
m_c68get.pdf

MC001–022–00–00
Doc. ver.: 1.10

68K/ColdFire v10.0

Getting Started

Manual

A publication of

Altium BV

Documentation Department

Copyright 1997-2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Intel is a trademark of Intel Corporation.
Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

INTRODUCTION 1-1

1.1 Overview 1-3.

1.2 Documentation 1-3.

1.2.1 How to Use This Documentation Set 1-4.

1.3 The Development System 1-4.

1.3.1 The Compiler 1-6.

1.3.2 The Optimizer 1-6.

1.3.3 The Run-Time Library 1-6.

1.3.4 The Assembler 1-7.

1.3.5 Utilities 1-7.

1.3.6 The Linking Locator 1-7.

1.3.7 The Formatters 1-8.

1.3.8 The Librarian 1-9.

1.3.9 The Global Symbol Mapper 1-9.

1.3.10 The Object Size List Utility 1-9.

1.3.11 The Symbol List Utility 1-9.

1.3.12 CrossView Pro Debugger 1-10.

1.4 Before You Start 1-10.

1.4.1 Usage Conventions 1-10.

1.4.2 Tool Versions 1-10.

1.4.3 Driver Options 1-11.

1.4.4 Invocation Conventions 1-11.

1.4.5 Error Message Output (PC only) 1-12.

1.5 Additional Help 1-12.

1.5.1 Tutorial 1-12.

1.5.2 On-line Help 1-12.

INSTALLATION GUIDE 2-1

2.1 Introduction 2-3.

2.2 Software Installation 2-3.

2.2.1 Installation for Windows 2-3.

2.2.2 Installation for UNIX Hosts 2-4.

2.3 Software Configuration 2-5.

2.3.1 Configuring the Embedded Development Environment 2-5

Table of ContentsVI
C
O
N
T
E
N
T
S

2.3.2 Configuring the Command Line Environment 2-7.

2.4 Licensing TASKING Products 2-10.

2.4.1 Obtaining License Information 2-10.

2.4.2 Installing Node-Locked Licenses 2-11.

2.4.3 Installing Floating Licenses 2-12.

2.4.4 Starting the License Daemon 2-14.

2.4.5 Setting Up the License Daemon to Run Automatically 2-15.

2.4.6 Modifying the License File Location 2-16.

2.4.7 How to Determine the Hostid 2-17.

2.4.8 How to Determine the Hostname 2-17.

TUTORIAL 3-1

3.1 Introduction 3-3.

3.2 Finding the Programs and Setting Up the Path 3-3.

3.2.1 bin Directory 3-4.

3.2.2 rtlibs Directory 3-6.

3.2.3 examples Directory 3-7.

3.2.4 Derivatives Overview 3-8.

3.3 Invoking the Tools 3-10.

3.3.1 Invoking the Tools from EDE 3-10.

3.3.1.1 Using the Sample Projects in EDE 3-12.

3.3.1.2 Create a New Project Space with a Project 3-13.

3.3.1.3 Set Options for the Tools in the Toolchain 3-17.

3.3.1.4 Build your Application 3-19.

3.3.2 Invoking the Tools Using Command Line 3-20.

3.4 Tutorial Examples 3-21.

3.4.1 Example 1: Building Your First Application Executable 3-21

3.4.2 Example 2: Listings and Non-Default Output Files 3-23. . .

3.4.3 Example 3: Non-Default Memory Models and

Linking Options 3-30.

3.4.4 Example 4: Locator Options 3-34.

3.4.5 Example 5: Formatting Options and Saving Symbol

Information 3-38.

3.5 Introduction to System Building Concepts 3-41.

Table of Contents VII

• • • • • • • •

3.5.1 System Initialization 3-41.

3.5.2 A5-Relative vs. Separate Data Addressing 3-42.

3.5.3 Linking and Locating 3-42.

3.5.4 Linking C and Assembly 3-50.

3.6 Tutorial Conclusion 3-53.

FLEXIBLE LICENSE MANAGER (FLEXlm) A-1

1 Introduction A-3.

2 License Administration A-3.

2.1 Overview A-3.

2.2 Providing For Uninterrupted FLEXlm Operation A-5.

2.3 Daemon Options File A-7.

3 License Administration Tools A-8.

3.1 lmcksum A-10.

3.2 lmdiag (Windows only) A-11.

3.3 lmdown A-12.

3.4 lmgrd A-13.

3.5 lmhostid A-15.

3.6 lmremove A-16.

3.7 lmreread A-17.

3.8 lmstat A-18.

3.9 lmswitchr (Windows only) A-20.

3.10 lmver A-21.

3.11 License Administration Tools for Windows A-22.

3.11.1 LMTOOLS for Windows A-22.

3.11.2 FLEXlm License Manager for Windows A-23.

4 The Daemon Log File A-25.

4.1 Informational Messages A-26.

4.2 Configuration Problem Messages A-29.

4.3 Daemon Software Error Messages A-31.

5 FLEXlm License Errors A-33.

6 Frequently Asked Questions (FAQs) A-37.

6.1 License File Questions A-37.

6.2 FLEXlm Version A-37.

Table of ContentsVIII
C
O
N
T
E
N
T
S

6.3 Windows Questions A-38.

6.4 TASKING Questions A-39.

6.5 Using FLEXlm for Floating Licenses A-41.

INDEX

Manual Purpose and Structure IX

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual introduces the TASKING 68K/ColdFire toolchain to the new

user. This Getting Started manual allows you to start using the tools right

away.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Introduction

Introduces the documentation conventions and organization. Gives an

overview of the TASKING 68K/ColdFire toolchain.

2. Installation Guide

Describes how to install the 68K/ColdFire C Compiler/Assembler on

your system.

3. Tutorial

Guides you through a brief tutorial to get you started using the tools.

APPENDICES

A. Flexible License Manager (FLEXlm)

Contains a description of the Flexible License Manager.

INDEX

Manual Purpose and StructureX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

• TASKING 68K/ColdFire C Compiler/Assembler User's Manual

• TASKING 68K/ColdFire C Compiler/Assembler Reference Manual

Manual Purpose and Structure XI

• • • • • • • •

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and StructureXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

1

INTRODUCTION
C

H
A

P
T

E
R

Chapter 11–2
IN
T
R
O
D
U
C
T
IO
N

1

C
H

A
P

T
E

R

Introduction 1–3

• • • • • • • •

1.1 OVERVIEW

This introduction consists of a brief summary of the software

documentation package, how to use the package, conventions used in the

documentation, an explanation of each of the tools in the 68K/ColdFire

cross-development system, and technical information for reference before

you start using the tools.

1.2 DOCUMENTATION

Three manuals make up the 68K/ColdFire documentation: the Getting
Started Manual, the C Compiler/Assembler User's Manual and the C
Compiler/Assembler Reference Manual.

The Introduction chapter in this manual contains a summary of the

development system, and valuable technical information about the

software in the Before You Start section.

The Installation Guide chapter in this manual is primarily for the initial

installation of the software on your computer system.

The Tutorial chapter in this manual contains sample code and exercises

which lead you step-by-step through the powerful features of each

software tool. This material is useful for investigating a particular function

using the sample code provided in the examples\tutor directory.

The C Compiler/Assembler User's Manual includes invocation, options, and

usage summaries, along with examples for each of the tools and

definitions of special terminology and functions. This manual also contains

additional information in the appendices on run-time and naming

conventions, C language extensions, and object module formats.

The C Compiler/Assembler Reference Manual provides information on the

run-time libraries and the information necessary to write programs in

assembly language. It contains sections on source program coding,

assembler directives, macro operations, structured control statements, and

position-independent code, as well as a summary of the character set.

Chapter 11–4
IN
T
R
O
D
U
C
T
IO
N

1.2.1 HOW TO USE THIS DOCUMENTATION SET

The documentation is organized to be as flexible and useful as possible.

We have considered the varying levels of our users in organizing and

writing this manual set. For the inexperienced user of the development

system, we have included an Tutorial with exercises and sample code

illustrating the basic features of the tools. By �inexperienced users," we

mean those who have a working knowledge of the C programming

language, assembly language, and the host computer system they are

using, but have limited experience using cross compilers, assemblers, and

debuggers.

For the experienced user, the User's Manual offers detailed explanations of

the tools and their use. By ``experienced users,'' we mean those who are

conversant with the processes of compiling, assembling and debugging for

embedded systems software applications. Of course, beginning users will

find the User's Manual useful for exploring the features of the tools once

the Tutorial has been mastered.

1.3 THE DEVELOPMENT SYSTEM

The TASKING 68K/ColdFire toolset is a fully integrated development

system. The tools work seamlessly together and share a common object

language. The tools produce object language files in ASCII format, while

the formatter can produce either binary or ASCII files. Source code and

TASKING object modules are portable from host to host, and are

interchangeable between all supported hosts. The flexibility of the

TASKING solution allows quick and efficient hardware upgrades.

Introduction 1–5

• • • • • • • •

Assembly
Source Code

C
Source Code

Assembler Compiler

Olsize

Symlist

Gsmap

Module

Object

Librarian Linking

CrossView Pro

Absolute Object

IEEE695
Formatter

Download File

Target

Environment

Module

Object

Module

Locator

Microprocessor

Execution

Object

Module

Assembly
Source Code

C
Source Code

DebuggerSymbol File

C++
Source Code

C++
Source Code

Figure 1-1: Toolchain overview

Chapter 11–6
IN
T
R
O
D
U
C
T
IO
N

1.3.1 THE COMPILER

The compiler translates C source into machine instructions for the target

microprocessor. The input is one or more source programs. The C

language implemented conforms to the ANSI C standard ANSI/ISO

9899-1990.

Compiler output is an object module suitable for linking with other

modules. These object modules can also be catalogued in a library using

the librarian utility. The compiler has optional listings which show

interleaved source and generated machine instructions, along with

cross-reference listings. A pseudo-assembly listing is also available to

allow you to view code emitted by the compiler at the assembly language

level.

1.3.2 THE OPTIMIZER

The TASKING global optimizer improves the speed and reduces the size of

the code generated by the TASKING compiler. The global optimizer runs

after the compiler front end and before the code generator. It is

completely integrated into the compiler system, but its use is entirely

optional. Code compiled with the global optimizer can be freely combined

with non-optimized code.

The global optimizer performs a variety of optimizations. These

optimizations include automatic register allocation, loop optimization,

code hoisting, loop rotation, and common subexpression elimination.

Please refer to the C Compiler chapter in the User's Manual for a complete

description of usage and options.

1.3.3 THE RUN-TIME LIBRARY

The TASKING 68K/ColdFire toolset includes full run-time libraries: math

functions, memory allocation functions, standard I/O functions, string

manipulation functions, and floating point routines.

See the Run-Time Library chapter in the Reference Manual for listings and

more detailed information about integrating run-time library modifications.

Introduction 1–7

• • • • • • • •

1.3.4 THE ASSEMBLER

The TASKING 68K/ColdFire toolset includes a macro assembler. The

source format is manufacturer-compatible. That is, existing

manufacturer-compatible assembly code is easily reassembled using the

TASKING assembler. Minor changes may be needed if the assembled

modules are to be invoked by compiled modules. Refer to the Linking C
and Assembly application note in the User's Manual for more information.

The input to the assembler is one or more source programs. The output is

a corresponding number of object modules suitable for linking to other

modules. The object modules can be catalogued in a library. Assembler

object modules are compatible with C compiler object modules. Source,

cross-reference, and symbol table listings are available from the assembler.

1.3.5 UTILITIES

The TASKING compiler and assembler software includes a full set of

utilities. These tools increase programming productivity by reducing the

time spent on repetitive software building tasks. A brief description of the

utilities is given below. The linking locator and formatter must be run in

order to produce a download module. These utilities are described first,

followed by optional utilities. Each utility is explained in more detail in the

appropriate chapter of the User's Manual.

1.3.6 THE LINKING LOCATOR

The linking locator integrates the results of separate compilations and

assemblies into a single absolute module. This is done in three separate

steps, any or all of which can be performed in a single invocation of the

linking locator. The first step, called �linking," consists of combining

separate object modules into a composite module by resolving references.

Usually these object modules are produced by the assembler and/or

compiler, but pre-linked object modules may also be used as input. The

linking locator searches libraries to satisfy any unresolved references in the

module it is constructing.

Chapter 11–8
IN
T
R
O
D
U
C
T
IO
N

The second (optional) step, called ROM processing, consists of building

initialization segments used to initialize read-write data. All ROM-based

systems must execute code to initialize their read-write data, since the

initial values cannot be maintained in RAM (random-access memory), and

read-write data cannot be allocated in ROM (read only memory). This data

could be initialized by large numbers of assignment statements, but it is

more convenient and efficient to employ ROM processing instead. Unlike

the read-write data, the initialization segment is suitable for placement in

ROM. The initial data values are copied from ROM to RAM at the time of

initialization by the library routine rcopy .

The final step, called locating, consists of assigning absolute

target-memory locations to relocatable segments and resolving address

references. The linking locator gives you complete control over placement

of all code and data, but it also has the capacity to automatically locate

collections of segments in bounded areas of the target memory. The

output is an object module with absolute addresses substituted where

appropriate. A completely located module contains all the information

necessary to load and execute the code on the target microprocessor. The

linking locator can resolve the problem of storing a program into a

fragmented memory space consisting of ROM, RAM, and I/O mapped

device addresses.

1.3.7 THE FORMATTERS

form and form695 convert the contents of an absolute object module

into one of the industry standard formats, in either an ASCII hex or a

binary format. The formats provide for loading of object text, that is, code

and data, into the memory of the target processor using a loader. The

loader is generally provided by an emulator or other instrumentation

system, or by a ROM-resident monitor program. The formatter offers many

different formats in order to be compatible with a wide range of loaders.

The input is a module from the linking locator and the output is a

formatted load file. The formats may also be used as input to a PROM

burner to program read-only memory. See the Formatter chapter in the

User's Manual for a list of supported formats. The Object Module Formats
appendix in the User's Manual gives detailed information on each of the

supported formats.

Introduction 1–9

• • • • • • • •

1.3.8 THE LIBRARIAN

The librarian is a tool for managing libraries of program modules at the

pre-link or post-link phase of development. The librarian creates,

maintains, and selectively lists library index files. A library index file is a

text file defining an indexing structure which describes a collection of

object modules. It consists of a series of index entries, one for each object

module. The librarian's input is taken from the library and/or object

modules named on the command line or through options specified on the

command line. The object modules named on the command line or in a

file are added to the library. Libraries simplify the task of linking modules,

since the linking locator can automatically search libraries for required

modules.

1.3.9 THE GLOBAL SYMBOL MAPPER

The global symbol mapper (gsmap) displays global symbols either

alphabetically or by address. Gsmap can be used before or after linking or

locating to list external names and the definitions of global symbols. The

gsmap listing shows an absolute address (after locating), length, class, and

alignment for each segment.

1.3.10 THE OBJECT SIZE LIST UTILITY

The object size list utility (olsize) lists the total number of words of code,

data, and constant data in an object module.

1.3.11 THE SYMBOL LIST UTILITY

The symbol list utility (symlist) produces a listing of all global and local

symbols. When the debugger option, (–d), is used in compilation or

assembly, target locations for source lines of input code are included in

the listing. (See the C Compiler and Assembler chapters in the User's
Manual for details on compiler and assembler options.) The input may be

any combination of unlinked object modules, linked object modules, and

absolute modules. The symlist listing is composed of three parts: a table of

executable line numbers and code addresses, a listing of all symbols and

their attributes, and an alphabetical list of all symbols with pointers to each

symbol's definition and attributes.

Chapter 11–10
IN
T
R
O
D
U
C
T
IO
N

1.3.12 CROSSVIEW PRO DEBUGGER

The source-level debugger, CrossView Pro provides you with a means of

monitoring and controlling execution of the embedded software using the

same terms, definitions, and structures found in the original source

program. CrossView Pro has complete access to the symbol tables

produced by the compiler, and also knows the compiler's register,

parameter passing and run-time stack layout conventions. This means that

any data, including structured and dynamic data, can be viewed or set.

Other features include breakpoint and assertion modes with which you

can control the debugging of the target program. A �transparency" mode

allows direct communication with the target system without exiting

CrossView Pro. As a Windows debugger it gives you full control of

window placement and size. You can customize the interface to suit you

requirements.

1.4 BEFORE YOU START

This section contains technical information that you may wish to review

before installing and starting to use the TASKING software.

1.4.1 USAGE CONVENTIONS

The common conventions for the TASKING 68K/ColdFire toolset are

described here to avoid duplication in subsequent sections.

In this documentation set, we use M68000 to refer to any microprocessor

in the 68K/ColdFire family. The supported targets within this

microprocessor family are listed in section Derivatives Overview of the

Tutorial chapter.

1.4.2 TOOL VERSIONS

Every TASKING executable has a version number. To display the version

information, invoke the program with the –V option.

Introduction 1–11

• • • • • • • •

The Customer Support department keeps a record of the version numbers

of all the executables which have been shipped to you. However, if you

report a problem, a support engineer may ask you to run the program

with this option to verify that you are in fact executing the latest version

you were sent.

1.4.3 DRIVER OPTIONS

There are some additional driver options used primarily for customer

support. Please see the Compiler/Assembler Driver appendix in the User's
Manual for details.

1.4.4 INVOCATION CONVENTIONS

All TASKING programs accept two kinds of arguments: primary arguments

and options.

All options are preceded by a hyphen (`-').

All primary arguments must precede all options and options are case

sensitive.

For example,

form695 xx.ab –o xx.abs

is correct, but

form695 –o xx.abs xx.ab

is not.

Furthermore, options cannot be combined as one option. For example, the

following is correct:

gsmap object.ln –a –n

This is not:

gsmap object.ln –an

Chapter 11–12
IN
T
R
O
D
U
C
T
IO
N

1.4.5 ERROR MESSAGE OUTPUT (PC ONLY)

MS-DOS does not provide a mechanism for redirecting error output from

the command line. The following two options are accepted by all

TASKING programs on the PC:

-err [file] Write error messages to file file. If file does not exist, it will

be created. If file does exist, it will be overwritten. If file is
omitted, then error output will be redirected to standard

output.

-err+ [file] Just like -err, except output will be appended if file exists.

1.5 ADDITIONAL HELP

The TASKING system provides several additional sources for further

information on the toolkit, including on-line help. What follows is a

summary of each of these sources with references to more detailed

information provided in other sections of the documentation.

1.5.1 TUTORIAL

The tutorial introduces you to the compiler, assembler and utilities. Sample

C and assembly source files are included with this release. By following

the tutorial examples while invoking the tools on sample code, you

generate listings and learn various options.

1.5.2 ON-LINE HELP

From Command Line

An on-line reference function produces a detailed listing of options

available for the compilers and assemblers. For example, if you type:

c68000

Introduction 1–13

• • • • • • • •

function: compile one or more C programs

usage: c68000 prog.c [prog2.c ...] [options]

Options Summary

Listing Options

–a expanded source listing, including #include
 files
–i interleaved (pseudo–)assembly listing
–l put all listings in optional list file name,
 e.g. –l filename
–nf narrow format pseudo–assembly listing
–p pseudo–assembly listing
–q real–assembly listing
–s basic source listing
–x cross–reference listing

Include Options

–I specifies user include directories,
 e.g. –I dir1 [dir2 ...]
–S specifies system include directories,
 e.g. –S dir1 [dir2 ...]

 ––Hit <RETURN> to continue; q to quit––

From EDE

All on-line manuals have a corresponding icon located on the right side of

the menu bar. Click on the appropriate icon to access.

Please refer to this manual for help with the software, if the on-line help

does not answer your questions.

Chapter 11–14
IN
T
R
O
D
U
C
T
IO
N

2

INSTALLATION
GUIDE

C
H

A
P

T
E

R

Chapter 22–2
IN
S
TA

L
L
A
T
IO
N

2

C
H

A
P

T
E

R

Installation Guide 2–3

• • • • • • • •

2.1 INTRODUCTION

This chapter guides you through the procedures to install the software on

a Windows system or on a UNIX host.

The software for Windows has two faces: a graphical interface (Embedded

Development Environment) and a command line interface. The UNIX

software has only a command line interface.

After the installation, it is explained how to configure the software and

how to install the license information that is needed to actually use the

software.

2.2 SOFTWARE INSTALLATION

2.2.1 INSTALLATION FOR WINDOWS

1. Start Windows 95/98/XP/NT/2000, if you have not already done so.

2. Insert the CD-ROM into the CD-ROM drive.

If the TASKING Showroom dialog box appears, proceed with Step 5.

3. Click the Start button and select Run...

4. In the dialog box type d:\setup (substitute the correct drive letter for

your CD-ROM drive) and click on the OK button.

The TASKING Showroom dialog box appears.

5. Select a product and click on the Install button.

6. Follow the instructions that appear on your screen.

You can find your serial number on the Start-up kit envelope, delivered

with the product.

7. License the software product as explained in section 2.4, Licensing
TASKING Products.

Chapter 22–4
IN
S
TA

L
L
A
T
IO
N

2.2.2 INSTALLATION FOR UNIX HOSTS

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

If you are a first time user, decide where you want to install the product.

By default it will be installed in /usr/local .

2. Insert the CD-ROM into the CD-ROM drive and mount the CD-ROM on a

directory, for example /cdrom .

Be sure to use an ISO 9660 file system with Rock Ridge extensions

enabled. See the UNIX manual pages about mount for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. Run the installation script:

sh install

Follow the instructions appearing on your screen.

First a question appears about where to install the software. The default

answer is / usr/local .

On some hosts the installation script asks if you want to install SW000098,

the Flexible License Manager (FLEXlm). If you do not already have FLEXlm

on your system, you must install it otherwise the product will not work on

those hosts. See section 2.4, Licensing TASKING Products.

If the script detects that the software has been installed before, the

following messages appear on the screen:

 *** WARNING ***
SWxxxxxx xxxx . xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the

following message being displayed:

=> Installation stopped on user request <=

Installation Guide 2–5

• • • • • • • •

Answer y (yes) to continue with the installation. The last message will be:

Installation of SW xxxxxx xxxx . xxxx completed.

5. If you purchased a protected TASKING product, license the software

product as explained in section 2.4, Licensing TASKING Products.

2.3 SOFTWARE CONFIGURATION

Now you have installed the software, you can configure both the

Embedded Development Environment and the command line environment

for Windows and UNIX.

2.3.1 CONFIGURING THE EMBEDDED DEVELOPMENT

ENVIRONMENT

After installation, the Embedded Development Environment is

automatically configured with default search paths to find the executables,

include files and libraries. In most cases you can use these settings. To

change the default settings, follow the next steps:

1. Double-click on the EDE icon on your desktop to start the Embedded

Development Environment (EDE).

2. From the Project menu, select Directories...

The Directories dialog box appears.

3. Fill in the following fields:

• In the Executable Files Path field, type the pathname of the

directory where the executables are located. The default directory is

$(PRODDIR)\bin . Where $(PRODDIR) refers to you installation

directory (default c:\Program Files\TASKING\c68k v x.y).

• In the Include Files Path field, add the pathnames of the

directories where the compiler and assembler should look for

include files. The default directory is

$(PRODDIR)\rtlibs\$(LIBSUBDIR)\inc . Separate pathnames

with a semicolon (;).

The first path in the list is the first path where the compiler and

assembler look for include files. To change the search order, simply

change the order of pathnames.

Chapter 22–6
IN
S
TA

L
L
A
T
IO
N

• In the Library Files Path field, add the pathname of the directory

where the linker should look for library files. The default directory

is $(PRODDIR)\rtlibs .

Instead of typing the pathnames, you can click on the Configure...

button.

A dialog box appears in which you can select and add directories, remove

them again and change their order.

Installation Guide 2–7

• • • • • • • •

2.3.2 CONFIGURING THE COMMAND LINE

ENVIRONMENT

To facilitate the invocation of the tools from the command line (either

using a Windows command prompt or using UNIX), you can set

environment variables.

You can set the following variables:

Environment
Variable

Description

PATH With this variable you specify the directory in which
the executables reside (default: c:\c68k\bin).
This allows you to call the executables when you
are not in the bin directory.

Usually your system already uses the PATH variable
for other purposes. To keep these settings, you
need to add (rather than replace) the path. Use a
semicolon (;) to separate pathnames.

INCLUDE
I2INCLUDE

With this variable you specify one or more additional
directories in which the C compiler looks for include
files. The compiler looks in these directories after
the –S directories, and then in the default
c:\c68k\include directory. You can also use
I2INCLUDE to avoid conflicts with other programs.

LIB
I2LIB

With this variable you specify one or more
alternative directories in which the linker looks for
library files. The linker first looks in these directories,
then always looks in the default rtlibs
directory.You can also use I2LIB to avoid conflicts
with other programs.

LM_LICENSE_FILE With this variable you specify the location of the
license data file. You only need to specify this
variable if your host uses the FLEXlm licence
manager.

TMP With this variable you specify the location where
programs can create temporary files. Usually your
system already uses this variable. In this case you
do not need to change it.

Table 2-1: Environment variables

The following examples show how to set an environment variable using

the PATH variable as an example.

Chapter 22–8
IN
S
TA

L
L
A
T
IO
N

Example for Windows 95/98

Add the following line to your autoexec.bat file:

set PATH=%path%;c:\ installation directory \bin

You can also type this line in a Command Prompt window but you will

loose this setting after you close the window.

Example for Windows NT

1. Right-click on the My Computer icon on your desktop and select

Properties from the menu.

The System Properties dialog appears.

2. Select the Environment tab.

3. In the list of System Variables select Path.

4. In the Value field, add the path where the executables are located to the

existing path information. Separate pathnames with a semicolon (;). For

example: c:\c68k\bin .

5. Click on the Set button, then click OK.

Example for Windows XP / 2000

1. Right-click on the My Computer icon on your desktop and select

Properties from the menu.

The System Properties dialog appears.

2. Select the Advanced tab.

3. Click on the Environment Variables button.

The Environment Variables dialog appears.

4. In the list of System variables select Path.

5. Click on the Edit button.

The Edit System Variable dialog appears.

6. In the Variable value field, add the path where the executables are

located to the existing path information. Separate pathnames with a

semicolon (;). For example: c:\c68k\bin .

Installation Guide 2–9

• • • • • • • •

7. Click on the OK button to accept the changes and close the dialogs.

Example for UNIX

Enter the following line (C-shell):

setenv PATH $PATH:/usr/local/c68k/bin

Chapter 22–10
IN
S
TA

L
L
A
T
IO
N

2.4 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software

(FLEXlm). To use a TASKING product, you must install the licensing

information provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a

floating license. When you order a TASKING product determine which

type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the

product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among

users at one site. This license type does not lock the software to one

specific PC or workstation but it requires a network. The software can then

be used on any computer in the network. The license specifies the

number of users who can use the software simultaneously. A system

allocating floating licenses is called a license server. A license manager

running on the license server keeps track of the number of users.

See Appendix A, Flexible License Manager (FLEXlm), for more information.

2.4.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License

Information Form" containing the license information for your software

product. If you have not received such a form follow the steps below to

obtain one. Otherwise, you can install the license.

Node-locked license (PC only)

1. If you need a node-locked license, you must determine the hostid of the

computer where you will be using the product. See section 2.4.7, How to
Determine the Hostid.

2. When you order a TASKING product, provide the hostid to your local

TASKING sales representative. The License Information Form which

contains your license key information will be sent to you with the software

product.

Installation Guide 2–11

• • • • • • • •

Floating license

1. If you need a floating license, you must determine the hostid and

hostname of the computer where you want to use the license manager.

Also decide how many users will be using the product. See section 2.4.7,

How to Determine the Hostid and section 2.4.8, How to Determine the
Hostname.

2. When you order a TASKING product, provide the hostid, hostname and

number of users to your local TASKING sales representative. The License

Information Form which contains your license key information will be sent

to you with the software product.

2.4.2 INSTALLING NODE-LOCKED LICENSES

Keep your "License Information Form" ready. If you do not have such a

form read section 2.4.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure

described in section 2.2.1, Installation for Windows.

Step 2

Create a file called "license.dat " in the c:\flexlm directory, using an

ASCII editor and insert the license information contained in the "License

Information Form" in this file. This file is called the "license file". If the

directory c:\flexlm does not exist, create the directory.

If you wish to install the license file in a different directory, see section

2.4.6, Modifying the License File Location.

If you already have a license file, add the license information to the

existing license file. If the license file already contains any SERVER lines,

you must use another license file. See section 2.4.6, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

See Appendix A, Flexible License Manager (FLEXlm), for more information.

Chapter 22–12
IN
S
TA

L
L
A
T
IO
N

2.4.3 INSTALLING FLOATING LICENSES

Keep your "License Information Form" ready. If you do not have such a

form read section 2.4.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure

described earlier in this chapter on the computer or workstation where

you will use the software product.

As a result of this installation two additional files for FLEXlm will be

present in the flexlm subdirectory of the toolchain:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

Step 2

If you already have installed FLEXlm v6.1 or higher for Windows or v2.4

or higher for UNIX (for example as part of another product) you can skip

this step and continue with step 3. Otherwise, install SW000098, the

Flexible License Manager (FLEXlm), on the license server where you want

to use the license manager.

The installation of the license manager on Windows also sets up the

license daemon to run automatically whenever a license server reboots.

On UNIX you have to perform the steps as described in section 2.4.5,

Setting Up the License Daemon to Run Automatically.

It is not recommended to run a license manager on a Windows 95 or

Windows 98 machine. Use Windows NT instead (or UNIX).

Step 3

If FLEXlm has already been installed as part of a non-TASKING product

you have to make sure that the bin directory of the FLEXlm product

contains a copy of the Tasking daemon (see step 1).

Step 4

Insert the license information contained in the "License Information Form"

in the license file, which is being used by the license server. This file is

usually called license.dat . The default location of the license file is in

directory c:\flexlm for Windows and in

/usr/local/flexlm/licenses for UNIX.

Installation Guide 2–13

• • • • • • • •

If you wish to install the license file in a different directory, see section

2.4.6, Modifying the License File Location.

If the license file does not exist, you have to create it using an ASCII

editor. You can use the license file license.dat from the toolchain's

flexlm subdirectory as a template.

If you already have a license file, add the license information to the

existing license file. If the SERVER lines in the license file are the same as

the SERVER lines in the License Information Form, you do not need to add

this same information again. If the SERVER lines are not the same, you

must use another license file. See section 2.4.6, Modifying the License File
Location, for additional information.

Step 5

On each PC or workstation where you will use the TASKING software

product the location of the license file must be known. If it differs from

the default location (c:\flexlm\license.dat for Windows,

/usr/local/flexlm/licenses/license.dat for UNIX), then you

must set the environment variable LM_LICENSE_FILE. See section 2.4.6,

Modifying the License File Location, for more information.

Step 6

Now all license information is entered, the license manager must be

started (see section section 2.4.4). Or, if it is already running you must

notify the license manager that the license file has changed by entering the

command (located in the flexlm bin directory):

lmreread

On Windows you can also use the graphical FLEXlm Tools (lmtools): Start

lmtools (if you have used the defaults this can be done by selecting Start

-> Programs -> TASKING FLEXlm -> FLEXlm Tools), fill in the current

license file location if this field is empty, click on the Reread button and

then on OK. Another option is to reboot your PC.

The software product and license file are now properly installed.

Where to go from here?

The license manager (daemon) must always be up and running. Read

section 2.4.4 on how to start the daemon and read section 2.4.5 for

information how to set up the license daemon to run automatically.

Chapter 22–14
IN
S
TA

L
L
A
T
IO
N

If the license manager is running, you can now start using the TASKING

product.

See Appendix A, Flexible License Manager (FLEXlm), for more information.

2.4.4 STARTING THE LICENSE DAEMON

The license manager (daemon) must always be up and running. To start

the daemon complete the following steps on each license server:

Windows

1. From the Windows Start menu, select Programs -> TASKING FLEXlm

-> FLEXlm License Manager.

The license manager tool appears.

2. In the Control tab, click on the Start button.

3. Close the program by clicking on the OK button.

UNIX

1. Log in as the operating system administrator (usually root).

2. Change to the FLEXlm installation directory (default

/usr/local/flexlm):

cd /usr/local/flexlm

3. For C shell users, start the license daemon by typing the following:

bin/lmgrd –2 –p –c licenses/license.dat >>& \
 /var/tmp/license.log &

Or, for Bourne shell users, start the license daemon by typing the

following:

bin/lmgrd –2 –p –c licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

In these two commands, the -2 and -p options restrict the use of the

lmdown and lmremove license administration tools to the license

administrator. You omit these options if you want. Refer to the usage of

lmgrd in Appendix A, Flexible License Manager (FLEXlm), for more

information.

Installation Guide 2–15

• • • • • • • •

2.4.5 SETTING UP THE LICENSE DAEMON TO RUN

AUTOMATICALLY

To set up the license daemon so that it runs automatically whenever a

license server reboots, follow the instructions below that are appropriate

for your platform. steps on each license server:

Windows

1. From the Windows Start menu, select Programs -> TASKING FLEXlm

-> FLEXlm License Manager.

The license manager tool appears.

2. In the Setup tab, enable the Start Server at Power-Up check box.

3. Close the program by clicking on the OK button. If a question appears,

answer Yes to save your settings.

UNIX

In performing any of the procedures below, keep in mind the following:

• Before you edit any system file, make a backup copy.

SunOS5 (Solaris 2)

1. Log in as the operating system administrator (usually root).

2. In the directory /etc/init.d create a file named rc.lmgrd with the

following contents. Replace FLEXLMDIR by the FLEXlm installation

directory (default /usr/local/flexlm):

#!/bin/sh
FLEXLMDIR/ bin/lmgrd –2 –p –c FLEXLMDIR/licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

3. Make it executable:

chmod u+x rc.lmgrd

4. Create an 'S' link in the /etc/rc3.d directory to this file and create 'K'

links in the other /etc/rc?.d directories:

ln /etc/init.d/rc.lmgrd /etc/rc3.d/S numrc.lmgrd
ln /etc/init.d/rc.lmgrd /etc/rc?.d/K numrc.lmgrd

num must be an appropriate sequence number. Refer to you operating

system documentation for more information.

Chapter 22–16
IN
S
TA

L
L
A
T
IO
N

2.4.6 MODIFYING THE LICENSE FILE LOCATION

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If you want to use another name or directory for the license file, each user

must define the environment variable LM_LICENSE_FILE.

If you have more than one product using the FLEXlm license manager you

can specify multiple license files to the LM_LICENSE_FILE environment

variable by separating each pathname (lfpath) with a ';' (on UNIX also ':'):

Example Windows:

set LM_LICENSE_FILE=c:\flexlm\license.dat;c:\license.txt

Example UNIX:

setenv LM_LICENSE_FILE
/usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set

LM_LICENSE_FILE to port@host; where host is the host name of the

system which runs the FLEXlm license manager and port is the TCP/IP port

number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting

with "SERVER". The fourth field on this line specifies the TCP/IP port

number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See Appendix A, Flexible License Manager (FLEXlm), for more information.

Installation Guide 2–17

• • • • • • • •

2.4.7 HOW TO DETERMINE THE HOSTID

The hostid depends on the platform of the machine. Please use one of the

methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid

SunOS/Solaris hostid 170a3472

Windows tkhostid

(or use lmhostid)

0800200055327

Table 2-2: Determine the hostid

If you do not have the program tkhostid you can download it from our

Web site at: http://www.tasking.com/support/flexlm/tkhostid.zip . It is also

on every product CD that includes FLEXlm.

2.4.8 HOW TO DETERMINE THE HOSTNAME

To retrieve the hostname of a machine, use one of the following methods.

Platform Method

SunOS/Solaris hostname

Windows 95/98 Go to the Control Panel, open ”Network”, click on
”Identification”. Look for ”Computer name”.

Windows NT Go to the Control Panel, open ”Network”. In the
”Identification” tab look for ”Computer Name”.

Windows XP/2000 Go to the Control Panel, open ”System”. In the ”Computer
Name” tab look for ”Full computer name”.

Table 2-3: Determine the hostname

Chapter 22–18
IN
S
TA

L
L
A
T
IO
N

3

TUTORIAL
C

H
A

P
T

E
R

Chapter 33–2
T
U
T
O
R
IA
L

3

C
H

A
P

T
E

R

Tutorial 3–3

• • • • • • • •

3.1 INTRODUCTION

This tutorial contains a step-by-step series of examples and exercises

designed to teach you how to use your Toolkit. The examples vary in

difficulty from simple to advanced, allowing you to progress to more

advanced functions. The last section of this chapter gives an introduction

to system building concepts so that new users can get started quickly.

Our goal in this tutorial is to teach you how to use the 68K/ColdFire

package to build an executable program from your C source and/or

assembly language programs. The programs which comprise the toolset

are described in the The Development System section in the Introduction
chapter of this manual. We approach the tutorial by guiding you through

examples with the tools, using sample programs included with the

TASKING software. In the later examples we introduce a few advanced

topics that will help you understand this manual. Throughout the tutorial,

we follow document conventions described in the front of the manual.

In this tutorial, we will be compiling and assembling files for the

68K/ColdFire family. You will also be introduced to TASKING's graphical

user interface, EDE, which gives you point-and-click control over the

whole development process. We realize that you may have only one target

available to you. The example output is included in such a way as to be

useful for a variety of 68K/ColdFire family targets. We encourage you to

run as many examples as are applicable, substituting your own target in

place of the target listed in each example. Instructions for invoking the

compiler and assembler for each target are described below. You can find

additional details throughout this manual.

The first part of the tutorial emphasizes the use of the toolchain

components. The second part of this chapter introduces important topics

such as system initialization, memory management, and linking C and

assembly language.

3.2 FINDING THE PROGRAMS AND SETTING UP THE

PATH

The package contains many different files. Some are executables: files that

make up the compiler, assembler, and utilities. Others contain sample

programs, which we use in this tutorial to teach the development system.

The files are organized into directories and subdirectories for easy

reference. Before you can begin to use the product, you must know where

the directories are located and what is contained in each.

Chapter 33–4
T
U
T
O
R
IA
L

This getting started manual includes some information about C++. For

more information, consult your C++ Compiler User's Manual.

For discussion in this manual, we assume that the product was loaded on

drive C: in the directory Program Files\TASKING\c68k for Windows

hosts or in /usr/local/c68k for Unix hosts. If so, the executables will

probably be in the bin subdirectory. You may want to modify your search

path to find the TASKING programs. You can do this by setting the

Executable Files Path in EDE or use the PATH enviroment varable. This

is described in section 2.3, Software Configuration in chapter Installation
Guide.

You will find at least three subdirectories under the installation directory:

bin
examples
rtlibs

if your system administrator has not renamed any of the subdirectories. For

the purpose of this tutorial, we will assume that none of the directories has

been renamed.

Any additional directories or executables are for installation only, and will

not be discussed in this tutorial. The directories and their contents are

described in the next sections.

3.2.1 BIN DIRECTORY

The directory bin contains the executables, or programs which run the

compiler, assembler and utilities. Some of these executables are

user-invoked: you must specify that the file be executed. Others are called

automatically. You never enter these automatically invoked files in any

commands.

A brief description of each file in this directory can be found in the

following sections. On the PC, executable files have a .exe extension.

Tutorial 3–5

• • • • • • • •

Assembler files

as68k (68K)
ascf (ColdFire)

Assembler executable. This file is invoked
automatically when you invoke one of the
target–specific assemblers. You do not invoke
this executable file directly.

asm target Target specific assembler driver. For example
asm68000 for the MC68000, asmec040 for
the MC68EC040 or asm5204 for the
MCF5204.

C compiler files

ctarget Target specific C compiler driver. For example
c68000 for the MC68000, cec040 for the
MC68EC040 or c5204 for the MCF5204.

The following executables are invoked automatically by the C compiler

drivers above:

bc68000 (68K)
becf (ColdFire)

Compiler back end.

cpf C compiler preprocessor and front end.

flow Global optimizer.

interl Used to produce interleaved assembly listings.

merge Used to produce debugging symbols.

xref Used to produce cross–reference listings.

C++ compiler files

cp target Target specific C++ compiler executables. For
example cp68000 for the MC68000, cpec040
for the MC68EC040 or cp5204 for the
MCF5204.

Utilities

form
form695

Object module formatters.

gsmap
symlist

Utilities which generate various listings of
symbol information.

Chapter 33–6
T
U
T
O
R
IA
L

libr Librarian utility.

llink Linking locator.

olsize Utility which lists the total size of a set of object
modules.

C++ Utilities

ldriver C++ Linker.

edg_munch Linker Utility.

edg_prelink Linker Utility.

edg_decode C++ Name Demangling.

3.2.2 RTLIBS DIRECTORY

The compiler run-time libraries are contained in the directory rtlibs .

The run-time libraries are necessary for linking, and contain source files,

include files, and compiled or assembled run-time library routines, which

resolve external references.

The rtlibs directory contains the following subdirectories:

lib000
lib020h
lib020s
lib040h
lib040s
lib060h
lib060s
lib5206
lib5206e

Below each of these directories on the PC are the following subdirectories

(if your system administrator has not renamed them):

inc
lib
src

Tutorial 3–7

• • • • • • • •

The inc directory contains the library include files. The lib directory

contains the library index files and object files. The src directory contains

the library source files.

The C++ compiler contains the additional directories cppinc , cpplib
and cppstl.

3.2.3 EXAMPLES DIRECTORY

The examples directory contains amongst several sample projects a

tutor directory with three subdirectories, fact , main and cfile . These

directories contain files of sample C programs and assembly language

routines which you use throughout the tutorial.

The list below summarizes the source files contained in the tutor\fact
subdirectory:

adexp.68k We will use this assembly language program
to demonstrate use of the assembler.

circle.c This program contains a function to compute
the area of a circle given its radius. This file
demonstrates floating–point features.

fact.c This program includes a function to compute
the factorial of a number. It has external
references to the routines in circle.c and
adexp.68k . Also, it contains external
references to be resolved by linking to the
run–time library.

fpneg.68k This assembly language routine resolves an
external reference in fact.c . We use the
program to demonstrate the linking locator’s
function of resolving references.

inc The inc directory contains the include files
dargstac.h , def.h , and ret_doub.h as
included source. In the examples, you will
specify this directory in order to find files
named in #include directives.

link.lst We will use this file to demonstrate a linking
feature of the linking locator.

loc.lc This is a locator command file which
demonstrates a locating feature of the linking
locator utility.

Chapter 33–8
T
U
T
O
R
IA
L

Before you proceed with the tutorial, we recommend that you make your

own copy of the tutor subdirectory, its contents, and its subdirectories.

TASKING programs create files as you use the tools, and you may want to

keep the tutorial intact for future use.

For the remainder of the tutorial, we assume that you have set your

working directory to your copy of the tutor subdirectory.

3.2.4 DERIVATIVES OVERVIEW

The following table contains an overview of the supported derivatives with

the corresponding target to identify the C compilers (ctarget), C++

compilers (cptarget) and assemblers (asmtarget). It also shows the

corresponding library and in which rtlibs\ libdir \lib directory this

library is present.

Target
Processor

target Library
Directory

Library

MC68000 68000 lib000 lib000

MC68HC000 68000 lib000 lib000

MC68HC001 68000 lib000 lib000

MC68EC000 68000 lib000 lib000

MC68SEC000 68000 lib000 lib000

MC68008 68000 lib000 lib000

MC68010 68010 lib000 lib010

MC68020 (sw fp) 68020 lib020s lib020s

MC68020 (hw fp) 68020 lib020h lib020h

MC68EC020 (sw fp) 68020 lib020s lib020s

MC68EC020 (hw fp) 68020 lib020h lib020h

MC68030 (sw fp) 68030 lib030s lib030s

MC68030 (hw fp) 68030 lib030h lib030h

MC68EC030 (sw fp) ec030 lib020s libe30s

MC68EC030 (hw fp) ec030 lib020h libe30h

MC68040 68040 lib040h lib040

Tutorial 3–9

• • • • • • • •

LibraryLibrary
Directory

targetTarget
Processor

MC68EC040 ec040 lib040s libe40

MC68LC040 lc040 lib040s libe40

MC68V040 lc040 lib040s libe40

MC68060 68060 lib060h lib060

MC68EC060 ec060 lib060s libe60

MC68LC060 lc060 lib060s libe60

MC68302 68302 lib000 lib302

MC68302
 (ADS parallel I/O)

68302 lib000 lib302ap

MC68302
 (ADS trap I/O)

68302 lib000 lib302at

MC68306 68302 lib000 lib302

MC68328 68000 lib000 lib000

MC68EZ328 68000 lib000 lib000

MC68VZ328 68000 lib000 lib000

MC68SZ328 68000 lib000 lib000

MC68330 68332 lib020s lib332

MC68331 68332 lib020s lib332

MC68332 68332 lib020s lib332

MC68336 68332 lib020s lib332

MC68340 68340 lib020s lib340

MC68340 (BBC) 68340 lib020s lib340b

MC68360 68360 lib020s lib360

MC68360 (QUADS) 68360 lib020s lib360b

MC68F375 68332 lib020s lib332

MC68376 68332 lib020s lib332

MCF5204 5204 lib5206 lib5206

MCF5206 5206 lib5206 lib5206

MCF5206E 5206e lib5206e lib5206e

MCF5249 5249 lib5206e lib5206e

Chapter 33–10
T
U
T
O
R
IA
L

LibraryLibrary
Directory

targetTarget
Processor

MCF5249L 5249 lib5206e lib5206e

MCF5272 5272 lib5206e lib5206e

MCF5280 5280 lib5206e lib5206e

MCF5282 5282 lib5206e lib5206e

MCF5307 5307 lib5206e lib5206e

3.3 INVOKING THE TOOLS

3.3.1 INVOKING THE TOOLS FROM EDE

EDE is a complete project environment in which you can create and

maintain project spaces and projects. EDE gives you direct access to the

tools and features you need to create an application from your project.

A project space holds a set of projects and must always contain at least one

project. Before you can create a project you have to setup a project space.

All information of a project space is saved in a project space file (.psp):

• a list of projects in the project space

• history information

Within a project space you can create projects. Projects are bound to a

target! You can create, add or edit files in the project which together form

your application. All information of a project is saved in a project file
(.pjt):

• the target for which the project is created

• a list of the source files in the project

• the options for the compiler, assembler, linker and debugger

• the default directories for the include files, libraries and executables

• the build options

• history information

Tutorial 3–11

• • • • • • • •

When you build your project, EDE handles file dependencies and the

exact sequence of operations required to build your application. When

you click the Build button, EDE generates a makefile, including all

dependencies, and builds your application.

Overview of steps to create and build an application from EDE

1. Create a project space

2. Add one or more projects to the project space

3. Add files to the project

4. Edit the files

5. Set development tool options

6. Build the application

Start EDE

• Double-click on the EDE shortcut on your desktop.

- or -

Launch EDE via the program folder created by the installation program.

Select Start -> Programs -> TASKING toolchain -> EDE.

Figure 3-1: EDE icon

The EDE screen contains a menu bar, a toolbar with command buttons,

one or more windows (default, a window to edit source files, a project

window and an output window) and a status bar.

Chapter 33–12
T
U
T
O
R
IA
L

Output Window
Contains several tabs to display
and manipulate results of EDE
operations. For example, to view
the results of builds or compiles.

Document W indows
Used to view and edit files.

Project W indow
Contains several
tabs for viewing
information about
projects and other
files.

Compile Build Rebuild Debug On–line ManualsProject Options

Figure 3-2: EDE desktop

Using the sample projects in EDE

3.3.1.1 USING THE SAMPLE PROJECTS IN EDE

When you start EDE for the first time, EDE opens with a ready defined

project space (68K-ColdFire Example.psp) that contains several sample

projects. Each project has its own subdirectory in the examples directory.

Each directory contains a file readme.txt with information about the

example. The default project is called queens.pjt and contains an eight

queens chess problem example.

Select a sample project

To select a project from the list of projects in a project space:

1. In the Project Window, right-click on the project you want to open.

A menu appears.

2. Select Set as Current Project.

Tutorial 3–13

• • • • • • • •

The selected project opens.

3. Read the file readme.txt for more information about the selected sample

project.

Building a sample project

To build the currently active sample project:

• Click on the Execute 'Make' command button.

Once the files have been processed you can inspect the generated messages
in the Build tab of the Output window.

3.3.1.2 CREATE A NEW PROJECT SPACE WITH A

PROJECT

Creating a project space is in fact nothing more than creating a project

space file (.psp) in an existing or new directory.

Create a new project space

1. From the File menu, select New Project Space...

The Create a New Project Space dialog appears.

Chapter 33–14
T
U
T
O
R
IA
L

2. In the the Filename field, enter a name for your project space (for

example MyProjects). Click the Browse button to select a directory first

and enter a filename.

3. Check the directory and filename and click OK to create the .psp file in

the directory shown in the dialog.

A project space information file with the name MyProjects.psp is
created and the Project Properties dialog box appears with the project space
selected.

Add a new project to the project space

4. In the Project Properties dialog, click on the Add new project to project

space button (see previous figure).

The Add New Project to Project Space dialog appears.

Tutorial 3–15

• • • • • • • •

5. Give your project a name, for example getstart\getstart.pjt (a

directory name to hold your project files is optional) and click OK.

A project file with the name getstart.pjt is created in the directory
getstart , which is also created. The Project Properties dialog box appears
with the project selected.

Chapter 33–16
T
U
T
O
R
IA
L

Add new files to the project

Now you can add all the files you want to be part of your project.

6. Click on the Add new file to project button.

The Add New File to Project dialog appears.

7. Enter a new filename (for example hello.c) and click OK.

A new empty file is created and added to the project. Repeat steps 6 and 7 if
you want to add more files.

8. Click OK.

The new project is now open. EDE loads the new file(s) in the editor in
separate document windows.

EDE automatically creates a makefile for the project (in this case

getstart.mak). This file contains the rules to build your application.

EDE updates the makefile every time you modify your project.

Edit your files

9. As an example, type the following C source in the hello.c document

window:

#include <stdio.h>

void main(void)
{
 printf(”Hello World!\n”);
}

10. Click on the Save the changed file <Ctrl-S> button.

Tutorial 3–17

• • • • • • • •

EDE saves the file.

3.3.1.3 SET OPTIONS FOR THE TOOLS IN THE

TOOLCHAIN

The next step in the process of building your application is to select a

target processor and specify the options for the different parts of the

toolchain, such as the C compiler, assembler, linker/locator and debugger.

Select a target processor

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Select Target.

3. In the Target processor list select (for example) MC68020.

4. In the Floating-point support section select the option that is

appropriate for your processor.

Chapter 33–18
T
U
T
O
R
IA
L

5. Click OK to accept the new project settings.

Set tool options

1. From the Project menu, select Project Options...

The Project Options dialog appears. Here you can specify options that are
valid for the entire project. To overrule the project options for the currently
active file instead, from the Project menu select Current File Options...

2. Expand the C Compiler entry.

The C Compiler entry contains several pages where you can specify C
compiler settings.

3. For each page make your changes. If you have made all changes click OK.

The Cancel button closes the dialog without saving your changes. With

the Default... button you can restore the default project options (for the

current page, or all pages in the dialog).

4. Make your changes for all other entries (Assembler, Linker/Locator,

CrossView Pro) of the Project Options dialog in a similar way as described

above for the C compiler.

Tutorial 3–19

• • • • • • • •

If available, the Options string field shows the command line options

that correspond to your graphical selections.

3.3.1.4 BUILD YOUR APPLICATION

If you have set all options, you can actually compile the file(s). This results

in an absolute IEEE-695 object file which is ready to be debugged.

Build your Application

To build the currently active project:

• Click on the Execute 'Make' command button.

The file is compiled, assembled, linked and located. The resulting file is
getstart.abs .

The build process only builds files that are out-of-date. So, if you click

Make again in this example nothing is done, because all files are

up-to-date.

Viewing the Results of a Build

Once the files have been processed, you can see which commands have

been executed (and inspect generated messages) by the build process in

the Build tab of the Output window.

This window is normally open, but if it is closed you can open it by

selecting the Output menu item in the Window menu.

Compiling a Single File

1. Select the window (document) containing the file you want to compile or

assemble.

2. Click on the Execute 'Compile' command button. The following button

is the execute Compile button which is located in the toolbar.

Chapter 33–20
T
U
T
O
R
IA
L

If you selected the file hello.c , this results in the compiled and assembled
file hello.ol .

Rebuild your Entire Application

If you want to compile, assemble and link/locate all files of your project

from scratch (regardless of their date/time stamp), you can perform a

rebuild.

• Click on the Execute 'Rebuild' command button. The following

button is the execute Rebuild button which is located in the toolbar.

3.3.2 INVOKING THE TOOLS USING COMMAND LINE

All of the TASKING 68K/ColdFire programs follow a general three-part

syntax. First, name the program you want to run. Next, name the primary

arguments. Finally, append options.

The program named first on the command line is the command that acts

upon the input. For instance, the command c68000 compiles the C source

code in the input file(s), creating one or more object modules for the

MC68000 target. The command c68020 compiles source code for the

MC68020 target. All the examples shown in this tutorial use the MC68020

target. You should substitute your own target on the command line (for

examples that are applicable to your target) when trying the sample

commands described below.

The primary arguments are usually names of input files. The files may be

source, object modules, or absolute files, depending on the executable. We

will discuss each of these files in the examples.

To generate listings or specify particular operations of the program,

append the necessary options to the invocation line. Options always begin

with a hyphen, �–". While you can append multiple options, you must

include the hyphen for each. For example, the following syntax is correct:

c68020 fact.c –s –l

The combination below is incorrect:

c68020 fact.c –sl

Tutorial 3–21

• • • • • • • •

Due to the page width limitations of this manual, we may present a single

invocation line as two or more lines. You should, however, type the

invocation all on one line.

3.4 TUTORIAL EXAMPLES

The remainder of this tutorial is dedicated to running the TASKING

68K/ColdFire programs on the sample source programs provided with the

release. The examples cover the following topics:

Example 1: Building Your First Application Executable

Example 2: Listings and Non-Default Output Files

Example 3: Non-Default Memory Models and Linking Options

Example 4: Locator Options

Example 5: Formatting Options and Saving Symbol Information

The remaining examples all use PC-style directory pathnames; that is, they

use backslashes (\). If you used the default installation directory on a PC

the product is installed in c:\Program Files\TASKING\c68k
version \ . In the examples we use \c68k instead. If your host is Unix,

you should use forward slashes (/) and directory names starting with

something like /usr/local/c68k instead.

For all examples, we assume that your current working directory is set to

your local copy of the examples\tutor\fact directory.

3.4.1 EXAMPLE 1: BUILDING YOUR FIRST

APPLICATION EXECUTABLE

In this example you will do the following:

• Compile a C source program.

• Link, ROM process and locate the compiled object module.

• Format the absolute module in the default format for the

68K/ColdFire family.

Chapter 33–22
T
U
T
O
R
IA
L

Step 1

Compile a C source program, circle.c . In our example, we compile for

the MC68020 target. Type:

c68020 circle.c

Step 2

Link, ROM process and locate the object module circle.ol . Search the

run-time library specified by the library index file

\c68k\rtlibs\lib020s\lib\lib020s to resolve references. Write

output to a file with the default suffix. Type:

llink circle.ol –L \c68k\rtlibs\lib020s\lib\lib020s –o

Step 3

Format the absolute module circle.ab using the IEEE-695 format:

form695 circle.ab –o circle.abs

Explanation

In Step 1 we compiled circle.c and created an object module for the

MC68020 target. The command c68020 compiles for the MC68020 target.

(You can substitute a different compiler command name for your own

target if you are trying this example.) You named circle.c as the input

file. By default the compiler writes the object module to output to a file

with the suffix .ol . In this example, the compiler wrote the object module

circle.ol . To verify this, list the directory. You should see circle.ol
among the files.

In Step 2 we linked, ROM processed and located the object module

circle.ol . The executable llink invokes the linking locator.

The -L option specifies the library or libraries to be searched to resolve

references during linking. In this case, we specified the library

\c68k\rtlibs\lib020s\lib\lib020s , for the software floating-point

MC68020 library. This is the appropriate library for the options we chose,

since by default the compiler generates instructions for software

floating-point operations. Some targets do not have separate software and

hardware floating-point libraries. The organization of the compiler

run-time library is described fully in the Linking Locator chapter in the

68K/ColdFire User`s Manual. If you are trying this example, substitute the

name of the appropriate run-time library for your target.

Tutorial 3–23

• • • • • • • •

When locating this object module, the linking locator assigns MC68020

memory locations to code and data in the object module. By default, it

assigns code and data segments to consecutive addresses, beginning at

zero.

The -o option directs the linking locator to write output to a file, rather

than the terminal. The output is called absolute because the addresses are

fixed, or completely located, and is therefore named with the .ab suffix.

You should see the file circle.ab in your directory listing. If we had not

appended the -o option, the linking locator would have directed the

output to the screen rather than saving it in a file.

In Step 3 we formatted circle.ab using the IEEE-695 format. The

executable form695 formats the named absolute module circle.ab , and

the -o option specifies the output file circle.abs . You should see the

file circle.abs in your directory list.

This IEEE-696 file is the final result of the development processing chain.

It can be loaded into your target system in a variety of ways and then

executed. Refer to the Downloading application note in the 68K/ColdFire
User`s Manual for more details.

3.4.2 EXAMPLE 2: LISTINGS AND NON-DEFAULT

OUTPUT FILES

In this example you will do the following:

• Generate a source listing.

• Generate and write the following listings to the file fact.mny :

assembly interleaved with C source code, cross-referenced.

• Assemble two assembly language source files and generate a listing

for one file which shows both primary and included source, and

expanded macros.

• Link, ROM process and locate the compiled and assembled object

modules.

• Format the resulting absolute .ab file, and direct the output to a

non-default file.

Chapter 33–24
T
U
T
O
R
IA
L

Step 1

Compile C source code in circle.c for the MC68020 target and generate

a source listing. Type:

c68020 circle.c –s

Step 2

Compile C source code in fact.c for the MC68020 target and generate an

assembly listing interleaved with source code, and a cross-reference

listing. Write both listings to fact.mny . Type:

c68020 fact.c –q –i –x –l fact.mny

Step 3

Assemble the assembly language routines adexp.68k and fpneg.68k for

the MC68020 target. Search the inc directory for include files. Generate a

listing for adexp.68k which shows included source, and expanded

macros. Type:

asm68020 adexp.68k –a –m –I inc
asm68020 fpneg.68k

Step 4

Link, ROM process and locate the object modules fact.ol , circle.ol ,

fpneg.ol and adexp.ol . Search the library

\c68k\rtlibs\lib020s\lib\lib020s to resolve references. Write

output to the default file. Type:

llink fact.ol circle.ol adexp.ol fpneg.ol –L
 \c68k\rtlibs\lib020s\lib\lib020s –rs idata –o

The entire llink command above should be typed on one line.

Step 5

Format the absolute file fact.ab in the default format, packed Motorola.

Write output to a non-default file. Type:

form fact.ab –o output.hex

Tutorial 3–25

• • • • • • • •

Explanation

In Step 1 we compiled the C source program circle.c for the MC68020

target. By appending the -s option to the invocation line, we generated a

source listing with the default suffix .lis . The listing circle.lis
appears below:

 circle.c Oct 8 2003 12:23:49
 PAGE 1

 1 /***
 2 **
 3 ** VERSION: @(#)circle.c version
 4 **
 5 ** IN PACKAGE: 68K/ColdFire
 6 **
 7 ** COPYRIGHT: Copyright year Altium BV
 8 **
 9 ** DESCRIPTION: This program calculates the
 area of a circle
 10 **
 11 ***/
 12
 13 extern double pow(double, double);
 14
 15 float pi = 3.1416;
 16
 17 float circle (double radius)
 18 {
 19 float answer;
 20
 21 /* pow is a function supplied */
 22 /* in the C run time library. */
 23
 24 answer = pi * pow(radius,2.0);
 25
 26 return (answer);
 27 }

Chapter 33–26
T
U
T
O
R
IA
L

In Step 2 we compiled the C program fact.c for the MC68020 target.

Because the TASKING MC68020 C compiler converts source code directly

to object code, it normally bypasses generating an assembly language

representation. To see the C source program as it would appear in

assembly language, you can generate an assembly listing. This assembly

listing can also show the C source interleaved with the generated code. To

generate an interleaved listing, we appended the –q –i options. A portion

of the interleaved listing from fact.mny appears below:

*57 sum = 0;
 CLR.L –20(A6)
*58
*59 for (loopvar = 1; loopvar < 8; ++loopvar) {
 MOVEQ.L #1,D2
*(code hoisted from following statement)
 LEA.L –14(A6),A1
L20003
*60 table[loopvar] = factorial(loopvar);
 MOVE D2,–(A7)
 JSR _factorial
 MOVE D0,(A1)
*61 sum += table[loopvar];
 MOVE.L –20(A6),–(A7)
 MOVE (A1)+,–(A7)
 JSR __Itof
 ADDQ.L #2,A7
 MOVE.L D0,–(A7)
 JSR __Fadd
 MOVE.L D0,–20(A6)
*(see line 59)
 ADDQ #1,D2
 CMPI #8,D2
 ADDA #10,A7
 BLT.S L20003
*62 }

The ColdFire compilers always generate assembly. Use the –i option to

see the interleaved assembly listing.

Tutorial 3–27

• • • • • • • •

A cross-reference listing is a table which shows all user-defined types,

variables and constants, the line numbers in the source code where they

are defined, and any line numbers where they are referenced. The -x

option appended to the invocation line generated this listing. Part of the

cross-reference listing portion of fact.mny appears below:

Oct 8 2003 12:38:42 CROSS–REFERENCE : fact.c PAGE 1

0
 Def : fact.c 31
 Ref : fact.c 31

1
 Def : fact.c 32
 Ref : fact.c 32

2
 Def : fact.c 33
 Ref : fact.c 33

ENUMTYPE
 Def : fact.c 14
 Ref : fact.c 20

FPNEG
 Def : * undefined *
 Ref : fact.c 32 76

RECTYPE
 Def : fact.c 21
 Ref : fact.c 24 25

a
 Def : fact.c 17
 Ref : fact.c 69

b
 Def : fact.c 18

blue
 Def : fact.c 14
 Ref : fact.c 24 68

To write output to a non-default file, we appended the –l option with the

desired file name, fact.mny as an argument. The compiler wrote each

listing to fact.mny consecutively.

Chapter 33–28
T
U
T
O
R
IA
L

In Step 3 we assembled the assembly language routines adexp.68k and

fpneg.68k for the MC68020 target. The asm68020 executable assembled,

for the MC68020 target, the input files adexp.68k and fpneg.68k . You

can substitute a different assembler executable name to assemble for your

target.

The source program adexp.68k names another file to be included upon

assembly. By default, the assembler searches the working directory for

include files. In this tutorial, the named include file resides in the inc
subdirectory. To search outside the working directory, we appended the -I

option with the directory inc as an argument.

The -a option generates an assembler listing that contains primary and

included source. By default, the listing file has the .lis suffix. A portion

of the listing adexp.lis appears below. Note that lines #17 and #18

name dargstac.h and ret_doub.h as included source. The following

portion of adexp.lis shows an assembler listing that contains the

expansion of the first include file source.

13 0 | * registers not being modified when it is called.

14 0 | *

15 0 | ***/

16 0 |

17 0 | include ’dargstac.h’

1 1 0 | ***

2 1 0 | * include file dargstac.h for tutor directory

3 1 0 | *

4 1 0 | * @(#)dargstac.h 1.1 03/03/26

5 1 0 | ***

6 1 0 | *

7 1 0 [$4] | regw set 4 register width

8 1 0 [$E] | regnum set 14 number of registers saved

9 1 0 [$38] | regspc set regw*regnum amount of space

 | taken by saved regs

10 1 0 [$0] | numbyt set 0 init numbyt

11 1 0 |

12 1 0 | pusharg MACRO macro to copy next argument to stack

Tutorial 3–29

• • • • • • • •

The –m option causes the assembler to include macro expansions in the

listing file. Macros provide a shorthand means to invoke a series of

assembly language source statements that appear a number of times

throughout a program. Rather than writing the consecutive lines of code at

every appropriate point in the program, you can name the consecutive

lines as a �macro," then invoke the macro with a single line of code. Note

that line #12 of the dargstac.h included source file defines a macro. The

macro ends at line #23. The macro is invoked in the file adexp.68k ,

which includes dargstac.h . For more information on macros, please

refer to the 68K/ColdFire Reference Manual. Macro expansions show the

macro contents read by the assembler.

In Step 4 we linked, ROM processed and located the compiled and

assembled .ol files fact.ol , circle.ol and adexp.ol . We named

each input object module, separating file names with a space.

The –rs idata option causes the linking locator to perfor ROM

processing. ROM processing is described fully in the Linking Locator
chapter in the 68K/ColdFire User`s Manual. Briefly, ROM processing

provides a way for the program to initialize its global data at run-time.

Initialization is done by copying from a ROM-resident initialization

segment (created by the ROM processor) into the segment. By default the

TASKING 68K/ColdFire compiler allocates all initialized data in the idata

segment. In this example, by supplying the idata argument to the –rs
option, we create a new segment with the initialization values from the

idata segment.

To resolve external references, we first searched the library file

\c68k\rtlibs\lib020s\lib\lib020s and then we located by default.

The linking locator wrote output to the default file fact.ab , using the

first file name listed, fact.ol , to form the root, and appended the default

.ab suffix.

In Step 5, we entered the following invocation:

form fact.ab –o output.hex

This invocation formatted the absolute file fact.ab in the format packed

Motorola, and wrote the output to a non-default file, output.hex , by

appending the -o option with the argument output.hex .

Chapter 33–30
T
U
T
O
R
IA
L

3.4.3 EXAMPLE 3: NON-DEFAULT MEMORY MODELS

AND LINKING OPTIONS

This example illustrates various options which affect the compiler's choice

of generated code. Due to the many approaches, we have divided the

example into two sections: floating-point compilations, and compilations

with the long integer data type option. We will do the following:

• Compare compilations for the MC68020 target using hardware and

software floating-point.

• Link and ROM process multiple files named in a single file.

• Compile using the long integer data type option.

• Link and locate using a long integer library.

• Format the absolute files.

Floating-Point Compilations

Step 1

Compile and generate an interleaved assembly and source listing for the

MC68020 target using software floating-point. Write the listing to

circle.sw . Type:

c68020 circle.c –q –i –l circle.sw

Step 2

Compile and generate an interleaved assembly and source listing for the

MC68020 target using hardware floating-point. Type:

c68020 circle.c –q –i –h

Step 3

Compile fact.c for the MC68020 target using hardware floating-point

and assemble fpneg.68k . Type:

c68020 fact.c –h
asm68020 fpneg.68k

Step 4

Link only the three .ol files fact.ol , circle.ol and fpneg.ol named

in a single file, link.lst .

Tutorial 3–31

• • • • • • • •

Link with the MC68020 hardware floating-point run-time library. Type:

llink –i link.lst –rs idata
 –L \c68k\rtlibs\lib020h\lib\lib020h –lo –o

Explanation

In Step 1, we compiled circle.c for the MC68020 target using software

floating-point. The assembly and source code listing from file circle.sw
appears below. Note the code size shown at the bottom:

21 / pow is a function supplied */
22 / in the C run time library. */
*23
*24 answer = pi * pow(radius,2.0);
 SUBA #16,A7
 MOVE.L _pi–data(A5),–(A7)
 PEA.L 4(A7)
 JSR __Ftod
 CLR.L –(A7)
 MOVE.L #:40000000,–(A7)
 MOVE.L 12(A6),–(A7)
 MOVE.L 8(A6),–(A7)
 PEA.L 16(A7)
 JSR _pow
 ADDA #20,A7
 PEA.L 16(A7)
 JSR __Dmul
 ADDA #20,A7
 JSR __Dtof
 MOVE.L D0,–4(A6)
*25
*26 return (answer);
*27 }
 UNLK A6
 RTS
* Function size = 80
* bytes of code = 80
* bytes of idata = 4
* bytes of udata = 0
* bytes of sdata = 0
 XREF __Ftod
 XREF _pow
 XREF __Dmul
 XREF __Dtof
 _dgroup data
 END

Chapter 33–32
T
U
T
O
R
IA
L

In Step 2 we compiled using hardware floating-point and generated an

interleaved listing. The –h option directs the compiler to use MC68881

instructions to perform floating-point operations. If your target is not

equipped with the MC68881, do not use the –h option.

By default, the compiler names the interleaved listing by appending the .s
suffix. A portion of circle.s appears below:

21 / pow is a function supplied */
22 / in the C run time library. */
*23
*24 answer = pi * pow(radius,2.0);
 FMOVE.S _pi–data(A5),FP4
 FMOVE.X FP4,–(A7)
 CLR.L –(A7)
 MOVE.L #:40000000,–(A7)
 MOVE.L (__R1+32)(A7),–(A7)
 MOVE.L (__R1+32)(A7),–(A7)
 JSR _pow
 ADDA #16,A7
 FMOVE.X (A7)+,FP4
 FMUL.X FP4,FP0
 FMOVE.X FP0,FP1
*25
*26 return (answer);
 FMOVE.X FP1,FP0
*27 }
 FMOVE.X (A7)+,FP1
 RTS

* Function size = 62
* bytes of code = 62
* bytes of idata = 4
* bytes of udata = 0
* bytes of sdata = 0
 XREF _pow
 _dgroup data
 END

The figure of bytes of code shown near the end of the listing for

comparison with the software floating-point example.

In Step 3, we compiled fact.c using hardware floating-point. To do so,

we used the hardware floating-point option, –h .

In this step, we also assembled fpneg.68k . Due to the nature of

assembly language, there is no need to append an option to specify

floating-point type, so we assembled fpneg.68k normally for the

MC68020 target, by using the asm68020 command.

Tutorial 3–33

• • • • • • • •

In Step 4, we linked the three object modules, but rather than listing each

file name separately, we listed the names of the object language files in a

single file, link.lst , included with this release. By appending the –i
option and file name, we directed the linking locator to read the files

named in link.lst . If you list the contents of link.lst , you will see

the three file names.

Because the compiled object modules use hardware floating-point, we

linked with the hardware floating-point library,

\c68k\rtlibs\lib020h\lib\lib020h .

The –rs option with the idata argument ROM processes the idata

segment. To link only, we appended the –lo option, This option bypasses

the locate step, leaving a relocatable object module. Linked and ROM

processed output is named, by default, with the .rmp suffix. By using the

root of the first object module listed, and appending the .rmp suffix, the

linking locator wrote the linked output to fact.rmp .

The Long Integer Data Type Option

Compile for the MC68020 target using the long integer data type option.

Link, locate and format. Type:

c68020 circle.c –L
llink circle.ol –L
 \c68k\rtlibs\lib020s\lib\lib020s.l –o
form695 circle.ab –o circle.abs

Explanation

In the previous step, we compiled using the long integer option data type

option. The long integer option, –L , causes the compiler to assign integers

four bytes of memory, and short two bytes. The default is to assign integer

two bytes of memory and shorts one byte. When invoking the linking

locator, we linked with the long integer run-time library, which has an l
in its extension. All object modules in a single link must use the same data

type options. There are many other data type options which are discussed

in the C Compiler chapter in the 68K/ColdFire User`s Manual.

The ColdFire compilers always use the long integer data type, so the

option –L is not needed for these compilers. Also the run-time libraries

do not have the .l extension.

Chapter 33–34
T
U
T
O
R
IA
L

3.4.4 EXAMPLE 4: LOCATOR OPTIONS

This example addresses locator options. We have divided the example into

two sections: Separate Data and Locator Commands. We will do the

following:

• Locate separate data

• Read locator commands from a file

• Produce a global symbol listing

Separate Data

Step 1

Generate a source listing for the source file fact.c, which contains an

#pragma separate preprocessor directive. Write the listing to

fact.sep . Type:

c68020 fact.c –s –l fact.sep

Explanation

In Step 1, we generated fact.sep . fact.sep is a source listing of

fact.c , which contains a #pragma separate preprocessor directive.

The line of the source listing that contains the directive appears below:

28 #pragma separate io_port

#pragma separate allows you to control the allocation of variables into

segments. You may want to allocate a variable into its own segment to

place it at a particular hardware address. If all data after linking is larger

than 64K bytes, you must use #pragma separate to avoid exceeding the

64K limit on global data. To specify a separate segment in source code,

use a #pragma separate directive, as shown above.

A common use of #pragma separate among embedded system

developers is to accommodate memory mapped I/O. Memory mapped I/O

refers to hardware built so that reading or writing a particular hardware

address causes input or output to an external device. One way to

accommodate memory mapped I/O is to declare a separate variable in

your source code and locate the segment at the memory mapped address.

This use of #pragma separate allows C code to manipulate memory

mapped I/O without using assembly language routines.

Tutorial 3–35

• • • • • • • •

Locator Commands

Step 2

Compile the two sample C programs and assemble the sample assembly

language program for the MC68020 target. Invoke the linking locator to

link and locate, reading locator instructions form the file loc.lc . Write

output to the default file. Type:

c68020 fact.c circle.c –s
asm68020 fpneg.68k –I inc
llink –i link.lst –L \c68k\rtlibs\lib020s\lib\lib020s
 –c loc.lc –o
form695 fact.ab –o fact.abs

Now, generate a global symbol listing for the linked and located file

fact.ab . Show all symbols in increasing order of memory address. Type:

gsmap fact.ab –n –o

Explanation

In Step 2, with the –c option, we directed the linking locator to read

locator commands from the file loc.lc . By default, code and data

segments are allocated in memory one after another, beginning at address

0. But in a real embedded system, memory areas are often not contiguous.

Also, certain address ranges correspond to RAM, ROM or memory-mapped

I/O. You must take care to place code and constant data in ROM and

read-write data in RAM.

Default conventions may not result in optimal placement. You can control

placement of code or data using locator commands. The tutorial files

provided with this release include the file loc.lc , a file of commands to

locate segments from the input modules. The –c option tells the llink

program to read commands from loc.lc . Its contents appear below:

––@(#)loc.lc 1.1 03/07/01
MEMORY (#10000); ––Total memory limited to 64K bytes
RESERVE (#0100 TO #1000); ––Prevent locator from overwriting
RESERVE (#8000 TO #8100); ––memory reserved for another program
LOCATE (S_io_port : #FF00); ––I/O port’s memory location
LOCATE (libcode: AFTER #7000);––put runtime libraries at top of ROM
LOCATE ({} {code} : #0100); ––Put other code at start of ROM
LOCATE ({data} : #8100); ––RAM area

Chapter 33–36
T
U
T
O
R
IA
L

Before we discuss locator commands, let's discuss the concepts of segment

and class. A segment is the smallest piece of code or data that can be

independently located in target memory. A collection of segments which

share a common attribute define a class. Classes are defined implicitly by

the compiler, and may be defined explicitly in assembly language or by

using compiler directives and options. By convention, class names are

delimited by curly braces, {}, in locator commands. For instance, the

compiler defines a class named {code} which contains all

compiler-generated segments containing machine instructions.

The file loc.lc uses the optional MEMORY command. The MEMORY
command defines the true size of target memory. By default the linking

locator assumes it can use the entire MC68020 address space.

The RESERVE command prevents the location of segments in specified

areas. For example, if your system has a ROM-based monitor program,

you may wish to avoid loading another program into its address range.

Note that in the TO syntax, the lower bound is included in the reserve

area; the upper bound is not.

The LOCATE command actually places code and data in memory areas.

You can locate individual segments or whole classes with one command.

For example, we located the class {data} after address #8100. The # sign

indicates a hexadecimal value.

In the final step, we generated a global symbol listing in increasing

address order. The global symbol mapper generates a listing of segments

and the definitions of global symbols. It summarizes segment addresses (if

you have located the module), length, class, alignment requirements, and

combinability. You may require a global symbol table when writing locator

commands. Because the symbolic information is derived from an object

module, you can generate a global symbol listing either before or after

linking and locating. The gsmap executable generates a global symbol

listing.

Tutorial 3–37

• • • • • • • •

It may also prove useful to generate the listing in increasing order of

address. With an address order, you can see a sequential listing of

segments. The –n option causes gsmap to sort the symbols in increasing

order of address. The –o option writes gsmap output to a file by

appending the default .map suffix. A portion of fact.map follows:

Symbol Map for fact.ab Oct 8 2003 14:43:39 Page 1

Translator : llink
Target : 68020

Global Address

_modf 00001000 (4096)
_atexit 000010b6 (4278)
_exit 000010da (4314)
__main 0000110c (4364)
_putc 0000116c (4460)
_getc 0000119e (4510)
_ungetc 000011ea (4586)
_pow 00001218 (4632)
_circle 000013a4 (5028)
_factorial 000013f4 (5108)
_main 0000141c (5148)

.

.

.
Group Size Limit Align Member Segments

data 0000d0 (208) hword idata udata

Segment Address Length Class Align Combine

init@0 00000000 (0) 000008 (8) <null> byte private
S___libcdata 00000008 (8) 000009 (9) constant hword private
S_modf 00001000 (4096) 0000b6 (182) code hword private
S_atexit 000010b6 (4278) 000056 (86) code hword private
init 0000110c (4364) 000060 (96) code hword private
S_putc 0000116c (4460) 000032 (50) code hword private
S_getc 0000119e (4510) 00007a (122) code hword private
S_pow 00001218 (4632) 00018c (396) code hword private
S_circle 000013a4 (5028) 000050 (80) code hword private
S_factorial 000013f4 (5108) 0000c8 (200) code hword private
libcode 00008100 (33024) 00146a (5226) code hword private
idata 0000956c (38252) 000040 (64) data lword private
udata 000095ac (38316) 000090 (144) data hword private
S_io_port 0000ff00 (65280) 000004 (4) usep lword private

.

.

.
Statistics

Segments : 14
Globals : 79
Groups : 1
Sum of class ”code” segments : 00001926 (6438)
Sum of class ”data” segments : 000000d0 (208)
Sum of all other segments : 00000015 (21)

Chapter 33–38
T
U
T
O
R
IA
L

Total size of all segments : 00001a0b (6667)

User Start Address = #110c

3.4.5 EXAMPLE 5: FORMATTING OPTIONS AND

SAVING SYMBOL INFORMATION

This example addresses formatting options and saving symbol information.

The three sections are: Creating Debugging Symbols, Formatting for

Multiple ROMs, and Non-Default Formatting. We will do the following:

• Suppress all optimizations that may interfere with debugging.

• Save symbol information for later use by the CrossView Pro

debugger.

• Generate a symbol table listing during assembly.

• Use the formatter window and bias options.

• Format using a non-default format.

Creating Debugging Symbols

Step 1

Compile, assemble and generate a symbol table listing, llink and format.

When compiling, suppress all optimizations that may interfere with

source-level debugging. At each invocation, save symbol information for

CrossView Pro, the TASKING source level cross debugger. Type:

c68020 fact.c circle.c –d –do
asm68020 fpneg.68k –d –b –l table.asm
llink –i link.lst –L \c68k\rtlibs\lib020s\lib\lib020s
 –rs idata –x –o
form695 fact.ab –o fact.abs

Explanation

We used the –do option to suppress optimizations that may interfere with

source-level debugging. For more information on optimizations and their

possible effects on debugging, please refer to the C Compiler chapter in

the 68K/ColdFire User`s Manual. We also saved symbol information and

prepared for running CrossView Pro, the TASKING source level debugger.

At each invocation step, we appended the necessary option: –d for the

compiler and assembler to save symbols, –x for the linking locator to link

in two small debugging routines, and –o for the formatter to produce the

necessary .abs symbol table file.

Tutorial 3–39

• • • • • • • •

When we assembled fpneg.68k , we generated an assembly listing and a

symbol table listing by appending the –b option. We directed output to

table.asm with the –l option. Portions of table.asm appear below:

38 1A |
39 1A | * exponent is all 1’s; if mantissa is
 non–zero, then the val is Nan
40 1A 2200 | MOVE.L D0,D1
41 1C 0281007FFFFF | ANDI.L #$007FFFFF,D1
 ; Check if the value of the mantissa is zero
42 22 66000008 | BNE FPN000
 ; Mantissa is non–zero, NaN
43 26 |
44 26 0A8080000000 | FPN010 EORI.L #$80000000,D0 ; Flip sign bit
45 2C |
46 2C 2F00 | FPN000 MOVE.L D0,–(SP)
 ; Push value (negated or not) back on the stack
47 2E 4ED0 | JMP (A0) ; Return
48 30 | END

.

.

.
 –––––––––––– Symbol Table –––––––––––––

FPN000 type: RELOCATABLE SYMBOL value : $2C + libcode
FPN010 type: RELOCATABLE SYMBOL value : $26 + libcode
_FPNEG type: EXTERNAL SYMBOL value : $0 + libcode
libcode type: RELOCATABLE SECTION size : $30

Formatting for Multiple ROMs

Step 2

Use the formatter bias and window options to create hex files for multiple

ROMS each with 16K of memory. Write the output to non-default files.

Type:

c68020 fact.c circle.c
asm68020 fpneg.68k
llink –i link.lst –L \c68k\rtlibs\lib020s\lib\lib020s
 –rs idata –o
form fact.ab –w 4000 –o fact.1hx
form fact.ab –w 4000 –a 4000 –o fact.2hx
form fact.ab –w 4000 –a 8000 –o fact.3hx

Chapter 33–40
T
U
T
O
R
IA
L

Explanation

Suppose your system uses 48K bytes of memory, and you plan to burn

your system into three 16K ROM chips, one for each 16K of memory

space. You will want to generate three hex files for input to your PROM

burner. Each hex file will contain 16K bytes starting at address 0, each

extracted in successive 16K byte chunks from the absolute object module

(.ab file). This example shows how to create those three hex files. We

used our small fact.ab file, although it does not really contain 48K bytes

of code and data.

Here, we use the –w and –a options to format three windows of 16K bytes

each, starting at hex addresses 0, 4000 and 8000 in succession. The –w
(windowing) option chooses the highest address in a hex file after biasing.

The –a (biasing) option subtracts a constant hex value from each address

in the object module.

In our example, the first formatter invocation creates a hex file that

contains hex addresses 0 through 3FFF. The second invocation places the

next 16K of addresses, from 4000 to 7FFF, into the second hex file,

fact.2hx , where 4000 hex has been subtracted from each address. In the

third invocation, the formatter creates a hex file that contains the highest

16K of addresses. After these three formatter invocations, we have three

hex files (fact.1hx , fact.2hx , and fact.3hx), each of which is

suitable for loading into a 16K ROM.

Non-Default Formatting

Step 3

Format using a non-default format. Type:

c68020 fact.c circle.c
asm68020 fpneg.68k
llink –i link.lst –rs idata
 –L \c68k\rtlibs\lib020s\lib\lib020s –o
form fact.ab –f bt

Explanation

Non-default formatting may be required to meet specific requirements of

your target system. In Step 3 we invoked the formatter to produce a

download file in Binary Tekhex format. To specify a non-default format,

append the –f option and the desired format. The switch to specify Binary

Tekhex is bt .

Tutorial 3–41

• • • • • • • •

3.5 INTRODUCTION TO SYSTEM BUILDING CONCEPTS

These notes are designed to be an extension to the normal tutorial. They

describe things you must consider for system initialization, loading code,

and linking C with assembly language in order to build an application.

3.5.1 SYSTEM INITIALIZATION

The TASKING 68K/ColdFire run-time library comes with a set of system

initialization templates called either pmain.68k or pmnxxx.68k for 68K

derivatives, where the xxx refers to the target board (i.e., pmn332.68k or

pmn302a.68k), or pmain.asm for ColdFire derivatives. On the PC, these

files are in the \c68k\rtlibs\lib xxx\src directory. On Unix hosts,

these files are in /usr/local/c68k/rtlibs/lib xxx/src . When

compiling a C module containing the procedure main , the compiler

automatically generates an unresolved reference to a symbol called

__main (double underscore). This symbol is defined in all of the pmain
modules as the start of the initialization routine. Thus, when you link your

source modules together, the linker will automatically link in the

appropriate pmain module in order to satisfy the unresolved reference to

__main .

The initialization clears registers, sets up the stack, and performs other

required power-on initializations such as enabling I/O. The libraries

provide examples which were developed for specific boards. The

initialization code must be customized for the actual environment in which

it will run. Therefore, it is important that you look at the source code for

your particular pmain , and change it, if desired. Note that the pmain code

automatically sets up the first two reset vectors (the ORG 0 at the bottom),

and also sets up A5 to point to the global data area (the LEA data,A5 	

don't change it if you want A5-relative code !).

Once you have customized the pmain.68k module for your particular

target board, the next step is to make sure that the modified pmain is the

one that gets used by your application. There are two ways to accomplish

this. The first method is to assemble your modified pmain.68k file and

then explicitly link it with all of your other source files. This will cause the

reference to __main to be satisfied (by your pmain module), and thus the

linker will never look in the library. This is probably the preferable

solution if you think that your system initialization routine might undergo

further changes. The second method is to add your modified pmain to the

library, following the procedure in the Modifying the Libraries section of

the Run-Time Library appendix in the 68K/ColdFire Reference Manual.

Chapter 33–42
T
U
T
O
R
IA
L

3.5.2 A5-RELATIVE VS. SEPARATE DATA ADDRESSING

The TASKING 68K/ColdFire compiler by default uses the A5 register as a

pointer to the global data area. This is accomplished via the LEA data,A5
instruction in pmain . Setting up this pointer means that when the compiler

manipulates global variables it can now generate instructions using the

�address register indirect with offset" addressing mode, which will produce

smaller and faster code than the direct addressing mode that the compiler

would otherwise have to use. The data symbol is set up by the linker to

hold the address to be stored in A5. For example,

i = 2; /* i is a global integer */

With A5-relative code:

move #2,_i–data(A5) 33fc0002 xxxx

xxxx is the 16-bit offset from A5. On a 68000 this takes 16 cycles plus 3

reads and a write.

With direct addressing:

move #2,_i 3b7c0002 xxxxxxxx

xxxxxxxx is the absolute address of _i . On a 68000 this takes 20 cycles

plus 4 reads and a write.

The A5-relative instruction allows for a 16-bit offset to be specified, giving

the compiler a total global data area of 64K to work with. Any global data

that your application has in excess of 64K must be declared as separate

using the #pragma separate directive (see the Pragma Separate (Option
Separate) application note for details).

3.5.3 LINKING AND LOCATING

The llink step combines three important functions: linking, locating, and

ROM processing.

The linking step involves:

1. Telling the linker which modules to link together.

2. Giving the linker access to the libraries it needs to resolve any

unresolved references.

Tutorial 3–43

• • • • • • • •

The first part is accomplished by listing your .ol files (that you got from

compiling/assembling your source files) on the command line or in a

separate file (using the –i option).

The second part is accomplished by specifying the path to a library index

file using the –L option. A library index file is essentially a look-up table

of symbols and the modules that define those symbols. If the linker finds a

symbol that is unresolved in your source files (e.g., printf), the linker

searches the library index file for the symbol, and upon finding it links in

the appropriate library module automatically.

It is important to make sure that you specify the right library index file

when linking. If you look in your rtlibs\lib000\lib or

rtlibs/lib000 (or substitute another target for lib000) directory, you

will find four distinct library index files: lib000 , lib000.l , lib000.nf ,

and lib000.lnf . Library index files with an �.l " extension assume that

the source files have been compiled with –L option (68K compilers only),

which changes the default sizes of shorts and ints to 2 and 4 bytes

respectively. Library index files with a �.nf " extension assume no

floating-point operations. Thus, if you did not compile with –L and used

floating-point operations, you would use lib000 as your index file, and

so on.

The ColdFire compilers always use the long integer data type, so the

option –L is not needed for these compilers. Also the run-time libraries

do not have the .l extension.

The locating step involves telling the linker where to locate your code and

data through the use of a locator command file. The things that you will

actually be locating are segments and classes. A segment is a contiguous

section of memory containing code or data that has had a name assigned

to it either by you or the compiler. A class is a larger classification which

contains any number of �member" segments. For example, the

development system has created the class data to represent all global data

which is A5-relative. The class data has two member segments, idata
and udata , which contain the initialized and uninitialized global data

respectively. The tables which summarize the segments and classes used in

toolchain are in the Linking Locator chapter of the 68K/ColdFire User's
Manual. Below is a table which essentially retranslates this information,

but with more emphasis on the segment-to-class relationship:

Chapter 33–44
T
U
T
O
R
IA
L

A Segment Class

global variable idata if initialized
udata if uninitialized

{data}

string literal sdata {constant}

const qualified
variable

cdata if you compile with
–cs ,
it is treated as a regular global
variable otherwise

{constant} if you compile
with –cs ,
{data} otherwise

separate variable,
no user–defined
segment name or
class name used

S–variable name {isep} if initialized
variable,
{usep} if uninitialized
variable

separate variable,
with user–defined
segment name
ONLY

whatever segment name you
specified

{separate}

ROM processing
segment that you
have created

whatever you specified with
the –b linker option

{constant}

C procedure S_fname , where fname is the
first function in the file
containing the proc

{code}, unless you
change it with the –cc
compiler option

assembly language
routine

whatever you specified the
segment name to be w/ the
SECTION directive.
For example,
SECTION foo,,”bar”
will create a segment foo and
a class {bar}

whatever you specified
the class to be w/ the
SECTION directive, or in
the NULL class ({}), if
you didn’t use the
SECTION directive

assembly language
that has been
absolutely located
with ORG

name@address , where name
is the SECTION name
containing the ORG and
address is the absolute
address
(e.g., init@0)

NULL, although the
segment will be located
according to the address
in the ORG statement
regardless of where the
null class is located

See the ORG - Absolute Origin and SECTION - Relocatable Program Section
sections of the Assembler Directives chapter in the 68K/ColdFire Reference
Manual for more information on the ORG and SECTION directives.

Tutorial 3–45

• • • • • • • •

Once you know what segments and classes are being created by your

compilations, the actual locating process is fairly straight-forward. Within

the locator command file, the LOCATE directive specifies the segments

and/or classes to be located, followed by the absolute address to which

they are to be located. Note that class names which are specified in locator

command files should be enclosed in curly braces (e.g., {code} and {data}).

If you mention more than one segment or class in a particular locate

statement they are located in the order you mention them, one right after

the other. Segments are considered to be word-aligned, so you must

locate segments and classes at even addresses (for separate variables this

restriction can be avoided, see the linking and locating example below).

The last thing to consider in the llink step is ROM processing. ROM

processing is a procedure for storing initialized read-write data in ROM (so

that the initial values are not lost when power is off), with the intention of

copying this data to RAM at startup (so that the values can be changed).

The general procedure works as follows:

1. Establish the identity and contents of a �ROM processing segment". The

ROM processing segment is the area of memory in ROM that contains

the copies of everything that will be copied to RAM at startup.

The name of the ROM processing segment is established through the

use of the –b option (e.g., –b _myrompseg). The catch is that linker

symbol names (such as the ROM processing segment name you create

with –b) are formed by prepending an underscore to the C symbol

name. Since you will need to refer to the ROM processing segment's

name in C, you must give the ROM processing segment a name that

starts with an underscore, so that you can �strip" off the underscore

when you refer to it in C.

The contents of the ROM processing segment are defined via the –rc
(for classes) and –rs (for segments) options. Any classes or segments

that are specified will be copied into the segment named via the –b
option. In this fashion you can copy any number of segments and

classes into the same ROM processing segment.

Chapter 33–46
T
U
T
O
R
IA
L

2. Having established the contents and name of the ROM processing

segment, locate it at an appropriate address in ROM. You can do this

by locating the segment name explicitly:

locate (_myrompseg: #2000);

or by the class name constant;

locate ({constant}: #2000);

3. Locate the segments/classes that you are ROM processing (i.e., the ones

you specified with –rs or –rc) at addresses in RAM.

4. Modify your main() routine to call the library routine rcopy . Given

that you have used –b to define a ROM processing segment called

_myrompseg , the C file containing main() would be modified as

follows:

#pragma separate myrompseg /* no underscore here, we
strip it when we’re in C */
extern int myrompseg; /* #pragma separate is
necessary to make this work */
#include <rcopy.h>
...
...
main()
{
rcopy(&myrompseg); /* should be the first executable
line of main() */
...
}

Linking/Locating example:

For this example assume a �mythical" 68K target, with ROM located at

address $0 (exception vector table occupies $0 through $3ff) and RAM at

address $10000 . This target also has a bank of 8 LEDs located at address

$9001 (each triggered on a different bit in the byte), and two hex displays

at address $8000 (each displays a hex digit, and both are enabled upon

writing a byte to $8000). The application program (main.c as present in

the examples\tutor\main directory) continuously increments the

displayed value after a specified delay; when the display reads FF the

bank of LEDs flashes on and off. The program also performs the set-up

required for ROM processing in the llink step.

Tutorial 3–47

• • • • • • • •

/* begin main.c */

char full = 0xff;
char unused;

#pragma sep_on segment ledbank
char dummy; /* A segment must be word–aligned, so we must add a
dummy */
char leds; /* variable to put leds at an odd address */
#pragma sep_off

#pragma separate display
char display;

#pragma separate myromp /* dummy variable for ROM processing
segment */
extern int myromp;

#include <rcopy.h>

void main(void);
void delay(void);

void main(void)
{
 rcopy(&myromp); /* call to rcopy to do ROM processing */
 leds = display = 0;
 while(1)
 {
 delay();
 leds = 0;
 display++;
 if (display == full) leds = full;
 }
}

void delay(void)
{
 return; /* At some point we could insert an
 appropriate delay routine */
}
/* end main.c */

Now, we compile this file (make the examples\tutor\main directory

the current working directory):

c68332 main.c –S \c68k\rtlibs\lib020s\inc

The segments and classes that are created by this compilation are as

follows:

• Segment idata , which has class {data}, contains the one initialized

non-separate global variable in the program (full).

Chapter 33–48
T
U
T
O
R
IA
L

• Segment udata , which has class {data}, contains the one

uninitialized non-separate global variable in the program (unused).

• Segment ledbank contains the separate variables dummy and leds .

Since the #pragma directive specifies a segment name (ledbank)

but no class, the class defaults to {separate}.

• Segment S_display contains the variable display and has class

{usep}.

• Segment S_main contains the code for the routines main() and

delay() , and has class {code}.

Moving on to the llink step, we want to accomplish the following:

1. Memory map the variables leds and display so that they occupy hex

addresses $9001 and $8000 respectively.

2. ROM process the segment idata , locate the ROM processing segment

in ROM and reserve space for idata (where it will be copied to) in

RAM.

3. Locate all code and constant stuff in ROM, and all read-write data in

RAM.

This is accomplished by the following llink command line:

llink main.ol –L \c68k\rtlibs\lib020s\lib\lib332
 –c loc.lc –rs idata –b _myromp –o

and locator command file, loc.lc :

locate({code}{}{constant}: #2000); –– locate code/constant/null
 classes in ROM
locate(S_display: #8000); –– map hex displays to $8000
locate(ledbank: #9000); –– satisfies linker’s desire for
 word–alignment
locate({data}: #10000); –– locate the data (both idata and udata)
 in RAM

After the llink , try running gsmap on main.ab :

gsmap main.ab –o

Tutorial 3–49

• • • • • • • •

Look at the file main.map . In addition to the list of global variables at the

beginning, you should also find the following chart of segments:

Segment Address Length Class Align Combine

S_atexit 00002002
(8194)

000056 (86) code hword private

S_display 00008000
(32768)

000001 (1) usep hword private

S_main 0000218e
(8590)

00003c (60) code hword private

S_mem-
set

00002058
(8280)

000086 (134) code hword private

S_rcopy 00002134
(8500)

00005a (90) code hword private

_myromp 000021ca
(8650)

000014 (20) constant hword private

idata 00010000
(65536)

000004 (4) data hword private

init 000020de
(8414)

000056 (86) code hword private

init@0 00000000 (0) 000008 (8) <null> byte private

ledbank 00009000
(36864)

000002 (2) separate hword private

libcode 00002000
(8192)

000002 (2) code hword private

udata 00010004
(65540)

000082 (130) data hword private

Chapter 33–50
T
U
T
O
R
IA
L

All of the segments generated as a result of the compilation of main.c are

present, and that new segments have appeared as a result of the linking

process. The init and init@0 segments were created by the linking in

of the module pmn332.ln , which contains the default system initialization

code. This happened automatically due to the existence of a routine

named main() . The init@0 segment represents the data explicitly

located at address 0 due to the ORG 0 at the bottom of the pmn332.68k
file. The _myromp segment is the ROM processing segment that we

created by invoking the linker with –rs idata –b _myromp . It has class

constant by default, a fact that we used in the loc.lc file (by locating

{constant} instead of _myromp). The S_memset and S_rcopy segments

were generated by the external references to the rcopy routine.

3.5.4 LINKING C AND ASSEMBLY

To link C and assembly there really is only one trick and that is:

OBEY THE RUN-TIME AND NAMING CONVENTIONS OF THE

COMPILER. Following is a list of important conventions:

• Each symbol referenced in a C program must have an underscore

prepended to it when you reference it in assembly language. So, if

you declare a variable �int i; " in C and then want to access that

variable in assembly language, you would do something like

move #2,_i . Likewise, a function called main in C will be called

_main in assembly.

Tutorial 3–51

• • • • • • • •

• The compiler, when calling a function with parameters, will push

them onto the stack in reverse order. Also, parameters that are 8 bits

in size will be pushed onto the stack as 16 bits (with the high order

byte undefined). So, as an example, let's say you have an external

function called foo that you call in C like so:

extern void foo(char,int,long);
...
char c; | ”e” (low word) |
int d; 8(A7)–> | ”e” (high word) |
long e; 6(A7)–> | ”d” |
... 4(A7)–> | garbage | ”c” |
foo(c,d,e); | return addr (low word) |
 A7–> | return addr (high word) |

The compiler will push e on the stack first, followed by d and c
(which will be pushed as a word), followed by the return address.

If foo were actually defined in assembly language (as _foo), you

would expect parameter c to be at location 5(a7) (not 4(a7) ,

since the high-order byte is junk), followed by d at 6(a7) , and

then e at 8(a7) .

• The compiler will expect integer return values to be placed in D0,
and pointer return values to be placed in A0. For hardware

floating-point, floats and doubles are returned in FP0. Otherwise,

floats are returned in D0 and doubles are returned in a temporary

stack location.

Chapter 33–52
T
U
T
O
R
IA
L

• The compiler considers D0, D1, A0, and A4 (FP0 and FP4 also for

hardware floating-points) to be scratch registers. As such, you never

need to worry about saving and restoring these registers in your

assembly language programs. A5, A6, and A7 are used by the

compiler as the pointer to the global data area, the frame pointer,

and stack pointer respectively, and you should not load values into

these registers unless you are using a compiler option which

suppresses the default use of these registers (i.e., –n5 or –n6). All

other registers (D2-D7, A1-A3) must be saved and restored if your

assembly language routine writes into them. The compiler will be

following the same convention, so you cannot leave a �live" value

in any of the scratch registers prior to making a function call,

because the compiler will not be saving and restoring the scratch

registers either, and will happily overwrite any useful data that

might exist in these registers. Likewise, you can leave useful data in

any of the preserved registers (D2-D7,A1-A3) prior to calling a C

function from assembly language, since the compiler will save and

restore these registers if it uses them.

Here is an example to illustrate some of the above concepts. Consider a

function foo , which takes two parameters (p1 and p2 , both int 's), and

returns the value (2*p1 + 2*p2) . The function foo is to be written in

assembly language and it calls another function bar , which is written in C.

The bar function takes an int parameter and returns 2*parameter .

In file cfile.c (in the examples\tutor\cfile directory):

extern int foo(int,int);
int bar(int);
int a, b, c;

void t(void)

{

 c = foo(a,b);

}

int bar(int p1)
{

 return(2*p1);

}

Tutorial 3–53

• • • • • • • •

In file asmfile.68k :

 XDEF _foo ; make _foo public

 XREF _bar ; ”extern” the _bar symbol so you can use it

 SECTION fooseg,,”code”

_foo

 MOVE.L D2,–(A7) ; save D2, we’ll be using it

 MOVE 8(A7),–(A7) ; get value of a, push on stack for call to bar

 JSR _bar ; call bar(a)

 ADDQ.L #2,A7 ; clean up stack (clear off a)

 MOVE D0,D2 ; D0 has return value from bar(a), save it since * it

is a scratch register and our second call to bar will clobber it

 MOVE 10(A7),–(A7) ; get value of b, push on stack for call to bar

 JSR _bar ; call bar(b)

 ADDQ.L #2,A7 ; clean up stack (clear off b)

 ADD D2,D0 ; D0 has return value from bar(b) this time,

* we add in the value of bar(a) (still safe and sound in D2,

* since the compiler will save and restore D2 if bar uses it)

 MOVE.L (A7)+,D2 ; restore D2 before exiting

 RTS ; now we can return, since the return value

* from foo, currently resides in D0, which is what the compiler expects

3.6 TUTORIAL CONCLUSION

The examples above address hypothetical but common needs of the

embedded system developer. The tutorial addresses basic topics and may

be helpful for periodic review and reference. With an understanding of

terminology and practice using the tutorial files, you can approach this

manual with fundamental knowledge for detailed applications.

Chapter 33–54
T
U
T
O
R
IA
L

A

FLEXIBLE LICENSE
MANAGER (FLEXlm)

A
P

P
E

N
D

IX

Appendix AA–2
F
L
E
X
L
M

A

A
P

P
E

N
D

IX

Flexible License Manager (FLEXlm) A–3

• • • • • • • •

1 INTRODUCTION

This appendix discusses Globetrotter Software's Flexible License Manager

and how it is integrated into the TASKING toolchain. It also contains

descriptions of the Flexible License Manager license administration tools

that are included with the package, the daemon log file and its contents,

and the use of daemon options files to customize your use of the

TASKING toolchain.

2 LICENSE ADMINISTRATION

2.1 OVERVIEW

The Flexible License Manager (FLEXlm) is a set of utilities that, when

incorporated into software such as the TASKING toolchain, provides for

managing access to the software.

The following terms are used to describe FLEXlm concepts and software

components:

feature A feature could be any of the following:

• A TASKING software product.

• A software product from another vendor.

license The right to use a feature. FLEXlm restricts licenses for

features by counting the number of licenses for features in

use when new requests are made by the application

software.

client A TASKING application program.

daemon A process that "serves" clients. Sometimes referred to as a

server.

vendor daemon

The daemon that dispenses licenses for the requested

features. This daemon is built by an application's vendor, and

contains the vendor's personal encryption code. Tasking is

the vendor daemon for the TASKING software.

Appendix AA–4
F
L
E
X
L
M

license daemon

The daemon process that sends client processes to the

correct vendor daemon on the correct machine. The same

license daemon is used by all applications from all vendors,

as this daemon neither performs encryption nor dispenses

licenses. The license daemon processes no user requests on

its own, but forwards these requests to other daemons (the

vendor daemons).

server node A computer system that is running both the license and

vendor daemon software. The server node will contain all the

dynamic information regarding the usage of all the features.

license file An end-user specific file that contains descriptions of the

server nodes that can run the license daemons, the various

vendor daemons, and the restrictions for all the licensed

features.

The TASKING software is granted permission to run by FLEXlm daemons;

the daemons are started when the TASKING toolchain is installed and run

continuously thereafter. Information needed by the FLEXlm daemons to

perform access management is contained in a license data file that is

created during the toolchain installation process. As part of their normal

operation, the daemons log their actions in a daemon log file, which can

be used to monitor usage of the TASKING toolchain.

The following sections discuss:

• Installation of the FLEXlm daemons to provide for access to the

TASKING toolchain.

• Customizing your use of the toolchain through the use of a daemon

options file.

• Utilities that are provided to assist you in performing license

administration functions.

• The daemon log file and its contents.

For additional information regarding the use of FLEXlm, refer to the

chapter Installation Guide.

Flexible License Manager (FLEXlm) A–5

• • • • • • • •

2.2 PROVIDING FOR UNINTERRUPTED FLEXLM

OPERATION

TASKING products licensed through FLEXlm contain a number of utilities

for managing licenses. These utilities are bundled in the form of an extra

product under the name SW000098. TASKING products themselves contain

two additional files for FLEXlm in a flexlm subdirectory:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

If you have already installed FLEXlm (e.g. as part of another product) then

it is not needed to install the bundled SW000098. After installing SW000098

on UNIX, the directory /usr/local/flexlm will contain two

subdirectories, bin and licenses . After installing SW000098 on Windows

the directory c:\flexlm will contain the subdirectory bin . The exact

location may differ if FLEXlm has already been installed as part of a

non-TASKING product but in general there will be a directory for

executables such as bin . That directory must contain a copy of the

Tasking daemon shipped with every TASKING product. It also contains

the files:

lmgrd The FLEXlm daemon (license daemon).

lm* A group of FLEXlm license administration utilities.

Next to it, a license file must be present containing the information of all

licenses. This file is usually called license.dat . The default location of

the license file is in directory c:\flexlm for Windows and in

/usr/local/flexlm/licenses for UNIX. If you did install SW000098

then the licenses directory on UNIX will be empty, and on Windows

the file license.dat will be empty. In that case you can copy the

license.dat file from the product to the licenses directory after filling

in the data from your "License Information Form".

Be very careful not to overwrite an existing license.dat file because it

contains valuable data.

Example license.dat :

SERVER HOSTNAME HOSTID PORT
DAEMON Tasking /usr/local/flexlm/bin/Tasking
FEATURE SW008002–32 Tasking 3.000 EXPDATE NUSERS PASSWORD SERIAL

Appendix AA–6
F
L
E
X
L
M

After modifications from a license data sheet (example):

SERVER elliot 5100520c 7594

DAEMON Tasking /usr/local/flexlm/bin/Tasking

FEATURE SW008002–32 Tasking 3.000 1–jan–00 4 0B1810310210A6894 ”123456”

If the license.dat file already exists then you should make sure that it

contains the DAEMON and FEATURE lines from your license data sheet.

An appropriate SERVER line should already be present in that case. You

should only add a new SERVER line if no SERVER line is present. The third

field of the DAEMON line is the pathname to the Tasking daemon and

you may change it if necessary.

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If the pathname of the resulting license file differs from this default

location then you must set the environment variable LM_LICENSE_FILE to

the correct pathname. If you have more than one product using the

FLEXlm license manager you can specify multiple license files by

separating each pathname (lfpath) with a ';' (on UNIX also ':') :

Windows:

set LM_LICENSE_FILE= lfpath[;lfpath]...

UNIX:

setenv LM_LICENSE_FILE lfpath[:lfpath]...

If you are running the TASKING software on multiple nodes, you have

three options for making your license file available on all the machines:

1. Place the license file in a partition which is available (via NFS on Unix

systems) to all nodes in the network that need the license file.

2. Copy the license file to all of the nodes where it is needed.

3. Set LM_LICENSE_FILE to "port@host", where host and port come from the

SERVER line in the license file.

Flexible License Manager (FLEXlm) A–7

• • • • • • • •

When the main license daemon lmgrd already runs it is sufficient to type

the command:

lmreread

for notifying the daemon that the license.dat file has been changed.

Otherwise, you must type the command:

lmgrd >/usr/tmp/license.log &

Both commands reside in the flexlm bin directory mentioned before.

2.3 DAEMON OPTIONS FILE

It is possible to customize the use of TASKING software using a daemon

options file. This options file allows you to reserve licenses for specified

users or groups of users, to restrict access to the TASKING toolchain, and

to set software timeouts. The following table lists the keywords that are

recognized at the start of a line of a daemon options file.

Keywords Function

RESERVE Ensure that TASKING software will always be available to
one or more users or on one or more host computer systems.

INCLUDE Specify a list of users who are allowed exclusive access to
the TASKING software.

EXCLUDE Specify a list of users who are not allowed to use the
TASKING software.

GROUP Specify a group of users for use in the other commands.

TIMEOUT Allow licenses that are idle for a specified time to be returned
to the free pool, for use by someone else.

NOLOG Causes messages of the specified type to be filtered out of
the daemon’s log output.

Table A-1: Daemon options file keywords

In order to use the daemon options capability, you must create a daemon

options file and list its pathname as the fourth field on the DAEMON line for

the Tasking daemon in the license file. For example, if the daemon

options were in file /usr/local/flexlm/Tasking.opt (UNIX), then

you would modify the license file DAEMON line as follows:

DAEMON Tasking /usr/local/Tasking /usr/local/flexlm/Tasking.opt

Appendix AA–8
F
L
E
X
L
M

A daemon options file consists of lines in the following format:

RESERVE number feature {USER | HOST | DISPLAY | GROUP} name
INCLUDE feature {USER | HOST | DISPLAY | GROUP} name
EXCLUDE feature {USER | HOST | DISPLAY | GROUP} name
GROUP name <list_of_users>
TIMEOUT feature timeout_in_seconds
NOLOG {IN | OUT | DENIED | QUEUED}
REPORTLOG file

Lines beginning with the sharp character (#) are ignored, and can be used

as comments. For example, the following options file would reserve one

copy of feature SWxxxxxx–xx for user �pat", three copies for user �lee",

and one copy for anyone on a computer with the hostname of �terry"; and

would cause QUEUED messages to be omitted from the log file. In addition,

user �joe" and group �pinheads" would not be allowed to use the feature

SWxxxxxx–xx :

GROUP pinheads moe larry curley
RESERVE 1 SWxxxxxx–xx USER pat
RESERVE 3 SWxxxxxx–xx USER lee
RESERVE 1 SWxxxxxx–xx HOST terry
EXCLUDE SWxxxxxx–xx USER joe
EXCLUDE SWxxxxxx–xx GROUP pinheads
NOLOG QUEUED

3 LICENSE ADMINISTRATION TOOLS

The following utilities are provided to facilitate license management by

your system administrator. In certain cases, execution access to a utility is

restricted to users with root privileges. Complete descriptions of these

utilities are provided at the end of this section.

lmcksum

Prints license checksums.

lmdiag (Windows only)

Diagnoses license checkout problems.

lmdown

Gracefully shuts down all license daemons (both lmgrd all vendor

daemons, such as Tasking) on the license server.

Flexible License Manager (FLEXlm) A–9

• • • • • • • •

lmgrd

The main daemon program for FLEXlm.

lmhostid

Reports the hostid of a system.

lmremove

Removes a single user's license for a specified feature.

lmreread

Causes the license daemon to reread the license file and start any new

vendor daemons.

lmstat

Helps you monitor the status of all network licensing activities.

lmswitchr

Switches the report log file.

lmver

Reports the FLEXlm version of a library or binary file.

lmtools (Windows only)

This is a graphical Windows version of the license administration tools.

Appendix AA–10
F
L
E
X
L
M

3.1 LMCKSUM

Name

lmcksum - print license checksums

Synopsis

lmcksum [-c license_file] [-k]

Description

The lmcksum program will perform a checksum of a license file. This is

useful to verify data entry errors at your location. lmcksum will print a

line-by-line checksum for the file as well as an overall file checksum.

The following fields participate in the checksum:

• hostid on the SERVER lines

• daemon name on the DAEMON lines

• feature name, version, daemon name, expiration date, # of licenses,

encription code, vendor string and hostid on the FEATURE lines

• daemon name and encryption code on FEATURESET lines

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmcksum looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmcksum looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-k Case-sensitive checksum. If this option is specified,

lmcksum will compute the checksum using the exact case of

the FEATURE's and FEATURESET's encryption code.

Flexible License Manager (FLEXlm) A–11

• • • • • • • •

3.2 LMDIAG (Windows only)

Name

lmdiag - diagnose license checkout problems

Synopsis

lmdiag [-c license_file] [-n] [feature]

Description

lmdiag (Windows only) allows you to diagnose problems when you

cannot check out a license.

If no feature is specified, lmdiag will operate on all features in the license

file(s) in your path. lmdiag will first print information about the license,

then attempt to check out each license. If the checkout succeeds, lmdiag

will indicate this. If the checkout fails, lmdiag will give you the reason for

the failure. If the checkout fails because lmdiag cannot connect to the

license server, then you have the option of running "extended connection

diagnostics".

These extended diagnostics attempt to connect to each port on the license

server node, and can detect if the port number in the license file is

incorrect. lmdiag will indicate each port number that is listening, and if it

is an lmgrd process, lmdiag will indicate this as well. If lmdiag finds the

vendor daemon for the feature being tested, then it will indicate the

correct port number for the license file to correct the problem.

Parameters

feature Diagnose this feature only.

Options

-c license_file
Diagnose the specified license_file. If no -c option is

specified, lmdiag looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdiag looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-n Run in non-interactive mode; lmdiag will not prompt for

any input in this mode. In this mode, extended connection

diagnostics are not available.

Appendix AA–12
F
L
E
X
L
M

3.3 LMDOWN

Name

lmdown - graceful shutdown of all license daemons

Synopsis

lmdown [-c license_file] [-q]

Description

The lmdown utility allows for the graceful shutdown of all license

daemons (both lmgrd and all vendor daemons, such as Tasking) on all

nodes. You may want to protect the execution of lmdown, since shutting

down the servers causes users to lose their licenses. See the -p option in

Section 3.4, lmgrd.

lmdown sends a message to every license daemon asking it to shut down.

The license daemons write out their last messages to the log file, close the

file, and exit. All licenses which have been given out by those daemons

will be revoked, so that the next time a client program goes to verify his

license, it will not be valid.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmdown looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdown looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-q Quiet mode. If this switch is not specified, lmdown asks for

confirmation before asking the license daemons to shut

down. If this switch is specified, lmdown will not ask for

confirmation.

lmgrd, lmstat, lmreread

Flexible License Manager (FLEXlm) A–13

• • • • • • • •

3.4 LMGRD

Name

lmgrd - flexible license manager daemon

Synopsis

lmgrd [-c license_file] [-l logfile] [-2 -p] [-t timeout] [-s interval]

Description

lmgrd is the main daemon program for the FLEXlm distributed license

management system. When invoked, it looks for a license file containing

all required information about vendors and features. On UNIX systems, it

is strongly recommended that lmgrd be run as a non-privileged user (not

root).

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmgrd looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmgrd looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-l logfile Specifies the output log file to use. Instead of using the -l

option you can use output redirection (> or >>) to specify

the name of the output log file.

-2 -p Restricts usage of lmdown, lmreread, and lmremove to a

FLEXlm administrator who is by default root. If there is a

UNIX group called "lmadmin" then use is restricted to only

members of that group. If root is not a member of this group,

then root does not have permission to use any of the above

utilities.

-t timeout Specifies the timeout interval, in seconds, during which the

license daemon must complete its connection to other

daemons if operating in multi-server mode. The default value

is 10 seconds. A larger value may be desirable if the daemons

are being run on busy systems or a very heavily loaded

network.

Appendix AA–14
F
L
E
X
L
M

-s interval Specifies the log file timestamp interval, in minutes. The

default is 360 minutes. This means that every six hours

lmgrd logs the time in the log file.

lmdown, lmstat

Flexible License Manager (FLEXlm) A–15

• • • • • • • •

3.5 LMHOSTID

Name

lmhostid - report the hostid of a system

Synopsis

lmhostid

Description

lmhostid calls the FLEXlm version of gethostid and displays the results.

The output of lmhostid looks like this:

lmhostid – Copyright (C) 1989, 1999 Globetrotter Software, Inc.
The FLEXlm host ID of this machine is ”1200abcd”

Options

lmhostid has no command line options.

Appendix AA–16
F
L
E
X
L
M

3.6 LMREMOVE

Name

lmremove - remove specific licenses and return them to license pool

Synopsis

lmremove [-c license_file] feature user host [display]

Description

The lmremove utility allows the system administrator to remove a single

user's license for a specified feature. This could be required in the case

where the licensed user was running the software on a node that

subsequently crashed. This situation will sometimes cause the license to

remain unusable. lmremove will allow the license to return to the pool of

available licenses.

lmremove will remove all instances of �user" on node �host" on display

�display" from usage of �feature". If the optional –c file is specified, the

indicated file will be used as the license file. Since removing a user's

license can be disruptive, execution of lmremove is restricted to users

with root privileges.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmremove looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmremove looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

lmstat

Flexible License Manager (FLEXlm) A–17

• • • • • • • •

3.7 LMREREAD

Name

lmreread - tells the license daemon to reread the license file

Synopsis

lmreread [-c license_file]

Description

lmreread allows the system administrator to tell the license daemon to

reread the license file. This can be useful if the data in the license file has

changed; the new data can be loaded into the license daemon without

shutting down and restarting it.

The license administrator may want to protect the execution of lmreread.

See the -p option in Section 3.4, lmgrd for details about securing access to

lmreread.

lmreread uses the license file from the command line (or the default file,

if none specified) only to find the license daemon to send it the command

to reread the license file. The license daemon will always reread the file

that it loaded from the original path. If you need to change the path to the

license file read by the license daemon, then you must shut down the

daemon and restart it with that new license file path.

You cannot use lmreread if the SERVER node names or port numbers

have been changed in the license file. In this case, you must shut down

the daemon and restart it in order for those changes to take effect.

lmreread does not change any option information specified in an options

file. If the new license file specifies a different options file, that

information is ignored. If you need to reread the options file, you must

shut down (lmdown) the daemon and restart it.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmreread looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmreread looks for the

file license.dat in the default location.

lmdown

Appendix AA–18
F
L
E
X
L
M

3.8 LMSTAT

Name

lmstat - report status on license manager daemons and feature usage

Synopsis

lmstat [-a] [-A] [-c license_file] [-f [feature]]
[-l [regular_expression]] [-s [server]] [-S [daemon]] [-t timeout]

Description

License administration is simplified by the lmstat utility. lmstat allows

you to instantly monitor the status of all network licensing activities.

lmstat allows a system administrator to monitor license management

operations including:

• Which daemons are running

• Users of individual features

• Users of features served by a specific DAEMON

Options

-a Display all information.

-A List all active licenses.

-c license_file
Use the specified license_file. If no -c option is specified,

lmstat looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmstat looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-f [feature] List all users of the specified feature(s).

-l [regular_expression]

List all users of the features matching the given

regular_expression.

-s [server] Display the status of the specified server node(s).

-S [daemon] List all users of the specified daemon's features.

Flexible License Manager (FLEXlm) A–19

• • • • • • • •

-t timeout Specifies the amount of time, in seconds, lmstat waits to

establish contact with the servers. The default value is 10

seconds. A larger value may be desirable if the daemons are

being run on busy systems or a very heavily loaded network.

lmgrd

Appendix AA–20
F
L
E
X
L
M

3.9 LMSWITCHR (Windows only)

Name

lmswitchr - switch the report log file

Synopsis

lmswitchr [-c license_file] feature new-file

or:

lmswitchr [-c license_file] vendor new-file

Description

lmswitchr (Windows only) switches the report writer (REPORTLOG) log

file. It will also start a new REPORTLOG file if one does not already exist.

Parameters

feature Any feature this daemon supports.

vendor The name of the vendor daemon (such as Tasking).

new-file New file path.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmswitchr looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmswitchr looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

Flexible License Manager (FLEXlm) A–21

• • • • • • • •

3.10 LMVER

Name

lmver - report the FLEXlm version of a library or binary file

Synopsis

lmver filename

Description

The lmver utility reports the FLEXlm version of a library or binary file.

Alternatively, on UNIX systems, you can use the following commands to

get the FLEXlm version of a binary:

strings file | grep Copy

Parameters

filename Name of the executable of the product.

Appendix AA–22
F
L
E
X
L
M

3.11 LICENSE ADMINISTRATION TOOLS FOR WINDOWS

3.11.1 LMTOOLS FOR WINDOWS

For the 32 Bit Windows Platforms, an lmtools.exe Windows program is

provided. It has the same functionality as listed in the previous sections

but is graphically-oriented. Simply run the program (Start | Programs
| TASKING FLEXlm | FLEXlm Tools) and choose a button for the

functionality required. Refer to the previous sections for information about

the options of each feature. The command line interface is replaced by

pop-up dialogs that can be filled out.The central EDIT field is where the

license file path is placed. This will be used for all other functions and

replaces the "-c license_file" argument in the other utilities.

The HOSTID button displays the hostid's for the computer on which the

program is running. The TIME button prints out the system's internal time

settings, intended to diagnose any time zone problems. The TCP
Settings button is intended to fix a bug in the Microsoft TCP protocol

stack which has a symptom of very slow connections to computers. After

pressing this button, the system will need to be rebooted for the settings to

become effective.

Flexible License Manager (FLEXlm) A–23

• • • • • • • •

3.11.2 FLEXLM LICENSE MANAGER FOR WINDOWS

lmgrd.exe can be run manually or using the graphical Windows tool. You

can start this tool from the FLEXlm program folder. Click on Start |
Programs | TASKING FLEXlm | FLEXlm Tools

From the Control tab you can start, stop, and check the status of your

license server. Select the Setup tab to enter information about your

license server.

Appendix AA–24
F
L
E
X
L
M

Select the Control tab and click the Start button to start your license

server. lmgrd.exe will be launched as a background application with the

license file and debug log file locations passed as parameters.

If you want lmgrd.exe to start automatically on NT, select the Use NT
Services check box and lmgrd.exe will be installed as an NT service.

Next, select the Start Server at Power–UP check box.

The Licenses tab provides information about the license file and the

Advanced tab allows you to perform diagnostics and check versions.

Flexible License Manager (FLEXlm) A–25

• • • • • • • •

4 THE DAEMON LOG FILE

The FLEXlm daemons all generate log files containing messages in the

following format:

mm/dd hh:mm (DAEMON name) message

Where:

mm/dd hh:mm Is the month/day hour:minute that the message was

logged.

DAEMON name Either �license daemon" or the string from the DAEMON
line that describes your daemon.

In the case where a single copy of the daemon cannot

handle all of the requested licenses, an optional �_"

followed by a number indicates that this message comes

from a forked daemon.

message The text of the message.

The log files can be used to:

• Inform you when it may be necessary to update your application

software licensing arrangement.

• Diagnose configuration problems.

• Diagnose daemon software errors.

The messages are grouped below into the above three categories, with

each message followed by a brief description of its meaning.

Appendix AA–26
F
L
E
X
L
M

4.1 INFORMATIONAL MESSAGES

Connected to node

This daemon is connected to its peer on node node.

CONNECTED, master is name

The license daemons log this message when a quorum is up and everyone

has selected a master.

DEMO mode supports only one SERVER host!

An attempt was made to configure a demo version of the software for

more than one server host.

DENIED: N feature to user (mm/dd/yy hh:mm)

user was denied access to N licenses of feature. This message may indicate

a need to purchase more licenses.

EXITING DUE TO SIGNAL nnn

EXITING with code nnn

All daemons list the reason that the daemon has exited.

EXPIRED: feature

feature has passed its expiration date.

IN: feature by user (N licenses) (used: d:hh:mm:ss)

(mm/dd/yy hh:mm)

user has checked back in N licenses of feature at mm/dd/yy hh:mm.

IN server died: feature by user (number licenses)

(used: d:hh:mm:ss) (mm/dd/yy hh:mm)

user has checked in N licenses by virtue of the fact that his server died.

License Manager server started

The license daemon was started.

Flexible License Manager (FLEXlm) A–27

• • • • • • • •

Lost connection to host

A daemon can no longer communicate with its peer on node host, which

can cause the clients to have to reconnect, or cause the number of

daemons to go below the minimum number, in which case clients may

start exiting. If the license daemons lose the connection to the master, they

will kill all the vendor daemons; vendor daemons will shut themselves

down.

Lost quorum

The daemon lost quorum, so will process only connection requests from

other daemons.

MASTER SERVER died due to signal nnn

The license daemon received fatal signal nnn.

MULTIPLE xxx servers running. Please kill, and restart license

daemon

The license daemon has detected that multiple copies of vendor daemon

xxx are running. The user should kill all xxx daemon processes and

re-start the license daemon.

OUT: feature by user (N licenses) (mm/dd/yy hh:mm)

user has checked out N licenses of feature at mm/dd/yy hh:mm

Removing clients of children

The top-level daemon logs this message when one of the child daemons

dies.

RESERVE feature for HOST name

RESERVE feature for USER name

A license of feature is reserved for either user name or host name.

REStarted xxx (internet port nnn)

Vendor daemon xxx was restarted at internet port nnn.

Retrying socket bind (address in use)

The license servers try to bind their sockets for approximately 6 minutes if

they detect address in use errors.

Appendix AA–28
F
L
E
X
L
M

Selected (EXISTING) master node

This license daemon has selected an existing master (node) as the master.

SERVER shutdown requested

A daemon was requested to shut down via a user-generated kill

command.

[NEW] Server started for: feature-list

A (possibly new) server was started for the features listed.

Shutting down xxx

The license daemon is shutting down the vendor daemon xxx.

SIGCHLD received. Killing child servers

A vendor daemon logs this message when a shutdown was requested by

the license daemon.

Started name

The license daemon logs this message whenever it starts a new vendor

daemon.

Trying connection to node

The daemon is attempting a connection to node.

Flexible License Manager (FLEXlm) A–29

• • • • • • • •

4.2 CONFIGURATION PROBLEM MESSAGES

hostname: Not a valid server host, exiting

This daemon was run on an invalid hostname.

hostname: Wrong hostid, exiting

The hostid is wrong for hostname.

BAD CODE for feature-name

The specified feature name has a bad encryption code.

CANNOT OPEN options file �file"

The options file specified in the license file could not be opened.

Couldn't find a master

The daemons could not agree on a master.

license daemon: lost all connections

This message is logged when all the connections to a server are lost,

which often indicates a network problem.

lost lock, exiting

Error closing lock file

Unable to re-open lock file

The vendor daemon has a problem with its lock file, usually because of an

attempt to run more than one copy of the daemon on a single node.

Locate the other daemon that is running via a ps command, and kill it

with kill -9.

NO DAEMON line for daemon

The license file does not contain a DAEMON line for daemon.

No �license" service found

The TCP license service did not exist in /etc/services .

No license data for �feat", feature unsupported

There is no feature line for feat in the license file.

Appendix AA–30
F
L
E
X
L
M

No features to serve!

A vendor daemon found no features to serve. This could be caused by bad

data in the license file.

UNSUPPORTED FEATURE request: feature by user

The user has requested a feature that this vendor daemon does not

support. This can happen for a number of reasons: the license file is bad,

the feature has expired, or the daemon is accessing the wrong license file.

Unknown host: hostname

The hostname specified on a SERVER line in the license file does not exist

in the network database (probably /etc/hosts).

lm_server: lost all connections

This message is logged when all the connections to a server are lost. This

probably indicates a network problem.

NO DAEMON lines, exiting

The license daemon logs this message if there are no DAEMON lines in the

license file. Since there are no vendor daemons to start, there is nothing to

do.

NO DAEMON line for name

A vendor daemon logs this error if it cannot find its own DAEMON name in

the license file.

Flexible License Manager (FLEXlm) A–31

• • • • • • • •

4.3 DAEMON SOFTWARE ERROR MESSAGES

accept: message

An error was detected in the accept system call.

ATTEMPT TO START VENDOR DAEMON xxx with NO MASTER

A vendor daemon was started with no master selected. This is an internal

consistency error in the daemons.

BAD PID message from nnn: pid: xxx (msg)

A top-level vendor daemon received an invalid PID message from one of

its children (daemon number xxx).

BAD SCONNECT message: (message)

An invalid �server connect" message was received.

Cannot create pipes for server communication

The pipe call failed.

Can't allocate server table space

A malloc error. Check swap space.

Connection to node TIMED OUT

The daemon could not connect to node.

Error sending PID to master server

The vendor server could not send its PID to the top-level server in the

hierarchy.

Illegal connection request to DAEMON

A connection request was made to DAEMON, but this vendor daemon is not

DAEMON.

Illegal server connection request

A connection request came in from another server without a DAEMON
name.

KILL of child failed, errno = nnn

A daemon could not kill its child.

Appendix AA–32
F
L
E
X
L
M

No internet port number specified

A vendor daemon was started without an internet port.

Not enough descriptors to re-create pipes

The �top-level" daemon detected one of its sub-daemon's death. In trying

to restart the chain of sub-daemons, it was unable to get the file

descriptors to set up the pipes to communicate. This is a fatal error, and

the daemons must be re-started.

read: error message

An error in a read system call was detected.

recycle_control BUT WE DIDN'T HAVE CONTROL

The hierarchy of vendor daemons has become confused over who holds

the control token. This is an internal error.

return_reserved: can't find feature listhead

When a daemon is returning a reservation to the �free reservation" list, it

could not find the listhead of features.

select: message

An error in a select system call was detected.

Server exiting

The server is exiting. This is normally due to an error.

SHELLO for wrong DAEMON

This vendor daemon was sent a �server hello" message that was destined

for a different DAEMON.

Unsolicited msg from parent!

Normally, the top-level vendor daemon sends no unsolicited messages. If

one arrives, this message is logged. This is a bug.

WARNING: CORRUPTED options list (o->next == 0)

Options list TERMINATED at bad entry

An internal inconsistency was detected in the daemon's option list.

Flexible License Manager (FLEXlm) A–33

• • • • • • • •

5 FLEXLM LICENSE ERRORS

FLEXlm license error, encryption code in license file is inconsistent

Check the contents of the license file using the license data sheet for the

product. Correct the license file and run the lmreread command.

However, do not change the last (fourth) field of a SERVER line in the

license file. This cannot have any effect on the error message but changing

it will cause other problems.

license file does not support this version

If this is a first time install then follow the procedure for the error message:

FLEXlm license error, encryption code in license file is
inconsistent

because there may be a typo in the fourth field of a FEATURE line of your

license file. In all other cases you need a new license because the current

license is for an older version of the product.

Replace the FEATURE line for the old version of the product with a

FEATURE line for the new version (it can be found on the new license

data sheet). Run the lmreread command afterwards. You can have only

one version of a feature (previous versions of the product will continue to

work).

FLEXlm license error, cannot find license file

Make sure the license file exists. If the pathname printed on the line after

the error message is incorrect, correct this by setting the

LM_LICENSE_FILE environment variable to the full pathname of the

license file.

FLEXlm license error, cannot read license file

Every user needs to have read access on the license file and at least

execute access on every directory component in the pathname of the

license file. Write access is never needed. Read access on directories is

recommended.

FLEXlm license error, no such feature exists

Check the license file. There should be a line starting with:

FEATURE SWiiiiii–jj

Appendix AA–34
F
L
E
X
L
M

where "iiiiii" is a six digit software code and "jj" is a two digit host code

for identifying a compatible host architecture. During product installations

the product code is shown, e.g. SW008002, SW019002. The number in the

software code is the same as the number in the product code except that

the first number may contain an extra leading zero (it must be six digits

long).

The line after the license error message describes the expected feature

format and includes the host code.

Correct the license file using the license data sheet for the product and run

the lmreread command. There is one catch: do not add extra SERVER

lines or change existing SERVER lines in the license file.

FLEXlm license error, license server does not support this feature

If the LM_LICENSE_FILE variable has been set to the format

number@host then see first the solution for the message:

FLEXlm license error, no such feature exists

Run the lmreread program to inform the license server about a changed

license data file. If lmreread succeeds informing the license server but the

error message persists, there are basically three possibilities:

1. The license key is incorrect. If this is the case then there must be an error

message in the log file of lmgrd. Correct the key using the license data

sheet for the product. Finally rerun lmreread. The log file of lmgrd is

usually specified to lmgrd at startup with the -l option or with >.

2. Your network has more than one FLEXlm license server daemon and the

default license file location for lmreread differs from the default assumed

by the program. Also, there must be more than one license file. Try one of

the following solutions on the same host which produced the error

message:

- type:

 lmreread –c /usr/local/flexlm/licenses/license.dat

- set LM_LICENSE_FILE to the license file location and retry the

lmreread command.

- use the lmreread program supplied with the product SW000098,

Flexible License Manager. SW000098 is bundled with all TASKING

products.

Flexible License Manager (FLEXlm) A–35

• • • • • • • •

3. There is a protocol version mismatch between lmgrd and the daemon

with the name "Tasking" (the vendor daemon according to FLEXlm

terminology) or there is some other internal error. These errors are always

written to the log file of lmgrd. The solution is to upgrade the lmgrd

daemon to the one supplied in SW000098, the bundled Flexible License

Manager product.

On the other hand, if lmreread complains about not being able to

connect to the license server then follow the procedure described in the

next section for the error message "Cannot read license file data from

server". The only difference with the current situation is that not the

product but a license management utility shows a connect problem.

FLEXlm license error, Cannot read license file data from server

This indicates that the program could not connect to the license server

daemon. This can have a number of causes. If the program did not

immediately print the error message but waited for about 30 seconds (this

can vary) then probably the license server host is down or unreachable. If

the program responded immediately with the error message then check

the following if the LM_LICENSE_FILE variable has been set to the format

number@host:

- is the number correct? It should match the fourth field of a SERVER

line in the license file on the license server host. Also, the host

name on that SERVER line should be the same as the host name set

in the LM_LICENSE_FILE variable. Correct LM_LICENSE_FILE if

necessary.

In any case one should verify if the license server daemon is running.

Type the following command on the host where the license server

daemon (lmgrd) is supposed to run.

On SunOS 4.x:

ps wwax | grep lmgrd | grep –v grep

On HP-UX or SunOS 5.x (Solaris 2.x):

ps –ef | grep lmgrd | grep –v grep

If the command does not produce any output then the license server

daemon is not running. See below for an example how to start lmgrd.

Appendix AA–36
F
L
E
X
L
M

Make sure that both license server daemon (lmgrd) and the program are

using the same license data. All TASKING products use the license file

/usr/local/flexlm/licenses/license.dat unless overruled by the

environment variable LM_LICENSE_FILE . However, not all existing

lmgrd daemons may use the same default. In case of doubt, specify the

license file pathname with the -c option when starting the license server

daemon. For example:

lmgrd –c /usr/local/flexlm/licenses/license.dat \

–l /usr/local/flexlm/licenses/license.log &

and set the LM_LICENSE_FILE environment variable to the

license.dat pathname mentioned with the -c option of lmgrd before

running any license based program (including lmreread, lmstat,

lmdown). If lmgrd and the program run on different hosts, transparent

access to the license file is assumed in the situation described above (e.g.

NFS). If this is not the case, make a local copy of the license file (not

recommended) or set LM_LICENSE_FILE to the form number@host, as

described earlier.

If none of the above seems to apply (i.e. lmgrd was already running and

LM_LICENSE_FILE has been set correctly) then it is very likely that there

is a TCP port mismatch. The fourth field of a SERVER line in the license

file specifies a TCP port number. That number can be changed without

affecting any license. However, it must never be changed while the license

server daemon is running. If it has been changed, change it back to the

original value. If you do not know the original number anymore, restart

the license server daemon after typing the following command on the

license server host:

kill PID

where PID is the process id of lmgrd.

Flexible License Manager (FLEXlm) A–37

• • • • • • • •

6 FREQUENTLY ASKED QUESTIONS (FAQS)

6.1 LICENSE FILE QUESTIONS

I've received FLEXlm license files from 2 different companies. Do I

have to combine them?

You don't have to combine license files. Each license file that has any

'counted' lines (the 'number of licenses' field is >0) requires a server. It's

perfectly OK to have any number of separate license files, with different

lmgrd server processes supporting each file. Moreover, since lmgrd is a

lightweight process, for sites without system administrators, this is often

the simplest (and therefore recommended) way to proceed. With v6+

lmgrd/lmdown/lmreread, you can stop/reread/restart a single vendor

daemon (of any FLEXlm version). This makes combining licenses more

attractive than previously. Also, if the application is v6+, using 'dir/*.lic' for

license file management behaves like combining licenses without

physically combining them.

When is it recommended to combine license files?

Many system administrators, especially for larger sites, prefer to combine

license files to ease administration of FLEXlm licenses. It's purely a matter

of preference.

Does FLEXlm handle dates in the year 2000 and beyond?

Yes. The FLEXlm date format uses a 4-digit year. Dates in the 20th century

(19xx) can be abbreviated to the last 2 digits of the year (xx), and use of

this feature is quite widespread. Dates in the year 2000 and beyond must

specify all 4 year digits.

6.2 FLEXLM VERSION

Which FLEXlm versions does TASKING deliver?

For Windows we deliver FLEXlm v6.1 and for UNIX we deliver v2.4.

Appendix AA–38
F
L
E
X
L
M

I have products from several companies at various FLEXlm version

levels. Do I have to worry about how these versions work together?

If you're not combining license files from different vendors, the simplest

thing to do is make sure you use the tools (especially lmgrd) that are

shipped by each vendor.

lmgrd will always correctly support older versions of vendor daemons

and applications, so it's always safe to use the latest version of lmgrd and

the other FLEXlm utilities. If you've combined license files from 2 vendors,

you must use the latest version of lmgrd.

If you've received 2 versions of a product from the same vendor, you must

use the latest vendor daemon they sent you. An older vendor daemon

with a newer client will cause communication errors.

Please ignore letters appended to FLEXlm versions, i.e., v2.4d. The

appended letter indicates a patch, and does NOT indicate any

compatibility differences. In particular, some elements of FLEXlm didn't

require certain patches, so a 2.4 lmgrd will work successfully with a 2.4b

vendor daemon.

I've received a new copy of a product from a vendor, and it uses a new

version of FLEXlm. Is my old license file still valid?

Yes. Older FLEXlm license files are always valid with newer versions of

FLEXlm.

6.3 WINDOWS QUESTIONS

What Windows Host Platforms can be used as a server for Floating

Licenses?

The system being used as the server (where the FLEXlm License Manager

is running) for Floating licenses, must be Windows NT. The FLEXlm

License Manager does not run properly with Windows 95/98.

Why do I need to include NWlink IPX/SPX on NT?

This is necessary for either obtaining the Ethernet card address, or to

provide connectivity with a Netware License server.

Flexible License Manager (FLEXlm) A–39

• • • • • • • •

6.4 TASKING QUESTIONS

How will the TASKING licensing/pricing model change with License

Management (FLEXlm)?

TASKING will now offer the following types of licenses so you can

purchase licenses based upon usage:

License Description Pricing

Node Locked This license can only be used on a
specific system. It cannot be
moved to another system.

The pricing for this
license will be the
current product pricing.

Floating This license requires a network
(license server and a TCP/IP (or
IPX/SPX) connection between
clients and server) and can be used
on any host system (using the
same operating system) in the
network.

The pricing for this
license will be 50%
higher than the node
locked license.

How does FLEXlm affect future product ordering?

For all licenses, node locked or floating, you must provide information

that is used to create a license key. For node locked licenses we must

have the HOST ID. Floating licenses require the HOST ID and HOST

NAME. The HOST ID is a unique identification of the machine, which is

based upon different hardware depending upon host platform. The HOST

NAME is the network name of the machine.

TASKING Logistics CANNOT ship ANY orders that do not include the

HOST ID and/or HOST NAME information.

What if I do not know the information needed for the license key?

We have a software utility (tkhostid.exe) which will obtain and display

the HOST ID so a customer can easily obtain this information. This utility

is available from our web site, placed on all product CDs (which support

FLEXlm), and from technical support. If you have already installed

FLEXlm, you can also use lmhostid.

• In the case of a Node locked license, it is important that the customer

runs this utility on the exact machine he intends to run the

TASKING tools on.

Appendix AA–40
F
L
E
X
L
M

• In the case of a Floating License, the tkhostid.exe (or lmhostid)

utility should be run on the machine on which the FLEXlm license

manager will be installed, e.g. the server. The HOST NAME

information can be obtained from within the Windows Control

Panel. Select "Network", click on "Identification", look for

"Computer name".

How will the �locking" mechanism work?

• For node locked licenses, FLEXlm will first search for an ethernet card.

If one exists, it will lock onto the number of the ethernet card. If an

ethernet card does not exist, FLEXlm will lock onto the hard disk serial

number.

• For floating licenses, the ethernet card number will be used.

What happens if I try to move my node locked license to another

system?

The software will not run.

What does linger-time for floating licenses mean?

When the TASKING product starts to run, it will try to obtain a license

from the license server. The license server keeps track of the number of

licenses already issued, and grants or denies the request. When the

software has finished running, the license is kept by the license server for

a period of time known as the �linger-time". If the same user requests the

TASKING product again within the linger-time, he is granted the license

again. If another user requests a license during the linger-time, his

request is denied until the linger-time has finished

What is the length of the linger-time for floating licenses?

The length of the linger-time for both the PC and UNIX floating licenses is

5 minutes.

Can the linger-time be changed?

Yes. A customer can change the linger-time to be larger (but not shorter)

than the time specified by TASKING.

What happens if my system crashes or I upgrade to a new system?

You will need to contact Technical Support for temporary license keys due

to a system crash or to move from one system to another system. You will

then need to work with your local sales representative to obtain a

permanent new license key.

Flexible License Manager (FLEXlm) A–41

• • • • • • • •

6.5 USING FLEXLM FOR FLOATING LICENSES

Does FLEXlm work across the internet?

Yes. A server on the internet will serve licenses to anyone else on the

internet. This can be limited with the 'INTERNET=' attribute on the

FEATURE line, which limits access to a range of internet addresses. You

can also use the INCLUDE and EXCLUDE options in the daemon option

file to allow (or deny) access to clients running on a range of internet

addresses.

Does FLEXlm work with Internet firewalls?

Many firewalls require that port numbers be specified to the firewall.

FLEXlm v5 lmgrd supports this.

If my client dies, does the server free the license?

Yes, unless the client's whole system crashes. Assuming communications is

TCP, the license is automatically freed immediately. If communications are

UDP, then the license is freed after the UDP timeout, which is set by each

vendor, but defaults to 45 minutes. UDP communications is normally only

set by the end-user, so TCP should be assumed. If the whole system

crashes, then the license is not freed, and you should use 'lmremove' to

free the license.

What happens when the license server dies?

FLEXlm applications send periodic heartbeats to the server to discover if it

has died. What happens when the server dies is then up to the application.

Some will simply continue periodically attempting to re-checkout the

license when the server comes back up. Some will attempt to re-checkout

a license a few times, and then, presumably with some warning, exit.

Some GUI applications will present pop-ups to the user periodically

letting them know the server is down and needs to be re-started.

How do you tell if a port is already in use?

99.44% of the time, if it's in use, it's because lmgrd is already running on

the port - or was recently killed, and the port isn't freed yet. Assuming this

is not the case, then use 'telnet host port' - if it says "can't connect", it's a
free port.

Appendix AA–42
F
L
E
X
L
M

Does FLEXlm require root permissions?

No. There is no part of FLEXlm, lmgrd, vendor daemon or application,

that requires root permissions. In fact, it is strongly recommended that you

do not run the license server (lmgrd) as root, since root processes can

introduce security risks.

If lmgrd must be started from the root user (for example, in a system boot

script), we recommend that you use the 'su' command to run lmgrd as a

non-privileged user:

su username –c” / path / lmgrd –c / path / license.dat \
 –l / path / log”

where username is a non-privileged user, and path is the correct paths to

lmgrd, license.dat and debug log file. You will have to ensure that the

vendor daemons listed in /path-to-license/license.dat have execute

permissions for username. The paths to all the vendor daemons in the

license file are listed on each DAEMON line.

Is it ok to run lmgrd as 'root' (UNIX only)?

It is not prudent to run any command, particularly a daemon, as root on

UNIX, as it may pose a security risk to the Operating System. Therefore,

we recommend that lmgrd be run as a non-privileged user (not 'root'). If

you are starting lmgrd from a boot script, we recommend that you use

su username –c”umask 022; / path / lmgrd \
 –c / path / license.dat –l / path / log”

to run lmgrd as a non-privileged user.

Does FLEXlm licensing impose a heavy load on the network?

No, but partly this depends on the application, and end-user's use. A

typical checkout request requires 5 messages and responses between

client and server, and each message is < 150 bytes.

When a server is not receiving requests, it requires virtually no CPU time.

When an application, or lmstat, requests the list of current users, this can

significantly increase the amount of networking FLEXlm uses, depending

on the number of current users. Also, prior to FLEXlm v5, use of

'port@host' can increase network load, since the license file is

down-loaded from the server to the client. 'port@host' should be, if

possible, limited to small license files (say < 50 features). In v5, 'port@host'

actually improves performance.

Flexible License Manager (FLEXlm) A–43

• • • • • • • •

Does FLEXlm work with NFS?

Yes. FLEXlm has no direct interaction with NFS. FLEXlm uses an

NFS-mounted file like any other application.

Does FLEXlm work with ATM, ISDN, Token-Ring, etc.?

In general, these have no impact on FLEXlm. FLEXlm requires TCP/IP or

SPX (Novell Netware). So long as TCP/IP works, FLEXlm will work.

Does FLEXlm work with subnets, fully-qualified names, multiple

domains, etc.?

Yes, although this behavior was improved in v3.0, and v6.0. When a

license server and a client are located in different domains, fully-qualified

host names have to be used. A fully-qualified hostname is of the form:

node.domain

where node is the local hostname (usually returned by the 'hostname'

command or 'uname -n') domain is the internet domain name, e.g.

'globes.com'.

To ensure success with FLEXlm across domains, do the following:

1. Make the sure the fully-qualified hostname is the name on the SERVER

line of the license file.

2. Make sure ALL client nodes, as well as the server node, are able to 'telnet'

to that fully-qualified hostname. For example, if the host is locally called

'speedy', and the domain name is 'corp.com', local systems will be able to

logon to speedy via 'telnet speedy'. But very often, 'telnet

speedy.corp.com' will fail, locally.

Note that this telnet command will always succeed on hosts in other

domains (assuming everything is configured correctly), since the network

will resolve speedy.corp.com automatically.

3. Finally, there must be an 'alias' for speedy so it's also known locally as

speedy.corp.com. This alias is added to the /etc/hosts file, or if

NIS/Yellow Pages are being used, then it will have to be added to the NIS

database. This requirement goes away in version 3.0 of FLEXlm.

If all components (application, lmgrd and vendor daemon) are v6.0 or

higher, no aliases are required; the only requirement is that the

fully-qualified domain name, or IP-address, is used as a hostname on the

SERVER, or as a hostname in LM_LICENSE_FILE port@host, or @host.

Appendix AA–44
F
L
E
X
L
M

Does FLEXlm work with NIS and DNS?

Yes. However, some sites have broken NIS or DNS, which will cause

FLEXlm to fail. In v5 of FLEXlm, NIS and DNS can be avoided to solve this

problem. In particular, sometimes DNS is configured for a server that's not

current available (e.g., a dial-up connection from a PC). Again, if DNS is

configured, but the server is not available, FLEXlm will fail.

In addition, some systems, particularly Sun, SGI, HP, require that

applications be linked dynamically to support NIS or DNS. If a vendor

links statically, this can cause the application to fail at a site that uses NIS

or DNS. In these situations, the vendor will have to relink, or recompile

with v5 FLEXlm. Vendors are strongly encouraged to use dynamic libraries

for libc and networking libraries, since this tends to improve quality in

general, as well as making NIS/DNS work.

On PCs, if a checkout seems to take 3 minutes and then fails, this is

usually because the system is configured for a dial-up DNS server which is

not currently available. The solution here is to turn off DNS.

Finally, hostnames must NOT have periods in the name. These are not

legal hostnames, although PCs will allow you to enter them, and they will

not work with DNS.

We're using FLEXlm over a wide-area network. What can we do to

improve performance?

FLEXlm network traffic should be minimized. With the most common uses

of FLEXlm, traffic is negligible. In particular, checkout, checkin and

heartbeats use very little networking traffic. There are two items, however,

which can send considerably more data and should be avoided or used

sparingly:

• 'lmstat -a' should be used sparingly. 'lmstat -a' should not be

used more than, say, once every 15 minutes, and should be

particularly avoided when there's a lot of features, or concurrent

users, and therefore a lot of data to transmit; say, more than 20

concurrent users or features.

• Prior to FLEXlm v5, the 'port@host' mode of the LM_LICENSE_FILE

environment variable should be avoided, especially when the

license file has many features, or there are a lot of license files

included in LM_LICENSE_FILE. The license file information is sent

via the network, and can place a heavy load. Failures due to

'port@host' will generate the error LM_SERVNOREADLIC (-61).

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

B
bin directory, 3-4

build, viewing results, 3-19

Building an executable, 3-21

C
compile, 3-19

configuration

EDE directories, 2-5
UNIX, 2-7

creating a makefile, 3-16

customer support, 1-11

D
data addressing, 3-42�3-46

derivatives, 3-8

directories, setting, 2-5, 2-7

documentation, 1-3�1-14

E
EDE

build an application, 3-19
create a project, 3-14
create a project space, 3-13
Invoking tools from, 3-10
rebuild an application, 3-20
specify development tool options,

3-17
environment variable,

LM_LICENSE_FILE, 2-16, A-6

environment variables, 2-7

I2LIB, 2-7
I2NCLUDE, 2-7
INCLUDE, 2-7

LIB, 2-7
LM_LICENSE_FILE, 2-7
PATH, 2-7
TMP, 2-7

errors, FLEXlm license, A-33

examples, directory, 3-7

F
FAQ, FLEXlm, A-37

Flexible License Manager, A-1

FLEXlm, A-1

daemon log file, A-25
daemon options file, A-7
FAQ, A-37
frequently asked questions, A-37
license administration tools, A-8

for Windows, A-22
license errors, A-33

floating license, 2-10

formatter, 1-8�1-12

G
global symbol mapper, 1-9�1-12

gsmap. See global symbol mapper

H
help, on-line, 1-12�1-14

hostid, determining, 2-17

hostname, determining, 2-17

I
include files, setting search directories,

2-5, 2-7

IndexIndex–4
IN
D
E
X

installation

licensing, 2-10
UNIX, 2-4
Windows 95/98/XP/NT/2000, 2-3

Invoking tools, 3-10

Invoking tools from command line,

3-20

Invoking tools from EDE, 3-10

L
librarian, 1-9�1-12

libraries, setting search directories, 2-6,

2-7

license

floating, 2-10
node-locked, 2-10
obtaining, 2-10

license file

default location, A-6
location, 2-16
setting search directory, 2-7

licensing, 2-10

linking C and assembly, 3-50�3-54

Linking Locator, Rom Processing, 1-8

LM_LICENSE_FILE, 2-16, A-6

lmcksum, A-10

lmdiag, A-11

lmdown, A-12

lmgrd, A-13

lmhostid, A-15

lmremove, A-16

lmreread, A-17

lmstat, A-18

lmswitchr, A-20

lmver, A-21

M
makefile

automatic creation of, 3-16

updating, 3-16
microprocessor family, 1-10

N
node-locked license, 2-10

O
on-line help, 1-12�1-14

P
Path, Setting, 3-3

project, 3-10

add new files, 3-16
create, 3-14

project file, 3-10

project space, 3-10

create, 3-13
project space file, 3-10

R
RAM, 1-8

rcopy, 1-8

ROM processor, and the linking

locator, 1-8

run-time libraries, directory, 3-6

S
Setting , path, 3-3

software installation

UNIX, 2-4
Windows 95/98/XP/NT/2000, 2-3

support, customer, 1-11

Index Index–5

• • • • • • • •

symbol list utility, 1-9�1-12

symlist. See symbol list utility

system building concepts, 3-41�3-54

system initialization, 3-41�3-46

T
temporary files, setting directory, 2-7

toolchain, 1-5

Tools, invoking, 3-10

U
updating makefile, 3-16

IndexIndex–6
IN
D
E
X

		TABLE OF CONTENTS

		1. INTRODUCTION

		1.1 Overview

		1.2 Documentation

		1.2.1 How to Use This Documentation Set

		1.3 The Development System

		1.3.1 The Compiler

		1.3.2 The Optimizer

		1.3.3 The Run-Time Library

		1.3.4 The Assembler

		1.3.5 Utilities

		1.3.6 The Linking Locator

		1.3.7 The Formatters

		1.3.8 The Librarian

		1.3.9 The Global Symbol Mapper

		1.3.10 The Object Size List Utility

		1.3.11 The Symbol List Utility

		1.3.12 CrossView Pro Debugger

		1.4 Before You Start

		1.4.1 Usage Conventions

		1.4.2 Tool Versions

		1.4.3 Driver Options

		1.4.4 Invocation Conventions

		1.4.5 Error Message Output (PC only)

		1.5 Additional Help

		1.5.1 Tutorial

		1.5.2 On-line Help

		2. INSTALLATION GUIDE

		2.1 Introduction

		2.2 Software Installation

		2.2.1 Installation for Windows

		2.2.2 Installation for UNIX Hosts

		2.3 Software Configuration

		2.3.1 Configuring the Embedded Development Environment

		2.3.2 Configuring the Command Line Environment

		2.4 Licensing TASKING Products

		2.4.1 Obtaining License Information

		2.4.2 Installing Node-Locked Licenses

		2.4.3 Installing Floating Licenses

		2.4.4 Starting the License Daemon

		2.4.5 Setting Up the License Daemon to Run Automatically

		2.4.6 Modifying the License File Location

		2.4.7 How to Determine the Hostid

		2.4.8 How to Determine the Hostname

		3. TUTORIAL

		3.1 Introduction

		3.2 Finding the Programs and Setting Up the Path

		3.2.1 bin Directory

		3.2.2 rtlibs Directory

		3.2.3 examples Directory

		3.2.4 Derivatives Overview

		3.3 Invoking the Tools

		3.3.1 Invoking the Tools from EDE

		3.3.1.1 Using the Sample Projects in EDE

		3.3.1.2 Create a New Project Space with a Project

		3.3.1.3 Set Options for the Tools in the Toolchain

		3.3.1.4 Build your Application

		3.3.2 Invoking the Tools Using Command Line

		3.4 Tutorial Examples

		3.4.1 Example 1: Building Your First Application Executable

		3.4.2 Example 2: Listings and Non-Default Output Files

		3.4.3 Example 3: Non-Default Memory Models and Linking Options

		3.4.4 Example 4: Locator Options

		3.4.5 Example 5: Formatting Options and Saving Symbol Information

		3.5 Introduction to System Building Concepts

		3.5.1 System Initialization

		3.5.2 A5-Relative vs. Separate Data Addressing

		3.5.3 Linking and Locating

		3.5.4 Linking C and Assembly

		3.6 Tutorial Conclusion

		A. FLEXIBLE LICENSE MANAGER (FLEXlm)

		1 Introduction

		2 License Administration

		2.1 Overview

		2.2 Providing For Uninterrupted FLEXlm Operation

		2.3 Daemon Options File

		3 License Administration Tools

		3.1 lmcksum

		3.2 lmdiag (Windows only)

		3.3 lmdown

		3.4 lmgrd

		3.5 lmhostid

		3.6 lmremove

		3.7 lmreread

		3.8 lmstat

		3.9 lmswitchr (Windows only)

		3.10 lmver

		3.11 License Administration Tools for Windows

		3.11.1 LMTOOLS for Windows

		3.11.2 FLEXlm License Manager for Windows

		4 The Daemon Log File

		4.1 Informational Messages

		4.2 Configuration Problem Messages

		4.3 Daemon Software Error Messages

		5 FLEXlm License Errors

		6 Frequently Asked Questions (FAQs)

		6.1 License File Questions

		6.2 FLEXlm Version

		6.3 Windows Questions

		6.4 TASKING Questions

		6.5 Using FLEXlm for Floating Licenses

		INDEX

m_c68ref.pdf

MB001–022–00–00
Doc. ver.: 1.6

68K/ColdFire v10.0

C Compiler/Assembler

Reference Manual

A publication of

Altium BV

Documentation Department

Copyright 1997-2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Motorola is a trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

INTRODUCTION 1-1

1.1 Overview 1-3.

1.2 Documentation 1-3.

RUN-TIME LIBRARY 2-1

2.1 Introduction 2-3.

2.2 System Initialization 2-4.

2.3 I/O System 2-6.

2.4 Time Functions 2-8.

2.4.1 Time Conversion Routines 2-8.

2.4.2 Low�level Time/Timer Routines 2-8.

2.5 Storage Allocation 2-9.

2.6 Support for the M68302ADS Development System 2-9. . . .

2.7 Support for the M68340BCC Development System 2-10. . . .

2.8 Support for the M68360QUADS Development System 2-11.

2.9 Modifying the Libraries 2-11.

2.9.1 Integrating New Routines Into an Existing Library

Without Using make on Unix Hosts 2-12.

2.10 Library Object Modules 2-13.

2.11 Summary of Library Routines 2-14.

2.11.1 Standard Functions 2-14.

2.11.2 Mathematical Functions 2-16.

2.11.3 Standard I/O Functions 2-17.

2.11.4 String Manipulation Functions 2-19.

2.11.5 Non-local Goto Functions 2-20.

2.11.6 Date and Time Routines 2-21.

2.11.7 ASCII Character Set Macros and Functions 2-21.

2.11.8 Global Definitions 2-22.

2.11.9 Compile-time Assertions 2-23.

2.11.10 Formatting of Numeric Values 2-23.

2.11.11 Variable Length Argument List Access 2-23.

2.11.12 Signal Handling 2-24.

2.11.13 C Library Extensions 2-24.

2.12 Run-Time Library Routines 2-26.

Table of ContentsVI
C
O
N
T
E
N
T
S

ASSEMBLY LANGUAGE REFERENCE 3-1

3.1 Preface 3-3.

3.2 Related Publications 3-3.

3.3 Using Assembly Language 3-4.

3.4 Elements of Assembly Language 3-4.

3.5 Notation 3-5.

SOURCE PROGRAM CODING 4-1

4.1 Introduction 4-3.

4.2 Comments 4-3.

4.3 Source Line Format 4-4.

4.3.1 Label Field 4-4.

4.3.2 Operation Field 4-5.

4.3.3 Operand Field 4-7.

4.3.4 Comment Field 4-7.

4.4 Symbols 4-7.

4.4.1 Symbol Syntax 4-8.

4.4.2 Symbol Definition Classes 4-8.

4.4.3 User-Defined Labels 4-9.

4.4.4 Location Counter Symbol "*" 4-9.

4.5 Constants 4-9.

4.5.1 Integer Constants 4-9.

4.5.2 Character Constants 4-11.

4.5.3 Floating Point Constants

(68881/68882/68040/68060 only) 4-11.

4.6 Operators 4-12.

4.7 Expressions 4-14.

4.8 Addressing Modes 4-16.

ASSEMBLER DIRECTIVES 5-1

5.1 Assembly Control 5-3.

5.1.1 COMMON - Enter Named Common Section 5-4.

5.1.2 END - Program End 5-5.

Table of Contents VII

• • • • • • • •

5.1.3 INCLUDE - Include Secondary File 5-6.

5.1.4 OFFSET - Define Offsets 5-6.

5.1.5 ORG - Absolute Origin 5-7.

5.1.6 RESERVE - Reserve storage 5-8.

5.1.7 RESUME - Resume defined section 5-9.

5.1.8 RORG - Relocatable ORG 5-9.

5.1.9 SECTION - Relocatable Program Section 5-10.

5.2 Symbol Definition 5-11.

5.2.1 EQU - Equate Symbol Value 5-12.

5.2.2 FEQU - Equate Floating Point Symbol Value 5-12.

5.2.3 REG - Define Register List 5-13.

5.2.4 SET - Set Symbol Value 5-13.

5.3 Data Definition/Storage Allocation 5-14.

5.3.1 COMLINE - Unimplemented 5-14.

5.3.2 DC - Define Constant 5-14.

5.3.3 DCB - Define Constant Block 5-17.

5.3.4 DS - Define Storage 5-17.

5.4 Listing Control and Output Options 5-18.

5.4.1 FAIL - Programmer Generated Error 5-19.

5.4.2 FORMAT/NOFORMAT - Unimplemented 5-19.

5.4.3 LIST/NOLIST - Control Listing Generation 5-19.

5.4.4 LLEN - Unimplemented 5-19.

5.4.5 NOOBJ - Unimplemented 5-19.

5.4.6 OPT - Assembler Options 5-20.

5.4.7 PAGE/NOPAGE - Control Pagination 5-23.

5.4.8 SPC - Space Between Source Lines 5-23.

5.4.9 STTL - Set Subtitle 5-23.

5.4.10 TTL - Set Title 5-23.

5.5 External Symbol Controls 5-24.

5.5.1 IDNT - Relocatable Identification Record 5-24.

5.5.2 XDEF - External Symbol Definition 5-24.

5.5.3 XREF - External Symbol Reference 5-25.

5.6 Internal Assembly Controls 5-25.

5.6.1 _BRINGIN Declare external symbol 5-26.

5.6.2 _DEBSYM Put out debugging information 5-26.

Table of ContentsVIII
C
O
N
T
E
N
T
S

5.6.3 _DGROUP Define data group 5-26.

MACRO OPERATIONS AND CONDITIONAL

ASSEMBLY 6-1

6.1 Macro Operations 6-3.

6.1.1 Macro Definition 6-4.

6.1.2 Macro Invocation 6-4.

6.1.3 Macro Parameter Definition and Use 6-5.

6.1.4 Labels Within Macros 6-6.

6.1.5 The MEXIT Directive 6-6.

6.1.6 The NARG Symbol 6-7.

6.1.7 Implementation of Macro Definition 6-7.

6.1.8 Implementation of Macro Expansion 6-7.

6.2 Conditional Assembly 6-8.

6.2.1 Conditional Assembly Structure 6-9.

6.2.2 Example of Macro and Conditional Assembly Usage 6-11. .

STRUCTURED CONTROL STATEMENTS 7-1

7.1 Keyword Symbols 7-3.

7.2 Syntax 7-3.

7.2.1 IF Statement 7-5.

7.2.2 Floating-Point Structured Assembler Syntax for

the IF Statement 7-6.

7.2.3 FOR Statement 7-7.

7.2.4 REPEAT Statement 7-8.

7.2.5 WHILE Statement 7-8.

7.3 Simple and Compound Expressions 7-9.

7.3.1 Simple Expressions 7-9.

7.3.2 Condition Code Expressions 7-9.

7.3.3 Operand Comparison Expressions 7-10.

7.3.4 Compound Expressions 7-12.

7.4 Source Line Formatting 7-12.

7.4.1 Class 1 Symbol Usage 7-12.

Table of Contents IX

• • • • • • • •

7.4.2 Nesting of Structured Statements 7-13.

7.5 Effects on the User's Environment 7-14.

POSITION- INDEPENDENT CODE 8-1

8.1 Forcing Position Independence 8-3.

8.2 Base-Displacement Addressing 8-4.

8.3 Base-Displacement in Conjunction with Forced Position

Independence 8-4.

CHARACTER SET A-1

1 Characters Recognized A-3.

2 ASCII Character Set A-3.

INDEX

Table of ContentsX
C
O
N
T
E
N
T
S

Manual Purpose and Structure XI

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is for users of the 68K/ColdFire C compiler/assembler.

MANUAL STRUCTURE

1. Introduction

Introduces the structure and conventions of the manuals

2. Run-Time Library

Covers installing and changing run-time libraries.

3. The Assembly Lanuage Reference

Summarizes the structure of the assembly language and gives an

assembly language overview.

4. Source Program Coding

Discusses source program coding including source line format,

symbols, constants, registers, operators, expressions, addressing modes,

instruction mnemonics, and other instruction types.

5. Assembler Directives

Describes and gives examples of the basic forms of the most frequently

used assembler directives.

6. Macro Operations and Conditional Assembly

Describes the macro and the conditional assembly capabilities of the

assembler.

7. Structured Control Statements

Describes how to use structured control statements with assembly

language to improve readability of assembly language.

8. Position-independent Code

Describes Forcing Position Independence, Base-Displacement

Addressing, and Base-Displacement in Conjunction with Forced

Position Independence.

Manual Purpose and StructureXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

APPENDICES

A. Character Set

Contains a list of the ASCII characters recognized by the assembler.

INDEX

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Manual Purpose and Structure XIII

• • • • • • • •

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

Manual Purpose and StructureXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

1

INTRODUCTION
C
H
A
P
T
E
R

Chapter 11–2
IN
T
R
O
D
U
C
T
IO
N

1

C
H
A
P
T
E
R

Introduction 1–3

• • • • • • • •

1.1 OVERVIEW

This C Compiler/Assembler Reference Manual contains run-time library and

assembly language information. This chapter contains an overview of the

68K/ColdFire documentation. Please refer to the Introduction chapter in

the Getting Started Manual for information concerning the 68K/ColdFire

development system and for additional help.

1.2 DOCUMENTATION

Three manuals make up the 68K/ColdFire documentation: the Getting
Started Manual, the C Compiler/Assembler User's Manual and the C
Compiler/Assembler Reference Manual.

The Getting Started Manual contains an introduction to the development

system, an installation guide, and a tutorial which contains sample code

and exercises which lead you step-by-step through the powerful features

of each software tool.

The C Compiler/Assembler User's Manual includes invocation, options, and

usage summaries, along with examples for each of the tools and

definitions of special terminology and functions. This manual also contains

additional information in the appendices on run-time and naming

conventions, C language extensions, and object module formats.

The C Compiler/Assembler Reference Manual provides information on the

run-time libraries and the information necessary to write programs in

assembly language. It contains sections on source program coding,

assembler directives, macro operations, structured control statements, and

position-independent code, as well as a summary of the character set.

Chapter 11–4
IN
T
R
O
D
U
C
T
IO
N

2

RUN–TIME LIBRARY
C

H
A

P
T

E
R

Chapter 22–2
L
IB
R
A
R
IE
S

2

C
H

A
P

T
E

R

Run–Time Library 2–3

• • • • • • • •

This chapter contains the following sections:

• Introduction

• System Initialization

• I/O System

• Storage Allocation

• Support for the M68302ADS Development System

• Support for the M68340BCC Development System

• Support for the M68360QUADS Development System

• Modifying the Libraries

• Library Object Modules

• Summary of Library Routines

• Run-Time Library Routines

2.1 INTRODUCTION

This section identifies the parts of the run-time library which you may

need to modify to integrate with your hardware and software. It also

describes in some detail the nature of the required changes and how to

install them in the library. Finally, this appendix describes each library

routine. The overall organization of the run-time library is discussed in the

Compiler Library Organization section in the Linking Locator chapter of

the User's Manual.

The source code for most of the library routines, including the

environment-dependent routines, is supplied. However, software

floating-point emulation routines are not supplied.

The run-time library is primarily written in C, but the lowest level

functions are written in assembly language.

The run-time library routines supplied can be used to interface to most

target systems. In addition, there are routines written specifically for the

M68302ADS, M68340BCC, and M68360QUADS Development Systems.

These will be discussed later.

You can code your replacement routines in C or assembly language.

Remember, any routines you code in assembly language must adhere to

the conventions described in the Linking C and Assembly application note

in the User's Manual.

Chapter 22–4
L
IB
R
A
R
IE
S

As noted in the Linking Locator chapter in the User's Manual, there are

multiple versions of object modules in the library. You must decide which

library(ies) will be used before deciding what changes to make to the

source modules.

You must supply replacement modules suitable for inclusion in your

libraries. If you code a replacement module in C, you need to compile it

with the appropriate options for each library you will use. However, if you

code your module in assembly language, you must be sure the assembly

language routine is correct for each library.

2.2 SYSTEM INITIALIZATION

Three features must be provided to establish an execution environment:

• The power-on condition on your target system must somehow transfer

control to user code.

• The run-time environment must be appropriately initialized before

compiled code is activated.

• An appropriate action should be taken when the top-level compiled

routine exits.

These functions are provided by a run-time library routine. You can find

the source for this routine in the run-time library source directory of the

product.

Target Initialization
File

68K targets with VME 105/107 pmainr.68k

68030 with VME143 pmn030r.68k

68040, hardware floating–point pmn040fp.68k

68060, hardware floating–point pmainf.68k

68060, no floating–point, with ROM monitor pmn060r.68k

68060, hardware floating–point, with ROM monitor pmn06rf.68k

68302 with M68302ADS pmn302a.68k

68332 (MC68330, MC68331, MC68332, MC68336) pmn332.68k

68332 with M68332EVS pmn332r.68k

68340 pmn340.68k

68340 with M68340BCC pmn340b.68k

Run–Time Library 2–5

• • • • • • • •

Initialization
File

Target

68360 pmn360.68k

68360 with M68360QUADS pmn360b.68k

All other 68K targets pmain.68k

ColdFire targets without ROM Monitor pmain.asm

ColdFire targets with ROM Monitor pmainr.asm

Table 2-1: Initialization files

When the 68000 hardware starts execution after a power on (cold start), it

loads the SSP and PC registers from absolute locations 0 and 4. The 68020

behaves similarly, except that the ISP register replaces SSP. pmain defines

eight bytes of data which are absolutely assembled at location 0. The

initial PC value is the address of the __main routine. This address is also

designated as the ``start'' address of the system. The initial SSP (ISP) value

is 7FFC.

pmain performs the setup operations required by the compiled code, and

then executes a long call to the external label _main . By default the

compiler generates the global label _main at the start of your C main
routine.

Of course, you can name the main routine whatever you like, but the

initialization module pmain must be adjusted accordingly. The required

setup operations are enumerated below:

1. Provide a stack area and initialize the USP and SSP (user and system stack

pointer) registers accordingly. For the 68020, the USP, ISP, and MSP (user,

interrupt, and master stack pointers) are set.

2. Initialize A6 (frame pointer) to zero.

3. Initialize A5 to point to the global data area.

The compiler assumes that the A5 register always contains the base

address of the global data area. The global data area is a group named

data , which consists of the idata and udata segments. In a real time

system where re-entrancy is necessary, a program must dynamically

allocate its stack and global data area. This ensures that multiple real time

tasks running the same program will use different A5 and A7 register

values.

Chapter 22–6
L
IB
R
A
R
IE
S

If your system dynamically allocates the data area, remember that the base

address (in A5) is the actual address of the data area if its size is less than

or equal to 32K, otherwise it is the address of the data area plus 32K. The

linking locator creates a global symbol named ``ldata'' whose value is the

size of the data group. This symbol may be useful in coding the call to

dynamically allocate memory.

It is possible to configure your system so that the A5 register is not used.

You must rebuild the libraries and use the command line –sd option on

all compilations. See the Building Libraries That Do Not Use A5 application

note in the User's Manual for more details.

4. In the hardware floating-point libraries, the 68881 floating-point

coprocessor is initialized by setting both the floating-point status register,

FPSR, and floating-point control register, FPCR, to zero.

5. You will have to define what happens when the user program returns (if

that is possible). This decision is reflected in two places: in the exit
routine, and just after the call to _main in the initizlization code. Our

sample routines contain an infinite loop. You may want your exit routine

to deliver a return code and close any I/O channels.

Please refer to the initialization file appropriate to the target you are using

for more information.

2.3 I/O SYSTEM

You will have to change the low level routines that �put" and �get"

characters to interface with the character I/O on your target system. If you

do not intend to support multiple files then this is all you need to do. If

you do intend to support multiple files (our sample implementation does

not) then you must modify the next higher level of I/O routines (getc and

putc). You must also define what a �file control block" looks like, and

what it means to �open" and �close" files.

The entire I/O system assumes some underlying structure that contains a

file control block of some sort; however, only the routines mentioned

below actually manipulate the contents of that structure. The only things

ever passed to these routines or returned by them are pointers to the file

control structure.

Here is a list of the routines you will have to provide:

• FILE* fopen (char *filename, char * mode);

Run–Time Library 2–7

• • • • • • • •

The first argument can be something defined by your installation:

maybe a port address, maybe a pointer to a string of characters. It

must be the same size as a pointer. The second argument must

definitely be a pointer to a character that specifies the mode to open

the file.

If the mode character is r , it is open for reading, w means write, and a
means append. fopen returns a pointer to a file control block.

• void fclose (FILE * stream) ;

The argument is the kind of pointer returned by fopen . This routine

performs cleanup tasks, for example, flushing buffers.

• int getc (FILE * stream);

This function returns the next character (8-bit quantity) from the given

I/O stream. The result is returned in an integer variable. It must return

-1 (all bits on) when it finds an end-of-file condition.

Our getc calls an external assembly language routine _getc which

does the actual input.

• int ungetc (char c, FILE *stream);

Pushes the given character back into the stream. The character is

returned in an integer variable. Only one ``ungetc-ed'' character at a

time need be supported.

• int putc (char c, FILE *stream);

Writes the given character onto the given file stream. The character

written is returned in an integer variable.

Our putc calls an external assembly language routine _putc which

does the actual output.

Chapter 22–8
L
IB
R
A
R
IE
S

The file stdio.c contains three global variables of type FILE *:
stdin, stdout, stderr . These represent the default input, output, and

error reporting I/O streams.

Sample code to perform these functions is provided in the following

library modules:

Source Object
putc.c → putc.ln, putc.lln
getc.c → getc.ln, getc.lln
fopen.c → fopen.ln, fopen.lln
stdio.c → stdio.ln, stdio.lln
stdio.h (include file)

2.4 TIME FUNCTIONS

The current default libraries provide all of the time conversion and

low�level time/timer routines described in Section 4.12 of the ANSI

Standard. However, all low�level timer functions return ANSI values, stating

that the timer function is not implemented.

If your application requires current low�level time/timer information, in

addition to time conversion, you must modify the low�level time/timer

routines to use the time hardware. These modifications are discussed

below.

2.4.1 TIME CONVERSION ROUTINES

The gmtime routine is the only time conversion routine that returns the

value of (struct tm *) NULL, which requires a low�level time function.

You should modify this routine so that it returns the current UTC time, as

prescribed in ANSI.

2.4.2 LOW�LEVEL TIME/TIMER ROUTINES

The clock in the time.c routine currently returns the value of

(clock_t)–1 . You should modify this routine so that it returns the

elapsed clock count, as prescribed in ANSI.

Run–Time Library 2–9

• • • • • • • •

The time in the time.c routine currently returns the value of

(time_t)–1 . You should modify this routine so that it returns the current

calendar time, as prescribed in ANSI.

2.5 STORAGE ALLOCATION

The library storage allocation routines request �system" storage when they

do not possess enough free storage to satisfy an allocation request. The

routine which provides system storage is called _alloc .

char * _alloc (size_t request , size_t * given);

The first parameter is an integer: the number of words requested. The

second parameter is a pointer to an integer. The routine returns the null

pointer if it cannot provide at least as many words as were requested.

Otherwise, it returns a pointer to a chunk of storage and sets the integer

pointed to by the second parameter to the number of words actually

allocated. This might be more than was actually requested.

A sample implementation is provided by the xalloc module for most

targets. It implements a 4K heap.

xalloc.c → xalloc.ln, xalloc.lln

2.6 SUPPORT FOR THE M68302ADS DEVELOPMENT

SYSTEM

There are two libraries that support the 68302 target with the M68302ADS

Development System. lib302ap contains modules to support the

M68302ADS with parallel I/O; lib302at contains modules to support the

M68302ADS with trap-based I/O. The source files written specifically for

this environment have the characters 302a in their names.

In addition to the extra source files, a locator command file, ads302.cmd ,

is supplied to specify the memory map of the M68302ADS card. This file

results in the following:

• A MEMORY command defines the maximum size of memory on the

M68302ADS as 512 kilobytes of RAM.

• A RESERVE command ensures that the first 0x4000 bytes are reserved

for use by the monitor, bug302 .

Chapter 22–10
L
IB
R
A
R
IE
S

• The startup module, defined in pmn302a.68k , is in segment init and

is located at address 0x4000.

• The remaining segments are placed in memory starting at address

0x4080.

• The segment S_end_project is used by the dynamic memory

allocator to indicate the end of used memory.

ads302.cmd for more details.

2.7 SUPPORT FOR THE M68340BCC DEVELOPMENT

SYSTEM

The lib340b library supports the 68340 target with the M68340BCC

Development System. The source files written specifically for this

environment have the characters 340b in their names.

In addition to the extra source files, a locator command file, bcc340.cmd ,

is supplied to specify the memory map of the M68340BCC card. This file

results in the following:

• A MEMORY command defines the maximum size of memory on the

M68340BCC as 64 kilobytes of RAM.

• A RESERVE command ensures that the first 0x3000 bytes are reserved

for use by the monitor program, 340bug.

• The startup module, defined in pmn340b.68k , is in segment init and

is located at address 0x3000.

• The remaining segments are placed in memory starting at address

0x3080.

• The segment S_end_project is used by the dynamic memory

allocator to indicate the end of used memory.

bcc340.cmd for more details.

Run–Time Library 2–11

• • • • • • • •

2.8 SUPPORT FOR THE M68360QUADS DEVELOPMENT

SYSTEM

The lib360b library supports the 68360 target with the M68360QUADS

Development System. The source files written specifically for this

environment have the characters 360b in their names. The lib360b
library also uses some M68340BCC sources files (which are

M68360QUADS-compatible). These files have the characters 340b in their

names.

In addition to the extra source files, a locator command file,

quads360.cmd , is supplied to specify the memory map of the

M68360QUADS card. This file results in the following:

• A MEMORY command defines the maximum size of memory on the

M68360QUADS as 0x4E0000 of RAM.

• A RESERVE command ensures that locations between 0x0 - 0x20000

and 0x21800 - 0x400000 are reserved.

• The startup module, defined in pmn360b.68k , is in segment init and

is located at address 0x400000.

• The segment S_end_project is used by the dynamic memory

allocator to indicate the end of used memory.

quads360.cmd for more details.

2.9 MODIFYING THE LIBRARIES

Once you know what your low-level routines are going to look like, you

can begin editing your replacement files. When you have completed your

replacement routines, refer to the following procedure to integrate your

new routines into the library.

The calling convention with which the run-time library you are modifying

was built affects the way you assemble or compile any new library

routines. All routines in a library must use the same calling convention.

Given the number of different run-time libraries, it is possible that you

may have to go through this entire procedure several times. That is, once

for the each target and once for both the hardware and software

floating-point libraries, if you are using both. The integration procedure is

identical in all cases. Of course, if you never intend to use a library you

need not update it.

Chapter 22–12
L
IB
R
A
R
IE
S

The only time the hardware/software library pairing affects the coding of

your low-level routines is with the system initialization routine. You may

need two slightly different pmain routines: one which contains

instructions to initialize the 68881/68882 floating-point coprocessor and

one which does not. Of course, the one which initializes the coprocessor

goes in the hardware floating-point library.

From now on, we will describe the process of integrating with the library

as if only the 68000 library exists.

2.9.1 INTEGRATING NEW ROUTINES INTO AN

EXISTING LIBRARY WITHOUT USING MAKE ON UNIX

HOSTS

1. Save the original versions of the sources and object modules for all the

routines you will change.

2. Copy your new source files into the run-time library directory.

3. Assemble any new assembly language source modules.

4. Link each of the resulting .ol object module files with itself to produce

the new .ln files. Use the llink utility and supply the –lo , –o and –w
options.

5. 68K only: Compile all the new C source modules supplying the –L option.

6. 68K only: Link each of the resulting object modules with itself. Supply the

–lo , –o and –w options to the llink utility to produce a .ln module for

each new object module.

7. 68K only: Rename each linked C module from – – –.ln to – – –.lln .

8. Compile all the new C source modules again, but this time without –L .

9. Link each of the resulting object modules with itself. Supply the –lo , –o
and –w options to the llink utility to produce a .ln module for each

new object module.

10. Update the library index files using the librarian utility. This process is

described in more detail below.

To update each library, you must use the librarian to:

• Delete the old object module, unless the new one has the same name.

Run–Time Library 2–13

• • • • • • • •

• Add/replace the appropriate new module(s).

Example: Updating _alloc

Suppose you have coded a replacement for xalloc.c and your

replacement routine is also called xalloc.c . You have compiled and

linked your routine twice, once with the –L option and once without,

producing xalloc.lln and xalloc.ln .

Enter the following librarian invocations:

libr xalloc.ln –v –L lib000
libr xalloc.ln –v –L lib000.nf
libr xalloc.lln –v –L lib000.l
libr xalloc.lln –v –L lib000.lnf

There is no need to delete the old library member, since the new member

has the same name.

You can use the librarian utility to list all library entries.

2.10 LIBRARY OBJECT MODULES

Depending upon which run-time libraries have been installed on your

system, your run-time library may include several directories containing

library index files and library object modules. A single linked object

module may be named in more than one library index file in its directory.

For ease in building and modifying run-time libraries, a standard naming

convention is used for the linked object modules.

When you modify a library source, you must rebuild all the corresponding

object modules. This may be done by following the steps outlined above,

in the section Modifying the Libraries.

Not all sources are compiled into all possible suffix combinations; you

need only replace the ones which exist. For example, the .in suffix only

applies to two modules: xprintf.c and xscanf.c . This special suffix is

produced from compiling these modules with the –P NO_FP_IO option.

This option defines a preprocessor variable which causes the compiler to

exclude the code printing or scanning floating-point data. The resulting

module can only be used in a ``no-floats'' library index file.

Chapter 22–14
L
IB
R
A
R
IE
S

The following table summarizes the correct compiler options to supply

when recompiling a library module and the meaning of the object

module`s utilities:

Suffix Meaning Compiler Options

.ln Default

.in No Floats –P NO _FP _IO

.lln Long Ints –L

.iln Long Ints, No Floats –L –P NO _FP _IO

Table 2-2: Options for recompiling a library module

2.11 SUMMARY OF LIBRARY ROUTINES

Run-time library routines can be accessed from C source code, via

#include statements to resolve references such as simple math and I/O

functions. The library routines follow the ANSI specification. In addition,

TASKING has its own set of library routines described in the include file

extended.h .

2.11.1 STANDARD FUNCTIONS

The standard functions are described in the ANSI C specification. Their

external declarations are available in the library include file stdlib.h . A

table summarizing the standard routines appears below:

 Name Definition

abort terminate program

abs absolute value

atexit register functions to be called at normal program
termination

atof string to double conversion

atoi string to integer conversion

atol string to long integer conversion

bsearch search an array of objects

calloc allocate and zero dynamic storage

Run–Time Library 2–15

• • • • • • • •

 Definition Name

div compute integer quotient and remainder

exit terminate a process

free free previously allocated storage

getenv get an environment variable

labs long integer absolute value

ldiv compute long quotient and remainder

malloc allocate but do not zero dynamic storage

mblen return multi–byte character length

mbstowcs convert multi–byte string to wide–char string

mbtowc convert multi–byte char to wide–char char

qsort sort an array of elements

rand return a random number between 0 and 32767

realloc change the size of an object

srand reset the seed for rand , the random number
generator

strtod convert a string into a double

strtol convert a string into a long integer

strtoul convert a string into an unsigned long integer

system pass a string to the host environment’s command
processor

wcstombs convert wide–char string to multi–byte string

wctomb convert wide–char char to multi–byte char

Table 2-3: Standard functions

Chapter 22–16
L
IB
R
A
R
IE
S

2.11.2 MATHEMATICAL FUNCTIONS

Mathematical functions compute and return a value based on the given

argument(s). Their external declarations are available in the library include

file math.h . A table summarizing the mathematical routines appears

below:

Name Definition

acos arccosine

asin arcsine

atan arctangent in range -π/2 to π/2

atan2 arctangent of x/y in range -π to π
ceil round to more positive integer

cos cosine

cosh hyperbolic cosine

exp exponential

fabs floating–point absolute value

floor round to more negative integer

fmod floating–point modulus

frexp extract fraction from exponent

ldexp scale double exponent

log natural logarithm

log10 common (base 10) logarithm

modf extract fraction and integer from double

pow raise x to the y power

sin sine

sinh hyperbolic sine

sqrt real square root

tan tangent

tanh hyperbolic tangent

Table 2-4: Mathematical functions

Run–Time Library 2–17

• • • • • • • •

2.11.3 STANDARD I/O FUNCTIONS

The I/O system assumes some underlying structure that contains a file

control block of some sort. Some files actually manipulate the contents of

that structure. The include file stdio.h contains external declarations for

these functions. A summary of standard I/O functions appears below:

Name Definition

clearerr clear the end–of–file and error indicators

fclose close the specified file

feof test the end–of–file indicator for a file

ferror test the error indicator for a file

fflush flush output buffer

fgetc read a character from the specified file

fgetpos store the current value of the file position
indicator

fgets read a string from the specified file

fopen open a file

fprintf write formatted output to the specified file

fputc write a character to the specified file

fputs write a string to the specified file

fread block read from file

freopen close, then open the specified file

fscanf read formatted input from specified file

fseek set the file position indicator for a file

fsetpos set the file position indicator for a file to a specific
value

ftell return the current file position indicator for a
specific stream

fwrite block write to file

getc same as fgetc

getchar read a character from standard input

gets read a line from standard input

perror map the error number in an integer expression to
an error message

Chapter 22–18
L
IB
R
A
R
IE
S

DefinitionName

printf write formatted output to standard output

putc same as fputc

putchar write a character to standard output

puts write a string to standard output

remove delete a file

rename rename a file

rewind rewind a file

scanf read formatted input from standard input

setbuf set I/O buffer

setvbuf set the buffering mode

sprintf write formatted output to the specified string

sscanf read formatted input from the specified string

tmpfile create a temporary file

tmpnam return a valid, unused filename

ungetc push a character back into the specified file

vfprintf write formatted output to specified file using
variable arguments

vprintf write formatted output to standard output using
variable arguments

vsprintf write formatted output to the specified string
using variable arguments

Table 2-5: Standard I/O functions

Run–Time Library 2–19

• • • • • • • •

2.11.4 STRING MANIPULATION FUNCTIONS

String manipulation functions copy and test character strings in memory.

The include file string.h contains external declarations for these

functions. A summary of string manipulation functions appears in the table

below:

Name Definition

memchr search for a character in a buffer

memcmp compare two buffers for lexical order

memcpy copy one buffer to another

memmove copy characters

memset propagate a fill character throughout a buffer

strcat concatenate two strings

strchr scan a string for the first occurrence of a
character

strcmp compare two strings for lexical order

strcoll compare two strings according to the current
locale

strcpy copy one string to another

strcspn find the end of a span of characters in a set

strerror map the error number to an error message

strlen find the length of a string

strncat concatenate two strings; append up to n
characters

strncmp compare two strings, up to n characters

strncpy copy n length string

strpbrk find occurrence in string of character in set

strrchr scan string for the last occurrence of a
character

strspn find the end of a span of characters not in a
set

Chapter 22–20
L
IB
R
A
R
IE
S

DefinitionName

strstr find the first instance of a string

strtok break string into tokens

strxfrm transform string according to the current
locale

Table 2-6: String manipulation functions

2.11.5 NON-LOCAL GOTO FUNCTIONS

Non-local goto functions are used to define and restore an �environment."

In this implementation, an �environment" consists of a set of values in the

non-volatile machine registers. These functions are useful for dealing with

errors and interrupts encountered in a low-level subroutine of a program.

The include file setjmp.h contains external declarations for non-local

goto functions. A summary of the functions appears below:

Name Definition

longjmp returns an environment established earlier by setjmp

setjmp establishes an environment for later use by longjmp

Table 2-7: Non-local Goto functions

Run–Time Library 2–21

• • • • • • • •

2.11.6 DATE AND TIME ROUTINES

A summary of date and time functions appears below. The include file

time.h contains external declarations for date and time routines. The

following table summarizes date and time functions:

Name Definition

asctime convert time to a string

clock return the processor time used

ctime convert calendar time to local time

difftime compute the difference between two times

gmtime convert calendar time to Coordinated Universal Time

localtime convert calendar time to local time

mktime convert broken–down time into calendar time

strftime put characters into an array

time return the current calendar time

Table 2-8: Date and time routines

2.11.7 ASCII CHARACTER SET MACROS AND

FUNCTIONS

ASCII character set macros are of two general types: �is" and �to."

Macros with the prefix is take a character type parameter and evaluate to

0 or 1, acting as predicates. These macros can be used in if , while and

for constructs. Macros with the prefix to convert between upper and

lower-case.

Chapter 22–22
L
IB
R
A
R
IE
S

The library include file ctype.h contains the ASCII character set macro

and function definitions. A summary appears below:

Name Definition

isalnum test for alphanumeric character

isalpha test for alphabetic character

iscntrl test for control character

isdigit test for digit

isgraph test for graphic character

islower test for lowercase character

isprint test for printing character

ispunct test for punctuation character

isspace test for whitespace character

isupper test for uppercase character

isxdigit test for hexadecimal digit

tolower convert character to lowercase, if necessary

toupper convert character to uppercase, if necessary

Table 2-9: ASCII character set macros and functions

2.11.8 GLOBAL DEFINITIONS

The include file stddef.h contains global definitions for use in C

programs. stddef.h defines one macro whose summary appears below:

Name Definition

offsetof return offset of member in structure

Table 2-10: Global definitions

Run–Time Library 2–23

• • • • • • • •

2.11.9 COMPILE-TIME ASSERTIONS

The include file assert.h defines the macro assert which allows

compile-time testing of expressions. If the expression is false, the assert

macro writes information about the call that failed on the standard error

file and then aborts the program. A summary of the assert macro appears

below:

Name Definition

assert check run–time expressions

Table 2-11: Compile-time assertions

2.11.10 FORMATTING OF NUMERIC VALUES

Two functions, setlocale and localeconv , allow the setting of defaults

for the formatting of numeric values that depend on country and/or

language. Their external declarations are available in the library include

file locale.h . A table summarizing these functions appears below:

Name Definition

localeconv set numeric formatting values for locale

setlocale select or query the current locale

Table 2-12: Formatting of numeric values

2.11.11 VARIABLE LENGTH ARGUMENT LIST ACCESS

The argument list macros facilitate the access of items on a variable length

argument list. The macros are defined in the library include file stdarg.h
and are summarized in the table below:

Name Definition

va_arg retrieve the next item on a variable length argument
list.

va_end finish access of variable length argument list

va_start prepare to access a variable length argument list

Table 2-13: Variable length argument list access

Chapter 22–24
L
IB
R
A
R
IE
S

2.11.12 SIGNAL HANDLING

The library include file signal.h contains external declarations for

dealing with internal and external events, or signals. A table summarizing

these functions appears below:

Name Definition

raise generate a signal

signal designate a function as a signal handler

Table 2-14: Signal handling

2.11.13 C LIBRARY EXTENSIONS

Several extensions to the ANSI C library are available for use. These

functions and macros are distributed with TASKING compilers for use in

cases where their functionality may be helpful for embedded systems

programming. Note however, that these functions are not part of the ANSI

C standard, and their use may cause portability problems. The

pre-processor macro _EXTENSIONS must be defined to make these

external function declarations and macro definitions available. These

functions are found in extended.h . The functions and macros are

summarized in the following table.

