
© 2002-2005 Altium BV

1 LSL Sample Cases using
the Control Program

LSL Sample Cases using the
Control Program

THE QUESTIONS…

1. How do I locate a function within a specific memory definition?

2. How do I locate a function at an absolute memory offset address?

3. How do I locate a function at an absolute address?

4. I have several functions that must be located within a specific memory definition. Their order
must be the order in which they were defined plus that they must be contiguous. Possible
alignment gaps between these sections may not be replaced with existing sections but
should simply remain gaps. How do I do this?

5. I have a function that I want to run from RAM memory. I would like the startup code to load
this function in RAM prior to entering the main program. How do I do this?

6. How do I locate a variable at a fixed address without using the __at() memory qualifier?

7. I have battery-backed data. I do not want the startup code to clear it because then it will also
be cleared in case of sudden reboots which I do not want. For this data I want the linker to
disable the clear attribute but how?

8. I know how I can address linker labels for the stack or heap. But how can I change their size
and/or start address?

9. We have a project that because of its size and complexity has been split into several logical
blocks, each having their own group of engineers. All blocks are delivered to us as libraries
before finally locating the entire application. We want to avoid one group of engineers
accidentally using resources from other groups and therefore want a mechanism that restricts
memory use to well defined memory blocks per group of engineers. No one may enter the
application block of someone else nor may a block itself exceed a certain size. Each
application block must be extended with a fill pattern to meet this size. Is there a way?

10. Within the memory map of our application we have specific memory parts that must be
reserved. No data may be located within this range other than data that is located by means
of an absolute address. Is there a way to do this in the Linker Script Language?

11. For a self-designed processor we need a way to define a Scratch-Pad RAM. Since it may only
be used for executing code we want to prevent the linker from using this RAM memory for
standard application data. In a way it needs to be ‘disabled’ and only those groups that we
explicitly locate within it should be allowed. What internal memory definition should we use?

12. We have two groups with sections requiring contiguous ordering. The groups themselves
must be contiguous but not necessarily ordered. What section layout definition do you
propose we use?

The aim of this document is to demonstrate the usage of the Linker Script Language while using the TriCore toolchain to locate
your application. It contains examples that deal with the most commonly used aspects of the language. It first lists all questions
and continues with the proposed solutions. Studying this document will take 2 hours of your time. You may skip this document
if you intend to use EDE instead. In that case document “LSL Sample Cases using EDE” will suffice for most cases.

Each solution consists of a proposed section layout definition - which you must place in a user module layout.lsl - and an
invocation of the control program. The control program invocation will use tc1796.lsl for derivative definition and extmem.lsl for
external memory definition. You can find both in the product folder include.lsl.

You are encouraged to verify the results of the linker by checking the map file. You can also test most examples with CrossView
Pro’s simulator execution environment using the following command line invocation:

xfwtc example.elf -C tc1796 -tcfg tsim2.cfg

2
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

TASKING TRICORE TOOLSET

THE PROPOSED SOLUTIONS…

Solution: Assume the following C-module:

#include <stdio.h>

extern void _lc_ub__text_test_Sample[];
extern void _lc_ue__text_test_Sample[];

void Sample(void)
{

printf("_lc_ub__text_test_Sample: 0x%p\n",
_lc_ub__text_test_Sample);

printf("_lc_ue__text_test_Sample: 0x%p\n",
_lc_ue__text_test_Sample);

}

void main(void)
{

Sample();
}

Suppose you want to locate function Sample and suppose the C-module is called test.c then
according to TriCore’s section naming convention (See section 3.10, compiler generated sections)
Sample will be assigned to the following code section:

".text.test.Sample"

Suppose Sample must be located within memory ext_c such as defined in extmem.lsl then the
following section layout definition will accomplish this:

section_layout ::linear
{

group (run_addr = mem:ext_c)
{

select ".text.test.Sample";
}

}

The following control program command line invocation locates the application:

cctc --output=example.elf --debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl --verbose test.c

How do I locate a function within a specific memory definition?

