
 

1 

Copyright © TASKING 2024 All rights reserved. 

Qualifying a C Library 
Dealing with the conflicting worldviews of the ISO 26262 and ISO C standards 

 

Gerard Vink 

 

Functional safety and cybersecurity standards treat the qualification of tools and 

libraries as independent subjects. This independence is inconsistent with the 

perspective of the ISO C standard which serves as the foundation for implementing 

compiler toolsets and their libraries. This fundamental difference poses difficulties 

when it comes to qualifying a compiler and the libraries associated with it. 

Introduction 

To achieve conformance with the ISO 26262 functional safety standard, it is required to 

qualify software components, including the libraries that are part of a compiler toolset, 

before they can be integrated into automotive software systems. 

 

The implementation of a C compiler and its associated libraries heavily relies on ISO/IEC 

9899, commonly referred to as ISO C. This standard delineates several critical aspects: 

 

• It defines the characteristics of environments used to translate and execute C 

programs, which form the basis for what's known as "startup code." 

• It specifies the syntax, constraints, and semantics of the C language, which are essential 

for building the compiler and its executable file, as well as the runtime libraries. 

• It covers the library facilities, describing what's inside header files and how C library 

functions should behave. 

 

The above topics are addressed in separate clauses of the ISO C standard but with many 

references between the clauses, indicating interdependencies between the startup code, 

the compiler executable, the runtime libraries, the header files, and the C library. 

Consequently, it's not immediately clear whether the requirements for tool qualification 

and/or library qualification apply to a specific part of the compiler toolset, and whether 

changes made to one part of the toolset might impact the qualification of other parts. 

Tool Qualification 

Ensuring the qualification of a compiler tool for functional safety (FuSa) is a well- 

established practice, which is described in part 8, chapter 11, of the ISO 26262 standard. 

The qualification process aims to provide evidence that the software tool is suitable for use 

in the development of FuSa-related software. 

 

There are four primary methods outlined in ISO 26262 to qualify a software tool: 



 

2 

Copyright © TASKING 2024 All rights reserved. 

• Increased Confidence from Use: This method involves gaining confidence in the tool 

through its extensive use in relevant applications. 

• Evaluation of the Development Process: This entails assessing the development 

process of the software tool itself. 

• Validation of the Software Tool: This method verifies that the software tool meets 

specified requirements for its intended purpose. 

• Development in Accordance with a Safety Standard: This approach involves creating the 

software tool in alignment with a safety standard. 

 

For higher Automotive Safety Integrity Levels (ASILs), typically only the last two methods are 

considered suitable. The industry predominantly relies on the tool validation method, which 

essentially means that validation measures exist to prove that the software tool fulfills its 

specified requirements. 

 

Compiler suppliers employ two distinct approaches: 

 

• Certified Compiler Toolset: Some compiler suppliers, for example TASKING, perform tool 

validation internally and engage a conformity assessment body to certify that both the 

tool and its associated safety documentation are suitable for their intended purpose. 

Customers receive a certified compiler toolset and only need to adhere to the 

guidelines outlined in the safety manual. 

• Certifiable Compiler Toolset with Tool Qualification Methodology: Most compiler suppliers 

still offer a certifiable compiler toolset along with a tool qualification methodology that 

includes supporting tools and documentation. In this case, the tool qualification 

methodology is typically certified, but the customer is responsible for performing the 

tool qualification process. This involves steps such as specifying the use case to define 

the tool's requirements, selecting appropriate tests to verify these requirements, 

conducting the tests, analyzing the results, generating safety documents, and 

subsequently adhere to the guidelines outlined in the safety documents. 

It is important to note that the latter approach has hidden costs such as the need to learn 

the qualification methodology and associated tooling, license the required compiler 

verification suites, perform the tool validation process, interact with the certifying authority 

and addressing issues that may arise if tests fail. This last part can be troublesome. What to 

do if the vendors of the compiler toolset and the compiler verification suite have different 

views on the interpretation of specific parts of the ISO C standard? 

Software Component Qualification 

The ISO 26262 FuSa standard provides two distinct methods for qualifying software 

components such as a compiler’s C library. 



 

 

3 

Copyright © TASKING 2024 All rights reserved. 

One is specifically designed for commercial off-the-shelf (COTS) software components while 

the other is for software components developed independently of their intended use. Both 

methods offer a structured approach to ensure that software libraries meet the necessary 

safety requirements. The method to qualify COTS components is often applied by parties 

that did not develop the software component. 

Commercial Off-The-Shelf Software Components 

Requirements for qualifying COTS software components are described in ISO 26262, part 8, 

chapter 12. They mandate the availability of detailed software component requirements, 

encompassing aspects like runtime environments and the numerical accuracy of 

mathematical algorithms, and require that the software remains unmodified. 

 

Extracting such detailed requirements from a compiler toolset's user documentation is 

often impractical or impossible, and falling back on the requirements of the ISO C standard 

is also not a solution because aspects such as the accuracy of the C library mathematical 

functions is specified as "implementation-defined", making it difficult for entities other than 

the library developer to perform a reliable qualification. 