Name Definition

__tolower a macro to convert character to lowercase. The
character must be a valid uppercase ASCII letter.

__toupper a macro to convert character to uppercase. The
character must be a valid lowercase ASCII letter.

atanh inverse hyperbolic tangent

log2 base 2 logarithm

getl direct long integer input

getw direct integer input

putl direct long integer output

putw direct integer output

memccpy copy memory up to marker character

Table 2-15: C library extensions

Run–Time Library 2–25

• • • • • • • •

Standard UNIX I/O Functions

Other extensions to the ANSI C library are the include files unistd.h and

fcntl.h . This functions contain external declarations of the standard

UNIX I/O functions. They are implemented using the file system

simulation feature of CrossView Pro. A summary of these functions

appears below:

Name Definition

access check the permissions of a file on the host

chdir change the current directory on the host

close close a file on the host

getcwd retrieve the current directory on the host

lseek seek in a file on the host

open open a file on the host

read read a sequence of characters from a file

rename rename a file on the host

stat stat() a file on the host platform

unlink remove a file from the host

write write a sequence of characters to a file

Table 2-16: Standard UNIX I/O functions

Other include files

Three additional include files are distributed in ANSI C compliant

TASKING compiler releases. These library include files contain definitions

only, they do not contain any external function declarations. The files are:

errno.h which contains variables used to process errors in the C

language, limits.h which contains various defined CPU specific

limitations, and float.h which defines various floating-point hardware

limits and values.

In addition, there are several include files distributed that are used only in

conjunction with building libraries. Under normal circumstances, these

library include files will not be used. However, if the embedded

application requires changes to the run-time library source, you may need

to modify these files as required.

Chapter 22–26
L
IB
R
A
R
IE
S

2.12 RUN-TIME LIBRARY ROUTINES

The following pages describe each of the run-time routines in reference

format. The descriptions are in alphabetical order by function name.

__tolower

#define _EXTENSIONS
#include <stdio.h>
#define __tolower(c) ((c) + ’a’ – ’A’)

__tolower is a macro which converts an uppercase letter, c, to its

lowercase equivalent. __tolower returns the corresponding lowercase

character.

__tolower should only be used when c is known to be an uppercase

letter (presumably checked via the isupper macro). Unlike the ANSI

tolower function, __tolower is not guaranteed to return its argument if

the argument is not an uppercase character.

__tolower is a TASKING extension.

__toupper

#define _EXTENSIONS
#include <stdio.h>
#define __toupper(c) ((c) + ’A’ – ’a’)

__toupper is a macro which converts a lowercase letter, c, to its

uppercase equivalent. __toupper returns the corresponding uppercase

character.

__toupper should only be used when c is known to be a lowercase

letter (presumably checked via the islower macro). Unlike the ANSI

toupper function, __toupper is not guaranteed to return its argument if

its argument is not a lowercase letter.

__toupper is a TASKING extension.

Run–Time Library 2–27

• • • • • • • •

abort

#include <stdlib.h>
void abort(void);

abort raises a SIGABRT condition.

abs

#include <stdlib.h>
int abs(int x);

abs calculates | x |, the absolute value of the integer argument, x.

abs returns its input if x is the most negative int value.

access

#include <unistd.h>
int access(const char * name, int mode);

Use the file system simulation feature of CrossView Pro to check the

permissions of a file on the host. mode specifies the type of access and is a

bit pattern constructed by a logical OR of the following values:

R_OK Checks read permission.

W_OK Checks write permission.

X_OK Checks execute (search) permission.

F_OK Checks to see if the file exists.

access returns zero if successful or -1 on error.

acos

#include <math.h>
double acos(double x);

acos computes the value whose cosine is x. The inverse cosine is in

radians and in the range from zero to π.

If x is outside the range [-1,1], acos sets errno to EDOM. The return

value is undefined in this case.

Chapter 22–28
L
IB
R
A
R
IE
S

asctime

#include <time.h>
char * asctime(const struct tm *timeblock);

The function asctime converts the time stored in *timeblock into a 26

character string of the form:

Mon Jan 01 01:01:01 1999\n\0

asctime returns a pointer to the character string.

The string returned by asctime may be overwritten by subsequent calls

to asctime or ctime .

asin

#include <math.h>
double asin(double x);

asin computes the value whose sine is x. The inverse sine is in radians

and is in the range from -π/2 to π/2.

If x is outside the range [-1,1], asin sets errno to EDOM. The return

value is undefined in this case.

assert

#include <assert.h>
void assert(int expression);

The assert macro puts diagnostics into programs. When it is executed, if

expression is false the assert macro writes information about the

particular call that failed, including the text of the argument, the name of

the source file, and the source line number. It then aborts the program by

using abort() .

If the preprocessor variable NDEBUG is defined before including

assert.h , the assert macro will have no effect.

Run–Time Library 2–29

• • • • • • • •

atan

#include <math.h>
double atan(double x);

atan computes the value whose tangent is x. The inverse tangent is in

radians, and is in the range from -π/2 to π/2.

atan2

#include <math.h>
double atan2(double x, double y);

atan2 computes the principal value of the arctangent of x/y, using the

signs of both arguments to determine the quadrant of the return value. If

both x and y are zero, errno is set to EDOM and π/2 is returned.

The return value is in radians and is in the range -π to π. Here is a chart

showing how the sign of the arguments determines the range of the return

value:

Sign of arguments Return range
x<0, y<0 –π to – π/2
x<0, y>0 –π/2 to 0
x>0, y >0 0 to π/2
x>0, y<0 π/2 to π

atanh

#define _EXTENSIONS
#include <math.h>
double atanh(double x);

atanh computes the inverse hyperbolic tangent of x.

atanh is a TASKING extension.

Chapter 22–30
L
IB
R
A
R
IE
S

atexit

#include <stdlib.h>
int atexit(void (* func)(void));

The atexit function causes the function pointed to by func to be called

without arguments at normal program termination. Up to 32 functions can

be remembered. atexit returns 0 if successful, and non-zero if it fails.

The functions are called in a last in, first out basis. Functions may be

recorded more than once. Normal termination means exit was called.

atof

#include <stdlib.h>
double atof(const char * s);

atof converts the ASCII string s to a double and returns the new value.

The ASCII string is examined with respect to the following pattern: any

number of leading white-space characters (as specified by the isspace
function), an optional plus or minus sign, any number of decimal digits, an

optional decimal point followed by any number of decimal digits, an

optional �e" or �E", an optional plus or minus sign or blank, and any

number of decimal digits. Input which matches this pattern is converted

into the double return value. Input after the end of the pattern is ignored.

In case of error, atof is not required to set errno, and its return value is

undefined. In this implementation, atof is implemented via strtod , as

follows:

strtod(s, (char **) NULL)

Run–Time Library 2–31

• • • • • • • •

atoi

#include <stdlib.h>
int atoi(const char * s);

atoi converts the ASCII string s into an integer. The ASCII string is

examined with respect to the following pattern: any number of leading

white-space characters (as specified by the isspace function), an

optional plus or minus sign, and any number of decimal digits. Characters

which match this pattern are converted to the integer return value.

Characters after the end of the pattern are ignored. atoi returns the

converted integer value. Except in the case of errors, atoi is equivalent

to:

(int) strtol(s, (char **) NULL, 10)

atol

#include <stdlib.h>
long atol(const char * s);

atol converts the ASCII string s to a long integer. The ASCII string is

examined with respect to the following pattern: any number of

white-space characters (as defined by the isspace function), an optional

plus or minus sign, and any number of decimal digits. Characters which

match this pattern are converted to the long return value. Characters after

the end of the pattern are ignored. atol returns the converted long

integer.

Overflows are ignored. Except for the behavior on errors, atol is

equivalent to:

strtol(s, (char **)NULL, 10)

Chapter 22–32
L
IB
R
A
R
IE
S

bsearch

#include <stdlib.h>
void *bsearch(const void * key , const void * base ,

size_t nummembr, size_t size ,
int (* comp)(const void *, const void *));

bsearch searches an array of nummembr objects, the first element of

which is pointed to by base, for an element that matches the object

pointed to by key. The size of each array element is specified by size.

The function pointed to by comp is called with two arguments that point

to the key object and to an array element, in that order. The comp function

shall return an integer less than, equal to, or greater than zero if the key
object is considered to be less than, equal to, or to be greater than the

array element. The array should consist of all elements that compare less

than, all elements that compare equal to, and all elements that compare

greater than the key object, in that order. bsearch returns a pointer to the

item if found, or NULL if not found.

calloc

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

calloc allocates memory for the nmemb elements of size size and returns

a pointer to the start of the allocated memory space. Allocated memory is

initialized to zero.

If memory is exhausted, calloc returns a null pointer.

ceil

#include <math.h>
double ceil(double x);

ceil computes and returns the smallest integer value greater than or

equal to x, expressed as a double value.

Run–Time Library 2–33

• • • • • • • •

chdir

#include <unistd.h>
int chdir(const char *path);

Use the file system simulation feature of CrossView Pro to change the

current directory on the host to the directory indicated by path .

chdir returns zero if successful or -1 on error.

clearerr

#include <stdio.h>
void clearerr(FILE * str);

This function clears the end-of-file and error indicators for the the stream

pointed to by str.

Users should implement this routine themselves.

clock

#include <time.h>
clock_t clock(void);

clock returns the processor time used. If the processor time is

unavailable, the return value is (clock_t)-1.

Users should implement this routine themselves. The current return value

is (clock_1)-1.

close

#include <unistd.h>
int close(int fd);

File close function. The given file descriptor should be properly closed.

This function calls the low-level routine _close.

close returns zero if successful or -1 on error.

Chapter 22–34
L
IB
R
A
R
IE
S

cos

#include <math.h>
double cos(double x);

cos computes the cosine of x, expressed in radians.

cosh

#include <math.h>
double cosh(double x);

cosh computes the hyperbolic cosine of x.

ctime

#include <time.h>
char *ctime(const time_t * time);

The ctime function converts the calendar time pointed to by time to local

time in the form of a string.

This function is equivalent to:

asctime(localtime(time))

The value returned by ctime will be overwritten by the next call to

ctime or asctime .

difftime

#include <time.h>
double difftime(time_t time1 , time_t time2);

difftime computes the difference between two times: time1 and time2.

difftime returns the difference in seconds, expressed as a double.

Run–Time Library 2–35

• • • • • • • •

div

#include <stdlib.h>
div_t div(int numerator , int denominator);

div computes the quotient and remainder of the numerator divided by the

denominator. The type div_t is a structure that contains two components,

quot and rem , both of type int .

When denominator equals zero div returns zeroes in quot and rem.

If the result cannot be represented, the behavior is undefined. Otherwise

quot * denominator + rem shall equal numerator.

exit

#include <stdlib.h>
void exit(int status);

exit caused normal program termination. exit never returns to its caller.

First, any functions recorded by atexit are called, in reverse order of

their presentation via atexit . Next, all open output streams are flushed,

all open streams are closed, and all files created by the tmpfile function

are removed. Finally, the return status is returned to the host environment.

exit calls __exit to return to the host environment. The __exit
routine must be coded by the user.

exp

#include <math.h>
double exp(double x);

exp computes the exponential function of x.

On overflow exp returns an IEEE infinity.

fabs

#include <math.h>
double fabs(double x);

fabs computes |x|, the absolute value of the double x.

Chapter 22–36
L
IB
R
A
R
IE
S

fclose

#include <stdio.h>
int fclose(FILE * stream);

fclose flushes any buffers for the named stream and causes the file to be

closed. The return value indicates the presence of an I/O error.

fclose must be implemented by the user.

feof

#include <stdio.h>
int feof(FILE * str);

This function tests the end-of-file indicator for the stream pointed to by

str. feof returns nonzero only if the end-of-file indicator is set for str.

feof must be implemented by the user.

ferror

#include <stdio.h>
int ferror(FILE * stream);

This routine tests the error indicator for the the stream pointed to by

stream. ferror returns nonzero only if the error indicator is set for

stream.

ferror must be implemented by the user.

fflush

#include <stdio.h>
int fflush(FILE * stream);

fflush forces out any buffered output on an I/O channel. fflush
returns zero, if successful. If an I/O error was encountered, fflush sets

the global integer errno to indicate the error code and returns negative

one.

The release version of fflush is a stub routine which always returns zero.

The standard I/O library does not buffer output.

Run–Time Library 2–37

• • • • • • • •

fgetc

#include <stdio.h>
int fgetc(FILE * stream);

fgetc returns the next character from the named input stream pointed to

by stream.

fgetpos

#include <stdio.h>
int fgetpos(FILE * stream , fpos_t * pos);

fgetpos stores the current value of the file position indicator for the

stream pointed to by stream in the object pointed to by pos. The

information stored can be used by fsetpos for resetting the stream to the

time of the call to fgetpos . fgetpos returns zero on success; on failure

fgetpos returns a nonzero number and sets errno .

fgetpos must be implemented by the user.

fgets

#include <stdio.h>
char *fgets(char * s, int n, FILE *stream);

fgets reads characters from the specified input stream into the string s
until either n-1 characters are read, end-of-file is reached, or a newline

character is read. If a newline character is read, it is retained. The stream is

then terminated by a null. The associated file pointer is incremented by

the number of bytes read.

If end-of-file is reached before any characters have been read, s remains

unchanged, and fgets returns NULL.

floor

#include <math.h>
double floor(double x);

floor computes the largest integer value less than or equal to x,

expressed as a double value.

Chapter 22–38
L
IB
R
A
R
IE
S

fmod

#include <math.h>
double fmod(double x, double y);

fmod calculates the floating-point remainder of x/y. That is, fmod returns

the value x-i*y, for some integer i such that the result has the same sign as

x and magnitude less than the magnitude of y. If y is zero, fmod returns

zero under software floating-point and IEEE NaN (Not a Number) under

hardware floating-point.

fopen

#include <stdio.h>
FILE *fopen(const char * filename , const char * mode);

fopen opens the file filename and returns an associated input or output

stream, depending on mode.

fopen must be implemented by the user.

fprintf

#include <stdio.h>
int fprintf(FILE * stream , const char *format , ...);

See printf.

fprintf is identical to printf , but directs its output to the specified

output stream.

fputc

#include <stdio.h>
int fputc(int c, FILE *stream);

fputc writes a character specified by c (converted to an unsigned char),

onto the named output stream. fputc returns the character written.

Run–Time Library 2–39

• • • • • • • •

fputs

#include <stdio.h>
int fputs(const char * s, FILE *stream);

fputs copies the string s to the specified output stream. The terminating

null byte is not copied. The fputs function returns EOF if a write error

occurs; otherwise it returns a non-negative value.

fread

#include <stdio.h>
size_t fread(void * ptr , size_t size ,

size_t n, FILE *stream);

fread reads n items of size size from the specified input stream into a

buffer at ptr. fread returns the number of items successfully read, which

may be less than n if a read error or end-of-file is encountered. If size or

n is zero, fread returns zero and the contents of the array and the state of

the stream remain unchanged.

free

#include <stdlib.h>
void free(void * ptr);

free deallocates storage allocated by previous malloc , calloc , or

realloc routines.

In ANSI C, free replaces the Unix cfree routine.

freopen

#include <stdio.h>
FILE *freopen(const char * filename ,

const char * mode, FILE * stream);

freopen closes the specified stream and then opens it in the same way

that fopen does. Failure to close the file is ignored. The error and

end-of-file indicators for the stream are cleared. freopen returns a null

pointer if not successful. Upon success freopen returns stream.

Chapter 22–40
L
IB
R
A
R
IE
S

freopen must be implemented by the user. The primary use of freopen
is to change the file associated with the standard text streams stdin ,

stdout , and stderr .

frexp

#include <math.h>
double frexp(double x, int *eptr);

frexp breaks a floating-point number into a normalized fraction and an

integral power of two. It stores the integer in the int object pointed to by

eptr and returns the fraction.

After calling the function

y = frexp(x, & n)

the following identity is true:

x = y * 2 n.

fscanf

#include <stdio.h>
int fscanf(FILE * stream ,
const char *format , ...);

See scanf.

fscanf is identical to scanf, except that it reads its input from the

specified input stream.

fseek

#include <stdio.h>
int fseek(FILE * stream , long int offset , int mode);

fseek sets the file position indicator for the stream pointed to by stream.
fseek returns zero on success and nonzero on failure.

Run–Time Library 2–41

• • • • • • • •

For binary streams, fseek calculates the new position by adding the offset
(in bytes) to the position specified by mode. The specified position is the

beginning of the file if mode is SEEK_SET, the current file position if mode
is SEEK_CUR, or end of file if mode is SEEK_END.

For text streams, offset is either zero or a value returned by a previous call

to ftell , using the same stream, and mode is set to SEEK_SET.

fseek must be implemented by the user.

fsetpos

#include <stdio.h>
int fsetpos(FILE * stream , const fpos_t * pos);

fsetpos sets the file position indicator for the stream pointed to by

stream to the value stored in pos. It also clears the end-of-file indicator for

stream. fsetpos returns zero if successful, and returns a nonzero and sets

errno to a positive value if unsuccessful.

fsetpos must be implemented by the user.

ftell

#include <stdio.h>
long int ftell(FILE * stream);

ftell returns the current file position indicator for the stream pointed to

by stream. For binary streams this is the number of characters since the

beginning of the file. For text streams this is some value that is meaningful

to fseek , but does not necessarily have any relation to the number of

characters. On failure ftell returns -1L and stores a positive value in

errno .

ftell must be implemented by the user.

Chapter 22–42
L
IB
R
A
R
IE
S

fwrite

#include <stdio.h>
size_t fwrite(const void * ptr , size_t size ,

size_t n, FILE *stream);

fwrite writes n items of size size from a buffer at address ptr to the

specified output stream. fwrite returns the number of items written.

fgetc

#include <stdio.h>
int getc(FILE * stream);

getc reads a character from the specified input stream and increments

the associated file pointer by one byte. getc returns the next character

from the specified input stream.

If end-of-file is encountered or a read error occurs, getc returns EOF.

getchar

#include <stdio.h>
int getchar(void);

getchar is a macro defined as getc(stdin) . getchar returns the next

character from standard input.

getcwd

#include <unistd.h>
char * getcwd(char * buf, size_t size);

Use the file system simulation feature of CrossView Pro to retrieve the

current directory on the host.

getcwd returns the directory name if successful or NULL on error.

Run–Time Library 2–43

• • • • • • • •

getenv

#include <stdlib.h>
char *getenv(const char * name);

The getenv function searches an environment list, provided by the host

environment, for the environment variable name. It returns the variable

definition, or NULL if no definition exists.

getenv must be implemented by the user.

getl

#define _EXTENSIONS
#include <stdio.h>
long getl (FILE * stream);

getl reads and returns a long from the specified file stream.

getl is a TASKING extension. The first byte read is the high-order byte of

the result.

gets

#include <stdio.h>
char *gets(char * s);

gets reads a string from standard input (stdin) into s. The read terminates

when a newline character is read or end-of-file is encountered. Any

newline character is then discarded and the string is terminated with a

null. gets returns s.

fgets does not discard the newline character. If end-of-file is

encountered and no characters have been read, gets returns NULL.

getw

#define _EXTENSIONS
#include <stdio.h>
int getw(FILE * stream);

getw reads and returns an integer from the specified input stream.

Chapter 22–44
L
IB
R
A
R
IE
S

getw is a TASKING extension. The first byte read is the high order byte of

the result.

gmtime

#include <time.h>
struct tm *gmtime(const time_t * time);

gmtime converts a time value represented by a time_t into a time value

represented as a tm structure, expressed as Coordinated Universal Time

(UTC). If UTC is not available, then gmtime returns NULL.

This function must be implemented by the user. The current return value

is NULL pointer.

isalnum

#include <ctype.h>
int isalnum(int c);

isalnum tests whether c is an alphabetic character (either upper or lower

case) or a decimal digit. If c is an alphanumeric character, isalnum
returns TRUE. If c is not an alphanumeric character, isalnum returns

FALSE.

If c is outside the range [-1, 255], the result is undefined.

isalpha

#include <ctype.h>
int isalpha(int c);

isalpha tests whether c is an alphabetic character (either upper or lower

case). If c is a letter, isalpha returns TRUE. If c is not a letter, isalpha
returns FALSE.

If c is outside the range [-1, 255], the result is undefined.

Run–Time Library 2–45

• • • • • • • •

iscntrl

#include <ctype.h>
int iscntrl(int c);

iscntrl tests whether c is a delete or control character. iscntrl returns

TRUE if c is a control character; FALSE if c is not a control character.

If c is outside the range [-1, 255], the result is undefined. The control

characters are those whose hex values are between 0 and 1F or equal to

7F.

isdigit

#include <ctype.h>
int isdigit(int c);

isdigit tests whether c is a decimal digit. isdigit returns TRUE if c is
a digit; FALSE if c is not a digit.

If c is outside the range [-1, 255], the result is undefined.

isgraph

#include <ctype.h>
int isgraph(int c);

isgraph tests whether c is a graphic character; that is, any printing

character except a space. isgraph returns TRUE if c is a graphic

character. isgraph returns FALSE if c is not a graphic character.

If c is outside the range [-1, 255], the result is undefined. Graphic

characters are those whose hex values are between 21 and 7E. The DEL

character is not a graphic character.

Chapter 22–46
L
IB
R
A
R
IE
S

islower

#include <ctype.h>
int islower(int c);

islower tests whether c is a lowercase alphabetic character. If c is a
lowercase letter, islower returns TRUE. If c is not a lowercase letter,

islower returns FALSE.

If c is outside the range [-1, 255], the result is undefined.

isprint

#include <ctype.h>
int isprint(int c);

isprint tests whether c is any printable character, including space.

isprint returns TRUE if c is a printable character; FALSE if c is not a

printable character.

If c is outside the range [-1, 255], the result is undefined. The printable

characters are those whose hex values are between 20 and 7E.

ispunct

#include <ctype.h>
int ispunct(int c);

ispunct tests whether c is a punctuation character. Punctuation characters

include any printable character except a space, a digit or a letter. If c is a
punctuation character, ispunct returns TRUE. If c is not a punctuation

character, ispunct returns FALSE.

If c is outside the range [-1, 255], the result is undefined. The punctuation

characters are those whose hex values are between 21 and 2f, 3A and 40,

5B and 60, or 7B to 7E.

Run–Time Library 2–47

• • • • • • • •

isspace

#include <ctype.h>
int isspace(int c);

isspace tests whether c is a white-space character: a space, tab, carriage

return, newline, vertical tab or formfeed. If c is a white-space character,

isspace returns TRUE. If c is not a white-space character, isspace
returns FALSE.

If c is outside the range [-1, 255], the result is undefined. The white-space

characters are those whose hex values are between 9 and D or equal to

20.

isupper

#include <ctype.h>
int isupper(int c);

isupper tests whether c is an upper-case alphabetic character. isupper
returns TRUE if c is an upper-case letter. If c is not an upper-case letter,

isupper returns FALSE.

If c is outside the range [-1, 255], the result is undefined.

isxdigit

#include <ctype.h>
int isxdigit(int c);

isxdigit tests whether c is a hexadecimal digit, that is, in the set

[0123456789abcdefABCDEF]. isxdigit returns TRUE if c is a hex digit;

FALSE if c is not a hex digit.

If c is outside the range [-1, 255], the result is undefined.

labs

#include <stdlib.h>
long labs(long x);

labs calculates |x|, the absolute value of the long integer x.

Chapter 22–48
L
IB
R
A
R
IE
S

labs returns its input if x is the most negative long value.

ldexp

#include <math.h>
double ldexp(double x, int exp);

ldexp returns the product of x and 2 raised to the integer power exp.

That is, ldexp returns the quantity x*(2exp).

ldexp returns IEEE infinity in case of overflow; zero in case of

underflow.

ldiv

#include <stdlib.h>
ldiv_t ldiv(long int numerator , long int denominator);

ldiv computes the quotient and remainder of the division of the

numerator by the denominator. The type ldiv_t is a structure that contains

two components, quot and rem , both of type long int .

If the result cannot be represented the behavior is undefined. Otherwise

quot * denominator + rem shall equal numerator.

localeconv

#include <locale.h>
struct lconv *localeconv(void);

localeconv returns a pointer to a filled-in structure that contains

numeric formatting information for the current locale. The values in the

structure cannot be changed by the program except by later calls to

localeconv or on calls to setlocale that change the categories

LC_ALL, LC_MONETARY, or LC_NUMERIC.

The locale is the ANSI C method of specifying culturally-dependent

information. Currently the library supports only the default or �C" locale.

Run–Time Library 2–49

• • • • • • • •

localtime

#include <time.h>
struct tm *localtime(const time_t * time);

localtime breaks down a time value expressed as a time_t into a time

value expressed as a tm structure.

The tm structure pointed to by the return value may be overwritten by

subsequent calls to localtime or gmtime .

log

#include <math.h>
double log(double x);

log computes the natural logarithm of x. If x is zero, then log returns

IEEE negative infinity. If x is less than zero, log returns IEEE NaN (Not a

Number) and sets errno to EDOM.

log2

#define _EXTENSIONS
#include <math.h>
double log2(double x);

log2 computes the base 2 logarithm of the double x. If x is zero then

log2 returns IEEE negative infinity. If x is less than zero, log2 returns

IEEE NaN (Not a Number) and sets errno to EDOM.

log2 is a TASKING extension.

log10

#include <math.h>
double log10(double x);

log10 computes the base 10 logarithm of x. If x is zero, then log10
returns IEEE negative infinity. If x is less than zero, log10 returns IEEE

NaN (Not a Number) and sets errno to EDOM.

Chapter 22–50
L
IB
R
A
R
IE
S

longjmp

#include <setjmp.h>
void longjmp(jmp_buf x, int n);

longjmp returns to an environment established by setjmp using n as the

return value, except that 1 is returned if n is zero. If setjmp was not

invoked with this environment or if the function containing the invocation

has terminated, then the results are undefined.

The values of non-volatile objects of automatic storage class (that is,

non-volatile local variables) local to the function calling setjmp are

indeterminate if they were modified between the setjmp and longjmp
calls.

After longjmp is completed, program execution continues as if the

corresponding invocation of setjmp had just returned n (or 1, if n is

zero).

lseek

#include <unistd.h>
off_t lseek(int fd, off_t offset, int whence);

Moves read-write file offset. This function calls the low-level routine

_lseek.

lseek returns the resulting pointer location if successful or -1 on error.

malloc

#include <stdlib.h>
void *malloc(size_t nwords);

malloc allocates space of the size nwords on the heap. Allocated

memory is not initialized to zero.

If memory space is exhausted, malloc returns a null pointer.

Run–Time Library 2–51

• • • • • • • •

mblen

#include <stdlib.h>
int mblen(const char * s, size_t n);

If s is a null pointer or points to a null character, then mblen returns 0.

Otherwise, mblen returns the number of bytes comprising the multi-byte

character s. If s points to an invalid multibyte character, then mblen
returns -1.

mblen assumes the Shift JIS convention for Japanese character encoding.

Values between 1 and 127 (hex 7F) are treated as one-byte ASCII codes.

Values between 160 and 223 (hex A0 to DF) are treated as one-byte kana

codes. Kanji characters are encoded as two-byte sequences where the first

byte is between 129 and 159 (hex 81 to 9F) or 224 to 252 (hex E0 to FC)

and the second byte is between 64 and 252 (hex 40 to FC).

Here is a summary:

ASCII (one byte) 0 through 0x7F

Kana (one byte) 0xA0 through 0xDF

Kanji (two bytes) first byte: 0x81 through 0x9F and 0xE0
through 0xFC
second byte: 0x40 thorugh 0xFC

mbstowcs

#include <stdlib.h>
size_t mbstowcs(wchar_t * pwcs ,
const char * s, size_t n);

mbstowcs converts a sequence of multi-byte characters pointed to by s to
wide characters, and stores no more than n of them in the array of wide

characters pointed to by pwcs. It copies up to to n characters from s to
pwcs, until it reaches a null character. If an invalid character is found,

mbstowcs returns -1. Otherwise, the number of characters written is

returned. The mbstowcs routine assumes the Shift JIS convention for

Japanese characters. See mblen for more details.

Chapter 22–52
L
IB
R
A
R
IE
S

mbstowc

#include <stdlib.h>
int mbtowc(wchar_t * pwc, const char * s, size_t n);

mbtowc converts the multi-byte character pointed to by s to a wide

character, and stores the wide character in the location pointed to by pwc.
It returns 0 if either s is null or points to the null character and returns -1

if the character is invalid. Otherwise, if pwc is not null, the character at s is
stored at pwc and mbtowc returns 1 if the character is a one-byte ASCII

or kana code and returns 2 if it is a two-byte Kanji code. The mbstowcs
routine assumes the Shift JIS convention for Japanese characters. See

mblen for more details.

memccpy

#include <extended.h>
void *memccpy(void * s1 , void *s2 , char c, size_t n);

memccpy copies characters from s2 to s1, stopping after the first

occurrence of character c has been copied, or after n characters have been

copied, whichever comes first. memccpy returns a pointer to the character

after the copy of c in s1, or NULL if c was not encountered.

memccpy is a TASKING extension.

memchr

#include <string.h>
void *memchr(const void * s, int c , size_t n);

memchr searches an n word memory area at address s for the character c.
memchr returns a pointer to the first occurrence of c. If c is not found,

memchr returns NULL.

memchr is equivalent to strchr , except it does not stop at nulls.

Run–Time Library 2–53

• • • • • • • •

memcmp

#include <string.h>
int memcmp(const void * s1 , const void *s2 , size_t n);

memcmp compares n words of memory at addresses s1 and s2. memcmp
returns zero if the memory areas are equal, an integer greater than zero if

s1 is lexically larger than s2; else memcmp returns an integer less than zero.

memcmp is equivalent to the strcmp routine, except it does not stop at

nulls.

memcpy

#include <string.h>
void *memcpy(void * s1 , const void *s2 , size_t n);

memcpy copies n words of memory from s2 to s1. memcpy returns its first

argument, s1.

memcpy is equivalent to strncpy except that it does not stop at nulls. If

the two memory areas overlap then the results are undefined. See also

memmove.

memmove

#include <string.h>
void *memmove(void * s1 , const void *s2 , size_t n);

memmove copies n words of memory from s2 to s1. If the two memory

areas overlap, then the copy is done as if the characters are first copied

from s2 into a temporary area of size n, and then copied to s1. memmove
returns its first argument, s1.

memset

#include <string.h>
void *memset(void * s, int c , size_t n);

memset fills n words of memory at s with a fill character c and returns its

first argument, s.

Chapter 22–54
L
IB
R
A
R
IE
S

mktime

#include <time.h>
time_t mktime(struct tm * time);

mktime converts a time value, expressed as a tm structure, into a time

value expressed as a time_t . The original values of the tm_wday and

tm_yday components of the tm structure are ignored, and the other

values are not restricted to their usual ranges.

On successful completion the values of the tm_wday and tm_yday
components of the tm structure are set appropriately, and the other values

are normalized to be in their usual ranges.

Some time values which can be expressed as tm structures cannot be

expressed as time_t values. In that case (time_t) -1 is returned.

modf

#include <math.h>
double modf(double x, double * intptr);

modf returns the fractional part of x and stores the integral part indirectly

through the pointer intptr. In effect, this breaks the double x into an

integer and fractional part. The breakdown into integer and fractional part

is defined by truncation (round towards zero).

For example, the integer part of -3.9 is -3.0, and the fractional part is -.9.

offsetof

#include <stddef.h>
size_t offsetof(type , member);

The macro offsetof returns the offset in bytes from the beginning of the

structure type to the structure member member.

The offset macro is defined as follows:

#define offsetof(type , member)
(size_t) & (((type *)0) –> member)

Run–Time Library 2–55

• • • • • • • •

open

#include <fcntl.h>
int open(const char * name, int flags);

Opens a file a file for reading or writing. This function calls the low-level

routine _open.

open returns the file descriptor if successful (a non-negative integer), or

-1 on error.

perror

#include <stdio.h>
void perror(const char * s);

perror maps the error number in the integer expression errno to an error

message. It writes a sequence of characters to the standard error stream as

follows. First, if s is not a null pointer and does not point to a null

character, the string pointed to by s is printed, followed by a colon and a

space. Next, the appropriate error string is printed, followed by a newline.

strerror.

pow

#include <math.h>
double pow(double x, double y);

pow returns x raised to the y power.

If x is zero and y is non-positive, then IEEE infinity is returned and errno
is set to EDOM.

If x is negative and y is not an integer, then IEEE infinity is returned and

errno is set to EDOM.

To avoid errors, x must be greater than or equal to zero, unless y is an

integer.

Chapter 22–56
L
IB
R
A
R
IE
S

printf

#include <stdio.h>
int printf(const char * format , ...);

printf converts and formats its arguments and prints them to stdout,

following specifications of format. format may contain ordinary

characters, which are simply copied to standard output, and conversion

specifications, each of which causes conversion and printing of the next

successive argument to printf .

The following description is taken from the ANSI C standard.

Each conversion specification is introduced by the character %. After the %,

the following appear in sequence:

• Zero or more flags (in any order) that modify the meaning of the

conversion specification.

• An optional minimum field width. If the converted value has fewer

characters than the field width, it will be padded with spaces (by

default) to the left (or right, if the left adjustment flag, described later,

has been given) to the field width. The field width takes the form of an

asterisk * (described later) or a decimal integer. Note that zero (0) is

taken as a flag, not as the beginning of a field width.

• An optional precision that gives the minimum number of digits to

appear for the d, i , o, u, x and X conversion, the number of digits to

appear after the decimal-point character for e, E and f conversions,

the maximum number of significant digits for the g and G conversions,

or the maximum number of characters to be written from a string in s
conversion. The precision takes the form of a period (.) followed either

by an asterisk * (described later) or by an optional decimal integer; if

only the period is specified, the precision is taken as zero. If a

precision appears with any other conversion specifier, the behavior is

undefined.

Run–Time Library 2–57

• • • • • • • •

• An optional h specifying that a following d, i , o, u, x or X conversion

specifier applies to a short int or unsigned short int argument

(the argument will have been promoted according to integral

promotions, and its value shall be converted to short int or

unsigned short int before printing) an optional h specifying that a

following n conversion specifer applies to a pointer to a short int
argument; an optional l specifying that a following d, i , o, u, x or X
conversion specifier applies to a long int or unsigned long int
argument; an optional l specifying that a following n conversion

specifier applies to a pointer to a long int argument; or an optional

L specifying that a following e, E, f , g or G conversion specifier applies

to a long double argument. If an h, l or L appears with any other

conversion specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by

an asterisk. In this case, an int argument supplies the field width or

precision. The arguments specifying field width, or precision or both, shall

appear (in that order) before the argument (if any) to be converted. A

negative field width argument is taken as a - flag followed by a positive

field width. A negative precision argument is taken as if the precision were

omitted.

The flag characters and their meanings are:

– The result of the conversion will be left-justified within the

field. (It will be right-justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a

plus or minus sign. (It will begin with a sign only when a

negative value is converted if this flag is not specified).

space If the first character of a signed conversion is not a sign, or if

a signed conversion results in no characters, a space will be

prefixed to the result. If the space and + flags both appear,

the space flag will be ignored.

Chapter 22–58
L
IB
R
A
R
IE
S

The result is to be converted to an �alternate form." For o
conversion, it increases the precision to force the first digit of

the result to be a zero. For x (or X) conversion, a nonzero

result will have 0x (or 0X) prefixed to it. For e, E, f , g and G
conversions, the result will always contain a decimal-point

character, even if no digits follow it. (Normally, a

decimal-pointer character appears in the result of these

conversions only if a digit follows it.) For g and G
conversions, trailing zeros will not be removed from the

result. For other conversions, the behavior is undefined.

0 For d, i , o, u, x , X, e, E, f , g and G conversions, leading

zeros (following any indication of sign or base) are used to

pad to the field width; no space padding is performed. If the

0 and - flags both appear, the 0 flag will be ignored. For d,

i, o, u, x and X conversions, if a precision is specified, the

0 flag will be ignored. For other conversions, the behavior is

undefined.

The conversion specifiers and their meanings are:

d, i The int argument is converted to signed decimal in the style

[-]dddd. The precision specifies the minimum number of

digits to appear; if the value being converted can be

represented in fewer digits, it will be expanded with leading

zeros. The default precision is 1. The result of converting a

zero value with a precision of zero is no characters.

o, u, x , X The unsigned int argument is converted to unsigned octal

(o), unsigned decimal (u) or unsigned hexadecimal notation

(x or X) in the style dddd; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion. The

precision specifies the minimum number of digits to appear;

if the value being converted can be represented in fewer

digits, it will be expanded with leading zeros. The default

precision is 1. The result of converting a zero value with a

precision of zero is no characters.

Run–Time Library 2–59

• • • • • • • •

f The double argument is converted to decimal notation in

the style [-]ddd.ddd, where the number of digits after the

decimal-point character is equal to the precision

specification. If the precision is missing, it is taken as 6; if the

precision is zero and the # flag is not specified, no

decimal-point character appears. If a decimal-point character

appears, at least one digit appears before it. The value is

rounded to the appropriate number of digits.

e, E The double argument is converted in the style [-]d.ddde±dd,

where there is one digit before the decimal-point character

(which is nonzero if the argument is nonzero) and the

number of digits after it is equal to the precision; if the

precision is missing it is taken as 6; if the precision is zero

and the # flag is not specified, no decimal point character

appears. The value is rounded to the appropriate number of

digits. The E conversion specifier will produce a number with

E instead of e introducing the exponent. The exponent

always contains at least two digits. If the value is zero, the

exponent is zero.

g, G The double argument is converted in style f or e (or in style

E in the case of a G conversion specifier) with the precision

specifying the number of significant digits. If the precision is

zero, it is taken as 1. The style used depends on the value

converted; style e (or E) will be used only if the exponent

resulting from such a conversion is less than -4 or greater

than or equal to the precision. Trailing zeros are removed

from the fractional portion of the result; a decimal-point

character appears only if it is followed by a digit.

c The int argument is converted to an unsigned char , and

the resulting character is written.

s The argument shall be a pointer to an array of character type.

(No special provisions are made for multibyte characters.)

Characters from the array are written up to (but not

including) a terminating null character. If the precision is

specified, no more than that many characters are written. If

the precision is not specified or is greater than the size of the

array, the array shall contain a null character.

Chapter 22–60
L
IB
R
A
R
IE
S

p The argument shall be a pointer to void . The value of the

pointer is converted to a sequence of hex characters, just like

the x format.

n The argument shall be a pointer to an integer into which is

written the number of characters written to the output stream

so far by this call to printf . No argument is converted.

% A % is written. No argument is converted. The complete

conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

If any argument is, or points to, a union or an aggregate (except for an

array of character type using %s conversion, or a pointer using %p
conversion), the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a

field; if the result of a conversion is wider than the field width, the field is

expanded to contain the conversion result.

Notes

• printf uses its first argument to decide how many arguments follow

and what their types are. printf normally returns the number of

characters printed. If there are not enough arguments, or arguments are

of the wrong type, the results are undefined.

• printf returns the number of characters printed, or a negative

number if an output error occurred. No more than 509 characters shall

be produced for any single conversion.

• fprintf and sprintf are identical to printf , except that fprintf
directs its output to the specified output stream; sprintf directs its

output to the string s.

putc

#include <stdio.h>
int putc(int c, FILE *stream);

putc writes the character c to the specified output stream.

Run–Time Library 2–61

• • • • • • • •

putchar

#include <stdio.h>
int putchar(int c);

putchar is equivalent to putc with the second argument of stdout.
putchar returns the character written. If an error occurs, putchar returns

EOF.

putl

#define _EXTENSIONS
#include <stdio.h>
long putl(long l , FILE *stream);

putl writes a long, l, to the specified output stream and returns its first

argument.

putl is equivalent to putw if integers are 32 bits. The first character

written is the high-order byte of l.

putl is a TASKING extension.

puts

#include <stdio.h>
int puts(const char * s);

puts copies the string s to standard output (stdout). puts returns 0, the

success code.

putw

#define _EXTENSIONS
#include <stdio.h>
int putw(int w, FILE *stream);

putw writes an integer w to the specified output stream and returns its

first argument.

The first character written is the high-order byte of w.

Chapter 22–62
L
IB
R
A
R
IE
S

qsort

#include <stdlib.h>
void qsort(void * base , size_t

nummembr, size_t size ,
int (* comp)(const void *,
const void *));

qsort sorts an array of nummembr elements, the first element of which is

pointed to by base. The size of each object is specified by size. The

contents of the array are sorted into ascending order according to the

comparison function pointed to by comp, which takes two arguments that

point to the objects being compared. The comparison function should

return an integer less than, equal to, or greater than zero if the first

argument is considered to be less than, equal to, or greater than the

second.

raise

#include <signal.h>
int raise(int sig);

The raise function sends the signal sig to the executing program. raise
returns zero if successful, and nonzero if unsuccessful.

See signal for more details.

rand

#include <stdlib.h>
int rand(void);

rand computes and returns pseudo-random integers in the range [0,

32767]. The pseudo-random number is computed via a simple

multiplicative congruence algorithm based on a �seed" value (initially

one). At any time the seed value may be reset using the srand routine.

The low bits of the numbers generated are not very random; use the

middle bits. Specifically, the lowest bit alternates between 0 and 1.

Run–Time Library 2–63

• • • • • • • •

rcopy

#include <rcopy.h>
void rcopy(struct hdr * addr)

rcopy is a ROM initialization utility, called at the start of a new C

program. Its argument addr is the address of an initialization segment

created by the llink utility.

rcopy should be called at the start of a new program or during system

restart. The argument to rcopy is typically the address of a fictitious

external variable. The name of this variable is carefully chosen to match

that generated by llink for the initialization segment itself. The name of

the initialization segment can be determined by llink options. Note that

the C compiler prepends an underscore to the names of external variables,

so an external variable named x would match with an initialization

segment named _x .

rcopy should be called once for each initialization segment created by

llink . Refer to the Linking Locator chapter in the User's Manual for more

details.

rcopy is a TASKING extension.

realloc

#include <stdlib.h>
void *realloc(void * ptr , size_t size);

realloc changes the size of the object pointed to by ptr to the size

specified by size. The contents of the object will remain unchanged up to

the lesser of the new and old sizes. If ptr is a null pointer, realloc
behaves like the malloc function for the specified size. If size is zero and

ptr is not a null pointer, the object is freed.

Chapter 22–64
L
IB
R
A
R
IE
S

read

#include <unistd.h>
size_t read(int fd, char * buffer, size_t count);

Reads a sequence of characters from a file. This function calls the

low-level routine _read, which interfaces to CrossView Pro's file system

simulation.

read returns the number of characters read.

remove

#include <stdio.h>
int remove(const char * filename);

remove deletes filename and returns zero upon successful completion.

remove must be implemented by the user.

rename

#include <stdio.h>
int rename(const char * old , const char * new);

This routine renames the file old to the filename new and returns zero if

successful.

rename is implemented using CrossView Pro's file system simulation.

rewind

#include <stdio.h>
void rewind(FILE * stream);

The rewind function sets the file position indicator for the stream pointed

to by stream to the beginning of the file. It is equivalent to:

(void) fseek(stream , 0L, SEEK_SET)

• except that the error indicator for the steam is also cleared.

• The rewind function returns no value.

• rewind must be implemented by the user.

Run–Time Library 2–65

• • • • • • • •

scanf

#include <stdio.h>
int scanf(const char * format , ...);

scanf reads input from standard input under control of the string pointed

to by format. The format string specifies admissible input sequences and

how they are to be converted for assignment, using subsequent arguments

as pointers to the objects to receive the converted values. If there are

insufficient arguments or the types of the arguments do not match the

converted values the behavior is undefined. scanf returns EOF if an input

failure occurs before any conversion. Otherwise scanf returns the

number of items assigned.

The following description of the format specification is taken from the

ANSI C standard.

The format is composed of zero or more directives: one or more

white-space characters; an ordinary multibyte character (neither % nor a

white-space character); or a conversion specification. Each conversion

specification is introduced by the character %. After the %, the following

appear in sequence:

• An optional assignment-suppressing character * .

• An optional nonzero decimal integer that specifies the maximum field

width.

• An optional h, l or L indicating the size of the receiving object. The

conversion specifiers d, i , and n shall be preceded by h if the

corresponding argument is a pointer to short int rather than a

pointer to int , or by l if it is a pointer to long int . Similarly, the

conversion specifiers o, u, and x shall be preceded by h if the

corresponding argument is a pointer to unsigned short int rather

than a pointer to unsigned int , or by l if it is a pointer to

unsigned long int . Finally, the conversion specifiers e, f , and g
shall be preceded by l if the corresponding argument is a pointer to

double rather than a pointer to float , or by L if it is a pointer to

long double . If an h, l , or L appears with any other conversion

specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied. The

valid conversion specifiers are described below.

Chapter 22–66
L
IB
R
A
R
IE
S

The scanf function executes each directive of the format in turn. If a

directive fails, as detailed below, the scanf function returns. Failures are

described as input failures (due to the unavailability of input characters) or

matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading

input up to the first non-white-space character (which remains unread),

or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading

the next character of the stream. If one of the characters differs from one

comprising the directive, the directive fails, and the differing and

subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching

input sequences, as described below for each specifier. A conversion

specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are

skipped, unless the specification includes a [, c , or n specifier. (These

white-space characters are not counted against a specified field width.)

An input item is read from the stream, unless the specification includes an

n specifier. An input item is defined as the longest matching sequence of

input characters, unless that exceeds a specified field width, in which case

it is the initial subsequence of that length in the sequence. The first

character, if any, after the input item remains unread. If the length of the

input item is zero, the execution of the directive fails: this condition is a

matching failure, unless an error prevented input from the stream, in

which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of the %n
directive, the count of input characters) is converted to a type appropriate

to the conversion specifier. If the input item is not a matching sequence,

the execution of the directive fails: this condition is a matching failure.

Unless assignment suppression was indicated by a * , the result of the

conversion is placed in the object pointed to by the first argument

following the format argument that has not already received a conversion

result. If this object does not have an appropriate type, or if the result of

the conversion cannot be represented in the space provided, the behavior

is undefined.

The following conversion specifiers are valid:

Run–Time Library 2–67

• • • • • • • •

d Matches an optionally signed decimal integer, whose format

is the same as expected for the subject sequence of the

strtol function with the value 10 for the base argument.

The corresponding argument shall be a pointer to integer.

i Matches an optionally signed integer, whose format is the

same as expected for the subject sequence of the strtol
function with the value 0 for the base argument. The

corresponding argument shall be a pointer to integer.

o Matches an optionally signed octal integer, whose format is

the same as expected for the subject sequence of the

strtoul function with the value 8 for the base argument.

The corresponding argument shall be a pointer to unsigned

integer.

u Matches an optionally signed decimal integer, whose format

is the same as expected for the subject sequence of the

strtoul function with the value 10 for the base argument.

The corresponding argument shall be a pointer to unsigned

integer.

x Matches an optionally signed hexadecimal integer, whose

format is the same as expected for the subject sequence of

the strtoul function with the value 16 for the base
argument. The corresponding argument shall be a pointer to

unsigned integer.

e, f , g Matches an optionally signed floating-point number, whose

format is the same as expected for the subject string of the

strtod function. The corresponding argument shall be a

pointer to floating.

s Matches a sequence of non-white-space characters. The

corresponding argument shall be a pointer to the initial

character of an array large enough to accept the sequence

and a terminating null character, which will be added

automatically.

Chapter 22–68
L
IB
R
A
R
IE
S

[Matches a nonempty sequence of characters from a set of

expected characters (the scanset). The corresponding

argument shall be a pointer to the initial character of an array

large enough to accept the sequence and a terminating null

character, which will be added automatically. The conversion

specifier includes all subsequence characters in the format
string, up to and including the matching right bracket (]).

The characters between the brackets (the scanlist) comprise

the scanset, unless the character after the left bracket is a

circumflex(^), in which case the scanset contains all

characters that do not appear in the scanlist between the

circumflex and the right bracket. If the conversion specifier

begins with [] or [^] , the right bracket character is in the

scanlist and the next right bracket character is the matching

right bracket that ends the specification; otherwise the first

right bracket character is the one that ends the specification.

c Matches a sequence of characters of the number specified by

the field width (1 if no field width is present in the directive).

The corresponding argument shall be a pointer to the initial

character of an array large enough to accept the sequence.

No null character is added. No special provisions are made

for multibyte characters.

p Matches a sequence of hexadecimal characters whose format

is the same as expected for the subject sequence of the

strtoul function with the value 16 for the base argument.

The corresponding argument shall be a pointer to a pointer

to void . This matches the %p conversion by printf .

n No input is consumed. The corresponding argument shall be

a pointer to integer into which is to be written the number of

characters read from the input stream so far by this call to the

scanf function. Execution of a %n directive does not

increment the assignment count returned at the completion

of execution of the scanf function.

% Matches a single %; no conversion or assignment occurs. The

complete conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers E, G and X are also valid and behave the same

as, respectively, e, g and x .

Run–Time Library 2–69

• • • • • • • •

If end-of-file is encountered during input, conversion is terminated. If

end-of-file occurs before any characters matching the current directive

have been read (other than leading white space, where permitted),

execution of the current directive terminates with an input failure;

otherwise, unless execution of the current directive is terminated with a

matching failure, execution of the following directive (if any) is terminated

with an input failure.

If conversion terminates on a conflicting input character, the offending

input character is left unread in the input stream. Trailing white-space

(including new-line characters) is left unread unless matched by a

directive. The success of literal matches and suppressed assignments is not

directly determinable other than via the %n directive.

Notes

• The scanf function returns the value of the macro EOF if an input

failure occurs before any conversion. Otherwise, the scanf function

returns the number of input items assigned, which can be fewer than

provided for, or even zero, in the event of an early matching failure.

• scanf is identical to the fscanf and sscanf routines, except

fscanf reads its input from the specified input stream; sscanf
reads its input from the string s.

setbuf

#include <stdio.h>
void setbuf(FILE * stream , char * buf);

setbuf may be used only after the stream pointed to by stream has been

opened but before any other operation is performed on the stream. If buf
is NULL, then it causes the stream to be unbuffered. Otherwise buf must

point to an array of size BUFSIZE and buf is used as the buffer in a fully

buffered file.

setbuf must be implemented by the user.

setjmp

#include <setjmp.h>
int setjmp(jum_buf x);

setjmp establishes an environment for later use by longjmp. The type of

the argument, jmp_buf , is provided in the setjmp.h include file.

Chapter 22–70
L
IB
R
A
R
IE
S

See longjmp for more details.

setlocale

#include <locale.h>
char *setlocale(int category , const char * locale);

setlocale returns a pointer to a string that describes the new locale, or

a null pointer if locale cannot be changed. The value of category must

match the value of one of the macros defined in the header file

locale.h . These macros begin with LC_.

If locale is a null pointer, setlocale does not change the current locale.
If locale points to the string �C", the new locale is the �C" locale for the

category specified. If locale points to the string � ", the locale is the native

locale for the category specified. locale can point to strings returned from

previous calls to setlocale .

At program startup, the target environment acts as if the call

setlocale (�LC_ALL","C") was called before it called main.

The supplied setlocale only works for the �C" locale.

setvbuf

#include <stdio.h>
int setvbuf(FILE * stream , char * buf ,
 int mode, size_t size);

setvbuf sets the buffering mode for the stream pointed to by stream,

according to buf, mode and size. If buf is not a null pointer, then buf is
the address of the first element of an array of chars of size size that can be

used as a stream buffer. mode must be one of the following macros:

_IOFBF (full buffering), _IOLBF (line buffering) _IONBF (no buffering).

setvbuf must be called immediately after a call to fopen to associate a

file with that stream.

setvbuf must be implemented by the user.

Run–Time Library 2–71

• • • • • • • •

signal

#include <signal.h>
void (*signal(int sig , void (* func)(int)))(int);

The signal function allows a program to specify what action shall be

taken upon receipt of the signal sig, which may be generated externally, or

may be explicitly generated with the raise function. If the value of func
is SIG_DFL, default handling for that signal will occur. If the value of func
is SIG_IGN , the signal will be ignored. Otherwise, the signal handler

pointed to by func will be called upon receipt of signal sig. If no errors

are detected, signal returns the value of func for the most recent call to

signal for the specified flag sig. Otherwise, a value of SIG_ERR is

returned and a positive value is stored in errno .

Since most embedded applications will not want to abort when errors are

detected, the library as distributed does not raise signals under any

circumstances.

sin

#include <math.h>
double sin(double x);

sin computes the sine of x, expressed in radians.

sinh

#include <math.h>
double sinh(double x);

sinh computes the hyperbolic sine of x.

sprintf

#include <stdio.h>
int sprintf(char * s, const char *format , ...);

printf.

Chapter 22–72
L
IB
R
A
R
IE
S

sprintf is identical to printf , but directs its output to the string s. See

printf for more details.

sqrt

#include <math.h>
double sqrt(double x);

sqrt computes the square root of x. If x is less than zero, errno is set to

EDOM and an IEEE NaN (Not a Number) is returned.

srand

#include <stdlib.h>
void srand(unsigned int seed)

srand resets the seed for the random number generator rand with the

value seed.

sscanf

#include <stdio.h>
int sscanf(const char * s,

const char *format , ...);

See scanf.

sscanf is identical to fscanf and scanf , but reads its input from the

string s. See scanf for more details.

Run–Time Library 2–73

• • • • • • • •

stat

#include <unistd.h>
int stat(const char * name, struct stat * buf);

Use the file system simulation feature of CrossView Pro to stat() a file on

the host platform. Returns zero if successful or -1 on error.

strcat

#include <string.h>
char *strcat(char * s1 , const char *s2);

strcat appends a copy of the string pointed to by s2 (including the

terminating null character) to the end of the string pointed to by s1. The

initial character of s2 overwrites the null characters at the end of s1.

s1 must contain enough room to hold the resulting string.

strchr

#include <string.h>
char *strchr(const char * s, int c);

strchr looks for the first occurrence of a specific character, c, in a null

terminated target string, s. strchr returns a pointer to the first character

that matches c. If no character matches c, strchr returns NULL.

In ANSI C, strchr replaces the Unix index routine.

strcmp

#include <string.h>
int strcmp(char * s1 , const char *s2);

strcmp compares the strings s1 and s2, character by character, for lexical

order in the character collating sequence. strcmp returns zero if the

strings are equal; an integer greater than zero if s1 is lexically larger than

s2. If s1 is lexically smaller than s2, strcmp returns an integer less than

zero.

Chapter 22–74
L
IB
R
A
R
IE
S

strcoll

#include <string.h>
int strcoll(const char * s1 , const char * s2);

strcoll compares the string s1 to the string s2, and with both strings

interpreted as appropriate to the LC_COLLATE setting of the current locale.

The routine returns an integer greater than, equal to, or less than zero, if

s1 is greater than, equal to, or less than s2, interpreted according to the

locale.

In the �C" locale, strcoll is equivalent to strcmp .

strcpy

#include <string.h>
char *strcpy(char * s1 , const char *s2);

strcpy copies the string s2 and its terminating null to s1 and returns s1.

s1 must contain enough room to hold the result.

strcspn

#include <string.h>
size_t strcspn(char * s1 , const char *s2);

strcspn scans the string starting at s1 for the first occurrence of a

character in the string starting at s2. strcspn returns the length of the

initial segment of s1, which consists entirely of characters not in s2.

strerror

#include <string.h>
char *strerror(int errnum);

strerror maps the error number in errnum to an error message which

strerror returns. The message buffer is static and is overwritten by

subsequent calls to strerror.

Run–Time Library 2–75

• • • • • • • •

strftime

#include <time.h>
size_t strftime(char * s, size_t maxsize ,

const char * format ,
const struct tm * timeptr);

strftime puts characters into the array, s, as specified by the format

string, format. The format string consists of zero or more conversion

specifiers and ordinary characters. The conversion specifiers are given

below. Any ordinary characters including the terminating null character are

copied unchanged into the array. No more than maxsize characters are

placed into the array. The values used in the conversions are contained in

the structure timeptr.

If the total number of resulting characters is not more that maxsize, then

strftime returns the number of characters copied into the array, s,
otherwise strftime puts maxsize characters in the array s and returns the

value zero.

Format specifiers:

%a is replaced by the locale's abbreviated weekday name.

%A is replaced by the locale's full weekday name.

%b is replaced by the locale's abbreviated month name.

%B is replaced by the locale's full month name.

%c is replaced by the locale's appropriate date and time

representation.

%d is replaced by the day of the month (01-31).

%H is replaced by the hour of the day, 24 hour clock (00-23).

%I is replaced by the hour of the day, 12 hour clock (01-12).

%j is replaced by the day of the year (001-366).

%m is replaced by the month (01-12).

%M is replaced by the minute (00-59).

Chapter 22–76
L
IB
R
A
R
IE
S

%P is replaced by the locale's AM/PM designation associated

with a 12 hour clock.

%S is replaced by the seconds (00-59).

%U is replaced by the week number of the year, with the first

Sunday of the year as the first day of week 1 (00-53).

%w is replaced by the weekday, Sunday = 0, Saturday = 6.

%W is replaced by the week number of the year, with the first

Monday of the year as the first day of week 1 (00-53).

%x is replaced by the date representation.

%X is replaced by the time representation.

%y is replaced by the year without the century (00-99).

%Y is replaced by the year with the century.

%Z is replaced by no characters.

%% is replaced by %.

strlen

#include <string.h>
size_t strlen(const char * s);

strlen scans the text string starting at s and returns the number of

characters it encounters before the first null character.

strncat

#include <string.h>
char *strncat(char * s1 , const char *s2, size_t n);

strncat appends up to n characters from the string s2 to the end of

string s1, and then terminates the string with a null. strncat returns its

first argument, s1.

strncat is identical to strcat , except it appends a limit of n characters,

plus one for the null.

Run–Time Library 2–77

• • • • • • • •

strncmp

#include <string.h>
char *strncmp(char * s1 , const char *s2 , size_t n);

strncmp compares two text strings, s1 and s2, character by character, for

lexical order in the character collating sequence. The first string starts at s1,

the second at s2. n specifies the maximum number of characters to be

compared, unless the terminating null in s1 or s2 is encountered first. The

strings must match, including any terminating null characters that may be

encountered, in order for them to be equal. strncmp returns an integer

greater than zero if s1 is lexically greater than s2, zero if s1 is lexically

equal to s2, and an integer less than zero if s1 is lexically less than s2.

strncmp is identical to strcmp , except it compares a maximum of n
characters.

strncpy

#include <string.h>
char *strncpy(char * s1 , const char *s2 , size_t n);

strncpy copies characters from s2 to s1 until it reaches the end of s2 or

until n characters have been copied. strncpy pads with zeros, if

necessary, to copy n characters total. strncpy returns its first argument,

s1.

If the string s2 is longer than n characters, s1 may not end with a null

character.

strpbrk

#include <string.h>
char *strpbrk(const char * s1 , const char * s2);

strpbrk scans the string s1 for the first occurrence of a character in the

string s2. strpbrk returns a pointer to the first character in s1 that is also

in s2, or null if s1 has no characters from s2.

Chapter 22–78
L
IB
R
A
R
IE
S

strrchr

#include <string.h>
char *strrchr(const char * s, int c);

strrchr looks for the last occurrence of a specific character, c, in a null

terminated target string, s. strrchr returns a pointer to the last character

that matches c. If no character matches c, strrchr returns NULL.

In ANSI C, strrchr replaces the Unix rindex routine.

strspn

#include <string.h>
size_t strspn(char * s1 , const char *s2);

strspn scans the string s1 for the first occurrence of a character not in the

string s2. strspn returns the length of the initial segment of s1 which

consists entirely of characters in s2.

strstr

#include <string.h>
char *strstr(const char * s1 , const char *s2);

strstr finds the first instance of the string s2 in the string s1. strstr
returns a pointer to the occurrence of s1 if found or a null pointer if the

string was not found. If s2 points to a string of zero length, strstr
returns s1.

strtod

#include <stdlib.h>
double strtod(const char * s, char ** endptr);

strtod converts a string s, into a double floating-point type. strtod is

identical to atof , except that it stores a pointer to the remainder of the

string in the object pointed to by endptr, providing that endptr is not

NULL. Leading white-space characters (as defined by the isspace
function) are allowed.

Run–Time Library 2–79

• • • • • • • •

If strtod detects a format error in the string, it returns zero. If the correct

value is outside the range of representable values, plus or minus

HUGE_VAL is returned and the value of the macro ERANGE is stored in

errno .

strtok

#include <string.h>
char *strtok(char * s1 , const char *s2);

strtok breaks a string into tokens. Consider s1 as a sequence of zero or

more tokens separated by spans of one of more characters from the

�separator" string, s2. The first call to strtok returns a pointer to the first

token in s1, and will have a null written at the end of the token. The

function keeps track of its position in s1, and subsequent calls work

through s1 after the last token returned. When no tokens remain, strtok
returns NULL. The s2 string may be different from call to call.

This routine will not operate correctly if s1 points to ROM (read-only

memory).

strtol

#include <stdlib.h>
long strtol(const char * s, char ** endptr , int base);

strtol converts a string, s, into a long integer. The string that will be

converted is the longest string which matches the following pattern:

optional white–space
optional +/– sign,
optional 0x or 0X,
0–9, a–z, A–Z

Here a-z represent 10 to 35 for bases greater than 10. The 0x or 0X are

only allowed when the base is zero or 16. strtol only understands letters

that are less than the base. If base equals 0, and there is a leading 0x or

0X, the base is assumed to be 16. If there is a leading 0, the base is octal

(8). Any other initial patterns are considered to be decimal (base 10)

numbers.

*endptr is set to the remainder of the string that was not converted to a

long.

Chapter 22–80
L
IB
R
A
R
IE
S

If s does not contain a valid pattern, then *endptr is set equal to s, and the

strtol returns zero. If the value is too large to be represented by a long,

strtol sets errno to ERANGE, returns LONG_MAX for positive numbers,

and returns LONG_MIN for negative numbers.

strtoul

#include <stdlib.h>
unsigned long strtoul(const char * s,
 char ** endptr , int base);

strtoul converts a string, s, into an integer of type unsigned long

integer. strtoul is identical to strtol, except that it converts the string

to an unsigned long int.

*endptr is set to the remainder of the string that was not converted to a

long.

If s does not contain a valid pattern, *endptr is set equal to s, and the

strtoul returns zero. If the value is too large to be represented by an

unsigned long, strtoul sets errno to ERANGE, and returns ULONG_MAX.

strxfrm

#include <string.h>
size_t strxfrm(char * s1 , const char * s2 , size_t n);

strxfrm transforms the input string pointed to by s2 and places the result

in s1. No more than n characters are stored in s1, including the

terminating null character. The transformation is such that strcmp on the

transformed strings yields the same value as strcoll on the

untransformed strings.

If n is zero, then s1 may be null. strxfrm returns the length of the

transformed string, not including the null character. If the value returned is

n or more, then no characters are copied.

Run–Time Library 2–81

• • • • • • • •

swab

#include <extended.h>
void swab(char * from , char * to , int nbytes);

swab copies nbytes bytes pointed to by from to the position pointed to by

to, exchanging adjacent even and odd bytes.

nbytes should be an even number.

If from and to data areas overlap, the results are undefined.

swab is a TASKING extension.

system

#include <stdlib.h>
int system(const char * str);

system passes the string str to the host environment's command

processor. If str is a null pointer, system can be used to inquire whether a

command processor exists, in which case system returns nonzero only if

a command processor exists.

system must be implemented by the user.

tan

#include <math.h>
double tan(double x);

tan computes the tangent of x, expressed in radians.

tanh

#include <math.h>
double tanh(double x);

tanh computes the hyperbolic tangent of x.

Chapter 22–82
L
IB
R
A
R
IE
S

time

#include <time.h>
time_t time(time_t * timer);

time returns the current calendar time, expressed as the number of

seconds that have elapsed since Jan 1, 1970 12:00 A.M.

time must be implemented by the user. The current return value is

(time_t)-1.

tmpfile

#include <stdio.h>
FILE *tmpfile(void);

tmpfile creates a file that will be automatically be removed when the file

is closed or the program exits.

tmpfile must be implemented by the user.

tmpnam

#include <stdio.h>
char *tmpnam(char * s);

tmpnam returns a valid file name that will not conflict with any existing file

names.

tolower

#include <ctype.h>
int tolower(int c);

tolower converts an upper-case letter c to its lower-case equivalent,

leaving all other characters unmodified. tolower returns the

corresponding lower-case character or the unchanged character.

tolower is a function, not a macro. If c is known to be an upper-case

character, then __tolower is faster.

Run–Time Library 2–83

• • • • • • • •

toupper

#include <ctype.h>int toupper(int c);

toupper converts a lower-case character c to its upper-case equivalent,

leaving all other characters unmodified. toupper returns the

corresponding upper-case letter or the unchanged letter.

toupper is a function, not a macro. If c is known to be a lower-case

character, then __toupper is faster.

ungetc

#include <stdio.h>
int ungetc(int c, FILE *stream);

ungetc �puts back" the character c into the specified input stream.

The ANSI C standard only guarantees that one character can be �ungotten"

without an intervening read.

unlink

#include <unistd.h>
int unlink(const char * name);

Removes the named file, so that a subsequent attempt to open it fails. This

function calls the low-level routine _unlink.

unlink returns zero if file is successfully removed, or a non-zero value, if

the attempt fails.

va_arg

#include <stdarg.h>
type va_arg(va_list ap, type);

The va_arg macro expands to an expression that has the type type and

value of the next varying argument in the call. The parameter ap must be

the same as that returned by va_start . Each invocation of va_arg
modifies ap so that the values of successive arguments are returned.

Chapter 22–84
L
IB
R
A
R
IE
S

va_end

#include <stdarg.h>
void va_end(va_list ap);

The va_end macro is used after all parameters on a variable length

parameter list have been accessed with va_arg . It must be referenced

before return from the function that contains the variable length argument

list.

va_end generates no code; it is only used to guarantee portability to other

compiler systems.

va_start

#include <stdarg.h>
void va_start(va_list ap, parameter);

The macro va_start is used to initialize the reading of variable length

arguments. It initializes ap for subsequent use by va_arg and va_end .

parameter is the rightmost identifier in the variable parameter list in the

function definition (the one just before the ellipsis).

vfprintf

#include <stdio.h>
int vfprintf(FILE * stream , const char * format ,
 va_list arg);

vfprintf is equivalent to fprintf, with the variable argument list

replaced by arg. arg must be initialized by the va_start macro (and

possibly subsequent va_arg calls). vfprintf returns the number of

characters transmitted or a negative number if an output error occurred.

vfprintf does not invoke the va_end macro.

Run–Time Library 2–85

• • • • • • • •

vprintf

#include <stdio.h>
int vprintf(const char * format , va_list arg);

vprintf is equivalent to printf, with the variable argument list

replaced by arg. arg must be initialized by the va_start macro (and

possibly subsequent va_arg calls). vprintf returns the number of

characters transmitted or a negative number if an output error occurred.

__yvprintf and vprintf are identical.

vprintf does not invoke the va_end macro.

vsprintf

#include <stdio.h>
int vsprintf(char * s, const char * format ,
 va_list arg);

vsprintf is equivalent to sprintf , with the variable argument list

replaced by arg. arg must be initialized by the va_start macro (and

possibly subsequent va_arg calls). vsprintf returns the number of

characters written to the array, not including the terminating null character.

vsprintf does not invoke the va_end macro.

wcstombs

#include <stdlib.h>
size_t wcstombs(char * s, const wchar_t * pwcs ,
 size_t n);

wcstombs copies n wide characters from pwcs to the multi-byte character

string s. wctombs returns 0 if pwcs is null, and returns -1 if pwcs contains

an invalid character. Otherwise, up to n characters are copied from pwcs to
s and the number of characters copied is returned. The wcstombs routine

assumes the Shift JIS convention for Japanese characters. See mblen for

more details.

Chapter 22–86
L
IB
R
A
R
IE
S

wctomb

#include <stdlib.h>
int wctomb(char * s, wchar_t wc);

wctomb copies the wide character wc to s. It returns 0 if s is a null pointer

and returns -1 if wc is an invalid character. Otherwise wc is written at s
and 1 is returned if the character is a one-byte ASCII or kana code and 2

is returned if it is a two-byte Kanji code. wctomb assumes the shift JIS

convention for Japanese characters. See mblen for more details.

write

#include <unistd.h>
size_t write(int fd, char * buffer, size_t count);

Write a sequence of characters to a file. This function calls the low-level

routine _write, which interfaces to CrossView Pro's file system simulation.

write returns the number of characters correctly written.

3

ASSEMBLY
LANGUAGE
REFERENCE

C
H

A
P

T
E

R

Chapter 33–2
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

3

C
H

A
P

T
E

R

Assembly Language Reference 3–3

• • • • • • • •

The assembly language implemented by the 68K/ColdFire family

assembler was designed by Motorola, Inc. It has the features commonly

found in modern macro assembly languages. These features include

absolute/relocatable code generation, complex relocatable expressions,

macros, conditional assembly, and structured syntax. This chapter

summarizes the basic structure of the assembly language, and gives an

overview of the assembly language features.

3.1 PREFACE

The 68K/ColdFire family assembler translates assembly language source

programs into object modules. It is part of the TASKING 68K/ColdFire

toolkit, an integrated set of cross-compilers, assemblers, source level

debugger and other utilities. The other parts of the development system

are described in the User's Manual, which gives information on how to

invoke the assembler on your host system.

The TASKING 68K assembler was designed to be compatible with the

Motorola 68000 assembler. Most programs developed for the Motorola

assembler should be readily portable and source-compatible with the

TASKING 68K assembler.

This document provides information necessary to use the assembler to

develop assembly language programs for the Motorola 68K/ColdFire family

of microprocessors. It is not a comprehensive guide to the instruction set

and architecture of the 68K/ColdFire family of microprocessors.

Portions of this document are copyrighted by and used with the

permission of Motorola, Inc.

3.2 RELATED PUBLICATIONS

The following Motorola Inc. publications provide a comprehensive

treatment of microprocessor architecture and the instruction set. They may

be ordered from Motorola.

• M68000 Family Programmers Reference Manual (Motorola, Inc.)

• CPU32 Reference Manual (Motorola, Inc.)

• MC68xxx User's Manuals (Motorola, Inc.)

• ColdFire Family Programmers Reference Manual (Motorola, Inc.)

• MCF5xxx User's Manuals (Motorola, Inc.)

Chapter 33–4
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

See the Motorola Semiconductor website (http://e-www.motorola.com) for

the complete documentation list for your derivative.

3.3 USING ASSEMBLY LANGUAGE

High-level languages (e.g., C and Pascal) can decrease the development

time needed for a program or system. All things being equal, a high-level

language program is likely to be more reliable, easier to understand, and

easier to maintain. However, high-level languages do not permit the

programmer to directly access all the microprocessor's features, such as

registers, processor flags, and special instructions.

As a result, an assembly language program, while sometimes taking longer

to code and debug, can run much faster and occupy less memory than the

equivalent program written in a high-level language. Since program

development time is expensive, the trade-off between development time

and program performance should be analyzed for each application. The

optimal solution is usually found in writing most routines in a high-level

language and in writing the time-critical, space-critical, and special

routines (e.g., I/O routines) in assembly language.

3.4 ELEMENTS OF ASSEMBLY LANGUAGE

The lines in an assembly language source file can be classified in four

general categories: instruction statements, data allocation statements,

assembler directives, and assembler controls.

An instruction statement uses an easily remembered name, a

mnemonic, and possibly one or two operands+ to specify a machine

instruction to be generated.

A data allocation statement reserves, and optionally initializes, memory

space for program data.

An assembler directive is a statement that gives special instructions to

the assembler. Although directives may produce something in the object

file, they are unlike the instruction and data allocation statements in that

they do not specify the actual contents of memory.

An assembler control is also a statement that gives special instructions to

the assembler. Assembler controls are used to control the assembly process

rather than to define the meaning of the program being assembled.

Assembly Language Reference 3–5

• • • • • • • •

Here are some examples of the different kinds of statements:

 Statement Type Examples

 Instruction MOVE D2,D4
JSR SORT_PROCEDURE

 Data Allocation DS.W 0
DC.B ‘H’

 Assembler Directive SECTION MYSEC
COUNT EQU 5

 Assembler Control NOPAGE
INCLUDE source.inc

Table 3-1: Statements

In addition, the language is composed of the following symbolic elements:

• Symbolic names or labels, which are instructions, directives, register

mnemonics, user-defined memory labels, and macros.

• Numbers, which may be represented in binary, octal or decimal.

• Arithmetic and logical operators, which are used in complex

expressions.

• Special purpose characters, which are used for macro functions, source

line fields, and numeric bases.

3.5 NOTATION

A small amount of specialized notation is used in this document to specify

the general format for instructions and directives. It is based on fairly

standard additions to the Backus-Naur Form (BNF) formalism. The four

�metasymbols" described below are used throughout this manual to

indicate that the user must replace the metasymbols and the characters

they enclose with some legal text. The actual text that can be substituted

will be different in each case, and depends on what type of assembly

language statement is being described.

Chapter 33–6
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

When symbols or metasymbols represent the actual commands or text to

be supplied, they will be in boldface. When symbols or metasymbols

must be replaced by commands or text, they will be in italics. In some

cases, the characters used as metasymbols are required characters in a

statement rather than metasymbols. In those cases they will appear in

boldface rather than italics. The four metasymbols and their meanings are:

< > Angular brackets enclosing a name indicate that one element

of the general category specified by the name is to be

selected.

| The pipe (vertical bar) indicates that a choice is to be made.

One of the symbols separated by the pipe character(s) should

be selected.

[] Square brackets indicate that the enclosed sequence is

optional. The enclosed sequence may occur one time or not

at all.

[]... Square brackets followed by periods enclose a symbol that is

optional but repetitive. The symbol may appear zero or more

times.

For example,

MOVE[.<size>] <source>,<destination>

where:

<size> = B | W | L

BFEXTS <ea>{<offset>:<width>},Dn

where:

<offset> = #<expr> | Dn
<width> = #<expr> | Dn

In the first example, the [.<size>] notation implies the user may supply

MOVE.L, MOVE.W, MOVE.B, or MOVE as legal mnemonics.

In the second example, the user must supply either an immediate value or

a data register for the �offset" and �width" symbols. The curly braces must

appear in the instruction. Thus, a legal instruction would be:

BFEXTS LAB{0:8},D1.

n

4

SOURCE PROGRAM
CODING

C
H

A
P

T
E

R

Chapter 44–2
C
O
D
IN
G

4

C
H

A
P

T
E

R

Source Program Coding 4–3

• • • • • • • •

A source program is a sequence of source statements arranged in a logical

way to perform a predetermined task. The assembler interprets and

processes each source line, generating object code or performing a

specific assembly time process. This chapter discusses some facets of

source program coding including source line format, symbols, constants,

operators and expressions. For other facets such as registers, addressing

modes, instruction mnemonics, and other instruction types refer to the

Microprocessor Manual for your particular processor.

4.1 INTRODUCTION

A source program is a sequence of source statements arranged in a logical

way to perform a predetermined task. The assembler interprets and

processes each source line, generating object code or performing a

specific assembly time process. Each source statement occupies a line of

printable text, where each line may be one of the following:

• Comment

• Executable instruction

• Assembler directive

• Macro invocation

The TASKING 68K/ColdFire cross-assemblers are case insensitive to source

input except as noted under the INCLUDE directive or for ASCII strings.

4.2 COMMENTS

Comments are strings of characters that are inserted only to identify or

clarify the program. Comments are included in the assembly listing but are

otherwise ignored by the assembler.

A comment may be inserted in one of two ways:

• As a line, starting in column one, where an asterisk (*) is the first

character in the line. The entire line is a comment, and an instruction

or directive in this line will not be recognized.

• Following the operation and operand fields of an assembler instruction

or directive, where it is preceded by at least one blank or tab character.

Example

* THIS ENTIRE LINE IS A COMMENT.
BRA LAB2 THIS COMMENT FOLLOWS AN INSTRUCTION

Chapter 44–4
C
O
D
IN
G

4.3 SOURCE LINE FORMAT

Each source statement has an overall format that is some combination of

the following fields:

• Label

• Operation

• Operand

• Comment

The statement lines in the source file must not be numbered. However, in

the listing file the assembler prefixes each line with a sequential number,

up to four decimal digits.

The format of each line of source code is described in the following

paragraphs.

4.3.1 LABEL FIELD

The label field is the first field in the source line. A label which begins in

the first column of the line may be terminated by either a blank, a tab, or a

colon. A label may be preceded by one or more blanks or tabs, provided

it is then terminated by a colon. In either case, the colon is not considered

to be part of the label.

Labels are allowed on all instructions and on all assembler directives

which define data structures. For such operations, the label is defined with

a value equal to the location counter for the beginning of the instruction

or directive, including a designation for the program section (if there is

one) in which the definition appears.

Labels are required on the assembler directives which define symbol

values (SET, EQU, REG). For these directives, the label is defined to be the

value of the expression in the operand field. This value consists of a

constant and, if the expression is relocatable, a section designation.

Labels are required on macro definitions and serve as the mnemonic by

which that macro is subsequently invoked. No memory address is

associated with such labels. A label is also required on the IDNT directive.

This label is passed on to the relocatable object module but it has no
associated internal value. The IDNT statement, therefore, cannot be used

to define program entry points.

Source Program Coding 4–5

• • • • • • • •

Labels which are the only field in the source line are defined equal to the

current location counter value plus, if the section is relocatable, the

program section.

4.3.2 OPERATION FIELD

The operation field follows the label field and is separated from it by at

least one blank or tab. If the label field is not being used, the operation

field must be at least one blank or tab from the left margin. The operation

field specifies the action to be performed by the statement. Entries in this

field fall under one of the following categories:

• Instruction mnemonics: The M68000-family processor

 instruction set.

• Directive mnemonics.: These control the assembly process.

• Macro calls.: These are invocations of previously

 defined macros.

The size of the data field affected by an instruction is determined by the

data size code. Some instructions and directives can operate on more than

one data size. For these operations, the data size code must be specified or

a default size is assumed. The size code need not be specified if only one

data size is permitted by the operation. The data size code is specified by

appending a period (.) to the operation field, followed by B, W, L, S, D, X,

or P, where the appended character is interpreted as described below:

B Byte (8-bit data)

W Word (16-bit data)

L Longword (32-bit data)

S Byte (8-bit signed offset for certain branch instructions)

Single precision binary real (IEEE Standard, 32-bit: 1-bit sign,

8-bit exponent, 23-bit mantissa) (68881/68882/68040/68060

only)

D Double word (64-bit data) (68030, 68040, 68060, and 68851

only)

Double precision binary real (IEEE Standard, 64-bit: 1-bit

sign, 11-bit exponent, 52-bit mantissa)

(68881/68882/68040/68060 only)

Chapter 44–6
C
O
D
IN
G

X Extended precision binary real (96-bit: 15-bit exponent, 1-bit

sign, 64-bit mantissa), (16 bits are reserved)

(68881/68882/68040/68060 only)

P Packed Binary Coded Decimal (BCD) real string (96-bit:

3-decimal digit exponent and 17-decimal digit mantissa)

(68881/68882/68040/68060 only)

The data size code is not permitted, however, when the instruction or

directive does not have a data size attribute.

Examples (legal)

 LEA 2(A0),A1 Longword size is assumed.
* (.B, .W not allowed) This
* instruction loads the
* effective address pointed
* to by A0+2 into A1.
*
 ADD.B ADDR,D0 This adds the byte whose
* address is ADDR to
* the low order byte in DO.
*
 ADD D1,D2 This adds the low order
* word of D1 to the low
* order word of D2. (W is
* the default size code.)
*
 ADD.L A3,D3 This adds the 32–bit
* contents of A3 to D3.
*

Example (illegal)

SUBA.B #5,A1 Illegal size specification
* (.B not allowed on SUBA)
* This instruction attempts
* to subtract the value 5
* from the low order byte
* of A1; but byte operations
* on address registers are
* not allowed.
*

Source Program Coding 4–7

• • • • • • • •

4.3.3 OPERAND FIELD

If present, the operand field follows the operation field and is separated

from the operation field by at least one blank or tab. When two or more

operand subfields appear within a statement, they must be separated by a

comma but may not contain embedded blanks or tabs;

e.g., �ADD D1, D2" is illegal.

For most two operand instructions, the general format �opcode
source,destination" applies. For example, in an instruction like �ADD

D1,D2", the contents of D1 are added to the contents of D2 and the result

is saved in register D2. In the instruction �MOVE D1,D2", the first operand

(D1) is the sending operand and the second operand (D2) is the receiving

operand.

4.3.4 COMMENT FIELD

The last field of a source statement is an optional comment field. This field

is ignored by the assembler, but is included in the listing. The comment

field is separated from the operand field (or the operation field, if there is

no operand) by at least one blank or tab, or by a semicolon (;), and may

consist of any ASCII characters.

4.4 SYMBOLS

Symbols can correspond to either a specific numerical value by using an

EQU or SET directive, or the address of a memory location. The memory

location can represent the destination of a branch instruction or the start of

a data area. This use of symbolic references to memory allows statements

to be written without specifying actual memory locations. An entry in the

label field is required for all statements that are the destination of jump

and branch instructions and in statements using the EQU or SET directives.

Chapter 44–8
C
O
D
IN
G

4.4.1 SYMBOL SYNTAX

Symbols recognized by the assembler consist of one or more valid

characters (refer to the Character Set appendix), all of which are

significant. The first character must be an upper case or lower case letter,

(A-Z or a-z), a period (.) or an underscore (_). Each remaining character

may be an upper case or lower case letter (A-Z, a-z), a period (.), an

underscore (_), a digit (0-9), a dollar sign ($), or a question mark (?).

4.4.2 SYMBOL DEFINITION CLASSES

Symbols may be differentiated by usage into two classes. Class 1 symbols

are used in the operation field of an instruction. Class 2 symbols occur in

the label and operand fields of the instruction. Assembler directives

(including those for structured assembly), instruction mnemonics, and

macro names comprise Class 1 symbols; Class 2 symbols consist of user

defined labels and register mnemonics.

A Class 1 symbol may be redefined and used independently as a Class 2

symbol, and vice versa. As long as each symbol is used correctly, no

conflict will result from the existence of two symbols of different classes

with the same name. For example, the following is a legal instruction

sequence:

ADD D1,ADD
.
.
.

ADD DS 2

By its usage as a Class 1 symbol, the first ADD is recognized as an

instruction mnemonic; the second ADD is recognized as a Class 2 symbol

identifying a reserved storage area. The assembler differentiates a Class 1

symbol from a Class 2 symbol with the same name, thereby allowing two

symbol table entries with the same name but different class.

Macro labels are a special case because the same symbol will appear as

the label (Class 2) in the MACRO definition and, subsequently, as an

operation code mnemonic (Class 1) in invocation of that same macro.

Macro labels are defined to be Class 1 symbols; their presence in the label

field of a MACRO directive is ignored as a Class 2 symbol. Therefore,

macro names may be redefined as Class 2 symbols without conflict.

Source Program Coding 4–9

• • • • • • • •

Except for the SET directive, which allows multiple redefinition of a Class

2 symbol, a symbol may not be redefined within the same class. For

example, SUB (reserved Class 1 symbol) may not be redefined as a macro

label (also Class 1), nor may A5 (reserved Class 2 symbol) be redefined as

a statement or storage location label (also Class 2).

4.4.3 USER-DEFINED LABELS

Labels are symbols that are defined by the user to identify memory

locations in program or data areas of the assembly module.

Labels may have an absolute or relocatable value, depending upon the

section in which the labeled memory location is found. If the memory

location is within a relocatable section, the label has a relocatable value,

i.e., it depends on where the section is placed. If the memory location is in

an absolute section, the label has an absolute value.

Labels may be defined in the label field of an executable instruction or a

data definition directive source line. It is also possible to define a label

with the SET or EQU directive to an arbitrary value.

4.4.4 LOCATION COUNTER SYMBOL "*"

The special symbol "*" may be used to refer to the current location counter

value.

4.5 CONSTANTS

4.5.1 INTEGER CONSTANTS

Numeric constants recognized by the assembler may be expressed in

decimal, hexadecimal, octal, and binary form. They must have integral

values and must be expressible in 32 bits.

Decimal Constants

Decimal is the default base used for evaluating numeric values and

consists of a string of numeric digits.

Chapter 44–10
C
O
D
IN
G

Example:

12345 Valid
12.3 Invalid: can consist only of digits

Hexadecimal Constants

A hexadecimal constant consists of characters from the set of decimal

digits (0-9) and the alphabetic characters (A-F, a-f) and is preceded by a

dollar sign ($) or followed by an H.

If the suffix form is used, the first character must be a digit to distinguish

the hexadecimal constant from a symbol name.

Example:

$12 Valid
01CFH Valid
$01CF Valid
ABCDH Invalid: no preceding $

* This would be interpreted as
* symbol ABCDH

Octal Constants

An octal constant consists of characters from the set of digits (0-7),

preceded by a commercial at sign (@) or followed by a Q.

Example:

@17634 Valid
275Q Valid
@27832 Invalid: character 8 not

* allowed

Binary Constants

A binary constant consists of 1's and 0's, preceded by a percent sign (%)

or suffixed by a B.

Example:

%10100 Valid
10111B Valid
%21001 Invalid: character 2 not

* allowed

Source Program Coding 4–11

• • • • • • • •

4.5.2 CHARACTER CONSTANTS

One or more printable ASCII characters enclosed by apostrophes (')

constitute a character constant. Character constants longer than four

characters may only be stored in memory, e.g., using the DC (define

constant) directive. Shorter character constants may also be used as

immediate operands, in which case they are treated as an integer

according to the rules described below.

Character constants are left justified and zero filled, if necessary, whether

stored or used as immediate operands. Constants with four or three

characters are aligned to a longword. Constants with two characters are

aligned to a word. Single character constants are word aligned if the

operand size is larger than a byte, and byte aligned if the operation size is

a byte.

In order to specify an apostrophe within a character constant, two

successive apostrophes must appear where the single apostrophe is

intended to appear.

Examples

tB_DIG_1 EQU.B ’1’ Equates B_DIG_1 with
* hex 31
W_DIG_1 EQU ’1’ Equates W_DIG_1 with
* hex 3100
 DC.L ’79’ Stores hex 37390000
* in memory
 MOVE.L #’1’,D0 Moves hex 00003100
* into D0
 MOVE.B #’1’,D0 Moves hex 31 into
* low byte of D0
 MOVE.L #’123’,D0 Moves hex 31323300
* into D0

4.5.3 FLOATING POINT CONSTANTS

(68881/68882/68040/68060 ONLY)

IEEE standard floating-point numbers can be specified by an optionally

signed fraction string of up to 17 decimal digits (0-9) containing a required

decimal point, the constant �E" an optional sign, and an exponent up to 3

decimal digits. The exponent section �E<sign>yyy" is optional; underscores

can occur for readability.

Chapter 44–12
C
O
D
IN
G

Floating Point Constant Notation

[<sign>|x.xxxxxxxxxxxxxxxx[E[<sign>]yyy]
(maximum size)

where:

<sign> is + | -

x and y are decimal digits

Example:

DC.X 1234.56E–33
DC.X –12345.67

Floating point numbers can also be specified explicitly as a series of

hexadecimal digits preceded by a colon (:). This floating-point hex format

can be used to exactly represent the mantissa, exponent, and sign bit for a

given floating-point number.

Floating Point Hex Constant Notation

:hhhhh[h]...

where:

h is a hex digit

Up to 8 digits are allowed for .S precision, up to 16 for .D, and up to 24

for .X or .P.

Example:

DC.S :124F67B STORES HEX 124F67B0
* IN MEMORY

4.6 OPERATORS

Operators recognized by the assembler include, in order of operator

precedence (from highest to lowest):

1. Parenthetical Expression (innermost first)

2. Unary Minus, Plus, SEGSIZE, SEGBASE

3. Shift Right, Shift Left

4. And, Or

Source Program Coding 4–13

• • • • • • • •

5. Multiplication, Division, Remainder

6. Addition, Subtraction

Expressions involving operators with the same precedence are evaluated

from left to right. All expressions are evaluated using 32-bit values and all

intermediate results are stored internally as 32-bit integers.

All examples are shown using constants. Absolute labels, however, may be

used in any expression where a constant is shown below. Absolute labels

include labels of data or code located in absolute sections, or labels on

EQU or SET directives which have an expression that evaluates to a

constant value. In addition, labels on DS directives in the table associated

with an OFFSET directive are absolute. Relocatable labels and SEGSIZE or

SEGBASE values may only be used in expressions involving addition and

subtraction.

Arithmetic Operators:

addition (+)

subtraction (–)

multiplication (*)

division (/) Produces a truncated integer result.

remainder (%)

unary minus (–)

segment size SEGSIZE(seg)

segment
base

SEGBASE(seg)

Shift Operators (binary):

shift right (>>) The left operand is shifted to the

right (and zero filled) by the number

of bits specified by the right operand.

shift left (<<) Analogous to >.

Logical Operators (binary):

and (&)

or (!)

Table 4-1: Operators

Chapter 44–14
C
O
D
IN
G

The percent (remainder) operator is only valid if the �select TASKING

extensions" option is in effect. See the Assembler chapter in the User's
Manual for more information about this option. The same is true of the

SEGSIZE and SEGBASE operators.

SEGSIZE 	 Get Segment Size

Syntax

SEGSIZE(<name>)

The SEGSIZE operator returns the size in bytes of the named section. It is

necessary to XREF the section name if it is not defined in the current

module.

SEGBASE 	 Get Base Address of Segment

Syntax

SEGBASE(<name>)

The SEGBASE operator returns the base address of the named section. It is

necessary to XREF the section name if it is not defined in the current

module.

Example

 XREF udata

 SECTION foo,,”code”

 MOVEA.L #SEGBASE(udata),A0 load base address of udata

 MOVE.L #SEGSIZE(udata)–1,D0 load size of udata – 1

 (for dbf)

loop CLR.B (A0)+

 DBF D0,loop zero out udata segment

4.7 EXPRESSIONS

Expressions are composed of one or more symbols and/or constants that

may be combined with unary or binary operations. Expressions are

evaluated according to precedence rules left to right.

Source Program Coding 4–15

• • • • • • • •

Subexpressions which involve relocatable symbols may use only the �+"

and �-" operators. It is possible for a subexpression involving the

difference between two relocatable symbols to evaluate to an absolute

value. For example, let R1 represent a memory location at OFFSET1 bytes

beyond the start of section S1, and let R2 represent a memory location at

OFFSET2 bytes beyond the start of section S2. That is:

R1 = OFFSET1 + <start of S1>
R2 = OFFSET2 + <start of S2>

The difference between R1 and R2 may then be:

R1–R2 = OFFSET1–OFFSET2
+ <start of SI> – <start of S2>

If sections S1 and S2 are the same, then:

R1–R2 = OFFSET1–OFFSET2

which is an absolute (non-relocatable) value. Of course, if sections S1 and

S2 are separate and distinct, the expression remains a complex relocatable

expression.

When an expression has been fully evaluated by the assembler, it may be

categorized as one of three types of expressions:

• Absolute Expression:

The expression has reduced to an absolute value that is independent of

the start address of any relocatable section.

• Simple Relocatable Expression:

The expression has reduced to an absolute offset from the start of a

single relocatable section.

• Complex Relocatable Expression:

The expression has reduced to a constant, absolute offset in

conjunction with either of the following relocatable terms:

A single, negated start address of a relocatable section.

or

An expression of two or more relocatable symbols,

or containing a SEGSIZE or SEGBASE value.

Only absolute expressions with no forward references are legal in ORG,

OFFSET, DCB, and DS directives. SET and EQU can take any expression.

Chapter 44–16
C
O
D
IN
G

By themselves, all user-defined labels on memory locations are either

absolute or simple relocatable expressions. This includes XREF labels,

which are assumed to be absolute symbols unless their program section is

specified. Complex relocatable expressions may arise only from the

addition or subtraction of two relocatable expressions.

The following are examples of each type of expression:

 ORG $1000 absolute section
ARRAY DS $20 ARRAY is absolute
ENDARRY EQU *–2 ENDARRY
* is absolute
 SECTION 2 relocatable
* table section
L1 CLR.L D2 L1 is simple
* relocatable
L2 MOVE D3,(A0) L2 is simple
* relocatable
 MOVE.L ARRAY+10,D7 absolute source
* operand
 MOVE.L L1+10,D7 simple relocatable
* source operand
 MOVE.L L2–L1,D7 absolute source
* operand
 MOVE.L L1+L2,D7 complex relocatable
* source operand

4.8 ADDRESSING MODES

Effective address modes, combined with operation codes, define the

particular function to be performed by a given instruction. Effective

addresses and data organization are described in detail in the Data
Organization and Addressing Capabilities section of the Microprocessor
Manual for the appropriate processor.

5

ASSEMBLER
DIRECTIVES

C
H

A
P

T
E

R

Chapter 55–2
D
IR
E
C
T
IV
E
S

5

C
H

A
P

T
E

R

Assembler Directives 5–3

• • • • • • • •

All assembler directives (pseudo-ops), with the exception of DC and DCB,

are instructions to the assembler rather than instructions to be translated

into object code. This section contains descriptions and examples of the

basic forms of the most frequently used assembler directives. See also the

Macro and Conditional Assembly and Structured Control Statements
sections about directives. The most commonly used directives supported

by the assembler are Assembly Control, Symbol Definition, Data

Definition/Storage Allocation, Listing Control and Output Options, External

Symbol Control, and Internal Assembly Control.

5.1 ASSEMBLY CONTROL

The TASKING 68K/ColdFire assembler contains the following assembly

control directives:

COMMON Named Common

END Program End

INCLUDE Include Secondary File

OFFSET Define Offsets

ORG Absolute Origin

RESERVE Reserve room in section

RESUME Resume section

RORG Relocatable Org

SECTION Relocatable Program Section

BRINGIN Declare external symbol

DEBSYM Put out debugging information

DGROUP Define data group

Chapter 55–4
D
IR
E
C
T
IV
E
S

5.1.1 COMMON - ENTER NAMED COMMON SECTION

Syntax

[label]COMMON[.S]<name> [,[ABSOLUTE[:[<location>]],"<class>"]

Description

The COMMON directive performs the same functions as the SECTION

directive which is described later in this chapter, except that the generated

section is marked as "common" in the object module. When the linker

encounters the same common section name in two object modules, it

combines them by overlay; the length of the resulting section is the

maximum of the lengths of the input sections.

In contrast, when the linker encounters the same non-common section in

two object modules, in combines them by concatenation; the length of the

resulting section is then the sum of the lengths of the input sections.

This directive can only be used if the "select TASKING extensions" option

is in effect.

If the ABSOLUTE specification is selected, the segment defined by the

COMMON statement will be located at the indicated absolute address (or

zero, if <location> is omitted). If the same absolute common section is

defined in more than one assembly, then the same <location> must be

specified at every definition.

If present, the .S indicates the section will be placed completely within low

address memory, i.e., between addresses 0 and hex 7FFF or between hex

FFFF8000 and FFFFFFFF. This allows the assembler to generate more

efficient addressing to items within the section. In particular, it can

implement direct addressing through the �absolute short" addressing

mode. Unlike the ABSOLUTE attribute described above, this information is

not passed on in the object module; the user must take responsibility for

placing the section in low memory with the TASKING locator.

Assembler Directives 5–5

• • • • • • • •

<class> is an arbitrary string that will be associated with the section in the

object module. The locator can locate all the sections with a given class

name with a single command, so a consistent use of class names may

make it easier to locate your program in memory. Please see the Linking
Locator chapter in the User's Manual for more details.

Example

clab1 COMMON sect1,,”cclass”
clab2 COMMON sect2,ABSOLUTE:3000
clab3 COMMON sect3,ABSOLUTE:100,”myclass”

5.1.2 END - PROGRAM END

Syntax

END [<start address>]

The END directive indicates to the assembler that the source is finished.

Subsequent source statements are ignored. The END directive encountered

at the end of the first pass through the source program causes the

assembler to start the second pass. The start address should be specified

unless it is external to the module. If no start address is specified, it is still

possible to include a comment field, provided the comment field is set off

by the exclamation point (!).

This syntax indicates to the assembler that the operand field is null and

that a comment field follows.

The END statement is optional.

Example

in file1.68k:
SECTION FOO
NOP
END ! end of program, no

* starting point defined

in file2.68k:
SECTION BAR
__BEGIN
NOP
END __BEGIN

* end of program, program starts at __begin

Chapter 55–6
D
IR
E
C
T
IV
E
S

5.1.3 INCLUDE - INCLUDE SECONDARY FILE

Syntax

INCLUDE <file> Include file from system directory.

INCLUDE file Include file from user directory.

The INCLUDE directive is inserted in the source program at any point

where a secondary file is to be included in the source input stream. The

first column on the line with the INCLUDE directive must be white space.

The search algorithm for finding the <file> depends on whether the file is

to be found in the system directory list (specified in a command line

option) or the standard include directory list (specified in a command line

option).

Directories Searched:

<file> System directories only.

file User and System directories.

* Current directory.

Example

* The first column in the include line must be
* ”white space”

INCLUDE local_file.inc
*
* Now include a system level include file

INCLUDE <system_file.inc>

5.1.4 OFFSET - DEFINE OFFSETS

Syntax

OFFSET <expression>

The OFFSET directive is used to define a table of offsets via the Define

Storage (DS) directive without actually declaring storage for the table, in

effect creating a dummy section. Symbols defined in an OFFSET table are

kept internally, but will not appear in the output object module. No code

producing instructions or directives may appear. SET, EQU, REG, XDEF

directives are allowed.

Assembler Directives 5–7

• • • • • • • •

<expression> is the value at which the offset table is to begin. The

expression must be absolute and may not contain forward, undefined, or

external references.

OFFSET must be terminated by an ORG or SECTION directive before

further code producing instructions are generated. If not, the assembler

produces an error message.

Example

OFFSET $7FFF
OFF1 DS.W 1 * OFF1 is defined to

* be 8000 hex
OFF2 DS.W 1 * OFF2 is defined to

* be 8002 hex

OFFSET $0
OFF3 DS.W 1 * OFF3 is defined to

* be 0
OFF4 DS.W 1 * OFF4 is defined to

* be 2

SECTION MORECODE
LEA OFF1,A1 * LEA 8000,A1
LEA OFF2,A1 * LEA 8002,A1
LEA OFF3,A1 * LEA 0,A1
NOP
END

5.1.5 ORG - ABSOLUTE ORIGIN

Syntax

ORG[.<qualifier>]<expression>[<comment>]

where:

<qualifier> is S | L

The ORG directive changes the program counter to the value specified by

the expression in its operand field. Subsequent statements are assigned

absolute memory locations starting with the new program counter value.

<expression> must be absolute and may not contain any forward,

undefined, or external references.

Chapter 55–8
D
IR
E
C
T
IV
E
S

ORG.S is interpreted as both ORG and OPT FRS (Forward Reference Short

Option). ORG.L is interpreted as both ORG and OPT FRL (Forward

Reference Long Option). Regardless of the forward reference option,

references to previously defined absolute symbols will always generate the

appropriate short or long addressing form, based upon the size of a

symbol's absolute address.

5.1.6 RESERVE - RESERVE STORAGE

Syntax

[label] RESERVE <name>, <length> [,�<class>"]

The RESERVE directive is similar to the OFFSET directive. It defines a

segment and gives it the specified length, but leaves the user in the

previous segment. Subsequent RESERVE directives with the same <name>
add to the segment length.

This directive can only be used if the �select TASKING extensions" option

is in effect. See the Assembler chapter in the User's Manual for more

information on the TASKING extensions.

<class> is an arbitrary string that will be associated with the section in the

object module. The TASKING locator can locate all the sections with a

given class name with a single command, so a consistent use of class

names may make it easier to locate your program in memory. See the

Linking Locator chapter in the User's Manual for more details.

Example

SECTION DSCT
TOP RESERVE RSECT,2

DC.L TOP
HERE RESERVE RSECT,3

DC.L HERE
THERE RESERVE RSECT,1

DC.L THERE

This creates a segment, RSECT, of length six and defines labels at locations

0, 2, and 5 within it. The addresses of the labels are stored in DSCT.

Assembler Directives 5–9

• • • • • • • •

5.1.7 RESUME - RESUME DEFINED SECTION

Syntax

RESUME <name>

The RESUME directive resumes the named section. If no argument is

given, the PSCT section is resumed.

This directive can only be used if the �select TASKING extensions" option

is in effect. See the Assembler chapter in the User's Manual for more

information on the TASKING extensions.

Example

SECTION TOP
NOP
SECTION BOTTOM
NOP
RESUME TOP
NOP

5.1.8 RORG - RELOCATABLE ORG

Syntax

RORG <expression> [<comment>]

The RORG directive has an effect similar to ORG, but it is intended for use

in relocatable sections. The location counter is set to the value of the

expression but remains in the current section. This is different from ORG,

which switches to absolute assembly.

This directive can only be used if the �select TASKING extensions" option

is in effect. See the Assembler chapter in the User's Manual for more

information on the TASKING extensions.

Chapter 55–10
D
IR
E
C
T
IV
E
S

Example

DIGINX EQU.B 0
ISDIGIT DCB.B 256,0 Define table of 256 zeros.
* Reset location counter back to ISDIGIT

RORG ISDIGIT
* Advance to index of first ASCII digit

RORG *+DIGINX
* Redefine table contents to be 1’s at index of
* ASCII digits

DCB.B 10,1
RORG ISDIGIT+256 Reset location

* counter past
* ISDIGIT

...
LEA ISDIGIT,A1 Load address of

* table
MOVEQ.L #0,D0
MOVE.B NEXTCHAR,D0 Pick up a

* character
BNZ (A1,D0.W),L1 Goto L1 if it’s a

* digit
BRA L2 Goto L2 otherwise

5.1.9 SECTION - RELOCATABLE PROGRAM SECTION

Syntax

SECTION[.S] <name>[,[ABSOLUTE [:<location>]][,"<class>"]]

SECTION[.S] <number>

This directive causes the program counter to be restored to the address

following the last location allocated in the indicated section, or to zero if

used for the first time with this <name>.

<location> and �class" can only be supplied if the �select TASKING

extensions" option is in effect. See the Assembler chapter in the User's
Manual for more information on the TASKING extensions.

If the ABSOLUTE specification is selected, the segment defined by the

SECTION statement will be located at the indicated absolute address (or

zero, if <location> is omitted).

Assembler Directives 5–11

• • • • • • • •

Absolute sections are �uncombinable", so it will cause an error if the same

section is defined in another assembly or compilation. See the Linking
Locator chapter in the User's Manual for a description of segment

combinability.

The .S indicates the section will be placed completely within low address

memory, i.e., between addresses 0 and 32767. This allows the assembler to

generate more efficient addressing to items within the section. In

particular, it can implement direct addressing through the absolute short

addressing mode. Unlike the absolute attribute described above, this

information is not passed on in the object module; the user must take

responsibility for placing the section in low memory with the TASKING

locator.

<number> causes a segment named $$seg<number> to be created.

<class> is an arbitrary string that will be associated with the section in the

object module. The TASKING locator can locate all the sections with a

given class name with a single command, so a consistent use of class

names may make it easier to locate your program in memory. Please see

the Linking Locator chapter in the User's Manual for more details.

Example

SECTION lost
SECTION abs1,ABSOLUTE,”abclass”
SECTION abs2,ABSOLUTE
SECTION found2,,”foundclass”
SECTION 2

5.2 SYMBOL DEFINITION

Symbol definition directives EQU, FEQU, REG, and SET provide the only

method by which a symbol appearing in the label field may be assigned a

'value' other than that corresponding to the current location counter. The

following Symbol Definition Directives are described in this section:

EQU Equate Symbol Value

FEQU Equate Floating Point Symbol Value

REG Define Register List

SET Set Symbol Value

Chapter 55–12
D
IR
E
C
T
IV
E
S

5.2.1 EQU - EQUATE SYMBOL VALUE

Syntax

<label> EQU <expression> [<comment>]

The EQU directive assigns the value of the expression in the operand field

to the symbol in the label field. The label and expression follow the rules

given in the Source Program Coding chapter. The label and operand fields

are both required, and the label cannot be defined anywhere else in the

program.

Any valid expression is allowed in the operand field of an EQU, including

forward and complex.

Example

STRT EQU * This is the start location

5.2.2 FEQU - EQUATE FLOATING POINT SYMBOL

VALUE

Syntax

<label> FEQU[.<size>] <value> [<comments>]

where:

<size> = S | D | X | P (S is default)

FEQU directive assigns the floating-point value in the operand field to the

symbol in the label field. The label and value follow the rules given in the

Source Program Coding chapter. The operand fields are both required,

and the label cannot be defined anywhere else in the program. Note that

<value> is stored as a string and only converted to its binary format when

it is used in instructions. <value> may be a floating-point decimal string or

a floating-point hexadecimal value as defined in the Source Program
Coding chapter. A warning is generated whenever the number of bits

required to represent the specified precision is exceeded.

Example

OP1 FEQU.X 2.3444
OP2 FEQU.S :23444

Assembler Directives 5–13

• • • • • • • •

5.2.3 REG - DEFINE REGISTER LIST

Syntax

<label> REG <reg_list> [<comment>]

The REG directive assigns a value to <label> that can be translated into the

register list mask format used in the MOVEM instruction. The label cannot

be redefined as a Class 2 symbol anywhere else in the program.

<reg_list> is of the form R1[-R2][/R3[-R4]]...

Example

SAVE REG A1–A5/D0/D2–D4/D7
* Following two statements are then equivalent

MOVEM.L SAVE,–(A7)
MOVEM.L A1–A5/D0/D2–D4/D7,–(A7)

5.2.4 SET - SET SYMBOL VALUE

Syntax

<label> SET <expression> [<comments>]

SET directive assigns the value of the expression in the operand field to

the symbol in the label field. Thus, the SET directive is similar to the EQU

directive. However, the SET directive allows the symbol in the label field

to be redefined by other SET directives in the program. The label and

operand fields are both required.

As with EQU, any valid expression is allowed in the operand field of a

SET, including forward and complex.

Example

THIRTY SET LAB_AT_30

Chapter 55–14
D
IR
E
C
T
IV
E
S

5.3 DATA DEFINITION/STORAGE ALLOCATION

The directives in this section provide the only means by which object code

may begin or end on odd byte boundaries. All instructions and all word or

longword size data must begin and end on even byte boundaries. Odd

byte alignment is allowed only for the DC.B, DS.B, and DCB.B directives.

All other operations which generate object code are preceded by a zero fill

byte if word boundary alignment is required.

The following directives are described in this section:

COMLINE Command Line (unimplemented)

DC Define Constant

DCB Define Constant Block

DS Define Storage

5.3.1 COMLINE - UNIMPLEMENTED

The COMLINE directive is not implemented. It is read and ignored. In the

Motorola assembler it allows the user to specify the command line.

5.3.2 DC - DEFINE CONSTANT

Syntax

[<label>] DC[.<fmt>] <operand>[,<operand>...]

where:

<fmt> = B | W | L | S | D | X | P (W is default)

<operand> = link-time constant expression

The DC directive defines a constant in memory. The DC directive may

have one or more operands, which are separated by commas. The

operand field may contain the actual value (decimal, hexadecimal, or

ASCII). Alternatively, the operand may be a symbol or expression which

can be evaluated either by the assembler or the linker. The constant is

aligned on a word boundary if word (.W), longword (.L), single precision

(.S), double precision (.D), extended precision floating-point (.X) or

packed BCD (.P) is specified. Alignment is on a byte boundary if byte (.B)

is specified. The type of the operand must be floating-point if and only if

the format is S, D, X, or P.

Assembler Directives 5–15

• • • • • • • •

The following rules apply to size specifications on DC directives with

ASCII strings as operands:

• DC.B

One byte is allocated per ASCII character.

• DC.W

The string begins on a word boundary. If the string address contains an

odd number of characters, a zero fill byte follows the last character.

• DC.L

The string begins on a word boundary. If the string length is not a

multiple of four bytes, the last longword is zero filled.

Examples of ASCII Strings

Directive Result

DC.B 'ABCDEFGHI'

Memory has nine contiguous bytes with the ASCII characters

A through I.

DC.B 'E' Memory has characters �EJ" ($454A) in

DC.B 'J' contiguous bytes.

DC.B 'E' Memory has $45004500 in contiguous bytes,

DC.W 'E' the first zero byte being an odd byte fill as outlined

above.

DC 'X' Memory has $5800 in contiguous bytes.

DC.L '12345' Memory has $3132333435000000 in contiguous bytes.

Chapter 55–16
D
IR
E
C
T
IV
E
S

Examples of Numeric Constants

Directive Result

DC.B 10,5,7

Memory has three contiguous bytes with the decimal values

10, 5, and 7 in their respective bytes.

DC.W 10,5,7

Each operand is contained in a word. The value 10 is

contained in the first word, right justified. The value 5 is in

the second word, and the value 7 is in the third word.

DC.L 10,5,7

Each operand is contained in a longword. The value 10 is

contained in the first longword (4bytes) right justified. The

value 5 is in the second longword, and the value 7 is in the

third longword.

DC LABEL+1

The generated value is the address of LABEL plus 1 in a word

size operand.

DC $FF,$10,$AE

Rules for hexadecimal are the same as decimal.

DC.S 3.1415

A single precision floating-point value is created.

(68881/68882/68040/68060 only)

DC.D 2.54

A double precision floating-point value is created.

(68881/68882/68040/68060 only)

DC.X 6.0224E23

An extended precision floating-point value is created.

(68881/68882/68040/68060 only)

DC.X :ABCD10

An extended precision floating-point hex value is created.

(68881/68882/6804068060 only)

DC.P 3.00E9 A packed BCD value is created.

For DC.X, �E" can only be a hex digit, not an exponent.

Assembler Directives 5–17

• • • • • • • •

If the resulting value in an operand expression exceeds the size of the

operand, an error is generated. For example,

DC.B $FFF This causes an error because $FFF cannot be represented in 8

bits.

DC $FFF6F This causes an error because $FFF6F cannot be represented

in 16 bits.

5.3.3 DCB - DEFINE CONSTANT BLOCK

Syntax

[<label>] DCB[.<size>] <length>,<value>

where:

<size> = B | W | L | S | D | X | P (W is default)

<value> = integer, character, or floating-point value

DCB directive causes the assembler to allocate a block of bytes, words, or

long words, quad words (.D), or hex words (.X or .P) depending upon the

<size> specified. If <size> is omitted, word (.W) is the default size. The

block length is specified by the absolute expression <length>, which may

not contain undefined, forward, or external references. The initial value of

each storage unit allocated will be the sign-extended expression <value>.
<value> may be relocatable and may contain forward references. <length>
must be greater than zero.

Example

CLEAR DCB 80,0 Clears one line to spaces

5.3.4 DS - DEFINE STORAGE

Syntax

[<label>] DS[.<fmt>] <objects>

where:

<fmt> = B | W | L | S | D | X | P (W is default)

<objects> = The number of objects to be reserved (a pass 1 constant).

Chapter 55–18
D
IR
E
C
T
IV
E
S

The DS directive is used to reserve memory locations. The contents of the

memory reserved are not initialized in any way. The <fmt> values of S, D,

X, and P are only used for floating-point values, and so only apply when

assembling for the 68881/68882/68040/68060.

Example

DS.B 10 Reserve 10 bytes
PT1 DS $10 Reserve 16 words
PT2 DS.L 100 Reserve 100 long words

DS.D 10 Reserve 10 8–byte
* double words

The label will reference the lowest address of the defined storage area.

The storage area is aligned to a word boundary unless <fmt> is �B".

DS.B 1 Reserve one byte
DS 0 Set location counter

* to even boundary

The operand must be absolute and may not contain forward, undefined,

or external references.

5.4 LISTING CONTROL AND OUTPUT OPTIONS

The following Listing Control and Output Options are described in this

section:

FAIL Programmer Generated Error

FORMAT/NOFORMAT Format Options

LIST/NOLIST List Options

LLEN Line Length

NOOBJ No Object

OPT General Option Selection

PAGE/NOPAGE Pagination Options

SPC Space Between Source Lines

STTL Subtitle

TTL Title

Assembler Directives 5–19

• • • • • • • •

5.4.1 FAIL - PROGRAMMER GENERATED ERROR

Syntax

FAIL <message>

The FAIL directive causes a warning message to be printed by the

assembler. The FAIL directive is normally used in conjunction with

conditional assembly directives for exceptional condition checking. The

assembly proceeds normally after the warning has been printed. The

argument is printed as the warning message.

5.4.2 FORMAT/NOFORMAT - UNIMPLEMENTED

FORMAT and NOFORMAT are not implemented. They are read and

ignored. In the Motorola assembler it allows the user to control the

formatting of the assembler's listing file.

5.4.3 LIST/NOLIST - CONTROL LISTING GENERATION

Syntax

LIST

NOLIST

NOL

Print or do not print the assembly listing on the output device. The LIST

option is selected by default. The source text following the LIST directive

is printed until an END or NOLIST directive is encountered.

5.4.4 LLEN - UNIMPLEMENTED

The LLEN directive is not implemented. It is read and ignored. In the

Motorola assembler it allows the user to specify the length of a listing line.

5.4.5 NOOBJ - UNIMPLEMENTED

The NOOBJ directive is not implemented. It is read and ignored. In the

Motorola assembler it allows the user to request that no object module be

produced.

Chapter 55–20
D
IR
E
C
T
IV
E
S

5.4.6 OPT - ASSEMBLER OPTIONS

Syntax

OPT <option>[,<option>...] [<comment>]

Follows the command format. The available options are:

 A Absolute address. All non-indexed operands which reference

either labels or the current assembler location counter (*) is

resolved as absolute.

NOA Disable A (default).

BRB

BRW Generates default branch size of 16 bits.

BRL Forward branch long (default). Forward references in relative

branch instructions (Bcc, BRA, BSR) will assume the longer

form (16-bit displacement, yielding a 4-byte instruction).

A 32-bit displacement is assumed unless the directive OPT

OLD is in effect (68020-plus/CPU32 only).

BRS Forward branch short. As with BRL, but using the shorter or

form (8-bit displacement, yielding a 2-byte instruction).

CRE Print cross-reference table at end of source listing. This

option must precede first symbol in source program. If this

option is not in effect, only the symbol table is printed.

EXT Not implemented.

NOEXT Not implemented.

FRL Forward reference long (default). Forward references in the

absolute format assumes absolute long mode (32-bit).

FRS Forward reference short. Forward references in the absolute

format assumes absolute short mode (16-bit).

L Turn on source listing.

NOL Turn off source listing.

MC Print macro calls (default).

Assembler Directives 5–21

• • • • • • • •

NOMC Opposite of MC.

MD Print macro definitions (default).

NOMD Opposite of MD.

MEX Print macro expansions.

NOMEX Opposite of MEX (default).

MEXG List only those macro expansions that generate code.

NOMEXG Turn off MEXG flag.

OLD Interpret the branch size code .L as being a 16-bit branch.

Also interpret future uses of OPT BRL as referring to forward

16-bit branches.

NOOLD Change back to new branch size meanings for size .L

(68020-plus/CPU32 only).

P Turn on listing paging.

NOP Turn off listing paging.

PCO PC relative addressing within ORG. Employ relative

addressing, when possible, on backward references occurring

in an ORG section.

NOPCO Disable PCO (default).

PCS Force PC relative addressing within SECTION. Forces PC

relative addressing (whenever such an addressing mode is

legal) in an instruction which occurs within a relocatable

SECTION and references an operand in a relocatable

SECTION (need not be the same SECTION as the instruction).

Failure to resolve such a reference into a 16-bit displacement

from the PC results in an error. This option may be used to

force position-independent code (refer to the

Position-independent Code chapter); however, this option

does not force PC relative addressing of absolute operands

(defined in ORG section) or unknown forward references.

NOPCS Disable PCS (default).

P=<type> Not implemented.

Chapter 55–22
D
IR
E
C
T
IV
E
S

S Turn on symbol table listing.

NOS Turn off symbol table listing.

PSA List expanded instructions from structured assembler

constructs.

NOPSA Turn off expanded instruction listing.

TRM Trim comments from listing.

NOTRM Do not trim comments from listing.

U Turn on listing of unassembled lines in conditional assembly.

NOU Turn off listing of unassembled lines in conditional assembly.

The following options are not implemented:

ASM

NOASM

CEX

NOCEX

CL

NOCL

D To generate debug output, use the command-line debugging

option. See the Tutorial chapter of the Getting Started
Manual for more information.

EQU

NOEQU

FMT

NOFMT

G

NOG

LLE

O

NOO

REL

Assembler Directives 5–23

• • • • • • • •

5.4.7 PAGE/NOPAGE - CONTROL PAGINATION

Syntax

PAGE [size]
NOPAGE

Advance the paper to the top of the next page. The PAGE directive does

not appear on the program listing. No label is used, and no machine code

results. The optional size argument is used as the number of lines per

page. A negative value for <size> turns off paging.

NOPAGE turns off pagination. Output lines are printed continuously with

no page headings or top and bottom margins.

5.4.8 SPC - SPACE BETWEEN SOURCE LINES

Syntax

SPC [n]

Output n blank lines on the assembly listing. This has the same effect as

putting n blank lines in the assembly source. The default value for n is 1.

5.4.9 STTL - SET SUBTITLE

Syntax

STTL <subtitle string>

Print the <subtitle> string on the second line of each page. A subtitle

consists of up to 60 characters. The same subtitle will appear on all

successive pages until another STTL directive is encountered. In order to

print a subtitle on the first listing page, the STTL directive must precede

the first source line which will appear on the listing.

5.4.10 TTL - SET TITLE

Syntax

TTL <title string>

Chapter 55–24
D
IR
E
C
T
IV
E
S

Print the <title> string at the top of each page. A title consists of up to 60

characters. The same title will appear at the top of all successive pages

until another TTL directive is encountered. In order to print a title on the

first listing page, the TTL directive must precede the first source line which

will appear on the listing.

5.5 EXTERNAL SYMBOL CONTROLS

The following External Symbol Controls are described in this section:

IDNT Relocatable Identification Record

XDEF External Symbol Definition

XREF External Symbol Reference

5.5.1 IDNT - RELOCATABLE IDENTIFICATION RECORD

Syntax

<name> IDNT <version_string>

The assembler takes the provided information and puts it in the object

module as a .ID statement. This statement is ignored by subsequent

processors, but is passed on for informational purposes only. <version>
must be supplied as a quoted string.

<name> is NOT considered a label, and may not be used elsewhere in the

assembly.

5.5.2 XDEF - EXTERNAL SYMBOL DEFINITION

Syntax

XDEF <symbol>[,<symbol>...] [<comment>]

The XDEF directive specifies symbols defined in the current module that

are to be globally visible, and can therefore be referenced by other

modules.

Assembler Directives 5–25

• • • • • • • •

Example

XDEF var1,var2,var2
* These names may now be referenced in other
* modules

5.5.3 XREF - EXTERNAL SYMBOL REFERENCE

Syntax

XREF[.S] [[<section>:]<symbol>[,<symbol>]...]

This directive specifies symbols referenced in the current module but

defined in other modules. Each symbol is associated with the specified

<section> number which it follows. Symbols may occur in any section,

including an absolute ORG section, if no <section> designation is

specified.

�.S" indicates the XREF symbols should be directly addressed through

absolute short mode. Remember, however, that the location of the symbols

in low memory is the responsibility of the user.

Example

XREF Simple_var
XREF AA,2:E2,3:E3,B3,C3

The symbol AA can be in any section; E2 is in section 2; and E3, B3, and

C3 are in section 3.

5.6 INTERNAL ASSEMBLY CONTROLS

The directives that are described in this section are put out by our 68K C

compiler. Compiling with the �-ia" option, the compiler will produce real

assembly language output. These directives are needed to provide the

connection between the compiler produced assembly and the compiler

libraries and to pass symbolic debug information through the assembler:

_BRINGIN

_DEBSYM

_DGROUP

Chapter 55–26
D
IR
E
C
T
IV
E
S

5.6.1 _BRINGIN DECLARE EXTERNAL SYMBOL

Syntax

_BRINGIN <symbol>

This directive tells the assembler to emit an external reference for the

named symbol into the object module. This causes the link editor to bring

the object module that defines this symbol into the link.

5.6.2 _DEBSYM PUT OUT DEBUGGING INFORMATION

Syntax

_DEBSYM <string>[,<operand>]

This directive causes the assembler to generate a line of symbolic

debugging information. Lines that describe data symbol positions are

written to a temporary file which is later combined into the object module

by the compiler utility. Line that describe C source line positions are

written directly into the object module.

5.6.3 _DGROUP DEFINE DATA GROUP

Syntax

_DGROUP <symbol>

The compiler addresses global data via the A5 register. The global data is

divided into two segments, idata for initialized data and udata for

unitialized data. In order to address two different segments off one

register, a virtual segment or �group" called �data" is used. The A5 register

points at data, and the link editor ensures that idata and udata are located

in one 64k byte area.

This directive causes the assembler to emit a group definition into the

object module. The name symbol (always �data") is the group name. The

statement puts the udata and/or idata segments into the group data if they

are present.

6

MACRO
OPERATIONS AND
CONDITIONAL
ASSEMBLY

C
H

A
P

T
E

R

Chapter 66–2
M
A
C
R
O
S

6

C
H

A
P

T
E

R

Macro Operations and Condional Assembly 6–3

• • • • • • • •

This chapter describes the macro and the conditional assembly capabilities

of the assembler. These features can be used in any program.

6.1 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated

pattern of instructions that, within themselves, contain variable entries at

each iteration of the pattern, or basic coding patterns subject to

conditional assembly at each occurrence. In either case, macros provide a

shorthand notation for handling these patterns. Having determined the

iterated pattern, the programmer can, within the macro, designate fields of

any statement as variable. Thereafter, by invoking a macro, the

programmer can use the entire pattern as many times as needed,

substituting different parameters for the designated variable portions of the

statements.

Macro usage can be divided into two basic parts: definition and expansion.

When the pattern is defined, it is given a name. This name becomes the

mnemonic by which the macro is subsequently invoked (called). The

name of a macro definition should not be the same as an existing

instruction mnemonic an assembler directive, or a previously defined

macro.

Expansion occurs when the previously defined macro is called (invoked).

The macro call causes source statements to be generated. The generated

statements may contain substitutable arguments. The statements that may

be generated by a macro call are relatively unrestricted as to type. They

can be any processor instruction, almost any assembler directive, or any

previously defined macro. Source statements generated by a macro call are

subject to the same conditions and restrictions as programmer-generated

statements.

The invocation of a macro requires that the macro name appear in the

operation field of a source statement. Most arguments are placed in the

operand field. Appropriate arguments selected according to the macro

definition cause the assembler to produce in-line coding variations of the

macro definition.

Chapter 66–4
M
A
C
R
O
S

The effect of a macro call is the same as an open subroutine in that it

produces in-line code to perform a predefined function. The in-line code

is inserted in the normal flow of the program so that the generated

instructions are executed in-line with the rest of the program each time

the macro is called.

6.1.1 MACRO DEFINITION

The definition of a macro consists of three parts:

1. The header: <label> MACRO

The <label> of the MACRO statement is the �name" by which the macro is

later invoked. This name must be a unique class 1 symbol. A macro name

may not have a period (.) as any character other than the first.

2. The body

The body of a macro is a sequence of standard source statements. Macro

parameters are defined by the appearance of argument designators within

these source statements. Legal macro-generated statements include the set

of Motorola 68000 family assembly language instructions, assembler

directives, structured syntax statements, and calls to other, previously

defined macros. However, macro definitions may not be nested.

3. The terminator: ENDM

6.1.2 MACRO INVOCATION

The form of a macro call is:

[<label>] <name>[.<qualifier>] [<parameters>]

Although a macro may be referenced by another macro prior to its

definition in the source module, the macro must be defined before its first

in-line expansion. The name of the called macro appears in the operation

field of the source statement; parameters may appear as qualifiers to the

macro name and/or in the operand field of the source statement, separated

by commas.

Macro Operations and Condional Assembly 6–5

• • • • • • • •

The macro call produces in-line code at the location of the invocation,

according to the macro definition and the parameters specified in the

macro call. The source statements so generated are then assembled,

subject to the same conditions and restrictions affecting any source

statement. Nested macro calls are also expanded at this time.

6.1.3 MACRO PARAMETER DEFINITION AND USE

Up to 36 different, substitutable arguments may appear in the source

statements which constitute the body of a macro. These arguments are

replaced by the corresponding parameters in a subsequent call to that

macro.

Arguments are designated by a backslash character (\), followed by a digit

(0 through 9) or an upper case letter (A through Z). Argument designator

\0 refers to the qualifier appended to the macro name; parameters in the

operand field of the macro call refer to argument designations \1 through

\9 and \A through \Z, in that order.

Argument substitution at the time of a macro call is handled as a literal

(string) substitution. The string corresponding to a given parameter is

substituted literally whenever that argument designator occurs in a source

statement as the macro is expanded. Each statement generated in this

expansion is assembled in-line. (Note that, if a qualifier is present,

argument 0 begins with the first character following the period which

separates the qualifier from the macro name).

It is possible to specify a null argument in a macro call by an empty string

(not a blank); except for 0, it must still be separated from other parameters

by a comma. In the case of a null argument referenced as a size code, the

default size code (W) is implied; when a null argument itself is passed as

an argument in a nested macro call, a null argument is passed. All

parameters have a default value of null at the time of macro call.

If an argument has multiple parts or contains commas or blanks, the entire

argument must be enclosed within angle brackets (< and >). Such

arguments must still be separated from other arguments by commas. A

bracketed argument with no intervening character is treated as a null

argument. Embedded brackets must occur in pairs. Parameter 0 may not

be bracketed and, hence, may not contain blanks (although commas are

legal). Note that a macro argument may not contain the characters �<" or

�>" unless they occur as part of the argument bracketing.

Chapter 66–6
M
A
C
R
O
S

6.1.4 LABELS WITHIN MACROS

To avoid the problem of multiply-defined labels resulting from multiple

calls to a macro which employs labels in its source statements, the

programmer may direct the assembler to generate unique labels on each

call to a macro.

Assembler-generated labels include a string of the form .nnn, where nnn

is a 3-digit value. The programmer may request an assembler-generated

label by specifying \@ in a label field within a macro body. Each

successive label definition which specifies a \@ directive will generate

successive values of .nnn, thereby creating unique labels on repeated

macro calls. Note that \@ may be preceded or succeeded by additional

characters for clarity and to prevent ambiguity.

References to an assembler-generated label always refer to the label of the

given form defined in the current level of the current macro expansion.

Such a label is referenced as an operand by specifying the same character

string as that which defines the label.

6.1.5 THE MEXIT DIRECTIVE

The MEXIT directive terminates the macro source statement generation

during expansion. It may be used within a conditional assembly structure

to skip any remaining source lines up to the ENDM directive. All

conditional assembly structures pending within the macro currently being

expanded are also terminated by the MEXIT directive. The MEXIT

Directive takes an optional expression. It exits if the expression is true

(non-zero). If the MEXIT Directive is not given an argument, comments

must be delimited with a `!'.

Example

SAV2 MACRO
MOVE.L \1,SAVET SAVE 1ST ARGUMENT
MOVE.L \2,SAVET+4SAVE 2ND ARGUMENT
IFC 3, IS THERE A 3RD

* ARGUMENT?
FAIL 10000 DID THE ASSEMBLER

* FAIL THRU HERE?
MEXIT NOEXIT FROM MACRO
ENDC
MOVE.L \3,SAVET+8SAVE 3RD ARGUMENT

ENDM

Macro Operations and Condional Assembly 6–7

• • • • • • • •

6.1.6 THE NARG SYMBOL

The symbol NARG is a special symbol when referenced within a macro

expansion. The value assigned to NARG is the index of the last argument

passed to the macros in the parameter list (including nulls). NARG is

undefined outside of macro expansion and may be referenced as a Class 1

or 2 user-defined symbol outside of a macro expansion.

6.1.7 IMPLEMENTATION OF MACRO DEFINITION

When the sequence of source statements:

MAC1 MACRO
<stmt1>
<stmt2>
.
.
.
<stmtn>
ENDM

is encountered in a source program, the following actions are performed:

1. The symbol table is checked for a Class 1 symbol entry of �MAC1". If such

an entry is already present, a redefined symbol warning is generated;

otherwise, an entry is placed in the symbol table, identifying MAC1 as a

macro.

2. Starting with the line following the MACRO directive, each line of the

macro body is saved in a character sequence identified with MAC1. In the

example, stmt1 through stmtn are saved in this manner. No object code is

produced at this time.

3. Normal processing resumes with the line following the ENDM directive.

6.1.8 IMPLEMENTATION OF MACRO EXPANSION

When the statement:

 MAC1.< qualifier >
 < param1 >,< param2 >,...,< paramn >

Chapter 66–8
M
A
C
R
O
S

is encountered in a source program calling the previously defined macro

MAC1 (above), the following actions are performed:

1. The line is scanned for parameters which are saved as literals or null

values, one such value in each of the 36 parameter record fields. No object

code is produced.

2. Macro expansion consists of the retrieval of the source lines which

comprise the macro body. Each line is retrieved in turn, with special

character pairs replaced by parameter strings or assembler-generated label

strings.

If a backslash character \ is followed by either a digit (0 through 9) or an

upper case letter (A through Z), the two characters are replaced by the

literal string which corresponds to that parameter on the macro invocation

line(s).

A character sequence which includes \@ is replaced by an

assembler-generated label. An assembler-generated label is uniquely

identified by the characters preceding and/or appended to the \@

sequence and the macro invocation in which the reference occurs. Such

labels may appear anywhere in the source line and always refer to the

current macro expansion.

3. When a line has been completely expanded, it is assembled as any other

source input line. At this time, any errors in the syntax of the expanded

assembly code are found. Expanded lines longer than 80 characters are

truncated, and an error is generated.

If a nested macro call is encountered, the nested macro expansion takes

place recursively. There is no set limit to the depth of macro call nesting.

6.2 CONDITIONAL ASSEMBLY

Conditional assembly allows the programmer to write a comprehensive

source program that can cover many conditions. Assembly conditions may

be specified through the use of arguments in the case of macros and

through definition of symbols via the SET and EQU directives. Variations

of parameters can then cause assembly of only those parts necessary for

the specified conditions.

Macro Operations and Condional Assembly 6–9

• • • • • • • •

The I/O section of a program, for example, will vary, depending on the

target environment. Conditional assembly directives can include or exclude

an I/O section, based on a flag set at the beginning of the assembly.

6.2.1 CONDITIONAL ASSEMBLY STRUCTURE

There are two conditional assembly structures available: IFC-ELSEC-ENDC

and REPEATC-ENDR. IFC-ELSEC-ENDC blocks allow conditional assembly

and are valid in any part of an assembly language program.

REPEATC-ENDR blocks also allow conditional assembly, and are only

valid within a macro definition.

The ELSEC, REPEATC, and ENDR constructs are only allowed if the �select

TASKING extensions" option is in effect. See the 68000 Family Assembler
chapter in the User's Manual for a description of these extensions.

The IF conditional assembly structure consists of three parts:

1. The header. There are two conditional header clauses recognized by the

assembler. The first form compares the equality of two strings:

IF xx < string1>,< string2>

�xx" specifies either the string compare (C) condition or the string not

compare (NC) condition, representing string equality and inequality,

respectively. The result of the string comparison, along with the �xx"

condition, determines whether the body of the conditional structure will

be assembled. Either string may contain embedded commas or spaces. An

apostrophe that occurs within a string must be specified by double

apostrophes.

The second form of the conditional clause compares with an expression

against zero:

IFxx <expression>

Chapter 66–10
M
A
C
R
O
S

�xx" specifies a conditional relation between the expression and the value

zero. The result of this comparison at assembly time determines whether

the body of the conditional structure will be assembled. Valid conditional

relation codes include:

EQ expression= 0
NE expression<> 0
LT expression< 0
LE expression<= 0
GT expression> 0
GE expression>= 0

Because of the nature of this comparison, the expression must be absolute.

No forward references are allowed.

2. The body. The body of the conditional assembly structure consists of a

sequence of standard source statements. There is no set limit to the depth

of conditional assembly nesting; if such nesting occurs, an ENDC

terminator must be specified for each structure.

There may be an ELSE clause in the body. The keyword for for this is

ELSEC.

ELSEC may only be used if the �select TASKING extensions" option is in

effect. See the Assembler chapter in the User's Manual for more

information.

3. The terminator ENDC. When an IFxx directive is encountered, the

specified condition is evaluated. If the condition is true, the statements

constituting the body of the conditional assembly structure are each

assembled in turn. If the relation is false, the entire conditional assembly

structure is ignored; the ignored lines are not included in the assembly

listing. By specifying the OPT NOCL option, the header and terminator

lines are ignored for listing purposes.

IFxx and ENDC directives may not be labeled.

The REPEATC-ENDR construct has a similar structure:

Macro Operations and Condional Assembly 6–11

• • • • • • • •

1. The header: REPEATC <expr1>[,<expr2>]. Both <expr1> and <expr2> must

be assembly time absolute expressions. No forward references are

allowed. If <expr1> is equal to zero (false), then statements up to the

ENDR are ignored. Otherwise, the statements are assembled and the

assembler repeats the process again until <expr1> is equal to zero. A

REPEATC block stops iterating when the specified expression maximum,

<expr2> is reached. If <expr2> is not specified, then the REPEATC block

stops after 255 iterations.

2. The body. The body of a REPEATC-ENDR can contain any assembly

language statements, including complete IFC-ELSEC-ENDC and

REPEATC-ENDR constructs. IFC-ENDIF and REPEATC-ENDR blocks may

not cross the boundary of a macro expansion or the boundaries of each

other.

3. The terminator: ENDR. This terminates the body of the REPEATC

construct.

Testing for null parameters may be done via the string compare form of

the conditional assembly. To assemble conditionally if parameter 1 is null,

either of the following is correct:

IFC ”,’\1’

or

IFC ’\1’,”

To assemble conditionally if a parameter is present, use either of the IFNC

formats analogous to the above two.

A conditional assembly structure is also terminated by a MEXIT directive. It

is an error if a conditional assembly block is not terminated in the same

macro call and at the same level that it was begun in.

6.2.2 EXAMPLE OF MACRO AND CONDITIONAL

ASSEMBLY USAGE

The following example illustrates most of the features of macro and

conditional assembly structures. The assembly code is shown as it appears,

without line numbers or object code. Note that angle brackets (< >) shown

in examples are required characters.

Chapter 66–12
M
A
C
R
O
S

Example of Nested Macros

MAC0 MACRO
MOVE.\0 \1
CLR.L \2
ENDM

MAC1 MACRO
MOVE.\ #\1,D\2
IF\3 \1 CONDITIONAL
ADD.\ #1,D\2
IF\3 \1–5 NESTED CONDITIONAL
ADD.\0 #2,D\2 \4
ENDC END NESTED CONDITIONAL
ENDC END CONDITIONAL

LAB\@ CLR.L D1
MOVE.\0 D\2,(A0)+
B\3 L\@END
BRA LAB\@

L\@END \5.\0 #1,D\2
IFLE \1
MAC0.\0 <D\2,(A0)>,A\2 NESTED MACRO CALL
ENDC
ENDM

OPT MEX,NOCL
MAC1.L 7,3,GT,<TEST PASSES>,ADD

* Expansion is equivalent to following lines
MOVE.L #7,D3
ADD.L #1,D3
ADD.L #2,D3 TEST PASSES

LAB.001 CLR.L D1
MOVE.L D3,(A0)+
BGT L.002END
BRA LAB.001

L.002END
ADD.L #1,D3

MAC1.W 0,6,NE,<ERROR HERE>,SUB
* Expansion is equivalent to following lines

MOVE.W #0,D6
LAB.003 CLR.L D1

MOVE.W D6,(A0)+
BNE L.004END
BRA LAB.003

L.004END
SUB.W #1,D6
MOVE.W D6,(A0)
CLR.L A6

Macro Operations and Condional Assembly 6–13

• • • • • • • •

Examples of REPEATC-ENDR

NUMSTR MACRO
X SET 1

IFGT X–9
FAIL “Argument to NUMSTR out of range”
ENDC
IFLT X
FAIL “Argument to NUMSTR out of range”
ENDC
REPEATC 1,X
DC.B 0+X SAME AS X IF 0<=X<=9

X SET X–1
ENDR
DC.B 0
ENDM

NUMST 3

* Expansion is equivalent to following lines
DC.B 0+3
DC.B 0+2
DC.B 0+1
DC.B 0

POWERS MACRO
X SET \2

REPEATC 1,\1
DC.\1 X

X SET X*\2
ENDR
ENDM

POWERS.W 4,4

* Expansion is equivalent to following lines
DC.W 4
DC.W 16
DC.W 64
DC.W 256

Chapter 66–14
M
A
C
R
O
S

7

STRUCTURED
CONTROL
STATEMENTS

C
H

A
P

T
E

R

Chapter 7
7–2

C
O
N
T
R
O
L

7

C
H

A
P

T
E

R

Structured Control Statements 7–3

• • • • • • • •

An assembly language provides an instruction set for performing certain

rudimentary operations. These operations, in turn, may be combined into

control structures -- such as loops (for, repeat, while) or conditional

branches (if-then, if-then-else). To simplify the process of coding these

constructs, this assembler accepts formal, high level directives that specify

these control structures, generating, in turn, the appropriate assembly

language instructions for their efficient implementation. This use of

structured control statement directives improves the readability of

assembly language programs, without compromising the desirable aspects

of programming in an assembly language.

7.1 KEYWORD SYMBOLS

The following Class 1 symbols, used in the structured syntax, are reserved

keywords (directives):

ELSE ENDW REPEAT

ENDF FOR UNTIL

ENDI IF WHILE

The following symbols are required in the structured syntax. All keywords

are reserved:

AND DOWNTO TO

BY OR

DO THEN

AND and OR are reserved instruction mnemonics, however.

7.2 SYNTAX

This section describes the formats for the IF, FOR, REPEAT, and WHILE

statements. They are spaced to show the line separations required for

Class 1 symbol usage. Syntactic variables used in the formats are as

follows:

<expression> A simple or compound expression (see the Simple and
Compound Expressions section).

Chapter 7
7–4

C
O
N
T
R
O
L

<stmtlist> Zero or more assembler directives, structured control

statements, or executable instructions.

An assembler directive (see the Assembler Directives chapter) occurring

within a structured control statement is examined exactly once - at

assembly time. Thus, the presence of a directive within a FOR, REPEAT, or

WHILE statement does not imply repeated occurrence of an assembler

directive; nor does the presence of a directive within an IF-THEN-ELSE

statement imply a conditional assembly structure (see the Structured
Control Statements chapter).

For correct recognition, the statements in <stmtlist> must not

appear on the same line as the structured syntax symbols.

<size> The value B, W, or L, indicating a data size of byte, word, or

longword, respectively. With the keyword FOR, <size> is a

single code applying to <op1>, <op2>, <op3>, and <op4>.

With the keywords IF, UNTIL, and WHILE, <size> indicates

the size of the operand comparison in the subsequent simple

expression (refer to paragraph 5.3.4 for a compound

expression). Note that structured syntax statements rely on

the underlying opcodes and the restrictions these opcodes

place on arguments to the statements. For example, the

structured syntax statement

 FOR.B D7 = #0 to #255 DO

generates code without warning but does not execute as

expected. This is because the comparison opcode CMP does

a signed comparison and hence deals with numbers in the

range -128 ... 127 instead of 0 ... 255.

<extent> The value S or L, indicating that the branch extent is short or

long, respectively. This is appended to the keywords THEN,

ELSE, and DO, to force the appropriate extent of the

generated forward branch over the subsequent <stmtlist>.

The default extent for the Motorola 68020-plus is determined

by the forward branch option directive (OPT BRS, OPT BRB,

OPT BRW, or OPT BRL) currently in effect.

<op1> A user-defined operand whose memory/register location

holds the FOR counter. This must be a data or address

register.

Structured Control Statements 7–5

• • • • • • • •

<op2> The initial value of the FOR counter. The effective address

may be any mode. Immediate operands must be preceded by

a # sign.

<op3> The terminating value for the FOR counter. The effective

address may be any mode. Immediate operands must be

preceded by a # sign.

<op4> The step (increment/decrement) for the FOR counter each

time through the loop. If not specified, it defaults to a value

of #1. The effective address may be any mode. Immediate

operands must be preceded by a # sign.

7.2.1 IF STATEMENT

Syntax

IF[.<size>] <expression> THEN[.<extent>]

 <stmtlist>
ENDI

OR:

IF[.<size>] <expression> THEN[.<extent>]

 <stmtlist>
ELSE[.<extent>]

 <stmtlist>
ENDI

If <expression> is true, execute the <stmtlist> following THEN;

If <expression> is false, execute <stmtlist> following ELSE, if present, or

advance to next instruction.

Notes

• If an operand comparison <expression> is specified, the condition

codes are set and tested before execution of <stmtlist>.

• In the case of nested IF-THEN-ELSE statements, each ELSE refers to the

closest IF-THEN.

Chapter 7
7–6

C
O
N
T
R
O
L

Example

IF.L D1 <LT> #10 THEN
MOVE D5, D6
ENDI

7.2.2 FLOATING-POINT STRUCTURED ASSEMBLER

SYNTAX FOR THE IF STATEMENT

Syntax

IF[.<fmt>] FPn <fpcc> <ea> THEN

IF[.<fmt>] <ea> <fpcc> FPn THEN

IF.X FPn <fpcc> FPm THEN

IF <fpcc> THEN

where:

<fmt> = B | W | L | S | D | X | P (W is default)

<fpcc> = A floating-point condition code, as defined in Table

NO TAG.

This directive is similar to the non-floating-point IF syntax, except that the

floating-point condition codes are used. When the assembler expands the

structured IF statement with a floating-point condition code, <fpcc>, it

must choose the true IEEE inverse of <fpcc>. For example, the code

generated for:

IF.X FP3 <FGT> #3.3 THEN

(where GT is one value of fpcc and #3.3 is a required constant value)

would be:

FCMP.X #3.3,FP3
FBNGT ELSECLAUSE
.... true clause code
BRA PAST

ELSECLAUSE
.... false clause code

PAST
....

The branch following the FCMP is a FBNGT rather than a FBLE because

FBNGT is the IEEE inverse of FBGT.

Structured Control Statements 7–7

• • • • • • • •

7.2.3 FOR STATEMENT

Syntax

FOR[.<size>] <op1> = <op2> TO <op3>

[BY <op4>] DO[.<extent>] <stmtlist>
ENDF

OR:

FOR[.<size>] <op1>=<op2> DOWNTO

<op3> [BY <op4>] DO[.<extent>] <stmtlist>
ENDF

These counting loops utilize a user-defined operand, <op1>, for the loop

counter. FOR-TO allows counting upward, while FOR-DOWNTO allows

counting downward. In both loops, the user may specify the step size,

<op4>, or elect the default step size of #1. The FOR-TO loop is not

executed if <op2> is greater than <op3> upon entry. Similarly, the

FOR-DOWNTO loop is not executed if <op2> is less than <op3>.

Notes

• The condition codes are set and tested before each execution of

<stmtlist>. This happens even if <stmtlist> is not executed.

• A step size of #1 may not be meaningful if the counter, <op1>, is used

to index through word or longword size data.

• The FOR structure generates a move, a compare, and either an add or

subtract. Therefore, if any of the four operands is an address register,

<size> may not be B (byte).

• <op1> must be a data or address register.

Example

FOR COUNT = #4 TO #40 BY #4 DO
 NOP loop 10 times by steps of 4
ENDF

Chapter 7
7–8

C
O
N
T
R
O
L

7.2.4 REPEAT STATEMENT

Syntax

REPEAT

<stmtlist>
UNTIL[.<size>] <expression>

<stmtlist> is executed repeatedly until <expression> is true.

Notes:

• The <stmtlist> is executed at least once, even if <expression> is true

upon entry.

• If an operand comparison <expression> is specified, the condition

codes are set and tested following each execution of <stmtlist>.

Example

REPEAT
 MOVE (A6)+,(A5)+
UNTIL <EQ>

7.2.5 WHILE STATEMENT

Syntax

WHILE[.<size>] <expression> DO[.<extent>]

<stmtlist>
ENDW

The <expression> is tested before execution of <stmtlist>. While

<expression> is true, <stmtlist> is executed repeatedly.

Notes:

• If <expression> is false upon entry, <stmtlist> is not executed.

• If an operand comparison <expression> is specified, the condition

codes are set and tested before each execution of <stmtlist>. The

condition codes are set and tested even if <stmtlist> is not executed.

Example

WHILE.B (A3) <NE> D2 DO
 MOVE.B (A5)+,D3
ENDW

Structured Control Statements 7–9

• • • • • • • •

7.3 SIMPLE AND COMPOUND EXPRESSIONS

Expressions are an integral part of IF, REPEAT, and WHILE statements. An

expression may be simple or compound. A compound expression consists

of no more than two simple expressions joined by AND or OR.

7.3.1 SIMPLE EXPRESSIONS

Simple expressions are concerned with the bits of the Condition Code

Register (CCR). These expressions are of two types. The first type merely

tests conditions currently specified by the contents of the CCR. The second

type set up a comparison of two operands to set the condition codes, and

afterwards tests the codes.

7.3.2 CONDITION CODE EXPRESSIONS

Fourteen tests (identical to those in the Bcc instruction) may be performed,

based on the CCR condition codes. The condition codes, in this case, are

preset by either a user-generated instruction or a structured

operand-comparison expression. Each test is expressed in the structured

control statement by a mnemonic enclosed in angle brackets (<\^>) as

follows:

<CC> <LS>
<CS> <LT>
<EQ> <MI>
<GE> <NE>
<GT> <PL>
<HI> <VC>
<LE> <VS>

Example

IF <EQ> THEN
 CLR.L D2
ENDI

REPEAT
 SUB D4,D3
UNTIL <LT>

Chapter 7
7–10

C
O
N
T
R
O
L

7.3.3 OPERAND COMPARISON EXPRESSIONS

Two operands may be compared in a simple expression, with subsequent

transfer of control based on that comparison. Such a comparison takes the

form:

<op1> <cc> <op2>

where <cc> is a condition mnemonic enclosed in angle brackets,

specifying the relation to be tested between <op1> and <op2>. When

processed by the assembler, this expression translates to a compare

instruction. For example,

CMP <op1>,< op2>

followed by a branch instruction (Bcc) which tests the relation specified.

<op1> is normally, but not necessarily assigned to the first (leftmost)

operand and <op2> to the second (rightmost) operand of the compare

instruction.

Notes:

• A size may be specified for the comparison by appending a data size

code (B, W, or L) to the directive, with W being the default. The only

restriction is that a byte size code (B) may not be used in conjunction

with an address register direct operand.

• Compare instructions require certain effective addressing modes for

their operands. These modes are listed in Table 7-1. However, if the

operands, <op1> and <op2>, are not listed in an order that generates a

legal compare instruction (Table 7-1), but generates a legal compare if

the operand order is reversed, the assembler reverses the operands

when expanding the expression. To maintain the nature of the relation

specified, the condition operator is adjusted, if necessary. For example,

D2 <GT> #5

is adjusted by the assembler to the equivalent of

#5 <LE> D2

Structured Control Statements 7–11

• • • • • • • •

Likewise,

A2 <EQ> (A5)

is adjusted to the equivalent of

(A5) <NE> A2.

This processing allows the user the flexibility of specifying the most

meaningful operand order in the expression.

First Operand Second Operand

CMP (All) Data register direct

(All) Address register direct

CMPA Immediate (Data alterable)

CMPM Postincrement register Postincrement

indirect register indirect

Table 7-1: Effective Compare Instruction Addressing Modes

If the operands, either as stated or reversed, do not yield a legal compare

instruction, an error will result. For example, the statement:

IF (A1) <NE> (A2) THEN

results in an illegal address mode error during expansion. To avoid this

error, a MOVE is required to effect a legal operand, such as:

MOVE (A2),D2 IF (A1) <NE> D2 THEN

Example

WHILE.B (A3) <NE> D2 DO THIS EXPRESSION
 MOVE.B (A5)+,D2 IS LEGAL AS STATED.
ENDW

IF D7 <LT> #10 THEN THIS EXPRESSION
 BSR SUBR1 IS REVERSED
ELSE
 MULS #2,D7
ENDI

Chapter 7
7–12

C
O
N
T
R
O
L

7.3.4 COMPOUND EXPRESSIONS

A compound expression consists of two simple expressions joined by a

logical operator. The Boolean value of the compound expression is

determined by the Boolean values of the simple expressions and the

nature of the logical operator (AND or OR).

The two simple expressions are evaluated in the order in which they are

given. However, if an AND separates the expressions and the first

expression is false, the second expression is not evaluated. Likewise, if an

OR separates the expressions and the first expression is true, the second

expression does not need to be evaluated, and the condition codes reflect

the result of only the first simple expression.

A size may be specified for each operand comparison expression. The size

of the comparison for the first expression may be appended to the

directive, while the size of the comparison for the second expression may

be appended to the keyword AND or OR. For example, in the statement:

IF.L D3 <GT> (A0) OR.B #Q <EQ> BUFFER1

the first comparison (between D3 and (A0)) is a longword comparison,

and the second (between #Q and BUFFER1) is a byte comparison.

7.4 SOURCE LINE FORMATTING

The format of structured source statements is more restricted than the

format of basic statements. The following paragraphs discuss the

formatting requirements of structured statements as well as their

appearance in the assembly listing.

7.4.1 CLASS 1 SYMBOL USAGE

Class 1 symbols are the assembler directives (including macro names),

instruction mnemonics, and the structured control directives. Only one of

these symbols is recognized on each source line. Thus, each directive

(reserved keyword) of a structured control statement and each executable

instruction generated by the programmer must be written on a separate

source line. The following source line, for example, is in error:

REPEAT MOVE (A5),D2 UNTIL <EQ>

Structured Control Statements 7–13

• • • • • • • •

The MOVE and UNTIL symbols and their operands are not recognized as

class 1 symbols, but are treated as part of the comment field of the

REPEAT directive. Likewise, the following lines are in error:

IF <VS> THEN JSR OVERFLOW
ELSE JMP (A3) ENDI

The JSR, JMP, and ENDI symbols and their operands are not recognized

because they come after the THEN and ELSE keywords and are treated as

comments. The correct format for these lines is as follows:

REPEAT
 MOVE (A5),D2
UNTIL <EQ>

 and:

IF <VS> THEN
 JSR OVERFLOW
ELSE
 JMP (A3)
ENDI

7.4.2 NESTING OF STRUCTURED STATEMENTS

Structured statements may be nested as desired to create multilevel control

structures. An example of such nesting is the following:

IF <EQ> THEN
 REPEAT
 MOVE D0,(A5)+
 ADDQ #4,D0
 MOVE.L A4,(A4)+
 UNTIL.L A5 <LE> A4

ELSE.L

 FOR D2 = #10 TO #20 BY #2 DO
 WHILE D4 <LE> D2 AND D4 <LT> #100 DO
 MOVE.L 10 (A3,D4.W),(A5)+
 ADDQ #2,D4
 ENDW
 ENDF
ENDI

Chapter 7
7–14

C
O
N
T
R
O
L

The indention shown above is not necessary for nested structure

statements; it just makes the code easier to read.

7.5 EFFECTS ON THE USER'S ENVIRONMENT

If the –p option is passed on the command line, the generated code of the

structured control expansions is listed. There may be three items found in

this code that will affect the user's environment:

• During assembly, local labels beginning with | (pipe bar) are

generated. These labels use the same increment counter (.nnn) as local

labels in macros. They are stored in the symbol table, but can not be

duplicated in user-defined labels.

• In the FOR loop, <op1> is a user-defined symbol. When exiting the

loop, the memory/register assigned to this symbol contains the value

which caused the exit from the loop.

• Compare instructions (Table 7-1) are generated by the assembler

whenever two operands are tested relationally in a structured

statement. At run-time, however, these assembler-generated

instructions set the condition codes of the CCR (in the case of a

loop, the condition codes are set repeatedly). Users must keep in mind

the effects of this when writing code that references the CCR within or

following a structured statement.

8

POSITION–
INDEPENDENT
CODE

C
H

A
P

T
E

R

Chapter 88–2
P

O
S

IT
IO

N
-I

N
D

E
P

E
N

D
E

N
T

 C
O

D
E

8

C
H

A
P

T
E

R

Position–Independent Code 8–3

• • • • • • • •

This chapter contains sections on Forcing Position Independence,

Base-Displacement Addressing, and Base-Displacement in Conjunction

with Forced Position Independence.

8.1 FORCING POSITION INDEPENDENCE

When creating a relocatable program module, it is often desirable to

ensure that all references to operands in relocatable sections are

position-independent effective addresses, i.e., no absolute addresses occur

as effective addresses for such references. To avoid absolute effective

address formats, it is necessary to ensure that all memory operand

references are resolved by the assembler or the linker into one of the

program counter relative or address register indirect addressing modes.

The ORG directive should also be avoided.

To override an absolute address mode when resolving the effective

address format of an operand, the following formats may be used to force

program counter relative addressing:

• Forcing program counter with displacement:

An operand of the form:

LABEL(PC)

is resolved as a PC with displacement effective address, either by the

assembler or by the linker. If LABEL cannot be resolved into a 16-bit

displacement from the program counter, an error is generated.

• Forcing PC with index plus displacement:

An operand of the form:

LABEL(PC,Rn)

is resolved as a PC with index plus displacement effective address by

the assembler. If LABEL cannot be resolved into an 8-bit displacement

from the program counter, an error is generated.

Chapter 88–4
P

O
S

IT
IO

N
-I

N
D

E
P

E
N

D
E

N
T

 C
O

D
E

8.2 BASE-DISPLACEMENT ADDRESSING

Although PC relative addresses have the advantage of position

independence, such address formats often are not the most meaningful to

the programmer when debugging an assembled module. There are many

times when a programmer would prefer to see an address relative to a

specified base -- i.e., in a base-displacement format. This is especially

true when addressing tables, arrays, and other data structures.

Base-displacement references to a given location are �base relative" and,

therefore, fixed with respect to a given base address; PC relative

references to that same location are different in each instruction.

Base-displacement addressing must be handled explicitly by the

programmer. For example, if the following data area is declared:

TEMP DS $40
CONST DC $10
ARRAY1 DS.L $10
ARRAY2 DS.L $10
RESULT DS.L $10

the programmer may choose to load A6 with the address of TEMP and

make references to the other data locations as displacements from this

base address. For example, to move the first element of ARRAY1 to D1, the

programmer may specify:

MOVE.L ARRAY1–TEMP(A6),D1

Indexing with the low order contents of D0 may be added (as the array

index):

MOVE.L ARRAY1–TEMP(A6,D0),D1

8.3 BASE-DISPLACEMENT IN CONJUNCTION WITH

FORCED POSITION INDEPENDENCE

Complete code-position independence can be achieved by using

base-displacement addressing in conjunction with the PCS option and the

forced PC relative addressing scheme outlined in the Forcing Position
Independence section. Although these techniques can be used to avoid all

undesired absolute address formats, there are significant limitations of PC

relative addressing in a position-independent program, as noted below:

Position–Independent Code 8–5

• • • • • • • •

• PC with displacement:
PC with displacement effective addresses (for the 68000 and 68010) are

restricted by the 16-bit displacement field. A displacement greater than

32K byte from the current PC cannot be resolved in this format.

• PC with index plus displacement:
The displacement field here is restricted to eight bits (for the 68000 and

68010), limiting the range of this format to a 128-byte displacement

from the current PC. The displacement may be relocatable.

• Operands in the alterable addressing category:
Neither PC relative mode is allowed as an alterable operand. This is a

significant limitation in instructions which require an alterable operand,

such as the destination operand in a MOVE instruction.

By appropriate use of base registers, these limitations can be overcome.

Chapter 88–6
P

O
S

IT
IO

N
-I

N
D

E
P

E
N

D
E

N
T

 C
O

D
E

A

CHARACTER SET
A

P
P

E
N

D
I
X

Appendix AA–2
C

H
A

R
A

C
T

E
R

 S
E

T A

A
P

P
E

N
D

I
X

Character Set A–3

• • • • • • • •

This appendix lists the ASCII characters recognized by the assembler.

1 CHARACTERS RECOGNIZED

The characters recognized by the assembler are listed below. The ASCII

codes for these characters are shown on the following pages:

• The upper case letters A through Z

• The lower case letters a through z

• The digits 0 through 9

• Five arithmetic operators: +, -, *, /, and %

• The logical operators: >>, <<, &, and !

• Parentheses used in expressions ()

• Characters used as special prefixes:

(pound sign) specifies the immediate modeof addressing

$ (dollar sign) specifies a hexadecimal number

@ (commercial �at") specifies an octal number

% (percent) specifies a binary number

' (apostrophe) specifies an ASCII literal character

• The special characters used in macros: <, >, /, and @

• Four separating characters:

(space)

(tab)

, (comma)

. (period)

• A comment in a source statement may include any characters with

ASCII values from (hexadecimal) 20 through 7E.

• Character used as a special suffix:

: (colon) specifies the end of a label

2 ASCII CHARACTER SET

Character Comments Hex Value

NUL Null or tape feed 00

SOH Start of Heading 01

STX Start of Text 02

ETX End of Text 03

Appendix AA–4
C

H
A

R
A

C
T

E
R

 S
E

T

Hex ValueCommentsCharacter

EOT End of Transmission 04

ENQ Enquire 05

ACK Acknowledge 06

BEL Bell 07

BS Backspace 08

HT Horizontal Tab 09

LF Line Feed 0A

VT Vertical Tab 0B

FF Form Feed 0C

RETURN Carriage Return 0D

SO Shift Out (to red ribbon) 0E

SI Shift In (to black ribbon) 0F

DLE Data Link Escape 10

DC1 Device Control 1 11

DC2 Device Control 2 12

DC3 Device Control 3 13

DC4 Device Control 4 14

NAK Negative Acknowledge 15

SYN Synchronous idle 16

ETB End of Transmission Block 17

CAN Cancel 18

EM End of Medium 19

SUB Substitute 1A

ESC Escape, prefix 1B

FS File Separator 1C

GS Group Separator 1D

RS Record Separator 1E

US Unit Separator 1F

SP Space or blank 20

! Exclamation point 21

“ Quotation mark 22

Character Set A–5

• • • • • • • •

Hex ValueCommentsCharacter

Number sign 23

$ Dollar sign 24

% Percent sign 25

& Ampersand 26

’ Apostrophe 27

(Opening parenthesis 28

) Closing parenthesis 29

* Asterisk 2A

+ Plus sign 2B

– Hyphen (minus) 2D

. Period (decimal point) 2E

/ Slant 2F

0 Digit 0 30

1 Digit 1 31

2 Digit 2 32

3 Digit 3 33

4 Digit 4 34

5 Digit 5 35

6 Digit 6 36

7 Digit 7 37

8 Digit 8 38

9 Digit 9 39

: Colon 3A

; Semicolon 3B

< Less than 3C

= Equals 3D

> Greater than 3E

? Question mark 3F

@ Commercial at 40

A Upper case letter A 41

B Upper case letter B 42

Appendix AA–6
C

H
A

R
A

C
T

E
R

 S
E

T

Hex ValueCommentsCharacter

C Upper case letter C 43

D Upper case letter D 44

E Upper case letter E 45

F Upper case letter F 46

G Upper case letter G 47

H Upper case letter H 48

I Upper case letter I 49

J Upper case letter J 4A

K Upper case letter K 4B

L Upper case letter L 4C

M Upper case letter M 4D

N Upper case letter N 4E

O Upper case letter O 4F

P Upper case letter P 50

Q Upper case letter Q 51

R Upper case letter R 52

S Upper case letter S 53

T Upper case letter T 54

U Upper case letter U 55

V Upper case letter V 56

W Upper case letter W 57

X Upper case letter X 58

Y Upper case letter Y 59

Z Upper case letter Z 5A

[Opening bracket 5B

\ Reverse slant 5C

] Closing bracket 5D

^ Circumflex 5E

– Underline 5F

’ Quotation mark 60

a Lower case letter a 61

Character Set A–7

• • • • • • • •

Hex ValueCommentsCharacter

b Lower case letter b 62

c Lower case letter c 63

d Lower case letter d 64

e Lower case letter e 65

f Lower case letter f 66

g Lower case letter g 67

h Lower case letter h 68

i Lower case letter i 69

j Lower case letter j 6A

k Lower case letter k 6B

l Lower case letter l 6C

m Lower case letter m 6D

n Lower case letter n 6E

o Lower case letter o 6F

p Lower case letter p 70

q Lower case letter q 71

r Lower case letter r 72

s Lower case letter s 73

t Lower case letter t 74

u Lower case letter u 75

v Lower case letter v 76

w Lower case letter w 77

x Lower case letter x 78

y Lower case letter y 79

z Lower case letter z 7A

{ Opening brace 7B

| Vertical line 7C

} Closing brace 7D

~ Equivalent 7E

DEL Delete 7F

Table A-1: ASCII character set

Appendix AA–8
C

H
A

R
A

C
T

E
R

 S
E

T

INDEX
I
N
D
E
X

IndexIndex–2
IN
D
E
X

I
N
D
E
X

Index Index–3

• • • • • • • •

Symbols
_tolower, 2-26

_toupper, 2-26�2-86

Numbers
68302, 2-9

68340, 2-10

68360, 2-11

68881, floating-point, 2-6, 2-12

A
A5 register, 2-5

A7 register, 2-5

abort, 2-27�2-86

abs, 2-27�2-86

access, 2-27

acos, 2-27�2-86

address modes, 4-16

asctime, 2-28�2-86

asin, 2-28�2-86

assert, 2-28

atan, 2-29�2-86

atan2, 2-29�2-86

atanh, 2-29�2-86

atexit, 2-30�2-86

atof, 2-30�2-86

atoi, 2-31�2-86

atol, 2-31�2-86

B
bsearch, 2-32�2-86

C
calloc, 2-32�2-86

ceil, 2-32�2-86

chdir, 2-33

clearerr, 2-33�2-86

clock, 2-33�2-86

close, 2-33

controls

external symbol, 5-24�5-26
external symbol definition (XDEF),

5-24
external symbol reference (XREF),

5-25
relocatable identification record

(IDNT), 5-24
internal assembly, 5-25�5-26

declare external symbol
(_BRINGIN), 5-26

define data group (_DGROUP),
5-26

put out debugging information
(_DEBSYM), 5-26

cos, 2-34�2-86

cosh, 2-34�2-86

ctime, 2-34

D
data initialization, 2-63

difftime, 2-34�2-86

directives

assembly control, 5-3�5-26
absolute origin (ORG), 5-7
define offsets (OFFSET), 5-6
enter named common section

(COMMON), 5-4

IndexIndex–4
IN
D
E
X

include secondary file (INCLUDE),
5-6

program end (END), 5-5
relocatable ORG (RORG), 5-9
relocatable program section

(SECTION), 5-10
reserve storage (RESERVE), 5-8
resume defined section (RESUME),

5-9
data definition/storage allocation,

5-14�5-26
define constant (DC), 5-14
define constant block (DCB), 5-17
define storage (DS), 5-17
specify command line (COMLINE),

5-14
symbol definition, 5-11�5-26

define register list (REG), 5-13
equate floating-point symbol value

(FEQU), 5-12
equate symbol value (EQU), 5-12
set symbol value (SET), 5-13

terminate macro source statement
generation (MEXIT), 6-6

div, 2-35�2-86

documentation, 1-3�1-4

E
exit, 2-35�2-86

exp, 2-35�2-86

expressions

absolute, 4-15
complex relocatable, 4-15
simple relocatable, 4-15

F
fabs, 2-35�2-86

fclose, 2-36�2-86

fcntl.h, open, 2-55

feof, 2-36�2-86

ferror, 2-36�2-86

fflush, 2-36�2-86

fgetc, 2-37

fgetpos, 2-37�2-86

fgets, 2-37�2-86

file control block, 2-6

floating-point

constant notation, 4-12
hex constant notation, 4-12

floor, 2-37

fmod, 2-38�2-86

fopen, 2-38�2-86

fprintf, 2-38�2-86

fputc, 2-38

fputs, 2-39�2-86

fread, 2-39�2-86

free, 2-39�2-86

freopen, 2-39�2-86

frexp, 2-40�2-86

fscanf, 2-40�2-86

fseek, 2-40�2-86

fsetpos, 2-41�2-86

ftell, 2-41�2-86

fwrite, 2-42�2-86

G
getc, 2-42�2-86

getchar, 2-42

getcwd, 2-42

getenv, 2-43

getl, 2-43

gets, 2-43�2-86

getw, 2-43�2-86

global

data, 2-5
variable, 2-8

Index Index–5

• • • • • • • •

gmtime, 2-44�2-86

I
I/O, system, 2-6�2-25

idata, 2-5

initialization, routine, 2-11

isalnum, 2-44�2-86

isalpha, 2-44�2-86

iscntrl, 2-45�2-86

isdigit, 2-45�2-86

isgraph, 2-45�2-86

islower, 2-46�2-86

isprint, 2-46�2-86

ispunct, 2-46�2-86

isspace, 2-47�2-86

isupper, 2-47�2-86

isxdigit, 2-47�2-86

L
labs, 2-47�2-86

ldata, 2-6

ldexp, 2-48�2-86

ldiv, 2-48�2-86

libraries that do not use A5, 2-6

library, modification, 2-3

localeconv, 2-48�2-86

localtime, 2-49�2-86

log, 2-49�2-86

log10, 2-49�2-86

log2, 2-49�2-86

longjmp, 2-50�2-86

lseek, 2-50

M
M68302ADS, 2-3, 2-4, 2-9

M68340BCC, 2-3, 2-4, 2-10

M68360QUADS, 2-11

macro calls, 4-5

malloc, 2-50�2-86

memccpy, 2-52�2-86

memchr, 2-52�2-86

memcmp, 2-53�2-86

memcpy, 2-53�2-86

memmove, 2-53�2-86

memset, 2-53�2-86

mktime, 2-54�2-86

mnemonics

directive, 4-5
instruction, 4-5

modf, 2-54�2-86

N
no-floats library, 2-13

O
offsetof, 2-54

open, 2-55

operators

arithmetic operators, 4-13
logical operators, 4-13
shift operators, 4-13

options, listing control and output,

5-18�5-26

assembler option (OPT), 5-20
control listing file format

(FORMAT/NOFORMAT), 5-19
control listing generation

(LIST/NOLIST), 5-19
control pagination (PAGE/NOPAGE),

5-23
produce no object module (NOOBJ),

5-19�5-20
programmer generated error (FAIL),

5-19

IndexIndex–6
IN
D
E
X

set subtitle (STTL), 5-23
set title (TTL), 5-23
space between source lines (SPC),

5-23
specify listing line length (LLEN),

5-19�5-20

P
perror, 2-55�2-86

pow, 2-55�2-86

printf, 2-56�2-86

putc, 2-60�2-86

putchar, 2-61�2-86

putl, 2-61�2-86

puts, 2-61�2-86

putw, 2-61�2-86

Q
qsort, 2-62�2-86

R
raise, 2-62

rand, 2-62�2-86

rcopy, 2-63�2-86

read, 2-64

realloc, 2-63�2-86

remove, 2-64�2-86

rename, 2-64�2-86

ROM, 2-79

run-time library, 2-1�2-25

index file, 2-13
modification, 2-3, 2-11�2-25
object modules, 2-13�2-25
routines, 2-14�2-25

source code, 2-3

run-time library routine

_tolower, 2-26
_toupper, 2-26
abort, 2-27
abs, 2-27
access, 2-27
acos, 2-27�2-86
asctime, 2-28
asin, 2-28
assert, 2-28
atan, 2-29
atan2, 2-29
atanh, 2-29
atexit, 2-30
atof, 2-30
atoi, 2-31
atol, 2-31
bsearch, 2-32
calloc, 2-32
ceil, 2-32
chdir, 2-33
clearerr, 2-33
clock, 2-33
close, 2-33
cos, 2-34
cosh, 2-34
ctime, 2-34
difftime, 2-34
div, 2-35
exit, 2-35
exp, 2-35
fabs, 2-35
fclose, 2-36
feof, 2-36
ferror, 2-36
fflush, 2-36
fgetc, 2-37, 2-42
fgetpos, 2-37
fgets, 2-37
floor, 2-37
fmod, 2-38
fopen, 2-38

Index Index–7

• • • • • • • •

fprintf, 2-38
fputc, 2-38
fputs, 2-39
fread, 2-39
free, 2-39
freopen, 2-39
frexp, 2-40
fscanf, 2-40
fseek, 2-40
fsetpos, 2-41
ftell, 2-41
fwrite, 2-42
getchar, 2-42
getcwd, 2-42
getenv, 2-43
getl, 2-43
gets, 2-43
getw, 2-43
gmtime, 2-44
isalnum, 2-44
isalpha, 2-44
iscntrl, 2-45
isdigit, 2-45
isgraph, 2-45
islower, 2-46
isprint, 2-46
ispunct, 2-46
isspace, 2-47
isupper, 2-47
isxdigit, 2-47
labs, 2-47
ldexp, 2-48
ldiv, 2-48
localeconv, 2-48
localtime, 2-49
log, 2-49
log10, 2-49
log2, 2-49
longjmp, 2-50
lseek, 2-50
malloc, 2-50
mblen, 2-51
mbstowc, 2-52

mbstowcs, 2-51
memccpy, 2-52
memchr, 2-52
memcmp, 2-53
memcpy, 2-53
memmove, 2-53
memset, 2-53
mktime, 2-54
modf, 2-54
offsetof, 2-54
open, 2-55
perror, 2-55
pow, 2-55
printf, 2-56
putc, 2-60
putchar, 2-61
putl, 2-61
puts, 2-61
putw, 2-61
qsort, 2-62
raise, 2-62
rand, 2-62
rcopy, 2-63
read, 2-64
realloc, 2-63
remove, 2-64
rename, 2-64
rewind, 2-64
roupper, 2-83
scanf, 2-65
setbuf, 2-69
setjmp, 2-69
setlocale, 2-70
setvbuf, 2-70
signal, 2-71
sin, 2-71
sinh, 2-71
sprintf, 2-71
sqrt, 2-72
srand, 2-72
sscanf, 2-72
stat, 2-73
strcat, 2-73

IndexIndex–8
IN
D
E
X

strchr, 2-73
strcmp, 2-73
strcoll, 2-74
strcpy, 2-74
strcspn, 2-74
strerror, 2-74
strftime, 2-75
strlen, 2-76
strncat, 2-76
strncmp, 2-77
strncpy, 2-77
strpbrk, 2-77
strrchr, 2-78
strspn, 2-78
strstr, 2-78
strtod, 2-78
strtok, 2-79
strtol, 2-79
strtoul, 2-80
strxfrm, 2-80
swab, 2-81
system, 2-81
tan, 2-81
tanh, 2-81
time, 2-82
tmpfile, 2-82
tmpnam, 2-82
tolower, 2-82
ungetc, 2-83
unlink, 2-83
va_arg, 2-83
va_end, 2-84
va_start, 2-84
vfprintf, 2-84
vprintf, 2-85
vsprintf, 2-85
wcstombs, 2-85
wctomb, 2-86
write, 2-86

S
scanf, 2-65�2-86

SEGBASE, 4-14

SEGSIZE, 4-14

setbuf, 2-69�2-86

setjmp, 2-69�2-86

setlocale, 2-70�2-86

setvbuf, 2-70�2-86

sin, 2-71�2-86

sinh, 2-71�2-86

sprintf, 2-71�2-86

sqrt, 2-72�2-86

srand, 2-72�2-86

sscanf, 2-72�2-86

stat, 2-73

statements

assembler control, 3-4�3-5
assembler directive, 3-4�3-5, 4-3
data allocation, 3-4�3-5
FOR, 7-7�7-14
IF, 7-5�7-14
instruction, 3-4�3-5
REPEAT, 7-8�7-14
source, 4-3, 4-4
WHILE, 7-8�7-14

storage allocation, 2-9�2-25

strcat, 2-73�2-86

strchr, 2-73�2-86

strcmp, 2-73�2-86

strcoll, 2-74�2-86

strcpy, 2-74�2-86

strcspn, 2-74�2-86

strerror, 2-74�2-86

strftime, 2-75�2-86

strlen, 2-76�2-86

strncat, 2-76�2-86

strncmp, 2-77

Index Index–9

• • • • • • • •

strncpy, 2-77�2-86

strpbrk, 2-77�2-86

strrchr, 2-78�2-86

strspn, 2-78�2-86

strstr, 2-78�2-86

strtod, 2-78

strtok, 2-79�2-86

strtol, 2-79�2-86

strtoul, 2-80�2-86

strxfrm, 2-80�2-86

swab, 2-81�2-86

symbols, NARG, 6-7

system, 2-81�2-86

initialization, 2-4�2-25

T
tan, 2-81�2-86

tanh, 2-81�2-86

time, 2-82�2-86

tmpfile, 2-82�2-86

tmpname, 2-82�2-86

tolower, 2-82�2-86

toupper, 2-83�2-86

U
udata, 2-5

ungetc, 2-83�2-86

unistd.h

access, 2-27
chdir, 2-33
close, 2-33
getcwd, 2-42
lseek, 2-50
read, 2-64
stat, 2-73
unlink, 2-83
write, 2-86

unlink, 2-83

updating library, 2-12

V
va_arg, 2-83

va_end, 2-84

va_start, 2-84

vfprintf, 2-84�2-86

vprintf, 2-85�2-86

vsprintf, 2-85�2-86

W
write, 2-86

IndexIndex–10
IN
D
E
X

		TABLE OF CONTENTS

		1. INTRODUCTION

		1.1 Overview

		1.2 Documentation

		2. RUN-TIME LIBRARY

		2.1 Introduction

		2.2 System Initialization

		2.3 I/O System

		2.4 Time Functions

		2.4.1 Time Conversion Routines

		2.4.2 Lowlevel Time/Timer Routines

		2.5 Storage Allocation

		2.6 Support for the M68302ADS Development System

		2.7 Support for the M68340BCC Development System

		2.8 Support for the M68360QUADS Development System

		2.9 Modifying the Libraries

		2.9.1 Integrating New Routines Into an Existing Library Without Using make on Unix Hosts

		2.10 Library Object Modules

		2.11 Summary of Library Routines

		2.11.1 Standard Functions

		2.11.2 Mathematical Functions

		2.11.3 Standard I/O Functions

		2.11.4 String Manipulation Functions

		2.11.5 Non-local Goto Functions

		2.11.6 Date and Time Routines

		2.11.7 ASCII Character Set Macros and Functions

		2.11.8 Global Definitions

		2.11.9 Compile-time Assertions

		2.11.10 Formatting of Numeric Values

		2.11.11 Variable Length Argument List Access

		2.11.12 Signal Handling

		2.11.13 C Library Extensions

		2.12 Run-Time Library Routines

		3. ASSEMBLY LANGUAGE REFERENCE

		3.1 Preface

		3.2 Related Publications

		3.3 Using Assembly Language

		3.4 Elements of Assembly Language

		3.5 Notation

		4. SOURCE PROGRAM CODING

		4.1 Introduction

		4.2 Comments

		4.3 Source Line Format

		4.3.1 Label Field

		4.3.2 Operation Field

		4.3.3 Operand Field

		4.3.4 Comment Field

		4.4 Symbols

		4.4.1 Symbol Syntax

		4.4.2 Symbol Definition Classes

		4.4.3 User-Defined Labels

		4.4.4 Location Counter Symbol "*"

		4.5 Constants

		4.5.1 Integer Constants

		4.5.2 Character Constants

		4.5.3 Floating Point Constants (68881/68882/68040/68060 only)

		4.6 Operators

		4.7 Expressions

		4.8 Addressing Modes

		5. ASSEMBLER DIRECTIVES

		5.1 Assembly Control

		5.1.1 COMMON - Enter Named Common Section

		5.1.2 END - Program End

		5.1.3 INCLUDE - Include Secondary File

		5.1.4 OFFSET - Define Offsets

		5.1.5 ORG - Absolute Origin

		5.1.6 RESERVE - Reserve storage

		5.1.7 RESUME - Resume defined section

		5.1.8 RORG - Relocatable ORG

		5.1.9 SECTION - Relocatable Program Section

		5.2 Symbol Definition

		5.2.1 EQU - Equate Symbol Value

		5.2.2 FEQU - Equate Floating Point Symbol Value

		5.2.3 REG - Define Register List

		5.2.4 SET - Set Symbol Value

		5.3 Data Definition/Storage Allocation

		5.3.1 COMLINE - Unimplemented

		5.3.2 DC - Define Constant

		5.3.3 DCB - Define Constant Block

		5.3.4 DS - Define Storage

		5.4 Listing Control and Output Options

		5.4.1 FAIL - Programmer Generated Error

		5.4.2 FORMAT/NOFORMAT - Unimplemented

		5.4.3 LIST/NOLIST - Control Listing Generation

		5.4.4 LLEN - Unimplemented

		5.4.5 NOOBJ - Unimplemented

		5.4.6 OPT - Assembler Options

		5.4.7 PAGE/NOPAGE - Control Pagination

		5.4.8 SPC - Space Between Source Lines

		5.4.9 STTL - Set Subtitle

		5.4.10 TTL - Set Title

		5.5 External Symbol Controls

		5.5.1 IDNT - Relocatable Identification Record

		5.5.2 XDEF - External Symbol Definition

		5.5.3 XREF - External Symbol Reference

		5.6 Internal Assembly Controls

		5.6.1 _BRINGIN Declare external symbol

		5.6.2 _DEBSYM Put out debugging information

		5.6.3 _DGROUP Define data group

		6. MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

		6.1 Macro Operations

		6.1.1 Macro Definition

		6.1.2 Macro Invocation

		6.1.3 Macro Parameter Definition and Use

		6.1.4 Labels Within Macros

		6.1.5 The MEXIT Directive

		6.1.6 The NARG Symbol

		6.1.7 Implementation of Macro Definition

		6.1.8 Implementation of Macro Expansion

		6.2 Conditional Assembly

		6.2.1 Conditional Assembly Structure

		6.2.2 Example of Macro and Conditional Assembly Usage

		7. STRUCTURED CONTROL STATEMENTS

		7.1 Keyword Symbols

		7.2 Syntax

		7.2.1 IF Statement

		7.2.2 Floating-Point Structured Assembler Syntax for the IF Statement

		7.2.3 FOR Statement

		7.2.4 REPEAT Statement

		7.2.5 WHILE Statement

		7.3 Simple and Compound Expressions

		7.3.1 Simple Expressions

		7.3.2 Condition Code Expressions

		7.3.3 Operand Comparison Expressions

		7.3.4 Compound Expressions

		7.4 Source Line Formatting

		7.4.1 Class 1 Symbol Usage

		7.4.2 Nesting of Structured Statements

		7.5 Effects on the User's Environment

		8. POSITION- INDEPENDENT CODE

		8.1 Forcing Position Independence

		8.2 Base-Displacement Addressing

		8.3 Base-Displacement in Conjunction with Forced Position Independence

		A. CHARACTER SET

		1 Characters Recognized

		2 ASCII Character Set

		INDEX

m_c68use.pdf

MA001–022–00–00
Doc. ver.: 1.6

68K/ColdFire v10.0

C Compiler/Assembler

User's Manual

A publication of

Altium BV

Documentation Department

Copyright 1997-2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

INTRODUCTION 1-1

1.1 Overview 1-3.

1.2 Documentation 1-3.

C COMPILER 2-1

2.1 Introduction 2-3.

2.2 C Compiler Options: Summary 2-3.

2.3 Usage 2-8.

2.4 C Compiler Options: Detailed Descriptions 2-10.

2.4.1 Listing Options 2-10.

2.4.2 Include Options 2-13.

2.4.3 Data Type Options 2-15.

2.4.4 Separate Data Options 2-19.

2.4.5 Optimizer Options 2-22.

2.4.6 Floating-Point Options (68K only) 2-28.

2.4.7 Code Generation Options 2-31.

2.4.8 Position-independent Code Options 2-37.

2.4.9 Miscellaneous Options 2-40.

2.5 Using the Optimizer 2-47.

2.6 Optimizations Performed 2-48.

2.6.1 Automatic Register Variable Assignment 2-48.

2.6.2 Common Subexpression Elimination 2-49.

2.6.3 Target Path Computation 2-49.

2.6.4 Strength Reduction 2-50.

2.6.5 Code Hoisting 2-51.

2.6.6 Loop Rotation 2-51.

2.6.7 Branch Tables 2-52.

2.6.8 Entry/Exit Optimization 2-52.

2.6.9 Multiplication Optimization 2-53.

2.6.10 Subscript Optimization 2-53.

2.6.11 Special Instruction Selection 2-53.

2.6.12 Special Addressing Modes 2-54.

2.7 Messages 2-54.

Table of ContentsVI
C
O
N
T
E
N
T
S

ASSEMBLER 3-1

3.1 Introduction 3-3.

3.2 Assembler Options: Summary 3-3.

3.3 Usage 3-5.

3.4 Assembler Options: Detailed Descriptions 3-6.

3.4.1 Listing Options 3-6.

3.4.2 INCLUDE Options 3-12.

3.4.3 Code Generation Options 3-12.

3.4.4 Miscellaneous Options 3-14.

LINKING LOCATOR 4-1

4.1 Introduction 4-3.

4.2 Linking Locator Options: Summary 4-3.

4.3 Usage 4-5.

4.3.1 Linking 4-5.

4.3.2 ROM Processing 4-5.

4.3.3 Locating 4-7.

4.4 Linking Locator Options: Detailed Descriptions 4-8.

4.4.1 Linker Options 4-8.

4.4.2 Locator Options 4-9.

4.4.3 ROM Processing Options 4-10.

4.4.4 Symbol Options 4-12.

4.4.5 Miscellaneous Options 4-13.

4.5 Linking Concepts 4-16.

4.5.1 Segments 4-16.

4.5.2 Groups 4-18.

4.5.3 Classes 4-19.

4.5.4 Relocation 4-21.

4.6 Compiler Library Organization 4-22.

4.7 Library Searches 4-26.

4.8 Locator Commands 4-27.

4.8.1 General Command Syntax 4-27.

4.8.2 Comments 4-28.

4.8.3 Numbers 4-28.

Table of Contents VII

• • • • • • • •

4.8.4 Keywords 4-28.

4.8.5 Address Ranges 4-28.

4.8.6 Names 4-29.

4.8.7 Name List 4-29.

4.9 Command Descriptions 4-29.

FORMATTER 5-1

5.1 Introduction 5-3.

5.2 Formatter Options: Summary 5-3.

5.3 Usage 5-5.

5.3.1 form 5-5.

5.3.2 form695 5-6.

5.4 Formatter Options: Detailed Descriptions 5-7.

5.4.1 Format Options 5-7.

5.4.2 PROM Options 5-11.

5.4.3 COFF Format Options 5-13.

5.4.4 Miscellaneous Options 5-13.

5.5 IEEE-695 Formatter Limitations 5-16.

OTHER UTILITIES 6-1

6.1 Librarian 6-4.

6.1.1 Librarian Options: Summary 6-4.

6.1.2 Usage 6-5.

6.1.3 Librarian Options: Detailed Description 6-7.

6.2 Global Symbol Mapper 6-11.

6.2.1 Global Symbol Mapper Options: Summary 6-11.

6.2.2 Usage 6-12.

6.2.3 Global Symbol Mapper Options: Detailed Description 6-13

6.3 Symbol List Utility 6-16.

6.3.1 Symbol List Utility Options: Summary 6-16.

6.3.2 Usage 6-16.

6.3.3 Symbol List Utility Options: Detailed Description 6-17.

6.3.4 The Symbol Table Listing 6-17.

Table of ContentsVIII
C
O
N
T
E
N
T
S

6.4 Object Size List Utility 6-21.

6.4.1 Object Size List Utility Options: Summary 6-21.

6.4.2 Usage 6-21.

6.4.3 Object Size List Utility Options: Detailed Description 6-22. .

APPLICATION NOTES 7-1

7.1 About the Application Notes 7-3.

7.2 Downloading 7-5.

7.2.1 Introduction 7-5.

7.2.2 PROM Programming 7-6.

7.3 Linking C and Assembly 7-8.

7.3.1 Introduction 7-8.

7.3.2 Conventions 7-8.

7.3.3 Sharing Global Data 7-11.

7.4 Pragma Separate (Option Separate) 7-14.

7.4.1 Introduction 7-14.

7.4.2 Preprocessor Option Directives 7-15.

7.4.3 Command Line Options 7-16.

7.5 Building Libraries That Do Not Use A5 7-17.

7.6 Position-independent Code 7-29.

7.6.1 Introduction 7-29.

7.6.2 How Position Independence is Achieved 7-30.

7.6.3 Position Independence and Data References 7-32.

7.6.4 Position Independence and Data Initialization 7-37.

7.6.5 Building a Position-independent System 7-38.

7.6.6 Some Additional Hints 7-41.

7.7 Getting the Best Code for Your Application 7-42.

7.7.1 Code Size versus Execution Speed 7-42.

7.7.2 If Statements 7-42.

7.7.3 Using Integer Data 7-43.

7.7.4 Size of int Data Type (68K only) 7-44.

7.7.5 Compilation Models for Data 7-46.

7.8 Support for the On-board Peripherals of

the 68332, 68340, and 68360 7-49.

Table of Contents IX

• • • • • • • •

C LANGUAGE SPECIFICATIONS A-1

1 Introduction A-3.

2 Preprocessor Extensions A-4.

3 In-line Assembly Language A-5.

3.1 The _CASM method A-8.

3.2 The _ASM method A-9.

3.3 Syntax Summary A-12.

4 ANSI C Function Prototypes A-14.

4.1 Creating Function Prototypes A-14.

4.2 Calls to Functions with Prototypes A-16.

5 Other ANSI C Features A-18.

5.1 Adjacent String Literal Concatenation A-18.

5.2 Trigraph Replacement A-19.

5.3 Void Pointers - void * A-20.

5.4 Const Type Qualifier A-20.

5.5 Stringization A-21.

5.6 ANSI C Preprocessor Additions A-22.

5.6.1 New Predefined Macros A-22.

5.6.2 New Directives A-22.

5.6.3 #error A-23.

5.6.4 #pragma A-23.

5.6.5 #elif A-23.

5.7 Volatile Type Qualifier A-23.

5.8 New Operators A-25.

5.8.1 defined A-25.

5.8.2 token pasting A-25.

6 Support for Interrupt Handlers in C A-26.

6.1 The _GPL Pseudo-Function A-27.

6.2 The _SPL Pseudo-Function A-28.

6.3 The _TRAP Function A-28.

6.4 The _IH Keyword A-28.

6.5 The _SWI Keyword A-30.

7 Implementation-Defined Behavior A-30.

Table of ContentsX
C
O
N
T
E
N
T
S

COMPILER NAMING CONVENTIONS B-1

1 Introduction B-3.

2 Code Symbols B-4.

3 Data Symbols B-4.

3.1 Global Data B-5.

3.2 Local Static Data B-5.

3.3 Stack Data B-5.

3.4 String Constants B-5.

3.5 Other Symbols B-5.

4 Segment Names B-6.

4.1 Code Segment Names B-6.

4.2 Data Segment Names B-6.

4.3 Separate Data B-7.

5 Symbol Naming Summary B-8.

5.1 Notes B-9.

COMPILER RUN-TIME CONVENTIONS C-1

1 Introduction C-3.

2 Storage Allocation C-3.

2.1 Notes C-4.

3 Segmentation Model C-4.

4 Register Usage C-6.

5 Subroutine Linkage C-6.

5.1 Preserved Registers C-6.

5.2 Register Return Values C-6.

5.3 Parameter Passing C-7.

5.4 Calling Sequence C-7.

5.5 Procedure Prologue C-8.

5.6 Initial Startup C-9.

Table of Contents XI

• • • • • • • •

OBJECT MODULE FORMATS D-1

1 Introduction D-3.

2 Intel ASCII Hex Format D-4.

3 Motorola S Records D-5.

4 Extended Motorola S Records D-5.

5 Packed Motorola S Records D-6.

6 S37 Motorola S Records D-7.

7 Tektronix Format (Tekhex) D-8.

8 Extended Tekhex Format D-8.

8.1 Section Definition Field D-9.

8.2 Symbol Definition Field D-10.

9 Binary Tektronix Format D-10.

10 HP64000 Format D-11.

10.1 Using the HP64000 Format D-11.

10.2 Files Needed D-12.

10.3 Generating Files for Use with the 64700 D-13.

10.4 Formatter Examples D-13.

10.5 Using get64 on Unix Hosts D-14.

11 Common Object File Format (COFF) D-16.

11.1 File Header D-16.

11.2 Option Header D-17.

11.3 Relocation Information D-18.

11.4 Section Headers D-18.

11.5 Line Number Information D-18.

11.6 Symbol Table Entries D-18.

11.7 COFF1 Format D-19.

12 IEEE-695 Object Module Format D-19.

COMPILER / ASSEMBLER DRIVER E-1

INDEX

Table of ContentsXII
C
O
N
T
E
N
T
S

Manual Purpose and Structure XIII

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is for users of the TASKING 68K/ColdFire C
compiler/assembler.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Introduction
Introduces the documentation conventions and organization.

2. C Compiler
Describes the operation and use of the TASKING 68K/ColdFire C
Compiler, including options, optimizer options, and error messages.

3. Assembler
Describes the operation and use of the TASKING 68K/ColdFire
Assembler.

4. Linking Locator
Describes the operation and use of the Linking Locator utility, including
options, linking concepts, compiler run-time libraries, library searches,
locator commands, and error messages.