QUESTION 1

3
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

Solution: Using the same C-module as with Solution 1 and assuming a memory offset of 32k the
section layout definition becomes:

section_layout ::linear
{

group (ordered, run_addr = mem:ext_c[32k])
{

select ".text.test.Sample";
}

}

Note that in addition to the memory offset a new keyword is introduced called ordered. This
keyword is required because a fixed memory offset address implies a restricted address and by
default groups are unrestricted. The required control program command line invocation:

cctc --output=example.elf --debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl --verbose test.c

Solution: Using the same C-module as with Solution 1 and assuming an absolute address of
0xa000c000 the section layout definition becomes:

section_layout ::linear
{

group (ordered, run_addr = 0xA000C000)
{

select ".text.test.Sample";
}

}

The required control program command line invocation:

cctc --output=example.elf --debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl --verbose test.c

How do I locate a function at an absolute address?

QUESTION 3

How do I locate a function at an absolute memory offset address?

QUESTION 2

4
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

Solution: Assume the following C-module called test.c:

#include <stdio.h>

extern void _lc_ub__text_test_SampleB[];
extern void _lc_ue__text_test_SampleE[];

void SampleB(void)
{

printf("_lc_ub__text_test_SampleB: 0x%p\n",
_lc_ub__text_test_SampleB);

}

void SampleE(void)
{

printf("_lc_ue__text_test_SampleE: 0x%p\n",
_lc_ue__text_test_SampleE);

}

void main(void)
{

SampleB();
SampleE();

}

Suppose you want to locate functions SampleB and SampleE then from Solution 1 it follows that
these are assigned to the sections listed below:

".text.test.SampleB"
".text.test.SampleE"

Further suppose function SampleB must be located before SampleE then the section layout
definition becomes:

section_layout ::linear
{

group (ordered, contiguous, fill=0x55, run_addr = mem:ext_c)
{

select ".text.test.SampleB";
select ".text.test.SampleE";

}
}

Note the use of the fill keyword. It prevents the linker from substituting alignment gaps with
unrestricted sections/groups. The required control program command line invocation:

cctc –-output=example.elf –-debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl --verbose test.c

I have several functions that must be located within a specific memory definition. Their
order must be the order in which they were defined plus that they must be contiguous.
Possible alignment gaps between these sections may not be replaced with existing
sections but should simply remain gaps. How do I do this?

QUESTION 4

5
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

Solution: Assume the following C-module called test.c:

#include <stdio.h>

extern void _c_init(void);
extern void _lc_ub__text_test_Add[];

inline void PatchAdd2Sub(void)
{

((int*)_lc_ub__text_test_Add)[0] = 0x2080540B;
}

inline void ReinstallAdd(void)
{

_c_init();
}

__indirect int Add(const int a, const int b)
{

return a+b;
}

void main(void)
{

if (Add(1,1) == 2)
{

if (PatchAdd2Sub(), Add(1,1) == 0)
{

if (ReinstallAdd(), Add(1,1) == 2)
{

puts("success!");
}

}
}

}

For this example the aim is to have Add installed in the on-chip scratch-pad memory defined as
csram in the derivative definition for tc1796. Note the use of the __indirect keyword which -
in this case - is required because within the tc1796 memory map the gap between external
memory ext_c and internal memory csram exceeds 16 MB and can therefore not be resolved
with a standard callg or jg instruction. Not using __indirect here will result in linker error
messages. The proposed section layout definition:

section_layout ::linear
{

group (run_addr = mem:spe:csram, copy)
{

select ".text.test.Add";
}

}

The copy keyword instructs the linker to create a copy section for the sections within its group.
In this case .text.test.Add spawns into copy section [.text.test.Add] and runtime section
.text.test.Add which is installed in csram. The copy section itself is still unrestricted and will be
freely located in ROM memory. Note the use of spe:csram to uniquely identify csram within a

I have a function that I want to run from RAM memory. I would like the startup code to
load this function in RAM prior to entering the main program. How do I do this?

