDEF

76

Assembly Language

%IFDEF, %IFNDEF

Syntax

% FDEF(macr o)

THEN
(textl)

[ELSE] ; the ELSE part is optional
(text?2)]

Fl

% FNDEF(macr o)

THEN
(textl)

[ELSE] ; the ELSE part is optional
(text2)]

FI

Description

The 9% FDEF built-in function tests if a macro is defined and the %8 FNDEF built-in function tests if a macro
is not defined. Based on this test, the function expands or withholds its text arguments. These functions
allow you to decide at macro time whether to assemble certain code or not (conditional assembly). So,
the assembler never has to see any code which is not to be assembled.

The % FDEF and %4 FNDEF functions first test if macro is defined (IFDEF) or not (IFNDEF). If it is TRUE,
then the succeeding textl is expanded; if it is FALSE and the optional EL SE clause is included in the call,
then the text2 is expanded. If the test results to FALSE and the ELSE clause is not included, the macro
call returns the null string. The macro call must be terminated by FI .

You can nest % FDEF/% FNDEF calls to any level. The ELSE clause refers to the most recent call that is
still open (not terminated by FI). FI terminates the most recent %4 FDEF/% FNDEF call that is still open.

Example
This is a simple example of the IFNDEF call with no ELSE clause:

% FNDEF(MODEL)

THEN (

YDEFI NE(MODEL) (SMALL)
) FI

This is a simple form of the IFDEF call with an ELSE clause:

% FDEF(DOADD)
THEN

(ADD R7, #03H)
ELSE

(SUB R7, #03H)
FI

77

TASKING VX-toolset for 8051 User Guide

Related Information

% F

78

Assembly Language

%IN, %0UT

Syntax

% N

YOUT(t ext)
Description

These built-in functions perform console I/O. They are line oriented. % N outputs the character '>' as a
prompt to the console (unless you specify another prompt with option --prompt), and returns the next
line typed at the console including the line terminator. %0UT outputs a string to the console; the return
value of ¥%OUT is the null string.

Example

%OUT(ENTER NUVBER OF PROCESSORS | N SYSTEM
%SET(PROC_COUNT, % N)

%OUT(ENTER THI S PROCESSOR S ADDRESS)

%SET(ADDRESS, % N)

%OUT(ENTER BAUD RATE)

%SET(BAUD, % N)

The following lines would be displayed on the console:

ENTER NUMBER OF PROCESSCRS | N SYSTEM
> user response

ENTER THI S PROCESSOR S ADDRESS

> user response

ENTER BAUD RATE

> user response

Related Information
%OPTI ON

Assembler option --prompt

79

TASKING VX-toolset for 8051 User Guide

%INCLUDE

Syntax

% NCLUDE(fil enane" | <fil enanme>

Description

With the 9% NCLUDE function you include another file at the exact location where the %4 NCLUDE occurs.
This happens at macro preprocessing time, before the resulting file is assembled. The %4 NCLUDE function
works similarly to the #i ncl ude statement in C. The source from the include file is assembled as if it
followed the point of the %4 NCLUDE function. When the end of the included file is reached, assembly of
the original file continues.

The string specifies the filename of the file to be included. Leading and trailing whitespaces are skipped.
The filename must be compatible with the operating system (forward/backward slashes) and can contain
a directory specification.

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The directory of the current source file.

2. The path that is specified with the assembler option --include-directory.

3. The path that is specified in the environment variable AS511 NC when the product was installed.
4. The default i ncl ude directory in the installation directory.

The state of the assembler is not changed when an include file is processed. The lines of the include file
are inserted just as if they belong to the file where it is included.

Example

It is allowed to start a new section in an included file. If this file is included somewhere in another section,
the contents of that section following the included file will belong to the section started in the include file:

: file incfile.asm

i nsect .segnent data
.rseg data
.db 5
.db 6

; file mainfile.asm

mai nsect .segnent data
.rseg data
.db 1
.db 2
% NCLUDE(i ncfile.asm

80

Assembly Language

.db 3
.db 4

The resulting sections have the following contents:

mai nsect: 0x01 0x02
incsect: 0x05 0x06 0x03 0x04

81

TASKING VX-toolset for 8051 User Guide

%LEN
Syntax
% EN(t ext)
Description

The built-in function %4.ENtakes a character string argument and returns the length of the character string
in hexadecimal format (the same format as “EVAL).