5. Formatter
Describes the operation and use of two formatter utilities, including
options and error messages.

6. Other Utilities
Describes the following utilities: Librarian, Global Symbol Mapper,
Symbol List Utility, and Object Size Utility.

7. Application Notes
Contains information on the following topics:

• Downloading

• Linking C and Assembly

• Pragma Separate (Option Separate)

• Building Libraries that do not use A5

Manual Purpose and StructureXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

• Position-independent Code

• Getting the best code for your application

• Support for the on-board peripherals of the 68332, 68340, and 68360

APPENDICES

A. C Language Specifications
Contains information on the following:

• preprocessor extensions

• in-line assembly

• ANSI C function prototypes

• the const type qualifyer

• implementation-defined behavior

B. Compiler Naming Conventions
Contains information on the following:

• Code Symbols

• Data Symbols

• Segment Names

Contains a Symbol Naming Summary.

C. Compiler Run-Time Conventions
Describes Storage Allocation, the Segmentation Model, Register Usage,
Subroutine Linkage, Stack Layout, and Initial Startup.

D. Object Module Formats
Describes all of the various object module formats.

INDEX

Manual Purpose and Structure XV

• • • • • • • •

RELATED PUBLICATIONS

• American National Standard for Information Systems

- Programming Language C (ANSI/ISO 9899�1990, 1990)

• The C Programming Language (second edition) by Brian Kernighan

and D. Ritchie, (1988, Prentice-Hall, Inc., ISBN # 0-13-110362-8)

• C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr.,

(1987, Prentice-Hall, Inc., ISBN # 0-13-109810-1)

• M68000 Family Programmers Reference Manual (Motorola, Inc.)

• CPU32 Reference Manual (Motorola, Inc.)

• MC68xxx User's Manuals (Motorola, Inc.)

• ColdFire Family Programmers Reference Manual (Motorola, Inc.)

• MCF5xxx User's Manuals (Motorola, Inc.)

See the Motorola Semiconductor website (http://e-www.motorola.com) for

the complete documentation list for your derivative.

Manual Purpose and StructureXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and Structure XVII

• • • • • • • •

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

Manual Purpose and StructureXVIII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

1

INTRODUCTION
C
H
A
P
T
E
R

Chapter 11–2
IN
T
R
O
D
U
C
T
IO
N

1

C
H
A
P
T
E
R

Introduction 1–3

• • • • • • • •

1.1 OVERVIEW

This C Compiler/Assembler User's Manual contains invocation, options, and

usage summaries, along with examples for each of the tools and

definitions of special terminology and functions. This chapter contains an

overview of the 68K/ColdFire documentation. Please refer to the

Introduction chapter in the Getting Started Manual for information

concerning the 68K/ColdFire development system and for additional help.

1.2 DOCUMENTATION

Three manuals make up the 68K/ColdFire documentation: the Getting
Started Manual, the C Compiler/Assembler User's Manual and the C
Compiler/Assembler Reference Manual.

The Getting Started Manual contains an introduction to the development

system, an installation guide, and a tutorial which contains sample code

and exercises which lead you step-by-step through the powerful features

of each software tool.

The C Compiler/Assembler User's Manual includes invocation, options, and

usage summaries, along with examples for each of the tools and

definitions of special terminology and functions. This manual also contains

additional information in the appendices on run-time and naming

conventions, C language extensions, and object module formats.

The C Compiler/Assembler Reference Manual provides information on the

run-time libraries and the information necessary to write programs in

assembly language. It contains sections on source program coding,

assembler directives, macro operations, structured control statements, and

position-independent code, as well as a summary of the character set.

Chapter 11–4
IN
T
R
O
D
U
C
T
IO
N

2

C COMPILER
C

H
A

P
T

E
R

Chapter 22–2
C
O
M
P
IL
E
R

2

C
H

A
P

T
E

R

C Compiler 2–3

• • • • • • • •

This chapter describes the operation and use of the 68K/ColdFire C

Compiler. It begins with a summary listing of the available options and

continues with more detailed explanations of their usage, the optimizer

functions, and error messages.

2.1 INTRODUCTION

To compile C program(s), use the C compiler that corresponds to your

derivative. See section Derivatives Overview in chapter Tutorial of the

Getting Started Manual for a list of the supported derivatives with the

corresponding target to identify the C compiler (ctarget).

Invocation syntax

ctarget prog.c [prog2.c ...][options]

Input

prog.c [prog2.c ...]

Output

prog.ol [.lis, .pp, .psa .xrf, .s][prog2.ol...]

2.2 C COMPILER OPTIONS: SUMMARY

The C compiler recognizes the following options:

Option Function See:

–68 Software floating–point compatibility mode.
This option has no effect unless the –h option
is also supplied.
WARNING: This option is not compatible with
routines in the standard run–time library that
return doubles.

2–28

–a Generate source listing and show included
source.

2–10

–aa Align each procedure on a 16–byte boundary. 2–31

–ab Force word alignment for structures containing
bit fields.

2–16

–ac Align only the first procedure on a 16–byte
boundary.

2–31

Chapter 22–4
C
O
M
P
IL
E
R

See: FunctionOption

–ai Expand procedures inline. 2–22

–ao options Pass specified options to the assembler step.
Options must be in quotes if there’s more than
one given. Use only with –ia .

2–40

–ar Use alternate register usage conventions.
WARNING: The option is not compatible with
the standard run–time library.

2–32

–b5 Use 32–bit A5–relative offsets. 2–32

–bb Maintain backwards compatible bitfield
storage.

2–16

–C Old run–time model compatibility mode. Older
compiler preserved fewer registers across
procedure calls. Note : Not for ColdFire.

2–33

–ca Continue compilation to completion, even if –E
or –M is present.

2–41

–cc classname Set class of generated code segment to
classname.

2–34

–cs Put data declared with the const type
qualifier into a separate segment cdata and
class constant.

2–20

–D tbs [tbs ...] Define data type t as b bytes with sign s. 2–17

–d Generate symbolic debugging information. 2–41

–dd Allow ANSI–style duplicate declarations.
Note: This option changes the order of
allocation for uninitialized global variables.
Programs which depend on global variables
being allocated one after another must not use
this option.

2–41

–do Disable all optimizations which interfere with
debugging. This is equivalent to –nd , –nh ,
–nl , –np and –nr .

2–24

–E [pfn] Save preprocessor output in file pfn. If pfn is
omitted, write to prog.pp . Note: This option
changes the order of allocation for uninitialized
global variables. Programs which depend on
global variables being allocated one after
another must not use this option.

2–42

–e Issue warnings for language extensions. 2–42

–err [file] PC only . Write error messages to file. 2–42

C Compiler 2–5

• • • • • • • •

See: FunctionOption

–err+ [file] PC only . Append error messages to file. 2–42

–h Generate MC68881/MC68882 floating–point
instructions. Note : Not for ColdFire.

2–29

–I dir1 [dir2...] Define user #include directory(ies). 2–13

–i Generate interleaved source and
(pseudo–)assembly listing.

2–10

–ia Generate the object module by assembling
compiler output. This is required if in–line
assembly language is used.
Note : –ia is used by default when compiling
for ColdFire

2–10

–id Suppress PC–relative addressing for data
references. Use with –pd if separate code and
data address spaces.

2–37

–ih Assume routines called by interrupt handlers
do not use floating–point arithmetic (only
matters with –h). Note : Not for ColdFire.

2–34

–j Use short branches where possible. 2–35

–k Use a single name space for structure fields. 2–42

–ke On the PC, keep the compiler intermediate
files. On the PC, also execute the phases of
the compiler sequentially. On Unix hosts,
execute the phases of the compiler
sequentially, and keep the intermediate files
(for technical support use).

2–42

–L Define int as 4 bytes, short as 2 bytes.
Note : –L is used by default when compiling
for ColdFire or for C++

2–18

–l [lfn] Write output of listing options to file lfn.
If lfn is omitted, write to prog.lis .

2–11

–M [depsfile] Generate a list of “make” dependencies which
result from the various header files included
during compilation.
Note: An object module is not generated
unless –ca is used.

2–43

–m Use MC68881/MC68882 instructions for
mathematical functions. This option has no
effect unless the –h option is also supplied.
Note : Not for ColdFire.

2–29

Chapter 22–6
C
O
M
P
IL
E
R

See: FunctionOption

–mp [protofile] Construct an ANSI C prototype declaration for
each procedure defined in the compilation.

2–43

–n5 Do not reserve A5 for global data.
WARNING: This option is not compatible with
the standard run–time library.

2–35

–n6 Allow the compiler to use A6 for other
purposes.
WARNING: This option causes great
problems for symbolic debuggers.

2–36

–n7 [n] Limit stack–fixup optimization to n bytes (0 if n
is omitted).

2–36

–na Turn off ANSI C language extensions. 2–44

–nal Assume that the source contains no aliasing.
WARNING: This option is not safe for all
programs.

2–24

–nd Suppress detection of assignments to dead
variables.

2–24

–nf Generate narrow–format interleaved source
and pseudo–assembly listing. The
narrow–format listing usually fits in 80
columns while the –i listing is –p and –i
listings are 132 columns wide.
Note : Not for ColdFire.

2–10

–nh Suppress code hoisting. 2–25

–nl Do not remove LINK/UNLK instructions. This
guarantees that the stack is traceable by the
debugger.

2–25

–no Skip the optimizer. 2–25

–np Stop the optimizer from putting more than one
variable in a register.

2–25

–nr Suppress the strength reduction optimization. 2–26

–o ofn Write object module to file ofn. 2–45

–opfile opts Supply command line options in a file opts. 2–45

–os Optimize for space at the expense of time. 2–26

–ot Optimize for time at the expense of space. 2–26

–P ” string[=value]” Predefine preprocessor variable string. 2–45

–p Generate Wide–format pseudo–assembly
listing. Note : Not for ColdFire.

2–10

C Compiler 2–7

• • • • • • • •

See: FunctionOption

–pack n Change alignment of data.
–pack 1 causes byte alignment in structures,
even on word–like items.
–pack 2 causes word alignment, even on
fullword–like items.
–pack 4 causes fullword alignment for fullword
data.

2–18

–pc Force position–independent forms for code
(e.g., BSR.L).

2–38

–pd Force position–independent forms for data. 2–38

–ps Use short position–independent form for code
(e.g., BSR.W). If –pd is also present, use short
position–independent forms for data also.
Requires total code (and, if –pd , data) less
than 32K bytes for safe use.

2–39

–pw Emit warnings for calls to undeclared
functions.

2–45

–q Generate real–assembly listing. Can be
combined with –i for interleaved source.

2–10

–S dir1 [dir2...] Define system #include directory(ies). 2–13

–s Generate source listing. 2–10

–sc defclass
[defclass2]

Define default class(es) for separate data. 2–20

–sd Treat all global data as separate . 2–20

–se Unix only. Run the compiler phases
sequentially rather than as a Unix pipe (for
technical support use).

2–45

–si Allocate string literals in the idata segment.
This causes the compiler to use A5–relative
addressing for string literals.

2–40

–sp Enforce strict ANSI C precision constraints.
Note: This option decreases the efficiency of
generated code.

2–37

–ss defseg
[defseg2]

Define default segment(s) for separate data. 2–20

–V Display the version number of the
executables.

2–45

–v Verbose mode. Reports date, time, and
status/result of compilation.

2–45

Chapter 22–8
C
O
M
P
IL
E
R

See: FunctionOption

–ve Very verbose mode. Identifies all driver
actions as they are performed. This
determines which phase was executing if the
compiler aborts (technical support)

2–45

–vv Assume all global variables are volatile,
whether declared as volatile or not.
Note: This is required for programs that do
not use the ANSI volatile keyword
appropriately.

2–27

–w [n] Suppress warning messages of severity less
than n.

2–46

–x Generate cross–reference listing. 2–12

Table 2-1: Compiler options

Most of these options are also applicable to the C++ compiler. See the C++
Compiler User's Manual for more information

2.3 USAGE

The TASKING C compiler translates C source programs into object

modules containing machine language for the 68K/ColdFire

microprocessors. Input to the compiler is one or more C source programs,

which can �include" other files. The main output is one or more object

modules suitable for linking with other modules. Object modules may also

be catalogued in a library. Various kinds of listings may be generated to

display the results of compilation.

The 68K compiler produces a machine-language object module, not an

assembly-language program. The assembler is not run on the compiler

output. The 68K compiler can produce a listing that shows the assembly

language equivalent of the C program: this is called the pseudo-assembly

listing. The pseudo-assembly listing cannot actually be assembled without

modification.

The 68K compiler normally produces a machine-language object module.

It can also produce an assembly language output. The assembly language

output can be assembled without modification.

C Compiler 2–9

• • • • • • • •

The ColdFire compiler produces assembly language output and invokes

the assembler.

The compiler will produce object code for the 68K/ColdFire derivative

instruction set, depending upon the manner in which it is invoked. The

compiler will not emit instructions which do not exist on the specified

target processor.

The compiler has a powerful optimizer phase to generate tight object

code. This optimizer was designed to be used with embedded

applications, and can be used safely even in the presence of memory

mapped I/O and interrupt handlers.

The optimizer can be used with the TASKING source-level debugger,

CrossView Pro, but it can make debugging considerably more complex.

Use the –do option to disable those optimizations which interfere with

debugging. For more details about the interaction between the optimizer

and the debugger, see the description of the optimizer options.

See the Using the Optimizer section for a detailed description of the

function and usage of the optimizer, as well as some general coding hints

for getting better object code.

The compiler supports interrupt handlers in C. This feature is described in

the C Language Specifications appendix.

The compiler fully supports the ANSI C standard. However, in the interest

of backwards compatibility, some aspects of ANSI C are only supported in

the presence of command line options. For example, ANSI C requires the

size of the short data type to be at least 16 bits. By default the 68K

compiler maps the short data type into an 8-bit integer. Therefore the

68K compiler is not ANSI compliant unless –L or at least –D s2s is

supplied. The ColdFire compiler always maps the short data type into a

16-bit integer.

Full ANSI C compatibility also requires the –dd option and (under

hardware floating-point) the –sp option. However, these options have

side effects which may affect code quality. See the relevant option

descriptions for more details.

Example

c68000 sieve.c

• Compile source in file sieve.c .

• Write object module to file sieve.ol .

Chapter 22–10
C
O
M
P
IL
E
R

• Search for #include files in the current working directory.

• No listings will be generated.

2.4 C COMPILER OPTIONS: DETAILED DESCRIPTIONS

This section describes the C compiler options in more detail and provides

examples of their use.

2.4.1 LISTING OPTIONS

The listing options control the generation of the various listing files.

Listings are not produced by default; the user must specify the appropriate

options.

–a, –s Both –a and –s generate a source listing. The –a option

specifies that secondary #include 'd lines be listed in

addition to the primary source lines. If the –l option is not

specified, the source listing is written to file prog.lis .

–i
–nf
–p
–q These options control listings showing the generated code.

There are two kinds of assembler listings. One is a

�pseudo-assembly" listing. The pseudo-assembly listing

contains opcodes, a location counter, and actual object code

bytes. The pseudo-assembly listing resembles the listing

produced by the 68K assembler; it cannot actually be

assembled. If the –l option is not specified, the

pesudo-assembly listing is written to file prog.psa.

The other kind of assembler listing is a �real-assembly"

listing. It can be assembled, and, if the –ia option is present,

it actually is assembled. It is written to the file prog.s . The

real assembly listing resembles assembler source code. You

cannot get a pseudo-assembly listing if the assembler is

being used, that is, if the –ia option is present, but you can

ask the assembler to generate a listing. Use the –ao option to

pass listing options to the assembler.

C Compiler 2–11

• • • • • • • •

Either of these listings can be interleaved with C source. The

pseudo-assembly listing can be interleaved in wide or

narrow format; use the narrow format listing to print on an

80 column terminal screen or printer, because it won't wrap

to the next line.

Here are the possible combinations of options and what they

do:

• 68K: For assembly listing without actually using the

assembler:

–p Wide-format pseudo-assembly.

–i Wide-format interleaved pseudo-assembly.

–nf Narrow format interleaved pseudo-assembly.

–q Real-assembly listing.

–q –i Interleaved real-assembly listing.

• 68K: For assembly listings that use the assembler:

–ia –q Real-assembly listing (and assemble it).

–ia –i Interleaved, real-assembly listing (and

assemble it).

• ColdFire:

–q Keep real-assembly listing (and assemble it).

–i Keep interleaved, real-assembly listing (and

assemble it).

–l [lfn] This option controls the destination of listing output implied

by other listing options. If lfn is specified, the listing (if any)

is written to file lfn. If lfn is omitted, the listing is written to

file prog.lis .

If multiple listing options are selected, the results of all listing

options will be put in file lfn. If multiple source files are

given in one compiler invocation, lfn may not be specified.

Instead, a separate listing file is generated for each input file.

The listing output corresponding to progx.c appears in

progx.lis .

Chapter 22–12
C
O
M
P
IL
E
R

–x Generate a cross-reference listing. If the –l option is not

specified, write the listing to prog.xrf .

Example

Compile multiple programs:

c68000 sieve.c subr.c –s –l

• Compile source in sieve.c and subr.c .

• Write object modules to files sieve.ol and subr.ol .

• Write source listings to files sieve.lis and subr.lis .

Example

Generate assembly and cross-reference listings in the same file:

c68000 hello.c –i –x –l

• Compile source in file hello.c .

• Write object module to file hello.ol .

• Write cross-reference and interleaved pseudo-assembly listing to file

hello.lis (by using the combination –i –x –l).

Example

Generate source and cross-reference listings:

c68000 hello.c –a –x

• Compile source in file hello.c .

• Write object module to file hello.ol .

• Write source listing showing all #include 'd files to file hello.lis
(by using –a).

• Write cross-reference listing to file hello.xrf on the PC (by using

–x) or hello.xrf on Unix Hosts (by using –x).

C Compiler 2–13

• • • • • • • •

Source listing hello.lis :

1 #include ”hello.h”
1 1 /* hello.h */
2 1 int i; /* i gets declared here */

2 main()
3 {
4 printf (”Hello, world!\n”);
5 i = 1;
6 }

Cross-reference listing hello.xrf :

i
 Def : hello.h 2
 Ref : hello.c 5

main
 Def : hello.c 2

printf
 Def : * undefined *
 Ref : hello.c 4

2.4.2 INCLUDE OPTIONS

–I dir1 [dir2 ...]
Define one or more directories to be searched for user

include files. The default is to search the directory containing

the source file. No more than 32 user include directories may

be specified.

–S dir1 [dir2 ...]
Define one or more directories to be searched for system

include files. The default is to search the current working

directory. No more than 32 system include directories may be

specified.

On the PC, the directory path in the INCLUDE environment

variable is searched after the –S directories. (This

environment variable may also be named I2INCLUDE to

avoid conflicts with other software.)

Chapter 22–14
C
O
M
P
IL
E
R

Here are some #include directives as they might appear in a C program

source file:

#include ”file.h”
#include <file.h>

#include without ” ” or < > is invalid. The first form is considered to

be a user include; the second form is considered to be a system include.

Nesting is limited to 10 levels of #include files on the PC and 15 levels

on Unix.

When searching for user includes, the compiler first searches the directory

containing the source file (default), then all –I directories in the order

specified, followed by all –S directories. When searching for system

includes, the compiler searches only the directories specified by the –S
option, or the current working directory (default), if no –S is specified.

For both user include and system include files, the user can override the

placement of the default directory in the search order by specifying an

empty (null) directory name as an #include directory. An example of this

appears below:

c68000 prog.c –I first –I –I third

In this case, the default directory (which is the directory containing the

source file) is only searched at the position where the empty directory

name appears, i.e., after the directory named first and before the

directory named third .

Example

Specify other directories for #include files:

On the PC:

c68000 sieve.c –I smith\inc jones\inc williams\inc

On Unix hosts:

c68000 sieve.c –I smith/inc jones/inc williams/inc

• Compile source in file sieve.c .

• Write object module to file sieve.ol .

• The compiler searches for #include <filename.h> (system include) in

the current working directory.

C Compiler 2–15

• • • • • • • •

• The compiler searches for #include ” filename.h” (user include) in

the current working directory and the directories smith\inc ,

jones\inc , and williams\inc on the PC or smith/inc ,

jones/inc , and williams/inc on Unix hosts.

Example

Change the order of #include processing:

On the PC:

c68000 \usr\frank\sieve.c –S smith\inc jones\inc –S

On Unix hosts:

c68000 /usr/frank/sieve.c –S smith/inc jones/inc –S

• Compile source in file \usr\frank\sieve.c on the PC or

./usr/frank/sieve.c on Unix hosts.

• Write object module to file sieve.ol.

• The compiler searches for files included as #include <filename.h>
(system include) in the system include directories

smith\inc,jones\inc, on the PC or smith/inc, jones/inc on

Unix hosts and the current directory.

• The compiler searches for files included as #include ” filename.h”
(user include) in the source directory, \usr\frank on the PC or

/usr/frank on Unix hosts, then in the system include directories

named above, and finally in the current directory.

2.4.3 DATA TYPE OPTIONS

The TASKING C compiler allows you to redefine the size of the int
short and enum data types to accommodate larger values, or to assure

compatibility with other modules. You can specify whether the char data

type is to be treated as signed or unsigned.

In the case of enum types, the compiler supports four storage allocation

strategies. By default, an enumeration type all of whose values are

between -32768 and +32767 is stored in a signed 16-bit word, and other

enumeration types are stored as a signed 32-bit word. The other

strategies are:

1. Store an enumeration type whose values are between 0 and 255 as an

unsigned byte; store other enumerations as a signed 16-bit word.

Chapter 22–16
C
O
M
P
IL
E
R

2. Store an enumeration type whose values are between -128 and 127 as a

signed byte; store other enumerations in a signed 16-bit word.

3. Store all enumeration types as a 32-bit fullword.

The first two alternative strategies can result in more compact data. In

general, the last alternative strategy results in bigger data, and perhaps,

smaller and faster code. The last alternative strategy works best if the

integer data type is also redefined to be 32 bits long.

It is essential that all modules which are linked together into one program

be compiled with the same data type options. This rule includes run-time

library routines.

The characteristics of char, short and enumeration types do not affect the

library. The compiler is distributed with run-time libraries that have been

compiled both with and without the –L option.

For more information about the run-time libraries available, please refer to

the Compiler Library Organization section in the Linking Locator chapter.

–ab Force word alignment for structures containing bit fields.

A bit field that is completely contained in a byte can be

accessed via byte operations. Versions of the compiler prior

to Release 8.0 sometimes used word operations to access

some bit fields which were contained in a byte. This forced

the compiler to give word alignment to all bit field structures,

even those whose total size is one byte.

Later compiler releases use byte operations to access all bit

fields that are completely contained in a byte. This means

that word alignment is no longer necessary, and it is no

longer enforced.

–bb Maintain backwards compatible bitfield storage layout.

C Compiler 2–17

• • • • • • • •

This option forces the compiler to use the same storage

allocation algorithm as was used by C compiler versions

before version 7.1. The old algorithm disallowed bitfields

bigger than 16 bits, and aligned a bitfield on the next

halfword boundary if it would not otherwise fit completely in

one halfword-aligned halfword. The newer algorithm allows

bitfields up to 32 bits long, and aligns a bitfield on the next

halfword boundary only if it would not otherwise fit

completely in one halfword-aligned fullword. For example,

a bitfield structure consisting of a 15-bit field, a 2-bit field,

and a 15-bit field would be allocated in four bytes under the

new strategy, and would require five bytes in the old

strategy.

The –bb option is only for users who must maintain compatibility with the

old storage allocation. It results in a less compact storage mapping.

–D tbs [tbs] Redefine built-in data type.

The –D option overrides the default size and sign of a

built-in data type.

Use the –D option carefully, since all modules intended to be linked

together must be compiled with the same data type length options. This

rule includes run-time library modules.

Operands of the –D option are triples of the form tbs, where

t defines the data type, b the number of bytes and s the

signed/unsigned attribute. Legal values of t, b, and s, and

their permitted combinations and defaults are:

Chapter 22–18
C
O
M
P
IL
E
R

t type b s
––––––––––––––––––––––––
c char 1 s signed
e enum 2 u unsigned
i int 4
s short

Permitted Combinations of tbs and their defaults are:

Permitted: c1s c1u e1s e1u e2s e4s i2s i4s s1s s2s

Defaults
68K:

c1u e2s i2s s1s

Defaults
ColdFire:

c1u e2s i4s s2s

–L The –L option is shorthand for the following combination of

options:

–D i4s s2s –P _LONGINT

The first option defines the int type as 4 bytes long, and the

short type as 2 bytes long. The second option defines the

preprocessor variable _LONGINT. You can use _LONGINT to
define the length of an integer during compilation, allowing

conditional compilation. Without –L int is 2 bytes and

short is 1 byte. When compiling for ColdFire or C++, –L is

the default.

Example

Select long integer option:

c68000 sieve.c –L

• Compile int variables as 4-byte signed data items; short variables as

2-byte signed.

• Write object module to file sieve.ol .

sieve.ol must be linked with the long-integer run-time library.

–pack n Change alignment of data. The value of n must be 1, 2, or 4.

The default mode depends on the processor. For the

MC68020, MC68030, MC68040, MC68060, MC68360, ColdFire

and the corresponding EC-series processors, –pack 4 is the

default. For other processors –pack 2 is the default.

C Compiler 2–19

• • • • • • • •

The easiest way to see the effect of the –pack option is to

consider this structure:

struct { char c; long l; };

Under –pack 1 , this structure would be 5 bytes long. Under

–pack 2 , the compiler would ensure that the field l is word

aligned. This requires a one-byte �hole" between c and l ;

thus the structure would be 6 bytes long. Under –pack 4 ,

the compiler would ensure that the field �l " is fullword

aligned. This requires a three-byte hole; thus the structure

would be 8 bytes long.

The effects of alignment depend on the processor type. If a

68000-like processor attempts a word or fullword operation

on an odd address, the processor will force an address

exception. If a 68020-like processor attempts a fullword

operand on an address which is not fullword aligned, then

there is a performance degradation. The defaults (–pack 2
or –pack 4) were chosen to maximize performance and

avoid address exceptions.

Note that the –pack 4 option also ensures that all fullword

variables are aligned on fullword boundaries, even if they

occur outside structures. However, even under –pack 1
individual word and fullword variables are word aligned.

Thus –pack 1 only affects structure layout.

Here are the two most common uses of the –pack option:

• In a system which shares data between different

processors, to ensure that the data is aligned to the

maximum required by all the processors.

• To make data more compact at the cost of code speed.

On a 68000-like processor you should specify –pack1 only if you are

prepared to handle the address exceptions that may result.

2.4.4 SEPARATE DATA OPTIONS

A brief overview of separate data options is given in this section. For more

details, refer to the Pragma Separate (Option Separate) application note.

Chapter 22–20
C
O
M
P
IL
E
R

–cs Place all data declared as const into a separate segment

cdata and class constant .

Please see the C Language Specifications appendix for a

description of the const type qualifier.

This option causes the compiler to segregate variables

declared with the const attribute from other variables so

they can more easily be allocated in ROM.

–sc defclass [defclass2]

This option defines a default class or classes for separate data

segments. When invoked with argument defclass, all separate

segments whose class name is not otherwise specified have

class defclass. When invoked with arguments defclass and

defclass2, segments for initialized data have class defclass and

segments for uninitialized data have class defclass2.

The –sc option may also be used with the –ss option to set

defaults for both class and segment.

All modules which contain separate declarations naming the

same segment with no class name must be compiled with the

same –sc option. The linker will report an error if a segment

is assigned different class names in different modules.

Improper use of the –sc option can cause such errors.

–sd Treat all global data as separate. This option has the same

effect as a #pragma sep_on directive on the first line of the

source file being compiled. For a more detailed explanation

of this feature, please read the Pragma Separate (Option
Separate) application note.

–ss defseg [defseg2]

This option defines a default segment or segments for

separate data. When invoked with argument defseg, all

separate data whose segment name is not otherwise specified

are allocated in segment defseg. When invoked with

arguments defseg and defseg2, initialized separate data whose

segment is not otherwise specified are allocated in segment

defseg and uninitialized separate data is allocated in segment

defseg2.

The –ss option may also be used with the –sc option to set

defaults for both class and segment.

C Compiler 2–21

• • • • • • • •

The linker will report an error if a segment is assigned

different class names in different modules. For this reason,

the –ss segment assignments are NOT applied to separate

variables whose class name is specified, unless the specified

class name is the same as the �expected" class name for the

–ss segment. If the –sc option is present, the expected class

name is the –sc name. Otherwise the expected class name is

�separate".

All modules compiled with the –ss option should supply

the same –ss option to avoid link-time errors.

#option is equivalent to #pragma .

Chapter 22–22
C
O
M
P
IL
E
R

2.4.5 OPTIMIZER OPTIONS

There are several options to control the behavior of the optimizer. There

are two main reasons why one might wish to do this. The first is to allow

the optimizer to perform optimizations which are not safe in general but

which are safe for the particular module being compiled. The second is to

make the object code easier to understand or debug.

The TASKING source�level debugger, CrossView Pro, can be used with

optimized code. However, certain unexpected behavior can be caused by

the transformations performed by the optimizer. These anomalies are

described briefly below with the related compiler options.

 –ai Perform automatic inline procedure expansion.

The compiler supports a limited form of automatic inline

procedure expansion. You can request this optimization by

specifying the –ai (automatic inline) command�line option.

A procedure is said to be �expanded inline" if a copy of the

body of the subroutine is inserted in place of the usual call

operation. Generally speaking, inline procedure expansion

represents a trade�off of code space for execution speed.

You save the execution time spent in a call and return, but

the compiler must generate a whole new copy of the called

subroutine body at every inline call.

There are limits on the kinds of routines which can be

expanded inline; inline expansion is currently limited to two

cases:

• static subroutines which return a non�aggregate value and

which contain no flow�of�control statements (that is, no

loops or �if " statements are allowed; however,

conditional �?: " expressions are allowed.)

• static subroutines of type void (that is, which return no

value)

There is also a limit on the overall size of an inline routine,

and a limit of six arguments in an inline routine.

When the –ai option is enabled, the compiler behaves as

follows:

C Compiler 2–23

• • • • • • • •

• When processing a static subroutine, the compiler creates

an internal copy of the body of the subroutine. If the

routine turns out to be unsuitable for inline expansion,

the compiler emits the body as usual. Otherwise, the

compiler emits no code for the procedure, and retains the

internal copy of the body for future use.

• When the compiler processes a procedure call to a

routine for which it has retained a copy, it duplicates the

body in place of the call.

• At the end of the compilation unit, the compiler checks if

there is any need to emit an out�of�line body.

There are two reasons the compiler might need to emit an

out�of�line body: first, there may have been calls which

the compiler did not expand inline because they

appeared before the definition of the routine; second, the

compiler might have made some use of the address of the

function (for example, the compiler might have assigned

the address to a pointer�to�function).

If neither of these conditions apply, the saved body is

discarded.

To take advantage of inline procedure expansion across

compilation units, you may be tempted to place the

procedures which you intend to expand inline into a set of

�.h " include files, together with their bodies. This would

allow these procedures to be expanded inline in many

different compilation units.

However, we must warn you that code structured in this

manner cannot be debugged effectively with or without –ai ,

even though it will compile and run properly. The problem

is that most debug symbol table formats, including the .abs
file used by CrossView Pro, cannot describe programs whose

code comes from more than one source file. In fact, the

formatter treats the first file with line number marks in it as

the �primary" source file, and discards marks from the other

files.

This restriction will be removed in later releases of the

compiler and debugger; however, until then, we cannot

recommend the methodology of putting source in include

files.

Chapter 22–24
C
O
M
P
IL
E
R

–do Disable optimization which substantially interferes with

debugging. This is equivalent to –nd , –nh , –nl –np and -nr .

Use of the –do option may make the generated code significantly larger

and slower.

–nal Assume that the source contains no aliasing.

This option is not safe for all programs.

To understand aliasing, consider the following piece of C

code:

int i;
func() {
 int *pi;

 pi = &i;
 i = 0;
 *pi = 7;
 if(i == 0)
 printf(”test failed\n”);
}

This code contains an example of aliasing. This means that

the variable i is referred to both by name, in the assignment

of 0 to i , and through the pointer pi , in the assignment of 7

to *pi . Aliasing refers to the use of a pointer to an object

and that same named object in the same function.

Because of the possibility of aliasing, when an assignment is

made through a pointer variable, the optimizer must forget its

knowledge of all variables that could be pointed to by that

pointer. This includes all extern variables, and any locals that

ever have their addresses taken in the current function. The

example above shows what could happen if the optimizer

did not take aliasing into account. If the optimizer did not

know that i could be modified via the pointer pi , then it

might decide that i was still equal to zero, and thus

incorrectly decide that the if condition must be true.

–nd Suppress detection and removal of assignments to dead

variables.

C Compiler 2–25

• • • • • • • •

Normally the optimizer will remove stores into local variables

which are not subsequently referenced. This means that

reading a variable in the debugger will not always yield the

value last assigned to it.

The –nd option may make the generated code somewhat larger and

slower.

-nh Suppress code hoisting.

The code hoister is a part of the optimizer which attempts to

hoist instructions out of loops. After code hoisting, part or all

of a statement within a loop may be performed outside the

loop. Normally when the debugger stops at a C statement

one can assume that no instructions from that statement have

been executed, but this is no longer true after code hoisting.

The –nh option may make the generated code run significantly more

slowly.

–nl Do not remove LINK and UNLK instructions.

The LINK instruction is used in procedure prologue to

establish a stack frame. Many procedures do not require a

stack frame, since the optimizer can often pack all local

variables into registers. However, when LINK instructions are

removed the debugger cannot find all the active procedures

by stack traceback.

For example, suppose procedure f1 calls procedure f2
which calls procedure f3 which calls procedure f4 , and that

the LINK instruction in procedure f3 was optimized away.

The debugger's stack traceback analysis starting from

procedure f4 would incorrectly conclude that the procedure

f3 was called from procedure f1 rather than from procedure

f2 .

The –nl option may make the generated code run more slowly.

–no Skip the optimizer.

This option bypasses the optimizer phase of the compiler.

–np Stop the optimizer from putting more than one variable in a

register.

Chapter 22–26
C
O
M
P
IL
E
R

By default the optimizer attempts to put as many different

variables into the same register as possible. Of course, two

variables may occupy the same register only if their lifetimes

do not overlap.

If two different variables are allocated in the same register,

then reading or writing those variables in the debugger can

have unexpected results. For example, assigning a variable

before its first use can cause a different variable to be

corrupted. Similarly, reading a variable after its last use can

deliver an incorrect value.

This option directs the optimizer not to pack more than one

variable to a single register.

The –np option may make the generated code significantly larger and

slower.

–nr Suppress strength reduction. Strength reduction is an

optimization that typically turns multiplies into additions

inside a loop.

In the classic case, the loop:

int a[10];
for (i=0; i <10; i++) {

a[i] = 0;
}

can be turned into the equivalent of:

int a[10],*pnt;
for (pnt = &a[0]; pnt<&a[10];) {

*pnt++ = 0;
}

which is both smaller and faster.

–os Optimize for space. Choose smaller but slower code

sequences.

–ot Optimize for time. Choose faster, but larger code sequences.

In the absence of either the –os or –ot option, the compiler optimizes for

time over space.

C Compiler 2–27

• • • • • • • •

–vv Assume all global variables are volatile.

Most variables in a C program have the characteristic that if

they are referenced twice with no intervening stores, either

direct stores or through pointers, then both references will

deliver the same value. A variable is called �volatile" if it does

not have this property. Generally the only way a variable can

be volatile is if that variable is located over a

memory-mapped I/O port, or if it could be modified by an

asynchronous interrupt handler.

It is critical the that optimizer know when it is dealing with a

volatile variable, since optimization can cause programs

which use volatile variables to execute incorrectly. Here is a

simple example:

extern int interrupt_happened;
void wait_for_interrupt() {

interrupt_happened = 0;
while (interrupt_happened == 0);

}

This programs expects an external interrupt handler to

change the global variable interrupt_happened . However,

the optimizer will, by default, assume that

interrupt_happened is always zero, because it can see no

code that can affect this variable between its assignment and

the test within the loop. Thus it would compile the �while"

loop into a jump-to-self instruction.

The best way to avoid problems like this is to use the ANSI

volatile keyword. That is, the declaration should be:

extern volatile int interrupt_happened;

However, if you do not feel confident that you can locate

and appropriate qualify all your volatile variables, then you

can still avoid inappropriate optimizations by using the –vv
option. This tells the compiler to treat all global variables as

volatile.

The –vv option may make the generated code significantly larger and

slower.

Chapter 22–28
C
O
M
P
IL
E
R

2.4.6 FLOATING-POINT OPTIONS (68K ONLY)

–68 Software floating-point compatibility mode.

This option is intended to facilitate the migration of a system

using software floating-point to one using hardware

floating-point. It directs the compiler to use the software

floating-point linkage conventions even though the hardware

floats option is selected. This option has no effect unless the

hardware floats option, –h is also selected.

By default, function return values of type float are passed

in register FP0 if the hardware floating-point option is

selected, and in register D0 otherwise. Function return values

of type double are passed in FP0 in the hardware

floating-point case, and in memory otherwise. (See the

Compiler Run-Time Conventions appendix for more details.)

This option directs the compiler not to return float/double

function values in FP0 even when the hardware

floating-point option is selected.

Suppose, for example, that you have a collection of assembly

language routines which return float or double values and

which are called from C code. Suppose further that these

routines were coded using the software floating-point

linkage conventions, as described in the paragraph above. If

you re-compile the calling C routine(s) with the hardware

floats option, then the assembly language routines will not

operate correctly. However, if you also supply the –68
option, then the assembly language program can be used as

is. This will allow you to modify the assembly language

routines gradually, and then you can switch over to the more

efficient hardware floating-point linkage conventions when

you are ready.

Use the –68 option carefully, since all modules intended to be linked

together must be compiled with the same linkage conventions.

C Compiler 2–29

• • • • • • • •

Care must be taken with any run-time library functions

which return float/double values. Most mathematical

functions (e.g., sin) can be expanded in-line by using the

–m option. If other such library routines are needed, e.g.

pow, then they should be re-compiled with –68 . Refer to the

–m option for related information concerning mathematical

functions.

–h Generate hardware floating-point instructions. Except for the

MC68040 and the MC68060, the default is to use software

floating-point. For the MC68040 and the MC68060 target,

hardware floating-point instructions are generated by default.

After compiling with the –h option, you must link the object module with

the hardware floating-point library.

–m Make calls to transcendental functions using floating-point

instructions. The option is effective only when the hardware

floating-point option, –h , is also selected, or if the target is

the MC68040 or MC68060.

This option directs the compiler to assume that calls to

functions named sin , sqrt , and so on actually are

invocations of the corresponding mathematical functions, and

not user-defined subroutines. Furthermore, it doesn't

generate code to set the global variable errno . This is

non-ANSI behavior because the ANSI standard requires

errno to be set if arguments are out of bounds.

For example, if the argument of sqrt is less than zero, then

the ANSI standard requires that the sqrt library routine set

errno to EDOM, a constant defined in the errno.h include

file. Under the –m option, the only code generated for a call

to sqrt would be a FSQRT instruction. Without –m, the

generated code would be a call to a library routine that

would range check the argument, set errno if it is out of

bounds, and then use FSQRT to compute the result.

Programs that do not check the errno variable after calls to

mathematical library routines will produce the same results

when compiled under the –m option.

Chapter 22–30
C
O
M
P
IL
E
R

The math.h system include file supplied with the run-time library must

be #include 'd in the C source to supply external declarations of the

mathematical functions.

Even if the –m option is not supplied, calls to mathematical functions that

have no range restrictions of their arguments are expanded in-line by

default. The routines treated in this way are atan , cos , cosh , exp , fabs ,

sin , sinh , tan , and tanh . In this case the full ANSI C semantics are

preserved. If in-line expansion is not desired, it can be avoided by

#undef ing the function after the math.h include file is included. For

example, this would force real out-of-line calls to cos :

#include ”math.h”
#undef cos

The following table summarizes which routines are expanded in-line by

default. On the MC68040 and the MC68060, the only floating functions are

sqrt and fabs ; all other routines are done out of line.

Subroutine Mathematical Function

acos arc cosine

asin arc sine

*atan arc tangent

*atanh hyperbolic arc tangent

*cos cosine

*cosh hyperbolic cosine

*exp exponential

+*fabs absolute value

log natural logarithm

log10 base 10 logarithm

log2 base 2 logarithm

*sin sine

*sinh hyperbolic sine

+sqrt square root

*tan tangent

*tanh hyperbolic tangent

Table 2-2: Expanded routines

C Compiler 2–31

• • • • • • • •

* Expanded in-line by default.

+ Expanded in-line on MC68040 and MC68060.

2.4.7 CODE GENERATION OPTIONS

–aa Align each procedure on a 16-byte boundary.

–ac Align only the first procedure on a 16-byte boundary.

These two options (–aa and –ac) are intended for use with

the 68040. They help optimize the instruction cache by

aligning subroutines on a 16-byte �line" boundary. –aa
aligns every subroutine; –ac aligns only the first subroutine

in the compilation unit.

The 68040 loads its internal instruction cache in units of 16

bytes called �lines". Lines are always loaded from 16-byte

aligned boundaries. To see how this affects program

execution, consider the case of two procedures: f1 and f2.

Suppose f1 is located at address 1600, a line-aligned address,

and that f2 is located at address 3208, eight bytes after a

line-aligned address. Suppose further that neither is resident

in the cache.

When f1 is entered, the 68040 will load the line containing

the entry point for f1 (addresses 1600-1615) into the cache.

This loads 16 bytes of the procedure f1. The 68040 will not

need to load more code into the cache until it executes the

first 16 bytes of f1. Now consider what happens when f2 is

entered. Again, the 68040 will fetch the line containing the

entry point for f2 (addresses 3200-3215). This will only

obtain 8 bytes of the procedure f2. This means that the 68040

may need to load the instruction cache sooner, resulting in a

delay.

Chapter 22–32
C
O
M
P
IL
E
R

The –ac option is appropriate when the compilation unit

consists of a relatively small package of procedures that often

call one another. Thus when you enter the package you

expect to see the whole package get loaded into the cache.

The –aa option is appropriate when the compilation unit

consists of a package of routines that do not call one another.

Thus when you enter the package you want to load the

minimum amount into the cache.

Aligning all procedures on a line boundary is probably not a

good idea, because it does make the total code larger (on the

average, 8 bytes per procedure). This makes it harder to

cover the code with a limited size cache. However, it makes

good sense to align the most frequently executed procedures

or groups of procedures.

–ar Use alternate register usage conventions.

Under the –ar option, the compiler uses a different set of

register conventions which more closely match that used by

other 68000-family compilers. Under the normal conventions,

registers D0, D1, A0, A4, FP0, and FP4 are considered scratch

registers, and pointer return values come back in A0. Under

the alternate conventions, registers D0, D1, A0, A1, FP0, and

FP1 are scratch registers, and pointer return values come

back in D0 (the same as integers).

The –ar option makes it easier to use the 68K/ColdFire

compiler with assembly language which was designed for

use with another compiler.

Of course, all modules in a program must be compiled using

the same register conventions. This rule also applies to the

run-time library. Therefore it is necessary to recompile the

run-time library using –ar in order to make a library which

can be used with –ar compilations. See the Run-Time
Library chapter in the Reference Manual for more details on

how to rebuild the run-time library.

–b5 Use 32-bit A5-relative offsets.

This option may make the generated code significantly larger and slower.

C Compiler 2–33

• • • • • • • •

The compiler addresses non-separate data via the A5 register.

Normally the compiler imposes a 64K byte limit on

A5-relative data, which allows the compiler to assume that

A5-relative offsets fit in 16 bits.

The –b5 option removes the 64K byte limitation on

A5-relative data. The compiler must then use 32-bit

A5-relative offsets. This means it can no longer use the

efficient �A5 plus 16-bit displacement" addressing mode.

Instead it must use the �A5 plus 32-bit displacement" mode.

On a 68000-like processor this more complex addressing

mode is not available, so a sequence of instructions are

necessary instead. For example:

extern long i;
i = 1

Default code:

MOVE.L #1,_i–data(A5)

Code under -b5, 68000 target:

MOVE.L #_i–data,D0
MOVE.L #1,(A5,D0.L)

Code under -b5, 68020 target:

MOVE.L #1,(_i–data,A5)

–C Old run-time model compatibility mode.

This option is intended to facilitate the migration of a system

built with a version of the compiler earlier than v7.0.

The run-time model for the 68K family compiler was

changed slightly, starting with the version of the compiler

which supports the optimizer (v7.0 or later). The change

affects the compiler's run-time convention with respect to

procedure calls and �preserved registers."

Chapter 22–34
C
O
M
P
IL
E
R

The newer run-time model requires that register D2 through

D7 be preserved by any procedure called from C, while the

old run-time model only required that D2 through D4 be

preserved. In the hardware floating-point case, registers FP1

through FP73 and FP5 through FP7 must be preserved where

before only FP1 through FP3 needed to be preserved. This

has two implications:

Assembly language programs which are called from C code

may have to be modified to save and restore these additional

registers in their entry/exit code if they were coded assuming

the old run-time model.

C code compiled under the older run-time model may not be

called by code compiled under the newer run-time model.

The converse, however is not true: code compiled under the

newer run-time model may be called from code compiled

under the older run-time model. In particular, the newer

model run-time library is compatible with older compilers,

and with code compiled under the –C option.

The run-time model was changed to allow the compiler to

use more registers for register variables. It has a very

substantial impact on code quality, especially with the

optimizer turned on. We recommend that the –C option be

used only as a stopgap measure until any affected assembly

language routines have been modified.

 –cc classname
Set class of generated code segment to classname.

The compiler generates one segment for each source model

to contain the generated machine instructions. By default this

segment is associated with the class name �{code }". This

option chooses a different class name.

It may be convenient to compile collections of related

modules with this option. The code can be distinguished in

gsmap listings, and the code from all these compilations can

be forced into a single address range with a single locate
command. See the Linking Locator chapter for more details.

–ih Assume routines called by interrupt handlers do not use

floating-point arithmetic. Only matters with –h . This option is

not valid for ColdFire compilers.

C Compiler 2–35

• • • • • • • •

An interrupt routine that uses floating-point registers must

preserve the state of the floating-point unit. This requires

several instructions, in the entry/exit sequence starting with

an FSAVE. Normally any interrupt routine which makes a

subroutine call must do the same. This is necessary because

the compiler fears that the called routine may do

floating-point arithmetic. However, if you know that the

routines called by your interrupt handlers do not do any

floating-point arithmetic, then these saves are unnecessary.

They can also be quite slow.

By supplying the –ih option, you can tell the compiler not to

worry about the routines called from your interrupt handlers.

Of course, if the interrupt handler itself uses floating-point

registers, then they will be saved on entry nevertheless.

–j Use short branch instructions where possible. This option

may decrease code size, depending upon the nature of the

source program.

When the compiler needs to emit a forward branch, there are

two alternative strategies it could use: emit a short or long

branch instruction. If the target of the branch instruction is

reachable by a short branch, then the first strategy will

produce smaller object code. If not, then the second strategy

will produce smaller object code. The only way to know

which strategy is better for any particular input program is to

try both options and pick the winner. The default is to emit

only long branches.

–n5 Do not reserve A5 for global data.

By default, the compiler uses A5 to address non-separate

global and static data. However, if you have no such data,

then the A5 register is effectively unused. In that case, the

–n5 option allows the compiler to use one more register.

This can result in significant code improvement in

subroutines that use a lot of pointer variables.

Chapter 22–36
C
O
M
P
IL
E
R

This option is not compatible with the standard run-time library, because

the library itself has some global and static data. For example, the variable

errno isdefined by the library. In order to use the –n5 option, you must

recompile the library using a compilation option such as –ss , –sc , or

–sd , which makes all data separate. See the Building Libraries That Do Not
Use A5 application note for a detailed explanation of how to do this.

-n6 Allow the compiler to use A6 for other purposes.

This option causes great problems for symbolic debuggers.

The –n6 option directs the compiler to use the A7 register

(the stack pointer) to access variables on the stack. This has

the advantage of freeing up an additional register for use by

the code generator, which can make a big difference in

subroutines which use lots of pointer variables. Code

compiled with –n6 may successfully be mixed with code

compiled without –n6 . In particular, it is NOT necessary to

rebuild the run-time library with –n6 .

The main disadvantage of the –n6 option is that the code

generated under –n6 is more difficult to read and debug. The

CrossView Pro source level debugger is completely unable to

locate stack variables or trace the stack when debugging

code compiled with –n6 . The main problem is that the A7

register changes frequently, so it is not easy for a debugger to

calculate the A7 offset of a variable at any given point in a

program. The A6 offset, in contrast, is always constant and

easy to manipulate.

–n7 [n] Limit stack-fixup deferral to n bytes (0 if n omitted).

The –n7 option is used to suppress or limit stack-fixup

optimization. To explain why this might be necessary, we

must describe how this optimization works.

After a procedure is called, the caller must pop the

parameters off the stack. This operation is called a �stack

fixup". The compiler attempts to optimize stack fixups by

delaying them as long as possible. This may allow the

compiler to do several fixups in one operation. For example,

f1(1,2,3);
f2(4,5,6);
f3(7,8,9);

C Compiler 2–37

• • • • • • • •

By default the compiler would generate only one fixup, after

the last call.

The problem with this optimization is that it may greatly

increase the total amount of stack space required by the

application. In this example, the parameters passed to f1 and

f2 would still be on the stack when f3 is called. If this

construct appeared in a highly recursive procedure, then that

extra space on each activation could become quite large. In

this case, the –n7 option can be used to limit stack fixup

delay to n bytes. Just �–n7 " alone or �–n7 0 " disables the

stack fixup optimization entirely.

–sp This option requires the compiler to obey strict ANSI C rules

for floating-point precision at the cost of code efficiency.

ANSI C permits floating-point expressions to be evaluated in

greater precision than their type, but it does not permit

variables to be stored in greater precision than their type.

Allowing the compiler to store variables in greater precision

than their type is very important, because it means that

variables of type float or double can be allocated in

floating-point registers. This is an enormous improvement in

efficiency over allocating such variables in memory, but it

does mean that these variables essentially take on extended

precision.

Generally speaking, greater precision is desirable. Since the

precision of floating-point expressions is indeterminate,

strictly controlling the precision of variables has little practical

benefit. However, it is true that the exact value of a

floating-point result is less predictable when the precision of

variables is indeterminate. This option prevents user variables

of type float or double from being allocated into

floating-point registers.

2.4.8 POSITION-INDEPENDENT CODE OPTIONS

Position independence is a very complex issue. For more details, see the

Position-independent Code application note.

–id Suppress PC-relative addressing for data references.

Chapter 22–38
C
O
M
P
IL
E
R

This option is ignored unless –pd is also present. It is

intended for use in systems where program-space fetches to

data will not work properly, as is the case where code and

data reside in different address spaces. Consider these two

code sequences:

MOVE x(PC),D0

and

LEA x(PC),A0
MOVE (A0),D0

The first sequence loads a word from program space. The

second sequence loads a word from the same address, but it

performs a data fetch, not a program fetch. The second

sequence would be substituted for the first under the –id
option.

–pc Force position-independent forms for code, e.g., BSR.L .

Uses PC-relative addressing to achieve position

independence. Here are some examples:

extern void f();
extern void (*p)();
f();
p = f;

Default code:

JSR _f
MOVE.L #_f,_p–data(A5)

Code under –pc :

BSR.L _f
LEA (_f,PC),A0
MOVE.L A0,_p–data(A5)

–pd Force position-independent forms for data.

This only affects separate data and string literals. Here are

some examples:

C Compiler 2–39

• • • • • • • •

char *q;
#pragma separate p
char *p;
p = ”abc”;
q = p;

Default code:

MOVE.L #__N1,_p
MOVE.L _p,_q–data(A5)

Code under –pd :

LEA (__N1,PC),A0
LEA (_p,PC),A4
MOVE.L A0,(A4)
MOVE.L (_p,PC),_q–data(A5)

–ps Use short position-independent form for code, e.g., BSR.W. If

–pd also present, use short position-independent forms for

data also.

The total size of code must be less than 32K bytes for safe use of this

option. If –pd is also present then total code plus data must be less than

32K bytes.

This option tells the compiler that it may assume that all

PC-relative offsets will safely fit in 16 bits. If they do not

actually fit, then use of this option will cause an bounds error

in the link or format stage of processing.

This option significantly improves efficiency, especially on

the 68000, 68010, and 68302 processors. It allows the

compiler to choose the efficient �PC+16-bit displacement"

addressing mode rather than the �PC+32-bit displacement"

mode. On a 68000-like processor this more complex

addressing mode is not available, and so a sequence of

instructions are necessary instead. For example:

#pragma separate x
long x;
void f();
_f(x);

Chapter 22–40
C
O
M
P
IL
E
R

Code under -pc -pd, 68000 target:

MOVEA.L #_f–*–8,A0
LEA (PC,A0),A0
MOVE.L (A0),–A7
MOVEA.L #_f–*–8,A0
LEA (PC,A0),A0
JSR (A0)

Code under –pc –pd , 68020 target:

MOVE.L (_x,PC),–(A7)
BSR.L _f

Code under –ps –pd :

MOVE.L _x(PC),–(A7)
BSR _f

–si Allocate string literals in the idata segment. This causes the

compiler to use A5-relative addressing for string literals.

There are two strategies available for achieving

position-independence for data. One is to use the –pd
option to cause PC-relative addressing for string literals and

separate data. However, this requires that the string literals

and separate data be moved as a rigid unit with the code.

This may not be possible under some environments.

The other strategy is to make all non-stack data A5-relative.

This requires avoiding the options and pragmas that cause

separate data to be generated. Then all that remains is to

make the string literals A5-relative. The –si option does this.

2.4.9 MISCELLANEOUS OPTIONS

–ao options Pass specified options to the assembler step.

Options must be in quotes if there's more than one given.

Use only with –ia option or ColdFire compilers.

C Compiler 2–41

• • • • • • • •

This option is used to specify additional options to the

assembler when assembling compiler output. It can be used,

for example, to specify a macro library that defines macros

for use within in-line assembly language insertions. See the

Assembler chapter for more details.

–ca Continue compilation to completion even if the –E or –M
options are specified.

–d Include symbolic debug information in the object module.

The default is no symbolic debugging information.

The linking locator and formatter programs pass symbol

information through to their output files. Eventually the

symbol information will reside in a hex output file, or in a

debugger symbol file to be read by CrossView Pro. Symbol

information can also be displayed with the symbol list utility.

–dd Allow ANSI-style duplicate declarations.

The ANSI C standard permits certain kinds of multiple

definitions. For example, the following program is legal ANSI

C:

int i;
int i = 1;

By default the compiler gives an error if more than one

definition for a variable is present in a single module. Put

another way, the extern keyword would be required on the

first declaration. The effect of the –dd option is to permit

multiple definitions in a single module, as required by ANSI

C.

Multiple definitions placed in separate modules are still illegal. The two

lines above, if compiled separately would cause an error at link time. This

treatment, called the �def-ref" model, is allowed by the ANSI standard and

is the most common among modern C compilers.

When the –dd option is present, the compiler delays emitting

data allocations for uninitialized variables until the end of the

compilation unit. (It does this in case an initialized definition

turns up later.) This delay affects the order of allocation of

uninitialized variables in memory.

Chapter 22–42
C
O
M
P
IL
E
R

It is expressly illegal for a C program to rely on the order of storage

allocation, but some programs do. Also, some programs have latent bugs

that only become apparent when the global variables are reordered.

Programs which execute differently with and without the –dd option

should be examined for constructs which assume that variables are

allocated one after another in the udata area.

Programs which depend on the order of storage allocation must not use

the –dd option. However, the –dd option is necessary for full ANSI

compliance.

–E [pfn] Generate a listing of preprocessor output. If pfn is omitted,

the listing is written to file prog.pp . The default is no

preprocessor listing. Compilation is halted after the

preprocessor step (and no object module is generated),

unless the –ca option is also specified.

tIf –E is specified and –ca is not also specified, then the compilation is

stopped after the preprocessor stage so that no object module is produced.

If –E is supplied and –ca is not also supplied, then the compilation is

stopped after the preprocessor stage, so no object module is produced.

This allows the preprocessor to be run on source files that do not contain

legal C code, such as C++ source.

–e Issue a warning for use of language extensions. The C code

containing the extension(s) is processed, but the warning

alerts the user to the use of the non-standard feature. This

warning is not affected by the –w option.

–err [file] PC only. Write error messages to file file. If file does not

exist, it will be created. If file does exist, it will be

overwritten. If file is omitted, then error output will be

redirected to standard output.

–err+ [file] PC only. Just like –err , except output will be appended if

file exists.

–k Use a single name space for all structure fields. The default is

to use separate name spaces for each structure type. When

–k is specified, the compiler flags as an error the occurrence

of the same field name in different structures.

–ke Execute the phases of the compiler sequentially, and keep

the intermediate files. For technical support use.

C Compiler 2–43

• • • • • • • •

-M [depsfile] Generate a list of �make" dependencies which result from the

various header files included during compilation. Write the

listing to depsfile. If depsfile is not specified, the listing output

corresponding to progx.c appears in progx.lis .

If –M is specified and –ca is not also specified, the

compilation is stopped after the preprocessor stage so that no

object module is produced.

The compilation is halted after the preprocessing step (and

no object module is generated), unless the –ca option is also

supplied.

If –M is supplied and –ca is not also supplied, then the compilation is

stopped after the preprocessor stage, so no object module is produced.

The compiler will not write more than one listing for a source program to

the default listing file, prog.lis . If you invoke the compiler using the –M
option without depsfile and try to generate other listings without using the

–l option (to redirect output), the compiler will only write a listing of

�make" dependencies to prog.lis . Other listing information will not

appear in any new file.

–mp [protofile]
Construct ANSI-style prototype declarations for each

procedure.

A function prototype is a kind of procedure declaration

which indicates the types of the arguments expected by a

procedure. Function prototypes are probably the single most

useful new feature in ANSI C, because they allow the

compiler to prevent the common error that results when the

type of an actual parameter does not match that expected by

the called procedure. Function prototypes are described in

some detail in the C Language Specifications appendix.

The -mp option is provided to help users who have

non-ANSI C code to take advantage of function prototypes.

The -mp option causes the compiler to generate a prototype

declaration for each of the procedures defined in this

compilation. You may want to edit the generated �header"

file (named prog.ah if protofile is absent) to add comments

and so on.

Chapter 22–44
C
O
M
P
IL
E
R

After you have constructed prototype header files for all the

procedures in your system, you should add #include
directives so that each module has access to prototype

declarations for all the procedures that it calls. This ensures

that all calls can be checked for argument mismatches and

the appropriate conversions can be automatically generated

by the compiler.

In C, function declarations come in two forms: �old style" and

�new style". The �old style" is the K&R C syntax, e.g.,

f (x, y)
float x;
short y;
{

The �new style" is the ANSI C prototype syntax, e.g.,

g (double x, int y)
{

Under the old K&R rules, an outgoing parameter of type float

was converted to double, and outgoing parameters of integral

types smaller than int were converted to int. Therefore the

function f above really expects a double and an int , not a

float and a short , as it appears. Therefore the prototype

generated under –mp would look similar for f and g above,

f (double, int);

This is NOT the same as would be generated for this

procedure:

h (float x, short y)
{

The prototype generated for this procedure would look like

this:

h (float, short);

–na Disable ANSI C language extensions, including new

keywords. Using the –na option turns off all ANSI C

additions that would make legal, pre-ANSI C source code

compile incorrectly.

C Compiler 2–45

• • • • • • • •

–o ofn Write the object module to file ofn. The default is to write to

file prog.ol .

–opfile opts
This option causes the compiler to read command line

options from file opts.

–P ``string[=value]''
This option has the same effect as one of the following C

statements, depending upon whether value is specified.

#define string
#define string value

–pw Emit warnings for calls to undeclared functions.

In C, undeclared identifiers are implicitly declared as

�external int function". This rule can mask real errors,

producing code that will not execute properly. This is

especially true in programs that rely on function prototypes

to coerce arguments to the correct type.

This option causes the compiler to emit a warning message

when it generates an implicit declaration. If all non-prototype

(�old style") function declarations are removed, this option

effectively guarantees that a prototype will be in force at

every call.

–se Unix only. Run the compiler phases sequentially rather than

as a Unix pipe.

–V Display the version number of executables (for technical

support use).

–v Verbose mode. Identifies compiler phases as they are

invoked. This helps determine which compiler phase was

executing if the compiler aborts (for technical support use).

–ve Very verbose mode. Reports date, time, and status/result of

compilation.

Chapter 22–46
C
O
M
P
IL
E
R

–w [n] Suppress warning messages of severity less than n.

The compiler generates warnings for non-portable or

non-standard uses of the C language. Warning severities vary

from 1 to 10 (1=least severe to 10=most severe), depending

upon the error. If omitted, n defaults to 11, i.e., all warnings

are suppressed. Warning severities are listed in the next

section. The default is to issue all warning messages.

Example

Include debugging information:

c68000 sieve.c –d

• Write object module to file sieve.ol .

• Include symbol table information in the object module. This

information can later be used by the symbolic debugger.

Example

Construct a header file of ANSI C prototype declarations:

c68000 prog.c –mp

• Write object module to file prog.o l.

• Write a header file, prog.ah .

Assume that prog.c contains the following lines:

int f(x,y)
double x;
short y;

{ ...}

The resulting header file, prog.ah , would be:

int f(double,
int);

C Compiler 2–47

• • • • • • • •

2.5 USING THE OPTIMIZER

Generally speaking, the optimizer is completely automatic. No source

changes are necessary to use the optimizer, and optimized and

non-optimized modules can be freely mixed.

The optimizer must build an intermediate representation of an entire

procedure in order to perform its functions. If the optimizer does run out

of space, these modules may be compiled without the optimizer by using

the –no option.

Optimization may make the generated code harder to debug. For example,

the optimizer may hoist code out of a loop, making it impossible to set

breakpoints within that code. When debugging is anticipated, the –do
option can be used to disable those optimizations which interfere with

debugging. This is preferable to –no which disables many more

optimizations.

The optimizer uses many different techniques to improve the quality of the

generated code. The main techniques are described in the Optimizations
Performed section below. By far the most significant optimization is the

automatic allocation of local variables into registers. This optimization is

performed in three steps:

1. Find the set of local variables which never have their address taken.

2. Analyze the uses of these variables to compute their �lifetimes."

3. Allocate each available register to as many variables as possible, given the

constraint that two variables with overlapping lifetimes cannot share the

same register.

A variable whose address is taken cannot be placed in a register, since a

pointer cannot point to a register. Avoid taking the address of commonly

used variables where possible, even if this requires the use of a secondary

variable.

Most variables in a C program have the characteristic that if they are

referenced twice with no intervening stores, either direct stores or through

pointers, then both references will deliver the same value. A variable is

called �volatile" if it does not have this property. One way a variable can

be volatile is if that variable is modified by an asynchronous interrupt

handler. Another way that a variable can be volatile is because of memory

mapped I/O.

Chapter 22–48
C
O
M
P
IL
E
R

By default, the optimizer assumes that only variables declared with the

ANSI C volatilkeyword are volatile.

If you have not appropriately marked your volatile variables, then you

must supply the –vv option. This tells the compiler to assume that all

global variables are volatile. This results in safe, but sub-optimal code.

Versions of the compiler earlier than 8.2 assumed that all globals were

volatile by default and would drop the assumption under the –nv option.

For versions 8.2 and later, the old –nv behavior is the default and the –vv
option recreates the old pre-8.2 default.

The –nal option can be used to inform the compiler that named variables

are not referenced indirectly through pointers. By default the optimizer

must �forget" all its information about global variables at every store

through a pointer, since it cannot know which variables are potentially

pointed to or �aliased" with the pointer. In some programs all pointer

variables point into the heap, so this loss of optimization is unnecessary.

Use caution when employing the –nal option, since it is not safe for all

programs. However, it can result in much improved code if used

appropriately.

2.6 OPTIMIZATIONS PERFORMED

Here is a brief summary of the transformations performed by the

optimizer.

2.6.1 AUTOMATIC REGISTER VARIABLE ASSIGNMENT

Most C compilers do not assign variables to registers unless they are

declared with the C register keyword. The optimizer analyzes the usage

of all local variables in a procedure and assigns them to registers in the

optimal way. Furthermore, the optimizer may assign several variables to

the same register, as long as the lifetimes of the variables are disjoint.

Therefore the optimizer can do a better job than the most conscientious

programmer.

C Compiler 2–49

• • • • • • • •

Assigning variables to registers is the single most important key to

generating good code for machines which have a large register set. This

saves a load instruction at every reference, and a store at every

assignment. Register variable allocation can reduce overall code size in

programs which use a lot of local data.

Register allocation is done by a packing algorithm which takes into

account the number of uses of each variable and whether these uses lie in

a loop.

2.6.2 COMMON SUBEXPRESSION ELIMINATION

Two computations are called common subexpressions, or CSEs, if they are

guaranteed to deliver the same value on all possible paths of program

execution. The simplest example is two occurrences of the same local

variable with no intervening store (either directly or through a pointer).

It is often better to compute a CSE once, save it in a temporary, and reuse

the temporary at subsequent uses than to re-compute the CSE each time

from scratch. This can save several instructions if the CSE is complex. Even

if the CSE is very simple, like a 32-bit constant, it may be worthwhile to

recognize the CSE just to decrease the size of the instructions which use

that value.

The optimizer decides whether using a temporary is an improvement and

transforms the program appropriately. The algorithm which makes this

decision is quite sophisticated. It takes into account the availability of a

register temporary, the number of times the CSE was used, and the cost to

re-compute.

Common subexpression elimination is an extremely important

optimization. It works especially well in conjunction with automatic

register variable assignment, as the CSEs automatically become candidates

for assignment to registers.

2.6.3 TARGET PATH COMPUTATION

Often a computation is evaluated for the purpose of storing it into a

particular register. The simplest example of this is an assignment into a

register-resident variable. Here the register variable is called the �target" of

the evaluation.

Chapter 22–50
C
O
M
P
IL
E
R

If the target register does not appear in the expression being evaluated,

then the expression may be evaluated directly into the target register. For

example, the ``targeted'' code for a = b + c; would be to move b into a
and then add c into a. Of course, this code would be incorrect if c were in

the same register as a. In contrast, the untargeted code would be to move

b into a temporary register, add c to the register, and move the register

into a. This requires an extra move instruction.

When the target register appears exactly once in the expression it may still

be possible to find a target path which �rolls up" the expression in the

target register. One example of this is the expression:

 a = b + (a * c);

Here the targeted code would be to multiply c into a, and then add b into

a. In contrast, the untargeted code would be to move a into a temp,

multiply c into the temp, add b into the temp, and move the temp into a.

This is twice as many instructions as the targeted sequence.

Targeting is an extremely valuable optimization because it occurs so often.

2.6.4 STRENGTH REDUCTION

Strength reduction is an optimization that typically turns complex address

calculations into additions inside a loop. In the classic case, the loop:

int a[10];
for (i=0; i<10; i++) {
 a[i] = 0;
}

can be turned into the equivalent of

long a[10],*pnt;
for (pnt = &a[0]; pnt<&a[10];) {
 *pnt++ = 0;
}

The generated code for the second loop is smaller and much faster.

C Compiler 2–51

• • • • • • • •

2.6.5 CODE HOISTING

A computation within a loop is called �loop invariant" if it is guaranteed to

deliver the same value on each iteration through the loop. It is always

faster to compute a loop invariant once outside the loop than to compute

it on each iteration. This optimization is called code hoisting because the

computation is effectively lifted out of the body of the loop.

In the case of nested loops, the hoisted code is examined again to see if it

can be hoisted out of the enclosing loop as well. Of course, a computation

can only be hoisted if it is guaranteed to be computed on all paths

through the loop.

This optimization does not decrease the size of the generated code, but

can greatly increase its speed. It is possible for code hoisting to slightly

increase the size of the generated code, and so code hoisting can be

disabled with a command line option –nh .

2.6.6 LOOP ROTATION

A typical for loop is:

for (i = 1; i < 10; i++)

Much less common are loops of the form:

for (i = 1; i < j; i++)

The significant difference between these two loops is that the body of the

first loop is guaranteed to execute at least once. Recognizing the difference

between these two cases allows the compiler to save a jump instruction

because it need not begin with the ``test'' code at the top of the loop. In

other words, the loop may be ``rotated'' to perform the test at the bottom.

The above optimizations are performed in the optimizer phase but

additional optimizations are performed in the back end phase itself. These

optimizations are performed even if the optimizer phase is not run.

Chapter 22–52
C
O
M
P
IL
E
R

2.6.7 BRANCH TABLES

Branch tables provide a more efficient implementation for switch

statements. There are two main strategies of code generation for switch

statements. One is for the generated code to compare the selector against

each of the case labels in succession, and jump to the appropriate case

when a match is found. This is called the �fall through" strategy. The other

is for the generated code to use the selector as an index into a table of

destination addresses, and then jump to the resulting address. This is

called the �branch table" strategy.

The compiler automatically selects the best strategy for the particular

switch statement at hand. The decision depends upon whether the switch

table is �dense," that is, if most of the values between the lowest and

highest case labels actually correspond to case labels. For example,

suppose you had a switch statement with two case labels, one at zero and

one at 10,000. It would be unwise for the compiler to implement this using

a 10,000 entry branch table. In general, the compiler will make a branch

table if the switch is at least one-third dense and has at least five cases. If

the switch is less dense but has many cases, the compiler will choose its

third option, a binary search run-time routine.

2.6.8 ENTRY/EXIT OPTIMIZATION

Most compilers typically emit a standard entry-exit sequence at the

beginning and end of each procedure. This code consists of two parts:

code to establish a stack frame, and code to save registers which must be

preserved according to the run-time model. Both of these kinds of code

are amenable to optimization.

First, the code to establish a stack frame is only necessary if the procedure

being compiled uses stack data. Since the optimizer performs automatic

register variable assignment, many procedures will have only

register-resident data, and thus do not need a stack frame. It should be

noted that stack frames are necessary for the debugger to trace the stack,

and so this optimization can be suppressed using the –nl command line

option.

Second, the code to save registers can be optimized to only save those

registers which are actually used in the body of the subroutine.

Furthermore, if only one register need be saved, then a single push

instruction is used instead of a multiple push instruction.

C Compiler 2–53

• • • • • • • •

In very small procedures, the entry-exit code can be a significant

percentage of the entire time spent in the subroutine, so this can be a very

important optimization.

2.6.9 MULTIPLICATION OPTIMIZATION

Many compilers can recognize that a multiply by a power of two can be

done by a shift. The compiler back end also recognizes many other

multiplications by constants which can be done without using a multiply

instruction. This is somewhat larger than a multiply instruction, but much

faster.

One limitation of the MC68000 instruction set is the lack of 32-bit multiply

and divide instructions. This means that the compiler must invoke a

run-time library routine to perform long multiply and divide operations, at

a considerable cost in execution time. However, if the compiler can

determine that both multiplicands fit in a 16-bit signed word, then the

compiler will use the MULS instruction and avoid the out-of-line call.

2.6.10 SUBSCRIPT OPTIMIZATION

The compiler uses 16-bit arithmetic for array index computations if it

knows the dimension of the array and can determine that the computation

will not overflow. This optimization is bypassed if the array has only one

element, because it is obvious in such cases that the user is intentionally

indexing off the end of the array.

2.6.11 SPECIAL INSTRUCTION SELECTION

The M68000 family has a number of special instructions which can be

used to generate just the right code in particular circumstances. The

compiler takes full advantage of these instructions. For example, the DBcc
(decrement and branch on condition) instruction is appropriate for certain

loops. The CMPM instruction is appropriate for the typical C expression

*p++ == *q++ .

Chapter 22–54
C
O
M
P
IL
E
R

2.6.12 SPECIAL ADDRESSING MODES

The MC68020 and later targets have a number of powerful addressing

modes which are not available on the MC68000. For example, array

subscripts can be used without having to multiply them by the element

size, as long as the element size is 2, 4, or 8. Also a pointer value may be

used directly from memory without having to load it into a register.

The compiler takes full advantage of these addressing modes. Every

memory reference is carefully analyzed so that the most efficient

addressing mode may be chosen.

2.7 MESSAGES

All C compiler error messages have the following format:

 :XX:name.c:nnn:message

where:

• XX identifies the compiler phase which detected the error.

XX Phase

FE Front End

OP Optimizer

Table 2-3: Error message format

• name.c is the name of the source file in which the error occurred.

• nnn is the line number in file name.c at which the error occurred.

• message is a description of the error.

Messages from the front end are graded in severity and are flagged either

as (Warning only) or as (FATAL!). Severity levels for warning messages

are listed below. Messages from the back end are always fatal. Messages

from the optimizer may be warnings or fatal errors.

C source files containing errors can cause the optimizer and back end to

emit fatal error messages. Other errors from the back end are generally

internal errors, and should be reported to Customer Support. Error

messages and warning messages affect the system return code returned by

the compiler.

C Compiler 2–55

• • • • • • • •

Phase Severity Warning Message

FE 1 Address initialization not position-independent

FE 1 Block scope extern declaration may not have
initializer

FE 1 Comma operator (",") not allowed in initialization

FE 1 Compilation defines no external names

FE 1 Degenerate unsigned compare with zero

FE 1 Duplicate qualifier

FE 1 Empty braced initialization list is illegal

FE 1 Empty character constant

FE 1 Extra comma at end of enumeration list ignored

FE 1 Filename is too long for list header

FE 1 Illegal hex constant (zero assumed)

FE 1 Missing ">" after header name (added)

FE 1 Non-int bitfield same as int bitfield

FE 1 Old style initializer

FE 1 Source line is too long for listing (truncated)

FE 1 Struct member redeclared

FE 1 Undefined, assuming 0

FE 1 Undefined, int function assumed

FE 1 Unsigned compare with negative constant

FE 1 Value specified is outside of legal range of 1 to
32767

FE 2 Case label not reachable by this type of switch
selector

FE 2 Enum function returning member of different
enum type

FE 2 Enum function returning value of different enum
type

FE 2 Enum member assigned to variable of different
enum type

FE 2 Enum member passed to prototype parameter of
different enum type

Chapter 22–56
C
O
M
P
IL
E
R

FE 2 Enum variable assigned to variable of different
enum type

FE 2 Enum variable passed to prototype parameter of
different enum type

FE 2 Implicit conversion to enum type

FE 2 Name already defined - stmt ignored

FE 2 Negative or 0 array length

FE 2 Separate directive must come before definition

FE 2 Separate variable not declared

FE 2 Unreachable code

FE 2 Variable is already separate; directive ignored

FE 2 Variable never referenced

FE 3 "&" requires lvalue operand; "&" ignored

FE 3 #option sep_off without #option sep_on

FE 3 #pragma sep_off without #pragma sep_on

FE 3 Argument names ignored

FE 3 Can't specify two class names to a single separate
segment

FE 3 Char constant too long

FE 3 Constant too big for field, value truncated

FE 3 Constant too big: truncated to 0

FE 3 Constant truncated to 1 byte

FE 3 Constant truncated to 2 bytes

FE 3 Constant value truncated

FE 3 Fixed point literal out of range

FE 3 Floating-point constant truncated in conversion
to integer

FE 3 Hex escape too long

FE 3 Hex escape truncated to four hex digits

FE 3 Hex escape truncated to two hex digits

FE 3 Integer constant truncated in conversion to
floating-point

C Compiler 2–57

• • • • • • • •

FE 3 Invalid directory name

FE 3 Missing #include file name

FE 3 Negation of unsigned fixed point value

FE 3 Null or invalid directory name

FE 3 Syntax error in #option statement

FE 3 Syntax error in #pragma statement

FE 3 Too many -I directories

FE 3 Too many -S directories

FE 3 Unknown #pragma

FE 4 Comparison between void and non-void pointers

FE 4 Float/double switch expression truncated

FE 4 Implicit conversion of pointer

FE 4 Implicit conversion to pointer

FE 4 Incompatible pointer types

FE 4 Non-portable pointer comparison

FE 4 Structure operation on non-structure item

FE 4 Structure ref base not a pointer

FE 6 Constant variable never initialized

FE 6 Duplicate specification in _ASM predicate

FE 6 Empty formal parameter name list after _ASM
keyword

FE 6 Empty formal parameter name list after _CASM
keyword

FE 6 Malformed "always" _ASM predicate; identifier
ignored

FE 8 Function declaration does not match previous
function prototype

FE 8 Function prototypes present but not enabled in
this compilation

FE 8 Name redefined

FE 8 Nonzero int assigned to pointer

FE 8 Nonzero int assigned to pointer return value

Chapter 22–58
C
O
M
P
IL
E
R

FE 8 Nonzero int used as pointer argument

FE 8 Pointer type in function call does not match
function definition

FE 8 Pointer types in assignment do not match

FE 8 Pointer value in return does not match function
type

FE 8 Prototype not compatible with previous
non-prototype declaration

FE 8 Void parameter list disagrees with previous
function prototype

FE 9 Division by 0 illegal; 1 assumed

FE 9 Division by 0.0 illegal; 1.0 assumed

FE 9 Negative shift count

FE 9 Shift count too large

3

ASSEMBLER
C

H
A

P
T

E
R

Chapter 33–2
A
S
S
E
M
B
L
E
R

3

C
H

A
P

T
E

R

Assembler 3–3

• • • • • • • •

This chapter describes the usage of the assembler for the 68K/ColdFire

family of microprocessors. For more information about the assembly

language, refer to the Reference Manual.

3.1 INTRODUCTION

To assemble program(s), use the assembler that corresponds to your

derivative. See section Derivatives Overview in chapter Tutorial of the

Getting Started Manual for a list of the supported derivatives with the

corresponding target to identify the assembler (asmtarget).

Invocation syntax

asmtarget prog.asm [prog2.asm ...][options]

 Input

prog.asm [prog2.asm...]

Output

prog.ol [.lis, .xrf, .err, .gsm] [prog2.ol...]

3.2 ASSEMBLER OPTIONS: SUMMARY

The assembler recognizes the following options:

Option Function See:

–a Generate source listing and show
INCLUDE’d source.

3–6

–A Force absolute addressing. 3–12

–a4 Force fullword alignment. 3–14

–b Generate symbol table listing. 3–7

–B Suppress listing of macro definitions. 3–7

–bl Use 32–bit addressing for forward
(undefined) branches. Not allowed for
MC68000, MC68008, MC68010 and
MC68302 targets.

3–13

–bs Use 8–bit addressing for forward
(undefined) branches.

3–13

Chapter 33–4
A
S
S
E
M
B
L
E
R

See:FunctionOption

–bw Use 16–bit addressing for forward
(undefined) branches (default).

3–13

–C Suppress listing of macro invocations. 3–7

–d Generate symbolic debugging
information.

3–14

–e [erfn] Write all error messages to erfn; if erfn is
omitted, suppress all messages.

3–7

–err [file] PC only . Write error messages to file. 3–7

–err+ [file] PC only . Append error messages to file. 3–7

–ex Allow the following TASKING extensions
to the assembler language: COMMON,
ELSEC, ENDR, REPEATC, RESERVE,
RESUME, RORG, % (remainder) operator.

3–15

–F Fold identifiers to upper case. 3–15

–fs Use short addressing for forward
(undefined) references.

3–13

–g Generate global symbol listing. 3–7

–h Allow use of hardware floating–point
instructions even with processors that
do not support hardware floating–point.

3–15

–I dir1 [dir2...]
Define INCLUDE directories. 3–12

–l [lfn] Generate listing and send to file lfn; if lfn
is omitted, write to prog.lis .

3–7

–m Show all macro expansions. 3–7

–M mfn Pre–INCLUDE file mfn into source
stream.

3–12

–N Suppress listing of conditional assembly
directives.

3–7

–o ofn Write object module to file ofn. 3–7

–O Make a non–68000 assembler act like
the 68000 assembler.

3–13

–p Show code generated for structured
syntax.

3–8

–P [lines] Set lines–per–page to lines; if lines is
omitted, suppress pagination.

3–7

Assembler 3–5

• • • • • • • •

See:FunctionOption

Force PC–relative addressing in
absolute section.

3–14

–ps Force PC–relative addressing in
relocatable section.

3–14

–s Generate source listing and do not show
INCLUDE’d source.

3–8

–S dir1 [dir2...] Define INCLUDE directories (equivalent
to –I option).

3–12

–t Trim comments from listing. 3–8

–U Show unassembled source. 3–8

–V Display the version number of the
executables.

3–15

–v Verbose mode. Reports date, time, and
status/result of assemble.

3–15

–ve Very verbose mode. Identifies
executables as they are invoked. This
determines which program was
executing if the assembler aborts. For
technical support use.

3–15

–w [n] Suppress warnings of severity less than
or equal to n (default 10).

3–15

–x Generate cross–reference listing. 3–8

Table 3-1: Assembler options

3.3 USAGE

The assembler translates assembly language source programs into object

modules. These object modules may be input to the linking locator or

catalogued in a library. Source programs can also include (via INCLUDE
options) other source files. Various listing options are available to display

the results of assembly.

If an input file name with no extension is specified, e.g., prog, then the

assembler will search for prog.asm .

The assembler recognizes the assembly language originally specified by

Motorola, which is fully described in the Reference Manual.

Chapter 33–6
A
S
S
E
M
B
L
E
R

The –ex option allows the use of the TASKING extensions. Please refer to

the Assembler Directives chapter of the Reference Manual for details.

The assembler will produce object code for the processor derivative

specific instruction set, depending upon the manner in which it is invoked.

The assembler will disallow instructions which do not exist on the

specified target processor. The resulting object module is labeled internally

with the target name, e.g., object modules produced by asm68020 are

labeled as containing �68020" code. The linking locator will issue a

warning if you attempt to link object modules intended for different

targets.

The use of MC68851 memory management coprocessor instructions is

allowed only with asm68020 .

From now on, we will refer to the assembler as the 68000 assembler.

Example

Assemble with all defaults:

asm68000 test.asm

• Assemble test.asm .

• Search for any INCLUDE files in current directory.

• Write object module to file test.ol .

• No listings will be generated.

3.4 ASSEMBLER OPTIONS: DETAILED DESCRIPTIONS

This section describes the assembler options in more detail and provides

examples of their use.

3.4.1 LISTING OPTIONS

The listing options control the generation of the various listing files.

Listings are not produced by default; you must specify the appropriate

option or options.

–a Generate a source listing showing secondary INCLUDE'd lines

in addition to primary source lines.

Assembler 3–7

• • • • • • • •

–b Generate symbol table and macro definition listing.

–B Suppress listing of macro definitions.

–C Suppress listing of macro invocations.

–e [erfn] If erfn is specified, then error messages are directed to erfn.

Error messages are also written to the listing file, if any. If

erfn is omitted, then all error messages are suppressed. The

default is to print error messages to stderr.

–err [file] PC only. Write error messages to file file. If file does not

exist, it will be created. If file does exist, it will be

overwritten. If file is omitted, then error output will be

redirected to standard output.

–err+ [file] PC only. Just like –err , except output will be appended if

file exists.

–g Generate global symbol listing, using the gsmap utility. If –l
is not specified, the listing is written to file prog.gsm .

–l [lfn] This option controls the destination of the listing output

implied by the other listing options. If lfn is given, then the

listing is written to file lfn. If lfn is +, then the listing is

written to standard output. If lfn is omitted, then the listing

is written to file prog.lis. If multiple source files are given in

one assembler invocation, then neither + nor lfn may be

specified. Instead, a separate listing file is generated for each

input file. The listing output corresponding to progx.asm
appears in progx.lis .

–m Show the expansion of all macros in the source listing.

–N Suppress listing of conditional assembly directives.

–o ofn If ofn is specified, then write the object module to file ofn. If

ofn is +, then the object module is written to standard output.

The default is to write to file prog .ol .

–P [lines]
Set the number of lines per listing page to lines. If lines is
omitted, then suppress listing pagination.

Chapter 33–8
A
S
S
E
M
B
L
E
R

–p Show code generated for structured syntax, e.g.,

IF -THEN-ELSE.

–s Generate a source listing. Secondary INCLUDE'd lines are not

listed.

–t Trim comments from listing.

–U List unassembled source, that is, lines that are excluded via

conditional assembly constructs.

–x Generate cross-reference listing. If –l is not specified, the

listing is written to file prog .xrf .

If no listing option is specified, then no listing is generated. If

only one of –a, –b , –s, or –x is specified, then only that

particular listing is generated. Use a combination of options

to obtain a listing containing more than one of the listing

types described above.

If the –l option is used (with or without an explicit listing

filename) and none of –a, –b, –s, or –x is also

supplied, then a listing showing only primary source is

generated. The following invocations of the assembler are

thus all equivalent:

asm68000 prog.asm –s
asm68000 prog.asm –l
asm68000 prog.asm –s –l

Example

Generate source and cross-reference listings:

asm68000 spiral2.asm –x –s

• Assemble spiral2.asm .

• Write object module to file spiral2.ol .

• Write source listing to file spiral2.lis .

• Write cross reference listing to file spiral2.xrf .

Assembler 3–9

• • • • • • • •

Partial source of spiral2.asm :

XTRAP MACRO
IFC ’\1’,’CHAR’
LEA CHAR,A5
LEA CHAREND,A6
ENDC
TRAP #fifteen
DC seven
ENDM

* equ’s

one EQU 1
fifteen EQU 15
seven EQU 7

PAGE
SECTION TEXT

S TART:
CLR D0
LEA CLEAR,A5
LEA CLREND,A6
XTRAP NOCHAR

* ERASE:
LEA CENTER,A5
LEA CENEND,A6
XTRAP NOCHAR

*
MOVE #one,D2

Chapter 33–10
A
S
S
E
M
B
L
E
R

Partial source listing in spiral2.lis :

Source file: spiral2.asm

16 0 | XTRAP MACRO
17 0 | IFC ’\1’,’CHAR’
18 0 | LEA CHAR,A5
19 0 | LEA
CHAREND,A6
20 0 | ENDC
21 0 | TRAP #fifteen
22 0 | DC seven
23 0 | ENDM
24 0 | ************************
25 0 | * equ’s
26 0 | ************************
27 0 [$1] | one EQU 1
28 0 [$F] | fifteen EQU 15
29 0 [$7] | seven EQU 7
31 0 > | SECTION TEXT
32 0 | START:
33 0 4240 | CLR D0
34 2 4BF9{00000000} | LEA CLEAR,A5
35 8 4DF9{00000002} | LEA CLREND,A6
36 E | XTRAP NOCHAR
37 12 | *
38 12 | ERASE:
39 12 4BF9{00000002} | LEA CENTER,A5
40 18 4DF9{0000000A} | LEA CENEND,A6
41 1E | XTRAP NOCHAR
42 22 | *
43 22 343C0001 | MOVE #one,D2

Assembler 3–11

• • • • • • • •

Partial cross-reference listing in spiral2.xrf :

Dec 12 1999 10:13:22 CROSS–REFERENCE: spiral2.asm PAGE
1

BAKEND
Def : spiral2.asm 103
Ref : spiral2.asm 65

CENEND
Def : spiral2.asm 99
Ref : spiral2.asm 40

CENTER
Def : spiral2.asm 97
Ref : spiral2.asm 39

CHAREND
Def : spiral2.asm 119
Ref : spiral2.asm 51 59 67 75

CLEAR
Def : spiral2.asm 93
Ref : spiral2.asm 34

CLREND
Def : spiral2.asm 95
Ref : spiral2.asm 35

FOREND
Def : spiral2.asm 107
Ref : spiral2.asm 49

FORESP
Def : spiral2.asm 105
Ref : spiral2.asm 48

fifteen
Def : spiral2.asm 28
Ref : spiral2.asm 36 41 50 51 58 59

66 67 74 75

Example

Specify a different filename for the object module:

asm68000 myprog.asm –o myobj.ol

Chapter 33–12
A
S
S
E
M
B
L
E
R

• Assemble myprog.asm .

• Write object module to file myobj.ol .

3.4.2 INCLUDE OPTIONS

–I dir1 [dir2 .. .]
Define directory(ies) to be searched for user include files.

The default is to search the current working directory. No

more than 32 user include directories may be specified.

INCLUDE file,INCLUDE < file>
The first form is considered to be a user include; the second

form is considered to be a system include.

When searching for user includes, the assembler first

searches the directories specified by the –I option(s),

followed by the directories specified by the –S option(s),

followed by the current working directory.

When searching for system includes, the assembler only

searches the directories in the order specified by the –S
option(s).

–M mfn Pre-INCLUDE file mfn into source stream. The named file is

INCLUDE'd before any of the source file is processed. Thus, if

a library of macros is written, they can be predefined just as

if the first line of the source file were INCLUDE mfn.

–S dir1 [dir2...]
Define directives to be searched for system include files.

There is no default. No more than 32 system include

directories may be specified. The following are some

INCLUDE directories as they might appear in an assembly

program source file.

3.4.3 CODE GENERATION OPTIONS

–A Generate absolute addresses instead of PC-relative addresses

whenever possible. Code generated with this option will take

up more space because the address occupies 32 bits, while a

PC-relative displacement occupies either 8 or 16 bits.

Assembler 3–13

• • • • • • • •

–bl Use 32-bit addressing for forward branches. This option

cannot be used when assembling for the MC68000, MC68010

or MC68302 targets.

–bs Use 8-bit addressing for forward branches. If the

displacement does not fit in one byte, the assembler will

issue an error message and try to generate code anyway.

–bw Use 16-bit addressing for forward branches (default).

–fs Use short (16-bit) addressing for forward references other

than branches. If this option is not specified, long (32-bit)

addressing will be used.

–O Make a non-68000 assembler act like the 68000 assembler.

Sometimes the assembler must choose an instruction form

when it doesn't have enough information to pick the optimal

legal form. For example, consider the instruction �MOVE
#1,(xxx,A0)

", where �xxx " is an external name defined in an XREF

directive. The assembler must decide how much space to

allocate to hold the offset value (xxx). When assembling for

the MC68020 target, there are two choices: 16 bits or 32 bits.

In these situations, the assembler generally picks a less

optimal form that is more likely to execute properly than a

more optimal form that might not be suitable. In that spirit

the assembler tends to pick long-form instructions when it

cannot be sure that the corresponding short-form instruction

would be sufficient. Thus, in the example above, the 68020

assembler would choose a 32-bit offset.

The effect of the –O option is to restrict the assembler in

these situations to behave as if only the 68000 base

instruction forms were available to choose from. In the above

example, the 68000 assembler would choose a 16-bit offset,

because the 68000 does not support the 32-bit offset

addressing form.

Chapter 33–14
A
S
S
E
M
B
L
E
R

This option is appropriate for assembler source that is known

to assemble properly through a 68000 assembler. In that case

it is possible that an assembler for another target (like the

68020) might make less optimal code, since it's trying to be

safe.

–po Use PC-relative addressing in absolute sections. This applies

even to labels in sections other than the current one. Labels

in the current section are normally referred to via PC-relative

addressing, unless the displacement does not fit in 16 bits.

–ps Use PC-relative addressing in relocatable sections. This

applies even to labels in sections other than the current one.

Labels in the current section are normally referred to via

PC-relative addressing, unless the displacement does not fit

in 16 bits.

3.4.4 MISCELLANEOUS OPTIONS

–a4 Force fullword alignment.

By default the assembler assigns each segment halfword

alignment. This option forces all generated segments to have

fullword alignment. For derivatives having a 32-bit data bus,

fullword memory accesses take less time on fullword aligned

addresses.

–d Include symbolic information in the object module. The

default is no symbolic debugging information. The linking

locator and formatter programs pass symbolic information

through to their output files. Eventually the symbol

information will reside in a hex output file, or in a debugger

symbol file to be read by CrossView Pro. Symbolic

information can also be displayed with the symbol list

program, symlist. (See the Symbol List Utility section of the

Other Utilities chapter.)

Example

Include symbol table information:

asm68000 myprog.asm –d

• Assemble myprog.asm .

Assembler 3–15

• • • • • • • •

• Write output object module to file myprog.ol .

• Include symbol table information in the output object module.

–ex Allow the following TASKING extensions to the assembler

language: COMMON, ELSEC, ENDR, REPEATC, RESERVE,
RESUME, RORG, % (remainder) operator.

–F Fold identifiers to upper case.

–h Allow use of MC68881 floating-point coprocessor

instructions. By default MC68881 instructions are accepted

when assembling for the MC68020, MC68030, MC68040,

MC68060, MC68EC020 or MC68EC030 target. You can use this

option to force the assembler to accept MC68881 instructions

when assembling for one of the other targets.

–V Display the version number of executables. For technical

support purposes.

–v Verbose mode. Reports date, time, and status/result of

assemble.

–ve Very verbose mode. Identifies executables as they are

invoked. This determines which program was executing if

the assembler aborts. For technical support use.

–w [n] Suppress warning messages of severity less than n. Warning

severities vary from 1 to 9, (1 = least severe to 9 = most

severe) depending upon the error. If omitted, n defaults to

10, i.e., all warning messages are suppressed. The default is

to issue all warning messages.

Chapter 33–16
A
S
S
E
M
B
L
E
R

4

LINKING LOCATOR
C

H
A

P
T

E
R

Chapter 44–2
L

IN
K

IN
G

 L
O

C
A

T
O

R 4

C
H

A
P

T
E

R

Linking Locator 4–3

• • • • • • • •

This chapter describes the operation and use of the Linking Locator utility.

It begins with a summary listing of the available options and continues

with more detailed explanations of their usage, linking concepts, compiler

run-time libraries, library searches, locator commands, and error messages.

4.1 INTRODUCTION

Combine object modules, create ROM-able initialization segment, assign

absolute addresses to segments.

Invocation

llink [prog.[ol | ln | rmp]...] [options]

Input

Object modules and locator commands

Output

Standard output (or prog.ab or prog.ln or prog.rmp)

The llink linking locator is for C modules only. See the C++ User's Manual
for more information on ldriver , the C++ linking locator utility.

4.2 LINKING LOCATOR OPTIONS: SUMMARY

The linking locator recognizes the following options:

Option Function See
Page:

–0 (Zero) Display the version number of
executable.

4–13

–b segname Specify the segment to be created. Default
output segment is rompOutSeg .

4–10

–c cfn Read locator commands from file cfn. 4–9

–err [file] PC only . Write error messages to file. 4–13

–err+ [file] PC only . Append error messages to file. 4–13

–G Suppress all global symbols in output file. 4–12

Chapter 44–4
L

IN
K

IN
G

 L
O

C
A

T
O

R

See
Page:

FunctionOption

–i [ifn] Take the names of input object modules from
file ifn. If ifn is omitted, read names from
standard input.

4–14

-il ifn Read library index file name(s) from file ifn. 4–8

–k [sym sym2...] Keep only the named global symbols in
output.

4–12

–L lib [lib2...] Specify library index file(s) to be searched. 4–9

–lo Suppress locate processing (link only). 4–9

–o [ofn] Write output to file ofn. If ofn is omitted, write
to prog.ab if locate processing is performed,
otherwise to prog.rmp if ROM processing is
performed, otherwise to prog.ln . If the
option is omitted, write to standard output.

4–14

–opfile opts Supply command line options in a file opts.

–p n Pad the size of all segments by n bytes. 4–9

–p n% Pad the size of all segments to n percent of
their original size (n must be > 100).

4–9

–rc class1 [class2...] Create initialization segment for all segments
of the named class(es).

4–10

–rs seg1 [seg2...] Create initialization segment for the named
segment(s).

4–10

–s [sym sym2 ...] Suppress the named global symbols in
output file.

4–12

–S Suppress all local symbols in output file.
Symbols are generated by the compiler or
assembler when –d is used.

4–12

–v Report linking actions as performed. 4–14

–w Suppress warning messages, e.g., for
unresolved references.

4–14

–x Create external references for CrossView
Pro run–time support routines.

4–14

Table 4-1: Linking locator options

Linking Locator 4–5

• • • • • • • •

4.3 USAGE

The linking locator performs any combination of three basic functions.

These functions are called linking, locating, and ROM processing.

By default, llink performs only the linking and locating steps. ROM

processing is performed only if one of the ROM processing options, –b ,

–rc or –rs is specified. If the –lo option is specified, the locate step is

bypassed.

4.3.1 LINKING

The link step consists of combining linked or unlinked object modules

into a single output module. References between the input modules are

resolved during linking.

The modules to be combined may be named on the command line or

listed in a file presented to llink via the –i option. Modules listed in the

file should be listed one per line followed by a carriage return. Be aware

that MS-DOS enforces a relatively low limit on the number of characters in

a command, generally about 128 or less. If + is given as an input module

name, standard input is read. Llink attempts to resolve any undefined

symbols by searching the given library index files for modules which

define the symbols. External references which cannot be found in the

given libraries are reported as warnings.

It is possible to �pre-link" part of a system and resolve remaining external

references in subsequent links. For example, if one module is being

changed and tested, the remaining object modules can be linked without

the module in question. Each revision of the test module can be linked

with the pre-linked portion. This speeds up the linking process and

simplifies the llink command line.

4.3.2 ROM PROCESSING

A wide class of embedded applications need to begin (or restart)

execution without loading (or reloading) memory from an external device

such as a disk. Such applications are called �ROM-based" applications,

since the program must reside permanently in ROM (read-only memory).

Chapter 44–6
L

IN
K

IN
G

 L
O

C
A

T
O

R

All ROM-based systems must execute code to initialize their read-write

data, since the initial values cannot be maintained in RAM (random-access

memory), and read-write data cannot be allocated in ROM. ROM

processing is a feature which simplifies and automates the data

initialization process.

One technique to initialize global data is to code an explicit assignment

statement for each individual global variable, and never code an initial

value specification on a global data declaration.

When using ROM processing, initial values may be coded in the source on

declarations as needed. The compiler places the initial values

corresponding to all initialized non-separate variables in the idata
segment. The simplest form of ROM processing consists of reading an

object module and producing another module which is identical, except

that:

1. The idata segment contains no initial values.

2. A new segment named rompOutSe g has been added.

Unlike idata , the rompOutSeg segment is suitable for placement in

ROM. It contains a recipe for initializing the idata segments as indicated

in the input module. Basically, this recipe consists of a sequence of triples

of the form �address-length-data." This kind of segment is called an

�initialization segment."

Segments are explained in more detail in the Linking Concepts section

below.

The run-time library routine knows how to follow a recipe in this format.

It expects to receive the address of an initialization segment as a

parameter. When rcopy is called, it follows its recipe, which results in the

values in rompOutSeg (in ROM) being copied into idata , (in RAM).

The user's system start-up or reset code must call rcopy when

appropriate. Typically this is done at the start of the C main routine .

However, when building a C++ application, ROM processing should be

performed before main is called, i.e. in the assembly language system

initialization file that calls main . An example of this method is provided in

the ROM procesing Options section of this chapter.

Linking Locator 4–7

• • • • • • • •

This is necessary because the C++ compiler creates instructions at the start

of main to invoke the constructors of statically allocated objects. The

constructors execute before the instructions corresponding to the first

source line of main. If ROM processing were not performed until after

such constructors run, the constructors would read uninitialized ROM

memory. Similarly, any writes to initialized memory would be lost when

ROM processing finally occurred.

Any list of input segments can be processed, so separate variables and

assembly language segments can also be initialized. The name of the

output segment can be specified using the –b option (rompOutSeg is the

default).

ROM processing can be performed several times, but the user program

must include as many calls to rcopy as there are initialization segments.

You can omit the ROM processing step if there is no initialized data in

your system. Note, however, that the run-time library contains several

potential sources of initialized data.

For a detailed example of ROM processing, refer to the Introduction to
System Building Concepts section in the Tutorial chapter of the Getting
Started Manual.

4.3.3 LOCATING

The locate step consists of assigning target-machine addresses to the code

and data contained in the input module(s) and resolving address

references between segments accordingly. This process is done by

obeying optional user commands or default rules. These commands are

described in the Locator Commands section.

The result of locating is called an �absolute" module, because no

relocatable references remain. Absolute modules are suitable for input to

the formatter.

In general it is not possible to link an absolute module with other object

modules, because absolute segments cannot be combined. Refer to the

Segments part of the Linking Concepts section for more details.

Chapter 44–8
L

IN
K

IN
G

 L
O

C
A

T
O

R

Example

Link, locate and ROM process:

llink myprog.ol rest.ol –c sys.lc –rs idata –o

• Combine object modules myprog.ol and rest.ol .

• Locate according to commands in sys.lc .

• No library index files are searched for unresolved externals.

• Generate the segment rompOutSeg for initialization of the

idata segment.

Write absolute linked module to myprog.ab .

After the description of the llink options, this chapter contains a

discussion of basic linking concepts, an overview of the compiler
run–time library , a description of the library search algorithm, and a

description of the available locator commands.

4.4 LINKING LOCATOR OPTIONS: DETAILED

DESCRIPTIONS

This section describes the linking locator options in greater detail and

includes examples of their use.

4.4.1 LINKER OPTIONS

–il ifn Read library index to be searched from file ifn. Index file ifn
lists all libraries that would be specified on the command line

if the –L option were used.

On the PC, if the library name is a simple file name and it is

not found in the current directory, llink will search the

directories specified in the environment variable ``LIB .'' The

format of the LIB environment string is the same as the

MS-DOS path variable. This variable may also be named

I2LIB to avoid conflicts with the other software.

Linking Locator 4–9

• • • • • • • •

–L lib [lib2...] Name library index files to be searched for unresolved

externals. If the index file indicates that a given external can

be resolved by reading a particular module, that module is

included in the link. The Librarian chapter explains how

library files are built and managed. If a module name in the

library index file is not a full pathname, llink searches for the

module in the directory containing the index file.

–opfile opts
This option causes the linker to read command line options

from file opts.

Compiled code must be linked with the run-time library supplied with the

product. See the Compiler Library Organization section for

information about the compiler run-time library.

The linker portion of the linking locator may not always search the

libraries in the order given. See the Library Searches subsection for more

details.

4.4.2 LOCATOR OPTIONS

Locate processing is done by default. If the –lo option is present, locate

processing is not performed.

–c cfn Read locator commands from file cfn. See the Command
Descriptions section in this chapter for more information

about locator commands.

–lo Suppress locate processing (link only).

–p n Pad the size of all segments by n bytes. This is equivalent to

the following locator command:

SEGSIZE (n) ;

–p n% Pad the size of all segments to n percent of their original size

(n must be > 100). This is equivalent to the following locator

command:

SEGSIZE (n %) ;

On the PC, if you use this in a .BAT file, remember that you must use two

% signs because of MS-DOS syntax rules.

Chapter 44–10
L

IN
K

IN
G

 L
O

C
A

T
O

R

Example

Link only:

llink myprog.ol test.ol nph.ol –lo –o

• Link object modules myprog.ol , test.ol , and nph.ol .

• Write linked module to myprog.ln .

• Write warnings for unresolved references.

• No library index files are searched for unresolved externals.

• No ROM processing is performed.

• No locate processing is performed.

Example

Locate only:

llink myprog.ln –c sys.lc –o

• Read object module myprog.ln .

• Read locator commands from sys.lc .

• Write absolute linked module to myprog.ab .

4.4.3 ROM PROCESSING OPTIONS

ROM processing is performed if and only if some ROM processing option

is present.

–b segname Specify the name of the segment to be created. The default

name is rompOutSeg .

–rc class1 [class2...]
Specifies that all segments of the named class(es) will be

processed.

–rs seg1 [seg2...]
Specifies that the named segment(s) will be processed.

Example

ROM processing only:

llink myprog.ln –rs idata –rc isep –lo –o

• Read object module myprog.ln

Linking Locator 4–11

• • • • • • • •

• Process the segment named idata and any segments of class isep .

• No locate processing is performed.

• Write modified object module to myprog.rmp .

Example

Assume we have performed (or plan to perform) ROM processing with the

–b option supplied with the segment name _my_rompseg . Here is a

sample C program that invokes rcopy :

#pragma separate my_rompseg
extern int my_rompseg;
#include <rcopy.h>
main ()
{

rcopy (&my_rompseg);
...
}

Coding the external variable declaration is a technique used to induce the

compiler to pass a pointer to the initialization segment to the rcopy
routine. There is no actual variable named my_rompseg .

This technique cannot be used without the –b option. The compiler

prepends an underscore to the C source name, my_rompseg , to form the

linker global symbol name, _my_rompseg , referenced at the call

statement. See the Linking C and Assembly application note and the

Compiler Naming Conventions appendix for more details.

The call to rcopy is the first thing executed by the user program.

Example

Assume that this application uses C++. We have performed ROM

processing with the –b option supplied with the segment name

_my_rompseg. In this case we want to invoke rcopy from our system

initialization file just prior to the jump to main. Here is a sample assembly

program that performs this:

Chapter 44–12
L

IN
K

IN
G

 L
O

C
A

T
O

R

eXREF _rcopy
.
.
.

PEA _my_rompseg; Push address of _my_rompseg
JSR _rcopy ; Call _rcopy
ADDQ #4, A7

.

.

.
BSR.L _main

4.4.4 SYMBOL OPTIONS

–G Suppress all global symbols in output file. This is equivalent

to –k ; it is only retained for backwards compatibility.

–k [sym sym2...]
Keep only the named global symbols in the output module;

suppress all others. If no symbols are named, suppress all

global symbols (this is equivalent to the –G option).

–s [sym sym2...]
Suppress the named global symbols in the output module;

keep all others.

–S Suppress all local symbols in output file. Debugging symbols

are generated by the compiler or assembler when –d is used.

These options control the retention of global and local symbols in the

output file. The default is to retain all symbol information.

The �local" information refers to that which is added by the –d compiler

and assembler options. These symbols play no part in the linking process;

they are only present for debugging purposes.

Global symbols are generated by the compiler and assembler for global

variables and procedures. The compiler's rules for forming global symbol

names are described in the Compiler Naming Conventions appendix. Note

that the names specified in –s and –k must be those formed via these

conventions.

Linking Locator 4–13

• • • • • • • •

Generally all global symbols must be retained in the output module to

permit any further references to be resolved during later links. Specific

global symbols may be suppressed to mask name conflicts. The options

which apply to global symbols are mutually exclusive.

If no debugging is intended and the link is complete, all symbols may be

stripped. Stripping symbols reduces the amount of disk space required to

hold the output module and speeds up the execution of llink and the

formatter. It does not affect the size of the user program or the download

hex file generated by the formatter.

Suppressing either global or local symbols will prevent the formatter from

creating symbolic records for CrossView Pro debugger symbol files.

Example

Suppress specified global symbol in output file:

llink compute.ol rah.ln –s _double –lo –o

• Link compute.ol and rah.ln .

• Suppress global symbol double in compute.ln .

• No locate processing is performed.

• Write linked module to compute.ln .

4.4.5 MISCELLANEOUS OPTIONS

–0 (Zero) Displays the version number of the executable (for

technical support purposes).

–err [file] PC only. Write error messages to file file. If file does not

exist, it will be created. If file does exist, it will be

overwritten. If file is omitted, error output will be redirected

to standard output.

–err+ [file] PC only. Just like –err , except output will be appended if

file exists.

Chapter 44–14
L

IN
K

IN
G

 L
O

C
A

T
O

R

–i [ifn] This option specifies that the names of input object modules

are to be taken from the file ifn. The input module names

should be listed in the file, one per line. Comments may be

placed in the file by starting a comment line with �––". The

name of the first module listed will be used as a default for

constructing the name of the linked output file. If ifn is

omitted, the names of the files are read from stdin.

–o [ofn] This option specifies the name of the output file. If ofn is

omitted, write to prog.ab if locate processing is performed, or

to prog.rmp , if ROM processing is performed, or to prog.ln .

If the option is omitted, write to standard output. Here the

prog base name comes from the first input object module,

whether named on the command line or in a file supplied via

–i .

–v Verbose mode. Reports the following linking actions as

performed:

- The names of the object modules being read.

- The names of the library index files being searched.

- The name of the output module.

–w This option inhibits warning messages. If llink is not

performing the locate function, the �unresolved externals"

warning is the only warning message that llink can emit.

This can safely be suppressed if unresolved external

references are expected. Other warning messages represent

error conditions and should not in general be ignored or

suppressed.

–x Forces the creation of external reference for the symbols

BREAKPT and __end__ . This causes the run-time library

defining this symbol to be brought into the link. This is

necessary when the program being linked will be run under

CrossView Pro. See the CrossView Pro Debugger User's
Manual for more information.

Linking Locator 4–15

• • • • • • • •

Do not use the llink –x option with ROM Monitor versions of CrossView

Pro. The –x option, which is used to build programs to be debugged with

emulator-based versions of the debugger, will link in the run-time library

object modules end.ln and breakpt.ln . Although end.ln should be

linked with the application, breakpt.ln will interfere with the way the

ROM Monitor handles code breakpoints. Instead, end.ln should be

linked in explicitly on the llink command line. (end.ln contains code

which allows you to take advantage of CrossView Pro's ability to evaluate

function calls on the debugger command line.)

Chapter 44–16
L

IN
K

IN
G

 L
O

C
A

T
O

R

4.5 LINKING CONCEPTS

The following section defines some technical terms which are used in the

descriptions of the linking locator functions and commands.

4.5.1 SEGMENTS

Target-memory in a linked relocatable module is represented as a set of

�segments." A segment is an indivisible unit representing a sequence of

contiguous target memory words which can be located at some absolute

target address. Segments are defined directly by the user in assembly

language or implicitly by the compiler when processing C programs. Each

segment has a number of attributes; most important are its name, its length

(in bytes of target memory) and its binary initial values. Other attributes

include its memory space, combinability, and class membership. These

are discussed below in greater detail.

The initial values of a segment consist of code (machine instructions) or

data. The initial values are not required to define all the bytes contained in

a segment. This is the case, for example, with uninitialized storage defined

in assembly language. When a segment is loaded into memory, any

uninitialized bytes retain whatever value they had before the program was

loaded.

Normally the linking locator combines individually declared data items

from different compilation units into common data segments. However,

the compiler supports an extension to the C language, the compiler

directive #pragma separate . This feature forces specified global data

items to be placed into specified segments. These segments can then be

assigned specific absolute target memory addresses by using the locate
command. The #pragma separate feature is described in the Pragma
Separate (Option Separate) application note.

For a full description of the segments created by the compiler, see the

Compiler Naming Conventions appendix.

Example

This example will show you how to locate a memory-mapped I/O

variable.

Linking Locator 4–17

• • • • • • • •

Suppose there is an 8-bit memory mapped I/O port at address 100

(decimal). In a C source program, define a character variable for the I/O

port as follows:

#pragma separate io_port
char io_port;

The compiler allocates the variable io_port in its own segment named

S_io_port The locator command to position S_io_port at address 100

is:

locate (S_io_port : 100);

MC68000 family processors access data items larger than a byte more

efficiently if they are located at an even address. The MC68000 cannot load

data items larger than a byte from odd addresses without causing an

addressing exception. Other processors can do so, but less efficiently. The

``alignment'' attribute of a segment passes this information from the

compiler or assembler to llink. For example, the compiler specifies word

alignment for segments containing word-type variables, and llink will

refuse to locate a segment of word alignment at an odd address.

Combinability

The �combinability" attribute of a segment is defined by the compiler, or

by the user in assembly language. Compiler-generated segments are

always �concat" segments. The assembler can also create �common"

segments. All absolute segments are uncombinable. If two object modules

define the same segment, then llink 's action depends upon the

combinability attribute of the segment. The possibilities are:

1. Concat Segment. The segments are concatenated so as to preserve

alignment, and the references are adjusted accordingly. The length of the

output segment is roughly the sum of the lengths of the input segments.

The alignment of the output segment is the maximum of the alignments of

the input segments.

2. Common Segment. The object modules are combined by overlay. The

length of the output segment is the length of the largest input segment.

3. Uncombinable Segment. The linking locator cannot combine pieces of

an uncombinable segment and therefore emits an error message.

The combinability attributes of segments are displayed by the global

symbol map utility.

Chapter 44–18
L

IN
K

IN
G

 L
O

C
A

T
O

R

The fact that absolute segments are uncombinable implies that located

object modules often cannot be used as input to subsequent links. This is

because most modules define a chunk of the idata or udata segments,

which become uncombinable after locating.

Here is a summary of the different segments in the development system:

Segment Use

S_fname Code segment for a module whose first function is the
function fname

S_vname data segment for separate variable vname

idata Initialized non–separate global data

udata Uninitialized non–separate global data

sdata String constants

cdata See const qualified variables (see –cs compiler
option)

libcode Assembly language library code

init Initialization library routine (__main)

init@0 Initial values of PC and SSP at address 0

Table 4-2: Segments

4.5.2 GROUPS

A group is a named collection of data segments ; llink must place the

segments of a group within a contiguous 64K range of target memory.

The compiler generates a group named data which consists of the

idata and udata segments. By default all global variables with explicit

initial values are allocated in idata ; those without explicit initial values

are allocated in udata .

The linking locator creates a global symbol named ldata , whose value is

the size of the data group (idata and udata segments). This may be useful

to programs which dynamically allocate their global data area. Note that

ldata is not a segment; it is a global symbol.

Linking Locator 4–19

• • • • • • • •

The �origin" of a group smaller than 32K is the smallest address in any

segment in that group. The origin of a group larger than 32K is 32K plus

the smallest address in any segment in that group. This allows a program

to take advantage of more efficient addressing modes by using positive

and negative 16�bit offsets to address groups larger than 32K.

The compiler does not use the group concept with code. Rather, the

compiler places all code resulting from a single compilation into one

segment. All subroutine calls are long, that is, 32-bit addressing, but loop

control is done with short branches. As a result, individual subroutines are

limited to 32K of generated code, while there is no limit on the total

amount of code from a series of compilations.

Example

Locate segments in a group.

Suppose you want to independently locate two segments which belong to

a group, say, seg1 and seg2 , both of which belong to group �group1” .

The following locator commands in a locator command file will not work:

locate (seg1 : #F0000);
locate (seg2 : #FFFF0);

The problem is that the first locator command causes llink to also locate

seg2, since it wants to ensure that both segments will fit into the same 64K

byte range. The following locator command will work.

locate (seg1 : #F0000 , seg2 : #FFFF0);

The difference is that llink only locates group1 after it has finished the

entire locate command.

4.5.3 CLASSES

A class is a named collection of segments that share a common logical

attribute, such as being executable code or data. We often use the

notational convention of bracketing a name in curly braces to indicate that

it is a class name. This convention is also accepted within the locator

command language.

Chapter 44–20
L

IN
K

IN
G

 L
O

C
A

T
O

R

Class names provide a convenient �handle" by which one can refer to a

long list of segments without naming each one individually. For example,

it is possible to use a single locate command to place all the segments of

a given class into a given range of target memory. Unlike groups, classes

impose no size limit.

People sometimes confuse classes with groups. Groups play an important

role in code generation. They influence the compiler's strategy for

addressing data. In contrast, classes play no role in code generation. The

class name of a segment is best thought of as an abstract attribute of that

segment; it is a descriptive comment describing the meaning or intended

usage of that segment. Users can make up their own class names and

assign them whatever significance they want.

Every segment belongs to some class, even if it is only the null class, �{}".

All assembly language code and data have the null class. The compiler

assigns class names by the following rules:

• All code segments have class {code }, unless otherwise specified via the

–cc compiler option.

• All segments containing non-separate data have class {data }.

• The separate data segments which are assigned class names by

directives like:

#pragma sep_on class defclass
#pragma sep_on class defclass defclass2
#pragma separate myvar class defclass

or by options like:

–sc defclass
–sc defclass defclass2

have class {defclass} if defclass2 is not specified. If defclass2 is specified,

then they have class {defclass} if initialized data and {defclass2} if

uninitialized data.

• Other local static separate data segments have class {stsep }.

• When defclass and/or defclass2 are not specified, global separate data

segments have class {isep } if they contain initialized data, and {usep } if

they contain uninitialized data.

• All segments containing string constants have class {constant }.

Linking Locator 4–21

• • • • • • • •

Here is a summary of the different class names in the development

system:

 Class Use

{code } Code

{data } Non–separate global data

{constant } String constants, also see const qualifier

{isep } Default initialized separate data class

{usep } Default uninitialized separate data class

{stsep } Default static separate data class

{separate } Class name for separate data when a user–specified
segment name is supplied without a user–specified class
name

{} Null class –– assembly language code and data

Table 4-3: Class names

4.5.4 RELOCATION

Most segments are relocatable prior to locating, that is, they can be

placed anywhere in target memory, independently of other segments.

Address references in relocatable segments are represented symbolically,

so they can be correctly replaced with an absolute address reference after

location is complete.

llink maintains an image of the target machine memory and allocates

space for the segments in the input module. This is an automatic process

which can be partially or completely controlled through locate and

reserve locator commands. After all user-provided locator commands

have been processed, the default placement algorithm allocates memory to

any remaining segments.

The assembler can define absolute segments that are assigned absolute

target memory addresses at assembly time. To avoid overlapping segments,

llink first locates each absolute segment at its indicated address.

Next, your locate commands are processed. Each named segment or

class of segments is allocated in the indicated address range. If any of

these segments belong to a group, then the other segments in that group

are also allocated at that time.

Chapter 44–22
L

IN
K

IN
G

 L
O

C
A

T
O

R

Any remaining segments are allocated according to the default placement

algorithm. The default allocation begins at location zero and traverses the

segments in an unspecified order. If a segment belongs to a group, llink
attempts to locate the whole group within a single 64K range. Segments

are allocated with no gaps between them, except where gaps are needed

to honor segment alignment.

Varying amounts of memory are present in target environments. The actual

amount depends upon the particular configuration of the target machine.

Use the memory locator command to define the actual memory

configuration.

4.6 COMPILER LIBRARY ORGANIZATION

There are several libraries included in the product. These libraries are

described in detail in the Run-Time Library chapter in the Reference
Manual.

The different libraries are intended for use in differing situations: generally

you will be able to link with the same library each time. The following

issues will determine your library choice:

• Hardware/Software Floating-Point

This choice only applies to the MC68020, MC68030, MC68EC020 and

MC68EC030. The –h option directs the compiler to use MC68881

floating-point instructions. By default the compiler uses emulation

routines in place of hardware floating-point instructions. The software

floating-point library contains these routines; the hardware

floating-point library doesn't. Furthermore, floating-point operations

performed within the software floating-point library itself use

emulation routines, while corresponding operations within the

hardware floating-point library use hardware floating-point

instructions.

Code compiled with –h must be linked with a hardware floating-point

library. Except for the MC68040 and MC68060, code compiled without –h
must be linked with a software floating-point library.

Linking Locator 4–23

• • • • • • • •

• Long/Normal Integers

The 68K compiler has an option, –L which directs the compiler to treat

the int or short data type as 4 or 2 bytes long, respectively. This

affects the library, because routines with int parameters expect 4 bytes

of data if called from C code compiled with –L but only 2 bytes of data

if called from C code compiled without –L .

Code compiled with –L must be linked with a long library. Code

compiled without –L must be linked with a normal library.

The C++ compiler and the ColdFire compiler use –L by default and

therefore require a long library.

• Floating-point/No Floating-point

The ``no-floats'' library has been stripped of all floating-point

emulation routines. If your program uses NO floating-point data, then

a considerable reduction in size can be achieved by using this library.

• C++ Support

If your application uses C++, an additional library must be linked in.

The C++ library index files can be found in the cpplib directory,

under rtlibs . The choice of index file depends on the target

processor.

Linking in a C++ library must always be done in addition to linking in a

standard library.

The following table summarizes the libraries included in the product.

 (The PC directories shown are the default directories used by the

installation program. These may have been changed by your system

administrator.)

Target
Processor

C Library
Directory

C Library C++ Library
(in cpplib)

MC68000 lib000\lib lib000 cpp000.lib

MC68HC000 lib000\lib lib000 cpp000.lib

MC68HC001 lib000\lib lib000 cpp000.lib

MC68EC000 lib000\lib lib000 cpp000.lib

MC68SEC000 lib000\lib lib000 cpp000.lib

Chapter 44–24
L

IN
K

IN
G

 L
O

C
A

T
O

R

C++ Library
(in cpplib)

C LibraryC Library
Directory

Target
Processor

MC68008 lib000\lib lib000 cpp000.lib

MC68010 lib010\lib lib010 cpp000.lib

MC68020 (sw fp) lib020s\lib lib020s cpp020.lib

MC68020 (hw fp) lib020h\lib lib020h cpp020.lib

MC68EC020 (sw fp) lib020s\lib lib020s cpp020.lib

MC68EC020 (hw fp) lib020h\lib lib020h cpp020.lib

MC68030 (sw fp) lib030s\lib lib030s cpp020.lib

MC68030 (hw fp) lib030h\lib lib030h cpp020.lib

MC68EC030 (sw fp) lib020s\lib libe30s cpp020.lib

MC68EC030 (hw fp) lib020h\lib libe30h cpp020.lib

MC68040 lib040h\lib lib040 cpp020.lib

MC68EC040 lib040s\lib libe40 cpp020.lib

MC68LC040 lib040s\lib libe40 cpp020.lib

MC68V040 lib040s\lib libe40 cpp020.lib

MC68060 lib060h\lib lib060 cpp020.lib

MC68EC060 lib060s\lib libe60 cpp020.lib

MC68LC060 lib060s\lib libe60 cpp020.lib

MC68302 lib000\lib lib302 cpp000.lib

MC68302
 (ADS parallel I/O)

lib000\lib lib302ap cpp000.lib

MC68302
 (ADS trap I/O)

lib000\lib lib302at cpp000.lib

MC68306 lib000\lib lib302 cpp000.lib

MC68328 lib000\lib lib000 cpp000.lib

MC68EZ328 lib000\lib lib000 cpp000.lib

MC68VZ328 lib000\lib lib000 cpp000.lib

MC68SZ328 lib000\lib lib000 cpp000.lib

MC68330 lib020s\lib lib332 cpp020.lib

MC68331 lib020s\lib lib332 cpp020.lib

MC68332 lib020s\lib lib332 cpp020.lib

Linking Locator 4–25

• • • • • • • •

C++ Library
(in cpplib)

C LibraryC Library
Directory

Target
Processor

MC68336 lib020s\lib lib332 cpp020.lib

MC68340 lib020s\lib lib340 cpp020.lib

MC68340 (BBC) lib020s\lib lib340b cpp020.lib

MC68360 lib020s\lib lib360 cpp020.lib

MC68360 (QUADS) lib020s\lib lib360b cpp020.lib

MC68F375 lib020s\lib lib332 cpp020.lib

MC68376 lib020s\lib lib332 cpp020.lib

MCF5204 lib5206\lib lib5206 cpp5206.lib

MCF5206 lib5206\lib lib5206 cpp5206.lib

MCF5206E lib5206e\lib lib5206e cpp5206e.lib

MCF5249 lib5206e\lib lib5206e cpp5206e.lib

MCF5249L lib5206e\lib lib5206e cpp5206e.lib

MCF5272 lib5206e\lib lib5206e cpp5206e.lib

MCF5280 lib5206e\lib lib5206e cpp5206e.lib

MCF5282 lib5206e\lib lib5206e cpp5206e.lib

MCF5307 lib5206e\lib lib5206e cpp5206e.lib

Table 4-4: C and C++ libraries

Chapter 44–26
L

IN
K

IN
G

 L
O

C
A

T
O

R

4.7 LIBRARY SEARCHES

llink does not begin searching for each external reference at the
beginning of the list of libraries. Rather, it starts at the first library and
continues searching until it cannot find the current external in the current
library. Once it finds an external in a secondary library, it continues to
search in that library until it cannot find an external there. It will
eventually return to the first library, but only after searching all subsequent
libraries.

This search pattern was designed to be efficient, but it has an important
side effect. If an external is defined in more than one module, then llink
might not choose the one in the library named first.

This presents no problems unless the same global is defined in more than
one library member. If the user has multiple libraries which define the
same global name, then there are two alternatives:

1. Delete members from the libraries (using the librarian) until they no longer

overlap.

2. Link the system in stages, naming the desired libraries one by one at each

step in the desired order.

Example

Search library files; write output on specified file.

Assume that c:\c68k\rtlibs is the name of the Windows directory
containing the compiler run-time libraries, or assume c68k\rtlibs for
UNIX. Substitute the correct installation directory if necessary.

For the PC:

llink sort.ol –lo –L c:\c68k\rtlibs\lib000\lib\lib000 –o end.ln

For Unix hosts:

llink sort.ol –lo –L c68k/rtlibs/lib000/lib/lib000 –o end.ln

• Read sort.ol .

• Include necessary modules from the run-time library.

• Do not perform locate processing.

• Write relocatable linked module to end.ln .

Linking Locator 4–27

• • • • • • • •

4.8 LOCATOR COMMANDS

llink accepts commands from a command file. Commands define the
layout of target memory and establish correspondence between external
symbols and absolute addresses. The –p command line option overrides
any conflicting SEGSIZE command in the command file. The following
table summarizes the available commands:

Command Function

DECLARE Define unresolved external symbol

LOCATE Specify segment placement

MEMORY Specify memory size

RESERVE Reserve memory space

SEGSIZE Pad segment sizes

START Specify starting address

Table 4-5: Commands

Example

Supply locator commands:

llink program.ln –c project.lc –o absolute.ab

• Read object module from file program.ln .

• Read locator commands from file project.lc .

• Write absolute module to file absolute.ab .

4.8.1 GENERAL COMMAND SYNTAX

All locator commands consist of a command keyword followed by a left
parenthesis “(” , a sequence of operands, a right parenthesis “)” , and a
semicolon “;”. For example:

LOCATE (init : #1000);

Insert blanks, tabs, or newlines freely to improve readability; they are only
significant as separators of items in a list. The kinds of operands and the
rules for forming them are discussed below.

Chapter 44–28
L

IN
K

IN
G

 L
O

C
A

T
O

R

4.8.2 COMMENTS

Comments may be entered anywhere in a command file by prefixing them
with two hyphens, ”––” . llink ignores all text between the dashes and
the next newline.

4.8.3 NUMBERS

Numbers are used as target-machine addresses or as pad values. Numbers
may be decimal or hexadecimal:

12345 is decimal

#A000 is hexadecimal

Hexadecimal numbers must be prefixed with the # character; the hex
digits A to F may be entered in upper or lower case.

4.8.4 KEYWORDS

Keywords may be entered in upper or lower case.

4.8.5 ADDRESS RANGES

An address range can be expressed in several forms:

low–address TO high–address
BEFORE address
AFTER address

The form BEFORE address is equivalent to 0 TO address; the form AFTER
address is equivalent to address TO end-of-memory.

The low address is considered to be included in the range, but the high
address is not considered to be included in the range. Thus the following
two ranges do not intersect:

1000 TO 2000
2000 TO 3000

Linking Locator 4–29

• • • • • • • •

4.8.6 NAMES

Depending upon the context, names may be segment, class or global
symbol names. Names are case-sensitive: xy is distinct from XY. Class
names may be enclosed in curly braces, e.g., {data} , or tagged with the
keyword CLASS, e.g., CLASS (data) , to distinguish them from conflicting
segment or group names. An empty pair of curly braces, i.e., {} , indicates
the null class.

4.8.7 NAME LIST

A name list is a sequence of names separated by blanks.

4.9 COMMAND DESCRIPTIONS

The following pages describe the syntax of the individual locator
commands. In cases where an optional repetition is allowed, a pair of
square-brackets, [and] , enclose the repeatable pattern. Ellipses, “...” ,
in this context refer to all of the previously specified operands.

Chapter 44–30
L

IN
K

IN
G

 L
O

C
A

T
O

R

Declare

Syntax:

DECLARE (name : address [,...]);

name is the name of an unresolved external symbol.

address is a 24-bit address for the external symbol.

Description

The DECLARE command:

• Supplies an address for an unresolved external symbol.

• Resolves address references to the unresolved external symbol as if the

external were located at the indicated address.

• Does not check to see if the address falls within any defined segment

or even within the legal address range of the target machine.

External names from C programs must be those chosen via the compiler's

naming conventions.

The DECLARE command can be used to repair references to external code

routines, e.g., monitor routines in ROM.

The DECLARE command cannot always correctly resolve references to

missing data items, because compiled code contains assumptions about

how the missing variable will be addressed. In particular, the compiled

code assumes that non-separate global data lie in group ``data.''

References to missing separate data items CAN be repaired.

DECLARE (_floppy_in : #FFE0,
 _floppy_out : #FFF0);

In this example, floppy_in() and floppy_out() are external routines.

The names floppy_in and floppy_out are global symbol names, not

segment names. The compiler prepends an underscore to the source name

of a function when forming the global symbol name.

Catch calls to missing routines

Let gone be a procedure which has not yet been coded. Suppose that calls

to gone appear in code to be tested before gone is ready. If a call to

gone is actually executed during testing, then the program will branch to

location zero, with the usual undesired results.

Linking Locator 4–31

• • • • • • • •

Let hero be a procedure written to handle wild calls. hero may, for

example, print a message and then return or cause a trap. The following

locator command file specifies all calls to gone are to be re-directed to

hero :

LOCATE (hero : #1000);
DECLARE (gone : #1000);

Chapter 44–32
L

IN
K

IN
G

 L
O

C
A

T
O

R

Locate

Syntax:

LOCATE (name-list : address-range [, ...]);

In the previous syntax statement, name-list is a list of segment, group or

class names. address-range defines the placement of named items.

Description

The LOCATE command:

• Directs llink to locate a segment or a collection of segments in a

specific region of target memory.

• After locating all the segments named in the name-lists, their groups (if

any) are also located.

The list of names may be any combination of segments, groups and

classes. Mention of a class is taken to mean the segments in that class

which have not already been located.

Using the ``address'' form of address-range is equivalent to using the

AFTER address form when more than a single segment-name is supplied

in the name-list.

Global symbol names may not be used in the name-list; use the

corresponding segment name instead.

Example

LOCATE (S_separate_var : #3E00);

LOCATE ({code} {} {data} : AFTER #200);

LOCATE (CLASS (code) : #200 TO #1400,
 {} : #1400 TO #3000,
 idata : #3000,
 udata : #3800,
 CLASS (data) : #3000 TO #C000);

Linking Locator 4–33

• • • • • • • •

Memory

Syntax:

MEMORY (address);

In the previous syntax statement, address is the maximum target memory

address.

Description

The MEMORY command:

• Specifies the total amount of virtual memory that llink may allocate.

The address given must be less than or equal to #FFFFFF.

• Allows specification of addresses larger or smaller than normally

available for the target machine.

• Can be used when the processor allows bank memories.

The default maximum address depends upon the target processor.

The actual address specified is considered not to be available for any

segment.

If llink attempts to locate something outside the MEMORY limitation,

llink will tell you that you shouldn't locate something outside the

addressing limitations of the processor. The MEMORY directive declares this

limit.

MEMORY (#FFFFFFFF);

This command means that you can allocate memory from 0 to n-1 where

n = FFFFFFFF. n is the maximum amount of memory used in the

environment.

Multiple address spaces

There are several hardware ``memory management'' devices which allow a

processor to access multiple address spaces, depending upon its state. For

example, it is possible to access different physical memory, depending

upon whether the memory access is a code or data fetch. This example is

not intended to show how to interface with any particular device, but

rather to offer some ideas which can be used to devise your own interface.

Chapter 44–34
L

IN
K

IN
G

 L
O

C
A

T
O

R

In an example for the MC68000, we form an absolute module in which

two 24-bit virtual address spaces (one for code, the other for data) are

mapped into a single 25-bit physical address space. Addresses 0 to

#FFFFFF contain data; addresses #1000000 to #1FFFFFF contain code. The

following locator commands expand memory and force all the code and

data into the proper address ranges:

MEMORY (#2000000);
LOCATE ({data} {isep} {usep} {stsep}

{constant} : BEFORE #1000000);
LOCATE ({code} {} : AFTER #1000000)

The located entities represented here are:

Class Contents

{data} C global data

{constant} C string constants

{isep} Initialized C global separate data

{usep} Uninitialized C global separate data

{stsep} C static separate data

{code} Code from C

{ } Code from assembler routines in run–time
library

Table 4-6: Entities

This scheme works because the MC68000 processor only uses the low

order 24 bits when it processes an address. Thus, a branch instruction

whose target is address #1000234 will transfer control to #234 (in the code

address space).

The following formatter options can be used to extract the code and data

images separately. See the Formatter chapter for more details.

–a 1000000 –w 1000000 Extracts code only
–w 1000000 Extracts data only

Linking Locator 4–35

• • • • • • • •

Reserve

Syntax:

RESERVE (address-range [, ...]);

In the above syntax statement, address-range represents the region of

target memory to be avoided during locate.

Description

The RESERVE command:

• Specifies areas of memory not to be allocated by llink .

• Can be used to avoid a region that contains a ROM monitor, or

memory dedicated to mapped I/O.

• Can be used to designate �holes" in the range of memory addresses

that may exist in a particular target system.

• May not designate a range of memory addresses containing segments.

• Should precede any LOCATE commands in the command file.

The lower bound of address-range is included in the reserved space; the

upper bound is not.

Allocation begins at #0800:

RESERVE (#0000 TO #0800);

Allocation is made from #1F00 through #2FFF and from #4000 through

#6FFF:

RESERVE (#0000 TO #1F00,
 #3000 TO #4000,
 AFTER #7000);

Allocation is allowed from #1F00 to #3000 , and from #4000 to #7000

Chapter 44–36
L

IN
K

IN
G

 L
O

C
A

T
O

R

Segsize

Syntax:

SEGSIZE ([name:] number [%] [, ...]);

In the above syntax statement, name is the name of the segment to be

padded (optional); If name is omitted, the pad is applied to all segments.

number [%] is the amount of padding.

Description

The SEGSIZE command:

• Directs llink to reserve a specified amount of ``growth room'' at the

end of a specified segment or all segments.

• Is more specific than the command line option because the user can

supply segment names.

If the percent sign is absent, number represents a pad size in words. Each

segment's length will be increased by number words regardless of its

original length.

If the percent sign is present, number (number > 100) represents a

percentage pad. Each segment's length will be increased to number/100

times its original size.

Example

SEGSIZE (counter : 300, control_blks : 150%);

SEGSIZE (120%);

Linking Locator 4–37

• • • • • • • •

Start

Syntax:

START (location-option);

In the above syntax statement, location-option represents the address of

segment name.

Description

The START command:

• Specifies the address in the absolute output module where execution is

to begin.

• May use a segment name, but not a global symbol name, to define the

start address.

The assembler has an option to define the ``start address''. If this option is

invoked, the assembler places the definition into a special ``.start'' record in

the object module. A compiled program typically picks up its start address

from the run-time library, which defines a starting point at the symbol

__main. An assembler main routine can define its own starting point.

The effect of the START command is to set the value in the .start record

in the absolute module. It can be used to override the start address

supplied in the input module(s), or to specify a start address where none

is supplied in the input module(s). If an absolute address is specified in

the START command, the user must take care to ensure that whatever

routine he intends to have control at system startup is actually located at

the indicated address.

The starting address is copied into the download file by the formatter. Any

effect this may have is determined by the target loader program. On some

systems, downloading a file with a defined start address causes the

program counter register to be set to that value. Systems which intend to

begin execution after a cold start generally do not need to define a start

address.

Start execution at origin of segment S_my_main :

START (S_my_main);

Chapter 44–38
L

IN
K

IN
G

 L
O

C
A

T
O

R

5

FORMATTER
C

H
A

P
T

E
R

Chapter 55–2
F
O
R
M
A
T
T
E
R

5

C
H

A
P

T
E

R

Formatter 5–3

• • • • • • • •

This chapter describes the operation and use of the two formatter utilities,

form and form695 . The chapter begins with a summary listing of the

available options and continues with more detailed explanations of their

usage and a list of error messages.

5.1 INTRODUCTION

Format load modules for target system.

form [prog.ab] [options]

Input

Standard input or prog.ab

Output

prog.hex [prog.asc] or

prog.X [prog.L] [prog.A]

Format load modules for IEEE-695 target system.

form95 [prog.ab] [options]

Input

Standard input or prog.ab

Output

prog.x

5.2 FORMATTER OPTIONS: SUMMARY

The formatter recognizes the following options:

Option Function See
Page:

–a bias form only . Specify address of window to be
formatted.

5–11

–b x y form only . Control PROM byte slicing. 5–12

Chapter 55–4
F
O
R
M
A
T
T
E
R

See
Page:

FunctionOption

–br form only .

With –f c :
 Reverse byte ordering within
 the COFF file.

5–13

–c form only. Suppress the prepending of an
extra ‘_’ (underscore) character to external
symbol names.

5–13

–d [only] [anycase]
[sfmt]

form only. Include symbolic records in
formatted output. If only is specified, include
only symbolic records. If anycase is
specified, then lower case letters are
preserved in Intel binary (omf86) format
output. If present, sfmt identifies the symbolic
record format.

5–7

–d [abs] [absf] form695 only . Include symbolic records in
formatted output. If this option is used, the
debug part of the IEEE–695 output file will be
present.

5–9

–e [seg1...] Exclude named segments from output. If no
segments are named, exclude “udata.”

5–13

–ec [class1...] Exclude named classes of segments from
output. If no classes are named, the option is
ignored.

5–14

–err [file] PC only . Write error messages to file. 5–14

–err+ [file] PC only . Append error messages to file. 5–14

–f format form only . Specify the ASCII hex or binary
output format.

5–9

–i [seg1...] Include only named segments in output. If no
segments are named, include no segments.

5–14

–ic [class1...] Include only named classes of segments in
output. If no classes are named, include no
classes.

5–14

–m [reclen] form only . Specify the maximum length
record to be output by the formatter. If reclen
is omitted, use largest possible record length.

5–14

–n Allow an unlimited number of errors without
aborting. By default the formatter aborts after
150 errors.

5–15

Formatter 5–5

• • • • • • • •

See
Page:

FunctionOption

–o [ofn] Write output to file ofn. If ofn is omitted, write
to prog.hex (form) or prog.x (form695).

5–15

–st target form695 only. Use target in the module
begin (MB) Id1 field instead of the target
string found in the input file.

5–11

–V Display the version number of executable. 5–16

–w size form only . Specify size of window to be
formatted.

5–12

Table 5-1: Options

5.3 USAGE

5.3.1 FORM

The formatter reads an absolute object module produced by the linking

locator and converts all or part of it into one of the industry standard

formats, usually an ASCII hex format. These formats provide for loading of

object text, i.e., code and data, into the memory of the target processor via

a simple loader program. The formats may also be input to PROM burners,

hardware devices which can program read-only memories. Many formats

are supported; see the Format Options section below for a detailed listing.

When the formatted output is intended to be used as input to a PROM

burner, you may want to produce several formatted files froma single

input file, one for each PROM. It is possible to extract a range of target

addresses, and/or select slices of memory, for example, every other byte.

See the PROM Options section below for more details.

The formatter also produces many different symbol formats. There are two

symbol generation options available. The –d option creates symbol

records that may be used by a variety of emulators or downloading

programs.

For the formatter to be able to include line number symbols, local static

symbols, or type information in the symbolic records (when supported by

the specific format), compilations or assemblies must be done using the –d
 option.

Chapter 55–6
F
O
R
M
A
T
T
E
R

5.3.2 FORM695

The formatter reads an absolute object module produced by the linking

locator and converts all or part of it into IEEE-695 object module format.

The format provides for loading of object text, i.e., code and data, into the

memory of the target processor via an IEEE-695 loader program.

The formatter also produces symbol information (IEEE-695 debug

information part). The –d option creates symbol records that may be used

by an emulator or other hardware and software that accepts IEEE-695

input. For the formatter to be able to include line number symbols, local

static symbols, or type information in the IEEE-695 output file the –d
option must also be used when compiling source files.

The CrossView Pro debugger uses an IEEE-695 file as input.

Formatter 5–7

• • • • • • • •

5.4 FORMATTER OPTIONS: DETAILED DESCRIPTIONS

This section describes the formatter options in greater detail and includes

examples of their use.

5.4.1 FORMAT OPTIONS

–d [only] [anycase] [sfmt]

form only. The –d option controls the generation of

symbolic records. Symbolic records, if generated, are placed

into the formatted output file or into a separate file. If only is

specified, ordinary target memory loading records are not

emitted.

If anycase is specified, then lower case letters are preserved

in Intel binary (omf86) format output.

The effect of the –d option is dependent on the file format

that has been selected with the –f option. Some formats;

Extended Tekhex, Binary Tekhex, COFF, and HP64000 for

Unix hosts; Binary Tekhex, and COFF for the PC; have their

own standard form for symbolic information. In these cases,

sfmt and only must not be specified. Here is a brief

summary of the symbolic information each format produces.

For more detailed information on the formats in general,

please refer to the Object Module Formats appendix.

Industry Standard Symbol Formats:

• Extended Tekhex

With the Extended Tekhex format, symbolic information is

produced for global symbols only.

• Binary Tekhex

With the Binary Tekhex format, symbolic information is

produced for global symbols only. Symbol names longer

than 16 characters are truncated.

• COFF

With the COFF format, symbolic information is produced

for global and local symbols, line number symbols and

type definitions.

Chapter 55–8
F
O
R
M
A
T
T
E
R

• HP64000 (Unix only)

With the HP64000 format, symbolic information is

produced for global symbols, local static symbols, and

line number symbols.

Non-Industry Standard Symbol Formats:

Other download formats have no industry standard format

for symbolic information. For these formats, use the sfmt to
select one of the �almost standard" symbol formats:

sfmt Value Formats Meaning

nwis i, m, xm,
pm, z, t, et

MicroCASE (Northwest Instruments
Systems) ASCII Format

pe map P+E Microcomputer Systems

zax i, m, xm,
pm, z

ZAX Corporation ZICE–compatible
symbols

Table 5-2: Symbol formats

• nwis

With the nwis symbol format, symbolic information is

provided for global symbols, local static symbols, and line

number symbols. Additionally, all of the type information

useful to the MicroCASE SoftAnalyst is provided. If

MicroCASE ASCII (NWIS ASCII) format is selected, symbol

information will be put into a separate file that is suitable

for use with the MicroCASE SoftAnalyst. This file is named

prog.asc . If only is specified for NWIS format, then only

the file prog.asc is produced.

• pe

With the pe symbol format, a generated map file can be

used with the P+E low�level debugger and toolset

normally used on CPU 32 targets.

• zax

With the zax symbol format, symbolic information is

provided for global symbols, local static symbols, and line

number symbols.

Formatter 5–9

• • • • • • • •

–d [abs] [absf]

form695 only. The –d option controls the generation of

symbolic records. Symbolic records, if generated, are placed

into the formatted output file. The debug part of the

IEEE-695 output file will be omitted unless this option is

present. The following flags are available:

abs All global variables that are group data relative (not

separate data) are given absolute addresses in the

debug information part of the output file. This may be

used to examine global variables even when the static

base register has not been initialized.

absf
This option creates dummy functions for assembly

programs. The dummy functions are necessary for

assembly level debugging with CrossView Pro,

because CrossView Pro can only deal with

function-relative addresses.

Example

To generate an IEEE-695 file and include symbolic records, type:

form695 test.ab –d

• Read input from file test.ab .

• Write output which includes the debug part to the file test.x .

To generate an IEEE-695 file for use with CrossView Pro, type:

form695 test.ab –d abs –o test.abs

• Read input from file test.ab .

• Write output which includes the debug part to the file test.abs

• Give all global variables absolute addresses in the debug part.

–f format form only.

Select the output format; the default format is Packed

Motorola (pm). For information on the formats, see the Object
Module Formats appendix. The available format options are:

bt Binary Tekhex.

c COFF (Common Object File Format).

Chapter 55–10
F
O
R
M
A
T
T
E
R

c1 COFF1 format. Identical to COFF, except that line

numbers start at 1, and thus directly correspond to the

program's line numbers. See the Object Module
Formats appendix.

et Extended Tekhex.

hp Unix only. Hewlett Packard HP64000 (absolute, linker

symbol, and assembler symbol files).

i Intel ASCII hex.

m Motorola (S records). Data in S1 records.

pm Packed Motorola (S records). Data in S1, S2, or S3

records, where the record type is chosen by the

number of address bytes.

s37 S37 Motorola (S records). Data is in S3 records.

This format does notprovide an S0 header record.

t Tektronix ASCII hex (Tekhex).

xm Extended Motorola (S records). Data in S2 records.

z Z80SBC format. This is identical to Intel ASCII format,

except the start address appears in the end record

instead of in a special record.

Example

To use Extended Tekhex format and generate a debugger symbol file,

type:

form test.ab –f et

• Read input from file test.ab .

• Output is in Extended Tektronix hex format.

• Write output to file test.hex .

Example

To include symbolic hex records in output, type:

form myprog.ab –f et –d –o out.hex

• Read input from file myprog.ab .

Formatter 5–11

• • • • • • • •

• Output is in Extended Tektronix hex format.

• Include load module and symbolic debugging information in

out.hex .

• Write output to file out.hex .

Example

To produce NWIS ASCII symbol information, type:

form myprog.ab –f pm –d nwis –o out.hex

• Read input from file myprog.ab .

• Output is in Packed Motorola S-record format.

• Put NWIS ASCII symbol information in myprog.asc .

• Write output to file out.hex .

Example

To produce only ZAX ZICE symbolic information in output, type:

form myprog.ab –f i –d only zax –o myprog.zax

• Read input from file myprog.ab .

• Put only symbolic debugging information in myprog.zax

• No target-loading hex bytes are in output file.

• Write output to file myprog.zax .

–st target form695 only. Use target in the module begin (MB) Id1

field instead of the target string found in the input file. Some

emulators need the exact processor type instead of the more

general name. For example, –st 68302 would cause the

default 68000 target type to be replaced with 68302.

5.4.2 PROM OPTIONS

–a bias form only. The bias is a value to be subtracted from each

target load address of the output hex file. The bias is an

unsigned hex value, with up to 8 hex digits. This feature may

be used, for example, to let a PROM programmer load a hex

module into its location 0, which is actually located at the

target address bias. Object text whose address is less than

bias will not be emitted.

Chapter 55–12
F
O
R
M
A
T
T
E
R

–b x y form only. This option supports byte slicing, which is useful

when burning interleaved PROMs. Interleaved PROMs are

used in hardware designs where the low order address bit(s)

select different PROM chips.

Two decimal numbers are required, x and y, the second of

which, y, must be a power of 2 (y is 2**n). The option causes

the output to contain only every yth byte, with address bits

shifted right by n bits, i.e., the output address is the input

address (minus the bias, if any) divided by y. The input

addresses chosen for output are those congruent to y mod x.

See the table below for some examples:

 Switch Meaning

–b 0 2 Output every second byte,
even addresses.

–b 1 2 Output every second byte,
odd addresses.

–b 3 4 Output every fourth byte,
address congruent to 3 mod 4.

Table 5-3: Meanings

ct–w size form only. Defines the size of a window of object text from

the input object file to be emitted to the output hex file. This

option is usually used in conjunction with the –a option.

size is an unsigned hex value, with up to 8 digits. The

addresses emitted into the output file range from 0 (after any

biasing) to size minus 1. If byte slicing is not done, this is the

maximum size in bytes of the object text in the output hex

file. If byte-slicing is done, the number of bytes of object text

in the output hex file will be divided by the number of slices.

Example

To format a range of addresses, type:

form prog.ab –w 8000 –a 38000

• Output addresses range from 0 to 7FFF.

• The output hex file can contain up to 8000 hex bytes.

• Ignore input text outside addresses 38000 to 3FFFF.

Formatter 5–13

• • • • • • • •

Example

To use PROM byte slicing with a range of addresses, type:

form prog.ab –w 8000 –a 38000 –b 0 2

• Output addresses range from 0 to 3FFF.

• The output hex file can contain up to 4000 hex bytes.

• Ignore input text outside addresses 38000 to 3FFFF.

• Ignore input text at odd addresses.

See the Downloading application note for further information about the

PROM options.

5.4.3 COFF FORMAT OPTIONS

–br form only. When used in conjunction with the –f c option,

this option will reverse the byte ordering within the COFF

file. By default, the byte ordering is chosen with respect to

the target processor. The section data is not modified.

–c form only. By default, form prepends an extra underscore

to all external names entered into the COFF symbol file. Use

of this option will cause names to be entered without

alteration. This option is useful for COFF implementations

that do not expect external names to have double

underscores.

5.4.4 MISCELLANEOUS OPTIONS

–e [seg1...] The –e option excludes named segments from the hex or

IEEE-695 output. This option may be used, for example, to

download only changed segments or to create a hex file of

only ROM segments for a PROM-burning procedure.

When no segments are named, the formatter excludes the

�udata" segment. This is appropriate if the user is sure the

compiler's convention of default initialization to zero is either

not needed or already ensured by some other means. For

example, if the hex or IEEE-695 file is to be loaded to

pre-zeroed memory, there is no need to format a segment

containing only zeros. The default is to include all segments.

Chapter 55–14
F
O
R
M
A
T
T
E
R

–ec [class1...]
The –ec option excludes named classes of segments from

the hex or IEEE-695 output. This option may be used, for

example, to exclude #pragma separate items. When no

classes are named, the formatter ignores the option.

–err [file] PC only. Write error messages to file file. If file does not

exist, it will be created. If file does exist, it will be

overwritten. If file is omitted, then error output will be

redirected to standard output.

–err+ [file] PC only. Just like –err, except output will be appended if

file exists.

–i [seg1...] The –i option includes only named segments in the hex or

IEEE-695 output. This option may be used, for example, to

separate compilations (or segments) that are patches to

previous downloads.

When the –i switch is specified, but no segments are

named, the formatter includes no segments.

–ic [class1...]
The –ic option includes only named classes of segments in

the hex or IEEE-695 output. This option may be used, for

example, to include only #pragma separate items. When

the –ic option is specified, but no classes are named, the

formatter includes no classes of segments.

–m [reclen] form only. This option specifies the maximum length record

to be output by the formatter. If reclen is supplied, it must

not be less than 35 nor greater than 255. If reclen is not

specified, the largest upper limit (255) is used. If this option

is not specified, a default is chosen depending upon the hex

format.

Formatter 5–15

• • • • • • • •

The following table lists the defaults for the PC:

Length Format

42 m and xm

80 pm

72 t

255 bt

46 et

80 i and z

255 omf86 and bi

Table 5-4: Defaults for PC

The following table lists the defaults for Unix hosts:

Length Format

42 m and xm

80 pm

72 t

255 bt

80 i and z

255 hp

255 omf86 and bi

Table 5-5: Defaults for UNIX

–n Allow an unlimited number of errors without aborting. By

default the formatter aborts after 150 errors.

–o [ofn] Write output to file ofn. If ofn is omitted, write output to

prog.hex (form) or prog.x (form695). If –o is omitted, write

output to prog.hex (form) or prog.x (form695).

Example

To exclude uninitialized pragma (option) separate items, type:

form prog.ab –f i –ec usep –o no_usep.hex

Chapter 55–16
F
O
R
M
A
T
T
E
R

• Read input from file prog.ab .

• Output is in Intel ASCII hex format.

• Exclude all uninitialized #pragma separate segments (located in

class usep) from output.

• Write output to file no_usep.hex .

–V Display the version number of executable (for technical

support use).

5.5 IEEE-695 FORMATTER LIMITATIONS

The IEEE-695 formatter (form695) expects the input file to be an absolute

located file generated by the llink linker/locator. Relocatable and

unresolved symbols are not supported. The known limitations, restrictions,

and problems are described below.

Register mask information is not generated for procedures. This means that

variables packed to registers by the optimizer will not have the correct

displayed value in a debugger if the scope is not the current procedure. A

workaround is to use the –no and –nl compiler options instead of –do
when compiling source code (in this case the optimizer will not be run at

all and no user variables will be packed to registers).

6

OTHER UTILITIES
C
H
A
P
T
E
R

Chapter 66–2
U
T
IL
IT
IE
S

6

C
H
A
P
T
E
R

Other Utilities 6–3

• • • • • • • •

This chapter describes the following additional utilities:

• Librarian

• Global Symbol Mapper

• Symbol List Utility

• Object Size List Utility

Chapter 66–4
U
T
IL
IT
IE
S

6.1 LIBRARIAN

Manage object module library.

Invocation

libr [obj1...] -L prog.lib [options]

Input

Object module library index file and object modules:

prog.lib [prog.obj1...]

Output

New or updated prog.lib [prog.lis]

6.1.1 LIBRARIAN OPTIONS: SUMMARY

The librarian recognizes the following options:

Option Function See
Page:

–a obj1 [obj2...] Add named object module(s) to library. 6–7

–af afn Add object modules in file afn to library. 6–7

–b [sym1...] List object files that define the named
symbols.

6–9

–c Check and report on header/index
consistency.

6–9

–d obj [obj2...] Delete named object module(s) from library. 6–7

–df dfn Delete object modules in file dfn from library. 6–7

–e Suppress updating of library index file if any
warning messages occur.

6–7

–err [file] PC only . Write error messages to file. 6–10

–err+ [file] PC only . Append error messages to file. 6–10

–i [obj1...] List index header of named object modules. 6–9

–i –b List the entire library. 6–9

–i obj1 [obj2...] –b List symbols of named object modules. 6–9

–i obj1 [obj2...]
–b sym1 [sym2...]

List specified symbols in named object
modules.

6–9

Other Utilities 6–5

• • • • • • • •

See
Page:

 FunctionOption

–l [lfn] Write listing to lfn. If lfn is omitted, write to
prog.lis .

6–9

–L lib Specify the name of the library to be created,
modified or listed.

6–7

–n Suppress segment and group names in
index.

6–7

–rf rfn Replace object modules in file rfn in library. 6–7

–u Update all object modules in library. 6–8

–V Display the version number of the
executable.

6–10

–v Report librarian actions as performed. 6–10

Table 6-1: Librarian options

6.1.2 USAGE

The librarian creates, maintains, and selectively lists library index files.

A library index file is a text file defining an indexing structure describing a

collection of object modules. It consists of a series of index entries, one for

each object module.

The library does not contain the object modules themselves, only their

filenames and information extracted from them. Each index contains the

following data:

1. A header containing:

• A full or relative pathname.

• A date/time stamp.

2. A list of global symbols defined in the object module.

This information is extracted from an object module and formatted as a

library index when a module is ``added'' to the library, or when its index is

``updated.''

Librarian input is taken from a library and/or object modules named on

the command line or in options. The object modules named on the

command line or in a file are added to the library.

Chapter 66–6
U
T
IL
IT
IE
S

If you specify object modules on the command line but do not specify an

add or delete option, the librarian will either replace or add the object

modules to the named library, depending on whether the object modules

are already in the named library.

If the library already contains an index for a module, the index is updated

only if the module is newer than the date stamped in the index.

The file containing names of the object modules to add, delete, or replace

must be in a specific format of one object module name per line.

When an object module has been created, deleted or modified, each

library containing that module must be updated. Otherwise, the library

indexes may contain incorrect information about the global symbol names

needed during the linking process.

The linking locator can search one or more libraries for modules that

resolve references to external symbols. If the file name in the library is not

a full pathname, the linking locator searches for the module in the

directory containing the index file. This allows you to construct portable

libraries. If the library index file and the object modules reside in a

common directory, you may move or rename the directory without

disturbing the functioning of the library. See the Linking Locator chapter

for a more detailed explanation of the use of library index files.

Example

Catalog an object module with all defaults:

libr prog.ol –L project.lib

• Add prog.ol to library project.lib .

• If a newer version of prog.ol is already in project.lib , a

warning is issued and project.lib is unchanged.

• If an older version of prog.ol is already in the library, its index is

replaced.

• No listing is generated.

Other Utilities 6–7

• • • • • • • •

6.1.3 LIBRARIAN OPTIONS: DETAILED DESCRIPTION

This section describes the librarian options in more detail and provides

examples of their use.

Library Option

–L lib Specify the library to be created, modified or listed. If the

library does not exist it will be created. This option is

required.

Command Options

–a obj1 [obj2...]
Add new indexes for the named object modules to prog.lib.

–af afn Add object modules in file afn to prog.lib.

Object module names are either taken from the command

line or from the named file, but not both. At least one object

module name is required if this option is used. If an object

module is already catalogued, its index is not replaced and a

warning is issued.

–d obj1 [obj2...]
Delete the indexes for the named object modules from

prog.lib.

-df dfn Delete object modules in file dfn from prog.lib.

Object module names are either taken from the command

line or from the named file, but not both. At least one object

module name is required.

–e Suppress updating of the library if any warning messages

occur.

–n Suppress segment and group names in the index. This makes

a smaller library index, thus speeding up the library search. It

is appropriate for compiler-generated object modules and the

run-time library. This is safe because the compiler never

generates external references to segment or group names. It

is not appropriate for those user assembler modules whose

segment names are used as external names in other modules.

–rf rfn Object module names are taken from file rfn. Replace the

indexes for the named object modules in prog.lib.

Chapter 66–8
U
T
IL
IT
IE
S

–u Update all indexes. This option is a global consistency check

and replace operation. It is performed on the entire library.

The consistency check compares all date/time stamps in the

respective files. If any pair of date stamps does not match,

the library index is updated. The librarian issues a warning if

no file is found for a library index.

 Example

Add new index for object module:

libr –n –L project2.lib –a myprog.ol

• Add index for myprog.ol to library project2.lib .

• The –n option tells the librarian to strip off segment and group

names. This makes for a more compact library, but is only

appropriate for compiler generated object modules.

• If myprog.ol is already in the library, a warning is issued and the

library is unchanged.

• No listing is generated.

Example

Create library from list of names in a file:

libr –L project6.lib –af addmods

• The file addmods contains:

hello.ol
sieve.ol

• Add hello.ol and sieve.ol to library project6.lib .

Example

Delete object modules from library:

libr –L project3.lib –d gjh.ol nph.ol

• Modify library index file project3.lib .

• Delete indexes for gjh.ol and nph.ol .

• The object modules themselves are not deleted.

Example

Update library:

libr –L project5.lib –u

Other Utilities 6–9

• • • • • • • •

• Access library index file project5.lib .

• Update all indexes to most recent versions.

Listing Options

–b [sym1...] List named global symbols. If no symbols are specified, list all

symbol entries.

–c Check and report on the consistency of all entries in the

library.

No changes are made to the library. Error messages are

issued when:

1. An index in the library has no corresponding object

module.

2. The date/time stamp in the library index does not agree

with the date/time stamp in the object module, i.e., the

library index does not correspond to the current object

module.

–i [obj1...] List the index headers of the specified object modules. If no

object modules are specified, list all index headers.

–l [lfn] Write listing output to file lfn. If lfn is omitted, write to file

prog.lis . The default is to write the listing to standard

output.

Combined Listing Options

–i –b List the entire library.

–i obj1 [obj2...] –b
List all global symbols in the named object modules.

–i obj1 [obj2...] –b sym1 [sym2...]
List the specified symbols in the named object modules.

Example

List library:

libr –L project4.lib –a hello.ol sieve.ol –i –b –l

• Add hello.ol and sieve.ol to library project4.lib .

• List all symbols in project4.lib .

Chapter 66–10
U
T
IL
IT
IE
S

• Write output to project4.lis .

Listing of project4.lis :

hello.ol ”Dec 31 1998 11:53:38”
data
idata
udata
sdata
_i
S_main
_main

sieve.ol ”Jan 18 1999 11:33:25”
data
idata
udata
sdata
_flags
_main
S_main

Miscellaneous Options

–err [file] PC only. Write error messages to file.

–err+ [file] PC only. Append error messages to file.

–V Display the version number of executable (for technical

support use).

–v Report librarian actions as performed.

Other Utilities 6–11

• • • • • • • •

6.2 GLOBAL SYMBOL MAPPER

List global symbols and segments.

Invocation

gsmap [obj1...] [options]

Input

Standard input or [obj1...]

Output

Standard output or obj1.map

6.2.1 GLOBAL SYMBOL MAPPER OPTIONS: SUMMARY

The global symbol mapper recognizes the following options:

Option Function See
Page:

–a Print symbols in alphabetical order. 6–14

–an Print symbols in alphabetical order and segments
in address order.

6–14

–err [file] PC only . Write error messages to file. 6–15

–err+ [file] PC only . Append error messages to file. 6–15

–n Print symbols in address order. 6–14

–na Print symbols in address order and segments in
alphabetical order.

6–14

–o [ofn] Write output to file ofn. If ofn is omitted, write to
obj.map. By default, gsmap writes to standard
output.

6–13

–P [lines] Set lines–per–page to lines. If lines is omitted,
suppress pagination.

6–14

–s Omit listing of externals and globals; list segments
only.

6–14

–V Display the version number of the executable. 6–15

–z Exclude empty segments from listing. 6–14

Table 6-2: Options

Chapter 66–12
U
T
IL
IT
IE
S

6.2.2 USAGE

The global symbol mapper (gsmap) displays symbolic information from an

object module. This utility can be used before or after linking or locating.

gsmap lists external names and the definitions of global symbols. The

SEGMENT section of the gsmap listing shows absolute address, length,

class and alignment for each segment.

The gsmap listing can be more easily understood once you know the

compiler's naming conventions. See the Compiler Naming Conventions
appendix for an explanation.

Example

Produce alphabetic global symbol listing:

gsmap hello.ol

• Reads object module hello.ol .

• Writes listing to standard output.

Given the following C program:

main() {
 printf (”Hello, world.\n”);
}

Other Utilities 6–13

• • • • • • • •

The alphabetic map listing produced is:

Symbol Map for hello.ol date time Page 1

Target : 68000

Externals

__main
_printf

Global Address

_main __E1

Group Size Limit Align Member Segments

data 00ffff (65535) hword idata udata

Segment Address Length Class Align Combine

S_main 000010 (16) {code} hword concat
idata 000000 (0) {data} hword concat
sdata 000010 (16) {constant} hword concat
udata 000000 (0) {data} hword concat

Statistics

Segments : 4
Externals : 2
Globals : 1
Groups : 1
Sum of class ”code” segments : 00000010 (16)
Sum of all other segments : 00000010 (16)

Total size of all segments : 00000020 (32)

6.2.3 GLOBAL SYMBOL MAPPER OPTIONS: DETAILED

DESCRIPTION

This section describes the global symbol mapper options in more detail

and provides examples of their use.

Listing Options

–o [ofn] This option specifies the name of the output file. If ofn is

omitted, the output is written to file obj.map, where obj is
the root of the first mappable file. If input is taken from stdin,

the default output file name is stdin.map .

Chapter 66–14
U
T
IL
IT
IE
S

–P [lines] Set the number of lines per listing page to lines. If lines is
omitted, suppress listing pagination. The default is to emit a

new title heading every 60 lines.

–s Omit listing of externals and globals; list segments only.

–z Omit empty segments from output listing.

Example

Set the number of lines per page in the output listing:

gsmap prog.ln –P 22 –o prog.out

• Reads linked object module prog.ln .

• Sets the number of lines per listing page to 22.

• Writes listing to prog.out .

Example

Exclude empty segments :

gsmap test1.ab test2.ab test3.ab –z –o

• Reads input from test1.ab , test2.ab and test3.ab .

• Produces a symbol map for each input file.

• Excludes empty segments from each symbol map.

• Writes listing containing all three symbol maps to test1.map .

Sorting Options

–a Print symbols in alphabetical order.

–an Print symbols in alphabetical order and segments in address

order.

–n Print symbols in address order.

–na Print symbols in address order and segments in alphabetical

order.

If both the –a and –n options are specified, segments and global symbols

are listed twice, once in each order. The default is to print in alphabetical

order.

Other Utilities 6–15

• • • • • • • •

Miscellaneous Options

–err [file] PC only. Write error messages to file.

–err+ [file] PC only. Append error messages to file.

–V Display the version number of the executable (for technical

support use).

Chapter 66–16
U
T
IL
IT
IE
S

6.3 SYMBOL LIST UTILITY

Display symbolic information from object module.

Invocation

symlist [prog.[ol | ln | ab]] [options]

Input

Standard input or [obj1...]

Output

Standard output or prog.sml

6.3.1 SYMBOL LIST UTILITY OPTIONS: SUMMARY

The symbol list utility recognizes the following options:

Option Function See
Page:

–err [file] PC only . Write error messages to file. 6–17

–err+ [file] PC only . Append error messages to file. 6–17

–o [ofn] Write output to file ofn. If ofn is omitted, write to
prog.sml .

6–17

–V Display the version number of the executable. 6–17

Table 6-3: Options

6.3.2 USAGE

The symbol list utility, symlist , produces a listing of all symbols, global

and local, along with target locations for source lines of input code. The

input may be any combination of unlinked object modules, linked object

modules, or absolute object modules. If no object modules are named,

then standard input is read.

Only object modules which were compiled or assembled with the –d
option will include symbolic information which can be listed.

Other Utilities 6–17

• • • • • • • •

Example

Produce symbol list output file:

symlist prog1.ln prog2.ln prog3.ln –o

• Reads object modules prog1.ln , prog2.ln , and prog3.ln .

• Writes listing to prog1.sml .

6.3.3 SYMBOL LIST UTILITY OPTIONS: DETAILED

DESCRIPTION

This section describes the symbol list utility options in more detail.

–err [file] PC only. Write error messages to file.

–err+ [file] PC only. Append error messages to file.

–o [ofn] This option specifies the name of the output file. If ofn is

omitted, the output is written to file obj.sml , where obj is the

root of the first file that can be successfully run through

symlist . If input is taken from standard input, the default

output file name is stdin.sml .

–V Display the version number of executable. For technical

support use.

6.3.4 THE SYMBOL TABLE LISTING

The symlist listing can be divided into two main parts. The first part

contains symbol information for each compilation unit. It begins with the

header line:

INDEX NAME SCOPE CLASS, ATTRIBUTES

Following the header line is a list of executable line numbers and code

addresses for linked or located object modules, with relative code

addresses for linked modules, and absolute code addresses for located

modules.

Chapter 66–18
U
T
IL
IT
IE
S

Next is a listing of all symbols and their attributes. In each entry, the

INDEX is a number referring to each item's location in the symbol table.

NAME is the name of each symbol as it appears in the symbol table. A

blank entry in this column refers to an anonymous symbol. SCOPE is the

index of the symbol which defines the enclosing scope for a particular

item. CLASS specifies the category of each item, e.g., type, variable,

function. The ATTRIBUTES for each item list compiler-generated symbol

information that may be useful in debugging.

Symbols in the listing are grouped according to the module, subroutine, or

structure definition in which they occur. The symbol defining the module,

subroutine or structure is listed first, followed by the remaining symbols in

that particular scope. Symbols are numbered sequentially for easy

reference to other symbols. The entry for each item includes that symbol's

class and attributes, and the index of the symbol that defines that symbol's

scope.

The scope of a type is either global or limited to a structure. The scope of

a variable is either global (accessible anywhere), local to a compilation

unit (accessible anywhere in the compilation unit which declares it), or

local to a subroutine (accessible only in the subroutine that declares it).

The first group of named symbol entries in the listing for each compilation

unit represents type definitions for standard built-in C types, without

regard for any –L option given to the compiler. Each built-in type

definition entry is followed by an anonymous entry defining a pointer to

that type. The built-in and pointer type definitions are followed by entries

for the symbols defined in the compilation unit.

The second part of the symlist listing begins with the header line:

ALPHABETIC SYMBOL INDEX

This contains an alphabetized list of all symbols in the linked object

module, with symbol indexes from the first part of the listing. If a symbol

name is used many times (in different scopes), a list of indexes is given.

Symbols without names are listed first under the name (anonymous).

Other Utilities 6–19

• • • • • • • •

Example

Consider the following program, sym.c

struct structtype {
int structint;
char structchar;

} mystruct;
int i;

subr()
{

int loci;
i = loci = 1;

}

Suppose we compile sym.c with the –d option, link, and locate. The

listing generated by symlist for the located object module is shown

below:

INDEX NAME SCOPE CLASS, ATTRIBUTES

1 sym.c 0 module,source file,line# and addr
 of code stmts:
”sym.c”
 7 #00000006 10 #00000006 11 #0000000c

 2 unsigned char/short 1 type, size=1, unsigned 8 bit
 3 1 type, ptr to type=2, size=4
 4 signed char/short 1 type, size=1, signed 8 bit
 5 1 type, ptr to type=4, size=4
 6 int 1 type, size=2, signed 16 bit
 7 1 type, ptr to type=6, size=4
 8 unsigned int 1 type, size=2, unsigned 16 bit
 9 1 type, ptr to type=8, size=4
 10 long 1 type, size=4, signed 32 bit
 11 1 type, ptr to type=10, size=4
 12 unsigned long 1 type, size=4, unsigned 32 bit
 13 1 type, ptr to type=12, size=4
 14 float 1 32 bit floating–point
 15 1 type, ptr to type=14, size=4
 16 double 1 64 bit floating–point
 17 1 type, ptr to type=16, size=4
 18 structtype 1 type, record, size=4
 19 structint 18 field, type=6, offset=0
 20 structchar 18 field, type=2, offset=2
 21 mystruct 1 variable,type=18,static,
 addr=#00000000
 22 i 1 variable, type=6, static,
 addr=#00000004
 23 subr 1 function, return type=6, #args=0,

Chapter 66–20
U
T
IL
IT
IE
S

 addr=#00000006
 24 loci 23 variable, type=6, local,
 register=D1

ALPHABETIC SYMBOL INDEX

i 22
loci 24
mystruct 21
structchar 20
structint 19
structtype 18
subr 23
sym.c 1

Other Utilities 6–21

• • • • • • • •

6.4 OBJECT SIZE LIST UTILITY

Display size information from object module(s).

Invocation

olsize obj1 [obj2 ...] [options]

Input

Standard input or obj1 [obj2 ...]

Output

Standard output

6.4.1 OBJECT SIZE LIST UTILITY OPTIONS: SUMMARY

The object size list utility recognizes the following options:

Option Function See
Page:

–i [ifn] Take the names of input object modules from file
ifn. If ifn is omitted, read the names of object mod-
ules from standard input.

6–22

–o ofn Write output to file ofn. 6–22

–V Display the version number of the executable. 6–22

Table 6-4: Options

6.4.2 USAGE

The object module size list utility, olsize , produces a listing of the total
size of code, data, and constant data contained in a collection of object
modules. The input may be any combination of unlinked object modules,
linked object modules, or absolute object modules, although the program
runs somewhat slower on unlinked object modules.

The type of each segment, code, constant, or data, is determined by the
class name. Segments with class name ``code'' or ``CODE'' are assumed to
contain code; segments with class name ``constant'' or ``CONSTANT'' are
assumed to contain constant data. All other segments are judged to contain
data.

Chapter 66–22
U
T
IL
IT
IE
S

Example

List size of object files:

olsize prog1.ln prog2.ln prog3.ln

• Read object modules prog1.ln , prog2.ln , and prog3.ln .

• Write listing to the terminal.

6.4.3 OBJECT SIZE LIST UTILITY OPTIONS: DETAILED

DESCRIPTION

This section describes the object size list utility options in more detail and
provides examples of their use.

–i [ifn] This option specifies that the names of input object modules
are to be taken from file ifn. The input module names should
be listed in the file, one per line. If no file is given as an
argument to the option, the names of the files are read from
standard input.

–o ofn This option specifies the name of the output file.

–V Display the executable's version number (for technical
support use).

Example

Produce object size listing in a file:

olsize sample.ab hello.ol –o size.out

• Read object modules sample.ab and hello.ol .

• Write listing to file size.out .

File size.out is listed below:

Code Data Constant Total Hex File
2500 2500 0 5000 1388 sample.ab
28 0 16 44 2c hello.ol
2528 2500 16 5044 13b4 Grand Total

7

APPLICATION
NOTES

C
H

A
P

T
E

R

Chapter 77–2
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

7

C
H

A
P

T
E

R

Application Notes 7–3

• • • • • • • •

This chapter contains application notes on the following topics:

• Downloading

• Linking C and Assembly

• Pragma Separate (Option Separate)

• Building Libraries That Do Not Use A5

• Position-independent Code

• Getting the Best Code for Your Application

• Support for the On-board Peripherals of the 68332, 68340, and

68360

7.1 ABOUT THE APPLICATION NOTES

The following is a brief summary of the contents of the application notes

chapter. After this list, the remainder of the chapter is dedicated to a more

detailed discussion of each topic. The following topics are covered in this

chapter:

Downloading

Downloading is the process by which a program developed with the

68K/ColdFire toolchain is loaded into memory for the target

microprocessor. The program may be downloaded to an emulator for

integration and testing of the program, or directly to the user's actual

hardware system. Downloading can be accomplished in a variety of ways;

several methods are explained in the Downloading application note.

Linking C and Assembly

Interfacing C and Assembly allows the user to utilize the benefits of both

languages in programming tasks. The Linking C and Assembly application

note gives linking methods, conventions, and examples.

Pragma Separate (Option Separate)

The #pragma separate compiler directive is one of the TASKING C

language extensions. This feature gives you complete control over the

placement of global data. The Pragma Separate (Option Separate)
application note gives a detailed explanation of this useful directive.

Chapter 77–4
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Building Libraries That Do Not Use A5

By default the compiler uses A5-relative addressing to access non-separate

global and static variables. Some users may wish to use direct addressing

instead. This can be accomplished for user code with command line

options like –sd . However, A5-relative references would still remain

because of the compiler run-time library. This application note tells you

how to build a library that does not use any A5-relative addressing.

Position-independent Code

To say that a unit of code or data is �position-independent" means that it

can be moved from one location in memory to another without relinking

and still execute properly. This application note describes how position

independence is achieved in general, in what circumstances it would be

used, and the nature of the compiler support for position independence.

Getting the Best Code for Your Application

The compiler has many options which affect optimization. Most of these

options disable optimization in order to make the code easier to debug.

However, there are circumstances where tradeoffs must be made. In these

cases the right choice depends on your particular application. This

application note describes the issues involved to help you make the best

choices.

Support for the On-board Peripherals of the 68332, 68340, and 68360

The run-time libraries contain many files to support access, via C or

assembly language, to the on-board peripheral units of the 68332, 68340,

and 68360 processors. This application note describes how access to the

peripheral components is achieved through the use of C and assembly

language include files.

Application Notes 7–5

• • • • • • • •

7.2 DOWNLOADING

7.2.1 INTRODUCTION

This section discusses some of the different environments available for

loading and executing programs developed with the 68K/ColdFire

toolchain. This discussion deals with simulators, emulators, and PROM

programmers.

Simulators

Simulators are software products which run on the host computer.

Simulators can ``simulate'' program execution by converting the

instructions generated for the target microprocessor into one or more

instructions for the host computer. Target memory and registers are also

simulated on the host. The simulator's debugger can display and modify

this simulated target. Breakpoints can be set and single stepping can be

done.

This technique provides a reasonable method for algorithm analysis.

However, it is limited in some respects. Real time control is difficult and

hardware timing tests cannot be done. For many applications an expensive

test bed must be prepared to handle input and output requirements.

Memory mapping is not easily done.

Emulators

Emulators are hardware devices connected to the circuit being tested.

Emulators take the place of the actual target chip and provide the most

thorough testing environment, since the testing is done on the actual target

board. Furthermore, an emulator provides on-board firmware which can

display the state of the executing program, set breakpoints and stop and

start execution. Depending upon the emulator, these debugging aids can

be quite elaborate.

The TASKING source-level debugger, CrossView Pro, can intelligently

control an emulator during testing. The debugger provides a high-level

interface between the user working on the host system's keyboard and the

emulator. The user may issue commands which refer directly to the

variables, source files, and line numbers as they appear in the source

program. Using symbol information retained during compilation, the

debugger translates the high level commands into a series of low level

commands that are understood by the emulator.

Chapter 77–6
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Transferring a program image developed with the 68K/ColdFire toolchain

into an emulator is a straightforward procedure. The emulator User's

Manual will describe in detail how to do it. Generally the process is as

follows:

The emulator is connected to the host with an RS-232 connection or

parallel connection, usually from a terminal port on the host to a

``computer'' or ``host'' port on the emulator.

When the emulator and the host are suitably connected, the

communications software can transfer the absolute hex file produced by

the formatter through the emulator into target memory.

Depending upon the configuration, either the host or the emulator must

have a communications package capable of monitoring and controlling the

transfer of information. CrossView Pro contains one such communication

package; many emulator manufacturers provide their own package.

7.2.2 PROM PROGRAMMING

Once a system is thoroughly tested using an emulator, production of the

finished product can be done. In embedded systems this frequently

involves programming ``read-only memory'' chips (ROMs). This ``burning''

of the memory chip is done on a PROM burner.

Most PROM burners accept one or more industry standard formats. The

formatter is capable of generating many standard formats. The PROM

burner is connected to the host system in much the same way as the

emulators described above.

There are two possible complications in the loading of the ROM memory.

One complication is encountered when the target microprocessor's data

bus is wider than 8 bits, and the PROMs to be used are 8 bits wide. If the

data bus is 16 bits wide, then two PROMs may be addressed in parallel. If

the data bus is 32 bits, then four PROMs may be addressed at once. In this

case it is necessary to distribute the bytes alternately among all the PROMs.

This is known as byte-slicing. The formatter will create individual files for

each PROM. For example, if 8-bit PROMs are to be programmed for a

16-bit data bus, the formatter would be run twice:

form file.ab –b 0 2 –o file.even
form file.ab –b 1 2 –o file.odd

Application Notes 7–7

• • • • • • • •

If 8-bit PROMs are to be programmed for a 32-bit bus, the formatter

would be run four times:

form file.ab –b 0 4 –o file.zero
form file.ab –b 1 4 –o file.ones
form file.ab –b 2 4 –o file.twos
form file.ab –b 3 4 –o file.threes

Each of the files would be programmed into a different PROM. Each

PROM would be plugged into the appropriate socket on the target board,

resulting in a complete hex image at the target level.

The second complication is also related to the need to fit a hex image into

multiple PROMs. Suppose a chip has a one megabyte address space, to be

filled with 256K-byte PROMs. A 256K-byte PROM has 18 address lines.

The two high-order bits of the 1M-byte address are decoded by other

hardware on the target board. Internally each PROM is addressed 0 to

0x3FFFF. It is necessary to break up the hex image into four different files

to be burned into PROMs. The formatter can separate the full program into

files of the appropriate size and can also generate the correct offset, so

that the address 0x40000 will correspond to 0 when the PROM is burned.

The following commands would result in four hex files, each appropriate

to burn into a PROM which is addressed on a 256K-byte boundary:

form file.ab –w 40000 –o first.hex
form file.ab –w 40000 –a 40000 –o second.hex
form file.ab –w 40000 –a 80000 –o third.hex
form file.ab –w 40000 –a C0000 –o fourth.hex

The 68K/ColdFire product also provides the tools needed to store

initialized data values in ROM, and, when the system is turned on, to

automatically transfer these initial data values to RAM. The Linking Locator
chapter describes this process (ROM processing) in greater detail.

Chapter 77–8
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

7.3 LINKING C AND ASSEMBLY

7.3.1 INTRODUCTION

Interfacing C and assembly code is an important aspect of efficient

programming. Modern programming experience indicates that programs

written in higher level languages are more portable and reliable.

Nevertheless, assembly language still offers the maximum in efficiency and

flexibility. Furthermore, some machine-dependent operations cannot be

performed at all in C. The combination of the two languages gives the

programmer great control over execution of the task at hand.

The information in the Compiler Run-Time Conventions and Compiler
Naming Conventions appendices are critical to interfacing C routines and

assembly language. Please refer to these sections for more information on

each subject.

7.3.2 CONVENTIONS

In accordance with the compiler naming conventions, an underscore (`_')

must be prepended to each procedure name in the assembly module(s)

which contain(s) global symbols so that C programs and assembly

modules can be linked.

Example

Here is a sample C program which calls an assembly language routine:

extern void asmsub(); /* NO underscore here! */
main()
{

.

.
asmsub(arg1,arg2,arg3); /* NO underscore here! */

.

.
}

Application Notes 7–9

• • • • • • • •

After the entry code (or prologue) in the assembly routine has been

executed, we obtain the following stack configuration:

Example of Stack Management:

Low Memory

<––– Stack Pointer

Local Variables (negative offsets from Frame Pointer)

Old Frame Pointer

Return Address

arg1 (positive offsets from Frame Pointer)

arg2

arg3 <––– Caller’s Stack Pointer before call

Calling Routine’s Stack
Frame

<––– Caller’s Frame Pointer

High memory

The ``Calling Routine'' is the C routine. The stack grows from high to low

memory.

Chapter 77–10
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

The assembly language routine asmsub needs to have the following form

to be callable from C: (The prologue and epilogue are shown in the

Compiler Run-Time Conventions appendix.)

XDEF _asmsub /* Note the underscore */
_asmsub:

[PROLOGUE]
 .
 . /* Body of asmsub */
 .
[EPILOGUE]

Both the caller's frame pointer and the return address are 32 bits wide.

Here is an example of how to reference parameters from the stack. For

example, suppose the first parameter is a pointer variable. The following

instruction would be used to load the first parameter into a register:

MOVEA.L 8(A6),D0

The long word move is used since the parameter is a 32-bit integer. The

source operand is 8(A6) which signifies that the first parameter is 8 bytes

away from the frame pointer, A6. The result is moved into register D0.

For an example of returning a value from a function call, consider the

following:

extern int asmfunc();
{

main()
{

int i;
i = asmfunc();

.

.

.

}

When returning an integer as in the example above, the assembly routine

asmfunc must place the return value in register D0 since the calling C

routine expects the value in D0.

Application Notes 7–11

• • • • • • • •

Notes:

• Both compilations and assemblies create object modules. The linking

locator takes either kind of object module as input. This provides the

flexibility for linking C and assembly.

• Do not change the value of register A5! If, for example, an interrupt

gives control to the C program, the C program expects register A5 to be

pointing at the global data area at all times. Changing the A5 register

may result in access to unexpected areas of memory.

• Pay special attention to stack management when interfacing C and

assembler code. It is good practice to use macros to provide standard

prologue and epilogue sequences in all assembler routines. If the

hardware stack is not handled properly, the calling program may not

execute correctly.

• Other conventions apply to routines returning struct types. See the

Compiler Run-Time Conventions appendix for more details.

7.3.3 SHARING GLOBAL DATA

It is possible to declare data in C and reference it in assembly language

and vice versa. Generally it is preferable to declare the data in C. Here are

some examples showing how this is done.

Referencing C Data in Assembly Code

Consider the following C declarations:

long global_var;
#pragma separate sep_var
long sep_var;

Here we have two variables, global_var and sep_var , both of which

represent 32 bit integers. According to the compiler naming conventions,

these variables give rise to global symbols whose names are

_global_var and _sep_var respectively. The variable global_var will

be allocated in the udata segment and the variable sep_var will be

allocated in the S_sep_var segment. (If global_var had been

initialized, it would have been allocated in the idata segment).

Chapter 77–12
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Here is sample assembly language code which references these variables.

It stores the value �1" in global_var and the value �2" in sep_var .

XREF _global_var
XREF _sep_var
XREF data

.

.

.
MOVE.L #1,_global_var–data(A5)
MOVE.L #2,_sep_var

The non-separate variable global_var is accessed through the A5

register. This register contains the address of the data group, which

contains the udata segment containing global_var . Since the

_global_var global symbol represents the full 32 bit address of the

variable global_var , the origin of the data group must be subtracted to

yield the offset relative to this register.

The non-separate variable sep_var is not accessed through the A5

register, because sep_var does not lie in the data group.

Referencing Asm Data from C

Normally it is preferable to declare the data in C, but it is still possible to

reference assembly language data from C if it is properly declared.

The procedures are similar to those discussed above, except that external

declarations are replaced by definitions and vice versa. The C program

would look like this:

extern long global_var;
#pragma separate sep_var
extern long sep_var;

.

.

.
global_var = 1;
sep_var = 2;

Application Notes 7–13

• • • • • • • •

The assembly language declarations would look like this:

XDEF _global_var
XDEF _sep_var
SECTION udata,,’data’

_global_var DC.L 0
SECTION S_sep_var,,’usep’

_sep_var DC.L 0

The non-separate variable global_var is allocated in the udata
segment. If global_var had an initial value, it would be allocated in

idata . The separate variable sep_var is allocated in its own segment.

The name of the segment for sep_var chosen here matches the compiler

convention, but this is not strictly necessary for the compiled code to

access the variable successfully.

Chapter 77–14
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

7.4 PRAGMA SEPARATE (OPTION SEPARATE)

7.4.1 INTRODUCTION

The C compiler supports a directive, #pragma separate , as part of the C

language extensions. This directive allows the user complete control over

the segmentation of global data. The older syntax #option separate is

equivalent to #pragma separate .

The compiler creates a ``data'' group containing all data which is accessed

by A5 register-relative addressing. This is a very efficient addressing

mode. By default, global and static data items are allocated in one of two

data segments: ``idata ,'' for initialized data, or ``udata ,'' for uninitialized

data. Data allocated in these segments is restricted to a total size of 64K

bytes because the register-relative addressing uses a 16-bit offset.

To allow for global data items that are very large, or items that the user

would like to place in specific memory locations, the 68K/ColdFire toolkit

provides the concept of separate data. Separate data items are placed in

their own segments, and thus may be placed independently in memory

using the locate function of the linking locator. Furthermore, they are not

subject to the 64K-byte total size restriction imposed on normal global

data. There is no limit to the size of an individual separate data item, other

than the size of the memory area in which the data is allocated..

The compiler uses different code sequences to access variables in the

idata/udata area than it uses to access separate variables. For this reason

the compiler must know whether an external variable is defined as

separate. It is a good idea to keep the necessary #pragma separate
directives together with ``extern'' declarations for separate variables.

The #pragma separate directive can also be used to separate constant

data from read-write data. This allows constant data to be placed in ROM.

Application Notes 7–15

• • • • • • • •

7.4.2 PREPROCESSOR OPTION DIRECTIVES

#pragma separate variable_name [segment segname]
[class classname]

#pragma sep_on [segment segname [segname2]]
[class classname [classname2]]

#pragma sep_off

The #pragma separate directive causes the data item named

variable_name to be separate. The #pragma separate directive for

variable_name must precede the definition of variable_name in the

source program. The compiler will put this data in the specified class and

segment, if that information is included in the statement.

The #pragma sep_on and #pragma sep_off directives automatically

cause all global or local static data declared between them to be separate.

This provides a shorthand notation that is equivalent to writing several

#pragma separate directives. Note that this includes data declared with

the const type qualifier.

The optional segment and class specifiers permit the user to specify the

segment name and/or the class of the segment in which the separate

variable is allocated. More than one separate variable may be allocated

into a single segment, but all #pragma separate directives with the

same segment option must have the same class option. Of course, if

two separate variables lie in the same segment then they cannot be

placed in memory independently of one another.

When only segname is supplied with the segment option, data will be

allocated into segname. When both segname and segname2 are supplied,

initialized data will be allocated into segname, and uninitialized data will

be allocated into segname2. If the keyword default replaces segname or

segname2, data will be allocated into the default segments for separate

data, as explained in the Compiler Naming Conventions appendix.

When only classname is supplied with the class option, separate segments

will be given class {classname}. When both classname and classname2 are

supplied, initialized data segments will be given class {classname}, and

uninitialized data segments will be given class {classname2}. If the

keyword default replaces classname or classname2, separate segments

will be given the default class name for separate data.

Chapter 77–16
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

If no segment or class name is supplied, the compiler will use default

names which are described in detail in the Compiler Naming Conventions
appendix. The compiler's default rules will give rise to a different segment

name for each separate variable.

7.4.3 COMMAND LINE OPTIONS

Data can also be made separate by using command line options:

–cs Place all data declared as const into a separate segment

cdata and class constant. The –sc and –ss options override

the –cs option and make its use invalid. Refer to the C
Language Specifications appendix for an explanation of the

const type qualifier.

–sc myclass [myclass2]

If the only argument is myclass, separate data segments will

be given class {myclass}. If arguments myclass and myclass2
are used, initialized data segments will be given class

{myclass}, and the uninitialized data segments will be given

class {myclass2}.

–sd Make all global and static data separate.

–ss mysegment [mysegment2]

If the only argument is mysegment, data will be allocated into

mysegment. If arguments mysegment and mysegment2 are

used, initialized data will be allocated into mysegment, and

uninitialized data will be allocated into mysegment2.

The command line options are equivalent to inserting the appropriate

#pragma sep_on directive described above before the first line of the

source file being compiled.

The segments defined for separate data items can be located either by

their segment names, or by the segment class. Please see the Linking
Locator chapter for details on how to place segments in memory.

Application Notes 7–17

• • • • • • • •

7.5 BUILDING LIBRARIES THAT DO NOT USE A5

Sometimes users may wish to eliminate the A5-relative addressing that is

used by default for global data. This can be accomplished with command

line options which have the effect of making all global data �separate",

that is, directly addressed. However, A5-relative addressing may still

remain, because the run-time library has some private global data of its

own which is addressed via A5. This application note tells you how you

can build a library that does not use any A5-relative addressing.

The run-time library contains both C and assembly source files. The C

modules must be recompiled using options that make all data separate,

plus any other options, such as –L , that are needed for your particular

application. Subsequent links will run faster if you pre-link each object

module by itself (to resolve internal references), but this is not essential.

Alternate versions of the assembly language modules that reference data

via A5 are supplied with the library distribution, so no assemblies need be

done. After the C modules are recompiled, the library index files must be

updated to include the alternate assembly language modules and the

recompiled C modules.

There are several different libraries supplied with the distribution. There

are libraries for different targets, like MC68000 or MC68020. There may be

libraries for hardware and software floating-point. Within each of these are

libraries for use with –L (long integer, default for C++ and ColdFire) and

libraries for use without –L (the default for 68K). There are libraries that

do not support floating-point (the �no-floats" libraries), and libraries that

do support floating-point (the default). Of course, you need only rebuild

the libraries you intend to use. The examples that follow show you how to

rebuild all the libraries for the MC68000 software floating-point target. The

procedure for other targets is similar, except that you use a different

compiler name, for the specific target (e.g., 68020, 68040, etc.). In addition,

the command line option for hardware floating-point (–h) must be used

for libraries which rely on floating-point hardware.