QUESTION 5

6
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

possible multi-core environment or from possible external memory definitions with the same
name. The required control program command line invocation:

cctc --output=example.elf --debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl --verbose test.c

Solution: Assume the following C-module called test.c:

extern void _lc_ub__bss_test_MMRDeviceOne[];
extern void _lc_ub__bss_test_MMRDeviceTwo[];

__far unsigned MMRDeviceOne;
__far unsigned MMRDeviceTwo;

void main(void)
{

while (_lc_ub__bss_test_MMRDeviceOne != ((void*)0xA0080100));
while (_lc_ub__bss_test_MMRDeviceTwo != ((void*)0xA0080200));
puts (“memory mapped devices have been properly located”):

}
In this example memory mapped registers MMRDeviceOne and MMRDeviceTwo are supposed
to reside at addresses 0xA0080100 and 0xA0080200 respectively. If they are not, the program
will lock at either the 1st or 2nd while-statement. Locating both memory mapped registers to
their designated addresses requires the following section layout definition:

section_layout ::linear
{

group (ordered, run_addr=mem:ext_d[0x100])
{

select ".bss.test.MMRDeviceOne";
}
group (ordered, run_addr=mem:ext_d[0x200])
{

select ".bss.test.MMRDeviceTwo";
}

}

Note that memory-relative addresses are used. Instead you may also use the following equivalent
that implements absolute addresses:

section_layout ::linear
{

group (ordered, run_addr=0xA0080100)
{

select ".bss.test.MMRDeviceOne";
}
group (ordered, run_addr=0xA0080200)
{

select ".bss.test.MMRDeviceTwo";
}

}

How do I locate a variable at a fixed address without using the __at() memory qualifier?

QUESTION 6

7
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

The required control program command line invocation in both cases:

cctc –-output=example.elf –-debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl
--section-per-data-object --verbose test.c

Note the use of compiler command line option --section-per-data-object which is to make
sure each variable is assigned a unique section name rather than one data section per module.

Solution: Assume the following C-module called test.c:

#include <string.h>
#include <stdio.h>

char securedString[35];
extern void _lc_ub__text_libc[];

void ColdReboot(void)
{

((void(*)(void))_lc_ub__text_libc)();
}

void main(void)
{

printf("%35s\n", securedString);
strcpy(securedString, "All are clear, I alone am clouded");
ColdReboot();

}

With every cold reboot - and the example repeatedly keeps doing so - the main program begins
by printing the contents of securedString. Under normal circumstances this means nothing is
printed because securedString has been cleared by the startup code. In this case securedString
resides in battery backed memory (for simplicity’s sake this is assumed to be memory ext_d) and
a sudden reboot will therefore unwantingly clear its contents. To prevent this from happening use
the following section layout:

section_layout ::linear
{

group (ordered, run_addr=mem:ext_d, attributes=ws)
{

select ".bss.test.securedString";
}

}

Where attributes=ws assigns the scratch attribute to all sections within that group which
effectively disables clearing. The example requires the following control program command line
invocation:

cctc –-output=example.elf –-debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl
--section-per-data-object --verbose test.c

I have battery-backed data. I do not want the startup code to clear it because then it will
also be cleared in case of sudden reboots which I do not want. For this data I want the
linker to disable the clear attribute but how?