Example

Bef ore Macro Expansi on After Macro Expansion
% EN(ABCDEFGHI JKL MNOPQRSTUWKYZ) -> laH

%.EN(A, B, -> 05H

9% EN() -> 0OH

YWVATCH(STR1, STR2) (Cheese, Mouse)

% EN(%STR1) -> 06H

% EN(¥SUBSTR(%8TR2, 1, 3)) -> 03H

Related Information
%VATCH

Y%SUBSTR

82

Assembly Language

%MATCH

Syntax

UVATCH(macro_idl delimter nmacro_id2) (text)

Description

The built-in function %VATCH primarily serves to define macro identifiers. The %vVATCH function searches
a character string for a delimiter character and assigns the substrings on either side of the delimiter to
the macro identifiers.

delimiter is the first character to follow macro_id1. You can use a space or a comma or any other delimiter.
See Section 2.8.4, Macro Delimiters for more information on delimiters.

%VATCH searches the text for the first delimiter. When it is found, all characters to the left of it are assigned
to macro_id1 and all characters to the right are assigned to macro_id2. If the delimiter is not found, the
entire text is assigned to macro_id1 and the null string is assigned to macro_id2.

Example
9YVATCH(MS1, M52) (ABC, DEF) -> MB1=ABC Ms2=DEF
9YVATCH(MS3, MB4) (CH, %vB1) -> MB3=GH MB4=ABC

9VATCH(MS5, MS6) (%-EN(%vB1)) -> MS5=03H Ms6=nul |
You can use the MATCH function for processing string lists as shown in the next example.

9%ATCH(NEXT, LI ST) (10H, 20H, 30H)
OMHI LE(% EN(9\EXT))
(MOV A OEXT

ADD A, #2

MOV OMNEXT, A

9VATCH(NEXT, LI ST) (%.1 ST)
)

Produces the following code:
First iteration of WHILE:

MOV A 10H
ADD A, #2
MOV 10H, A

Second iteration of WHILE:
MOV A, 20H
ADD A, #2
MOV 20H, A

Third iteration of WHILE:

83

TASKING VX-toolset for 8051 User Guide

MOV A 30H
ADD A, #2
MOV 30H, A

Related Information
%_EN

Y%SUBSTR

84

Assembly Language

%METACHAR

Syntax

UWVETACHAR(t ext)

Default: %

Description

You can use this function to redefine the metacharacter (initially: '%").

Although the text string may be any number of characters long, only the first character in the string is
taken to be the new metacharacter. Macro calls in the text string are still recognized and corresponding
actions that will not lead to any direct expansion on the output file will be performed. So, for example a
YSET macro call inside the text string will be performed.

Characters that may not be used as a metacharacter are: a blank, letter, digit, left or right parenthesis,
or asterisk.

Example
The following example is catastrophic !!!
9VETACHAR(&)

This examples defines the space character as the new metacharacter, since it is the first character in the
text string!

The correct way should be:

YVETACHAR(&)

85

TASKING VX-toolset for 8051 User Guide

%OPTION

Syntax

%OPTI ON(command_I i ne_opt i on)

Description

You can use the %0PTI ON function to trigger a command line option from within the source file.

The command_line_option must be any valid command line option. The %PTI ONfunction itself is replaced
with the null string.

Example

The following command sets the prompt for the %4 N function to "y/ n: " from with the source:
YEOPTI ON(- - pronpt =y/ n:)

Related Information

% N

86

Assembly Language

%REPEAT

Syntax

YREPEAT(expr essi on)
(text)

Description

Unlike the 9% F and 9\HI LE macros, “REPEAT uses the expression for a numerical value that specifies
the number of times the text should be expanded. The expression is evaluated once when the macro is
first called, then the specified number of iterations is performed.

A call to built-in function %EXI T always terminates a %EPEAT macro.

Example

Lab:
MOV A, #8
MOV R2, #OFFFFH

YREPEAT(