At the end of this chapter there are six tables labelled �Table 7-1" through

�Table 7-9". Each table represents a subset of target chips. Find the table

that contains your target microprocessor. Within the table, in the 1st

column find the library index file you plan to use. In the 2nd column you

will find the library modules which must be replaced.

Chapter 77–18
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

The following steps will update existing library index files. If you want to

save the original index files, you should first copy the run-time library

directory, then set your working directory to that directory. Otherwise, set

your working directory to the run-time library. We will start with the 68000

libraries (lib000 , lib000.nf , lib000.l , lib000.lnf).

1. Recompile all the C source files in the library, using –ss libdata –sd .

This makes all library data separate in segment libdata . Execute a

command like this for each c file:

c68000 abort.c –ss libdata –sd

2. Pre-link each object module. Execute a command like this for each .ol
file you just created:

llink strcpy.ol –lo –w –o strcpy.ln

3. Update the library index file. Table 7-1 contains the library index files for

target MC680000. Looking up lib000 in the table we find the following

modules must be replaced: adln.ln . adlog.ln , adsqrt.ln ,

dpfncs.ln , dpopns.ln , fpopns.ln , pmain.ln , and xlfncs.ln .

Execute the following commands:

For the PC:

libr –L lib000
–d adln.ln adlog.ln adsqrt.ln dpfncs.ln

 dpopns.ln fpopns.ln pmain.ln xlfncs.ln
–a adlnx.ln adlogx.ln adsqrtx.ln dpfncsx.ln

 dpopnsx.ln fpopnsx.ln pmainx.ln xlfncsx.ln

libr –L lib000 –u

For Unix hosts:

libr –L lib000 \
–d adln.ln adlog.ln adsqrt.ln dpfncs.ln \
dpopns.ln fpopns.ln pmain.ln xlfncs.ln
–a adlnx.ln adlogx.ln adsqrtx.ln dpfncsx.ln \
dpopnsx.ln fpopnsx.ln pmainx.ln xlfncsx.ln

libr –L lib000 –u

Application Notes 7–19

• • • • • • • •

This replaces the assembly language modules with the �no-A5" versions.

All the �no-A5" versions have names that end in �x". It also updates the

library with the recompiled versions of the C modules.

Now we continue with the �no-floats" library.

4. Recompile xprintf and xscanf . Here you need the extra command line

option –P NO_FP_IO to generate the �no-floats" version of xprintf and

xscanf :

c68000 xprintf.c xscanf.c –P NO_FP_IO –ss libdata –sd

5. Pre-link xscanf and xprintf. Execute the following commands. Note

the output going to the special .in suffix:

llink xprintf.ol –lo –w –o xprintf.in
llink xscanf.ol –lo –w –o xscanf.in

6. Update the no-floats library index file. This is similar to step 3), except

that the only �no-A5" assembler module in the no-floats library is pmain :

libr –L lib000.nf –d pmain.ln –a pmainx.ln
libr –L lib000.nf –u

Now we continue with the long integer libraries. Here the procedure is

similar, except in the following ways. An additional option, –L is required

on all compilations. The list of �no-A5" assembler modules is different.

The library index file names are different. The linked module suffix names

.ln and .in are replaced with .lln and .iln .

7. Recompile all the C source files in the library, using –sd, –ss libdata
and –L . Execute a command like this for each c file:

c68000 abort.c –L –ss libdata –sd

8. Pre-link each object module same as step 2), except direct the output to

.lln , not .ln , for example:

llink strcpy.ol –lo –w –o strcpy.lln

9. Rebuild the library index files. Again refer to Table 7-1 to find which

modules must be replaced in library index file lib000.l . Execute these

commands:

Chapter 77–20
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

For the PC:

libr –L lib000.l –d adlnl.ln adlogl.ln
adsqrtl.ln dpfncs.ln dpopns.ln
fpopns.ln pmain.ln xlfncs.ln
–a adlnlx.ln adloglx.ln
adsqrtlx.ln dpfncsx.ln dpopnsx.ln
fpopnsx.ln pmainx.ln xlfncsx.ln

libr –L lib000.l –u

For Unix hosts:

libr –L lib000.l –d adlnl.ln adlogl.ln \
adsqrtl.ln dpfncs.ln dpopns.ln \
fpopns.ln pmain.ln xlfncs.ln
–a adlnlx.ln adloglx.ln \
adsqrtlx.ln dpfncsx.ln dpopnsx.ln \
fpopnsx.ln pmainx.ln xlfncsx.ln

libr –L lib000.l –u

This replaces the assembly language modules with the �no-A5" versions. It

also updates the library with the recompiled versions of the C modules.

Now we continue with the long integer, no-floats library. Note that the list

of assembly language modules is different here than it was in the short

integer library. For example, lib000.l uses adsqrtl.ln whereas

lib000 uses adsqrt.ln . Again, refer to Table 7-1 to find which modules

must be replaced in library index file lib000.l .

10. Recompile no-floats, long integer version of xprintf and xscanf :

c68000 xprintf.c xscanf.c –P NO_FP_IO –ss libdata –L –sd

11. Pre-link xscanf and xprintf . This is the same as step 5), except direct

the output to .iln instead of .in , that is:

llink xprintf.ol –lo –w –o xprintf.iln
llink xscanf.ol –lo –w –o xscanf.iln

12. Update the no-floats library index file:

libr –L lib000.lnf –d pmain.ln –a pmainx.ln
libr –L lib000.lnf –u

Application Notes 7–21

• • • • • • • •

If you are using a C++ library (cpp000.lib , cpp020.lib , cpp5206.lib
or cpp5206e.lib), it will need to be updated as well. Also note that

since C++ assumes –L , a C long library must also be created as shown

above. This example includes a rebuild of cpp000.lib.

1. Recompile all C++ source files using –sd and –ss libdata. Execute a

command like this for each C++ file:

cp68000 array_del.cpp –sd –ss libdata –I. ..\cppinc
 ––exceptions ––building_runtime

The cpp020.lib library was oringinally built using the MC68332

compiler, but other (non-68000) compilers could be used for this purpose.

2. Recompile the C file whatami.c :

c68000 whatami.c –sd –ss libdata

3. Pre-link each object module. Execute a command like this for each .ol
file for just created:

llink array_del.ol –lo –w –o array_del.0ln

The .0ln extension is used for cpp000.lib and the .2ln extension is

used for cpp020.lib .

4. Update the library index file:

libr –L cpp000.lib –u

The procedure is the same for every other target-specific library, except

that the library index files are different and the list of assembler modules

containing A5 references is different.

The following table summarizes all the assembler modules that use

A5-relative addressing and what library index files they belong to. In all

cases the name of the replacement no-A5 version is formed by adding an

�x" before the suffix. For example, the no-A5 replacement for adsqrt.ln
is adsqrtx.ln .

Here is how you use this table. Look up the library you are are rebuilding

on the left-hand column. Update the library index file by deleting the

named modules and adding their replacements. There is one table for

each library directory which covers all the library index files in that

directory.

Chapter 77–22
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Libraries Modules to be Replaced with no–A5
Versions

lib000 lib010 adln.ln adlog.ln adsqrt.ln

lib302 lib020s dpfncs.ln dpopns.ln fpopns.ln

lib030s pmain.ln xlfncs.ln

lib000.nf lib000.lnf pmain.ln

lib010.nf lib010.lnf

lib302.nf lib302.lnf

lib020s.nf lib030s.lnf

lib000.l lib010.l adlnl.ln adlogl.ln adsqrtl.ln

lib302.l lib020s.l dpfncs.ln dpopns.ln fpopns.ln

lib030s.l pmain.ln xlfncs.ln

lib302ap adln.ln adlog.ln adsqrt.ln

lib302at dpfncs.ln dpopns.ln fpopns.ln

pmn302a.ln xlfncs.ln

lib302ap.nf lib302ap.lnf pmn302a.ln

lib302at.nf lib302at.lnf

lib302ap.l adlnl.ln adlogl.ln adsqrtl.ln

lib302at.l dpfncs.ln dpopns.ln fpopns.ln

pmn302a.ln xlfncs.ln

lib000r adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmainr.ln xlfncs.ln

lib000r.nf lib000r.lnf pmainr.ln

lib000r.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmainr.ln xlfncs.ln

Table 7-1: Library index files (MC68000, MC68010, MC68302)

Application Notes 7–23

• • • • • • • •

Libraries Modules to be Replaced with no–A5
Versions

lib020s lib030s adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

lib020s.nf lib020s.lnf pmain.ln

lib030s.nf lib030s.lnf

lib020s.l lib030s.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

lib332 adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn332.ln xlfncs.ln

lib332.nf lib332.lnf pmn332.ln

lib332.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn332.ln xlfncs.ln

lib340 adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn340.ln xlfncs.ln

lib340.nf lib340.lnf pmn340.ln

lib340.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn340.ln xlfncs.ln

lib340b adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn340b.ln xlfncs.ln

lib340b.nf lib340b.lnf pmn340b.ln

lib340b.l adlnl.ln adlogl.ln adsqrtl.ln

 dpfncs.ln dpopns.ln fpopns.ln

pmn340b.ln xlfncs.ln

lib360 adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

Chapter 77–24
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Modules to be Replaced with no–A5
Versions

Libraries

pmn360.ln xlfncs.ln

lib360.nf lib360.lnf pmn360.ln

lib360.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn360.ln xlfncs.ln

lib360b adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn360b.ln xlfncs.ln

lib360b.nf lib360b.lnf pmn360b.ln

lib360b.l adlnl.ln adlogl.ln adsqrtl.ln

 dpfncs.ln dpopns.ln fpopns.ln

pmn360b.ln xlfncs.ln

lib332r adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn332r.ln xlfncs.ln

lib332r.nf lib332r.lnf pmn332r.ln

lib332r.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn332r.ln xlfncs.ln

lib030r adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn030r.ln xlfncs.ln

lib030r.nf lib030r.lnf pmn030r.ln

lib030r.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmn030r.ln xlfncs.ln

Table 7-2: Library index files (MC68020, MC68030, MC68332, MC68340,
MC68360), no 68881/68882

Application Notes 7–25

• • • • • • • •

Libraries Modules to be Replaced with no–A5
Versions

lib020h lib030h acos.ln asin.ln log.ln

log2.ln log10.ln pmain.ln

sqrt.ln

lib020h.nf lib020h.lnf pmain.ln

lib030h.nf lib030h.lnf

lib020h.l lib030h.l acosl.ln asinl.ln logl.ln

log2l.ln log10l.ln pmain.ln

sqrtl.ln

lib030hr acos.ln asin.ln log.ln

log2.ln log10.ln pmn030r.ln

sqrt.ln

lib030hr.nf lib020hr.lnf pmn030r.ln

lib030hr.l acosl.ln asinl.ln logl.ln

log2l.ln log10l.ln pmn030r.ln

sqrtl.ln

Table 7-3: Library index files (MC68020, MC68030), with 68881/68882

Libraries Modules to be Replaced with no–A5
Versions

libe40 adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

libe40.nf libe40.lnf pmain.ln

libe40.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

Table 7-4: Library index files (MC68EC040)

Chapter 77–26
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Libraries Modules to be Replaced with no–A5
Versions

lib040 acos.ln asin.ln log.ln

 log2.ln log10.ln pmain.ln

sqrt.ln

lib040.nf lib040.lnf pmain.ln

lib040.l acosl.ln asinl.ln logl.ln

log2l.ln log10l.ln pmain.ln

sqrtl.ln

Table 7-5: Library index files (MC68040)

Libraries Modules to be Replaced with no–A5
Versions

libe60 adln.ln adlog.ln adsqrt.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

libe60.nf libe60.lnf pmain.ln

libe60.l adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

Table 7-6: Library index files (MC68EC060)

Libraries Modules to be Replaced with no–A5
Versions

lib060 acos.ln asin.ln log.ln

 log2.ln log10.ln pmainf.ln

sqrt.ln

lib060.nf lib060.lnf pmain.ln

lib060.l acosl.ln asinl.ln logl.ln

log2l.ln log10l.ln pmainf.ln

sqrtl.ln

Application Notes 7–27

• • • • • • • •

Modules to be Replaced with no–A5
Versions

Libraries

lib060r acos.ln asin.ln log.ln

log2.ln log10.ln pmn060rf.ln

sqrt.ln

lib060r.nf lib060r.lnf pmn060r.ln

lib060r.l acosl.ln asinl.ln logl.ln

log2l.ln log10l.ln pmn060rf.ln

sqrtl.ln

Table 7-7: Library index files (MC68060)

Libraries Modules to be Replaced with no–A5
Versions

lib5206 adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

lib5206.nf pmain.ln

lib5206r adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmainr.ln xlfncs.ln

lib5206r.nf pmainr.ln

Table 7-8: Library index files (MCF5204, MCF5206)

Chapter 77–28
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Libraries Modules to be Replaced with no–A5
Versions

lib5206e adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmain.ln xlfncs.ln

lib5206e.nf pmain.ln

lib5206er adlnl.ln adlogl.ln adsqrtl.ln

dpfncs.ln dpopns.ln fpopns.ln

pmainr.ln xlfncs.ln

lib5206er.nf pmainr.ln

Table 7-9: Library index files (MCF5206E, MCF5249, MCF5349L,
MCF5272, MCF5280, MCF5282, MCF5307)

Application Notes 7–29

• • • • • • • •

7.6 POSITION-INDEPENDENT CODE

7.6.1 INTRODUCTION

The most common situation where position independence is desirable is

in conjunction with an operating system that supports the concept of a

dynamically loaded program. When the system is built, the dynamically

loaded program is compiled and linked, and then stored on an external

device. At run-time the program is loaded into memory by the system

loader and executed.

If the address of the dynamically loaded program can be predicted in

advance, then there is no need for position independence. One merely has

to locate the program at the address where it will be when it is executed.

This really is more like an overlay than a dynamically loaded program. If

the execution address is not determined until run-time, then the linker

cannot really know the absolute addresses of the code or data segments in

the program.

There are two general approaches which can be used. The first is to

arrange for the loader program to know where the address references are

in the program being loaded, and to have the loader update these

references as the program is being loaded. In some sense the loader

completes the work of the link editor, and so one says that the loader is

acting as a �linking loader". Systems that use a linking loader also do not

need position independence.

The alternative is to have the loader do no address correction during the

loading operation. However, since there is no way to predict where the

program will be loaded, there is certain to be a mismatch between the

addresses where the link editor thought the program would be loaded and

the address where it actually will be loaded. To say that the program is

position independent is equivalent to saying that the program will execute

properly even under these circumstances.

As will be explained below, position-independent code generation

patterns are less efficient than the patterns used by default. Generally

speaking, the cost is quite moderate if the application is small (less than

32K bytes). Larger applications, especially on a MC68000 rather than a

MC68020 or CPU32 processor, may suffer a larger performance

degradation. If these costs are not acceptable, then the best recourse is to

implement a linking loader.

Chapter 77–30
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

It does require some work to implement a linking loader. There is no

simple industry standard download format for a relocatable program

image. For absolute program images there are many standards (Motorola

S-records, Tekhex, and so on). Consequently, users who wishes to use a

linking loader must design their own download format, write their own

loader, and write a utility program that converts the relocatable module file

(the .ln file) into their relocatable download format. While

straightforward, these tasks do require some effort. In contrast, writing a

non-linking loader program that reads a standard absolute format like

S-records is very simple.

7.6.2 HOW POSITION INDEPENDENCE IS ACHIEVED

Programs cannot always be moved from place to place and still execute

correctly because references to code or data may become incorrect when

the objects they refer to are moved. The M68000 family processors support

three general forms of memory references:

• Direct Addressing

The address of the memory location is expressed as a constant

address. Usually this is a 32-bit constant, but it can be expressed as

a 16-bit constant which is sign-extended to form the address.

• PC-relative Addressing

The address of the memory location is expressed as a displacement

which is added to the value in the PC at the time of the reference to

form the address.

• Register-based Addressing

This includes all other addressing modes. The address is usually

expressed as a sum of registers and constants.

Some examples might make this more clear. Suppose we have a procedure

named f which we wish to call. Here are three different ways we could

call f :

JSR f Direct Addressing

BSR f PC-relative Addressing

JSR (A0) Register-based Addressing

Application Notes 7–31

• • • • • • • •

In the third case, A0 is assumed to contain the address of f .

It is clear that the direct addressing case is never position independent.

The instruction contains the absolute address of the object being

referenced (f). If f is moved, then the reference becomes invalid. On the

other hand, the instruction containing the JSR can itself be moved without

causing problems. It is the destination of the call that matters.

PC-relative addressing will remain correct, as long as both the object

being referenced (f), and the instruction making the reference, are moved

by the same amount. In that case the difference between their addresses

remains constant, and it is this difference that is contained in the

instruction. However, if only one of the two are moved, or if both are

moved by different amounts then the reference becomes incorrect.

Register-based addressing will remain correct, as long as the value in the

A0 register is adjusted so that it points to the address to which f was

moved. Naturally this depends on how A0 was set up. For example,

suppose the instruction that set up A0 looked like this:

MOVEA.L #f ,A0

In this case the register-based addressing would behave just like the direct

addressing case, i.e., not position independent, because the MOVEA

instruction contains the absolute address of f . On the other hand, suppose

A0 was set up like this:

 LEA f (PC),A0

Then register-based addressing would behave just like the PC-relative

case.

Another alternative is for A0 to be set by the operating system. For

example, suppose f is the main entry point into a dynamically loaded

program. Then the system call that causes f to be loaded would

presumably return the address of f to the caller. In that case the

register-based addressing would be position-independent. It would reach

f no matter where f was loaded.

Chapter 77–32
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

The C compiler always uses register-based addressing for calls through

�pointer-to-procedure" variables. By default, the compiler uses direct

addressing when assigning the address of a named function to a

pointer-to-procedure variable. When the position-independent code

options, –ps or –pc , are present, the compiler uses PC-relative addressing

instead. Therefore pointer-to-procedure variables work correctly as long

as the procedure which assigns the pointer and the procedure being

assigned are part of the same position-independent unit.

If an application needs to access code that is outside the

position-independent unit, such as operating system services, then there

are two ways to do so. One is to use a pointer-to-procedure variable

which is deliberately initialized in a non position-independent manner.

This could be done by C code compiled without the position-independent

options, or by assembly language using direct addressing. The other is to

use TRAP instructions and interrupt handlers.

7.6.3 POSITION INDEPENDENCE AND DATA

REFERENCES

By default, the compiler references most data via register-based

addressing. By default, global and static data is referenced via A5. Separate

data and string literals (quoted strings), on the other hand, are referenced

via direct addressing. Since direct addressing is incompatible with position

independence, the compiler must be forced to use either PC-relative

addressing or A5-relative addressing instead.

First, let's discuss the consequences of PC-relative addressing. The –pd
option forces the compiler to use PC-relative addressing for data in cases

where it would have used direct addressing. If you use PC-relative

addressing for data, then there are three requirements:

• The data and the code must be relocated together so that their relative

offset remains constant. This is not necessary when using A5-relative

addressing, since the base address for data (in A5) is not related to the

code.

• PC-relative global data, like directly addressed data, is not reentrant.

A5-relative data, on the other hand, can be made reentrant by

dynamically allocating the A5-relative data area. If your system

generates multiple real-time tasks executing the same code, then you

must avoid using non-constant separate data.

Application Notes 7–33

• • • • • • • •

• If your hardware uses separate code and data address spaces, then you

must also supply the –id option. This option informs the compiler that

instruction and data storage is different. Since PC-relative addressing

generates a code fetch, the compiler must avoid using PC-relative

addressing on data fetches. However, it can still use an LEA with a

PC-relative addressing mode to compute an address which it uses to

reference data. Examples are supplied below showing how this works.

If these requirements are acceptable to you, then you can achieve

position-independence for data merely by supplying the –pd option in

addition to the –ps or –pc option.

If you cannot arrange for the code and data to be relocated together then

you cannot use PC-relative addressing for data at all. In that case you must

adopt a strategy of making all non-stack data A5-relative. To be precise,

building a system in which all non-stack data is addressed via A5 can be

achieved by the following steps:

1. Remove any #pragma separate or #pragma sep_on directives from

your code. Avoid using the following compiler options: –cs , –sd , –ss ,

–sc , and –pd . This ensures that there will be no separate data in your

system.

2. Supply the –si option on all compilations. This causes string literals to be

allocated in the idata segment.

3. If the total size of data is more than 64K bytes, supply the –b5 option.

This forces the compiler to use 32-bit A5-relative offsets instead of 16-bit

offsets, and thus relaxes the 64K-byte limit on A5-relative data.

4. If the total size of code is less than 32K bytes, supply the –ps option;

otherwise supply the –pc option.

If your system requires reentrancy, then you cannot use PC-relative

addressing for non-constant data. Building a system in which all

non-stack non-constant data is addressed via A5, but constant data is

addressed via PC-relative addressing, can be achieved by the following

steps:

1. Use #pragma separate or #pragma sep_on directives only when they

affect read-only variables. You may also use –cs , which makes all

const-qualified variables separate. Do not use –sd , –ss , or –sc .

2. Supply –pd on all compilations.

3. Supply –b5 if the total size of A5-relative data is more than 64K bytes.

Chapter 77–34
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

4. If the total size of code, separate data, and string literals is less than 32K

bytes, supply the –ps option. Otherwise, supply the –pc option.

Whatever method you choose, the compiler's run-time library must be

rebuilt using these same procedures. See the Run-Time Library appendix

of the Reference Manual for details about how to recompile the run-time

library. The run-time library sources do not have any non-constant

separate data, but it does have both read-write A5-relative data and

constant separate data.

The A5-only strategy is probably the most efficient approach if there is

less than 64K bytes of A5-relative data. The 16-bit A5-relative addressing

mode is quite efficient. However, if there is more than 64K bytes of

A5-relative data, then the –b5 option is necessary, and this imposes a

significant performance penalty. In that case it might be better to try to

keep the A5-relative data area under under 64K by using some separate

data and/or allocating string literals outside the A5-relative data area.

Here are some examples which should make it more clear how these

various methods and options work. Consider these declarations and

assignments:

#pragma separate s
long s;
long a;
s = a;
a = s;

Application Notes 7–35

• • • • • • • •

Here are some typical code patterns which might be generated for these

assignments under various combinations of options. Note that PC-relative

addressing may not be used for destination operands, and that –id means

that PC-relative addressing may not be used for source operands either.

Also, the 68000 target does not support 32-bit offsets in addressing modes,

so these addressing modes must be simplified before they can be used.

The actual addressing modes being used are shown, as well as the total

count of bytes and cycles. Cycles counts were obtained by adding together

the �cache case" for the 68020 processor. Timing would be different on

other processors. The actual code sequences used by the compiler in any

given program would depend on surrounding context and other compiler

options.

Default options: 16 bytes, 17 cycles:

MOVE.L _a–data(A5),_s d16(An),d32 8/10
MOVE.L _s,_a–data(A5) d32,d16(An) 8/7

–pd , 68020: 22 bytes, 38 cycles:

LEA (_s,PC),A0 (d32,PC),An 8/14
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
MOVE.L (_s,PC),a–data(A5) (d32,PC),d16(An) 10/16

–pd , 68000: 26 bytes, 36 cycles:

MOVE.L #_s–*–8,D0 i32,Dn 6/6
LEA *+2(PC,D0.L),A0 d8(PC,Dn),An 4/6
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
MOVE.L #_s–*–8,D0 i32,Dn 6/6
MOVE.L *+2(PC,D0.L),a–data(A5) d8(PC,Dn),d16(An)
 6/10

–pd , 68020, –id : 24 bytes, 33 cycles:

LEA (_s,PC),A0 (d32,PC),An 8/14
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
LEA (_s,PC),A0 (d32,PC),An 8/14
MOVE.L (A0),a–data(A5) (An),d16(An) 4/7

Chapter 77–36
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

–pd , 68000, –id : 28 bytes, 39 cycles:

MOVE.L #_s–*,D0 i32,Dn 6/6
LEA *–6(PC,D0.L),A0 d8(PC,Dn),An 4/6
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
MOVE.L #_s–*,D0 i32,Dn 6/6
LEA *–6(PC,D0.L),A0 d8(PC,Dn),An 4/6
MOVE.L (A0),a–data(A5) (An),d16(An) 4/7

–pd , –ps : 14 bytes, 20 cycles:

LEA _s(PC),A0 d16(PC),An4/4
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
MOVE.L _s(PC),a–data(A5) d16(PC),d16(An)6/8

–pd , –ps , –id : 16 bytes, 23 cycles:

LEA _s(PC),A0 d16(PC),An 4/4
MOVE.L _a–data(A5),(A0) d16(An),(An) 4/8
LEA _s(PC),A0 d16(PC),An 4/4
MOVE.L (A0),a–data(A5) (An),d16(An) 4/7

–b5 , 68020: 24 bytes 34 cycles:

MOVE.L (_a–data,A5),_s(d32,An),d32 12/18
MOVE.L _s,(_a–data,A5)d32,(d32,An) 12/16

–b5 , 68000: 28 bytes, 33 cycles:

MOVE.L #_a–data,D0 i32,Dn 6/6
MOVE.L (A5,D0.L),_s d8(An,Dn),d32 8/12
MOVE.L #_a–data,D0 i32,Dn 6/6
MOVE.L _s,(A5,D0.L) d32,d8(An,Dn) 8/9

Here are some of the things this table demonstrates:

• All the position-independent methods impose some penalty in size or

speed or both.

• The A5 + 16-bit offset and PC + 16-bit offset addressing modes are

very efficient. However, the A5 + 16-bit mode is more applicable. It

can be used as source or destination, and only imposes a limit of 64K

bytes on data size. The PC + 16-bit mode can only be used as a

source, and even then only if the –id option is absent, and it imposes

a limit of 32K bytes on the total amount of code and data.

• All the other addressing modes are larger and slower, especially on the

68000 target.

Application Notes 7–37

• • • • • • • •

The choice of whether to use A5-relative addressing or PC-relative

addressing for data may also be influenced by issues of reentrancy and

storage management. Generally speaking, if you have one program which

may be reentered, then A5-relative data will be private (unshared), while

PC-relative data will be public (shared). If your application require shared

data, then you must support some PC-relative data. If your application

requires private data, then you must support some A5-relative data. All

things being equal, the best strategy is probably to have the constant data

be shared, and the non-constant data be private. This avoids unnecessary

duplication of constants.

If your system separates code and data into two different address spaces,

then it may be difficult for you to cause data to be relocated together with

code. In that case you cannot use PC-relative addressing for data, and

must instead use the pure A5-relative strategy.

7.6.4 POSITION INDEPENDENCE AND DATA

INITIALIZATION

In C, the initial value of a global or static variable must be a constant.

Addresses of global or static variables, string literals, and functions are all

considered to be constant. In a position-independent world, such

addresses are only run-time constants, not link-time constants. In fact, in a

program which dynamically allocates the A5-relative data area, addresses

of A5-relative data items are also not really constant.

This creates special problems for data initializations which involve

addresses. For example:

char *p = ”abc”;
char **q = &p;

Here �p" is supposed to be initialized with the address of the string of

characters �abc ", and �q" is supposed to be initialized with the address of

�p". Under position-independence, the only way such initialization can be

performed is with run-time code, because the addresses of �abc " and �p"

are not known until the program begins execution. When the

position-independent code options are present, the compiler will emit a

warning for such initializations:

Address initialization not position–independent
(Warning only)

Chapter 77–38
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

The only way such initializations could be made to work is if the loader

program adjusts these initializations when the proper addresses become

known. Of course, if the loader were capable of this, then

position-independence would not be required at all. Assuming the loader

is not capable of adjusting these initializations, the only other strategy is to

avoid using these kinds of initializations.

If you have an address initialization, the best strategy is to replace the

initialize address value with 0 (null pointer), and then assign the correct

address value with an assignment statement which would be executed

somewhere before the first reference to the variable. Your �main" routine

would be a good spot to put such assignments.

7.6.5 BUILDING A POSITION-INDEPENDENT SYSTEM

There are many ways to build position-independent systems. The

following example describes one way of doing it, but there are many

alternatives. In this example, we discuss building a system consisting of a

root portion which will be in the initial system load and two collections of

subroutines which would be loaded dynamically.

To allow the dynamically loaded modules to use run-time library routine

and system service routines in the root, we devised a system of special

�.h " header files.

The idea behind these special �.h " headers is to distinguish calls to the

root (which should NOT be position-independent) from calls to other

modules in the same position-independent package (which should be

position-independent). Since the root does not move with the

position-independent module, we want calls to the root to always go to

the same place. Note that we do not allow calls from one

position-independent package to another.

We placed these special headers in a separate directory which we name

with a –S option ahead of the standard run-time library when compiling

our position-independent code. Here is an example showing what these

special headers look like:

_CASM int printf(char *p, ...) {
XREF _printf
JSR _printf

}

Application Notes 7–39

• • • • • • • •

These headers redefine the normal C library routines as in-line assembly

language routines consisting only of a non-position-independent call. This

�trick" allows us to code ordinary-looking calls to the root, but still get the

code we require.

The data usage pattern for our application did not present any special

problems. Each position-independent module had its own private data,

and did not contain any references to the data in the root. Thus we were

able to adopt a relatively simple convention for data. All the data

belonging to each position-independent module will be made separate. It

will be collected together in a single segment which will become part of

the position-independent unit and will move with it as it is relocated. It

will be accessed via PC-relative addressing.

Data in the root will be A5-relative. Since the run-time library routines are

only called from the root, we do not need to rebuild the run-time library

to make it position-independent.

Here are the steps we used to build this system:

1. Compile all the root modules with no special options.

2. Compile all the dynamically loaded modules for the first package. We

supply the special header files via –S, and we make sure that there are no

address initializations anywhere in this source. We add the –sc p1data
option to make all data separate, in data segments of class p1data . We

also supply –ps and –pd , to make the code position-independent and the

(separate) data PC-relative. Finally, we add –cc p1code to assign a

uniform class name for all the code in these modules.

3. Compile all the dynamically loaded modules for the second package. We

supply the same options as in step 2, except that we use –sc p2data and

–cc p2code instead of –sc p1data and –cc p1code . This separates

the code and data for this package from the code and data for the first

package.

4. Link all modules together into a single .ab file. Use use locator commands

to control the placement of segments in target memory. Our goal is to

locate all the code and data in the each position-independent package in

its own address range. It doesn't matter much what address range we use,

because the program will not actually be loaded at that address. The

following locator commands cause the first position-independent module

to be located between addresses 100000 and 150000 (hex), and the second

module to be located between addresses 200000 and 250000 (hex):

Chapter 77–40
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

LOCATE ({p1code} {p1data} : #100000 TO #150000);
LOCATE ({p2code} {p2data} : #200000 TO #250000);

We locate the root code and data in the range of addresses where it will

actually run. In our target system, we plan to have ROM in the address

range between 0 and 20000 (hex). We make sure that only root code and

constant data will be placed in this area. We plan to have RAM in the

address ranges above 20000 (hex). We make sure that root data will be

located in this area. Here are the locator commands that will do this:

LOCATE ({code} {constant} : #0 TO #20000);
LOCATE ({data} : AFTER #20000);

5. Once the link is finished, we format the resulting .ab file. We want to

form three hex files: one for the root and one for each

position-independent module. There are several ways to do this. One is to

tell the formatter to format a particular address range. Another is to tell the

formatter to include a named class of segments, excluding all others.

Another is to tell the formatter to exclude a named class of segments,

including all others. Here is an example showing how to extract the first

position-independent module by including only the segments in class

p1code and p1data :

form module.ab –ic p1code p1data –o p1.hex

Here the –ic option specifies the classes of segments to include. Here is

an example that extracts the root by excluding both position-independent

packages:

form module.ab –ec p1code p1data p2code p2data
 –o root.hex

Here the –ec option specifies the classes of segments to exclude. Here is

an example that extracts the second position-independent package by

specifying the address range containing that module (100000 to 150000

hex):

form module.ab –a 100000 –w 50000 –o p2.hex

Here the –a option defines a starting address, and the –w option defines a

size. So this command generates a download file that represents the values

between hex 100000 and 150000.

Application Notes 7–41

• • • • • • • •

7.6.6 SOME ADDITIONAL HINTS

If our application did have sharing of data between the root and the

position-independent modules, then our approach would have been

slightly different. First we would not use the –sc option when compiling

the position-independent modules. By using –sc , we are telling the

compiler that all data is separate. This is not the case anymore, since the

compiler must be told that the shared root data is A5-relative.

We can still make the position-independent data separate, but we would

have to use the #pragma separate or #pragma sep_on directives

rather than command line options to do it. Alternatively, we could make

the position-independent data A5-relative. However, this would mean that

this data would now be located in the root. It might be important to save

valuable space in the root by having the data belonging to the

position-independent module located with the position-independent

module, outside the root.

Chapter 77–42
C
O
D
E

7.7 GETTING THE BEST CODE FOR YOUR

APPLICATION

The compiler has many options which affect optimization. Most of these

options disable optimization in order to make the code easier to debug.

However, there are circumstances where tradeoffs must be made. In these

cases the right choice depends on your particular application. This

application note describes the issues involved to help you make the best

choices.

7.7.1 CODE SIZE VERSUS EXECUTION SPEED

The first thing to consider is whether your application should be optimized

for execution time or code size. The –ot option directs the compiler to

use any means necessary to optimize for time, and the –os option directs

the compiler to optimize for size. The default behavior is to optimize for

time, but in moderation. Certain very space-intensive optimization

techniques, such as loop unrolling, are not enabled by default, only under

–ot .

For most applications both code size and execution speed are important.

Usually the best strategy in these cases is to identify which modules are

executed most often and compile them to optimize execution time. Most

modules are executed infrequently, and they can be optimized for code

size. The conventional wisdom, sometimes referred to as the �90-10" rule,

is that 90% of the time is spent executing 10% of the code.

7.7.2 IF STATEMENTS

Suppose you have an if statement with an else clause:

if (expr) {
true_clause;

} else {
false_clause;

}

Application Notes 7–43

• • • • • • • •

This generally compiles into code that looks like this:

test expr
branch on condition to false clause
true clause
branch unconditionally around false clause
false clause

From this example, you can see that you are better off putting your more

frequently executed code in �false clause". This is because execution of

the �false clause" requires one branch-taken, where execution of the �true

clause" requires one branch-not-taken and one branch-taken. This is

especially true for the MC68040, which favors branch-taken over

branch-not-taken.

7.7.3 USING INTEGER DATA

There are a number of coding techniques which can be used when

dealing with integer variables. On the one hand, one can take care to

declare each variable with the smallest type which can hold all the values

you expect to store in that variable. Alternatively, you can declare all your

integral variables as 32-bit integers. Which is best?

The strategy of using all 32-bit integers avoids generating any code to

sign-extend 16-bit values to 32 bits. These operations would otherwise

occur whenever 16-bit variables are combined with 32-bit variables.

However, there are a number of inefficiencies in 32-bit variables.

On the 68K family processors, 32-bit multiply and divide operations are

very much slower than 16-bit multiply and divide. In fact, the 68000,

68010, and 68302 processors have no long multiply or divide instruction,

so such operations are done out-of-line in a library routine. Naturally you

will want to avoid such operations whenever possible.

The compiler does optimize divide and mod by powers of two and most

multiplications by constants. For example, multiplication by four is

performed using a left shift, not a multiply instruction.

Another important fact is that 32-bit constant operands are considerably

more expensive than 16-bit constant operands. In fact, on all processors

but the 68040 and 68EC040, this sequence:

MOVEQ.L #100,D0
MOVE.L D0,(A0)

Chapter 77–44
C
O
D
E

is actually smaller and faster than this sequence:

MOVE.L #100,(A0)

Of course, this simplification can only be performed if the value of the

constant is between -128 and +127. Even so, this shows how slow the

32-bit constant operand is: you can run a whole extra instruction in less

time than the difference between a constant operand and a register

operand.

For these reasons, it is generally more efficient to use 16-bit variables than

32-bit variables. However, there is no further advantage to using 8-bit

variables instead of 16-bit variables. The cost of any operation is the same

whether it is done in 8 bits or 16 bits. In fact, the 8-bit operations usually

are more expensive, because of the additional sign-extension operations

which can occur.

In summary, we recommend:

• Only use byte variables in large arrays when the savings in data size

make them worthwhile. Local variables should always be at least 16

bits wide.

• Try to avoid combining 16-bit integers with 32-bit integers. For

example, suppose you have two counters which will be added

together, and one of them must be 32 bits wide. Then it is probably

better to make the other counter 32 bits wide also.

• Avoid 32-bit multiply and divide operations whenever possible.

7.7.4 SIZE OF INT DATA TYPE (68K ONLY)

The 68K compiler allows you to determine the size of the built-in int
data type (by default the size of int is 16 bits). It is of course possible to

declare integers of any size, whether you use –L or not. For example, you

can use #define 's like these:

#define INT32 long
#define UINT32 unsigned long
#define INT8 signed char
#define UINT8 unsigned char

If you use –L , you would complete the set with these #define 's:

#define INT16 short
#define UINT16 unsigned short

Application Notes 7–45

• • • • • • • •

If you do not use –L , you would use these #define 's instead:

#define INT16 int
#define UINT16 unsigned int

However, even if you use #defines like these everywhere in your program,

there are still some differences between –L programs and non-�–L"

programs. If you are using a processor with a 32-bit data bus, it is

probably best to use the –L option, which makes int 32 bits wide. This is

a rather subtle point, and depends on close reading of ANSI C.

The biggest different is in parameter passing. In C, all integral arguments

smaller than int are widened to int before they are pushed onto the

stack. Thus if you compile with –L , then you will always pass integers as

32 bits. If you compile without –L then you will pass small integers as 16

bits.

Passing arguments as 16 bits saves some stack space, and makes better

code for passing small integer constant arguments. However, it has two

distinct disadvantages:

• The stack may become misaligned:

This is only an issue with processors having a 32-bit data bus. On

these processors, a fullword access to a fullword-aligned address

executes faster than a fullword accesses to a non-fullword-aligned

addresses. If an odd number of parameter words are pushed on the

stack, then the next frame will be misaligned, causing inefficient

accesses to variables on the stack. This is not an issue for processors

having a 16-bit data bus, because word alignment is just as fast as

fullword alignment on those processors.

• Procedure call mismatch errors can occur:

If you have a procedure which expects a long (32-bit) parameter, and

you accidently pass it an argument of type int , then only 16-bits will

be pushed on the stack if –L is not supplied. This would cause the

code to execute incorrectly. These errors can be avoided by using

function prototypes, of course. However, if you don't always use

prototypes, then you must code like this:

f ((INT32)6);

OR:

f (6L);

Chapter 77–46
C
O
D
E

Another difference between –L and non-�–L" compilation is the semantics

of 16-bit arithmetic. Suppose you add two 16-bit integers and store the

result in a 32-bit integer. Under –L , C says that you sign-extend both

16-bit integers to 32 bits and then add them as 32-bit integers. Under

non-�–L", C says that you add them as 16-bit integers, and then

sign-extend the result to 32 bits. These two sequences give the same

answer if the result is in range for a 16-bit integer. If the answer is not in

range, then the –L sequence will compute the correct answer and the

non-�–L" sequence will truncate.

Generally speaking, the –L sequence is to be preferred, because it always

gets the right answer. However, the non-�–L" sequence is more efficient.

If you add two 16-bit integers and store the result in a 16-bit integer, then

both the –L and non-�–L" cases would generate the same code: add the

two 16-bit integers as 16-bit integers. Any overflow would be truncated

away, so this is legal.

In summary:

• The default (not –L) compilation model is likely to be more efficient

for 16-bit operations, but it can be more error-prone. Operations done

in 16 bits may cause destructive overflow, and more kinds of

parameter-argument mismatch errors are possible.

• The –L compilation model is probably better for the 68020, 68030,

68040, 68060 and EC-series processors because it guarantees that the

stack will remain fullword aligned.

7.7.5 COMPILATION MODELS FOR DATA

The compiler supports several different strategies for addressing data.

Although the default models are usually best, it is sometimes possible to

improve efficiency by using a different model.

First, consider data on the stack. Normally, the compiler uses a frame

pointer (A6) to address variables on the stack. This straightforward scheme

is used by almost all 68K-family compilers. However, it does consumes a

valuable register (A6), and requires a relatively expensive instruction pair

to set up A6 (LINK/UNLK).

Application Notes 7–47

• • • • • • • •

The alternative is to use the stack pointer (A7) to address variables on the

stack. This is very much more complicated for the compiler, because A7

moves around every time something is pushed on the stack. It also makes

it just about impossible for the debugger to keep track of what is going

on, and it makes it harder to read and understand the code. Nevertheless,

this does lead to more efficient code. This �no frame pointer" strategy is

selected by using the –n6 option. Code compiled with –n6 can be

successfully combined with code that is compiled without –n6 , so it is not

necessary to rebuild the run-time library to use –n6 .

Next, consider the non-stack data. Normally, the compiler uses the �16-bit

displacement from A5" addressing mode, �d16(A5) ", to access non-stack

data. Variables marked as �separate", either by the �#pragma separate "

directive or various compilation options are addressed via 32-bit direct

addressing, �d32 ".

The �d16(A5) " addressing mode is smaller than the �d32 " addressing

mode, and slightly faster in most cases. However, this strategy does

consume the valuable A5 register. The �no-A5" strategy may be very much

better if your application spends a lot of time in subroutines that can use

the additional A5 register effectively.

The �no-A5" compilation strategy is relatively more effective on the 68040

and the 68EC040 processors. This is because these processors execute the

�d32 " addressing mode at the same speed as �d16(A5) ", rather than

slightly slower. So there is no speed advantage gained by using A5. In fact,

there is one case where using �d32 " over �d16(A5) " yields a speed

advantage. The most common case is where the address of a non-stack

variable is assigned to a pointer which is not in a register. If the variable is

separate, then you get this instruction:

MOVE.L #d32,pointer

If the variable is A5-relative, then you get these two instructions:

LEA.Ld16(A5),A0
MOVE.L A0,pointer

On a 68040, the first sequence is faster. On a 68020 they are equally fast.

Thus, on a 68040, the �no-A5" strategy can be expected to to run slightly

faster than the default �A5" strategy.

Chapter 77–48
C
O
D
E

To use the �no-A5" compilation strategy, supply –n5 and one of –sd , –ss ,

or –sc . This makes all your non-stack data �separate", i.e., directly

addressed, and tells the compiler that it may use A5 for other purposes.

Note that you must also build yourself a �no-A5" run-time library. This

process is described in detail elsewhere in the User's Manual.

The �no-A5" strategy does have other implications. For example,

A5-relative data can be dynamically allocated, where separate data must

be statically allocated. This consideration may prevent you from using the

no-A5 strategy for your application.

Application Notes 7–49

• • • • • • • •

7.8 SUPPORT FOR THE ON-BOARD PERIPHERALS OF

THE 68332, 68340, AND 68360

The run-time libraries contain many files to support access, via C or

assembly language, to the on-board peripheral units of the 68332, 68340,

and 68360 processors. Access to the peripheral components is achieved

through the use of C and assembly language include files. These files are

listed below:

CPU Peripheral
 C
 Include
 File

Assembly Language
Include File

68332 System Integration Module sim30.h sim30.h68

68332 Queued Serial Module qsm30.h qsm30.h68

68332 Standby RAM ram30.h ram30.h68

68332 Timer Processor Unit tpu30.h tpu30.h68

68340 System Integration Module sim40.h sim40.h68

68340 Direct Memory Access
(DMA) Controller Module

dma40.h dma40.h68

68340 Serial Module sio40.h sio40.h68

68340 Timer Modules tim40.h tim40.h68

68360 System Integration Module sim60.h sim60.h68

68360 Communication Processor
Module

cpm60.h cpm60.h68

68360 Dual–Port RAM dpram60.h dpram60.h68

Table 7-10: Include files

In the C include files listed above, several C types are used to describe the

components of the various peripherals. These C types are defined in the

library include file stypes.h . You do not need to include this file

yourself, because it is included by the C include files listed above. The

fundamental types defined in stypes.h are _BYTE (an unsigned char

type), _WORD (a 16-bit unsigned integer type), and _DWORD (a 32-bit

unsigned integer type).

Chapter 77–50
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

Each C include file above defines a structure whose fields correspond to

the particular peripheral unit's components. As an example, to access the

Module Control Register (MCR) of the 68332's System Integration Module

(SIM), you might have code like the following:

#include ”sim30.h”
...
if (_SIM.MCR == init_value) {
...
}

Each assembly language include file uses EQU statements to define the

peripheral components as offsets from the peripheral's base address. Thus,

to access the Module Control Register (MCR) of the 68332's System

Integration Module (SIM) via assembly language, you might have code like

the following:

include ’sim30.h68’
...
move.w __MCR,d0
...

The C include files for the 68340's Serial Module (sio40.h) and for the

68360's Dual-Port RAM (dpram60.h) are a little more complicated.

In the case of the 68340's Serial Module, there are some components

which are read-only, some which are write-only, and some which are

read/write. Some of these read-only and write-only components are

mapped into the same location. The components which can be both read

and written are accessed through the external variable, _SIO . Those which

are read-only are accessed through either _SIO or _SIOR; the

components which are write-only are accessed through _SIOW. For

example, the following names all reference a register that is at located

0x11 bytes from the start of the SIO module:

_SIO.SRA –– Status Register A (read–only)
_SIOR.SRA –– Status Register A (read–only)
_SIOW.CSRA–– Clock Select Register A (write–only)

However,

_SIO.CSRA –– Clock Select Register A (write–only)

is illegal since CSRA is a write-only component; it is not a field of the

_SIO structure.

Application Notes 7–51

• • • • • • • •

In the case of the 68360's Dual-Port RAM, the memory map can be used in

different ways so it is defined using multiple levels of structures and

unions. Here are some sample references to components of the Dual-Port

RAM:

#include ”dpram60.h”

 ...

i1 = _DPRAM.USR_DATA[1]; /* User Data / BDs / Microcode */

/* Program */

i2 = _DPRAM.SCC1.UART.TBASE; / * UART–mode SCC1 Tx BD Base */

/* Address */

i3 = _DPRAM.SCC2.HDLC.C_MASK; /* HDLC–mode SCC2 CRC Constant */

i4 = _DPRAM.SCC1.BISYNC.BDLE; /* BISYNC–mode SCC1 BISYNC DLE */

/* Character */

i5 = _DPRAM.SCC1.TRANS.TSTATE; /* Transparent–mode SCC1 Tx */

/* Internal State */

i6 = _DPRAM.SPI.RBASE; /* SPI Rx BD Base Address */

i7 = _DPRAM.TIMER.R_TMR; /* RISC Timer Mode Register */

i8 = _DPRAM.IDMA1.ISTATE; /* IDMA Internal State */

i9 = _DPRAM.SMC1.UART.TBASE; /* UART–mode SMC1 Tx BD Base */

/* Address */

i10 = _DPRAM.SMC1.TRANS.RBASE; /* Transparent–mode SMC1 Rx BD */

/* Address */

i11 = _DPRAM.SMC1.GCI.CI_RxBD; /* GCI–mode SMC1 C/I Channel Rx BD */

...

Code which uses any of these C or assembly language include files (and is

linked with the appropriate run-time library) is automatically linked with a

target-specific object module which defines a segment containing entry

points for that target's peripheral units. For the 68332, this object module is

from the run-time library file mc68332.68k . For the 68340, the run-time

library file is mc68340.68k . For the 68360, the file is mc68360.68k .

On reset, the 68332 peripheral areas are mapped into 68332 memory

starting at address 0xFFFA00. However, by clearing the MM bit in the

System Integration Module (SIM) Module Control Register (MCR), you can

remap them into addresses starting at 0x7FFA00. If you choose to do this,

you must also change the absolute location of the MC68332_SUBSYSTEMS
segment defined in the mc68332.68k module.

If the 68340 or 68360 is NOT being used with the corresponding debug

monitor (e.g., 340bug or 360bug), then the peripheral areas may be

mapped into any 4K-byte aligned address. The address of the area used

must be written into the Module Base Address Register (MBAR) before the

on-chip peripherals can be used. For the 68340, the MBAR is set up by the

68340 version of pmain , defined in the file pmn340.68k . For the 68360,

the MBAR is set up by the 68360 version of pmain , defined in the file

pmn360.68k .

Chapter 77–52
A

P
P

L
IC

A
T

IO
N

 N
O

T
E

S

If the 68340 or 68360 is being used with the corresponding debug monitor,

the MBAR is already set up by the monitor. Thus, the 68340 and 68360

libraries that should be used with a debug monitor do not set the MBAR.

Instead, the mc68340b.68k and mc68360b.68k files define an absolute

segment containing the entry points for the on-board peripherals.

For more information, refer to the run-time library files mentioned above.

A

C LANGUAGE
SPECIFICATIONS

A
P

P
E

N
D

IX

Appendix AA–2
C

 L
A

N
G

U
A

G
E

A

A
P

P
E

N
D

IX

C Language Specifications A–3

• • • • • • • •

This appendix discusses preprocessor extensions, in-line assembly, ANSI C

function prototypes, the const type qualifier, the volatile type qualifier, and

implementation-defined behavior.

1 INTRODUCTION

The 68K/ColdFire C language consists of ANSI standard C, plus some

extensions described in this appendix. This appendix also focuses on

some of the new parts of ANSI C and how they interact with various

compiler options. The final section describes how some aspects of ANSI C

that are �left to the implementation" have been done by the 68K/ColdFire

compiler.

There are some aspects of ANSI C which are only supported in the

presence of compiler options. This is done in the interest of backwards

compatibility and code quality. For example, ANSI C requires that the size

of the �short" data type to be at least 16 bits long. By default the 68K

compiler (not ColdFire) maps the �short" data type into an 8-bit integer.

Therefore the 68K compiler is not ANSI compliant unless one of –L (16-bit

shorts, 32-bit ints) or –D s2s (16-bit shorts) is supplied. There are two

other cases discussed below where the default behavior of the compiler

does not agree with the ANSI standard, but these are unlikely to affect

most users. See the C Compiler chapter for more details.

ANSI C permits floating-point expressions to be computed in greater

precision than their types would indicate, but it does not permit

floating-point variables to be stored in greater precision than their type.

This requirement has no special implications in the software floats case.

However, in the hardware floats case this requirement makes

floating-point register variables illegal, since 68881/68882 floating-point

registers hold 80-bit extended precision values. Strict adherence to this

rule is quite expensive in code quality terms, so it is only provided if the

–sp option is supplied.

Finally, ANSI C permits redundant declarations of the form:

int i;
int i = 1;

Appendix AA–4
C

 L
A

N
G

U
A

G
E

to appear within a single module. Since the 68K/ColdFire compiler

segregates initialized from uninitialized data via the idata /udata
segments, this requirement forces the compiler to delay emitting data

allocation statements for uninitialized variables until the end of the

compilation. This requirement slows down the compiler and has the

possibly undesirable side effect of emitting uninitialized declarations in a

different order than their original declarations.

This change should not affect legal C programs, but in practice it may

cause programs to execute differently. For this reason this kind of

declaration is only permitted if the –dd option is supplied.

Note that these two declarations would not be legal if they were compiled

in separate modules and linked together. This is not a violation of the

ANSI C standard. The 68K/ColdFire compiler implements the �strict def-ref

model" of external names. Every external name must have exactly one

module containing a �defining declaration", i.e., one without the extern
keyword. All other modules must contain only �referencing declarations",

i.e., ones with the extern keyword. In that spirit, duplicate declarations

of the form permitted by the –dd option are considered bad form but

legal.

2 PREPROCESSOR EXTENSIONS

The 68K/ColdFire C preprocessor is functionally equivalent to the standard

ANSI C preprocessor, and includes the additional features listed in the

table below:

 Command Function Default

#list on List following lines until #list
off (or EOF)

list on

#list off Disable listing until
#list on (or EOF)

#list page Start new page; print page header

#list skip n Put n blank lines in listfile n = 1

C Language Specifications A–5

• • • • • • • •

DefaultFunction Command

#list title string string becomes the page header.
Also does a
#list page command

null title

#pragma separate...
#pragma sep_on
#pragma sep_off

See the Pragma Separate (Option
Separate) application note

Table A-1: Extensions

The #pragma separate statements can be equivalently coded as

#option separate .

3 IN-LINE ASSEMBLY LANGUAGE

In-line assembly language is a language extension which permits assembly

language code to be inserted into the code generated by the C compiler.

This is similar to calling an out-of-line routine coded in assembly

language except that the call and return overhead is eliminated.

Normally the 68K compiler produces an object module directly rather than

generating assembly language and assembling it into an object module as

with the ColdFire compiler. However, when in-line assembly language is

present, an assembly step must be used to process the inserted assembly

language source. The –ia command line option directs the 68K compiler

to generate assembly language rather than an object module, and then to

invoke the assembler to generate the final object module. This option

makes the compiler run more slowly, but it is required when in-line

assembly language insertions are used.

The simplest form of in-line assembly is provided by the _ASMLINE
built-in function. By coding:

_ASMLINE(” string ”);

you cause the compiler to emit the indicated line directly into the

generated assembly language (the compiler will append a newline

character). This construct may appear within or between procedures.

Ordinary C escape processing is NOT performed on the assembly

language string, so you can't embed newlines using \n . Also, remember

that in assembly language only labels can begin in column 1, so you

probably will want to put a leading blank in your string. The resulting

code is otherwise ignored by the compiler.

Appendix AA–6
C

 L
A

N
G

U
A

G
E

Many other compilers support this feature using asm in place of

_ASMLINE. The compiler uses _ASMLINE because the ANSI C standard

says that C programs should to be able to use asm as an identifier. If you

prefer asm, either add �#define asm _ASMLINE " to your program or use

the equivalent command line option, �–P asm=_ASMLINE".

This feature is very simple and straightforward, but it has several

weaknesses. First, it cannot receive arguments or return results to the

surrounding C code. Second, because it is completely ignored by the

optimizer, it must not cause side-effects (such as modifying registers and

non-volatile global variables) which could invalidate the results of

optimization. In cases where more flexibility is needed, a pre-defined

in-line assembly insertion must be used.

An in-line assembly language insertion is defined as a kind of

pseudo-function whose body is coded in assembly language. This

pseudo-function is called an �asm macro." An assembly language macro

declaration is preceded by keyword _CASM or _ASM, and its body is coded

in assembly language, but otherwise it obeys the same C syntax rules as an

ordinary function declaration. It may have a function prototype. There are

two restrictions: _ASM macros may not have more than 16 parameters, and

neither _ASM nor _CASM macros may return a value of type aggregate or

(except under the hardware floating-point option) double.

The two forms, _CASM and _ASM, reflect two alternate methods of

parameter passing. In the _CASM method, parameter setup is performed

exactly as it would be before an out-of-line call. That is, the parameters

are evaluated one by one and pushed onto the stack. In the _ASM method,

parameter setup is performed by a different method which is intended to

minimize the parameter setup code. The exact method used is described

below in more detail. In general, the _CASM method is easier to use, but

the _ASM method is more powerful and may lead to more efficient object

code.

An assembly language macro is invoked by using the ordinary C syntax for

a procedure call, giving the name of the assembly language macro as the

function being �called." The compiler replaces the call instruction (JSR or

BSR) that would be generated with the body of the assembly language

macro.

C Language Specifications A–7

• • • • • • • •

Here is an example:

_CASM void disable_interrupts() {
 or #$0700,sr
}
_CASM void enable_interrupts() {
 and #$f8ff,sr
}
f() {
 disable_interrupts();
 ...
 enable_interrupts();
}

This example shows two assembly language macros. One of them enables

interrupts and the other disables interrupts, by changing the interrupt

priority mask in the status register. The �call" to disable_interrupts
causes the �or to status register" instruction to be inserted into the body of

the procedure f immediately after the prologue sequence. The �call" to

enable_interrupts causes the �and to status register" instruction to be

inserted into the body of the procedure f immediately before the epilogue

sequence. Therefore the procedure f would run with interrupts disabled.

Generally speaking, all the rules for interfacing C and assembly language

apply equally well to assembly language macros. In particular, the same

set of registers can be modified and return values are transmitted in the

same way. See the Linking C and Assembly application note for a detailed

explanation of these rules. In fact, assembly language routines originally

coded to be called from C can be converted to _CASM assembly language

macros in a very straightforward way.

In-line assembly language must be used carefully, especially if the

optimizer is being used. The optimizer assumes that in-line assembly

language insertions are entered at the top and exit (if at all) at the bottom.

In particular, an in-line assembly insertion must not contain jumps out of

that insertion and into another insertion. It also must not write into the

stack storage belonging to the �calling" routine.

An assembly language macro represents a sequence of instructions that are

repeated at every call. It therefore provides an in-line procedure facility.

As with any kind of in-line procedure facility, this can represent a

space/time tradeoff: there is no call overhead, so it is faster, but the entire

body is repeated each time, so it may be larger. An assembly language

macro thus has no address, and so it cannot be invoked through a �pointer

to procedure" variable as a normal subroutine can.

Appendix AA–8
C

 L
A

N
G

U
A

G
E

A detailed description of the syntax of in-line assembly macro definitions

appears at the end of this section. Next, we will describe the two methods,

_CASM and _ASM, and discuss their differences.

3.1 THE _CASM METHOD

The _CASM method is the most straightforward method of in-line

assembly. As was mentioned above, the code generated for a call to a

_CASM macro is exactly the same as would be generated for an out-of-line

call. Therefore the parameters will be in a predictable place. On entry to

the macro, the first parameter will be on top of the stack (pointed to by

A7). Note that an out-of-line routine would find its return address on top

of the stack, and the first parameter four bytes higher up.

Here is an example of a simple assembly language routine coded to be

called from C:

section S_f,,”code”
xdef _setvbr
_setvbr equ *
move.l 4(a7),d0
movec.l d0,vbr
rts
end

This routine expects one 4-byte parameter, and stores that parameter into

the VBR register. Its entry point is _setvbr , and it is stored in a segment

named S_setvbr . This definition is consistent with this external C

declaration:

extern void setvbr(long);

Here is the definition for an equivalent _CASM assembly language macro:

_CASM void setvbr(long value) {
move.l (a7),d0
movec.l d0,vbr

}

The parameter is now expected at (a7) rather than 4(a7) because there

will be no �return address" on the stack. Also, note that the rts (return

from subroutine) instruction is absent. The external label _setvbr has

also been removed, as has the section directive and the end directive.

Here is an invocation of this macro.

C Language Specifications A–9

• • • • • • • •

 t() {
setvbr(256);

 }

Here is the code that would result from the call:

pea.l 256
move.l (a7),d0
movec.l d0,vbr
addq.l #4,a7

The first instruction is the parameter setup for the �call," the next two are

the body of the assembly language macro, and the last instruction is the

stack cleanup that normally follows a call. It pops off the parameters that

were pushed for the call.

3.2 THE _ASM METHOD

The _ASM method is designed to allow the most efficient object code to be

generated. It not only eliminates the call and return overhead, it also

eliminates the stack cleanup after the call, and usually all of the parameter

setup code as well. On the other hand, it is harder to use.

The example shown in the _CASM example in the previous section shows

the inefficiencies imposed by a standard calling convention. The _ASM
method attempts to eliminate parameter setup code by adopting the

convention that parameters are passed �where they are." For example, if

the actual parameter was the name of a global variable, then at a _CASM
call it would be pushed on the stack, while at an _ASM call it would stay

where it is. That is, no setup code would be emitted.

This leads to the first question: how can the body of the assembly

language macro refer to its parameters? The answer is that the body of an

_ASM macro references its parameters using the syntax of 68000 family

assembly language macros. That is, \1 refers to the first parameter, \2 to

the second, and so on.

This is not enough to solve all the problems in referencing parameters.

Sometimes it is necessary to know whether a parameter is a constant, a

memory location, or a register. For example, references to constants must

be preceded by a pound sign (#) in 68000 family assembly language. Also,

some instructions require register operands, while others accept either

register or memory operands. For example, the first operand of the

MOVEC instruction must be a register.

Appendix AA–10
C

 L
A

N
G

U
A

G
E

This second problem is solved by having alternative expansions of the

macro for different kinds of actual parameters. Here is an example

showing the same setvbr example from the _CASM section recoded as an

_ASM macro:

_ASM void setvbr(long value) {
%reg value

movec.l \1,vbr
%con value

move.l #\1,d0
movec.l d0,vbr

%mem value
move.l \1,d0
movec.l d0,vbr

}

Here the %reg value line is a predicate which delimits the first

alternative expansion of the setvbr assembly language macro. This

expansion consists of all the assembly language lines up to the next

predicate, marked by %con value . The second alternative expansion

consists of all lines up next predicate, %mem value . The third alternative

expansion consists of all lines up to the right curly brace that terminates

the assembly language macro definition.

If you wish to have a null body predicate, you must insert a blank line or

a comment between successive predicates. Otherwise, the compiler will

treat the adjacent �%" lines as one predicate definition.

The compiler chooses one alternative expansion at each call, depending

on the form of the actual parameters at that call. If the actual parameter

was a register variable, then the first expansion, %reg, would be chosen. If

the actual parameter was a constant, then the second expansion, %con,
would be chosen. If the actual parameter was a memory location, then the

third expansion, %mem would be chosen. There is another predicate, %var,
which was not used here, which matches parameters of type �variable,"

that is, register or memory but not constant.

If the argument of an _ASM macro cannot be characterized as a register

variable, a constant, or a memory variable, then the compiler generates a

temporary variable, copies the actual parameter into the temporary, and

passes the temporary in its place. Memory locations accessed via pointers

or arrays subscripted by non-constant subscripts are also handled in this

way.

C Language Specifications A–11

• • • • • • • •

Here is an invocation of this assembly language macro.

 t() {
setvbr(256);

 }

Here is the code that would result from the call:

move.l #256,d0
movec.l d0,vbr

The constant parameter, 256, is not pushed on the stack before the macro

invocation, nor is it popped afterwards. This saves two instructions over

the _CASM method. On the other hand, the source for the _CASM form of

the setvbr macro was four lines long, while the _ASM form is ten lines

long, because it is necessary to code three alternative expansions. This is a

fairly typical tradeoff.

When an _ASM macro has more than one parameter, the predicates

become more complex. It is then necessary to specify the characteristics of

all the parameters in combination. For two parameters, this could require

nine alternatives (three possible types, register, constant, or memory for

both parameters). If it can be limited to two types (constant or variable),

then it would require only four alternatives. For three parameters, it could

require between eight and twenty-seven alternatives. Clearly, it is

impractical to use the _ASM method with assembly language macros that

have large numbers of parameters.

An _ASM macro must not modify its parameters. This violates the

assumptions of the compiler, and may result in incorrect optimization. For

example, the compiler may load a local variable into a register before an

assembly language macro, pass that variable to an assembly language

macro, and then use that register after the assembly language macro.

Therefore an assignment to that variable within the assembly language

macro would not have the intended effect. An assembly language macro

may modify global variables and may modify the targets of pointer

variables. If you want to modify a local variable in an assembly language

macro, you should pass its address to the macro, not its value.

Appendix AA–12
C

 L
A

N
G

U
A

G
E

An _ASM macro can freely use the scratch registers, D0, D1, A0, A4, FP0,

and FP4, without having to save and restore them. If the –ar compiler

option is used, then the _ASM macro can instead use scratch registers D0,

D1, A0, A1, FP0, and FP1. In either case, it may also use other registers, as

long as it saves them and restores them before exiting. Note however that

register parameters may be resident in these other registers. Therefore,

before overwriting any other registers, care should be taken to make sure

that no parameter could be in that register. For example, suppose an _ASM
macro wants to make use of the D2 register. If there are any parameters of

integral type, then one might be in D2 at some invocation of this macro.

The prudent course would be to move the parameter elsewhere, say, D0,

before pushing D2 and overwriting its value.

3.3 SYNTAX SUMMARY

Having given examples of each form, here is the syntax of the _CASM
and_ASM macros:

_CASM <C–style function header> {
 asm–line
 ...
}

_ASM <C–style function header> {
 predicate
 asm–line
 ...
 predicate
 asm–line
 ...
...
}

_ASM <C–style function header> {
 asm–line
 ...
}

Here asm-line is a complete line of assembly language, terminated by a

newline. It may contain any characters, but the first non-white-space

character may not be a pound sign (#), a percent sign (%), or a right curly

brace (}).

C Language Specifications A–13

• • • • • • • •

The term predicate is a complete line with the following syntax:

%mem|reg|con|var parameter [;|, parameter]...

or

%always

The percent sign must be the first non-white-space character on the line.

It is followed by a list of pairs consisting of one of the four keywords,

mem, reg , con , or var , followed by a comma-separated list of formal

parameter names. Each predicate must name all of the formal parameters

exactly once. For readability the elements of the list may be separated by

commas or semicolons. Long predicates may be continued on successive

lines, as long as each begins with a percent character.

Lines whose first non-white-space character is a pound sign are treated as

preprocessor directives and are interpreted in the normal way. In

particular, it is possible to use conditional inclusion (#if ... #endif)

inside macro definitions. However, the asm-lines inside the macro are not

scanned by the compiler. Thus, a preprocessor macro inside an asm-line
would not be expanded.

The right curly brace that terminates the body of the _ASM or _CASM
macro must be the first non-white-space character on that line.

The body of an _ASM macro is divided into a list of alternatives, each

consisting of a predicate and a list of asm-lines. When an _ASM macro is

invoked, the compiler chooses one these alternatives by comparing the

arguments at that invocation with the predicates. Each predicate that

matches the arguments is chosen. The �always" predicate always matches,

regardless of the arguments.

The macro body must follow the rules, syntax, and label restrictions

described in the Macros Operations and Conditional Assembly chapter in

the Reference Manual.

A reg condition matches if the argument is contained in one of the

following registers:

• D2 - D7

• A1 - A3

• FP1 - FP3

• FP5 - FP7

A con condition matches if the argument is a constant.

Appendix AA–14
C

 L
A

N
G

U
A

G
E

A mem condition matches if the argument is a memory location whose

address is either a 32-bit constant, a 16-bit constant plus the A5 register,

or a 16-bit constant plus the A6 register.

A var condition is equivalent to either reg or mem being true.

The compiler ensures that each argument at an _ASM macro invocation

matches one of these cases. If necessary, code will be generated to move

the argument into a temporary variable. Note that the compiler may

allocate variables and common subexpressions into registers, so it is not

always obvious which alternative will be chosen at a particular invocation.

For example, an argument like a+b might be a register if the optimizer

determined that the value a+b was useful later on in the program.

4 ANSI C FUNCTION PROTOTYPES

Function prototypes, as described in the ANSI C standard, are supported

by 68K/ColdFire compilers. Function prototypes are function declarations

and function definition headers that include a list of the data types of the

function's parameters. They are used to ensure that all calls, declarations,

and definitions of the function that are within the scope of the prototype

contain the declared number, type and order of arguments or parameters.

Function prototypes may appear in two contexts: in the headers of

function definitions, and in function-type declarations. Although function

prototypes are quite useful, they are not required. The following

description briefly summarizes the use of function prototypes. Consult an

ANSI C reference manual for more details.

4.1 CREATING FUNCTION PROTOTYPES

In an old-style definition for a function without a function prototype
the function header contains a parenthesized list of parameter names,

followed by parameter declarations.

C Language Specifications A–15

• • • • • • • •

For example:

/* Not a function prototype */
int func (param1, param2)

int * param1;
char param2;

{
/* function body */

}

An old-style declaration for this function could be:

int func(); /* Not a function prototype */

This syntax has been expanded for the creation of function prototypes. In

function definitions that act as function prototypes, a parenthesized,

comma-separated, list of parameter types and identifiers replaces the list of

parameter names and the parameter type declarations of the old-style

function definition header. As an example, the function defined above

could have been defined to include a function prototype in its header:

/* function prototype */
int func (int * param1, char param2)
{

/* function body */
}

The parameter declarations are now incorporated into the function

prototype on the first line of the function definition.

Function declaration syntax has also been expanded. In function

declarations that will act as prototypes, the function name is followed by a

parenthesized, comma separated list of parameter types and optional

identifiers.

A declaration for the function defined above, which will act as a prototype

for the function, could be:

extern int func (int * x, char y);

or

extern int func (int *, char);

These two declarations are equivalent; the identifiers x and y are ignored.

Appendix AA–16
C

 L
A

N
G

U
A

G
E

The types and numbers of the parameters listed in a function prototype

declaration should match the types and numbers of parameters in the

function definition (prototype or old-style), but the identifiers used in the

declaration prototype declaration need not match the definition.

Function prototypes may be written for functions that take a variable

number of arguments. The ellipsis notation, ``, ...'', used as the last element

in a parameter type list in a function prototype, indicates that an

unspecified number of arguments follow. At least one parameter must

precede the ellipsis in the function declaration. For example, if a function

is declared as:

int func1 (char *fmt, int num, ...);

it may be called with two or more arguments.

A function prototype with a parameter type list that consists solely of the

keyword void is used to declare a function that has no parameters.

For example, the function

int func2 (void);

has no parameters. Invoking this function with any arguments would be

incorrect.

Clearly, it is desirable to construct include files that use prototype-style

declarations for global subroutines. To facilitate this process, use the make

prototypes option, –mp. This automatically generates a header file

containing prototype declarations for all the subroutines defined in the

module being compiled. See the C Compiler chapter for more details.

4.2 CALLS TO FUNCTIONS WITH PROTOTYPES

The number of arguments in a function call must correctly correspond to

the number of parameters in an in-scope function prototype. If a

function's prototype has a void type list, there must be no arguments in

the call. If the ellipsis notation was used to define a prototype for a

function that takes a variable number of parameters, the function call

should contain at least as many arguments as there were parameters

before the ellipsis. For all other functions declared with prototypes, the

number of arguments at the call should match the number of parameters

in the prototype.

C Language Specifications A–17

• • • • • • • •

If a function prototype is in scope of a function call, the arguments are

converted, as if by assignment, to the types of the corresponding

prototype parameters. If the prototype for a function used the ellipsis

notation, this conversion is done only for parameters that were explicitly

declared in the prototype; after the ellipses, the default C promotions

(including widening of float to double) are done.

The promotion of float to double is not done if a prototype is in scope.

This provides a way for an actual float value to be passed to a function.

However, it does mean that if a function defined with a prototype has a

float parameter, then a protoytpe must be in scope at every call. In fact,

ANSI C formally requires that a prototype be in force at every call to any

procedure defined with a prototype. This is a good practice, but is not

actually required unless a float parameter is involved.

Programmers familiar with strongly-typed languages such as Pascal or Ada

are often surprised that no warning is given at an apparent type mismatch

between the actual and formal parameters. In ANSI C, prototypes cause

conversions, not checks. For example, if an integer is passed to a routine

whose prototype calls for a double, than an integer to double conversion

would occur prior to the call, just as it would at an assignment.

68K/ColdFire C compilers emit error messages when function declarations,

calls or definitions are incompatible with function prototypes that are in

scope.

There is one technicality in the ANSI C prototype rules which confuses

many people, so we will describe it thoroughly here. Suppose you have a

compilation which contains both prototype and old-style declarations for

the same procedure. ANSI C requires that they be compatible with one

another. The tricky part is the way this compatibility is checked.

Generally speaking, the rule is that the default C promotions are

performed on the non-prototype side before making the comparison. This

means that this natural looking program is in error:

extern void f1(char);
void f1(c)

char c;
{

/* function body */
}

Appendix AA–18
C

 L
A

N
G

U
A

G
E

The problem here is that the default C promotions turn char into int ,

and int is not compatible with char . This program IS correct:

extern void f1(int);
void f1(c)

char c;
{

/* function body */
}

If you think about it, this does make sense. The underlying assumption is

that a procedure defined in the old style expects to be called in the old

way, i.e., with no prototype in force at the call. When no prototype is in

force the default C promotions are applied to the arguments. Therefore an

old-style definition really expects to receive its arguments in promoted

form. A prototype, on the other hand, expects to receive its parameter in

whatever way is most efficient for its type.

As a matter of fact, the 68K/ColdFire compiler does pass char parameters

as int , even if a prototype is present. This is a small loss in efficiency, but

it is much less error-prone. In the case of float versus double however

there really is a difference; old-style definition routines expect double,

while prototype definition routines expect float.

5 OTHER ANSI C FEATURES

This section contains descriptions of:

• Adjacent String Literal Concatenation

• Trigraph Replacement

• void Pointers

• const Type Qualifier

• Stringization

• volatile Type Qualifier

• Preprocessor Additions

5.1 ADJACENT STRING LITERAL CONCATENATION

In the ANSI C standard, adjacent strings are automatically concatenated,

with a single null character appended to the end of the resulting string.

C Language Specifications A–19

• • • • • • • •

Example

char test[] = ”This ”
”is a ”
”test”;

This is the equivalent to the following assignment:

char test[] = ”This is a test”;

This addition makes it unnecessary to use the line continuation convention

to write very long string constants.

5.2 TRIGRAPH REPLACEMENT

Trigraphs let you write C programs on computers using a subset of the

ASCII character set. Trigraphs are introduced by two consecutive question

marks. The only legal trigraphs are:

trigraph is equal to

??([

??)]

??< {

??> }

??/ \

??’ ^

??= #

??– ~

??! |

Table A-2: Trigraphs

A new escape character (\?) prevents the translation of trigraph-like

constructs. For example:

trigraph form string

’’Eh\?\?!’’ ’’Eh??!’’

’’Backslash is ??/’’ ’’Backslash is \ ’’

Table A-3: Escape characters

Appendix AA–20
C

 L
A

N
G

U
A

G
E

5.3 VOID POINTERS - VOID *

The ANSI C standard states that the type void * will be the generic

pointer type. Pointers can be assigned into and from void pointers silently

and without casting. A void pointer may not be dereferenced without an

explicit cast.

Example

void * f1;
int * i1;
int i2 = 5;

i1 = &i2;
f1 = i1; /* silent assignment into a void pointer */

printf(”The integer in f1 ”
 ”is %d0”,*(int *)f1); /* example of */

/* neccessary cast */

5.4 CONST TYPE QUALIFIER

Another new feature in ANSI C is the const keyword. This keyword is

used to define a read-only type. Note that const can be used both with

object declarations and with pointer types. Here are some examples:

const double pi = 3.14159;
const double *ptr_to_const;
double d;
double *const const_ptr = &d;
double *non_const_ptr;

/* the following are now illegal */
pi = 3.14; /* assigns to constant */
const_ptr = &d; /* assigns to constant */
ptr_to_const = 3.14; / assigns to constant */
non_const_ptr = π /* ptr type mismatch */

/* these are legal */
ptr_to_const = π /* ptr types match */
const_ptr = 3.14; / value pointed to by a constant
 ptr is non–const */
ptr_to_const = &d; /* ptr to const can point to
 non_const */

C Language Specifications A–21

• • • • • • • •

The compiler ensures that objects with const -qualified types are not

modified. Objects declared with const -qualified types must therefore be

initialized. Global variables declared with const -qualified type must be

declared extern const to prevent other modules from modifying the

object.

There are two different ways to use the const keyword. The most typical

use is for true constants, such as those which might be located in ROM.

However, the const qualifier can also be used to control access to

sensitive variables. For example, it is possible to declare a variable without

the const keyword, and then provide an external declaration which

declares it extern const . This technique prevents code outside the

defining module from modifying the variable. const thus provides

support for information management.

If the only use of const is for true constants, then it is possible to direct

the compiler to segregate all const variables into a separate segment

named cdata of class {constant} . This can be done by using the –cs
compiler option. This makes it easier to locate all const variables in ROM

storage.

The –cs option has the effect of adding an implicit #pragma directive of

the following form for each const variable.

#pragma separate my_var segment cdata class constant

Note that the –cs option must not be used if const is being used for

information management. This is because the generated code will not

operate correctly if there is a mismatch between the non-separate

definition and the implicit external separate declaration created by the

option. This is a special case of the general rule that separate variables

must be declared external separate and non-separate variables must be

declared external non-separate.

5.5 STRINGIZATION

Within macro definitions, the # character is recognized as a unary

``stringization'' operator that has to be followed be a formal parameter

name. When macro expansion occurs, the # and formal name are replaced

by the corresponding actual argument enclosed in string quotations. Any

double quotes (") and backslashes (\) are automatically escaped with a

preceding backslash.

Appendix AA–22
C

 L
A

N
G

U
A

G
E

For example, the following source text:

#define STRING(a,b) printf(#a ”, ”#b)

STRING(hello,world);

will become, after stringization

 printf(”hello””,””world”);

which will, after string concatenation, become

printf(”hello, world”);

5.6 ANSI C PREPROCESSOR ADDITIONS

The following sections describe valid ANSI C preprocessor additions.

5.6.1 NEW PREDEFINED MACROS

There are three new predefined macros, defined by the draft proposed

ANSI C standard. These macros are:

__STDC__ for an ANSI C conforming compiler will equal 1. The

68K/ColdFire C compiler will define this as zero until the

compiler achieves full ANSI compatibility.

__DATE__ is the date of the compilation. It is set once and does not

change, regardless of the compilation length. The format of

the date is MMM DD, YYYY, where days less than 10 are

indicated by a space followed by the day. MMM represents

the month in alphabetic characters.

__TIME__ is the time of the compilation. It is set once during

compilation and does not change, regardless of the

compilation length. The format of the time is HH:MM:SS.

5.6.2 NEW DIRECTIVES

The ANSI C standard defines three new preprocessing directives: #error ,

#pragma and #elif .

C Language Specifications A–23

• • • • • • • •

5.6.3 #ERROR

The format for #error is:

#error errmsg

The directive causes a compiler error with the given errmsg printed out.

5.6.4 #PRAGMA

#pragma is a synonym for #option , and supports the same syntax. Any

other parameter to #pragma which would not be legal with #option will

give an ``Unknown pragma'' warning.

5.6.5 #ELIF

The #elif directive acts like a combination of #else and #if . The

#elif comes between #if and #endif , and has a constant expression to

be evaluated in the same way as #if . The use of this directive allows for a

simpler syntax as the following example shows:

Directive Becomes

#if #if

#else
#if

#elif

#endif
#endif

#endif

Table A-4: #Elif directives

5.7 VOLATILE TYPE QUALIFIER

The ANSI C volatile keyword is used to allow higher levels of

optimization without adversely affecting programs which use

memory-mapped I/O and interrupt processing, as many embedded

applications do.

Appendix AA–24
C

 L
A

N
G

U
A

G
E

Many optimizations rely on tracking what a program is doing and looking

for a more efficient way to get the same result. This kind of analysis is

much more effective when the optimizer can make certain common-sense

assumptions based on the way that computer memory works. In particular,

it is natural to assume that two successive loads from the same memory

location without any possible intervening store must yield the same value.

Using this principle, an optimizer may eliminate the second load, thus

improving the efficiency of the generated code.

This reasonable-sounding assumption can be violated in two ways. First, if

the memory location represents a memory-mapped I/O port, then

successive loads correspond to successive read operations. Second, an

asynchronous interrupt handler could modify the memory location

between the two load operations. Variables whose values may change

without any apparent cause are called �volatile."

If the optimizer can be told which variables are volatile, then it can

selectively optimize the non-volatile variables more aggressively. This is

the motivation for the volatile keyword.

The volatile keyword can be used to qualify any C type. It can also be

used with pointer types. Here are some examples:

Use the volatile keyword as follows. First, decide which variables in

your program are volatile. This includes any memory-mapped I/O ports

and any variables modified by interrupt handlers. Mark these objects as

volatile. Next, determine which pointer variables are used to access these

volatile objects, and mark their pointed-to type with the volatile
keyword. Be sure to watch for pointers formed by type-casting constants

into addresses.

If you do not feel confident that you can locate and appropriately qualify

all your volatile variables, then you can avoid inappropriate optimizations

by using the –vv option. Note, however, that this option may make the

generated code significantly larger and slower.

C Language Specifications A–25

• • • • • • • •

5.8 NEW OPERATORS

5.8.1 DEFINED

In an #if there is a new operator: defined . This operator returns true if

its parameter is a currently defined macro that has not been subject to an

#undef .

The syntax is as follows:

#if defined (identifier)

 or

#if defined identifier

This is like #ifdef and #ifndef , but it returns a boolean so expressions

can be created, like the following:

#if defined (macro_one) && !defined(macro_two)
.
.
.

#endif

5.8.2 TOKEN PASTING

Another new operator is the token pasting operator (##). This is used

inside macro definitions to concatenate two tokens, to create a new token.

For example:

#define pasting(x,y) x ## y

int pasting(x,1);

 would become:

 int x1;

after macro substitution and expansion.

Appendix AA–26
C

 L
A

N
G

U
A

G
E

6 SUPPORT FOR INTERRUPT HANDLERS IN C

Special interrupt services are provided by the 68K/ColdFire C compiler as

extensions to the language. Three pseudo-functions and two

function-type keywords are defined:

• _GPL()

• _SPL(n)

• _TRAP(n)

• _IH

• _SWI

These features will be described in detail below.

The complete description of exception processing is beyond the scope of

this manual, but is fully described in the User's Manual for the

microprocessor. First, we will briefly review the general nature of

exception processing to describe how the compiler can be used to code

handlers for exceptions, generate traps and manipulate the status register.

Exception processing may be initiated in several different ways, which fall

into the following general categories:

• TRAP instruction

• Interrupt by external device

• Instruction trace, i.e., machine single step

• System error, e.g., bus error or divide by zero

When an exception occurs, some information is stored on the stack and

execution passes through an exception vector. The exception vectors

reside at fixed offsets from the base of the exception vector table. The

particular vector chosen depends on the kind of exception. The exception

vector table is located at address 0 for the MC68000, but for other M68000

family processors its address is defined by the VBR register.

A routine which receives control after an exception is called a handler. It
takes whatever action is appropriate for the given exception. When it

finishes, the handler may return control to the routine which was active

when the exception occurred. This kind of return must be done via the

RTE (return from exception) instruction. The RTE pops off the information

which was stored on the stack when the exception occurred. It then

restores the program counter and status register to their value at the time

of the exception.

C Language Specifications A–27

• • • • • • • •

With the 68K/ColdFire Toolkit, you can use the _IH or _SWI keywords to

designate a given C function as an exception handler. This causes the

compiler to generate an RTE instruction in the epilogue of the function

instead of the usual RTS return instruction. Furthermore, the compiler will

ensure that the function's prologue preserves the entire machine state, not

just those registers which, by convention, are preserved across ordinary

function calls. The difference between _IH and _SWI is described in detail

below.

A routine designated as a handler must have the void return type and

may not take any parameters. It must not be called as a procedure by any

other code. Like any normal function, handlers may declare local data,

access global data, and call other functions. If you are using the volatile
keyword, please note that global variables which are modified by

exception handlers must usually be designated as volatile .

Note that the appropriate exception vector must be initialized in order to

establish a given function as a handler for a particular exception. This can

be done with ``ordinary'' C code: typecasting the vector's address into

``pointer to pointer to function'' provides a pointer to the vector. This

pointer can be used to initialize the vector with the address of the handler.

Thus, no special language extension is required.

External interrupts have one of eight different priority levels. The status

register contains a 3-bit field which defines the interrupt priority mask.

Interrupts of priority less than or equal to the current interrupt priority

mask level are postponed until the mask becomes low enough to unblock

the interrupt. Interrupts of priority seven are a special case; they may not

be inhibited by the priority mask, thus providing a non-maskable

interrupt. When an interrupt occurs the interrupt priority mask is set to the

level of the interrupt being serviced. The handler's RTE instruction restores

the status register, thus restoring the interrupt priority mask.

The _GPL and _SPL pseudo-functions allow the user to read and write

the interrupt priority mask. The _TRAP pseudo-function generates a TRAP
instruction.

6.1 THE _GPL PSEUDO-FUNCTION

_GPL returns the value of the interrupt priority mask in the status register.

The result is an integer whose value is between zero and seven.

Appendix AA–28
C

 L
A

N
G

U
A

G
E

6.2 THE _SPL PSEUDO-FUNCTION

_SPL(n) sets the value of the interrupt priority mask in the status register

according to the low order three bits of the value of n. The sequence for

_SPL(5) looks like this:

MOVE SR,D1 get status register

AND #$F8FF,D1 clear the mask field

OR #$500,D1 set the mask field

MOVE D1,SR update status register

_SPL returns the new value of the interrupt priority mask as a result. If

this value will not be used, code to determine it is not emitted.

6.3 THE _TRAP FUNCTION

_TRAP(n) simply forces the compiler to emit the TRAP #n instruction.

Here n must be a constant between zero and fifteen.

6.4 THE _IH KEYWORD

_IH specifies that the defined function is an exception handler. The

keyword must precede any class or type information associated with the

function. The type of any _IH function must be void, and an _IH function

may not receive any parameters.

When the compiler recognizes a function as an exception handler, it emits

the RTE instruction for returns, instead of the usual RTS instruction. Also,

any registers modified by the function will be saved and restored, not just

the set of registers designated as preserved across normal function calls.

However, registers not used by the function might not be explicitly saved

and restored in the function's prologue and epilogue, respectively.

An interrupt handler routine may only be called from C with the _TRAP
mechanism since a standard procedure call does not have the same effect

as a TRAP instruction.

C Language Specifications A–29

• • • • • • • •

Example

Definition of interrupt handler in C:

 /* _IH KEYWORD EXAMPLES */

int GotInterrupted = 0;

_IH void myhandler () {
GotInterrupted = 1;

}

Example

 XREF ––main, –myhandler
ORG 0 ;assume EVT at 0

SECTION vectors
DC.L $00007ffc ;vector 0
DC.L ––main ;vector 1
DC.L –myhandler ;vector 2

.

.

.

Example

 /* _IH KEYWORD EXAMPLES */

int GotInterrupted = 0;
int Icount;

_IH void myhandler () {
GotInterrupted = 1;

}

void set_handler(f, vec_number)
void (*f) ();
int vec_number;

{
/* make the vector at address 4*vec_number */
/* point to the handler procedure f. */
*((void (**) ())(4*vec_number)) = f;

}

Appendix AA–30
C

 L
A

N
G

U
A

G
E

6.5 THE _SWI KEYWORD

The _SWI (software interrupt) keyword is similar to the _IH keyword

except that it is used for exception handlers which might provoke a

context swap. In order to provide for this, the _SWI function explicitly

performs a full context save upon entry.

The keyword must precede any class or type information associated with

the function. The type of any _SWI function must be void, and an _SWI
function may not take any parameters.

Example

/* _SWI KEYWORD EXAMPLE */

extern struct TCB {
int priority;
int * saved_context;

} *current_task, *highest_prio_task;
extern void swap_process ();

_SWI void timer_handler () {
if (current_task–>priority <

highest_prio_task–>priority) {
swap_process ();

}
}

7 IMPLEMENTATION-DEFINED BEHAVIOR

The ANSI standard allows each C compiler to behave differently in a fixed

set of situations. The behavior of the 68K/ColdFire C compiler in these

situations is described below. Section numbers refer to the ANSI standard

document.

(sect. 3.3.3.4, 4.1.1)

The type of the sizeof operator, size_t , is unsigned
long int .

(sect. 3.3.6, 4.1.1)

The type of integer required to hold the difference between

two pointers to elements of the same array, ptrdiff_t , is

long int .

C Language Specifications A–31

• • • • • • • •

(sect. 3.5.2.1)

A �plain" int bit-field is treated as an unsigned int
bit-field. To make a signed bit-field, use signed int type.

(sect. 4.5.1) The mathematics functions return undefined values on

domain errors.

(sect. 4.5.1) The mathematics functions set the integer expression errno
to the value of the macro ERANGE on overflow range errors.

(sect. 4.5.6.4)

When the fmod function has a second argument of zero, a

domain error occurs, and the function returns an undefined

value.

(sect. 4.9.6.1)

The output for %p conversion in the fprintf function is as

if the conversion specification were %lx .

(sect. 4.9.6.2)

The output for %p conversion in the fscanf function is as if

the conversion specification were %lx .

(sect. 4.9.6.2)

A - (hyphen) character in any position in the scanlist for a

%[] conversion in the fscanf function is treated like any

other character. For example, %[a–z] will match any

sequence of a, –, or z characters. It will not match any

sequence of lower case alphabetic characters.

(sect. 4.10.3)

The functions calloc and malloc return NULL if the size

requested is zero. The function realloc frees the memory

specified and then returns NULL if the size requested is zero.

The ANSI standard does not specify the method by which two declarations

of the same external name are combined at link time. The 68K/ColdFire

compiler implements the most common method of resolving this problem,

called the �strict def-ref" or �omitted-extern" solution.

Appendix AA–32
C

 L
A

N
G

U
A

G
E

In the strict def-ref model, declarations with the extern keyword are

considered �referencing" declarations. A declaration without the

extern or static keyword that appears outside of any function is

considered a �defining" declaration. The 68K/ColdFire compiler requires

that there be exactly one module which contains a defining declaration for

each external name. All other modules may contain only referencing

declarations for that external name.

An option has been added to the compiler to allow ANSI-style duplicate

declarations. By default the compiler gives an error if more than one

definition for a variable is present in a single module. The effect of the

–dd option is to permit multiple definitions in a single module, as required

by ANSI C. Note that this option changes the order of allocation for

uninitialized global variables. Programs that depend on global variables

being allocated in the order they are declared must not use this option.

B

COMPILER NAMING
CONVENTIONS

A
P

P
E

N
D

IX

Appendix BB–2
N

A
M

IN
G

 C
O

N
V

E
N

T
IO

N
S

B

A
P

P
E

N
D

IX

Compiler Naming Conventions B–3

• • • • • • • •

This appendix describes Code Symbols, Data Symbols, and Segment

Names and contains a Symbol Naming Summary.

1 INTRODUCTION

This section describes the naming conventions of the 68K/ColdFire C

compiler system. Familiarity with the compiler's naming conventions will

make it easier to:

• Read the pseudo-assembly listing from the compiler.

• Write linking locator commands to control placement of code and

data into target memory.

• Read the listing from the global symbol mapper.

• Interface compiled code with assembly language.

Interfacing compiled code with assembly language requires more detailed

technical information. See the Compiler Run-Time Conventions appendix.

The compiler forms linker symbols from the names in a user program. It

creates three kinds of symbols:

• Internal symbol names.

• Global symbol names.

• Segment names.

Internal symbols are temporary names which are eliminated as the linking

locator processes the object module. They are used to resolve internal

references. They are not visible to other modules and thus cannot be

referenced by assembly language code. They can be displayed by the

symbol list utility, but not by the global symbol mapper. However, they do

appear in the pseudo-assembly listing.

Global symbols are visible to other modules, and can be used by assembly

language code to reference compiler-generated code and data. They can

also be referenced by other compiled modules. They can be displayed

with the global symbol mapper.

Appendix BB–4
N

A
M

IN
G

 C
O

N
V

E
N

T
IO

N
S

Segments represent relocatable blocks of target memory. They contain the

generated machine instructions and data to be loaded into the target.

Segments have a name and are assigned a class and, optionally, a group.

See the Linking Concepts section in the Linking Locator chapter for a more

detailed description of segments, classes, and groups.

2 CODE SYMBOLS

The compiler creates symbols for procedure entry points. The symbol

names are based on the names the user specified in the source program,

with an underscore (�_") added to the beginning of the name.

Global functions are those which are visible outside their compilation unit.

In C, all functions are global by default. Local functions are indicated with

the static keyword.

The compiler creates a global symbol for each global function. Its name is

formed by prepending an underscore, �_", to the source name. For

example, the global function visible would generate the global symbol

_visible. The compiler creates an internal symbol for each local function.

It's name is generated using two underscores followed by an �N", a unique

number, a period and the class name, in this case �code ". For example, a

local function might generate the name __N14.code .

3 DATA SYMBOLS

There are several kinds of data which can be defined in a C program.

They are:

• Global Data all data visible to other compilation units, i.e., all data

declared outside procedure blocks, except that with the static
attribute.

• Local Static Data all data declared with the static attribute.

• Activation Record Local Data formal procedure parameters and data

defined inside of procedures, except that with the static attribute.

Compiler Naming Conventions B–5

• • • • • • • •

3.1 GLOBAL DATA

The compiler generates global symbols for all global data items. The

symbol name is formed by prepending an underscore, “_” , to the source

name. For example, a global variable whose source name is global_int
gives rise to a global symbol named _global_int.

3.2 LOCAL STATIC DATA

Artificial names are generated for all static variables declared within

procedures to avoid name conflicts. The internal symbol name is

generated using two underscores and �N" followed by a unique number, a

period and the class name if it is not �data ". For example, a local static

variable might generate a name such as __N4.myclass .

3.3 STACK DATA

The compiler generates no symbols for stack data. These variables do not

have permanent memory locations allocated to them; they are allocated on

the run-time stack.

Stack variables are addressed at a constant offset from the stack frame

pointer register, A6.

3.4 STRING CONSTANTS

String constants arise from quoted string literals in the source. The

compiler generates dummy internal symbol names.

3.5 OTHER SYMBOLS

The C++ compiler creates symbols with the prefixes __TIR__ , __CBI__ ,

and __DNI__ for its own internal use.

Appendix BB–6
N

A
M

IN
G

 C
O

N
V

E
N

T
IO

N
S

4 SEGMENT NAMES

4.1 CODE SEGMENT NAMES

All code in a single module is allocated in one code segment. The segment

name is formed by prepending an �S" to the symbol name given by the

compiler or assembler to the first subroutine encountered in the source

module. Thus, if a global function named sort is the first function in a

module, the code generated for all procedures in the module will be

allocated in a segment named S_sort . If a static function named hidden
is the first function, the generated code will be allocated in a segment

named S_�_N#.code, where # is some unique number. The code segment is

assigned class {code}, unless the –cc option is specified. The –cc option

allows you to set the class name. The Linking Locator chapter summarizes

the class names.

4.2 DATA SEGMENT NAMES

There are three data segments which are always created by the compiler,

regardless of the input program. They are idata, udata, and sdata .

idata contains initialized data and udata contains uninitialized data.

Both idata and udata are assigned group data and class {data }. sdata
contains string constants and is assigned class {constant}. All non-stack

data will be in one of these segments unless the separate option is used.

The linking locator creates a global symbol named ldata , whose value is

the size of the data group (idata and udata segments). Note that ldata is

not a segment, but a global symbol. This may be useful to programs which

dynamically allocate their global data area.

Compiler Naming Conventions B–7

• • • • • • • •

4.3 SEPARATE DATA

Segments are also created whenever data items are declared separate .

The segment names are either created from the name of the data item or

are explicitly specified by the user. In addition to segments, separate
data items are assigned a class, either by default or by explicit user

request. For a detailed explanation of separate data, see the Pragma
Separate (Option Separate) application note.

If neither segment nor class specifications are explicitly given, the segment

names for separate data are formed by prepending an �S" to the

corresponding symbol name. The class name is either {isep}, {usep}, or

{stsep}, depending upon whether the separate data item is global

initialized, global uninitialized, or static.

User Specified Data Initial Resulting

Segment Class Type Value Segment Class

none none global No S_X usep

none none global Yes S_X isep

none none static NA S__N#.stsep stsep

sname none global or
 local

NA sname separate

none cname global NA S_X cname

none cname local NA S__N#.cname cname

sname cname global or
 local

NA sname cname

Table B-1: Segments

For example, in a global context, the sequence

#pragma separate var1
int var1;

would produce a segment named S_var1 of class {usep }. If var1 were

initialized, the class would be {isep}.

In another example, the sequence

#pragma sep_on segment myseg
int var2;

Appendix BB–8
N

A
M

IN
G

 C
O

N
V

E
N

T
IO

N
S

would produce a segment named myseg of class {separate }. For this

example, initialization of var2 or the local/global context would have no

effect on the segment and class names.

In a third example, the sequence

#pragma sep_on segment seg1 seg2 class cl1 cl2
int var3, var4 = 1;

would produce a segment named seg1 of class {cl1}, which would hold the

initialized data, and a segment named seg2 of class {cl2}, which would

hold the uninitialized data, as explained in the Pragma Separate (Option
Separate) application note.

As a final example, the sequence

#pragma sep_on segment seg3 default class cl3 default
int var4 = 3, var5;

would produce a segment named seg3 of class {cl3} to hold the initialized

data, and a segment named S_var5 of class {usep} to hold the uninitialized

data.

It is possible to create errors by inconsistent assignment of class names to

a single segment. If this is done in a single compilation, the compiler will

detect the error. If there is a conflict between separately compiled

modules, the linking locator will inform you of this discrepancy.

5 SYMBOL NAMING SUMMARY

The following table summarizes the symbol names generated by the

compiler. Given an item X in the source, here are the names and attributes

of the compiler-generated symbols and segments.

 If X is Separate Initial Name Attributes

Global
Routine

_X Global Symbol

Global
Routine

S_X Segment, class {code }

Local
Routine

_X Internal Symbol

Local
Routine

S_X Segment, class {code }

Compiler Naming Conventions B–9

• • • • • • • •

 AttributesNameInitialSeparate If X is

Global
Variable

Either Either _X Global symbol

Local
Variable

Either Either __N#.stsep Internal Symbol

Global
Variable

No No udata Segment, class {data }

Global
Variable

No Yes idata Segment, class {data }

Global
Variable

Yes No S_X Segment, class {usep }

Global
Variable

Yes Yes S_X Segment, class {isep }

Local
Variable

No No udata Segment, class {data }

Local
Variable

No Yes idata Segment, class {data }

Local
Variable

Yes Either S__N#.stsep Segment, class {stsep }

String
Constant

__N# Internal Symbol

String
Constant

sdata Segment, class
{constant}

Stack
Variable

No symbols

Table B-2: Symbol names

5.1 NOTES

• The name of the code segment is determined by the first subroutine.

Each compilation generates only one code segment.

• Static variables declared inside procedures get dummy internal symbol

names.

• Segments idata and udata belong to group �data."

• This table assumes that no class or segment specifications were used

for separate data.

Appendix BB–10
N

A
M

IN
G

 C
O

N
V

E
N

T
IO

N
S

C

COMPILER
RUN–TIME
CONVENTIONS

A
P

P
E

N
D

IX

Appendix CC–2
R
U
N
-T
IM
E

C

A
P

P
E

N
D

IX

Compiler Run–Time Conventions C–3

• • • • • • • •

This appendix describes Storage Allocation, the Segmentation Model,

Register Usage, Subroutine Linkage, Stack Layout, and Initial Startup.

1 INTRODUCTION

This appendix describes the compiler's code generation conventions. The

stack layout is described, as well as the procedure linkage conventions

and data allocation rules. The information in this section is primarily

intended for those attempting to interface compiled code with assembly

language. It will also be useful to those users who are debugging at the

machine instruction level, since it will help you follow what the

compiler-generated code is doing.

Throughout this appendix, we assume that you are familiar with the

information in the Compiler Naming Conventions appendix.

2 STORAGE ALLOCATION

The basic C data types are implemented as follows:

char 8 bits, unsigned

short 68L: 8 bits, signed

ColdFire: 16 bits, signed

int 68K: 16 bits, signed

ColdFire: 32 bits, signed

unsigned 68K: 16 bits, unsigned

ColdFire: 32 bits, unsigned

long 32 bits, signed

float 32 bits

double 64 bits

pointer (address) 32 bits (absolute address)

Appendix CC–4
R
U
N
-T
IM
E

2.1 NOTES

• Basic data types bigger than a byte are aligned on a 16-bit boundary.

Data types no bigger than a byte are aligned on a byte boundary.

• Each element of a structure or array is aligned therein according to its

own alignment. The alignment of an aggregate data type is defined to

be the strictest alignment of any subcomponent. These rules can be

modified with the –pack compiler option.

• Successive bits in a bit field are allocated from left-to-right, that is,

most significant bit first. If the layout of a field would cross two

consecutive 16-bit boundaries, the bit field is aligned at the next 16-bit

boundary. Bit fields which are completely contained in a byte

contribute byte alignment to the surrounding structure. Other bit fields

contribute 16-bit alignment to the surrounding structure. These rules

can be modified by various compiler options.

• Some of the above data sizes can be changed with the –D compiler

option. In particular, the –L option makes short 16 bits and int 32

bits (default for C++ and ColdFire).

3 SEGMENTATION MODEL

In the following sections, the references to the floating-point registers

apply only under the –h hardware floating-point option.

User variables are allocated storage in one of the following places:

1. The run-time stack.

2. The A1, A2, A3, D2, D3, D4, D5, D6, D7, FP1, FP2, FP3, FP5, FP6 and FP7

registers.

3. The global data area (idata and udata segments) referenced by A5.

4. Separate segments.

Compiler Run–Time Conventions C–5

• • • • • • • •

Variables declared in procedure blocks, including formal procedure

parameters, are allocated on the run-time stack. The optimizer allocates

variables and temporaries into registers. If the optimzer is suppressed, then

variables declared with the register keyword are allocated in registers.

Registers A1-A3 are available for pointers; registers D2-D7 are available

for character or integer types; registers FP1-FP3 and FP5-FP7 are available

for types float or double . Variables named in a #pragma separate
directive are allocated in separate segments. See the Pragma Separate
(Option Separate) application note for more detail. All other variables are

placed in the global data area. Initialized variables are placed in idata

uninitialized varialbes in udata.

The compiler addresses variables on the stack using constant offsets from

the frame pointer, i.e., the A6 register. Positive offsets indicate references

to formal parameters; negative offsets indicate references to local variables.

See the Stack Layout section below for a picture of the stack.

The total size of the local variables for any single subroutine is limited to

32K. If a single procedure allocates too much data, the compiler will flag a

fatal error:

source error: local variables
require too much space (fatal)

The compiler addresses variables in the global data area using 16-bit

offsets from the dedicated register A5. This addressing scheme allows the

compiler to address global data very efficiently, since it can use 16-bit

offsets rather than full addresses. On the other hand, this implies a

system-wide limit of 64K on the size of the global data area.

If you declare too much global data, the compiler will not be affected, but

the linking locator will issue an error:

group {data} exceeds maximum size

If the 64K limit is exceeded, some variables must be made separate to

bring the total size below 64K. Variables allocated in separate storage are

not restricted in size. Variables in separate storage are addressed using full

32-bit addresses.

Appendix CC–6
R
U
N
-T
IM
E

4 REGISTER USAGE

The compiler reserves the following machine registers for use:

 Register Use

A1, A2, A3 Pointer register variables

A5 Pointer to global data area

A6 Frame pointer

A7 Stack pointer

D2, D3, D4, D5, D6, D7 Integer register variables

FP1, FP2, FP3, FP5, FP6, FP7 Floating–point register variables

A0 Pointer return values

D0 Integer return values

FP0 Floating–point return values

Table C-1: Machine registers

5 SUBROUTINE LINKAGE

5.1 PRESERVED REGISTERS

Every procedure is responsible for preserving the following registers: D2,

D3, D4, D5, D6, D7, A1, A2, A3, A5, A6, A7, FP1, FP2, FP3, FP5, FP6, FP7.

This rule also applies to any assembly language routines called from

compiled code.

5.2 REGISTER RETURN VALUES

The compiler expects function return values in registers under the

following circumstances:

• Pointer values are returned in A0.

• If the hardware floating-point option –h is selected and the software

floating-point compatibility option –68 is not selected, then float
and double values are returned in FP0. Otherwise float values are

returned in D0 and double values are returned in a temporary stack

location.

Compiler Run–Time Conventions C–7

• • • • • • • •

• Return values of integral type are returned in D0.

5.3 PARAMETER PASSING

All parameters are pushed as one (or more) 16-bit word(s). This means,

for example, that one-byte structure parameters occupy two bytes on the

stack. The contents of the other (high order) bytes are undefined. For

more information on function prototypes, see the C Language
Specifications appendix.

For the ColdFire compiler or when the –L option is used with the 68K

compiler, all parameters are pushed as one (or more) 32-bit word(s).

5.4 CALLING SEQUENCE

The generated code for a procedure call has the following form:

1. Determine if the function return value will be returned in a register. If not,

allocate space for a function return temporary on the stack.

2. Push the arguments onto the stack. The arguments are pushed as words in

reverse order, i.e., the last argument is pushed first.

3. If a function return temporary was allocated, push its address.

4. Call the function.

5. Pop the arguments off the stack.

6. If a function return temporary was allocated, deallocate it after it is used.

Appendix CC–8
R
U
N
-T
IM
E

5.5 PROCEDURE PROLOGUE

There are three instructions which may appear in the prologue code. The

presence of each depends on the nature of the routine. If there are local

variables on the stack (or if the –nl compiler option is present) then there

will be a LINK instruction. If any non-floating-point register variables are

used by the routine a MOVEM is executed. If any floating-point register

variables are used by the routine an FMOVEM is executed. The form of

these instructions follows:

LINK A6,#n n is the size of the new frame

MOVEM reg list,–(A7) Save A/D registers

FMOVEM freg list,–(A7) Save float registers

The reg list names all the preserved registers, A1, A2, A3, D2, D3, D4, D5,

D6, D7, which are modified in the subroutine. The freg list names all the

preserved floating-point registers, FP1, FP2, FP3, FP5, FP6, FP7, which are

modified in the subroutine.

FMOVEM (A7)+,<freg list> Restore float registers

MOVEM (A7)+,<reg list> Restore A/D registers

UNLK A6 Restore previous stack frame

RTS Return to caller

Compiler Run–Time Conventions C–9

• • • • • • • •

Here is a picture of a typical run-time stack configuration:

Lower addresses

<–– Stack Pointer (A7)

Local Variables (negative offsets from Frame Pointer)

Old Frame Pointer <–– Frame Pointer (A6)

Return Address

Parameter 1

. . . (positive offsets from Frame Pointer)

Calling Routine’s Frame

<–– Caller’s Frame Pointer

Higher Addresses

5.6 INITIAL STARTUP

The compiled code which first receives control from an operating system,

executive, power-up sequence, etc., will require certain preparations in

order to execute properly. Generally the main requirements are to

establish an initial stack frame and to initialize the A5 register with the

address of the global data area. Please refer to the Segmentation Model
subsection above for an explanation of the use of ``ldata'' in initialization

of the A5 register.

A prototype startup routine for use with a ROM-based monitor is provided

with the run-time library. This __main routine is discussed in detail in the

Run-Time Library chapter in the Reference Manual.

Appendix CC–10
R
U
N
-T
IM
E

The compiler generates an external reference to the __main library

routine if the module being compiled contains a routine named main. This

allows automatic loading of __main from a link library.

D

OBJECT MODULE
FORMATS

A
P

P
E

N
D

IX

Appendix DD–2
F
O
R
M
A
T
S

D

A
P

P
E

N
D

IX

Object Module Formats D–3

• • • • • • • •

This appendix contains the following sections:

• Introduction

• Intel ASCII Hex Format

• Motorola S Records

• Extended Motorola S Records

• Packed Motorola S Record

• S37 Motorola S Records

• Tektronix Format (Tekhex)

• Extended Tekhex Format

• Binary Tektronix Format

• HP64000 Format

• Common Object File Format (COFF)

• IEEE-695 Object Module Format

1 INTRODUCTION

Once a C program has been compiled, linked and located, a file exists that

contains all the information required to specify exactly where in memory

each part of the program should reside.

However, there is no one standard that determines how this information

should be supplied to various PROM burners, emulators, and so on. Each

system has its own requirements for file formats, header information,

checksums, and other essential information.

The 68K/ColdFire toolkit supports a wide variety of ASCII hex and binary

object module formats, which are briefly described here. Use the

formatter's (form) –f option to choose an output format or use form695

to produce IEEE-695. For further information on format specifications

please refer to the manufacturer's specification for the equipment to which

you plan to transfer data.

Appendix DD–4
F
O
R
M
A
T
S

2 INTEL ASCII HEX FORMAT

The general format of a record, shown here with spaces separating each

field, is:

: ll aaaa tt dd ... dd cc

In this format field:

: is the keyword used to signal the start of the record.

ll is the number of code/data bytes in the record.

aaaa is the lower 16 bits of the absolute address at which the first
byte of code/data in the record is to be placed. (For record
types 01 to 03, this field contains “0000”. See below.)

tt represents the record type.

dd..dd is the data for each record type.

cc is the checksum.

Record Types:

The following is a list of possible record types (the tt field) with the

corresponding value of the ll field:

tt ll

00 – data record actual data length

01 – end of file record 00

02 –extended address 02

03 – start address record 04

Record Type Data:

For each record type, the data is as follows:

tt dd...dd

00 the code/data bytes

01 none

02 4 hex digits – the first is the upper four bits of the 20 bit
absolute address, followed by 3 zeroes

03 CS and IP (8 digits)

Object Module Formats D–5

• • • • • • • •

3 MOTOROLA S RECORDS

The general format of a record, shown here with spaces separating each

field, is as follows:

ss ll aaaa dd ... dd cc

Where:

ss is the S–record type.

ll is the record length, which includes the number of bytes in the
address, code/data and checksum fields.

aaaa is the 2–byte address at which the first byte of code/data in
the record is to be placed.

dd...dd is the code/data bytes.

cc is the checksum

The following is a list of possible S-record types for the ss field:

S0 – header record for each block

S1 – record containing code/data and 2–byte address at which the
code/data is to reside

S9 – termination record

4 EXTENDED MOTOROLA S RECORDS

The general format of a record, shown here with spaces separating each

field, is as follows:

ss ll aaaaaa dd ... dd cc

Where:

ss is the S–record type.

ll is the record length, which includes the number of bytes in the
address, code/data and checksum fields.

aaaaaa is the 3–byte address at which the first byte of code/data in
the record is to be placed.

dd...dd is the code/data bytes.

cc is the checksum.

Appendix DD–6
F
O
R
M
A
T
S

The following is a list of the possible S-record types for the ss field:

S0 – header record for each block.

S2 – record containing code/data and 3–byte address at which
the code/data is to reside.

S8 – termination record.

5 PACKED MOTOROLA S RECORDS

The general format of a record, shown here with spaces separating each

field, is as follows:

ss ll aaaa [aa[aa]] dd... dd cc

Where:

ss is the S–record type.

ll is the record length, which includes the number of bytes
in the address, code/data and checksum fields.

aaaa[aa[aa]] is the 2–, 3– or 4–byte address at which the first byte of
code/data in the record is to be placed.

dd...dd is the code/data bytes.

cc is the checksum.

Object Module Formats D–7

• • • • • • • •

The following is a list of the possible S-record types for the ss field:

S0 – header record for each block.

S1 – record containing code/data and 2–byte address at which
the code/data is to reside.

S2 – record containing code/data and 3–byte address at which
the code/data is to reside.

S3 – record containing code/data and 4–byte address at which
the code/data is to reside.

S7 – termination record that includes a 4–byte start address.

S8 – termination record that includes a 3–byte start address.

S9 – termination record that includes a 2–byte start address;
also if there is no defined start address (two bytes of
zero).

6 S37 MOTOROLA S RECORDS

The general format of a record, shown here with spaces separating each

field, is:

ss ll aaaaaaaa dd .. dd cc

Where:

ss is the S–record type.

ll is the record length, which includes the number of bytes
in the address, code/data, and checksum fields.

aaaaaaaa is the 4–byte at which the first byte of code/data in the
record, code/data, and checksum fields.

dd...dd is the code/data bytes.

cc is the checksum.

The following are possible S-record types for the ss field:

S3 – record containing code/data and 4–byte address at which
the code/data is to reside.

S7 – termination record.

This format does not provide an S0 header record.

Appendix DD–8
F
O
R
M
A
T
S

7 TEKTRONIX FORMAT (TEKHEX)

The general format of a record, shown here with spaces separating each

field, is:

/ aaaa ll ss dd ... dd cc

here:

/ is the keyword used to signal the start of a record.

aaaa is the 2–byte address at which the first byte of code/data
in the record is to be placed. Successive data bytes are
stored in the following memory locations.

ll is the number of code/data bytes in the record. A count of
zero indicates end–of–file.

ss represents the sum of the preceding six digits.
(a+a+a+a+l+l).

dd...dd is the code/data bytes.

cc is the checksum.

8 EXTENDED TEKHEX FORMAT

The formatter can produce extended Tektronix Hexadecimal Format

(Extended Tekhex). Symbolic information is produced for global symbols

when the formatter debugging option, –d , is used. To conform with legal

Extended Tekhex conventions, symbol names are modified as follows

before being emitted:

• Leading underscore (`_') characters are removed.

• Illegal characters (`@' and `*') are replaced with `$'.

• Leading dollar sign (`$') characters are moved to the end of the name.

• Symbol names longer than 16 characters are truncated.

The general format of a record, shown here with spaces separating each

field, is:

% ll t cc aa(aaaaaaaaaaaaaaa) dd...dd

Object Module Formats D–9

• • • • • • • •

Where:

% is the keyword used to signal the start of a record.
ll is the number of digits in the record (not including the

leading % or end–of–line).
t indicates the record type.
cc checksum
aa may be from 2 to 17 hex or ASCII digits. The first digit is

always a hex which indicates how many digits are to
follow. The meaning of theaa field depends on the type of
record. (See below.)

data: load address of object code

symbol: name of thesection that contains the
symbols defined in this block

termination: transfer address, or the address where the
program must begin.

dd Meaning and length depend on record type. (See below.)

data Each dd represents a byte of object code/data.

symbol 5 to 35 hex digits of Section Definition and
5 to 35 ASCII and hex digits for each
Symbol Definition.

termination No characters in this field.

Record Types:

The following are possible record types for the t field:

6 = data block

3 = symbol block

8 = termination block

8.1 SECTION DEFINITION FIELD

The general format of a section definition is as follows, with a space

separating the fields. (This is an expansion of dd above.)

0 AA LL

Appendix DD–10
F
O
R
M
A
T
S

Where:

0 is the keyword used to identify the start of a section
definition.

AA is 2 to 17 hex digits which represent the starting address
of the section. The first digit indicates how many digits
will follow.

LL is 2 to 17 hex digits which represent the length of a
section. The first digit indicates how many digits will
follow.

8.2 SYMBOL DEFINITION FIELD

The general format of a symbol definition field is as follows:

X SS VV

Where:

X Indicates the type of value that the symbol represents.
For our purposes, this hex digit is always a ‘1’, meaning a
global address.

SS is 2 to 17 digits which represent the name of the symbol.
The first digit is a hex digit which indicates how many
ASCII digits will follow.

VV is 2 to 17 hex digits which represent the address of the
symbol. The first digit indicates how many digits will
follow.

9 BINARY TEKTRONIX FORMAT

Binary Tekhex format is a binary format. A full description of this format is

beyond the scope of this appendix. For details, please refer to the

Tektronix binary object format specification.

The following Binary Tekhex records are produced when the formatter

debugging option, –d , is not used:

• LAS_MODULE_DEFINITION_BLOCK

• MODULE_COMMENT_INFO_BLOCK

• MICROPROCESSOR_DEPENDENT_BLOCK

Object Module Formats D–11

• • • • • • • •

• SECTION_EXPORT_BLOCK :
LAS_SECTION_DEFINITION_RECORD only

• LAS_TEXT_BLOCK

• LAS_END_BLOCK

In addition, global symbol information is available with the following

record when the formatter debugging option, –d , is invoked:

LAS_MODULE_SYMBOL_TABLE_BLOCK :
LAS_GLOBAL_LABEL_RECORD only

Symbol names longer than 16 characters are truncated.

10 HP64000 FORMAT

HP64000 format is a binary format. A full description of this format is

beyond the scope of this appendix. For details, please refer to the Hewlett

Packard document 64000-UX Hosted Development System File Formats (HP

64880-90903).

10.1 USING THE HP64000 FORMAT

The formatter can produce all the files necessary for doing:

For PC hosts:Emulation analysis on a HP64700 emulator using

 the Emulator Interface.

For Unix hosts:Emulation and state analysis on a Hewlett Packard

 HP 64000-UX system. Output is compatible with

 the following systems:

• Hewlett Packard Emulation Bus Analyzer (HP 64302A)

and the Hewlett Packard State/Software Analyzer (HP

64620S).

• Hewlett Packard 32-bit Emulation Bus Analyzer (HP

64416A/B Real-Time Emulator).

All global, local static, and source line symbols are available for all hosts.

Appendix DD–12
F
O
R
M
A
T
S

For Unix hosts, the files that are generated by the formatter utility are

appropriate for downloading from a UNIX development environment to

the HP 64000-UX with:

• The Hewlett Packard downloading program called get64 (HP 64887S

Network Transfer Utility), which runs on the HP 9000 Series 300

running HP-UX.

The get64 program performs a translation of these downloadable files

from a UNIX-specific format to an HP 64000-UX specific format during

downloading. If the formatter is hosted on an HP 64000-UX it generates

these files in a format which is already HP 64000-UX specific.

10.2 FILES NEEDED

The following file types are required for emulation analysis (and state

analysis for Unix hosts) on the HP64700 for PC hosts and HP64000-UX for

Unix hosts:

• Absolute file (.X). The absolute file contains absolute data that will be

loaded into memory, and information about the target processor that

will be used. One absolute file is needed per program.

• Linking locator symbol file (.L). The linking locator symbol file

contains global symbol definitions, lists source modules, and describes

the location of the program code that was generated from each source

module. One linker symbol file is required for each program.

• Assembler symbol files (.A). Assembler symbol files contain local

static symbol definitions and information for displaying line numbers

during emulation analysis (and state analysis for Unix hosts). One

assembler symbol file is required for each source module for which

source lines and/or local static symbols will be displayed.

• Source files. The source files used to generate the executable module

are required for displaying source line information during emulation

and state analysis.

All of the necessary files are created by the formatter. From each

absolutely located object file produced by the linking locator (.ab file), the

formatter produces one absolute file, one linking locator symbol file, and

optionally, assembler symbol files. For an overview of the way that these

files are used on the HP 64000-UX for Unix hosts and a detailed

description of the file formats for PC and Unix hosts, see the Hewlett

Packard document, 64000-UX Hosted Development System File Formats
(HP 64880-90903).

Object Module Formats D–13

• • • • • • • •

10.3 GENERATING FILES FOR USE WITH THE 64700

To produce files for use with the HP64700 for PC hosts or the

HP64000-UX for Unix hosts, the tools are run as usual, but with the

following additions:

• If source line information and/or local static symbol information is to

be made available for a particular source module (i.e., if an assembler

symbol file is to be produced for that module), then that source must

be compiled or assembled with the –d (debugging) option.

• Choose the HP64000 format by running the formatter with the –f hp
option.

• If source line information and/or local static symbol information is

required for any module, use the –d formatter option.

Generally, source line information is needed for only part of the input

source modules. For example, displaying source lines for assembly

language modules will not always be useful, since it is possible to

disassemble code in the state and emulation analyzers. Also, run-time

libraries are usually not assembled with debugging information. Any

combination of object language files compiled or assembled with and

without debugging information may be linked together. Assembler symbol

files will only be produced for those that have been compiled or

assembled with debugging information.

At formatting time, if an assembler symbol file is created, it is placed in the

same directory as its corresponding source file (not necessarily the same

directory in which the formatter is invoked). Therefore, source directories

that are used for this purpose must be writable.

10.4 FORMATTER EXAMPLES

In the following examples, it is assumed that two source files, xtest.c and

ytest.c, have been compiled (using the –d option), linked and located,

producing an absolute file called xtest.ab.

Example

form xtest.ab –f hp

• For PC hosts only, produces an absolute file named xtest.X , and a

linker symbol file named xtest.L .

Appendix DD–14
F
O
R
M
A
T
S

• For PC and Unix hosts, neither source line information nor local static

symbol information is included.

Example

form xtest.ab –f hp –d

• Produces an absolute file, xtest.X , a linker symbol file, xtest.L ,

and assembler symbol files, xtest.A and ytest.A , containing source

line information and local static symbol information for the

corresponding source files.

10.5 USING GET64 ON UNIX HOSTS

The files that are generated by the formatter are in a format appropriate for

downloading to the HP 64000-UX with the Hewlett Packard program

get64 , which runs on the HP 9000 Series 300 running HP-UX. For a

description of the options to get64 , see the HP manual Network Transfer
Utility for the HP 64000-UX Microprocessor Development Environment (HP

64887-90901).

The absolute file, the linker symbol file, the assembler symbol files, and

the source files may all be downloaded to the HP 64000-UX at the same

time. The name of the linker symbol file (with an absolute directory path)

is specified as an argument to get64 . get64 derives the name of the

absolute file from the name of the linker symbol file by replacing the ``.L''

extension with ``.X''. The names of the source files, with absolute directory

paths, are included in the linker symbol file, and the assembler symbol

files, if created, are found by get64 in the same directory as their

corresponding source files (the name of the assembly symbol file is

inferred from the source file name).

When compiling (or assembling) files with the TASKING 68K/ColdFire

toolkit, it is not necessary to specify absolute directory paths for the

names of the sources. Using the names with which the compiler (or

assembler) was invoked, the formatter will create file names with full

directory information and insert them in the linker symbol file. Therefore,

the compiler, assembler and formatter must all be executed in the same
directory.

Object Module Formats D–15

• • • • • • • •

If the source is specified with a directory path relative to the current

working directory, the absolute path name that the formatter builds for the

file and places in the linker symbol file will not necessarily be the shortest

name possible. For example, suppose the compiler is invoked within the

directory /user/c68k/test1 , with the name of the source specified as

../test2/test.c . At formatting time, the formatter will create in the

linker symbol file an absolute directory path name

/user/c68k/test1/../test2/test.c , and not

/user/c68k/test2/test.c .

The following points are important to keep in mind:

• when composing a file of mapping patterns to be used with the –m
option of get64 . If you are unsure of the absolute path file names

included in the binary linker symbol file, run the UNIX program

strings on the linker symbol file to determine the full names of the

source files.

• for viewing local symbol information when using the HP 64416A/B

Real Time Emulator. In order to display local symbols for a file with

../ in its directory path, you must precede each occurrence of ../
within the directory path with a backslash \ .

• if the source file has no extension in its name (i.e., ../test2/test ,

as opposed to ../test2/test.c). The HP 64416A/B Real Time

Emulator, using the source file names within the linker symbol file, is

unable to correctly infer the name of the assembler symbol file

corresponding to a source file with no extension and with a ../ in its

directory path (even though the assembler symbol file has been created

in the proper directory). If this occurs, local static symbol information

and source line referencing information will not be available within the

emulator for that source file.

Appendix DD–16
F
O
R
M
A
T
S

11 COMMON OBJECT FILE FORMAT (COFF)

COFF is a binary format. A full description of this format is beyond the

scope of this appendix. There are several implementations of the COFF

standard, which differ largely in regard to which fields of the COFF

records are filled in and which are null padded. Unless otherwise noted

below, the formatter utility fills in fields according to the System V/68
Release 3 Programmer's Guide (Motorola, Inc., 1987) and Understanding
and Using COFF by Gintaras R. Gircys (O'Reilly & Associates, Inc., 1988).

COFF output from the formatter has been tested with the ATRON

68000/010/020 series emulators. Line numbers and all global and local

symbols are available.

The following table shows the basic structure and contents of a COFF file

(from figure 1-2 in Understanding and Using COFF).

11.1 FILE HEADER

The only magic number (f_magic) used currently in the file header is

octal 520. This is normally associated with an MC68000 target processor.

The formatter utility does process other target .ab files, but the resulting

COFF file always gets this magic number.

Note that for the Intel family of processors, the byte ordering in the binary

COFF file is done in the following manner: the least significant byte gets

the lowest address. This is the reverse of the ordering used by the

MC68000. The –br formatter option allows both types of byte ordering for

the supported processors, to better allow for cross development.

Object Module Formats D–17

• • • • • • • •

A COFF File Contents

File Header General information such as file
 timestamp and magic number

Optional Header
 Run–time information

Section Header 1
.

.
Section Header

 Descriptions of section
 characteristics

Section 1 contents
.

.
Section n contents

 Actual contents of sections

Section 1 relocation info
.

.
Section n relocation info

 Information used by the linker to
 create run–time executable

Section 1 line number info
.

.
Section Header

 Debug information

Symbol Table Information used by the
 debugger and linker

String Table Very long symbolic names

11.2 OPTION HEADER

The vstamp , text_start , and data_start fields are not used (null

padded). The magic number is always set to octal 520. This means that

text and data segments are aligned within the binary file, so that the file

can be paged directly.

Appendix DD–18
F
O
R
M
A
T
S

11.3 RELOCATION INFORMATION

This information is not emitted by the 68K/ColdFire toolkit, since the

llink utility will have already been used for relocation.

11.4 SECTION HEADERS

The relocation information related fields s_relptr and s_nreloc are

always zero. The section names idata and udata are equivalent to

.data and .bss respectively.

The only types of sections emitted are: STYP_TEXT, STYP_DATA,
STYP_BSS.

The names of the sections are truncated to the eight character limit.

11.5 LINE NUMBER INFORMATION

Line number entries are absent when files are compiled without the

symbolic debug option.

11.6 SYMBOL TABLE ENTRIES

Symbol table entries are absent when files are compiled without the

symbolic debug option. The following items list the different

implementation techniques used for Symbol Table entries:

• External symbols receive an extra prepended `_' (underscore) character.

The –c formatter option suppresses the addition of an extra

underscore.

• There are several �special symbols" that are not supported. They are:

.text , .bss , .data , .target , .bb , .eb , etext , edata and end .

• The auxiliary information for DT_FCN function entries contains only the

x_lnnoptr line number pointer and the x_fsize function size fields;

other fields are not used.

• The .bf and .ef auxiliary directives do not contain the �line number"

or �index of next entry" information and are left null padded.

• Tag type entries are not chained.

Object Module Formats D–19

• • • • • • • •

11.7 COFF1 FORMAT

COFF1 format is almost identical to the COFF format described earlier in

this appendix.

It differs only in its treatment of line number symbols. COFF1 format starts

its line numbers from 1. As a result, each line number symbol directly

corresponds to an actual program line number.

Note that this is not true for the TASKING 68K/ColdFire COFF format,

which was developed for use with the ATRON emulator. The ATRON

emulator requires COFF line number symbols which have been specially

processed. Therefore, COFF line number symbols do not directly

correspond to the program line numbers.

12 IEEE-695 OBJECT MODULE FORMAT

IEEE-695 is a binary format. Use this format for debugging with CrossView

Pro. A full description of this format is beyond the scope of this appendix.

Use the form695 formatter to generate this type of objects. For more

information see IEEE-695 Object Module Format Specification (Revision

4.1, MRI/HP., 1992).

Appendix DD–20
F
O
R
M
A
T
S

E

COMPILER /
ASSEMBLER DRIVER

A
P
P
E
N
D
IX

Appendix EE–2
D
R
IV
E
R

E

A
P
P
E
N
D
IX

Compiler/Assembler Driver E–3

• • • • • • • •

This appendix discusses the driver that invokes compiler and assembler

executables.

The compiler and assembler are invoked by a driver program. This

program is responsible for reinvoking the compiler and/or assembler

repeatedly if there are multiple source files, and for invoking the various

executables which constitute the compiler. This driver program has

options of its own, which are generally of interest only when debugging

the compiler and/or the assembler itself. They are:

–ke For PC hosts only, keep the intermediate files between

compiler phases. For Unix hosts only, execute the phases of

the compiler sequentially and keep the intermediate files.

–se For UNIX hosts only, this option is like –ke , but deletes the

intermediate files if compilation is successful.

–v Verbose mode. Identifies executables as they are invoked.

This helps determine which phase was executing if the

compiler aborts. For technical support purposes.

–ve Very verbose mode. Reports date, time, and status/result.

For PC hosts only, the driver by default queries the I2EXE environment

variable to determine the directory containing executable files. If the

I2EXE variable is not defined, the driver invokes executable files which lie

in the same directory as the driver executable.

For UNIX hosts only, the driver by default invokes executable files which

lie in the same directory as the driver executable.

The following options direct the driver to invoke other executables.

–as file Specifies a different assembler executable.

–be file Specifies a different compiler back end executable.

–fe file Specifies a different compiler front end executable.

–gs file Specifies a different global symbol mapper utility.

–in file Specifies a different interleave utility.

–me file Specifies a different merge utility.

–op file Specifies a different compiler optimizer.

Appendix EE–4
D
R
IV
E
R

–xd directory
Specifies a different executable directory.

–xr file Specifies a different cross-reference utility.

–1 Invokes the assembler once, passing all source files. When

using other options with –1 (one), –1 must appear first in the

invocation.

For PC hosts only, the driver program uses the I2ARGV0 environment

variable internally. You should not use this variable for any other purpose.

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

Symbols
#elif directive, A-23�A-28

#error directive, A-23�A-28

#pragma directive, A-23�A-28

_GPL pseudo-function, A-27�A-28

_IH keyword, A-26, A-27, A-28

_LONGINT variable, 2-18

_SPL pseudo-function, A-28

_SWI keyword, A-30

_TRAP function, A-28

Numbers
16-bit subscript, 2-53

64K limit, 7-14, C-5

A
A0 register, C-6

A5, libraries that do not use A5, 7-17

A5 register, 2-32�2-33, 2-35�2-36,

7-11

A5 relative addressing, 7-14, 7-17, C-5

A5-relative addressing, 2-32�2-33,

2-35�2-36

A6 register, 2-36, C-5

absolute

module, 4-7, 5-5, 5-6
segment, 4-21

address

range, 4-28�4-30, 4-32, 4-35
reference, 4-21

address exception, 2-19

address spaces, multiple, 3-7, 4-33

addressing modes, 2-33, 2-38�2-39,

2-54�2-58, 7-35, 7-48

AFTER address, 4-28, 4-32

alignment, 2-18�2-19, 2-31, 3-14

ANSI C, 2-6, 2-27�2-28, 2-29, 2-37,

2-41, 2-44, A-14�A-32

ANSI function prototypes, 2-44

array subscript, 2-53, 2-54

ASCII hex formats, D-3

assembler, 3-1�3-16

options, listing, 3-6�3-8
usage, 3-5�3-16

assembly

conventions, 7-8
in-line, A-5�A-32
routine call, 7-8

assembly listing, 2-10

automatic register variable assignment,

2-48�2-58

B
backwards compatibility, 2-16, 2-28

BEFORE address, 4-28

Best Code, 7-42

bias, 5-11

binary formats, 5-9, 5-10, D-11�D-20

Binary Tekhex format, 5-7, 5-9,

D-10�D-20

bitfield storage layout, 2-17

branch tables, 2-52�2-58

built-in data types, 2-17

burning interleaved PROMs, 5-12

byte slicing, 5-12, 5-13

C
C and assembly, 7-11

linking, 7-8�7-13
C interrupt handlers, A-26�A-32

C language specifications, A-1�A-32

C++ support, 4-23

calling, sequence, C-7�C-10

IndexIndex–4
IN
D
E
X

cataloging object modules, 6-6, 6-7

checksums, D-3

class, 4-19�4-26, 6-21, 7-15, B-7, B-8

code

generation, options, 2-31�2-46
hoisting, 2-25, 2-51�2-58
segment, B-6�B-10
size, 2-49
symbols, B-4�B-10

COFF, 5-7, 5-9, 5-13, D-16�D-20

COFF1, 5-10

combinability, 4-17

combining segments, 4-17

common

segment, 4-17
subexpression elimination,

2-49�2-58
compiler, 2-1�2-21

error messages, 2-54�2-58, A-17
input, 2-3
library organization, 4-22�4-38
options, 2-3�2-21
output, 2-3
usage, 2-8�2-21

concat segment, 4-17

conditional assembly, 3-7, 3-8

const, A-20

const type qualifier, 7-15, 7-16,

A-20�A-32

constant data, 7-14

constants in ROM, 7-14

conventions

compiler, A-4
compiler naming, 7-8�7-13

cross-reference listing, 2-12, 2-13

CrossView Pro, debugger, 2-9,

2-22�2-30, 7-5, 7-6

CSE, 2-49

customer support, 2-54

D
D0 register, C-6

data

allocation rules, C-3
global, B-4, B-5�B-10
local static, B-4, B-5�B-10
segment, B-6�B-10
separate, B-7�B-10
stack, B-4, B-5�B-10
symbols, B-4
uninitialized, B-6, B-7, B-8

data type

length options, 2-17
options, 2-15�2-18
void, A-27

date/time stamp, 6-8, 6-9

debugging

information, 2-41, 3-14
symbolic, 3-14, 4-13

with optimizer, 2-47
DECLARE command, 4-30

default

format, 5-7
placement, 4-21
separate

class, 2-20, 7-15
segment, 7-15

defined operator, A-25�A-28

directives, ANSI C, A-22�A-28

documentation, 1-3�1-4

download

file, 5-13
format, 5-7, D-3

downloading, 7-5�7-7

Index Index–5

• • • • • • • •

E
empty segments, 6-14

emulators, 7-5�7-7

entry/exit optimization, 2-52�2-58

enum type, 2-15

error messages

compiler, 2-54�2-58, A-17
librarian, 6-9

exception, A-26

handler, A-26
vector, A-27

excluding from download

named classes, 5-14
named segments, 5-13

Extended Motorola format, 5-10,

D-5�D-20

Extended Tekhex format, 5-7, 5-10,

D-8�D-20

extensions, preprocessor, A-4�A-32

external, reference, 4-14, 4-26

F
floating-point compatibility, 2-28

formatter, 5-1�5-16

input, 5-3
invocation, 5-3
options, 5-3�5-16
output, 5-3
usage, 5-5�5-16

fullword alignment, 2-19, 3-14

function

declaration syntax, A-15
definition header, A-15
header, A-14
prototypes, A-14�A-32

creating, A-14�A-18
return temporary, C-7
return values, 2-28

function prototype, 2-45

G
get64 program, D-14

global

consistency check, 6-8, 6-9
data, 7-11, 7-14, B-4, B-5�B-10,

C-4, C-5
sharing, 7-11�7-13

function, B-4, B-6
replace operation, 6-9
symbol, 4-13, 6-5, 6-9, 6-10, 6-12,

B-3, B-4
listing, 3-4, 3-7

variable, 4-16
global symbol mapper, 6-11�6-15, B-3

input, 6-11
invocation, 6-11
listing, 6-12
options, 6-11�6-15

listing, 6-13
sorting, 6-14

output, 6-11
usage, 6-12�6-15

GPL. See _GPL pseudo-function

group, 4-18�4-19

gsmap. See global symbol mapper

H
halfword alignment, 3-14

handler, A-26

hardware floating-point, 2-28, 2-29,

4-22

hardware floats option, 2-28

Hewlett-Packard format. See HP64000

format

hex file, 3-14, 5-14, 7-6

HP64000 format, 5-7, 5-8, 5-10,

D-11�D-20

IndexIndex–6
IN
D
E
X

I
idata, 2-40, 4-6, 4-18, 7-14, B-6, B-9

IEEE-695, D-19�D-20

IH. See _IH keyword

in-line, assembly, A-5�A-32

in-line assembly, 2-10, 2-40�2-41,

A-5

include

directive, 2-14
options, compiler, 2-13�2-14

initial

stack frame, C-9�C-10
values, 4-6, 4-16

initialization, segment, 4-6

initialized variables, 4-6, 7-14, 7-16

input

assembler, 3-3
compiler, 2-3
formatter, 5-3
global symbol mapper, 6-11
librarian, 6-4
linking locator, 4-3
object size list utility, 6-21
symbol list utility, 6-16

instruction, for returns, A-28

Intel

ASCII hex format, 5-10
formats, D-4�D-20

internal symbol, B-3, B-4

interrupt

handlers, A-26
C, A-26�A-32

priority level, A-27
interrupt handlers, 2-9, 2-47

invocation

formatter, 5-3
global symbol mapper, 6-11
librarian, 6-4
linking locator, 4-3
object size list utility, 6-21
symbol list utility, 6-16

L
ldata, 4-18, B-6

libr, 6-4

librarian, 6-4�6-10

input, 6-4
invocation, 6-4
options, 6-4�6-10

command, 6-7�6-8
output, 6-4
usage, 6-5�6-10

library

index
file, 4-4, 4-5, 4-9, 6-5, 6-6, 6-8
header, 6-5, 6-9

listing output, 6-9
search, 4-9, 4-26�4-38, 6-8

lifetime

analysis, 2-26, 2-47
overlap, 2-47

LINK instruction, 2-25

linkage conventions, 2-28

linking, 4-5�4-7

options, 4-8�4-9
linking locator, 4-16�4-38

input, 4-3
invocation, 4-3
options, 4-3�4-38
output, 4-3
usage, 4-5�4-38

listing

object size, 6-21�6-22
symbol table, 6-17�6-20

listing options

assembler, 3-6�3-8
compiler, 2-10�2-12
global symbol mapper, 6-13�6-14
librarian, 6-9

llink. See linking locator

loader program, 5-5, 7-29

local

functions, B-4

Index Index–7

• • • • • • • •

information, 4-12
stack data, B-4, B-5�B-10

LOCATE command, 4-16, 4-19, 4-20,

4-21, 4-32

locating, 4-7

segments, 4-19
locator, commands, 4-9, 4-27�4-38

long integer, 2-18, 4-23

loop rotation, 2-51�2-58

M
M68020, 2-18�2-19

M68030, 2-18�2-19

M68040, 2-18�2-19

M68EC020, 2-18�2-19

M68EC030, 2-18�2-19

M68EC040, 2-18�2-19

macro, definition, A-21

macros, ANSI predefined, A-22�A-28

main routine, C-9

mathematical functions, 2-29

maximum address, 4-33

MC68000, compatibility mode, 2-28

MC68020, addressing mode, 2-54

MC68040, 2-31

MC68302, 3-13

MC68881, instructions, 4-22

memory

limitation, 4-33
management, 4-33

MEMORY command, 4-22, 4-33

memory mapped I/O, 2-9, 2-47, 4-16

memory space, 4-16

messages, librarian, 6-9

MICROCASE SoftAnalyst, 5-8

missing, routines, 4-30

Motorola S format, 5-10, D-5�D-20

multiplication optimization, 2-53�2-58

N
name

conflict, 4-13
list, 4-29, 4-32

negative offsets, C-5

nested include, 2-14

nesting limit, 2-14

no-A5 library, 2-36

no-alias option, A-23

no-floats library, 4-23

non-volatile option, A-23

null class, 4-20

NWIS ASCII format, 5-8, 5-11

O
object

module, 2-8, 6-7
cataloging, 6-7

text window, 5-12
object size list utility, 6-21�6-22

input, 6-21
invocation, 6-21
listing, 6-22
options, 6-21�6-22
output, 6-21
usage, 6-21�6-22

offsets

negative, C-5
positive, C-5

olsize. See object size list utility

operators, ANSI C, A-25�A-28

optimizer, 2-9, 2-48�2-58

and debugging, 2-4, 2-9, 2-24
options, 2-22�2-46
special instructions, 2-53�2-58
subexpression, 2-22

IndexIndex–8
IN
D
E
X

suppression, 2-47
usage, 2-47�2-58

option sep_off, 7-15

option sep_on, 2-19�2-21, 7-15, 7-16

option separate, 2-20, 5-15,

7-14�7-16, B-6, B-7�B-10, C-5

options

assembler, 3-6�3-16
compiler, 2-3�2-21
formatter, 5-3�5-16
global symbol mapper, 6-11�6-15

listing, 6-13�6-14
sorting, 6-14

librarian, 6-4�6-10
command, 6-7
listing, 6-9

linking locator, 4-8�4-38
listing, librarian, 6-9
object size list utility, 6-21�6-22
symbol list utility, 6-16�6-20

output

assembler, 3-3
compiler, 2-3
global symbol mapper, 6-11
librarian, 6-4
linking locator, 4-3
object size list utility, 6-21
symbol list utility, 6-16, 6-17

overlapping segments, 4-21

P
Packed Motorola format, 5-10

padding segments, 4-9, 4-36

pagination, 3-7

suppression, 6-14
parallel connection, 7-6

parameter passing, C-7�C-10

PC-relative addressing, 7-30�7-41

PC-relative code, 2-38

peripherals, on-board, 7-49

portable libraries, 6-6

position-independent code, 2-37,

2-38�2-40, 3-13, 7-29�7-41

position-independent data, 7-32

positive offsets, C-5

pragma sep_off, 7-15

pragma sep_on, 2-19�2-21, 7-15, 7-16

pragma separate, 2-20, 5-15,

7-14�7-16, B-6, B-7�B-10, C-5

pre-INCLUDE'd files, 3-12

prelink, 4-5

preprocessor, 2-42, 2-43

additions, ANSI C, A-22�A-32
extensions, A-4�A-32
option directives, 7-15�7-16

preserved registers, 2-33, C-6

procedure

blocks, C-5
call, 2-34
prologue, 2-25, C-8�C-10

program image, 7-6

prologue, C-8�C-10

PROM

burners, 7-6
options, 5-11�5-12
programming, 7-5, 7-6�7-7

prototype. See function prototype

pseudo-assembly, listing, 2-8

R
RAM, 4-6, 7-7

rcopy, 4-6

read-only variables, A-20

register

allocation, 2-26, 2-47, 2-48
preserved, C-6�C-10
return values, C-6�C-10
usage, C-6�C-10
variable, 2-34, 2-48, 2-49

relocatable segment, 4-21

relocation, 4-21�4-38

RESERVE command, 4-21, 4-35

Index Index–9

• • • • • • • •

return values, 7-10

ROM, 4-6, 7-6, 7-7, 7-14

processor, 4-5
variables in, A-20

rompOutSeg, 4-6

RS-232 connection, 7-6

RTE instruction, A-27, A-28

RTS instruction, A-28

run-time conventions, 2-33

run-time library, 2-16, 2-17, 2-29,

2-32, 2-36, 4-14, 7-17

organization, 4-22�4-38
run-time model, 2-32, 2-33

S
S37 Motorola S records, D-7�D-20

sdata, 2-40, B-6

segment, B-3, B-6�B-10

absolute, 4-21
code, B-6�B-10
data, B-6
length, 4-16
name, 4-16, 7-15, B-4
overlapping, 4-21
padding, 4-36

segmentation model, C-4�C-10

SEGSIZE command, 4-36

separate

data, 2-19�2-21, 7-16, B-7�B-10
default class, 2-20, 7-15
default segment, 7-15

signed bitfield, A-31

signed/unsigned attribute, 2-17

simulators, 7-5

software

floating-point, 2-28, 4-22
interrupt keyword, A-30

source, listing, 2-13

SPL. See _SPL pseudo-function

stack, 2-36�2-37

data, B-4, B-5�B-10
fixup, 2-36�2-37
frame, 2-25, 2-36

initial, C-9�C-10
layout, C-3
traceback, 2-25

START command, 4-37

static

data items, 7-14
functions, B-6
keyword, B-4
variable, B-9

storage allocation, 2-17, 2-19,

C-3�C-10

strength reduction, 2-26, 2-50�2-58

string constants, B-5�B-10

stringization, A-21�A-32

structure, fields, 2-42

structure, fields, 2-19

structured assembly, 3-8

subroutine, linkage, C-6�C-10

subscript optimization, 2-53�2-58

support, customer, 2-54

SWI. See _SWI keyword

symbol

formats, 5-5, 5-7, 5-9
global, B-3, B-4
information, 2-41, 3-14, 4-13, 5-7
internal, B-3, B-4
naming, B-8�B-10

symbol list utility, 3-14, 6-16�6-20,

B-3

input, 6-16
invocation, 6-16
listing, 6-19�6-20
options, 6-16�6-20
output, 6-16, 6-17
usage, 6-16�6-20

IndexIndex–10
IN
D
E
X

symlist. See symbol list utility

system, include directory, 2-13

T
target path

computation, 2-49�2-58
optimization, 2-50

Tekhex format, 5-10, D-8�D-20

token pasting operator, A-25�A-28

TRAP, A-26

trigraphs, A-19�A-32

type

char, 2-15
double, 2-28
float, 2-28
int, 2-15, 4-23
qualifier, const, A-20�A-32
short, 2-15

type qualifier, A-23

U
udata, 4-18, 5-13, 7-14, B-6, B-9

unassembled source, 3-8

uncombinable segment, 4-17

undefined symbol, 2-45, 4-5

uninitialized

bytes, 4-16
data, B-6, B-7, B-8

storage, 4-16
variables, 7-14, 7-16

updating library, 6-5, 6-6, 6-8

uppercase identifiers, 3-15

user include

directory, 2-13
file, 2-13

V
VBR register, A-26

vector exception, A-27

void

data type, A-27
keyword, A-16
pointers, A-20�A-32

volatile, 2-27�2-28, 2-48, A-23

keyword, A-27

W
warning

messages, 2-46, 3-15
severities, 2-46, 3-15

Z
Z80SBC format, 5-10

ZAX format, 5-8, 5-11

		TABLE OF CONTENTS

		1. INTRODUCTION

		1.1 Overview

		1.2 Documentation

		2. C COMPILER

		2.1 Introduction

		2.2 C Compiler Options: Summary

		2.3 Usage

		2.4 C Compiler Options: Detailed Descriptions

		2.4.1 Listing Options

		2.4.2 Include Options

		2.4.3 Data Type Options

		2.4.4 Separate Data Options

		2.4.5 Optimizer Options

		2.4.6 Floating-Point Options (68K only)

		2.4.7 Code Generation Options

		2.4.8 Position-independent Code Options

		2.4.9 Miscellaneous Options

		2.5 Using the Optimizer

		2.6 Optimizations Performed

		2.6.1 Automatic Register Variable Assignment

		2.6.2 Common Subexpression Elimination

		2.6.3 Target Path Computation

		2.6.4 Strength Reduction

		2.6.5 Code Hoisting

		2.6.6 Loop Rotation

		2.6.7 Branch Tables

		2.6.8 Entry/Exit Optimization

		2.6.9 Multiplication Optimization

		2.6.10 Subscript Optimization

		2.6.11 Special Instruction Selection

		2.6.12 Special Addressing Modes

		2.7 Messages

		3. ASSEMBLER

		3.1 Introduction

		3.2 Assembler Options: Summary

		3.3 Usage

		3.4 Assembler Options: Detailed Descriptions

		3.4.1 Listing Options

		3.4.2 INCLUDE Options

		3.4.3 Code Generation Options

		3.4.4 Miscellaneous Options

		4. LINKING LOCATOR

		4.1 Introduction

		4.2 Linking Locator Options: Summary

		4.3 Usage

		4.3.1 Linking

		4.3.2 ROM Processing

		4.3.3 Locating

		4.4 Linking Locator Options: Detailed Descriptions

		4.4.1 Linker Options

		4.4.2 Locator Options

		4.4.3 ROM Processing Options

		4.4.4 Symbol Options

		4.4.5 Miscellaneous Options

		4.5 Linking Concepts

		4.5.1 Segments

		4.5.2 Groups

		4.5.3 Classes

		4.5.4 Relocation

		4.6 Compiler Library Organization

		4.7 Library Searches

		4.8 Locator Commands

		4.8.1 General Command Syntax

		4.8.2 Comments

		4.8.3 Numbers

		4.8.4 Keywords

		4.8.5 Address Ranges

		4.8.6 Names

		4.8.7 Name List

		4.9 Command Descriptions

		5. FORMATTER

		5.1 Introduction

		5.2 Formatter Options: Summary

		5.3 Usage

		5.3.1 form

		5.3.2 form695

		5.4 Formatter Options: Detailed Descriptions

		5.4.1 Format Options

		5.4.2 PROM Options

		5.4.3 COFF Format Options

		5.4.4 Miscellaneous Options

		5.5 IEEE-695 Formatter Limitations

		6. OTHER UTILITIES

		6.1 Librarian

		6.1.1 Librarian Options: Summary

		6.1.2 Usage

		6.1.3 Librarian Options: Detailed Description

		6.2 Global Symbol Mapper

		6.2.1 Global Symbol Mapper Options: Summary

		6.2.2 Usage

		6.2.3 Global Symbol Mapper Options: Detailed Description

		6.3 Symbol List Utility

		6.3.1 Symbol List Utility Options: Summary

		6.3.2 Usage

		6.3.3 Symbol List Utility Options: Detailed Description

		6.3.4 The Symbol Table Listing

		6.4 Object Size List Utility

		6.4.1 Object Size List Utility Options: Summary

		6.4.2 Usage

		6.4.3 Object Size List Utility Options: Detailed Description

		7. APPLICATION NOTES

		7.1 About the Application Notes

		7.2 Downloading

		7.2.1 Introduction

		7.2.2 PROM Programming

		7.3 Linking C and Assembly

		7.3.1 Introduction

		7.3.2 Conventions

		7.3.3 Sharing Global Data

		7.4 Pragma Separate (Option Separate)

		7.4.1 Introduction

		7.4.2 Preprocessor Option Directives

		7.4.3 Command Line Options

		7.5 Building Libraries That Do Not Use A5

		7.6 Position-independent Code

		7.6.1 Introduction

		7.6.2 How Position Independence is Achieved

		7.6.3 Position Independence and Data References

		7.6.4 Position Independence and Data Initialization

		7.6.5 Building a Position-independent System

		7.6.6 Some Additional Hints

		7.7 Getting the Best Code for Your Application

		7.7.1 Code Size versus Execution Speed

		7.7.2 If Statements

		7.7.3 Using Integer Data

		7.7.4 Size of int Data Type (68K only)

		7.7.5 Compilation Models for Data

		7.8 Support for the On-board Peripherals of the 68332, 68340, and 68360

		A. C LANGUAGE SPECIFICATIONS

		1 Introduction

		2 Preprocessor Extensions

		3 In-line Assembly Language

		3.1 The _CASM method

		3.2 The _ASM method

		3.3 Syntax Summary

		4 ANSI C Function Prototypes

		4.1 Creating Function Prototypes

		4.2 Calls to Functions with Prototypes

		5 Other ANSI C Features

		5.1 Adjacent String Literal Concatenation

		5.2 Trigraph Replacement

		5.3 Void Pointers - void *

		5.4 Const Type Qualifier

		5.5 Stringization

		5.6 ANSI C Preprocessor Additions

		5.6.1 New Predefined Macros

		5.6.2 New Directives

		5.6.3 #error

		5.6.4 #pragma

		5.6.5 #elif

		5.7 Volatile Type Qualifier

		5.8 New Operators

		5.8.1 defined

		5.8.2 token pasting

		6 Support for Interrupt Handlers in C

		6.1 The _GPL Pseudo-Function

		6.2 The _SPL Pseudo-Function

		6.3 The _TRAP Function

		6.4 The _IH Keyword

		6.5 The _SWI Keyword

		7 Implementation-Defined Behavior

		B. COMPILER NAMING CONVENTIONS

		1 Introduction

		2 Code Symbols

		3 Data Symbols

		3.1 Global Data

		3.2 Local Static Data

		3.3 Stack Data

		3.4 String Constants

		3.5 Other Symbols

		4 Segment Names

		4.1 Code Segment Names

		4.2 Data Segment Names

		4.3 Separate Data

		5 Symbol Naming Summary

		5.1 Notes

		C. COMPILER RUN-TIME CONVENTIONS

		1 Introduction

		2 Storage Allocation

		2.1 Notes

		3 Segmentation Model

		4 Register Usage

		5 Subroutine Linkage

		5.1 Preserved Registers

		5.2 Register Return Values

		5.3 Parameter Passing

		5.4 Calling Sequence

		5.5 Procedure Prologue

		5.6 Initial Startup

		D. OBJECT MODULE FORMATS

		1 Introduction

		2 Intel ASCII Hex Format

		3 Motorola S Records

		4 Extended Motorola S Records

		5 Packed Motorola S Records

		6 S37 Motorola S Records

		7 Tektronix Format (Tekhex)

		8 Extended Tekhex Format

		8.1 Section Definition Field

		8.2 Symbol Definition Field

		9 Binary Tektronix Format

		10 HP64000 Format

		10.1 Using the HP64000 Format

		10.2 Files Needed

		10.3 Generating Files for Use with the 64700

		10.4 Formatter Examples

		10.5 Using get64 on Unix Hosts

		11 Common Object File Format (COFF)

		11.1 File Header

		11.2 Option Header

		11.3 Relocation Information

		11.4 Section Headers

		11.5 Line Number Information

		11.6 Symbol Table Entries

		11.7 COFF1 Format

		12 IEEE-695 Object Module Format

		E. COMPILER / ASSEMBLER DRIVER

		INDEX

m_cp68.pdf

MA001–012–00–00
Doc. ver.: 1.58

68K/ColdFire v10.0

C++ Compiler

User's Manual

A publication of

Altium BV

Documentation Department

Copyright 2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

IBM is a trademark of International Business Machines Corp.

Motorola is a trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

OVERVIEW 1-1

1.1 Introduction to C++ Compiler 1-3.

1.2 Development Structure 1-3.

1.2.1 The C++ Linker Driver (ldriver): Prelinker Phase 1-5.

1.2.2 The C++ Linker Driver (ldriver): Muncher Phase 1-7.

LANGUAGE IMPLEMENTATION 2-1

2.1 Introduction 2-3.

2.2 C++ Language Extension Keywords 2-3.

2.3 C++ Dialect Accepted 2-3.

2.3.1 New Language Features Accepted 2-4.

2.3.2 New Language Features Not Accepted 2-6.

2.3.3 Anachronisms Accepted 2-7.

2.3.4 Extensions Accepted in Normal C++ Mode 2-8.

2.3.5 Extensions Accepted in Cfront 2.1 Compatibility Mode 2-9

2.3.6 Extensions Accepted in Cfront 2.1 and 3.0

Compatibility Mode 2-13.

2.4 Namespace Support 2-20.

2.5 Template Instantiation 2-22.

2.5.1 Automatic Instantiation 2-23.

2.5.2 Instantiation Modes 2-27.

2.5.3 Instantiation #pragma Directives 2-28.

2.5.4 Implicit Inclusion 2-30.

2.6 Precompiled Headers 2-31.

2.6.1 Automatic Precompiled Header Processing 2-31.

2.6.2 Manual Precompiled Header Processing 2-35.

2.6.3 Other Ways to Control Precompiled Headers 2-36.

2.6.4 Performance Issues 2-36.

Table of ContentsVI
C
O
N
T
E
N
T
S

COMPILER USE 3-1

3.1 Invocation 3-3.

3.1.1 Detailed Description of the Compiler Options 3-12.

3.2 Linker 3-80.

3.3 Pragmas 3-81.

COMPILER DIAGNOSTICS 4-1

4.1 Diagnostic Messages 4-3.

4.2 Termination Messages 4-4.

4.3 Response to Signals 4-5.

4.4 Return Values 4-5.

ERROR MESSAGES A-1

1 Introduction A-3.

2 Messages A-4.

INDEX

Manual Purpose and Structure VII

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the TASKING 68K/ColdFire C++ Compiler.

It assumes that you are conversant with the C and C++ language.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Overview

Provides an overview of the TASKING 68K/ColdFire toolchain and

gives you some familiarity with the different parts of it and their

relationship. A sample session explains how to build an application

from your C++ file.

2. Language Implementation

Concentrates on the approach of the 68K/ColdFire architecture and

describes the language implementation. The C++ language itself is not

described in this document.

3. Compiler Use

Deals with invocation, command line options and pragmas.

4. Compiler Diagnostics

Describes the exit status and error/warning messages of the C++

compiler.

APPENDICES

A. Error Messages

Contains an overview of the error messages.

INDEX

Manual Purpose and StructureVIII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

• The C++ Programming Language (second edition)

by Bjarne Straustrup (1991, Addison Wesley)

• ISO/IEC 14882:1998 C++ standard [ANSI]

More information on the standards can be found at

http://www.ansi.org

• The Annotated C++ Reference Manual

by Margaret A. Ellis and Bjarne Straustrup (1990, Addison Wesley)

• The C Programming Language (second edition)

by B. Kernighan and D. Ritchie (1988, Prentice Hall)

• ANSI X3.159-1989 standard [ANSI]

• 68K/ColdFire C Compiler/Assembler User's Manual [TASKING,

MA001-022-00-00]

• 68K/ColdFire C Compiler/Assembler Reference Manual [TASKING,

MB001-022-00-00]

• 68K/ColdFire CrossView Pro Debugger User's Manual [TASKING,

MA001-043-00-00]

Manual Purpose and Structure IX

• • • • • • • •

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and StructureX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

1

OVERVIEW
C

H
A

P
T

E
R

Chapter 11–2
O
V
E
R
V
IE
W

1

C
H

A
P

T
E

R

Overview 1–3

• • • • • • • •

1.1 INTRODUCTION TO C++ COMPILER

This manual provides a functional description of the TASKING C++

Compiler. This manual uses cpxxx (the name of the binary, where xxx is

the name of the target) as a shorthand notation for "TASKING

68K/ColdFire C++ Compiler". See section Derivatives Overview in chapter

Tutorial of the Getting Started Manual, for a list of all available targets. You

should be familiar with the C++ language and with the ANSI/ISO C

language.

The C++ compiler is part of a complete toolchain. For details about the C

compiler see the "C Compiler/Assembler User's Manual".

The C++ compiler accepts the C++ language of the ISO/IEC 14882:1998

C++ standard, with some minor exceptions documented in the next

chapter.

The C++ compiler provides complete error checking, produces clear error

messages (including the position of the error within the source line), and

avoids cascading errors. It also avoids seeming overly finicky to a

knowledgeable C or C++ programmer.

1.2 DEVELOPMENT STRUCTURE

The next figure explains the relationship between the different parts of the

68K/ColdFire toolchain:

Chapter 11–4
O
V
E
R
V
IE
W

C++ front end

C++ source file
.cpp

input object files
library files

compilation and linking

C source file
.c

absolute object file

.ic

C compiler

C file

assembler

assembly file
.asm

ldriver

C compiler

recompilation

temporary file

.ab

Figure 1-1: Development flow

Overview 1–5

• • • • • • • •

1.2.1 THE C++ LINKER DRIVER (LDRIVER): PRELINKER

PHASE

The C++ compiler provides a complete implementation of an automatic

instantiation mechanism. The automatic instantiation mechanism is a

"linker feedback" mechanism. It works by providing additional information

in the object file that is used by a "prelinker" to determine which template

entities require instantiation so that the program can be linked

successfully. Unlike most aspects of the C++ compiler the automatic

instantiation mechanism is, by its nature, dependent on certain operating

system and object file format properties. In particular, the prelinker is a

separate program that accesses information about the symbols defined in

object files.

At the end of each compilation, the C++ compiler determines whether any

template entities were referenced in the translation unit. If so, an

"instantiation information" file is created, referred to for convenience as a

.ii file. If no template entities were referenced in the translation unit, the

.ii file will not be created and any existing file will be removed. If an

error occurs during compilation, the state of the .ii file is unchanged.

Once a complete set of object files has been generated, ldriver invokes

the prelinker to determine whether any new instantiations are required or

if any existing instantiations are no longer required. The command line

arguments to the prelinker include a list of input files to be analyzed. The

input files are the object files and libraries that constitute the application.

The prelinker begins by looking for instantiation information files for each

of the object files. If no instantiation information files are present, the

prelinker concludes that no further action is required.

If there are instantiation information files, the prelinker reads the current

instantiation list from each information file. The instantiation list contains

the list of instantiations assigned to a given source file by a previous

invocation of the prelinker. The prelinker produces a list of the global

symbols that are referenced or defined by each of the input files. The

prelinker then simulates a link operation to determine which symbols must

be defined for the application to link successfully.

Chapter 11–6
O
V
E
R
V
IE
W

When the link simulation has been completed, the prelinker processes

each input file to determine whether any new instantiations should be

assigned to the input file or if any existing instantiations should be

removed. The prelinker goes through the current instantiation list from the

instantiation information file to determine whether any of the existing

instantiations are no longer needed. An instantiation may be no longer

needed because the template entity is no longer referenced by the

program or because a user supplied specialization has been provided. If

the instantiation is no longer needed, it is removed from the list (internally;

the file will be updated later) and the file is flagged as requiring

recompilation.

The prelinker then examines any symbols referenced by the input file. The

responsibility for generating an instantiation of a given entity that has not

already been defined is assigned to the first file that is capable of

generating that instantiation.

Once all of the assignments have been updated, the prelinker once again

goes through the list of object files. For each, if the corresponding

instantiation information file must be updated, the new file is written. Only

source files whose corresponding .ii file has been modified will be

recompiled.

At this point each .ii file contains the information needed to recompile

the source file and a list of instantiations assigned to the source file, in the

form of mangled function and static data member names.

If an error occurs during a recompilation, the prelinker exits without

updating the remaining information files and without attempting any

additional compilations.

If all recompilations complete without error, the prelink process is

repeated, since an instantiation can produce the demand for another

instantiation. This prelink cycle (finding uninstantiated templates, updating

the appropriate .ii files, and dispatching recompilations) continues until

no further recompilations are required.

When the prelinker is finished, the linker is invoked. Note that simply

because the prelinker completes successfully does not assure that the

linker will not detect errors. Unresolvable template references and other

linker errors will not be diagnosed by the prelinker.

Overview 1–7

• • • • • • • •

1.2.2 THE C++ LINKER DRIVER (LDRIVER): MUNCHER

PHASE

The C++ muncher implements global initialization and termination code.

The muncher accepts the output of the linker as its input file. It generates

a C program that defines a data structure containing a list of pointers to

the initialization and termination routines. This generated program is then

compiled and linked in with the executable. The data structure is

consulted at run-time by startup code invoked from _main , and the

routines on the list are invoked at the appropriate times.

Chapter 11–8
O
V
E
R
V
IE
W

2

LANGUAGE
IMPLEMENTATION

C
H

A
P

T
E

R

Chapter 22–2
L
A
N
G
U
A
G
E

2

C
H

A
P

T
E

R

Language Implementation 2–3

• • • • • • • •

2.1 INTRODUCTION

The TASKING C++ compiler (cpxxx) offers a new approach to high-level

language programming for the 68K/ColdFire family. The C++ compiler

accepts the C++ language as defined by the ISO/IEC 14882:1998 standard,

with the exceptions listed in section 2.3.

This chapter describes the C++ language extensions and some specific

features.

2.2 C++ LANGUAGE EXTENSION KEYWORDS

The C++ compiler supports the same language extension keywords as the

C compiler (as described in Appendix A of the 68K/ColdFire C
Compiler/Assembler User's Manual).

The following language extensions are supported:

#pragma separate
#pragma sep_on
#pragma sep_off
_ASMLINE
_ASM
_CASM
_IH
_SWI
SPL
GPL
TRAP

2.3 C++ DIALECT ACCEPTED

The C++ compiler accepts the C++ language as defined by the ISO/IEC

14882:1998 standard, with the exceptions listed below.

The C++ compiler also has a cfront compatibility mode, which duplicates a

number of features and bugs of cfront 2.1 and 3.0.x. Complete

compatibility is not guaranteed or intended; the mode is there to allow

programmers who have unwittingly used cfront features to continue to

compile their existing code. In particular, if a program gets an error when

compiled by cfront, the C++ compiler may produce a different error or no

error at all.

Chapter 22–4
L
A
N
G
U
A
G
E

Command line options are also available to enable and disable

anachronisms and strict standard-conformance checking.

2.3.1 NEW LANGUAGE FEATURES ACCEPTED

The following features not in traditional C++ (the C++ language of "The
Annotated C++ Reference Manual" by Ellis and Stroustrup (ARM)) but in

the standard are implemented:

• The dependent statement of an if , while , do–while , or for is

considered to be a scope, and the restriction on having such a

dependent statement be a declaration is removed.

• The expression tested in an if , while , do–while , or for , as the

first operand of a "?" operator, or as an operand of the "&&", ": ", or

"! "operators may have a pointer-to-member type or a class type

that can be converted to a pointer-to-member type in addition to

the scalar cases permitted by the ARM.

• Qualified names are allowed in elaborated type specifiers.

• A global-scope qualifier is allowed in member references of the

form x.::A::B and p–>::A::B .

• The precedence of the third operand of the "?" operator is changed.

• If control reaches the end of the main() routine, and main() has

an integral return type, it is treated as if a return 0; statement

were executed.

• Pointers to arrays with unknown bounds as parameter types are

diagnosed as errors.

• A functional-notation cast of the form A() can be used even if A is

a class without a (nontrivial) constructor. The temporary created

gets the same default initialization to zero as a static object of the

class type.

• A cast can be used to select one out of a set of overloaded

functions when taking the address of a function.

• Template friend declarations and definitions are permitted in class

definitions and class template definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have nontype template parameters.

• A reference to const volatile cannot be bound to an rvalue.

• Qualification conversions, such as conversion from T**

to T const * const * are allowed.

Language Implementation 2–5

• • • • • • • •

• Digraphs are recognized.

• Operator keywords (e.g., not , and , bitand , etc.) are recognized.

• Static data member declarations can be used to declare member

constants.

• wchar_t is recognized as a keyword and a distinct type.

• bool is recognized.

• RTTI (run-time type identification), including dynamic_cast and

the typeid operator, is implemented.

• Declarations in tested conditions (in if , switch , for , and while
statements) are supported.

• Array new and delete are implemented.

• New-style casts (static_cast , reinterpret_cast , and

const_cast) are implemented.

• Definition of a nested class outside its enclosing class is allowed.

• mutable is accepted on non-static data member declarations.

• Namespaces are implemented, including using declarations and

directives. Access declarations are broadened to match the

corresponding using declarations.

• Explicit instantiation of templates is implemented.

• The typename keyword is recognized.

• explicit is accepted to declare non-converting constructors.

• The scope of a variable declared in the for–init–statement of a

for loop is the scope of the loop (not the surrounding scope).

• Member templates are implemented.

• The new specialization syntax (using �template <> ") is

implemented.

• Cv-qualifiers are retained on rvalues (in particular, on function

return values).

• The distinction between trivial and nontrivial constructors has been

implemented, as has the distinction between PODs and non-PODs

with trivial constructors.

• The linkage specification is treated as part of the function type

(affecting function overloading and implicit conversions).

• extern inline functions are supported, and the default linkage

for inline functions is external.

• A typedef name may be used in an explicit destructor call.

• Placement delete is implemented.

Chapter 22–6
L
A
N
G
U
A
G
E

• An array allocated via a placement new can be deallocated via

delete.

• Covariant return types on overriding virtual functions are supported.

• enum types are considered to be non-integral types.

• Partial specialization of class templates is implemented.

• Partial ordering of function templates is implemented.

• Function declarations that match a function template are regarded

as independent functions, not as �guiding declarations" that are

instances of the template.

• It is possible to overload operators using functions that take enum
types and no class types.

• Explicit specification of function template arguments is supported.

• Unnamed template parameters are supported.

• The new lookup rules for member references of the form x.A::B
and p–>A::B are supported.

• The notation :: template (and –>template , etc.) is supported.

• In a reference of the form f()–>g() , with g a static member

function, f() is evaluated. The ARM specifies that the left operand

is not evaluated in such cases.

2.3.2 NEW LANGUAGE FEATURES NOT ACCEPTED

The following features of the C++ standard are not implemented yet:

• enum types cannot contain values larger than can be contained in

an int .

• reinterpret_cast does not allow casting a pointer to member of

one class to a pointer to member of another class if the classes are

unrelated.

• Two-phase name binding in templates, as described in [temp.res]

and [temp.dep] of the standard, is not implemented.

• Class name injection is not implemented.

• Putting a try /catch around the initializers and body of a

constructor is not implemented.

• Template template parameters are not implemented.

• Koenig lookup of function names on all calls is not implemented.

• Finding friend functions of the argument class types on name

lookup on the function name in calls is not implemented.

Language Implementation 2–7

• • • • • • • •

• String literals do not have const type.

• Universal character set escapes (e.g., \uabcd) are not implemented.

• The export keyword for templates is not implemented.

2.3.3 ANACHRONISMS ACCEPTED

The following anachronisms are accepted when anachronisms are enabled

(with ––anachronisms):

• overload is allowed in function declarations. It is accepted and

ignored.

• Definitions are not required for static data members that can be

initialized using default initialization. The anachronism does not

apply to static data members of template classes; they must always

be defined.

• The number of elements in an array may be specified in an array

delete operation. The value is ignored.

• A single operator++() and operator––() function can be used

to overload both prefix and postfix operations.

• The base class name may be omitted in a base class initializer if

there is only one immediate base class.

• Assignment to this in constructors and destructors is allowed. This

is allowed only if anachronisms are enabled and the "assignment to

this " configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a

given object) can be cast to a pointer to a function.

• A nested class name may be used as a non-nested class name

provided no other class of that name has been declared. The

anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a

different type. A temporary is created, it is initialized from the

(converted) initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an

rvalue of the class type or a derived class thereof. No (additional)

temporary is used.

• A function with old-style parameter declarations is allowed and may

participate in function overloading as though it were prototyped.

Default argument promotion is not applied to parameter types of

such functions when the check for compatibility is done, so that the

following declares the overloading of two functions named f :

Chapter 22–8
L
A
N
G
U
A
G
E

int f(int);
int f(x) char x; { return x; }

Note that in C this code is legal but has a different meaning: a

tentative declaration of f is followed by its definition.

• When ––nonconst_ref_anachronism is enabled, a reference to a

non-const class can be bound to a class rvalue of the same type or

a derived type thereof.

struct A {
A(int);
A operator=(A&);
A operator+(const A&);

};
main () {

A b(1);
b = A(1) + A(2); // Allowed as anachronism

}

2.3.4 EXTENSIONS ACCEPTED IN NORMAL C++ MODE

The following extensions are accepted in all modes (except when strict

ANSI violations are diagnosed as errors):

• A friend declaration for a class may omit the class keyword:

class A {
friend B; // Should be ”friend class B”

};

• Constants of scalar type may be defined within classes:

class A {
const int size = 10;
int a[size];

};

• In the declaration of a class member, a qualified name may be used:

struct A {
int A::f(); // Should be int f();

};

• The preprocessing symbol c_plusplus is defined in addition to

the standard __cplusplus .

• A pointer to a constant type can be delete d.

Language Implementation 2–9

• • • • • • • •

• An assignment operator declared in a derived class with a parameter

type matching one of its base classes is treated as a default

assignment operator, that is, such a declaration blocks the implicit

generation of a copy assignment operator. (This is cfront behavior

that is known to be relied upon in at least one widely used library.)

Here is an example:

struct A { };
struct B : public A {

B& operator=(A&);
};

By default, as well as in cfront-compatibility mode, there will be no

implicit declaration of B::operator=(const B&) , whereas in

strict-ANSI mode B::operator=(A&) is not a copy assignment

operator and B::operator=(const B&) is implicitly declared.

• Implicit type conversion between a pointer to an extern ”C”
function and a pointer to an extern ”C++” function is permitted.

Here's an example:

extern ”C” void f(); // f’s type has extern ”C” linkage
void (*pf)() // pf points to an extern ”C++” function

= &f; // error unless implicit conversion is
// allowed

This extension is allowed in environments where C and C++

functions share the same calling conventions. It is enabled by

default; it can also be enabled in cfront-compatibility mode or with

option ––implicit_extern_c_type_conversion. It is disabled in

strict-ANSI mode.

2.3.5 EXTENSIONS ACCEPTED IN CFRONT 2.1

COMPATIBILITY MODE

The following extensions are accepted in cfront 2.1 compatibility mode in

addition to the extensions listed in the 2.1/3.0 section following (i.e., these

are things that were corrected in the 3.0 release of cfront):

• The dependent statement of an if , while , do–while , or for is

not considered to define a scope. The dependent statement may not

be a declaration. Any objects constructed within the dependent

statement are destroyed at exit from the dependent statement.

• Implicit conversion from integral types to enumeration types is

allowed.

Chapter 22–10
L
A
N
G
U
A
G
E

• A non-const member function may be called for a const object.

A warning is issued.

• A const void * value may be implicitly converted to a void *
value, e.g., when passed as an argument.

• When, in determining the level of argument match for overloading,

a reference parameter is initialized from an argument that requires a

non-class standard conversion, the conversion counts as a

user-defined conversion.

• When a built-in operator is considered alongside overloaded

operators in overload resolution, the match of an operand of a

built-in type against the built-in type required by the built-in

operator is considered a standard conversion in all cases (e.g., even

when the type is exactly right without conversion).

• A reference to a non-const type may be initialized from a value

that is a const -qualified version of the same type, but only if the

value is the result of selecting a member from a const class object

or a pointer to such an object.

• The cfront 2.1 "transitional model" for nested type support is

simulated. In the transitional model a nested type is promoted to

the file scope unless a type of the same name already exists at the

file scope. It is an error to have two nested classes of the same

name that need to be promoted to file scope or to define a type at

file scope after the declaration of a nested class of the same name.

This "feature" actually restricts the source language accepted by the

compiler. This is necessary because of the effect this feature has on

the name mangling of functions that use nested types in their

signature. This feature does not apply to template classes.

• A cast to an array type is allowed; it is treated like a cast to a

pointer to the array element type. A warning is issued.

• When an array is selected from a class, the type qualifiers on the

class object (if any) are not preserved in the selected array. (In the

normal mode, any type qualifiers on the object are preserved in the

element type of the resultant array.)

• An identifier in a function is allowed to have the same name as a

parameter of the function. A warning is issued.

• An expression of type void may be supplied on the return

statement in a function with a void return type. A warning is issued.

Language Implementation 2–11

• • • • • • • •

• Cfront has a bug that causes a global identifier to be found when a

member of a class or one of its base classes should actually be

found. This bug is emulated in cfront compatibility mode. A

warning is issued when, because of this feature, a nonstandard

lookup is performed. The following conditions must be satisfied for

the nonstandard lookup to be performed:

- A member in a base class must have the same name as an

identifier at the global scope. The member may be a function,

static data member, or non-static data member. Member type

names do not apply because a nested type will be promoted to

the global scope by cfront which disallows a later declaration of

a type with the same name at the global scope.

- The declaration of the global scope name must occur between

the declaration of the derived class and the declaration of an

out-of-line constructor or destructor. The global scope name

must be a type name.

- No other member function definition, even one for an unrelated

class, may appear between the destructor and the offending

reference. This has the effect that the nonstandard lookup

applies to only one class at any given point in time. For

example:

struct B {
 void func(const char*);
};

struct D : public B {
public:
 D();
 void Init(const char*);
};

struct func {
 func(const char* msg);
};

D::D()

void D::Init(const char* t)
{
 //Should call B::func –– calls func::func instead.
 new func(t);
}

Chapter 22–12
L
A
N
G
U
A
G
E

The global scope name must be present in a base class

(B::func in this example) for the nonstandard lookup to occur.

Even if the derived class were to have a member named func, it

is still the presence of B::func that determines how the lookup

will be performed.

• A parameter of type "const void * " is allowed on operator

delete; it is treated as equivalent to "void * ".

• A period (". ") may be used for qualification where ":: " should be

used. Only ":: " may be used as a global qualifier. Except for the

global qualifier, the two kinds of qualifier operators may not be

mixed in a given name (i.e., you may say A::B::C or A.B.C but

not A::B.C or A.B::C). A period may not be used in a vacuous

destructor reference nor in a qualifier that follows a template

reference such as A<T>::B .

• Cfront 2.1 does not correctly look up names in friend functions that

are inside class definitions. In this example function f should refer

to the functions and variables (e.g., f1 and a1) from the class

declaration. Instead, the global definitions are used.

int a1;
int e1;
void f1();
class A {
 int a1;
 void f1();
 friend void f()
 {
 int i1 = a1; // cfront uses global a1
 f1(); // cfront uses global f1
 }
};

Only the innermost class scope is (incorrectly) skipped by cfront as

illustrated in the following example.

Language Implementation 2–13

• • • • • • • •

int a1;
int b1;
struct A {
 static int a1;
 class B {
 static int b1;
 friend void f()
 {
 int i1 = a1; // cfront uses A::a1
 int j1 = b1; // cfront uses global b1
 }
 };
};

• operator= may be declared as a nonmember function. (This is

flagged as an anachronism by cfront 2.1)

• A type qualifier is allowed (but ignored) on the declaration of a

constructor or destructor. For example:

class A {
 A() const; // No error in cfront 2.1 mode
};

2.3.6 EXTENSIONS ACCEPTED IN CFRONT 2.1 AND 3.0

COMPATIBILITY MODE

The following extensions are accepted in both cfront 2.1 and cfront 3.0

compatibility mode (i.e., these are features or problems that exist in both

cfront 2.1 and 3.0):

• Type qualifiers on the this parameter may to be dropped in

contexts such as this example:

struct A {
 void f() const;
};
void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a const function may

be put into a pointer to non-const , because a call using the

pointer is permitted to modify the object and the function pointed

to will actually not modify the object. The opposite assignment

would not be safe.

• Conversion operators specifying conversion to void are allowed.

Chapter 22–14
L
A
N
G
U
A
G
E

• A nonstandard friend declaration may introduce a new type. A

friend declaration that omits the elaborated type specifier is allowed

in default mode, but in cfront mode the declaration is also allowed

to introduce a new type name.

struct A {
 friend B;
};

• The third operand of the ? operator is a conditional expression

instead of an assignment expression as it is in the modern language.

• A reference to a pointer type may be initialized from a pointer value

without use of a temporary even when the reference pointer type

has additional type qualifiers above those present in the pointer

value. For example,

int *p;
const int *&r = p; // No temporary used

• A reference may be initialized with a null.

• Because cfront does not check the accessibility of types, access

errors for types are issued as warnings instead of errors.

• When matching arguments of an overloaded function, a const
variable with value zero is not considered to be a null pointer

constant. In general, in overload resolution a null pointer constant

must be spelled "0" to be considered a null pointer constant (e.g.,

'\0 ' is not considered a null pointer constant).

• An alternate form of declaring pointer-to-member-function

variables is supported, for example:

struct A {
 void f(int);
 static void sf(int);
 typedef void A::T3(int); // nonstd typedef decl
 typedef void T2(int); // std typedef
};
typedef void A::T(int); // nonstd typedef decl
T* pmf = &A::f; // nonstd ptr–to–member decl
A::T2* pf = A::sf; // std ptr to static mem decl
A::T3* pmf2 = &A::f; // nonstd ptr–to–member decl

Language Implementation 2–15

• • • • • • • •

where T is construed to name a routine type for a non-static

member function of class A that takes an int argument and returns

void ; the use of such types is restricted to nonstandard

pointer-to-member declarations. The declarations of T and pmf in
combination are equivalent to a single standard pointer-to-member

declaration:

void (A::* pmf)(int) = &A::f;

A nonstandard pointer-to-member declaration that appears outside

of a class declaration, such as the declaration of T, is normally

invalid and would cause an error to be issued. However, for

declarations that appear within a class declaration, such as A::T3 ,

this feature changes the meaning of a valid declaration. cfront

version 2.1 accepts declarations, such as T, even when A is an

incomplete type; so this case is also excepted.

• Protected member access checking is not done when the address of

a protected member is taken. For example:

class B { protected: int i; };
class D : public B { void mf(); };
void D::mf() {
 int B::* pmi1 = &B::i; // error, OK in cfront mode
 int D::* pmi2 = &D::i; // OK
}

Protected member access checking for other operations (i.e., everything

except taking a pointer-to-member address) is done in the normal

manner.

• The destructor of a derived class may implicitly call the private

destructor of a base class. In default mode this is an error but in

cfront mode it is reduced to a warning. For example:

class A {
~A();

};
class B : public A {

~B();
};
B::~B(){} // Error except in cfront mode

• When disambiguation requires deciding whether something is a

parameter declaration or an argument expression, the pattern

type-name-or-keyword(identifier...) is treated as an argument. For

example:

Chapter 22–16
L
A
N
G
U
A
G
E

class A { A(); };
double d;
A x(int(d));
A(x2);

By default int(d) is interpreted as a parameter declaration (with

redundant parentheses), and so x is a function; but in

cfront-compatibility mode int(d) is an argument and x is a

variable.

The declaration A(x2); is also misinterpreted by cfront. It should

be interpreted as the declaration of an object named x2 , but in

cfront mode is interpreted as a function style cast of x2 to the type

A.

Similarly, the declaration

int xyz(int());

declares a function named xzy , that takes a parameter of type

"function taking no arguments and returning an int ". In cfront

mode this is interpreted as a declaration of an object that is

initialized with the value int() (which evaluates to zero).

• A named bit-field may have a size of zero. The declaration is

treated as though no name had been declared.

• Plain bit fields (i.e., bit fields declared with a type of int) are

always unsigned.

• The name given in an elaborated type specifier is permitted to be a

typedef name that is the synonym for a class name, e.g.,

typedef class A T;
class T *pa; // No error in cfront
mode

• No warning is issued on duplicate size and sign specifiers.

short short int i; // No warning in cfront mode

• Virtual function table pointer update code is not generated in

destructors for base classes of classes without virtual functions, even

if the base class virtual functions might be overridden in a

further-derived class. For example:

Language Implementation 2–17

• • • • • • • •

struct A {
 virtual void f() {}
 A() {}
 ~A() {}
};
struct B : public A {
 B() {}
 ~B() {f();} // Should call A::f according to

// ARM 12.7
};
struct C : public B {
 void f() {}
} c;

In cfront compatibility mode, B::~B calls C::f .

• An extra comma is allowed after the last argument in an argument

list, as for example in

f(1, 2,);

• A constant pointer-to-member-function may be cast to a

pointer-to-function. A warning is issued.

struct A {int f();};
main () {
 int (*p)();
 p = (int (*)())A::f; // Okay, with warning
}

• Arguments of class types that allow bitwise copy construction but

also have destructors are passed by value (i.e., like C structures),

and the destructor is not called on the "copy". In normal mode, the

class object is copied into a temporary, the address of the temporary

is passed as the argument, and the destructor is called on the

temporary after the call returns. Note that because the argument is

passed differently (by value instead of by address), code like this

compiled in cfront mode is not calling-sequence compatible with

the same code compiled in normal mode. In practice, this is not

much of a problem, since classes that allow bitwise copying usually

do not have destructors.

• A union member may be declared to have the type of a class for

which you have defined an assignment operator (as long as the

class has no constructor or destructor). A warning is issued.

Chapter 22–18
L
A
N
G
U
A
G
E

• When an unnamed class appears in a typedef declaration, the

typedef name may appear as the class name in an elaborated type

specifier.

typedef struct { int i, j; } S;
struct S x; // No error in cfront mode

• Two member functions may be declared with the same parameter

types when one is static and the other is non-static with a function

qualifier.

class A {
 void f(int) const;
 static void f(int); // No error in cfront mode
};

• The scope of a variable declared in the for–init–statement is

the scope to which the for statement belongs.

int f(int i) {
 for (int j = 0; j < i; ++j) { /* ... */ }
 return j; // No error in cfront mode
}

• Function types differing only in that one is declared extern ”C”
and the other extern ”C++” can be treated as identical:

typedef void (*PF)();
extern ”C” typedef void (*PCF)();
void f(PF);
void f(PCF);

PF and PCF are considered identical and void f(PCF) is treated

as a compatible redeclaration of f . (By contrast, in standard C++ PF

and PCF are different and incompatible types 	 PF is a pointer to

an extern ”C++” function whereas PCF is a pointer to an extern
”C” function 	 and the two declarations of f create an overload

set.)

• Functions declared inline have internal linkage.

• enum types are regarded as integral types.

• An uninitialized const object of non-POD class type is allowed

even if its default constructor is implicitly declared:

struct A { virtual void f(); int i; };
const A a;

• A function parameter type is allowed to involve a pointer or

reference to array of unknown bounds.

Language Implementation 2–19

• • • • • • • •

• If the user declares an operator= function in a class, but not one

that can serve as the default operator= , and bitwise assignment

could be done on the class, a default operator= is not generated;

only the user�written operator= functions are considered for

assignments (and therefore bitwise assignment is not done).

Chapter 22–20
L
A
N
G
U
A
G
E

2.4 NAMESPACE SUPPORT

Namespaces are enabled by default except in the cfront modes. You can

use the command-line options ––namespaces and ––no_namespaces

to enable or disable the features.

Name lookup during template instantiations now does something that

approximates the two-phase lookup rule of the standard. When a name is

looked up as part of a template instantiation but is not found in the local

context of the instantiation, it is looked up in a synthesized instantiation

context. The C++ compiler follows the new instantiation lookup rules for

namespaces as closely as possible in the absence of a complete

implementation of the new template name binding rules. Here is an

example:

namespace N {
 int g(int);
 int x = 0;
 template <class T> struct A {
 T f(T t) { return g(t); }
 T f() { return x; }
 };
}

namespace M {
 int x = 99;
 double g(double);
 N::A<int> ai;
 int i = ai.f(0); // N::A<int>::f(int) calls

// N::g(int)
 int i2 = ai.f(); // N::A<int>::f() returns

// 0 (= N::x)
 N::A<double> ad;
 double d = ad.f(0); // N::A<double>::f(double)

// calls M::g(double)
 double d2 = ad.f(); // N::A<double>::f() also

// returns 0 (= N::x)
}

The lookup of names in template instantiations does not conform to the

rules in the standard in the following respects:

• Although only names from the template definition context are

considered for names that are not functions, the lookup is not

limited to those names visible at the point at which the template

was defined.

Language Implementation 2–21

• • • • • • • •

• Functions from the context in which the template was referenced

are considered for all function calls in the template. Functions from

the referencing context should only be visible for dependent

function calls.

The lookup rules for overloaded operators are implemented as specified

by the standard, which means that the operator functions in the global

scope overload with the operator functions declared extern inside a

function, instead of being hidden by them. The old operator function

lookup rules are used when namespaces are turned off. This means a

program can have different behavior, depending on whether it is compiled

with namespace support enabled or disabled:

struct A { };
A operator+(A, double);
void f() {
 A a1;
 A operator+(A, int);
 a1 + 1.0; // calls operator+(A, double)

// with namespaces enabled but
} // otherwise calls operator+(A, int);

Chapter 22–22
L
A
N
G
U
A
G
E

2.5 TEMPLATE INSTANTIATION

The C++ language includes the concept of templates. A template is a

description of a class or function that is a model for a family of related

classes or functions.1 For example, one can write a template for a Stack
class, and then use a stack of integers, a stack of floats, and a stack of

some user-defined type. In the source, these might be written

Stack<int> , Stack<float> , and Stack<X> . From a single source

description of the template for a stack, the compiler can create

instantiations of the template for each of the types required.

The instantiation of a class template is always done as soon as it is needed

in a compilation. However, the instantiations of template functions,

member functions of template classes, and static data members of template

classes (hereafter referred to as template entities) are not necessarily done

immediately, for several reasons:

• One would like to end up with only one copy of each instantiated

entity across all the object files that make up a program. (This of

course applies to entities with external linkage.)

• The language allows one to write a specialization of a template

entity, i.e., a specific version to be used in place of a version

generated from the template for a specific data type. (One could,

for example, write a version of Stack<int> , or of just

Stack<int>::push , that replaces the template-generated version;

often, such a specialization provides a more efficient representation

for a particular data type.) Since the compiler cannot know, when

compiling a reference to a template entity, if a specialization for that

entity will be provided in another compilation, it cannot do the

instantiation automatically in any source file that references it.

• The language also dictates that template functions that are not

referenced should not be compiled, that, in fact, such functions

might contain semantic errors that would prevent them from being

compiled. Therefore, a reference to a template class should not

automatically instantiate all the member functions of that class.

(It should be noted that certain template entities are always instantiated

when used, e.g., inline functions.)

1 Since templates are descriptions of entities (typically, classes) that

are parameterizable according to the types they operate upon, they

are sometimes called parameterized types.

Language Implementation 2–23

• • • • • • • •

From these requirements, one can see that if the compiler is responsible

for doing all the instantiations automatically, it can only do so on a

program-wide basis. That is, the compiler cannot make decisions about

instantiation of template entities until it has seen all the source files that

make up a complete program.

This C++ compiler provides an instantiation mechanism that does

automatic instantiation at link time. For cases where you want more

explicit control over instantiation, the C++ compiler also provides

instantiation modes and instantiation pragmas, which can be used to exert

fine-grained control over the instantiation process.

2.5.1 AUTOMATIC INSTANTIATION

The goal of an automatic instantiation mode is to provide painless

instantiation. You should be able to compile source files to object code,

then link them and run the resulting program, and never have to worry

about how the necessary instantiations get done.

In practice, this is hard for a compiler to do, and different compilers use

different automatic instantiation schemes with different strengths and

weaknesses:

• AT&T/USL/Novell's cfront product saves information about each file

it compiles in a special directory called ptrepository . It

instantiates nothing during normal compilations. At link time, it

looks for entities that are referenced but not defined, and whose

mangled names indicate that they are template entities. For each

such entity, it consults the ptrepository information to find the

file containing the source for the entity, and it does a compilation of

the source to generate an object file containing object code for that

entity. This object code for instantiated objects is then combined

with the "normal" object code in the link step.

Chapter 22–24
L
A
N
G
U
A
G
E

If you are using cfront you must follow a particular coding

convention: all templates must be declared in .h files, and for each

such file there must be a corresponding .cc file containing the

associated definitions. The compiler is never told about the .cc
files explicitly; one does not, for example, compile them in the

normal way. The link step looks for them when and if it needs

them, and does so by taking the .h filename and replacing its

suffix.2

This scheme has the disadvantage that it does a separate

compilation for each instantiated function (or, at best, one

compilation for all the member functions of one class). Even though

the function itself is often quite small, it must be compiled along

with the declarations for the types on which the instantiation is

based, and those declarations can easily run into many thousands of

lines. For large systems, these compilations can take a very long

time. The link step tries to be smart about recompiling instantiations

only when necessary, but because it keeps no fine-grained

dependency information, it is often forced to "recompile the world"

for a minor change in a .h file. In addition, cfront has no way of

ensuring that preprocessing symbols are set correctly when it does

these instantiation compilations, if preprocessing symbols are set

other than on the command line.

• Borland's C++ compiler instantiates everything referenced in a

compilation, then uses a special linker to remove duplicate

definitions of instantiated functions.

If you are using Borland's compiler you must make sure that every

compilation sees all the source code it needs to instantiate all the

template entities referenced in that compilation. That is, one cannot

refer to a template entity in a source file if a definition for that entity

is not included by that source file. In practice, this means that either

all the definition code is put directly in the .h files, or that each .h
file includes an associated .cc (actually, .cpp) file.