QUESTION 7

8
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

Solution: Assume the following C-module:

#include <stdio.h>

extern void _lc_ub_ustack[];
extern void _lc_ue_ustack[];
extern void _lc_ub_heap[];
extern void _lc_ue_heap[];

void main(void)
{

printf("_lc_ub_ustack = 0x%p\n", _lc_ub_ustack);
printf("_lc_ue_ustack = 0x%p\n", _lc_ue_ustack);
printf("_lc_ub_heap = 0x%p\n", _lc_ub_heap);
printf("_lc_ue_heap = 0x%p\n", _lc_ue_heap);

}

Further suppose this application requires a relatively small stack size of 256 bytes which must be
offset to 32k of memory definition ext_d. The heap - though not used - should be 2k in size and
located at an offset of 40k within the same memory. Listed below is the proposed section layout
definition:

section_layout ::linear
{

group (ordered, run_addr=mem:ext_d[32k])
{

stack "ustack" (size=256);
}
group (ordered, run_addr=mem:ext_d[40k])
{

heap "heap" (size=2k);
}

}

If on the other hand the stack or heap location is unrestricted then the following section layout
definition will suffice:

section_layout ::linear
{

group stack "ustack" (size=256);
group heap "heap" (size=2k);

}

The usage of the stack or heap keyword within the section layout definition is different from that
of the architecture definition (tc_arch.lsl). Within the architecture definition attributes such as
minimum stack or heap size, stack or heap growth, ballooning and alignment are defined. The
section layout allows you to modify or extend these with group properties. For more information
about the stack or heap keyword within the architecture definition please refer section 8.5.3,
Defining Address Spaces in chapter Semantics of the Architecture Definition of the Reference
Manual. The same keywords within the section layout definition are explained in section 8.8.3,
Creating or Modifying Special Sections in chapter Semantics of the Section Layout Definition of
the Reference Manual.

I know how I can address linker labels for the stack or heap. But how can I change their
size and/or start address?

QUESTION 8

9
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

The control program command line invocation for this example:

cctc --output=example.elf –-debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl --verbose test.c

Solution:

Since there must be a way to distinguish sections from one group of engineers from another
group of engineers the module names for each group must conform to a naming convention. The
naming convention will then also be in the section names which simplifies the select
statements for each group. Suppose our fictive company has developer teams in Spain, Denmark
and Germany and therefore use the first characters to identify the country code followed by a
dash and finally the module name:

countryCode-moduleName.c

What follows is a simplefied example of the real thing. Team Spain writes library module
es-module.c as listed below:

#include <stdio.h>

void blockA(void)
{

puts("Team Spain");
}

Which they archived as below:

cctc --default-near-size=0 --create=object --verbose es-module.c
artc -crv libes.a es-module.o

Team Denmark on the other hand writes dk-module.c as listed below:

#include <stdio.h>

void blockB(void)
{

puts("Team Denmark");
}

Which they archived as below:

cctc --default-near-size=0 --create=object --verbose dk-module.c
artc -crv libdk.a dk-module.o

Team Germany has the task of linking the libraries from teams Spain and Denmark in the overall
application program being test.c as listed below:

We have a project that because of its size and complexity has been split into several
logical blocks, each having their own group of engineers. All blocks are delivered to us as
libraries before finally locating the entire application. We want to avoid one group of
engineers accidentally using resources from other groups and therefore want a
mechanism that restricts memory use to well defined memory blocks per group of
engineers. No one may enter the application block of someone else nor may a block itself
exceed a certain size. Each application block must be extended with a fill pattern to meet
this size. Is there a way?

QUESTION 9

10
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

extern void blockA(void);
extern void blockB(void);

void main(void)
{

blockA();
blockB();

}

It was agreed beforehand that each team should not cross an application block size of 1k. It was
also decided beforehand that the library delivered by team Spain should reside at address
0xa0000400 and team Denmark 0xa0000800. And finally it was agreed that gaps should be filled
with 0x55 to meet the required block size. The proposed section layout definition as used by the
German team:

section_layout ::linear
{

group (ordered, run_addr=0xA0000400)
{

section "es.text" (size=1k, attributes=rx, fill=0x55)
{

select ".text.es-*.*";
select ".rodata.es-*";

}
}
group (ordered, run_addr=0xA0000800)
{

section "dk.text" (size=1k, attributes=rx, fill=0x55)
{

select ".text.dk-*.*";
select ".rodata.dk-*";

}
}

}

The control program command line invocation finally used by the German team has been listed
below:

cctc –-output=example.elf –-debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl
--library=es --library=dk --verbose test.c

Note the use of the --library command line option to automatically select the libraries from
teams Spain and Denmark. The use of output sections is rare and really only applies to cases such
as this one. In almost all other cases a standard section layout definition with only groups or
nested groups will do.