 

If the above challenges can be resolved, the qualification effort boils down to showing a 

requirement coverage in accordance with ISO 26262 part 6, chapter 9 Software Unit 

verification1, which requires access to the source code of the C library and the compiler 

run-time libraries, and a C library implementation specific test suite to satisfy the branch 

coverage requirement for ASILs B and C and the MC/DC coverage requirement for ASIL D. 

 

For this qualification method ISO mandates that the software remains unmodified, so 

issues identified during the qualification activities cannot be fixed and must be resolved, if 

possible, via some workaround. This makes this qualification method unattractive. 

Out-of-Context Software Components 

Requirements for qualifying a Safety Element out of Context (SEooC) are described in ISO 

26262, part 10, chapter 12. When considering the C library as an SEooC, the qualification 

process encompasses all ISO 26262 safety lifecycle steps relevant to automotive software 

development. This includes the development of a technical safety concept based on 

assumptions about how the software component will be used. Subsequently, it involves 

adhering to product development requirements at the software level, which encompass 

aspects such as applying a suitable development process, specifying safety requirements, 

creating software architectural designs, implementing software units, verifying these units, 

and defining integration procedures. In addition to ensuring that the component doesn't 

introduce additional hazards (safety lifecycle), the qualification process also addresses 

functional aspects to ensure the component performs as intended. This makes this 

qualification method much more expensive to apply than the previous COTS-based 

approach. 

 
1 It is debatable how to deal with the prerequisites of ISO26262-6:9.3.1. Taken literally, the prerequisites imply that 

entire software unit and architectural designs are required as input to the verification activities.



 

4 

Copyright © TASKING 2024 All rights reserved. 

 

The advantage for the user of a C Library qualified as SEooC is that the library can be used 

without any re-qualification effort. The safety documentation contains the assumptions on 

safe use and provides guidance on how to establish the validity of the assumptions during 

integration of the library. 

Decomposition of a Compiler Toolset 

Figure 1 provides a decomposition of a compiler toolset and shows the relationship 

between the components. Specific qualification considerations apply to each component. 

 

 

Figure 1, Relations between Application Software, QClib, and Compiler Toolset 

Qualification Considerations per Toolset Component 

Executable programs: A C compiler toolset contains executable programs that are typically 

split into a compiler, an assembler, and a linker. The tool qualification criteria from ISO 

26262, part 8 chapter 11 apply to the qualification of these executable files. 

 

Compiler Runtime Libraries: Whether a specific functionality will be built into the compiler 

executable or implemented in a runtime library is based on the instruction set architecture 

of the microcontroller and on tradeoffs between code size and the execution speed of 

compiler-generated code. The functions in the compiler run-time libraries are developed by 

the compiler developer in parallel with the development of the compiler executable. 

Conformity assessment bodies tend to conclude that because the runtime library functions 

are called by compiler-generated code and developed by the compiler developer, the tool 

qualification criteria apply. 

 

Header Files: The header files (standard include files) contain macros, type definitions, and 

function prototypes. There is a close relationship between the implementation of the 

compiler's executable and the contents of the header files. For example, the macros in the 



 

5 

Copyright © TASKING 2024 All rights reserved. 

header file "limits.h" must conform to the basic types as implemented in the compiler. 

Therefore, the tool qualification criteria should apply to header files. On the other hand, 

the header files are specified in the ISO C standard in the Library chapter and the header 

files contain prototypes of the library functions and macros and type definitions used by 

library functions. One could therefore also argue that the qualification criteria for software 

components should apply. Conformity assessment bodies take the view that if the header 

files are developed by the same engineers who developed the compiler, then the header 

files should be considered part of the compiler tool and are qualified in the context of 

compiler tool qualification. 

 

Copy Table, Trap Table and Linker Symbols: The copy table, trap table, and linker symbols are 

data structures and symbols created during the compilation process. The contents of the 

data structures and the existence of certain symbols depend on the user's application 

being compiled and on the applied compiler/linker options settings. As such, the above 

entities are qualified in the context of the compiler tool qualification. These data structures 

and symbols are used to initialize the compiler's runtime environment, which is handled by 

the startup code. The connectors in Figure 1 show the dependencies between the compiler-

generated entities and their use by library functions. This makes it clear that the compiler 

tool and compiler library qualification cannot be viewed as separate, unrelated activities. 

 

Startup Code: The system integrator has ultimate responsibility for qualifying the overall 

startup software. The supplier of a qualified compiler and associated libraries is 

responsible for providing prequalified startup software that initializes the compiler's 

runtime environment, which can be easily integrated by the system integrator into the 

overall system startup software, without invalidating the prequalification. Initializing the 

compiler's runtime environment means assigning the appropriate values to the registers 

used by the compiler-generated code and copying the application software's data from 

FLASH to the appropriate RAM locations. For this purpose the startup code typically uses 

functions from the compiler run-time libraries. 