This scheme is straightforward, and works well for small programs.

For large systems, however, it tends to produce very large object

files, because each object file must contain object code (and

symbolic debugging information) for each template entity it

references.

2 The actual implementation allows for several different suffixes and

provides a command-line option to change the suffixes sought.

Language Implementation 2–25

• • • • • • • •

Our approach is a little different. It requires that, for each instantiation

required, there is some (normal, top-level, explicitly-compiled) source file

that contains the definition of the template entity, a reference that causes

the instantiation, and the declarations of any types required for the

instantiation.3 This requirement can be met in various ways:

• The Borland convention: each .h file that declares a template entity

also contains either the definition of the entity or includes another

file containing the definition.

• Implicit inclusion: when the compiler sees a template declaration in

a .h file and discovers a need to instantiate that entity, it is given

permission to go off looking for an associated definition file having

the same base name and a different suffix, and it implicitly includes

that file at the end of the compilation. This method allows most

programs written using the cfront convention to be compiled with

our approach. See the section on implicit inclusion.

• The ad hoc approach: you make sure that the files that define

template entities also have the definitions of all the available types,

and add code or pragmas in those files to request instantiation of

the entities there.

Our compiler's automatic instantiation method works as follows:

1. The first time the source files of a program are compiled, no template

entities are instantiated. However, the generated object files contain

information about things that could have been instantiated in each

compilation. For any source file that makes use of a template instantiation

an associated .ii file is created if one does not already exist (e.g., the

compilation of abc.cc would result in the creation of abc.ii).

2. When the object files are linked together, the linker examines the object

files, looking for references and definitions of template entities, and for the

added information about entities that could be instantiated.

3 Isn't this always the case? No. Suppose that file A contains a

definition of class X and a reference to Stack<X>::push , and that

file B contains the definition for the member function push . There

would be no file containing both the definition of push and the

definition of X.

Chapter 22–26
L
A
N
G
U
A
G
E

3. If the linker finds a reference to a template entity for which there is no

definition anywhere in the set of object files, it looks for a file that

indicates that it could instantiate that template entity. When it finds such a

file, it assigns the instantiation to it. The set of instantiations assigned to a

given file is recorded in the associated instantiation request file (with, by

default, a .ii suffix).

4. The linker then executes the compiler again to recompile each file for

which the .ii file was changed.

5. When the compiler compiles a file, it reads the .ii file for that file and

obeys the instantiation requests therein. It produces a new object file

containing the requested template entities (and all the other things that

were already in the object file).

6. The linker repeats steps 3-5 until there are no more instantiations to be

adjusted.

7. The object files are linked together.

Once the program has been linked correctly, the .ii files contain a

complete set of instantiation assignments. From then on, whenever source

files are recompiled, the compiler will consult the .ii files and do the

indicated instantiations as it does the normal compilations. That means

that, except in cases where the set of required instantiations changes, the

link step from then on will find that all the necessary instantiations are

present in the object files and no instantiation assignment adjustments

need be done. That's true even if the entire program is recompiled.

If you provide a specialization of a template entity somewhere in the

program, the specialization will be seen as a definition by the linker. Since

that definition satisfies whatever references there might be to that entity,

the linker will see no need to request an instantiation of the entity. If you

add a specialization to a program that has previously been compiled, the

linker will notice that too and remove the assignment of the instantiation

from the proper .ii file.

The .ii files should not, in general, require any manual intervention. One

exception: if a definition is changed in such a way that some instantiation

no longer compiles (it gets errors), and at the same time a specialization is

added in another file, and the first file is being recompiled before the

specialization file and is getting errors, the .ii file for the file getting the

errors must be deleted manually to allow the prelinker to regenerate it.

Language Implementation 2–27

• • • • • • • •

The linker will issue messages like:

C++ prelinker: T1 Mark<T1>::func(T1) [with T1=int]
assigned to file m.o1

C++ prelinker: executing: cp68332 m.cpp

The automatic instantiation scheme can coexist with partial explicit control

of instantiation by you through the use of pragmas or command-line

specification of the instantiation mode. See the following sections.

The automatic instantiation mode is enabled by default. It can be turned

off by the command-line option ––no_auto_instantiation. If automatic

instantiation is turned off, the extra information about template entities that

could be instantiated in a file is not put into the object file.

2.5.2 INSTANTIATION MODES

Normally, when a file is compiled, no template entities are instantiated

(except those assigned to the file by automatic instantiation). The overall

instantiation mode can, however, be changed by a command line option:

––instantiate none

Do not automatically create instantiations of any template

entities. This is the default. It is also the usually appropriate

mode when automatic instantiation is done.

––instantiate used

Instantiate those template entities that were used in the

compilation. This will include all static data members for

which there are template definitions.

––instantiate all

Instantiate all template entities declared or referenced in the

compilation unit. For each fully instantiated template class, all

of its member functions and static data members will be

instantiated whether or not they were used. Non-member

template functions will be instantiated even if the only

reference was a declaration.

Chapter 22–28
L
A
N
G
U
A
G
E

––instantiate local

Similar to ––instantiate used except that the functions are

given internal linkage. This is intended to provide a very

simple mechanism for those getting started with templates.

The compiler will instantiate the functions that are used in

each compilation unit as local functions, and the program

will link and run correctly (barring problems due to multiple

copies of local static variables.) However, one may end up

with many copies of the instantiated functions, so this is not

suitable for production use. ––instantiate local can not be

used in conjunction with automatic template instantiation. If

automatic instantiation ––instantiate local option. If

automatic instantiation is not enabled by default, use of

––instantiate local and ––auto_instantiation is an error.

In the case where the cpxxx command is given a single file to compile

and link, e.g.,

cpxxx test.cc

the compiler knows that all instantiations will have to be done in the

single source file. Therefore, it uses the ––instantiate used mode and

suppresses automatic instantiation.

2.5.3 INSTANTIATION #PRAGMA DIRECTIVES

Instantiation pragmas can be used to control the instantiation of specific

template entities or sets of template entities. There are three instantiation

pragmas:

• The instantiate pragma causes a specified entity to be instantiated.

• The do_not_instantiate pragma suppresses the instantiation of a

specified entity. It is typically used to suppress the instantiation of

an entity for which a specific definition will be supplied.

• The can_instantiate pragma indicates that a specified entity can be

instantiated in the current compilation, but need not be; it is used in

conjunction with automatic instantiation, to indicate potential sites

for instantiation if the template entity turns out to be required.

The argument to the instantiation pragma may be:

a template class name A<int>

a template class declaration class A<int>

Language Implementation 2–29

• • • • • • • •

a member function name A<int>::f

a static data member name A<int>::i

a static data declaration int A<int>::i

a member function declaration void A<int>::f(int,char)

a template function declaration char* f(int, float)

A pragma in which the argument is a template class name (e.g., A<int>
or class A<int>) is equivalent to repeating the pragma for each

member function and static data member declared in the class. When

instantiating an entire class a given member function or static data member

may be excluded using the do_not_instantiate pragma. For example,

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the

compilation for an instantiation to occur. If an instantiation is explicitly

requested by use of the instantiate pragma and no template definition is

available or a specific definition is provided, an error is issued.

template <class T> void f1(T); // No body provided
template <class T> void g1(T); // No body provided

void f1(int) {} // Specific definition
void main()
{

int i;
double d;
f1(i);
f1(d);
g1(i);
g1(d);

}

#pragma instantiate void f1(int) // error – specific
// definition

#pragma instantiate void g1(int) // error – no body
// provided

f1(double) and g1(double) will not be instantiated (because no

bodies were supplied) but no errors will be produced during the

compilation (if no bodies are supplied at link time, a linker error will be

produced).

Chapter 22–30
L
A
N
G
U
A
G
E

A member function name (e.g., A<int>::f) can only be used as a

pragma argument if it refers to a single user defined member function (i.e.,

not an overloaded function). Compiler-generated functions are not

considered, so a name may refer to a user defined constructor even if a

compiler-generated copy constructor of the same name exists. Overloaded

member functions can be instantiated by providing the complete member

function declaration, as in

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated

function, an inline function, or a pure virtual function.

2.5.4 IMPLICIT INCLUSION

When implicit inclusion is enabled, the C++ compiler is given permission

to assume that if it needs a definition to instantiate a template entity

declared in a .h file it can implicitly include the corresponding .cc file to

get the source code for the definition. For example, if a template entity

ABC::f is declared in file xyz.h , and an instantiation of ABC::f is

required in a compilation but no definition of ABC::f appears in the

source code processed by the compilation, the compiler will look to see if

a file xyz.cc exists, and if so it will process it as if it were included at the

end of the main source file.

To find the template definition file for a given template entity the C++

compiler needs to know the full path name of the file in which the

template was declared and whether the file was included using the system

include syntax (e.g., #include <file.h>). This information is not

available for preprocessed source containing #line directives.

Consequently, the C++ compiler will not attempt implicit inclusion for

source code containing #line directives.

By default, the list of definition-file suffixes tried is .cc , .cpp , and .cxx .

Implicit inclusion works well alongside automatic instantiation, but the two

are independent. They can be enabled or disabled independently, and

implicit inclusion is still useful when automatic instantiation is not done.

The implicit inclusion mode can be turned on by the command-line

option ––implicit_include.

Language Implementation 2–31

• • • • • • • •

2.6 PRECOMPILED HEADERS

It is often desirable to avoid recompiling a set of header files, especially

when they introduce many lines of code and the primary source files that

#include them are relatively small. The C++ compiler provides a

mechanism for, in effect, taking a snapshot of the state of the compilation

at a particular point and writing it to a disk file before completing the

compilation; then, when recompiling the same source file or compiling

another file with the same set of header files, it can recognize the

"snapshot point", verify that the corresponding precompiled header (PCH)

file is reusable, and read it back in. Under the right circumstances, this can

produce a dramatic improvement in compilation time; the trade-off is that

PCH files can take a lot of disk space.

2.6.1 AUTOMATIC PRECOMPILED HEADER

PROCESSING

When ––pch appears on the command line, automatic precompiled

header processing is enabled. This means the C++ compiler will

automatically look for a qualifying precompiled header file to read in

and/or will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the "header

stop" point. The header stop point is typically the first token in the primary

source file that does not belong to a preprocessing directive, but it can

also be specified directly by #pragma hdrstop (see below) if that comes

first. For example:

#include ”xxx.h”
#include ”yyy.h”
int i;

The header stop point is int (the first non-preprocessor token) and the

PCH file will contain a snapshot reflecting the inclusion of xxx.h and

yyy.h . If the first non-preprocessor token or the #pragma hdrstop
appears within a #if block, the header stop point is the outermost

enclosing #if . To illustrate, heres a more complicated example:

Chapter 22–32
L
A
N
G
U
A
G
E

#include ”xxx.h”
#ifndef YYY_H
#define YYY_H 1
#include ”yyy.h”
#endif
#if TEST
int i;
#endif

Here, the first token that does not belong to a preprocessing directive is

again int , but the header stop point is the start of the #if block

containing it. The PCH file will reflect the inclusion of xxx.h and

conditionally the definition of YYY_H and inclusion of yyy.h ; it will not

contain the state produced by #if TEST .

A PCH file will be produced only if the header stop point and the code

preceding it (mainly, the header files themselves) meet certain

requirements:

• The header stop point must appear at file scope -- it may not be

within an unclosed scope established by a header file. For example,

a PCH file will not be created in this case:

// xxx.h
class A {

// xxx.C
#include ”xxx.h”
int i; };

• The header stop point may not be inside a declaration started

within a header file, nor (in C++) may it be part of a declaration list

of a linkage specification. For example, in the following case the

header stop point is int, but since it is not the start of a new

declaration, no PCH file will be created:

// yyy.h
static

// yyy.C
#include ”yyy.h”
int i;

• Similarly, the header stop point may not be inside a #if block or a

#define started within a header file.

Language Implementation 2–33

• • • • • • • •

• The processing preceding the header stop must not have produced

any errors. (Note: warnings and other diagnostics will not be

reproduced when the PCH file is reused.)

• No references to predefined macros __DATE__ or __TIME__ may

have appeared.

• No use of the #line preprocessing directive may have appeared.

• #pragma no_pch (see below) must not have appeared.

• The code preceding the header stop point must have introduced a

sufficient number of declarations to justify the overhead associated

with precompiled headers. The minimum number of declarations

required is 1.

When the host system does not support memory mapping, so that

everything to be saved in the precompiled header file is assigned to

preallocated memory (MS-Windows), two additional restrictions apply:

• The total memory needed at the header stop point cannot exceed

the size of the block of preallocated memory.

• No single program entity saved can exceed 16384, the preallocation

unit.

When a precompiled header file is produced, it contains, in addition to the

snapshot of the compiler state, some information that can be checked to

determine under what circumstances it can be reused. This includes:

• The compiler version, including the date and time the compiler was

built.

• The current directory (i.e., the directory in which the compilation is

occurring).

• The command line options.

• The initial sequence of preprocessing directives from the primary

source file, including #include directives.

• The date and time of the header files specified in #include
directives.

Chapter 22–34
L
A
N
G
U
A
G
E

This information comprises the PCH prefix. The prefix information of a

given source file can be compared to the prefix information of a PCH file

to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

// a.cc
#include ”xxx.h”
... // Start of code
// b.cc
#include ”xxx.h”
... // Start of code

When a.cc is compiled with ––pch, a precompiled header file named

a.pch is created. Then, when b.cc is compiled (or when a.cc is

recompiled), the prefix section of a.pch is read in for comparison with

the current source file. If the command line options are identical, if xxx.h
has not been modified, and so forth, then, instead of opening xxx.h and

processing it line by line, the C++ compiler reads in the rest of a.pch and

thereby establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation.

If so, the largest (i.e., the one representing the most preprocessing

directives from the primary source file) is used. For instance, consider a

primary source file that begins with

#include ”xxx.h”
#include ”yyy.h”
#include ”zzz.h”

If there is one PCH file for xxx.h and a second for xxx.h and yyy.h ,

the latter will be selected (assuming both are applicable to the current

compilation). Moreover, after the PCH file for the first two headers is read

in and the third is compiled, a new PCH file for all three headers may be

created.

When a precompiled header file is created, it takes the name of the

primary source file, with the suffix replaced by an

implementation-specified suffix (pch by default). Unless ––pch_dir is

specified (see below), it is created in the directory of the primary source

file.

When a precompiled header file is created or used, a message such as

”test.cc”: creating precompiled header file ”test.pch”

Language Implementation 2–35

• • • • • • • •

is issued. The user may suppress the message by using the command-line

option ––no_pch_messages.

In automatic mode (i.e., when ––pch is used) the C++ compiler will deem

a precompiled header file obsolete and delete it under the following

circumstances:

• if the precompiled header file is based on at least one out-of-date

header file but is otherwise applicable for the current compilation;

or

• if the precompiled header file has the same base name as the

source file being compiled (e.g., xxx.pch and xxx.cc) but is not

applicable for the current compilation (e.g., because of different

command-line options).

This handles some common cases; other PCH file clean-up must be dealt

with by other means (e.g., by the user).

Support for precompiled header processing is not available when multiple

source files are specified in a single compilation: an error will be issued

and the compilation aborted if the command line includes a request for

precompiled header processing and specifies more than one primary

source file.

2.6.2 MANUAL PRECOMPILED HEADER PROCESSING

Command-line option ––create_pch file-name specifies that a

precompiled header file of the specified name should be created.

Command-line option ––use_pch file-name specifies that the indicated

precompiled header file should be used for this compilation; if it is invalid

(i.e., if its prefix does not match the prefix for the current primary source

file), a warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with ––pch_dir, the

indicated file name (which may be a path name) is tacked on to the

directory name, unless the file name is an absolute path name.

The ––create_pch, ––use_pch, and ––pch options may not be used

together. If more than one of these options is specified, only the last one

will apply. Nevertheless, most of the description of automatic PCH

processing applies to one or the other of these modes -- header stop

points are determined the same way, PCH file applicability is determined

the same way, and so forth.

Chapter 22–36
L
A
N
G
U
A
G
E

2.6.3 OTHER WAYS TO CONTROL PRECOMPILED

HEADERS

There are several ways in which the user can control and/or tune how

precompiled headers are created and used.

• #pragma hdrstop may be inserted in the primary source file at a

point prior to the first token that does not belong to a preprocessing

directive. It enables you to specify where the set of header files

subject to precompilation ends. For example,

#include ”xxx.h”
#include ”yyy.h”
#pragma hdrstop
#include ”zzz.h”

Here, the precompiled header file will include processing state for

xxx.h and yyy.h but not zzz.h . (This is useful if the user decides

that the information added by what follows the #pragma hdrstop

does not justify the creation of another PCH file.)

• #pragma no_pch may be used to suppress precompiled header

processing for a given source file.

• Command-line option ––pch_dir directory-name is used to

specify the directory in which to search for and/or create a PCH file.

Moreover, when the host system does not support memory mapping and

preallocated memory is used instead, then one of the command-line

options ––pch, ––create_pch, or ––use_pch, if it appears at all, must be

the first option on the command line.

2.6.4 PERFORMANCE ISSUES

The relative overhead incurred in writing out and reading back in a

precompiled header file is quite small for reasonably large header files.

In general, it does not cost much to write a precompiled header file out

even if it does not end up being used, and if it is used it almost always

produces a significant speedup in compilation. The problem is that the

precompiled header files can be quite large (from a minimum of about

250K bytes to several megabytes or more), and so one probably does not

want many of them sitting around.

Language Implementation 2–37

• • • • • • • •

Thus, despite the faster recompilations, precompiled header processing is

not likely to be justified for an arbitrary set of files with nonuniform initial

sequences of preprocessing directives. Rather, the greatest benefit occurs

when a number of source files can share the same PCH file. The more

sharing, the less disk space is consumed. With sharing, the disadvantage of

large precompiled header files can be minimized, without giving up the

advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users

should expect to reorder the #include sections of their source files

and/or to group #include directives within a commonly used header

file.

Below is an example of how this can be done. A common idiom is this:

#include ”comnfile.h”
#pragma hdrstop
#include ...

where comnfile.h pulls in, directly and indirectly, a few dozen header

files; the #pragma hdrstop is inserted to get better sharing with fewer

PCH files. The PCH file produced for comnfile.h can be a bit over a

megabyte in size. Another idiom, used by the source files involved in

declaration processing, is this:

#include ”comnfile.h”
#include ”decl_hdrs.h”
#pragma hdrstop
#include ...

decl_hdrs.h pulls in another dozen header files, and a second,

somewhat larger, PCH file is created. In all, the source files of a particular

program can share just a few precompiled header files. If disk space were

at a premium, you could decide to make comnfile.h pull in all the

header files used -- then, a single PCH file could be used in building the

program.

Different environments and different projects will have different needs, but

in general, users should be aware that making the best use of the

precompiled header support will require some experimentation and

probably some minor changes to source code.

Chapter 22–38
L
A
N
G
U
A
G
E

3

COMPILER USE
C

H
A

P
T

E
R

Chapter 33–2
U
S
A
G
E

3

C
H

A
P

T
E

R

Compiler Use 3–3

• • • • • • • •

3.1 INVOCATION

The invocation syntax of the C++ compiler is:

cpxxx file [options]

where cpxxx represents the possible 68K/ColdFire targets. For a list of all

possible targets see section Derivatives Overview in chapter Tutorial of the

Getting Started Manual.

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as '()' and '?') must be enclosed with ” ” or

escaped. The -? option (in the C-shell) becomes: ” -?” or -\?.

The C++ compiler accepts a C++ source file name and command line

options in random order. A C++ source file must have a .cc , .cxx or

.cpp suffix.

A keyword option specification consists of two hyphens followed by the

option keyword (e.g., ––strict). If an option requires an argument, the

argument may be separated from the keyword by white space, or the

keyword may be immediately followed by =option. When the second form

is used there may not be any white space on either side of the equals sign.

The priority of the options is left-to-right: when two options conflict, the

first (most left) one takes effect. The -D and -U options are not

considered conflicting options, so they are processed left-to-right for each

source file. You can overrule the default output file name with the

––gen_c_file_name option.

A summary of the options is given below. The next section describes the

options in more detail.

You can use C Compiler options where applicable.

Option Description

––alternative_tokens
––no_alternative_tokens Enable or disable recognition of

alternative tokens

––anachronisms
––no_anachronisms Enable or disable anachronisms

––array_new_and_delete
––no_array_new_and_delete Enable or disable support for array

new and delete

Chapter 33–4
U
S
A
G
E

DescriptionOption

––auto_instantiation
––no_auto_instantiation Enable or disable automatic

instantiation of templates

––bool
––no_bool Enable or disable recognition of bool

––brief_diagnostics
––no_brief_diagnostics Enable or disable a shorter form of

diagnostic output

––cfront_2.1 Compile C++ compatible with cfront
version 2.1

––cfront_3.0 Compile C++ compatible with cfront
version 3.0

––comments Keep comments in the preprocessed
output

––create_pch file Create a precompiled header file with
the specified name

––define_macro macro[=def]
–D macro[=def] Define preprocessor macro

––dependencies
–M Preprocess only. Emit dependencies

for make

––diag_suppress tag[,tag]...
––diag_remark tag[,tag]...
––diag_warning tag[,tag]...
––diag_error tag[,tag]... Override normal error severity

––display_error_number Display error number in diagnostic
messages

––distinct_template_signatures
––no_distinct_template_signatures Disallow or allow normal functions as

template instantiation

––embedded_c++ Enable the diagnostics of
noncompliance with the ”Embedded
C++” subset

––enum1s
––enum1u
––enum2s
––enum4s

Treat enum as signed char,
unsigned char,
signed 16–bit int (default), or
signed 32–bit int

––enum_overloading
––no_enum_overloading Enable or disable operator functions to

overload builtin operators on
enum–typed operands

Compiler Use 3–5

• • • • • • • •

DescriptionOption

––error_limit number Specify maximum number of errors

––error_output efile Send diagnostics to error list file

––exceptions
––no_exceptions
–x Enable or disable support for

exception handling

––explicit
––no_explicit Enable or disable support for the

explicit specifier on constructor
declarations

––extern_inline
––no_extern_inline Enable or disable inline function with

external C++ linkage

–– force_vtbl Force definition of virtual function
tables

–– for_init_diff_warning
––no_for_init_diff_warning Enable or disable warning when

old–style for –scoping is used

––gen_c_file_name file Specify name of generated C output
file

––guiding_decls
––no_guiding_decls Enable or disable recognition of

”guiding declarations” of template
functions

–– implicit_extern_c_type_conversion
––no_implicit_extern_c_type_conversion

Enable or disable implicit type
conversion between external C and
C++ function pointers

–– implicit_include
––no_implicit_include
–B Enable or disable implicit inclusion of

source files as a method of finding
definitions of template entities to be
instantiated

–– implicit_typename
––no_implicit_typename Enable or disable implicit

determination, from context, whether a
template parameter dependent name
is a type or nontype

Chapter 33–6
U
S
A
G
E

DescriptionOption

–– inlining
––no_inlining Enable or disable minimal inlining of

function calls

–– instantiate mode Control instantiation of external
template entities

–– list lfile Generate raw list file lfile

–– long_lifetime_temps
––short_lifetime_temps Select lifetime for temporaries

––namespaces
––no_namespaces Enable or disable the support for

namespaces

––new_for_init New–style for –scoping rules

––no_code_gen Do syntax checking only

––no_line_commands Preprocess only. Remove line control
information and comments

––nonconst_ref_anachronism
––no_nonconst_ref_anachronism Enable or disable the anachronism of

allowing a reference to nonconst to
bind to a class rvalue of the right type

––no_preproc_only Specify that a full compilation should
be done (not just preprocessing)

––no_use_before_set_warnings Suppress warnings on local automatic
variables that are used before their
values are set

––no_warnings
–w Suppress all warning messages

––old_for_init Old–style for –scoping rules

––old_line_commands Put out line control information in the
form # nnn instead of #line nnn

––old_specializations
––no_old_specializations Enable or disable old–style template

specialization

––old_style_preprocessing Forces pcc style preprocessing

–opfile file Read command line arguments from
file

––output file Specify name of preprocess or
intermediate output file

––pch Automatically use and/or create a
precompiled header file

Compiler Use 3–7

• • • • • • • •

DescriptionOption

––pch_dir dir Specify directory dir in which to search
for and/or create a precompiled
header file

––pch_messages
––no_pch_messages Enable or disable the display of a

message indicating that a precompiled
header file was created or used in the
current compilation

––preprocess
–E Preprocess only. Keep line control

information and remove comments

––remarks Issue remarks

––remove_unneeded_entities
––no_remove_unneeded_entities Enable or disable the removal of

unneeded entities from the generated
intermediate C file

––rtti
––no_rtti Enable or disable support for RTTI

(run–time type information)

––special_subscript_cost
––no_special_subscript_cost Enable or disable a special

nonstandard weighting of the
conversion to the integral operand of
the [] operator in overload resolution.

––strict Strict ANSI C++. Issue errors on
non–ANSI features

––strict_warnings Strict ANSI C++. Issue warnings on
non–ANSI features

––suppress_vtbl Suppress definition of virtual function
tables

–– trace_includes
–H Preprocess only. Generate list of

included files

–– typename
––no_typename Enable or disable recognition of

typename

––undefine_macro macro
–U macro Remove preprocessor macro

––use_pch file Use a precompiled header file of the
specified name

Chapter 33–8
U
S
A
G
E

DescriptionOption

––using_std
––no_using_std Enable or disable implicit use of the

std namespace when standard
header files are included

––wchar_t_keyword
––no_wchar_t_keyword Enable or disable recognition of

wchar_t as a keyword

––wrap_diagnostics
––no_wrap_diagnostics Enable or disable wrapping of

diagnostic messages

––xref xfile
–X xfile Generate cross–reference file xfile

Table 3-1: Compiler options (alphabetical)

Description Option

Include options

Read command line arguments from
file

–opfile file

Preprocess options

Preprocess only. Keep line control
information and remove comments

––preprocess
–E

Preprocess only. Remove line control
information and comments

––no_line_commands

Keep comments in the preprocessed
output

––comments

Put out line control information in the
form # nnn instead of #line nnn

––old_line_commands

Forces pcc style preprocessing ––old_style_preprocessing

Preprocess only. Emit dependencies
for make

––dependencies
–M

Preprocess only. Generate list of
included files

–– trace_includes
–H

Define preprocessor macro ––define_macro macro[=def]
–D macro[=def]

Remove preprocessor macro ––undefine_macro macro
–U macro

Compiler Use 3–9

• • • • • • • •

OptionDescription

Do syntax checking only ––no_code_gen

Specify that a full compilation should
be done (not just preprocessing)

––no_preproc_only

Language control options

Strict ANSI C++. Issue errors on
non–ANSI features

––strict

Strict ANSI C++. Issue warnings on
non–ANSI features

––strict_warnings

Compile C++ compatible with cfront
version 2.1

––cfront_2.1

Compile C++ compatible with cfront
version 3.0

––cfront_3.0

Enable or disable support for
exception handling

––exceptions
––no_exceptions
–x

Enable the diagnostics of
noncompliance with the ”Embedded
C++” subset

––embedded_c++

Enable or disable operator functions to
overload builtin operators on
enum–typed operands

––enum_overloading
––no_enum_overloading

Treat enum as signed char,
unsigned char,
signed 16–bit int (default), or
signed 32–bit int

––enum1s
––enum1u
––enum2s
––enum4s

Enable or disable support for the
explicit specifier on constructor
declarations

––explicit
––no_explicit

Enable or disable inline function with
external C++ linkage

––extern_inline
––no_extern_inline

Enable or disable implicit type
conversion between external C and
C++ function pointers

–– implicit_extern_c_type_
conversion
––no_implicit_extern_c_type_conv
ersion

Suppress definition of virtual function
tables

––suppress_vtbl

Force definition of virtual function
tables

–– force_vtbl

Enable or disable anachronisms ––anachronisms
––no_anachronisms

Chapter 33–10
U
S
A
G
E

OptionDescription

Enable or disable the anachronism of
allowing a reference to nonconst to
bind to a class rvalue of the right type

––nonconst_ref_anachronism
––no_nonconst_ref_anachronism

Enable or disable support for array
new and delete

––array_new_and_delete
––no_array_new_and_delete

Enable or disable support for
namespaces

––namespaces
––no_namespaces

New–style for –scoping rules ––new_for_init

Old–style for –scoping rules ––old_for_init

Enable or disable implicit use of the
std namespace when standard
header files are included

––using_std
––no_using_std

Enable or disable support for RTTI
(run–time type information)

––rtti
––no_rtti

Enable or disable recognition of bool ––bool
––no_bool

Enable or disable recognition of
typename

–– typename
––no_typename

Enable or disable implicit
determination, from context, whether a
template parameter dependent name
is a type or nontype

–– implicit_typename
––no_implicit_typename

Enable or disable a special
nonstandard weighting of the
conversion to the integral operand of
the [] operator in overload resolution.

––special_subscript_cost
––no_special_subscript_cost

Enable or disable recognition of
wchar_t as a keyword

––wchar_t_keyword
––no_wchar_t_keyword

Select lifetime for temporaries –– long_lifetime_temps
––short_lifetime_temps

Enable or disable recognition of
alternative tokens

––alternative_tokens
––no_alternative_tokens

Enable or disable minimal inlining of
function calls

–– inlining
––no_inlining

Enable or disable the removal of
unneeded entities from the generated
intermediate C file

––remove_unneeded_entities
––no_remove_unneeded_entities

Compiler Use 3–11

• • • • • • • •

OptionDescription

Template instantiation options

Control instantiation of external
template entities

–– instantiate mode

Enable or disable automatic
instantiation of templates

––auto_instantiation
––no_auto_instantiation

Enable or disable implicit inclusion of
source files as a method of finding
definitions of template entities to be
instantiated

–– implicit_include
––no_implicit_include
–B

Dis–allow or allow normal functions as
template instantiation

––distinct_template_signatures
––no_distinct_template_signatures

Enable or disable recognition of
”guiding declarations” of template
functions

––guiding_decls
––no_guiding_decls

Enable or disable old–style template
specialization

––old_specializations
––no_old_specializations

Precompiled header options

Automatically use and/or create a
precompiled header file

––pch

Create a precompiled header file with
the specified name

––create_pch file

Use a precompiled header file of the
specified name

––use_pch file

Specify directory dir in which to search
for and/or create a precompiled
header file

––pch_dir dir

Enable or disable the display of a
message indicating that a precompiled
header file was created or used in the
current compilation

––pch_messages
––no_pch_messages

Output file options

Specify name of preprocess or
intermediate output file

––output file

Specify name of generated C output
file

––gen_c_file_name file

Diagnostic options

Send diagnostics to error list file ––error_output efile

Generate raw list file lfile –– list lfile

Chapter 33–12
U
S
A
G
E

OptionDescription

Generate cross–reference file xfile ––xref xfile
–X xfile

Override normal error severity ––diag_suppress tag[,tag]...
––diag_remark tag[,tag]...
––diag_warning tag[,tag]...
––diag_error tag[,tag]...

Display error number in diagnostic
messages

––display_error_number

Specify maximum number of errors ––error_limit number

Issue remarks ––remarks

Suppress all warning messages ––no_warnings
–w

Suppress warnings on local automatic
variables that are used before their
values are set

––no_use_before_set_warnings

Enable or disable a shorter form of
diagnostic output

––brief_diagnostics
––no_brief_diagnostics

Enable or disable wrapping of
diagnostic messages

––wrap_diagnostics
––no_wrap_diagnostics

Enable or disable warning when
old–style for –scoping is used

–– for_init_diff_warning
––no_for_init_diff_warning

Table 3-2: Compiler options (functional)

3.1.1 DETAILED DESCRIPTION OF THE COMPILER

OPTIONS

Option letters are listed below. If the same option is used more than once,

the first (most left) occurrence is used. The placement of command line

options is of no importance except for the -I option. Some options also

have a "no_" form. These options are described together.

Compiler Use 3–13

• • • • • • • •

––alternative_tokens

Option:

––alternative_tokens

––no_alternative_tokens

Default:

––alternative_tokens

Description:

Enable or disable recognition of alternative tokens. This controls

recognition of the digraph tokens in C++, and controls recognition of the

operator keywords (e.g., not, and, bitand, etc.).

Example:

To disable operator keywords (e.g., "not", "and") and digraphs, enter:

cpxxx test.cc ––no_alternative_tokens

Chapter 33–14
U
S
A
G
E

––anachronisms

Option:

––anachronisms

––no_anachronisms

Default:

––no_anachronisms

Description:

Enable or disable anachronisms.

Example:

cpxxx test.cc ––anachronisms

––nonconst_ref_anachronisms,

––cfront_2.1 / ––cfront_3.0

Section Anachronisms Accepted in chapter Language Implementation.

Compiler Use 3–15

• • • • • • • •

––array_new_and_delete

Option:

––array_new_and_delete

––no_array_new_and_delete

Default:

––array_new_and_delete

Description:

Enable or disable support for array new and delete.

Example:

cpxxx test.cc ––no_array_new_and_delete

Chapter 33–16
U
S
A
G
E

––auto_instantiation

Option:

––auto_instantiation

––no_auto_instantiation

Default:

––auto_instantiation

Description:

Enable or disable automatic instantiation of templates.

Example:

cpxxx test.cc ––no_auto_instantiation

––instantiate

Section Template Instantiation in chapter Language Implementation.

Compiler Use 3–17

• • • • • • • •

––bool

Option:

––bool

––no_bool

Default:

––bool

Description:

Enable or disable recognition of the bool keyword.

Example:

cpxxx test.cc ––no_bool

Chapter 33–18
U
S
A
G
E

––brief_diagnostics

Option:

––brief_diagnostics

––no_brief_diagnostics

Default:

––brief_diagnostics

Description:

Enable or disable a mode in which a shorter form of the diagnostic output

is used. When enabled, the original source line is not displayed and the

error message text is not wrapped when too long to fit on a single line.

Example:

cpxxx test.cc ––no_brief_diagnostics

––wrap_diagnostics

Chapter Compiler Diagnostics and Appendix Error Messages.

Compiler Use 3–19

• • • • • • • •

––cfront_version

Option:

––cfront_2.1

––cfront_3.0

Default:

Normal C++ mode.

Description:

––cfront_2.1 or ––cfront_3.0 enable compilation of C++ with

compatibility with cfront version 2.1 or 3.0 respectively. This causes the

compiler to accept language constructs that, while not part of the C++

language definition, are accepted by the AT&T C++ Language System

(cfront) release 2.1 or 3.0 respectively. These options also enable

acceptance of anachronisms.

Example:

To compile C++ compatible with cfront version 3.0, enter:

cpxxx test.cc ––cfront_3.0

––anachronisms

Section Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode in
chapter Language Implementation.

Chapter 33–20
U
S
A
G
E

––comments

Option:

––comments

Description:

Keep comments in the preprocessed output. This should be specified after

either ––preprocess or ––no_line_commands; it does not of itself

request preprocessing output.

Example:

To do preprocessing only, with comments and with line control

information, enter:

cpxxx test.cc –E ––comments

––preprocess / -E, ––no_line_commands

Compiler Use 3–21

• • • • • • • •

––create_pch

Option:

––create_pch filename

Arguments:

A filename specifying the precompiled header file to create.

Description:

If other conditions are satisfied (see the Precompiled Headers section),

create a precompiled header file with the specified name. If ––pch

(automatic PCH mode) or ––use_pch appears on the command line

following this option, its effect is erased.

Example:

To create a precompiled header file with the name test.pch , enter:

cpxxx test.cc ––create_pch test.pch

––pch, ––use_pch

Section Precompiled Headers in chapter Language Implementation.

Chapter 33–22
U
S
A
G
E

––define_macro / -D

Option:

-D macro[=def]
––define_macro macro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro to the preprocessor, as in #define. If def is not given ('=' is

absent), '1' is assumed. Any number of symbols can be defined. The

definition can be tested by the preprocessor with #if, #ifdef and #ifndef,

for conditional compilations.

Example:

cpxxx test.cc –D NORAM –D PI=3.1416

––undefine_macro / -U

Compiler Use 3–23

• • • • • • • •

––dependencies / -M

Option:

-M

––dependencies

Description:

Do preprocessing only. Instead of the normal preprocessing output,

generate on the preprocessing output file a list of dependency lines

suitable for input to a 'make' utility.

When implicit inclusion of templates is enabled, the output may indicate

false (but safe) dependencies unless ––no_proproc_only is also used.

Examples:

cpxxx test.cc –M

test.ic: test.cc

––preprocess / -E, ––no_line_commands

Chapter 33–24
U
S
A
G
E

––diag_

Option:

––diag_suppress tag[,tag]...

––diag_remark tag[,tag]...

––diag_warning tag[,tag]...

––diag_error tag[,tag]...

Arguments:

A mnemonic error tag or an error number.

Description:

Override the normal error severity of the specified diagnostic messages.

The message(s) may be specified using a mnemonic error tag or using an

error number. The error tag names and error numbers are listed in the

Error Messages appendix.

Example:

When you want diagnostic error 20 to be a warning, enter:

cpxxx test.cc ––diag_warning 20

Chapter Compiler Diagnostics and Appendix Error Messages.

Compiler Use 3–25

• • • • • • • •

––display_error_number

Option:

––display_error_number

Description:

Display the error message number in any diagnostic messages that are

generated. The option may be used to determine the error number to be

used when overriding the severity of a diagnostic message. The error

numbers are listed in the Error Messages appendix.

Normally, diagnostics are written to stderr in the following form:

"filename", line line_num: message

With ––display_error_number this form will be:

"filename", line line_num: severity #err_num: message

or:

"filename", line line_num: severity #err_num-D: message

If the severity may be overridden, the error number will include the suffix

-D (for discretionary); otherwise no suffix will be present.

Example:

cpxxx test.cc ––display_error_number

”test.cc”, line 7: error #64–D: declaration does not
 declare anything

Chapter Compiler Diagnostics and Appendix Error Messages.

Chapter 33–26
U
S
A
G
E

––distinct_template_signatures

Option:

––distinct_template_signatures

––no_distinct_template_signatures

Default:

––distinct_template_signatures

Description:

Control whether the signatures for template functions can match those for

non�template functions when the functions appear in different compilation

units. The default is ––distinct_template_signatures, under which a

normal function cannot be used to satisfy the need for a template instance;

e.g., a function "void f(int) " could not be used to satisfy the need for

an instantiation of a template "void f(T) " with T set to int.

––no_distinct_template_signatures provides the older language

behavior, under which a non�template function can match a template

function.

Example:

cpxxx test.cc ––no_distinct_template_signatures

Compiler Use 3–27

• • • • • • • •

––embedded_c++

Option:

––embedded_c++

Description:

Enable the diagnostics of noncompliance with the �Embedded C++" subset

(from which templates, exceptions, namespaces, new-style casts, RTTI,

multiple inheritance, virtual base classes, and mutable are excluded.

Example:

To enable the diagnostics of noncompliance with the �Embedded C++"

subset, enter:

cpxxx test.cc ––embedded_c++

Chapter 33–28
U
S
A
G
E

––enum

Option:

––enum1s

––enum1u

––enum2s

––enum4s

Default:

––enum2s

Description:

Implement enums as another type:

––enum1s treat enum as signed char

––enum1u treat enum as unsigned char

––enum2s treat enum as signed 16-bit int (default)

––enum4s treat enum as signed 32-bit int

Example:

To treat an enum as a signed char , enter:

cpxxx test.cc ––enum1s

Compiler Use 3–29

• • • • • • • •

––enum_overloading

Option:

––enum_overloading

––no_enum_overloading

Default:

––enum_overloading

Description:

Enable or disable support for using operator functions to overload builtin

operations on enum-typed operands.

Example:

To disable overloading builtin operations on enum-typed operands, enter:

cpxxx test.cc ––no_enum_overloading

Chapter 33–30
U
S
A
G
E

––error_limit

Option:

––error_limit number

Arguments:

An error limit number.

Default:

––error_limit 100

Description:

Set the error limit to number. The C++ compiler will abandon compilation

after this number of errors (remarks and warnings are not counted toward

the limit). By default, the limit is 100.

Example:

When you want compilation to stop when 10 errors occurred, enter:

cpxxx test.cc ––error_limit 10

Compiler Use 3–31

• • • • • • • •

––error_output

Option:

––error_output efile

Arguments:

The name for an error output file.

Description:

Redirect the output that would normally go to stderr (i.e., diagnostic

messages) to the file efile. This option is useful on systems where output

redirection of files is not well supported. If used, this option should

probably be specified first in the command line, since otherwise any

command-line errors for options preceding the ––error_output would be

written to stderr before redirection.

Example:

To write errors to the file test.err instead of stderr, enter:

cpxxx test.cc ––error_output test.err

Chapter 33–32
U
S
A
G
E

––exceptions / -x

Option:

-x / ––exceptions

––no_exceptions

Default:

––no_exceptions

Description:

Enable or disable support for exception handling. -x is equivalent to

––exceptions.

Example:

cpxxx test.cc ––exceptions

Compiler Use 3–33

• • • • • • • •

––explicit

Option:

––explicit

––no_explicit

Default:

––explicit

Description:

Enable or disable support for the explicit specifier on constructor

declarations.

Example:

To disable support for the explicit specifier on constructor declarations,

enter:

cpxxx test.cc ––no_explicit

Chapter 33–34
U
S
A
G
E

––extern_inline

Option:

––extern_inline

––no_extern_inline

Default:

––extern_inline

Description:

Enable or disable support for inline functions with external linkage in

C++. When inline functions are allowed to have external linkage (as

required by the standard), then extern and inline are compatible

specifiers on a non-member function declaration; the default linkage when

inline appears alone is external (that is, inline means extern
inline on non-member functions); and an inline member function

takes on the linkage of its class (which is usually external). However,

when inline functions have only internal linkage (as specified in the

ARM), then extern and inline are incompatible; the default linkage

when inline appears alone is internal (that is, inline means static
inline on non-member functions); and inline member functions have

internal linkage no matter what the linkage of their class.

Example:

cpxxx test.cc ––no_extern_inline

Compiler Use 3–35

• • • • • • • •

––for_init_diff_warning

Option:

––for_init_diff_warning

––no_for_init_diff_warning

Default:

––for_init_diff_warning

Description:

Enable or disable a warning that is issued when programs compiled under

the new for�init scoping rules would have had different behavior under

the old rules. The diagnostic is only put out when the new rules are used.

Example:

cpxxx test.cc ––no_for_init_diff_warning

––new_for_init / ––old_for_init

Chapter 33–36
U
S
A
G
E

––force_vtbl

Option:

––force_vtbl

Description:

Force definition of virtual function tables in cases where the heuristic used

by the C++ compiler to decide on definition of virtual function tables

provides no guidance. See ––suppress_vtbl.

Example:

cpxxx test.cc ––force_vtbl

––suppress_vtbl

Compiler Use 3–37

• • • • • • • •

––gen_c_file_name

Option:

––gen_c_file_name file

Arguments:

An output filename.

Description:

This option specifies the file name to be used for the generated C output.

Example:

To specify the file out.ic as the output file instead of test.ic , enter:

cpxxx test.cc ––gen_c_file_name out.ic

Chapter 33–38
U
S
A
G
E

––guiding_decls

Option:

––guiding_decls

––no_guiding_decls

Default:

––guiding_decls

Description:

Enable or disable recognition of �guiding declarations" of template

functions. A guiding declaration is a function declaration that matches an

instance of a function template but has no explicit definition (since its

definition derives from the function template). For example:

template <class T> void f(T) { ... }
void f(int);

When regarded as a guiding declaration, f(int) is an instance of the

template; otherwise, it is an independent function for which a definition

must be supplied. If ––no_guiding_decls is combined with

––old_specializations, a specialization of a non�member template

function is not recognized 	 it is treated as a definition of an independent

function.

Example:

cpxxx test.cc ––no_guiding_decls

––old_specializations

Compiler Use 3–39

• • • • • • • •

––implicit_extern_c_type_conversi

on

Option:

––implicit_extern_c_type_conversion

––no_implicit_extern_c_type_conversion

Default:

––implicit_extern_c_type_conversion

Description:

Enable or disable an extension to permit implicit type conversion in C++

between a pointer to an extern ”C” function and a pointer to an

extern ”C++” function. This extension is allowed in environments

where C and C++ functions share the same calling conventions.

Example:

cpxxx test.cc ––no_implicit_extern_c_type_conversion

Chapter 33–40
U
S
A
G
E

––implicit_include / -B

Option:

-B / ––implicit_include

––no_implicit_include

Default:

––no_implicit_include

Description:

Enable or disable implicit inclusion of source files as a method of finding

definitions of template entities to be instantiated. -B is equivalent to

––implicit_include.

Example:

cpxxx test.cc ––implicit_include

––instantiate

Section Template Instantiation in chapter Language Implementation.

Compiler Use 3–41

• • • • • • • •

––implicit_typename

Option:

––implicit_typename

––no_implicit_typename

Default:

––implicit_typename

Description:

Enable or disable implicit determination, from context, whether a template

parameter dependent name is a type or nontype.

Example:

cpxxx test.cc ––no_implicit_typename

––typename

Chapter 33–42
U
S
A
G
E

––inlining

Option:

––inlining

––no_inlining

Default:

––inlining

Description:

Enable or disable minimal inlining of function calls.

Example:

To disable function call inlining, enter:

cpxxx test.cc ––no_inlining

Compiler Use 3–43

• • • • • • • •

––instantiate

Option:

––instantiate mode

Pragma:

instantiate mode

Arguments:

The instantiation mode, which can be one of:

none

used

all

local

Default:

––instantiate none

Description:

Control instantiation of external template entities. External template entities

are external (i.e., noninline and nonstatic) template functions and template

static data members. The instantiation mode determines the template

entities for which code should be generated based on the template

definition:

none Instantiate no template entities. This is the default.

used Instantiate only the template entities that are used in this

compilation.

all Instantiate all template entities whether or not they are used.

local Instantiate only the template entities that are used in this

compilation, and force those entities to be local to this

compilation.

Example:

To specify to instantiate only the template entities that are used in this

compilation, enter:

cpxxx ––instantiate used test.cc

Chapter 33–44
U
S
A
G
E

––auto_instantiation

Section Template Instantiation in chapter Language Implementation.

Compiler Use 3–45

• • • • • • • •

––list

Option:

––list lfile

Arguments:

The name of the list file.

Description:

Generate raw listing information in the file lfile. The raw listing file

contains raw source lines, information on transitions into and out of

include files, and diagnostics generated by the C++ compiler. Each line of

the listing file begins with a key character that identifies the type of line, as

follows:

N: a normal line of source; the rest of the line is the text of the line.

X: the expanded form of a normal line of source; the rest of the line is the

text of the line. This line appears following the N line, and only if the

line contains non-trivial modifications (comments are considered trivial

modifications; macro expansions, line splices, and trigraphs are

considered non-trivial modifications).

S: a line of source skipped by an #if or the like; the rest of the line is text.

Note that the #else, #elif, or #endif that ends a skip is marked with an

N.

L: an indication of a change in source position. The line has a format

similar to the # line-identifying directive output by cpp, that is to say

L line_number "file-name" key

where key is,

1 for entry into an include file;

2 for exit from an include file;

and omitted otherwise.

The first line in the raw listing file is always an L line identifying the

primary input file. L lines are also output for #line directives (key is

omitted). L lines indicate the source position of the following source

line in the raw listing file.

Chapter 33–46
U
S
A
G
E

R, W, E, or C: an indication of a diagnostic (R for remark, W for warning,

E for error, and C for catastrophic error). The line has the form

S "file-name" line_number column-number message-text

where S is R, W, E, or C, as explained above. Errors at the end of file

indicate the last line of the primary source file and a column number of

zero. Command line errors are catastrophes with an empty file name

(””) and a line and column number of zero. Internal errors are

catastrophes with position information as usual, and message-text

beginning with (internal error). When a diagnostic displays a list (e.g.,

all the contending routines when there is ambiguity on an overloaded

call), the initial diagnostic line is followed by one or more lines with

the same overall format (code letter, file name, line number, column

number, and message text), but in which the code letter is the lower

case version of the code letter in the initial line. The source position in

such lines is the same as that in the corresponding initial line.

Example:

To write raw listing information to the file test.lst , enter:

cpxxx test.cc ––list test.lst

Compiler Use 3–47

• • • • • • • •

––long_lifetime_temps /

––short_lifetime_temps

Option:

––long_lifetime_temps

––short_lifetime_temps

Default:

––long_lifetime_temps (cfront)

––short_lifetime_temps (standard C++)

Description:

Select the lifetime for temporaries: short means to end of full expression;

long means to the earliest of end of scope, end of switch clause, or the

next label. Short is standard C++, and long is what cfront uses (the cfront

compatibility modes select long by default).

Example:

cpxxx test.cc ––long_lifetime_temps

Chapter 33–48
U
S
A
G
E

––namespaces

Option:

––namespaces

––no_namespaces

Default:

––namespaces

Description:

Enable or disable support for namespaces.

Example:

cpxxx test.cc ––no_namespaces

––using_std

Section Namespace Support in chapter Language Implementation.

Compiler Use 3–49

• • • • • • • •

––new_for_init / ––old_for_init

Option:

––new_for_init

––old_for_init

Default:

––new_for_init

Description:

Control the scope of a declaration in a for-init-statement . The old

(cfront�compatible) scoping rules mean the declaration is in the scope to

which the for statement itself belongs; the new (standard�conforming)

rules in effect wrap the entire for statement in its own implicitly

generated scope.

Example:

cpxxx test.cc ––old_for_init

Chapter 33–50
U
S
A
G
E

––no_code_gen

Option:

––no_code_gen

Description:

Do syntax-checking only. Do not generate a C file.

Example:

cpxxx test.cc ––no_code_gen

Compiler Use 3–51

• • • • • • • •

––no_line_commands

Option:

––no_line_commands

Description:

Do preprocessing only. Write preprocessed text to the preprocessing

output file, with comments removed and without line control information.

Examples:

cpxxx test.cc ––no_line_commands ––output preout

––comments, ––preprocess / -E, ––dependencies / -M

Chapter 33–52
U
S
A
G
E

––nonconst_ref_anachronism

Option:

––nonconst_ref_anachronism

––no_nonconst_ref_anachronism

Default:

––nonconst_ref_anachronism

Description:

Enable or disable the anachronism of allowing a reference to nonconst to

bind to a class rvalue of the right type. This anachronism is also enabled

by the ––anachronisms option and the cfront-compatibility options.

Example:

cpxxx test.cc ––no_nonconst_ref_anachronism

––anachronisms, ––cfront_2.1 / ––cfront_3.0

Section Anachronisms Accepted in chapter Language Implementation.

Compiler Use 3–53

• • • • • • • •

––no_preproc_only

Option:

––no_proproc_only

Description:

May be used in conjunction with the options that normally cause the C++

compiler to do preprocessing only (e.g., ––preprocess, etc.) to specify

that a full compilation should be done (not just preprocessing). When

used with the implicit inclusion option, this makes it possible to generate a

preprocessed output file that includes any implicitly included files.

Examples:

cpxxx test.cc –E –B ––no_preproc_only

––preprocess / -E,

––implicit_include / -B, ––no_line_commands

Chapter 33–54
U
S
A
G
E

––no_use_before_set_warnings

Option:

––no_use_before_set_warnings

Description:

Suppress warnings on local automatic variables that are used before their

values are set.

Example:

cpxxx test.cc ––no_use_before_set_warnings

––no_warnings / -w

Compiler Use 3–55

• • • • • • • •

––no_warnings / -w

Option:

-w

––no_warnings

Description:

Suppress all warning messages. Error messages are still issued.

Example:

To suppress all warnings, enter:

cpxxx test.cc –w

Chapter 33–56
U
S
A
G
E

-opfile

Option:

-opfile file

Arguments:

A filename for command line processing.

Description:

Use file for command line processing. file can contain arbitrary command

line options and filenames. It must be the last argument of the command

line.

Example:

To read arguments from file config.opt , enter:

cpxxx test.cc ––exceptions –opfile config.opt

Compiler Use 3–57

• • • • • • • •

––output

Option:

––output file

Arguments:

An output filename specifying the preprocessing output file.

Default:

No preprocessing output file is generated.

Description:

Use file as output filename for the preprocessing output file.

Example:

To use the file my.pre as the preprocessing output file, enter:

cpxxx test.cc –E ––output my.pre

Chapter 33–58
U
S
A
G
E

––old_line_commands

Option:

––old_line_commands

Description:

When generating source output, put out #line directives in the form used

by the Reiser cpp, i.e., # nnn instead of #line nnn.

Example:

To do preprocessing only, without comments and with old style line

control information, enter:

cpxxx test.cc –E ––old_line_commands

––preprocess / -E, ––no_line_commands

Compiler Use 3–59

• • • • • • • •

––old_specializations

Option:

––old_specializations

––no_old_specializations

Default:

––old_specializations

Description:

Enable or disable acceptance of old�style template specializations (i.e.,

specializations that do not use the template<> syntax).

Example:

cpxxx test.cc ––no_old_specializations

Chapter 33–60
U
S
A
G
E

––old_style_preprocessing

Option:

––old_style_preprocessing

Description:

Forces pcc style preprocessing when compiling. This may be used when

compiling an ANSI C++ program on a system in which the system header

files require pcc style preprocessing.

Example:

To force pcc style preprocessing, enter:

cpxxx test.cc –E ––old_style_preprocessing

––preprocess / -E, ––no_line_commands

Compiler Use 3–61

• • • • • • • •

––pch

Option:

––pch

Description:

Automatically use and/or create a precompiled header file. For details, see

the Precompiled Headers section in chapter Language Implementation. If

––use_pch or ––create_pch (manual PCH mode) appears on the

command line following this option, its effect is erased.

Example:

cpxxx test.cc ––pch

––use_pch, ––create_pch

Section Precompiled Headers in chapter Language Implementation.

Chapter 33–62
U
S
A
G
E

––pch_dir

Option:

––pch_dir dir_name

Arguments:

The name of the directory to search for and/or create a precompiled

header file.

Description:

Specify the directory in which to search for and/or create a precompiled

header file. This option may be used with automatic PCH mode (––pch)

or manual PCH mode (––create_pch or ––use_pch).

Example:

To use the directory /usr/include/pch to automatically create

precompiled header files, enter:

cpxxx test.cc ––pch_dir /usr/include/pch ––pch

––pch, ––use_pch, ––create_pch

Section Precompiled Headers in chapter Language Implementation.

Compiler Use 3–63

• • • • • • • •

––pch_messages

Option:

––pch_messages

––no_pch_messages

Default:

pch_messages

Description:

Enable or disable the display of a message indicating that a precompiled

header file was created or used in the current compilation.

Example:

cpxxx test.cc ––create_pch test.pch ––pch_messages

”test.cc”: creating precompiled header file ”test.pch”

––pch, ––use_pch, ––create_pch

Section Precompiled Headers in chapter Language Implementation.

Chapter 33–64
U
S
A
G
E

––preprocess / -E

Option:

-E

––preprocess

Description:

Do preprocessing only. Write preprocessed text to the preprocessing

output file, with comments removed and with line control information.

Example:

cpxxx test.cc –E

––comments,

––dependencies / -M,

––no_line_commands

Compiler Use 3–65

• • • • • • • •

––remarks

Option:

––remarks

Description:

Issue remarks, which are diagnostic messages even milder than warnings.

Example:

To enable the display of remarks, enter:

cpxxx test.cc ––remarks

Chapter 33–66
U
S
A
G
E

––remove_unneeded_entities

Option:

––remove_unneeded_entities

––no_remove_unneeded_entities

Default:

––remove_unneeded_entities

Description:

Enable or disable an optimization to remove unneeded entities from the

generated intermediate C file. Something may be referenced but unneeded

if it is referenced only by something that is itself unneeded; certain entities,

such as global variables and routines defined in the translation unit, are

always considered to be needed.

Example:

cpxxx test.cc ––no_remove_unneeded_entities

Compiler Use 3–67

• • • • • • • •

––rtti

Option:

––rtti

––no_rtti

Default:

––no_rtti

Description:

Enable or disable support for RTTI (run-time type information) features:

dynamic_cast , typeid .

Example:

cpxxx test.cc ––rtti

Chapter 33–68
U
S
A
G
E

––special_subscript_cost

Option:

––special_subscript_cost

––no_special_subscript_cost

Default:

––no_special_subscript_cost

Description:

Enable or disable a special nonstandard weighting of the conversion to the

integral operand of the [] operator in overload resolution.

This is a compatibility feature that may be useful with some existing code.

The special cost is enabled by default in cfront 3.0 mode. With this feature

enabled, the following code compiles without error:

struct A {
A();
operator int *();
int operator[](unsigned);

};
void main() {

A a;
a[0]; // Ambiguous, but allowed with this option

// operator[] is chosen
}

Example:

cpxxx test.cc ––special_subscript_cost

Compiler Use 3–69

• • • • • • • •

––strict

––strict_warnings

Option:

––strict

––strict_warnings

Description:

Enable strict ANSI mode, which provides diagnostic messages when

non-ANSI features are used, and disables features that conflict with ANSI C

or C++. ANSI violations can be issued as either warnings or errors

depending on which command line option is used. The ––strict options

issue errors and the ––strict_warnings options issue warnings. The error

threshold is set so that the requested diagnostics will be listed.

Example:

To enable strict ANSI mode, with error diagnostic messages, enter:

cpxxx test.cc ––strict

Chapter 33–70
U
S
A
G
E

––suppress_vtbl

Option:

––suppress_vtbl

Description:

Suppress definition of virtual function tables in cases where the heuristic

used by the C++ compiler to decide on definition of virtual function tables

provides no guidance. The virtual function table for a class is defined in a

compilation if the compilation contains a definition of the first non-inline

non-pure virtual function of the class. For classes that contain no such

function, the default behavior is to define the virtual function table (but to

define it as a local static entity). The ––suppress_vtbl option suppresses

the definition of the virtual function tables for such classes, and the

––force_vtbl option forces the definition of the virtual function table for

such classes. ––force_vtbl differs from the default behavior in that it does

not force the definition to be local.

Example:

cpxxx test.cc ––suppress_vtbl

––force_vtbl

Compiler Use 3–71

• • • • • • • •

––trace_includes / -H

Option:

-H

––trace_includes

Description:

Do preprocessing only. Instead of the normal preprocessing output,

generate on the preprocessing output file a list of the names of files

#included.

Examples:

cpxxx test.cc –H

iostream.h
string.h

––preprocess / -E, ––no_line_commands

Chapter 33–72
U
S
A
G
E

––typename

Option:

––typename

––no_typename

Default:

––typename

Description:

Enable or disable recognition of the typename keyword.

Example:

cpxxx test.cc ––no_typename

––implicit_typename

Compiler Use 3–73

• • • • • • • •

––undefine_macro / -U

Option:

-U name
––undefine_macro name

Arguments:

The name macro you want to undefine.

Description:

Remove any initial definition of identifier name as in #undef, unless it is a

predefined ANSI standard macro. ANSI specifies the following predefined

symbols to exist, which cannot be removed:

__FILE__ "current source filename"

__LINE__ current source line number (int type)

__TIME__ "hh:mm:ss"

__DATE__ "Mmm dd yyyy"

__STDC__ level of ANSI standard. This macro is set to 1 when the

option to disable language extensions (-A) is effective.

Whenever language extensions are excepted, __STDC__ is set

to 0 (zero).

__cplusplus is defined when compiling a C++ program

When cpxxx is invoked, also the following predefined symbols exist:

c_plusplus is defined in addition to the standard __cplusplus

__SIGNED_CHARS__

is defined when plain char is signed.

_WCHAR_T is defined when wchar_t is a keyword.

_BOOL is defined when bool is a keyword.

__ARRAY_OPERATORS

is defined when array new and delete are enabled.

These symbols can be turned off with the -U option.

Chapter 33–74
U
S
A
G
E

Example:

cpxxx test.cc –U c_plusplus

-D / ––define_macro

Compiler Use 3–75

• • • • • • • •

––use_pch

Option:

––use_pch filename

Arguments:

The filename to use as a precompiled header file.

Description:

Use a precompiled header file of the specified name as part of the current

compilation. If ––pch (automatic PCH mode) or ––create_pch appears

on the command line following this option, its effect is erased.

Example:

To use the precompiled header file with the name test.pch , enter:

cpxxx test.cc ––use_pch test.pch

––pch, ––create_pch

Section Precompiled Headers in chapter Language Implementation.

Chapter 33–76
U
S
A
G
E

––using_std

Option:

––using_std

––no_using_std

Default:

using_std

Description:

Enable or disable implicit use of the std namespace when standard

header files are included.

Example:

cpxxx test.cc ––using_std

––namespaces

Section Namespace Support in chapter Language Implementation.

Compiler Use 3–77

• • • • • • • •

––wchar_t_keyword

Option:

––wchar_t_keyword

––no_wchar_t_keyword

Default:

––wchar_t_keyword

Description:

Enable or disable recognition of wchar_t as a keyword.

Example:

cpxxx test.cc ––no_wchar_t_keyword

Chapter 33–78
U
S
A
G
E

––wrap_diagnostics

Option:

––wrap_diagnostics

––no_wrap_diagnostics

Default:

––wrap_diagnostics

Description:

Enable or disable a mode in which the error message text is not wrapped

when too long to fit on a single line.

Example:

cpxxx test.cc ––no_wrap_diagnostics

––brief_diagnostics

Chapter Compiler Diagnostics and Appendix Error Messages.

Compiler Use 3–79

• • • • • • • •

––xref / -X

Option:

-X xfile
––xref xfile

Arguments:

The name of the cross-reference file.

Description:

Generate cross-reference information in the file xfile. For each reference

to an identifier in the source program, a line of the form

symbol_id name X file-name line-number column-number

is written, where X is

D for definition;

d for declaration (that is, a declaration that is not a definition);

M for modification;

A for address taken;

U for used;

C for changed (but actually meaning used and modified in a single

operation, such as an increment);

R for any other kind of reference, or

E for an error in which the kind of reference is indeterminate.

symbol-id is a unique decimal number for the symbol. The fields of the

above line are separated by tab characters.

Chapter 33–80
U
S
A
G
E

3.2 LINKER

The linker used for C++, and mixed language programs, is ldriver. It is

invoked in the same way as the llink linker, with the following differences:

• You must specify the c++ option

• You must specify the –cc cxxxxx option, where cxxxxx is the

name of the appropriate C compiler

If the command line becomes too long, you may find it useful to use the

-opfile <file> feature. The -opfile <file> feature allows you to specify a

file containing command-line input for the linker.

A linker for C++ has more to do than a linker for C. ldriver handles

template instantiation and causes external objects to be constructed and

destructed properly. To accomplish its tasks, ldriver invokes several

programs. These include llink, and may also include the C and/or the C++

compilers.

See the C Compiler / Assembler manual for more information about llink

options which can be used with ldriver.

Compiler Use 3–81

• • • • • • • •

3.3 PRAGMAS

According to ANSI (3.8.6) a preprocessing directive of the form:

#pragma pragma–token–list new–line

causes the compiler to behave in an implementation-defined manner. The

compiler ignores pragmas which are not mentioned in the list below.

Pragmas give directions to the code generator of the compiler. Besides the

pragmas there are two other possibilities to steer the code generator:

command line options and keywords. The compiler acknowledges these

three groups using the following rule:

Command line options can be overruled by keywords and pragmas.

Keywords can be overruled by pragmas. So the pragma has the highest

priority.

This approach makes it possible to set a default optimization level for a

source module, which can be overridden temporarily within the source by

a pragma.

cpxxx supports the following pragmas and all pragmas that are described

in the C Compiler/Assembler User's Manual.

instantiate

do_not_instantiate

can_instantiate

These are template instantiation pragmas. They are described

in detail in the section Template Instantiation in chapter

Language Implementation.

hdrstop

no_pch These are precompiled header pragmas. They are described

in detail in the section Precompiled Headers in chapter

Language Implementation.

once When placed at the beginning of a header file, indicates that

the file is written in such a way that including it several times

has the same effect as including it once. Thus, if the C++

compiler sees #pragma once at the start of a header file, it

will skip over it if the file is #included again.

A typical idiom is to place an #ifndef guard around the body

of the file, with a #define of the guard variable after the

#ifndef:

Chapter 33–82
U
S
A
G
E

#pragma once // optional
#ifndef FILE_H
#define FILE_H
... body of the header file ...
#endif

The #pragma once is marked as optional in this example,

because the C++ compiler recognizes the #ifndef idiom and

does the optimization even in its absence. #pragma once is

accepted for compatibility with other compilers and to allow

the programmer to use other guard-code idioms.

separate This pragma gives you complete control over the

segmentation of global data.

The compiler creates a �data " group containing all data

which is accessed by A5 register-relative addressing. By

default, global and static data items are allocated in one of

two data segments: �idata ", for initialized data, or �udata ",

for uninitialized data, and so are restricted to a total size of

64K bytes. Separate Data Items are placed in there own

segments, and can be placed independently in memory using

the locate function of the linking locator. They are not subject

to the total size restriction imposed on typical non-global

data.

#pragma separate variable_name
[segment segname]
[class classname]

The #pragma separate directive causes the data item

named variable_name to be separate. The #pragma
separate directive for variable_name must proceed the

definition of variable_name in the source program. The

compiler puts this data in the specified class and segment, if

that information is included in the statement.

A class is a named collection of segments that share a

common logical attribute, such as being executable code or

data. We often use the notational convention of bracketing a

name in curly braces to indicate that it is a class name. This

convention is also accepted within the locator command

language. Refer to your C Compiler manual for more

information.

Compiler Use 3–83

• • • • • • • •

The class name of a segment is best thought of as an abstract

attribute of that segment; it is a descriptive comment

describing the meaning or intended usage of that segment.

Users can make up their own class names and assign them

whatever significance they want.

Chapter 33–84
U
S
A
G
E

4

COMPILER
DIAGNOSTICS

C
H

A
P

T
E

R

Chapter 44–2
D
IA
G
N
O
S
T
IC
S

4

C
H

A
P

T
E

R

Compiler Diagnostics 4–3

• • • • • • • •

4.1 DIAGNOSTIC MESSAGES

Diagnostic messages have an associated severity, as follows:

• Catastrophic errors, also called 'fatal errors', indicate problems of

such severity that the compilation cannot continue. For example:

command-line errors, internal errors, and missing include files. If

multiple source files are being compiled, any source files after the

current one will not be compiled.

• Errors indicate violations of the syntax or semantic rules of the C++

language. Compilation continues, but object code is not generated.

• Warnings indicate something valid but questionable. Compilation

continues and object code is generated (if no errors are detected).

• Remarks indicate something that is valid and probably intended, but

which a careful programmer may want to check. These diagnostics

are not issued by default. Compilation continues and object code is

generated (if no errors are detected).

Diagnostics are written to stderr with a form like the following:

”test.cc”, line 5: a break statement may only be used within a loop
 or switch

Note that the message identifies the file and line involved.

Long messages are wrapped to additional lines when necessary.

The command line option ––no_brief_diagnostics may be used to

request a longer form of the diagnostic output in which the original source

line is displayed and the error message text is wrapped when too long to

fit on a single line.

The command line option ––display_error_number may be used to

request that the error number be included in the diagnostic message.

When displayed, the error number also indicates whether the error may

have its severity overridden on the command line (with one of the

––diag_severity options). If the severity may be overridden, the error

number will include the suffix -D (for discretionary); otherwise no suffix

will be present.

”Test_name.cc”, line 7: error #64–D: declaration does not
 declare anything

Chapter 44–4
D
IA
G
N
O
S
T
IC
S

”Test_name.cc”, line 9: error #77: this declaration has no storage
 class or type specifier

Because an error is determined to be discretionary based on the error

severity associated with a specific context, a given error may be

discretionary in some cases and not in others.

For some messages, a list of entities is useful; they are listed following the

initial error message:

”test.cc”, line 4: error: more than one instance of overloaded
 function ”f” matches the argument list:
 function ”f(int)”
 function ”f(float)”
 argument types are: (double)

In some cases, some additional context information is provided;

specifically, such context information is useful when the C++ compiler

issues a diagnostic while doing a template instantiation or while generating

a constructor, destructor, or assignment operator function. For example:

”test.cc”, line 7: error: ”A::A()” is inaccessible
 detected during implicit generation of ”B::B()” at line
7

Without the context information, it is very hard to figure out what the error

refers to.

For a list of error messages and error numbers, see Appendix Error
Messages.

4.2 TERMINATION MESSAGES

cpxxx writes sign-off messages to stderr if errors are detected. For

example, one of the following forms of message

n errors detected in the compilation of ” ifile ”.

1 catastrophic error detected in the compilation of ” ifile ”.

n errors and 1 catastrophic error detected in the compilation of

” ifile ”.

is written to indicate the detection of errors in the compilation. No

message is written if no errors were detected.

Compiler Diagnostics 4–5

• • • • • • • •

The message

cpxxx: Compilation of ’xxx.cpp’ failed, status=x

is written at the end of a compilation that was prematurely terminated

because of errors.

4.3 RESPONSE TO SIGNALS

The signals SIGINT (caused by a user interrupt, like ^C) and SIGTERM
(caused by a kill command) are trapped by the C++ compiler and cause

abnormal termination.

4.4 RETURN VALUES

cpxxx returns an exit status to the operating system environment for

testing.

For example,

in a PC BATCH-file you can examine the exit status of the program

executed with ERRORLEVEL:

cpxxx %1.cc
IF NOT ERRORLEVEL 1 GOTO STOP_BATCH

In a Bourne shell script, the exit status can be found in the $? variable, for

example:

cpxxx test.cpp
case $? in
0) echo ok ;;
–1|2|4) echo error ;;
esac

The exit status of cpxxx indicates the highest severity diagnostic detected

and is one of the numbers of the following list:

-1 Abnormal termination

0 Compilation successful, no errors

2 There were user errors, but terminated normally

Chapter 44–6
D
IA
G
N
O
S
T
IC
S

A

ERROR MESSAGES
A
P
P
E
N
D
I
X

Appendix AA–2
E
R
R
O
R
S

A

A
P
P
E
N
D
I
X

Error Messages A–3

• • • • • • • •

1 INTRODUCTION

This appendix lists all diagnostic messages, starting with the error number

and the error tag name, followed by the message itself. The error number

and/or error tag can be used in ––diag_severity options to override the

normal error severity.

The C++ compiler produces error messages on standard error output. With

the ––error_output option you can redirect the error messages to an

error list file.

Normally, diagnostics are written to stderr in the following form:

” filename” , line line_num: message

With ––display_error_number this form will be:

” filename” , line line_num: severity #err_num: message

or:

” filename” , line line_num: severity #err_num-D: message

Where severity can be one of: remark, warning, error, catastrophic error,

command-line error or internal error.

If the severity may be overridden, the error number will include the suffix

-D (for discretionary); otherwise no suffix will be present.

In a raw listing file (-L option) diagnostic messages have the following

layout, starting with the severity (R: remark, W: warning, E: error, C:

catastrophe):

[R|W|E|C] "filename" line_number column_number error_message

For more detailed information see chapter Compiler Diagnostics.

All diagnostic messages are listed below.

Appendix AA–4
E
R
R
O
R
S

2 MESSAGES

0001 last_line_incomplete:

last line of file ends without a newline

0002 last_line_backslash:

last line of file ends with a backslash

0003 include_recursion:

#include file "xxxx" includes itself

0004 out_of_memory:

out of memory

0005 source_file_could_not_be_opened:

could not open source file "xxxx"

0006 comment_unclosed_at_eof:

comment unclosed at end of file

0007 bad_token:

unrecognized token

0008 unclosed_string:

missing closing quote

0009 nested_comment:

nested comment is not allowed

0010 bad_use_of_sharp:

"#" not expected here

0011 bad_pp_directive_keyword:

unrecognized preprocessing directive

0012 end_of_flush:

parsing restarts here after previous syntax error

0013 exp_file_name:

expected a file name

Error Messages A–5

• • • • • • • •

0014 extra_text_in_pp_directive:

extra text after expected end of preprocessing directive

0016 illegal_source_file_name:

"xxxx" is not a valid source file name

0017 exp_rbracket:

expected a "]"

0018 exp_rparen:

expected a ")"

0019 extra_chars_on_number:

extra text after expected end of number

0020 undefined_identifier:

identifier "xxxx" is undefined

0021 useless_type_qualifiers:

type qualifiers are meaningless in this declaration

0022 bad_hex_digit:

invalid hexadecimal number

0023 integer_too_large:

integer constant is too large

0024 bad_octal_digit:

invalid octal digit

0025 zero_length_string:

quoted string should contain at least one character

0026 too_many_characters:

too many characters in character constant

0027 bad_character_value:

character value is out of range

0028 expr_not_constant:

expression must have a constant value

Appendix AA–6
E
R
R
O
R
S

0029 exp_primary_expr:

expected an expression

0030 bad_float_value:

floating constant is out of range

0031 expr_not_integral:

expression must have integral type

0032 expr_not_arithmetic:

expression must have arithmetic type

0033 exp_line_number:

expected a line number

0034 bad_line_number:

invalid line number

0035 error_directive:

#error directive: xxxx

0036 missing_pp_if:

the #if for this directive is missing

0037 missing_endif:

the #endif for this directive is missing

0038 pp_else_already_appeared:

directive is not allowed �� an #else has already appeared

0039 divide_by_zero:

division by zero

0040 exp_identifier:

expected an identifier

0041 expr_not_scalar:

expression must have arithmetic or pointer type

0042 incompatible_operands:

operand types are incompatible ("type" and "type")

Error Messages A–7

• • • • • • • •

0044 expr_not_pointer:

expression must have pointer type

0045 cannot_undef_predef_macro:

#undef may not be used on this predefined name

0046 cannot_redef_predef_macro:

this predefined name may not be redefined

0047 bad_macro_redef:

incompatible redefinition of macro "entity" (declared at line xxxx)

0049 duplicate_macro_param_name:

duplicate macro parameter name

0050 paste_cannot_be_first:

"##" may not be first in a macro definition

0051 paste_cannot_be_last:

"##" may not be last in a macro definition

0052 exp_macro_param:

expected a macro parameter name

0053 exp_colon:

expected a ":"

0054 too_few_macro_args:

too few arguments in macro invocation

0055 too_many_macro_args:

too many arguments in macro invocation

0056 sizeof_function:

operand of sizeof may not be a function

0057 bad_constant_operator:

this operator is not allowed in a constant expression

0058 bad_pp_operator:

this operator is not allowed in a preprocessing expression

Appendix AA–8
E
R
R
O
R
S

0059 bad_constant_function_call:

function call is not allowed in a constant expression

0060 bad_integral_operator:

this operator is not allowed in an integral constant expression

0061 integer_overflow:

integer operation result is out of range

0062 negative_shift_count:

shift count is negative

0063 shift_count_too_large:

shift count is too large

0064 useless_decl:

declaration does not declare anything

0065 exp_semicolon:

expected a ";"

0066 enum_value_out_of_int_range:

enumeration value is out of "int" range

0067 exp_rbrace:

expected a "}"

0068 integer_sign_change:

integer conversion resulted in a change of sign

0069 integer_truncated:

integer conversion resulted in truncation

0070 incomplete_type_not_allowed:

incomplete type is not allowed

0071 sizeof_bit_field:

operand of sizeof may not be a bit field

0075 bad_indirection_operand:

operand of "*" must be a pointer

Error Messages A–9

• • • • • • • •

0076 empty_macro_argument:

argument to macro is empty

0077 missing_decl_specifiers:

this declaration has no storage class or type specifier

0078 initializer_in_param:

a parameter declaration may not have an initializer

0079 exp_type_specifier:

expected a type specifier

0080 storage_class_not_allowed:

a storage class may not be specified here

0081 mult_storage_classes:

more than one storage class may not be specified

0082 storage_class_not_first:

storage class is not first

0083 dupl_type_qualifier:

type qualifier specified more than once

0084 bad_combination_of_type_specifiers:

invalid combination of type specifiers

0085 bad_param_storage_class:

invalid storage class for a parameter

0086 bad_function_storage_class:

invalid storage class for a function

0087 type_specifier_not_allowed:

a type specifier may not be used here

0088 array_of_function:

array of functions is not allowed

0089 array_of_void:

array of void is not allowed

Appendix AA–10
E
R
R
O
R
S

0090 function_returning_function:

function returning function is not allowed

0091 function_returning_array:

function returning array is not allowed

0092 param_id_list_needs_function_def:

identifier�list parameters may only be used in a function definition

0093 function_type_must_come_from_declarator:

function type may not come from a typedef

0094 array_size_must_be_positive:

the size of an array must be greater than zero

0095 array_size_too_large:

array is too large

0096 empty_translation_unit:

a translation unit must contain at least one declaration

0097 bad_function_return_type:

a function may not return a value of this type

0098 bad_array_element_type:

an array may not have elements of this type

0099 decl_should_be_of_param:

a declaration here must declare a parameter

0100 dupl_param_name:

duplicate parameter name

0101 id_already_declared:

"xxxx" has already been declared in the current scope

0102 nonstd_forward_decl_enum:

forward declaration of enum type is nonstandard

0103 class_too_large:

class is too large

Error Messages A–11

• • • • • • • •

0104 struct_too_large:

struct or union is too large

0105 bad_bit_field_size:

invalid size for bit field

0106 bad_bit_field_type:

invalid type for a bit field

0107 zero_length_bit_field_must_be_unnamed:

zero�length bit field must be unnamed

0108 signed_one_bit_field:

signed bit field of length 1

0109 expr_not_ptr_to_function:

expression must have (pointer�to�) function type

0110 exp_definition_of_tag:

expected either a definition or a tag name

0111 code_is_unreachable:

statement is unreachable

0112 exp_while:

expected "while"

0114 never_defined:

entity�kind "entity" was referenced but not defined

0115 continue_must_be_in_loop:

a continue statement may only be used within a loop

0116 break_must_be_in_loop_or_switch:

a break statement may only be used within a loop or switch

0117 no_value_returned_in_non_void_function:

non�void entity�kind "entity" (declared at line xxxx) should return a

value

Appendix AA–12
E
R
R
O
R
S

0118 value_returned_in_void_function:

a void function may not return a value

0119 cast_to_bad_type:

cast to type "type" is not allowed

0120 bad_return_value_type:

return value type does not match the function type

0121 case_label_must_be_in_switch:

a case label may only be used within a switch

0122 default_label_must_be_in_switch:

a default label may only be used within a switch

0123 case_label_appears_more_than_once:

case label value has already appeared in this switch

0124 default_label_appears_more_than_once:

default label has already appeared in this switch

0125 exp_lparen:

expected a "("

0126 expr_not_an_lvalue:

expression must be an lvalue

0127 exp_statement:

expected a statement

0128 loop_not_reachable:

loop is not reachable from preceding code

0129 block_scope_function_must_be_extern:

a block�scope function may only have extern storage class

0130 exp_lbrace:

expected a "{"

0131 expr_not_ptr_to_class:

expression must have pointer�to�class type

Error Messages A–13

• • • • • • • •

0132 expr_not_ptr_to_struct_or_union:

expression must have pointer�to�struct�or�union type

0133 exp_member_name:

expected a member name

0134 exp_field_name:

expected a field name

0135 not_a_member:

entity�kind "entity" has no member "xxxx"

0136 not_a_field:

entity�kind "entity" has no field "xxxx"

0137 expr_not_a_modifiable_lvalue:

expression must be a modifiable lvalue

0138 address_of_register_variable:

taking the address of a register variable is not allowed

0139 address_of_bit_field:

taking the address of a bit field is not allowed

0140 too_many_arguments:

too many arguments in function call

0141 all_proto_params_must_be_named:

unnamed prototyped parameters not allowed when body is present

0142 expr_not_pointer_to_object:

expression must have pointer�to�object type

0143 program_too_large:

program too large or complicated to compile

0144 bad_initializer_type:

a value of type "type" cannot be used to initialize an entity of type

"type"

Appendix AA–14
E
R
R
O
R
S

0145 cannot_initialize:

entity�kind "entity" may not be initialized

0146 too_many_initializer_values:

too many initializer values

0147 not_compatible_with_previous_decl:

declaration is incompatible with entity�kind "entity" (declared at line

xxxx)

0148 already_initialized:

entity�kind "entity" has already been initialized

0149 bad_file_scope_storage_class:

a global�scope declaration may not have this storage class

0150 type_cannot_be_param_name:

a type name may not be redeclared as a parameter

0151 typedef_cannot_be_param_name:

a typedef name may not be redeclared as a parameter

0152 non_zero_int_conv_to_pointer:

conversion of nonzero integer to pointer

0153 expr_not_class:

expression must have class type

0154 expr_not_struct_or_union:

expression must have struct or union type

0155 old_fashioned_assignment_operator:

old�fashioned assignment operator

0156 old_fashioned_initializer:

old�fashioned initializer

0157 expr_not_integral_constant:

expression must be an integral constant expression

Error Messages A–15

• • • • • • • •

0158 expr_not_an_lvalue_or_function_designator:

expression must be an lvalue or a function designator

0159 decl_incompatible_with_previous_use:

declaration is incompatible with previous "entity" (declared at line

xxxx)

0160 external_name_clash:

name conflicts with previously used external name "xxxx"

0161 unrecognized_pragma:

unrecognized #pragma

0163 cannot_open_temp_file:

could not open temporary file "xxxx"

0164 temp_file_dir_name_too_long:

name of directory for temporary files is too long ("xxxx")

0165 too_few_arguments:

too few arguments in function call

0166 bad_float_constant:

invalid floating constant

0167 incompatible_param:

argument of type "type" is incompatible with parameter of type

"type"

0168 function_type_not_allowed:

a function type is not allowed here

0169 exp_declaration:

expected a declaration

0170 pointer_outside_base_object:

pointer points outside of underlying object

0171 bad_cast:

invalid type conversion

Appendix AA–16
E
R
R
O
R
S

0172 linkage_conflict:

external/internal linkage conflict with previous declaration

0173 float_to_integer_conversion:

floating�point value does not fit in required integral type

0174 expr_has_no_effect:

expression has no effect

0175 subscript_out_of_range:

subscript out of range

0177 declared_but_not_referenced:

entity�kind "entity" was declared but never referenced

0178 pcc_address_of_array:

"&" applied to an array has no effect

0179 mod_by_zero:

right operand of "%" is zero

0180 old_style_incompatible_param:

argument is incompatible with formal parameter

0181 printf_arg_mismatch:

argument is incompatible with corresponding format string

conversion

0182 empty_include_search_path:

could not open source file "xxxx" (no directories in search list)

0183 cast_not_integral:

type of cast must be integral

0184 cast_not_scalar:

type of cast must be arithmetic or pointer

0185 initialization_not_reachable:

dynamic initialization in unreachable code

Error Messages A–17

• • • • • • • •

0186 unsigned_compare_with_zero:

pointless comparison of unsigned integer with zero

0187 assign_where_compare_meant:

use of "=" where "==" may have been intended

0188 mixed_enum_type:

enumerated type mixed with another type

0189 file_write_error:

error while writing xxxx file

0190 bad_il_file:

invalid intermediate language file

0191 cast_to_qualified_type:

type qualifier is meaningless on cast type

0192 unrecognized_char_escape:

unrecognized character escape sequence

0193 undefined_preproc_id:

zero used for undefined preprocessing identifier

0194 exp_asm_string:

expected an asm string

0195 asm_func_must_be_prototyped:

an asm function must be prototyped

0196 bad_asm_func_ellipsis:

an asm function may not have an ellipsis

0219 file_delete_error:

error while deleting file "xxxx"

0220 integer_to_float_conversion:

integral value does not fit in required floating�point type

0221 float_to_float_conversion:

floating�point value does not fit in required floating�point type

Appendix AA–18
E
R
R
O
R
S

0222 bad_float_operation_result:

floating�point operation result is out of range

0223 implicit_func_decl:

function declared implicitly

0224 too_few_printf_args:

the format string requires additional arguments

0225 too_many_printf_args:

the format string ends before this argument

0226 bad_printf_format_string:

invalid format string conversion

0227 macro_recursion:

macro recursion

0228 nonstd_extra_comma:

trailing comma is nonstandard

0229 enum_bit_field_too_small:

bit field cannot contain all values of the enumerated type

0230 nonstd_bit_field_type:

nonstandard type for a bit field

0231 decl_in_prototype_scope:

declaration is not visible outside of function

0232 decl_of_void_ignored:

old�fashioned typedef of "void" ignored

0233 old_fashioned_field_selection:

left operand is not a struct or union containing this field

0234 old_fashioned_ptr_field_selection:

pointer does not point to struct or union containing this field

0235 var_retained_incomp_type:

variable "xxxx" was declared with a never�completed type

Error Messages A–19

• • • • • • • •

0236 boolean_controlling_expr_is_constant:

controlling expression is constant

0237 switch_selector_expr_is_constant:

selector expression is constant

0238 bad_param_specifier:

invalid specifier on a parameter

0239 bad_specifier_outside_class_decl:

invalid specifier outside a class declaration

0240 dupl_decl_specifier:

duplicate specifier in declaration

0241 base_class_not_allowed_for_union:

a union is not allowed to have a base class

0242 access_already_specified:

multiple access control specifiers are not allowed

0243 missing_class_definition:

class or struct definition is missing

0244 name_not_member_of_class_or_base_classes:

qualified name is not a member of class "type" or its base classes

0245 member_ref_requires_object:

a nonstatic member reference must be relative to a specific object

0246 nonstatic_member_def_not_allowed:

a nonstatic data member may not be defined outside its class

0247 already_defined:

entity�kind "entity" has already been defined

0248 pointer_to_reference:

pointer to reference is not allowed

0249 reference_to_reference:

reference to reference is not allowed

Appendix AA–20
E
R
R
O
R
S

0250 reference_to_void:

reference to void is not allowed

0251 array_of_reference:

array of reference is not allowed

0252 missing_initializer_on_reference:

reference entity�kind "entity" requires an initializer

0253 exp_comma:

expected a ","

0254 type_identifier_not_allowed:

type name is not allowed

0255 type_definition_not_allowed:

type definition is not allowed

0256 bad_type_name_redeclaration:

invalid redeclaration of type name "entity" (declared at line xxxx)

0257 missing_initializer_on_const:

const entity�kind "entity" requires an initializer

0258 this_used_incorrectly:

"this" may only be used inside a nonstatic member function

0259 constant_value_not_known:

constant value is not known

0260 missing_type_specifier:

explicit type is missing ("int" assumed)

0261 missing_access_specifier:

access control not specified ("xxxx" by default)

0262 not_a_class_or_struct_name:

not a class or struct name

0263 dupl_base_class_name:

duplicate base class name

Error Messages A–21

• • • • • • • •

0264 bad_base_class:

invalid base class

0265 no_access_to_name:

entity�kind "entity" is inaccessible

0266 ambiguous_name:

"entity" is ambiguous

0267 old_style_parameter_list:

old�style parameter list (anachronism)

0268 declaration_after_statements:

declaration may not appear after executable statement in block

0269 inaccessible_base_class:

implicit conversion to inaccessible base class "type" is not allowed

0274 improperly_terminated_macro_call:

improperly terminated macro invocation

0276 id_must_be_class_or_namespace_name:

name followed by "::" must be a class or namespace name

0277 bad_friend_decl:

invalid friend declaration

0278 value_returned_in_constructor:

a constructor or destructor may not return a value

0279 bad_destructor_decl:

invalid destructor declaration

0280 class_and_member_name_conflict:

invalid declaration of a member with the same name as its class

0281 global_qualifier_not_allowed:

global�scope qualifier (leading "::") is not allowed

0282 name_not_found_in_file_scope:

the global scope has no "xxxx"

Appendix AA–22
E
R
R
O
R
S

0283 qualified_name_not_allowed:

qualified name is not allowed

0284 null_reference:

NULL reference is not allowed

0285 brace_initialization_not_allowed:

initialization with "{...}" is not allowed for object of type "type"

0286 ambiguous_base_class:

base class "type" is ambiguous

0287 ambiguous_derived_class:

derived class "type" contains more than one instance of class "type"

0288 derived_class_from_virtual_base:

cannot convert pointer to base class "type" to pointer to derived

class "type" �� base class is virtual

0289 no_matching_constructor:

no instance of constructor "entity" matches the argument list

0290 ambiguous_copy_constructor:

copy constructor for class "type" is ambiguous

0291 no_default_constructor:

no default constructor exists for class "type"

0292 not_a_field_or_base_class:

"xxxx" is not a nonstatic data member or base class of class "type"

0293 indirect_nonvirtual_base_class_not_allowed:

indirect nonvirtual base class is not allowed

0294 bad_union_field:

invalid union member �� class "type" has a disallowed member

function

0296 bad_rvalue_array:

invalid use of non�lvalue array

Error Messages A–23

• • • • • • • •

0297 exp_operator:

expected an operator

0298 inherited_member_not_allowed:

inherited member is not allowed

0299 indeterminate_overloaded_function:

cannot determine which instance of entity�kind "entity" is intended

0300 bound_function_must_be_called:

a pointer to a bound function may only be used to call the function

0301 duplicate_typedef:

typedef name has already been declared (with same type)

0302 function_redefinition:

entity�kind "entity" has already been defined

0304 no_matching_function:

no instance of entity�kind "entity" matches the argument list

0305 type_def_not_allowed_in_func_type_decl:

type definition is not allowed in function return type declaration

0306 default_arg_not_at_end:

default argument not at end of parameter list

0307 default_arg_already_defined:

redefinition of default argument

0308 ambiguous_overloaded_function:

more than one instance of entity�kind "entity" matches the

argument list:

0309 ambiguous_constructor:

more than one instance of constructor "entity" matches the

argument list:

0310 bad_default_arg_type:

default argument of type "type" is incompatible with parameter of

type "type"

Appendix AA–24
E
R
R
O
R
S

0311 return_type_cannot_distinguish_functions:

cannot overload functions distinguished by return type alone

0312 no_user_defined_conversion:

no suitable user�defined conversion from "type" to "type" exists

0313 function_qualifier_not_allowed:

type qualifier is not allowed on this function

0314 virtual_static_not_allowed:

only nonstatic member functions may be virtual

0315 unqual_function_with_qual_object:

the object has type qualifiers that are not compatible with the

member function

0316 too_many_virtual_functions:

program too large to compile (too many virtual functions)

0317 bad_return_type_on_virtual_function_override:

return type is not identical to nor covariant with return type "type"
of overridden virtual function entity�kind "entity"

0318 ambiguous_virtual_function_override:

override of virtual entity�kind "entity" is ambiguous

0319 pure_specifier_on_nonvirtual_function:

pure specifier ("= 0") allowed only on virtual functions

0320 bad_pure_specifier:

badly�formed pure specifier (only "= 0" is allowed)

0321 bad_data_member_initialization:

data member initializer is not allowed

0322 abstract_class_object_not_allowed:

object of abstract class type "type" is not allowed:

0323 function_returning_abstract_class:

function returning abstract class "type" is not allowed:

Error Messages A–25

• • • • • • • •

0324 duplicate_friend_decl:

duplicate friend declaration

0325 inline_and_nonfunction:

inline specifier allowed on function declarations only

0326 inline_not_allowed:

"inline" is not allowed

0327 bad_storage_class_with_inline:

invalid storage class for an inline function

0328 bad_member_storage_class:

invalid storage class for a class member

0329 local_class_function_def_missing:

local class member entity�kind "entity" requires a definition

0330 inaccessible_special_function:

entity�kind "entity" is inaccessible

0332 missing_const_copy_constructor:

class "type" has no copy constructor to copy a const object

0333 definition_of_implicitly_declared_function:

defining an implicitly declared member function is not allowed

0334 no_suitable_copy_constructor:

class "type" has no suitable copy constructor

0335 linkage_specifier_not_allowed:

linkage specification is not allowed

0336 bad_linkage_specifier:

unknown external linkage specification

0337 incompatible_linkage_specifier:

linkage specification is incompatible with previous "entity"
(declared at line xxxx)

Appendix AA–26
E
R
R
O
R
S

0338 overloaded_function_linkage:

more than one instance of overloaded function "entity" has "C"

linkage

0339 ambiguous_default_constructor:

class "type" has more than one default constructor

0340 temp_used_for_ref_init:

value copied to temporary, reference to temporary used

0341 nonmember_operator_not_allowed:

"operatorxxxx" must be a member function

0342 static_member_operator_not_allowed:

operator may not be a static member function

0343 too_many_args_for_conversion:

no arguments allowed on user�defined conversion

0344 too_many_args_for_operator:

too many parameters for this operator function

0345 too_few_args_for_operator:

too few parameters for this operator function

0346 no_params_with_class_type:

nonmember operator requires a parameter with class type

0347 default_arg_expr_not_allowed:

default argument is not allowed

0348 ambiguous_user_defined_conversion:

more than one user�defined conversion from "type" to "type"
applies:

0349 no_matching_operator_function:

no operator "xxxx" matches these operands

0350 ambiguous_operator_function:

more than one operator "xxxx" matches these operands:

Error Messages A–27

• • • • • • • •

0351 bad_arg_type_for_operator_new:

first parameter of allocation function must be of type "size_t"

0352 bad_return_type_for_op_new:

allocation function requires "void *" return type

0353 bad_return_type_for_op_delete:

deallocation function requires "void" return type

0354 bad_first_arg_type_for_operator_delete:

first parameter of deallocation function must be of type "void *"

0356 type_must_be_object_type:

type must be an object type

0357 base_class_already_initialized:

base class "type" has already been initialized

0358 base_class_init_anachronism:

base class name required �� "type" assumed (anachronism)

0359 member_already_initialized:

entity�kind "entity" has already been initialized

0360 missing_base_class_or_member_name:

name of member or base class is missing

0361 assignment_to_this:

assignment to "this" (anachronism)

0362 overload_anachronism:

"overload" keyword used (anachronism)

0363 anon_union_member_access:

invalid anonymous union �� nonpublic member is not allowed

0364 anon_union_member_function:

invalid anonymous union �� member function is not allowed

Appendix AA–28
E
R
R
O
R
S

0365 anon_union_storage_class:

anonymous union at global or namespace scope must be declared

static

0366 missing_initializer_on_fields:

entity�kind "entity" provides no initializer for:

0367 cannot_initialize_fields:

implicitly generated constructor for class "type" cannot initialize:

0368 no_ctor_but_const_or_ref_member:

entity�kind "entity" defines no constructor to initialize the following:

0369 var_with_uninitialized_member:

entity�kind "entity" has an uninitialized const or reference member

0370 var_with_uninitialized_field:

entity�kind "entity" has an uninitialized const field

0371 missing_const_assignment_operator:

class "type" has no assignment operator to copy a const object

0372 no_suitable_assignment_operator:

class "type" has no suitable assignment operator

0373 ambiguous_assignment_operator:

ambiguous assignment operator for class "type"

0375 missing_typedef_name:

declaration requires a typedef name

0377 virtual_not_allowed:

"virtual" is not allowed

0378 static_not_allowed:

"static" is not allowed

0379 bound_function_cast_anachronism:

cast of bound function to normal function pointer (anachronism)

Error Messages A–29

• • • • • • • •

0380 expr_not_ptr_to_member:

expression must have pointer�to�member type

0381 extra_semicolon:

extra ";" ignored

0382 nonstd_const_member:

nonstandard member constant declaration (standard form is a static

const integral member)

0384 no_matching_new_function:

no instance of overloaded "entity" matches the argument list

0386 no_match_for_addr_of_overloaded_function:

no instance of entity�kind "entity" matches the required type

0387 delete_count_anachronism:

delete array size expression used (anachronism)

0388 bad_return_type_for_op_arrow:

"operator�>" for class "type" returns invalid type "type"

0389 cast_to_abstract_class:

a cast to abstract class "type" is not allowed:

0390 bad_use_of_main:

function "main" may not be called or have its address taken

0391 initializer_not_allowed_on_array_new:

a new�initializer may not be specified for an array

0392 member_function_redecl_outside_class:

member function "entity" may not be redeclared outside its class

0393 ptr_to_incomplete_class_type_not_allowed:

pointer to incomplete class type is not allowed

0394 ref_to_nested_function_var:

reference to local variable of enclosing function is not allowed

Appendix AA–30
E
R
R
O
R
S

0395 single_arg_postfix_incr_decr_anachronism:

single�argument function used for postfix "xxxx" (anachronism)

0397 bad_default_assignment:

implicitly generated assignment operator cannot copy:

0398 nonstd_array_cast:

cast to array type is nonstandard (treated as cast to "type")

0399 class_with_op_new_but_no_op_delete:

entity�kind "entity" has an operator newxxxx() but no default

operator deletexxxx()

0400 class_with_op_delete_but_no_op_new:

entity�kind "entity" has a default operator deletexxxx() but no

operator newxxxx()

0401 base_class_with_nonvirtual_dtor:

destructor for base class "type" is not virtual

0403 member_function_redeclaration:

entity�kind "entity" has already been declared

0404 inline_main:

function "main" may not be declared inline

0405 class_and_member_function_name_conflict:

member function with the same name as its class must be a

constructor

0406 nested_class_anachronism:

using nested entity�kind "entity" (anachronism)

0407 too_many_params_for_destructor:

a destructor may not have parameters

0408 bad_constructor_param:

copy constructor for class "type" may not have a parameter of type

"type"

Error Messages A–31

• • • • • • • •

0409 incomplete_function_return_type:

entity�kind "entity" returns incomplete type "type"

0410 protected_access_problem:

protected entity�kind "entity" is not accessible through a "type"
pointer or object

0411 param_not_allowed:

a parameter is not allowed

0412 asm_decl_not_allowed:

an "asm" declaration is not allowed here

0413 no_conversion_function:

no suitable conversion function from "type" to "type" exists

0414 delete_of_incomplete_class:

delete of pointer to incomplete class

0415 no_constructor_for_conversion:

no suitable constructor exists to convert from "type" to "type"

0416 ambiguous_constructor_for_conversion:

more than one constructor applies to convert from "type" to "type":

0417 ambiguous_conversion_function:

more than one conversion function from "type" to "type" applies:

0418 ambiguous_conversion_to_builtin:

more than one conversion function from "type" to a built�in type

applies:

0424 addr_of_constructor_or_destructor:

a constructor or destructor may not have its address taken

0425 dollar_used_in_identifier:

dollar sign ("$") used in identifier

0426 nonconst_ref_init_anachronism:

temporary used for initial value of reference to non�const

(anachronism)

Appendix AA–32
E
R
R
O
R
S

0427 qualifier_in_member_declaration:

qualified name is not allowed in member declaration

0428 mixed_enum_type_anachronism:

enumerated type mixed with another type (anachronism)

0429 new_array_size_must_be_nonnegative:

the size of an array in "new" must be non�negative

0430 return_ref_init_requires_temp:

returning reference to local temporary

0432 enum_not_allowed:

"enum" declaration is not allowed

0433 qualifier_dropped_in_ref_init:

qualifiers dropped in binding reference of type "type" to initializer

of type "type"

0434 bad_nonconst_ref_init:

a reference of type "type" (not const�qualified) cannot be initialized

with a value of type "type"

0435 delete_of_function_pointer:

a pointer to function may not be deleted

0436 bad_conversion_function_decl:

conversion function must be a nonstatic member function

0437 bad_template_declaration_scope:

template declaration is not allowed here

0438 exp_lt:

expected a "<"

0439 exp_gt:

expected a ">"

0440 missing_template_param:

template parameter declaration is missing

Error Messages A–33

• • • • • • • •

0441 missing_template_arg_list:

argument list for entity�kind "entity" is missing

0442 too_few_template_args:

too few arguments for entity�kind "entity"

0443 too_many_template_args:

too many arguments for entity�kind "entity"

0445 not_used_in_template_function_params:

entity�kind "entity" is not used in declaring the parameter types of

entity�kind "entity"

0446 cfront_multiple_nested_types:

two nested types have the same name: "entity" and "entity"
(declared at line xxxx) (cfront compatibility)

0447 cfront_global_defined_after_nested_type:

global "entity" was declared after nested "entity" (declared at line

xxxx) (cfront compatibility)

0449 ambiguous_ptr_to_overloaded_function:

more than one instance of entity�kind "entity" matches the required

type

0450 nonstd_long_long:

the type "long long" is nonstandard

0451 nonstd_friend_decl:

omission of "xxxx" is nonstandard

0452 return_type_on_conversion_function:

return type may not be specified on a conversion function

0456 runaway_recursive_instantiation:

excessive recursion at instantiation of entity�kind "entity"

0457 bad_template_declaration:

"xxxx" is not a function or static data member

Appendix AA–34
E
R
R
O
R
S

0458 bad_nontype_template_arg:

argument of type "type" is incompatible with template parameter of

type "type"

0459 init_needing_temp_not_allowed:

initialization requiring a temporary or conversion is not allowed

0460 decl_hides_function_parameter:

declaration of "xxxx" hides function parameter

0461 nonconst_ref_init_from_rvalue:

initial value of reference to non�const must be an lvalue

0463 template_not_allowed:

"template" is not allowed

0464 not_a_class_template:

"type" is not a class template

0466 function_template_named_main:

"main" is not a valid name for a function template

0467 union_nonunion_mismatch:

invalid reference to entity�kind "entity" (union/nonunion mismatch)

0468 local_type_in_template_arg:

a template argument may not reference a local type

0469 tag_kind_incompatible_with_declaration:

tag kind of xxxx is incompatible with declaration of entity�kind
"entity" (declared at line xxxx)

0470 name_not_tag_in_file_scope:

the global scope has no tag named "xxxx"

0471 not_a_tag_member:

entity�kind "entity" has no tag member named "xxxx"

0472 ptr_to_member_typedef:

member function typedef (allowed for cfront compatibility)

Error Messages A–35

• • • • • • • •

0473 bad_use_of_member_function_typedef:

entity�kind "entity" may be used only in pointer�to�member

declaration

0475 nonexternal_entity_in_template_arg:

a template argument may not reference a non�external entity

0476 id_must_be_class_or_type_name:

name followed by "::~" must be a class name or a type name

0477 destructor_name_mismatch:

destructor name does not match name of class "type"

0478 destructor_type_mismatch:

type used as destructor name does not match type "type"

0479 called_function_redeclared_inline:

entity�kind "entity" redeclared "inline" after being called

0481 bad_storage_class_on_template_decl:

invalid storage class for a template declaration

0482 no_access_to_type_cfront_mode:

entity�kind "entity" is an inaccessible type (allowed for cfront

compatibility)

0483 return_type_not_allowed:

a return type is not allowed

0484 invalid_instantiation_argument:

invalid explicit instantiation declaration

0485 not_instantiatable_entity:

entity�kind "entity" is not an entity that can be instantiated

0486 compiler_generated_function_cannot_be_instantiated:

compiler generated entity�kind "entity" cannot be explicitly

instantiated

0487 inline_function_cannot_be_instantiated:

inline entity�kind "entity" cannot be explicitly instantiated

Appendix AA–36
E
R
R
O
R
S

0488 pure_virtual_function_cannot_be_instantiated:

pure virtual entity�kind "entity" cannot be explicitly instantiated

0489 instantiation_requested_no_definition_supplied:

entity�kind "entity" cannot be instantiated �� no template definition

was supplied

0490 instantiation_requested_and_specialized:

entity�kind "entity" cannot be instantiated �� it has been explicitly

specialized

0491 no_constructor:

class "type" has no constructor

0493 no_match_for_type_of_overloaded_function:

no instance of entity�kind "entity" matches the specified type

0494 nonstd_void_param_list:

declaring a void parameter list with a typedef is nonstandard

0495 cfront_name_lookup_bug:

global entity�kind "entity" used instead of entity�kind "entity"
(cfront compatibility)

0496 redeclaration_of_template_param_name:

template parameter "xxxx" may not be redeclared in this scope

0497 decl_hides_template_parameter:

declaration of "xxxx" hides template parameter

0498 must_be_prototype_instantiation:

template argument list must match the parameter list

0499 conversion_to_type_not_allowed:

conversion function to convert from "type" to "type" is not allowed

0500 bad_extra_arg_for_postfix_operator:

extra parameter of postfix "operatorxxxx" must be of type "int"

0501 function_type_required:

an operator name must be declared as a function

Error Messages A–37

• • • • • • • •

0502 operator_name_not_allowed:

operator name is not allowed

0503 bad_scope_for_specialization:

entity�kind "entity" cannot be specialized in the current scope

0504 nonstd_member_function_address:

nonstandard form for taking the address of a member function

0505 too_few_template_params:

too few template parameters �� does not match previous declaration

0506 too_many_template_params:

too many template parameters �� does not match previous

declaration

0507 template_operator_delete:

function template for operator delete(void *) is not allowed

0508 class_template_same_name_as_templ_param:

class template and template parameter may not have the same name

0510 unnamed_type_in_template_arg:

a template argument may not reference an unnamed type

0511 enum_type_not_allowed:

enumerated type is not allowed

0512 qualified_reference_type:

type qualifier on a reference type is not allowed

0513 incompatible_assignment_operands:

a value of type "type" cannot be assigned to an entity of type "type"

0514 unsigned_compare_with_negative:

pointless comparison of unsigned integer with a negative constant

0515 converting_to_incomplete_class:

cannot convert to incomplete class "type"

Appendix AA–38
E
R
R
O
R
S

0516 missing_initializer_on_unnamed_const:

const object requires an initializer

0517 unnamed_object_with_uninitialized_field:

object has an uninitialized const or reference member

0518 nonstd_pp_directive:

nonstandard preprocessing directive

0519 unexpected_template_arg_list:

entity�kind "entity" may not have a template argument list

0520 missing_initializer_list:

initialization with "{...}" expected for aggregate object

0521 incompatible_ptr_to_member_selection_operands:

pointer�to�member selection class types are incompatible ("type"
and "type")

0522 self_friendship:

pointless friend declaration

0523 period_used_as_qualifier:

"." used in place of "::" to form a qualified name (cfront

anachronism)

0524 const_function_anachronism:

non�const function called for const object (anachronism)

0525 dependent_stmt_is_declaration:

a dependent statement may not be a declaration

0526 void_param_not_allowed:

a parameter may not have void type

0529 bad_templ_arg_expr_operator:

this operator is not allowed in a template argument expression

0530 missing_handler:

try block requires at least one handler

Error Messages A–39

• • • • • • • •

0531 missing_exception_declaration:

handler requires an exception declaration

0532 masked_by_default_handler:

handler is masked by default handler

0533 masked_by_handler:

handler is potentially masked by previous handler for type "type"

0534 local_type_used_in_exception:

use of a local type to specify an exception

0535 redundant_exception_specification_type:

redundant type in exception specification

0536 incompatible_exception_specification:

exception specification is incompatible with that of previous

entity�kind "entity" (declared at line xxxx):

0540 no_exception_support:

support for exception handling is disabled

0541 omitted_exception_specification:

omission of exception specification is incompatible with previous

entity�kind "entity" (declared at line xxxx)

0542 cannot_create_instantiation_request_file:

could not create instantiation request file "xxxx"

0543 non_arith_operation_in_templ_arg:

non�arithmetic operation not allowed in nontype template argument

0544 local_type_in_nonlocal_var:

use of a local type to declare a nonlocal variable

0545 local_type_in_function:

use of a local type to declare a function

0546 branch_past_initialization:

transfer of control bypasses initialization of:

Appendix AA–40
E
R
R
O
R
S

0548 branch_into_handler:

transfer of control into an exception handler

0549 used_before_set:

entity�kind "entity" is used before its value is set

0550 set_but_not_used:

entity�kind "entity" was set but never used

0551 bad_scope_for_definition:

entity�kind "entity" cannot be defined in the current scope

0552 exception_specification_not_allowed:

exception specification is not allowed

0553 template_and_instance_linkage_conflict:

external/internal linkage conflict for entity�kind "entity" (declared at

line xxxx)

0554 conversion_function_not_usable:

entity�kind "entity" will not be called for implicit or explicit

conversions

0555 tag_kind_incompatible_with_template_parameter:

tag kind of xxxx is incompatible with template parameter of type

"type"

0556 template_operator_new:

function template for operator new(size_t) is not allowed

0558 bad_member_type_in_ptr_to_member:

pointer to member of type "type" is not allowed

0559 ellipsis_on_operator_function:

ellipsis is not allowed in operator function parameter list

0560 unimplemented_keyword:

"entity" is reserved for future use as a keyword

0561 cl_invalid_macro_definition:

invalid macro definition:

Error Messages A–41

• • • • • • • •

0562 cl_invalid_macro_undefinition:

invalid macro undefinition:

0563 cl_invalid_preprocessor_output_file:

invalid preprocessor output file

0564 cl_cannot_open_preprocessor_output_file:

cannot open preprocessor output file

0565 cl_il_file_must_be_specified:

IL file name must be specified if input is

0566 cl_invalid_il_output_file:

invalid IL output file

0567 cl_cannot_open_il_output_file:

cannot open IL output file

0568 cl_invalid_C_output_file:

invalid C output file

0569 cl_cannot_open_C_output_file:

cannot open C output file

0570 cl_error_in_debug_option_argument:

error in debug option argument

0571 cl_invalid_option:

invalid option:

0572 cl_back_end_requires_il_file:

back end requires name of IL file

0573 cl_could_not_open_il_file:

could not open IL file

0574 cl_invalid_number:

invalid number:

0575 cl_incorrect_host_id:

incorrect host CPU id

Appendix AA–42
E
R
R
O
R
S

0576 cl_invalid_instantiation_mode:

invalid instantiation mode:

0578 cl_invalid_error_limit:

invalid error limit:

0579 cl_invalid_raw_listing_output_file:

invalid raw�listing output file

0580 cl_cannot_open_raw_listing_output_file:

cannot open raw�listing output file

0581 cl_invalid_xref_output_file:

invalid cross�reference output file

0582 cl_cannot_open_xref_output_file:

cannot open cross�reference output file

0583 cl_invalid_error_output_file:

invalid error output file

0584 cl_cannot_open_error_output_file:

cannot open error output file

0585 cl_vtbl_option_only_in_cplusplus:

virtual function tables can only be suppressed when compiling C++

0586 cl_anachronism_option_only_in_cplusplus:

anachronism option can be used only when compiling C++

0587 cl_instantiation_option_only_in_cplusplus:

instantiation mode option can be used only when compiling C++

0588 cl_auto_instantiation_option_only_in_cplusplus:

automatic instantiation mode can be used only when compiling C++

0589 cl_implicit_inclusion_option_only_in_cplusplus:

implicit template inclusion mode can be used only when compiling

C++

Error Messages A–43

• • • • • • • •

0590 cl_exceptions_option_only_in_cplusplus:

exception handling option can be used only when compiling C++

0591 cl_strict_ansi_incompatible_with_pcc:

strict ANSI mode is incompatible with K&R mode

0592 cl_strict_ansi_incompatible_with_cfront:

strict ANSI mode is incompatible with cfront mode

0593 cl_missing_source_file_name:

missing source file name

0594 cl_output_file_incompatible_with_multiple_inputs:

output files may not be specified when compiling several input files

0595 cl_too_many_arguments:

too many arguments on command line

0596 cl_no_output_file_needed:

an output file was specified, but none is needed

0597 cl_il_display_requires_il_file_name:

IL display requires name of IL file

0598 void_template_parameter:

a template parameter may not have void type

0599 too_many_unused_instantiations:

excessive recursive instantiation of entity�kind "entity" due to

instantiate�all mode

0600 cl_strict_ansi_incompatible_with_anachronisms:

strict ANSI mode is incompatible with allowing anachronisms

0601 void_throw:

a throw expression may not have void type

0602 cl_tim_local_conflicts_with_auto_instantiation:

local instantiation mode is incompatible with automatic instantiation

Appendix AA–44
E
R
R
O
R
S

0603 abstract_class_param_type:

parameter of abstract class type "type" is not allowed:

0604 array_of_abstract_class:

array of abstract class "type" is not allowed:

0605 float_template_parameter:

floating�point template parameter is nonstandard

0606 pragma_must_precede_declaration:

this pragma must immediately precede a declaration

0607 pragma_must_precede_statement:

this pragma must immediately precede a statement

0608 pragma_must_precede_decl_or_stmt:

this pragma must immediately precede a declaration or statement

0609 pragma_may_not_be_used_here:

this kind of pragma may not be used here

0610 nonoverriding_function_decl:

entity�kind "entity" does not match "entity" �� virtual function

override intended?

0611 partial_override:

overloaded virtual function "entity" is only partially overridden in

entity�kind "entity"

0612 specialization_of_called_inline_template_function:

specific definition of inline template function must precede its first

use

0613 cl_invalid_error_tag:

invalid error tag:

0614 cl_invalid_error_number:

invalid error number:

0615 param_type_ptr_to_array_of_unknown_bound:

parameter type involves pointer to array of unknown bound

Error Messages A–45

• • • • • • • •

0616 param_type_ref_array_of_unknown_bound:

parameter type involves reference to array of unknown bound

0617 ptr_to_member_cast_to_ptr_to_function:

pointer�to�member�function cast to pointer to function

0618 no_named_fields:

struct or union declares no named members

0619 nonstd_unnamed_field:

nonstandard unnamed field

0620 nonstd_unnamed_member:

nonstandard unnamed member

0622 cl_invalid_pch_output_file:

invalid precompiled header output file

0623 cl_cannot_open_pch_output_file:

cannot open precompiled header output file

0624 not_a_type_name:

"xxxx" is not a type name

0625 cl_cannot_open_pch_input_file:

cannot open precompiled header input file

0626 invalid_pch_file:

precompiled header file "xxxx" is either invalid or not generated by

this version of the compiler

0627 pch_curr_directory_changed:

precompiled header file "xxxx" was not generated in this directory

0628 pch_header_files_have_changed:

header files used to generate precompiled header file "xxxx" have

changed

0629 pch_cmd_line_option_mismatch:

the command line options do not match those used when

precompiled header file "xxxx" was created

Appendix AA–46
E
R
R
O
R
S

0630 pch_file_prefix_mismatch:

the initial sequence of preprocessing directives is not compatible

with those of precompiled header file "xxxx"

0631 unable_to_get_mapped_memory:

unable to obtain mapped memory

0632 using_pch:

"xxxx": using precompiled header file "xxxx"

0633 creating_pch:

"xxxx": creating precompiled header file "xxxx"

0634 memory_mismatch:

memory usage conflict with precompiled header file "xxxx"

0635 cl_invalid_pch_size:

invalid PCH memory size

0636 cl_pch_must_be_first:

PCH options must appear first in the command line

0637 out_of_memory_during_pch_allocation:

insufficient memory for PCH memory allocation

0638 cl_pch_incompatible_with_multiple_inputs:

precompiled header files may not be used when compiling several

input files

0639 not_enough_preallocated_memory:

insufficient preallocated memory for generation of precompiled

header file (xxxx bytes required)

0640 program_entity_too_large_for_pch:

very large entity in program prevents generation of precompiled

header file

0641 cannot_chdir:

"xxxx" is not a valid directory

Error Messages A–47

• • • • • • • •

0642 cannot_build_temp_file_name:

cannot build temporary file name

0643 restrict_not_allowed:

"restrict" is not allowed

0644 restrict_pointer_to_function:

a pointer or reference to function type may not be qualified by

"restrict"

0645 bad_declspec_modifier:

"xxxx" is an unrecognized __declspec attribute

0646 calling_convention_not_allowed:

a calling convention modifier may not be specified here

0647 conflicting_calling_conventions:

conflicting calling convention modifiers

0648 cl_strict_ansi_incompatible_with_microsoft:

strict ANSI mode is incompatible with Microsoft mode

0649 cl_cfront_incompatible_with_microsoft:

cfront mode is incompatible with Microsoft mode

0650 calling_convention_ignored:

calling convention specified here is ignored

0651 calling_convention_may_not_precede_nested_declarator:

a calling convention may not be followed by a nested declarator

0652 calling_convention_ignored_for_type:

calling convention is ignored for this type

0654 decl_modifiers_incompatible_with_previous_decl:

declaration modifiers are incompatible with previous declaration

0655 decl_modifiers_invalid_for_this_decl:

the modifier "xxxx" is not allowed on this declaration

Appendix AA–48
E
R
R
O
R
S

0656 branch_into_try_block:

transfer of control into a try block

0657 incompatible_inline_specifier_on_specific_decl:

inline specification is incompatible with previous "entity" (declared

at line xxxx)

0658 template_missing_closing_brace:

closing brace of template definition not found

0659 cl_wchar_t_option_only_in_cplusplus:

wchar_t keyword option can be used only when compiling C++

0660 bad_pack_alignment:

invalid packing alignment value

0661 exp_int_constant:

expected an integer constant

0662 call_of_pure_virtual:

call of pure virtual function

0663 bad_ident_string:

invalid source file identifier string

0664 template_friend_definition_not_allowed:

a class template cannot be defined in a friend declaration

0665 asm_not_allowed:

"asm" is not allowed

0666 bad_asm_function_def:

"asm" must be used with a function definition

0667 nonstd_asm_function:

"asm" function is nonstandard

0668 nonstd_ellipsis_only_param:

ellipsis with no explicit parameters is nonstandard

Error Messages A–49

• • • • • • • •

0669 nonstd_address_of_ellipsis:

"&..." is nonstandard

0670 bad_address_of_ellipsis:

invalid use of "&..."

0672 const_volatile_ref_init_anachronism:

temporary used for initial value of reference to const volatile

(anachronism)

0673 bad_const_volatile_ref_init:

a reference of type "type" cannot be initialized with a value of type

"type"

0674 const_volatile_ref_init_from_rvalue:

initial value of reference to const volatile must be an lvalue

0675 cl_SVR4_C_option_only_in_ansi_C:

SVR4 C compatibility option can be used only when compiling ANSI

C

0676 using_out_of_scope_declaration:

using out�of�scope declaration of entity�kind "entity" (declared at

line xxxx)

0677 cl_strict_ansi_incompatible_with_SVR4:

strict ANSI mode is incompatible with SVR4 C mode

0678 cannot_inline_call:

call of entity�kind "entity" (declared at line xxxx) cannot be inlined

0679 cannot_inline:

entity�kind "entity" cannot be inlined

0680 cl_invalid_pch_directory:

invalid PCH directory:

0681 exp_except_or_finally:

expected __except or __finally

Appendix AA–50
E
R
R
O
R
S

0682 leave_must_be_in_try:

a __leave statement may only be used within a __try

0688 not_found_on_pack_alignment_stack:

"xxxx" not found on pack alignment stack

0689 empty_pack_alignment_stack:

empty pack alignment stack

0690 cl_rtti_option_only_in_cplusplus:

RTTI option can be used only when compiling C++

0691 inaccessible_elided_cctor:

entity�kind "entity", required for copy that was eliminated, is

inaccessible

0692 uncallable_elided_cctor:

entity�kind "entity", required for copy that was eliminated, is not

callable because reference parameter cannot be bound to rvalue

0693 typeid_needs_typeinfo:

<typeinfo> must be included before typeid is used

0694 cannot_cast_away_const:

xxxx cannot cast away const or other type qualifiers

0695 bad_dynamic_cast_type:

the type in a dynamic_cast must be a pointer or reference to a

complete class type, or void *

0696 bad_ptr_dynamic_cast_operand:

the operand of a pointer dynamic_cast must be a pointer to a

complete class type

0697 bad_ref_dynamic_cast_operand:

the operand of a reference dynamic_cast must be an lvalue of a

complete class type

0698 dynamic_cast_operand_must_be_polymorphic:

the operand of a runtime dynamic_cast must have a polymorphic

class type

Error Messages A–51

• • • • • • • •

0699 cl_bool_option_only_in_cplusplus:

bool option can be used only when compiling C++

0701 array_type_not_allowed:

an array type is not allowed here

0702 exp_assign:

expected an "="

0703 exp_declarator_in_condition_decl:

expected a declarator in condition declaration

0704 redeclaration_of_condition_decl_name:

"xxxx", declared in condition, may not be redeclared in this scope

0705 default_template_arg_not_allowed:

default template arguments are not allowed for function templates

0706 exp_comma_or_gt:

expected a "," or ">"

0707 missing_template_param_list:

expected a template parameter list

0708 incr_of_bool_deprecated:

incrementing a bool value is deprecated

0709 bool_type_not_allowed:

bool type is not allowed

0710 base_class_offset_too_large:

offset of base class "entity" within class "entity" is too large

0711 expr_not_bool:

expression must have bool type (or be convertible to bool)

0712 cl_array_new_and_delete_option_only_in_cplusplus:

array new and delete option can be used only when compiling C++

0713 based_requires_variable_name:

entity�kind "entity" is not a variable name

Appendix AA–52
E
R
R
O
R
S

0714 based_not_allowed_here:

__based modifier is not allowed here

0715 based_not_followed_by_star:

__based does not precede a pointer operator, __based ignored

0716 based_var_must_be_ptr:

variable in __based modifier must have pointer type

0717 bad_const_cast_type:

the type in a const_cast must be a pointer, reference, or pointer to

member to an object type

0718 bad_const_cast:

a const_cast can only adjust type qualifiers; it cannot change the

underlying type

0719 mutable_not_allowed:

mutable is not allowed

0720 cannot_change_access:

redeclaration of entity�kind "entity" is not allowed to alter its access

0721 nonstd_printf_format_string:

nonstandard format string conversion

0722 probable_inadvertent_lbracket_digraph:

use of alternative token "<:" appears to be unintended

0723 probable_inadvertent_sharp_digraph:

use of alternative token "%:" appears to be unintended

0724 namespace_def_not_allowed:

namespace definition is not allowed

0725 missing_namespace_name:

name must be a namespace name

0726 namespace_alias_def_not_allowed:

namespace alias definition is not allowed

Error Messages A–53

• • • • • • • •

0727 namespace_qualified_name_required:

namespace�qualified name is required

0728 namespace_name_not_allowed:

a namespace name is not allowed

0729 bad_combination_of_dll_attributes:

invalid combination of DLL attributes

0730 sym_not_a_class_template:

entity�kind "entity" is not a class template

0731 array_of_incomplete_type:

array with incomplete element type is nonstandard

0732 allocation_operator_in_namespace:

allocation operator may not be declared in a namespace

0733 deallocation_operator_in_namespace:

deallocation operator may not be declared in a namespace

0734 conflicts_with_using_decl:

entity�kind "entity" conflicts with using�declaration of entity�kind
"entity"

0735 using_decl_conflicts_with_prev_decl:

using�declaration of entity�kind "entity" conflicts with entity�kind
"entity" (declared at line xxxx)

0736 cl_namespaces_option_only_in_cplusplus:

namespaces option can be used only when compiling C++

0737 useless_using_declaration:

using�declaration ignored �� it refers to the current namespace

0738 class_qualified_name_required:

a class�qualified name is required

0741 using_declaration_ignored:

using�declaration of entity�kind "entity" ignored

Appendix AA–54
E
R
R
O
R
S

0742 not_an_actual_member:

entity�kind "entity" has no actual member "xxxx"

0744 mem_attrib_incompatible:

incompatible memory attributes specified

0745 mem_attrib_ignored:

memory attribute ignored

0746 mem_attrib_may_not_precede_nested_declarator:

memory attribute may not be followed by a nested declarator

0747 dupl_mem_attrib:

memory attribute specified more than once

0748 dupl_calling_convention:

calling convention specified more than once

0749 type_qualifier_not_allowed:

a type qualifier is not allowed

0750 template_instance_already_used:

entity�kind "entity" (declared at line xxxx) was used before its

template was declared

0751 static_nonstatic_with_same_param_types:

static and nonstatic member functions with same parameter types

cannot be overloaded

0752 no_prior_declaration:

no prior declaration of entity�kind "entity"

0753 template_id_not_allowed:

a template�id is not allowed

0754 class_qualified_name_not_allowed:

a class�qualified name is not allowed

0755 bad_scope_for_redeclaration:

entity�kind "entity" may not be redeclared in the current scope

Error Messages A–55

• • • • • • • •

0756 qualifier_in_namespace_member_decl:

qualified name is not allowed in namespace member declaration

0757 sym_not_a_type_name:

entity�kind "entity" is not a type name

0758 explicit_instantiation_not_in_namespace_scope:

explicit instantiation is not allowed in the current scope

0759 bad_scope_for_explicit_instantiation:

entity�kind "entity" cannot be explicitly instantiated in the current

scope

0760 multiple_explicit_instantiations:

entity�kind "entity" explicitly instantiated more than once

0761 typename_not_in_template:

typename may only be used within a template

0762 cl_special_subscript_cost_option_only_in_cplusplus:

special_subscript_cost option can be used only when compiling

C++

0763 cl_typename_option_only_in_cplusplus:

typename option can be used only when compiling C++

0764 cl_implicit_typename_option_only_in_cplusplus:

implicit typename option can be used only when compiling C++

0765 nonstd_character_at_start_of_macro_def:

nonstandard character at start of object�like macro definition

0766 exception_spec_override_incompat:

exception specification for virtual entity�kind "entity" is
incompatible with that of overridden entity�kind "entity"

0767 pointer_conversion_loses_bits:

conversion from pointer to smaller integer

Appendix AA–56
E
R
R
O
R
S

0768 generated_exception_spec_override_incompat:

exception specification for implicitly declared virtual entity�kind
"entity" is incompatible with that of overridden entity�kind "entity"

0769 implicit_call_of_ambiguous_name:

"entity", implicitly called from entity�kind "entity", is ambiguous

0770 cl_explicit_option_only_in_cplusplus:

option "explicit" can be used only when compiling C++

0771 explicit_not_allowed:

"explicit" is not allowed

0772 conflicts_with_predeclared_type_info:

declaration conflicts with "xxxx" (reserved class name)

0773 array_member_initialization:

only "()" is allowed as initializer for array entity�kind "entity"

0774 virtual_function_template:

"virtual" is not allowed in a function template declaration

0775 anon_union_class_member_template:

invalid anonymous union �� class member template is not allowed

0776 template_depth_mismatch:

template nesting depth does not match the previous declaration of

entity�kind "entity"

0777 multiple_template_decls_not_allowed:

this declaration cannot have multiple "template <...>" clauses

0778 cl_old_for_init_option_only_in_cplusplus:

option to control the for�init scope can be used only when

compiling C++

0779 redeclaration_of_for_init_decl_name:

"xxxx", declared in for�loop initialization, may not be redeclared in

this scope

Error Messages A–57

• • • • • • • •

0780 hidden_by_old_for_init:

reference is to entity�kind "entity" (declared at line xxxx) �� under

old for�init scoping rules it would have been entity�kind "entity"
(declared at line xxxx)

0781 cl_for_init_diff_warning_option_only_in_cplusplus:

option to control warnings on for�init differences can be used only

when compiling C++

0782 unnamed_class_virtual_function_def_missing:

definition of virtual entity�kind "entity" is required here

0783 svr4_token_pasting_comment:

empty comment interpreted as token�pasting operator "##"

0784 storage_class_in_friend_decl:

a storage class is not allowed in a friend declaration

0785 templ_param_list_not_allowed:

template parameter list for "entity" is not allowed in this declaration

0786 bad_member_template_sym:

entity�kind "entity" is not a valid member class or function template

0787 bad_member_template_decl:

not a valid member class or function template declaration

0788 specialization_follows_param_list:

a template declaration containing a template parameter list may not

be followed by an explicit specialization declaration

0789 specialization_of_referenced_template:

explicit specialization of entity�kind "entity" must precede the first

use of entity�kind "entity"

0790 explicit_specialization_not_in_namespace_scope:

explicit specialization is not allowed in the current scope

0791 partial_specialization_not_allowed:

partial specialization of entity�kind "entity" is not allowed

Appendix AA–58
E
R
R
O
R
S

0792 entity_cannot_be_specialized:

entity�kind "entity" is not an entity that can be explicitly specialized

0793 specialization_of_referenced_entity:

explicit specialization of entity�kind "entity" must precede its first

use

0794 template_param_in_elab_type:

template parameter xxxx may not be used in an elaborated type

specifier

0795 old_specialization_not_allowed:

specializing entity�kind "entity" requires "template<>" syntax

0798 cl_old_specializations_option_only_in_cplusplus:

option "old_specializations" can be used only when compiling C++

0799 nonstd_old_specialization:

specializing entity�kind "entity" without "template<>" syntax is

nonstandard

0800 bad_linkage_for_decl:

this declaration may not have extern "C" linkage

0801 not_a_template_name:

"xxxx" is not a class or function template name in the current scope

0802 nonstd_default_arg_on_function_template_redecl:

specifying a default argument when redeclaring an unreferenced

function template is nonstandard

0803 default_arg_on_function_template_not_allowed:

specifying a default argument when redeclaring an already

referenced function template is not allowed

0804 pm_derived_class_from_virtual_base:

cannot convert pointer to member of base class "type" to pointer to

member of derived class "type" �� base class is virtual

Error Messages A–59

• • • • • • • •

0805 bad_exception_specification_for_specialization:

exception specification is incompatible with that of entity�kind
"entity" (declared at line xxxx):

0806 omitted_exception_specification_on_specialization:

omission of exception specification is incompatible with entity�kind
"entity" (declared at line xxxx)

0807 unexpected_end_of_default_arg:

the parse of this expression has changed between the point at

which it appeared in the program and the point at which the

expression was evaluated �� "typename" may be required to resolve

the ambiguity

0808 default_init_of_reference:

default�initialization of reference is not allowed

0809 uninitialized_field_with_const_member:

uninitialized entity�kind "entity" has a const member

0810 uninitialized_base_class_with_const_member:

uninitialized base class "type" has a const member

0811 missing_default_constructor_on_const:

const entity�kind "entity" requires an initializer �� class "type" has no

explicitly declared default constructor

0812 missing_default_constructor_on_unnamed_const:

const object requires an initializer �� class "type" has no explicitly

declared default constructor

0813 cl_impl_extern_c_conv_option_only_in_cplusplus:

option "implicit_extern_c_type_conversion" can be used only when

compiling C++

0814 cl_strict_ansi_incompatible_with_long_preserving:

strict ANSI mode is incompatible with long preserving rules

0815 useless_type_qualifier_on_return_type:

type qualifier on return type is meaningless

Appendix AA–60
E
R
R
O
R
S

0816 type_qualifier_on_void_return_type:

in a function definition a type qualifier on a "void" return type is

not allowed

0817 static_data_member_not_allowed:

static data member declaration is not allowed in this class

0818 invalid_declaration:

template instantiation resulted in an invalid function declaration

0819 ellipsis_not_allowed:

"..." is not allowed

0820 cl_extern_inline_option_only_in_cplusplus:

option "extern_inline" can be used only when compiling C++

0821 extern_inline_never_defined:

extern inline entity�kind "entity" was referenced but not defined

0822 invalid_destructor_name:

invalid destructor name for type "type"

0823 nonstandard_destructor_reference:

use of entity�kind "entity" in a destructor call is nonstandard

0824 ambiguous_destructor:

destructor reference is ambiguous �� both entity�kind "entity" and

entity�kind "entity" could be used

0825 virtual_inline_never_defined:

virtual inline entity�kind "entity" was never defined

0826 unreferenced_function_param:

entity�kind "entity" was never referenced

0827 union_already_initialized:

only one member of a union may be specified in a constructor

initializer list

0828 no_array_new_and_delete_support:

support for "new[]" and "delete[]" is disabled

Error Messages A–61

• • • • • • • •

0829 double_for_long_double:

"double" used for "long double" in generated C code

0830 no_corresponding_delete:

entity�kind "entity" has no corresponding operator deletexxxx (to

be called if an exception is thrown during initialization of an

allocated object)

0831 useless_placement_delete:

support for placement delete is disabled

0832 no_appropriate_delete:

no appropriate operator delete is visible

0833 ptr_or_ref_to_incomplete_type:

pointer or reference to incomplete type is not allowed

0834 bad_partial_specialization:

invalid partial specialization �� entity�kind "entity" is already fully

specialized

0835 incompatible_exception_specs:

incompatible exception specifications

0836 returning_ref_to_local_variable:

returning reference to local variable

0837 nonstd_implicit_int:

omission of explicit type is nonstandard ("int" assumed)

0838 ambiguous_partial_spec:

more than one partial specialization matches the template argument

list of entity�kind "entity"

0840 partial_spec_is_primary_template:

a template argument list is not allowed in a declaration of a primary

template

0841 default_not_allowed_on_partial_spec:

partial specializations may not have default template arguments

Appendix AA–62
E
R
R
O
R
S

0842 not_used_in_partial_spec_arg_list:

entity�kind "entity" is not used in template argument list of

entity�kind "entity"

0843 partial_spec_param_depends_on_templ_param:

the type of partial specialization template parameter entity�kind
"entity" depends on another template parameter

0844 partial_spec_arg_depends_on_templ_param:

the template argument list of the partial specialization includes a

nontype argument whose type depends on a template parameter

0845 partial_spec_after_instantiation:

this partial specialization would have been used to instantiate

entity�kind "entity"

0846 partial_spec_after_instantiation_ambiguous:

this partial specialization would have been made the instantiation of

entity�kind "entity" ambiguous

0847 expr_not_integral_or_enum:

expression must have integral or enum type

0848 expr_not_arithmetic_or_enum:

expression must have arithmetic or enum type

0849 expr_not_arithmetic_or_enum_or_pointer:

expression must have arithmetic, enum, or pointer type

0850 cast_not_integral_or_enum:

type of cast must be integral or enum

0851 cast_not_arithmetic_or_enum_or_pointer:

type of cast must be arithmetic, enum, or pointer

0852 expr_not_object_pointer:

expression must be a pointer to a complete object type

0853 member_partial_spec_not_in_class:

a partial specialization of a member class template must be declared

in the class of which it is a member

Error Messages A–63

• • • • • • • •

0854 partial_spec_nontype_expr:

a partial specialization nontype argument must be the name of a

nontype parameter or a constant

0855 different_return_type_on_virtual_function_override:

return type is not identical to return type "type" of overridden

virtual function entity�kind "entity"

0856 cl_guiding_decls_option_only_in_cplusplus:

option "guiding_decls" can be used only when compiling C++

0857 member_partial_spec_not_in_namespace:

a partial specialization of a class template must be declared in the

namespace of which it is a member

0858 pure_virtual_function:

entity�kind "entity" is a pure virtual function

0859 no_overrider_for_pure_virtual_function:

pure virtual entity�kind "entity" has no overrider

0860 decl_modifiers_ignored:

__declspec attributes ignored

0861 invalid_char:

invalid character in input line

0862 incomplete_return_type:

function returns incomplete type "type"

0863 local_pragma_pack:

effect of this "#pragma pack" directive is local to entity�kind "entity"

0864 not_a_template:

xxxx is not a template

0865 friend_partial_specialization:

a friend declaration may not declare a partial specialization

0866 exception_specification_ignored:

exception specification ignored

Appendix AA–64
E
R
R
O
R
S

0867 unexpected_type_for_size_t:

declaration of "size_t" does not match the expected type "type"

0868 exp_gt_not_shift_right:

space required between adjacent ">" delimiters of nested template

argument lists (">>" is the right shift operator)

0869 bad_multibyte_char_locale:

could not set locale "xxxx" to allow processing of multibyte

characters

0870 bad_multibyte_char:

invalid multibyte character sequence

0871 bad_type_from_instantiation:

template instantiation resulted in unexpected function type of "type"
(the meaning of a name may have changed since the template

declaration �� the type of the template is "type")

0872 ambiguous_guiding_decl:

ambiguous guiding declaration �� more than one function template

"entity" matches type "type"

0873 non_integral_operation_in_templ_arg:

non�integral operation not allowed in nontype template argument

0874 cl_embedded_cplusplus_option_only_in_cplusplus:

option �embedded_c++ � can be used only when compiling C++

0875 templates_in_embedded_cplusplus:

Embedded C++ does not support templates

0876 exceptions_in_embedded_cplusplus:

Embedded C++ does not support exception handling

0877 namespaces_in_embedded_cplusplus:

Embedded C++ does not support namespaces

0878 rtti_in_embedded_cplusplus:

Embedded C++ does not support run time type information

Error Messages A–65

• • • • • • • •

0879 new_cast_in_embedded_cplusplus:

Embedded C++ does not support the new cast syntax

0880 using_decl_in_embedded_cplusplus:

Embedded C++ does not support using declarations

0881 mutable_in_embedded_cplusplus:

Embedded C++ does not support �mutable"

0882 multiple_inheritance_in_embedded_cplusplus:

Embedded C++ does not support multiple or virtual inheritance

0883 cl_invalid_microsoft_version:

invalid Microsoft version number

0884 inheritance_kind_already_set:

pointer-to-member representation has already been set for

entity-kind �entity"

0885 bad_constructor_type:

�type" cannot be used to designate constructor for �type"

0886 bad_suffix:

invalid suffix on integral constant

0887 uuidof_requires_uuid_class_type:

operand of __uuiof must have a class type for which

__declspec(uuid("...")) has been specified

0888 bad_uuid_string:

invalid GUID string in __declspec(uuid("..."))

0889 cl_vla_option_only_in_C:

option "vla" can be used only when compiling C

0890 vla_with_unspecified_bound_not_allowed:

variable length array with unspecified bound is not allowed

0891 explicit_template_args_not_allowed:

an explicit template argument list is not allowed on this declaration

Appendix AA–66
E
R
R
O
R
S

0892 variably_modified_type_not_allowed:

an entity with linkage cannot have a variably modified type

0893 vla_is_not_auto

a variable length array cannot have static storage duration

0894 sym_not_a_template:

entity-kind "entity" is not a template

0896 expected_template_arg:

expected a template argument

0897 explicit_template_args_in_expr:

explicit function template argument lists are not supported yet in

expression contexts

0898 no_params_with_class_or_enum_type:

nonmember operator requires a parameter with class or enum type

0899 cl_enum_oveloading_option_only_in_cplusplus:

option �enum_overloading" can be used only when compiling C++

0900 using_declaration_not_allowed:

using-declaration of entity-kind �entity" is not allowed

0901 destructor_qualifier_type_mismatch:

qualifier of destructor name "type" does not match type "type"

0902 type_qualifier_ignored:

type qualifier ignored

0903 cl_nonstandard_qualifier_deduction_option_only_in_cplusplus:

option "nonstd_qualifier_deduction" can be used only when

compiling C++

0904 cannot_define_dllimport_function:

a function declared "dllimport" may not be defined

0905 bad_declspec_property:

incorrect property specification; correct form is

__declspec(property(get=name1,put=name2))

Error Messages A–67

• • • • • • • •

0906 dupl_get_or_put:

property has already been specified

0907 declspec_property_not_allowed:

__declspec(property) is not allowed on this declaration

0908 no_get_property:

member is declared with __declspec(property), but no "get"

function was specified

0909 get_property_function_missing:

the __declspec(property) "get" function "xxxx" is missing

0910 no_put_property:

member is declared with __declspec(property), but no "put"

function was specified

0911 put_property_function_missing:

the __declspec(property) "put" function "xxxx" is missing

0912 dual_lookup_ambiguous_name:

ambiguous class member reference �� entity�kind "entity" (declared

at line xxxx) used in preference to entity�kind "entity" (declared at

line xxxx)

0913 bad_allocate_segname:

missing or invalid segment name in __declspec(allocate("..."))

0914 declspec_allocate_not_allowed:

__declspec(allocate) is not allowed on this declaration

0915 dupl_allocate_segname:

a segment name has already been specified

0916 pm_virtual_base_from_derived_class:

cannot convert pointer to member of derived class "type" to pointer

to member of base class "type" �� base class is virtual

0917 cl_invalid_instantiation_directory:

invalid directory for instantiation files:

Appendix AA–68
E
R
R
O
R
S

0918 cl_one_instantiation_per_object_option_only_in_cplusplus:

option "one_instantiation_per_object" can be used only when

compiling C++

0919 invalid_output_file:

invalid output file: "xxxx"

0920 cannot_open_output_file:

cannot open output file: "xxxx"

0921 cl_ii_file_name_incompatible_with_multiple_inputs:

an instantiation information file name may not be specified when

compiling several input files

0922 cl_one_instantiation_per_object_incompatible_with_multiple_inputs:

option "one_instantiation_per_object" may not be used when

compiling several input files

0923 cl_ambiguous_option:

more than one command line option matches the abbreviation

"��xxxx":

0925 cv_qualified_function_type:

a type qualifier cannot be applied to a function type

0926 cannot_open_definition_list_file:

cannot open definition list file: "xxxx"

0927 cl_late_tiebreaker_option_only_in_cplusplus:

late/early tiebreaker option can be used only when compiling C++

0928 bad_va_start:

incorrect use of va_start

0929 bad_va_arg:

incorrect use of va_arg

0930 bad_va_end:

incorrect use of va_end

Error Messages A–69

• • • • • • • •

0931 cl_pending_instantiations_option_only_in_cplusplus:

pending instantiations option can be used only when compiling

C++

0932 cl_invalid_import_directory:

invalid directory for #import files:

0933 cl_import_only_in_microsoft:

an import directory can be specified only in Microsoft mode

0934 ref_not_allowed_in_union:

a member with reference type is not allowed in a union

0935 typedef_not_allowed:

"typedef" may not be specified here

0936 redecl_changes_access:

redeclaration of entity�kind "entity" alters its access

0937 qualified_name_required:

a class or namespace qualified name is required

0938 opfile_no_file_name:

no filename specified for -opfile option

0939 opfile_cannot_open_file:

cannot open command file name

0940 dir_list_not_supported:

#list directive is ignored in C++ mode

Appendix AA–70
E
R
R
O
R
S

INDEX
I
N
D
E
X

IndexIndex–2
IN
D
E
X

I
N
D
E
X

Index Index–3

• • • • • • • •

Symbols
#define, 3-22

#pragma, 3-81

#undef, 3-73

__ARRAY_OPERATORS, 3-73

__cplusplus, 3-73

__DATE__, 3-73

__FILE__, 3-73

__LINE__, 3-73

__SIGNED_CHARS__, 3-73

__STDC__, 3-73

__TIME__, 3-73

_BOOL, 3-73

_WCHAR_T, 3-73

A
alternative tokens, 3-13

anachronism, 2-7

anachronisms, 3-14, 3-19, 3-52

ansi standard, 3-73

array new and delete, 3-15

automatic instantiation, 1-5

automatic instantiation method, 2-25

B
bool keyword, 3-17

C
C++, language extensions, 2-3

C++ dialect, 2-3

accepted, 2-4
anachronisms accepted, 2-7
cfront 2.1 and 3.0 extensions, 2-13
cfront 2.1 extensions, 2-9
new language features accepted, 2-4

new language features not accepted,
2-6

normal C++ mode extensions, 2-8
not accepted, 2-6

C++ language features

accepted, 2-4
not accepted, 2-6

c_plusplus, 3-73

can_instantiate, 3-81

catastrophic error, 4-3

cfront, 3-19

2.1 and 3.0 extensions, 2-13
2.1 extensions, 2-9

command file, 3-56

compiler diagnostics, 4-1

compiler use, 3-1

cross-reference, 3-79

D
detailed option description, compiler,

3-12�3-79

development flow, 1-3

diagnostics, 4-1

brief, 3-18
error severity, 3-24, 4-3
wrap, 3-78

digraph, 3-13

do_not_instantiate, 3-81

E
embedded C++, 3-27

entities, remove unneeded, 3-66

enum overloading, 3-29

error, 4-3

error level, 4-5

error limit, 3-30

error messages, A-1

error number, 3-25

IndexIndex–4
IN
D
E
X

error output file, 3-31

error severity, 3-24, 4-3

exception, 3-32

exit status, 4-5

explicit specifier, 3-33

extensions to C++, 2-3

extern C, 3-39

extern C++, 3-39

extern inline, 3-34

F
file extensions, 3-3

for-init statement, 3-35, 3-49

G
guiding declarations, 3-38

H
hdrstop, 3-81

header stop, 2-31, 2-36

I
implicit inclusion, 2-30

inline function, 3-34

inlining, 3-42

instantiate, 3-81

instantiation, 2-22

automatic, 2-25
instantiation information file, 1-5

instantiation mode, 2-27

all, 2-27
local, 2-28
none, 2-27
used, 2-27

instantiation pragmas, 2-28

introduction, 1-3

invocation, 3-3

K
keyword

bool, 3-17
typename, 3-72
wchar_t, 3-77

L
language extensions, 3-69

language implementation, 2-1

lifetime, 3-47

list file, 3-45

M
messages

diagnostic, 4-3
termination, 4-4

N
namespace, 2-20, 3-48

std, 3-76
no_pch, 2-36, 3-81

O
once, 3-81

operator, keywords, 3-13

options

--alternative_tokens, 3-13

Index Index–5

• • • • • • • •

--anachronisms, 3-14
--array_new_and_delete, 3-15
--auto_instantiation, 3-16
--bool, 3-17
--brief_diagnostics, 3-18
--cfront_2.1, 3-19
--cfront_3.0, 3-19
--comments, 3-20
--create_pch, 3-21
--define_macro, 3-22
--dependencies, 3-23
--diag_error, 3-24
--diag_remark, 3-24
--diag_suppress, 3-24
--diag_warning, 3-24
--display_error_number, 3-25
--distinct_template_signatures, 3-26
--embedded_c++, 3-27
--enum, 3-28
--enum_overloading, 3-29
--error_limit, 3-30
--error_output, 3-31
--exceptions, 3-32
--explicit, 3-33
--extern_inline, 3-34
--for_init_diff_warning, 3-35
--force_vtbl, 3-36
--gen_c_file_name, 3-37
--guiding_decls, 3-38
--implicit_extern_c_type_conversion,

3-39
--implicit_include, 3-40
--implicit_typename, 3-41
--inlining, 3-42
--instantiate, 3-43
--list, 3-45
--long_lifetime_temps, 3-47
--namespaces, 3-48
--new_for_init, 3-49
--no_alternative_tokens, 3-13
--no_anachronisms, 3-14
--no_array_new_and_delete, 3-15
--no_auto_instantiation, 3-16

--no_bool, 3-17
--no_brief_diagnostics, 3-18
--no_code_gen, 3-50
--no_distinct_template_signatures,

3-26
--no_enum_overloading, 3-29
--no_exceptions, 3-32
--no_explicit, 3-33
--no_extern_inline, 3-34
--no_for_init_diff_warning, 3-35
--no_guiding_decls, 3-38
--no_implicit_extern_c_type_convers

ion, 3-39
--no_implicit_include, 3-40
--no_implicit_typename, 3-41
--no_inlining, 3-42
--no_line_commands, 3-51
--no_namespaces, 3-48
--no_nonconst_ref_anachronism,

3-52
--no_old_specializations, 3-59
--no_preproc_only, 3-53
--no_remove_unneeded_entities,

3-66
--no_rtti, 3-67
--no_special_subscript_cost, 3-68
--no_typename, 3-72
--no_use_before_set_warnings, 3-54
--no_using_std, 3-76
--no_warnings, 3-55
--no_wchar_t_keyword, 3-77
--no_wrap_diagnostics, 3-78
--nonconst_ref_anachronism, 3-52
--old_for_init, 3-49
--old_line_commands, 3-58
--old_specializations, 3-59
--old_style_preprocessing, 3-60
--output, 3-57
--pch, 3-61
--pch_dir, 3-62
--pch_messages, 3-63
--preprocess, 3-64
--remarks, 3-65

IndexIndex–6
IN
D
E
X

--remove_unneeded_entities, 3-66
--rtti, 3-67
--short_lifetime_temps, 3-47
--special_subscript_cost, 3-68
--strict, 3-69
--strict_warnings, 3-69
--suppress_vtbl, 3-70
--trace_includes, 3-71
--typename, 3-72
--undefine_macro, 3-73
--use_pch, 3-75
--using_std, 3-76
--wchar_t_keyword, 3-77
--wrap_diagnostics, 3-78
--xref, 3-79
-B, 3-40
-D, 3-22
-E, 3-64
-H, 3-71
-M, 3-23
-opfile, 3-56
-U, 3-73
-w, 3-55
-X, 3-79
-x, 3-32
detailed description, 3-12
overview, 3-3
overview in functional order, 3-8
priority, 3-3

options file, 3-56

output file, 3-37, 3-57

overview, 1-1

P
pch mode

automatic, 2-31, 3-61
manual, 2-35, 3-21, 3-75

pragma

can_instantiate, 2-28, 3-81
do_not_instantiate, 2-28, 3-81
hdrstop, 2-31, 2-36, 3-81

instantiate, 2-28, 3-81
no_pch, 2-36, 3-81
once, 3-81
separate, 3-82

pragmas, 3-81

precompiled header, 2-31

automatic, 2-31, 3-61
create, 2-35, 3-21
directory, 2-35, 2-36, 3-62
manual, 2-35
messages, 3-63
performance, 2-36
pragmas, 2-36
prefix, 2-34
use, 2-35, 3-75

predefined symbols, 3-73

prelinker, 1-5

prelinker prelk56, 2-25

R
raw listing, 3-45

remark, 4-3

remarks, 3-65

return values, 4-5

run-time type information, 3-67

S
separate, 3-82

signals, 4-5

stack, 2-22

symbols, predefined, 3-73

syntax checking, 3-50

T
template, 2-22

distinct signatures, 3-26

Index Index–7

• • • • • • • •

guiding declarations, 3-38
specialization, 3-59

template instantiation, 2-22

#pragma directives, 2-28
automatic, 2-23, 3-16
implicit inclusion, 2-30, 3-40
instantiation modes, 2-27, 3-43

tool chain, 1-3

prelinker, 1-5
typename keyword, 3-72

V
virtual function table, 3-36, 3-70

W
warning, 4-3

warnings (suppress), 3-54, 3-55

wchar_t keyword, 3-77

IndexIndex–8
IN
D
E
X

		TABLE OF CONTENTS

		1. OVERVIEW

		1.1 Introduction to C++ Compiler

		1.2 Development Structure

		1.2.1 The C++ Linker Driver (ldriver): Prelinker Phase

		1.2.2 The C++ Linker Driver (ldriver): Muncher Phase

		2. LANGUAGE IMPLEMENTATION

		2.1 Introduction

		2.2 C++ Language Extension Keywords

		2.3 C++ Dialect Accepted

		2.3.1 New Language Features Accepted

		2.3.2 New Language Features Not Accepted

		2.3.3 Anachronisms Accepted

		2.3.4 Extensions Accepted in Normal C++ Mode

		2.3.5 Extensions Accepted in Cfront 2.1 Compatibility Mode

		2.3.6 Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode

		2.4 Namespace Support

		2.5 Template Instantiation

		2.5.1 Automatic Instantiation

		2.5.2 Instantiation Modes

		2.5.3 Instantiation #pragma Directives

		2.5.4 Implicit Inclusion

		2.6 Precompiled Headers

		2.6.1 Automatic Precompiled Header Processing

		2.6.2 Manual Precompiled Header Processing

		2.6.3 Other Ways to Control Precompiled Headers

		2.6.4 Performance Issues

		3. COMPILER USE

		3.1 Invocation

		3.1.1 Detailed Description of the Compiler Options

		3.2 Linker

		3.3 Pragmas

		4. COMPILER DIAGNOSTICS

		4.1 Diagnostic Messages

		4.2 Termination Messages

		4.3 Response to Signals

		4.4 Return Values

		A. ERROR MESSAGES

		1 Introduction

		2 Messages

		INDEX

m_xvw68.pdf

MA001–043–00–00
Doc. ver.: 10.142

68K/ColdFire v10.0

CrossView Pro Debugger

User's Manual

A publication of

Altium BV

Documentation Department

Copyright 2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

Motorola is a trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

IBM is a trademark of International Business Machines Corp.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

OVERVIEW 1-1

1.1 Introduction 1-3.

1.2 CrossView Pro's Features 1-3.

1.3 Source Level Debugging 1-8.

1.4 How CrossView Pro Works 1-10.

1.5 Program Development 1-12.

1.6 Getting Started 1-17.

1.6.1 Before Starting 1-17.

1.6.2 Setting Up the Execution Environment 1-17.

1.6.3 Starting CrossView Pro 1-18.

1.6.3.1 CrossView Pro Target Settings 1-19.

1.6.3.2 Configuring CrossView Pro 1-21.

1.6.3.3 Loading Symbolic Debug Information 1-22.

1.6.4 Executing an Application 1-24.

1.6.5 Debugging an Application 1-27.

1.6.6 CrossView Pro Output 1-29.

1.6.7 Exiting CrossView Pro 1-30.

1.6.8 What You May Have Done Wrong 1-31.

1.6.9 Building Your Executable 1-32.

1.6.9.1 Using EDE 1-32.

SOFTWARE INSTALLATION 2-1

2.1 Introduction 2-3.

2.2 Note about Filenames 2-3.

2.3 Configuring the X Windows Motif Environment 2-3. . .

2.4 Using X Resources 2-4.

COMMAND LANGUAGE 3-1

3.1 Introduction 3-3.

3.2 CrossView Pro Expressions 3-3.

3.3 Constants 3-4.

3.4 Variables 3-7.

3.5 Formatting Expressions 3-13.

Table of ContentsVI
C
O
N
T
E
N
T
S

3.6 Operators 3-17.

3.7 Special Expressions 3-18.

3.8 Conditional Evaluation 3-19.

3.9 Functions 3-20.

3.10 Case Sensitivity 3-21.

USING CROSSVIEW PRO 4-1

4.1 Introduction 4-3.

4.2 Using the CrossView Pro Interface 4-3.

4.3 Starting CrossView Pro 4-4.

4.4 Startup Options 4-5.

4.4.1 What You May Have Done Wrong 4-9.

4.5 The CrossView Pro Desktop 4-11.

4.5.1 Menus 4-13.

4.5.1.1 Local Popup Menus 4-14.

4.5.2 Window Operation 4-14.

4.5.3 Dialog Boxes 4-16.

4.5.4 Customizing CrossView Pro 4-17.

4.5.5 CrossView Pro Messages 4-19.

4.6 CrossView Pro Windows 4-20.

4.6.1 Command Window 4-21.

4.6.2 Source Window 4-23.

4.6.3 Register Window 4-26.

4.6.4 Memory Window 4-27.

4.6.5 Data Window 4-29.

4.6.6 Stack Window 4-32.

4.6.7 Trace Window 4-33.

4.6.8 Terminal Window 4-34.

4.6.9 Data Analysis Window 4-36.

4.6.10 Pop-Up Windows 4-37.

4.7 Control Operations for CrossView Pro 4-38.

4.7.1 Echoing Commands 4-38.

4.7.2 Mouse/Menu/Command Equivalents 4-38.

4.8 Using the On-line Help 4-39.

Table of Contents VII

• • • • • • • •

4.8.1 Accessing On-line Help 4-39.

4.8.2 Using MS-Windows Help 4-39.

CONTROLLING PROGRAM EXECUTION 5-1

5.1 Source Positioning 5-3.

5.1.1 Changing the Viewing Position 5-4.

5.1.2 Changing the Execution Position 5-5.

5.1.3 Synchronizing the Execution and Viewing Positions 5-7

5.2 Controlling Program Execution 5-8.

5.2.1 Starting the Program 5-8.

5.2.2 Halting and Continuing Execution 5-9.

5.2.3 Single-Step Execution 5-9.

5.2.4 Stepping through at the Machine Level 5-12.

5.3 Notes About Program Execution 5-14.

5.4 Calling a Function 5-14.

5.5 Searching through the Source Window 5-15.

5.5.1 Searching for a Function 5-15.

5.5.2 Searching for a String 5-16.

5.5.3 Jumping to a Source Line 5-17.

ACCESSING CODE AND DATA 6-1

6.1 Introduction 6-3.

6.2 Accessing Variables 6-3.

6.2.1 Viewing Variables, Structures and Arrays 6-3.

6.2.2 Changing Variables 6-7.

6.2.3 The l Command 6-8.

6.3 Expressions 6-10.

6.3.1 Evaluating Expressions 6-10.

6.3.2 Monitoring Expressions 6-11.

6.3.3 Formatting Data 6-13.

6.3.4 Displaying Memory 6-14.

6.3.5 Displaying Memory Addresses 6-16.

6.4 Displaying Disassembled Instructions 6-17.

Table of ContentsVIII
C
O
N
T
E
N
T
S

6.4.1 Intermixed Source and Disassembly 6-18.

6.5 The Stack 6-19.

6.5.1 How the Stack is Organized 6-19.

6.5.2 The Stack Window 6-20.

6.5.3 Listing Locals and Parameters of a Function 6-22.

6.5.4 Low-level Viewing the Stack 6-22.

6.6 Trace Window 6-23.

6.6.1 Trace Window Setup 6-23.

6.7 Register Window 6-25.

6.7.1 Register Window Setup 6-25.

6.7.2 Editing Registers 6-26.

BREAKPOINTS AND ASSERTIONS 7-1

7.1 Introduction to Breakpoints 7-3.

7.1.1 Code Breakpoints 7-3.

7.1.2 Data Breakpoints 7-7.

7.1.3 Listing Breakpoints 7-8.

7.2 Setting Breakpoints 7-8.

7.2.1 Data Breakpoints over a Range of Addresses 7-11.

7.2.2 Temporary Breakpoints 7-12.

7.2.3 Breakpoint Names 7-13.

7.2.4 Setting the Count 7-14.

7.2.5 Sequence Breakpoints 7-15.

7.3 Deleting Breakpoints 7-16.

7.4 Enabling/Disabling Breakpoints 7-17.

7.5 Breakpoint Commands 7-18.

7.5.1 Attaching Conditionals to a Breakpoint 7-21.

7.5.2 Attaching Macros to a Breakpoint 7-21.

7.5.3 Attaching Strings to a Breakpoint 7-22.

7.6 Suppressing Breakpoint Messages 7-22.

7.7 Up-level Breakpoints 7-22.

7.8 Patches 7-25.

7.8.1 Patching Code out of a Program 7-25.

7.8.2 Patching Code into a Program 7-26.

Table of Contents IX

• • • • • • • •

7.8.3 Replacing Code in a Program 7-26.

7.9 Diagnostic Output and Statistical Information 7-27.

7.10 Assertions 7-28.

7.10.1 Assertion Mode 7-28.

7.10.2 Defining an Assertion 7-29.

7.10.3 Editing an Assertion 7-31.

7.10.4 Activating and Suspending Assertions 7-31.

7.10.5 Deleting Assertions 7-32.

7.10.6 Using Assertions 7-33.

7.10.7 Gathering Statistics with Assertions 7-35.

DEFINING AND USING MACROS 8-1

8.1 CrossView Pro Macros 8-3.

8.2 Defining Macros 8-3.

8.2.1 Listing Macros 8-5.

8.2.2 Redefining a Macro 8-5.

8.2.3 Saving Macro Definitions to a File 8-6.

8.2.4 Loading Macro Definitions from a File 8-7.

8.2.5 Deleting Macros 8-8.

8.3 Macro Parameters 8-9.

8.4 Redefining Existing CrossView Pro Commands 8-10. . . .

8.5 Using the Toolbox 8-11.

8.5.1 Opening the Toolbox 8-11.

8.5.2 Connecting Macros to the Toolbox 8-11.

8.5.3 Removing a Macro Connection 8-12.

COMMAND RECORDING & PLAYBACK 9-1

9.1 Recording Commands 9-3.

9.1.1 Entering Comments 9-4.

9.1.2 Suspend Recording 9-5.

9.1.3 Resume Recording 9-5.

9.1.4 Check Recording Status 9-6.

9.1.5 Close File for Recording 9-6.

Table of ContentsX
C
O
N
T
E
N
T
S

9.1.6 Command Recording Example 9-7.

9.2 Playing Back Command Files 9-8.

9.2.1 Setting the Type of Playback 9-9.

9.2.2 Calling Other Playback Files 9-9.

9.2.3 Quitting Playback Mode 9-10.

9.3 Command Line Batch Processing 9-10.

9.4 Logging 9-12.

9.4.1 Setting up Logging 9-13.

9.4.2 Recording Commands and Logging Screen Output 9-15

9.4.3 Command Window Log File Example 9-15.

9.4.4 Suspending and Resuming Output Log 9-15.

9.4.5 Closing the Output Log File 9-17.

9.5 Startup Options 9-18.

9.6 CrossView Pro Command History Mechanism 9-19.

I/O SIMULATION 10-1

10.1 Introduction 10-3.

10.2 I/O Streams 10-3.

10.2.1 Setting Up File I/O Streams 10-4.

10.2.2 Redirecting I/O Streams 10-6.

10.3 File System Simulation 10-7.

10.3.1 File System Simulation Libraries 10-8.

10.4 Debug Instrument I/O 10-9.

10.5 The Terminal Window 10-10.

10.5.1 Terminal Window Keyboard Mappings 10-10.

SPECIAL FEATURES 11-1

11.1 Transparency Mode 11-3.

11.2 RTOS Aware Debugging 11-4.

11.3 Coverage 11-6.

11.4 Profiling 11-8.

11.5 Data Analysis 11-11.

11.5.1 Supplied Data Analysis Window Scripts 11-13.

Table of Contents XI

• • • • • • • •

11.5.2 Syntax of CrossView eXtension Language (CXL) 11-19. .

11.6 Background Mode 11-28.

11.6.1 Configuration 11-28.

11.6.2 Manual Refresh 11-29.

11.6.3 Entering Background Mode 11-30.

11.6.4 Leaving Background Mode 11-31.

11.6.5 The Stack in Background Mode 11-32.

11.6.6 Local and Global Variables 11-32.

11.6.7 Refresh Limitation 11-32.

11.6.8 Assertions 11-33.

DEBUGGING NOTES 12-1

12.1 Debugging Assembly Language 12-3.

12.2 Debugging Multiple Programs 12-3.

COMMAND REFERENCE 13-1

13.1 Conventions Used in this Chapter 13-3.

13.2 Commands: Summary 13-4.

13.2.1 Viewing Commands 13-4.

13.2.2 Data Monitoring 13-5.

13.2.3 Data Analysis 13-7.

13.2.4 Execution Control Commands 13-8.

13.2.5 Record & Playback 13-11.

13.2.6 Macros 13-12.

13.2.7 Input/Output Simulation 13-12.

13.2.8 File System Simulation 13-13.

13.2.9 Target System Control 13-13.

13.2.10 Save and Restore Target State 13-14.

13.2.11 Help Commands 13-14.

13.2.12 Search Commands 13-14.

13.3 Commands: Detailed Descriptions 13-15.

Table of ContentsXII
C
O
N
T
E
N
T
S

ERROR MESSAGES 14-1

14.1 What this Chapter Covers 14-3.

14.2 Error Messages 14-3.

GLOSSARY 15-1

15.1 What this Chapter Covers 15-3.

15.2 Glossary Terms 15-3.

INTERPROCESS COMMUNICATION A-1

1 COM Interface A-3.

1.1 Introduction A-3.

1.2 Using the COM Object Interface A-3.

1.2.1 Run-Time Environment A-3.

1.2.2 Command Line Options A-3.

1.2.3 Startup Directory A-4.

1.3 COM Interfaces A-5.

1.3.1 Activating the COM object A-5.

1.3.2 Methods A-6.

1.3.3 Implementation Details A-7.

1.4 Events A-8.

1.5 COM Examples A-12.

1.5.1 Python Examples A-12.

1.5.2 Visual Basic Examples A-16.

1.5.3 WORD Examples A-17.

1.5.4 Excerpt of the MIDL Definition A-19.

2 DDE Server Interface A-20.

2.1 Introduction A-20.

2.2 DDE Items and Topics A-20.

2.3 DDE Events A-27.

2.3.1 Packet Format A-27.

2.4 CrossView Pro DDE Specific Options

and Commands A-28.

2.4.1 Command Line Options A-28.

Table of Contents XIII

• • • • • • • •

2.4.2 Commands A-28.

2.5 Examples A-29.

2.5.1 Evaluating an Expression A-29.

2.5.2 Reading Target Memory A-30.

2.5.3 Writing Into Target Memory A-31.

2.5.4 Requesting Current File and Line Number A-32.

2.5.5 Using CrossView Pro as Pure Server A-32.

REGISTER MANAGER B-1

1 Introduction B-3.

2 Invocation B-3.

3 Syntax of a Register File B-4.

4 SFR Base Address Register Special Variables B-5.

5 Fixed Register Set B-6.

6 Derivatives B-7.

SOUND SUPPORT (MS-Windows) C-1

SIMULATOR Sim-1

1 Introduction Sim-3.

2 Supported Features Sim-3.

2.1 Mapping Memory Sim-3.

2.2 Simulating I/O via I/O Port Address Blocks

and Devices Sim-4.

2.3 Setting I/O Device Attributes Sim-14.

3 Restrictions Sim-15.

4 Simulator Commands Sim-16.

SmartMON ROM MONITOR Rom-1

1 Introduction Rom-3.

1.1 Overview Rom-3.

1.2 SmartMON's Debugging Features Rom-5.

Table of ContentsXIV
C
O
N
T
E
N
T
S

1.2.1 Initialize and Download Rom-5.

1.2.2 Stepping, Executing, and Halting Rom-6.

1.2.3 Setting Breakpoints Rom-6.

1.2.4 Full Disassembler Rom-6.

1.2.5 Displaying and Setting Memory and Registers Rom-7.

1.2.6 Tracing Rom-7.

1.2.7 Diagnostic Capabilities Rom-7.

1.2.8 System Calls Rom-8.

1.3 SmartMON Distribution Contents Rom-8.

2 Using SmartMON Rom-9.

2.1 Overview Rom-9.

2.2 SmartMON's Resource Requirements Rom-10.

2.3 SmartMON's Use of Interrupts and Traps Rom-10.

2.4 The Three Operational Modes of SmartMON Rom-13.

2.5 How SmartMON Sets Breakpoints Rom-14.

2.5.1 Setting Breakpoints on RAM Code

Without Trace Mode Active Rom-15.

2.5.2 Instruction Breakpoints on ROM Code Rom-15.

2.5.3 Data Breakpoints Rom-15.

2.5.4 Complex Breakpoints Rom-16.

2.6 SmartMON's Tracing Features Rom-16.

2.6.1 Trace Points Rom-17.

2.6.2 Trace Buffer Operation Rom-17.

2.7 Single Stepping and Step-out-of-range Rom-17.

2.8 The Six Different Submodes of Execution Mode Rom-18. .

2.9 How SmartMON Processes I/O Rom-19.

2.9.1 Interrupt Driven I/O Rom-20.

2.9.2 Polled I/O Rom-23.

2.9.3 Character Buffering Rom-25.

2.9.4 I/O System Calls Rom-26.

2.10 How SmartMON is Initialized Rom-26.

2.11 Run-time Notes Rom-27.

2.11.1 Stacks Rom-27.

2.11.2 Interrupt Service Routines Rom-27.

2.11.3 Downloading an ISR for Debugging Rom-29.

Table of Contents XV

• • • • • • • •

2.11.4 System Control Rom-30.

3 Target Interface Package Rom-31.

3.1 What is the TIP? Rom-31.

3.2 TIP Module #1: usreq.68k Rom-32.

3.2.1 Values Required by SmartMON Rom-33.

3.2.2 More Information on the usrequ.68k Labels Rom-34.

3.3 TIP Module #2: rmain.68k Rom-37.

3.3.1 Stacks Rom-38.

3.4 RM_INIT Call Rom-38.

3.5 ROMM_GO System Call Rom-42.

3.6 Creating Your Own rmain.68k Rom-43.

3.7 TIP Module #3: io_drv.68k Rom-44.

3.8 portinit Call Rom-44.

3.9 Serial Port Interrupt Service Routine Rom-45.

3.10 TX_CHAR Rom-45.

3.11 RX_CHAR Rom-46.

3.12 How to Create Your Own io_drv.68k Rom-46.

3.12.1 Serial Port Polled I/O Rom-47.

3.12.2 TX_CHAR Using Polled I/O Rom-47.

3.12.3 RX_CHAR Using Polled I/O Rom-48.

3.12.4 Creating a Polled I/O io_drv.68k Rom-48.

3.13 TIP Modules #4 and #5: sysstp.68k and sys_go.68k Rom-48

3.13.1 sys_go Rom-48.

3.13.2 sys_stop Rom-49.

3.14 TIP Module #6: diag_tbl.68k Rom-49.

4 Building SmartMON Rom-50.

4.1 Overview of the Build Process Rom-50.

4.1.1 Preparing the Build Environment Rom-51.

4.1.2 Assembling the TIP Rom-51.

4.1.3 Linking and Locating the Object Modules Rom-52.

4.2 Formatting Rom-53.

4.2.1 Programming the PROMs Rom-54.

4.3 Notes on Building Applications for SmartMON Rom-54. . . .

4.3.1 Step 1: Modify pmain.68k Rom-55.

4.3.2 Step 2: Build the Demo Object Modules Rom-57.

Table of ContentsXVI
C
O
N
T
E
N
T
S

4.4 Starting-up SmartMON with CrossView Pro Rom-58.

4.5 Troubleshooting Rom-59.

4.5.1 Locating the TIP Rom-60.

4.5.2 Programming EPROMS Rom-61.

4.6 Starting SmartMON with a Terminal or

Terminal Emulator Rom-62.

5 SmartMON Command Language Rom-63.

5.1 Overview Rom-63.

5.2 Control Characters Rom-64.

5.3 Operation Modes Rom-64.

5.3.1 Command Mode Rom-65.

5.3.2 Download Mode Rom-65.

5.3.3 Execution Mode Rom-65.

5.4 Command Descriptions Rom-66.

6 System Calls Rom-111.

6.1 Introduction Rom-111.

7 Diagnostics Rom-124.

7.1 SmartMON Diagnostics Rom-124.

7.1.1 Overview Rom-124.

7.1.2 RAM Tests Rom-124.

7.2 User Diagnostics Rom-135.

7.2.1 Overview Rom-135.

7.2.2 How to Write a User Diagnostic Rom-138.

7.2.3 Linking Diagnostics with SmartMON Rom-140.

7.2.4 Downloading and Running User Diagnostics Rom-141.

7.2.5 How SmartMON Processes UD Commands Rom-141.

7.2.6 Installing RAM Based Diagnostics Rom-141.

7.2.7 Running a Test Rom-142.

BACKGROUND DEBUG MODE Bdm-1

1 Introduction Bdm-3.

2 Background Debug Mode as a CrossView Pro

Execution Environment Bdm-3.

2.1 Additional Software Contents Bdm-4.

Table of Contents XVII

• • • • • • • •

3 BDM Installation Bdm-5.

3.1 Hardware Installation Bdm-5.

3.2 Software Installation Bdm-6.

3.3 Configuration Options Bdm-7.

3.4 Target Environment Setup Bdm-7.

4 BDM Command Interface (Emulator Mode) Bdm-9.

4.1 Operation Modes Bdm-9.

4.2 Command Descriptions Bdm-10.

5 TroublEshooting Bdm-31.

5.1 Unable to Open Driver from OpenDriver Bdm-31.

5.2 Open Failed from CrossView Pro Bdm-31.

5.3 Unexpected Responses Bdm-31.

6 Other Considerations Bdm-32.

INDEX

Table of ContentsXVIII
C
O
N
T
E
N
T
S

Manual Purpose and Structure XIX

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the CrossView Pro debugger for the

68K/ColdFire family. It assumes that you are familiar with programming

the 68K/ColdFire.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

CHAPTERS

1. Overview

Highlights specific CrossView Pro features and capabilities, and shows

how to compile code for debugging.

2. Software Installation

Describes how to install CrossView Pro on your system.

3. Command Language

Details the syntax of CrossView Pro's command language.

4. Using CrossView Pro

Describes the basic methods of invoking, operating, and exiting

CrossView Pro.

5. Controlling Program Execution

Describes the various means of program execution.

6. Accessing Code and Data

Describes how to view and edit the variables in your source program.

7. Breakpoints and Assertions

Describes breakpoints and assertions.

Manual Purpose and StructureXX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

8. Defining and Using Macros

Describes how to simplify a complicated procedure by creating a

"shorthand" macro which can be used to execute any sequence of

CrossView Pro or C language commands and expressions.

9. Command Recording & Playback

Describes the record and playback functions of CrossView Pro.

10. I/O Simulation

Describes how to simulate your input and output using File System

Simulation (FSS), File I/O (FIO) or Debug Instrument I/O (DIO).

11. Special Features

Describes special features of CrossView Pro, such as the Transparency

Mode, RTOS Aware Debugging, Coverage, Profiling and the

Background Mode.

12. Debugging Notes

Contains some notes about debugging in special situations.

13. Command Reference

An alphabetical list of all CrossView Pro commands. Consult this

chapter for specifics and the exact syntax of any CrossView Pro

command.

14. Error Messages

Contains CrossView Pro error messages and gives advice for correcting

them.

15. Glossary

Defines the most common terms used in embedded systems

debugging.

Manual Purpose and Structure XXI

• • • • • • • •

APPENDICES

A. Interprocess Communication

Contains a description of the COM interface and the DDE interface.

B. Register Manager

Contains a description of the register manager rm68k.

C. Sound Support (MS-Windows)

Describes how to add sound to CrossView Pro events under

MS-Windows.

ADDENDUM

Simulator Mode

Contains information specific to Simulator Mode.

SmartMON ROM Monitor

Contains a description of the ROM Monitor.

Background Debug Mode

Contains a description of the Background Debug Mode.

INDEX

Manual Purpose and StructureXXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

• The C Programming Language (second edition) by B. Kernighan and

D. Ritchie (1988, Prentice Hall)

• ANSI X3.159-1989 standard [ANSI]

• ISO/IEC 9899:1999(E), Programming languages - C [ISO/IEC]

• 68K/ColdFire C Compiler/Assembler User's Manual [TASKING,

MA001-022-00-00]

• 68K/ColdFire C Compiler/Assembler Reference Manual [TASKING,

MA001-020-00-00]

Manual Purpose and Structure XXIII

• • • • • • • •

CONVENTIONS USED IN THIS MANUAL

Notation for syntax

The following notation is used to describe the syntax of command line

input:

bold Type this part of the syntax literally.

italics Substitute the italic word by an instance. For example:

 filename

means: type the name of a file in place of the word

filename.

{ } Encloses a list from which you must choose an item.

[] Encloses items that are optional.

| Separates items in a list. Read it as OR.

... You can repeat the preceding item zero or more times.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Manual Purpose and StructureXXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

1

OVERVIEW
C

H
A

P
T

E
R

Chapter 11–2
O
V
E
R
V
IE
W

1

C
H

A
P

T
E

R

Overview 1–3

• • • • • • • •

1.1 INTRODUCTION

This chapter highlights many of the features and capabilities of CrossView

Pro, including an Introduction to Source Level Debugging and the

Embedded Development Environment.

This chapter also contains the section Getting Started, which shows you

how to compile a program to work with the debugger.

1.2 CROSSVIEW PRO'S FEATURES

CrossView Pro is TASKING's high-level language debugger. CrossView Pro

is a real-time, source-level debugger that lets you debug embedded

microprocessor systems at your highest level of productivity. Its powerful

capabilities include:

• Multi-Window Graphical User Interface

• C and Assembly level debugging

• C Expression Evaluation including Function Calls

• Breakpoints (both hardware and software)

• Probe Points

• Assertions (software data breakpoints)

• C-trace, Instruction Trace

• I/O Simulation (IOS)

• Data Monitoring

• Single Stepping

• Coverage

• Profiling

• Macros

• Flexible Record & Playback Facilities

• Real-Time Kernel Support

• On-line context sensitive Help

• Documentation

Chapter 11–4
O
V
E
R
V
IE
W

Multi-Window Interface

This interface uses your host's native windowing system, so that you

already know how to open, close and resize windows. With windows you

can keep track of information concerning registers, the stack, and

variables. CrossView Pro automatically updates each window whenever

execution stops.

You have great freedom in designing a suitable display. You can hide and

resize the various windows if you choose.

Statement Evaluation

You can enter C expressions, CrossView Pro commands or any

combination of the two for CrossView Pro to evaluate. You may also call

functions defined in your source code from the command line. Expression

evaluation is an ideal way to test subroutines by passing them sample

values and checking the results.

Breakpoints

Breakpoints halt program execution and return control to you. There are

several types of breakpoints: code, data, instruction count, cycle count,

timer and sequence.

Code breakpoints let you halt the program at critical junctures of program

execution and observe values of important variables.

You may place data breakpoints to determine when memory addresses are

read from, written to, or both. With data breakpoints, you can easily track

the use and misuse of variables.

An instruction count breakpoint halts the program after a specified number

of instructions have been executed; a cycle count breakpoint stops the

program after a number of CPU cycles; a timer breakpoint stops the

program after a number of micro seconds or ticks and sequence

breakpoints stop the program when a number of breakpoints are hit in a

specified sequence.

Data breakpoints, instruction count breakpoints, cycle count breakpoints

and timer breakpoints are not available for all execution environments,

please check the Addendum.

Overview 1–5

• • • • • • • •

Probe Point Breakpoints

A breakpoint can be treated as a probe point. When a probe point

breakpoint is hit, the associated commands are executed and program

execution is continued. Probe points are used with File I/O simulation and

sequence breakpoints.

Assertions

A powerful assertion mechanism lets you catch hard-to-find-errors. An

assertion is a command, or series of commands, executed after every line

of source code. You may use assertions to test for all sorts of error

conditions throughout the entire length of your program.

C-Trace

CrossView Pro has a separate window that displays the most recently

executed C statements or machine instructions. This feature uses the

execution environment's trace buffer along with symbolic information

generated during compilation. This feature is depending on the execution

environment.

I/O Simulation (IOS)

With I/O simulation you can debug programs before the actual input and

output devices are present. CrossView Pro can read input data from the

keyboard or a file, or can send output to a window or a file. You can

view the data in several formats, including hexadecimal and character. You

can have an unlimited number of simulated I/O ports, which can be

associated with the screen and displayed in windows.

Data Monitoring

You may place variables and expressions in the Data window, where

CrossView Pro updates their values when execution stops.

Single Stepping

With CrossView Pro, you can single step through your code at source

level or at assembly level, into or over procedure calls. Running your

program one line at a time lets you check variables and program flow.

Chapter 11–6
O
V
E
R
V
IE
W

Coverage

When a command such as StepInto or Continue executes the application,

CrossView Pro traces all memory access, i.e. memory read, memory write

and instruction fetch. Through code coverage you can find executed and

non-executed areas of the application program. Areas of unexecuted

code may exist because of programming errors or because of unnecessary

code. It may be that your program input, your test set, is incomplete; It

does not cover all paths in the program. Data coverage allows you to

verify which memory locations, i.e. which variables, are accessed during

program execution. Additionally, you can see stack and heap usage. The

availability of this feature depends on the execution environment.

Profiling

Profiling allows you to perform timing analysis on your software. Two

forms of profiling are implemented in CrossView Pro.

Function profiling, also called cumulative profiling, gives you timing

information about a particular function or set of functions. CrossView Pro

shows: the number of times a function is called, the time spent in the

function, the percentage of time spent in the function, and the

minimum/maximum/average time spent in the function. The timing results

include the time spent in functions called by the profiled function.

Code range profiling presents timing information about a consecutive

range of program instructions. CrossView Pro displays the time consumed

by each line (source or disassembly) in the Source Window. Next to this,

the Profile Report dialog shows the time spend in each function. The

timing results do not include the time consumed in functions called by the

profiled function.

The availability of profiling depends on the execution environment.

Function profiling can be supported if the execution environment provides

a clock that starts and stops whenever execution starts and stops. Code

range profiling heavily relies on special profiling features in the execution

environment. Normally code range profiling is only supported by

instruction set simulators.

Overview 1–7

• • • • • • • •

Macros

Macros let you store and recall complex commands and expressions with a

minimal number of keystrokes. You can store macros in a "toolbox",

making it possible to execute complex functions with the touch of a

mouse button. You can also place macros in command lists of breakpoints

and assertions. You can use flow control statements within macros, and

macros can call other macros, allowing you to construct arbitrarily

complex sequences. Macros can accept multiple parameters, be saved and

loaded from files and can even rename existing CrossView Pro commands.

Record & Playback

At any time, you can record the commands you type, and optionally their

output, to a file. You can also play back files of commands all at once or

in a single-step playback mode. These functions are helpful for setting up

standardized debugging tests or to save results for later study or

comparison.

Kernel Support

CrossView Pro supports RTOS (Real-Time Operating System) aware

debugging for various kernels. Since each kernel is different, the RTOS

aware features are not implemented in the CrossView Pro executable, but

in a library that will be loaded at run-time by CrossView Pro. The amount

of windows and dialogs and their contents is kernel dependent.

On-Line Help

When you click on a Help button or when you press the F1 function key

in an active window, the CrossView Pro help system opens at the

appropriate section. From this point, you can also access the rest of the

help system.

Documentation

CrossView Pro has a comprehensive set of documentation for both new

and experienced users. The manual includes an installation guide,

description of debugging with CrossView Pro, error messages, and a

command reference section. The documentation tries to cover a wide

range of expertise, by making few assumptions about the technical

experience of the reader.

Chapter 11–8
O
V
E
R
V
IE
W

1.3 SOURCE LEVEL DEBUGGING

CrossView Pro is a source level debugger. Source level means that

debugging works on the actual C code or assembly code. CrossView Pro

can deal with global and local variables that are both statically and

dynamically allocated variables. Therefore, it can deal with compiled

addresses of variables that move around the stack. CrossView Pro knows

the compiler's addressing conventions for variables of any type.

The Debugging Environment

All debugging configurations follow a similar pattern. There is a host
system where the debugger runs, and a target system (usually an

execution environment), where the program being debugged runs. There

may also be a probe that can plug into the actual hardware of the

embedded system being designed.

CrossView Pro provides a high-level interface between you, the user,

working at the host system and a program running at the target system

(execution environment). This means that you may issue commands that

refer directly to the variables, source files, and line numbers as they

appear in the source program. You can do this because CrossView Pro

uses symbol information generated during compilation to translate the

high-level commands that you type into a series of low level instructions

that the target system understands. Using Generic Debug Instrument (GDI)

calls towards a shared library for the simulator, or using a connection

between the host and target, CrossView Pro finds out information about

the state of the target program and then tells the target to perform the

requested actions.

A host-target arrangement can perform functions beyond the reach of

traditional software-based debuggers. Since the target contains the actual

chip, CrossView Pro can observe its operations without interfering. The

existence of CrossView Pro and the host is invisible to the target program.

This means that the program under debug runs exactly the same as the

final program will in a real embedded system (except for real-time

situations like timings).

Overview 1–9

• • • • • • • •

With CrossView Pro, you may also take advantage of any advanced

capabilities of your target hardware through emulator mode (transparency

mode). In transparency mode you can communicate with the target as if

the host system were a terminal directly connected to the target. You can

enter and leave transparency mode freely without restarting the debugger

or the target system. CrossView Pro therefore does not interfere with the

normal operation of the target hardware. Thus the debugger is a powerful

accessory to the machine-level debugging that you might do with the

target system alone. The transparency mode is not available for all

execution environments.

Chapter 11–10
O
V
E
R
V
IE
W

1.4 HOW CROSSVIEW PRO WORKS

Although it is not necessary to know how CrossView Pro performs its

debugging, you may be curious how CrossView Pro works.

Whenever you enter a debugger command, CrossView Pro obtains

information from or controls the execution environment by sending

appropriate commands over the host-target link. A typical session may go

something like this:

1. Highlight initval and click on the Show Expression button in the

Source Window.

Figure 1-1: Inspect a variable

2. CrossView Pro converts this action into a command. Depending on

preferences you have set, the variable is shown in the Data Window or the

Expression Evaluation dialog is shown.

3. CrossView Pro consults the symbol table to deduce the type and address

of initval . Suppose initval is a variable of type int which lies at

absolute location 100.

4. The debugger forms a command asking the target system to read two

bytes starting at address 100 (the size of an int equals 2).

5. CrossView Pro then transmits the command to the target system and

receives the response.

Overview 1–11

• • • • • • • •

6. CrossView Pro interprets the response, and for example determines that

initval equals 17.

7. CrossView Pro then displays initval=17 since it knows initval 's type.

Figure 1-2: CrossView Pro Command Output

This is a simplified example, many CrossView Pro commands require

several complex transactions, but all take place without you being aware

of them.

Chapter 11–12
O
V
E
R
V
IE
W

1.5 PROGRAM DEVELOPMENT

The CrossView Pro debugger is part of a toolchain that provides an

environment for modular program development and debugging. Figure

1-3 shows the structure of the toolchain.

Apart from the debugger the toolchain contains the following elements:

Compiler

The compiler translates C source into machine instructions for the target

microprocessor. The input is one or more source programs. The C

language implemented conforms to the ANSI C standard ANSI/ISO

9899-1990.

Compiler output is an object module suitable for linking with other

modules. These object modules can also be catalogued in a library using

the librarian utility. The compiler has optional listings which show

interleaved source and generated machine instructions, along with

cross-reference listings.

Run-time Library

The 68K/ColdFire toolset includes full run-time libraries: math functions,

memory allocation functions, standard I/O functions, string manipulation

functions, and floating point routines.

Assembler

The 68K/ColdFire toolset includes a macro assembler. The source format is

manufacturer-compatible. That is, existing manufacturer-compatible

assembly code is easily reassembled using the TASKING assembler. Minor

changes may be needed if the assembled modules are to be invoked by

compiled modules.

The input to the assembler is one or more source programs. The output is

a corresponding number of object modules suitable for linking to other

modules. The object modules can be catalogued in a library. Assembler

object modules are compatible with C compiler object modules. Source,

cross-reference, and symbol table listings are available from the assembler.

Overview 1–13

• • • • • • • •

Assembly
Source Code

C
Source Code

Assembler Compiler

Olsize

Symlist

Gsmap

Module

Object

Librarian Linking

CrossView Pro

Absolute Object

IEEE695
Formatter

Download File

Target

Environment

Module

Object

Module

Locator

Microprocessor

Execution

Object

Module

Assembly
Source Code

C
Source Code

DebuggerSymbol File

C++
Source Code

C++
Source Code

Figure 1-3: Toolchain development flow

Chapter 11–14
O
V
E
R
V
IE
W

Utilities

The TASKING compiler and assembler software includes a full set of

utilities. These tools increase programming productivity by reducing the

time spent on repetitive software building tasks. A brief description of the

utilities is given below

• Linking Locator

The Linking Locator integrates the results of separate compilations and

assemblies into a single absolute module. This is done in three separate

steps, any or all of which can be performed in a single invocation of

the linking locator. The first step, called �linking", consists of

combining separate object modules into a composite module by

resolving references. Usually these object modules are produced by the

assembler and/or compiler, but pre-linked object modules may be also

used as input. The linking locator searches libraries to satisfy any

unresolved references in the module it is constructing.

The second (optional) step, called �ROM processing", consists of

building initialization segments used to initialize read-write data. All

ROM-based systems must execute code to initialize their read-write

data, since the initial values cannot be maintained in RAM

(random-access memory), and read-write data cannot be allocated in

ROM (read only memory). This data could be initialized by large

numbers of assignment statements, but it is more convenient and

efficient to employ ROM processing instead. Unlike the read-write

data, the initialization segment is suitable for placement in ROM. The

initial data values are copied from ROM to RAM at the time of

initialization by the library routine rcopy .

The final step, called �locating", consists of assigning absolute

target-memory locations to relocatable segments and resolving address

references. The linking locator gives you complete control over

placement of all code and data, but it also has the capacity; to

automatically locate collections of segments in bounded areas of the

target memory. The output is an object module with absolute addresses

substituted where appropriate. A completely located module contains

all the information necessary to load and execute the code on the

target microprocessor. The linking locator can resolve the problem of

storing a program into a fragmented memory space consisting of ROM,

RAM and I/O mapped device addresses.

Overview 1–15

• • • • • • • •

• Formatter

The formatter converts the contents of an absolute object module into

one of the industry standard formats, in either an ASCII hex or a binary

format. The formats provide for loading of object text, that is, code and

data, into memory of the target processor using a loader. The loader is

generally provided by an emulator or other instrumentation system, or

by a ROM-resident monitor program. The formatter offers many

different formats in order to be compatible with a wide range of

loaders.

The input is a module from the linking locator and the output is a

formatted load file. The formats may also be used as input to a PROM

burner to program read-only memory.

• Librarian

The librarian is a tool for managing libraries of program modules at the

pre-link or post-link phase of development. The librarian creates,

maintains, and selectively lists library index files. A library index file is

a text file defining an indexing structure which describes a collection of

object modules. It consists of a series of index entries, one for each

object module. The librarian's input is taken from the library and/or

object modules named on the command line or through options

specified on the command line. The object modules named on the

command line or in a file are added to the library. Libraries simplify the

task of linking modules, since the linking locator can automatically

search libraries for required modules.

• Global Symbol Mapper

The global mapper (gsmap) displays global symbols either

alphabetically or by address. Gsmap can be used before or after linking

or locating to list external names and the definitions of global symbols.

The gsmap listing shows an absolute address (after locating), length,

class, and alignment for each segment.

• Object Size List Utility

The object size list utility (olsize) lists the total number of words of

code, data, and constant data in an object module.

Chapter 11–16
O
V
E
R
V
IE
W

• Symbol List Utility

The symbol list utility (symlist) produces a listing of all global and

local symbols. When the debugger option, (-d), is used in compilation

or assembly, target locations for source lines of input code are included

in the listing. The input may be any combination of unlinked object

modules, linked object modules, and absolute modules. The symlist

listing is composed of three parts: a table of executable line numbers

and code addresses, a listing of all symbols and their attributes, and an

alphabetical list of all symbols with pointers to each symbol's definition

and attributes.

Overview 1–17

• • • • • • • •

1.6 GETTING STARTED

1.6.1 BEFORE STARTING

Before using CrossView Pro, there are several things that you must do:

• Install the CrossView Pro software. Directions for your particular

system are found in the Software Installation chapter.

• Configure your execution environment as described in the

Execution Environment addendum.

• Compile the program that you want to debug. A brief description

of this process is outlined in the section Building Your Executable
later in this chapter.

For the purpose of getting you started quickly, we have supplied you with

a demo program that you can debug. The demo program is demo.abs .

1.6.2 SETTING UP THE EXECUTION ENVIRONMENT

The following text only applies to ROM monitor and emulator versions of

CrossView Pro.