11
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

Solution: Assume the following C-module called test.c:

#include <stdio.h>
#include <stdlib.h>

__far volatile unsigned DACSample __at(0xA0088000);

static inline unsigned NewSample(void)
{

return DACSample = rand();
}

void main(void)
{

while (1)
{

printf("Current DAC Noice Sample: 0x%04X\n", NewSample());
}

}

Suppose that memory range 0xA0088000 through 0xA00880FF is reserved memory and may not
be used for standard relocatable application data. Then the following section layout definition
applies:

section_layout ::linear
{

group (ordered, run_addr = 0xA0088000)
{

reserved "mmio" (alloc_allowed=absolute, size = 256);
}

}

Note the use of alloc_allowed=absolute which allows absolute sections to be located within
the reserved address range. Omitting these keywords will result in error messages. The required
control program command line invocation:

cctc –-output=example.elf –-debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl --verbose test.c

Within the memory map of our application we have specific memory parts that must be
reserved. No data may be located within this range other than data that is located by
means of an absolute address. Is there a way to do this in the Linker Script Language?

QUESTION 10

12
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

Solution:

For cases like these keywords reserved ram must be used while declaring the memory type.
Listed below is an extract from the internal memory definition csram as used in tc1796.lsl.

memory csram
{

mau = 8;
size = 48k;
type = reserved ram;
map (dest=bus:tc:fpi_bus, dest_offset=0xD4000000, size=48k);

}

The above definition defines the Scratch-Pad RAM (SPRAM) such as it resides on tc1796’s
program local memory bus (PLMB). This local bus has been excluded from tc_arch.lsl to
simplify it. For this reason csram is directly mapped to the tc:fpi_bus bus.

Solution: Assume the following C-module called test.c:

#include <stdio.h>

__far int a;
__far char b;
__far int c;
__far char d;

void main(void)
{

printf("&a = %p\n"
"&b = %p\n"
"&c = %p\n"
"&d = %p\n"
, &a, &b, &c, &d);

}

We have two groups with sections requiring contiguous ordering. The groups themselves
must be contiguous but not necessarily ordered. What section layout definition do you
propose we use?

QUESTION 12

For a self-designed processor we need a way to define a Scratch-Pad RAM. Since it may
only be used for executing code we want to prevent the linker from using this RAM
memory for standard application data. In a way it needs to be ‘disabled’ and only those
groups that we explicitly locate within it should be allowed. What internal memory
definition should we use?

QUESTION 11

13
LSL Sample Cases using
the Control Program

TASKING TRICORE TOOLSET

© 2002-2005 Altium BV

Then the following section layout definition can be used:

section_layout ::linear
{

group P (contiguous)
{

group C1 (contiguous, ordered)
{

select ".bss.test.d";
select ".bss.test.c";

}
group C2 (contiguous, ordered)
{

select ".bss.test.b";
select ".bss.test.a";

}
}

}

The parent group P locates child groups C1 and C2 in a single address range but not necessarily
in the order such as defined above. Child group C1 locates sections .bss.test.d and
.bss.test.c sequentially as does child group C2 with sections .bss.test.b and
.bss.test.a. The required command line invocation:

cctc –-output=example.elf –-debug-info --cpu=tc1796
--lsl-file=layout.lsl --lsl-file=extmem.lsl
--section-per-data-object --verbose test.c