 

Trap Functions: Trap handling functions shall be activated when a microcontroller's 

hardware safety mechanism detects an anomaly, such as when the memory protection unit 

detects illegal memory access. The required behavior of trap handling functions is use- 

case specific, therefore the system integrator is responsible for the implementation and 

qualification of these functions. However, to ensure that when a hardware trap occurs, the 

correct trap processing function is called with the appropriate input parameters set to the 

correct values is part of the compiler tool qualification which is under responsibility of the 

tool supplier. 

C Library Functions 

Qualification Criteria: The C library contains functions that perform basic operations, such as 

memory operations, and low-level mathematical functions, such as square root, power 

functions, trigonometric functions, and so on. The functions of the C library are 



 

6 

Copyright © TASKING 2024 All rights reserved. 

described in the user documentation, are called from the user's application software and 

are integrated into the vehicle software. It is therefore “obvious” that the qualification 

requirements for software components apply. However, the devil is in the details, as shown 

below. 

The C library's mathematical functions are typically highly optimized and therefore use 

functions from the runtime floating-point libraries. The runtime libraries were qualified in 

the context of a tool qualification, but now the intended use has changed – for example, the 

function could be called with input arguments that are outside the valid range which is 

used by the compiler – and software component qualification criteria apply to those 

runtime functions. 

The C library functions declared in the header file "fenv.h" access and modify the so- called 

floating-point environment. The floating-point environment is part of the compiler runtime 

environment, and its configuration affects the behavior of compiler-generated code for 

floating point operations. For these functions, the question is therefore whether the 

qualification criteria for tools, or the qualification criteria for software components, or both 

should apply. 

 

ASIL: The ASIL level for which specific C library functions are suited is debatable. Some C 

library features are inherently unsafe due to weaknesses in previous versions of the ISO C 

standard (C90) and the desire to keep the standard backwards compatible. To correct the 

mistakes of the past, the ISO C committee introduced Annex K, which includes safer 

variants of the unsafe functions. The MISRA C and CERT C Coding Guidelines provide 

guidelines for the safe and secure use of C library functions and recommend against using 

several parts of the library functions. 

To determine for which ASIL a feature is suitable, the following reasoning can be used: if a 

function is developed in accordance with ISO 26262 ASIL-x requirements, then the function 

is qualified for use in ASIL-x software, independent of MISRA recommendations, provided 

the user adheres to the guidelines from the safety manual. For example, such a guideline 

could impose restrictions on the valid domain of a function's input parameters. 

 

Content: The C library contains many functions that are unsafe and/or are not used in 

automotive software. Should a vendor include or remove such features from a qualified 

library? If such features are removed, the user's software may not build when switching 

from an unqualified library to a qualified library, and functionality such as printf()-style 

debugging or logging functions will no longer be available during the software 

development. Both issues can be considered as disadvantages. On the other hand, if a 

qualified library contains functions qualified for different ASILs, including QM, then some 

means must be provided to ensure that functions with an inappropriate level of 

qualification are not built into the production software. 

Safety Documents - Practical Use - Costs 

What has been said before about the “certified” versus “certifiable” compiler toolset 

qualification approaches also applies to software component / library qualification. 



 

7 

Copyright © TASKING 2024 All rights reserved. 

When the qualification of the compiler and its associated libraries has been conducted by 

the compiler supplier, the customer receives both a qualified compiler and qualified 

libraries, accompanied by associated safety manuals. The supplier can provide a third- 

party certificate as evidence that the qualification meets ISO 26262 requirements. 

The formal evidence of the correct use of the compiler and integration of the library 

software should be created by the user via a coverage analysis showing that the 

guidelines/requirements from the safety manuals have been implemented. 

In the ideal case the safety manuals are provided in a machine-readable format such as 

ReqIF. This enables the coverage analysis to be performed automatically by reading the 

guidelines into the company's requirements management system and addressing the 

guidelines through the company's standard operating processes. This prevents annoying 

and error-prone conversions and the adjustment to new work processes. 

Ideally, the user should be able to reuse existing coverage analysis activities if the 

compiler/library is updated or if a switch is made to another type of microcontroller. 

Therefore, safety manuals should be prepared for comparison and merging. All 

forementioned items have been implemented in the TASKING Qualified C Library. 

Conclusion 

In conclusion, adhering to functional safety standards necessitates the qualification of both 

the compiler and its accompanying libraries. Qualifying these components demands an in-

depth understanding of FuSa standards, the ISO C standard, and the compiler toolset's 

design and implementation. Therefore, the tool manufacturer is typically best equipped to 

undertake this qualification process. 

For the end-user, the maturity and format of the provided safety documentation 

significantly impacts the cost-effectiveness of their engineering and FuSa compliance 

endeavors. Therefore, investing in well-documented and certified compiler toolsets and 

libraries can be a judicious decision. With many FuSa and software certification tasks 

handled by the compiler and library supplier, your efforts can be channeled towards 

advancing innovations in automotive software. 

Author 

Gerard Vink is Industry Specialist Product Definition at TASKING. He studied mechanical 

engineering and computer science and has long-term experience with the development of 

tools and processes for (embedded) software development. 
 