In order for the host and execution environment to communicate, a proper

connection must exist between the two machines. Here are some

important considerations:

• Use the correct kind of RS�232 cable. Note there are at least two

types of cables, null modem and direct. Consult the execution

environment's manual for the correct type.

• Make sure the execution environment is configured to communicate

with the host at the baud rate that CrossView Pro expects. Usually,

the baud rate is 9600, but this is not always the case.

• Use the correct ports on both the execution environment and host.

Many machines have two ports. If you use a different port on the

host than the default (COM1 for PC), you will have to use a special

startup switch, -D. See the startup options of the Using CrossView
Pro chapter.

• See the addendum for details on the connection to the execution

environment.

Chapter 11–18
O
V
E
R
V
IE
W

1.6.3 STARTING CROSSVIEW PRO

To invoke CrossView Pro, simply double-click on its icon. CrossView Pro

starts up and opens the command window, source window and other

windows.

Menu Bar Main Toolbar

LocalMain

Breakpoint

Source Window
Status Bar

Toggle

ToolbarsStatus Bar

Local Toolbar

Figure 1-4: Command Window

Overview 1–19

• • • • • • • •

CrossView Pro can be passed the name of an execution (*.abs) file. This

can be done from a command line, but the native windowing system often

provides alternatives. Usually this involves dragging the program to be

debugged onto the CrossView Pro executable from the Windows Explorer

for Windows 95/98/XP/NT/2000, and dropping it there or associating

CrossView Pro to be the application to start when double-clicking an

.abs icon. CrossView Pro will start and load the symbol information from

that file.

1.6.3.1 CROSSVIEW PRO TARGET SETTINGS

You can specify specific CrossView Pro startup settings in the Target

Settings dialog.

To open the Target Settings dialog:

• From the Target menu, select Settings...

The Target Settings dialog box appears as shown in figure 1-5.

Figure 1-5: CrossView Pro Target Settings

Chapter 11–20
O
V
E
R
V
IE
W

You can set the following items in this dialog:

• Select a target configuration file (*.cfg) containing some target

specific configuration items. This file is optional. See the text below

for more information.

• Select the CPU type.

• Specify the source directories for CrossView Pro. Click on the

Configure... button to change the list of source directories.

Target Configuration

The available targets are described by the target configuration files (*.cfg
in the etc subdirectory). The target configuration files are text files and

can be edited with any text editor.

Empty lines, lines consisting of only white space are allowed. Comment

starts at an exclamation-sign ('!') and ends at the end of the line.

An information line has the following synopsis:

[! comment] field: field-value

field one of the keywords described below

field-value the value assigned to the field

comment optional comment

The fields listed in the configuration file are:

Field Description

title The full name of the configuration. This
name will be displayed in the Target
configuration field of the Target
Settings dialog.

cpu_type The name of the CPU. You can specify
multiple CPU types separated by white
space.

debug_instrument_module The name of the Debug Instrument (using
GDI) used for debugging.

radm The name of the Debug Instrument (using
KDI) used for RTOS aware debugging.
(optional).

Overview 1–21

• • • • • • • •

DescriptionField

transparent_cmd The terminal emulator program command
line to use when entering transparency
mode via the View | Transparent
Mode menu item (ROM monitor only).

BDM_DelayFactor (0–453556) set the timing delay factory for
communications to the BDM port (BDM
68K only).

Notes:

• Fields not required for the target can be omitted.

• CrossView Pro searches for the *.cfg files in the current directory and

in the etc directory.

1.6.3.2 CONFIGURING CROSSVIEW PRO

You may have to configure CrossView Pro to talk to the emulator or ROM

monitor. If you have a simulator version this step is not needed and the

associated menu item is grayed. To configure CrossView Pro:

• From the Target menu, select Communication Setup...

The Communication Setup dialog box appears as shown in figure

1-6.

• Adjust the communication parameters (baud rate and I/O port) to

match your hardware configuration.

• Close the dialog box by clicking on the OK button.

• The settings in this dialog (and other dialogs) will be saved on

exiting CrossView Pro, when the Save desktop and target settings

check box in the Save tab of the Options dialog is set. This dialog

always appears on exiting CrossView Pro.

Chapter 11–22
O
V
E
R
V
IE
W

Figure 1-6: Setting up CrossView Pro Communications

1.6.3.3 LOADING SYMBOLIC DEBUG INFORMATION

You must tell CrossView Pro which program that you want to debug. To

do this:

• From the File menu, select Load Symbolic Debug Info...

The Load Symbolic Debug Info dialog box appears, as shown in

figure 1-7.

• Type in the path and file name of the program that you want to

debug, or click on the Browse... button to bring up a file selection

dialog box. In our example we are using demo.abs . Note that in

most cases you will want to set the code bias field to 0x0000.

• Set the Download image too check box by clicking on it, if you

want to download the image of your absolute object file to the

target. You can decide to postpone downloading to the target. In

that case you can select Download Application... from the File

menu any time afterwards.

• Set the Reset target system check box if you want to reset the

target system to its initial state. You can decide to postpone resetting

the target. In that case you can select Reset Target System from

the Run menu afterwards.

Overview 1–23

• • • • • • • •

• Set the Goto main check box if you want to execute the startup

code. This automatically enables the Reset application check box.

You can decide to postpone going to the main function. In that

case you can execute a high-level single step afterwards.

• Set the Use memory definition file check box if you want

CrossView Pro to process an application specific memory definition

file before a new application file is loaded and/or downloaded to

the target. CrossView Pro uses such a file to determine how much

memory must be allocated from the system and how logical

addresses are mapped to physical addresses.

• When you click on the Communication setup... button (if

available), the Communication Setup dialog box appears as shown

in figure 1-6. With the Target Settings... button you can open the

Target Settings dialog. Please check the information in these dialogs

before downloading an application.

• When you click on the Load button, the program's symbol file will

be loaded into the debugger and, if you have set the Download

image too check box, the image of your absolute object file will be

downloaded.

• Clicking on Cancel ignores all actions.

Figure 1-7: Loading Symbolic Debug Information

Chapter 11–24
O
V
E
R
V
IE
W

CrossView Pro remembers all previously saved settings. In this case, the

Load Symbolic Debug Info dialog already contains the previously saved

configuration, so you only have to click the Load button to perform your

actions.

Compare Application

You can use the File | Compare Application... dialog to check if a file

matches the downloaded application. This can be useful when your

program has changed some of your code.

1.6.4 EXECUTING AN APPLICATION

To view your source while debugging, the Source Window must be open.

To open this window,

• From the View menu, select Source | Source lines

Before starting execution you have to reset the target system to its initial

state. The program counter, stack pointer and any other registers must be

set to their initial value. The easiest way to do this is:

• Set the Reset target system check box and the Goto main check

box in the Load Symbolic Debug Info dialog box. (See the previous

section) Goto main automatically enables the Reset application

check box.

Depending on your execution environment a target system reset may have

undesired side effects. For this reason, the target system reset is executed

before the code is downloaded to the target.

If you have not checked these items:

• From the Run menu, select Reset Target System

• From the Run menu, select Reset Application

• Execute a high-level single step (either into or over) using the

toolbar in the Source Window (or F11/F10).

The first single step executes the startup code and stops at the first line of

code in main() . You should see your program's source code.

Another way of getting there is:

• Set a breakpoint at the entry of in main() by clicking on a

breakpoint toggle at the left side of the text in the Source Window.

See figure 1-8.

Overview 1–25

• • • • • • • •

• Start the application with Run | Reset Application and Run |

Run.

To set a breakpoint you can:

• Click on a breakpoint toggle (as shown in figure 1-8) to set or to

remove a breakpoint. A green colored toggle shows that no

breakpoint is set. A red colored toggle shows that a breakpoint is

installed. An orange colored toggle shows that an installed

breakpoint is disabled.

Due to compiler optimizations it is possible that a C statement does

not translate in any executable code. In this case you cannot set a

breakpoint at such a C statement. No breakpoint toggle is shown in

this case.

Breakpoint
Toggles

Current
Execution Position

Status
Bar

Coverage
Markers

Profiling

Figure 1-8: Getting Control

Now it is time to execute your program:

• From the Run menu, select Run

Chapter 11–26
O
V
E
R
V
IE
W

In the Source Window the current execution position (the statement at the

address identified by the current value of the program counter) is

higlighted in blue. As a result, when execution stops, the line you set a

breakpoint on is highlighted. You can now single step through your

program using the Step Into and Step Over buttons in the Source

Window. Or you may choose to execute the rest of the program (or at

least until the next breakpoint) with the Run button.

At any point you can interrupt the emulator and regain control by clicking

on the Halt button in either the Source Window or the Command

Window.

For more information on executing a program, see the chapter Controlling
Program Execution.

Overview 1–27

• • • • • • • •

1.6.5 DEBUGGING AN APPLICATION

When debugging your application you probably want to see the calling

sequence of your program, and inspect the contents of variables and data

structures used within your program.

To see the calling sequence of your program the Stack Window must be

open. The stack window shows the functions that are currently on the

stack. To open the stack window,

• From the View menu, select Stack

To see the value of the local variables of a function,

• From the View menu, select Data | Watch Locals Window

Figure 1-9: Watch variables

Chapter 11–28
O
V
E
R
V
IE
W

To inspect the value of global variables and data structures,

• Double-click on the variable name in the Source Window.

Depending on preferences you have set, the variable is shown in the Data

Window as shown in figure 1-9 or the dialog displayed in figure 1-10 is

shown.

Figure 1-10: Expression evaluation

Pointers, structures and arrays displayed in the data window have a

compact and expanded form. The compact form for a structure is just

<struct> , while the expanded form shows all the fields. The compact

form of a pointer is the value of the pointer, while the expanded form

shows the pointed-to object. The compact form is indicated by putting a

'+' at the start of the display. (i.e., the object is expandable), while a '-'

indicates the expanded form (i.e., the object is contractible). Nesting is

supported, so structures within structures can likewise be expanded, ad

infinitum.

To expand a pointer or a structure:

• Click on the '+' in the Data Window

Overview 1–29

• • • • • • • •

1.6.6 CROSSVIEW PRO OUTPUT

Nearly every CrossView Pro command can be given using the graphical

user interface. These commands and the debugger's response is logged in

the Command Output Window which is the upper part of the Command

Window. Alternatively, CrossView Pro commands can be entered directly

(without using the menu system) in the command edit field of the

command window.

To open the Command Window:

• From the View menu, select Command | CrossView

Figure 1-11 shows an example of the Command Window. Commands can

be typed into the command edit field (bottom field) or selected from the

command history list (middle field) and edited then executed. The top

field is referred to as the Command Output Window. Each command,

echoed from the command edit field, is displayed with a '>' prefix.

CrossView's response to the command is displayed below the command.

Command Edit Field Command History List

Output WindowCrossView ResponseCrossView Command

Figure 1-11: CrossView Pro Command Output

You can choose to clear the command edit field after executing a

command. From the File menu, select Options... and select the Desktop

tab. Enable the Clear command line after executing command check

box. You can use the clear command to clear the Output Window.

Chapter 11–30
O
V
E
R
V
IE
W

1.6.7 EXITING CROSSVIEW PRO

To quit a debugging session:

• From the File menu, select Exit or close the Command Window.

• In the Options dialog that appears, select in the Save tab the

options you want to be saved for another debug session.

• Click on the Exit button in the Options dialog.

If you selected one or more items in the Options dialog, your settings will

be saved in the initialization file xvw.ini . This file is located in the

startup directory.

Workspace files

If you have set the Save desktop and target settings check box in the

Save tab, CrossView Pro will create a workspace file (.cws) for each

debugged or loaded application. The settings will be restored in a

following debug session. If CrossView Pro cannot find a workspace file for

a loaded application it uses the default workspace file xvw.cws in the etc
directory.

A CrossView Pro workspace file contains:

• Window positions and sizes

• Local toolbars status

• Main toolbar configuration

• Monitored variables in Data windows

• Memory window settings

• Terminal window settings

• Coverage and profiling display settings in the Source window

• Color settings

Overview 1–31

• • • • • • • •

1.6.8 WHAT YOU MAY HAVE DONE WRONG

Most problems in starting up CrossView Pro for a debugging session stem

from improperly setting up the execution environment or from an

improper connection between the host computer and the execution

environment. Some targets will require you to enter transparency mode to

set the execution environment for a debugging session. Check the notes

for your particular execution environment.

Here are some other common problems:

• Specifying the wrong device name when invoking the debugger.

• Specifying a baud rate different from the one the execution

environment is configured to expect.

• Not supplying power to the execution environment or an attached

probe.

• Using the wrong kind of RS�232 cable.

• Plugging the cable into an incorrect port on the execution

environment or host. Some target machines and hosts have several

ports.

• Installation of a device driver or resident application that uses the

same communications port on the host system.

• The port may already be in use by another user on some UNIX

hosts, or being allocated by a login process.

Chapter 11–32
O
V
E
R
V
IE
W

1.6.9 BUILDING YOUR EXECUTABLE

The subdirectory xvw in the examples subdirectory contains a demo

program for the 68K/ColdFire toolchain.

In order to debug your programs, you will have to compile, assemble, link

and locate them for debugging using the TASKING 68K/ColdFire tools.

You can use EDE, the Embedded Development Environment (which uses a

project file and a makefile) or you can call the makefile from the

command line.

1.6.9.1 USING EDE

EDE stands for "Embedded Development Environment" and is the

Windows oriented Integrated Development Environment you can use with

your TASKING toolchain to design your application.

To use EDE on the demo program, located in thesubdirectory xvw in the

examples subdirectory of the 68k product tree, follow the steps below.

A detailed description of the process creating the sample program

demo.abs is described below. This procedure is outlined as a guide for

you to build your own executables for debugging.

The dialog boxes shown in this manual serve as an example. They may

slightly differ from the ones in your product.

How to Start EDE

You can launch EDE by double-clicking on the EDE shortcut on your

desktop.

The EDE screen provides you with a menu bar, a toolbar (command

buttons) and one or more windows (for example, for source files), a status

bar and numerous dialog boxes.

Overview 1–33

• • • • • • • •

Output Window
Contains several tabs to display
and manipulate results of EDE
operations. For example, to view
the results of builds or compiles.

Document W indows
Used to view and edit files.

Project W indow
Contains several
tabs for viewing
information about
projects and other
files.

Compile Build Rebuild Debug On–line ManualsProject Options

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the

correct toolchain of the product you purchased is selected and displayed

in the title of the EDE desktop window.

If you selected the wrong toolchain or if you want to change toolchains do

the following:

1. From the Project menu, select Select Toolchain...

The Select Toolchain dialog appears.

Chapter 11–34
O
V
E
R
V
IE
W

2. Select the toolchain you want. You can do this by clicking on a toolchain

in the Toolchains list box and click OK.

If no toolchains are present, use the Browse... or Scan Disk... button to

search for a toolchain directory. Use the Browse... button if you know the

installation directory of another TASKING product. Use the Scan Disk...

button to search for all TASKING products present on a specific drive.

Then return to step 2.

How to Open an Existing Project

Follow these steps to open an existing project:

1. From the Project menu, select Set Current ->.

2. Select the project file to open. For the demo program select the file

demo.pjt , located in the subdirectory xvw in the examples subdirectory

of the 68K/ColdFire product tree. If you have used the defaults, the file

demo.pjt is in the directory c:\...\c68k version \examples\xvw .

How to Load/Open Files

The next two steps are not needed for the demo program because the file

demo.c is already open. To load the file you want to look at:

1. From the Project menu, select Load Files...

The Choose Project Files to Edit dialog appears.

Overview 1–35

• • • • • • • •

2. Choose the file(s) you want to open by clicking on it. You can select

multiple files by pressing the <Ctrl> or <Shift> key while you click on a

file. With the <Ctrl> key you can make single selections and with the

<Shift> key you can select everything from the first selected file to the file

you click on. Then click OK.

This launches the file(s) so you can edit it (them).

Check the directory paths

1. From the Project menu, select Directories...

The Directories dialog appears.

2. Check the directory paths for programs, include files and libraries. You can

add your own directories here, separated by semicolons.

Chapter 11–36
O
V
E
R
V
IE
W

3. Click OK.

How to Build the Demo Application

The next step is to compile the file(s) together with its dependent files so

you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify

additional build options such as to stop the build process on errors and to

keep temporary files that are generated during a build.

1. From the Build menu, select Options...

The Build Options dialog appears.

2. Make your changes and press the OK button.

3. From the Build menu, select Scan All Dependencies.

4. Click on the Execute 'Make' command button. The following button is

the execute Make button which is located in the toolbar.

If there are any unsaved files, EDE will ask you in a separate dialog if you

want to save them before starting the build.

Overview 1–37

• • • • • • • •

How to View the Results of a Build

Once the files have been processed you can inspect the generated

messages in the Build tab.

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and

formatted they can be executed by CrossView Pro.

To execute CrossView Pro:

1. Click on the Debug application button. The following button is the

Debug application button which is located in the toolbar.

CrossView Pro is launched. CrossView Pro will automatically download the

compiled file for debugging.

How to Start a New Project

When you first use EDE you need to setup a project space and add a new

project:

1. From the File menu, select New Project Space...

The Create a New Project Space dialog appears.

2. Give your project space a name and then click OK.

The Project Properties dialog box appears.

3. Click on the Add new project to project space button.

The Add New Project to Project Space dialog appears.

4. Give your project a name and then click OK.

The Project Properties dialog box then appears for you to identify the files to
be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

Chapter 11–38
O
V
E
R
V
IE
W

• If you do not have any source files yet, click on the Add new file to

project button in the Project Properties dialog. Enter a new filename

and click OK.

• To add existing files to a project by specifying a file pattern click on

the Scan existing files into project button in the Project Properties

dialog. Select the directory that contains the files you want to add to

your project. Enter one or more file patterns separated by semicolons.

The button next to the Pattern field contains some predefined

patterns. Next click OK.

• To add existing files to a project by selecting individual files click on

the Add existing files to project button in the Project Properties

dialog. Select the directory that contains the files you want to add to

your project. Add the applicable files by double-clicking on them or by

selecting them and pressing the Open button.

The new project is now open.

6. From the Project menu, select Load Files... to open the files you want on

your EDE desktop.

EDE automatically creates a makefile for the project. EDE updates the

makefile every time you modify your project.

2

SOFTWARE
INSTALLATION

C
H

A
P

T
E

R

Chapter 22–2
IN
S
TA

L
L
A
T
IO
N

2

C
H

A
P

T
E

R

Software Installation 2–3

• • • • • • • •

2.1 INTRODUCTION

This chapter describes additional notes for running the CrossView Pro

debugger under the X Windows environment on UNIX.

Installation of the TASKING CrossView Pro debugger is part of the

installation of the TASKING 68K/ColdFire product, which is described in

chapter Installation Guide of the 68K/ColdFire Getting Started Manual.

2.2 NOTE ABOUT FILENAMES

Members of the CrossView Pro family of debuggers use the following

name convention for their executables:

xfw68

2.3 CONFIGURING THE X WINDOWS MOTIF

ENVIRONMENT

To run the Motif version of CrossView Pro on a Sun, you must define the

environment variable LD_LIBRARY_PATH to where the library file

libMrm.a resides. For example:

LD_LIBRARY_PATH=/usr/dt/lib
export LD_LIBRARY_PATH

CrossView Pro uses a binary resource file for appearance-related

specifications for windows, menus, dialog boxes, and strings to be

accessed at run-time. The name of the resource file has the same name as

the executable but with .uid extension. Be sure that the .uid file is

present in one of the following directories:

1. the current directory

2. the directory specified by the UIDPATH environment variable

The environment variable UIDPATH specifies the path used by Motif to

locate the resource (.uid) file. If not set, it is set to a default value. The

resource file is installed in the same directory as the associated executable.

So, you should set UIDPATH as follows (Bourne shell syntax):

UIDPATH=path_to_uid/%U
export UIDPATH

Chapter 22–4
IN
S
TA

L
L
A
T
IO
N

Replace path_to_uid by the path to the directory in which the resource

file is installed. The %U is required.

For more details refer to MrmOpenHierarchy in the OSF/Motif
Programmer's Reference manual.

2.4 USING X RESOURCES

X toolkit resources specify GUI object (widget) attributes. Resources are

specified in either the .Xdefaults file or in application class-specific

files.

The .Xdefaults file is (typically) loaded into the X server at the start of

the session. Any changes take effect only in a new session, or after using

xrdb. Alternatively, application class resource files may be used.

Application resource files have the same name as the executable

CrossView Pro version they refer to (first letter NOT capitalized).

Application resource files must be present either in the directory specified

by the HOME environment variable, or in the app–defaults directory.

The app–defaults directory is typically located under /usr/lib/X11 .

X recognizes various environment variables for specifying paths to the

application resource files. For more information, consult the chapter on X

resources in O'Reilly's X Toolkit Intrinsics Programming Manual and your

system documentation.

The X resource specification allows either global (loosely) bound

specifications (*foreground: black) or per-widget instance

specifications (*button.foreground: black).

The following list shows the relevant widgets used by the Motif version of

CrossView Pro:

Windows:

TOP-LEVEL - XmMainWindow => XmDrawingArea

CHILD - XmScrolledWindow => XmDrawingArea

Dialog:

MODAL - XmBulletinBoard
MODELESS - XmBulletinBoard

Software Installation 2–5

• • • • • • • •

Menu:

MENUBAR - XmMenuShell

PULLDOWN - XmCascadeButton

Controls:

CHECKBOX - XmToggleButton
RADIOBUTTON - XmToggleButton

TEXT - XmLabel

EDIT - XmText

LISTBOX - XmScrolledWindow => XmList
SCROLLBAR - XmScrollBar

PUSHBUTTON - XmPushButton

LISTBUTTON - XmText & XmArrowButton &

 XmScrolledWindow => XmList
LISTEDIT - XmText & XmArrowButton &

 XmScrolledWindow => XmList

GROUPBOX - XmFrame => XmLabel
ICON - XmLable with pixmap

FILESELECTION - XmFileSelectionBox

ERRORPOPUP - XmMessageBox

CrossView Pro repaints its windows in the default color as specified with

the Motif widget resource settings. It is possible to overrule this behavior

with a resource setting like: "*XmDrawingArea.background: blue ".

CrossView Pro uses a non proportional font in all of its windows. The font

size is selected using the "Desktop Setup dialog". You can use the "font"

resource (*fontList on Motif) to select the font to be displayed in the

menubar and dialogs, it won't affect the font displayed in the CrossView

Pro windows.

The CrossView Pro stack and data windows are implemented using a

XmScrolledWindow widget on Motif.

The following list show the contents of an example app–defaults file

intended for Motif environments. Of course you may adjust the colors and

font to your preferences. Sample app–defaults files are delivered with

the product in the etc directory (app_def.mwm for Motif).

*fontList: 7x13bold
*foreground: black
*XmMainWindow.background: white

Chapter 22–6
IN
S
TA

L
L
A
T
IO
N

*XmScrolledWindow*background: white
*XmDrawingArea.background: white
*XmBulletinBoard.background: DarkSeaGreen
*XmToggleButton*background: gray
*XmLabel*background: gray
*XmText*background: white
*XmScrollBar*background: gray
*XmPushButton*background: gray
*XmFrame*background: SeaGreen
*XmArrowButton*background: gray
*XmForm.background: SeaGreen
*XmMenuShell*background: DarkSeaGreen
*XmCascadeButton*background: SeaGreen

If you encounter any problems due to incorrect resource settings, like

invisible text caused by identical text and background color, clear the

RESOURCE_MANAGER. Use the following procedure to clear the

RESOURCE_MANAGER:

1. Save a copy of the .Xdefaults file located in your home directory.

2. Install an empty .Xdefaults file.

3. Execute xrdb –all .Xdefaults to actually clear the

RESOURCE_MANAGER property.

4. Restart CrossView Pro and check if windows and dialogs are displayed

correctly.

5. Now you add the saved resources (one by one) back into the

.Xdefaults file and execute xrdb to install them in the server. Restart

CrossView Pro and check the influence of the new resource settings.

Adapt your saved resources when necessary.

3

COMMAND
LANGUAGE

C
H

A
P

T
E

R

Chapter 33–2
L
A
N
G
U
A
G
E

3

C
H

A
P

T
E

R

Command Language 3–3

• • • • • • • •

3.1 INTRODUCTION

The syntax and semantics of CrossView Pro's command language is

discussed here. This language is mainly used to enter textual commands in

the command edit field of the Command Window. The mouse and menus

allow you to access most actions without knowing the command language,

although the command language is more powerful. The command

language is also used when evaluating expressions and in commands

associated with assertions, breakpoints and macros. For information about

specific CrossView Pro commands, refer to Chapter 13, Command
Reference.

3.2 CROSSVIEW PRO EXPRESSIONS

There are several methods that you can use to input an expression into

CrossView Pro:

It is possible to display both monitored and unmonitored expressions in

the Data Window. Monitored expressions are updated after every halt in

execution. Unmonitored expressions are just one-shot inspections of the

expressions value. Refer to section 4.6, CrossView Pro Windows for a

detailed description of the Data Window.

To evaluate a simple expression:

Double click on a variable in the Source window. The result of the

expression appears in the data window. Alternatively, depending on the

preferences you set in the Data Display Setup dialog, the expression

appears in the Evaluate Expression dialog. Click the Add Watch or

Add Show button to display the result of the expression in the Data

Window. Click the Evaluate button to display the result of the expression

in the output field of the Evaluate Expression dialog.

To evaluate a complex expression:

From the Data menu, select Evaluate Expression... and type in any C

expression in the Evaluate Expression dialog box. Optionally select a

display format. Click the Evaluate button.

Type the expression into the command edit field of the Command

Window followed by a return or click the Execute button.

Chapter 33–4
L
A
N
G
U
A
G
E

Expressions can be any length in most windows and dialog boxes;

CrossView Pro provides a horizontal scroll bar if an expression exceeds

the visible length of the entry field.

In CrossView Pro, C expressions may consist of a combination of numeric

constants, character constants, strings, variables, register names, C

operators, function names, function calls, typecasts and some CrossView

Pro-specific symbols. Each of these is described in the next sections.

Evaluation Precision

CrossView Pro evaluates expressions using the same data types and

associated precision as used by the target architecture when evaluating the

same expression.

3.3 CONSTANTS

CrossView Pro, like C, supports integer, floating point and character

constants.

Integers

Integers are numbers without decimal points. For example, CrossView Pro

will treat the following as integers:

5 9 23

The following number, however, are not treated as integers:

5.1 9.27 0.23

Negative integers, if they appear as the first item on a line, must have

parentheses around the number:

(–5)*4

This is to prevent confusion with CrossView Pro's own - (minus sign)

command.

In addition, CrossView Pro supports standard C octal, hexadecimal and

binary notation. You can specify a hexadecimal constant using a leading

0x or a trailing H (or h). The first character must be a decimal digit, so it

may be necessary to prefix a hexadecimal number with the '0' character.

The hexadecimal representation for decimal 16 is:

0x10 or 10H

Command Language 3–5

• • • • • • • •

For the hexadecimal digits a through f you can use either upper or lower

case. The following are all correct hexadecimal representations for decimal

43981:

0xabcd 0xABCD 0abCdH 0AbcDh

You can specify a binary constant using a trailing B or Y (or b or y). The

following are all binary representations for decimal 5:

0101b 101Y 00000101B

You can specify an octal constant using a leading '0'. The octal

representation for 8 decimal is:

010

You can use an L to indicate a long integer constant. For example,

CrossView Pro will recognize the following as long integers:

0L 57L 0xffL

CrossView Pro uses the same ANSI C integral type promotion scheme as

the C compiler.

Floating Point

A floating point number requires a decimal point and at least one digit

before the decimal point. The following are valid examples of floating

point numbers:

12.34 5.6 7.89

Exponential notation, such as 1.234e01 , is not allowed. The following

are not valid floating point numbers:

.02 1.234e01 5

As with integers, bracket a negative number with parentheses:

(–54.321)

Expressions combining integers and floating point numbers will evaluate

to floating point values:

2.2 * 2
4.4

Chapter 33–6
L
A
N
G
U
A
G
E

Character

Character constants are single characters or special constants that follow

the C syntax for special characters. Examples of valid character constants

include:

’m’ ’x’ ’\n’

Character constants must be a single byte and are delimited by ’’ (single

quotation marks). For instance:

$mychar=’m’

Remember not to confuse character constants with strings. A character

constant is a single byte, in this example, the ASCII value of m.

Strings

Strings are delimited by ” ” (double quotation marks). In C all strings end

with a null (zero) character. Strings are referenced by pointer, not by

value. This is standard C practice. In CrossView Pro, you may assign a

string literal to a variable which is of type char* (pointer to character):

$ystring = ”name”

CrossView Pro supports the standard C character constants shown below:

Code ASCII Hex Function

\b BS 08 Backspace

\f FF 0C Formfeed

\n NL (LF) 0A Newline

\r CR 0D Carriage return

\t HT 09 Horizontal tab

\\ \ 5C Back slash

\? ? 3F Question mark

\’ ’ 27 Single quote

\” ” 22 Double quote

\ ooo 3–digit octal number

\x hhh hexadecimal number

Table 3-1: C character codes

Command Language 3–7

• • • • • • • •

Trigraph sequences are not supported.

3.4 VARIABLES

CrossView Pro lets you use variables in the C expressions you type. You

may reference two classes of variables: variables defined in the source

code and special variables.

Variables defined in your source code fall into two categories: local
variables and global variables.

Storage Classes

Variables may be of any C storage class. The size of each class is target

dependent. Consult the C Compiler/Assembler User's Manual for specific

sizes.

You may cast variables from one class to another:

(long) $mychar

Local Variables

You define local variables within a function; their values are maintained on

the stack or in registers. When the program exits the function, you lose

local variable values. This means that you can only reference local

variables when their function is active on the stack.

Local variables of type static retain values between calls. Therefore, you

can reference static variables beyond their functions, but only if their

function is active on the stack.

CrossView Pro knows whether the compiler has allocated a local variable

on the stack or directly in a register and whether the register is currently

on the stack. The compiler may move some local variables into registers

when optimizing code.

If a part of your source code looks like this:

x = 5;
y = x;

and you stopped the program after the assignment to x , and set x to

another value, this may not prevent the second statement from setting y to

5 due to "constant folding" optimizations performed by the compiler.

Chapter 33–8
L
A
N
G
U
A
G
E

Global Variables

Global variables are defined outside every function and are not local to

any function. Global (non-static) variables are accessible at any point

during program execution, after the system startup code has been

executed.

Global variables can be defined static in a module. These variables can

only be accessed when a function in this module is active on the stack, or

when that file is in the Source Window using the e command.

Specifying Variables in C expressions

The following table specifies how CrossView Pro treats different variables

in C expressions. The left column is the variable's syntax in the expression,

the right column is the CrossView Pro semantics.

Variable Syntax CrossView Pro Behavior

variable CrossView Pro performs a scope search starting at
the current viewing position and proceeding outwards.
The debugger first checks locals, local statics and
parameters, followed by statics and globals explicitly
declared in the current file. Finally, globals in other
files are checked.

function#variable CrossView Pro searches for the first instance of
function. If found, the debugger uses the frame’s
address to perform a scope search for variable.
Variables are available only if the specified function is
active. That is, the stack frame for that function can be
found on the run–time stack.

number#variable The frame at stack level number is used by the
debugger for the scope search. The current function is
always at stack level 0. This format is very useful if
you are debugging a recursive function and there are
multiple instances of a variable on the stack.

:variable CrossView Pro searches for a global variable named
either variable or _variable, in that order.

$variable CrossView Pro searches the list of special variables
for $variable.

Table 3-2: Variables in C expressions

Command Language 3–9

• • • • • • • •

Variables and Scoping Rules

A variable is in scope at any point in the program if it is visible to the C

source code. For instance, if you have a local variable initval declared

in main() , and then step (or move the viewing position) into factorial ,

initval will be out of scope. You can still find the value of initval by

typing:

main#initval

In this case CrossView Pro will search the stack for the function main() ,

then look outwards from that function for the first occurrence of initval
in scope and report its value. Note that main() must be active, that is,

program execution must have passed through main() and not yet

returned, in order for initval to have a value.

You can also use the Browse... button in the Expression Evaluation dialog

box. This dialog box appears when you click the New Expression button

in the toolbar or select Evaluate Expression... from the Data menu.

Special Variables

CrossView Pro maintains a set of variables that are separate from those

defined in your program being debugged. These special variables reside in

memory on the host computer, not on the target system. They contain the

values of the target processor's registers, information about the debugger's

status, and user-defined values. Special variables are case insensitive. Use

the opt command to display and set these variables (without using the

'$'-sign).

The following is a list of the reserved special variables for CrossView Pro:

Reserved Variable Description

$ARG(n) Contains the value of the nth int–sized argument of the
current function. Allows access to arguments of variable
argument list functions without knowing the name of the
argument.

$FILE Contains the name of the file that holds the current
viewing position.

$IN(function) Contains the value 1 if the current pc is inside the
specified function, otherwise 0.

$LINE Contains the line number of the current viewing position.
This variable is often used in assertions to monitor
program flow.

Chapter 33–10
L
A
N
G
U
A
G
E

DescriptionReserved Variable

$PROCEDURE Contains the name of the procedure at the current
viewing position.

$ASMHEX Contains a string ”ON” or ”OFF”. The value ”ON”
specifies that the disassembled code as displayed in the
assembly window will display hexadecimal opcodes.
Default is ”OFF”.

$AUTOSRC Contains a string ”ON” or ”OFF”. The value ”ON”
specifies that the debugger will automatically switch
between the source window and the assembly window
display depending on the presence of symbolic debug
information at the current location. The value ”OFF”
prevents the automatic window switching. Default is
”OFF”.

$CPU Contains a string indicating the current CPU type.

$FP Contains the value of the frame pointer.

$MIXEDASM Contains a string ”ON” or ”OFF”. The value ”ON”
specifies that the disassembled code as displayed in the
assembly window will be intermixed with the
corresponding source lines. The value ”OFF”
suppresses this intermixing. Default is ”ON”.

$MORE Contains a string ”ON” or ”OFF”. The value ”ON”
specifies that the more output pager is enabled. The
value ”OFF” disables the more output pager. Default is
”ON”.

$PC Contains the value of the program counter.

$register Contains the value of the specified register.

$SP Contains the value of the stack pointer.

$SYMBOLS Contains a string ”ON” or ”OFF” indicating if local
symbols and symbolic addresses (e.g. main:56+0x4)
or absolute addresses are present in disassembly.
Default is ”ON”.

$SRCLINENRS Contains a string ”ON” or ”OFF”. The value ”ON”
specifies that line numbers should be printed in the
source window. The value ”OFF” suppresses printing of
line numbers. Default is ”OFF”.

$SRCMERGELIMIT Contains the value for the source merge limit in the
assembly window, the number of source lines to be
intermixed in the assembly window. Value 0 indicates
that there is no limit. Default is 0.

Table 3-3: Reserved special variables

Command Language 3–11

• • • • • • • •

Registers

You can reference registers and special function registers (SFRs) directly.

The format is $register. For instance, type:

$D0 = 0x12345678 Set value of register D0 to 0x12345678

$SR Inspect value of status register

For CrossView Pro, a fixed set of registers is always available. Additional

SFRs can be added by using the utility rm68. See appendix B, Register
Manager, for more information about rm68.

You can configure which (and in which order) registers must appear in the

register window in the Register Window Setup dialog (Settings | Register

Window Setup...).

It is possible to request the address of an SFR by using the address

operator &.

&$sp
Location of $SP is reg [SP]
Operand for ’&’ incorrect

&$my_sfr
0x578218

In addition to the standard register special variables, CrossView Pro

supplies the special variables: $sp (the stack pointer), $pc (the program

counter) and $fp (the current frame pointer).

The values of Reserved special variables cannot be changed interactively

(i.e., on the CrossView Pro command line).

User-defined Special Variables

During a debugging session, you may need some new variables for your

own debugging purposes, such as counting the number of times you

encounter a breakpoint. CrossView Pro allows you to create and use your

own special variables for this purpose. CrossView Pro does not allocate

space for these variables in target memory; it maintains them on the host

computer.

The names of these variables, which must begin with a $ (dollar sign), are

defined when they are first used. For instance:

$count = 5

Chapter 33–12
L
A
N
G
U
A
G
E

defines a variable named $count of type int with a value of 5. Special

variables are of the same type as the last expression they were assigned.

For example:

$name=”john”

then:

$name=3*4

creates a special variable $name of type (char *). The second statement

creates a special symbol $name and assigns it the value of 12 of type int .

Special variables are just like any other variables, except you cannot

meaningfully take the address of them. CrossView Pro allows as a default

26 user-defined special variables. You can change this limit with the -s

option at startup, or by selecting the Options... menu item from the File

menu and choosing the Initialization tab.

See the startup options in Chapter 4, Using CrossView Pro.

Command Language 3–13

• • • • • • • •

3.5 FORMATTING EXPRESSIONS

By default, CrossView Pro displays the value of an expression using the

appropriate format for the type of expression. CrossView Pro follows

several simple rules for displaying variables:

• The defaults are: addresses appear in hexadecimal format,

characters as ASCII and integers as decimal.

• There are four possible formats to show one integer value:

decimal, hexadecimal, octal, and ASCII.

• There are two different formats to display one floating point value:

decimal real and hexadecimal. If the absolute value is either too

big or too small (with too many non-significant zeroes), the

debugger automatically converts the format to one with fixed

decimal point and exponent.

• ASCII is the only format to display a string. Note that you can opt

for the array format. Unpredictable characters are output as \xhh,

where hh is a hexadecimal value. Control characters are output as

^C.

• All the values in an array appear in the same format. You are free to

select this format from the available options.

• If All the values of a structure appear in the same format. You are

free to select this format from the available options.

You can determine in which format a variable is displayed. Once the

format has been selected, however, you must enter values or change

values in the appropriate format. When editing is finished, the debugger

interprets all values in terms of the currently selected formats.

You may, however, tell CrossView Pro to display an expression in a

particular format other than the default format. The format code follows

the variable, in one of two ways:

The simplest method of specifying display formats is from the Evaluate

Expression dialog box. To access this dialog box:

• From the Data menu, select Evaluate Expression...

In the Command Window, you can use several format codes shown in

the next table to specify the variable display. The format codes can be

entered as:

variable/format

Chapter 33–14
L
A
N
G
U
A
G
E

to display the variable in format format, or:

variable@format

to display the variable's address in format format.

The structure of the formatting code is:

[count] style [size]

Count is the number of times to apply the format style style. Size indicates

the number of bytes to be formatted. Both count and size must be

numbers, although you may use c (char), s (short), i (int), and l (long) as

shorthand for size. Legal integer format sizes are 1, 2, and 4; legal float
format sizes are 4 and 8.

Be sure not to confuse CrossView Pro format codes with C character

codes, e.g. \a . CrossView Pro uses a forward slash / not a backward slash

\.

Style Description

a Print the specified number of characters of the character array; any
positive size is OK. Use the expression’s value as the address of the
first byte.

c Print a character; any positive size is OK; default size is sizeof(char).

D Print in decimal; needs NO size specifier; size is sizeof(long).

d Print in decimal; can have a size specifier; default size is
sizeof(expression).

E Print in “e” floating point notation; needs NO size specifier; default size
is sizeof(double).

e Print in “e” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

F Print in “f” floating point notation; needs NO size specifier; default size
is sizeof(double).

f Print in “f” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

G Print in “g” floating point notation; needs NO size specifier; default size
is sizeof(double).

Command Language 3–15

• • • • • • • •

DescriptionStyle

g Print in “g” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

I Print the function, source line, and disassembled instruction at the
address.

i Print the disassembled instruction at address.

n Print in the “natural” format, based on type; use it for printing variables
that have the same name as an CrossView Pro command.

O Print in octal; needs NO size specifier; size is sizeof(long).

o Print in octal; can have a size specifier; default size is
sizeof(expression).

P Print the name of the function at the address.

p Print the names of the file, function, and source line at the address.

s Print the specified number of characters of the string, using the
expression’s value as the address of a pointer to the first byte.
Equivalent to * expression/a . If no size is specified the entire string,
pointed to by expression, is printed (till nil–character).

t Display the type of the indicated variable or function.

U Print in unsigned decimal; needs NO size specifier; size is
sizeof(long).

u Print in unsigned decimal; can have a size specifier; default size is
sizeof(expression).

X Print in hexadecimal; needs NO size specifier; size is sizeof(long).

x Print in hexadecimal; can have a size specifier; default size is
sizeof(expression).

Table 3-4: Format style codes

For example, typing:

initval/4xs

displays four, hexadecimal two-byte memory locations starting at the

address of initval .

The following piece of C-code can be accessed in CrossView Pro using

the string format codes:

char text[] = ”Sample\n”;
char *ptext = text;

Chapter 33–16
L
A
N
G
U
A
G
E

text What is the address of this char array

text = 0x8200

text/a Print it as a string
text = ”Sample^J”

ptext What is the contents of this pointer

string = 0x8200

ptext/s Print it as a string

string = ”Sample^J”

&ptext Where does ptext itself reside
0x8210

With format codes, you may view the contents of memory addresses on

the screen. For instance, to dump the contents of an absolute memory

address range, you must think of the address being a pointer. To show

(dump) the memory contents you use the C language indirection operator

'*'. Example:

*0x4000/2x4
0x4000 = 0x00DB0208 0x5A055498

This command displays in hexadecimal two long words at memory

location 0x4000 and beyond. Instead of using the size specifier in the

display format, you can force the address to be a pointer to unsigned
long by casting the value:

*(unsigned long *)0x4000/2x
0x4000 = 0x00DB0208 0x5A055498

To view the first four elements of the array table from the demo.c
program, type:

table/4d4
table = 1 1 2 6

This command displays in decimal the first four 4-byte values beginning at

the address of the array table .

Command Language 3–17

• • • • • • • •

3.6 OPERATORS

Standard C Operators

CrossView Pro supports the standard C operators in the ANSI defined

order of precedence. The order of precedence determines which operators

execute first.

The semicolon character (;) separates commands on the same line. In this

way, you may type multiple commands on a single line. Comments

delimited by /* and */ are allowed; CrossView Pro simply ignores them.

Order of Precedence
(in descending order)

() [] –> .

! ~ ++ –– + – * & (type) sizeof

* // %

+ –

<< >>

< <= > >=

== !=

&

^

|

&&

||

?: = += –= *= /= %= &= ^= |= <<= >>=

Table 3-5: Order of precedence of standard C operators

The * , – and + operators appear twice since they exist as both unary and

binary operators and unary operators have higher precedence than binary.

Division is represented by // (two slashes) not / (one slash). This is to

avoid confusion with CrossView Pro's format specifier syntax.

Chapter 33–18
L
A
N
G
U
A
G
E

Using Addresses

To specify an address, you may use the & operator. To determine the

address of initval , type:

&initval

If you try to use the & operator on a local variable in a register, CrossView

Pro issues an error message and tells you which register holds the variable.

3.7 SPECIAL EXPRESSIONS

String Commands

Whenever CrossView Pro encounters an expression consisting solely of a

string by itself, it simply echoes the string. For example:

”hello, world\n”
hello, world

Use this technique to place helpful debugging messages on breakpoints.

For example, setting the following breakpoint:

60 b {”now in for loop\n”; sum; C }

this cause CrossView Pro to echo the message now in for loop , to

display the value of sum in the Command Window, and to continue when

line 60 is encountered. You can also enter this breakpoint and the

associated commands via the Breakpoints dialog box, which you can open

by selecting the Breakpoints... menu item from the Breakpoints menu.

The Period Operand

As a shorthand, CrossView Pro supports a special operand, period `.', that

stands for the value of the last expression CrossView Pro calculated. For

instance, in the following example, the period in the second command

equals the value 11, which is the result of the previous expression:

5 + 6
11
4 * .
44

Command Language 3–19

• • • • • • • •

The period operand assumes the same size and format implied by the

specifier used to view the previous item. Thus if you look at a long as a

char , a subsequent `.' is considered to be one byte. Use this technique to

alter specified pieces of a larger data item, such as the second highest byte

of a long , without altering the rest of the long . The period operand may

be used in any context valid for other variables.

`.' is the name of a location. When you use it, it is dereferenced like any

other name. If you want the address of something that is 30 bytes farther

on in memory, do not type .+30 as this takes the contents of dot and

adds 30 to it. Type instead &.+30 which adds 30 to the address of the

period operand.

3.8 CONDITIONAL EVALUATION

CrossView Pro supports the if construct. Use this construct in breakpoints

and assertions to alter program flow conditionally. For example, if you

reset the following breakpoint:

60 b {if (sum<=5931){C}{sum}}

CrossView Pro compares the value of sum with 5931 when the program

stops at line 60. If sum is less than or equal to 5931, CrossView Pro

continues. Otherwise, CrossView Pro displays the value of sum with 5931

when the program stops at line 60.

You can also use the exp1 ? exp2 : exp3 C ternary operator for conditional

expressions. For example:

$myvar = (5 > 2) ? 1 : –1

assigns the value 1 to myvar .

Chapter 33–20
L
A
N
G
U
A
G
E

3.9 FUNCTIONS

In CrossView Pro expressions, you can include functions defined in the

program's code.

Command line function calls are only allowed in an application that uses a

reentrant stack frame. When a static stack frame is used, the locator

overlays stack frames based on the application's call graph. A command

line function call may conflict with the calling sequence in the call graph

and corrupt the stack when executed.

You can call functions through the Call a Function dialog box. Note that

only the results of the function call are shown. You cannot enter

expressions in this field. If you want to use the results of the function call

in an expression, then type the expression into the Evaluate Expression

dialog box or type in the command into the Command Window (described

in the keyboard method below).

• From the Run menu, select Call a Function...

• List all functions by clicking the Browse... button.

• You can place parameters in the Parameters field of the Call a

Function dialog box, separated by commas, but without the usual

parentheses or select from the drop-down history list.

The Command Window receives the results of the function call.

Type in the expression containing a function call directly into the

Command Window.

To execute a function on the target type the function name and the

arguments as you would do in your C program. For example,

do_sub(2, 1) or: a = do_add(3,4)

Command Language 3–21

• • • • • • • •

3.10 CASE SENSITIVITY

The absolute file supplies the case sensitivity information for variable

names. It is initially case sensitive for the C language. You may toggle case

sensitivity by:

From the Edit menu, select Search String... to view the Search String

dialog box. This dialog contains the Case Sensitive check box.

Typing the (capital) Z command in the Command Window.

Chapter 33–22
L
A
N
G
U
A
G
E

4

USING
CROSSVIEW PRO

C
H

A
P

T
E

R

Chapter 44–2
U
S
IN
G

4

C
H

A
P

T
E

R

Using CrossView 4–3Using CrossView Pro

• • • • • • • •

4.1 INTRODUCTION

This chapter and the following 8 chapters give you a comprehensive

picture of CrossView Pro's features. In order to address the broadest range

of expertise, the contents range from introductory examples to the more

technical aspects and techniques of debugging with CrossView Pro. While

it is not necessary for you to read the chapters straight through, you may

find it especially helpful to do so. All of the examples are from the sample

program demo.c which comes with CrossView Pro. For a complete

description of the commands presented in this chapter, consult the

Command Reference chapter.

Each CrossView Pro command introduced in the text has a matching box

summarizing its syntax and semantics. The command description follows

these general rules:

Items in bold font are the actual CrossView Pro commands: save, set.

Items in italics are names for the things you should type: filename,
commands. In addition, the | symbol means or. For instance, screen |

filename means you can use the word "screen" or a filename in the syntax.

4.2 USING THE CROSSVIEW PRO INTERFACE

This manual uses the word �Windows" to generically refer to the host

computer system's windowing system. On IBM-PCs and compatibles, this

is equivalent to Microsoft Windows (95/98/XP, NT or 2000). On UNIX

workstations, this refers to the X Window System. Generally, this manual

makes no distinctions between the various windowing systems unless

needed to clarify the discussion.

This manual assumes you possess a basic familiarity with Windows

software. For this reason, discussion focuses on how CrossView Pro

works, rather than how to use the Window interface. For more information

on your Windows system, consult the Windows documentation provided

with your host system.

You can execute most CrossView Pro commands using either mouse or

textual commands. Mouse commands are executed by means of buttons

and pull-down menus in each of the separate CrossView Pro windows.

Text commands are typed at the prompt in the Command Window. In

most cases, there is no difference in functionality between mouse and text

equivalents.

Chapter 44–4
U
S
IN
G

This manual discusses both methods of performing CrossView Pro

functions. For a quick-reference guide to all CrossView Pro commands,

refer to the Command Reference chapter.

4.3 STARTING CROSSVIEW PRO

Once an absolute file has been made it can be executed by CrossView

Pro. There are several ways to invoke CrossView Pro.

From EDE

To start CrossView Pro from EDE (the Embedded Development

Environment), click on the Debug application button. The following

button is the Debug application button which is located in the toolbar.

From the desktop

With MS-Windows you can start CrossView Pro through the Start menu.

Or in the Windows Explorer you can double-click on an absolute file if

the .abs extension is associated with the CrossView Pro executable.

On the PC, CrossView Pro is a Microsoft Windows application. As such,

you must invoke it from the Windows environment.

From the command line

To begin the debugging session, type the name of the CrossView Pro

debugger and optionally the name of the target program (absolute file).

xfw68 [absolute–file] [option]...

Using CrossView 4–5Using CrossView Pro

• • • • • • • •

4.4 STARTUP OPTIONS

CrossView Pro allows you to specify several options when you invoke the

program. Type these startup options (or switches as they are sometimes

called) after the optional basename of the application. The basename can

also contain a path specification. In this case, CrossView Pro sets its

current directory to the specified path. A minus sign proceeds each option;

the options can appear in any order.

Note that some versions of CrossView Pro have different startup options

and procedures than the ones described here. Please consult the

Addendum (at the end of this manual), for precise information about

starting up CrossView Pro with your target hardware.

From EDE

You can select the execution environment, setup communication

parameters, specify record and playback files and set some maximum

values via the CrossView Pro entry of the Project | Project Options...

dialog.

From CrossView Pro

You can set many of CrossView Pro's options by using the dialog boxes

called by the Target | Settings... and File | Options... menu items. You

can save the options in the xvw.ini file and they are automatically used

upon startup.

In Windows 95/98/XP, Windows NT 4.0 or Windows 2000 (or higher), add

startup options to the program's property sheet:

• Right-click on the CrossView Pro shortcut icon, shown in your

program installation folder.

• Select Properties. The Program Item Properties dialog box

appears.

• Enter the startup options after the executable's name in the Target

field of the shortcut.

Use menus to set options. After setting the options in the menus and

selecting the appropriate options in the Save Options dialog on exit,

CrossView Pro saves the settings in the file xvw.ini for future debug

sessions.

To start up CrossView Pro type:

xfw68

Chapter 44–6
U
S
IN
G

When your execution environment itself has a human-oriented ASCII

interface, you can use transparency mode with the -T option. In

transparency mode you can configure the execution environment's

memory. Check the Addendum, the hardware-specific section of this

manual. In-circuit emulators generally require you to map the address

space, allocating memory ranges to the execution environment and/or the

target system. Fortunately, this generally does not mean you need to learn

your emulator's command set, just a rote sequence of startup commands.

When your CrossView Pro version does not support transparency mode,

you do not need to configure the memory, and the -T option is not

needed.

If your target system supports serial communication and if the target

system is connected to a port other than the default port (see Chapter 1,

Overview, to determine the default port for your host), you can use the -D

option to specify the port name. The default baud rate is 9600. You may

use the -D option to specify the baud rate if the execution environment is

not the same as the default. For example:

xfw68 –D rs232,com2,19200

instructs CrossView Pro to use the COM2 port at 19200 baud. See your

execution environment in the Addendum of this manual for specific

communication information.

When you specify a startup option in CrossView Pro, the option overrules

the corresponding value in the current xvw.ini file.

There are many different options you can invoke when starting up

CrossView Pro. The listing below gives an overview of all startup options.

There are several startup options having to do with the recording and

playing back of CrossView Pro command files. See also Chapter 9,

Command Recording & Playback.

Using CrossView 4–7Using CrossView Pro

• • • • • • • •

Startup Option Description

–a number Sets the maximum number of assertions (the
default is 100).

–b number Sets the maximum number of code breakpoints
(the default is 200).

–c number Sets the maximum number of instruction trace for
the trace buffer (the default is 32).

–C cpu Forces CPU type selection. This option also
determines which register file (regcpu.dat) will be
used. The default is 68000.

–D device_type,opt1[,opt2] Selects a device and specifies device specific
options, such as communication port and baud
rate. The allowed combinations for your execution
environment are described in the manual
addendum for that specific execution environment.
 The following combinations are possible:

–D rs232,port,speed Select RS–232 communication.

port For PC this is COM1, COM2, COM3 or
COM4. A colon should not be added. For
UNIX this is the full path of the RS–232
device driver (e.g., /dev/tty01). By
default CrossView Pro uses the first
RS–232 port.

speed This is the baud rate used for the specified
port. The default is 9600.

–D parallel, port Select parallel communication.

port For PC this is LPT1 or LPT2. Do not add a
colon. For UNIX this is the full path of the
parallel device driver. By default CrossView
Pro uses the first parallel port.

–D tcp, host,port Select TCP/IP communication. On UNIX the
standard TCP/IP implementation is used. On
MS–Windows the WINSOCK.DLL implementation
is used.

host The name of the host to be accessed via
TCP/IP.

port The port number on host to be accessed.

Chapter 44–8
U
S
IN
G

DescriptionStartup Option

–D dev,device–file Use a UNIX device driver as communication
channel. For RS–232 devices use the –D rs232
option, described above.

device–file
The full path of the UNIX device file.

–D isa, io–port,address Select communication channel to an (E)ISA
interface card in the PC.

io–port
PC I/O port number or I/O channel used for
accessing the (E)ISA card.

address
The memory address used to access the
(E)ISA card.

–f file Read command line options from file.

–– fss_root_dir=” path” Specify root directory for File System Simulation.

–G path Specify startup directory for CrossView Pro.

–i Has CrossView Pro download the image of the
absolute object file.

–L file Keeps a log of CrossView–to–target
communications in a file. Not available for all
execution environments.

–n address Informs CrossView Pro that the program was
loaded into memory at an address other than zero.

––orti= file Specify the name of an OSEK/ORTI file for RTOS
aware debugging.

–p file Starts playing back commands from file.

–P file Starts playing back commands from file with
commands single step.

–r file Starts recording commands in file.

–R file Starts recording screen output in file.

––radm= file Same as the radm field in the target configuration
file: specify the name of the Debug Instrument
(using KDI) used for RTOS aware debugging.

–s number Sets the maximum number of special variables
(variables independent of the program that
CrossView Pro provides for your use). The default
is 26.

Using CrossView 4–9Using CrossView Pro

• • • • • • • •

DescriptionStartup Option

–sd directory [;directory]... Specifies the directories CrossView Pro should
search for source files. Relative paths are allowed.
When the N command is used to load a new
symbol file, the current directory is set to the
directory containing the symbol file and CrossView
Pro now searches for source files relative to this
directory. Directories must be separated by
semicolons.

–tcfg file Specify a target configuration file. This overrules
the filename specified in xvw.ini . See section
CrossView Pro Target Settings in the Overview
chapter.

–– timeout= n_seconds Start CrossView Pro command line batch
operation mode and terminate after n_seconds.

–T [file] Starts CrossView in transparency mode if present;
if file is given, commands in file are sent to the
execution environment.

Table 4-1: CrossView Pro Startup Options

4.4.1 WHAT YOU MAY HAVE DONE WRONG

Most problems in starting up CrossView Pro for a debugging session stem

from improperly setting up the execution environment or from an

improper connection between the host computer and the execution

environment. Some execution environments require you to enter

transparency mode to set the execution environment for a debugging

session. Check the notes for your particular execution environment and

the Addendum of this manual.

Here are some other common problems:

• Specifying the wrong device name when invoking the debugger.

• Specifying a baud rate different from the one the execution

environment is configured to expect.

• Not supplying power to the execution environment or an attached

probe.

• Using the wrong kind of communication cable.

• Plugging the cable into an incorrect port. Some target machines

have several ports.

Chapter 44–10
U
S
IN
G

• Installation of a device driver or resident applications that use the

same communications port on the host system.

• The port is already in use by another user or login process on some

UNIX hosts.

• Specifying no or an invalid cpu type with the -C option.

Using CrossView 4–11Using CrossView Pro

• • • • • • • •

4.5 THE CROSSVIEW PRO DESKTOP

The CrossView Pro desktop is the screen background in which all

windows, icons and dialog boxes appear (see figure 4-1). Under some

windowing systems, the desktop is itself a window that does not contain

all other CrossView Pro windows.

The desktop always has the Command Window opened or iconized.

Minimized Window Dialog Box

Scroll Bar

Main Status Bar

Window Menu Bar Toolbar

Breakpoint Toggles

Local Status Bar

Local Toolbar

Figure 4-1: CrossView Pro Desktop

At the top of the desktop is the Menu Bar, which contains the menus

applicable to the currently active window. Below the menu bar is the main

Toolbar, from which you can execute commands to control program

execution as button functions. Except for the Command Window, the

desktop can contain other windows as well.

Along the bottom of the desktop there is a Main Status Bar. The status

bar displays messages such as short �help messages" when you move the

cursor over any button in any CrossView Pro window.

Chapter 44–12
U
S
IN
G

Menus

Each CrossView Pro window may have a menu associated with it. Under

Microsoft Windows, the active window's menu is displayed in the menu

bar of the desktop.

Depending on your execution environment some menu items are always

grayed out. For example, Communication Setup is grayed out if your

target is an instruction set simulator.

Windows

The debugger supports two types of windows: primary windows and

dialog boxes. Dialog boxes are the windows you access from a primary

window. For the remainder of this manual, the term �window" denotes a

primary window.

This manual also uses the term pop-up window. A pop-up window is a

primary window that contains supplemental information such as on-line

help.

CrossView Pro Windows are used to display information and to get user

input through either buttons, commands typed in input fields, or menu

selections. Windows may be moved around the desktop, sized, or

iconized. All windows can be opened from the View menu. The section

on CrossView Pro Windows provides more detail about each window.

A window is considered opened even if it is iconized (under Microsoft

Windows, this is called minimized). A window is considered closed if it

does not exist on the desktop in any form.

Dialog Boxes

Certain menu items or push buttons may call up a dialog box to complete

an action, display information, or get additional data. No other actions can

be performed until the dialog box is closed.

Using CrossView 4–13Using CrossView Pro

• • • • • • • •

4.5.1 MENUS

Each window in CrossView Pro uses the menu as shown in figure 4-2.

The method of selection of a menu item varies depending on the

windowing system being used. See your Windowing System's manual for

details of how to do this.

Each window has a hidden control menu (the icon on the top-left of the

window), to manipulate the window. The menu Close command in the

control menu closes the current window. Your implementation of the

windowing system may have additional features. See your documentation

for further details.

Figure 4-2: CrossView Pro Menus

Chapter 44–14
U
S
IN
G

4.5.1.1 LOCAL POPUP MENUS

On MS-Windows environments CrossView Pro supports local popup

menus. Local popup menus are invoked by clicking the right mouse

button. The menu contents is context sensitive. If the mouse pointer is on

top of the global (main) toolbar the Configure Toolbar dialog is shown. If

the mouse pointer is located in the MDI window (task window or

background) the View Menu is shown which allows you to open new

windows.

Within the Source Window four different local popup menus may appear.

If the cursor is within the display area of the window the Run Menu is

shown. The Run Menu contains commands associated with program

execution. If your cursor is at a breakpoint indicator, the Breakpoints

dialog is shown. If the cursor is on a code coverage marker then the local

popup menu contains commands to move the cursor to the next or

previous block of (not)covered statements. If your cursor is in the profile

column you can change the format of the timing figures. All other

windows have their own local popup menu. The exception to the rule is

the command window which does not have a local popup. See figure 4-3

for an example of the local popup menu of the Memory Window.

Figure 4-3: CrossView Pro Local Popup Menu (Memory Window)

4.5.2 WINDOW OPERATION

Windows can be opened, made active, and closed.

Opening Windows

The View menu of the menu bar lists all windows. Selecting a window

name from this list causes the window to open up. Selecting a window

that is already open brings that window to the front.

Using CrossView 4–15Using CrossView Pro

• • • • • • • •

Selecting a Window

At any one time, a particular window is active. Most operations act (by

default) on the active window. The active window is distinguished by

highlighting the title bar. Only one window may be active at a time. There

are several ways to select a window (that is, make a window active).

• Open the window from the View menu. If the window is already

open it will be brought to the front.

• Click on the window's border (or on any portion of the window in

some windowing systems). It will be brought to the front.

• Select the window name from the Window menu. The window will

be made active and is brought to the front. (This option is available

under Microsoft Windows only).

Closing a Window

Windows are closed by selecting Close from the Control menu, or by

clicking a Close button, as shown in figure 4-4. Selecting this item from

the Command Window will exit CrossView Pro.

Control Menu Close Button

Figure 4-4: Closing a Window

Chapter 44–16
U
S
IN
G

4.5.3 DIALOG BOXES

The debugger uses dialog boxes to acquire information needed to

complete a requested operation. The debugger also uses dialog boxes to

display information. If a button or menu item displays an ellipsis (...) after

its name, then there is an associated dialog box.

For example, the dialog box shown in figure 4-5 searches for a string.

This dialog box uses a list edit field to enter a search string, radio buttons

to select the search direction, a check box to specify case sensitivity and

push buttons to allow certain functions to be performed.

Check BoxList Edit Field

Push ButtonsRadio Button

Figure 4-5: Dialog Box

Using CrossView 4–17Using CrossView Pro

• • • • • • • •

4.5.4 CUSTOMIZING CROSSVIEW PRO

You can customize CrossView Pro's visual appearance and operative

parameters to best suit your debugging environment.

Changing the Visual Appearance

Windows can be organized by resizing and moving them around the

desktop (see your Windowing System's manual for details on how to do

this). All windows under Microsoft Windows have an additional Window

menu item. This menu allows the user to arrange all opened windows in

a tiled or cascaded format. In the tiled format, selected by Window | Tile,

all windows become the same size. All windows are the visible, the same

size and do not overlap. In the cascaded format, selected by Window |

Cascade, all open windows are changed to the same size and overlapped

in a cascade with a constant vertical and horizontal offset. Iconized

(minimized) windows can be automatically rearranged by selecting

Arrange Icons from the Window menu.

See the section Using X Resources in the chapter Software Installation for

details on changing the visual appearance of CrossView Pro under X

Windows.

Changing Operative Parameters

You can adjust the operative parameters for CrossView Pro using the

various menus in CrossView Pro.

In the Target menu you will find:

• Settings: Allows you to specify the execution environment and the

CPU type, and the source directories for CrossView Pro. The values

are processed at CrossView Pro startup before executing commands

entered in the Command Window or before the target is accessed as

a result of opening a window. So, first edit this dialog when you

start CrossView Pro. If you have not loaded a symbol file yet, you

do not have to restart CrossView Pro.

• Communication Setup: Allows you to set parameters for

communication between CrossView Pro and your target board.

Chapter 44–18
U
S
IN
G

In the File | Options... dialog you will find:

• Initialization: Allows you to specify the maximum number of

breakpoints, assertions, special variables, C-trace instructions,

command history lines, command output lines, emulator output

lines. All values are processed at CrossView Pro startup, except for

C-trace. Changing the maximum number of C-trace instructions has

an immediate effect on the Trace window.

• Desktop: Allows you to specify color settings for the execution

position in the Source Window and the colors used in the Memory

Window to show how a memory location has been accessed by the

application program. You can also specify font sizes to be used in

output windows.

• Toolbar: Allows you to configure the main toolbar to your personal

preferences.

In the Tools menu you will find:

• Record, Playback, and Log: Allow you to set command recording

and playback options.

• Toolbox Setup, and Macro Definitions: Allow you to define

macros, and assign them to a push button in the Toolbox.

In the Data menu you will find:

• Data Display Setup: Allows you to specify how CrossView Pro

displays data. This dialog also determines if the Expression

Evaluation dialog box must be bypassed or not.

In the Settings menu you will find:

• Source Window Setup: Allows you to specify the step mode,

symbolic disassembly, automatically switching between source lines

and disassembly source to be displayed in the Source Window and

display code coverage information.

• Register Window Setup: Allows you to specify the registers that

appear in the Register Window. And you can set the display format

to hexadecimal or decimal.

• Memory Window Setup: Allows you to specify the mode and size

of the data and the number of data rows and columns to be shown

in the Memory Window. It also allows you to automatically refresh

the Memory Window and to display data coverage information.

• Data Analysis Window Setup: Allows you to configure the graph

display of a Data Analysis Window.

Using CrossView 4–19Using CrossView Pro

• • • • • • • •

• I/O Simulation Setup: Allows you to specify the I/O streams to be

used in the Terminal Windows.

• Terminal Window Setup: Allows you to specify the input and

output format of a Terminal Window. You can map linefeeds to

carriage-return linefeeds, wrap at the end of a line, specify buffered

input or specify that the window must be cleared at system reset

and program reset. You can also log the input and output data to a

file.

• Background Mode Setup: Allows you to specify which windows

to automatically refresh when running in background mode. This

feature is only available if it is supported by your execution

environment.

Saving Changes on Exit

If you find yourself using a particular configuration, you may want to save

your configuration when you exit CrossView Pro:

• From the File menu, select Exit or close the Command Window.

• In the Save tab of the Options dialog that appears, select the

options you want to be saved for another debug session.

• Click on the Exit button in the Options dialog.

CrossView Pro exits. If you selected one or more items in the Save tab of

the Options dialog your settings are saved in the initialization file

xvw.ini . This file is in the startup directory.

4.5.5 CROSSVIEW PRO MESSAGES

CrossView Pro communicates with you in a variety of ways. The

command window displays the results of commands. Important messages,

such as errors, appear in dialog boxes that pop up.

Chapter 44–20
U
S
IN
G

4.6 CROSSVIEW PRO WINDOWS

The two prominent windows used in CrossView Pro are the Command

Window and the Source Window. From the Command Window you can

type CrossView Pro and emulator commands, and gain access to all other

windows. You can accomplish most global operations from either the

menu bar or the Command Window. Only from the Command Window

can you accomplish Single step playback. When you close the Command

Window, you exit CrossView Pro.

The Source Window focuses on the program being debugged. This

window controls most of the commonly-used execution operations, such

as breakpoints and searching functions.

Available Windows

You can open all CrossView Pro windows (except for the Data Analysis

windows) from the View menu by selecting the name of the window.

Selecting a window in this case brings the window to front and makes it

the active window. Available windows are:

• Command Window: Supports two modes: CrossView or Emulator.

Displays all CrossView Pro commands and responses or Emulator

commands and responses.

• Source Window: Controls the execution of the program and

displays the source file or disassembly.

• Register Window: Displays the current state of the processor's

registers.

• Memory Window: Displays target memory and allows you to

change it.

• Data Window: Displays the values of data that are being

monitored.

• Data Analysis Window: Graphically displays signal data for

analysis.

• Stack Window: Displays the application's stack trace.

• Trace Window: Displays the most recently executed lines.

• Terminal Windows: Can be used for I/O simulation of an

application.

Using CrossView 4–21Using CrossView Pro

• • • • • • • •

Improving CrossView Pro Performance

CrossView Pro updates every window that is open (except for the Data

Analysis windows), even if it is iconized (minimized). Keeping a window

up to date usually involves extra communication with the emulator,

slowing CrossView Pro down. For instance, if the Register Window is

open, CrossView Pro asks the emulator to dump the contents of all

displayed registers after each single step. Thus it is a good idea to keep

only those windows open that you need.

4.6.1 COMMAND WINDOW

The Command Window allows you to:

• Enter CrossView Pro and emulator commands from the keyboard.

• View a history of CrossView Pro commands or emulator commands.

• View the result of CrossView Pro commands or emulator

commands.

• Execute playback files (in single step mode).

From the View menu you can specify if you want the Command Window

to be a CrossView Pro Command Window or an Emulator Command

Window. This way you can specify whether CrossView Pro interprets

commands or they go directly to the emulator.

Figure 4-6. shows the Command Window. You can type commands into

the command edit field (bottom field) or select them from the command

history list (middle field), edit and execute them. The command history

field displays previously entered commands. You can select and execute

one or more commands. The command history list provides you with a

clear, comfortable way to re-execute specific commands or sequences of

commands by preserving them in a scrollable list.

You can switch between the history list and the command edit field by

hitting the <Tab> key. Hitting the <Esc> key (escape) returns you to an

empty edit field.

The top field is the Command Output Window or the Emulator Output

Window, depending on the type of Command Window you choose. Each

command, echoed from the command edit field, appears with a '>' prefix.

CrossView Pro displays its response (or the emulator's response if the

window is an Emulator Command Window) to the command immediately

following the command. You can use the clear command to clear this

window.

Chapter 44–22
U
S
IN
G

Command Edit Field Command History List

Output WindowCrossView ResponseCrossView Command

Figure 4-6: CrossView Pro Command Window

The Command Window also has two push buttons that provide rapid

access to frequently used actions. The Execute button executes the

current command (or sequence of commands if more than one command

is selected). Note that the <Enter> or <Return> key is equivalent. Use

the Halt button to interrupt commands executing in continuous mode, or

to stop the emulator.

The Command Window maintains a history of recently executed

commands. To re-perform previously executed commands simply

double-click on it or select the command(s) from the command history list

in the Command Window and press the Execute button. By hitting the

<Tab> key, it is also possible to select one or more entries. Hitting <Tab>
or <Esc> will return you to the command edit field.

The maximum number of lines saved to the CrossView Pro command

buffer list is set during debugger startup. The default is 100 lines. To

change the default select Options... from the File menu and select the

Initialization tab. This number can also be modified via a startup option.

Using CrossView 4–23Using CrossView Pro

• • • • • • • •

4.6.2 SOURCE WINDOW

The Source Window offers most of the debugging functions you will need

on a regular basis. It allows you to:

• View the source file (source lines, disassembly or both).

• Set and clear assertions (not in Toolbar).

• Set and clear breakpoints.

• Monitor and inspect variables.

• Search for strings, functions, lines, addresses.

• Control execution.

• Call functions (not in Toolbar) and evaluate expressions.

• View code coverage information.

• View profiling/timing information.

An example of the source window is shown in figure 4-7.

Breakpoint
Toggles

Current
Execution Position

Status
Bar

Coverage
Markers

Profiling

Figure 4-7: CrossView Pro Source Window

You can specify the step mode, symbolic disassembly and source lines /

disassembly with the Source Window Setup dialog box (Settings | Source

Window Setup...) or with Run | Step Mode. Alteratively, you can use the

drop-down menus in the Source Window's status bar.

Chapter 44–24
U
S
IN
G

The default step modes are:

Source lines Window: Source line step

Disassembly Window: Instruction step

Source and Disassembly Window: mode of previous window!

(assumes the step mode of the previous Source Window setting)

The location of the cursor is also the viewing position. The line number

and address of the viewing position, appears at the top-left position of the

Source Window. This does NOT represent the current execution position

($pc). The current execution position appears in reverse or blue color.

The cursor appears as a dotted line.

On MS-Windows the so-called "quick watch" feature is supported. When

you position the mouse cursor over a variable or a function, a bubble help

box appears showing the value of the variable or the type information of

the function respectively.

A green colored toggle shows that no breakpoint is set. A red colored

toggle indicates an installed breakpoint. An orange colored toggle

indicates an installed but disabled breakpoint. If code coverage is enabled,

coverage markers appear to the right of the breakpoint toggles. If a

checkmark appears next to a line, it has been executed. If no checkmark

appears next to a line, it has not been executed.

The Source Window provides a local Toolbar containing the following

buttons, nearly all of which are shortcuts (using selected text) to

operations that you can perform via the menu bar:

Stop program or command

Run or continue execution (same as F5)

Run to cursor (same as F7)

Step (over function calls)

Step (into function calls)

Restart application

Find program counter (PC)

Using CrossView 4–25Using CrossView Pro

• • • • • • • •

Show selected source expression

Watch selected source expression

Find symbol

Search for a text string

Repeat search for text string

Edit current source file

Edit breakpoint at cursor

Display code coverage

Display profiling

You can toggle the appearance of this local toolbar by selecting Local

Toolbars | Source from the View menu.

Edit Source

To edit the current source file in the Source Window, select Edit | Edit

Source or press the Edit Source button. On MS-Windows the Codewright

editor will be called with the filename and line number of the file that is

currently in the debugger. on UNIX systems the xvwedit program will be

called with the filename and line number of the file that is currently in the

debugger.

The xvwedit program is a shell script. You can adapt it to your specific

requirements.

Chapter 44–26
U
S
IN
G

4.6.3 REGISTER WINDOW

Figure 4-8 shows the Register Window. This window allows you to view

and edit register contents.

Figure 4-8: CrossView Pro Register Window

Note that the contents of the Register Window for your particular target

may be different from the one shown in figure 4-8.

You can specify which register set definition appears in the Register

Window with the Register Window Setup dialog box (Settings | Register

Window Setup...). In this dialog you can also specify the display format

of values in the Register Window: hexadecimal or decimal.

CrossView Pro supports multiple Register Windows. Register Windows

either have the title "Register" or "Register - register set name". The

"Register" title indicates the default register set.

In-situ editing allows you to change the registers contents directly by

clicking on the corresponding cell.

Using CrossView 4–27Using CrossView Pro

• • • • • • • •

4.6.4 MEMORY WINDOW

The Memory Window is shown in figure 4-9. This window allows you to

view and edit the target memory.

Depending on the setting of the Automatically refresh check box in the

Memory Window Setup dialog, CrossView Pro updates the displayed

values every time the program is stopped or only updates the values by

user request. For example, by pressing the Update Memory Window

button located on the toolbar.

Figure 4-9: CrossView Pro Memory Window

To edit the target memory, click on a memory cell and type a new value.

To display another memory region: click on an address cell and type a

new address. CrossView Pro accepts input in symbolic format, so you can

enter expressions instead of just values.

CrossView Pro supports multiple instances of the Memory Window. If your

target supports multiple memory spaces, the Memory Window supports

them all. Refer to the section about memory space keywords to become

familiar with the memory space keywords and associated syntax your

target system uses.

Chapter 44–28
U
S
IN
G

You can specify the way data appears in the Memory Window by opening

the Memory Window Setup dialog. From the Settings menu, select

Memory Window Setup... to open this dialog. The memory contents can

appear in many formats including ASCII character, hexadecimal, decimal,

signed, unsigned, and floating point formats. You can specify the size of

the memory window. You specify the number of memory cells that

appear within the window. The number of cells is fixed in the sense that if

you re-size the window the number of cells does not change.

Besides the current value of memory locations, the Memory Window also

displays whether memory locations have been accessed during program

execution. This is called 'data coverage'. An application program may read

from, write to, or fetch an instruction from a memory location. Of course

all combinations may be legal. Although writing data to a memory location

from which an instruction has been fetched is suspicious. All types of

accesss, read, write, fetch or combinations of these, can be shown using

different foreground and background colors. The color combination used

to show "rwx" access are specified in the Desktop Setup dialog. Change

the background color if instructions are fetched from a memory location,

and change the foreground color to show read and write access.

You can display data coverage information in the Memory Window by

clicking on the Coverage button in the Memory Window or by setting the

Display data/code coverage check box in the Memory Window Setup

dialog.

The Memory Window has the ability to highlight memory cells of which

the contents have been changed. Click on the Highlight Value Changes

button in the Memory Window to see the changed cells. With the Freeze

Highlight Reference Values button you can enter a new reference point

for highlighting. All the cells that have been changed since that reference

point are highlighted.

The Memory Window provides a local Toolbar containing the following

buttons:

Fill memory

Fill single memory address

Copy memory

Find memory

Using CrossView 4–29Using CrossView Pro

• • • • • • • •

Display data coverage

Highlight changed values

Set highlighted values as reference

Refresh memory window

You can toggle the appearance of this local toolbar by selecting Local

Toolbars | Memory from the View menu.

4.6.5 DATA WINDOW

The Data Window is shown in figure 4-10. This window allows you to

show the value of monitored expressions and variables.

The Data Window updates the values shown every time the program

stops, and after an o command.

It is possible to display both monitored and unmonitored data expressions

in the Data Window. CrossView Pro monitors and updates "WATCH"

expressions after every halt in execution, and marks them with the text

"WATCH" at the start of the display line in the Data Window. "SHOW"

expressions, on the other hand, are one-shot inspections of an

expression's value, and CrossView Pro does not update them until you

click on the Update Selected Data Item button or Update Old Data

Items button. When a "SHOW" expressions is no longer actual, it is

marked with the word �OLD".

Chapter 44–30
U
S
IN
G

Figure 4-10: CrossView Pro Data Window

To set the default display format of the data shown, select the proper

format in the Data | Data Display Setup... dialog.

To inspect the value of global variables and data structures, double-click

on the variable name in the Source Window. Depending on preferences

you set in the Data Display Setup dialog, the variable appears immediately

in the Data Window, see figure 4-10, or the Expression Evaluation dialog

appears first.

In-situ editing allows you to change the contents of everything in this

window by clicking the value you want to change.

If you have set the Display addresses check box in the Data Display

Setup dialog box the addresses of the variables are also shown.

Pointers, structures and arrays displayed in the data window have a

compact and expanded form. The compact form for a structure is just

<struct> , while the expanded form shows all the fields. The compact

form of a pointer is the value of the pointer, while the expanded form

shows the pointed-to object. Indicate the compact form by putting a '+' at

the start of the display. (i.e., the object is expandable), and indicate the

expanded form with (i.e., the object is contractible). Nesting is supported,

so you can expand structures within structures ad infinitum.

Using CrossView 4–31Using CrossView Pro

• • • • • • • •

To expand a pointer, structure or an array, double-click on the '+' in the

Data Window.

The Data Window provides a local Toolbar containing the following

buttons:

Show or watch a new expression

Toggle watch attribute of selected item "on" or "off"

Reformat selected item

Update selected data item

Delete selected data item

Update old data items

Delete old data items

You can toggle the appearance of this local toolbar by selecting Local

Toolbars | Data from the View menu.

The auto-watch locals feature may be activated or deactivated. When

active, a selected Data Window becomes the "auto-watch" window, and

all local variables from the current top-of-stack frame appear in that Data

Window. The text �LOCAL" appears at the start of the display for variables

displayed in this manner. As the execution position changes, the

auto-watch window deletes and adds locals as necessary, so that the locals

on the current top-of stack frame always appear.

To see the value of the local variables of a function, Select Data | Watch

Locals Window from the View menu.

CrossView Pro supports multiple Data Windows. Data Windows either

have the title "Data Window #n" or "All Local Variables". The "All Local

Variables" title indicates the auto-watch window if it exists (as explained

above).

Chapter 44–32
U
S
IN
G

4.6.6 STACK WINDOW

The stack records the return addresses of all functions the application has

called, and CrossView Pro can use this information to reconstruct the path

to the current execution position. The Stack Window, shown in figure

4-11, displays the function calls on the stack with the values of the

parameters passed to them in an easily accessible and understandable

form.

The Stack Window can help you assess program execution and allows you

to view parameter values. The stack window allows you to:

• View the stack trace which includes information about function

names, parameter values, source line numbers and stack level.

• Easily switch to the call statement of a stack level by clicking on it

once.

• Set temporary and permanent breakpoints at any level of the stack,

by double-clicking on the desired level.

Figure 4-11: CrossView Pro Stack Window with Toolbar

Using CrossView 4–33Using CrossView Pro

• • • • • • • •

The Stack Window provides a local Toolbar containing the following

buttons:

Set stack breakpoint after call to function

Set stack breakpoint at function entry point

Show local variables in selected stack frame

Watch local variables in selected stack frame

Find call site

You can toggle the appearance of this local toolbar by selecting the Local

Toolbars | Stack from the View menu.

4.6.7 TRACE WINDOW

The Trace Window, shown in figure 4-12, allows you to:

• Display the most recently executed lines of code.

CrossView Pro automatically updates the Trace Window each time you halt

execution, as long as the window is open, allowing you to check the

progress and flow of your program throughout the debugging session.

The Trace Window is only supported if your execution environment

supports the trace facility.

Figure 4-12: CrossView Pro Trace Window

Chapter 44–34
U
S
IN
G

4.6.8 TERMINAL WINDOW

The Terminal Windows, shown in figure 4-13, let you observe and test the

input and output of your program.

The CrossView Pro Terminal windows provide an interface to exchange

data with the application on the target. This I/O facility can be

implemented in various ways. Using standard I/O stream function calls like

printf() in your source, you can test I/O to and from the target system or

simulator.

The File System Simulation feature redirects I/O to a Terminal Window if

the filename FSS_window: window_name is used in the "open" call,

window_name is the name of a Terminal Window.

A terminal window can be connected to multiple I/O streams of various

types. For example, streams 0, 1 and 2 can be mapped to one terminal

window. An I/O stream, however, can be mapped to one terminal window

only. Each terminal window must have a unique name.

Figure 4-13: CrossView Pro Terminal Windows

Using CrossView 4–35Using CrossView Pro

• • • • • • • •

You can specify the characteristics of the Terminal Window by opening the

Terminal Window Setup dialog. From the Settings menu, select Terminal

Window Setup... to open this dialog, or click with the right mouse button

in the Terminal Window to bring up a popup menu and select Setup....

You can specify the input and output format of the terminal window. The

input format can be a VT100-like terminal. The output format can be a

VT100 terminal, display control codes, decimal, octal or hexadecimal. You

can map linefeeds to carriage-return linefeeds, wrap at the end of a line,

specify buffered input or specify that the window must be cleared at

system reset and program reset. You can also log the input and output

data to a file.

The default size of a terminal window is 24 lines of 80 characters.

Everything that scrolls outside this window is lost. The visual window size

can be smaller (scroll-bars are shown). You can specify another size in the

Terminal Window Setup dialog.

Each terminal window has a local popup menu, which you can activate by

clicking the right mouse button.

Figure 4-14: Terminal Window Local Popup Menu

Reset clears the contents of the terminal window and it also clears all

attributes set with escape sequences. A Clear just clears the contents of a

terminal window. Reverse changes the foreground and background colors

and Local echo enables echoing back of typed characters in a terminal

window. Setup... opens the Terminal Window Setup dialog.

You can connect an I/O stream to a terminal window in the Connections

tab of the Settings | I/O Simulation Setup... dialog box.

Chapter 44–36
U
S
IN
G

4.6.9 DATA ANALYSIS WINDOW

CrossView Pro incorporates an advanced signal analysis interface designed

to enable developers to monitor signal data more critically and thoroughly.

This feature is useful when developing signal processing software for

application areas such as communication, wireless and image processing.

Contrary to the other CrossView Pro windows the Data Analysis window

(as shown in figure 4-15) is not opened from the View menu, but is

opened as result of processing a data analysis script (or from the Settings

menu). Most other CrossView Pro windows are updated whenever the

target application stops execution due to, for example, a breakpoint. The

Data Analysis window is only updated on user request. This is done

because a large set of data is shown in the Data Analysis window and this

set of data must be available and complete at the time the window is

updated. Therefore, the user normally constructs a complex breakpoint to

trigger the update of the Data Analysis window.

Figure 4-15: CrossView Pro Data Analysis Window

The Data Analysis Window provides a local Toolbar containing the

following buttons:

Zoom in horizontally

Zoom out horizontally

Using CrossView 4–37Using CrossView Pro

• • • • • • • •

Unzoom horizontally to normal (show all collected data)

Zoom in vertically

Zoom out vertically

Unzoom vertically to normal (show all collected data)

Update Data Analysis window

The graph displayed in the Data Analysis window is constructed by

processing a CXL script. Refer to the CXL syntax specification in section

11.5.2, Syntax of CrossView eXtension Language (CXL), for details.

TASKING provides scripts for standard signal analysis such as FFT.

However, the programmer can write CXL scripts and process the data in

the format he desires.

See section 11.5, Data Analysis, for more details on data analysis.

4.6.10 POP-UP WINDOWS

Finally, two more windows can appear in certain situations:

Help Window: Activated with function key F1 or when a Help button is

pressed inside a dialog.

Toolbox: This window contains user defined buttons.

Chapter 44–38
U
S
IN
G

4.7 CONTROL OPERATIONS FOR CROSSVIEW PRO

All control operations can take place in any CrossView Pro Window. You

can select and save startup options. You can record and play back

playback files. You can define macros and assign them a button in the

toolbox (allowing you to configure up 16 buttons).

4.7.1 ECHOING COMMANDS

The Command Window echoes every command given to CrossView Pro.

CrossView Pro translates most button actions and menu selections into the

CrossView Pro keyboard command equivalents. The Command Window

echoes the equivalent commands just as if you had typed them there.

4.7.2 MOUSE/MENU/COMMAND EQUIVALENTS

Actions in CrossView Pro are performed by using keyboard commands

typed into the Command Window, selecting a menu item, by clicking on a

push button and sometimes by direct manipulation of objects with the

mouse. Many actions can be accomplished several ways. For instance

there are three different ways to set a breakpoint. You can:

1. Use the line b command in the command entry field.

2. Click on a breakpoint toggle in the Source Window.

3. From the Breakpoints menu, select Breakpoints... to open up the

Breakpoints dialog box.

Using CrossView 4–39Using CrossView Pro

• • • • • • • •

4.8 USING THE ON-LINE HELP

CrossView Pro has an extensive on-line help system to aid you. Help

topics cover all CrossView Pro Windows, commands, and dialog boxes.

4.8.1 ACCESSING ON-LINE HELP

You can access help in several ways:

1. Click the Help button on a dialog box

Opens the help system with information about how to perform the task or

about the meaning of the dialog.

2. Click on the question mark in the upper right corner of a dialog, then click

the element in the dialog you want help on.

A yellow box briefly explains the element you asked help on.

3. Select the Help | Help menu item or press the F1-key.

Opens the help system with information about the active window.

4. Hover the mouse pointer over a toolbar button.

A yellow box shows the title of the button. A more complete description is

shown in the status bar at the bottom of the screen.

4.8.2 USING MS-WINDOWS HELP

You enter help at a topic that explains the current window or dialog. By

clicking on links, you can follow different paths. To return to your starting

point click the Back button or open the Options | Display History

Window and click on the node that you want to return to.

The Contents tab displays a list of main subjects. The Index tab displays

a list of keywords that relate to certain topics. When you click the Find

tab, you can search for a string pattern.

To save time, you can iconize the Help Window and maximize it when

necessary.

Chapter 44–40
U
S
IN
G

5

CONTROLLING
PROGRAM
EXECUTION

C
H

A
P

T
E

R

Chapter 55–2
P

R
O

G
R

A
M

 E
X

E
C

U
T

IO
N

5

C
H

A
P

T
E

R

Controlling Program Execution 5–3

• • • • • • • •

5.1 SOURCE POSITIONING

When you have the Source Window open and it displays a source file,

there are two points of reference to keep in mind: the execution position

and the viewing position.

The execution position refers to the line of source at the Program

Counter address. This line is always the next statement or instruction to be

executed. When you load a file into the Source Window, CrossView Pro

automatically displays the portion of the source code that contains the

execution position.

The viewing position (also called 'cursor') is the line currently being

examined in the displayed source file. Since many Source Window

operations act on this line, you can think of the viewing position as the

'current line'. For instance, if you set a breakpoint without specifying a line

number, CrossView Pro sets the breakpoint at the line marked by the

viewing position. Please note that it is the viewing position that appears to

the left of the Source Window (NOT the execution position!).

The execution position and the viewing position refer to the same line

when a source file is first loaded into the Source Window. You can then

change the viewing position, if you wish.

The execution position and the viewing position appear different to

distinguish them from the rest of the source code. The execution position

line appears in the execution position highlight colors, while the viewing

position appears as a broken-line frame, also called the cursor. Note that

a line containing a breakpoint appears in the breakpoint highlight colors.

A combination of execution position, cursor and breakpoint (all of which

are potentially active on the same line) appear accordingly.

Chapter 55–4
P

R
O

G
R

A
M

 E
X

E
C

U
T

IO
N

5.1.1 CHANGING THE VIEWING POSITION

When a program is active the viewing position is always visible in the

Source Window. You can change the viewing position to move throughout

the source file. Usually, whenever the execution position changes, the

viewing position automatically follows suit. But you may easily change the

viewing position without affecting the execution position.

To change the viewing position use any of the following possibilities:

• Use the vertical scroll bar to move a line or a page at a time. The

view point stays on the same line until it is no longer visible. It

then stays on the first or last line of the display, depending on the

direction of scrolling.

• Click on the desired, unmarked source line.

• From the Edit menu, select Find Line... to specify to which

particular line you wish to move.

In the upper-left corner of the Source Window, there are two text fields.

These fields show the line number of the current viewing position and the

address of the first machine instruction for that line. CrossView Pro

updates the Line and Address values each time the viewing position

changes.

You can change the viewing position to the first executable line of a

particular function with the e command. For instance:

e main

will make the first executable line of main() the current viewing position

and display it in the Source window. You may also use the stack depth as

an argument, if you place it before the e:

1 e

This will change the viewing position to stack depth 1, that is, the line that

called the current function.

FUNCTION: Change the viewing position.

COMMAND: stack e

e function

Controlling Program Execution 5–5

• • • • • • • •

To change the viewing position to a specified address, you can use the ei

command. This command is useful for viewing some code in the assembly

window, without changing the program counter, since the execution

position is not changed.

FUNCTION: Change the viewing position to address.

COMMAND: address ei

5.1.2 CHANGING THE EXECUTION POSITION

There may be times when you want to start or resume execution at a

different line than the one marked by the current execution position.

Exercise caution when changing the execution position. Often each line of

C source code compiles into several machine language instructions.

Moving the program counter to a new address in the middle of a series of

related assembly instructions is sometimes risky. Moreover, even though

you change the program counter, registers and variables may not have the

expected values if you bypass parts of the code.

In the Source Window you can change the execution position to the

viewing position with the menu entry Run | Jump to Cursor. This menu

entry is disabled in Source file window mode to prevent problems by

skidding pieces of C code which are required to be executed. See also the

g and gi commands below.

When the program halts, you can change the execution position with the g

command in the Command Window. The g command moves the

execution position, but does not continue the program. To resume

execution from your new execution position, use the C command.

Although risky, the g command does have its uses, especially in

conjunction with breakpoints to patch code. Refer to the Breakpoints and
Assertions chapter for more information.

For example, to change the execution position from the current line, 54, to

line 62, enter:

g 62

Chapter 55–6
P

R
O

G
R

A
M

 E
X

E
C

U
T

IO
N

When you resume execution in this program, it is from line 62 instead of

line 54.

FUNCTION: Change the execution position to a specified C source

line

COMMAND: g line_number

You can also change the execution position to a specified address directly,

although the same warnings apply. To do so, use the gi command. For

instance:

0x800 gi

FUNCTION: Change the execution position to address.

COMMAND: address gi

Of course, moving the program counter (gi command) is even more

potentially reckless than using the g command. Use both with caution

especially when debugging a program which has instructions re-ordered

due to optimizations.

To determine the address of a line of source, use the P command:

80 P
80:(0x1486): sum = sum + 1;

The hexadecimal number in parentheses is the instruction address for line

80.

FUNCTION: Print a source line and its instruction address.

COMMAND: line_number P

Controlling Program Execution 5–7

• • • • • • • •

5.1.3 SYNCHRONIZING THE EXECUTION AND

VIEWING POSITIONS

Each time you stop execution, the position of the program counter (PC) is

visible in the source window. However, it may disappear from the window

when scrolling through the source or when you loaded a new program.

To find the program counter again:

Click on the Find PC button in the Source Window or select Find PC

from the Edit menu.

From the Command Window, use the L command.

The L Command

The L command is shorthand for 0 e. It synchronizes the viewing and the

execution positions, adjusting the viewing position if the two are different.

The L command never affects the execution position. The L command is

useful if you have changed your viewing position and do not remember

where your execution position is.

FUNCTION: Synchronize viewing and execution position.

COMMAND: L

Chapter 55–8
P

R
O

G
R

A
M

 E
X

E
C

U
T

IO
N

5.2 CONTROLLING PROGRAM EXECUTION

Using the mouse in the Source Window, you can direct the execution of

your source programs. Among your options are:

• Starting execution from the first instruction or from the current

execution position.

• Manually stopping execution whenever you want.

• Executing the program a single line at a time.

• Executing functions by calling them directly.

5.2.1 STARTING THE PROGRAM

To restart a program from its first instruction:

Click on the Restart program button in the Source Window.

or:

• From the Run menu, select Reset Application

• From the Run menu, select Run, or click on the Run/Continue

button.

Type the R command from the Command Window.

This is NOT a target system reset. Refer to the rst command for

information about side effects that may be introduced due to a target

system reset.

After restarting a program, you can stop execution only by a breakpoint,

an assertion or a halt operation from the user.

FUNCTION: Reset program; run program.

COMMAND: R

Controlling Program Execution 5–9

• • • • • • • •

5.2.2 HALTING AND CONTINUING EXECUTION

To stop or continue execution:

Click on the Halt button in the Source Window to stop execution. Click

on the Run/Continue button to resume execution.

From the Run menu selct Halt to stop execution. Select the Run menu

item to resume execution.

Use the C command or function key F5 to resume execution.

When you halt the program, all the active windows update automatically

to reflect the program's current status. For instance, if you have any

expressions monitored in the Data Window, their current value appears.

Note that when you use any of the above methods to stop the program,

CrossView Pro halts at the machine instruction that was on when

interrupted. While this is a convenient way to stop the program, it is

hardly an accurate one 	 you may stop execution in the middle of a C

source statement.

To stop a program at a precise line of C source code, set a breakpoint. For

more about breakpoints see the Breakpoints and Assertions chapter.

When continuing, CrossView Pro resumes execution as if the program had

never stopped.

FUNCTION: Continue execution from the current execution position.

COMMAND: C

5.2.3 SINGLE-STEP EXECUTION

When the program stops, you can continue execution, or you can step

through it one line or instruction at a time. This is called single-step

execution.

Chapter 55–10
P

R
O

G
R

A
M

 E
X

E
C

U
T

IO
N

Single-stepping is a valuable tool for debugging your programs. The effect

is to watch your programs run in stop motion. You can observe the values

of variables, registers, and the stack at a precise point in a program's

execution. You can catch many potential bugs by watching a program run

line by line.

When you single step, CrossView Pro normally executes one line of your

source and advances to the next sequential line of the program. If you

single step to a line that contains a function call, however, you have two

options: step into the function or step over the function call.

Source Single-Step Into

There are several methods you can use to single step into:

Click on the Step Into button in the Source Window or select Step Into

from the Run menu.

Press function key F8 or type the s command in the Command Window.

You have the option of setting the number of lines you want to execute.

For example, to execute 2 lines of the program, type: 2 s .

FUNCTION: Step through a program one source line at a time.

COMMAND: number s

Stepping Into Functions

Stepping into a function means that CrossView Pro enters the function and

executes its prologue machine instructions, halting at the first C statement.

When you reach the end of the function, CrossView Pro brings you back

to the line after the function call and continues with the flow of the

program. The debugger changes the source code file displayed in the

Source Window, if necessary.

If you accidentally step into a function that you meant to step over, you

can select Return from Function from the Run menu to escape quickly.

For example, suppose you are at line 59 of a file, which contains a call to

the function factorial() :

main#59: table[loopvar] = factorial(loopvar)

Controlling Program Execution 5–11

• • • • • • • •

By performing one Step Into action, you can step into the source code for

factorial() . Your Execution and viewing position change to:

factorial#103: char locvar = ’x’;

CrossView Pro shows you the current function and line number and the C

source code for the current execution position.

Source Single-Step Over

To step over a statement or a function call:

Click on the Step Over button in the Source Window or select the Step

Over from the Run menu.

Press function key F10 or enter the S command in the Command Window.

You have the option of setting the number of lines you want the debugger

to execute. For example, to execute three lines of source, single stepping

over functions, enter: 3 S .

FUNCTION: Single step, but treat function calls as single statements.

COMMAND: number S

Stepping over Functions

Stepping over a function means that CrossView Pro treats function calls as

a single statements and advances to the next line in the source. This is a

useful operation if a function has already been debugged or if you do not

want to take the time to step through a function line by line.

For example, suppose you reach line 59 in demo.c , which calls the

function factorial() , as in the example above. If you give a Step Over

command, the execution position moves to line 60 of the source code in

the main() function immediately, without entering the source code for

factorial() . CrossView Pro has executed the function call as a single

statement.

Chapter 55–12
P

R
O

G
R

A
M

 E
X

E
C

U
T

IO
N

If you try to step over a function that contains a breakpoint or that calls

another function with a breakpoint, CrossView Pro halts at that breakpoint.

Once execution stops, the step over command is complete. Therefore, if

you resume execution by clicking on the Run button or with the C

command, you do not regain control at the entrance to the function with

the breakpoint. You can either single step through the rest of the function,

or select the Run | Return from Function menu item to return to the

line after the point of entry.

5.2.4 STEPPING THROUGH AT THE MACHINE LEVEL

While single stepping through code at the source level is informative, you

might need a lower level approach. CrossView Pro can step through a

program at the assembly language instruction level.

While more time-consuming than a source level step-through, an

instruction level step-through allows you to examine how your code has

been compiled. As you advance through the assembly instructions, notice

how CrossView Pro translates data addresses to variable names, and

correlates branch addresses to points in the source code. This makes it

much easier to follow the source at the instruction level.

The default step modes are:

Source lines Window: Source line step

Disassembly Window: Instruction step

Source and Disassembly Window: mode of previous window!

(assumes the step mode of the previous Source Window setting)

Mouse and menu actions:

• The Step Into and Step Over buttons, and Run | Step Over and

Run | Step Into menus can be set to step by instructions by

selecting Run | Step Mode | Instruction step from the menu bar.

• To change back to stepping by source lines, select Run | Step

Mode | Source line step.

• Another way to set the step mode is to select the Source line step

or Instruction step radio button in the Settings | Source

Window Setup dialog box.

Controlling Program Execution 5–13

• • • • • • • •

To control this function from the Command Window, use the Si and si

commands. The Si and the si commands are analogous to the S and s

commands, Si will treat function calls (more precisely, jump to subroutine

instructions) as single statements, while si will enter the function.

FUNCTION: Single step at instruction level. Step into functions.

COMMAND: number si

FUNCTION: Single step at instruction level. Step over functions.

COMMAND: number Si

As an example of stepping through instruction level code, restart the

program. Then select Run | Step Mode | Instruction step. Once it

stops at the breakpoint you installed, advance execution one assembly

language instruction at a time by using the Step Over and Step Into

buttons. Or give the Si or si commands.

CrossView Pro will display disassembly of the next machine instruction

that forms part of the C code in the Command Output Window:

main#47+0x4: disassembled instruction

Different types of targets, of course, have different assembly code, so

debugging at the assembly level is hardware dependent.

Notice that a single C statement is usually compiled into several,

sometimes many, machine instructions.

CrossView Pro supports debugging on machine instruction level using the

Intermixed or Assembly mode of the Source Window.

Chapter 55–14
P

R
O

G
R

A
M

 E
X

E
C

U
T

IO
N

5.3 NOTES ABOUT PROGRAM EXECUTION

If you stop the program in a module without debug symbols, then an S or

s command attempts to step to a module with symbols. CrossView Pro

does this by searching the run-time stack for a return address in a module

with symbols, then setting a temporary breakpoint there, and running. This

process relies on two assumptions: that the stack layout is uniform, and

that each function eventually returns. In the unlikely event that these

assumptions are violated, the program may run away when you attempt to

single step.

5.4 CALLING A FUNCTION

You can execute a function by calling it directly, without waiting for the

program to run to the function's position in the code. CrossView Pro gives

you the capability of passing input parameters to the function and allows

you to examine the return value after the function executes.

After you manually call a function, CrossView Pro returns to the current

execution position and restores the values of all your registers to the state

before calling the function.

You can call a function by selecting a menu item with a mouse or by use

of a command in the Command Window.

From the Run menu, select Call a Function... to view the Call a Function

dialog box.

The Call a Function dialog box contains two fields, in each field there are

drop-down history lists. In the first, you write the name of the function.

Alternatively, click on the Browse... button in the dialog box, which

opens the Function Lists dialog box where you can search for global and

local functions.

The second field allows you to enter all the values for the input

parameters to this function. The syntax for the parameters is exactly the

same as used in the source code. That is, each parameter is input as an

expression and separated by commas. You do not need to enter any

parentheses or semicolons, and you can use names of variables and

constants in the expressions.

The return value appears in the Command Output Window.

Controlling Program Execution 5–15

• • • • • • • •

To call a function from the Command Window, simply enter the name of

the function along with the appropriate parameter values. For example,

the following demonstrates calling the function factorial() :

factorial(3)
6

You can also use functions in expressions, as in:

factorial(3) – 2
4

Command line function calls are only allowed in an application that uses a

reentrant stack frame. When a static stack frame is used, the locator

overlays stack frames based on the application's call graph. A command

line function call may conflict with the calling sequence in the call graph

and corrupt the static stack frame when executed.

5.5 SEARCHING THROUGH THE SOURCE WINDOW

CrossView Pro can search for addresses and functions in the entire

application and for line numbers, and strings in the current source file. A

string search starts from the current viewing position and "wraps around"

the end (or begin) of the current source file. The string search ends when

a matching string is found or when it returns to the starting point.

5.5.1 SEARCHING FOR A FUNCTION

There are several ways to find a function:

Using the mouse:

• From the Edit menu, select Find Symbol... to open the Find

Symbol dialog box. Select the function you are looking for.

• Click on the Find Symbol button in the Source Window to open

the Find Symbol dialog box.

• Select a function in the Stack Window (double-click) to show the

line that called it.

From the Command Window, you can either specify e followed by the

function name, or a stack position followed by e. For example:

Chapter 55–16
P

R
O

G
R

A
M

 E
X

E
C

U
T

IO
N

e main Find the function main().
1 e Find the line that called the current function.

CrossView Pro searches through all the relevant source code files to find

the one containing the body of the function. The part of the file containing

the function appears in the Source Window.

5.5.2 SEARCHING FOR A STRING

CrossView Pro allows you to search for a particular string in the current

source file. CrossView Pro searches the Source Window from the current

viewing position. If it finds the string, it moves the viewing position to the

corresponding line. This does not affect the execution position.

To find a string:

Open the Search String dialog box by clicking on the Find Text String

button, or select Search String... from the Edit menu. Click on the Case

Sensitive check box to turn case sensitivity on or off.

You can also highlight a text fragment in the source code and click on the

Find Next Text String button to find that fragment again.

In the Command Window, use the / or ? commands. The / command

searches forwards and the ? command searches backwards. For example,

to find the string initval , enter:

/initval Search forward for the string "initval"

CrossView Pro's searches "wrap around" beyond the top or bottom of the

file if necessary.

FUNCTION: Search forward for a string.

COMMAND: / string

FUNCTION: Search backward for a string.

COMMAND: ? string

Controlling Program Execution 5–17

• • • • • • • •

If no string is supplied to the / or ? command, or if you hit carriage return,

or press the function key F3 or select the Search Next String from the

Edit menu item, CrossView Pro searches again for the last string

requested.

5.5.3 JUMPING TO A SOURCE LINE

As mentioned earlier in the Changing the Viewing Position section, you

can use the scroll bar to scroll through the source code or use the arrow

keys or the + and - keys. To find a specific line, you can use one of

several methods:

From the Edit menu, select Find Line... to open the Find Line dialog box.

After you enter a line number (or select one from the history list) in this

dialog box and click on the Find button, CrossView Pro will change the

viewing position to the indicated line number. At the first use, the Find

Line dialog box contains no line number, but on subsequent invocations it

will show the line number you entered before.

Enter the line number on the command line.

Chapter 55–18
P

R
O

G
R

A
M

 E
X

E
C

U
T

IO
N

6

ACCESSING CODE
AND DATA

C
H

A
P

T
E

R

Chapter 66–2
C

O
D

E
 A

N
D

 D
A

TA

6

C
H

A
P

T
E

R

Accessing Code and Data 6–3

• • • • • • • •

6.1 INTRODUCTION

This chapter discusses topics related to viewing and editing the variables

in your source program and execution environment, including accessing

variables and registers, viewing and modifying the data space, using

monitors, viewing the source file, and disassembling code.

6.2 ACCESSING VARIABLES

This section describes how to view and edit your program variables using

the debugger. You can monitor data so that every time you stop the

program, CrossView Pro updates the current value.

The Data Window displays the values of variables and expressions. As

long as the this window is open, CrossView Pro automatically updates the

display for each monitored variable and expression each time the program

stops.

Uninitialized variables will not have meaningful values when you first start

the debugger, since your program's startup code has not been executed.

Also note that global data is initialized at load time. Re-running a program

may produce unexpected results. To guarantee that global data is

initialized properly, download the program again.

6.2.1 VIEWING VARIABLES, STRUCTURES AND

ARRAYS

You may view variable values, and change them, from the Source Window

and the Command Window. CrossView Pro returns the variable in the

format var_name = value in the Command Window.

It is possible to display both monitored and unmonitored expressions in

the Data Window. After every halt in execution, CrossView Pro updates

monitored expressions. Unmonitored expressions are just one-shot

inspections of the expressions value. Refer to section 4.6, CrossView Pro
Windows for a detailed description of the Data Window.

To set the default display format of the data shown, select the proper

format in the Data | Data Display Setup... dialog.

Chapter 66–4
C

O
D

E
 A

N
D

 D
A

TA

To show the contents of a variable or to show the type information of
a function:

Position the mouse cursor over a variable or a function in the Source

Window. A bubble help box appears showing the value of the variable or

the type information of the function, respectively.

To evaluate a simple expression:

Double-click on a variable in the Source window. The result of the

expression is shown in the Data Window. Alternatively, depending on the

preferences you set in the Data Display Setup dialog, the expression

appears in the Evaluate Expression dialog. Click the Add Watch or

Add Show button to display the result of the expression in the Data

Window. Click the Evaluate button to display the result of the expression

in the output field of the Evaluate Expression dialog.

To evaluate a complex expression:

From the Data menu, select Evaluate Expression... and type in any C

expression in the Evaluate Expression dialog box. Optionally select a

display format. Click the Evaluate button.

Type the expression into the command edit field of the Command

Window followed by a return or click the Execute button.

For example, to find the value of initval in demo.c type:

initval

and CrossView Pro will display:

initval = 17

FUNCTION: Display the value of a variable.

COMMAND: variable's_name

For variables having the same name as an CrossView Pro command, use

/n as format style code.

Accessing Code and Data 6–5

• • • • • • • •

Any expression that can be typed into the Command Window can also be

typed in the Expression field of the Expression Evaluation dialog box.

Throughout this discussion, expressions can be typed in either location,

depending on what is convenient.

Viewing Structures

You can also view structures.

By using any of the methods described above, you can print out the entire

structure. For example:

recordvar

and CrossView Pro prints out the structure of recordvar and values of

recordvar 's fields in correct C notation:

recordvar = struct rec_s {
a = –1;
b = 0x1028 ”TASKING”;
c = 987654321;
color = blue;

} recordvar

Displaying Individual Fields

Similarly, you can instruct the debugger to print the value of an individual

field.

In the Source Window, highlight recordvar.color and click the Show

Expression button. Or, in the Expression edit field of the Expression

Evaluation dialog box or in the Command Window, type the structure

name followed by a period and the field name. For instance, to see the

field color for the structure recordvar , enter:

recordvar.color Command
color = blue Output

Note that CrossView Pro returns the value in the form field_name = value.
CrossView Pro also displays enumerated types correctly.

Variables will not have meaningful values when you first start CrossView

Pro, since your program's startup code has not been executed.

Chapter 66–6
C

O
D

E
 A

N
D

 D
A

TA

Displaying the Address of an Array

If you enter the name of an array in the Expression Evaluation dialog box

or in the Command Window, the debugger returns its address. For

instance, to find the address for the array table, select table from the

browse list in the dialog box or type the name in the Command Window:

table Command
table = 0x200 Output

Note that CrossView Pro returns the address in the form array_name =
address.

The debugger can also display the address and value of an individual

element of an array. Enter the name of the array and the number of the

element in brackets. For instance, to find the address and value of the

third element of array table, enter:

table[3] Command
0x20C = 0 Output

Note that CrossView Pro returns the information in the form address =
value.

Displaying Character Pointers and Character Arrays

The following piece of C code can be accessed in CrossView Pro using the

string format codes:

char text[] = ”Sample\n”;
char *ptext = text;

text What is the address of this char array
text = 0x8200

text/a Print it as a string
text = ”Sample^J”

ptext What is the contents of this pointer
string = 0x8200

ptext/s Print it as a string
string = ”Sample^J”

&ptext Where does ptext itself reside
0x8210

Accessing Code and Data 6–7

• • • • • • • •

Sizing Structures

With structured variables, it is especially useful to know the size of a

variable.

In the Command Window, you can determine the size of a variable with

the sizeof() function. For instance, to determine the size of the structure

recordvar , enter:

sizeof(recordvar)
24

6.2.2 CHANGING VARIABLES

With CrossView Pro, you can not only view your variables, but change

them. This function allows you to easily test your code by single-stepping

through the program and assigning sample values to your variables. For

instance, to set the variable initval to 100, enter:

initval=100

and CrossView Pro confirms initval 's new value:

initval = 100

Note that CrossView Pro returns the values of variables with the syntax:

var_name = value, with any right-hand side expression evaluated to a

single value.

Changing variables in the Data Window

To change a variable in the Data Window, follow these steps:

• In the Data Window, double-click on the variable you wish to edit.

In-situ editing will be activated.

• Specify the new value in the edit control and hit the Enter key.

When in-situ editing is active, you can use the Tab key to move the edit

field to the next variable value or use the Shift+Tab key combination to

move the edit control to the previous variable.

Chapter 66–8
C

O
D

E
 A

N
D

 D
A

TA

Assigning Structures

CrossView Pro also allows you to assign whole structures to one another.

You can use a simple equation to assign the structures. For instance, to

assign statrec to recordvar , enter:

statrec = recordvar

6.2.3 THE l COMMAND

CrossView Pro's windows contain a great deal of information about the

current debugging session. Occasionally, however, you have a few closed

windows, or wish the information to appear in the Command window (for

instance, when you are recording output). Using the l (list) command, you

can find out all sorts of things about the current state of the debugger and

have the information appear in the Command window.

Arguments of the l Command

a assertions k kernel state data

b breakpoints m memory map (of application code sections)

d directory p procedures (functions)

f files (modules) r registers

g globals s special variables

For configurations that support real-time kernels the l k command can

have additional arguments. See the description of the l command in the

Command Reference for details.

You may for example view the contents of the registers:

l r

Or the list of procedures (that is, functions):

l p

a complete list of global variables:

l g

Accessing Code and Data 6–9

• • • • • • • •

The l f command (list files) also shows the address where CrossView Pro

placed the first procedure in the module. If the module is a data module

then the address reflects the first item's placement.

With all of these l commands you can specify a string:

l g record

and CrossView Pro searches the globals for a match with the same initial

characters; in this case global variables that begin with record .

Chapter 66–10
C

O
D

E
 A

N
D

 D
A

TA

6.3 EXPRESSIONS

6.3.1 EVALUATING EXPRESSIONS

CrossView Pro expressions use standard C syntax, semantics, and allow

special variables. You can calculate and show the values of expressions in

CrossView Pro by using a variety of methods:

It is possible to display both monitored and unmonitored expressions in

the Data Window. CrossView Pro updates monitored expressions after

every halt in execution. Unmonitored expressions are just one-shot

inspections of the expressions value. Refer to section 4.6, CrossView Pro
Windows for a detailed description of the Data Window.

To evaluate a simple expression:

Double-click on a variable in the Source window. The result of the

expression appears in the data window. Alternatively, depending on the

preferences you set in the Data Display Setup dialog, the expression

appears in the Evaluate Expression dialog. Click the Add Watch or

Add Show button to display the result of the expression in the Data

Window. Click the Evaluate button to display the result of the expression

in the output field of the Evaluate Expression dialog.

To evaluate a complex expression:

From the Data menu, select Evaluate Expression... and type in any C

expression in the Evaluate Expression dialog box. Optionally select a

display format. Click the Evaluate button.

CrossView Pro calculates the result and displays the value in the

appropriate format. For details about expression formats see the section

Formatting Expressions in the chapter CrossView Pro Command Language.

Type the expression in the Command Window.

Expressions can contain variable names as arguments. For instance, if the

variable initval has a value of 17 and you enter:

initval * 2

CrossView Pro displays:

34

Accessing Code and Data 6–11

• • • • • • • •

The expression can contain names of variables, constants, function calls

with parameters, and so forth; anything that you can write directly at the

Command Window, you can use in the Evaluate Expression dialog box.

For more information on expressions and the CrossView Pro command

language, refer to the section CrossView Pro Expressions in the Command
Language chapter.

The Dot Operand

Using the dot shorthand "." can save you some typing. The dot stands for

the last value CrossView Pro displayed. For instance:

initval
initval = 17

Now you can use the value 17 in another expression by typing:

. * 2
34

The value is the result of the new expression.

Naturally, using the dot operand saves you from retyping complex

expressions.

6.3.2 MONITORING EXPRESSIONS

CrossView Pro allows you to monitor any variable or expression.

Monitoring means that the debugger evaluates a particular expression and

displays the result each time the program stops. If you are in window

mode, CrossView Pro displays the values of the monitored variables and

expressions in the Data window.

Monitor Set Up

To set up a monitor you can:

From the Data menu, select Evaluate Expression... or double-click on a

variable in the Source Window, or click on the Watch Expression button

to view the Expression Evaluation dialog box. From this dialog box, you

can enter an expression and monitor (watch) its value in the Data

Window. You can skip the Expression Evaluation dialog if you activate the

Bypass Expression Evaluation dialog check box in the Data Display

Setup dialog.

Chapter 66–12
C

O
D

E
 A

N
D

 D
A

TA

Alternatively, click on the New Expression button in the Data Window.

The Data Window must be open to display the result. Otherwise

CrossView Pro does not monitor the expression. Therefore, CrossView Pro

opens the Data Window automatically when you choose to show or watch

an expression.

Type the m expression command in the Command Window.

To place the variable initval in the Data window type:

m initval

initval remains in the Data window. You may run the program, step

through it, and the display updates continually. Even if you are not in

window mode, CrossView Pro still displays the value of initval after

every CrossView command.

FUNCTION: Monitor an expression or variable.

COMMAND: m expression

Similarly, if you want twice the value of initval you could type:

m initval*2

And the expression initval*2 is monitored.

Monitored expressions are evaluated exactly as if you had typed them in

from the command line; therefore, if you are monitoring a variable, say R,

identical to an CrossView Pro command, use the /n format, in this

example R/n .

Monitor Delete

To remove a monitored expression you can:

Select the item in the Data Window and click on the Delete Selected Data

Item button from the Data Window, or select Data | Delete | Item.

To remove all expressions from the Data Window, select Data | Delete |

All.

Type the number m d command in the Command Window.

Accessing Code and Data 6–13

• • • • • • • •

To remove initval from your Data Window #1, type the number of the

expression (first item of the Data Window has number 0) and m d

(monitor delete):

0 m d

and CrossView Pro removes initval (in this case, assuming it is the first

variable listed in the window) from the Data Window.

FUNCTION: Remove an expression from the Data Window

COMMAND: number m d

Since local variables have no meaning beyond their range, CrossView Pro

issues error messages if you try to evaluate local variables beyond their

scope. Some variables also become invisible when the program call

another function. For instance, if you are in main() , monitoring sum, and

main() calls factorial() , the unqualified name sum is no longer

visible inside factorial() . You can get around this problem, however,

by monitoring main#sum instead.

6.3.3 FORMATTING DATA

When you display a particular variable, CrossView Pro displays it in the

format the symbolic debug information defines for it. You may, however,

easily specify another format using dialogues or keyboard commands. See

the section Formatting Expressions in the chapter CrossView Pro
Command Language.

Examples

To print the value of initval in hexadecimal format, enter

initval/x

Be sure not to confuse CrossView Pro format codes with C character

codes. CrossView Pro uses a / (forward slash) not a \ (backward slash).

Chapter 66–14
C

O
D

E
 A

N
D

 D
A

TA

Don't worry about trying to memorize the list, you probably won't have

occasion to use all these formats. Notice, however, that the /t format code

give information about a particular value. For instance, if you wanted to

find out what the type of initval is, type:

initval/t
global long initval

You can also take more low-level actions, such as finding out which

function contains the hexadecimal address 0x100.

0x100/P
main

CrossView Pro tells you that address 0x100 is in the function main() .

6.3.4 DISPLAYING MEMORY

CrossView Pro supports several methods to display memory contents. The

Memory Window provides a very user-friendly yet powerful way to

display the raw contents of the target memory.

Refer to section 4.6.4 for a description of the Memory Window.

Format codes also give you control over the number and size of multiple

pieces of data to display beginning at a particular address. The debugger

accepts format codes in the following form:

[count] style [size]

Count is the number of times to apply the format style style. Size indicates

the number of bytes to be formatted. Both count and size must be

numbers, although you may use c (char), s (short), i (int), and l (long) as

shorthand for size. Legal integer format sizes are 1, 2, and 4; legal float
format sizes are 4 and 8.

For instance:

initval/4xs

displays four, hexadecimal two-byte memory locations starting at the

address of initval .

Accessing Code and Data 6–15

• • • • • • • •

With format codes, you may view the contents of memory addresses on

the screen. For instance, to dump the contents of an absolute memory

address range, you must think of the address being a pointer. To show the

memory contents you use the C language indirection operator '*'. Example:

*0x4000/2x4
0x4000 = 0x00DB0208 0x5A055498

This command displays in hexadecimal two long words at memory

location 0x4000 and beyond. Instead of using the size specifier in the

display format, you can force the address to be a pointer to unsigned
long by casting the value:

*(unsigned long *)0x4000/2x
0x4000 = 0x00DB0208 0x5A055498

To view the first four elements of the array table from the demo.c
program, type:

table/4d4
table = 1 1 2 6

This command displays in decimal the first four 4-byte values beginning at

the address of the array table .

By typing the a space followed by a carriage return you can advance and

see the succeeding values in the same format:

 [Enter]
0x11 = 24 120 720 5040

You may recognize that the array table contains the factorials for the

integers 0 through 7.

Displaying memory in this way is particularly effective when you have

two-dimensional arrays. In this case you can display each row by

specifying the appropriate count. For instance, if myarr is defined as int
myarr[5][8] :

myarr/8ds

displays the values for the eight elements in the first row of myarr . Typing

the carriage return repeatedly then display subsequent rows in the same

format.

Chapter 66–16
C

O
D

E
 A

N
D

 D
A

TA

To scroll back in memory, type the ^ (caret) sign:

^
0x9 = 1 1 2 6

FUNCTION: Display value(s) at previous memory location.

COMMAND: ^

6.3.5 DISPLAYING MEMORY ADDRESSES

The f command lets you specify in which notation CrossView Pro displays

memory addresses. It takes the same arguments as the printf() function

in C.

FUNCTION: Specify memory address notation.

COMMAND: f [” printf-style-format”]

For instance, if you wish to display all memory addresses in octal, type:

f ”%o”

Now all addresses appear in octal. To return to the default hexadecimal,

type:

f ”%x”

Using the f command without an argument also returns to hexadecimal

address display.

Accessing Code and Data 6–17

• • • • • • • •

6.4 DISPLAYING DISASSEMBLED INSTRUCTIONS

To show disassembled instructions:

From the View menu, select Source | Disassembly to open the

Disassembly Source Window.

Use the /i format switch to display disassembled code in the Command

Window.

By using an address and the /i format it is possible to display

disassembled code at any point. Suppose you wish to see how the

factorial() function has been compiled. One method would be to

examine the instructions displayed as you single step through a program at

the assembly language level. There is however a quicker method that does

not require you to execute the instructions. Type:

factorial/10i

This command displays the first ten assembly language instructions of

factorial() . Remember that in C a function's name is also its address.

Thus factorial is the address of the function factorial() .

Note that CrossView Pro keeps track of variable and function names for

you in the disassembled code. You can also disassemble from the current

execution position by using the program counter:

$pc/5i

This command disassembles five assembly language instructions from the

current execution line.

You can display disassembled code for any function:

main#56/7i

disassembles seven instructions from line 56.

See also the ei command for displaying disassembly in a window.

Labels in Disassembly

To show labels in disassembly:

From the Settings menu, select the Source Window Setup... to open the

Source Window Setup dialog box and enable the Symbolic disassembly

check box.

Chapter 66–18
C

O
D

E
 A

N
D

 D
A

TA

Turn the $symbols special variable "ON" by typing the following

command in the Command Window:

opt symbols=on

6.4.1 INTERMIXED SOURCE AND DISASSEMBLY

To show intermixed source and disassembly:

From the View menu, select Source | Source and Disassembly to open

the Source and Disassembly Window.

Use the /I format switch to display intermixed C and disassembled code

in the Command Window.

The /I format works exactly as the /i format, except CrossView Pro

intermixes the pseudo-assembly listing with the original C source. This

feature is often helpful in displaying long portions of code.

Auto Switch between Source and Disassembly

To automatically switch between source and disassembly window

depending on the presence of symbols:

From the Settings menu, select the Source Window Setup... to open the

Source Window Setup dialog box.

Enable the Show assembly when SDI is missing check box.

Turn the $autosrc special variable "ON" by typing the following

command in the Command Window:

opt autosrc=on

Accessing Code and Data 6–19

• • • • • • • •

6.5 THE STACK

During debugging, you frequently find yourself lost or unable to pinpoint

your location through a series of function calls. The stack helps you with

the problem by recording the return addresses of all functions you have

passed through. CrossView Pro can use this information to reconstruct the

path to your current location.

The following diagram shows the structure of the stack.

Parameter n

Parameter 1

...

Local Variables

Calling Routine’s

Frame

Return Address

Old Frame Pointer

Caller’s Frame Pointer

Frame Pointer (A6)

Stack Pointer (A7)

(negative offsets from Frame Pointer)

(positive offsets from Frame Pointer)

Lower Addresses

Higher Addresses

Figure 6-1: Stack frame layout

6.5.1 HOW THE STACK IS ORGANIZED

Whenever your program calls a function, the calling function pushes the

arguments (in reverse order) onto the stack.

Chapter 66–20
C

O
D

E
 A

N
D

 D
A

TA

The function's prologue creates its own stack frame, by reserving enough

room on the stack for any local variables and temporary data storage, and

saves the return address after jumping to the function's code. When the

function is finished, the epilogue code performs the above steps in reverse

order: it dismantles the local frame and jumps to the return address.

The compiler may optimize some of the function frames away. The -do

(disable all optimizations that interfere with debugging) compiler switch

ensures that functions always have frames on the stack, thus allowing

stack traceback to work.

6.5.2 THE STACK WINDOW

The Stack Window shows the current contents of the stack after the

program has been stopped. This window helps you assess program

execution and allows you to view program values. You can also set

breakpoints for different stack levels from this window, as described in the

chapter Breakpoints and Assertions.

The Stack Window displays the following information for each stack level:

• The name of the function that was called

• All parameters specified to the function

• The line number in the source code from which the function was

called

Each stack level shown in the Stack Window is displayed with its level

number first. The levels are numbered sequentially from zero. That is, the

lowest/last pushed level in the function call graph is always assigned zero.

When you first see stack information, the lowest level appears against a

darker background than the other lines in the window. The marked line in

the Stack Window is the selected stack level, meaning that this line is

selected for window operations. You can change the selected stack level

by clicking on a different line.

Checking the Stack from the Command Window

The stack information is also accessible from the Command Window with

the t and T commands. The t command reconstructs the program's calling

path. For instance, if you stepped into the function factorial() and

issue a t (trace) command:

t

Accessing Code and Data 6–21

• • • • • • • •

CrossView Pro displays:

0 factorial(num=0) [demo.c:105]
1 main() [demo.c:59]

The numbers to the left indicate the depth of each function on the stack.

The function at the zero stack level is your current function. CrossView

Pro tells you the line number where the function was called

([demo.c: line_nr]) and the value of the argument passed

(num=value). With this information it is fairly easy to reconstruct your

calling path, and see what parameter values your functions have received.

FUNCTION: Trace stack to reconstruct program's calling path.

COMMAND: t

There is a slight variation on the t command called the T command. The

two are identical, except that the T command also displays the local

variables for each function. For instance:

T
0 factorial(num=0) [demo.c:105]
 locvar = ’x’
1 main() [demo.c:59]
 loopvar = 0
 sum = 0
 cvar = ’\xff’

FUNCTION: Trace stack and display local variables.

COMMAND: T

Chapter 66–22
C

O
D

E
 A

N
D

 D
A

TA

6.5.3 LISTING LOCALS AND PARAMETERS OF A

FUNCTION

As mentioned in the previous section, CrossView Pro displays all

parameters of a function. You can view the local variables and parameters

of any single function active on the stack To do this:

Follow these steps:

• Open up the Expression Evaluation dialog box by clicking on the

New Expression button from the toolbar or selecting Evaluate

Expression... from the Data menu.

• Click on the Browse... button.

In the Command Window, use the l (lowercase L) command.

For example, assuming you are still in factorial() , issue an l

command:

l factorial
num = 0
locvar = ’x’

You can accomplish the same task by specifying the stack depth instead of

a function name:

l 0

6.5.4 LOW-LEVEL VIEWING THE STACK

You can directly view the contents of the stack. Although CrossView Pro

provides several high level methods of tracing functions on the stack, you

can view its contents directly with the frame pointer special variable, $fp .

For instance, the command:

$fp[0]/4x1

displays the four one-byte values in hexadecimal to which the frame

pointer points. Notice that the stack frame is not really an array, but by

pretending it is, you can display the memory much as you did with the

table array. Refer to the Accessing Variables section in this chapter for

more information.

Accessing Code and Data 6–23

• • • • • • • •

6.6 TRACE WINDOW

C level trace is not available for all execution environments. Please check

the Addendum for details.

The Trace Window displays the most recently executed lines of code each

time program execution stops. CrossView Pro automatically updates the

Trace Window each time execution halts, as long as the window is open.

For each executed line of code, the Trace Window displays:

• The name of the source file

• The name of the function

• The line number and corresponding source code

• The window shows all the code executed since the the last time the

program halted.

6.6.1 TRACE WINDOW SETUP

The Trace Window's only function is to display the contents of the

emulator's/ simulator's trace buffer. The only operation you can perform in

this window that directly affects the contents is to set the maximum

number of instructions in the display.

To set the displaying limit, select the Initialization tab in the File |

Options... dialog. You can change the maximum number of C-Trace

machine instructions to fetch from the execution environment's trace

buffer and the maximum number of trace output lines in the Trace

Window.

To view the most recently executed source statements from the Command

Window, use the ct command preceded by the number of machine

instructions you want to list. For example, to view the last source lines

corresponding to the last ten machine instructions, enter:

10 ct

FUNCTION: Display in the Command window the most recently

executed C statements.

COMMAND: number ct

Chapter 66–24
C

O
D

E
 A

N
D

 D
A

TA

To activate the source level trace window:

From the View menu, select Trace | Source Level to view the Trace

Source Window.

You can view the last machine instructions executed with the ct i

command. For example:

15 ct i

displays the last 15 machine instructions in disassembled form in the

Command Window.

FUNCTION: Display the most recently executed machine

instructions.

COMMAND: number ct i

To activate the instruction level trace window:

From the View menu, select Trace | Instruction Level to view the Trace

Instructions Window.

You can view a raw trace with the ct r command. For example:

20 ct r

displays the last 20 trace frames in the Command Window.

FUNCTION: Display a raw trace.

COMMAND: number ct r

To activate the raw trace window:

From the View menu, select Trace | Raw to view the Trace Raw Window.

Accessing Code and Data 6–25

• • • • • • • •

6.7 REGISTER WINDOW

The Registers Window shows you the values of internal registers on your

target processor.

You can create multiple Register Windows and each Registers Window

contains the names and contents of all currently selected registers in the

selected register set definition. Values are displayed in hexadecimal format.

As long as the window is open, the debugger automatically updates the

values when the program stops.

To show the list of current registers and their contents in the Command

Window, enter the list registers command (l r).

CrossView Pro also supplies the following special variables:

$sp stack pointer

$pc program counter

$fp current frame pointer

for all targets. For more information, refer to the Command Language
chapter.

6.7.1 REGISTER WINDOW SETUP

You can configure which register set definition with which (and in which

order) registers must be displayed in the Register Window; using the

Settings | Register Window Setup... dialog. Since you can have more

than one Register Window, the last active Register Window will be

configured when you select this menu item.

To configure a Register Window follow these steps:

• Select a Register Window.

• From the Settings menu, select Register Window Setup... to view

the Register Window Setup dialog box.

The dialog will show the active register set definition and the list of

available and selected registers for this particular register set

definition.

• You can create a new register set definition by entering an unique

register set definition name in the Name edit field and using the

Add button.

Chapter 66–26
C

O
D

E
 A

N
D

 D
A

TA

• You can delete a register set definition by selecting an item from the

defined register set definition list and using the Delete button. Note

that when you delete a register set definition, any Register Window

displaying a deleted register set will be closed.

• You can select a register set definition by selecting an item from the

defined register set definition list. The list of available and selected

registers will be updated according to the configuration of the

selected regisetr set definition.

Once you have selected a register set definition, follow these steps to

configure this register set definition:

• You can add registers to the list of selected registers by selecting

registers from the list of available registers by highlighting those

registers in the left list box and using the Add-> or Add All button

or by double-clicking on the register you want to add.

• You can remove registers from the list of selected registers by

highlighting those registers in the right list box and using the

Remove <- or Remove All button, or by double-clicking on the

register you want to remove.

• By using the Move Up and Move Down buttons you can change

the display order of the selected registers in the Register Window.

CrossView Pro automatically updates all Register Windows and places the

registers in each Register Window starting at the top-left position on one

line, wrapping to the next line if the next register does not fit.

6.7.2 EDITING REGISTERS

CrossView Pro lets you change the contents of registers in a simple and

direct manner.

Follow these steps:

• In the Register Window, click on the register value you wish to edit.

In-situ editing will be activated.

• Specify the new value in the edit control and hit the Enter key.

If the edited value is not acceptable, the debugger will emit an error

message and reset the old value.

Accessing Code and Data 6–27

• • • • • • • •

When in-situ editing is active, you can use the Tab key to move the edit

field to the next register value or use the Shift+Tab key combination to

move the edit control to the previous register. Use the Esc key to cancel

in-situ editing. When a register is not in view the contents of the Register

Window will be updated automatically.

You can enter any expression in the Registers Window.

Registers which can be edited symbolically have a special marker just

before the register name. You can click on this marker to activate the

Assign Register Symbolically dialog.

To access registers from the Command Window, use the $ designation and

the register name in the format:

$register = value

Chapter 66–28
C

O
D

E
 A

N
D

 D
A

TA

7

BREAKPOINTS AND
ASSERTIONS

C
H

A
P

T
E

R

Chapter 77–2
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

7

C
H

A
P

T
E

R

Breakpoints and Assertions 7–3

• • • • • • • •

You can use breakpoints to stop program execution at specified locations

and return control to the user. An assertion is a number of statements

executed by the debugger each time the target executes a program line.

Use assertions to track down bugs, the cause of which is very hard to find.

7.1 INTRODUCTION TO BREAKPOINTS

Breakpoints halt program execution and return control to you. There are

several types of breakpoints: code, data, instruction count, cycle count,

timer and sequence. A code breakpoint halts the program on a particular

statement or instruction; a data breakpoint stops the program when a

particular memory address (or range of addresses) is accessed; an

instruction count breakpoint halts the program after a specified number of

instructions have been executed; a cycle count breakpoint stops the

program after a number of CPU cycles; a timer breakpoint stops the

program after a number of micro seconds or ticks and sequence

breakpoints stop the program when a number of breakpoints are hit in a

specified sequence.

Data breakpoints, instruction count breakpoints, cycle count breakpoints

and timer breakpoints are not available for all execution environments,

please check the Addendum.

7.1.1 CODE BREAKPOINTS

A code breakpoint is set on a line in the code and makes the program

halt exactly before that line executes. When you define a code breakpoint,

you can include four elements:

• A count, which is the number of times the breakpoint must be

encountered before it stops the program (default is 1).

• A reset count, which is the value assigned to the count after the

program has stopped on a breakpoint (default is 1).

• A name, which is the symbolic name you can associate with a

breakpoint.

• A list of commands, which will be executed when the program hits

the breakpoint.

Chapter 77–4
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

In the Source Window, a green colored toggle shows that no breakpoint is

set. A red colored toggle shows that a breakpoint is installed. An orange

colored toggle indicates an installed but disabled breakpoint. If coverage is

enabled, coverage markers are present to the right of the breakpoint

toggles. An executed line is marked and not executed lines are not

marked.

Breakpoint
Toggles

Current
Execution Position

Status
Bar

Coverage
Markers

Profiling

Figure 7-1: Code Breakpoint

Permanent/Temporary Code Breakpoints

Code breakpoints can be: permanent or temporary. A permanent

breakpoint exists until explicitly deleted. A temporary breakpoint only

exists until it stops the program once.

Probe Point Code Breakpoints

A breakpoint can be treated as a probe point. When a probe point

breakpoint is hit, the associated commands are executed and program

execution is continued. Probe points are used with File I/O simulation and

sequence breakpoints.

Breakpoints and Assertions 7–5

• • • • • • • •

How CrossView Pro Sets Code Breakpoints

CrossView Pro depends on the symbol table for information about how

machine instructions map to lines of source. In general, the C compiler

issues line symbols at the start of each statement or line, whichever comes

first. This can lead to some surprising results. If you look carefully, you

can tell on which line CrossView Pro set the breakpoint, since CrossView

Pro tells you on which line the program stopped, a line that may be

different from the one you expected. To find out what happens if you

install a code breakpoint, use single stepping and watch the order in

which the source lines print out.

Multiple Statements on a Single Source Line

If you frequently include multiple statements on a single line in your

source code, you may have difficulties setting code breakpoints at certain

locations. For instance, suppose you have a source line containing:

a = 0; b = 1

Suppose you want to halt execution after the assignment to a and before

the one to b. A normal code breakpoint does not work here, because

execution stops at the first instruction of the source line. CrossView Pro

provides you with the capability of disassembling the code and inserting

breakpoints at the machine level. You can use the Assembly Source

Window or the Intermixed Source Window to spot the right location.

For more information on machine level breakpoints, see below.

Setting Breakpoints for Multi-line Statements

Code breakpoints have a special behavior for multiple-line statements,

such as a multiple-line if . In an if clause, a line symbol is generated at

the beginning of the list of conditions, and the other lines of the

conditions are generally associated with the first line of the clause. In an

if–then–else construct, the } character before the else is associated

with the branch-around to the end of the statement.

Consider the following example:

22: if ((a == b)&&
23: (c == d)) {
24: x = 2;
25: } else {
26: y = 3;
27: }

Chapter 77–6
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

If you try to set a code breakpoint at line 23, CrossView Pro sets the

breakpoint on the preceding statement. If you try to set a breakpoint on

line 22, CrossView Pro highlights line 23. If you set a breakpoint on line

25, it hits after the assignment to x , but before the jump to line 27. Notice

that it is not hit unless the if clause is true. In other words, a breakpoint

on line 25 is really a break on the } , not on the else { . The same

behavior applies when the else { statement is on the next source line.

Breakpoints and For Loops and While Loops

The code generated for a C 'for' statement has three parts: the

initialization; the body of the loop; and the increment, test, and branch.

The initialization part and the increment, test, and branch are different

parts of code, but are both associated with the 'for' statement itself. For

example consider:

99: for (i = 0; i < 9; i++) {
100: myfunction(i);
101: }

A breakpoint placed on line 99 will only be hit once, because it is hit at

the initialization code. The code for the increment, test, and branch is

associated with line 101, not 99, as you might expect.

The same applies to 'while' loops.

Breakpoints and Emulator Mode

Upon entering emulator mode, the debugger removes any breakpoints it

established in the target code. Removing breakpoints ensures that you can

access unmodified target code. When emulator mode ends, CrossView Pro

reestablishes breakpoints as necessary.

As long as you avoid the debugger's own breakpoint trap, you may

establish arbitrary breakpoint conditions while in emulator mode. These

will not be removed by CrossView Pro and thus remain active, however,

after you exit emulator mode. If one of these breakpoints is hit during

normal debugging, CrossView Pro will issue a message such as:

Stopped on breakpoint not set by debugger.

Breakpoints and Assertions 7–7

• • • • • • • •

System Startup Code

It is possible (for example, by using the si command) to debug system

level startup code that initializes the target environment. You should not

use any global variables in CrossView Pro expressions until the data area

has been initialized. CrossView Pro assertions and other CrossView Pro

commands that examine C variables may deliver erroneous information or

cause memory access errors if used before the C environment is

established.

7.1.2 DATA BREAKPOINTS

A data breakpoint instructs the execution environment to watch a

particular data address or address range and halt execution if the program

reads from or writes to that address. Data breakpoints are a powerful

feature for tracking the use, and possible misuse, of pointers, global

variables and memory mapped I/O ports.

Data breakpoints are not available for all execution environments, please

check the Addendum.

When setting a data breakpoint, you can specify whether the breakpoint

stops the program when data is read from, written to, or both.

Data breakpoints are implemented in hardware. As a consequence, the

number of allowable data breakpoints is limited by your execution

environment. A simulator does not have these restrictions. Refer to the

environment-specific Addendum for more information.

On the 68K/ColdFire family of microprocessors, some skidding may occur

when you use data breakpoints. Skidding means that the execution

environment executes the next several instructions after the data

breakpoint stops the program. This occurs because the microprocessor

executes instructions in its cache before stopping. You should know,

therefore, that the data breakpoint may not stop the program at the precise

line of code where the break occurred.

You may set a data breakpoint on a local variable, but only if the local

variable is active. CrossView Pro notifies you when program execution

passes beyond a local variable's scope, and a breakpoint set on such a

variable is deleted automatically. Data breakpoints for static variables do

not have this restriction.

Chapter 77–8
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

Note that any local variables placed in registers cannot be tracked with

data breakpoints. In this case, you must use an assertion. Refer to the

Assertions section later in this chapter for more information.

7.1.3 LISTING BREAKPOINTS

To see a listing of all of the currently defined breakpoints:

From the Breakpoints menu, select Breakpoints... to view the

Breakpoints dialog box.

In the Command Window, enter the l b or B commands. The list appears

in the Command Window.

For example entering the B command can result in:

B
0 ena CODE main (CODE:0x78) 2/2

The breakpoint's number (used when deleting breakpoints) is listed first,

then if it is enabled or disabled, then its type: such as CODE for code

breakpoints and DATA for data breakpoints. Next, CrossView Pro lists the

function and/or address, its count and reset count, and finally any attached

commands enclosed by { and }.

FUNCTION: View all breakpoints in the Command window.

COMMAND: B

CrossView Pro decrements the count each time the breakpoint is hit.

When the breakpoint's count reaches 0, CrossView Pro halts the program.

7.2 SETTING BREAKPOINTS

You may set a code or data breakpoint by:

• Using the mouse to open the Breakpoints dialog box.

• Using the mouse in the Source Window.

• Using the Stack Window.

• Using the command line in the Command Window.

Breakpoints and Assertions 7–9

• • • • • • • •

When you set a new breakpoint using the mouse, without using the

Breakpoint dialog box, the type is always permanent, the count 1 and the

location corresponds to the current viewing position, if the Source

Window is open. These variables are described in more detail below.

Setting Breakpoints from the Menu

To set a breakpoint from the menu, select Breakpoints... from the

Breakpoints menu to view the Breakpoints dialog box. From this dialog

box, you can define several types of breakpoints.

To set a code break point at line number # of the C source, click the

Add > button and select Code Breakpoint.... Click the Break At...

button, choose a C module (for example demo.c) and click the OK

button. Now you can enter a line number to set the breakpoint at.

Figure 7-2: Breakpoints dialog box

The last entry of the list is always empty. Select it to start defining a new

breakpoint.

Setting Breakpoints from the Source Window

You can set or remove a code breakpoint directly from the Source

Window by clicking on:

• The breakpoint toggle next to the source lines in the Source

Window.

To set data breakpoints use the menu as described above.

Chapter 77–10
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

Setting Breakpoints from the Stack Window

See the section Up-level Breakpoints later in this chapter.

Setting Breakpoints from the Command Window

You can set a code breakpoint from the Command Window using the

break code command or the b command, and set a data breakpoint using

the break data command. Several options are available after these

commands.

See the break command in the Command Reference for detailed

information.

For example, the following command sets a code breakpoint at the

address specified by function main :

break code main

To set a code breakpoint at a specific source line, you can enter a

breakpoint address in the form: filename#line after the break command,

or you can specify a line number, followed by the b command and any

commands you want to attach to the breakpoint. For example, to set a

code breakpoint at line 51 in your source, enter:

break demo.c#51

or

51 b

If you do not specify a line number, a breakpoint will be set at the current

viewing position.

FUNCTION: Set a code breakpoint.

COMMAND: break [code] address [,option]...

FUNCTION: Set a code breakpoint.

COMMAND: [line_number] b [commands]

Breakpoints and Assertions 7–11

• • • • • • • •

To set a data breakpoint, you must specify the break data command,

followed by an address, followed by any commands you want to attach to

the breakpoint. There are three types of data breakpoints:

• A data read breakpoint to see if a variable is read from (break data

address, access_type=r command)

• A data write breakpoint to watch if a variable is written to (break

data address, access_type=w command)

• A data read or write breakpoint to check if a variable is either read

from or written to (break data address, access_type=rw

command)

For example, to set a data breakpoint to watch the lowest byte in memory

of the global variable initval , enter:

break data &initval, access_type=w

This command instructs CrossView Pro to set a data breakpoint that will

halt execution if the program writes to the lowest byte in memory of the

variable initval . Note that you have to specify the variable's address,

otherwise the variable's value is used.

FUNCTION: Set a data breakpoint.

COMMAND: break data address [,option]...

7.2.1 DATA BREAKPOINTS OVER A RANGE OF

ADDRESSES

You can also use data breakpoints to watch a contiguous range of

memory. As with standard data breakpoints, data breakpoints over a range

of addresses can be set to watch for reading, writing or both. To set a data

breakpoint of this type:

Using mouse and menu:

• From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box.

• Select the data breakpoint you want to edit and click the Edit...

button, or click the Add > button and select Data Breakpoint...

• Specify a start address and click on the Advanced button.

Chapter 77–12
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

• Select one of the Type options: break on read, write, read or write.

• Specify an end address. The end address is part of the range.

From the Command Window:

• Type break data address, end_addr=end_address, access_type=r

to set a data read breakpoint over a range.

• Type break data address, end_addr=end_address, access_type=w

to set a data write breakpoint over a range.

• Type break data address, end_addr=end_address,
access_type=rw to set a data breakpoint for both reading and

writing over a range.

For example, to ensure that the program stops if any of recordvar 's

fields are either written to or read from:

break data &recordvar, end_addr=(int) \
&recordvar+sizeof(recordvar)–1, access_type=rw

FUNCTION: Set a data breakpoint over a range of addresses.

COMMAND: break data address, end_addr=end_address [,option]...

7.2.2 TEMPORARY BREAKPOINTS

Breakpoints can be: permanent or temporary. A breakpoint exists until it is

manually deleted. A temporary breakpoint is automatically removed by

CrossView Pro after it halts the program once.

To set a temporary breakpoint:

Follow these steps:

• Open the Source Window by selecting Source | Source lines from

the View menu.

• Open the Breakpoints dialog by selecting Breakpoints... from the

Breakpoints menu.

• Click on the Add > button and select Code Breakpoint...

• Enter an address in the Break At field and click on the Advanced

button.

• Enable the Remove when hit check box in the Behavior field.

Breakpoints and Assertions 7–13

• • • • • • • •

• Click on the Continue button in the Source Window when the

program halts. This removes the temporary breakpoint at the

viewing position and the program continues.

• Alternatively, scroll to the line that you want to stop at and click

once (to establish a viewing position). From the Run menu, select

Run to Cursor to continue execution until you reach this

temporary breakpoint.

From the Command Window:

• Type break code address, temporary=true to set a temporary

code breakpoint.

• Type the C command followed by a line number, to set a temporary

breakpoint at a line number.

For example,

C 51

sets a temporary breakpoint at line 51 and resumes execution at the

current execution position.

FUNCTION: Set a temporary code breakpoint.

COMMAND: break code address, temporary=true [,option]...

7.2.3 BREAKPOINT NAMES

You can associate a symbolic name with a breakpoint. You can then use

this name with the following commands: break set and break delete.

Breakpoint names must be unique and cannot be a number or the word

"all". Allowed characters are a-z, A-Z, 0-9 and '_'.

To assign a name to a breakpoint:

Follow these steps:

• From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box.

• Select a breakpoint to edit and click on the Edit... button.

• Alternatively, click on the Add > button and select a breakpoint

type to create.

Chapter 77–14
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

• Enter the breakpoint information in the first field, for example an

address.

• Enter a symbolic name in the Name field.

Use the name=name option of the break command in the Command

Window.

For example,

break code 0x1234, name=brk_1

sets a code breakpoint at address 0x1234 with the name brk_1 .

7.2.4 SETTING THE COUNT

CrossView Pro allows you to set a breakpoint's count. The count defines

how many times you encounter the breakpoint before it halts the program.

For example, a breakpoint with a count of 3 means the program stops on

the third hit. Each time the breakpoint is hit, CrossView Pro decrements

the count. When the count reaches 0, CrossView Pro halts the program,

and resets the count to the value of the reset count. The default reset

count is 1.

To set a breakpoint's count,

Follow these steps:

• From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box.

• When you add or edit a breakpoint, click on the Advanced button.

• Enter a breakpoint's count in the Breakpoint count field.

• Enter a reset count in the Reset count field.

From the Command Window,

• Use the count= argument with the break command to set both the

current count and the reset count.

• Use the curr_count= and/or reset_count= arguments with the

break command to set the current count and the reset count

separately.

Breakpoints and Assertions 7–15

• • • • • • • •

For example, suppose you have a breakpoint set at address 0x59 of your

source code. The first time the program halts at address 0x59, enter:

break code 0x59, curr_count=3, reset_count=4

This command sets the breakpoint's count to 3 and the reset count to 4.

You can observe a breakpoint's current count and reset count when you

list the breakpoints in the Command Window with the l b command.

FUNCTION: Set the count and reset count for a breakpoint.

COMMAND: break type address, count=count

FUNCTION: Set the count and reset count for a breakpoint

separately.

COMMAND: break type address, count=count,
reset_count=reset_count

7.2.5 SEQUENCE BREAKPOINTS

A sequence breakpoint is a special kind of breakpoint. Only if other

breakpoints are hit in a specified order, the sequence breakpoint itself will

hit.

To hit a breakpoint without halting the program, the breakpoint in the

sequence must be specified as a Probe point. When a probe point is hit,

the associated commands are executed and program execution is

continued.

When all specified probe points are passed in the logical sequence you

specified, the program stops at the last breakpoint in the sequence.

To set a sequence breakpoint:

Follow these steps:

• From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box.

• Click on the Add > button and select Sequence Breakpoint...

Chapter 77–16
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

• Click the Sequence... button to open the Edit Sequence Breakpoint

dialog box.

• Select a breakpoint from the Available Breakpoints list box and

add it to the sequence with the buttons ADD, AND or OR. Use the

NOT button for a breakpoint that should not be passed. All

breakpoints you add to the list must be enabled, otherwise the

sequence breakpoint itself will not hit.

From the Command Window:

• Use the sequence argument of the break command with a list of

breakpoints to specify the sequence.

For example,

break sequence (0)(1 and 3)(2)

In this example, the sequence breakpoint hits when probe point 0 is hit

first, then 1 and 3 are hit in any order, and finally probe point 2 is hit.

FUNCTION: Set a sequence breakpoint.

COMMAND: break sequence sequence [, option]...

7.3 DELETING BREAKPOINTS

You can delete a breakpoint directly from the source code, using the menu

items, or through the Command Window. To see a list of active

breakpoints, select Breakpoints... from the Breakpoints menu or use the

l b command in the Command Window.

To delete a code breakpoint:

Click on the corresponding red breakpoint toggle next to the source line

in the Source Window. This deletes the code breakpoint and the

breakpoint toggle turns green.

You can also follow these steps:

• From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. This box contains a remove function.

• Select the Breakpoint from the list.

Breakpoints and Assertions 7–17

• • • • • • • •

• Click the Remove button.

Use the break delete breakpoint_number | name command in the

Command Window. You need to know the breakpoint's number or name

for this command.

For example, to delete the breakpoint numbered 1, enter:

break delete 1

FUNCTION: Delete a breakpoint.

COMMAND: break delete breakpoint_number
break delete breakpoint_name

To clear all the breakpoints in the program, type:

break delete all
Do you want to delete all breakpoints? y

FUNCTION: Delete all breakpoints.

COMMAND: break delete all

7.4 ENABLING/DISABLING BREAKPOINTS

You can enable or disable a breakpoint directly from the source code,

using the menu items, or through the Command Window. To see a list of

active breakpoints, select Breakpoints... from the Breakpoints menu or

use the l b command in the Command Window.

To enable or disable a code breakpoint:

Follow these steps:

• From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. This box contains an edit function.

On Windows:

• In the list of breakpoints toggle the check box in front of the

breakpoint to enable or disable the breakpoint.

Chapter 77–18
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

On UNIX:

• Select the breakpoint form the list.

• Click the Enable or Disable button to enable or disable a

breakpoint.

Use the break enable or break disable command in the Command

Window to enable or disable a breakpoint. You need to know the

breakpoint's number or name for these commands.

For example, to disable the breakpoint numbered 1, enter:

break disable 1

FUNCTION: Disable a breakpoint.

COMMAND: break disable breakpoint_number
break disable breakpoint_name

To enable the breakpoint numbered 1, enter:

break enable 1

FUNCTION: Enable a breakpoint.

COMMAND: break enable breakpoint_number
break enable breakpoint_name

7.5 BREAKPOINT COMMANDS

CrossView Pro allows you to attach commands to code and data

breakpoints. When execution halts at a breakpoint, CrossView Pro

executes the commands. Valid commands are almost any C statements and

CrossView Pro commands, giving you a very powerful tool for

manipulating a debugging session. To do this:

Follow these steps:

• From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box.

Breakpoints and Assertions 7–19

• • • • • • • •

• Select an existing breakpoint from the list and click on the Edit...

button or click on the Add > button and select a type of breakpoint

you want to add.

• Enter the breakpoint information in the first field, for example an

address.

• Click on the Advanced button. Note that the button is only visible

when there is more information available on the breakpoint.

• Click in the Commands edit area.

• Type in the commands to be executed when the breakpoint is

reached.

You do not need to enclose a group of commands in brackets. However,

each individual command must be delimited by a semicolon.

Figure 7-3: Breakpoint Commands

Type the commands, enclosed in brackets and delimited by semicolons,

after commands= argument of the break command in the Command

Window.

Chapter 77–20
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

For instance, suppose you want a program to stop at a breakpoint, display

a variable's value, and resume execution all in one stroke. To perform this

function, you need to attach the appropriate commands to a breakpoint.

Enter:

break code main, commands={initval;C}

This places a breakpoint at address main . When execution stops at the

breakpoint, CrossView Pro displays the value of initval and immediately

resumes execution.

If you enable the Probe point check box, you can omit the C command.

This is done automatically.

You can attach almost any valid CrossView Pro commands or C statement

to breakpoints. This latitude allows you to use breakpoints in powerful

ways. Later on you find out how breakpoints can create patches in your

program.

CrossView Pro does not check the syntax of attached commands until the

breakpoint is hit.

Data breakpoints accept command lists the same way as code breakpoints.

For instance, to set a data breakpoint that monitors the lowest byte in

memory of the value of initval , enter:

break data &initval, access_type=w, commands={initval; C}

Every time the program writes to the lowest byte in memory of the

variable initval , this breakpoint halts the program, prints the value of

initval and continues execution.

For more information on the use of attached commands, see the Patches
and Diagnostic Output and Statistical Information sections later in this

chapter.

Breakpoints and Assertions 7–21

• • • • • • • •

7.5.1 ATTACHING CONDITIONALS TO A BREAKPOINT

You can pass standard C conditionals to a breakpoint.

For example:

break code demo.c#63, commands= {if (initval==17) {C}
{initval/n}}

stops the program at line 63, checks to make sure the variable initval is

17, and resumes execution if it is. If initval 's value does not equal 17,

CrossView Pro prints the value, and the program remains halted.

7.5.2 ATTACHING MACROS TO A BREAKPOINT

You can attach any currently defined macro to a breakpoint in a command

list. For example, suppose you define a macro named rg that checks the

value of the variable initval . The command to define this macro is:

set rg ”if (initval != 17) {initval/n} {C}”

If the value does not equal 17, the macro prints the value and halts the

program. Otherwise, execution continues.

You can include this macro at any point by attaching it to a breakpoint.

Entering:

break code demo.c#51, commands={rg}
break code demo.c#63, commands={rg}

this is a very efficient way to insert the macro with breakpoints at lines 51

and 63.

For more information on macros, refer to Defining and Using Macros
chapter.

Chapter 77–22
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

7.5.3 ATTACHING STRINGS TO A BREAKPOINT

You can attach strings to a breakpoint's command list. This feature is

useful for placing comments and reminders within your breakpoints.

Attaching a string to a breakpoint also eliminates the need for diagnostic

printf() statements in your compiled code.

For example, you could place a breakpoint on line 49 such as:

49 b {”Passed line 47\n”;C}

Whenever the breakpoint on line 49 is hit, CrossView Pro prints the string

and continues execution.

7.6 SUPPRESSING BREAKPOINT MESSAGES

Whenever a breakpoint is hit, CrossView Pro displays in the Command

Window, the name of the function, line number and file in which the

breakpoint appears. You can suppress this information by setting

breakpoint �silent" mode. In the silent mode, the current location is not

printed out.

To set silent mode you can use the Q (for quiet) command as part of the

command attached to a breakpoint definition.

Pass the Q command to a breakpoint first. For example:

51 b {Q; initval = 5}

stops the program on line 51, but does not print a message stating where

the break occurred.

7.7 UP-LEVEL BREAKPOINTS

Up-level breakpoints are breakpoints set at the entrance and/or exit of

functions. Basically, up-level breakpoints are code breakpoints that are

directly connected to the current HLL stack handling.

To see the current HLL stack, open the Stack Window or enter the t

command in the Command Window.

Breakpoints and Assertions 7–23

• • • • • • • •

You can set up-level breakpoints via the Stack Window or in the

Command Window. You cannot set up-level breakpoints in the Source

Window:

Double-click on the function in the Stack Window to install a stack

breakpoint after the function call.

You can also follow these steps:

• Click on the function in the Stack Window.

• From the Breakpoints menu, select either Stack Breakpoint |

After Call to Function or Stack Breakpoint | At Function Entry

You have the option of setting the breakpoint before (function entry) or

after (up-level) a selected function.

All breakpoints set through the Stack Window are temporary by default.

To make a breakpoint permanent, select Breakpoints... from the

Breakpoints menu to open the Breakpoints dialog. Select the breakpoint

you want to edit and click on the Edit... button. Click on the Advanced>>

button and disable the Remove when hit check box.

In the Command Window, use the following commands:

Command Function Type

bU Sets breakpoint after call to function temporary

bu Sets breakpoint after call to function permanent

bB Sets breakpoint at beginning of function temporary

bb Sets breakpoint at beginning of function permanent

For example, suppose you have accidentally single-stepped into a

function called factorial() . If you do not want to single step through

the function, an up-level breakpoint can help you. Enter:

bU

Chapter 77–24
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

The bU command sets a temporary breakpoint after return of the function.

Now, instead of having to single step all the way through the function,

you can start continuous execution, which stops when it hits the new

breakpoint at the function's return. Note that it makes no difference

whether the function has several possible points of return; the up-level

breakpoint works at all points of return. Note that when the function that

contains the breakpoint is called from one of the functions that are located

below it on the stack, the execution may be stopped before returning at

the desired stack level, for example with recursive functions.

When setting up-level breakpoints from the Command Window, you can

specify how deep in the stack the function's address is located. For

example, if you are two functions down from the main() program,

enter:

2 bU

This command breaks when you return to the top level of the call graph.

FUNCTION: Set a temporary breakpoint after call to function.

COMMAND: [stack] bU [commands]

FUNCTION: Set a permanent breakpoint after call to function.

COMMAND: [stack] bu [commands]

FUNCTION: Set a temporary breakpoint at function entry.

COMMAND: [stack] bB [commands]

FUNCTION: Set a permanent breakpoint at function entry.

COMMAND: [stack] bb [commands]

Breakpoints and Assertions 7–25

• • • • • • • •

7.8 PATCHES

A patch is a means of using CrossView Pro to change the execution of

your program without recompiling. Patches involve manipulating

breakpoints to skip code, include code, or replace existing code with new

code.

Basically, a patch is a breakpoint with certain associated commands that

enable you to alter program execution. This capability is a useful

debugging tool.

You can associate the commands used to patch code with a breakpoint

through either the Command Window or through the Commands edit box

in the Breakpoint dialog box. The examples below set breakpoints using

CrossView Pro commands typed in the Command Window. You can also

set breakpoints in the Breakpoints | Breakpoints... dialog. In this case

the commands between the brackets are entered into the Command edit

area.

7.8.1 PATCHING CODE OUT OF A PROGRAM

To patch code out of a program, you can set a breakpoint that changes the

execution position. For instance, suppose you want to patch an infinite

loop out of your source.

78: while (loopvar)
79: {
80: sum = sum + 1;
81: }
82:
83: sum = sum + 5;

On line 78, place a breakpoint that jumps to line 83, effectively bypassing

the loop. In the Command Window, enter:

78 b {g 83; C}

This creates a breakpoint on line 78 that does nothing more than move the

execution position beyond the loop and issue a C command. Remember

that the breakpoint on line 78 is hit before the C statement on that line

executes.

Chapter 77–26
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

7.8.2 PATCHING CODE INTO A PROGRAM

You can also patch code into a program by just including the code in the

breakpoint command. For example, suppose you want to add an equation

with the variable loopvar .

78: while (loopvar)
79: {
80: sum = sum + 1;
81: }
82:
83: sum = sum + 5;

In the Command Window, enter:

78 b {loopvar = 0;C}

This command halts execution at line 78, adds the statement loopvar=0
to the program, and continues execution.

7.8.3 REPLACING CODE IN A PROGRAM

Finally, you can combine the two techniques described above to replace

code in a program. For instance, suppose you want to replace an infinite

loop with new code.

78: while (loopvar)
79: {
80: sum = sum + 1;
81: }
82:
83: sum = sum + 5;

In the Command Window, enter:

78 b {Q; if (sum<100) {sum++; g 78; C} {g 83; C}}

This command sets a breakpoint that halts execution (quietly) at line 78

and inserts an if statement into the program. If sum is less than 100, sum
increments and line 78 executes again. If sum equals 100, CrossView Pro

moves the execution position to line 83 (beyond the infinite loop) and

resumes execution.

Breakpoints and Assertions 7–27

• • • • • • • •

7.9 DIAGNOSTIC OUTPUT AND STATISTICAL

INFORMATION

Breakpoints with attached commands allow you to report on various

variables while the program executes. In the past, one inefficient method

of tracking variables was to litter code with printf() statements. Using

breakpoints makes that process unnecessary.

For instance, suppose you want to keep track of the variable loopvar at

line 59 of a program. Install a breakpoint with the following command:

59 b {Q; loopvar; C}

The breakpoint halts the program, prints the value of loopvar , and

resumes execution. The Q command suppresses the listing of where the

break occurred. This breakpoint does not affect the source code and no

recompilation is necessary.

Using special variables, you can also keep statistics about your program,

such as how many times a line of code executes or how many times a

variable is accessed.

For example, suppose you want to know how many times line 60

executes. You must define a special variable to keep track of your

statistical data, and set a breakpoint to accumulate the data for you.

First, define the special variable. In the Command Window, enter:

$test = 0

This command defines the special variable $test and sets it to zero. For

convenience, you can also set a breakpoint at the beginning of the

program that initializes $test .

Secondly, set a breakpoint at line 60 that increments $test and continues

execution every time the program hits line 60:

60 b {$test++ ; C}

Chapter 77–28
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

7.10 ASSERTIONS

An assertion is a collection of debugger commands executed by the

debugger after each program line. When you execute a program using

assertions, the debugger is in assertion mode. Running the debugger in

assertion mode is a way of executing continuous control of certain data.

Using assertions, you can have continuous control of certain data and stop

program execution if any of the set conditions are fulfilled. In this respect,

assertions are similar to data breakpoints. Assertions, however, are more

versatile than data breakpoints. For instance, a data breakpoint can only

detect when a variable is accessed. An assertion, on the other hand, can

check that the variable's value falls within a certain range. Also, an

assertion can monitor variables whose values are kept in registers.

The default limit for the number of assertions you can define is 16. It is

possible to increase the number of assertions by selecting the

Initialization tab in the File | Options... dialog box. Each individual

assertion can be activated or deactivated. In addition, you can also choose

to suppress all assertions by turning off the global assertion mode.

Opening the Assertions Dialog Box

From the Breakpoints menu, select Assertions...

The Assertions dialog box contains scrollable lists of all defined assertions,

and provides functions for defining, activating, suspending, editing and

deleting assertions.

7.10.1 ASSERTION MODE

The debugger is running in assertion mode when there is at least one

active assertion. A program executing in assertion mode is actually being

single-stepped very quickly, to ignore breakpoints. Because the program

is single-stepping, however, it runs significantly slower than at normal

speed.

An Assertion Mode Active checkbox is available that activates all marked

(*) assertions. Clear this option if you want to suspend all assertions

temporarily. To activate marked assertions:

Open the Assertions dialog box and activate all marked assertions by

enabling the Assertion Mode Active check box.

Breakpoints and Assertions 7–29

• • • • • • • •

In the Command Window, enter the A command:

• A a 	 activates assertion mode

• A s 	 suspends assertion mode

• A 	 (by itself) toggles the assertion mechanism

The Global Active state activates all assertions. Globally activating the

assertion mode, however, does not change how each assertion is marked.

FUNCTION: Activate assertion mechanism.

COMMAND: A a

FUNCTION: Suspend assertion mechanism.

COMMAND: A s

FUNCTION: Toggle assertion mechanism.

COMMAND: A

7.10.2 DEFINING AN ASSERTION

To define or edit an assertion:

Follow these steps:

• From the Breakpoints menu, select Assertions... to open the

Assertions dialog box.

• Click on the New... button to open a text edit dialog box as shown

in figure 7-4 to type in commands.

Chapter 77–30
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

Figure 7-4: Defining Assertions

Use the a command followed by a list of commands.

FUNCTION: Create an assertion.

COMMAND: a commands

Assertions accept standard C statements and certain CrossView Pro

commands as arguments.

An assertion usually contains a conditional. For example, suppose you

want to create an assertion that watches the value of the global variable

initval to see that it's value does not exceed a certain limit. In this case,

you enter in the Assertion dialog box (or into the Command Window after

the a command):

if (initval > 17) {x}

This command creates an assertion with the condition that if initval
exceeds 17, CrossView Pro halts the program. The {x} is a special

assertion command that tells CrossView Pro to halt the program and return

control to you.

Breakpoints and Assertions 7–31

• • • • • • • •

7.10.3 EDITING AN ASSERTION

To edit the contents of an assertion:

Follow these steps:

• From the Breakpoints menu, select Assertions... to open the

Assertions dialog box.

• Click on the assertion to edit.

• Click on the Edit... button. A text edit dialog box opens allowing

you to edit the assertion. Click on OK or Cancel when finished.

You must delete the specific assertion (section 7.10.5) and define a new

assertion (previous section) with the desired command.

7.10.4 ACTIVATING AND SUSPENDING ASSERTIONS

A particular assertion is either active or suspended. A suspended assertion

does not execute before every line, but it retains its definition.

You may find it helpful to use activate and suspend assertion commands in

conjunction with code breakpoints, since assertions tend to slow the target

program. By attaching commands to a breakpoint to activate and suspend

assertions, you can turn assertions on only for certain sections of code

where a particular value needs checking. This method can dramatically

speed up the program.

From the Breakpoints menu, select Assertions... and double-click on

the assertion's number.

To activate or suspend an assertion from the Command Window, you must

know the assertion's number. To see a list of assertions and their assigned

numbers:

• Enter l a, the list assertions command, in the Command Window.

To activate an assertion:

• Enter assertion_number a a command. For example:

2 a a activates assertion 2

Chapter 77–32
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

To suspend an assertion:

• Enter the assertion_number a s command. For example:

2 a s suspends assertion 2

FUNCTION: Activate an assertion.

COMMAND: assertion_number a a

FUNCTION: Suspend an assertion.

COMMAND: assertion_number a s

7.10.5 DELETING ASSERTIONS

Deleting an assertion removes its definition. It is important to note the

difference between suspending an assertion and deleting an assertion:

deleting an assertion removes its definition for good, while suspending it

retains the definition but prevents its execution.

Follow these steps:

• From the Breakpoints menu, select Assertions... to open the

Assertions dialog box.

• Click on the assertion to delete.

• Click the Delete button. Click on OK or Cancel when finished.

Follow these steps:

• List the assertion numbers with l a command in the Command

Window.

• In the Command Window, enter the assertion number followed by

the a d command. For example:

2 a d Deletes assertion 2.

FUNCTION: Delete an assertion.

COMMAND: assertion_number a d

Breakpoints and Assertions 7–33

• • • • • • • •

7.10.6 USING ASSERTIONS

You can use assertions for almost any type of debugging task. For

example, if you want to check the value of a global variable,

global_val , during the execution of a certain function, f() . A data

breakpoint or a straightforward CrossView Pro assertion does not suffice

for this task since there is no way to make either method limited to that

function's code range. The solution lies in creating an assertion that is

active only over a specific range of lines. In this case, you could solve

your problem with the following steps:

110: void f(void)
111: {
112: if (global_flag)
113: {
114: ++global_val;
115: }
116: else
117: {
118: global_val = g();
119: }
120: }

Using the mouse and menu:

1. From the Breakpoints menu, select Assertions... to open the Assertions

dialog box.

2. Click on the New... button.

3. Set up the assertion to check the value of global_val . Enter:

if (global_val == 17) {x}

This assertion halts program execution if the value of global_val equals

17.

4. From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Code

Breakpoint...

5. We want to establish a breakpoint at line 112, the first line of the function

f() and attach commands to the breakpoint to activate assertion mode

and continue execution. Change the Line number to 112. Click in the

Command edit area and enter:

Chapter 77–34
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

A a; C Activate the assertion and continue.

6. Create an assertion whose only function is to check that the current line

number is still valid for assertion mode. To do this, use the reserved

special variable $LINE , which contains the line number of the current

execution position. In the Assertions dialog box, click on New... and

enter:

if ($LINE >= 120) {A s; 1 x; C}

If the line number exceeds 120, the program is about to leave the function

f() and CrossView Pro deactivates assertion mode. Normally, the x

command would make the program stop, but the non-zero value tells

CrossView Pro to execute the rest of the commands in the list, in this case,

C for continue.

You must enter all commands in the Command Window.

1. First set up the assertion you want:

a if (global_val == 17) {x}

2. Now set a breakpoint on the first line of the function factorial() that

will activate assertion mode, and continue execution:

110 b {A a; C}

3. Now create an assertion that does nothing but make sure that the current

line number is still valid for assertion mode. If the line number exceeds

120, you know you have left the function f() and assertion mode should

be suspended.

a if ($LINE >= 120) {A s; 1 x; C}

$LINE is a reserved special variable that CrossView Pro maintains

containing the number of the line currently executing. If it becomes equal

to 120, assertion mode is turned off. Normally, the x would make the

program stop, but the non-zero value 1 tells CrossView Pro to execute the

rest of the commands in the list, in this case, C for continue.

In this manner you have created an assertion that is only active over a

limited range of source lines.

Breakpoints and Assertions 7–35

• • • • • • • •

7.10.7 GATHERING STATISTICS WITH ASSERTIONS

You can also use assertions to gather statistics about your code. For

instance, you can find out how many lines of C code execute in a

particular session:

a {$numlines++}

$numlines is a user-defined special variable that increments on each line

of C code. When the program stops, type:

$numlines

and CrossView Pro gives the result. To start again, you may want to

re-initialize $numlines to zero:

$numlines = 0

Or just set a breakpoint on the first line of code to do the same.

Chapter 77–36
B

R
E

A
K

P
O

IN
T

S
 A

N
D

 A
S

S
E

R
T

IO
N

S

8

DEFINING AND
USING MACROS

C
H

A
P

T
E

R

Chapter 88–2
M
A
C
R
O
S

8

C
H

A
P

T
E

R

Defining and Using Macros 8–3

• • • • • • • •

8.1 CROSSVIEW PRO MACROS

A macro is a user-created shorthand for any sequence of CrossView Pro

or C commands and expressions. Macros allow you to debug more

efficient when using CrossView Pro by substituting a short string for a

longer combination of words and evaluators.

You can use a macro anywhere an CrossView Pro or C expression is valid:

in a breakpoint's command list, with assertions, from the keyboard, among

other places. CrossView Pro also allows you to save macro definitions, so

they are always available. By passing parameters to a macro, you can

create powerful and flexible macros to debug your code more efficiently.

You can use macros in the Command Window, or connect them to the

graphic interface in a feature called the toolbox. You can have this toolbox

visible as a CrossView Pro window and use it to execute a macro by

clicking a button. You control which macros have corresponding buttons,

making the toolbox easy to adapt to different situations.

8.2 DEFINING MACROS

You can create as many macros as you want:

From the Tools menu, select Macro Definitions... to open the Macro

Definitions dialog box and click on the New... button.

Figure 8-1: Macro Definitions

Chapter 88–4
M
A
C
R
O
S

In the Command Window, use the set command followed by the macro's

invocation name and the list of commands. Note that the list of commands

must be in (double) quotation marks. For example, the command:

set st ”e main; R”

creates a macro call st that tells CrossView Pro to change the viewing

position to be the first executable line in the function main() and restart

the program from the beginning. Each time you enter st in the Command

Window, CrossView Pro substitutes the lengthier list of commands in the

definition.

FUNCTION: Create a macro.

COMMAND: set name "commands"

Note that there is no rule that the macro definition must be shorter than

the commands it represents. For instance, you could substitute break for

the b command, to make CrossView Pro's command language more

expressive:

set break ”b”

Now instead of typing 74 b to set a breakpoint, you can also type:

74 break

Macros defined using either the command line or the graphic interface are

accessible both from the Command Window and the Toolbox.

Macros may call other macros, so it is possible to use simple macros as

building blocks for more complex functionality. No macro, however, can

call itself, or another macro that refers to the calling macro, since this type

of action results in infinite recursion.

Because of the order in which CrossView Pro parses statements, you may

not use the CrossView Pro commands # or % in a macro.

Defining and Using Macros 8–5

• • • • • • • •

8.2.1 LISTING MACROS

From the Tools menu, select Macro Definitions... to open the Macro

Definitions dialog box. This dialog box contains a scrollable list of the

macros.

To see the current definition of a macro:

Follow these steps:

• From the Tools menu, select Macro Definitions... to open the

Macro Definitions dialog box.

• Click on the macro that you want to see.

• The Commands box shows (a part of) the macro. If you need to see

more, click on the Edit... button.

Type the echo name command in the Command Window. For instance, to

see the definition for the st macro:

echo st Command.
e main; C 56 Output.

FUNCTION: Display macro expansion.

COMMAND: echo name

8.2.2 REDEFINING A MACRO

If you want to change the definition of a macro:

From the Tools menu, select Macro Definitions... to open the Macro

Definitions dialog box. Click on the name of the macro you want to

change and click on the Edit... button.

In the Command Window, use the set command again, but enter an

exclamation point after the macro name. For instance, to redefine the

macro st , which was defined in the example above, use the command:

set st! ”e main; C 56”

Chapter 88–6
M
A
C
R
O
S

Now, the st macro changes the viewing position and restarts program

execution, placing a temporary breakpoint at line 56. Be sure you do not

include a space before the exclamation point. Otherwise, CrossView Pro

may interpret the ! as the C �not" operator.

8.2.3 SAVING MACRO DEFINITIONS TO A FILE

You can save all the macros you define in a debugging session in an

external file. This way, you do not lose the definitions when the program

ends.

To save macros to an external file:

Follow these steps:

• From the Tools menu, select Macro Definitions... to open the

Macro Definitions dialog box.

• Click on the Save as... button. A Save Macro File dialog box opens.

• If you want to save a file previously opened, click on the Save

button. This saves the file without opening the Save Macro File

dialog box.

• Alternatively, you can use the Autosave check box. When

Autosave is checked, all macros are saved in the 'current file' when

you leave CrossView Pro.

Type the save file command in the Command Window. This command

saves your macros to the file of your choice. For instance:

save macro.mac writes all your macros to macro.mac

FUNCTION: Save macros to a file.

COMMAND: save filename

Defining and Using Macros 8–7

• • • • • • • •

8.2.4 LOADING MACRO DEFINITIONS FROM A FILE

You can load saved macros anytime you want to re-use a definition. There

is no limit to the number of times you can load macros.

To load a macro file:

Follow these steps:

• From the Tools menu, select Macro Definitions... to open the

Macro Definitions dialog box.

• Click on the Load... button and select the macro file you want to

load.

• Alternatively, you can use the Autoload check box. When

Autoload is checked, the macros saved in the 'current file' are

loaded at startup.

To reinstate your macro definitions from the Command Window, use:

< filename.mac

You must load a program before you can read a macro definition file.

Autoload will be ignored when the Execute these settings at

CrossView startup check box in the Load Symbolic Debug Info dialog

box is not checked.

For more information on record and playback functions, see the next

chapter, Command Recording & Playback.

Chapter 88–8
M
A
C
R
O
S

8.2.5 DELETING MACROS

To delete a specific macro:

Follow these steps:

• From the Tools menu, select Macro Definitions... to open the

Macro Definitions dialog box.

• Highlight the name of the macro.

• Click on the Delete button. To delete all the macro definitions at

the same time, click on the Delete All button. CrossView Pro

prompts you for confirmation.

Type the unset command in the Command Window. For example, to

remove the st macro, enter:

unset st!

When you are removing a macro definition in this manner, you must place

an exclamation point after the macro name to prevent CrossView Pro from

expanding the name to its full macro definition. To update your macro

definition files, issue a save command after using unset.

You can remove all existing macro definitions by entering the unset

command by itself. CrossView Pro prompts you for confirmation before

deleting the macros:

unset
Do you want to delete all macros? y

FUNCTION: Delete a macro.

COMMAND: unset name!

Defining and Using Macros 8–9

• • • • • • • •

8.3 MACRO PARAMETERS

Macros can accept arguments. Parameters are labelled sequentially in a

macro definition: $1 , $2 , $3, etc. Note that $0 has no meaning. When

you invoke a macro with parameters, enclose the parameters with

parentheses and separate them with commas.

CrossView Pro macros can accept any number of parameters, so it is

possible to create very complex command shortcuts. You may use any

type of parameter when defining a macro, including integers, strings, or

addresses. Note, however, that you must pass the macro the correct type at

invocation.

For instance, suppose you want to set a detailed breakpoint on any

number of lines and a parameter is to specify each line number on which

to install a breakpoint. Defining a macro named brk , type in the Macro

Definitions dialog box:

$1 b {Q; initval; recordvar.a; if (initval > 1) {C}}

or type in the Command Window:

set brk ”$1 b {Q; initval; recordvar.a; if (initval >
1) {C}}”

In this case, the argument $1 represents the intended line number. To use

the brk macro, type:

brk(72) From the Command Window

CrossView Pro replaces every instance of $1 with the value 72. For this

example, that means a breakpoint is set at line 72.

Chapter 88–10
M
A
C
R
O
S

8.4 REDEFINING EXISTING CROSSVIEW PRO

COMMANDS

Using macros, you can even redefine an existing CrossView Pro command.

For instance, you could redefine the breakpoint command b to always

place a breakpoint at line 72 of your source code. To do this, enter the

command:

set b ”72 b!”

CrossView Pro now interprets the b command as 72 b .

The exclamation point in the definition is necessary to prevent infinite

recursion. It tells CrossView Pro to take the command literally and to not

expand it into a macro definition. For example:

66 b!

CrossView Pro interprets this command as the standard breakpoint

command and places a breakpoint at line 66, despite the macro definition

for b.

Be sure not to have any space between the command and the exclamation

point. Otherwise CrossView Pro may interpret the ! as the C not operator.

Defining and Using Macros 8–11

• • • • • • • •

8.5 USING THE TOOLBOX

The CrossView Pro toolbox, shown in figure 8-2, is controlled from the

View menu. Using the Tools menu, you can configure the toolbox and

define the macros for it. You can resize the toolbox to the size you want.

Figure 8-2: CrossView Pro Toolbox

8.5.1 OPENING THE TOOLBOX

To open the toolbox:

From the View menu, select Toolbox.

The Toolbox is a pop-up window that remains on top of the CrossView

Pro Desktop while you work in other windows.

8.5.2 CONNECTING MACROS TO THE TOOLBOX

To configure the toolbox, select Toolbox Setup... from the Tools menu to

view the Toolbox Setup dialog box, shown in figure 8-3. This dialog box

displays the toolbox buttons and an alphabetized list of the current macro

definitions.

To connect a macro to a toolbox button:

Follow these steps:

• Click on the button you wish to change

• Scroll through the macro list to highlight the desired function

Chapter 88–12
M
A
C
R
O
S

• Click on the Assign button or press the Enter key

Note that double clicking on the macro name in the alphabetized list

performs the third step automatically. The name of the new function

appears on the selected button and the connection is performed.

Figure 8-3: Setting Up the Toolbox

Do not assign parameterized macros to the toolbox since there is no way

to pass in parameter values.

8.5.3 REMOVING A MACRO CONNECTION

To delete a macro definition from the toolbox:

Follow these steps:

• From the Tools menu, select Toolbox Setup... to open the

Toolbox Setup dialog box.

• Select the desired button.

• Click Clear.

This deletes the macro definition from the toolbox.

9

COMMAND
RECORDING &
PLAYBACK

C
H

A
P

T
E

R

Chapter 99–2
R

E
C

O
R

D
 &

 P
L

A
Y

B
A

C
K

9

C
H

A
P

T
E

R

Command Recording & Playback 9–3

• • • • • • • •

9.1 RECORDING COMMANDS

CrossView Pro lets you save a series of CrossView Pro commands to the

file of your choice. This is record mode. You can re-load a saved file to

repeat parts of debugging tasks or replay a debugging session (up to the

point where you left the last time).

Record mode means that all CrossView Pro commands from the keyboard,

mouse or menu are recorded to a disk file. The debugger can read this file

and execute the commands as if they were entered into the Command

Window. This is called playback mode, see more about playback mode

later in this chapter.

Record and playback modes can never be active at the same time.

You can record CrossView Pro commands and/or Emulator commands.

When recording on CrossView Pro command level, all commands that you

type in the Command Window, as well as the CrossView Pro command

language equivalents of dialog actions and menu selections are saved in a

file. When you (also) want to record commands entered in the Emulator

Command Window, you can record them in a separate dialog or combine

them with the CrossView Pro commands.

From the Command Window you control record mode using either the

mouse or keyboard commands. To start or setup recording:

From the menu system:

• From the Tools menu, select Record | CrossView... to open the

Record CrossView dialog box, or select Record | Emulator... to

open the Record Emulator dialog box.

The Record dialog box contains an Automatically at CrossView

startup check box. If you select this check box the debugger enters

record mode at every startup.

• Enter the name of the file in the Command file: edit field, or click

on the Browse... button to select an existing file. The default

filename extension is .cmd .

• Optionally, select Include emulator commands in the Record

CrossView dialog. In this case all recorded emulator commands are

also recorded, preceded by the "o" command.

• Click on the OK button to save the current settings into the

initialization file xvw.ini for following debugging sessions.

• Click on the Start button to start recording.

Chapter 99–4
R

E
C

O
R

D
 &

 P
L

A
Y

B
A

C
K

Enter the > command with the name of the file to start recording. For

example, enter:

>session.cmd

After you invoke this command, CrossView Pro saves every executed

command, whether using the mouse or manually typed into the Command

Window, to the file session.cmd .

FUNCTION: Save CrossView Pro commands to a file.

COMMAND: >filename

FUNCTION: Save CrossView Pro commands to a file and force

flushing.

COMMAND: >!filename

FUNCTION: Save CrossView Pro and emulator commands to a file.

COMMAND: >@filename

FUNCTION: Save emulator commands to a file.

COMMAND: >#filename

9.1.1 ENTERING COMMENTS

Every command, whether typed into the Command Window or the result

of a mouse or menu action goes into the recording file. To add comments

to a file recording CrossView Pro commands, enclose text typed in the

Command Window with C comments delimiters, �/*" and �*/". When

logging emulator commands, refer to your emulator documentation for the

appropriate comment characters.

Command Recording & Playback 9–5

• • • • • • • •

9.1.2 SUSPEND RECORDING

This function acts like the pause button on a tape recorder: the recording

mechanism stays in place, but suspends temporarily. CrossView Pro does

not save to file any commands you enter while you suspend recording,

but the file remains open and ready to accept input. To suspend

recording:

From the Tools menu, select Record | CrossView... or select Record |

Emulator... Click on the Suspend button.

In the Command Window, use the >f o >#f command (for �false").

FUNCTION: Suspend recording CrossView Pro commands.

COMMAND: >f

FUNCTION: Suspend recording emulator commands.

COMMAND: >#f

9.1.3 RESUME RECORDING

This function is the counterpart of the suspend recording function.

CrossView Pro resumes adding commands to the current record file. Any

new command you enter appears in the file; they do not affect the

commands already saved.

From the Tools menu, select Record | CrossView... or select Record |

Emulator... Click on the Resume button to resume recording.

In the Command Window, use the >t or >#t command (for �true").

FUNCTION: Resume recording CrossView Pro commands.

COMMAND: >t

Chapter 99–6
R

E
C

O
R

D
 &

 P
L

A
Y

B
A

C
K

FUNCTION: Resume recording emulator commands.

COMMAND: >#t

9.1.4 CHECK RECORDING STATUS

If at any point you do not remember whether recording is on or off, check

by:

From the Tools menu, select Record | CrossView... or select Record |

Emulator... If record mode is active, the Stop button is enabled. If the

Start and OK buttons are enabled, record mode is off.

Enter the > command in the Command Window.

This command shows the status of the recording and logging mechanism.

For example, if you enter > you might see:

>
Output logging is OFF
Command recording is ON
Emulator command recording is OFF
Target communication logging is OFF

The > command gives you the status for the different recording

mechanisms. Output logging and target communication logging are

described below.

9.1.5 CLOSE FILE FOR RECORDING

Closing a file for recording differs from suspending recording in that when

you close a file, you may not add any more commands to it. If you were

to start recording again using the same filename, the old commands in the

file would be deleted. (Note that this does not exclude editing the file

manually by some other means, since the file is saved as ASCII text.)

From the Tools menu, select Record | CrossView... or select Record |

Emulator... Click on the Stop button to stop recording.

Command Recording & Playback 9–7

• • • • • • • •

Enter the >c or >#c command to close the file.

FUNCTION: Close command recording file.

COMMAND: >c

FUNCTION: Close emulator command recording file.

COMMAND: >#c

9.1.6 COMMAND RECORDING EXAMPLE

For example, consider the following command sequence (from the

Command Window):

>session.cmd ----- Start Recording to File
 initval
 p 12

----- Carriage Return
 >f ----- Suspend Recording
 l b
 sum
 >t ----- Resume Recording
 /* This is a comment! */
 >c

This series starts with a command to record to a file named session.cmd .

The blank line above represents a carriage return. After the last command,

c, if you were to view this file, it contains:

initval
p 12
/* This is a comment! */

The saved command file contains simply the commands, without any

output. Note that commands entered while recording was suspended (l b

and sum) do not appear in the file. Carriage returns are not recognized as

commands.

Chapter 99–8
R

E
C

O
R

D
 &

 P
L

A
Y

B
A

C
K

9.2 PLAYING BACK COMMAND FILES

Once you have recorded a set of CrossView Pro commands, you can play

them back to recreate a debugging session or repeat often-used

sequences. Running the debugger while reading commands from a file is

playback mode.

Remember that for a file to be played back, it can only contain CrossView

Pro or emulator commands. For this reason, screen output files cannot be

used in playback mode. Refer to the Recording Commands section earlier

in this chapter for more information.

As with recording, the Command Window controls playback mode. To

playback a command file:

Follow these steps:

1. From the Tools menu, select Playback | CrossView... to open the

CrossView Playback dialog box, or select Playback | Emulator... to open

the Emulator Playback dialog box.

You can choose to playback either CrossView Pro commands or Emulator

commands. Open the Emulator Command Window if the playback file

contains commands sent directly to your emulator.

2. Type the playback filename or use the Browse... button to select the file.

The default filename extension is .cmd .

In the Playback dialog box, you have two additional options: Playback at

XVW startup and Continuous playback. CrossView Pro enters playback

mode automatically when you start the debugger if you click on the

Playback at XVW startup check box in the Playback dialog box. The

entire playback file executes if you enable the Continuous playback

check box.

3. Click on the Execute button to start the playback.

In the Command Window, use the < or << filename command to

playback CrossView Pro commands.

On the command line of CrossView Pro give the option -T filename to
start CrossView Pro in transparency mode and playback emulator

commands. This is not available for all execution environments.

Command Recording & Playback 9–9

• • • • • • • •

9.2.1 SETTING THE TYPE OF PLAYBACK

Enable the Continuous playback check box in the CrossView Playback

dialog box to turn on continuous play back of commands.

In the Command Window, there are two commands for the type of

playback. The < filename command starts playback. Commands are read

from a file and executed without any stop. For example:

<session.cmd load and execute all the commands

The << command causes CrossView Pro to playback commands one at a

time, similar to single-stepping through code. For example:

<<session.cmd read a command from the file.

Clicking the Execute button or pressing the Enter key executes the next

command.

FUNCTION: Play back a file of CrossView Pro commands.

COMMAND: <filename

FUNCTION: Play back a file of CrossView Pro commands, one

command at a time.

COMMAND: <<filename

9.2.2 CALLING OTHER PLAYBACK FILES

A playback file can call another playback file in the course of its

execution.

When CrossView Pro creates a command file, it saves all commands in

their textual form, whether entered by the mouse or as text. You must edit

this file to use the < and << commands.

When the debugger reaches a < or << command in a playback file,

playback execution switches to the new file, but does not return to the

original file. In other words, you chain playback files but not nest them.

Chapter 99–10
R

E
C

O
R

D
 &

 P
L

A
Y

B
A

C
K

9.2.3 QUITTING PLAYBACK MODE

Playback mode stops automatically when CrossView Pro reaches the end

of the command file. If you want to end playback mode before this point,

click the Halt button.

9.3 COMMAND LINE BATCH PROCESSING

CrossView Pro supports command line batch file processing, but

CrossView Pro will halt if a modal dialog is encountered or if the target

program contains an endless loop. The command line option

--timeout=n_seconds switches CrossView Pro to a different mode of

operation, without the two drawbacks mentioned above.

In order to process files in batch mode you have to do the following:

1. Create a temporary directory.

2. Start CrossView Pro from this temporary directory. For Windows

95/98/XP/NT/2000 you can create a separate icon or shortcut to start

CrossView Pro, which has the working directory (Start in:) set to the

temporary directory.

3. Close all CrossView Pro windows except the Command Window.

4. Exit CrossView Pro (with Save desktop and target settings enabled).

You now have generated an xvw.ini file with minimal GUI overhead.

5. Save the xvw.ini file and remove the temporary directory.

For each batch run of CrossView Pro you have to do the following:

1. Create a temporary directory.

2. Copy the saved xvw.ini file to the temporary directory.

3. Create a command file in the temporary directory.

Command Recording & Playback 9–11

• • • • • • • •

The following command file session.cmd loads the .abs file,

downloads the code, runs the code and exits.

N hello.abs load the symbols
dn download the program
__exit bi set a breakpoint at the exit point
R run the program
$pc optional: show the program counter
q y exit CrossView Pro

where hello.c contains

#include <stdio.h>

void main()
{
 printf(”Hello World!\n”);
}

4. Copy the .abs file to the temporary directory. This is needed because

CrossView Pro changes its working directory when the N command is

used.

5. The following line executes CrossView Pro in batch mode and waits for it

to finish:

Windows 95/98/XP/NT/2000:

start /wait c:\c68k\bin\xfw68 ––timeout=120 –tcfg sim.cfg
–p session.cmd –R session.log

UNIX:

xfw68 ––timeout=120 –tcfg sim.cfg –p session.cmd –R session.log

This command must be issued in the temporary directory! After the

execution has ended, the file session.log contains a transcript of the

commands.

6. Save the output files and clean up (or remove) the temporary directory.

This must be done because the xvw.ini file has been modified now. If

CrossView Pro would be started again in the temporary directory, the file

session.cmd would be executed again.

The --timeout=n_seconds command activates the batch operation mode

of CrossView Pro. It causes CrossView Pro to terminate when the specified

amount of time has elapsed, which is crucial in batch processing: if a

Chapter 99–12
R

E
C

O
R

D
 &

 P
L

A
Y

B
A

C
K

program does not terminate, the timeout will terminate CrossView Pro, so

that the next program in the batch can be executed. CrossView Pro will

also terminate in the batch mode if a modal dialog pops up, since this

requires user interaction to continue. Before CrossView Pro exits, the text

in the dialog will be written to the log file. A special case of this dialog is

the 'End of program reached ' dialog. For this reason, the line __exit
bi has to be added to the .cmd file, so it is possible to do some things

(for example, read registers modified by a machine code program) after

the program is finished. If the breakpoint at __exit is absent, CrossView

Pro immediately exits after having executed the R command, so any

consecutive commands will be ignored.

9.4 LOGGING

Logging means that all output text to a particular window is saved in a file

for later use. Two windows allow logging:

• Command Output Window

(upper part of the CrossView Command Window)

• Emulator Output Window

(upper part of the Emulator Command Window)

"GDI Accesses" can also be logged. This is the information transferred

between CrossView Pro and the Debug Instrument (DI).

You can control logging from the Tools menu or from the Command

Window.

You can also determine the status of each logging function:

From Tools menu, select Log | Command Input/ Output..., Log |

CrossView-Emulator I/O... or Log | CrossView-GDI Accesses...

If a logging function is is active, the Stop button is enabled. If the Start

and OK buttons are enabled, logging is off.

Enter the >> , >& or >* command in the Command Window.

Each type of logging is described in the following section.

Command Recording & Playback 9–13

• • • • • • • •

The Emulator Output Window is primarily a diagnostic tool. It should be

used wisely, since it generates substantial amounts of output, the format of

which is emulator dependent. For emulators that have an ASCII interface,

the actual command/response dialogue will be displayed. For emulators

with a binary interface, CrossView Pro will generate a record of function

calls with their associated input and output parameters. This also applies

to the GDI Accesses output logging.

9.4.1 SETTING UP LOGGING

To setup logging:

From the menu system:

• From Tools menu, select Log | Command Input/ Output..., Log

| CrossView-Emulator I/O... or Log | CrossView-GDI

Accesses... to open the appropriate dialog box.

• Type in the name of the log file or use the Browse... button to

select a filename. The default filename extension is .log .

Each Log dialog box has an Automatically at CrossView startup

check box. This check box instructs CrossView Pro to start

recording the output of a particular window or information stream

upon starting up of CrossView Pro.

• Click on the OK button to save the current settings into the

initialization file xvw.ini for following debugging sessions.

• Click on the Start button to start logging.

You can open up a log file for CrossView Command Output by using the

>> filename command as in:

>>screen.log

You can force flushing by using the >>! filename command as in:

>>!screen.log

You can open up a log file for Emulator Output by using the >& filename
command as in:

>&target.log

Chapter 99–14
R

E
C

O
R

D
 &

 P
L

A
Y

B
A

C
K

You can force flushing by using the >&! filename command as in:

>&!target.log

You can open up a log file for GDI accesses output logging by using the

>* filename command as in:

>*gdi.log

You can force flushing by using the >*! filename command as in:

>*!gdi.log

FUNCTION: Save CrossView Pro commands and command window

output to a file.

COMMAND: >>filename

FUNCTION: Force flushing of CrossView Pro commands and

command window output to a file.

COMMAND: >>!filename

FUNCTION: Log target communications.

COMMAND: >&filename

FUNCTION: Force flushing of target communication logging.

COMMAND: >&!filename

FUNCTION: Log GDI accesses.

COMMAND: >*filename

Command Recording & Playback 9–15

• • • • • • • •

FUNCTION: Force flushing of GDI accesses logging.

COMMAND: >*!filename

9.4.2 RECORDING COMMANDS AND LOGGING SCREEN

OUTPUT

It is possible to have command recording, command output logging and

target communication logging on at the same time. That is, you can have

one file recording just the CrossView Pro commands, and another file

concurrently recording both the commands and the computer responses.

Refer to the previous section for information on command record files.

Since the Command Window log file contains both your commands and

the computer responses, you cannot use it in playback mode.

9.4.3 COMMAND WINDOW LOG FILE EXAMPLE

For example, if you entered the following commands:

>>screen.log
initval
l a

The output file, screen.log , contains:

> initval
initval = 0
> l a
no assertions

9.4.4 SUSPENDING AND RESUMING OUTPUT LOG

You can resume and suspend the Logging process from the menu or from

the Command Window:

From Tools menu, select Log | Command Input/ Output..., Log |

CrossView-Emulator I/O... or Log | CrossView-GDI Accesses... to

select the appropriate dialog box.

Chapter 99–16
R

E
C

O
R

D
 &

 P
L

A
Y

B
A

C
K

To suspend logging:

Click on the Suspend button.

In the Command Window, use the >>f command for suspending the

logging of the Command Output Window. Type >&f to suspend the

Emulator Output Window. Type >*f to suspend GDI accesses logging.

After you issue this command, CrossView Pro does not save all subsequent

commands and their computer responses.

To resume logging:

Click on the Resume button.

In the Command Window, use the >>t command to resume logging the

Command Output Window. Type >&t to resume the Emulator Output

Window. Type >*t to resume GDI accesses logging. After you issue this

command, CrossView Pro saves all subsequent commands and their

computer responses.

FUNCTION: Suspend output logging (logging is false).

COMMAND: >>f

FUNCTION: Resume output logging (logging is true).

COMMAND: >>t

FUNCTION: Suspend target logging (logging is false).

COMMAND: >&f

FUNCTION: Resume target logging (logging is true).

COMMAND: >&t

Command Recording & Playback 9–17

• • • • • • • •

FUNCTION: Suspend GDI acesses logging (logging is false).

COMMAND: >*f

FUNCTION: Resume GDI acesses logging (logging is true).

COMMAND: >*t

9.4.5 CLOSING THE OUTPUT LOG FILE

To close the output file:

From Tools menu, select Log | Command Input/ Output..., Log |

CrossView-Emulator I/O... or Log | CrossView-GDI Accesses... to

select the appropriate dialog box. Click on the Stop button to stop

logging.

Enter the >>c or >&c command in the Command Window to close the

Command Output and Emulator Output log files. These commands end

the recording for the currently specified output log file.

FUNCTION: Close output log file.

COMMAND: >>c

FUNCTION: Close target log file.

COMMAND: >&c

Chapter 99–18
R

E
C

O
R

D
 &

 P
L

A
Y

B
A

C
K

9.5 STARTUP OPTIONS

When starting up CrossView Pro you may immediately start recording or

playing back files. For instance,

xfw68 fact –p session

plays back the commands in the file session . A -P option single-steps

through each command, prompting you for a return after each command.

You can also start recording:

xfw68 fact –r session

This command records all your commands (just like the > command) to

the file session , while:

xfw68 fact –R session

logs your commands and screen output to the file session (just like the >>

command).

You can also use the Automatically at CrossView startup option in the

Record, Playback, and Log dialogs to immediately start recording, playback

or logging at CrossView Pro startup.

You can also enter record and playback files via EDE. From the Project

menu, select Project Options... Expand the CrossView Pro entry and

select Logging. Enter your record and playback filenames.

Command Recording & Playback 9–19

• • • • • • • •

9.6 CROSSVIEW PRO COMMAND HISTORY

MECHANISM

CrossView Pro stores the command history in the list box of the Command

Window.

You can select a command from the history list by clicking on it or

jumping with the <Tab> key to the history listing and using the arrow

keys.. The command appears in the edit field of the Command Window.

You may edit the command if you want.

To execute the command, click on the Execute button.

If you do not want to edit the command, double-click on the selected

command in the list box to execute the command, or hit the <Return>
key.

Chapter 99–20
R

E
C

O
R

D
 &

 P
L

A
Y

B
A

C
K

10

I/O SIMULATION
C

H
A

P
T

E
R

Chapter 1010–2
I/O

 S
IM

U
L

A
T

IO
N

10

C
H

A
P

T
E

R

I/O Simulation 10–3

• • • • • • • •

10.1 INTRODUCTION

The CrossView Pro Terminal windows provide an interface to exchange

data with the application on the target. You can use the following I/O

simulation types for this purpose.

File I/O (FIO)

With File I/O you can connect actions to a probe point. Probe points are

breakpoints that do not update the graphical user interface (GUI) and

when they are hit, connected actions are performed and execution

continues. The actions are in this case I/O actions to a file and/or a

terminal window.

File System Simulation (FSS)

With FSS you can use standard stream I/O function calls like printf() in

your source, to test I/O to and from the target system or simulator.

Debug Instrument I/O (DIO)

If you have a debug instrument that supports it, the debug instrument can

perform input and output using GDI callback functions.

10.2 I/O STREAMS

You can setup I/O streams with the I/O Simulation Setup dialog. There is

virtually no limit on the number of streams that can be opened or created.

Each type of I/O stream (FIO, FSS, DIO) has its own numbering:

FIO 0,1,2,...,k

FSS 0,1,2,...,m

DIO 0,1,2,...,n

You can map multiple streams to one terminal window.

For File I/O you can use the ios_ commands to open or close a FIO

stream on the command line. Streams can be opened manually or are

opened at the first call or operation that accesses a specified I/O stream

(for Debug Instrument I/O handling). For FSS the target application can

open streams with open() calls and close streams with close() calls.

Chapter 1010–4
I/O

 S
IM

U
L

A
T

IO
N

Streams can be mapped to a terminal window and/or a file that is NOT the

terminal log file. If a stream is mapped to a terminal window and a file the

output will go to the terminal window and also to the file. In case of input

the input will be read from the file. The read input will be echoed on the

connected terminal window.

I/O streams opened by FSS are closed when end of program is reached or

if a program reset occurs. I/O streams opened by CrossView Pro will be

rewound. The windows to which the streams are mapped remain open.

In the I/O Simulation Setup dialog you can connect an I/O stream to a

terminal window before the stream is opened by specifying the stream

type, filename and terminal window name.

10.2.1 SETTING UP FILE I/O STREAMS

You can set up an input or output stream. For input you may specify

either a file or the keyboard, for output either a file or the screen. Each

stream has its own identifying number.

You can also specify the format of the stream's values. The default is

character, but you may want to use hexadecimal or octal values when

directing data to or from a file.

To setup a File I/O stream:

From the menu system:

• From the Settings menu, select I/O Simulation Setup... to open

the I/O Simulation Setup dialog box.

• Open the File I/O tab to setup a File I/O stream.

• Select the Configure... button. This opens the File I/O

Configuration dialog.

• In the Probe point list box, select an existing probe point or press

the New... button to set a new probe point. The Breakpoints dialog

appears.

• In the Stream list box, select a stream or press the New... button to

create a new stream. Select a new stream and click OK.

• Enter the Address and Length (in minimum addresable units,

MAU) of the memory location you want to read from or write to.

• Optionally, enable the Use hexadecimal format check box when

you want the data to be interpreted as a hexadecimal value.

I/O Simulation 10–5

• • • • • • • •

• Choose the Direction: Input if the stream must provide input to the

application, or Output if the stream must be an output stream.

• Click on the Apply button to accept the contents and enter another

configuration or click on the OK button to close this dialog box.

Enter the ios_open or ios_wopen command in the Command Window to

open a File I/O stream.

FUNCTION: Open a File I/O stream

COMMAND: ios_open ["file"[,[mode][,[r][,$xvw_variable]]]]

FUNCTION: Open a File I/O stream and map the stream to a

terminal window

COMMAND: ios_wopen [["terminal_window"][,$xvw_variable]]

Enter the ios_read or ios_write command in the Command Window to

read from or write to a File I/O stream.

FUNCTION: Read from a File I/O stream

COMMAND: ios_read {stream | "file"},address,number_of_maus[,x]

FUNCTION: Write to a File I/O stream

COMMAND: ios_write {stream | "file"},address,number_of_maus[,x]

To read 1 MAU hexadecimal value from file mydata.dat and store it at

address 0x100, type:

ios_read ”mydata.dat”,0x100,1,x

Chapter 1010–6
I/O

 S
IM

U
L

A
T

IO
N

10.2.2 REDIRECTING I/O STREAMS

In the I/O Simulation Setup dialog you can connnect an I/O stream to a

terminal window before the stream is opened or you can redirect an

existing stream to a file and/or terminal window.

To redirect an I/O stream to a file and/or terminal window:

From the menu system:

• From the Settings menu, select I/O Simulation Setup... to open

the I/O Simulation Setup dialog box.

• In the Connection tab select the I/O stream you want to change

and select the Redirect... button.

• In the Connection Configuration dialog enter a filename and/or a

terminal window name.

• Click OK to accept the changes and close the dialog.

Enter the ios_open or ios_wopen command in the Command Window to

open a File I/O stream.

To disconnect an I/O stream from a file and/or terminal window:

From the menu system:

• From the Settings menu, select I/O Simulation Setup... to open

the I/O Simulation Setup dialog box.

• In the Connection tab select the I/O stream you want to change

and select the Redirect... button.

• In the Connection Configuration dialog erase the filename and/or

terminal window name.

• Click OK to accept the changes and close the dialog.

Enter the ios_close command in the Command Window to close a File

I/O stream.

FUNCTION: Close a File I/O stream

COMMAND: ios_close {stream | "file"}

I/O Simulation 10–7

• • • • • • • •

To disable/enable an I/O stream:

From the menu system:

• From the Settings menu, select I/O Simulation Setup... to open

the I/O Simulation Setup dialog box.

• In te Connection tab clear the check box in front of the I/O stream

you want to disable. Set the check box to enable the stream.

Disabling a File I/O stream means that I/O actions will not be honored.

Writing is not passed to the output file, and reading does not result in new

data being placed in the target buffer.

10.3 FILE SYSTEM SIMULATION

File system simulation enables the application on the target board to use

system calls (such as open, read, write) that are handled by the host

system file I/O services. These files can be read directly from the host

system, and output can be written to a file on the host system or in a

CrossView Pro window. File system simulation is available for all

execution environments.

The File System Simulation feature redirects I/O to a Terminal Window if

the filename FSS_window: window_name is used in the "open" call,

window_name is the name of a Terminal Window.

You can specify a root directory for FSS. CrossView Pro will search for the

file from the root directory downwards. You can do this in the I/O

Simulation Setup dialog, by entering a directory name in the FSS root

directory field of the Options tab. This setting is saved in the xvw.ini
file. Another possibility is to set a temporary resource by specifying the

command line option --fss_root_dir="path" on CrossView Pro startup.

You can redirect File System Simulation streams to a file or another stream.

Redirection to a file can be needed when a stream is only mapped to a

window and you want it to be mapped to a file also.

Redirection can be used for scripting purposes, using the FSS command.

FSS { < | > }{&stream | "file"}

Chapter 1010–8
I/O

 S
IM

U
L

A
T

IO
N

For example,

FSS 2>&1
FSS 1<&4
FSS 4<”data.txt”
FSS 3>”data.txt”

The first example will redirect output of stream 2 to stream 1. The second

example will retrieve input for stream 1 from stream 4. The third example

will retrieve input for stream 4 from file "data.txt ". The fourth example

will redirect output of stream 3 to file "data.txt ".

Disabling an FSS stream means in effect connecting the stream to

/dev/null or NUL, causing writes to go into oblivion, and reads to return

EOF.

10.3.1 FILE SYSTEM SIMULATION LIBRARIES

The low-level I/O functions such as _open() , _close() , _read() and

_write() are implemented in the C library to use File System Simulation.

These funtions redirect high-level I/O calls such as printf() and

scanf() type functions through CrossView Pro's FSS feature, allowing

you to perform stdin , stdout and stderr I/O by just using these

standard C library functions.

The libraries have been optimized to only attach the file I/O routines if the

application actually uses file I/O. The default I/O streams stdin , stdout
and stderr are opened on the fly whenever file I/O is used; this behavior

is transparent to the user. It is no longer necessary to inform CrossView

Pro about the use of any streams.

For more information see the section Run-Time Library Routines in the C

Compiler/Assembler Reference Manual.

I/O Simulation 10–9

• • • • • • • •

10.4 DEBUG INSTRUMENT I/O

If you have a debug instrument that supports it, the debug instrument can

perform input and output using GDI callback functions. The Debug

Instrument I/O (DIO) stream number is passed as parameter to these

callbacks. The output can be redirected to DDE (Windows only). The first

access to a DIO stream will create a new terminal window and the title of

the window will be "DIO x", where x is is the number of the used stream.

No new window will be created if the used stream is already mapped to a

terminal window. You can use the I/O Streams Terminal Map dialog to

map one or more streams to one window.

Chapter 1010–10
I/O

 S
IM

U
L

A
T

IO
N

10.5 THE TERMINAL WINDOW

If you direct I/O simulation to the screen, CrossView Pro displays the

output in the terminal window. Similarly, if you direct input from the

keyboard; whatever you input appears in the appropriate terminal

window. See section 4.6.8, Terminal Window for more information.

10.5.1 TERMINAL WINDOW KEYBOARD MAPPINGS

The following keyboard mappings, being both control codes and escape

sequences, are supported by the VT100-like terminal mode of the terminal

windows:

Key Character Sequence
and/or Decimal Value

Backspace 8d

TAB 9d

DEL 127d

ESC 27d

Insert ESC [2 ~

Prev/Page Up ESC [5 ~

Next/Page Down ESC [6 ~

Arrow Up ESC [A

Arrow Right ESC [B

Arrow Left ESC [C

Arrow Down ESC [D

Table 10-1: General Keyboard Mappings

I/O Simulation 10–11

• • • • • • • •

Display Control

The VT100-like terminal mode of the terminal windows comprises the

following control codes and escape sequences for displaying:

ASCII
Code

Decimal
Value

Operation

BELL 7 Ring the bell

BS 8 Move cursor one position back

TAB 9 Move cursor to next tab stop

LF 10 Move cursor one line down

CR 13 Move cursor to start of line

ESC 27 Start escape sequence (see below)

Table 10-2: Control Codes

Escape Sequences

Escape
Sequence

Operation

ESC D Cursor one line down (scrolls if already at last line)

ESC E Cursor one line down and to left margin (scrolls)

ESC M Cursor one line up (scrolls if already at top line)

ESC [n1 A Cursor n1 lines up

ESC [n1 B Cursor n1 characters right

ESC [n1 C Cursor n1 characters left

ESC [n1 D Cursor n1 lines down

ESC [H Cursor home

ESC [n1 ; n2 H Move cursor to (n1,n2) with n1=row, n2=col

Table 10-3: Cursor Motion

Parameters n1 and/or n2 may be left out, in which case a value of 1 is

assumed.

Chapter 1010–12
I/O

 S
IM

U
L

A
T

IO
N

Escape
Sequence

Operation

ESC [J Clear screen from cursor till bottom–right

ESC [p1 J 0: Clear screen from cursor till bottom–right
1: Clear screen from top–left till cursor
2: Clear entire screen

ESC [K Clear line from cursor till end

ESC [p1 K 0: Clear line from cursor till end
1: Clear line from begin to cursor
2: Clear entire line

Table 10-4: Erasing

For example, to clear the entire screen in the C programming language,

you can enter:

printf(”\033[H\033[2J”);
fflush(stdout);

Escape
Sequence

Operation

ESC [n1 @ Insert characters

ESC [n1 P Delete n1 characters

ESC [n1 L Insert n1 lines

ESC [n1 M Delete n1 lines

Table 10-5: Inserting and Deleting

Parameter n1 may be left out, in which case a value of 1 is assumed.

I/O Simulation 10–13

• • • • • • • •

Escape
Sequence

Operation

ESC [m Turn off all attributes

ESC [n1 m 0: turn off all attributes
 1: bold
 4: underline
 5: blinking
 7: reverse
 8: invisible
22: turn off bold
24: turn off underline
25: turn off blinking
27: turn off reverse
28: turn off invisible

Table 10-6: Character Attributes

Multiple parameters may be specified simultaneously:

ESC [n1 ; ... ; nN m

Some attributes or combinations of attributes are mapped to a regular

standout mode.

Parameters may be left out, in which case a value of 0 is assumed.

Escape
Sequence

Operation

ESC [12 l Local echo on

ESC [12 h Local echo off

ESC [? 7 h Wrap around on

ESC [? 7 l Wrap around off

ESC [? 25 h Cursor on

ESC [? 25 l Cursor off

ESC [? 92 l Enquire after the window’s size
Response:

ESC [? rows, columns c

Table 10-7: Miscellaneous

Chapter 1010–14
I/O

 S
IM

U
L

A
T

IO
N

11

SPECIAL FEATURES
C

H
A

P
T

E
R

Chapter 1111–2
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

11

C
H

A
P

T
E

R

Special Features 11–3

• • • • • • • •

11.1 TRANSPARENCY MODE

Transparency mode allows you to communicate directly with the

execution environment. Most of the time CrossView Pro will handle all the

low level communications, freeing you to concentrate on the high level C

code. Depending on the type of execution environment, however, you

may have to enter transparency mode to set up the execution environment

when the machine is first turned on.

To enter transparency mode:

From the View menu, select Command | Emulator.

All commands entered in the Emulator Command Window are passed

directly to the execution environment.

To exit transparency mode:

From the View menu, select Command | CrossView.

In CrossView Pro, you can pass a string directly to the execution

environment without leaving CrossView Pro with the o command:

o map

This passes the command map directly to the execution environment,

while you remain in CrossView Pro. Naturally you will have to learn your

execution environment's command set to make use of the o command.

FUNCTION: Pass a command to the execution environment.

COMMAND: o string

Do not issue one-shot transparency commands that result in large output

(or otherwise require intervention other than a carriage return to terminate

output). Instead, enter transparency mode first, then issue the command.

You may also enter transparency mode upon startup with the -T option.

See the section on startup options.

Chapter 1111–4
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

11.2 RTOS AWARE DEBUGGING

CrossView Pro supports RTOS (Real-Time Operating System) aware

debugging for various kernels. Since each kernel is different, the RTOS

aware features are not implemented in the CrossView Pro executable, but

in a library (RADM: RTOS aware debugging module) that will be loaded at

run-time by CrossView Pro. The amount of windows and dialogs and their

contents is kernel dependent.

CrossView Pro for the 68K/ColdFire supports an OSEK RADM

(osek_radm.dll) according to the OSEK standard. You have to create

your own OSEK Run Time Interface (ORTI) and specify this file to

CrossView Pro. CrossView Pro supports ORTI specifications v2.0 and v2.1.

EDE

From the Projects menu, select Project Options... Expand the

CrossView Pro entry and select RTOS Aware Debugging Module. Select

OSEK and specify the name of the ORTI file, or select User Defined and

specify your RADM DLL name.

CrossView Pro

Within the CrossView Pro's Target Settings dialog (Target |
Settings...), select the CrossView Pro configuration you will use by

selecting a "Target configuration". These target configuration files are

normal ASCII text files. The name of the shared library that contains the

kernel aware code can be specified in the target configuration. The "radm "

configuration item specifies the name of the shared library that contains

the kernel aware code.

The syntax of a target configuration file is:

[! comment] field : field-value

field one of the defined keywords

field-value the value assigned to the field

comment optional comment

Empty lines, lines consisting of only white space are allowed. Comments

start at an exclamation-sign ('!') and end at the end of the line.

The line for the shared library that supports RTOS aware code could be:

radm: yourrtos.dll

Special Features 11–5

• • • • • • • •

Or you can specify the RADM filename on the CrossView Pro command

line with the following option:

––radm=osek_radm.dll

You can specify the ORTI filename on the CrossView Pro command line

with the following option:

––orti= ORT–filename

The OSEK RADM adds an OSEK/ORTI menu to CrossView Pro that has

several items (each description in the notation '<text>' is represented in

the syntax of the OSEK Run Time Interface file):

• OSEK implementation name (if reading of the ORTI file succeeded)

The OSEK implementation name is specified with <name> in the

<declaration_section> of the ORTI file.

For each <declaration_spec> a sub menu item will be created with the

name represented for <object>. When selecting an object item a

window will appear with all objects from the <information_section> for

the specified <object>. The new created window always contains the

Object column and then the columns represented in the

<object_decl_list> of the specified object.

• Info Messages

This menu item lists all expressions from the ORTI file that could not

be evaluated. This could be an expression within the

<declaration_section> represented in the <enum_value_list>. However

evaluating the expressions from the objects in the

<information_section> also could have problems. The problems could

occur when the expression is to difficult to be evaluated or when one

of the variables of the expression is not available when the symbolic

debug info is loaded.

When an expression could not be evaluated it results into 'N.A.' for the

specified window object entry item. When the expression could be

evaluated but the enumerated type could not be found or the specified

type could not be converted correctly this will result into 'n.a.' for the

specified window object entry item.

Chapter 1111–6
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

So, there are two situations:

n.a. : Expression could be evaluated but could not be converted

correctly at current moment. This expression will not occur in

the list when the menu item 'Info Message' is selected.

N.A. : Expression could not be evaluated and will not change until

the ORTI file is updated with a valid expression.

For the second situation you can type the expression in the command

window and CrossView Pro will show a message box with the reason

why the expression could not be evaluated.

• About RADM

This menu item shows the supported OSEK/ORTI version and the

RADM version.

11.3 COVERAGE

You can only use this feature if it is supported by the execution

environment (see the addendum).

When the application program is executed as a result of a command such

as StepInto or Continue, CrossView Pro traces all memory access, i.e.

memory read, memory write and instruction fetch. Through code

coverage, executed and not execute areas of the application program can

be found. Areas of unexecuted code may exist in case of programming

errors or simply dead code which could be eliminated. Alternatively, your

program input, your test set, is incomplete. It does not cover all paths in

the program. Data coverage allows you to verify which memory locations,

i.e. which variables, are accessed during program execution. Additionally,

stack and heap usage can be shown.

To enable/disable coverage:

From the Tools menu, select the Coverage checked menu item.

When the menu item is checked, coverage is enabled. Select the menu

item again to disable coverage.

Type the ce or cd command on the command line:

ce

Special Features 11–7

• • • • • • • •

FUNCTION: Enable coverage.

COMMAND: ce

FUNCTION: Disable coverage.

COMMAND: cd

Two dialogs are present to give you coverage information. The code

coverage dialog shows the percentage of executed code within

application, module and function scope. Code coverage information can

also be displayed in the Source Window. The data coverage dialog shows

the data access of HLL variables in the executed program. Data coverage

can also be displayed in the Memory Window. The coverage dialogs can

be opened via the Tools menu.

FUNCTION: List coverage information to output window or file.

COMMAND: covinfo [[all | module_or_function_name][,filename]]

You can display code coverage information in the Source Window by

clicking on the Coverage button in the Source Window. In this case an

extra column appears to the right of the breakpoint toggles (to the left of

the source line). For each source code line that is executed (covered), the

source line is marked. The not executed lines are not marked. CrossView

Pro has special commands to move the cursor to the next or previous

covered or uncovered line:

FUNCTION: Move cursor to next covered line.

COMMAND: nC

FUNCTION: Move cursor to next uncovered line.

COMMAND: nU

Chapter 1111–8
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

FUNCTION: Move cursor to previous covered line.

COMMAND: pC

FUNCTION: Move cursor to previous uncovered line.

COMMAND: pU

You can display data coverage information in the Memory Window by

clicking on the Code Coverage button in the Memory Window. Besides

the current value of memory locations, the memory window also displays

whether memory locations have been accessed during program execution.

An application program may read from, write to, or fetch an instruction

from a memory location. Of course all combinations may be legal.

Although writing data to a memory location from which an instruction has

been fetched is suspicious. All types of accesss, read, write, fetch or

combinations of these, can be shown using different foreground and

background colors. The color combination used to show "rwx" access are

specified in the Desktop tab of the File | Options... menu item. It is

advised to change the background color if instructions are fetched from a

memory location, and to change the foreground color to show read and

write access.

11.4 PROFILING

You can only use this feature if it is supported by the execution

environment (see the addendum).

Profiling allows you to perform timing analysis on your software. Two

forms of profiling are implemented in CrossView Pro. Both forms of

profiling are fully implemented in the CrossView Pro debugger. You do

not have to recompile your source code to enable the profiling features.

Special Features 11–9

• • • • • • • •

Function profiling, also called cumulative profiling, gives timing

information about a particular function or set of functions. The time spent

in functions called by the function being profiled is included in the timing

results. Within the Cumulative Profiling Setup dialog you select one or

more functions to be profiled. The gathered profile is shown in the

Cumulative Profiling Report dialog. For each function the number of calls,

the minimum/maximum/average and total time spent in the function are

shown. Also, the relative amount of time consumed by a function in

respect to the time consumed by the application is shown.

Function profile data is gathered whenever the program is executed using

the Continue command (not single stepped). Function profiling can be

supported if the execution environment provides a clock that starts and

stops whenever execution starts and stops. Basically function profiling is

implemented by using a special type of breakpoint. Breakpoints are

inserted at the function entry address and all it's return addressed.

Whenever execution stops due to a profile-breakpoint hit, CrossView Pro

will read the clock, update the internal profile tables, and restart

execution.

To specify the functions to be profiled:

From the Tools menu, select Cumulative Profiling Setup...

Type the cproinfo command on the command line:

cproinfo add main

To view the profiling results:

From the Tools menu, select Cumulative Profiling Report...

Type the cproinfo command on the command line:

cproinfo

FUNCTION: List cumulative profining results to output window or

file, or add or remove functions from the list of profiled

functions.

COMMAND: cproinfo [all[,filename] | {add | remove } function]

Chapter 1111–10
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

Code range profiling presents timing information about a consecutive

range of program instructions. CrossView Pro displays the time consumed

by each statement, C or assembly, in the source window. The timing data

can be displayed in three different formats: absolute, relative to program,

and relative to function. To change the display format: position the cursor

on the profile column and click the right mouse button. Select the

appropriate format from the popup menu.

Next to the source window, the profile report dialog (Tools |
Profiling Report...) shows the time spent in each function. The time

consumed by functions called from the function being profiled is not

included in the displayed time.

FUNCTION: List profile information to output window or file.

COMMAND: proinfo [[all | module_or_function_name][,filename]]

Code range profiling data is gathered whenever the program is executed.

It does not matter if the program executes due to a continue, step-over or

step-into command. Code range profiling heavily relies on special

profiling features in the execution environment. Normally code range

profiling is only supported by instruction set simulators.

To enable/disable profiling:

From the Tools menu, select the Profiling checked menu item.

When the menu item is checked, code range profiling is enabled. Enabled

means that the execution environment starts gathering profiling data.

Select the menu item again to disable profiling.

Type the pe or pd command on the command line:

pe

FUNCTION: Enable profiling.

COMMAND: pe

Special Features 11–11

• • • • • • • •

FUNCTION: Disable profiling.

COMMAND: pd

Select the Profiling button in the Source Window to display profile data

in the Source Window. If profiling is not enabled, this button also starts

gathering of profiling data.

Normally both function and code range profiling will slow down the

execution speed of the application being debugged. Therefore, switch off

profiling whenever the timing information is not required.

11.5 DATA ANALYSIS

CrossView Pro incorporates an advanced signal analysis interface designed

to enable developers to monitor signal data more critically and thoroughly.

This feature is useful when developing signal processing software for

application areas such as communication, wireless and image processing.

The Data Analysis window (as shown in figure 4-15) is used for this

purpose. This window is opened as result of processing a data analysis

script (CXL script) and is only updated on user request. TASKING provides

scripts for standard signal analysis such as x-t plotting, x-y plotting, FFT

power spectrum, FFT waterfall, combined FFT power spectrum and phase,

and eye diagram. However, the programmer can write CXL scripts and

process the data in the format he desires.

Refer to the CXL syntax specification in section 11.5.2, Syntax of CrossView
eXtension Language (CXL), for details.

Four processes are associated with the graph window:

1. Get raw data

2. Transform data

3. Generate representation

4. Draw

Chapter 1111–12
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

The get raw data process retrieves data from the target and stores the data

at the host system in one or more CrossView Pro internal acquisition data

buffers. Since these buffers reside on the host system it is possible to

maintain a history of data.

The transform data process takes the raw data as input, processes it, and

the result of the transformation, a set of (x, y) pairs, is saved in the

processed data buffer associated with a window. Since the transformations

are described in CXL (CrossView eXtension Language) the user can

program the data transformation that is of most interest for him. For

example, an FFT power spectrum would produce (frequency, power)
pairs.

The generate representation process takes data from the processed data

buffer, (x, y) pairs, as input and generates a display list. This process scales

the data according to the given display window size. This process is coded

in CXL. So, in addition to the scripts provided by TASKING, the user can

write his own representation processes. For example, an FFT power

spectrum is usually represented by a bar graph.

The drawing engine process takes the display list as input and produces

the graph that is displayed in the Data Analysis window. The drawing

engine is part of the CrossView Pro executable and cannot be configured

by the user.

A clear separation between data transformation (the transform data

process) and data presentation (generate representation process) has been

made to increase the reusability of complex data presentation scripts.

Once the scripts are written (a number of frequently used operations are

supplied), the following three steps must be made in order to display data:

1. Set the display mode for the desired window using the graphm

command. For example,

graphm ”demo”,”show_x_t.cxl”

"demo" will be shown in the title bar of the window. It is also the name

used to refer to the window.

2. Retrieve data from the target into a buffer using the memget command.

For example,

memget ((int []) 0x0)[$i],128,$buffer

Special Features 11–13

• • • • • • • •

$i is the "iterator" to walk 128 times through the expression (Note: the

retrieved elements are assumed to be equidistantly placed in memory) and

store the results in $buffer .

Optionally the buffer contents can be appended to another buffer using

the bufa command, in order to maintain a (limited) history. For example,

bufa $all_data,$buffer,1024

3. Transform the buffer contents to displayable data using the graph

command. For example,

graph ”demo”,”x_t.cxl”,$buffer,0,1

For details of the arguments provided to x_t.cxl , see below. Now a used

buffer can be freed using the bufd command (if the target data is not to

be used anymore).

Steps 1. and 2. can be repeated as many times as desired. The display

mode can be changed at any time by issuing a graphm command for the

window to be changed. Using the graphp command, a window can be

positioned anywhere on the screen.

11.5.1 SUPPLIED DATA ANALYSIS WINDOW SCRIPTS

The following scripts and commands are described for completeness.

Normally, you will not use the commands directly, because they are

automatically invoked when you click OK in the Data Analysis Window

Setup dialog.

For some graphm scripts both x- and y-axis can be user specified. If the

limits are not specified or low >= high, then autoscaling is used.

X-T plotting

An x-t plot is the most straightforward way of displaying data. Data is

taken from one buffer, each value is taken as the x value and the t value is

increasing linearly. It is displayed as a graph the way it is found in the

buffer (memory). The layout of the scales and the form of the graph (line,

bar, dot) can be selected as shown below.

Chapter 1111–14
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

1. Generating window data pairs:

graph "win_title", "x_t.cxl", $buffer, t_offset, t_increment

generates (t, x) pairs: (t_offset + i * t_increment, $buffer[i]). The

generated data is attached to the specified window.

2. Setting the display mode:

graphm "win_title", "show_x_t.cxl" [, low_x, high_x [, low_y, high_y]]

displays lines drawn between successive coordinates specified by the

window data pairs.

graphm "win_title", "show_cross.cxl" [, low_x, high_x [, low_y, high_y]]

displays 'x's at the coordinates specified by the window data pairs.

graphm "win_title", "show_plus.cxl" [, low_x, high_x [, low_y, high_y]]

displays '+'s at the coordinates specified by the window data pairs.

graphm "win_title", "show_bars.cxl" [, low_x, high_x [, low_y, high_y]]

displays bars at the coordinates specified by the window data pairs.

The x-coordinates are expected to be equidistant.

X-Y plotting

An x-y plot takes values from two buffers, one from each at a time. The

first is interpreted as the x-value, the second as the y-value of a point to

display. No further processing is done on these values. The most common

display mode is 'x's or '+'s (show_cross.cxl , show_plus.cxl , see

previous description) to give a scattergram. The values can also be

interconnected in order (show_x_y.cxl) to create Lissajous-like displays.

1. Generating window data pairs:

graph "win_title", "x_y.cxl", $x_buffer, $y_buffer

2. Setting the display mode:

graphm "win_title", "show_x_y.cxl" [, low_x, high_x [, low_y, high_y]]

draws lines from all (x[i] , y[i]) to (x[i+1] , y[i+1]). When

autoscaling is active, some space is reserved on both x- and y-axis.

Special Features 11–15

• • • • • • • •

FFT power spectrum

The FFT power spectrum plot takes a buffer of arbitrary size to compute

the power of all frequencies present in the signal (in decibels). If the

buffer size is not a power of two, it will expand its input set to the next

higher power and augment it with zeroes. To handle non-recurrent data

correctly, several window functions can be applied in the process. If no

reference level is given the maximum level is calculated and set to be 0

dB. The usual display mode is bars, although all x-t display methods can

be used. The horizontal axis is in frequency steps, the vertical axis in

decibels.

1. Generating window data pairs:

graph "win_title", "fft.cxl", $buffer, filter_index, frequency_step[,ref_level]

generates pairs (i * frequency_step, log_power[i]). The filter_index
specifies one of the following FFT windowing functions:

0 rectangular

1 triangular

2 Hanning

3 Blackman-Harris

ref_level is the 0 dB reference level.

2. For displaying the generated pairs, any of the x-t plotting display scripts

can be used. "show_bars.cxl " is recommended.

Multi FFT power spectrum ("waterfall")

The multi FFT power spectrum displays a chronilogical series of FFT

power spectra. This diagram is also known as FFT waterfall. The FFT

power spectrum plot takes a buffer of arbitrary size and splits it up in a

number of frames of size 2two_exp. You can specify the overlap between

successive frames. The overlap can be negative indicating gaps between

successive frames. For each frame, the power (in decibels) of all

frequencies present in the signal is computed.

1. Generating window data pairs:

graph "win_title", "multi_fft.cxl", $buffer, filter_index, frequency_step,

two_exp[,overlap[,ref_level]]

generates pairs (i * frequency_step, log_power[i]). The filter_index
specifies one of the following FFT windowing functions:

Chapter 1111–16
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

0 rectangular

1 triangular

2 Hanning

3 Blackman-Harris

2two_exp is the width of one single frame in number of input samples.

two_exp must be a value between 2 and 14 (inclusive). If the input

buffer does not contain enough samples to fill the last frame, the frame

is completed with zeros.

F1
F2

F3

F4
2

two_exp

input buffer

overlap

the rest of frame F4
will contain zeros

overlap is the number points shared by successive frames. When

negative, a 'gap' will occur between processed points. The first sample

taken from the input buffer of frame N is equal to the first sample of

frame N + 2two_exp - overlap. overlap must be smaller than 2two_exp.

ref_level is the 0 dB reference level.

2. For displaying the generated pairs, the display script

"show_multi_bars.cxl " is required.

Multi FFT power spectrum in lines

Displays the same multi FFT power spectrum, but now in lines instead of

bars. Here a 3D graph is shown. The script name is

show_multi_lines.cxl .

Multi FFT power spectrum in lines and grid

Displays the same multi FFT power spectrum as the multi lines spectrum..

Now each point on a curve is interconnected with a point with the same

x-coordinate of the previous graph. What you see here is a 'grid' with the

values. The script name is show_multi_grid.cxl .

Special Features 11–17

• • • • • • • •

Use of colors in Multi FFT power spectrum

For all three graphm scripts show_multi_bars.cxl ,

show_multi_lines.cxl and show_multi_grid.cxl an optional third

parameter can be added to set the color offset value. This allows you to

create a dynamic display in which the color of each curve remains the

same. The color offset can range from 0 to the maximum number of

colors, and the maximum number of colors is the number of curves to be

plotted. When the color offset exceeds the number of colors, the modulo

will be taken; if it is negative it will be set to zero. The colors selected for

the curves are spread evenly over the color spectrum. The number of

colors can also be set as an (optional) fourth parameter of the script.

An example of a command file for a running script can be:

/* INITIALIZE */
rst /* Rerun the program when the script is executed */
$fast_mode=2 /* If on the simulator, go to fast mode */
s /* Step to the main() routine to allow access */
 /* to the output[] array. */
memget output[$i],256,$t /* It’s clear now. */
bufa $f,$t,4096 /* Construct an empty time domain history */
bufa $f,$t,4096
bufa $f,$t,4096
bufa $f,$t,4096
bufa $f,$t,4096
bufa $f,$t,4096
bufa $f,$t,4096
bufa $f,$t,4096
$color=0 /* Initialize the $color variable to track the graphs */

/* DEFINE THE TIME DOMAIN WINDOW */
graphp ”Output time domain”,50,25,716,295 /* set window position */
graphm ”Output time domain”,”show_x_t.cxl” /* set draw method */
graph ”Output time domain”,”x_t.cxl”,$t,0,1
 /* use the ’t’ buffer */

graph_clear_updates ”Output time domain”
 /* Set ’Output time domain’ window update actions: */
graph_add_update ”Output time domain”,memget output[$i],256,$t
 /* Get new time domain data from output[] into $t buffer */
graph_add_update ”Output time domain”,graph ”Output time
domain”,”x_t.cxl”,$t,0,1
 /* This command recalculates and redraws the window */

/* DEFINE THE FREQUENCY DOMAIN WINDOW */
graphp ”Output freq domain”,50,350,716,295
 /* set window position */
graphmn ”Output freq domain”,”show_multi_grid.cxl”,–120,5,($color)
 /* set draw method */
graph ”Output freq domain”,”multi_fft.cxl”,$f,0,1,256
 /* use the ’f’ buffer */

Chapter 1111–18
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

graph_clear_updates ”Output freq domain”
 /* Set ’Output freq domain’ window update actions: */
graph_add_update ”Output freq domain”, bufa $f,$t,4096
 /* Add new data to buffer, max size 4096 (purging oldest) */
graph_add_update ”Output freq domain”, $color = ($color+1) % 16
 /* 4096/256 = 16 graphs, increment color offset to follow */
graph_add_update ”Output freq domain”, graphmn ”Output freq
domain”,”show_multi_grid.cxl”,–120,5,($color)
 /* Use the graphmn command to avoid double redraws */
 /* Place $color in braces to avoid confusion with buffers */
graph_add_update ”Output freq domain”,graph ”Output freq
domain”,”multi_fft.cxl”,$f,0,1,256
 /* This command recalculates and redraws the window */

/* PLACE COMPLEX BREAKPOINT, HAVE IT UPDATE THE GRAPHICAL DATA
WINDOWS */
main#141 bi { update! ”Output time domain”; update! ”Output freq
domain”; C }

/* CONTINUE RUNNING THE PROGRAM */
C

For passing the parameter $color , the command interpreter requires

parentheses around it, otherwise it is interpreted as a buffer.

Combined FFT power spectrum and phase

The combined FFT power spectrum and phase plot adds a display of the

phase of each component to the FFT power spectrum. The phase is

normalized between -180 degrees and +180 degrees. To display both

features of the input data a special display script must be used

(show_fft_pairs.cxl).

1. Generating window data pairs:

graph "win_title", "fft_pairs.cxl", $buffer, filter_index, freq_step[,ref_level]

The filter_index specifies one of the following FFT windowing

functions:

0 rectangular

1 triangular

2 Hanning

3 Blackman-Harris

ref_level is the 0 dB reference level.

2. Setting the display mode:

For displaying the generated display list, the display script

"show_fft_pairs.cxl " is required.

Special Features 11–19

• • • • • • • •

graphm "win_title", "show_fft_pairs.cxl" [, min_power, max_power]

Eye diagram

The eye diagram is a recurrent x-t plot. The input data is not processed,

but the time parameter is reset when the signal crosses the trigger level,

and also after a specified interval (wrap_limit). After crossing trigger_level,
retriggering is suppressed during the trigger_hold_off next data values. The

eye diagram uses the X-t plot method and exploits the feature of

suppressing the fly-back of the displayed line.

1. Generating window data pairs:

graph "win_title", "eye.cxl", $buffer, wrap_limit [,t_increment [, t_offset
[, trigger_level [, trigger_hold_off]]]]

2. Setting the display mode:

graphm "win_title", "show_x_t.cxl" [, low_x, high_x [, low_y, high_y]]

displays lines drawn between successive coordinates specified by the

window data. If x[i+1] < x[i] (going back in time), no line is

drawn from (x[i] , y[i]) to (x[i+1] , y[i+1]), which can be

regarded as the fly-back suppression in an oscilloscope.

11.5.2 SYNTAX OF CROSSVIEW EXTENSION

LANGUAGE (CXL)

CXL has a C-like syntax, the basic differences from C are:

• No preprocessor, so no defines.

• Only "// " comments.

• No structs or unions, so the operators "." and "->" are not

supported.

• No type definition

• No enums

• No switch statement.

• Blocks must not be empty ("1; " is the minimal expression).

• No 'main', all the script code is to be enclosed within a '{' and '}'

pair.

Chapter 1111–20
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

• Function prototypes and function definitions can be nested, but

must be preceded by the keyword "sub ". They can be used

anywhere in the source. Following the scope rules, a function

declaration hides a previous definition when it is defined.

• No casts allowed. Casts are (like in C) performed automatically.

When explicit rounding/casts are needed, you can use the floor()
function. E.g. by floor(x) (chopping) or floor(x+0.5)
(rounding off to nearest integer).

• No ? : operator allowed.

• Single statements after a flow control statement (if, else, for, while)

should always be between braces. For example, the usual C

expression

if (x < 0)
 x = 0;

should be written as

if (x < 0)
{
 x = 0;
}

• Initializers in declarations are not allowed. For example,

int i = 1;

should be written as

int i;
... possible other variable declarations ...
i = 1;

• Modifiers such as signed , unsigned , register and static are

not supported.

• Floating point numbers below 1 should always be preceded by a

zero. For example, the number .15 is treated as invalid, this should

be 0.15 .

Special Features 11–21

• • • • • • • •

Furthermore, the syntax is like the C syntax.

Example:

{
 sub void p(function f)
 {
 outd(f());
 outc(’\n’);
 }

 sub int h() { return 1; }

 { //This is the ”main” entry point
 p(h);
 sub int h() { return 2; }
 p(h);
 }
}

This example would print the following output in the command window:

1
2

Base Types

CXL supports the following base types:

• char

• int

• long

• float

• double

• string (only allowed for parameters)

• function (only allowed for parameters)

Internally, char , int and long are treated the same, as are float and

double . Since they are the same, types belonging to one group can be

interchanged freely.

Pointer to base type is only supported for parameters not for other

variables. Pointers to variables are the result of the "address-of" operator

and are treated as arrays of the mentioned base type with upper-bound 1.

Chapter 1111–22
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

A return value can be of any base type. Data type void is also a valid

return type.

Compound Types

CXL supports the following compound types:

• array of char

• array of int

• array of long

• array of float

• array of double

Structures, unions and type definitions are not part of the CXL syntax.

Predefined Functions

1. Mathematical functions:

double sin(double x);
double cos(double x);
double tan(double x);
double acos(double x);
double asin(double x);
double atan(double x);
double sinh(double x);
double cosh(double x);
double tanh(double x);
double log(double x);
double log10(double x);
double exp(double x);
double sqrt(double x);
double ceil(double x);
double floor(double x);
double fabs(double x);
double pow(double x, double y);

2. Functions to send output to the command window:

double outc(double x); –> { printf(”%c”, (int) x); return x; }
double outd(double x); –> { printf(”%ld”, (long) x); return x;}
double outf(double x); –> { printf(”%f”, x); return x; }

3. Upperbound of an array:

long upperbound(array a);

Special Features 11–23

• • • • • • • •

4. GUI interaction functions available when a script is passed to the graph

command::

void add_point(double x, double y);

This function adds graph points to the acquisition buffer.

void printf(string format, ...);

The output of printf is written to the command window.

5. GUI interaction functions available when a script is passed to the graphm

command::

void printf(string format, ...);

The output of printf is sent to the "window contents script".

This at first sight strange function name of printf is chosen to facilitate

development and debugging graphm scripts using a host system C

development environment. The C code can be very easily ported to CXL

afterwards. The output is in fact a command of the drawing engine and is

therefore not the same as a usual printf and no the same as printf in

the graph command. Logging to the command window from a graphm

script is not possible via printf .

The following drawing commands are supported:

clear

Clear drawing area. This is usually the first command issued in a

drawing sequence.

graph_area x-offset, y-offset, x-size, y-size

printf(”graph_area %d,%d,%d,%d/n”, xo, yo, xs, ys)

Set graph area size. The offset determines the lower left corner of

the graph area. Size is the exact number of pixels.

axis xlow, ylow, xhigh, yhigh

Define the axes ranges, for determining the cross-hair cursor

coordinates (to be displayed in the cursor field and to be passed to

the representation generator). The axes range up-to the top-right

coordinate, which is excluded (reduces axis drawing maths, but

mind axis lengths of 0). The axes are linear.

Chapter 1111–24
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

pen_color color

Set pen color. Black is the default color. The color can be specified

by name or by RGB number in the form red,green,blue as decimal

number for each base color for 0 to 255. E.g. 255,128,0 is orange.

Valid names are:

black, red, yellow, green, blue, cyan, magenta,
dkgray, gray, ltgray, white

brush_color color

Color used for filling areas. Black is the default color. See

pen_color for possible colors. The value background sets the

brush to the current background color which is

WINDOW_BACKGROUND under Windows.

filled_rectangle x1, y1, x2, y2

Puts a rectangle, filled with the latest set brush_color, bounded by

(x1, y1) and (x2, y2) (both points inclusive). Coordinates are

expressed in pixels. The origin is the lower left corner.

dot x1, y1

Draw pixel. Coordinates are expressed in pixels. The origin is the

lower left corner.

line x1, y1, x2, y2

Draw line from (x1, y1) up-to and including (x2, y2) .

Coordinates are expressed in pixels. The origin is the lower left

corner.

polygon x1, y1, x2, y2, ... xn, yn
polyline x1, y1, x2, y2, ... xn, yn

Puts a polyline, using the latest set pen_color, from line sections

from the points (x1, y1) to (xn, yn) , where n >= 3 (which

means at least 2 lines). Coordinates are in pixels.

Special Features 11–25

• • • • • • • •

filled_polygon x1, y1, x2, y2, ... xn, yn

Puts a polygon, filled with the latest set brush_color, bounded by a

polygon formed by the line sections between the points (x1, y1)
to (xn, yn) and back to (x1, y1) , where n >= 3. Coordinates

are in pixels. As with filled_rectangle, the pen is only temporarily

set to the same color as the current brush and restored when the

call is finished.

filled_polygon_brush x1, y1, x2, y2, ... xn, yn

As with filled_polygon, but using a separate brush and pen, that

is, using the latest brush and pen color also when they are different.

text x, y, anchor, "text"

Draw text with its anchor at location (x, y) . The anchor is the

point in the text string, which will get placed at the specified

location. For example, anchor 7 specifies that the text must be

placed such that the bottom-left side of the text is at the specified

position. Coordinates are expressed in pixels. The origin is the

lower left corner.

Anchors:

 1–––––2–––––3
 | |
 4 5 6
 | |
 7–––––8–––––9

Text may include any characters, except a nil character. Double

quote and backslash characters must be escaped by a backslash

character. Text will be formatted using the current font settings. See

below for the font info exchange between the window and the

representation generator.

Chapter 1111–26
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

long get_attr(string attribute);

Supported attributes are:

”draw–area–x–size”
”draw–area–y–size”
”x–scrollbar–present”
”x–scrollbar–size”
”x–scrollbar–low”
”x–scrollbar–high”
”y–scrollbar–present”
”y–scrollbar–size”
”y–scrollbar–low”
”y–scrollbar–high”
”selection–available”
”selection–start”
”selection–end”

long get_text_attr(string attribute, string text_format, ...);

Supported attributes are:

”leading”
”ascent”
”descent”
”width”

6. Argument passing.

The graph and graphm commands can be given a number of arguments.

These arguments are accessible as follows.

long n_args;

The number of arguments.

arg1..argN

with N = n_args are added to the global scope and have type

double * for buffers, type string for strings and type double for

evaluated expressions.

Parsing the script will fail if a certain argument has not been provided.

Evaluation of the script will fail if the type of the argument does not match

its use.

Special Features 11–27

• • • • • • • •

For argument testing and argument retrieval the following functions are

provided:

long is_string_arg(long n);
long is_double_arg(long n);
long is_buffer_arg(long n);
double get_double_arg(long n);
string get_string_arg(long n);
double *get_buffer_arg(long n);

Numerical arguments can be retrieved by using get_double_arg() . In

the graphm command, the (x, y) pairs produced by a sequence of calls to

add_printf() in the graph script are accessible via global variables x

and y of data type array of double .

Chapter 1111–28
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

11.6 BACKGROUND MODE

Background mode is a feature for running the application under debug

and CrossView Pro at the same time. This allows you to monitor the target

application using CrossView Pro, while the application is running.

Depending on the target hardware and/or debug instrument connected to

CrossView Pro, target execution can even be real-time.

Since CrossView Pro's monitoring of the target hardware must be

non-intrusive, not all functions of the debugger are enabled while running

in background mode.

You can only use this feature if it is supported by the execution

environment (see the addendum).

11.6.1 CONFIGURATION

CrossView Pro can be instructed to automatically refresh one or more

windows of the debugger periodically while running in background mode.

You can use the Background Mode Setup dialog for specifying the desired

set of windows to be refreshed.

From the Settings menu, select Background Mode Setup... to open the

Background Mode Setup dialog.

A distinction has been made between updating the Source lines window

and updating the Disassembly window. Updating the Disassembly window

may be to time-consuming, so you may want to disable its updating in

Background mode, while still keeping the Source lines window

up-to-date when that is displayed on screen.

Use the u command to toggle the updating of windows in background

mode.

FUNCTION: Toggle update of window in background mode.

COMMAND: [interval] u [d|k|r|cd|ck|cr|s|a|mem|t]

Special Features 11–29

• • • • • • • •

The following windows can be updated in background mode:

d (Data), k (Stack), r (Register),

s (Source), a (Assembly), mem (Memory), t (Trace)

Initially only the data window will be updated. CrossView Pro repeatedly

looks at the execution environment to react on changes. It

pseudo-simultaneously looks for user commands from the keyboard (or

from the playback file), and periodically it updates the windows.

If all windows would be updated the update frequency would drop. That

is why you can toggle a switch for each window. To toggle the updating

of the register window, you can type:

xvw% u r

If the switch for a window is 'on', it will be updated, otherwise it will be

skipped.

You can also specify a new update interval.

Without arguments, CrossView Pro displays all windows updated

periodically plus the update interval.

Notice that simulated I/O is done through 'invisible' breakpoints, and these

must be handled inside the loop. Hence, if updating the windows takes a

lot of time (many monitor commands), it will also slow down simulated

I/O.

11.6.2 MANUAL REFRESH

If you have windows which you do not want to refresh periodically, you

can disable them in the Background Mode Setup dialog's refresh list, and

refresh these windows manually.

From the View menu, select Background Mode and select one of the

refresh options.

Use the ubgw command.

Chapter 1111–30
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

FUNCTION: Update the appropriate window when the target runs in

the background.

COMMAND: ubgw [s | a | k | r | d | mem | t | all]]

Section Refresh Limitation in this chapter.

11.6.3 ENTERING BACKGROUND MODE

To run a program in background mode:

From the Run menu, select Background Mode | Run in Background

Type the CB command on the command line.

FUNCTION: Run a program in background mode.

COMMAND: [count] CB [linenumber]

This will start the application under debug to run continuously (as with

the C command), and switch CrossView Pro from Halted to Background

Mode. count is assigned to the breakpoint at the current execution

position as the number of times to hit this breakpoint before execution to

stop. linenumber specifies the source line to place a temporary

breakpoint.

The mouse pointer changes to an arrow with a small watch face

underneath. This indicates that CrossView Pro is now in background

mode. Some commands are treated a little different in this mode, because

they can otherwise influence the running program badly. Commands that

need information from the stack (like bU, bu, bb or bB) are not allowed

because that information is not reliable. Other commands require great

care, for example the o command.

For example if you type the g while in background mode you will see:

xvw% g 56
Command ”g” is not allowed while the emulator is
running in background.

Special Features 11–31

• • • • • • • •

11.6.4 LEAVING BACKGROUND MODE

You can leave Background Mode in three ways:

1. Stop the target immediately:

From the Run menu, select Background Mode | Halt Target

Enter the st command:

xvw% st

2. Let CrossView wait for the target to stop:

From the Run menu, select Background Mode | Wait for Target to Stop

To wait for a breakpoint, you can use the wt command:

xvw% wt

3. A program running in background mode also stops when it encounters a

breakpoint.

FUNCTION: Stop a program in background mode.

COMMAND: st

The wt command behaves just as if you have typed the C command.

CrossView Pro returns with a prompt, after the program hits a breakpoint.

However, there is an interesting difference with the C command. If you

push the Halt button, it returns with the background prompt. The

program that runs in the execution environment continues without

interruption.

FUNCTION: Wait for the running process to stop

COMMAND: wt

Chapter 1111–32
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

11.6.5 THE STACK IN BACKGROUND MODE

While the execution environment runs in background, CrossView Pro does

not allow the use of information that comes from the stack. The reason is

that the running program must be stopped in order to get consistent

information from the stack. Stopping (and afterwards continuing) the

program conflicts with the "real�time" nature of the background mode.

If there is a need for it, you can make a macro that performs the desired

operations.

11.6.6 LOCAL AND GLOBAL VARIABLES

In background mode you can continuously monitor variables. However,

realize that local variables (in CrossView Pro variables are called 'local' if

they reside on the stack) cannot be monitored. Instead you will see

"unknown name". Global variables have a fixed address, so CrossView Pro

knows where to get their contents from.

If you are very anxious to see local variables you can first get an address

and then use that address to monitor the contents. For example:

$adr_sum = &sum
m *(adr_sum)/x4

In this example sum is a long (4 bytes). You must be sure that sum
remains at that address while the program is running.

The values you get this way are only valid under specific conditions. Local

variables from the function main normally meet these conditions.

11.6.7 REFRESH LIMITATION

While running the application in the background mode, the automatic

refresh functionality may not be able to keep up with all the debugging

information produced by the running target. Typically, the collected

information will be correctly displayed and automatically updated in the

current open views and no information will be lost. You might lose the

debugging information when scrolling these views during the background

mode. The reason is that either CrossView Pro does not run fast enough or

the communication with the target hardware is not handled fast enough by

the operating system.

Special Features 11–33

• • • • • • • •

The information that cannot be processed by CrossView Pro within the

specified update interval, is displayed as either '<unknown> ' or dashes.

The way the lost information is displayed depends on the internal

communication level within CrossView Pro where the information is lost.

Information lost during communication with the target hardware is

displayed as '<unknown> '. Information lost by CrossView Pro while

processing and interpreting this information, is displayed as dashes.

On the next automatic or manual update, all debugging information in the

currently open views is automatically updated. All visible '<unknown> '

values and dashes are replaced with their actual values as produced by the

running target.

11.6.8 ASSERTIONS

CrossView Pro automatically suspends assertions with the CB command.

Chapter 1111–34
S

P
E

C
IA

L
 F

E
A

T
U

R
E

S

12

DEBUGGING NOTES
C

H
A

P
T

E
R

Chapter 1212–2
D

E
B

U
G

G
IN

G
 N

O
T

E
S

12

C
H

A
P

T
E

R

Debugging Notes 12–3

• • • • • • • •

Here are a few notes about debugging in special situations:

12.1 DEBUGGING ASSEMBLY LANGUAGE

You may debug assembly language programs or modules much as you do

C source. The s, S and si commands single step through the assembly

source. You may place code breakpoints on assembly language

instructions with the bi command.

For additional information on debugging assembly code, see $autosrc ,

$mixedasm and $symbols in the Reserved Special Variables table in

section 3.4.

There is a restriction on debugging assembly language code:

• Assembly language subroutines cannot be called from the command

line.

12.2 DEBUGGING MULTIPLE PROGRAMS

You probably have only one linked and located absolute object file that

describes the whole system load. However, for various reasons, you may

want to build your system load by linking and locating into several files.

The debugger can handle the symbols from only one load module in one

absolute object file at a time. Consequently, if there are several absolute

files or several load modules within one absolute file, you will have to

change the context from one to another explicitly. Use the N command or

the Load Symbolic Debug Info dialog to load the appropriate

symbols. This does not disturb the state of the target system.

You can also download the image part of another absolute object file

(using the dn command), without leaving the debugger.

Chapter 1212–4
D

E
B

U
G

G
IN

G
 N

O
T

E
S

13

COMMAND
REFERENCE

C
H

A
P

T
E

R

Chapter 1313–2
R
E
F
E
R
E
N
C
E

13

C
H

A
P

T
E

R

Command Reference 13–3

• • • • • • • •

This chapter contains a summary of all CrossView Pro commands,

followed by a complete description of each command.

13.1 CONVENTIONS USED IN THIS CHAPTER

Each CrossView Pro command has a particular syntax, that is, the form it

must take for CrossView Pro to recognize it. To help you learn the syntax

of each command, this chapter uses a special notation to describe the

syntax of each command. Consider the following example:

ios_read {stream | "file"},address,number_of_maus[,x]

Command items in bold font are the actual command keywords typed

from the keyboard. In the example above, ios_read is in bold font since

you must type it exactly as shown.

Items in italics are names of the command part. Here stream is in italics,

since you must substitute the appropriate value for stream. The

Description section for each command describes what kinds of values

should be substituted for italicized terms.

Expressions in [brackets] are optional items you may include in a particular

command. In this example ,x is not necessary for the ios_read command

to work. Usually if you omit an optional expression, CrossView Pro uses a

default value.

The | symbol means or. For instance, {stream | "file"} means a stream

number or a filename between double-quotes (but not both) can be used

in the command.

Chapter 1313–4
R
E
F
E
R
E
N
C
E

13.2 COMMANDS: SUMMARY

13.2.1 VIEWING COMMANDS

^[format] Display contents of preceding memory location.

exp Print value of expression using /n format.

exp @ formatPrint address of expression exp in format format.

exp/format Print value of expression exp in format format.

line Move viewing position to line line.

clear Clear the Command Output Window.

number ct Display a source-level trace corresponding to the last

number of machine instructions executed.

number ct i Display a disassembled assembly-level trace corresponding

to the last number of machine instructions executed.

number ct r Display a raw trace corresponding to the last number of trace

frames.

e [func | file]
Enter function func or file file or view current viewing

position.

stack e Enter function using stack address.

[addr] ei View current viewing position or view instruction at address

addr.

f ["printf-style-format"]
Change default address display format.

gus {on|off}

Suppress or reactivate CrossView Pro window updating.

L Synchronize the viewing position with the execution

position. Print current file, function and line number.

Command Reference 13–5

• • • • • • • •

l {a|b|d|f|g|k|l|L|m|p|r|s|S} [string]

List assertions, breakpoints, directories, files, globals, kernel

state data, labels (on module scope), all Labels, memory map

(of application code sections), procedures, registers, special

variables, Symbol tables. If given, only those starting with

string.

l [func] List all parameters and locals of function func. Without a

function, this command lists all parameters and locals of the

current function in view.

l stack List all parameters and locals of function at depth stack.

nC Move viewing position to next covered line.

nU Move viewing position to next uncovered line.

opt [option [= value]]
List or set option value. Without an argument, list all option

values.

[line] P [exp] Print exp lines of source starting at line line, include machine

addresses.

[line] p [exp] Print exp lines of source starting at line line.

pC Move viewing position to previous covered line.

pU Move viewing position to previous uncovered line.

[exp] T Trace the stack for exp number of levels, list local variables.

[exp] t Trace the stack for exp number of levels, printing active

functions and parameters passed.

td Disable tracing.

te Enable tracing.

13.2.2 DATA MONITORING

cd Disable, turn off, gathering of coverage data.

ce Enable, turn on, gathering of coverage data.

Chapter 1313–6
R
E
F
E
R
E
N
C
E

covinfo [[all | module_or_function_name][,filename]]
List coverage info.

cproinfo [all[,filename] | {add | remove } function]

List cumulative profiling info or add or remove functions

from the list of profiled functions.

dis address [, {address|#count} [,i]]
Disassemble a range of memory.

dump address [, [address|#count] [, [style [width]] [, filename [,a]]]

Dump a memory range.

M Display list of monitored expressions in the Command

window.

m exp Monitor the expression exp.

num m d Remove monitored expression labeled num.

addr_start mcp addr_end, addr_dest
Memory copy.

addr mF exp[,exp]...

Single fill memory address addr with expressions.

addr_start mf addr_end, exp[,exp]...

Fill memory address range with expressions and repeat the

pattern until the end address of the memory region is

reached.

addr_start ms addr_end, exp[,exp]...

Search memory address range for a given pattern.

pd Disable, turn off, profiling.

pe Enable, turn on, profiling.

proinfo [[all | module_or_function_name][,filename]]
List profiling info.

Command Reference 13–7

• • • • • • • •

13.2.3 DATA ANALYSIS

bufa target_buffer_name,added_buffer_name[,size_limit]
Add the contents of buffer added_buffer_name to buffer

target_buffer_name.

bufd buffer_name
Discard the specified buffer.

graph "window","script"[,arg]...

Create Data Analysis window and execute CXL script.

graphm "window","script"[,arg]...

Set the representation script for the window specified.

graphmn "window","script"[,arg]...

Similar to the graphm command, but without an update of

the graph window.

graphp "window",left_top_x,left_top_y,width,height
Position the named window at the specified screen

coordinates.

graph_add_update "window",command
Add command to the sequence of update commands for the

specified window.

graph_clear_updates "window"

Clear the update commands associated with the specified

window.

graph_close "window"

Close the specified window.

graph_debug expression

Enable the "graphical data window debugging mode",

showing all communication between the scripts and the

windows in the command window.

memget expr,count,buffername
Retrieve symbolically specified data from the target system

and store the data in the acquisition buffer.

rawmemget address,type,count,buffername [,interleave]
Retrieve data from the target system and store the data in the

acquisition buffer.

Chapter 1313–8
R
E
F
E
R
E
N
C
E

update "window"

Update the window specified.

13.2.4 EXECUTION CONTROL COMMANDS

A [a|s] Toggle state of assertion mechanism.

a cmds Create a new assertion with the command list cmds.

exp a {a|d|s}

Activate, delete, suspend assertion exp.

B List all breakpoints.

[line] b [cmds]
Set breakpoint at source line line, and associate command list

cmds with breakpoint.

[stack] bB [cmds]
Set temporary breakpoint at beginning of function at stack

level stack and associate command list cmds.

[stack] bb [cmds]
Set breakpoint at beginning of function at stack level stack
and associate command list cmds.

[number] bc [count] [reset_count]
Set breakpoint count and reset_count for breakpoint with

number number.

count bCYC [cmds]
Set temporary breakpoint after the specified cycle count and

associate command list cmds.

count bcyc [cmds]
Set breakpoint after the specified cycle count and associate

command list cmds.

exp bD {r|w|b} exp2 [cmds]
Set a data range breakpoint (between addresses exp and

exp2) read (r), write (w) or both read and write (b), and

associate command list cmds.

Command Reference 13–9

• • • • • • • •

exp bd {r|w|b} [cmds]
Set a data breakpoint, read (r), write (w) or both read and

write (b) at address exp, and associate command list cmds.

num bdis Disable code breakpoint.

num bena Enable code breakpoint.

[addr] bI [cmds]
Set temporary breakpoint at machine instruction and

associate command list cmds.

[addr] bi [cmds]
Set breakpoint at machine instruction and associate command

list cmds.

count bINST [cmds]
Set temporary breakpoint after count machine instructions

and associate command list cmds.

count binst [cmds]
Set breakpoint after count machine instructions and associate

command list cmds.

break [type] where [, option]...

Universal breakpoint command. Several types of breakpoints

are available. The meaning of where depends on the selected

type. Breakpoint options must be separated by commas.

time bTIM [cmds]
Set temporary breakpoint after time number of seconds and

associate command list cmds.

time btim [cmds]
Set breakpoint after time number of seconds and associate

command list cmds.

[stack] bU [cmds]
Set a temporary up-level breakpoint at stack level stack and

associate command list cmds.

[stack] bu [cmds]
Set up-level breakpoint at stack level stack and associate

command list cmds.

Chapter 1313–10
R
E
F
E
R
E
N
C
E

[exp] C [line] Continue execution from current value of program counter. If

line is specified, execution continues up to that line.

Breakpoint's count is set to exp.

[exp] CB [line]
Continue execution in background from current value of

program counter. If line is specified, execution continues up

to that line. Breakpoint's count is set to exp.

D Delete all breakpoints.

Dy Delete all breakpoints without prompt for confirmation.

[number] d Delete breakpoint number.

cpu eC Start execution on the current CPU and switch to cpu.

[cpu] ec Select CPU or show current CPU number.

g line Go to the specified line in the current procedure.

address gi Go to the specified adrress.

if (exp) {cmds} [{cmds}]
Conditionally execute commands.

prst Reset program counter.

Q Report breakpoint quietly.

q [y] Quit debugger (do not save desktop settings).

q s Save current desktop settings and quit debugger.

R Reset program counter and start execution.

rst Reset target system to initial conditions.

[exp] S Single step for exp lines, step over function calls.

[exp] s Single step for exp lines, step into function calls.

[exp] Si Single machine step for exp machine instructions, step over

subroutine calls.

[exp] si Single machine step for exp machine instructions, step into

subroutine calls.

Command Reference 13–11

• • • • • • • •

st Stop the execution of the target immediately.

[interval] u [d|k|r|s|a|mem|t]

Toggle updating of the appropriate window when the target

runs in the background. You can specify the update interval,

in seconds. If interval is zero, never update automatically.

ubgw [s|a|k|r|d|mem|t|all]

Refresh the appropriate window, or all open windows, when

the target runs in the background. This command is not

available for all execution environments.

use [path]...

Clear source directory search path or use the specified path

to search for source files.

wt Wait for the completion of the target.

[exp] x Force an exit from assertion mode. If exp is non-zero, finish

executing command list of the current assertion.

13.2.5 RECORD & PLAYBACK

<file Play back commands from file.

<<file Play back commands with single step from file.

>file Record CrossView Pro commands in file.

>{t|f|c} Set recording file status, true (t), false (f) or closed (c).

> Report status of command recording mechanism.

>#file Record emulator commands in file.

>#{t|f|c} Set emulator recording file status, true (t), false (f) or closed

(c)

>@file Record CrossView Pro and emulator commands in file.

>@{t|f|c} Set CrossView Pro/emulator recording file status, true (t),

false (f) or closed (c)

>>file Log commands and screen output in file.

>>{t|f|c} Set logging file status, true (t), false (f) or closed (c)

Chapter 1313–12
R
E
F
E
R
E
N
C
E

>> Report status of command and screen output logging

mechanism.

>&file Log host-to-target communication in file.

>&{t|f|c} Turn target communication logging on (t), off (f) or close (c)

log file.

>& Report status of target communication logging mechanism.

>*file Log GDI accesses in file.

>*{t|f|c} Set GDI accesses log file status, true (t), false (f) or closed (c)

13.2.6 MACROS

echo string Display macro expansion of string.

save file Save current macros to file.

set Display all macros.

set macro "cmds"
Define macro macro as command list cmds.

unset Delete all macros.

unset macro!

Delete definition of macro macro.

macro! Prevent expansion of macro.

13.2.7 INPUT/OUTPUT SIMULATION

ios_open ["file"[,[mode][,[r][,$xvw_variable]]]]
Open a CrossView Pro File I/O stream.

ios_wopen [["terminal_window"][,$xvw_variable]]
Open a CrossView Pro File I/O stream an map the stream to

a terminal window.

ios_close {stream | "file"}

Close a CrossView Pro File I/O stream.

Command Reference 13–13

• • • • • • • •

ios_read {stream | "file"},address,number_of_maus[,x]

Read binary data from a File I/O stream. Optionally, interpret

the read data as hexadecimal values.

ios_readf {stream | "file"},"format",expression
Formatted read from a File I/O stream (scanf).

ios_write {stream | "file"},address,number_of_maus[,x]

Write binary data to a File I/O stream. Optionally, interpret

the data as hexadecimal values.

ios_writef {stream | "file"},"format",expression
Formatted write to a File I/O stream (printf).

ios_rewind {stream | "file"}

Move File I/O file pointer to the beginning of the file.

13.2.8 FILE SYSTEM SIMULATION

FSS { < | > }{&stream | "file"}

Redirect to or from a stream or file.

FSS_stdio_open filename,rwdirection,streamnumber
Redirect the output of a stream to a file.

FSS_stdio_close streamnumber
Close the specified stream.

13.2.9 TARGET SYSTEM CONTROL

dcmp [file[,[number_of_hits][,d]]

Compare an application file with the memory contents and

display differences.

dn Download the image part of the current absolute file,

specified when CrossView Pro was invoked or loaded with

the N command.

dn file Download the image part of the absolute file file.

load [file] Load symbol table of file in CrossView Pro and download the

image part to the target. This is a combination of N and dn.

Chapter 1313–14
R
E
F
E
R
E
N
C
E

N [file] Load symbol table of file in CrossView Pro.

n [addr] Set code address bias (for overlays) to addr. If no address is

given, then display the current bias.

o [cmd] Enter transparency mode (exit with ctrl-D). If cmd is present,

pass cmd to the execution environment.

! [command-line]
Execute shell command command-line or invoke new shell.

13.2.10 SAVE AND RESTORE TARGET STATE

This feature is only available when it is supported by the debug

instrument.

di_state open state_name
Open the state with the specified state_name.

di_state save state_name, number
Save the state of the debug instrument with the specified

state_name and number.

di_state restore state_name, number
Restore the state of the debug instrument with the specified

state_name and number.

di_state close state_name, delete
Close the state with the specified state_name. delete can be 1

to delete the state or use 0 to keep the state.

13.2.11 HELP COMMANDS

I Print information about debugger state.

13.2.12 SEARCH COMMANDS

Z Toggle case sensitivity in searches.

/[string] Search forwards in source file for string. If string is not

present, perform previous search again.

Command Reference 13–15

• • • • • • • •

?[string] Search backwards in source file for string. If string is not

present, perform previous search again.

"string" Print string.

13.3 COMMANDS: DETAILED DESCRIPTIONS

The rest of this chapter provides the detailed descriptions of the CrossView

Pro commands.

Chapter 1313–16
R
E
F
E
R
E
N
C
E

expression

Function

Print the value or address of an expression.

From the Data menu, select Evaluate Expression... Enter an expression

and optionally select a display format. You may set up a monitor, which

instructs the debugger to evaluate a particular expression each time the

program stops, from the Source Window by selecting text there and by

clicking on the Watch Expression button.

Enter the expression in the Command Window. You may specify in which

format you want CrossView Pro to display the answer.

Description

In the Command Window, the syntax for this command is:

exp [/ format |@ format]

Print the value or address of exp with format format. A / (slash) is used to

print the value of exp and a @ (commercial at) is used to print the address

of exp. If format is not supplied, the natural (/n) format of the expression

is used.

Formats have the syntax:

 [count] style [size]

count is the number of times to apply the format style and defaults to 1.

style may be one of:

a c D O U X d o u x E F G e f g i I n P p s t

See Chapter 6, Accessing Code and Data, and section 3.5 Formatting
Expressions in Chapter 3, Command Language, for details on each of the

format styles.

size indicates the number of bytes to be formatted. Rather than a number

for the integer type styles, size can also be: c for char, s for short, i for int,

and l for long.

The default action, if no modifier is specified, is to print the value of exp
using the /n (normal) format.

Command Reference 13–17

• • • • • • • •

Be careful with one letter variable names, as they may be taken as an

CrossView Pro command rather than as a variable. If an expression begins

with a variable that might be mistaken for a command, then eliminate any

white space between the variable and the first operator. For example: use

h=9 instead of h = 9 .

To display the value of a variable that has the same name as an CrossView

Pro command you must use the natural format modifier. For example: to

print the value of the variable C, use C/n .

Variables may be altered as a side effect of evaluation of exp. See the

example below.

Example

To set variable aux to t times 8, type:

aux = t++*8

As a side effect the variable t is post-incremented. If you type:

$s_aux = func(t,s)

CrossView Pro will set special variable $s_aux to the result of the function

call to func with the variables t and s passed as parameters. If you type:

$s_aux/x4

Print the value of the special variable $s_aux as four hex bytes; you could

also use: $s_aux/xl .

^

Chapter 1313–18
R
E
F
E
R
E
N
C
E

line

Function

Display the C source line numbered line in the current source file.

From the Edit menu, select Find Line... Enter the line number and click

on the Find button. Alternately, you may click on the desired source line

in the Source Window.

Enter the line number in the Command Window. The syntax is:

line

Description

The current viewing position becomes line.

Example

To display the twelfth line in the current source file, type:

12

e, p, P

Command Reference 13–19

• • • • • • • •

string

Function

Echo a string to the terminal.

Enter the string to the Command Window.

Description

A string may contain standard C escapes, such as \n for a newline. The

syntax for a string in the Command Window is:

"string"

Example

This function can be useful for labelling breakpoints. For example, to

insert a breakpoint at line 12 and have a message printed when that line is

reached, enter:

12 b {”At the twelfth line\n”; C}

When CrossView Pro reached line 12, the message �At the twelfth line"

will be printed and the program will continue. If you only type:

”Debug”

CrossView Pro will simply echo the word �Debug."

Q, expression

Chapter 1313–20
R
E
F
E
R
E
N
C
E

!

Function

Instruct CrossView Pro to interpret a command literally, ignoring any

macro definitions of the same name. Also, enter a shell command.

The syntax for this command is:

[string] !

or:

! [string]

Description

This command is useful whenever string should be treated literally and not

as a potential macro invocation. It can be used, for example, in executing

an CrossView Pro command whose name has been defined as a macro.

Example

To enter the host environment under a new shell, type:

!

To execute the host date command, type:

!date

To execute the CrossView Pro command b instead of the macro named b,

type:

b!

set, unset, echo, save

Command Reference 13–21

• • • • • • • •

/

Function

Search down (forward) for a string.

To search for a string in the Source Window, select Search String... from

the Edit menu and select the up radio button. To repeat your search click

on the Find Next Text String button.

The command line syntax is:

/ [string]

Description

The search begins with the line after the current line. If the string is found

the viewing position is changed to the line containing the string. The

execution position is not affected. If you do not specify a string to search

for, CrossView Pro will look for the most recent specified string.

Searches wrap around to the beginning of the file. Regular expressions are

not recognized.

Example

To look for the next occurrence of Random in the current file, beginning

with the line after the current line, type:

/Random

?, Z

Chapter 1313–22
R
E
F
E
R
E
N
C
E

?

Function

Search up (backward) for a string.

To search for a string in the Source Window, select select Search String...

from the Edit menu and select the down radio button. To repeat your

search click on the Find Next Text String button.

The command line syntax is:

? [string]

Description

The search begins with the line before the current line. If string is found,

the current line is changed to point to the line containing the string. The

execution position is not affected. If you do not specify string, CrossView

Pro searches for the previously-specified string again.

Searches wrap around to the end of the file. Regular expressions are not

recognized.

Example

To look for the previous occurrence of Random in the current file,

beginning with the line above the current line, type:

?Random

/, Z

Command Reference 13–23

• • • • • • • •

<

Function

Continuous command playback. Read commands continuously from a file.

To setup command playback, select Playback | CrossView... from the

Tools menu. Enable the Continuous playback check box and click on

the Execute button.

The command line syntax is:

< file

Description

All the commands in file will be read and executed. If a playback file

contains either a < or << command, playback switches to the newly

specified file and does not return to the original file.

Record and playback options can also be specified via command line

parameters.

If the execution of commands from the playback file is interrupted with

the Halt button, CrossView Pro will begin reading the remainder of

commands in file using single step playback (see the << command.)

Example

To read and execute the commands found in the file command.cmd, type:

<command.cmd

<<, >, I

Chapter 1313–24
R
E
F
E
R
E
N
C
E

<<

Function

Single-step command playback.

To setup command playback, select Playback | CrossView... from the

Tools menu. Disable the Continuous playback check box and click on

the Execute button.

The command line syntax is:

<<file

Description

Commands will be played back one at a time. Each command will be

loaded sequentially into the entry field of the Command Window. The

command can then be edited and executed.

The carriage return will execute the current command and stop at the next

one.

If a playback file contains either a < or << command, playback switches to

the newly specified file and does not return to the original file. Record and

playback options can also be specified via command line parameters.

Example

To read and execute the commands found in the file command.cmd, type:

<< command.cmd

<, >, I

Command Reference 13–25

• • • • • • • •

>

Function

Record CrossView Pro commands to a file.

To start recording or toggle the state of the command recording

mechanism, select Record | CrossView... from the Tools menu. Type or

select a file to record commands in and click on the Start button to start

recording. To suspend recording click on the Suspend button. To resume

recording click on the Resume button. To stop recording click on the

Stop button.

The command line syntax is (note that the greater than sign must be typed

as shown):

> [!] [file | t | f | c]

Description

CrossView Pro will start recording commands in a file if file is specified,

otherwise, turn recording on (t), off (f), or close (c) the recording file.

Specifying a different file while recording is on will cause the old output

file to be closed and all successive commands will be sent to the new file.

If no arguments are given, the state of the recording mechanism will be

displayed.

The optional '!' forces flushing of the output after every write.

The commands recorded can be played back by using the < or <<

command. It is possible to have a command recording file and a screen

output recording file to be open concurrently. The file is also closed as a

side effect of the q command.

Commands issued to the emulator under transparency mode are not

recorded.

Files may not be named: t, f or c.

Example

To set (or change) the command recording file to command.cmd and turn

command recording on, type:

>command.cmd

Chapter 1313–26
R
E
F
E
R
E
N
C
E

To suspend recording commands, type:

>f

To resume recording the commands to the recording file, type:

>t

To stop recording commands and close the file, type:

>c

To display the state of the recording mechanism, type:

>

>>, >&, <, <<, I, q

Command Reference 13–27

• • • • • • • •

>@

Function

Record CrossView Pro and emulator commands to a file.

To start recording or toggle the state of the command recording

mechanism, select Record | CrossView... from the Tools menu. Type or

select a file to record commands in, select Include emulator commands

and click on the Start button to start recording. To suspend recording

click on the Suspend button. To resume recording click on the Resume

button. To stop recording click on the Stop button.

The command line syntax is (note that the greater than sign must be typed

as shown):

>@ [!] [file | t | f | c]

Description

CrossView Pro will start recording commands in a file if file is specified,

otherwise, turn recording on (t), off (f), or close (c) the recording file.

Specifying a different file while recording is on will cause the old output

file to be closed and all successive commands will be sent to the new file.

If no arguments are given, the state of the recording mechanism will be

displayed.

The optional '!' forces flushing of the output after every write.

The commands recorded can be played back by using the < or <<

command. It is possible to have a command recording file and a screen

output recording file to be open concurrently. The file is also closed as a

side effect of the q command.

Commands issued to the emulator under transparency mode are also

recorded, but each command is preceded by the o command.

Files may not be named: t, f or c.

Example

To set (or change) the command recording file to command.cmd and turn

command recording on, type:

>@command.cmd

Chapter 1313–28
R
E
F
E
R
E
N
C
E

To suspend recording commands, type:

>@f

To resume recording the commands to the recording file, type:

>@t

To stop recording commands and close the file, type:

>@c

>, >#, >>, >&, <, <<, I, q

Command Reference 13–29

• • • • • • • •

>#

Function

Record emulator commands to a file.

To start recording or toggle the state of the command recording

mechanism, select Record | Emulator... from the Tools menu. Type or

select a file to record commands in and click on the Start button to start

recording. To suspend recording click on the Suspend button. To resume

recording click on the Resume button. To stop recording click on the

Stop button.

The command line syntax is (note that the greater than sign must be typed

as shown):

># [!] [file | t | f | c]

Description

CrossView Pro will start recording emulator commands in a file if file is
specified, otherwise, turn recording on (t), off (f), or close (c) the

recording file. Specifying a different file while recording is on will cause

the old output file to be closed and all successive commands will be sent

to the new file. If no arguments are given, the state of the recording

mechanism will be displayed.

The optional '!' forces flushing of the output after every write.

The emulator commands recorded can only be played back by selecting

Playback | Emulator... from the Tools menu It is possible to have a

command recording file and a screen output recording file to be open

concurrently. The file is also closed as a side effect of the q command.

Files may not be named: t, f or c.

Example

To set (or change) the emulator command recording file to emu.cmd and

turn command recording on, type:

>#emu.cmd

Chapter 1313–30
R
E
F
E
R
E
N
C
E

To suspend recording emulator commands, type:

>#f

To resume recording the emulator commands to the recording file, type:

>#t

To stop recording emulator commands and close the file, type:

>#c

>, >>, >&, <, <<, I, q

Command Reference 13–31

• • • • • • • •

>>

Function

Log Command Window screen output. All Command Window input and

output will be saved to a file.

To create a log of Command Window screen output, select Log |

Command Input/Output... from the Tools menu. Type or select a file to

log to and click on the Start button to start logging. To suspend logging

click on the Suspend button. To resume logging click on the Resume

button. To turn off logging click on the Stop button.

The command line syntax is:

>> [!] [file | t | f | c]

Description

Start logging the commands typed and their output in a file if file is
specified, otherwise, turn logging on (t), off (f), or close (c) the log file.

Specifying a different file while logging is on will cause the old output file

to be closed and all successive Command window output will be sent to

the new file. If no arguments are given, the state of the recording and

logging mechanism is displayed.

The optional '!' forces flushing of the output after every write.

Because output is logged as well as commands, files logged using >>

cannot be played back like those recorded with the > command.

It is possible to have both a command recording file and a screen output

logging file open concurrently. The log file is also closed as a side effect

of the q command. Log files may not be named: t, f or c.

Example

To set (or change) screen output recording file to the file screen.log
and turn screen output recording on, type:

>>screen.log

To suspend recording the screen output, type:

>>f

Chapter 1313–32
R
E
F
E
R
E
N
C
E

To resume recording the screen output in the recording file, type:

>>t

To stop recording the screen output and close the file, type:

>>c

To display the state of the recording mechanism, type:

>>

>, >&, I, q

Command Reference 13–33

• • • • • • • •

>&

Function

Log communications between debugger and emulator.

To save debugger/emulator communications, select Log |

CrossView-Emulator I/O... from the Tools menu. Type or select a file to

log to and click on the Start button to start logging. To suspend logging

click on the Suspend button. To resume logging click on the Resume

button. To turn off logging click on the Stop button.

The command line syntax is:

>& [!] [file | t | f | c]

Description

Start host-to-execution environment communication logging in a file if file
is specified; otherwise, turn logging on (t), off (f), or close (c) the log file.

This feature is most often used to diagnose problems with CrossView Pro

itself.

The optional '!' forces flushing of the output after every write.

The commands captured cannot be played back the way commands

recorded by the > command can. The log file is also closed as a side effect

of the q command.

Example

To open the file out.log and put the following host-to-emulator

communications in this file, type:

>&out.log

To suspend logging communications in the log file, type:

>&f

To resume logging communications in the log file, type:

>&t

Chapter 1313–34
R
E
F
E
R
E
N
C
E

To stop logging communications and close the file, type:

>&c

>, >>, q

Command Reference 13–35

• • • • • • • •

>*

Function

Log GDI accesses.

To save GDI accesses, select Log | CrossView-GDI Accesses... from the

Tools menu. Type or select a file to log to and click on the Start button to

start logging. To suspend logging click on the Suspend button. To resume

logging click on the Resume button. To turn off logging click on the Stop

button.

The command line syntax is:

>* [!] [file | t | f | c]

Description

Start GDI accesses logging in a file if file is specified; otherwise, turn

logging on (t), off (f), or close (c) the log file. This feature is most often

used to diagnose problems with the Debug Instrument.

The optional '!' forces flushing of the output after every write.

The commands captured cannot be played back the way commands

recorded by the > command can. The log file is also closed as a side effect

of the q command.

Example

To open the file gdi.log and start logging GDI accesses in this file, type:

>*gdi.log

To stop logging GDI accesses and close the file, type:

>*c

>, >>, q

Chapter 1313–36
R
E
F
E
R
E
N
C
E

^

Function

Display contents of preceding memory location based on the size of the

last data item displayed.

The command line syntax is:

^ [format]

Description

Use previous format or format, if supplied. Formats have the syntax:

[count] style [size]

count is the number of times to apply the format style and defaults to 1.

style may be one of:

a c D O U X d o u x E F G e f g i I n P p s t

See Chapter 6, Accessing Code and Data, and section 3.5 Formatting
Expressions in Chapter 3, Command Language, for details on each of the

format styles.

size indicates the number of bytes to be formatted. Rather than a number

for the integer type styles, size can also be: c for char, s for short, i for int,

and l for long.

This command is most often used in combination with exp/format to look

at the value of some variable or memory location.

Example

To display the variable aux as two octal values of length two, type:

^ aux/2o2

To show the eight bytes before aux in hexadecimal format, next type:

^2x4

expression

Command Reference 13–37

• • • • • • • •

A

Function

Toggle the state of the assertion mode.

To activate or suspend assertion mode, select Assertions... from the

Breakpoints menu, and enable or disable the Assertion Mode Active

check box.

The command line syntax is:

A [a | s]

Description

Activate (A a) or suspend (A s) overall state of the assertion mechanism. If

no operand is given, toggle the state.

Example

To activate the assertion mechanism, type:

A a

To suspend the assertion mechanism, type:

A s

To toggle the state of the assertion mechanism, simply type:

A

a

Chapter 1313–38
R
E
F
E
R
E
N
C
E

a

Function

Define or modify an assertion.

From the Breakpoints menu, select Assertions... to open the Assertions

dialog box. Click the New... button to define an assertion. Select an

assertion and click the Edit... button to modify an assertion.

The command line syntax is:

exp a { a | d | s }

a cmds

Description

The a command is used to invoke two different commands. The syntax for

each command is distinct. The first version allows modification of the state

of the assertion specified by the expression exp. (The assertion can be

activated (a a), deleted (a d) or suspended (a s).) The second version

creates a new assertion with the given command list cmds. Using the

mouse, you can create a new assertion or toggle the state of an existing

one from the Assertions dialogue box.

Suspended assertions continue to exist, but are not active. Deleted

assertions must be explicitly redefined in order to be made active again.

The commands for every active assertion are executed after every source

statement is executed. The x command in an assertion command list

forces an exit from assertion mode.

This command is not allowed when the target runs in the background.

Example

To suspend assertion 3, type:

3 a s

To delete assertion 1, type:

1 a d

Command Reference 13–39

• • • • • • • •

To set an assertion to stop the program when global variable myvar
exceeds 3, type:

a if (myvar > 3) {x}

A, l, x

Chapter 1313–40
R
E
F
E
R
E
N
C
E

B

Function

List all of the currently defined breakpoints.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box.

The command line syntax is:

B

Description

Breakpoints are listed with numbers associated with them. These numbers

can be used to delete individual breakpoints.

break, b, bb, bB, bi, bI, bu, bU, R, C, D, l

Command Reference 13–41

• • • • • • • •

b

Function

Set a code breakpoint.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Code

Breakpoint... to open the Add Code Breakpoint dialog. Enter the name of

the source module or click the Break At... button to select a source

module and enter a line number.

Alternatively, you can set a code breakpoint directly in the source by

clicking on a green breakpoint toggle next to the source line.

The command line syntax is:

[line] b [commands]

Description

You can attach a list of CrossView Pro commands with the breakpoint. If

no line is given, set the breakpoint at the current viewing position.

When the breakpoint is hit execution is halted. By default the current

execution position, function, line number, and source statement are

displayed. Next, any commands associated with the breakpoint are

executed. The Q command can be used to suppress the output from the b

command.

Example

To set a breakpoint at the current line, type:

b

To set a breakpoint at line 10 that will list all global variables and halt

execution, type:

10 b {l g}

break, bd, bD, bdis, bena, bb, bB, bi, bI, bt, bti, btI, bu, bU, Q

Chapter 1313–42
R
E
F
E
R
E
N
C
E

bB

Function

Set a temporary breakpoint at the beginning of a function.

In the Stack Window, click on the desired function and select Stack

Breakpoint | At Function Entry from the Breakpoints menu.

The command line syntax is:

[stack] bB [cmds]

Description

The function is designated by the stack level stack. If no function is

specified, CrossView Pro uses the current function (stack level 0), and

associates the list of CrossView Pro commands cmds with the breakpoint.

Breakpoints set in the Stack Window are always temporary, meaning they

will be deleted after the first time you reach them. A breakpoint set in this

manner will not be visible in the Source Window.

When the breakpoint is hit, execution is halted; the breakpoint is then

removed. By default the current execution position, function, line number,

and source statement are displayed. Next, any commands associated with

the breakpoint are executed. The Q command can be used to suppress the

output from the bB command.

This command is not allowed when the target runs in the background.

Example

To set a temporary breakpoint at the beginning of the current function

which prints a stack trace, type:

bB {T}

To set a temporary breakpoint at the beginning of the function whose

stack number is 2, type:

2 bB

break, b, bb, bd, bD, bi, bI, bt, bti, btI, bu, bU, Q

Command Reference 13–43

• • • • • • • •

bb

Function

Set a permanent breakpoint at the beginning of a function.

In the Stack Window, click on the desired function and select Stack

Breakpoint | At Function Entry from the Breakpoints menu. To make

the stack breakpoint permanent, select Breakpoints... from the

Breakpoints menu, select the desired breakpoint and click on the Edit...

button. The Edit Code Breakpoint dialog appears. Click on the

Advanced>> button and disable the Remove when hit check box.

The command line syntax is:

[stack] bb [cmds]

Description

Set a breakpoint at the beginning of the function designated by the stack

level stack. Otherwise, use the current function (stack level 0), and

associate the list of CrossView Pro commands cmds with the breakpoint.

When the breakpoint is hit, execution is halted. By default the current

execution position, function, line number, and source statement are

displayed. Next, any commands associated with the breakpoint are

executed. The Q command can be used to suppress the output from the

bb command.

This command is not allowed when the target runs in the background.

Example

To set a breakpoint at the beginning of the current function, which prints a

stack trace, type:

bb {T}

To set a breakpoint at the beginning of a function whose stack number is

2, type:

2 bb

break, b, bB, bd, bD, bi, bI, bt, bti, btI, bu, bU, Q

Chapter 1313–44
R
E
F
E
R
E
N
C
E

bc

Function

Set a breakpoint's count and reset count.

From the Breakpoints menu, select Breakpoints... , select the

breakpoint for which you want to set the count and reset count and click

on the Edit... button. The Edit Code Breakpoint dialog appears. Click on

the Advanced button and enter a breakpoint count.

The command line syntax is:

[number] bc [count] [reset_count]

Description

Set the count and reset_count for the breakpoint with breakpoint number

number. When no arguments are given, the breakpoint at the current

viewing position is set to a count of 1 and a reset count of 1. If no

breakpoint is present at the current viewing position, the message "No

such breakpoint" appears.

Each time a breakpoint is hit, CrossView Pro decrements the count. When

the count reaches 0, execution is halted and the count is reset to the

reset_count.

This command is not allowed when the target runs in the background.

Example

To set a breakpoint's count and reset count to 1 for the breakpoint at the

current viewing position, type:

bc

To set the count to 3 and the reset count to 4 for the breakpoint whose

breakpoint number is 2, type:

2 bc 3 4

break, C

Command Reference 13–45

• • • • • • • •

bCYC

Function

Set a temporary cycle count breakpoint.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Cycle

Breakpoint... to open the Add Cycle Breakpoint dialog. Click the

Advanced button and enable the Remove when hit check box.

The command line syntax is:

count bCYC [cmds]

Description

Set a temporary breakpoint after the specified cycle count. count can be

any expression evaluating to a number. The list of CrossView Pro

commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted; the breakpoint is then

removed. By default the current execution position, function, line number,

and source statement are displayed. Next any commands associated with

the breakpoint are executed. The Q command can be used to suppress the

output from the bCYC command.

Example

To set a temporary breakpoint after 4 clock cycles and list all global

variables, type:

4 bCYC {l g}

break, b, bcyc, bINST, binst, bTIM, btim, D

Chapter 1313–46
R
E
F
E
R
E
N
C
E

bcyc

Function

Set a permanent cycle count breakpoint.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Cycle

Breakpoint... to open the Add Cycle Breakpoint dialog. Enter a cycle

count and click the OK button.

The command line syntax is:

count bcyc [cmds]

Description

Set a permanent breakpoint after the specified cycle count. count can be

any expression evaluating to a number. The list of CrossView Pro

commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted. By default the current

execution position, function, line number, and source statement are

displayed. Next any commands associated with the breakpoint are

executed. The Q command can be used to suppress the output from the

bcyc command.

Example

To set a cycle count breakpoint after 4 clock cycles and list all global

variables, type:

4 bcyc {l g}

break, b, bCYC, bINST, binst, bTIM, btim, D

Command Reference 13–47

• • • • • • • •

bD

Function

Set a read and/or write data breakpoint over a range of addresses.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Data

Breakpoint... to open the Add Data Breakpoint dialog. Enter an address

or click the Address... button to select a symbol to use as the address.

Click the Advanced button. Enter an address in the End adress field or

click the Browse... button to select a symbol to use as the end address.

Click the OK button to add the data breakpoint.

The command line syntax is:

exp1 bD { r | w | b } exp2 [cmds]

Description

Set a read, write, or both (read and write) data breakpoint in the address

range exp1 to exp2 and associate the list of CrossView Pro commands

cmds with the breakpoint.

When the breakpoint is hit, execution is halted. By default the current

execution position, function, line number, and source statement are

displayed. Next, any commands associated with the breakpoint are

executed. The Q command can be used to suppress the output from the

bD command.

If exp1 is the address of a local (stack) variable, the function in which it

was declared must be currently active on the stack. If the local variable

corresponding to a data breakpoint goes out of scope due to a return from

the function in which it is currently active, the data breakpoint will be

removed and a message will be printed telling the user that the variable is

no longer active.

Example

To set a data breakpoint that includes the entire structure rec1 , type:

&rec1 bD r (int)&rec1+sizeof(rec1)–1

This breakpoint will be hit only if any address in the range of addresses is

read from.

Chapter 1313–48
R
E
F
E
R
E
N
C
E

To set a data breakpoint for the address range 10 to 10f hex (256 bytes)

that will list all global variables, type:

0x10 bD b 0x10f {l g;}

This breakpoint will be hit if any memory locations within the range

10-10f hex are either read from or written to.

break, b, bb, bB, bd, bi, bI, bt, bti, btI, bu, bU, Q

Command Reference 13–49

• • • • • • • •

bd

Function

Set a read and/or write data breakpoint at an address.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Data

Breakpoint... to open the Add Data Breakpoint dialog. Enter an address

or click the Address... button to select a symbol to use as the address.

Click the OK button to add the data breakpoint.

The command line syntax is:

exp bd { r | w | b } [cmds]

Description

Set a read, write or both (read and write) data breakpoint at the address

specified by exp and associate the list of CrossView Pro commands cmds
with the breakpoint.

When the breakpoint is hit, execution is halted. By default the current

execution position, function, line number, and source statement are

displayed. Next any commands associated with the breakpoint are

executed. The Q command can be used to suppress the output from the

bd command.

If exp corresponds to a local (stack) variable, the function in which it was

declared must be currently active on the stack. If the local variable

corresponding to a data breakpoint goes out of scope due to a return from

the function in which it is currently active, the data breakpoint will be

removed and a message will be printed telling you that the variable is no

longer active.

Example

To set a breakpoint at the variable count which will all be hit only if the

variable is read from memory, type:

&count bd r

Chapter 1313–50
R
E
F
E
R
E
N
C
E

To set a breakpoint at address 10 hex that will list all global variables,

type:

0x10 bd b {l g}

This breakpoint will be hit if address 10 hex is either read from or written

to.

break, b, bb, bB, bD, bi, bI, bt, bti, btI, bu, bU, Q

Command Reference 13–51

• • • • • • • •

bdis

Function

Disable code breakpoint.

From the Breakpoints menu, select Breakpoints... On Windows toggle

the check box in front of the breakpoint to enable or disable the

breakpoint. On UNIX select the breakpoint and click the Enable or

Disable button.

The command line syntax is:

number bdis

Description

Disable the code breakpoint associated with the given number.

This does not delete the code breakpoint. It disables the code breakpoint

until you enable it again with the bena command.

This command does not work on data breakpoints, only on code

breakpoints

Example

To disable code breakpoint number 3, type:

3 bdis

break, b, bena, D

Chapter 1313–52
R
E
F
E
R
E
N
C
E

bena

Function

Enable code breakpoint.

From the Breakpoints menu, select Breakpoints... On Windows toggle

the check box in front of the breakpoint to enable or disable the

breakpoint. On UNIX select the breakpoint and click the Enable or

Disable button.

The command line syntax is:

number bena

Description

Enable the code breakpoint associated with the given number, which was

previously disabled by the bdis command.

This command does not work on data breakpoints, only on code

breakpoints

Example

To enable code breakpoint number 3, type:

3 bena

break, b, bdis, D

Command Reference 13–53

• • • • • • • •

bI

Function

Set a temporary low-level breakpoint at a machine instruction.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Code

Breakpoint... to open the Add Code Breakpoint dialog. Edit the Break

At... field. In the Advanced dialog enable the Remove when hit check

box.

The command line syntax is:

[addr] bI [cmds]

Description

Set a temporary breakpoint at the machine instruction at address addr, or

the current viewing position's address if addr is not specified; the list of

CrossView Pro commands cmds are executed when the breakpoint is hit.

Make sure that addr is the start address of a machine instruction,

otherwise the results are unpredictable. When the breakpoint is hit

execution is halted. By default the current execution position, function,

line number, and source statement are displayed. Next any commands

associated with the breakpoint are executed. The Q command can be used

to suppress the output from the bI command.

Example

To set a temporary breakpoint at the current viewing position's address,

type:

bI

To set a temporary breakpoint at address 100 that will print the addresses

of the next five source statements, type:

100 bI {P 5}

break, b, bb, bB, bd, bD, bi, bt, bti, btI, bu, bU, Q

Chapter 1313–54
R
E
F
E
R
E
N
C
E

bi

Function

Set a permanent low-level breakpoint at a machine instruction.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Code

Breakpoint... to open the Add Code Breakpoint dialog. Edit the Break

At... field. In the Advanced dialog disable the Remove when hit check

box.

Alternatively, you can place a breakpoint in the intermixed window or

assembly window by double clicking on the desired instruction.

The command line syntax is:

[addr] bi [cmds]

Description

Set a permanent breakpoint at the machine instruction at address addr, or

the current viewing position's address if addr is not specified; the list of

CrossView Pro commands cmds are executed when the breakpoint is hit.

Make sure that addr is the start address of a machine instruction,

otherwise the results are unpredictable. When the breakpoint is hit

execution is halted. By default the current execution position, function,

line number, and source statement are displayed. Next any commands

associated with the breakpoint are executed. The Q command can be used

to suppress the output from the bi command.

Example

To set a breakpoint at the current viewing position's address, type:

bi

To set a breakpoint at address 100 that will print the addresses of the next

five source statements, type:

100 bi {P 5}

break, b, bb, bB, bd, bD, bI, bt, bti, btI, bu, bU, Q

Command Reference 13–55

• • • • • • • •

bINST

Function

Set a temporary instruction count breakpoint.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Instruction

Breakpoint... to open the Add Instruction Breakpoint dialog. Type a

value in the Instruction count field and enable the Remove when hit

check box in the Advanced dialog.

The command line syntax is:

count bINST [cmds]

Description

Set a temporary breakpoint after the specified count number of machine

instructions have been executed. count can be any expression evaluating

to a number. The list of CrossView Pro commands cmds are executed

when the breakpoint is hit.

When the breakpoint is hit, execution is halted; the breakpoint is then

removed. By default the current execution position, function, line number,

and source statement are displayed. Next any commands associated with

the breakpoint are executed. The Q command can be used to suppress the

output from the bINST command.

Example

To set a temporary breakpoint after execution of 5 instructions and list all

global variables, type:

5 bINST {l g}

break, b, bCYC, bcyc, binst, bTIM, btim, D

Chapter 1313–56
R
E
F
E
R
E
N
C
E

binst

Function

Set a permanent instruction count breakpoint.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Instruction

Breakpoint... to open the Add Instruction Breakpoint dialog. Type a

value in the Instruction count field and disable the Remove when hit

check box in the Advanced dialog.

The command line syntax is:

count binst [cmds]

Description

Set a permanent breakpoint after the specified count number of machine

instructions have been executed. count can be any expression evaluating

to a number. The list of CrossView Pro commands cmds are executed

when the breakpoint is hit.

When the breakpoint is hit, execution is halted. By default the current

execution position, function, line number, and source statement are

displayed. Next any commands associated with the breakpoint are

executed. The Q command can be used to suppress the output from the

binst command.

Example

To set a permanent breakpoint after execution of 5 instructions and list all

global variables, type:

5 binst {l g}

break, b, bCYC, bcyc, bINST, bTIM, btim, D

Command Reference 13–57

• • • • • • • •

break

Function

Universal breakpoint command.

From the Breakpoints menu, select Breakpoints... to

add/remove/enable/disable breakpoints.

The general command line syntax is:

break [type] where [, option]...

Description

This is a universal breakpoint command.

type can be one of: code | data | instructions | cycles | time |

sequence | set | delete | enable | disable. The type can be

abbreviated. So, t|ti|tim|time are the same. When the type field is not

specified the type defaults to code.

Depening on the type field the where field will evaluate to an address,

count, name, breakpoint number or a sequence.

The available options are listed below.

Code breakpoints

Syntax:

break code address [, option]...

address can be any expression evaluating to an address.

Data breakpoints

Syntax:

break data address [, option]...

address can be any expression evaluating to an address.

Chapter 1313–58
R
E
F
E
R
E
N
C
E

Instruction count breakpoints

Syntax:

break instructions count [, option]...

count can be any expression evaluating to the number of instructions.

Cycle count breakpoints

Syntax:

break cycles count [, option]...

count can be any expression evaluating to the number of cycles.

Timer breakpoints

Syntax:

break timer time [, option]...

time can be any expression evaluating to a time value. Depending on the

setting of the timer_unit option this value is in seconds or timer ticks

(default is in seconds).

Sequence breakpoints

Syntax:

break sequence sequence [, option]...

sequence is a combination of breakpoints.

Set/change breakpoint attributes

Syntax:

break set bp_number | bp_name [, option]...

bp_number is the breakpoint number. If the breakpoint has a name

(bp_name) you can use this name instead of a number.

Command Reference 13–59

• • • • • • • •

Delete breakpoint attributes

Syntax:

break delete bp_number | bp_name | all [, option]...

bp_number is the breakpoint number. If the breakpoint has a name

(bp_name) you can use this name instead of a number.

Enable/disable breakpoints

Syntax:

break enable bp_number | bp_name

break disable bp_number | bp_name

bp_number is the breakpoint number. If the breakpoint has a name

(bp_name) you can use this name instead of a number.

Options

name=str

Change/set the name of a breakpoint. Note that when a name of a

breakpoint which name is used in a sequence is changed the name in

the sequence is not automatically changed.

temporary[=bool]

Single shot breakpoint, temporary breakpoints are deleted after they

are hit.

enabled[=bool]

Enable or disable a breakpoint.

curr_count=expr

Set current count.

reset_count=expr

Set reset count.

count=expr

Set current and reset count of a breakpoint.

Chapter 1313–60
R
E
F
E
R
E
N
C
E

access_type=r | w | rw

Set the access type of a data breakpoint: read (r), write (w) or

read/write (rw).

addr=expr

Set the (start)address for a code or data breakpoint.

value=expr

set the value for a data breakpoint.

method=hardware | software | none

Set the breakpoint method.

probe_point[=bool]

Treat the breakpoint as a probe point. When a probe point breakpoint

is hit the associated commands are executed and program execution is

continued. Probe points do not update CrossView Pro windows.

size=expr

Length of a data or code breakpoint (end_addr = begin_addr+size-1).

end_addr=expr

The end address of a range is inclusive.

end_value=expr

The end value is inclusive.

value_is_absolute[=bool]

For instructions and cycles breakpoints only, the specified value is an

absolute count, breakpoint will hit when count has value, otherwise

repeat every number of instructions.

commands={ commands }

Set breakpoint commands.

timer_unit=seconds | ticks

The specified timer value is in seconds or ticks.

Command Reference 13–61

• • • • • • • •

bool

1 | 0 | true | false

True/false, case insensitive.

expr

Appropriate CrossView expression.

Example

To set a code breakpoint at an address range, type:

break code code:0x10, end_addr=code:0x1f

To set a code breakpoint at an address range by specifying a size, type:

break code:0x10, size=0x10

To set a code breakpoint with a name, type:

break code:0x10, name=brk_1

To disable the breakpoint with name brk_1 , type:

break dis brk_1

To set a cycle count breakpoint and treat the value as an absolute count,

type:

break cycles 1000, value_is_absolute

Chapter 7, Breakpoints.

Chapter 1313–62
R
E
F
E
R
E
N
C
E

bt

Function

Set a task aware code breakpoint.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Code

Breakpoint... to open the Code Breakpoint dialog. Fill in the Task ID

field.

The command line syntax is:

[line] bt "TaskId" [cmds]

Description

Set a task aware code breakpoint at the specified source line and associate

the list of CrossView Pro commands cmds with the breakpoint. If no line is

given, set the breakpoint at the current viewing position. The TaskId is the

identification of the task as displayed in the Tasks Window or specified by

the l k command.

When the breakpoint is hit, execution is halted. By default the current

execution position, function, line number, and source statement are

displayed. Next, any commands associated with the breakpoint are

executed. The Q command can be used to suppress the output from the

bt command.

Example

To set a breakpoint for task 4 at the current viewing position, type:

bt ”4”

To set a breakpoint for task 4 at line 10, which lists all global variables,

type:

10 bt ”4” {l g}

break, b, bb, bB, bd, bD, bi, bI, bti, btI, bu, bU, l, Q

Command Reference 13–63

• • • • • • • •

btI

Function

Set a temporary low-level task aware breakpoint at a machine instruction.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Code

Breakpoint... to open the Code Breakpoint dialog. Edit the Break At...

field and fill in the Task ID field. In the Advanced dialog enable the

Remove when hit check box.

The command line syntax is:

[addr] btI "TaskId" [cmds]

Description

Set a temporary task aware breakpoint at the machine instruction at

address addr, or the current viewing position's address if addr is not

specified; the list of CrossView Pro commands cmds are executed when

the breakpoint is hit. The TaskId is the identification of the task as

displayed in the Tasks Window or specified by the l k command.

Make sure that addr is the start address of a machine instruction,

otherwise the results are unpredictable. When the breakpoint is hit

execution is halted. By default the current execution position, function,

line number, and source statement are displayed. Next any commands

associated with the breakpoint are executed. The Q command can be used

to suppress the output from the btI command.

Example

To set a temporary breakpoint for task 4 at the current viewing position's

address, type:

btI ”4”

To set a temporary breakpoint for task 4 at address 0xF00 and print the

message, type:

0xF00 btI ”4” {”breakpoint triggered:
 address 0xF00, task 4”}

break, b, bb, bB, bd, bD, bi, bI, bt, bti, bu, bU, l, Q

Chapter 1313–64
R
E
F
E
R
E
N
C
E

bti

Function

Set a permanent low-level task aware breakpoint at a machine instruction.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Code

Breakpoint... to open the Code Breakpoint dialog. Edit the Break At...

field and fill in the Task ID field. In the Advanced dialog disable the

Remove when hit check box.

The command line syntax is:

[addr] bti "TaskId" [cmds]

Description

Set a permanent task aware breakpoint at the machine instruction at

address addr, or the current viewing position's address if addr is not

specified; the list of CrossView Pro commands cmds are executed when

the breakpoint is hit. The TaskId is the identification of the task as

displayed in the Tasks Window or specified by the l k command.

Make sure that addr is the start address of a machine instruction,

otherwise the results are unpredictable. When the breakpoint is hit

execution is halted. By default the current execution position, function,

line number, and source statement are displayed. Next any commands

associated with the breakpoint are executed. The Q command can be used

to suppress the output from the bti command.

Example

To set a breakpoint for task 4 at the current viewing position's address,

type:

bti ”4”

To set a breakpoint for task 4 at address 0xF00 and print the message,

type:

0xF00 bti ”4” {”breakpoint triggered:
 address 0xF00, task 4”}

break, b, bb, bB, bd, bD, bi, bI, bt, btI, bu, bU, l, Q

Command Reference 13–65

• • • • • • • •

bTIM

Function

Set a temporary time breakpoint.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Timer

Breakpoint... to open the Add Timer Breakpoint dialog. Enter a value in

the Time field and enable the Remove when hit check box in the

Advanced dialog.

The command line syntax is:

time bTIM [cmds]

Description

Set a temporary breakpoint after the specified time (in seconds). time can

be any expression evaluating to a number. The list of CrossView Pro

commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted; the breakpoint is then

removed. By default the current execution position, function, line number,

and source statement are displayed. Next any commands associated with

the breakpoint are executed. The Q command can be used to suppress the

output from the bTIM command.

Example

To set a temporary breakpoint after 0.5 seconds and list all global

variables, type:

0.5 bTIM {l g}

break, b, bCYC, bcyc, bINST, binst, btim, D

Chapter 1313–66
R
E
F
E
R
E
N
C
E

btim

Function

Set a permanent time breakpoint.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click the Add > button and select Timer

Breakpoint... to open the Add Timer Breakpoint dialog. Enter a value in

the Time field and disable the Remove when hit check box in the

Advanced dialog.

The command line syntax is:

time btim [cmds]

Description

Set a permanent breakpoint after the specified time (in seconds). time can

be any expression evaluating to a number. The list of CrossView Pro

commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted. By default the current

execution position, function, line number, and source statement are

displayed. Next any commands associated with the breakpoint are

executed. The Q command can be used to suppress the output from the

btim command.

Example

To set a permanent breakpoint after 0.5 seconds and list all global

variables, type:

0.5 bTIM {l g}

break, b, bCYC, bcyc, bINST, binst, bTIM, D

Command Reference 13–67

• • • • • • • •

bU

Function

Set a temporary up-level breakpoint (to finish the function at a specific

stack level).

In the Stack Window, double-click on the desired function. Alternately,

you can click on the desired function in the Stack Window and select

Stack Breakpoint | After Call to Function from the Breakpoints menu.

The command line syntax is:

[stack] bU [commands]

Description

This command sets a temporary up-level breakpoint immediately after the

call to the function designated by the stack number stack, otherwise the

currently viewed function is used. Associate the list of CrossView Pro

commands commands with the breakpoint.

When the breakpoint is hit execution is halted. By default the current

execution position, function, line number, and source statement are

displayed. Next any commands associated with the breakpoint are

executed. The Q command can be used to suppress the output from the

bU command.

Breakpoints set in the Stack Window are always temporary, meaning they

will be deleted after the first time you reach them. A breakpoint set in this

manner will not be visible in the Source Window.

This command is not allowed when the target runs in the background.

Example

To set a temporary up-level breakpoint immediately after the call to the

currently viewed function, type:

bU

To set a temporary up-level breakpoint immediately after the call to the

function at stack level 2, type:

2 bU {1}

Chapter 1313–68
R
E
F
E
R
E
N
C
E

After stopping, this command will cause CrossView Pro to print out the

function's local variables and arguments.

break, b, bb, bB, bd, bD, bi, bI, bt, bti, btI, bu, Q

Command Reference 13–69

• • • • • • • •

bu

Function

Set a permanent up-level breakpoint (to finish the function at a specific

stack level).

Click on the desired function in the Stack Window and select Stack

Breakpoint | After Call to Function from the Breakpoints menu. To

make the stack breakpoint permanent, select Breakpoints... from the

Breakpoints menu, select the desired stack breakpoint and click on the

Edit... button. The Edit Code Breakpoint dialog appears. Click on the

Advanced>> button and disable the Remove when hit check box.

The command line syntax is:

[stack] bu [commands]

Description

Set a permanent up-level breakpoint immediately after the call to the

function designated by the stack number stack, otherwise the currently

viewed function is used. Associate the list of CrossView Pro commands

commands with the breakpoint.

When the breakpoint is hit execution is halted. By default the current

execution position, function, line number, and source statement are

displayed. Next any commands associated with the breakpoint are

executed. The Q command can be used to suppress the output from the

bu command.

This command is not allowed when the target runs in the background.

Example

To set a temporary up-level breakpoint immediately after the call to the

currently viewed function, type:

bu

To set an up-level breakpoint immediately after the call to the function at

stack level 2 and, after stopping, print out the local variables and

arguments of that function, type:

2 bu {l}

Chapter 1313–70
R
E
F
E
R
E
N
C
E

break, b, bb, bB, bd, bD, bi, bI, bt, bti, btI, bU, Q

Command Reference 13–71

• • • • • • • •

bufa

Function

Append the contents of one buffer to another buffer.

The command line syntax is:

bufa target_buffer_name,added_buffer_name[,size_limit]

Description

Add the contents of buffer added_buffer_name to buffer

target_buffer_name. If size_limit is specified, buffer target_buffer_name
will be trimmed down to the specified size (keeping size_limit elements of

the tail of the buffer).

Example

To append the contents of $buffer to buffer $all_data , and keep the

last 1024 elements, type:

bufa $all_data,$buffer,1024

bufd, graph, memget.

Section 11.5, Data Analysis, in Chapter Special Features.

Chapter 1313–72
R
E
F
E
R
E
N
C
E

bufd

Function

Free a used buffer.

The command line syntax is:

bufd buffer_name

Description

Discard the specified buffer (if the target data is not to be used anymore).

Example

To discard buffer $buffer , type:

bufd $buffer

bufa, graph, memget.

Section 11.5, Data Analysis, in Chapter Special Features.

Command Reference 13–73

• • • • • • • •

C

Function

Continue using the current value of the program counter.

In the Source Window, click on the Run/Continue button. You can also

select Run from the Run menu.

The command line syntax is:

[exp] C [line]

Description

If exp is specified and you are stopped at a breakpoint, then the

breakpoint count is set to this value. If line is specified, a temporary

breakpoint is set at that line number. Note that this temporary breakpoint

will overwrite any existing breakpoint at that line.

The C command can be used in the command lists of breakpoints to

resume execution automatically.

This command is not allowed when the target runs in the background.

Example

To continue execution from the current target program counter, type:

C

To set the breakpoint's count to 4 and continue, type:

4 C

To set a temporary breakpoint at line 52 and continue, type:

C 52

break, bc, g, R, CB

Chapter 1313–74
R
E
F
E
R
E
N
C
E

CB

Function

Continue execution in background using the current value of the target

program counter.

The command line syntax is:

[exp] CB [line]

Description

If exp is specified and you are stopped at a breakpoint, then the

breakpoint count is set to this value. If line is specified, a temporary

breakpoint is set at that line number. Note that this temporary breakpoint

will overwrite any existing breakpoint at that line.

The CB command can be used in the command lists of breakpoints to

resume execution automatically.

This command is not allowed when the target runs in the background.

Example

To continue execution from the current target program counter, type:

CB

To set the breakpoint's count to 4 and continue, type:

4 CB

To set a temporary breakpoint at line 52 and continue, type:

CB 52

g, R, C, st, wt

Command Reference 13–75

• • • • • • • •

cd

Function

Disable, turn off, gathering of coverage data.

From the Tools menu, select Coverage if this item was set.

The command line syntax is:

cd

Description

If coverage is supported by your version of CrossView Pro, this command

disables the coverage system. Normally, you should disable coverage if

you are not interested in the coverage results, as this will often improve

the performance of the execution environment.

Example

To disable coverage, type:

cd

ce, nC, nU, pC, pU

Chapter 1313–76
R
E
F
E
R
E
N
C
E

ce

Function

Enable, turn on, gathering of coverage data.

From the Tools menu, select Coverage if this item was not set.

The command line syntax is:

ce

Description

If coverage is supported by your version of CrossView Pro, this command

enables the coverage system. Normally, you should disable coverage if

you are not interested in the coverage results, as this will often improve

the performance of the execution environment.

Example

To enable coverage, type:

ce

cd, nC, nU, pC, pU

Command Reference 13–77

• • • • • • • •

clear

Function

Clear the Command Output Window.

The command line syntax is:

clear

Description

Use this command if you want to clear the output window part of the

Command Window.

Example

To clear the Command Output Window, type:

clear

Chapter 1313–78
R
E
F
E
R
E
N
C
E

covinfo

Function

List coverage information.

From the Tools menu, select Code Coverage..., make your changes and

select the Update button.

The command line syntax is:

covinfo [[all | module_or_function_name][,filename]]

Description

If coverage is supported by your version of CrossView Pro and coverage is

enabled, this command lists the coverage information. Without arguments

(same as all) this command lists the coverage information of all modules

and functions.

Instead of listing the results you can also save the results in a file with

extension .cov .

Normally, you should disable profiling if you are not interested in the

profiling results, as this will often improve the performance of the

execution environment.

Example

To list the coverage information of all modules and functions to the output

window, type:

ce
covinfo

To list coverage information of function main to the output window, type:

covinfo main

To list coverage information of all modules and functions in file

hello.cov , type:

covinfo all,hello.cov

cd, ce, proinfo

Command Reference 13–79

• • • • • • • •

cproinfo

Function

List cumulative profiling results or add or remove functions from the list of

profiled functions.

From the Tools menu, select Cumulative Profiling Setup..., make your

changes and click the OK button. Select Cumulative Profiling Report...

to see the cumulative profiling report.

The command line syntax is:

cproinfo [all[,filename] | {add | remove } function]

Description

If profiling is supported by your version of CrossView Pro and profiling is

enabled, this command lists the cumulative profiling results. Without

arguments (same as all) this command lists the cumulative profiling

information of all functions.

Instead of listing the results you can also save the results in a file with

extension .cpr .

Normally, you should disable profiling if you are not interested in the

profiling results, as this will often improve the performance of the

execution environment.

Example

To list the cumulative profiling results of all functions to the output

window, type:

pe
cproinfo

To dump cumulative profile information of all functions in file

hello.cpr , type:

cproinfo all,hello.cpr

To add function main to the list of profiled functions, type:

cproinfo add main

Chapter 1313–80
R
E
F
E
R
E
N
C
E

To remove function main from the list of profiled functions, type:

cproinfo remove main

proinfo, pd, pe

Command Reference 13–81

• • • • • • • •

ct

Function

Display a C-execution trace.

From the View menu, select Trace | Source Level. The Trace Window

displays the most recently executed lines of code every time program

execution is stopped. CrossView Pro automatically updates the Trace

Window each time execution is halted, as long as the window is open.

The command line syntax is:

number ct

Description

Display a C-execution trace in the Command window, corresponding to

the last number of machine instructions executed. Since the ct command

relies on the emulator's trace buffer, the ct command will not be

implemented on some emulators.

For each executed line of code, the Trace Window displays:

• The name of the source file

• The name of the function

• The line number and corresponding source code

The window shows all the code executed since the the last time the

program halted.

This command is not allowed when the target runs in the background.

Example

To display, in the Command window, the last C statements (corresponding

to the last ten machine instructions) executed, type:

10 ct

ct i, ct r

Chapter 1313–82
R
E
F
E
R
E
N
C
E

ct i

Function

Display a disassembled trace.

From the View menu, select Trace | Instruction Level. The Trace

Window displays the most recently executed lines of code every time

program execution is stopped. CrossView Pro automatically updates the

Trace Window each time execution is halted, as long as the window is

open.

The command line syntax is:

number ct i

Description

Display a disassembled trace in the Command window, corresponding to

the last number of machine instructions executed.

Since the ct i command relies on the emulator's trace buffer, the ct i

command will not be implemented on some emulators (or implemented

differently).

This command is not allowed when the target runs in the background.

Example

To display in the Command window the last 20 disassembled instructions

executed, type:

20 ct i

ct, ct r

Command Reference 13–83

• • • • • • • •

ct r

Function

Display a raw trace.

From the View menu, select Trace | Raw. The Trace Window displays the

most recently executed lines of code every time program execution is

stopped. CrossView Pro automatically updates the Trace Window each

time execution is halted, as long as the window is open.

The command line syntax is:

number ct r

Description

Display a raw trace in the Command window, corresponding to the last

number of trace frames. This command merely shows the contents of the

emulator's trace buffer.

Since the ct r command relies on the emulator's trace buffer, the ct r

command will not be implemented on some emulators.

This command is not allowed when the target runs in the background.

Example

To display in the Command window the last 20 trace frames, type:

20 ct r

ct, ct i

Chapter 1313–84
R
E
F
E
R
E
N
C
E

D

Function

Delete all currently defined breakpoints.

From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box. Click on the Remove All button.

The command line syntax is:

D[y]

Description

D deletes all currently defined breakpoints. Dy does not ask for

confirmation.

break, B, d

Command Reference 13–85

• • • • • • • •

d

Function

Delete a specific breakpoint.

To delete a code breakpoint directly from the C source, click on the red

breakpoint toggle next to the corresponding, source line in the Source

Window.

Otherwise, select Breakpoints... from the Breakpoints menu to open the

Breakpoints dialog box. Select the breakpoint you want to remove and

click on the Remove button.

The command line syntax is:

[number] d

Description

Delete the breakpoint associated with the given number. If no number is

given, delete the breakpoint at the current line. If there is no breakpoint at

the current line, a B command will be executed to display all breakpoints.

Whenever a breakpoint is deleted the remaining breakpoints are

renumbered starting at 0.

Example

To delete a breakpoint at the current line, type:

d

To delete breakpoint number 3, type:

3 d

break, b, bb, bB, bd, bD, bi, bI, bt, bti, btI, bu, bU, B, D

Chapter 1313–86
R
E
F
E
R
E
N
C
E

dcmp

Function

Compare a file with the downloaded application.

From the File menu, select Compare Application... Specify an

application file and click on the Compare button.

The command line syntax is:

dcmp [file[,[number_of_hits][,d]]

Description

Compare an application file with the memory contents and display

differing memory addresses or addresses and values. If you have already

loaded an application you can invoke this command without specifying a

file name. You can limit the number of differences by specifying a

number_of_hits. The value 0 means there is no limit on the number of

differences.

This command is not allowed when the target runs in the background.

Example

To compare the currently loaded application, there is no limit on the

number of differences and the contents of differing memory addresses are

not displayed, type:

dcmp

To compare the currently loaded application and stop when the number of

differences equals 10, type:

dcmp ,10

To compare the currently loaded application there is no limit on the

number of differences and display the contents of differing memory

addresses, type:

dcmp ,,d

Command Reference 13–87

• • • • • • • •

To compare file test.abs , stop if the number of differences equals 5 and

display the contents of differing memory addresses, type:

dcmp ”test.abs”,5,d

dn

Chapter 1313–88
R
E
F
E
R
E
N
C
E

di_state

Function

Open, save/restore, close a debug instrument state.

From the Target menu, select Save/Restore Target State...

The command line syntax is:

di_state open state_name

di_state save state_name, number

di_state restore state_name, number

di_state close state_name, delete

Description

Before a state can be saved, restored or closed it must be opend first. To

open a state use the di_state open state_name command. When opened

successfully the name is added to the available state names list.

With the di_state save command you can now save the state of the debug

instrument with the specified state_name and number. With di_state

restore you can restore a previously saved state of the debug instrument

with the specified state_name and number.

Use di_state close to close a state. The delete flag can be 1 to delete the

state or use 0 to keep the state.

Example

To open and save a state, type:

di_state open S1
di_state save S1, 0

To restore a state, type:

di_state restore S1, 0

Command Reference 13–89

• • • • • • • •

dis

Function

Disassemble a range of memory.

From the View menu, select Source | Disassembly or Source | Source

and Disassembly to open the Disassembly or Source and Disassembly

window respectively.

The command line syntax is:

dis address [, {address | #count} [,i]]

Description

Disassemble a range of memory. The output is interleaved with source

lines when i is specified. You can enter valid expressions as well for

address and count.

Example

To disassemble 4 instructions starting at 3 bytes behind the start address of

the function main ., type:

dis main+3,#4

To disassemble memory for (initval+1) instructions, starting at the

address of the function main ., type:

dis main+3,#initval+1

To disassemble from 0x2000 up to and including the instruction at 0x2100

and also interleave C source lines of any function resident in that memory

range, type:

dis 0x2000,0x2100,i

dump, expression

Chapter 1313–90
R
E
F
E
R
E
N
C
E

dn

Function

Download a file.

From the File menu, select Download Application... to download the

image part of the file to the execution environment.

The command line syntax is:

dn [file]

Description

Download the image part of the specified file to the execution

environment. If no file is specified, use the file specified when CrossView

Pro was invoked, and from which the symbolic information was read

during startup, or the file specified in either the N command or the Load

Symbolic Debug Info dialog.

Downloading a file only copies an image part into target memory. It will

not cause CrossView Pro to re-read symbolic information.

This command is not allowed when the target runs in the background.

Example

To download the current file, type:

dn

To download the IEEE file demo.abs , type:

dn demo.abs

To download the hex file test.hex , type:

dn test.hex

I, N

Command Reference 13–91

• • • • • • • •

dump

Function

Dump a range of memory.

From the View menu, select Memory | New to open a Memory Window.

The command line syntax is:

dump address [, [address | #count] [, [style [width]] [, filename [,a]]]

Description

The dump command can dump memory as hexadecimal data or as C

variables. You can enter valid C expressions as well for address and count.
You can also dump Motorola S records or Intel hex records. Also, you can

specify a filename in which the dump is to be written or appended.

style can be one of:

a c D O U X d o u x E F G e f g n P p R r s t I M

Style I dumps Intel hex and style M specifies Motorola S records output.

See Chapter 6, Accessing Code and Data, and section 3.5, Formatting
Expressions, in Chapter 3, Command Language, for details on each of the

other format styles. The R and r style are only available for targets that

support the fractional type.

Mind the following:

• the commas are required

• the addresses can also be C expressions

• default width is MAU (usually byte) sized words

• additional style M: Motorola S records

• additional style I: Intel hex

• a semicolon is a command terminator

• the dump is end address INclusive

Example

To dump the first byte of the function main ., type:

dump main

Chapter 1313–92
R
E
F
E
R
E
N
C
E

To dump the first 10 bytes of the function main as Motorola S records in

the file main.sre , type:

dump main,main+10,M,main.sre

To dump the first 5 bytes of the function main . as 1 string, type:

dump main,main+10,M,main.sre,a

To append the first 5 bytes of the function main . as 1 string, type:

dump main,,c5

To dump the resulting value bytes of 'the address of main binary anded

with 3', type:

dump main+1,#main&3

dis, expression

Command Reference 13–93

• • • • • • • •

e

Function

Establish viewing position

From the File menu, select Open Source... to view a file. In the Source

Window, click on the Find Symbol button to find a function, or select

Find Symbol... from the Edit menu.

In the Stack Window click once on the function to be examined.

The command line syntax is:

e [file | function]
stack e

Description

The e option invokes two distinct commands. The first version establishes

the viewing position to be the first line of file, the first executable line of

the function function or the current viewing position if no argument is

given.

The second version establishes the viewing position to be the line at stack

level stack in the stack trace. (See the t command.)

The stack e command is not allowed when the target runs in the

background.

The L command is equivalent to 0 e.

Example

To view the function main, type:

e main

To view the test file test.c , type:

e test.c

To view the call site of the current function, type:

0 e

Chapter 1313–94
R
E
F
E
R
E
N
C
E

To view the line at stack level 3, type:

3 e

?, /, ei, L, p, P, t

Command Reference 13–95

• • • • • • • •

eC

Function

Start execution on current CPU and switch to another CPU.

The command line syntax is:

cpu_number eC

Description

Start execution on the current CPU and switch to CPU cpu_number.

This command can only be issued when the currently selected CPU is in

debug mode.

Example

To start execution on the current CPU and select the CPU indicated by

number 1, type:

1 eC

ec

Chapter 1313–96
R
E
F
E
R
E
N
C
E

ec

Function

Select a CPU or show current CPU number.

The command line syntax is:

[cpu_number] ec

Description

The ec command allows you to select a CPU in your current Execution

Environment if your target has multi-CPU support.

This command can only be issued when the currently selected CPU is in

debug mode.

Example

To view the current CPU selection, type:

ec

To select the CPU indicated by number 1, type:

1 ec

eC

Command Reference 13–97

• • • • • • • •

echo

Function

Display the definition of a macro name without executing the macro.

From the Tools menu, select Macro Definitions... to view the definition

of a macro.

The command line syntax is:

echo text

Description

Perform macro expansion on text without executing. This allows you to

see how a macro is expanded. It is particularly informative when macros

call other macros.

Example

If you type:

echo macro(3)

CrossView Pro will display the expansion of macro(3) .

set, unset, save, !

Chapter 1313–98
R
E
F
E
R
E
N
C
E

ei

Function

Establish viewing position at a specified address.

From the Edit menu, select Find Address...

The command line syntax is:

[addr] ei

Description

The ei command establishes the viewing position to be at the instruction

specified.

This command is useful for viewing some code in the assembly window,

without changing the program counter, since the execution position is not

changed.

Example

To view the current viewing position, type:

ei

To view the instruction at address 0x100 , type:

0x100 ei

?, /, e, L, p, P, t

Command Reference 13–99

• • • • • • • •

et

Function

Select the specified task's context.

In the Tasks Window click once on the task to be examined.

The command line syntax is:

et "TaskId"

Description

Select the specified task's context. The TaskId is the identification of the

task as displayed in the Tasks Window or specified by the l k command.

The current execution position, function, line number, and source

statement are displayed. All other windows, except for the Kernel

Windows, are updated accordingly.

Subsequent CrossView Pro commands use the context of the selected task.

For example, the t command shows a stack trace of the selected task.

Example

To select task 4, type:

et ”4”

l

Chapter 1313–100
R
E
F
E
R
E
N
C
E

f

Function

Set default address printing format

The command line syntax is:

f [" printf-style-format "]

Description

Set the default address printing format, using a printf format

specification.

If there is no argument, the format defaults to %x, which prints an address

in hexadecimal.

This command is intended to allow users to see memory addresses in

decimal, octal or a format of their choosing.

Example

To display addresses in octal, type:

f ”%o”

To display addresses in hex, type:

f

expression

Command Reference 13–101

• • • • • • • •

FSS

Function

File System Simulation redirection.

The command line syntax is:

FSS { < | > }{&stream | "file"}

Description

Redirect a File System Simulation stream to a file or another stream.

Redirection to a file can be needed when a stream is only mapped to a

window and you want it to be mapped to a file also.

Example

To redirect the output of stream 2 to stream 1, type:

FSS 2>&1

To retrieve input for stream 1 from stream 4, type:

FSS 1<&4

To retrieve input for stream 4 from file "data.txt ", type:

FSS 4<”data.txt”

To redirect the output of stream 3 to file "data.txt ", type:

FSS 3>”data.txt”

Section 10.3, File System Simulation in Chapter I/O Simulation.

Chapter 1313–102
R
E
F
E
R
E
N
C
E

FSS_stdio_close

Function

Close a stream previously opened by FSS_stdio_open.

The command line syntax is:

FSS_stdio_close streamnumber

Description

Close the stream indicated by streamnumber.

Example

To close stream 1, type:

FSS_stdio_close 1

FSS_stdio_open.

Section 10.3, File System Simulation in Chapter I/O Simulation.

Command Reference 13–103

• • • • • • • •

FSS_stdio_open

Function

Redirect the output of a stream to a file.

The command line syntax is:

FSS_stdio_open filename,rwdirection,streamnumber

Description

Redirect the stream indicated by streamnumber to the file filename.
rwdirection can be an r for read-only, w for writable, or rw for

read/write.

Example

To redirect stream 1 (output, so w for writable) to the file myfile.out ,

type:

FSS_stdio_open myfile.out,w,1

The following command is used to close the stream.

FSS_stdio_close 1

FSS_stdio_close.

Section 10.3, File System Simulation in Chapter I/O Simulation.

Chapter 1313–104
R
E
F
E
R
E
N
C
E

g

Function

Change the program counter to a new execution position.

Click on a source line and select Jump to Cursor from the Run menu.

The command line syntax is:

g line

Description

This command changes the program counter so that line becomes the

current execution position. Line must be a line in the current function.

This command changes only the program counter. It does not cause the

target to begin execution.

Exercise caution when changing the execution position. Oftentimes, each

line of C source code is compiled into several machine language

instructions. Moving the program counter to a new address in the middle

of a series of related assembly instructions is sometimes risky. Moreover,

even though you change the program counter, registers and variables may

not have the expected values if parts of the code are bypassed.

This command is not allowed when the target runs in the background.

Example

To change the program counter so that the next instruction to be executed

corresponds to line 127, type:

g 127

C, gi, R

Command Reference 13–105

• • • • • • • •

gi

Function

Change the program counter to a new execution position.

Click on a source line and select Jump to Cursor from the Run menu.

The command line syntax is:

address gi

Description

This command changes the program counter so that address becomes the

current execution position.

This command changes only the program counter. It does not cause the

target to begin execution.

Exercise caution when changing the execution position. The Jump to
Cursor menu item is not available in the source lines window mode to

prevent problems by skipping pieces of C code which are required to be

executed. Moving the program counter to a new address in the middle of

a series of related assembly instructions is sometimes risky. Moreover, even

though you change the program counter, registers and variables may not

have the expected values if parts of the code are bypassed.

This command is not allowed when the target runs in the background.

Example

To change the program counter so that the next instruction to be executed

corresponds to address 0x0800, type:

0x0800 gi

C, g, R

Chapter 1313–106
R
E
F
E
R
E
N
C
E

graph

Function

Create Data Analysis window and execute CXL script.

The command line syntax is:

graph "window","script"[,arg]...

Description

Create Data Analysis window window and execute CXL script script. The

display list produced by the script is shown in the specified window.

Arguments arg are passed as global variables to the script. Each argument

is treated as an expression. Arguments starting with a "$" refer to an

acquisition buffer. In all other cases arg is evaluated as an expression and

will be casted to type double .

If for example register $R1 should be passed as argument to the script you

must write "0+$R1" to avoid that $R1 is recognized as an acquisition

buffer.

Example

To transform the contents of buffer $buffer to displayable data in

window demo using CXL script x_t.cxl , type:

graph ”demo”,”x_t.cxl”,$buffer,0,1

bufa, graphm, graphp, memget.

Section 11.5, Data Analysis, in Chapter Special Features.

Command Reference 13–107

• • • • • • • •

graph_add_update

Function

Add a command to the sequence of update commands.

For the supplied scripts only. From the Settings menu, select Data

Analysis Window Setup... Enter a new window name and click New.

Click Configure... to open the Data Analysis Window Setup dialog.

The command line syntax is:

graph_add_update "window",command

Description

Set the sequence of update commands for Data Analysis window window
manually. These update commands are executed when the Update button

on the Data Analysis window is pressed or when the update command is

issued.

Prior to adding update commands, you have to remove all update

commands with the graph_clear_updates command.

Example

To retrieve data and show it in window demo, type:

graph_clear_updates ”demo”
graph_add_update ”demo”,memget data[$i],100,$buffer
graph_add_update ”demo”,graphm ”demo”,”show_x_t.cxl”
graph_add_update ”demo”,graph ”demo”,”x_t.cxl”,$buffer,0,1
update ”demo”

graph_clear_updates, update.

Section 11.5, Data Analysis, in Chapter Special Features.

Chapter 1313–108
R
E
F
E
R
E
N
C
E

graph_clear_updates

Function

Clear the sequence of update commands.

The command line syntax is:

graph_clear_updates "window"

Description

Clear the sequence of update commands for Data Analysis window

window. This is needed prior to adding new update commands with the

graph_add_update command.

Example

To retrieve data and show it in window demo, type:

graph_clear_updates ”demo”
graph_add_update ”demo”,memget data[$i],100,$buffer
graph_add_update ”demo”,graphm ”demo”,”show_x_t.cxl”
graph_add_update ”demo”,graph ”demo”,”x_t.cxl”,$buffer,0,1
update ”demo”

graph_add_update, update.

Section 11.5, Data Analysis, in Chapter Special Features.

Command Reference 13–109

• • • • • • • •

graph_close

Function

Close a Data Analysis window.

The command line syntax is:

graph_close "window"

Description

With the graph_close command you can close the named window.

Example

To close window demo, type:

graph_close ”demo”

graph, graphm.

Section 11.5, Data Analysis, in Chapter Special Features.

Chapter 1313–110
R
E
F
E
R
E
N
C
E

graph_debug

Function

Debug Data Analysis graph window.

The command line syntax is:

graph_debug expression

Description

If expression evaluates to a non-zero value, this value is an ORed value of

two flags:

• 1 (bit 0) the "graphical data window debugging mode" will be

enabled, showing all communication between the scripts and the

windows in the command window. This can be useful when

developing scripts.

• 2 (bit 1) When errors occur during script processing, these errors

are logged to the command window. The total error count (per

script) is now shown in a popup window rather than logged in the

command window. The errors themselves remain logged in the

command window.

Other bits (when value & 3 equals zero, for example 4) are ignored and

treated like zero. No parameters result in value 1. A value of zero turns off

all debugging.

graph, graphm, graphmn.

Section 11.5, Data Analysis, in Chapter Special Features.

Command Reference 13–111

• • • • • • • •

graphm

Function

Set Data Analysis window display mode.

The command line syntax is:

graphm "window","script"[,arg]...

Description

The graphm command sets the representation script for the specified

window. Depending on the script, the arguments may vary.

Several scripts are supplied with the product that you can use with the

graphm command. See section Supplied Data Analysis Window Scripts in
Chapter Special Features for more information.

Example

To set the display mode for window demo using CXL script

show_x_t.cxl and show "demo" in the title bar of the window, type:

graphm ”demo”,”show_x_t.cxl”

bufa, graph, graphp, memget.

Section 11.5, Data Analysis, in Chapter Special Features.

Chapter 1313–112
R
E
F
E
R
E
N
C
E

graphmn

Function

Set Data Analysis window display mode.

The command line syntax is:

graphmn "window","script"[,arg]...

Description

The graphmn command works similar to the graphm command, but it

does not update the graph window. This can be useful where a graph

and a graphm command are followed by each other, preventing the

redrawing of the same graphics twice.

Example

To set the display mode for window demo using CXL script

show_x_t.cxl and show "demo" in the title bar of the window, type:

graphmn ”demo”,”show_x_t.cxl”

bufa, graph, graphp, memget.

Section 11.5, Data Analysis, in Chapter Special Features.

Command Reference 13–113

• • • • • • • •

graphp

Function

Position Data Analysis window on the screen.

The command line syntax is:

graphp "window",left_top_x,left_top_y,width,height

Description

With the graphp command you can position the named window at the

specified screen coordinates.

Example

To put window demo at position (0,0) on the screen with a size of

100x100, type:

graphp ”demo”,0,0,100,100

graph, graphm.

Section 11.5, Data Analysis, in Chapter Special Features.

Chapter 1313–114
R
E
F
E
R
E
N
C
E

gus

Function

Suppress or reactivate window updating.

The command line syntax is:

gus {on | off}

Description

With gus on the GUI updating suppress feature is enabled. This means

that the graphical windows are no longer updated. To reactivate the

window updating use the gus off command.

Example

To suppress the updating of CrossView windows, type:

gus on

Command Reference 13–115

• • • • • • • •

I

Function

Print out information about the state of CrossView Pro.

The command line syntax is:

I

Description

Print out information about the state of CrossView Pro, including: the

CrossView Pro version number, the execution environment version

information, the name of the program being debugged (and the number of

its files and functions), the state of the assertion mechanism, the state of

output recording, the state of command recording, the state of target

communication recording and the state of search case sensitivity.

The state of the assertion mechanism tells how many assertions have been

defined and whether the overall assertion mechanism is active or

suspended; it does not tell whether any individual assertions are active or

suspended.

l, a, A, >, >>, >&, Z

Chapter 1313–116
R
E
F
E
R
E
N
C
E

if

Function

Conditional command execution.

The command line syntax is:

if (expression) { cmds } [{ cmds }]

Description

If expression evaluates to a non-zero value, execute the first group of

commands. Otherwise, the second group of commands, if present, will be

executed. This command is nestable.

Leave a space between if and exp. if(a==b) parses as a function call.

The if statement is used primarily within breakpoint command lists.

Example

If you type:

if (a=b) {5t} {C}

CrossView Pro will trace back five levels on the stack if a is equal to b.

Otherwise, CrossView Pro will continue.

The command line:

if (wait>1000) {wait;l r}

will print the value of wait and list all registers if the value of wait
exceeds 1000.

Command Reference 13–117

• • • • • • • •

ios_close

Function

Close a File I/O stream.

From the Settings menu, select I/O Simulation Setup... Select a stream in

the Connections tab and click on the Delete button.

The command line syntax is:

ios_close {stream | "file"}

Description

You can specify either a filename or a stream number.

Example

To close stream number 1, type:

ios_close 1

To close file data.txt and close 1 stream that is mapped to this file, type:

ios_close ”data.txt”

Only 1 stream is closed, even if multiple streams are attached to this file.

The command displays which stream number has been closed.

ios_open, ios_wopen

Chapter 1313–118
R
E
F
E
R
E
N
C
E

ios_open

Function

Open a File I/O stream.

From the Settings menu, select I/O Simulation Setup... Open the File

I/O tab and click on the Configure... button. Attach a stream (with a file)

to a probe point.

The command line syntax is:

ios_open ["file"[,[mode][,[r][,$xvw_variable]]]]

Description

This command is useful to connect a file to a stream at the command line

of CrossView. CrossView returns a stream number which is opened with

this command in the $xvw_variable and displays it too.

The filename is optional. When the filename is omitted and such a newly

opened stream receives data and is not shown in any opened terminal

window a new window will be opened that interacts with this stream.

Furthermore the mode can be specified when a I/O stream is opened:

read, write or append:

r Open file for reading. The file pointer is positioned at the

beginning of the file.

r+ Open file for reading and writing. The file pointer is

positioned at the beginning of the file.

w Truncate file to zero length or create file for writing. The file

pointer is positioned at the beginning of the file.

w+ Open file for reading and writing. The file is created if it does

not exist, otherwise it is truncated. The file pointer is

positioned at the beginning of the file.

a Open file for writing. The file is created if it does not exist.

The file pointer is positioned at the end of the file.

a+ Open file for reading and writing. The file is created if it does

not exist. The file pointer is positioned at the end of the file.

Command Reference 13–119

• • • • • • • •

All modes can have a 'b' appended, indicating binary access. The 'b' can

be positioned before or after the '+'. This mode affects the ios_read and

ios_write commands. The ios_read command writes host data to target

memory. In binary mode MAUs (minimum addressable units) are filled

with a number of bytes that fits in 1 MAU. For example, a MAU with a size

of 24 bits will be filled with 24/8= 3 bytes. Otherwise the least significant 8

bits of a MAU will be filled with 1 byte and the highest 16 bits will be

filled with zeros. The ios_write command writes target memory to the

host. In binary mode for each MAU the number of bytes to be written

equals the number of bytes that fits in 1 MAU. For a MAU size of 24 bits

CrossView Pro will write 3 bytes to the host. If the mode is not binary

CrossView Pro will write the least significant 8 bits (1 byte) of each MAU

to the host.

CrossView Pro opens all files by default in w+ mode, overwriting the

opened file if it already exists.

The optional 'r' specifies to rewind to the beginning of the file when the

end of file is reached.

$xvw_variable is a user special variable in CrossView Pro which holds the

value of the newly opened stream number. This variable can also be used

in the read and write commands to read from or write to the file.

Example

To open a new File I/O stream, type:

ios_open

To open file data.txt and assign the new stream number to $ios_nr ,

type:

ios_open ”data.txt”,,,$ios_nr

To open file data.txt in read-only mode and wrap around when end of

file is reached, type:

ios_open ”data.txt”,r,r,$ios_nr

ios_wopen, ios_close, ios_read, ios_write

Chapter 1313–120
R
E
F
E
R
E
N
C
E

ios_read

Function

Read binary data from an I/O stream.

The command line syntax is:

ios_read {stream | "file"},address,number_of_maus[,x]

Description

You can specify a File I/O stream number or a filename. address is the

memory location where the read data will be stored. number_of_maus is
the length of the data to be read in MAUs (minimum addressable units).

The optional ',x' specifies that the read data should be interpreted as

hexadecimal values. The hexadecimal format is a whitespace separated

(no TAB) hexadecimal string without the 0x prefix.

If the stream was opened in binary mode (see ios_open), MAUs are filled

with a number of bytes that fits in 1 MAU. For example, a MAU with a size

of 24 bits will be filled with 24/8= 3 bytes. Otherwise the least significant 8

bits of a MAU will be filled with 1 byte and the highest 16 bits will be

filled with zeros.

Example

To read 16 minimum addressable units from stream 4, type:

ios_read 4,0x100,16

To read from stream $istrm 1 MAU hex value, type:

ios_read $istrm,0x100,1,x

ios_readf, ios_write, ios_open

Command Reference 13–121

• • • • • • • •

ios_readf

Function

Formatted read from an I/O stream (scanf). Store the data at the location

defined by the expression.

The command line syntax is:

ios_readf {stream | "file"},"format",expression

Description

You can specify a File I/O stream number or a filename. format is a format

specifier as used in the scanf C library function. expression can be any

CrossView Pro expression.

Valid format specifiers are:

%d Decimal.

%x Hexadecimal (without 0x prefix).

%c Char.

%s String.

%f Float.

Example

To read a hex value from stream 4 and store it the value of program

variable ch1 , type:

ios_readf 4,”%x”,&ch1

To read a hex value from stream 4 and store it in register R2, type:

ios_readf 4,”%x”,$R2

To read two hex values from stream $istrm and assign them to program

variable ch1 and target register R2, type:

ios_readf $istrm,”%x %x”,&ch1,$R2

ios_read, ios_write, ios_open

Chapter 1313–122
R
E
F
E
R
E
N
C
E

ios_rewind

Function

Move File I/O file pointer to the beginning of the file.

From the Settings menu, select I/O Simulation Setup... Open the File

I/O tab and click on the Configure... button. Attach a stream to a probe

point. In the New Stream dialog enable the Wrap around check box.

The command line syntax is:

ios_rewind {stream | "file"}

Description

With ios_rewind the file pointer is moved to the beginning of the file.

Example

To move the file pointer of the file connected to stream 4 to the beginning

of the file, type:

ios_rewind 4

To move the file pointer of the file connected to stream $istrm to the

beginning of the file, type:

ios_rewind $istrm

To move the file pointer to the beginning of file my.txt , which is

connected to a stream, type:

ios_rewind ”my.txt”

ios_read, ios_write, ios_open

Command Reference 13–123

• • • • • • • •

ios_wopen

Function

Open a File I/O stream and map the stream to a terminal window.

From the Settings menu, select I/O Simulation Setup... Open the File

I/O tab and click on the Configure... button. Attach a stream (which is

only connected to a terminal window) to a probe point.

The command line syntax is:

ios_wopen [["terminal_window"][,$xvw_variable]]

Description

When the name matches the name of an existing terminal window the

newly opened stream is mapped to this terminal window.

$xvw_variable is a user special variable in CrossView Pro which holds the

value of the newly opened stream number. This variable can also be used

in the read and write commands to read from or write to the

terminal_window.

You can close the opened stream with ios_close.

Example

To create a new terminal window and map the newly created stream to it.

The name of the new terminal window will be like #x., type:

ios_wopen ,$ios_nr

To open a new stream and if there is a terminal window with the name

"My terminal" map stream to it, otherwise create a new terminal and name

it "My terminal"., type:

ios_wopen ”My terminal”,$ios_nr

ios_open, ios_close

Chapter 1313–124
R
E
F
E
R
E
N
C
E

ios_write

Function

Write binary data to an I/O stream.

The command line syntax is:

ios_write {stream | "file"},address,number_of_maus[,x]

Description

You can specify a File I/O stream number or a filename. address is the

memory location where the data will be read from. number_of_maus is
the length of the data to be written in MAUs (minimum addressable units).

The optional ',x' specifies that the data should be interpreted as

hexadecimal values. The hexadecimal format is a whitespace separated

(no TAB) hexadecimal string without the 0x prefix.

If the stream was opened in binary mode (see ios_open), for each MAU

the number of bytes to be written equals the number of bytes that fits in 1

MAU. For a MAU size of 24 bits CrossView Pro will write 3 bytes to the

host. If the mode is not binary CrossView Pro will write the least

significant 8 bits (1 byte) of each MAU to the host.

Example

To write 16 minimum addressable units to stream 4, type:

ios_write 4,0x100,16

To write 1 MAU hex value to stream $ostrm , type:

ios_write $ostrm,0x100,1,x

ios_read, ios_writef, ios_open

Command Reference 13–125

• • • • • • • •

ios_writef

Function

Formatted write to an I/O stream (printf).. The data is obtained from the C

expression, for example a variable.

The command line syntax is:

ios_writef {stream | "file"},"format",expression

Description

You can specify a File I/O stream number or a filename. format is a format

specifier as used in the printf C library function. expression can be any

CrossView Pro expression.

Valid format specifiers are:

%d Decimal.

%x Hexadecimal (without 0x prefix).

%c Char.

%s String.

%f Float.

Example

To write the hex value of program variable ch1 to stream 4, type:

ios_writef 4,”%x”,ch1

To write the hex value of register R2 to stream $ostrm , type:

ios_writef $ostrm,”%x”,$R2

To write the hex values of program variable ch1 and target register R2 to
stream 4, type:

ios_writef 4,”%x %x”,&ch1,$R2

ios_read, ios_write, ios_open

Chapter 1313–126
R
E
F
E
R
E
N
C
E

L

Function

Synchronize the viewing and execution positions.

To synchronize the positions manually, click on the Find PC button in the

Source Window or select Find PC from the Edit menu.

The command line syntax is:

L

Description

This command synchronizes the viewing and execution positions. It also

lists the current file, function and line number of the current program

counter. The viewing position is always moved to match the execution

position.

The L command is synonymous with a 0 e command and does not affect

the execution position.

This command is not allowed when the target runs in the background.

Example

To synchronize the viewing and execution positions, then list current file,

function, and line number, type:

L

e, l

Command Reference 13–127

• • • • • • • •

l

Function

List.

In general, the dialog box in which you define a feature also contains a

list.

The command line syntax is:

l { a| b| d| f| g| k| l| L| m| p| r| s| S} [string]

l [func]
l stack

Description

In the first case above, list one of the following: assertions, breakpoints,

directories, files, globals, kernel state data, labels (on module scope), all

Labels, memory map (of application code sections), procedures, registers,

special variables, Symbol tables. If string is present, then list only those

items that start with string.

In the second case, list the values of all parameters and locals of the

function func. Without a function, this command lists all parameters and

locals of the current function in view.

In the third case, list all parameters and locals of the function at depth

stack.

The l f and l m commands also show the address of the modules' first

procedure. The l m command is identical to l f, list files, but the list of

files is sorted on ascending segment addresses. func must be a function

on the stack or the current function.

Chapter 1313–128
R
E
F
E
R
E
N
C
E

For configurations that support real-time kernels, the l k command can

have one of the following arguments (l k is the same as specifying l k t):

t - Display tasks.

m - Display mailboxes.

q - Display queues.

p - Display pipes.

s - Display semaphores.

e - Display events.

h - Display HISRs (High-level Interrupt Service Routines)

si - Display signals.

ti - Display timers.

pm - Display partition memory.

dm - Display dynamic memory.

r - Display resources.

misc - Display miscellaneous information.

Example

To list defined assertions and the state of the assertion mechanism, type:

l a

To list all locals and parameters of the current function, type:

l p

Data is displayed using the normal (/n) format. To list all the parameters

and locals of the function fcn , type:

l fcn

To list queue information for the current tasks (only if your configuration

supports it), type:

l k q

L, et

Command Reference 13–129

• • • • • • • •

load

Function

Load a program's symbol file and download the image part.

From the File menu, select Load Symbolic Debug Info... This dialog

allows you to specify the file.

The command syntax is:

load [filename]

Description

This command performs the N and dn commands sucessively.

Downloading a file only copies the image part into target memory (dn). It

will not cause CrossView Pro to re-read symbolic information (N). The

load command does both.

This command is not allowed when the target runs in the background.

Example

To load the symbol table of file demo.abs in CrossView Pro and

download the image part, type:

load demo.abs

dn, N

Chapter 1313–130
R
E
F
E
R
E
N
C
E

M

Function

List the data currently being monitored.

Refer to the Data Window. Each time the program stops, the debugger

evaluates all monitored expressions and displays the results in the Data

Window.

The command line syntax is:

M

Description

List all C expressions being monitored by CrossView Pro. The listing

associates a unique number with each expression. This number is used to

specify the deletion of monitored data.

m

Command Reference 13–131

• • • • • • • •

m

Function

Monitor (watch) an expression. (Also delete a monitor.)

From the Source Window, double-click on an expression. A new monitor

is created in the Data Window or the Expression Evaluation dialog is

opened if the Bypass Expression Evaluation Dialog check box in the

Data Display Setup dialog is not set. If the latter is the case, click on the

Add Watch button to create a new monitor in the Data Window. To

remove an existing monitor, select the monitor in the Data Window and

click on the Delete Selected Data Item button.

The command syntax is:

m exp
number m d

Description

The m command has two distinct functions. The first monitors the given

expression. The second deletes the monitoring of the expression specified

by number.

Data monitoring takes place whenever the program stops execution, that

is, for a breakpoint, assertion, single step, or user interrupt (ctrl-C). In

window mode, the values of all currently monitored data are displayed in

the Data window. Each piece of monitored data has a unique identifying

number that is used when deleting it.

Example

To monitor the value of the variable myvar , type:

m myvar

To monitor the address of variable myvar , type:

m &myvar

To monitor the element alpha+1 of array , type:

m array[alpha+1]

Chapter 1313–132
R
E
F
E
R
E
N
C
E

To delete expression number 2 of the monitored data, type:

2 m d

M, b, a, s, R, C

Command Reference 13–133

• • • • • • • •

mcp

Function

Memory copy.

From the Memory Window, click on the Copy Memory button to open

the Copy Memory dialog. Enter the start address and the end address

(inclusive) of the memory region you want to copy. Enter the destination

address and click on the OK button.

The command syntax is:

addr_start mcp addr_end, addr_dest

Description

The mcp command copies a block of target memory starting at address

addr_start to destination address addr_dest. The size of the memory block

is defined as: 'addr_end - addr_start + 1'. The data item located at address

addr_end is included in the copy.

If your target supports multiple memory spaces then it is legal to copy data

between different memory spaces. Of course addr_start and addr_end
must be located in the same memory space. This command does not have

any effect on code breakpoints.

Example

To copy the contents of variable buf to address 0x200 , type:

&buf mcp &buf+sizeof(buf), 0x200

mF, mf

Chapter 1313–134
R
E
F
E
R
E
N
C
E

memget

Function

Retrieve data from the target into a buffer.

The command line syntax is:

memget expr,count,buffer_name

Description

The memget command is used to retrieve data from the target system and

to store the data in the acquisition buffer buffer_name. Data in the

acquisition buffer is of type double . CrossView Pro will automatically

handle data conversion based upon the type of expression expr.

Expression expr contains the iterator "$i " which initially starts at 0 and

increments to count –1 .

Notation convention:

"expr <$i{ n}> " means "expr in which all instances of "$i " are substituted

by "n".

To correctly retrieve the data from the target CrossView Pro needs to know

the start address, the size of the data elements, and the number of items to

fetch. The number of items to fetch from the target is specified by count.
The following algorithm is used to fill the acquisition buffer:

addr0 = (char *) &expr<$i{0}>
addr1 = (char *) &expr<$i{1}>
delta = addr1 – addr0
elem_size = sizeof(expr<$i{0}>)
type = C–type(expr<$i{0}>)
for (i = 0; i < count; i++)
{
 value = read elem_size MAUs from address addr0 + (i * delta)
 buffer[i] = convert_to_double(type, value);
}

Command Reference 13–135

• • • • • • • •

Example

1. C structure access.

struct
{
 double re,
 im;
 int f;
} data[100];

To store the data[x].re values into acquisition buffer $a :

memget data[$i].re,100,$a

To store the data[x].im values into acquisition buffer $b :

memget data[$i].im,100,$b

2. Memory access.

To retrieve 18 integer values from memory starting at address 0x100 and

store these in acquisition buffer $buffer :

memget ((int[]) 0x100)[$i],3*6,$buffer

bufa, bufd, graph, rawmemget.

Section 11.5, Data Analysis, in chapter Special Features.

Chapter 1313–136
R
E
F
E
R
E
N
C
E

mF

Function

Memory single fill.

From the Memory Window, click on the Fill Single Memory Address

button to open the Single Fill Memory dialog. Enter the start address the

memory region you want to fill. Enter one or more expressions separated

by commas and click on the OK button.

The command syntax is:

addr mF expr [,expr]...

Description

The mF command fills target memory with data. The value defined by exp
is written to address addr in target memory. Multiple exps separated by

commas may be entered. Each exp is written to a subsequent MAU.

If your target supports multiple memory spaces then addr may refer to any

memory space.

If the sizeof a given exp occupies more than one MAU, only the least

significant MAU will be written to memory. This command does not have

any effect on code breakpoints.

Example

To store value 0x12 at memory location 0x400 and value 0xAB at location

0x401 , type:

0x400 mF 0x12, 0xAB

mcp, mf

Command Reference 13–137

• • • • • • • •

mf

Function

Memory fill, repeating the specified pattern until the specified region is

filled.

From the Memory Window, click on the Fill Memory button to open the

Memory Fill dialog. Enter the start address and end address (inclusive) of

the memory region you want to fill. Enter one or more expressions

separated by commas and click on the OK button.

The command syntax is:

addr_start mf addr_end, expr [,expr]...

Description

The mf command fills a block of target memory with a pattern. The

memory region starting at address addr_start and ending at address

addr_end is filled with the pattern defined by exp [,exp]. Multiple exps

separated by commas may be entered. Each exp is written to a subsequent

MAU.

The specified pattern is repeated until the end address of memory region

is reached.

If your target supports multiple memory spaces then addr may refer to any

memory space.

If the sizeof a given exp occupies more than one MAU, only the least

significant MAU will be written to memory. This command does not have

any effect on code breakpoints.

Example

To store values 0x01 and 0x02 at succeeding memory locations in the

range 0x400 to 0x404 , type:

0x400 mf 0x404, 0x01, 0x02

Chapter 1313–138
R
E
F
E
R
E
N
C
E

The result of this command is:

address: 0x400 0x401 0x402 0x403 0x404

value: 1 2 1 2 1

mcp, mf

Command Reference 13–139

• • • • • • • •

ms

Function

Memory search.

From the Memory Window, click on the Find Memory button to open the

Search Memory dialog. Enter the start address and end address (inclusive)

of the memory region you want to search. Enter one or more search

patterns separated by commas and click on the OK button.

The command syntax is:

addr_start ms addr_end, expr [,expr]...

Description

The ms command searches for a pattern within a block of target memory.

The memory region starting at address addr_start and ending at address

addr_end (inclusive) is searched for the pattern defined by exp [,exp].

Multiple exps separated by commas may be entered. Each exp corresponds

to a subsequent MAU.

If your target supports multiple memory spaces then addr may refer to any

memory space.

This command does not have any effect on code breakpoints.

Example

Suppose the memory range 0x400 to 0x4ff was filled using the following

commands:

0x400 mf 0x4ff, 0
0x400 mf 0x404, 1, 2

To search for the values 0x01 and 0x02 at memory locations in the range

0x400 to 0x4ff , type:

0x400 ms 0x4ff, 0x01, 0x02

The result of this command is:

FOUND pattern at 0x400
FOUND pattern at 0x402

Chapter 1313–140
R
E
F
E
R
E
N
C
E

mcp, mF, mf

Command Reference 13–141

• • • • • • • •

N

Function

Load a program's symbol file.

From the File menu, select Load Symbolic Debug Info... This menu

item allows you to specify the file.

The command syntax is:

N [[path]filename[.abs]]

Description

Load the symbol table of the specified file in CrossView Pro. If no filename

is given, the file being debugged is reloaded. In this case only the

breakpoints set by the user are removed. Monitors, I/O simulation streams,

assertions and CrossView Pro local variables remain active.

If a new file (different filename) is loaded, all breakpoints, monitors, I/O

simulation streams, assertions and CrossView Pro local variables are

removed.

If a path is supplied, CrossView Pro changes its current directory according

to the specified path. In case a relative search path to source files was

provided at startup time, CrossView Pro will search relative to the new

working directory.

This command is automatically executed during CrossView Pro startup

when a filename was given on the command line. Use the dn command to

send the associated executable code to the target.

Example

To load the symbol table of file demo.abs in CrossView Pro, type:

N demo.abs

dn

Chapter 1313–142
R
E
F
E
R
E
N
C
E

n

Function

Set address bias

From the File menu, select Load Symbolic Debug Info... In the Load

Symbolic Debug Info dialog you can edit the Code address bias field.

The command syntax is:

n [addr]

Description

Set address bias of overlay files to addr. If no address is given, then

display current bias.

If a program is to be loaded at a different address than that indicated in

the linked and located (absolute object) file, then the address information

in the debugger's symbol file will be incomplete, since it does not know

where the program is actually going to be loaded. This command will

normalize the addresses by adding the bias to every address.

Example

To add a bias of 1000 to every address in the code, type:

n 1000

To display the current bias, type:

n

Command Reference 13–143

• • • • • • • •

nC

Function

Set the viewing position to the next covered block of statements.

Use the scroll bar and click on the desired line.

The command line syntax is:

nC

Description

If code coverage is supported by your version of CrossView Pro, this

command enables you to skip to the next block of statements that have

been executed while the program was running on the target.

Example

To move the cursor to the next executed block, type:

nC

nU, pC, pU

Chapter 1313–144
R
E
F
E
R
E
N
C
E

nU

Function

Set the viewing position to the next not covered block of statements.

Use the scroll bar and click on the desired line.

The command line syntax is:

nU

Description

If code coverage is supported by your version of CrossView Pro, this

command enables you to skip to the next block of statements that have

not been executed while the program was running on the target.

Example

To move the cursor to the next not executed block, type:

nU

nC, pC, pU

Command Reference 13–145

• • • • • • • •

o

Function

Enter emulator mode.

From the View menu, select Command | Emulator. If you know the

emulator-level command language, you can communicate directly with the

emulator from this window.

The command line syntax is:

o string

Description

Pass string to emulator and show the emulator response.

The o command lets you communicate with the emulator directly via

emulator commands.

Do not issue one-shot transparency emulator commands that result in

large output (or otherwise require intervention other than a carriage return

to terminate output). Instead, enter transparency mode first, then issue the

command.

Example

To send the string map to the emulator, type:

o map

Chapter 1313–146
R
E
F
E
R
E
N
C
E

opt

Function

Set or display specific options.

Option values can be changed in various dialogs and menus.

The command line syntax is:

opt [option_name [= option_value]]

Description

If no arguments are passed, all options with their current value are listed.

By specifying an option's name, the current value of that option is

displayed. By specifying an option name followed by a valid value, the

option is set to that new value.

The options are a sub-set of CrossView's so-called "special variables". See

Chapter 3, Command Language, for a list of all special variables.

Example

To display all options, type:

opt

To disable mixing of disassembly code and source lines in the assembly

window, type:

opt mixedasm=off

l

Command Reference 13–147

• • • • • • • •

P

Function

Print source lines, including machine addresses.

In the Source Window, the machine address of the line at the current

viewing position is displayed in the address field in the upper left corner.

The command line syntax is:

[line] P [exp]

Description

Print exp lines of source starting at line line, including machine addresses.

If exp is omitted, print one line. If line is omitted, start from the current

viewing position.

Example

To print source lines 4, 5, 6, 7 and 8 (displaying machine addresses) of the

current source file, type:

4 P 5

p

Chapter 1313–148
R
E
F
E
R
E
N
C
E

p

Function

Print source lines.

C source is displayed in the Source Window.

The command line syntax is:

[line] p [exp]

Description

Print exp lines of source starting at line line. If exp is omitted, print one

line. If line is omitted, start from the current viewing position.

Example

To print source lines 4, 5, 6, 7 and 8 of the current source file, type:

4 p 5

P

Command Reference 13–149

• • • • • • • •

pC

Function

Set the viewing position to the previous covered block of statements.

Use the scroll bar and click on the desired line.

The command line syntax is:

pC

Description

If code coverage is supported by your version of CrossView Pro, this

command enables you to skip to the previous block of statements that

have been executed while the program was running on the target.

Example

To move the cursor to the previous executed block, type:

pC

nC, nU, pU

Chapter 1313–150
R
E
F
E
R
E
N
C
E

pd

Function

Disable, turn off, profiling.

From the Tools menu, select Profiling if this item was set.

The command line syntax is:

pd

Description

If profiling is supported by your version of CrossView Pro, this command

disables the profiling system. Normally, you should disable profiling if you

are not interested in the profiling results, as this will often improve the

performance of the execution environment.

Example

To disable profiling, type:

pd

pe

Command Reference 13–151

• • • • • • • •

pe

Function

Enable, turn on, profiling.

From the Tools menu, select Profiling if this item was not set.

The command line syntax is:

pe

Description

If profiling is supported by your version of CrossView Pro, this command

enables the profiling system. Normally, you should disable profiling if you

are not interested in the profiling results, as this will often improve the

performance of the execution environment.

Example

To enable profiling, type:

pe

pd

Chapter 1313–152
R
E
F
E
R
E
N
C
E

proinfo

Function

List profiling results.

From the Tools menu, select Profiling Report...

 Make your changes and select the Update button.

The command line syntax is:

proinfo [[all | module_or_function_name][,filename]]

Description

If profiling is supported by your version of CrossView Pro and profiling is

enabled, this command lists the profiling results. Without arguments (same

as all) this command lists the profiling information of all modules and

function.

Instead of listing the results you can also save the results in a file with

extension .pro .

Normally, you should disable profiling if you are not interested in the

profiling results, as this will often improve the performance of the

execution environment.

Example

To list the profiling results of all modules and functions to the output

window, type:

pe
proinfo

To list profile information of function main to the output window, type:

proinfo main

To list profile information of all modules and functions in file hello.pro ,

type:

proinfo all,hello.pro

cproinfo, pd, pe

Command Reference 13–153

• • • • • • • •

prst

Function

Reset the application being debugged to initial conditions. That is, set the

program counter to the start address of the application.

From the Run menu, select Reset Application.

The command line syntax is:

prst

Description

The program counter is set to the start address of the application being

debugged. This command does NOT perform a hardware reset of the

target system. That is, no registers are modified except for the program

counter.

This command is not allowed when the target runs in the background.

R, rst

Chapter 1313–154
R
E
F
E
R
E
N
C
E

pU

Function

Set the viewing position to the previous not covered block of statements.

Use the scroll bar and click on the desired line.

The command line syntax is:

pU

Description

If code coverage is supported by your version of CrossView Pro, this

command enables you to skip to the previous block of statements that

have not been executed while the program was running on the target.

Example

To move the cursor to the previous not executed block, type:

pU

nC, nU, pC

Command Reference 13–155

• • • • • • • •

Q

Function

Quiet breakpoint reporting.

The command line syntax is:

Q

Description

If this appears as the first command in a breakpoint's command list, the

debugger does not make the usual announcement of:

function: line number: source file

when the breakpoint is hit.

The purpose of this command is to allow quiet breakpoint reporting. For

example, to check the value of a variable without cluttering the screen

with text.

Example

If you type the following:

21 b {Q; var1}

CrossView Pro will set a breakpoint at line 21. When that breakpoint is hit,

CrossView Pro will print the value of var1 , but will not print the current

function, line number, and source file.

b

Chapter 1313–156
R
E
F
E
R
E
N
C
E

q

Function

Quit a debugging session.

From the File menu, select Exit.

The command line syntax is:

q [s | y]

Description

CrossView Pro will prompt you if you really want to quit if you do not

specify anything. Note that the current desktop settings are NOT saved

then!

Typing q s saves the current desktop settings and quits the debugger

without confirmation.

Typing q y does not save the current desktop settings and quits the

debugger without confirmation.

Inside a command line procedure call it will just quit from this.

When the target runs in the background CrossView Pro will first stop the

target.

Command Reference 13–157

• • • • • • • •

R

Function

Reset program and begin execution from initial conditions.

From the Run menu, select Reset Application and then Run.

The command line syntax is:

R

Description

Reset the application being debugged and begin execution from initial

conditions. The program counter is set to the start address of the

application being debugged. This command does NOT perform a

hardware reset of the target system. That is, no registers are modified

except for the program counter.

This command is not allowed when the target runs in the background.

C, g, prst

Chapter 1313–158
R
E
F
E
R
E
N
C
E

rawmemget

Function

Retrieve data from the target into a buffer.

The command line syntax is:

rawmemget address,type,count,buffername [,interleave]

Description

The rawmemget command is used to retrieve data from the target system

and to store the data in the acquisition buffer buffername. Data in the

acquisition buffer is of type double . CrossView Pro will automatically

handle data conversion based upon the type of the data. It reads count
elements of type type from the target starting at address address into the

buffer.

interleave indicates the distance between successive elements. The default

value is sizeof(type).

Example

To retrieve 18 integer values from memory starting at address 0x100 and

store these in acquisition buffer $buffer :

rawmemget 0x100,int,3*6,$buffer

bufa, bufd, graph, memget.

Section 11.5, Data Analysis, in chapter Special Features.

Command Reference 13–159

• • • • • • • •

rst

Function

Reset target system to initial conditions.

From hte Run menu, select Reset Target System.

The command line syntax is:

rst

Description

The target is initialized according to the power-up sequence for the

processor. Almost all registers, including the system stack pointer and

program counter are initialized.

A target system reset may have undesired side effects. To be sure that the

application code is correct, a download must be performed after a target

system reset.

This command is not allowed when the target runs in the background.

R, prst

Chapter 1313–160
R
E
F
E
R
E
N
C
E

S

Function

Single step C statements, stepping over function calls.

To step over a function, click on the Step Over button in the Source

Window. You can also select Step Over from the Run menu. Check the

Step Mode menu item in the Run menu: Source line step must be

selected.

The command line syntax is:

[exp] S

Description

If you try to step over a call to a function which contains a breakpoint (or

which calls another function with a breakpoint) then the breakpoint will

be hit.

Stepping over a function means that CrossView Pro treats function calls as

a single statement and advances to the next line in the source. This is a

useful operation if a function has already been debugged or if you do not

want to take the time to step through a function line by line.

When multiple statements are present on one line, they are all executed by

this single step.

This command is not allowed when the target runs in the background.

Example

To step one C statement, type:

S

To step five C statements, type:

5 S

C, s, si, Si

Command Reference 13–161

• • • • • • • •

s

Function

Single step C statements, stepping into function calls

To step into a function (single step), click on the Step Into button in the

Source Window. You can also select Step Into from the Run menu. Check

the Step Mode menu item in the Run menu: Source line step must be

selected.

The command line syntax is:

[exp] s

Description

Single step exp (default is 1), C statements, stepping into function calls.

Stepping into a function means that CrossView Pro enters the function and

executes its prologue machine instructions halting at the first C statement.

When the end of the function is reached, CrossView Pro brings you back

to the line after the function call. The debugger changes the source code

file displayed in the Source Window, if necessary.

This command is not allowed when the target runs in the background.

Example

To step one source instruction, type:

s

To step five source instructions, type:

5 s

C, S, si, Si

Chapter 1313–162
R
E
F
E
R
E
N
C
E

save

Function

Save macros.

From the Tools menu, select Macro Definitions... to open the Macro

Definitions dialog box. From this dialog box, you can save macros with

the Save button. To save macro definitions in a file other than the current

one, click on the Save as... button.

The command line syntax is:

save file

Description

Save all currently defined macros in the specified file. This file is in the

format of a sequence of set commands, and thus can be loaded by

reading it as a playback file. See the < and << commands.

An existing save file with the same name will be overwritten.

Example

To save the definitions of the currently defined macros in the file

mac.sav , type:

save mac.sav

set, unset, echo, !, <, <<

Command Reference 13–163

• • • • • • • •

set

Function

Definition and display of macros.

To create a macro, select Macro Definitions... from the Tools menu.

Click on the New... button and add a new macro.

The command line syntax is:

set [name ["cmds"]]

Description

The set command allows for definition and display of macros. If name and

cmds are supplied, a macro entry is made associating the name with the

commands. If only name is supplied, the body of the specified macro is

displayed.

If no arguments are supplied the names of all currently defined macros are

displayed. Macro definitions must contain the body of the macro in double

quotation marks.

Macros may take arguments. In the body of a macro formal arguments are

referred to as $n , where n is the argument number starting from 1.

It is important to understand that macro expansion takes place for all

names. Therefore, if you wish to pass the name of an existing macro to a

command, such as set, you must escape it with '!', to keep CrossView Pro

from expanding the name.

Example

To display the names of all currently defined macros, type:

set

To display the body of the macro named macro , type:

set macro!

To define macro to be a macro which lists the registers then enters the

function given by its first argument, type:

set macro ”l r; e $1”

Chapter 1313–164
R
E
F
E
R
E
N
C
E

To invoke this macro, you might type, for example:

macro(main)

unset, echo, save, !

Command Reference 13–165

• • • • • • • •

Si

Function

Single step machine instructions, stepping over subroutine calls

From the Run menu, select Step Mode | Instruction step. Then click on

the Step Over button in the Source Window, or select Step Over from the

Run menu.

The command line syntax is:

[exp] Si

Description

Single step exp (default is 1) machine instructions, stepping over

subroutine calls.

If you try to step over a call to a subroutine which contains a breakpoint

(or which calls another subroutine with a breakpoint) then the breakpoint

will be hit.

The next instruction to be executed is shown as a disassembled

instruction, not as a C statement.

This command is not allowed when the target runs in the background.

Example

To step one machine instruction, type:

Si

To step five machine instructions, type:

5 Si

C, s, S, si, R

Chapter 1313–166
R
E
F
E
R
E
N
C
E

si

Function

Single step machine instructions, stepping into subroutine calls

From the Run menu, select Step Mode | Instruction step. Then click on

the Step Into button in the Source Window, or select Step Into from the

Run menu.

The command line syntax is:

[exp] si

Description

Single step exp (default is 1), machine instructions, stepping into

subroutine calls.

The next instruction is shown as a disassembled instruction, not as a C

statement.

This command is not allowed when the target runs in the background.

Example

To step one machine instruction, type:

si

To step five machine instructions, type:

5 si

C, s, S, Si, R

Command Reference 13–167

• • • • • • • •

st

Function

Stop the execution of the target immediately.

The command line syntax is:

st

Description

This command stops the running process immediately.

CB, wt

Chapter 1313–168
R
E
F
E
R
E
N
C
E

T

Function

Stack trace with local variables

The command line syntax is:

[exp] T

Description

Produce a trace of functions on the stack and show local variables. Only

the first exp levels of the stack trace will be displayed. If exp is omitted, all

of the levels of the stack trace (up to 20) will be printed.

This command works independently of the Stack Window.

This command is not allowed when the target runs in the background.

Example

To print out a stack trace of 20 levels with corresponding local variables,

type:

T

To print out the top five levels of the stack trace with corresponding local

variables, type:

5 T

e, l, t

Command Reference 13–169

• • • • • • • •

t

Function

Stack trace.

From the View menu, select Stack. The Stack Window shows the current

situation in the stack after the program has been stopped. It displays the

following information for each stack frame:

• The name of the function that was called

• The value of all input parameters to the function

• The line number in the source code from which the function was

called

The command line syntax is:

[exp] t

Description

Produce a trace of functions on the stack.

exp specifies the number of levels of the stack trace to be displayed. If

omitted, up to 20 levels of the stack trace will be printed.

Each stack level shown in the Stack Window is displayed with its level

number first. The levels are numbered sequentially from zero. That is, the

lowest/last level in the function call chain is always assigned zero.

This command is not allowed when the target runs in the background.

Example

To print out a stack trace of 20 levels, type:

t

To print out the top five levels of the stack trace, type:

5 t

e, l, T

Chapter 1313–170
R
E
F
E
R
E
N
C
E

td

Function

Disable, turn off, trace.

From the Tools menu, select Trace if this item was set.

The command line syntax is:

td

Description

If trace is supported by your version of CrossView Pro, this command

disables tracing (both instruction level, high level and raw). Trace is

automatically disabled when you close the Trace Window.

Example

To disable tracing, type:

td

te

Command Reference 13–171

• • • • • • • •

te

Function

Enable, turn on, trace.

From the Tools menu, select Trace if this item was not set.

The command line syntax is:

te

Description

If trace is supported by your version of CrossView Pro, this command

enables tracing (both instruction level, high level and raw). Trace is

automatically enabled when you open a Trace Window.

Example

To enable tracing, type:

te

td

Chapter 1313–172
R
E
F
E
R
E
N
C
E

u

Function

Toggle the updating of the appropriate window when the target runs in

the background.

The command line syntax is:

[interval] u [d|k|r|s|a|mem|t]

Description

The following windows can be updated:

d (Data), k (Stack), r (Register),

s (Source), a (Assembly), mem (Memory), t (Trace)

With interval you can specify the update interval (in seconds). If interval
is zero, no window is automatically updated.

The updating of the Data Window is ON at startup, the others are OFF

If all windows are being updated and/or many monitor commands are

active it will increase the load on the communication between CrossView

Pro and the target.

This command is not available if the background mode is not supported

(check the addendum).

Example

To toggle the updating of the Register Window, type:

u r

To toggle the updating of the Source Window, type:

u s

To disable period updating, type:

0 u

CB, ubgw

Command Reference 13–173

• • • • • • • •

ubgw

Function

Update the appropriate window when the target runs in the background.

From the View menu, select Background Mode and select one of the

refresh options.

The command line syntax is:

ubgw [s | a | k | r | d | mem | t | all]

Description

The following windows can be updated:

s (Source), a (Assembly), k (Stack), r (Register), d (Data), mem

(Memory), t (Trace), all (all open windows)

Without an argument, the ubgw command refreshes all windows selected

by the background mode (u command).

The ubgw�all command refreshes all open windows.

This command is not available if the background mode is not supported

(check the addendum).

Example

To update the Source Window, type:

ubgw s

To update the Memory Window, type:

ubgw mem

u

Chapter 1313–174
R
E
F
E
R
E
N
C
E

unset

Function

Delete a macro definition.

From the Tools menu, select Macro Definitions... to open the Macro

Definitions dialog box. Highlight the name of the macro and click on the

Delete button.

The command line syntax is:

unset [name !]

Description

The unset command deletes a macro. If name is supplied, the specified

macro is deleted. If no arguments are supplied, all currently defined

macros are deleted after CrossView Pro confirms your intent.

It is important to understand that macro expansion takes place for all

names. Therefore if you wish to pass the name of a macro to a command,

for example unset, you must escape it with `!', to keep from expanding

the name.

Example

To delete all macros, type:

unset

CrossView Pro will first ask for confirmation. To delete all the macro

definitions at the same time, click on the Delete all button in the Macro

Definitions dialog box.

To delete the macro named macro , type:

unset macro!

set, echo, save, !

Command Reference 13–175

• • • • • • • •

update

Function

Update a Data Analysis window.

Click on the Update Data Analysis Window button in a Data Analysis

window.

The command line syntax is:

update "window"

Description

Update Data Analysis window window by issuing a sequence of update

commands. These update commands were added with the

graph_add_update command.

When you use the update command in a complex breakpoint, you should

append a '!' character to prevent early macro expansion.

Example

To retrieve data and show it in window demo, type:

graph_clear_updates ”demo”
graph_add_update ”demo”,memget data[$i],100,$buffer
graph_add_update ”demo”,graphm ”demo”,”show_x_t.cxl”
graph_add_update ”demo”,graph ”demo”,”x_t.cxl”,$buffer,0,1
update ”demo”

To update window demo as part of a complex breakpoint, type:

0x100 bi {update! ”demo”}

graph_add_update, graph_clear_updates.

Section 11.5, Data Analysis, in chapter Special Features.

Chapter 1313–176
R
E
F
E
R
E
N
C
E

use

Function

Change source directories run-time.

From the Target menu, select Settings... to open the Target Settings

dialog box. Click on the Configure... button and specify the names of the

directories containing your source files. Relative paths are allowed.

The command line syntax is:

use [path]...

Description

The use command changes the source directories. Without a path this

command empties the search path, except for the path . (current

directory). If one or more paths are supplied, this command adds the,

semicolon separated, paths to the list of searched directories. Relative

paths are allowed.

Example

To clear the source directory path, type:

use

To search for source files in the directory /project/src and in the src
directory relative to your current directory, type:

use /project/src;../src

l d

Command Reference 13–177

• • • • • • • •

wt

Function

Wait for the completion of the target.

The command line syntax is:

wt

Description

This command can only be used if the target runs in the background

mode.

This command waits for the running process to stop.

Waiting can be interrupted by typing ctrl-C. The target continues to run

without interruption. It could be that some informational messages from

the target are displayed in the command window. They can be ignored.

CB, st

Chapter 1313–178
R
E
F
E
R
E
N
C
E

x

Function

Force an exit from assertion mode.

The command line syntax is:

[exp] x

Description

Normally this command stops execution immediately, but if exp is present

and its value is non-zero, then CrossView Pro finishes executing the entire

command list of the current assertion.

Example

To define an assertion to stop the program when the value of global

variable myvar exceeds 10, type:

a if (myvar > 10) {x}

To define an assertion to suspend the assertion mechanism and continue

program execution when global variable myvar exceeds 10, type:

a if (myvar > 10) { A s; 1 x; C}

a, A, l

Command Reference 13–179

• • • • • • • •

Z

Function

Toggle case sensitivity in searches

From the Edit menu, select Search String... to open the Search String

dialog box. This dialog contains the Case Sensitive check box.

The command line syntax is:

Z

Description

Toggle case sensitivity in searches. The initial state of this toggle depends

on information in the currently loaded absolute file. Use the I command to

find out the state of the case sensitivity.

This command affects everything: file names, function names, variables

and string searches.

/, ?

Chapter 1313–180
R
E
F
E
R
E
N
C
E

14

ERROR MESSAGES
C

H
A

P
T

E
R

Chapter 1414–2
E
R
R
O
R
S

14

C
H

A
P

T
E

R

Error Messages 14–3

• • • • • • • •

14.1 WHAT THIS CHAPTER COVERS

The following is a list of common user error messages, and some

suggested ways to solve the problem.

CrossView Pro is a complex program running on several hosts. From time

to time, slight differences between the documentation and the program's

operations do occur. The list of errors presented below and the suggested

remedies may not be, therefore, entirely comprehensive.

If you get a message that begins with "XVW Error" or "XVW Fatal Error"

please contact TASKING technical support for help.

14.2 ERROR MESSAGES

(in alphabetical order):

” member–name ” is not defined for ”enum enum”

You cannot assign or compare an enum type with a name that is not in the

enumeration's members. Try casting the enum to a different type.

’save’ must have a filename; type ’help save’ for more information

The save command requires a file to be supplied. Note: if the supplied file

name already exists, it will be overwritten.

*** Fatal XVW error

CrossView Pro has detected a error which it can not handle. If information

is displayed, you may be able to detect the source of the error and correct

it. Otherwise, if the message persists, please contact TASKING Technical

Support.

0xvalue is an invalid value. The register register is unchanged.

The value supplied is incorrect for the specified register. Verify that both

the value and the register are correct and retry.

Adding 2 pointers not allowed

You cannot add two pointers together in an expression. If you intended to

add to a pointer, make sure that the argument is a value, not another

pointer.

Chapter 1414–4
E
R
R
O
R
S

Address not allowed for ’! or ~ or % operator ’

The "Not", "One's complement", and "Modulus" operators cannot be used

with an address. If you intended to perform the operation on the contents
of the address, please be sure to dereference the pointer.

Addresses not allowed in ’* or / operator ’

The multiply and divide operators cannot be used with address data. If

you intended to perform the operation on the contents of the address,

please be sure to dereference the pointer.

Addresses not allowed in ’ bitwise logical or logical or shift operators ’

Bitwise logical (&, ^, or |), logical (&& or ||), and shift (<< >>) operators

only work on data, not addresses. If you intended to perform the

operation on the contents of the address, please be sure to dereference the

pointer.

Attempt to set breakpoint at invalid address

The memory location is not available. If the memory location is not out of

the target chip's range, you may need to map the target system's memory

to allow access to this location.

Bad argument to the command command

The argument you have given to the sio or f command is not allowed.

Refer to the Command Reference chapter, for allowable arguments and

their meanings.

Bad assertion number: number

The number number is not a valid assertion number. List assertions with

the l a (list assertions) command to determine which assertion numbers

are valid.

both expressions must be addresses for ’relational operator ’

If one of the expressions is an address type, both expressions for relational

operators (<, <=, >, >=, ==, and !=) must be address types. Retry with both

expressions as either addresses or arithmetic types.

Breakpoint is (or at the address of) an CrossView internal breakpoint. It
can not be deleted.

You may not install a breakpoint over an CrossView Pro internal

breakpoint. See Breakpoints and Assertions chapter for more information.

Error Messages 14–5

• • • • • • • •

com return code= code

The MS-DOS version of CrossView Pro received a status condition from

the monitor communication channel which it can not handle. If the

condition persists, please contact your system administrator, or call the

TASKING Technical Support staff for assistance.

command takes no arguments.

The command command needs no arguments. Refer to the Command
Reference chapter, for the command syntax.

Can not open file (file)

CrossView Pro could not open the file file. Check the spelling of file and

check that the file is in the correct directory. You should also check the

permission of file. With MS-DOS, check the CONFIG.SYS file for the

maximum number of open files allowed. Increase the number and reboot

if necessary.

Can not output to input stream

An attempt was made to output to an input stream. The most common

case is incorrectly setting up your simulated i/o streams. Correct and retry.

Can not scroll that window

The window you have tried to scroll is not scrollable. Examine your

choice of window and/or your choice of windowing commands.

Can’t define macro: out of space

There is not enough host memory to add your macro. Eliminate one or

more unused macros before adding a new one.

Can’t expand macro: out of space

There is not enough host memory to expand your macro. Eliminate one or

more unused macros before adding a new one.

Can’t monitor data: out of space

CrossView Pro cannot add any more variables or expressions to monitor.

You must delete one or more variables or expressions before adding any

more.

Chapter 1414–6
E
R
R
O
R
S

Can’t open logfile–name as log file

CrossView Pro could not open the specified host-to-target system

communications logfile. Check the spelling of logfile-name and that

logfile-name is in the correct directory. Check permissions of

logfile-name. With MS-DOS, check the CONFIG.SYS file for the maximum

number of open files allowed. Increase the number and reboot if

necessary. Make sure the filename is valid for the host Operating System.

Can’t open output–file–name as output file

CrossView Pro could not open the specified output file. Check the spelling

of output-file-name and that output-file-name is in the correct directory.

Check permissions of output-file-name. With MS-DOS, check the

CONFIG.SYS file for the maximum number of open files allowed. Increase

the number and reboot if necessary. Make sure the filename is valid for

the host operating system.

Can’t open playback–file–name as playback file

CrossView Pro could not open the specified playback file. Check the

spelling of playback-file-name and that playback-file-name is in the

correct directory. Check permissions of playback-file-name. With

MS-DOS, check the CONFIG.SYS file for the maximum number of open

files allowed. Increase the number and reboot if necessary. Make sure the

filename is valid for the host operating system.

Can’t open record–file–name as record file

CrossView Pro could not open the specified recording file. Check the

spelling of record-file-name and that record-file-name is in the correct

directory. Check permissions of record-file-name. With MS-DOS, check

the CONFIG.SYS file for the maximum number of open files allowed.

Increase the number and reboot if necessary. Make sure the filename is

valid for the host operating system.

Can’t open file ’ file ’

CrossView Pro could not open the specified file. Check the spelling of file
and that file is in the correct directory. Check permissions of file. With

MS-DOS, check the CONFIG.SYS file for the maximum number of open

files allowed. Increase the number and reboot if necessary. Make sure the

filename is valid for the host operating system.

Error Messages 14–7

• • • • • • • •

Can’t perform trace, out of memory

There is not enough host memory to support tracing. Reduce memory

demands and retry again. If the problem persists, please contact the

TASKING Technical Support staff for assistance.

Can’t set breakpoint; either the current file has no symbols, or line
line # is not inside any procedure in the current file.

CrossView Pro was unable to set the breakpoint that you specified. First

check the location of line line# and verify that it is in the current

procedure being debugged. If it is within the current procedure, then you

may need to compile/assemble/link/locate for debugging. Refer to chapter

Overview for details.

Can’t start a new process. Feature not implemented.

Your host system does not support shell commands. Any attempt to issue

shell commands will cause this message to be displayed.

Can’t write to a read–only SFR.

The SFR register is a read-only register. It can not be set or altered.

Cannot allocate memory for symbol table

Allocating memory for storing the symbol table failed. Remove some tasks

from memory or add more memory to your computer system.

Cannot allocate symbol table memory buffers

The symbol table is too large for CrossView Pro. You may need to

selectively compile with the -g switch only those files and procedures that

most interest you.

Cannot allow that combination of operand(s) and operator

The operand(s) is/are incompatible for this type of operation. For

example, you may not add two structures. Please verify the operation and

data types you are using.

Character constant is missing ending ’

Character constants must be delimited with single quotes. Example: 'a'.

Chapter 1414–8
E
R
R
O
R
S

Command ’ command’ not allowed while emulator running in
background

The target is running, this command is not allowed unless the target is

stopped. See the st command.

couldn’t error–message

VMS is reporting a condition that CrossView Pro can not handle. If the

condition persists, please contact your system administrator, or call the

TASKING Technical Support staff for assistance.

Data already being monitored ” task–id ”:‘ symbol ’

The variable or expression symbol is already being monitored by

CrossView Pro. You do not need to enter it again.

Display format required

The display command expected an output format option that was not

supplied. See chapter Command Language for valid format options and

their meanings.

Double not allow in ’% or ~ operator ’

You may not use the one's complement or modulus operators on double

floating point types.

Double not allow in ’ bitwise operator ’

You may not use bitwise operators (&, ^ and |) on double floating point

types.

ERROR: you must enter ?,i,r,d

CrossView Pro's line editor only supports the following commands: ?-help,

i-insert, r-replace, d-delete, and <cr> to execute command.

Establish a file context first.

The command executed requires an active file. Verify the file you specified

to CrossView Pro on start up.

Establish a procedure context first

The command executed requires an active procedure. Either execute the

command from within a procedure, or give a procedure name as an

argument to the command.

Error Messages 14–9

• • • • • • • •

Exiting procedure call state

An unknown system signal caused the end of a command line function

call.

Expecting stream number

The following forms of the sio command expect a stream number:

stream sio {i|o} {file|screen}

stream sio d

stream sio p prompt

Expression garbaged

The symbol table contains a type that is unknown to CrossView Pro.

Please verify that you are using the compiler and utilities supplied to you.

If the condition persists, please contact the TASKING Technical Support

staff for assistance.

file has already been edited, going to NEW file

The command executed requires that the file be edited only once. A new

file has been created.

failed to allocate the SIO tables

Entries for recording simulated input/output information could not be

allocated due to lack of host memory. Please contact your system

administrator, or call the TASKING Technical Support staff for assistance.

Float not allowed in ’% or ~ operator ’

You may not use the modulus or one's complement operators on floating

point types. Change the data type to an appropriate type, for example,

integer.

Float not allowed in ’ bitwise or shift operator ’

You may not use the bitwise (&, ^, or |) or shift (>>, or <<) operators on

floating point types. Change the data type to an appropriate type, for

example, integer.

Framing Error on COM port number

The host computer detected a data frame communication error on COM

port number. Check the host and target communication set up as well as

line connections. If the problem persists, please contact your system

administrator, or call the TASKING Technical Support staff for assistance.

Chapter 1414–10
E
R
R
O
R
S

I can’t put something that big in the child process

The size of the expression exceeds the buffer size needed to spawn a

child process. Be sure you have linked end.c in your application. This

module implies space for CrossView Pro in your execution environment.

Refer to section Building Your Executable in chapter Overview. If this

condition persists, please contact the TASKING Technical Support staff for

assistance.

I don’t have symbols for this procedure

You will need to re-compile, assemble, link and locate with the proper

debugging options before using this command. See section Building Your
Executable in chapter Overview for details.

I have no source file for this address

The program counter holds an address which is outside all the address

ranges that CrossView Pro knows about. This may happen if program

execution has reached a file that was not compiled with the -g generate

debug symbols switch.

I need a linenumber

The go g command requires a line number. Enter a line number and the

command will be executed.

Illegal address for Emulator Hardware Breakpoint

The address specified is out of emulator hardware breakpoint memory

range. Verify the address and retry.

Illegal argument (”0”) to ’p’ command

You must specify a number greater than 0 for the p command, which

prints the specified number of lines.

Illegal argument to ’ command ’ command: ’ argument ’

You have passed an illegal argument to the specified command. Refer to

chapter Command Reference for legal arguments.

Illegal argument to ct: ’ argument ’

You have passed an illegal argument to the C-trace command. Refer to

chapter Command Reference for legal arguments.

Error Messages 14–11

• • • • • • • •

Illegal data monitor command

You have passed an illegal argument to the m data monitor command.

Legal commands are:

m exp to set up monitoring

id m d to delete monitoring of a specific expressions

m d to delete monitoring of all expressions

Illegal third arg to set: ’ argument ’

The set command may have only two arguments: the name by which the

macro is known and the command string to be executed when the macro

is invoked. Enclose the command string in quotes, separating the

individual commands with semicolons. Refer to chapter Command
Reference for more information.

Improper floating point format length

You have specified a format length that is inconsistent with floating

numbers. Legal lengths are 4 and 8 bytes.

Improper integer format length

You have specified a format length that is inconsistent with integer

numbers. Legal length are 1, 2, and 4 bytes. You may also choose b, s, or l

for 1, 2, and 4 byte integers.

Improper string format length

You have specified a format length that is inconsistent with character

strings. Choose a positive number.

Input buffer overflow

CrossView Pro is over-running the input buffer. Contact your system

administrator to either increase the input buffer or lower the

communication line baudrate.

Input communications buffer overflow on COM port

CrossView Pro is over-running the input buffer. Contact your system

administrator to either increase the input buffer or lower the

communication line baudrate.

Chapter 1414–12
E
R
R
O
R
S

Input from stdin longer than max–input–size characters: input–string
Command truncated

The input data is longer that the input buffer, therefore the data was

truncated at max-input-size. Try to reduce the input data and/or

commands.

Internal error while setting an instruction level breakpoint

If this error condition persists, please contact the TASKING Technical

Support staff for assistance.

Invalid assertion maintenance command

You have entered an illegal assertion command. Valid commands are:

a a to activate assertions

a d to delete assertions

a s to suspend assertions

Invalid value for uplevel break.

You have entered an illegal value for an uplevel break. The form of the

command is exp bU or exp bU, where exp determines how many returns

from functions should occur before the break. Execute the t command to

find out how many levels down in the stack you are, then choose an

appropriate value for the uplevel break. See chapter Command Reference
for more information.

Invoking procedure calls not allowed while emulator is running in the
background

The target is running, this command is not allowed unless the target is

stopped. See the st command.

Macro Expansion error: expansion looping

CrossView Pro looped 50 times while trying to expand this macro without

completing the expansion. Check the logic of the macro arguments. It may

need to be corrected or simplified.

Macro Expansion error: expansion too large

The macro expansion exceeds 200 commands. The macro must be

simplified.

Error Messages 14–13

• • • • • • • •

Macro Expansion error: missing ’(’

See the command reference page or use the help command to review

macro command syntax.

Macro Expansion error: missing ’)’

See the command reference page or use the help command to review

macro command syntax.

Macro Expansion error: missing ’,’

See the command reference page or use the help command to review

macro command syntax.

Macro Expansion error: not enough args

See the command reference page or use the help command to review

macro command syntax.

Macro Expansion error: out of space

There is not enough memory to expand the macro. Eliminate one or more

unused macros before adding a new one.

Maximum trace size is: max–trace–size

CrossView Pro can perform C tracing only up to max-trace-size source

lines. Choose a number less than max-trace-size with the ct command.

Missing { after if command

The required format for the if command is: if exp {commands}

Missing file name or ’screen’

The sio command was missing a required parameter for setting up a

simulated i/o stream. See chapter Command Reference for command

definition and format.

Missing format character

You did not specify a display format type with your command. Either

remove '/' from the command, or add a format character.

Missing prompt string

You did not specify a prompt string with the sio command. Either remove

p from the sio command, or add a prompt string.

Chapter 1414–14
E
R
R
O
R
S

Must supply ’b’ or ’f’

The color command requires a value of f for foreground or b for

background to modify the screen color.

Must supply ’r’,’w’ or ’b’

Both the data range (bD) and data (bd) breakpoint commands require the

type of data modification to generate a break condition. Use r for read, w

for write, and b for both read/write. Please see chapter Command
Reference for more information.

Must supply data to be monitored

You did not specify a variable or expression to the m monitor command.

Please provide a variable or expression to be monitored, for example, m
myvar.

Must supply second address with bD command.

The bD command requires two addresses. Either specify an upper limit if

you want to break anywhere in memory range, or use the bd command if

you want to break on an individual address.

Negative /baudrate value ignored. (VAX)
 or

Negative baud rate (–S) value ignored.

The baudrate specified was a negative value. Please specify a legal value

or use the default.

Negative /TIMEOUT value ignored. (VAX)
 or

Negative timeout interval (–I) value ignored.

The time out value specified was negative. Please specify a legal timeout

value or use the default.

No child process

The CrossView Pro internal data structure containing user information

about child processes is not as expected. Please contact the TASKING

Technical Support staff for assistance.

No current file

Undefined special variable, $file ; probably due to debugging where no

symbols are present.

Error Messages 14–15

• • • • • • • •

No current line number

Undefined special variable, $line ; probably due to debugging where no

symbols are present.

No current procedure

Undefined special variable, $proc ; probably due to debugging where no

symbols are present.

No host memory

There is not enough space in memory to execute this command. Check

whether you have unnecessary processes running in the background or

resident in memory.

No host memory for command

There is not enough space in memory to execute this command. Check

whether you have unnecessary processes running in the background or

resident in memory.

No macros to save; file not created

CrossView Pro found no macros to save, therefore the save command did

not create a file.

No Match – pattern

CrossView Pro did not find the specified pattern in its search of this file.

Check your spelling or case-sensitivity. Use the Z command to toggle

case-sensitivity if necessary.

No memory space

There is not enough host memory to execute this command. Check

whether you have unnecessary processes running in the background or

resident in memory.

No more hardware breakpoints available

The target system uses hardware breakpoints to support the data

breakpoint function. To continue, you must explicitly delete a data

breakpoint before placing a new one.

No more room for directories (> max–dir–size)

You can reference no more that max-dir-size directories for source files.

Chapter 1414–16
E
R
R
O
R
S

No more SIO windows, I/O to command window.

Only four SIO streams can be displayed simultaneously in the SIO

window. Subsequent SIO streams' output will be displayed in the

command window.

No name of symbol file specified

CrossView Pro cannot deduce the name of a symbol file. No filename was

given to the N command and no symbol file was currently loaded.

No playback name specified

Give the name of the playback file to be used for this session.

No process

CrossView Pro only allows one process to be debugged at the same time.

No such breakpoint

The breakpoint number was incorrect. List breakpoints with the l b

command to find the correct breakpoint.

No such field name ” name” for ”< structure | union > name”

The field name is not recognized for the specified structure or union.

Check the spelling of field name. The /t format will show you the names

and types of a particular structure's or union's fields.

No Such Line

CrossView Pro can not find the specified line number in any of its known

files. Please check the source window or a source listing for legal line

numbers.

No such procedure, ” name”.

CrossView Pro does not recognize name as a procedure name. Check the

spelling and whether the file was compiled/assembled/linked/located for

debugging. Check that the file is in the appropriate directory.

No such procedure or file name: procedure

CrossView Pro does not recognize procedure as a procedure or file name.

Check the spelling and whether the file was

compiled/assembled/linked/located for debugging. Check that the file is in

the appropriate directory.

Error Messages 14–17

• • • • • • • •

No such PSW register state

Check register name and selected target.

No such register

The target processor does not have a register with that name.

No such sr reg state

Check register name and selected target.

No such stream

The stream you tried to delete does not exist. Check the stream number,

correct, and retry.

No symbols – unable to determine end–of–procedure

CrossView Pro has no symbol information for this procedure. To facilitate

debugging this procedure, you must compile, assemble, link and locate

with the appropriate switches. Refer to the Overview chapter for details.

No symbols available in active procedures.

To get symbol information you must compile, assemble, link, and locate

with the appropriate switches. Refer to the Overview chapter for details.

No symbols for that procedure

To get symbol information you must compile, assemble, link, and locate

with the appropriate switches. Refer to the Overview chapter for details.

No User or System special variable matches prefix name

The string argument of the l s command did not match any user or system

special defined variables. Check spelling and case-sensitivity and retry.

You may also enter l s to print out all the user and system special defined

variables.

Not enough memory available to start up windows. Either use the –nw
(no window) option or remove resident programs from memory.

CrossView Pro has detected that there is not enough host memory to

execute the windowing software. You may need to use the -nw option to

start up CrossView Pro in line mode. Check whether you have

unnecessary processes running in the background or resident in memory.

Chapter 1414–18
E
R
R
O
R
S

Not enough memory to execute shell command.

The attempt to create a child process for the shell command failed due to

the lack of host memory. Check whether you have unnecessary processes

running in the background or resident in memory.

Not enough memory to start window mode

CrossView Pro has detected that there is not enough host memory to

execute the windowing software. You may need to use the -nw option to

start up CrossView Pro in line mode. Check whether you have

unnecessary processes

Not enough space

CrossView Pro has detected a general error due to lack of host memory.

Check whether you have unnecessary processes running in the

background or resident in memory.

Not in known territory. Could not set breakpoint.

CrossView Pro's current location is not in a file or procedure that it knows

about. The breakpoint request can not be performed.

Not in window mode

The command issued requires CrossView Pro windows to be active. Use

the WW command and repeat the previous command.

Not that many levels active on the stack.

A stack level was specified that does not exist. Execute the t command to

determine levels on the stack. See chapter Command Reference for more

information.

Oops called with sig = signal–number

CrossView Pro has received a signal that it can not handle. Continuing

from this point may result in a fatal process condition. If this condition

persists, please contact your system administrator, or call the TASKING

Technical Support staff for assistance.

Placement of the breakpoint handler must be in one of
the restart vectors. Choose a value from 0 to 7.
Try again. (Hit <cr> to exit)?

The specified placement for the breakpoint handler was not valid for this

target. CrossView Pro is requesting a valid location.

Error Messages 14–19

• • • • • • • •

Procedure ” name” is not active on the stack.

The procedure name was not found on the current stack. Execute the t

command to list functions which are active on the stack.

Procedure ’ name’ is not at that stack depth

The procedure name was not found on the specified stack. Execute the t

command to list functions which are active on the stack.

Procedure ” procedure ” is not active

The procedure procedure was not found on the current stack. Execute the

t command to list functions which are active on the stack or l p for list of

procedures known to CrossView Pro.

Program not completely loaded

An error occurred during loading a symbol file. Check what cause the

problem (illegal filename or file format). You may retry to load a symbol

file.

Prompt too long (> max–number)

Choose a prompt of no more than max-number characters.

Ran out of memory reading symbol file into memory

Reduce the size of the symbol file by re-compiling only the "interesting"

files with the -g debug switch.

Read I/O request could not be queued

VMS detected an error for a read I/O queue which CrossView Pro can not

handle. If the condition persists, please contact your system administrator,

or call the TASKING Technical Support staff for assistance.

Readprompt I/O request could not be queued

VMS detected an error for a read I/O queue which CrossView Pro can not

handle. If the condition persists, please contact your system administrator,

or call the TASKING Technical Support staff for assistance.

Redo: line too large

Limit line length to fewer than 256 characters.

Chapter 1414–20
E
R
R
O
R
S

Result type too large for command line call.

A command line function call must pass the result back in a register. The

specified function does not. You cannot call functions whose return value

is greater than an integer, for instance floating point types and structures.

Result type undefined

Type casting from the expression or variable to the result type was not

possible.

Second address smaller then first

When specifying a range of addresses for a data breakpoint, the second

address must be higher than the first.

Sim I/O request too long (> max–number bytes)

The I/O request exceeds the maximum length.

Simulated I/O stream out of range

Choose a stream value between 0 and 7.

Sorry, the ”v” command is not supported on this host

No visual editor is available on this host.

Stream already active

Either choose another stream, or deactivate this one before re-assigning it.

String constant is missing ending ”

String constants must be delimited with double quotes: "

Subtracting 2 pointers not allowed

You cannot subtract two pointers in an expression. If you intended to

subtract from a pointer, make sure that the argument is a value, not

another pointer.

Symbol file is either unreadable or too short

The symbol file is not an absolute IEEE-695 file, or the file format is not

correct, or the file is not an IEEE-695 file at all.

Error Messages 14–21

• • • • • • • •

Symbol file is not formatted correctly

The symbol file is not intended for the type of microprocessor you are

using.

Symbol not in current procedure

There is no symbol by this name in the current procedure. Check the

spelling of the symbol name.

The ’command ’ command accepts no args

The command command does not accept any arguments. See chapter

Command Reference for more information on command.

The window would be too large; Total lines must not be greater that
max–size

The window size options specified would create a window that would

have exceeded the screen size. Retry with corrected window size options.

There is insufficient information to do a structure dump

CrossView Pro cannot uniquely identify the structure or part of the

structure to be dumped.

There is no associated source.

The program counter holds an address which is outside all the address

ranges that CrossView Pro knows about. This may happen if program

execution has reached a file that was not compiled with the -g debug

switch.

There is no available source line for the current address.
$pc= address

CrossView Pro is reporting that the current position has no associated

source line. This may happen if you are trying to debug a routine that was

not compiled with -g debug switch or are trying to debug a runtime

library routine.

This does not appear to be a struct or a union

The data entered is not recognizable as a structure or union. Check the

specified variable.

Chapter 1414–22
E
R
R
O
R
S

Timed read I/O request could not be queued

VMS reported a condition on a timed read i/o request that CrossView Pro

could not handle. If the condition persists, please contact your system

administrator, or call the TASKING Technical Support staff for assistance.

Too many args to unset: ’ argument ’

You may specify only one macro at a time, for example, unset name, or

you may remove all macros at once with unset.

Too many assertions (> max–number)

The maximum number of assertions allowed is max-number as shown in

the error message. Remove a previous assertion before trying to add one,

or reinvoke CrossView Pro with the -a option to increase the maximum

number of assertions.

Too many breakpoints (> max_number)

The maximum number of breakpoints allowed is max-number as shown

in the error message. You must explicitly delete a breakpoint before

adding any new ones. Alternatively, you could re-invoke CrossView Pro

with the -b option to increase the maximum number of breakpoints.

Too many locals (> max–number)

Eliminate some existing locals or reinvoke CrossView Pro with the -s

switch to increase the number of locals allowed.

Too many modules

The symbol file describes an application that was constructed from more

than 1818 modules.

Too many processes (> max–number)

CrossView Pro allows only one process to be debugged.

Too many streams (> max–number)

The maximum number of I/O streams, max-number, has been reached.

You must eliminate an I/O stream before adding a new one.

Trace size is required

The required format of the command is exp ct, where exp is the number

of statements to trace. Re-enter the command with a value for exp.

Error Messages 14–23

• • • • • • • •

Type ’ r ’, to run program from power–on conditions or ’ c ’ to continue
with current program pointer

This is to inform you that command r is not implemented and that you

should used r or c.

Type of command–line–expression is too complex

The command line function returns a data type that CrossView Pro cannot

handle. An example would be a function returning a structure.

Unexpected breakpoint type ’ type ’

CrossView Pro has encountered a breakpoint with an unknown type

attribute. Verify the previous break commands and re-try. If the condition

persists, please contact the TASKING Technical Support staff for assistance.

Unknown command ‘ command ’ (<number >)

CrossView Pro does not recognize command, and has echoed the

command number for Technical Support purposes. Please check the

spelling and retry. If the condition persists, please contact the TASKING

Technical Support staff for assistance.

Unknown data monitor id ’ number ’

The monitor number number that you tried to delete does not exist. Use

the M command to list currently monitored variables.

Unknown data size

Valid data sizes are 1, 2, 4, or 8 bytes.

Unknown display mode

See chapter Accessing Code and Data, for a list of display mode options.

Unknown name ’ name’

Variable name is not in scope or is undefined.

Unknown procedure ” name”.

The function name does not exist in any file that CrossView Pro knows

about. The file containing name may not have been compiled with the -g

debug switch.

Chapter 1414–24
E
R
R
O
R
S

Unknown macro ’ name’

CrossView Pro does not recognize the macro name as given. Please check

the spelling. You may list all current macros by using the set command

with no arguments, or display the Macro window for currently defined

macros.

Unknown window

CrossView Pro does not recognize the window name as given. See chapter

Command Reference for valid window arguments.

Unsupported format type (parameter)

Supported types are c (character), x (hex), and o (octal).

Value number is not defined for this enum.

The member specified was not part of the enumerated set. Please check

the spelling and verify that the correct enum was used.

Value exceeds depth of stack.

A stack level was specified that does not currently exist. Please check the

value and retry. Check the stack window for valid stack levels, or execute

a t command (trace stack) to determine the depth of the stack.

VMS error : cannot establish handler for signals

CrossView Pro on VMS could not establish proper error handlers. If the

condition persists, please contact the TASKING Technical Support staff for

assistance.

VMS error : cannot establish pasteboard

CrossView Pro on VMS can not establish the running environment. If the

condition persists, please contact your system administrator, or call the

TASKING Technical Support staff for assistance.

VMS error : cannot establish virtual keyboard

CrossView Pro on VMS can not establish the running environment. If the

condition persists, please contact your system administrator, or call the

TASKING Technical Support staff for assistance.

Error Messages 14–25

• • • • • • • •

VMS error code = number \ Attempt to get message text fail.

CrossView Pro on VMS received an error while attempting to provide an

error diagnostic message from the host error message library. If the

condition persists, please contact your system administrator, or call the

TASKING Technical Support staff for assistance.

Warning: NULL pointer dereference

The expression contained a null pointer dereference. Check the expression

for possible errors, or verify that the pointer should in fact be null.

Warning: pointer dereference with invalid segment selector.

The pointer is addressing invalid memory and the dereference may report

unexpected data results. Check the initialization of the pointer or verify

that it has been set correctly.

Warning: too few parameters.

The command given was not invoked with the proper number of

arguments. CrossView Pro will supply the command with defaults which

may or may not produce the result you expected.

Warning: Using file–b instead of file–a

CrossView Pro could not find file-a, or file-a's status was such that

CrossView Pro could not use it. If file-b is not correct, check file-a spelling

and its directory.

Warning: X=Y: X is x–size bytes and Y is y–size bytes

The assignment of two different size variables may cause unexpected

results. Please correct the condition if possible. This condition is common

when assigning string variables where string y is shorter than string x.

Warning: X=Y: X is x–size words and Y is y–size words

The assignment of two different size variables may cause unexpected

results. Please correct the condition if possible. This condition is common

when assigning string variables where string y is shorter than string x.

Chapter 1414–26
E
R
R
O
R
S

Warning: CrossView comment terminated by end of command line
source–command–line

The playback file has a comment that was not terminated. It is by default

terminated, but if the next line was the continuation of the comment, then

unexpected results may occur. Please terminate comment strings on each

line to avoid this warning.

Windows not enabled; use WW to enable

The command issued can only be used when windows are enabled.

Write I/O request could not be queued

CrossView Pro received a condition that it could not handle. If the

condition persists, please contact your system administrator, or call the

TASKING Technical Support staff for assistance.

Write–only register . Value may not be valid.

CrossView Pro set a write-only register but has no way of verifying the

correctness of the register contents.

Wrong storage class for data breakpoint

You may not set a data breakpoint at the address of a register variable or

special variables.

CrossView could not disassemble the emulator’s trace buffer because
the address information in the buffer is incorrect.

The trace buffer may be corrupted. Re-check the commands leading to

this condition, and retry. If the condition persists, please contact the

TASKING Technical Support staff for assistance.

XVW error – message
or

XVW Fatal error – message

These messages are generated by internal conditions that should not

normally occur. The message is usually encrypted and should be brought

to the attention of the TASKING staff. Please contact the TASKING

Technical Support staff for assistance.

Error Messages 14–27

• • • • • • • •

XVW:main – Cannot continue, incomplete initialization.

CrossView Pro's initialization was interrupted and could not be completed.

Please re-start CrossView Pro, and if the condition persists, contact the

TASKING Technical Support staff for assistance.

You can’t goto a line outside of the current procedure

The specified line number is outside the current procedure. Change the

line number to one within the procedure or enter the correct procedure

before executing this command.

You may not assign from a host system string/array

The expression given performs an assignment that CrossView Pro can not

perform at this time.

You may not assign from a void function

The expression attempts to assign a variable from a void function. Please

check the return value of the function and verify that you are referencing

the correct function.

You may not assign more than max–size bytes to a special variable

An attempt was made to assign greater than the maximum number of

bytes to a special variable. Check the expression for errors, and check the

variable's spelling.

You may not assign to a constant

The value of a constant cannot be changed. Check the name that you have

specified.

You may not mix assignment of a scalar and an aggregate

An attempt was made to assign incompatible types of data. Please check

the data types and retry.

You need to supply a program name.

CrossView Pro requires a program name to debug on the invocation line.

Chapter 1414–28
E
R
R
O
R
S

15

GLOSSARY
C

H
A

P
T

E
R

Chapter 1515–2
G
L
O
S
S
A
R
Y

15

C
H

A
P

T
E

R

Glossary 15–3

• • • • • • • •

15.1 WHAT THIS CHAPTER COVERS

This chapter defines terms common to CrossView Pro and source-level

embedded systems debugging. Italicized items in definitions are also

glossary entries.

15.2 GLOSSARY TERMS

A

absolute file. The IEEE-695 file (.abs) that contains symbolic debug

information and the final executable code of the target system.

active window. The window last selected by the user in CrossView Pro

that commands operate on as a default. An active window's title appears in

a different color (on color monitors) or inverse video (on monochrome).

analysis. See trace analysis.

analysis window. The window where you can select to Modify, Begin,

Halt, Display or Reset a trace analysis. See also trace analysis.

assertion. A command or set of commands to be executed before every

line of source code, assessing the application state on validity. Assertions

are especially useful in tracking down hard to find bugs when other

methods fail. Individual assertions may either be active or suspended. See
also assertion mode.

assertion mode. A mode of CrossView Pro operation under which

assertions will be executed. Before CrossView Pro executes a source line

of code, it assesses all assertions active. Since CrossView Pro is single

stepping, breakpoints will not be effective. As long as there is at least one

assertion active, CrossView Pro operates in assertion mode. A program

running in assertion mode will be stopped when an asserted command

executes the x (exit assertion mode) command.

Chapter 1515–4
G
L
O
S
S
A
R
Y

B

background mode. A target dependent feature in CrossView Pro that lets

the execution environment run and at the same time allows you to enter a

reduced set of CrossView Pro commands, for example to monitor memory

contents.

bias. A value added to program code addresses to tell CrossView Pro

where the application has actually been loaded into memory. The bias can

be set in the Load Application dialog or with the -n startup option.

breakpoint. A mechanism for stopping target program execution, for

example at a particular line of code (see code breakpoint), when a

memory address is accessed (see data breakpoint), or at a return from a

function (see up-level breakpoint). There are two general kinds of

breakpoints. Hardware, which the emulator or on-chip debug support

sets in its circuitry, and software, which are special instructions placed in

user code. Since the number of simultaneous hardware breakpoints is

limited in number, CrossView Pro uses both kinds by default. Other types

of breakpoints are for example instruction count breakpoint, cycle

count breakpoint, timer breakpoint and sequence breakpoint. See
also probe point.

breakpoint window. A CrossView Pro dialog displaying all breakpoints,

and any attached commands.

C

C-trace window. A CrossView Pro window keeping a record of the most

recently executed C or machine statements.

cache. Some microprocessors keep a copy of the most recently executed

instructions in on-chip memory to speed-up execution.

code breakpoint. A breakpoint that halts program execution when a

particular line of code is reached. A code breakpoint can have a command

list. A breakpoint can be set on a line of source code or at the address of a

machine instruction. See also count.

code coverage. See coverage.

command window. A CrossView Pro window that gives access to

CrossView Pro via a command line interface with history.

Glossary 15–5

• • • • • • • •

command list. A series of CrossView Pro commands and/or C

(assignment) statements attached to a code or data breakpoint, executed

when the breakpoint is hit.

count. The number of times a breakpoint must be hit to finally stop

execution. Breakpoints are created with a count of 1. The C command

may be used to change the count of a breakpoint.

coverage. With code coverage the source line is marked for each source

code line that is executed. Through code coverage you can find executed

and non-executed areas of the application program. Data coverage

allows you to verify which memory locations, i.e. which variables, are

accessed during program execution. Additionally, you can see stack and

heap usage. The availability of this feature depends on the execution

environment.

cycle count breakpoint. A breakpoint that halts program execution after

a specified number of CPU cycles. A cycle count breakpoint can have a

command list.

current function. The function that is currently being executed. The

current function is always at level 0 on the stack. Also stored in the

CrossView Pro special variable $PROCEDURE.

D

data breakpoint. A breakpoint that halts program execution when a

particular memory address (or an address within a particular range) is

written to, read from, or both. A data breakpoint may have a command list

and a count.

data coverage. See coverage.

data monitoring. CrossView Pro allows you to monitor expressions and

variables in the Data window. CrossView Pro updates their values

whenever execution stops.

data window. A CrossView Pro window displaying the values of

monitored expressions.

diagnostic output. Program output designed for debugging purposes.

With CrossView Pro, probe points and data monitoring can be used for

diagnostic output, eliminating the need for intrusive and annoying printf

calls compiled into code.

Chapter 1515–6
G
L
O
S
S
A
R
Y

disassembly window. A CrossView Pro window showing a part of the

disassembled program space. It also displays other information such as the

current execution position, viewing position and installed breakpoints.

dot operand. The period character "." used in an expression to represent

the last value CrossView Pro calculated. The dot operand is useful as

shorthand.

E

embedded system. Computer(s) executing an application program built

to run in (semi) real-time. An embedded system usually is part of a larger,

non-computer system, hence the term "embedded." The TASKING product

line is designed for embedded systems programming.

emulator. A device used to monitor and control various aspects of a

microprocessor's operation. An emulator usually is built around two chips,

the target microprocessor and a controlling chip. The controller chip can

start and stop the target chip's program execution, and can examine and

change registers and memory. An emulator can be connected via a probe

to a hardware prototype to fully emulate the behavior of the target chip.

See ROM monitor.

__end_. A run-time library routine used to implement command line

function calls. It must be linked into the object code.

execution position. The source line to be executed next. See viewing

position.

F

File System Simulation (FSS). A facility to redirect all C library file I/O

operations on the target, to the host system via CrossView Pro. File system

simulation is often used to provide input to an application for which no

hardware I/O is available yet and to log test results.

format. The manner in which CrossView Pro displays addresses and data;

for instance, hexadecimal, character and octal are different formats. You

may include special format codes when specifying variables.

Glossary 15–7

• • • • • • • •

H

hardware breakpoint. See breakpoint.

help window. A window explaining the use of CrossView Pro windows

and dialogs and summarizing the syntax and function of CrossView Pro

commands.

history mechanism. A facility for modifying and executing previous

CrossView Pro commands.

host system. The computer system on which CrossView Pro is run. The

host system is connected to the target system, usually with an RS-232

cable.

I

image part. This is the downloadable part of the absolute file that

contains the executable code of the target program. See also absolute file.

instruction count breakpoint. A breakpoint that halts program

execution when a number of instructions have been executed. An

instruction count breakpoint can have a command list.

interrupt key. The key that interrupts ongoing processes. On many

systems this is ctrl-C.

I/O Simulation. A technique to intercept input and output for debugging

purposes. I/O Simulation is often used for testing a program before the

actual input and output hardware devices are present. See also stream.

L

local variable. A variable that can only be referenced from within its

defining function.

low-level breakpoint. A code breakpoint placed on an individual

machine instruction. Low-level breakpoints can be set with the break

code address command.

Chapter 1515–8
G
L
O
S
S
A
R
Y

M

macro. A user-created shorthand for a CrossView Pro command

sequence. Macros can accept parameters and can be saved to a file.

main(). The function where a C program's execution begins. See also
system startup code.

MAU. See minimum addressable unit.

memory map. The configuration of an emulator's memory that specifies

which addresses are read-only, and which addresses are read/write. With

many emulators, you must first set up a memory map before using

CrossView Pro, for example via transparency commands.

minimum addressable unit. For a given processor, the amount of

memory located between an address and the next address. It is not

necessarily equivalent to a word or a byte. Abbreviated MAU.

monitoring. See data monitoring.

O

object language. A representation for target machine instructions, with

the ability to represent either relocatable or absolute address locations.

on-line help. A complete summary of all CrossView Pro commands and

individual descriptions available while CrossView Pro is running.

on-line tutorial. A playback file supplied with CrossView Pro that

demonstrates CrossView Pro's capabilities.

output buffer. The location in memory where CrossView Pro directs I/O

simulation output. See also I/O Simulation.

P

patch. A technique to alter program flow (without recompiling the source

code) with CrossView Pro commands and/or C expressions. With

CrossView Pro, it is possible to use breakpoints to alter program flow by

patching in new code or moving the execution position around existing

code.

Glossary 15–9

• • • • • • • •

pop-up window. A window that appears in certain situations that

overlaps the current display. Pop-up windows usually contain information

(like a command definition) that need not be continuously displayed.

probe. A part of an emulator that can be inserted in place of the target

chip in the actual embedded systems hardware.

probe point. A special kind of breakpoint. When a probe point

breakpoint is hit, the associated commands are executed and program

execution is continued.

profiling. For each source code line that is executed, the timing

information is given.

Q

quiet command. A Q instruction at the start of the command list of a

breakpoint suppressing the default display of function: line number:
source file.

R

record & playback. The ability to save CrossView Pro commands (and, if

desired, Command window output) to a file. CrossView Pro can play back

simple text files consisting solely of CrossView Pro commands.

register window. A CrossView Pro window showing the contents of the

target microprocessor's registers.

reserved special variables. Special variables ($LINE , $PROCEDURE,
$FILE) whose values CrossView Pro maintains to reflect the current status

of the debugging session. See also special variables.

ROM monitor. A program which supervises or controls, at an elementary

level, the overall operation of an embedded system. Because of the limited

hardware features of most boards containing ROM monitors, some

CrossView Pro features may not be supported. See also emulator.

RS-232 cable. A cable that exchanges asynchronous data between the

host and target systems.

Chapter 1515–10
G
L
O
S
S
A
R
Y

S

scope. The extent to which a variable can be referred to. Global variables

are always in scope; local variables are only in scope when their defining

function is the current function.

select. To make a window active.

sequence breakpoint. A breakpoint that halts program execution when

breakpoints are hit in a specified sequence. A sequence breakpoint can

have a command list.

single stepping. Executing a source statement or a machine instruction

then halting. Single stepping lets you observe a program executing in

stop-motion, to observe registers, variables and program flow.

skidding. When a microprocessor executes a few instructions after a data

breakpoint halts execution. On some microprocessors, execution may not

stop until all instructions in its pipeline have been executed. It is important

to realize therefore that a target program may not halt at the precise

instruction where the data breakpoint occurred.

software breakpoint. See breakpoint.

source level debugger. A debugger capable of correlating source code

and variable names with object code. CrossView Pro is a source level

debugger.

source window. A CrossView Pro window displaying the high-level

language program code. It also displays such information as the current

execution position, viewing position and installed breakpoints.

special variable. A variable independent of the target program that

CrossView Pro maintains for the user's benefit. Special variables start with

a $ and are defined when first mentioned. CrossView Pro also maintains

reserved special variables that contain information about the state of the

debugging session.

stack depth. The level that a particular return address from a function

resides on the stack. The current function is always at stack depth zero.

stack traceback. An operation in which CrossView Pro reads the return

addresses and passed parameters off the stack to reconstruct program

flow.

Glossary 15–11

• • • • • • • •

stack window. A CrossView Pro window showing the function calls on

the stack, with the values of the parameters passed to them.

startup options. Special command line switches passed to CrossView

Pro when the debugger is first loaded. These options control items such as

the number of assertions allowed, or can perform various actions such as

to start recording screen output to a file.

stream. A particular input or output data path for I/O simulation. Per

method, File System Simulation, File I/O or Debug Instrument I/O, a

unique stream numbering scheme is used.

switches. See startup options.

symbolic debugger. A type of debugger generally limited to dealing with

global, non-dynamic variables. Symbolic debuggers know nothing of the

data types; they translate global names and global subroutines into

addresses. See also source level debugger.

symbol information. The necessary information for CrossView Pro to

correlate object code with source code. The symbol information is part of

the absolute file. See also absolute file.

system startup code. A run-time library routine written in assembly

language source that initializes the target environment before calling

main() . See also main().

T

target communication. The low-level communication between the host

and the target system. For the most part, CrossView Pro handles target

communications, allowing the programmer to concentrate on the

high-level information.

target microprocessor. The chip on which the target program runs.

target system. The targeted microprocessor where the embedded

application runs.

terminal window. A CrossView Pro window containing all the input and

output streams directed to the screen. CrossView Pro can display several

windows at a time.

Chapter 1515–12
G
L
O
S
S
A
R
Y

timer breakpoint. A breakpoint that halts program execution after a

specified number of seconds or timer ticks. A timer breakpoint can have a

command list.

trace buffer. A target-resident buffer that contains the most recent

instructions executed by the target microprocessor. CrossView Pro uses this

buffer to deduce a C-trace.

trace analysis. An emulation bus analyzer captures bus cycle information

from the address, data, and status buses of an emulation processor in sync

with the processor clock. The states captured show a history of activity on

the emulation processor bus.

transparency mode. The mode in which CrossView Pro passes user

input directly to the emulator. Transparency mode is often used when

setting up memory maps.

U

up-level breakpoint. A code breakpoint set at the return from a

function at a specified stack depth.

V

viewing position. The line of source code currently being viewed. This

line contains the dashed line cursor. Some commands operate by default

on the viewing position. The viewing position and the execution position

are initially the same, but you may adjust each individually.

A

INTERPROCESS
COMMUNICATION

A
P

P
E

N
D

IX

Appendix AA–2
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

A

A
P

P
E

N
D

IX

Interprocess Communication A–3

• • • • • • • •

1 COM INTERFACE

1.1 INTRODUCTION

CrossView Pro provides a COM object interface on MS-Windows

platforms. The purpose of the COM object interface is to make the

command-line interface of the command window available to the outside

world. Simultaneously, a callback mechanism is provided which allows the

outside world to tap into events that occur within CrossView Pro (for

example a breakpoint hit message). This is achieved by a COM connection

point interface to which multiple programming languages can connect.

The CrossView Pro COM object can be used in programming languages

like Python, Visual C++ or Visual Basic. Applications that are COM clients

can also make full use of the CrossView Pro COM object interface. COM is

a binary reusable object technology, linked tightly to MS-Windows. COM

is closely related to ActiveX and Automation. ActiveX consists of a set of

predefined interfaces to be implemented in a COM object and used to

create plugable GUI components. Automation is a similar set of predefined

COM interfaces, but with a wider range of applications than ActiveX.

1.2 USING THE COM OBJECT INTERFACE

1.2.1 RUN-TIME ENVIRONMENT

The CrossView Pro COM object executes as an out-of-process server.

Only one client per instantiated CrossView Pro COM object can connect.

Each CrossView Pro executable has a unique identification (so-called

UUID or GUID), independent of the version number. This is especially

important for Visual Basic which stores the TypeLib UUID. This requires

recompilation if the UUID changes across different versions of the same

CrossView Pro executable.

1.2.2 COMMAND LINE OPTIONS

To prevent initialization dialogs at CrossView Pro startup (for example a

dialog to specify which CPU type you use), you can use several

command-line options which you can specify via the Init() method.

Appendix AA–4
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

Use the following options instead of startup dialogs:

-tcfg file Specifies a target configuration file which contains, among

other things, the GDI module to be loaded among other

things. This overrules the filename specified in xvw.ini .

-C cpu Specifies the CPU type.

-D device_type,opt1[,opt2]

Specifies communications parameters such as communication

port and baud rate.

-G path Specifies the startup directory for CrossView Pro

-ini Specifies the xvw.ini file.

Section 4.4, Startup Options in Chapter Using CrossView Pro

1.2.3 STARTUP DIRECTORY

The startup directory of CrossView Pro determines where the xvw.ini file

is written. When CrossView Pro is invoked via its COM interface on

MS-Windows, the startup directory is usually C:\WINNT\system32 . You

can change the location of the xvw.ini file with the -G command line

option. This feature is useful when you are using two different CrossView

Pro instances simultaneously.

Interprocess Communication A–5

• • • • • • • •

1.3 COM INTERFACES

The following interfaces are provided with CrossView Pro:

ICommandLine

Default interface; provides CrossView Pro command interpreter access.

ICommandLineEvents

Connection point; provides the events output stream of CrossView Pro.

Works as a callback.

1.3.1 ACTIVATING THE COM OBJECT

Command line options are passed to CrossView Pro via the Init()
method. It is necesarry to call the Init() method before you can use the

CrossView Pro COM object. CrossView Pro does not start as COM object,

until after you have actually called the Init() method. If you do not

need to pass any options, invoke Init() with an empty string.

Registering the server

Before you can use the COM object, you must register it in the

MS-Windows Registry. Run CrossView Pro from the command line as

follows:

xfw68 –RegServer

Similarly, you can remove the COM object from the Registry:

xfw68 –UnRegServer

To avoid the popup message when registering, two more command line

options are available that are useful when you use batch files:

–RegServerS Same as -RegServer, but without message

–UnregServerS Same as -UnregServer, but without message box

Appendix AA–6
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

1.3.2 METHODS

This section lists the methods that are supported by the CrossView Pro

COM object's default interface 'ICommandLine'. The data types and return

values are expressed as COM base types. For example, BSTR is a

wide-character UNICODE string type, which is the same type as Visual

Basic strings.

Init()

void Init(BSTR CommandlineOptions)

Passes command line options to the CrossView Pro COM. It is necesarry to

call the Init() method before you can use the CrossView Pro COM

object. If you do not need to pass any options, invoke Init() with an

empty string.

CommandlineOptions
The string with the command line options. The options are

written as on a regular command line.

The list of supported command-line options can be found in the

CrossView Pro User Manual.

See Section 4.4, Startup Options in Chapter Using CrossView Pro for a

complete overview of all available command line options.

Execute

BOOLEAN Execute(BSTR Command, long SequenceNumber,
 BSTR *Result)

Passes a command to CrossView Pro, executes it and returns TRUE or

FALSE after the command has been executed.

Command The command to be executed by CrossView Pro.

SequenceNumber
A number that is unique for each command. You can use this

number to distinguish the output in the events stream. If you

do not use this, specify a value of 0.

Interprocess Communication A–7

• • • • • • • •

Result The textual output of the command window, encapsulated in

an annotated format. See CmdAnnotatedOutput in section

1.4 Events for the format description. Specify NULL if you do

not want any output.

Returns: TRUE on success, FALSE on error.

ExecuteNoWait

BOOLEAN ExecuteNoWait(BSTR Command,
 long SequenceNumber)

Queues a command for execution and returns TRUE of FALSE after the

command has been passed but before it is executed.

Command The command to be executed by CrossView Pro.

SequenceNumber
A number that is unique for each command. You can use this

number to distinguish the output in the events stream. If you

do not use this, specify a value of 0.

Returns: TRUE if the command is successfully passed, FALSE on error.

Halt

void Halt(void)

Halts the execution of the current command.

1.3.3 IMPLEMENTATION DETAILS

A multi-threading (MTA) type of appartment is used with a free-threading

model, for example, ThreadModel=Free . However, each CLSID can have

its own distinct ThreadingModel. Only one client can connect to a COM

object instance of CrossView Pro. Each next CoCreateInstance() will

result in a new CrossView Pro COM object instance being created.

Be aware that DLLs are not supposed to call CoInitialize themselves.

Once the concurrency model for a thread is set, it cannot be changed. A

call to CoInitialize on an apartment that was previously initialized as

multithreaded will fail and return RPC E CHANGED MODE.

Appendix AA–8
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

Typically, the COM library is initialized on a thread only once. Subsequent

calls to CoInitialize or CoInitializeEx on the same thread will

succeed, as long as they do not attempt to change the concurrency model,

but will return S FALSE . To close the COM library gracefully, each

successful call to CoInitialize or CoInitializeEx , including those that

return S FALSE , must be balanced by a corresponding call to

CoUninitialize . However, the first thread in the application that calls

CoInitialize(0) or CoInitializeEx(COINIT APARTMENTTHREADED)
must be the last thread to call CoUninitialize() . If the call sequence is

not in this order, then subsequent calls to CoInitialize on the STA will

fail and the application will not work.

Because there is no way to control the order in which in-process servers

are loaded or unloaded, it is not safe to call CoInitialize ,

CoInitializeEx , or CoUninitialize from the DllMain function.

So, take care when establishing more CLSIDs in a GDI module.

1.4 EVENTS

CrossView Pro provides an events source, into which a client can tap via a

COM connection point. Examples of events are "reporting which

breakpoint has been hit" and "symbols have been loaded". Currently the

following events are defined. Each event is terminated by a newline

character. Prepare your client for new events, basically by ignoring

unrecognized ones.

CommandInterpreterBusy

The debugger's command interpreter is executing a command line, or a

GUI operation is in progress. A command line can comprise multiple

target execution commands, so arbitrary Running and Stopped events may

occur before the command line has been finished. An example for using

this event is the disabling of menu entries in your tool.

You can send multiple CommandInterpreterBusy events without the

CommandInterpreterReady counterpart. New commands can be send to

the debugger after this event has been issued, but they will be queued

until the debugger is ready for new command input.

Interprocess Communication A–9

• • • • • • • •

CommandInterpreterReady

The entire command line or GUI operation has either been executed

completely or aborted. You can send multiple CommandInterpreterReady

events without the CommandInterpreterBusy counterpart.

CommandCanceledByUser

The entire command line or GUI operation has can been canceled by the

user, usually via the Halt button.

In case of DDE, the CrossView Pro command queue will be emptied. The

command queue of all other IPCs, for example COM, will be preserved.

This has been designed for the multi-core debugger which relies on

commands -submitted by the multi-core debug system- always being

executed, even if the user hits the Halt button.

Note that every command can be canceled this way, even when asking a

variable's value. Often no value will be returned at all, because Halt

aborted the evaluation.

HaltButtonPressed

Tells that the user has pressed the Halt button. This is necessary because

in CrossView Pro Halt means stop executing the current command line. If

an external client needs to know this too, the Halt button must be

reported explicitly. If not, only when the Halt button actually is hit during

a command line execution, cancellation is the case, and reported via an

event. If the command line just finished, nothing is being done, so needs

to be canceled, hence no cancellation is reported either.

An example would be a client interpreting breakpoint hits and issuing

continue commands to resume execution. If the halt button should also

stop the client from doing this, the HaltButtonPressed event must be used.

Running

Started executing the target.

RunningInBackground

Started target execution in background mode. This is usually a mode in

which a restricted set of operations can be performed, for example read

from a memory location.

Stopped cause

Stopped target execution. The cause is reported. Possible causes:

Appendix AA–10
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

STEP A single step of any kind was finished. Be aware that when

using single-step, the debugger does not report any

breakpoints the program counter arrives at.

BREAKPOINT "name"
Breakpoint name was hit. This includes cycle breakpoints,

time elapsed or number of instructions types. Breakpoints

that the user has set are reported as well.

Nameless breakpoints are reported using as name #number#,

where number is the CrossView Pro administration number.

If no name or number is known, NAMELESS BREAKPOINT

will be used.

ASSERTION number
Assertion number was hit.

UNKNOWN The process has stopped. The cause is unknown or cannot

be described with one of the previous reasons.

One of the causes may be that the user presssed the Halt

button.

More causes may be added in the future.

Reset

Hardware reset command has been executed by the debugger.

ResetProgram

Software reset of the program command has been executed by the

debugger.

ViewedLineNrChanged number

The line being displayed changed to the specified one. If the source

window is closed, or the cursor is not in a file but somewhere in

assembly, this event will not be sent.

SourceFileChanged "filename"

The debugger displays an other source file. An empty file name "" will be

sent if no source is being displayed at all.

DidLoadSymbols "filename"

The symbols of an application have been loaded.

Interprocess Communication A–11

• • • • • • • •

DidAddSymbols "filename"

 An application's symbols have been added to the ones already

present.

DidDownloadImage "filename"

The code and data image of an application has been downloaded into

target memory.

DestroyedAllSymbols "filename"

The symbol table of the application filename has been destroyed.

BreakpointsChanged

The list of breakpoints changed (for example when a breakpoint was

added).

AssertionsChanged

Either the list of assertions or assertion mode changed (for example when

an assertion was added). Note that the assertion numbering can be entirely

altered when an assertion is removed.

MenuEntrySelected "id-string"

The menu entry id-string was selected by the user. Only menu entries

created with the AddDDEMenuEntry or AddCOMMenuEntry command are

reported.

CmdAnnotatedOutput<\n>
annotated-output

Provides the command window output in an annotated form.

The first line indicates the error status and says OK, ERROR or NOT

EXECUTED. The second line has the form SEQ:sequence_number, where

the sequence number is either 0 or the number specified with the

command. Although the sequence number is optional (it may be omitted

in some commands) this line is always present. The next lines are either

output or error messages. A label indicates the type (OUTPUT or ERROR)

and the number of lines that follow.

Appendix AA–12
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

Example

ERROR
SEQ: 9284
OUTPUT:1
Hello World
ERROR:1
No such name: xy

The reason behind this event is the inevitable merging of all data streams

into one when TCP/IP server is provided next to for example the DDE

server.

Quit

The debugger is about to terminate. This is not necessarily the last event.

nor is it guaranteed that a CommandInterpeterReady event was send

before. The quit event may not be send at all, due to technical restrictions.

1.5 COM EXAMPLES

1.5.1 PYTHON EXAMPLES

To use COM objects for Python, you must first install the Python

interpreter and the Win32COM extensions. You can use the Python

interpreter distributed with the TASKING EDE. Or you can download the

Python interpreter from http://www.python.org (May 2001) or use

win32all.exe from http://aspn.activestate.com/ASPN/
Downloads/ActivePython/Extensions/Win32all (May 2001).

Synchronous Calls

Replace all occurences of Xfw<targ> in the example below by the name

of your CrossView Pro executable to make the text applicable.

#

Example without events callback

#

import win32com.client

Python 1.4 requires ”import ni” first.

Interprocess Communication A–13

• • • • • • • •

class Xfw<targ>:

 ”Xfw<targ> via COM wrapper class”

 def __init__(self, cmdline_options = ””):

 try:

 self.COMobject = win32com.client.Dispatch(

 ”Xfw<targ>.CommandLine”)

 self.COMobject.Init(cmdline_options)

 except Exception,e:

 print ’(Is the Xfw<targ> COM object installed,

 using ”xfw<targ>.exe –RegServer”?)’

 raise e

 def Execute(self, text, sequence_number = 0):

 result = self.COMobject.Execute(text, sequence_number)

 # convert Unicode to Python string

 retval = (result[0], str(result[1]))

 return retval

def test_xfw<targ>_com_object():

 xvw = Xfw<targ>(r”–sd c:\\testdir”)

 (success, result) = xvw.Execute(”echo Hello from Python”)

 print ”received”, result

 (success, result) = xvw.Execute(”l d”)

 print ”success=”,success

 print result

 (success, result) = xvw.Execute(”++$hoi”)

 print result

 (success, result) = xvw.Execute(”++$hoi”)

 print result

 (success, result) = xvw.Execute(”++$hoi”)

 print result

 del xvw

if __name__ == ”__main__”:

 test_xfw<targ>_com_object()

Appendix AA–14
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

Events Callback

#

Example with Events callback

#

import win32com.client

Python 1.4 requires ”import ni” first.

import win32ui

import re

seen_ready_event = 0

class xvw_events:

 def OnCrossViewEvent(self, strUnicode):

 global seen_ready_event

 print ”CrossViewEvent: ” + str(strUnicode)

 if (re.match(”CommandInterpreterReady.*”, str(strUnicode))):

 seen_ready_event = 1

class Xfw<targ>:

 def __init__(self, cmdline_options = ””):

 self.COMobject = win32com.client.DispatchWithEvents(

 ”Xfw<targ>.CommandLine”, xvw_events)

 self.COMobject.Init(cmdline_options)

 def Execute(self, text, sequence_number = 0):

 result = self.COMobject.Execute(text, sequence_number)

 # convert Unicode to Python string

 retval = (result[0], str(result[1]))

 return retval

if __name__ == ”__main__”:

 xvw = Xfw<targ>(”–sd testdir1”)

 print xvw.Execute(’”hello Python”;$hoi++’)

 while seen_ready_event == 0:

 win32ui.PumpWaitingMessages(0, –1)

 print ”terminating”

 del xvw

Interprocess Communication A–15

• • • • • • • •

Python Makepy Utility

In the examples above Python will load the type info dynamically from the

COM object. This is called 'dynamic' binding or 'late' binding in

PythonCOM jargon. However, PythonCOM also provides a mechanism to

generate a Python module which contains this type info and thus speeds

up the loading process. This is called early binding in the PythonCOM

package.

Python uses the makepy utility to support early-bound automation.

Makepy is a Python script that translates the COM type library to a Python

module which wraps the COM object's interfaces. Once you use the

makepy utility, early binding for the objects is automatically supported.

There's no need to do anything special to take advantage of the early

binding.

Advantages:

• Method invocation is faster.

• Constants defined in the type library are available via the COM

interface module.

• It allows much better support for advanced parameter types. Especially

parameters declared by COM as BYREF can only be used with makepy

wrapped objects.

Disadvantages:

• The makepy wrapper script depends on the COM object to be wrapped

by makepy. Generation can be automated.

• The module that is generated by makepy, can be large. The file

generated for Microsoft Excel for example, is about 800 Kb.

To speed up starting a Python script that loads the CrossView Pro COM

object, you can generate a Python module with makepy.py :

cd ...\python20\win32com\client
python makepy.py ...\xfw<targ>.exe

This script will place a module in the win32com\gen_py subdirectory.

For more information on COM programming with Python refer to Python
Programming on Win32 - Help for Windows Programmers (Mark

Hammond & Andy Robinson; 1st Edition January 2000; 1-56592-621-8).

Appendix AA–16
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

1.5.2 VISUAL BASIC EXAMPLES

Replace all occurences of Xfw<targ> in the example below by the name

of your CrossView Pro executable to make the text applicable.

Synchronous Calls

This example demonstrates plain commands being executed in CrossView

Pro, without receiving any events from CrossView Pro.

Dim Xvw As Object

Dim Result As String

’ here we invoke the PowerPC \xvw{}

’ replace xfw<targ> by your executable name

Set Xvw = CreateObject(”Xfw<targ>.CommandLine”)

Call Xvw.init(””)

Call Xvw.Execute(”I”, Result, 0)

MsgBox Result

End

Events Callback

Visual Basic provides a special feature, WithEvents, to connect to the

connection point of a COM interface. It is also available in VBA 5.0. You

must use WithEvents in a variable declaration. There is a catch, however:

you can only use it in a class module (including form modules) and it

must appear in the declaration section. You cannot declare a variable

using WithEvents in the body of a procedure. For this example, first

select Xfw<targ> type library in the Project References dialog:

1. In Microsoft Word or Microsoft Excel, start the Visual Basic editor and go

to Tools|References or:

In Visual Basic, go to Project|References .

Note that VBA differs from VB. See the Word example for VBA.

2. Search and check the CrossView COM Interface Type Library entry.

Interprocess Communication A–17

• • • • • • • •

Option Explicit

Public WithEvents Xvw As Xfw<targ>

Private Sub Form_Load()

 Dim Result As String

 Set Xvw = CreateObject(”Xfw<targ>.CommandLine”)

 Call Xvw.Init(””)

 Call Xvw.Execute(”echo Hello”, Result, 0)

 End

End Sub

Private Sub Xvw_CrossViewEvent(ByVal EventText As String)

 MsgBox ”Called back with: ” & EventText

End Sub

1.5.3 WORD EXAMPLES

Here is an example of connecting to CrossView Pro PowerPC. It starts

xfw<targ> and shows all messages that CrossView Pro sends to Word.

Visual Basic for Applications provides a special feature, WithEvents, to

connect to the connection point of a COM interface. You must use

WithEvents in a variable declaration. There is a catch, however: You can

only use it in a class module (including form modules) and it must appear

in the declaration section. You cannot declare a variable using

WithEvents in the body of a procedure.

Replace all occurences of Xfw<targ> in the example below by the name

of your CrossView Pro executable to make the text applicable. To add the

example to Word:

1. Start the Visual Basic editor and go to Tools|References

2. Search and check the CrossView COM Interface Type Library entry

3. Insert a class module, via the menu bar: Insert|Class Module

4. Change its name to clsXfw<targ> in the properties pane

5. Paste the following text:

Appendix AA–18
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

’
’ Class module clsXfw<targ>
’
’Option Explicit

’ members
Public WithEvents oXfw<targ> As Xfw<targ>

Private Sub Class_Initialize()
End Sub

Private Sub oXfw<targ>_CrossViewEvent(ByVal strEvent
As String)
 MsgBox strEvent
End Sub

6. Insert a module, via the menu bar: Insert|Module

7. Paste the following text:

’
’ Module testXfw<targ>
’
Option Explicit

Dim oXfw<targ>1 As New clsXfw<targ>

’ run automatically when your Addin loads
’ and your Addin will automatically load when Word
loads.
Public Sub AutoExec()
 Set oXfw<targ>1.oXfw<targ> = New Xfwppc
 call oXfw<targ>1.oXfw<targ>.Init(””)
End Sub

Interprocess Communication A–19

• • • • • • • •

1.5.4 EXCERPT OF THE MIDL DEFINITION

The 'ICommandLine' interface is dual, the 'ICommandLineEvents'

connection point interface is not. Replace all occurences of Xfw<targ> in

the example below by the name of your CrossView Pro executable to

make the text applicable.

interface ICommandLine

{

 HRESULT Init([in] BSTR CommandLine);

 HRESULT Execute([in] BSTR Command,

 [in] long SequenceNumber,

 [out] BSTR *Result,

 [out, retval] VARIANT_BOOL *Ok);

 HRESULT Halt(void);

 HRESULT ExecuteNoWait([in] BSTR Command,

 [in] long SequenceNumber,

 [out, retval] VARIANT_BOOL *Ok);

};

library CrossViewLibXfw<targ>

{

 dispinterface _ICommandLineEvents

 {

 methods:void CrossViewEvent([in] BSTR);

 };

 coclass Xfw<targ>

 {

 [default] interface ICommandLine;

 [default, source] dispinterface _ICommandLineEvents;

 };

};

Appendix AA–20
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

2 DDE SERVER INTERFACE

2.1 INTRODUCTION

CrossView Pro offers an Interprocess Communications (IPC) option using

the Microsoft Windows Dynamic Data Exchange (DDE) interface for

external control of CrossView Pro. The DDE interface offers direct access

to the CrossView Pro command interpreter. Via the DDE interface you can

execute every CrossView Pro command that you can access via the regular

CrossView Pro command window, and retrieve the output produced by

the executed command.

2.2 DDE ITEMS AND TOPICS

DDE function calls always return, whether they succeed or fail. They do

not report application command errors. Retrieve and interpret the

cmdoutput item or cmdannotatedoutput item to check for errors.

Help

Topic

System

Item

Help

Operations

Request, Advise

Description

Returns a brief overview of the topics and items in ASCII text format.

Interprocess Communication A–21

• • • • • • • •

cmdoutput

Topic

Command

Item

cmdoutput

Operations

Request, Advise

Description

Retrieves all command window output of the last executed command via

the Command topic. This item empties itself after it has been requested.

Appendix AA–22
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

cmdanotatedoutput

Topic

Command

Item

cmdannotated output

Operations

Request, Advise

Description

The first line indicates the error status and says OK, ERROR or

NOT_EXECUTED. The second line has the form SEQ:sequence_number,
where the sequence number is either 0 or the number specified with the

execext command. Although the sequence number is optional (it may be

omitted in some commands) this line is always present. The next lines are

either output or error messages. A label indicates the type (OUTPUT or

ERROR) and the number of lines that follow.

Example

ERROR
SEQ: 9284
OUTPUT:1
Hello World
ERROR:1
No such name: xy

Interprocess Communication A–23

• • • • • • • •

execext

Topic

Command

Item

execext:options:string

Operations

Execute

Description

Passes the specified string without interpreting it to CrossView Pro's

command interpreter (see also Command\cmdannotatedoutput). The

execext: prefix is part of the entire command string: it makes a distinction

between the various commands. For example exec, execext or halt,

received via the Command topic.

Options

wait=yesno yesno is 1 or 0. If you specify wait=1 is, the execext

command blocks the DDE transaction until CrossView Pro

has finished executing the command. Issue the Halt

command in this case via a second conversation.

Be aware of the time limitation imposed by the DDE

interface. It can wait for a period of 25 days. Use exec

combined with either waiting for an Advise on the

cmdoutput item, or with interpreting the event item to

handle very long lasting commands.

When you do not specify a value, 1 is assumd by default.

seq=number A unique number to identify a command's specific result in

the stream of events output via the event item. See the event

item and cmdannotatedoutput item for more details.

silent=yesno yesno is 1 or 0. If 1, the command window output will be

suppressed. See section 2.5.5 Using CrossView Pro as Pure
Server for the gus command.

When you do not specify a value, 1 is assumd by default.

Example

execext:seq=424564,wait:echo test

Appendix AA–24
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

exec

Topic

Command

Item

exec

Operations

Execute

Description

Passes the specified string without interpreting it to CrossView Pro's

command interpreter (see also Command\cmdoutput).

A major difference with regular MS-Windows applications is the immediate

acknowledge of a command, before it has been completed. This is

because the sender does not have to wait for the answer and can peform

other tasks meanwhile. For example, you are able to issue a halt

command to stop the debugger.

To simulate wait-till-completion command execution, wait until the

cmdoutput item is assigned to the command's output via an Advisory link

event, or interpret the event item.

The exec: prefix is part of the entire command string: it makes a

distinction between the various commands. For example, exec, execext

or halt, received via the Command topic.

Interprocess Communication A–25

• • • • • • • •

halt

Topic

Command

Item

halt

Operations

Execute

Description

Forces CrossView Pro to stop target execution. You can issue the

command via a second conversation.

Appendix AA–26
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

event

Topic

Command

Item

event

Operations

Advise

Description

Reports event occurrences to the client, asynchronously. An event is

reported by a string. To ensure capturing all events, use an Advise link.

CrossView Pro only keeps the last event.

Request is not meant to be used; it can only be used after establishing an

Advise link.

Interprocess Communication A–27

• • • • • • • •

result

Topic

Command

Item

result:name

Operations

Execute

Description

The name that you specify provides a serve as DDE requestable item to

obtain a message which describes the reason why a DDE command failed

to execute. It does not return the CrossView Pro error message. It is

always deleted after it has been requested.

The result: prefix is part of the entire command string: it makes a

distinction between the various commands. For example, exec, execext

or halt, received via the Command topic.

2.3 DDE EVENTS

2.3.1 PACKET FORMAT

Each event is wrapped in a record and one DDE message contains one or

more of these records. This means that multiple events can be received

simultaneously in one DDE transaction. This is done because DDE can

lose ("combines") events when XTYPF ACKREQ mode is selected, and

because this channel will be redirected to TCP/IP in the future for portable

IPC support in CrossView Pro.

To handle events with more than one line, a header (not a newline) is

used to distinguish between the individual events. The header format is:

EVENT: number-of-characters<newline>

So you must always split events that arrive in one DDE message. An

example of such a multi-event DDE message is:

Appendix AA–28
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

EVENT: 27
SourceFileChanged ”demo.c”
EVENT: 23
ViewedLineNrChanged 93
EVENT: 27
Stopped BREAKPOINT ”input”
EVENT: 24
CommandInterpreterReady
EVENT: 79
CmdAnnotatedOutput
OK\r
OUTPUT:1\r
Error breakpoint name ’input’ is not unique!\r

For an overview of all available events, see section 1.4 Events

2.4 CROSSVIEW PRO DDE SPECIFIC OPTIONS AND

COMMANDS

2.4.1 COMMAND LINE OPTIONS

––ddeservername=name

This command line option specifies a unique DDE server name. This way

it is easier to distinguish between multiple instances of the same debugger.

If you do not use this option, the server name is the name of the

CrossView executable. To distinguish between multiple DDE servers with

the same name, you must connect to all DDE servers using

DdeConnectLists() and obtain distinguishing information.

2.4.2 COMMANDS

With regard to DDE support, the following commands are available

enhance integration support.

AddDDEMenuEntry

Syntax:

AddDDEMenuEntry "label","id-string" [,AlwaysEnabled]

Interprocess Communication A–29

• • • • • • • •

Creates a menu entry with given label and id-string. The label also

specifies the path from the main menu bar, for example:

AddDDEMenuEntry ”Options|CaseTool|Configure...”,
 ”config–menu–entry”

An entry cannot be removed or replaced once it has been created. Neither

is there support for enabling or disabling entries via this interface, this is

somewhat problematic, since we are communicating across an

asynchronous interface, so the disable may not be executed immediately.

AlwaysEnabled is either 1 (true) or 0 (false, default). CrossView Pro by

default disables the menu entry when the command window disallows

entering a command, for example when running an application.

To define the shortcut character of a menu entry, place a '&' before the

character. The shortcut character will be underlined. To add a seperator

line in the menu, start the next menu entry with a '+'. The seperator line

will precede this menu entry. For example:

”&Options|&CaseTool|+&Reset”

2.5 EXAMPLES

2.5.1 EVALUATING AN EXPRESSION

To get the value of an expression, pass it to the command interpreter. The

syntax of the returned value is:

identifier = value

The value can even be a complete structure or union. For example,

execute via the Command topic:

execext:main

The returned string could look like:

main = 0x0

Appendix AA–30
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

2.5.2 READING TARGET MEMORY

You can retrive target memory either via requesting a variable's value, or

with the dump command. The dump command can dump both byte

(MAU) sized hex values or C type values, for example long or double. The

resulting output must be interpreted to get the values.

The basic syntax of the returned values for plain MAU size hex dumps is:

address: value value ASCII-dump

The basic syntax of the returned values for formatted dumps is:

address = value value

For example, execute via the Command topic a hex dump command:

execext:dump main,#16

The returned text could be:

0x2000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

For example, execute via the Command topic a formatted dump

command, requesting 16bit integers:

execext:dump data1,#16,d2

The returned text could be:

0x2000 = 0 0 0 0 0 0 0 0
0x2010 = 0 0 0 0 0 0 0 0

The number of values per line differs. This depends on both the size and

type of the values, as well as the architecture of the processor that is

connected to the debugger.

Interprocess Communication A–31

• • • • • • • •

2.5.3 WRITING INTO TARGET MEMORY

To write to target memory, use one of the following three methods.

1. Assign a value to a variable.

2. Use one of the the mF or mf commands.

For example, the following stores the byte (MAU) sized values 1 2 3 4 5 in

memory starting at memory location 0x2000.

0x2000 mF 1, 2, 3, 4, 5

3. Write into memory using a type cast.

For example:

(long)0x2000 = 0x12345

Appendix AA–32
IN

T
E

R
P

R
O

C
E

S
S

 C
O

M
M

U
N

IC
A

T
IO

N

2.5.4 REQUESTING CURRENT FILE AND LINE NUMBER

To determine the location of the source window cursor position, request

the following special variables:

$FILE The file in which the source window cursor position is. If the

position is outside any file, the error message 'No current file'

is returned.

$PROCEDURE

The name of the function in which the source window cursor

position is. If the position is outside any function, the error

message 'No current function' is returned.

$LINE The line number of the cursor in the source window. If the

position is outside any file, the error message 'No current

line' is returned.

You can also use the command �l s" to get all special variables, including

the ones above. If a variable is not set, it is not included in the list, or set

with the error message as described above.

To make sure the cursor is at the current execution position, precede the L

command before requesting the variable. For example, issue:

L; $FILE; $PROCEDURE; $LINE

Error messages appear when a variable fails.

To obtain the current execution positions, you can also interpret the result

of the L command directly.

2.5.5 USING CROSSVIEW PRO AS PURE SERVER

To have CrossView Pro act as server only, updating windows can be

turned off with the command gus on. This inhibits all windows from

being updated, except for the command window. Note that also the GUI

does not refresh anymore.

Also the execext:silent=1:... command via DDE inhibits the command

window output.

B

REGISTER
MANAGER

A
P

P
E

N
D

IX

Appendix BB–2
R

E
G

IS
T

E
R

 M
A

N
A

G
E

R

B

A
P

P
E

N
D

IX

Register Manager B–3

• • • • • • • •

1 INTRODUCTION

CrossView Pro uses a so-called �register definition file" that specifies the

register name to register number mapping for CrossView Pro. In case a

register is a memory mapped register, the register number specifies the

register's memory address.

A number of register definition files are included in the CrossView Pro

release. Register definition files use the following naming convention:

reg cpu.dat .

If you use another derivative you can use the register manager to create

new register definition files.

2 INVOCATION

CrossView Pro has a user definable set of special function registers (SFRs).

CrossView Pro reads the registers from a binary file (reg cpu.dat)

specified by the cpu_type field in xvw.ini or a target configuration file

(*.cfg):

cpu_type: 68000

You can overrule the CPU type (and thus the reg cpu.dat file) to be used

by CrossView Pro with the -C option. The tool for generating this binary

file from a text file is the Register Manager rm68.

The invocation syntax is:

rm68 [register-file [,register-file]...] [-o outfile]
rm68 -?

rm68 -V

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as '(�)' and '?') must be enclosed with ” ” or

escaped. The -? option in the C-shell becomes: ” -?” or –\? .

The optional register-file (or several files) contains the user's definition of

SFRs (Special Function Registers). The syntax of this text file is described

in the next section. The rm68 tool always generates a fixed set of registers

in the binary output file. If no register-file is supplied, only this set is

generated. A list of the fixed set appears in the section Fixed Register Set.

Appendix BB–4
R

E
G

IS
T

E
R

 M
A

N
A

G
E

R

The -o outfile option lets you specify the name of the generated binary

register file. If you omit this option, the default outfile name is reg*.dat .

The -? option causes rm68 to print a tiny manual, and the -V option

prints the version header only.

3 SYNTAX OF A REGISTER FILE

The syntax of the register file is quite simple. Comment starts with a

semi-colon (;) and ends at the end of the line.

Register file syntax:

name size { [base+]address | REGISTER:id} attribute [; comment]

Field Values:

name A unique register name. If a name is multiply defined an

error is issued. If a fixed name is redefined, a warning is

issued and the redefinition is ignored.

size The SFR size in bits (8, 16 and 32).

base+ You can use this optional prefix for SFR addresses that are

relative to a special base register address. Supported base

addresses are:

IPSBAR_BASE Base address specified by Internal
Peripheral System Base Address
Register (MCF5280, MCF5282)

MBAR_BASE Base address specified by Module Base
Address Register (ColdFire, MC68330,
MC68340, MC68360)

MBAR2_BASE Base address specified by Module Base
Address Register (MCF5249)

SIMCR_BASE Control register block address indicated
by MM bit of SIM Configuration
Register (MC68331, MC68332,
MC68F375, MC68376)

BAR_BASE Base address specified by Base Address
Register (MC68302)

Register Manager B–5

• • • • • • • •

Setting the IPSBAR_BASE and SIMCR_BASE is explained in

the following section. See your CPU Manual for more

information on how to initialize the other base registers.

address An absolute address or an offset relative to a base register.

The last character identifies the format: h(ex), b(inary),

o(ctal), default is decimal. Alternatively you can use the $

prefix for hexadecimal numbers.

Hex format examples: 400h, $27

id A unique number 23 or higher. You can use the REGISTER:id
construction to add an internal register. Register numbers

0-22 are in use by the fixed register set.

attribute The following attributes are available:

R read only

W write only

RW read and write

- not accessible

Examples:

CCR 8 REGISTER:23 RW ; Condition Code Register
IMR 16 MBAR_BASE+$0036 RW ; Interrupt Mask Register
MCR 16 $fffa00 RW ; Module Control Register

4 SFR BASE ADDRESS REGISTER SPECIAL VARIABLES

Some 68K/ColdFire targets use base registers to determine where SFR

addresses are mapped in memory. In case of the base registers IPSBAR

(MCF5280 and MCF5282) and SIMCR (MC68331, MC68332, MC68336,

MC68F375 and MC68376), CrossView Pro cannot determine the contents of

the base register because its base address depends on the contents of the

base register itself. To know the contents of these base registers, you can

pass these to CrossView Pro through special variables: $IPSBAR_BASE and

$SIMCR_BASE.

Appendix BB–6
R

E
G

IS
T

E
R

 M
A

N
A

G
E

R

For example, if the MM bit in the SIMCR base address register is set, then

the SFR registers are located at memory locations 0xFFF000-0xFFFFFF. If

the MM bit is not set (zero), the SFR registers are located at

0x7FF000-0x7FFFFF. The corresponding value for $SIMCR_BASE will be:

If SIMCR[MM] = 0, $SIMCR_BASE = 0x7FF000

If SIMCR[MM] = 1, $SIMCR_BASE = 0xFFF000

At startup, CrossView Pro use the reset values of the corresponding base

address registers to initialize the special variables:

$IPSBAR_BASE = 0x40000000

$SIMCR_BASE = 0xFFF000

You can specify an alternative value, via the command line:

xfw68 ––IPSBAR_BASE= value
xfw68 ––SIMCR_BASE= value

It is your responsibility to keep the contents of these special variables

up-to-date. This means that when the IPSBAR register or SIMCR is

changed, you have to change the value of the corresponding special

variable.

For example, to change the IPSBAR register from the CrossView Pro

command window, use the following commands (in that order):

$IPSBAR = 0x80000001
$IPSBAR_BASE = 0x80000000

5 FIXED REGISTER SET

rm68 defines the following registers, and you cannot overwrite them.

D0...D7, A0...A7, PC, SR, USP, FP, SP, CCNT, CBRK

Table B-1: Fixed Register Set

Register Manager B–7

• • • • • • • •

D0...D7, A0...A7, PC, SR, USP

The standard 68K registers. Target-specific core registers (i.e.

ISP, DTT0) are specified in supplementary reg*.def files

provided with the debugger package. See the section

Derivatives for details.

FP, SP Pseudo registers defining the current frame pointer and stack

pointer, respectively.

CCNT, CBRK

Pseudo registers used by the simulator for profiling.

6 DERIVATIVES

The CrossView Pro package for the 68K/ColdFire contains a number of

register register files (reg*.def) and the corresponding binary files

(reg*.dat) in the etc directory. You can create your own version of an

existing file or build a new one for a derivative which is not (yet)

supported.

For instance, to create a binary version for the 68020, type:

rm68 reg68020.def –o reg68020.dat

The following rules are used to find the reg*.dat files:

1. Look if the files are present in the current directory

2. Use the etc subdirectory of your product tree.

Appendix BB–8
R

E
G

IS
T

E
R

 M
A

N
A

G
E

R

C

SOUND SUPPORT
(MS–Windows)

A
P
P
E
N
D
IX

Appendix CC–2
S
O
U
N
D

C

A
P
P
E
N
D
IX

Sound Support (MS–Windows) C–3

• • • • • • • •

You can have sound effects being played when a predefined event in

CrossView Pro occurs. You can configure the sound in the Sound settings

of the Control Panel of MS-Windows. Similar to assigning a sound to a

system event, you can assign a sound to a CrossView Pro event.

Currently the following events are supported:

Breakpoint hit

File has been downloaded

CrossView Pro has started execution

CrossView Pro is exiting

Run command/button

Step command/button

StepOver command/button

Halt command/button

Symbols Loaded

Fatal (system) error occurred

Non-fatal error

How to add sound support

1. Firstly all events must be specified to MS-Windows. You can do this by

adding the following lines to the Registry under:

 My Computer\HKEY_CURRENT_USER\AppEvents\EventLabels\

Use regedit to start the registry editor.

snd_xvw_bphit ”XVW Breakpoint Hit”
snd_xvw_download ”XVW Program Download”
snd_xvw_start ”XVW Start”
snd_xvw_exit ”XVW Exit”
snd_xvw_run ”XVW Run”
snd_xvw_step ”XVW Step Into”
snd_xvw_stepover ”XVW Step Over”
snd_xvw_stop ”XVW Stop”
snd_xvw_syms_load ”XVW Load Symbols”
snd_xvw_syserror ”XVW syserror”
snd_xvw_uerror ”XVW uerror”

2. You must also add the same list of keys (without values) to

 My Computer\HKEY_CURRENT_USER\AppEvents\Schemes\Apps\.Default\

3. Now go and start the Sound settings in your Control Panel. Here you can

assign a sound to each event. You can also assign None to an event, which

prevents CrossView Pro from playing a sound if that specific event occurs.

Appendix CC–4
S
O
U
N
D

4. For the sound effects to become operational, you also have to edit the

xvw.ini file. You can do this using any editor, e.g. the Windows

notepad command. Add the following line at an arbitrary line to your

xvw.ini file:

sound_effects: TRUE

It is also possible to disable the sound effects by changing this line into:

sound_effects: FALSE

Now all sound effects are disabled.

SIMULATOR
A

D
D

E
N

D
U

M

Execution EnvironmentSim–2
S
IM
U
L
A
T
O
R

A
D

D
E

N
D

U
M

Simulator Sim–3

• • • • • • • •

1 INTRODUCTION

This addendum contains information specific to the simulator version of

CrossView Pro for the 68K/ColdFire microprocessor family.

In general, the simulator for the 68K/ColdFire family attempts to duplicate

the behavior of the common architecture of the microprocessor family.

The simulator is a generic 68K/ColdFire family instruction set simulator,

and this package does not support processor-specific features. However,

there are several functional areas which deserve a brief discussion. The

following sections describe simulator-specific features.

2 SUPPORTED FEATURES

Except for the restrictions mentioned in section 3 in this addendum, the

simulator version of the debugger cleanly supports all the standard

features of CrossView Pro, including single stepping, breakpoints, trace

support, C expression evaluation and record/playback capability. With

respect to setting breakpoints the simulator version of the debugger is

capable of supporting all breakpoint types, including separate data-read

and data-write breakpoints. The simulator also supports code and data

coverage and profiling.

Because this is a simulator version, you do not have to setup

communication at startup, as with an emulator.

The transparency mode is available to enter simulator commands.

2.1 MAPPING MEMORY

Simulator memory is defined in terms of address blocks. Each address

block has a type (RAM, ROM, or IO_PORT), an associated address range,

and a slot number. In the default simulator configuration, slot number 0 is

type RAM and has and address range of 0 to 0x1FFFF (128K).

If your program won't fit in the first 128K of memory (covered by the

default address block in slot 0), then you need to define more simulation

memory before downloading your program. If you attempt to download

into an address for which there is no simulation memory, an error message

appears.

Execution EnvironmentSim–4
S
IM
U
L
A
T
O
R

2.2 SIMULATING I/O VIA I/O PORT ADDRESS BLOCKS

AND DEVICES

Simulation of a device is performed using the generic 'IO_PORT' address

block and device.

IO_PORT is a generic set of �registers" representing a device whose

behaviour is user-defined (a UART for example). A single device also

called the I/O PORT, is associated with this address block type. The device

contains a window which displays the current contents of the I/O Port

registers, and which also allows the behavior of the simulated device to

be controlled, either interactively or through the use of an I/O Port control

script.

When an IO_PORT address block is created via the S_ABA simulator

command, an I/O Port Device Window for the associated I/O Port device

will appear. This window displays the current value of a portion of the

register set, as well as two buttons labeled I/O Control and Setup.

For example, enter the following command in the Emulator Command

Window:

s_aba 14 io_port ffa000

Figure Sim-1: I/O Port device window

The Setup button brings up the I/O Port Setup dialog box, allowing you

to specify such attributes as the radix and size of displayed values,

enabling and disabling of event logging, the name of the log file, and the

control mode for this address block/device (Interactive or Script). See the

I/O Port Logging section below for more information.

Simulator Sim–5

• • • • • • • •

Figure Sim-2: I/O Port Setup dialog

The behavior of the device may be controlled either interactively or

through the use of a control script. The I/O Control button in the device

display window brings up a separate dialog through which the behavior of

the device is controlled. The dialog that is displayed after you click this

button depends on the I/O Control Mode field in the I/O Port Setup

dialog. The choices are Interactive and Script.

If the control mode for the device is Script mode, selecting the I/O

Control button will bring up the I/O Port Script Control dialog. This

dialog allows you to load and execute a script file which controls the

device's behavior. (See I/O Port Script Control for more details).

If the control mode for the device is Interactive mode, selecting the I/O

Control button will bring up the I/O Port Interactive Control dialog. This

dialog allows you to input a value into a device register and generate

interrupts at any time, even during instruction simulation. (See I/O Port
Interactive Control for more details).

Execution EnvironmentSim–6
S
IM
U
L
A
T
O
R

I/O Port Script Control

If the I/O Control Mode field in the I/O Port Setup dialog is set to be

Script, the I/O Port Script Control dialog will be displayed.

Figure Sim-3: I/O Port Script Control dialog

The script-based control window allows you to load and execute a script

file which controls the device's behavior. Using the I/O Port Control Script

language, the simulated device can be programmed to automatically

respond to CPU accesses to certain registers, change the values of

registers, delay for a specified amount of time, and generate interrupts.

See I/O Port Control Script Language for additional information on how to

generate a script. The script can be loaded, suspended, resumed, stopped,

and restarted at any time, even while instruction simulation is in progress.

To load a script, click the Load button. Once a script is loaded, the Start

button will start the execution of the script (simulation must be in progress

for the script to run). Once a script is started, the Suspend button will

suspend script execution until you click the Resume button. The Stop

button will stop a script that has been started. You can restart the script

with the Restart button. To unload a script, click the Unload button.

Simulator Sim–7

• • • • • • • •

The script control window also provides a 'show line information' mode

under which the current values of script variables and outstanding time

delays are displayed. To enable the 'show line information' mode, click the

Show Line Info button. To disable this mode, click the No Line Info

button.

I/O Port Control Script Language

The following is a list of statements supported in the I/O Port Control

Script language. See Scripting Examples for some scripting examples.

RVAL means an existing variable or a specified static value. V1 | V2 | ...

means that one of the specified values MAY optionally appear. <V1 | V2 |

...> means that one of the specified values MUST appear.

IOVAR <Var name> <BYTE|WORD|LONG> <RVAL offset>

Declare an I/O Variable, which gives the name, size, and offset of one

of the registers. Offset must be less than the size of the address block

(e.g. use 0 for the first address in the block).

INTR <RVAL Pri>

Send an interrupt using the autovector for the specified priority.

INTR <RVAL Pri> <RVAL Vec>

Send an interrupt using the specified priority and vector.

DELAY <Rval count> USEC | MSEC | SEC

Delay for the specified number of microseconds, milliseconds, or

seconds. If no unit is specified, microseconds are used. US,

MICROSECONDS, and MICROSECS are aliases for USEC; MS,

MILLISECONDS, and MILLISECS are aliases for MSEC: SECONDS is an

alias for SEC.

WAIT FOR <READ | WRITE | ACCESS> I/O Var Name

Wait for a read, write, or any access to a register by the (simulated)

CPU during instruction simulation. If no register is specified, a

read/write/access to any register in the address block will satisfy the

wait.

Execution EnvironmentSim–8
S
IM
U
L
A
T
O
R

<Variable> = <RVAL>

Set the value of the script local variable or I/O variable to the specified

RVAL. If the variable name is not recognized, a local variable with this

name is created; this is the mechanism by which local variables are

created.

<Variable> = <RVAL> <BINARY_OP> <RVAL>

Assign the result of the arithmetic operation to the script local variable

or I/O variable, creating a new local variable if necessary.

BINARY_OPs supported are +, -, *, /, << (left shift), >> (right shift),

% (modulo), & (binary AND), | (binary OR), and ^ (binary XOR).

Accepted aliases are MOD for %, AND for &, OR for |, and XOR for ^.

IF <RVAL> <COND_OP> <RVAL> THEN

....

ELSE IF <RVAL> <COND_OP> <RVAL> THEN

....

ELSE

....

END IF

Execute the first block of statements whose IF or ELSE IF condition is

satisfied. If no condition is satisfied, execute the ELSE block (if

present). Condition operators supported are =, !=, <, <=, >, and >=.

Accepted aliases are == for =, and <> for !=.

LOOP DO END LOOP

Loop indefinitely, executing the block of statements. DONE is an alias

for END.

LOOP <RVAL> TIMES DO END LOOP

Loop the specified number of times, executing the block of statements.

WHILE <RVAL> <COND_OP> <RVAL> DO END WHILE

Loop executing the block of statements while the specified condition is

true.

CONTINUE

Go to the start of the nearest enclosing loop/while

Simulator Sim–9

• • • • • • • •

BREAK

Go to the first statement after the end of the nearest enclosing

loop/while.

EXIT

Terminate execution of the script.

RAND

Special 'variable' which yields a (pseudo-)random number whenever

used as an RVAL. Cannot be assigned.

// or ; (semi-colon)

Comment strings. These and the following characters on a line are

ignored.

General script notes: Identifiers/tokens must be separated by white

space (spaces or tabs). Zero or one statement per line. In order to allow

the language to resemble C a little more, the following are true:

Parentheses are allowed but are simply matched up and ignored. Open

bracket is an alias for the ignored DO and THEN reserved words. Close

bracket is an alias for END. Close bracket followed by ELSE is an alias for

ELSE. Reserved words (e.g. INTR, DELAY) are case insensitive. Variable

names are case sensitive, and only the first 32 characters are significant. All

script local variables, including RAND, are 32-bit unsigned integers.

Atomic execution of control scripts is guaranteed. This means that while

the simulator is executing script statements, no instructions are simulated.

Instruction simulation resumes only when all active scripts are executing

WAIT or DELAY statements. When an instruction is executed which

satisfies an outstanding WAIT or DELAY, the simulator executes script

statements without simulation of instructions, until the script again WAITs

or DELAYs.

Execution EnvironmentSim–10
S
IM
U
L
A
T
O
R

Scripting Examples

Some script examples follow:

; Example 1
; Loop 10 times, inputting random values and
; generating interrupts.
; Register format:
; Offset Size Register Name Description
; 0 LONG InputReg Input Value
IOVAR InputReg LONG 0 ; 32–bit register at offset 0
LOOP 10
 InputReg = RAND ;Write a random value to the register
 INTR 6 ;Generate an interrupt using priority
 ;6 autovector
 WAIT FOR READ ;Wait for the CPU to fetch the
 ;input value
END LOOP

// Example 2
// Generate interrupts until the CPU writes a STOP
// command to the command register.
// Register format:
// Offset Size Register Name Description
// 0 BYTE CmdReg Command Register
// Register declarations
IOVAR CmdReg BYTE 0;
// ’Constant Variables’
STOP_CMD = 1;
DELAY_NUSEC = 800;
INTR_PRI = 6;
INTR_VEC = 100;
// Loop until the STOP command is received, sending
// interrupts and waiting.
while (CmdReg != STOP_CMD)
 INTR INTR_PRI INTR_VEC;
 DELAY DELAY_NUSEC;

Simulator Sim–11

• • • • • • • •

// Example 3
// Accept input X from the CPU, generate some f(X), and
// interrupt the CPU tosignal completion of the
// function.
// Register format:
// Offset Size Register Name Description
// 0 LONG InputValueReg Input value X
// provided by CPU
// 4 LONG CmdReg CPU–>device command
// –– if non–zero,
// find f(X).
// 8 LONG OutputValueReg Output value f(X)
// returned to CPU
// Register declarations
IOVAR InputValueReg LONG 0
IOVAR CmdReg LONG 4
IOVAR OutputValueReg LONG 8
loop
 // Wait for the command register to become non–zero.
 while (CmdReg == 0)
 WAIT FOR WRITE CmdReg;

 // Retrieve input X, find f(X), send output and
 // generate interrupt.
 X = InputValueReg;
 fX = X + 100; // Trivial f(X)
 OutputValueReg = fX;
 INTR 4

Execution EnvironmentSim–12
S
IM
U
L
A
T
O
R

I/O Port Interactive Control

If the I/O Control Mode field in the I/O Port Setup dialog is set to be

Interactive, the I/O Port Interactive Control dialog will be displayed.

Figure Sim-4: I/O Port Interactive Control dialog

The interactive control window allows you to input a value into a device

register and generate interrupts at any time, even during instruction

simulation. To input a value into a device register, enter the desired

register address into the Address field and the desired data value to be

sent to this register into the Data field. Once this has been done, click the

Send Input button to send the data to the specified register.

Interrupts can also be generated from this window. You can select the

priority of the interrupt and specify if the interrupt uses the autovector for

that priority interrupt or uses an alternate vector. If you want to use an

alternate vector, you can define the vector in the space provided. Once

you have defined the interrupt parameters, click the Interrupt button

when you wish to send the interrupt.

Simulator Sim–13

• • • • • • • •

I/O Port Logging

The "I/O Port Setup" window has fields that allow you to enable logging

and specify a log file where this information will be stored. I/O Port

Logging allows you to see the information sent from or to an I/O device.

An example listing of the information stored in a typical I/O device log file

is shown below:

DEV 02 < 00FFA000
DEV 02 < 00FFA000
DEV 000003E8 < 00FFA004
CPU 00 > 00FFA000
CPU 06 > 00FFA001
CPU 01 > 00FFA002
CPU 00 > 00FFA003
CPU 000003E8 > 00FFA004
CPU 02 > 00FFA000
DEV 01 < 00FFA002
DEV 06 < 00FFA001
DEV 02 < 00FFA000
DEV 02 < 00FFA000
DEV 000003E8 < 00FFA004

What does this information show you? Notice that each line either starts

with "DEV" or "CPU". If a line starts with "DEV", it means that the I/O

script for the device manipulated the data in the manner shown. If a line

starts with "CPU", it means that your code (and thus, the CPU)

manipulated the data in the manner shown. An example of each type of

access is shown as follows:

DEV 02 < 00FFA000 ;Script read byte 02 from device
 ;reg @ addr 00FFA000
DEV 06 > 00FFA001 ;Script wrote byte 06 to device
 ;reg @ addr 00FFA001
DEV 000003E8 < 00FFA004 ;Script read long word 000003E8
 ;from device reg @ addr 00FFA004
CPU 00 > 00FFA000 ;Code wrote byte 00 to device
 ;reg @ addr 00FFA000
CPU 06 < 00FFA001 ;Code read byte 06 from device
 ;reg @ addr 00FFA001
CPU 000003E8 > 00FFA004 ;Code wrote long word 000003E8 to
 ;device reg @ addr 00FFA004

I/O logging can also be controlled via the S_ABDEVSET simulator

command. See Setting I/O Device Attributes for more information.

Execution EnvironmentSim–14
S
IM
U
L
A
T
O
R

2.3 SETTING I/O DEVICE ATTRIBUTES

Each I/O device has an associated list of attributes, which may be viewed

and set. Use the simulator commands in the following table to view or set

I/O device attributes:

Command Purpose

S_ABDEVL Lists all devices currently configured

S_ABDEVLV Verbose listing of device attributes

S_ABDEVSET Set device attributes

The following is an example of a command with sample output from the

simulator.

To list the names of all devices currently configured:

s_abdevl

Slot Dev Device Name
14 0 I/O Port at 00FFA000

To list the attributes for a particular device:

s_abdevl 14 0

Device_Name=’I/O Port at 00FFA000’
Display_Window_Enabled=TRUE
Display_Window_Position=’(83,30,188,330)’
Display_Width=BYTE
Display_Radix=HEX
Control_Mode=INTERACTIVE
Control_Window_Enabled=FALSE
Interactive_Control_Window_Position=
 ’(291,50,491,320)’
Script_Control_Window_Position=’(239,42,489,407)’
Script_File=’’
Logging_Enabled=FALSE
Logfile=’’

To list the verbose attributes for a particular device:

s_abdevlv 14 0

Simulator Sim–15

• • • • • • • •

Device_Name{STRING}=’I/O Port at 00FFA000’
Display_Window_Enabled{BOOLEAN}=TRUE
Display_Window_Position{WINDOW_POSITION}=
 ’(83,30,188,330)’
Display_Width{ENUM BYTE,WORD,LONG}=BYTE
Display_Radix{ENUM HEX,DECIMAL}=HEX
Control_Mode{ENUM INTERACTIVE,SCRIPT}=INTERACTIVE
Control_Window_Enabled{BOOLEAN}=FALSE
Interactive_Control_Window_Position
 {WINDOW_POSITION}=’(291,50,491,320)’
Script_Control_Window_Position{WINDOW_POSITION}=
 ’(239,42,489,407)’
Script_File{FILENAME}=’’
Logging_Enabled{BOOLEAN}=FALSE
Logfile{FILENAME}=’’

To set selected attributes for a device:

s_abdevset 14 0 device_name=’Timer’logfile=
 mdgs.log

Logging occurs only if the device has logging enabled and logfile is

specified; the format of the logging information is address block

type-specific. Logging can also be enabled from the "I/O Port Setup"

window. See I/O Port Logging for additional information.

3 RESTRICTIONS

Facilities for background mode are absent in the simulator version of

CrossView Pro. As a consequence, the CrossView Pro commands CB, st, u,

ubgw and wt for background mode, are not available.

Execution EnvironmentSim–16
S
IM
U
L
A
T
O
R

4 SIMULATOR COMMANDS

S_ABA (Add an Address Block)

This command adds an address block at the specified address. If no end

address is specified, the default size for the specified type is used. The

format of this command is:

S_ABA addr_block_slot type start_address [end_address]

where:

addr_block_slot is the slot where the block is to be located

type is the address block type (RAM, ROM, or IO_PORT)

start_address is the beginning address of the block

end_address is the ending address of the block

S_ABD (Delete an Address Block)

This command deletes an address block in specified slot. The format of

this command is:

S_ABD addr_block_slot

where addr_block_slot is the slot to be deleted.

S_ABDEVL (List All Devices Currently Configured)

This command, when entered with no options, lists all devices that are

currently configured. If a certain device is specified, all attributes for the

device are shown. If you wish to list all devices that are currently

configured, the format of this command is:

S_ABDEVL

If you wish to view the attributes for a certain device, the format of this

command is:

S_ABDEVL addr_block_slot device_number

where:

addr_block_slot is the slot where the device is located

device_number is the number of the device

Simulator Sim–17

• • • • • • • •

S_ABDEVLV (Verbose Listing Of Device Attributes)

This command provides a verbose listing of the attributes for the specified

device. This verbose listing gives a description of the type along with

valid values for each attribute. The format of this

command is:

S_ABDEVLV addr_block_slot device_number

where:

addr_block_slot is the slot where the device is located

device_number is the number of the device

S_ABDEVSET (Set Device Attributes)

This command allows you to set the value of one or more attributes for

the specified device. The format of this command is:

S_ABDEVSET addr_block_slot device_number attribute_name=value

where:

addr_block_slot is the slot where the device is located

device_number is the number of the device

attribute_name is the name of the attribute to be changed

value is the desired value for the attribute

S_ABL (Display Address Block Attributes)

This command displays the type, size, start, and end addresses for the

specified address block, or for all active slots if none is specified. To

display the above information for all active slots, enter the following

command:

S_ABL

To display the above information for a specific slot, enter the following

command:

S_ABL addr_block_slot

where:

addr_block_slot is the slot where the device is located.

Execution EnvironmentSim–18
S
IM
U
L
A
T
O
R

SmartMON ROM
MONITOR

A
D

D
E

N
D

U
M

Execution EnvironmentRom–2
R

O
M

 M
O

N
IT

O
R

A
D

D
E

N
D

U
M

SmartMON ROM Monitor Rom–3

• • • • • • • •

1 INTRODUCTION

This chapter introduces SmartMON and some of its features. It includes the

following major sections:

• Overview

• SmartMON's Debugging Features

• SmartMON Distribution Contents

1.1 OVERVIEW

Welcome to SmartMON. SmartMON is a software-only, real-time debugger

that resides on your 68xxx target system. Once activated, you have access

to a powerful set of commands that let you control and monitor your

application software directly through CrossView Pro source-level

debugger. Figure Rom-1 shows the typical SmartMON debugging

configuration.

You can use a PROM programmer to burn SmartMON into ROM or use a

Flash programmer to program a FLASH device.

• SmartMON is a ROM monitor, and ROM monitors have existed since

the first 4-bit microprocessor. However, SmartMON gives you

several important advantages over older monitor technology:

• SmartMON has a far more extensive command language. In addition

to standard monitor features like software breakpoints, read/write

memory, read/write registers, and start/break execution, SmartMON

also allows tracing (instruction and data), data breakpoints,

conditional breakpoints, breakpoints on ROM code, and block

memory operations.

• SmartMON incorporates features that make it a valuable tool for

field testing and manufacturing QA. Its extensive custom

diagnostics, in addition to the SmartMON system call facility, allow

SmartMON to be used throughout the life cycle of your embedded

application. For example, SmartMON can be used by field-test

engineers to trouble-shoot systems via a terminal interface.

• Unlike most monitors, SmartMON has a built-in interface to the

CrossView Pro C source-level debugger. With CrossView Pro and

SmartMON, you get a powerful, real-time C source level debugging

solution that delivers increased efficiency for C programmers.

Execution EnvironmentRom–4
R

O
M

 M
O

N
IT

O
R

• Finally, SmartMON has been ported to many off-the-shelf single

board computers (SBC). The driver packages for some of these

SBC's are all included in this release. Batch files have been

supplied to build SmartMON for many popular VME boards or

683xx or ColdFire evaluation boards (sold by Motorola).

ËÊÊËËÊÊ

Your 68K or ColdFire

EPROMs or FLASH
containing SmartMON

RS–232 Cable

RS–232 Cable

PC or Workstation
running terminal emulation software

or the CrossView Pro C source level debugger

Terminal

Target Board

Figure Rom-1: SmartMon debugging configuration

SmartMON ROM Monitor Rom–5

• • • • • • • •

1.2 SMARTMON'S DEBUGGING FEATURES

The table below shows a list of SmartMON's commands that can be used

to debug your 68xxx application. A description of the major types of

commands follows.

Command Function Command Function

CF configure GO go

BD disable break point HE online help

BE enable break point IN initialize sequence

BF block fill RB remove break point

BM block move SB set break point

DB display break point SI single step

DC display configuration SM set memory

DF diagnostic functions SO step out of range

DI disassemble SR set register

DL download S record SS search for string

DM display memory TE enable trace

DR display registers TD disable trace

DT display trace UD user diagnostics

Table Rom-1: ROM monitor commands

1.2.1 INITIALIZE AND DOWNLOAD

SmartMON includes a special initialize command that re-boots the

software system and executes the RMAIN initialization code. RMAIN is part

of the Target Interface Package (TIP) which must be modified for your

hardware environment.

Through RMAIN, you have the choice of entering the debugger upon

initialization and power-up, or booting your application software directly.

If you boot your software upon initialization, SmartMON can remain

dormant in your product and invoked at anytime with a control-C

character through the serial port.

Execution EnvironmentRom–6
R

O
M

 M
O

N
IT

O
R

1.2.2 STEPPING, EXECUTING, AND HALTING

SmartMON provide a full set of commands that let you single step,

multi-step, or run your application in real-time. You can optionally

request to see disassembly or register display with every step command.

The debugger supports both interrupt-driven and polled I/O serial

communications. If you use an interrupt-driven I/O driver, you can halt

your software application by typing a control C at the host or terminal. If

you are using a polled I/O driver, you may want to include a hardware

means to break execution, for example, an abort button.

1.2.3 SETTING BREAKPOINTS

SmartMON offers numerous breakpoint commands that result in a

powerful and flexible means to control your application program. The

debugger implements real-time breakpoints by substituting trap

instructions at specified RAM addresses. You can append conditions to

these real-time breakpoints to form complex breakpoints. SmartMON also

cleanly handles breakpoints in interrupt service routines.

Through a unique assertion mode, you can instruct SmartMON to break on

ROM based code. The debugger builds a table containing ROM based

breakpoints, and then after a GO command is issued, it steps the processor

and compares the next instruction's address with the addresses in the

breakpoint table.

Also through this assertion mode, SmartMON implements data breakpoints.

It builds a table of memory or register values that you wish to halt the

processor. While the assertion mode does not execute in real-time, it can

offer an invaluable tool in finding complex system bugs.

1.2.4 FULL DISASSEMBLER

SmartMON includes a full-featured disassembler that gives you an intuitive

display of target memory, as well as the trace buffer. (Extended version

only.)

SmartMON ROM Monitor Rom–7

• • • • • • • •

1.2.5 DISPLAYING AND SETTING MEMORY AND

REGISTERS

SmartMON gives you full control over your target's memory and registers.

With the display memory command, the debugger shows you the hex

values and the ASCII equivalents.

1.2.6 TRACING

SmartMON includes a unique trace capability allowing a history of

program execution to be stored in the target's local memory (trace buffer).

This gives the user the ability to playback program execution. The

program playback includes not only the instruction executed, but also the

data movements associated with the actual operation. (Data movement is

available only in the extended version of SmartMON.)

For example, let's say the contents of one register, the source, is to be

transferred or moved to another register, the destination. The playback will

show the values contained in the source register, the destination register

prior to the move, and the destination register after the move. When

tracing is enabled, user code does not execute in real time, but debugging

with tracing typically provides a higher confidence level when you begin

debugging your code in real-time. Tracing may be selectively enabled or

disabled.

1.2.7 DIAGNOSTIC CAPABILITIES

SmartMON provides memory tests and scope loops for testing specific

areas of the target. Also embedded in SmartMON is a diagnostic executive

which can control the execution of user-written diagnostics. These

diagnostics, may be burned into ROM with SmartMON or down-loaded

into RAM and executed. SmartMON creates a menu of available tests,

which may be executed in batch mode or one at a time. (Extended version

only.)

Execution EnvironmentRom–8
R

O
M

 M
O

N
IT

O
R

1.2.8 SYSTEM CALLS

SmartMON also supplies a mechanism that lets you access SmartMON's

features and services from your application code. By embedding system

calls in your diagnostic routines, you can create a suite of interactive tests

that can be run during field testing, manufacturing QA, or when isolating

failures in the repair department.

SmartMON handles all character transmission and reception, including

flow control and line buffering. These services allow the diagnostic

engineer to make his tests interactive with the user. The system calls may

also be used by the system software designer as a means of reporting

errors to a local terminal or modem.

1.3 SMARTMON DISTRIBUTION CONTENTS

SmartMON supports a variety of Motorola 68K/ColdFire target

microprocessors.

SmartMON is normally delivered with the CrossView Pro Source Level

Debugger. The SmartMON distribution contains the following

subdirectories:

• lnfiles - Two object files are supplied: smon68kb.ln and

smon68ke.ln . These are the core of the basic and extended

versions of SmartMON, respectively.

• boards - There are several subdirectories under boards , one for

each supported target board. Everything is included to build the

ROM monitor for the target board. Alternatively, you may use one

of the supported targets as the basis for customizing the ROM

monitor to another board.

• drivers - Sample drivers for controlling UART chips reside in this

subdirectory.

SmartMON ROM Monitor Rom–9

• • • • • • • •

2 USING SMARTMON

This chapter describes the operation of SmartMON on your embedded

microprocessor board. It should be read and understood before you

proceed to the next chapter. Understanding SmartMON's basic operation

will allow you to more easily follow the TIP (Target Interface Package)

examples and make the necessary modifications for your board. This

chapter includes the following major sections:

• Overview

• SmartMON's Resource Requirements

• SmartMON's Use of Interrupts and Traps

• The Three Operational Modes of SmartMON

• How SmartMON Sets Breakpoints

• SmartMON's Tracing Features

• Single Stepping and Step-out-of-range

• The Six Different Submodes of Execution Mode

• How SmartMON Processes I/O

• How SmartMON is Initialized

• Run-time Notes

2.1 OVERVIEW

SmartMON is a command line driven, software debugger that resides on

your 68xxx target board. It controls and monitors your embedded software

application in response to user commands that are sent to it over the serial

communications line.

SmartMON allows you to run your application in real-time, without any

performance penalty placed on your target system. To achieve this

real-time performance, you should execute your code (issue a GO

command) with only code breakpoints set, and no ROM based code

breakpoints set.

SmartMON also gives you advanced features for tracking-down complex

bugs. Some of these features, such as data breakpoints, breakpoints on

ROM code, and tracing, require that SmartMON be activated during the

running of your application code, which means that your code does not

run in real-time. However, you will still find that these features afford you

quite a bit of flexibility and power in isolating target problems.

Execution EnvironmentRom–10
R

O
M

 M
O

N
IT

O
R

2.2 SMARTMON'S RESOURCE REQUIREMENTS

SmartMON requires the following resources from your target system:

Code Space

54 Kbytes for the extended version, 20 Kbytes for the basic version.

SmartMON is typically burned into ROM, but it can also be downloaded

and booted from RAM.

Data Space

6-21 Kbytes of RAM (This includes SmartMON's internal data structures

and a 1 Kbyte trace buffer. The trace buffer can be expanded in 1K

increments up to 16K).

Traps

The 68xxx trace vector and 2 user-defined traps, one used for

breakpoints, and the other used for entering SmartMON. For

interrupt-driven I/O, a serial port interrupt is also required.

2.3 SMARTMON'S USE OF INTERRUPTS AND TRAPS

Most microprocessors support interrupts. An interrupt changes the normal

flow of program execution and passes control to an interrupt service

routine (ISR). When the ISR has completed, control returns to the next

instruction in the normal program flow.

The 68000 has 3 interrupt lines, allowing 7 levels of interrupts to occur.

For instance, if an interrupt is generated by a serial device (indicating a

character has been received or transmitted), the processor passes control

to an ISR routine to handle that interrupt. This is achieved by vectoring to

an address specified in the Exception Vector Table (EVT). The address of

the ISR is loaded into the vector table during SmartMON initialization. The

addresses of the breakpoint and system traps are taken from information

provided by the configuration table, found in the user equates file,

USREQU.68k. The I/O ISR address is taken from portinit in

io_drv.68k.

A TRAP works in much the same way as an interrupt. Unlike interrupts,

however, traps are actual machine instruction that cause exceptions. High

level or compiled code usually does not contain traps. SmartMON makes

use of this by temporarily placing them into user code for breakpoints.

SmartMON ROM Monitor Rom–11

• • • • • • • •

When the trap is encountered, execution is passed to a SmartMON

exception-handling routine. Traps, therefore, provide a means to halt

program flow deliberately and at specific points in user code. Once the

program is halted, SmartMON can ascertain information about the target.

For example, when power is first turned on, control jumps to the routine

pointed to by the restart vector. When a breakpoint trap occurs in user

code, control is passed to SmartMON through the breakpoint trap vector.

Similarly, when a serial port interrupt occurs, the address in the vector

table points to the serial port interrupt service routine.

Finally, the SmartMON system uses a trap that is referred to as the �pointer

to SmartMON." This is the trap that is used to enter the debugger for most

circumstances (other ways to enter or activate the debugger are via the

breakpoint trap or a call to the initialization routine, RMINIT).

Execution EnvironmentRom–12
R

O
M

 M
O

N
IT

O
R

restart vector

trace vector

break point trap

pointer to SmartMON

interrupt for serial port

USER

CODE

INIT

CODE

Serial

Port

ISR

SmartMON

CODE

 NOTE:
This is the trap
used for entering
SmartMON. It is
also referred to as
the ROMM trap in
the manual.

Restart Vectors to Initialization Code

Figure Rom-2: Traps and Interrupts Used by SmartMon

Typically before this ROMM trap is used, a code is loaded into D0 that tells

SmartMON the reason why it has been entered. For example, D0=5 is a

ROMM_GO code, which tells SmartMON that it is being invoked after system

initialization or directly from the application code.

SmartMON ROM Monitor Rom–13

• • • • • • • •

The general term for using this SmartMON enter trap is �system calls." It is

very important to note that system calls have two distinct functions:

Required System Calls

There are two instances when you must use system calls. One is in the

RMAIN.68K routine after the system has been initialized and you are ready

to enter the debugger (although one option is not to boot the debugger at

all, but rather directly boot your application code and have SmartMON lie

dormant). This is the ROMM_GO system call, D0=5. The other instance of

required system calls is in the serial port driver routines to re-enter

SmartMON after the ISR has executed (or after your polled I/O routine, if

you are not using interrupt driven I/O). Here, the system call is not an

option, but rather the predetermined scheme for SmartMON to process

characters. The next chapter, Creating the TIP, explains more about using

these required system calls in the initialization module (RMAIN.68K) and

the I/O driver (IO_DRV.68K).

Optional System Calls

SmartMON gives you the ability to use system calls directly from your

application code. The best use of these optional system calls is for

character I/O routines, where you want your code to output a test

message by sharing SmartMON's resources and serial driver routine.

Both the required and optional system calls are described further in the

System Calls chapter.

2.4 THE THREE OPERATIONAL MODES OF SMARTMON

At any one instance, SmartMON is in one of these three modes:

Command Mode

When the monitor is continuously active and running on the target

microprocessor, it is in command mode. In this mode, SmartMON may

accept commands from a host or terminal to perform such tasks as

examining the stack, registers, and memory, or to resume target program

execution.

Execution EnvironmentRom–14
R

O
M

 M
O

N
IT

O
R

Execution Mode

Whenever the user application code is running, the monitor is in

execution mode. Since it is not active, it cannot accept commands from the

terminal or from CrossView Pro. There are five ways to force SmartMON to

become active, thereby leaving execution mode and entering command

mode.

• Encounter a previously set breakpoint.

• Type a control-C from CrossView Pro or a control-X from a dumb

terminal (or from CrossView Pro's transparency mode).

• Use the ROMM_GO system call (D0=5) from the application code.

• Turn tracing on. Through the trace vector, SmartMON will become

active after each instruction is executed.

• Encounter an interrupt or trap that was not assigned by the user.

Download Mode

Whenever you issue a download command from command mode,

SmartMON goes into a special download mode in which all subsequent

data is loaded into the target system's RAM. The download information is

in Motorola standard S-record format. This download mode is terminated

when an EOF (end-of-file) S-record is received. Download can also be

terminated by typing a control-C from CrossView Pro or a control-X from

a dumb terminal (or from CrossView Pro's transparency mode).

2.5 HOW SMARTMON SETS BREAKPOINTS

Breakpoints are the primary mechanism used to control the execution of

your program. While SmartMON is a software-only debugger that does not

have hardware to monitor the bus (which means that hardware

breakpoints cannot be accomplished), it does offer several flexible

breakpoint schemes. These are:

• Real-time simple instruction breakpoints on RAM code.

• Real-time instruction breakpoints on RAM code, with comparisons

and actions to be automatically executed after the breakpoint is hit

(complex breakpoints).

• Non-real-time instruction breakpoints on ROM code, either simple

or complex.

• Non-real-time data breakpoints.

SmartMON ROM Monitor Rom–15

• • • • • • • •

• Any of the above breakpoints with tracing enabled; the first two

breakpoint classes become non-real-time when the tracing feature

is enabled

The sections below describe how SmartMON sets the breakpoints listed

above.

2.5.1 SETTING BREAKPOINTS ON RAM CODE

WITHOUT TRACE MODE ACTIVE

If the user wishes to set a breakpoint in his code, he must use the SB (set

breakpoint command), which will instruct SmartMON to install a

breakpoint at a specific location in memory. When this command is

received, SmartMON goes to that specific location in memory and removes

the instruction stored at that location and installs a TRAP instruction in its

place. This means that when the user's program encounters that location, a

TRAP will occur which will activate SmartMON. Once activated, SmartMON

stores away the register contents and removes the TRAP instruction

replacing it with the original code. This allows real-time execution of user

code during debugging.

2.5.2 INSTRUCTION BREAKPOINTS ON ROM CODE

As previously mentioned, breakpoints are achieved by installing trap

instructions in the user code. However, this can only be done when the

user code is in Read/Write memory. In order to achieve breakpoints in

read only memory, a breakpoint table is built, and the user program is run

with trace enabled. After the execution of each instruction, SmartMON

examines the table to look for a match. If the current address equals one

of the addresses in the table, a break will occur.

2.5.3 DATA BREAKPOINTS

Using the breakpoint table also enables SmartMON to break on data. The

user can define a conditional break when data at a particular location

equals a specified value. This is achieved in trace mode. After each

instruction execution, the address specified is checked for the required

value. If the value is equal to the conditions set forth then a break occurs.

Execution EnvironmentRom–16
R

O
M

 M
O

N
IT

O
R

2.5.4 COMPLEX BREAKPOINTS

Complex breakpoints allow many options in debugging. It allows you to,

after reaching an address, check either a register or memory location for

specified values before taking the breakpoint. This is very useful for

debugging modular code which has global variable access. You may want

to use this feature for single stepping a certain routine after a specific

variable changes. This would be accomplished by setting a complex

breakpoint in the function, after the specific variable reaches a certain

value. Then, you may begin single stepping.

2.6 SMARTMON'S TRACING FEATURES

One of the unique features of SmartMON is its Tracing capabilities.

SmartMON has the ability to replay code execution, which is achieved by

running your code with trace enabled. This tracing may be set for Program

Counter (PC) only or full trace with data movements. Once enabled,

information is stored in a trace buffer (an area in target RAM reserved for

SmartMON) after every instruction is executed. When execution is halted

and command mode is entered, the trace buffer may be displayed, either

forward or backward, showing the disassembled code that has executed.

This feature is further enhanced when full trace is enabled. Full trace

includes the data movements associated with each executed opcode in the

trace information.

Tracing would typically be used when you are trying to find a problem in

a subroutine. Let's say you are single stepping through code with full trace

enabled, when you encounter the subroutine in question. You may issue

the GON (go next instruction) command, which allows the subroutine to

execute without having to single step through each instruction. When the

routine returns, SmartMON indicates the call is complete. At this point,

simply play back the trace buffer to not only see if the bug is in the

subroutine, but also to find the source of the problem. This technique

allows you to quickly find the offending module. Alternatively, simply

setting a breakpoint and running with trace enabled will allow you to play

back information prior to that breakpoint.

SmartMON ROM Monitor Rom–17

• • • • • • • •

2.6.1 TRACE POINTS

One issue that causes problems is using tracing to debug time-critical

code. SmartMON supplies a trace point feature which uses conditional

breakpoints to allow trace to be enabled or disabled. For example, if an

ISR is time critical and you do not wish to include a trace history on this

event, setting a Trace disable at the entry to the ISR and a trace enable at

the exit allows the routine to run in real-time.

>SB ea0000 > td;when ea0000 is encountered stop trace
>SB ea000f > te;when ea000f is encountered start trace

This feature may be used in another way. Lets say that you have a

common time out loop and you would like to know what code executed

prior to entering this loop. You could accomplish this by setting a

conditional breakpoint and disabling trace at the beginning of this loop.

You may stop the code by setting a breakpoint after the time out loop

routine or by typing ^C if you know the code is stuck looping. The trace

buffer will now contain the code that was executed prior to this loop.

2.6.2 TRACE BUFFER OPERATION

The trace buffer is a FIFO architecture and stores the previously executed

instruction. The trace buffer is configurable from 1k to 16k bytes in size.

This allows users with limited memory space to tailor the buffer size to

their environment. When tracing with data movements is enabled,

approximately 50 instructions are stored per kilobyte. When tracing PC

only is active, 128 instructions per kilobyte is possible. This gives you 2048

of the previous instructions executed when using a 16k trace buffer using

PC only trace and 800 instruction with full data movements.

2.7 SINGLE STEPPING AND STEP-OUT-OF-RANGE

These two SmartMON features are accomplished by the debugger's general

tracing capability. Single stepping allows the user to step through his code

for debugging. This is done by an SI command, which instructs SmartMON

to execute a single instruction. To accomplish this, SmartMON sets the

trace bit in the processor status register. which causes an exception after

each instruction is executed. This trace exception causes SmartMON to be

re-activated, and only one instruction in user code is executed.

Execution EnvironmentRom–18
R

O
M

 M
O

N
IT

O
R

The Step-out-of-range function allows the user to set a range of addresses

within which to execute. If the code steps outside this range, then the

program will halt and SmartMON is entered. This function also operates by

setting the processor's trace bit and forcing a trace exception after each

instruction is executed.

2.8 THE SIX DIFFERENT SUBMODES OF EXECUTION

MODE

Within execution mode, SmartMON has six different way of executing

your code. These submodes depend on what types of breakpoint are set,

and whether or not tracing has been set. The execution submodes are:

Running Real-time

User code is running real-time and SmartMON has no impact on system

performance.

Running Real-time with Breakpoints

User code is running real-time and breakpoints are installed; when a

breakpoint is encountered, user program execution will stop and

SmartMON becomes active.

Tracing (PC only)

User code is running with tracing enabled; after executing each line of

user code, SmartMON is activated and stores the PC value in the trace

buffer then continues to allow the next line of user code to execute. User

code now executes approximately 100 times slower than normal.

Tracing (PC only) with Assertions

User code is running with tracing enabled; in addition to storing the PC

value, other conditions are being tested such as data breakpoints, step out

of range, etc.

Tracing (PC and Data Movements)

User code is running and tracing is enabled; in addition to storing the PC

value, the instruction is disassembled and the data movements associated

with the operation are stored in the trace buffer. This will cause the user

code to execute at approximately 800 times slower than normal.

SmartMON ROM Monitor Rom–19

• • • • • • • •

Tracing (PC and Data Movements) with Assertions

User code is running with full tracing and other conditions are being

tested.

2.9 HOW SMARTMON PROCESSES I/O

SmartMON allows two different types of I/O schemes, interrupt driven I/O

and polled I/O. Interrupt driven I/O is recommended because it provides

the best performance and because it allows you to break the execution of

the application code by typing a control-C at the host or terminal .

However, sometimes the polled I/O scheme must be used because of the

device type, or a lack of available interrupts.

With either interrupt driven or polled I/O, SmartMON requires a driver

routine called IO_DRV.68K . This routine, along with five other routines,

make up the TIP, Target Interface Package. The next chapter tells you how

to modify or supply a TIP for your board. Because I/O drivers, both

interrupt-driven and polled, are supplied for the most widely used

USARTS, chances are that you will only have to choose the proper driver

from the supplied library and make minor modifications.

The next several pages give you an overview of how SmartMON processes

serial I/O.

Execution EnvironmentRom–20
R

O
M

 M
O

N
IT

O
R

2.9.1 INTERRUPT DRIVEN I/O

Whenever either the target (SmartMON) or the host wants to send a

character, it places it in the serial device, called the USART (universal

synchronous/asynchronous receiver/transmitter). The serial I/O device

generates an interrupt, which invokes an interrupt service routine. For

most serial devices, there are separate ISRs for transmit and receive;

however, sometimes only one ISR handles both cases.

A flowchart of how SmartMON and the serial driver process characters for

interrupt driven I/O is shown in Figure Rom-3. For example, suppose the

Host sends a character to SmartMON. This character is received by the

serial port device, which generates an interrupt to the processor indicating

that a character is available in its input buffer. This interrupt signal causes

the processor to pass control to an ISR (the address of which is stored in

the appropriate place in the EVT). The receive ISR then takes the character

from the serial port buffer and places the character in the D1 register.

Then, an INT_RX code is loaded into D0 and the ISR traps to SmartMON.

SmartMON recognizes the INT_RX code in D0, so it knows to process the

character that was passed to it in D1.

When SmartMON wishes to send a character to the Host, it follows a

slightly more complicated procedure. SmartMON must first indicate to the

USART that a message is about to be sent. To start this process, SmartMON

calls a routine called TX_CHAR, with the first character of the string to be

transmitted in register D1. TX_CHAR takes the character from D1 and places

it in the serial port output buffer. The remaining characters are transmitted

by the transmit ISR. This is possible because after the first character has

been transmitted the interrupt generated indicates that the serial device is

ready for the next character. The transmit ISR, when first entered, places

an INT_TX code in D0 and traps to SmartMON. SmartMON returns to the

ISR with the next character for transmission in D1. This process continues

until SmartMON has no more characters to send, in which case it places a

NO CHAR in D0.

SmartMON's steps to transmit characters is summarized below:

1. SmartMON has a message for the host.

2. In order to prepare the USART to transmit characters, SmartMON calls

TX_CHAR with the first character in the message.

3. TX_CHAR writes the first character of the message to the serial port,

enables serial port interrupts and returns to SmartMON.

SmartMON ROM Monitor Rom–21

• • • • • • • •

4. When the USART is ready for the next character, an interrupt occurs which

invokes the transmit ISR.

5. The transmit ISR places an INT_TX code in D0 and traps to SmartMON.

6. SmartMON recognizes the INT_TX code in D0, places the next character in

D1 and returns to the ISR.

7. The transmit ISR writes the character in D1 to the serial port.

8. Upon completion the ISR traps to SmartMON with INT_COMP. SmartMON

does not return to the ISR after this system call.

9. Steps 4-8 are repeated for each character of the message. When

SmartMON has no more characters to send, it places a NO CHAR value in

D0.

Execution EnvironmentRom–22
R

O
M

 M
O

N
IT

O
R

SYSTEM CALL

int_enter

Read USART
Status

Is

Interrupt

TX?

Is

Interrupt

RX ?

YES

NO

YES

YESNO
NO

SYSTEM CALL
int_tx

Read Character
From UART

Is

There A

Character

?

SYSTEM CALL
int_rx

Spurious
Interrupt Clear

Output CHAR

to UART

SYSTEM CALL
int_comp

Figure Rom-3: Character processing for interrupt driven I/O

SmartMON ROM Monitor Rom–23

• • • • • • • •

Figure Rom-3 shows the flow of the serial port ISR. The ISR first traps to

SmartMON with an INT_ENTER (interrupt enter) code to signal that an

interrupt has occurred. Control is then returned back to the ISR, which

checks for a character having been transmitted. If so, it asks SmartMON for

a character by making an INT_TX system call. If SmartMON returns a

character, it is written to the USART. The ISR then exits after calling

SmartMON with an INT_COMP (interrupt complete) code in D0.

If a character has been received, the ISR reads the character from the

USART, and passes it to SmartMON with a INT_RX system call. The ISR the

exits after making an INT_COMP system call.

2.9.2 POLLED I/O

In the polled environment, characters are passed from SmartMON to the

Host by placing a character in the serial port transmit buffer. Unlike

interrupt-driven I/O, which will create an interrupt when the USART

transmit buffer is empty, the TX_CHAR driver must monitor the USART's

status by waiting for the transmit buffer empty status to indicate that the

character has been transmitted. At that point, the TX_CHAR routine will

make a system call to request another character. If a character is available,

it is placed in the serial device's transmit buffer. This process continues

until the system call indicates that there are no more characters available.

At this point, the TX_CHAR routine returns to SmartMON. See Figure

Rom-4 for the flowchart of a polled transmit routine.

When the host transmits a character to SmartMON, the program is looping

and continually calling RX_CHAR looking for another character. When a

character is received, it is placed in SmartMON's line buffer. This process

continues until a complete message is received. At which point,

SmartMON will process the command. If additional characters are sent

during command processing, an overrun condition may occur. This should

not be a problem under normal operation. See Figure Rom-5 for the

flowchart of a polled receive routine.

Execution EnvironmentRom–24
R

O
M

 M
O

N
IT

O
R

Write Character
To UART

YES

NO

NO

YES

Read UART
Status

Is
TX Buffer

Empty
?

SYSTEM CALL
int_tx

Is
There A
CHAR

?

SYSTEM CALL
int_enter

Figure Rom-4: Transmitting polled I/O characters

SmartMON ROM Monitor Rom–25

• • • • • • • •

Read UART
Status

NO

YES

Is
RX Buffer

Full
?

SYSTEM CALL
int_rx

End

Figure Rom-5: Receiving polled I/O characters

2.9.3 CHARACTER BUFFERING

SmartMON communicates with the host by means of a line buffer. This

means a command is not processed until a line has been entered. A line is

defined as a series of characters terminated with a Carriage Return. This

allows the editing of a line before it is processed. Once a complete

command has been entered, processing begins. SmartMON allows type

ahead for one line which means that characters may be entered at the

same time the previous command is being processed. This type ahead

feature also generates an XOFF to the host when a complete command is

in the type ahead buffer.

Execution EnvironmentRom–26
R

O
M

 M
O

N
IT

O
R

2.9.4 I/O SYSTEM CALLS

As discussed earlier in the SmartMON's Use of Interrupts and Traps section

earlier in this chapter, SmartMON must be re-entered after the I/O driver

routine, IO_DRV.68K , has received or transmitted or character (or

determined that there are no more characters to process.) As with all

system calls, the way to do this is via the ROMM trap (the SmartMON enter

trap) and an enter code in D0. The code in DO tells the debugger why it

has been entered. In the case of the I/O routines, the I/O data, if any, will

be located in D1.

The function codes and parameters passed via the ROMM trap are defined

as follows:

Codes Function Response

code in D0 = 01 ISR enter code none

code in D0 = 02 ISR exit code none

code in D0 = 03 transmit character tx_char (D1), no char flag (D0)

code in D0 = 04 receive character rx_char (D1)

code in D0 = 05 SmartMON enter code none

Table Rom-2: Function codes

2.10 HOW SMARTMON IS INITIALIZED

SmartMON is initialized through one of two functions. The first function,

(RM_INIT), is called by the board initialization code, (RMAIN.68k).

SmartMON configures itself according to the data contained in the

configuration table found within the USREQU.68k file. This allows the

user to define SmartMON's resources, such as the beginning of

SmartMON's RAM space, which traps are to be used, etc. The (RM_INIT)

function builds the vector table with a generalized exception and installs

all the traps to be handled by SmartMON. It also sets up all data structures

and variables required by SmartMON.

SmartMON ROM Monitor Rom–27

• • • • • • • •

The second function is (NV_RM_INIT). This a non-vectored ROM monitor

initialization routine. This is supplied for those users who wish to build

their own vector table. This normally applies to applications where the

vector table is in Read Only Memory (ROM). This initialization routine sets

up SmartMON without building the vector table. The user must install

SmartMON's vector addresses into the vector table in order for SmartMON

to operate properly.

The next chapter, Target Interface Package, explains these two

initialization options in greater detail.

2.11 RUN-TIME NOTES

This section provides some helpful notes about running your application

code in conjunction with SmartMON. Figure Rom-6 shows graphically

how SmartMon interacts with your application code.

2.11.1 STACKS

SmartMON will always execute in supervisory mode. The User will allocate

at least 6K of RAM for SmartMON's variables, stack space, and trace buffer.

This will suffice for proper SmartMON operation. However, in some cases,

such as system calls, where SmartMON has not gained total control over

the processor and the user's code, SmartMON will rely on the user's

supervisory stack. SmartMON needs a minimum of 24 bytes in order to

operate. We do recommend having more stack space available.

2.11.2 INTERRUPT SERVICE ROUTINES

If you have interrupt service routines (ISR) that will continue to execute

while SmartMON is active, there are a few precautions that should be

followed. Upon entry, your ISR must save all of the microprocessor's

registers before they are used. Any register that is used for pointing to

global data space must be reinitialized. Upon exit, all registers must be

restored. This will ensure proper SmartMON operation. Please note that

the system calls INT_ENTER, INT_COMP, INT_RX, and INT_TX are only

required for SmartMON's I/O communications.

Execution EnvironmentRom–28
R

O
M

 M
O

N
IT

O
R

Instruction #1

When trace mode is enabled,
SmartMON is activated after every
instruction.

The breakpoint table is checked after each
instruction in trace mode. If a value in the table
matches current conditions, the SmartMON does
not return to user code.

Breakpoint
Table

Trace
Buffer

SmartMON

The PC value is stored in the
trace buffer after each instruc–
tion is executed in trace mode.

Serial Port
ISR and
Driver

Init Code

SmartMON
returns to
execute the
next instruction
if a break
condition is not
encountered.

Breakpoint
encountered.

A ctrl–C is
received over
serial port.

Instruction #2

Breakpoint Trap

GO command
goes from current
PC value.

RS–232
Hard–
ware

Target ROM

USER CODE

Figure Rom-6: Application code interaction

SmartMON ROM Monitor Rom–29

• • • • • • • •

2.11.3 DOWNLOADING AN ISR FOR DEBUGGING

If the user is going to download interrupt service routines for debugging,

then the addresses of these exception routines may be pre-defined. Once

these routines are debugged, then its only a matter of changing their

addresses to reside in ROM. This task can be accomplished with some

additions to the RMAIN.68K module and the use of your Locating Tools.

Example

SmartMON will be burned into PROM, whose address starts at 000000.

There will be 64K of RAM space residing at hex address E90000, which

will be used for downloading and debugging user code. The Vector Base

Register will reside at hex address E80000. We would like to debug a timer

interrupt service routine named �timer". The vector address of the timer

ISR is at hex offset 200 off the VBR. We have defined other user defined

vector routines in RMAIN.68K using the declare long address (dc.l
routine name). The following is the modifications to the RMAIN.68K code:

Define the timer routine to be externally referenced:

XREF TIMER

Declare the timer routine to be a long address:

DC.L TIMER

Install the timer routine's address at hex offset 200 of the vector base

register:

MOVE.l # TIMER,$E80200

During the locate part of the build process in the locate command file add:

Declare the _timer routine’s address to be hex E90000.

After SmartMON has been built and burned into PROMS, then at offset 200

off the VBR, there will be the timer ISR's address 00E90000. The only

modification necessary to the user's build process is to add a locate

statement directing the timer routine to reside at hex E90000. For example:

LOCATE (timer : #E90000);

Execution EnvironmentRom–30
R

O
M

 M
O

N
IT

O
R

After downloading the user code, the timer ISR will reside at address

$E90000. This will coincide with the vector offset pointer at $200. The

timer ISR may now be debugged.

2.11.4 SYSTEM CONTROL

The routines SYSSTP.68K and SYS_GO.68K have been provided so that

target hardware functions may be disabled and re-enabled while

SmartMON is active. This is particularly useful for controlling timer

hardware. For example, if you need to suspend your timer when not

operating in real-time, then these functions would be used. These routines

are under your control and may be customized for your particular needs.

SmartMON simply calls these routines when the debugger is activated and

deactivated, no matter what these routines are customized to do.

SmartMON ROM Monitor Rom–31

• • • • • • • •

3 TARGET INTERFACE PACKAGE

This chapter describes in detail how to provide an interface from

SmartMON to your own custom hardware. The SmartMON object module

is designed to be completely target and environment independent.

Information is included here on how to provide SmartMON with routines

and information, called the Target Interface Package (TIP), that are specific

to your hardware. This chapter includes the following major sections:

• What is the TIP?

• TIP Module #1: usreq.68k

• TIP Module #2: rmain.68k

• TIP Module #3: io_drv.68k

• TIP Modules #4 and #5: sysstp.68k and sys_go.68k

• TIP Module #6: diag_tbl.68k

3.1 WHAT IS THE TIP?

The Target Interface Package (TIP) is a set of six assembly language

modules that you modify for your target environment. All six modules

must be included for SmartMON to operate. The TIP provides SmartMON

with the following functions:

• a configuration table with labels for important target-specific data

• hardware and software initialization code

• a UART driver

• system start functions

• system stop functions

• a custom diagnostic table

Execution EnvironmentRom–32
R

O
M

 M
O

N
IT

O
R

The six file names and their functions are shown below:

TIP Component File Name

Environment Configuration Data usrequ.68k

Board Initialization rmain.68k

Communication Software (UART driver) io_drv.68k

Application–specific System Startup Code sys_go.68k

Application–specific System Stop Code sysstp.68k

User Diagnostics diag_tbl.68k

Table Rom-3: TIP file names

3.2 TIP MODULE #1: USREQ.68K

The usrequ.68k file is one of the six TIP modules that must be included

with the SmartMON object module in order for the debugger to operate on

your board.

usreq.68k contains a table of important hardware information about the

environment. The information is read from this file during ROM monitor

initialization.

SmartMON ROM Monitor Rom–33

• • • • • • • •

3.2.1 VALUES REQUIRED BY SMARTMON

SmartMON requires the information shown in the table below:

Label Contents

Config_TBL A data configuration table which consists of the following:

tx_char A pointer to a serial port transmit routine.

rx_char A pointer to a serial port receive routine.

sys_stop A pointer to a routine called when SmartMON is
activated.

sys_go A pointer to a routine called when SmartMON is
deactivated.

DIAG_TABLE A pointer for custom diagnostics.

RM_RAM Start of the SmartMON’s data space (6K is the minimum
RAM required – additional RAM may be allocated to the
trace buffer).

RM_VBR Location of the vector table. Set this value to 0 for
processors that do not have a vector base register.

RM_INT The Interrupt level of the UART.

RM_BRK The trap assigned to breakpoints.

RM_TRP Trap assigned to SmartMON system calls.

Micro The microprocessor type.

RM_TSZ Size of the trace buffer in 1K blocks of RAM.

Table Rom-4: Labels

Execution EnvironmentRom–34
R

O
M

 M
O

N
IT

O
R

3.2.2 MORE INFORMATION ON THE USREQU.68K

LABELS

All of the labels shown on the previous page must be included in the

usrequ.68k files for your board. The following is detailed information

about each of these labels:

tx_char (size=long) This is a pointer to the user-supplied transmit

routine which the ROM monitor uses to transmit data over

the I/O port. See the section on io_drv.68k for details on

the actual routine.

rx_char (size=long) This is a pointer to the user-supplied routine

rx_char used by the ROM monitor when the I/O port is set

up to operate in polled mode. This routine must exist in all

environments during the time the ROM monitor is active and

waiting for character input. If polled mode is not being used

the routine need only contain an RTS instruction. Another

use of this routine is to keep a watchdog timer alive. If

sys_stop of sys_go do not satisfy your requirements for

disabling a watchdog timer, this routine may be used to keep

the watchdog alive. See the section on io_drv.68k for

details on the actual routine.

sys_stop (size=long) This is a pointer to the sys_stop routine. The

ROM monitor calls this routine when it is activated. Activation

occurs as the result of a breakpoint, a ctrl-X, a ctrl-C, or a

ROM go system call. See sysstop.68k for details on the

actual routine.

sys_go (size=long) This is a pointer to the sys_go routine which is

called by the ROM monitor when a GO command is issued.

This allows you to reactivate critical hardware prior to

executing user code. See sys_go.68k for details on the

actual routine.

DIAG_TABLE
(size=long) The extended version of the ROM monitor uses

this pointer to install diagnostics into the user diagnostic

menu. In the Base version this must be replaced with a:
dc.l $00000000 . See diag_tbl.68k and the SmartMON
Command Language chapter on how to write user

diagnostics.

SmartMON ROM Monitor Rom–35

• • • • • • • •

RM_RAM (size=long) This is the RAM start address that has been

reserved for the ROM monitor. During initialization, the ROM

monitor will set up its internal data structures, variables and

buffers starting at this location. This data space is a minimum

of 6K in size. A typical location of this RAM would be after

the vector table (VBR value+$400 hex).

RM_VBR (size=long) This is the location of the VBR to be used by the

target. If the target does not have VBR (such as the 68000 and

68302) then this value should be set to zero.

RM_INT (size=word) This mask value, used when the ROM monitor is

active, ensures that ROM monitor will not respond to

interrupts of a lower value while it is active. If you are using

interrupt driven I/O make sure the level is no higher than

your serial port. If you wish to mask higher level interrupts

than the serial port, then polled I/O must be implemented.

For those interrupts that are going to remain active when the

ROM monitor is running, the associated ISR must save all the

registers they are using. In addition, registers such as A5 have

to be reinitialized in the ISR.

RM_BRK (size=byte) This is the trap number assigned to breakpoints.

When the ROM monitor installs a break point, this is the trap

that will be used.

RM_TRP (size=byte) This is the trap number assigned to system calls.

Execution EnvironmentRom–36
R

O
M

 M
O

N
IT

O
R

Micro (size=word) This is used to tell the ROM monitor which type

of microprocessor is being used. Enter the value for Micro
that corresponds to the CPU in your target board:

target CPU Micro target CPU Micro target CPU Micro

68000 $0000 68060 $0060 MCF5204 $5204

68EC000 $EC00 68070 $0070 MCF5206 $5206

68010 $0010 68302 $0302 MCF5206E $5207

68EC010 $EC10 68306 $0306 MCF5249 $5249

68020 $0020 68307 $0307 MCF5272 $5272

68EC020 $EC20 68332 $0332 MCF5280 $5280

68030 $0030 CPU32 $0C32 MCF5282 $5282

68EC030 $EC30 68340 $0340 MCF5307 $5307

68040 $0040 MCF5102 $5102 MCF5407 $5407

68EC040 $EC40 MCF5202 $5202

Table Rom-5: Microprocessor selection

RM_TSZ (size=byte) This is the size (in 1K blocks) to be assigned to

the trace buffer. Value may range from $1 to $F.

RM_INIT is the start location of the ROM monitor image. During

initialization the ROM monitor subtracts $30 from this address and reads

the usr_equ structure, takes the value of RM_RAM and copies the user

equates into this space. Therefore the section RMUSER_EQU must be

located exactly $30 before the start of the ROM monitor code. See the

section on linking and locating the ROM monitor for more information.

After installing the ROM monitor software onto your host, you will find a

ready-made copy of usrequ.68k in the vme105, vme133, 68302ads ,

and other board directories. This file describes the parameters for the

named target board. Simply take the file and modify the values to support

your environment. You may find samples that more closely match your

hardware configuration in subdirectories of the boards directory. In order

to modify the files, you must understand the memory map for your target

and the interrupt structure.

SmartMON ROM Monitor Rom–37

• • • • • • • •

3.3 TIP MODULE #2: RMAIN.68K

The next TIP module which you must modify and supply with SmartMON

is rmain.68k . rmain.68k is the file called by SmartMON to initialize the

hardware environment.

Initialization includes all preliminary activities that place the system into a

known state before application execution. The initialization code is

executed when the system is powered up or reset. This module should be

located at the beginning of the PROM or wherever the Reset vector

resides.

The User's hardware initialization code simply makes a call to the starting

location of SmartMON code and the debugger initializes itself based on the

data stored in the configuration table. SmartMON then returns to the user

code and is ready for operation. The debugger is then activated by either

typing a ^C or by making a ROMM_GO system call. Initialization code

consists of the following:

• Define initial stack pointer and restart vectors.

• Set the status register to SUPERVISORY MODE and turn off

interrupts.

• Optionally, set up devices that do NOT require an interrupt vector,

but must be initialized before anything else can operate; such as an

MMU (memory management units).

• Install reset vector and stack addresses into the exception vector

table {EVT}.

• Call RM_INIT or NV_RM_INIT to initialize SmartMON. This

initialization code resides at SmartMON's starting address (see

RM_INIT call for details).

• Optionally, set up devices that DO require an interrupt vector. This

type of device initialization must take place after the RM_INIT call,

because the SmartMON initializes all vectors in the EVT during this

call.

• Call the serial port initialization routine, PORTINIT , which sets the

serial port device up to the correct configuration and installs the

correct vector into the EVT for the ISR.

• Set the stack frame pointer A6 to zero.

• Clear all registers.

• Enable interrupts.

Execution EnvironmentRom–38
R

O
M

 M
O

N
IT

O
R

• Make a system call by using a ROMM trap (SmartMON enter trap)

with D0=ROMM_GO=0 (see ROMM_GO for details) or jump straight to

user's code.

3.3.1 STACKS

The initial stack should be set up to have at least 24 bytes of scratch area.

This stack is used for the initial call to RM_INIT and for any system calls,

such as serial communications, before any application code has been

downloaded and new stacks setup. During user code debug, you still need

at least 24 bytes. However, we recommend allocating 1K bytes for each

stack. The initial stack(s) may be reused or reallocated for this purpose.

For example, your target has 128K of RAM available starting at address 0.

Figure Rom-8 shows a typical memory map layout for a 68000 example.

3.4 RM_INIT CALL

During the RM_INIT function, SmartMON fills all of the exceptions in the

exception vector table with a generalized exception routine. This assists in

the debugging of user code by trapping all unassigned vectors. SmartMON

then installs the specific exception routines required for its operation into

the vector table. Upon return from this function, the user may then install

his own vectors. Be careful not to overwrite SmartMON's vectors for this

may cause unpredictable results. Interrupts must be disabled before the

RM_INIT call is made and enabled after RM_INIT is complete.

If the vector table is hard coded, then a separate initialization routine

(NV_RM_INIT) should be used. This function initializes SmartMON but

does not build the vector table. It is then the responsibility of the user to

hard code the vectors required by SmartMON. The table below Figure

Rom-8 contains a list of addresses which the user should install into the

vector table for SmartMON.

SmartMON ROM Monitor Rom–39

• • • • • • • •

Initialization

ROMM INIT

PORT INIT

Other Device INIT

User Equates

• call RM_init

• call Port_init

• do other device
initialization +

• enable
interrupts

• trap to ROMM

+ optional

File Name = RMAIN.68K

• read user
equates

• setup
environment

• load vector table
with generalized
trap

• install system trap,
break trap, and
trace trap

• RETURN

• initialize
transmitter

• intitialize receiver

• initialize vector
in vector table

• RETURN

 required for interrupt I/O

• initialize devices

• initialize vector
in vector table

• RETURN

File Name = IO_DRV.68K

File Name = USREQU.68K

1. start of ROMM
data space

2. vector base
address

3. serial port
interrupt level

4. breakpoint trap
number

5. ROMM trap
number

6. microprocessor
type

*

*

Figure Rom-7: Initialization

Execution EnvironmentRom–40
R

O
M

 M
O

N
IT

O
R

USER EQUATES

SmartMON

Code

Reset Vector Storage

RMAIN

IO_DRV

sys_stp

sys_go

F00000

F00008

F00400
|

30 Hex
|

F00430

{S_rst_vecs}

{rmuser_code}

{rmuser_equ}

RM_INIT

Figure Rom-8: Memory map

SmartMON ROM Monitor Rom–41

• • • • • • • •

SmartMON Addresses

BASE ADDRESS = Start Address of SmartMON image

Offset Address
(Symbolic Name)

Function

0 RM_INIT SmartMON’s vectored initialization
address.

4 NV_RM_INIT SmartMON’s non–vectored initialization
address.

8 BUS ERROR
(be_trp)

Bus error {Vector #2} (optional).

C ADDRESS ERROR
(ae_trp)

Address error {Vector #3} (optional).

10 ILLEGAL
INSTRUCTION
(illtrp)

Illegal instruction error {Vector #4}
(optional).

14 DIVIDE BY ZERO
ERROR
(divtrp)

Zero divide error {Vector #5} (optional).

18 PRIVILEGE
VIOLATION
(prvtrp)

Privilege violation {Vector #8} (optional).

1C GENERAL
EXCEPTION
(gentrp)

Generalized exception may be used on
unused vectors (optional).

20 TRACE VECTOR
(trcisr)

Trace exception used by SmartMON for
single stepping.

24 BREAKTRAP
(break_trp)

Trap vector used by SmartMON for
breakpoints.

28 SYSTEM CALL TRAP
(ROMM)

Trap vector used by SmartMON for
communications and system calls.

Table Rom-6: SmartMON addresses

Lets assume the following conditions for an example:

• The exception vector table is going to be hardcoded.

• The target EPROM is located at address 0000.

• SmartMON is going to be located at address 1000.

• TRAP #15 is to be used for system calls.

Execution EnvironmentRom–42
R

O
M

 M
O

N
IT

O
R

When SmartMON is called to be initialized, the call will be made to

address 1004 (NV_RM_INIT - The NON-Vectored Initialization Routine).

The user must ensure that the exception vector for Trap #15 (Vector #47) is

loaded with address 1028. In addition, the user must also install the

addresses of all his exception routines at their corresponding vector

locations.

3.5 ROMM_GO SYSTEM CALL

When all of the above routines have been completed, you may decide

whether to enter the ROM monitor. Normally during the development

stage, the ROM monitor is entered on power-up. If you wish to leave the

ROM monitor in the prototype for product support, then, on power-up,

the ROM monitor would not be entered and the user code would boot

and run. The ROM monitor would only become active if a terminal was

connected and a ctrl-C or ctrl-X was entered.

If you wish to power up directly into the ROM monitor, then at the end of

the initialization code, place a ROMM trap with a ROMM_GO code (the value

5) in register D0. The ROMM trap is the standard system call to invoke the

ROM monitor.

If the application program is to run directly upon power-up, omit the

ROMM trap from the initialization code.

SmartMON ROM Monitor Rom–43

• • • • • • • •

3.6 CREATING YOUR OWN RMAIN.68K

The pseudo code on the following page outlines the operation of RMAIN.

Working examples of rmain.68k , as well as all of the other TIP modules,

are included for many single board computers in the boards directory.

The pseudo-code for the operation of rmain.68k is shown below:

* PSEUDO CODE
* section S rst vecs
* define initial stack pointer
* define restart vector (start:)
*
* section rmuser code
*
* label= start:
* set status register to supervisory mode
* with INTS disabled
*
* set up VBR to value defined in USREQU.68k
* copy stack pointer to vector 0 in vector table
* copy restart vector to vector 1 in vector table
*
* call RM_INIT to initialize the ROM Monitor
*
* initialize other target hardware
* add other ISR address to vector table
*
* call portinit to initialize serial port
*
* set stack frame pointer A6 to zero
* clear all registers
*
* set status register to supervisory mode
* with INTS enabled
* system call ROMM_GO
* END
*

Execution EnvironmentRom–44
R

O
M

 M
O

N
IT

O
R

3.7 TIP MODULE #3: IO_DRV.68K

SmartMON communicates with the dumb terminal or host computer

through a serial communication device. io_drv.68 is the module which

provides the serial driver for SmartMON.

Data is passed to and from the debugger through a trap handler. A

character is passed to the monitor by trapping to it with the character to be

processed in register D1. A character is passed from the monitor by

trapping to the ROM monitor and returning to the calling routine with the

character in register D1. You must therefore supply a routine which passes

characters to and from the ROM monitor and transmits or receives

characters through the serial port device.

io_drv.68k contains four major functions:

portinit : A routine which is called by rmain.68k to

initialize the serial port.

The serial port ISR: The interface between SmartMON and the serial

port device.

TX_CHAR: The transmit character routine.

RX_CHAR: The receive character routine.

Each of these functions are described in this section.

3.8 PORTINIT CALL

portinit is a routine in io_drv.68k which is called by the initialization

code rmain.68k . This routine configures the serial port to the correct

configuration and loads the serial port interrupt vector into the vector

table.

SmartMON ROM Monitor Rom–45

• • • • • • • •

3.9 SERIAL PORT INTERRUPT SERVICE ROUTINE

The serial port ISR is the interface between the serial port device and the

ROM monitor. When the serial port device generates an interrupt, a

software routine to service the interrupt is invoked. This routine is known

as an Interrupt Service Routine (ISR) or an interrupt handler.

An interrupt is generated when the device is ready to accept another

character for transmission or when it has received a character available to

input. For some types of UARTs. the same interrupt signals that a character

has been received or one may be transmitted. In this case you can write

only on ISR to handle both input and output.

A receiver ISR gets a character from the UART and passes it to the ROM

monitor by means of a ROMM trap with a INT_RX code in D0 and the

received character in D1.

A transmitter ISR traps to the ROM monitor with a INT_TX code in D0. The

ROM monitor returns to the ISR with a character for transmission in D1. If
the call to the ISR was the result of the last character being transmitted the

ROM monitor will not return a character but, will set NO_CHAR in D0. This

status indicates to the ISR that there are no more characters for

transmission.

Some UARTs use the same interrupt to signal that the transmitter is empty

or the receiver is full. In this case, the ISR must determine the device's

status before proceeding.

3.10 TX_CHAR

In addition to the ISRs a routine called TX_CHAR must exist which the

ROM monitor calls with the first character of a new message. As previously

stated, the transmit ISR is only activated when the UART is ready to accept

another character for transmission. Therefore, in order to initiate this

process, the first character in a message must be loaded into the UART

through TX_CHAR routine. All the remaining characters in the message will

be transmitted by the transmit ISR. The transmit ISR requests the next

character in the message from the ROM monitor until all characters have

been transmitted.

Execution EnvironmentRom–46
R

O
M

 M
O

N
IT

O
R

3.11 RX_CHAR

RX_CHAR is a receive character driver used in polled I/O. This label must

exist even in the interrupt-driven version of the ROM monitor, but need

only contain a single RTS instruction.

3.12 HOW TO CREATE YOUR OWN IO_DRV.68K

The source for several I/O drivers is included in the drivers directory of

the SmartMON release. There are also complete IO_DRV.68K modules

included with the complete TIPs in the boards directory.

The pseudo-code for the operation of io_drv.68k is shown below:

* PSEUDO CODE
*
* section rmuser code
*
* label = portinit:
* initialize the uart
*
* load uart ISR address in vector table
* return
*
* section rmuser code
*
* label = uart int:
* INT ENTER system call to ROM Monitor
* read uart status register
* IF RX buffer full
* THEN GOTO RECEIVE INT
* ENDIF
* IF TX buffer empty
* THEN GOTO TRANSMIT INT
* ENDIF
* GOTO ERROR
*
* RECEIVE INT:
* read uart receive buffer

* INT_RX system call to ROM Monitor
* INT COMP system call ;no rtn from this call
* END
*
* TRANSMIT INT:
* INT_TX system call
* IF character to transmit
* THEN write character to uart output buffer
* ELSE clear interrupt
* ENDIF

SmartMON ROM Monitor Rom–47

• • • • • • • •

* INT COMP system call ;no rtn from this call
* END
*
* ERROR:
* clear the error
* INT COMP system call ;no rtn from this call
* END
*
* label = tx_char:
* write character to uart output buffer
* rts
*
* label = rx_char:
* rts
*

3.12.1 SERIAL PORT POLLED I/O

In the polled I/O mode, characters are passed from SmartMON to the Host

using the serial device's transmit buffer. The transmit routine, TX_CHAR,
must monitor the device's status register by waiting for the transmit buffer

empty status to indicate that the character has been transmitted. At this

point, TX_CHAR must make a system call, INT_TX , to request another

character. If a character is available, then the character is placed in the

serial device's transmit buffer. This process continues until there are no

more characters available to transmit. This is indicated by the return code

of the INT_TX system call. Once all the characters are transmitted, then

the INT COMP system call is made, from which there is no return.

Execution either returns to User code or invokes the SmartMON debugger.

For character reception, SmartMON continually calls the receive routine,

RX_CHAR, looking for another character. When a character is received,

RX_CHAR must make a system call, INT_RX, to inform SmartMON that a

character has been received. This process continues until a complete

message is received. At this point, SmartMON will process the command.

Additional characters received during the processing of this command may

result in an overrun condition.

3.12.2 TX_CHAR USING POLLED I/O

The transmit character routine, TX_CHAR, is used by SmartMON for

sending out all the characters of a message.

Execution EnvironmentRom–48
R

O
M

 M
O

N
IT

O
R

3.12.3 RX_CHAR USING POLLED I/O

The RX_CHAR routine must poll the device to check for a character

received. Once a character is received, then it is passed to SmartMON by

means of a system call trap with a INT_RX code in D0 and the received

character in D1.

3.12.4 CREATING A POLLED I/O IO_DRV.68K

Several popular UART drivers have been provided for installation ease.

Check to see if any are applicable to your specific application. If none of

the drivers are applicable, one may be used as a template for writing your

own. See the Using SmartMON chapter to better understand the polled I/O

mode of operation.

3.13 TIP MODULES #4 AND #5: SYSSTP.68K AND

SYS_GO.68K

In a an operating system environment when SmartMON is in command

mode, all normal operation should be suspended. In order to achieve this,

the ROM monitor will disable interrupts while in the debugger state.

However, you must supply any other target hardware specific operations

that need to be suspended.

These operations must be placed in the sysstp.68k and sys_go.68k
modules. The sys_stop routine is used for suspending operation and the

sys_go for reactivating the operations. These routines are always called

by the ROM monitor when the debugger is activated and deactivated.

3.13.1 SYS_GO

This routine, used for activating a user-defined operation, must be

included even if there are no special requirements. In this case, the

module need contain only an RTS instruction.

SmartMON ROM Monitor Rom–49

• • • • • • • •

3.13.2 SYS_STOP

This routine for suspending a user-defined operation, must be included

even if there are no special requirements. In this case, the module need

contain only an RTS instruction.

3.14 TIP MODULE #6: DIAG_TBL.68K

The diag_tbl.68k contains a data structure that tells SmartMON about

the user-supplied diagnostics that will be included with the debugger.

The routine must be provided with the TIP, even if you do not plan to

include and custom diagnostics. In this case, the only information required

is the first line of the example below, the number of test, where n=0. Refer

to the Diagnostics chapter for more information.

* module name diag_tbl.68k

XDEF DIAG_TABLE
DIAG_TABLE:

DC.W 000n ; number of tests = n

DC.L TST1_MSG ; Menu message for test #1
DC.L TST1_MAIN ; User Diagnostic Test #1
DC.L TST1_ERR ; User Error Routine for #1
..
..
DC.L TSTn_MSG ; Menu message for test #n
DC.L TSTn_MAIN ; User Diagnostic Test #n
DC.L TSTn_ERR ; User Error Routine for #n

Execution EnvironmentRom–50
R

O
M

 M
O

N
IT

O
R

4 BUILDING SMARTMON

This chapter describes how to use the 68K/ColdFire C Toolkit to create an

image of SmartMON that can be downloaded to a PROM burner, or

downloaded directly into RAM on your target board. It includes the

following major sections:

• Overview of the Build Process

• Notes on Building Applications to Work with SmartMON

• Starting-up SmartMON with CrossView Pro

• Troubleshooting

• Starting SmartMON with a Terminal or Terminal Emulator

4.1 OVERVIEW OF THE BUILD PROCESS

The steps required to build SmartMON for your board are listed below.

Note that Steps 1 through 4 are covered in the previous chapter, Target
Interface Package.

1. Fill in the information in usrequ.68k to describe your board.

2. Modify the rmain.68k system initialization module, which will set up the

restart vector for the processor, call RM_INIT to initialize SmartMON,

initialize the serial port (call portinit), initialize other devices, and

optionally TRAP to the debugger.

3. Supply the ISRs and initialization code for the USART (io_drv.68k).

4. Develop code for sys_stop and sys_go , if necessary (sysstp.68k and

sys_go.68k). Fill in the diagnostic structure contained in the

diag_tbl.68k file.

5. Assemble all the modules.

6. Link and locate code into appropriate place in user memory space.

7. Format for programming EPROMS.

8. Download code to PROM programmer.

9. Burn EPROMS.

SmartMON ROM Monitor Rom–51

• • • • • • • •

The examples in this chapter are for a VME105 board with a 68010

microprocessor. The SmartMON release contains batch files for building

the monitor and a demo program for each 68000 family board that is

directly supported. The batch files are under the specific board directory.

If you are building SmartMON for your own custom board, you may wish

to examine the batch files for a board that contains your microprocessor.

However, the batch files and the locator command files may need to be

modified for your board. Where you locate your ROM Monitor and

applications depends on the memory map of your board.

4.1.1 PREPARING THE BUILD ENVIRONMENT

For your convenience, create a WORK directory amd then copy the six

modified TIP source modules and the SmartMON object module into this

directory. Make sure that your path and environment variables are

properly set to ensure that you have access to all of the tools from this

WORK directory.

4.1.2 ASSEMBLING THE TIP

The six source files of the TIP need to be assembled. Using the TASKING

68010 assembler on PC/DOS, the commands and switches are:

asm68010 rmain.68k –l rmain.lst –s –d –g –P
asm68010 io_drv.68k –l io_drv.lst –s –d –g –P
asm68010 sys_go.68k –l sys_go.lst –s –d –g –P
asm68010 sysstp.68k –l sysstp.lst –s –d –g –P
asm68010 usrequ.68k –l usrequ.lst –s –d –g –P
asm68010 diag_tbl.68k –l diag_tbl.lst –s –d –g –P

If you are using the base version of SmartMON with CrossView Pro, the

diag_tbl.68k module is not required.

The assembly options used above are not required, but their use simplifies

debugging when developing new TIP modules for custom boards.

Here is a summary of the assembler switches used:

-l file Generate listing in file file.

-s Generate source listing.

-d Create debug information.

Execution EnvironmentRom–52
R

O
M

 M
O

N
IT

O
R

-g Generate global symbol information.

-P Show generated structure syntax.

Please refer to the 68K/ColdFire C Compiler/Assembler User's Manual for

more information.

4.1.3 LINKING AND LOCATING THE OBJECT MODULES

The linking locator utility, LLINK, allows you to specify a link file and a

locate command file on the command line. The link file, which in this

example is named rm.ols , contains object file names (in IMSI's .ol or

.ln format) that will be linked together. The locate command file, named

loc68k.cmd in this example, gives you a mnemonic means to specify the

memory map and place the SmartMON and TIP labels at the key

addresses.

The rm.ols link file contains the following:

rmain.ol
io drv.ol
sysstp.ol
sys_go.ol
diag tbl.ol
usrequ.ol
smon68ke.ln

Note that the diag tbl.ol would not be listed in the rm.ols file when

building the base version of SmartMON (smon68kb.ln). To build the base

version you would also have to remove the reference to DIAG_TABLE in

usrequ.68k . See the source file for the appropriate line.

For the VME105 example, the loc68k.cmd locator file would contain the

following locator directives:

locate (S_RST_VECS : #F00000);
locate (RMUSER_CODE : after #F00000);
locate (RMUSER_EQU : #F00400);
locate (est_bug : after #F00430);

The ROM monitor will not function unless the user equates (section

RMUSER_EQU) are exactly 30 (hex) locations before the start of the ROM

monitor code (est_bug).

SmartMON ROM Monitor Rom–53

• • • • • • • •

The LLINK utility command line that references these link and locate files

is as follows:

llink –i rm.ols –o rm.ab –c loc68k.cmd –v

Here is a summary of the relevant linking locator switches:

-i rm.ols Take name of input modules from file rm.ols .

See file contents below.

-o rm.ab Write output to file rm.ab .

-c loc68k.cmd Read locator commands for loc68k.cmd .

-v Report linker actions as they are performed.

4.2 FORMATTING

The formatter takes an .ab (linked and absolute located) object module

and converts it to an object module in one of several industry standard

download formats. The default format, which we will use in this case, is

Motorola S records.

The formatter also allows us to apply a bias to the composite .ab file and

to split the object module into odd and even PROMs. We will take

advantage of these features in this example. Note that if we were planning

to download our composite SmartMON S records file into RAM, we would

not need biasing or split object modules.

The following are the formatter commands used on our composite rm.ab
file that was generated by the LLINK utility above:

form rm.ab –b 0 2 –f xm –a F00000 –o rmev.hex
form rm.ab –b 1 2 –f xm –a F00000 –o rmod.hex

If the previous sequence of commands runs without any error you will be

left with the two hex files, rmev.hex and rmod.hex . These files are

ready to be downloaded and burned into PROMs. Here is a summary of

the formatter switches used:

-b 0 2 Control PROM byte slicing, output every second byte, even

address.

-b 1 2 Output every second byte, odd address.

Execution EnvironmentRom–54
R

O
M

 M
O

N
IT

O
R

-f xm Format the hex files in extended Motorola hex format.

-a F00000 Apply bias of F00000 to each record. The bias allows you to

program PROMs (which need to have code loaded at address

0 of their memory space) while locating your code and data

beginning at address F00000 of the target memory space.

-o filename Write output hex file to filename. We specified rmev.hex
and rmod.hex , respectively.

4.2.1 PROGRAMMING THE PROMS

After the two hex files (even and odd) have been built, they must be

burned into PROM or EPROM chips. Before programming the chips, you

should check the PROM programmer's documentation to make sure it is

able to program the chips. Also compare the microprocessor and board

requirements against the PROM/EPROM chip specifications to see if the

chips are the correct speed and if they are compatible with the

microprocessor and board. Different burners operate differently. Please

consult the PROM programmer's manual to learn how to create the

PROMs.

4.3 NOTES ON BUILDING APPLICATIONS FOR

SMARTMON

This section describes building a demo application program to run with

SmartMON. All of the demonstration files can be found in the demo

subdirectory. The pmain startup code and the locate command file must

be customized to work with a specific single board computer and

microprocessor. Customized versions of pmain.68k and apploc.cmd can

be found in each board's subdirectory. Some examples are:

68010 VME 105
68020 VME 133
68030 VME 147
CPU32 68332 EVS
68302 68302 ADS

The steps for building the demo program are described in the following

sections.

SmartMON ROM Monitor Rom–55

• • • • • • • •

The following steps are only an example. You must know the memory

map and other characteristics of your board in order to make any

modifications.

4.3.1 STEP 1: MODIFY PMAIN.68K

pmain.68k contains the startup code required for executing user

applications. The source for pmain.68k is found in the run-time library

on the 68K/ColdFire product distribution. To execute user code with the

ROM monitor you will first need to modify pmain.68k , assemble it, and

link in the resulting object module, pmain.ol , instead of the default

run-time library version. If you plan eventually to run user code without

the ROM monitor, be sure to save the original pmain.68k .

You will need to modify the code in pmain.68k to relocate the System

Stack Pointer (SSP/MSP) and the User Stack Pointer (USP). This means

changing the address of the stack pointers in two lines of code. The stack

pointer must be changed so that the stacks do not reside in the same area

of RAM memory that the ROM monitor uses. The following examples

illustrate the changes for pmain.68k when the target system is a Motorola

VME105 single board computer. This is the same target system used in

other examples in the manual. The following lines must be changed:

Change the commented line:

movea.l #$00007ffc,A7 ;Set SSP (A7) to
;absolute address
;00007ffc

To:

movea.l #$00ea7ffc,A7 ;Set SSP (A7) to
;absolute address
;00ea7ffc

Change the commented line:

movea.l #$00007f00,A7 ;Set USP (A7) to
;absolute address
;00007f00

Execution EnvironmentRom–56
R

O
M

 M
O

N
IT

O
R

To:

movea.l #$00ea7f00,A7 ;Set USP (A7) to
;absolute address
;00ea7f00

Because SmartMON will use the reset vectors for the stack pointer and

program counter, pmain.68k should not allocate data to these memory

locations. The segment, therefore, that defines the reset vectors must be

removed. The following lines of pmain.68k must be commented out for

the VME105 board:

org 0
dc.l $00007ffc
dc.l __main

To:

* org ea0000
* dc.l $00ea7ffc
* dc.l main

The modifications to pmain.68k listed above must be done for all user

programs that will run on hardware with SmartMON present.

Refer to the Run-time Library appendix of the 68K/ColdFire C
Compiler/Assembler Reference Manual for information on incorporating

modified routines into the run-time library.

Many options can interfere with normal SmartMON operations or cause

unsuspected results.

If Watch Dog Timer (WTD) is being used, be sure that sys_go.68k and

sysstp.68k are also modified to disable and re-enable the WTD time to

prevent it from resetting the target board during monitor control.

Upon return from the main procedure, you may go into an infinite loop. If

the trap to monitor is used, the monitor will reset itself and lose all

breakpoint information and any other operating functions (e.g., trace

enable).

SmartMON ROM Monitor Rom–57

• • • • • • • •

4.3.2 STEP 2: BUILD THE DEMO OBJECT MODULES

Compile and assemble the demo files while generating symbolic

information for the CrossView Pro C source-level debugger. The command

lines are:

c68000 demo.c –d –do
asm68000 pmain. –d
asm68000 addone.68k –d

Link and locate the code, saving symbolic information while linking in the

debugging routines. The user code must be located in an area of RAM

memory not used by the ROM monitor. The address to start locating the

user code is determined by subtracting the original value of the SSP in

pmain.68k from the value that it was changed to. Using the above

examples they would be:

00ea7ffc – 00007ffc = 00ea0000

You should create a locator command file, locdemo.cmd , for the VME105

board which would contain the following line:

LOCATE({code}{}{data}{usep}{constant}:AFTER #ea0000);

Assuming the modified pmain.ol will be linked in directly (instead of

using the librarian to insert it into the run-time library), the command to

run the linking locator would be:

llink demo.ol pmain.ol addone.ol end.ln –o
 –L libc68kdm.nf –v –c demo.loc

Do not use the llink -x switch. The -x switch, which is used to build

programs to be debugged with emulator-based versions of the debugger,

will link in the run-time library object modules end.ln and break.ln .

Although end.ln should be linked with the application, breakpt.ln will

interfere with the way the ROM monitor handles code breakpoints.

Instead, end.ln should be linked in explicitly on the llink command line.

end.ln contains code which allows you to take advantage of CrossView

Pro's ability to evaluate function calls on the debugger command line.

The file end.ln can be found in the appropriate compiler run-time

library. If the library containing pmain.68k has been modified on a

permanent basis it is not necessary to explicitly link in pmain.ol .

Execution EnvironmentRom–58
R

O
M

 M
O

N
IT

O
R

To format the code, saving symbolic information, type:

form demo.ab –x

The above four steps will produce a CrossView Pro symbol table file,

demo.abs , and a hex file, demo.hex , that can be downloaded and

executed.

4.4 STARTING-UP SMARTMON WITH CROSSVIEW PRO

Upon startup, CrossView Pro tries to establish contact with SmartMON,

using the settings specified on the CrossView Pro command line by

environment variables.

CrossView Pro has the ability to determine where the user code is and

what procedures are currently on the stack. When CrossView Pro first

communicates with the ROM monitor, the following communication takes

place between CrossView Pro and the ROM monitor:

1. CrossView Pro issues an IN command to determine the processor type.

2. CrossView Pro requests the first instruction of user code, looking for LINK
instructions, so it can correctly synchronize the source code with machine

instructions.

3. CrossView Pro requests the following registers: PC, A5, A6, and A7. If the

PC is within the bounds of the code to be debugged the appropriate

source code is displayed.

4. CrossView Pro then looks at the value of A6, the frame pointer. If this

value is not zero, CrossView Pro will follow the frame pointer to

determine what procedures have been called. CrossView Pro will follow

the current active stacks, depending on the value of the status register.

This allows CrossView Pro to build a stack window showing the current

status of the stack. It is very important that A6 is set to zero in RMAIN. This

ensures that CrossView Pro does not have to chase down an invalid frame

pointer.

When a reset and run is issued (CrossView Pro R command), the following

communication takes place between CrossView Pro and SmartMON:

1. CrossView Pro issues a DC command to find the vector base register.

SmartMON ROM Monitor Rom–59

• • • • • • • •

2. CrossView Pro issues a display memory at vector zero of the VBR. This is

the initial stack pointer for the system and is setup by RMAIN. CrossView

Pro sets either the ISP or SSP to the value contained at that location.

3. CrossView Pro sends a command to reset all the registers to zero.

4. CrossView Pro sets the status register to 2700.

5. CrossView Pro goes to the symbol table and finds MAIN and loads that

address into the PC.

6. CrossView Pro then sets any breakpoints.

7. CrossView Pro then issues a GO command.

If the debugger has trouble communicating with the ROM monitor, it

prints a message starting with:

Sorry, the monitor is not responding.

This indicates that no reply was detected after sending data to the target

system. The debugger will try to reset the ROM monitor. If the debugger

can then get a response, you will be given another chance to

communicate in transparency mode. If the debugger still cannot get any

response, it will give up and exit. See the Troubleshooting section later in

this chapter.

If you get no response when invoking CrossView Pro, restart, and enter

transparency mode. Also, it is best to enable target/emulator output

logging for technical support help. Use the DC (Display Configurator)

command to see if the monitor is responding with the correct information.

If you get no response, there in no communication with the ROM monitor.

Refer to the following Troubleshooting section.

4.5 TROUBLESHOOTING

Most problems in starting up CrossView Pro for a debugging session stem

from improperly setting up the target system or from an improper

connection between the host computer and the target.

Here are some common problems:

• Specifying the wrong device name when invoking the debugger.

Execution EnvironmentRom–60
R

O
M

 M
O

N
IT

O
R

• If you have installed the monitor with interrupt-driven I/O,

problems may exist with interrupt handling. Try installing the ROM

monitor with a polled-driven I/O driver to verify this is the

problem.

• The ROM trap number defined in usrequ.68k is not the same trap

number used in rmain.68k and io_drv.68k .

• Specifying a baud rate different from the one the UART is

configured to expect.

• Not supplying power to the target system.

• Using the wrong kind of RS-232 cable.

• Plugging the cable into an incorrect port on the target or host. Some

target boards and hosts have several ports.

4.5.1 LOCATING THE TIP

The important thing to note is that the configuration table, found in

USREQU.68K, MUST reside 30 hex locations before the start of SmartMON

code. This requirement is absolutely necessary in order for SmartMON to

initialize its environment. Locating the rest of the TIP is not as restrictive,

since the addresses will be resolved by the configuration table's contents.

For example, if you wanted to place SmartMON at address 1000 Hex, then

the configuration table must reside at 0FD0 Hex (1000 - 30). In this

example, the user supplied code is defined in three sections:

S_RST_VECS: This section contains only the addresses of the

restart vectors.

RMUSER_CODE: This section contains the initialization code, the

system start and stop functions and the I/O

driver.

RMUSER_EQU: This section contains the configuration table

and the user equates.

The reason for defining these sections is not only for clarity but also to

ensure that the restart vectors and the user's configuration table may be

placed at specified addresses of the EPROMS.

SmartMON ROM Monitor Rom–61

• • • • • • • •

A Sample Locate Command File: Vectored

declare(RM_INIT : #f00430);
locate (S_RST_VECS : #f00000);
locate (RMUSER_CODE : after #f00000);
locate (RMUSER_EQU : #f00400);
locate (est_bug : #f00430);

A Sample Locate Command File: Non-vectored

declare(NV RM_INIT : #f00434);
declare(Trace VEC : #f00450);
declare(BreakTrap VEC : #f00454);
declare(SysCallTrap VEC: #f00458);
locate (S_RST_VECS : #f00000);
locate (RMUSER_CODE : after #f00000);
locate (RMUSER_EQU : #f00400);
locate (est_bug : #f00430);

4.5.2 PROGRAMMING EPROMS

First, download the TIP image to the beginning of the PROM

programmer's buffer. Then download the SmartMON's image to the correct

offset of the PROM programmer's buffer. The correct offset being 30 hex

locations after the configuration table. Last, burn the PROM and verify its

contents.

If you are splitting your image to burn two PROMs, divide the start

location of SmartMON by two. Use this number for SmartMON's offset.

When downloading a file to your PROM programmer buffer, the PROM

programmer should prompt you with the starting address in the buffer that

you wish to load your code. If the programmer does not, check the

manual for setting buffer offset.

Using the VME105 example above and assuming the TIP has been

formatted with the correct bias and the split images are named TIP.odd
and TIP.eve . Starting with the odd file, download TIP.odd to the PROM

programmer buffer starting a offset 0000. Then take SmartMON image

68kxe.odd and download it to the PROM programmer starting at hex

location 0218 (half of 430 because it is split). Burn and verify the PROM.

Repeat for the even side.

Execution EnvironmentRom–62
R

O
M

 M
O

N
IT

O
R

68kxe.odd and 68kxe.eve are not supplied but can be created by

linking rom68ke.ln with a command locate and then formatted to

generate the two files.

4.6 STARTING SMARTMON WITH A TERMINAL OR

TERMINAL EMULATOR

Once the PROMs are programmed, simply plug them into the correct

sockets on your target hardware. Apply power and the SmartMON banner

should appear on your terminal/PC's screen. The SmartMON banner will

look as follows:

SmartMON target: M68xxx Version x.xx
Copyright (c) 1997 Tasking, Inc., As Modified
>

SmartMON ROM Monitor Rom–63

• • • • • • • •

5 SMARTMON COMMAND LANGUAGE

This chapter is a reference for the commands that can be issued to

SmartMON in direct communication mode. It includes the following major

sections:

• Overview

• Control Characters

• Operation Modes

• Command Descriptions

5.1 OVERVIEW

This chapter is a reference for the interactions between the user and

SmartMON in direct communication mode. Here, direct communication

mode means that you are talking to SmartMON via a dumb terminal or

terminal emulation program from a PC or workstation.

For information on how to drive SmartMON via the CrossView Pro

source-level interface, see the CrossView Pro Debugger User's Manual.
CrossView Pro supports a direct target communications mode, called

emulator mode, in which you will be able to invoke all of the SmartMON

commands described in this section. You may wish to use emulator mode

with CrossView Pro in order to access SmartMON's tracing, diagnostics,

data break points, and block memory operations features.

SmartMON uses a standard ASCII protocol with XON/XOFF flow control. It

uses two 512 character buffers; one for commands and the other for

responses. A command will not be interpreted until a termination character

is received. In other words, a command will not be executed until a line of

characters, including the termination character, has been entered. At most,

only two commands can be stored in the character buffer at a given time,

the command that is being executed and the one about to be executed.

Most commands have responses associated with them. All responses will

end with a Carriage Return (CR) and Line Feed (LF), followed by a prompt

(>).

Character processing is case insensitive. A command name is at least two

characters in length. Most commands can accept optional arguments or

parameters. A space character is used as the delimiting character between

command names and arguments.

Execution EnvironmentRom–64
R

O
M

 M
O

N
IT

O
R

5.2 CONTROL CHARACTERS

The following control codes may be entered for command line editing,

interrupting SmartMON, and flow control processing.

The presence of the upward caret, "^ ", before a character indicates that

the Control or CTRL must be held down while striking the character key.

^C (interrupt) This character will terminate any operation,

including an XOFF condition, flush the

character buffer, and return a response prompt.

If the user program is operating with serial port

interrupt disabled the command will not be

seen until interrupts are enabled.

^H (backspace) The cursor is moved back one space and the

character at that position is deleted.

^J (CR) The carriage return character is used as the line

termination character. In some cases, it may

repeat the last command.

^Q (XON) This character will restart the flow of characters.

^S (XOFF) This character will stop the flow of characters.

^X (line delete) The cursor is backspaced to the beginning of

the line. The last line of characters in the buffer

is flushed. A response prompt is sent.

5.3 OPERATION MODES

SmartMON has three modes of operation, each of which changes the
user’s interface slightly. The rest of this section will describe these
modes, which are as follows:

• Command Mode

• Download Mode

• Execution Mode

SmartMON ROM Monitor Rom–65

• • • • • • • •

5.3.1 COMMAND MODE

The target does not execute instructions in this mode. Commands typed in

at the terminal/PC are interpreted by SmartMON. Command Mode is the

user's interface to the target. The user can control resources and place the

target into a known state in this mode. Most interactions take place in

command mode, which is distinguishable by its prompt. For more details

on all the command see the Command Descriptions section of this chapter.

5.3.2 DOWNLOAD MODE

This mode is used to send down the user's application code to the target's

RAM. Download mode is used mostly during the debug stages of a project.

This mode is entered through the Download command (DL) and stays in

effect until either the end of file is reached or an interrupt control

character is received. For more information, see the DL command in the

Command Descriptions section of this chapter. Also, see the format of a

Motorola S-Record in the Object Module Formats appendix in the

68K/ColdFire C Compiler/Assembler User's Manual.

5.3.3 EXECUTION MODE

This mode is in effect when the target is executing instructions. This

usually happens as a result of issuing a GO Command. Execution mode

operates in either real-time, non real-time, or some combination of both,

depending on the conditions that are setup in command mode. Data

breakpoints and code breakpoints in ROM code results in non real-time

execution, while either no breakpoints or code breakpoints in RAM code

permits real-time execution. Some complex breakpoints conditions will

run in real-time up to a point and then go into non real-time execution.

There are many combinations possible. See the Set Breakpoint command

(SB) in the Command Descriptions section of this chapter. A breakpoint or

an interrupt control character will place SmartMON back into command

mode. For more details on entering the execution mode, see the GO,

Single Step (SI), and Step Out Of Range (SO) commands in the Command
Descriptions section of this chapter.

Execution EnvironmentRom–66
R

O
M

 M
O

N
IT

O
R

5.4 COMMAND DESCRIPTIONS

This section contains descriptions of each of the commands that can be

used with SmartMON. Each section will detail information about a

particular command and its options. Most sections are provided with one

or more examples for your convenience. These examples are formatted for

clarity in this manual. Actual screen displays may vary from machine to

machine. Some commands may be repeatable by hitting a carriage return.

Some of these will simply repeat the command exactly, like DB - Display

Breakpoints; while others will execute the command but increment the

addresses, like DM - Display Memory. Repeatable commands are

represented by an asterisks �* " in their section names. All the command

responses will end with a carriage return, line feed, and a prompt, as

indicated by <CRLF>.

SmartMON ROM Monitor Rom–67

• • • • • • • •

BD

Function

Breakpoint Disable.

Syntax

BDtype [addr]

type = C = code

D = data

R = range

addr = An optional breakpoint address.

Description

This command causes SmartMON to disable all (if addr is omitted), some,

or one of the software breakpoints currently enabled.

Example

In this example we will disable a breakpoint at address EA0000. First,

display all breakpoints, which also contain current status, and then disable

the breakpoint. Finally, verify the status of the breakpoint. Notice the

status change of the �cmp flags ".

>DB
Data Break–Points
1. 0EA0000 data mask = 000ff cmp_flags = enabled Word_cmp_BEQ
>BDC EA0000
>DB
1. 0EA0000 data mask = 000ff cmp_flags = disabled Word_cmp_BEQ
>

DB - Display Breakpoints

SB - Set Breakpoint

Execution EnvironmentRom–68
R

O
M

 M
O

N
IT

O
R

BE

Function

Breakpoint Enable.

Syntax

BEtype [addr]

type = C = code

D = data

R = range

addr = An optional breakpoint address.

Description

This command causes SmartMON to enable all (if addr is omitted), some,

or one of the software breakpoints currently disabled.

Example

For this example, we will enable the breakpoint at address EA0000, which

has previously been disabled. First, show all breakpoints and their status

and then enable the breakpoint. Finally, verify the status of the breakpoint

by issuing a DB command. Notice the status change of the �cmp_flags ".

>DB
1. 0EA0000 data mask = 000ff cmp_flags = disabled Word_cmp_BEQ
>
>BEC EA0000
>DB
1. 0EA0000 data mask = 000ff cmp_flags = enabled Word_cmp_BEQ
>

DB - Display Breakpoints

SB - Set Breakpoint

SmartMON ROM Monitor Rom–69

• • • • • • • •

BF

Function

Block Fill.

Syntax

BF[unit] base_addr hex_value count

unit = B = byte

W = word (default)

L = long

base_addr = The start address for the fill, in hex.

hex_value = The value to be used to fill memory, in hex.

count = The number of units, in hex.

Description

This command causes SmartMON to fill a block of data starting at addr for

count number of the specified unit size.

Example

In this example, we will fill a block of memory, 32 bytes (20 hex) in

length with a hex word_string = 4121. First, display memory contents

and then fill the block. Finally, verify the command.

>DM 1000 20
001000 0000 0000 0000 0000 0000 0000 0000 0000
001010 0000 0000 0000 0000 0000 0000 0000 0000

>BF 10000 4121 20

>DM 1000 20
001000 4121 4121 4121 4121 4121 4121 4121 4121 A!A!A!A!A!A!A!A!
001010 4121 4121 4121 4121 4121 4121 4121 4121 A!A!A!A!A!A!A!A!
>

Execution EnvironmentRom–70
R

O
M

 M
O

N
IT

O
R

For this example, we will change the command unit size from the last

example of a word to a size long.

>DM 1000 20
001000 0000 0000 0000 0000 0000 0000 0000 0000
001010 0000 0000 0000 0000 0000 0000 0000 0000

>BFL 10000 4121 20

>DM 1000 20
001000 0000 4121 0000 4121 0000 4121 0000 4121 ..A!..A!..A!..A!
001010 0000 4121 0000 4121 0000 4121 0000 4121 ..A!..A!..A!..A!
>

This command is only available in the extended version of SmartMON.

DM - Display Memory

SmartMON ROM Monitor Rom–71

• • • • • • • •

BM

Function

Block Move.

Syntax

BM[unit] src_addr dest_addr count

unit = B = byte

W = word (default)

L = long

src_addr = The start address of the data to copy.

dest_addr = The address where the data should be copied to.

count = The number of units, in hex.

Description

This command causes SmartMON to move blocks of data from one

address to another.

Example

In this example, we will move a 32 byte (20 hex) block from one area of

memory to another. First, display the memory contents of both the source

and destination address using the display memory command with a longer

block. Then, execute the block move command and display the new

memory contents.

>DM 1000 20
001000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
001010 0000 0000 0000 0000 0000 0000 0000 0000

>BM 1000 1010 0F
>DM 1000 20
001000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
001010 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
>

This command is only available in the extended version of SmartMON.

DM - Display Memory

Execution EnvironmentRom–72
R

O
M

 M
O

N
IT

O
R

CF

Function

Configure.

Syntax

CF [flags]

flags = TF = tracing with full data movements

TP = tracing program counter only (default)

Description

This command allows the user to change the tracing configuration

parameters of SmartMON. Tracing full or tracing program counter only (the

default) may be selected. When tracing full is selected, SmartMON not only

stores the program counter, but also the data movements associated with

each instruction.

This command is only available in the extended version of SmartMON.

DT - Display Trace Buffer

SmartMON ROM Monitor Rom–73

• • • • • • • •

DB

Function

Display Breakpoint.

Syntax

DB

Description

This command causes SmartMON to display all software breakpoints and

their status.

Example

Code breakpoint #1 causes SmartMON to go into command mode from

execution mode. Notice that this breakpoint was set to break after

reaching this address for a second time. Code breakpoint #2 is set to break

anytime the instruction at this address will be executed. Code breakpoint

#3 is a temporary breakpoint set as a result of issuing a GON command.

The GON command was issued placing SmartMON into execution mode

and code breakpoint #1 was taken placing SmartMON back into command

mode. A data breakpoint was set to break if the word at address EA0000

becomes equal to 00FF. A data range breakpoint was also set to break if

the value at address EA1234 goes lower than 7 or higher than 9.

>DB <cr>

Code Break–Points

1. 010000 count = 0002 actual = 0002 enabled ***
2. 010010 count = 0001 actual = 0000 enabled
3. 010408 count = 0001 actual = 0000 enabled (temporary)

Data Break–Points

1. EA0000 data mask = 000000ff cmp_flags = enabled Word_cmp_BEQ

Data Range Break–Points

1. EA1234 Low = 0007 High = 0009 cmp_flags = enable outside check
>

Execution EnvironmentRom–74
R

O
M

 M
O

N
IT

O
R

Breakpoint status includes whether the break is enabled or disabled and

the conditions on which to break. For viewing convenience, each

breakpoint is assigned a number within each category type: code, data,

and data range. In addition to this, after a breakpoint has occurred, a flag

indicates which breakpoint has interrupted execution mode and placed

SmartMON into command mode.

Either type of data breakpoint causes SmartMON to go into non real-time

execution mode.

GON - Go to Next Instruction

SB - Set Breakpoint

SmartMON ROM Monitor Rom–75

• • • • • • • •

DC

Function

Display Configuration.

Syntax

DC

Description

The command allows the user to examine the environmental resources

that are configured for SmartMON, which include:

• microprocessor type

• address of vector base register

• beginning of SmartMON's RAM space

• ending address of SmartMON's RAM including trace buffer

• interrupt mask level

• trap number used for breakpoints

• trap number used for system calls

• size of the trace buffer

• type of storage used by the trace buffer, PC only or PC with data

movements

• mode of operation, if entering the execution mode

All of this information, except for the trace buffer storage and mode of

operation, is read directly from the configuration table, which is setup as

part of the TIP elements. The trace buffer storage may be changed by

using a Configure command (CF). The mode of operation is determined

by many conditions, including tracing and conditional breakpoints.

Execution EnvironmentRom–76
R

O
M

 M
O

N
IT

O
R

Example

In this example, we will display a configuration setup for SmartMON. The

microprocessor is a Motorola 68010, with the vector base register setup at

address E80000. SmartMON's RAM space, including the trace buffer, starts

at E90000 and ends at E91800. Interrupts greater than level 4 will be

allowed to run while SmartMON is active. The I/O and breakpoint traps

will be assigned to traps 13 & 14, respectively. There is a 1K byte buffer

setup for storing trace information, which is configured for the program

counter only. If no other breakpoint conditions are set before you issue a

GO command, the execution mode will run in real-time.

>DC

SmartMON uses the following resources:

Micro Type = M68010
VBR = 00E80000
RAM Start = 00E90000
RAM End = 00E91800
INT Mask = 0400
Break Trap = 14
I/O Trap = 13
Trace Buffer = 1K
Trace Buffer Storage = PC only **
Mode of Operation = ..Running Real–Time

** = may be modified with CF command
>

CF - Configure

GO - Go

SmartMON ROM Monitor Rom–77

• • • • • • • •

DF

Function

Diagnostic Function.

Syntax

DF[unit] n [args]

unit = B = byte

W = word (default)

n = A number corresponding to a particular diagnostic.

args = Optional parameters containing addresses and hex strings.

Description

This command will run a diagnostic function. See the Diagnostics chapter

for more details.

This command is only available in the extended version of SmartMON.

Execution EnvironmentRom–78
R

O
M

 M
O

N
IT

O
R

DI

Function

Disassemble.

Syntax

DI [addr] [count]

addr = The address to begin disassembling (the PC is the default).

count = The number of lines (in hex) to disassemble:
1 - default

20 - maximum

Description

This command causes SmartMON to disassemble target code beginning at

either the program counter or the address specified for a length of count

number of lines. This command can also be used in combination with the

Single Step (SI) command.

Example

In this example, we will disassemble 8 lines of user's code located at

address 10000. The display will show the address, the opcodes, and the

disassembled instructions.

>DI 10000 8

0010000 2200 move.l D0,D1
0010002 4282 clr.l D2
0010004 D401 add.b D1,D2
0010006 E289 lsr.l #1,D1
0010008 66FA bne.s $10004
001000A E20A lsr.b #1,D2
001000C 55C2 scs D2
001000E 60FE bra.s $1000E
>

This command is only available in the extended version of SmartMON.

SI - Single Step

SmartMON ROM Monitor Rom–79

• • • • • • • •

DL

Function

Download.

Syntax

DL [addr]

addr = An optional address offset to be added to each S record.

Description

The download command invokes a special mode of operation, called the

download mode. Once entered, all information sent over the serial port is

assumed to be data (S record format) until an EOF is encountered or the

interrupt control character (^C) is received.

During downloading, the characters received are echoed back to the host.

Also, as a result of receiving a good S record and checksum, a positive

acknowledgement �+" (PACK) is returned. A negative acknowledgement

�–" (NACK) will be returned for a bad S record or checksum. A PACK will

also be returned upon the initial download request before the first data

record is transferred.

SmartMON returns to command mode when an EOF is encountered. If a

download is aborted with a ^C, all download records following the abort

will be treated as commands and will be handled as invalid. It is therefore

the responsibility of the host to stop transmission of records after issuing

the ^C.

For relocatable code, you may send an optional offset with the command.

This offset will be added to the address specified by the S record. Hence,

the code may be downloaded to any available memory space.

Execution EnvironmentRom–80
R

O
M

 M
O

N
IT

O
R

Example

In this example, the code was originally located at address ED0000, but we

will add an offset of 1000 to this address. The display will show the

positive acknowledgements and the echoed characters.

>DL 1000

+S00600004844521B
+S213ED0000000700ED005600ED006C00ED007800F7
+S213ED000FED00A400ED00BA00ED00C600ED00EA2E
+S213ED001E00ED010000ED013000ED017700ED0182
+S213ED002D8E00ED01C800ED025800ED026E00EDFD
+S804000000FB
>

SmartMON ROM Monitor Rom–81

• • • • • • • •

DM

Function

Display Memory.

Syntax

DM[unit] addr count

unit = B = byte

W = word (default)

L = long

addr = The starting address of the memory to display.

count = The number of memory locations (size unit) to display.

Description

This command causes SmartMON to return the contents of the memory

location(s) requested. This command will display not only the address and

the hex data, but also the ASCII representation of that data.

Example

In this example, we will display 32 (20 hex) words of memory starting at

location 200010.

>DM 200010 20

200010: 3E2E 2E2E 0074 6573 7420 6E75 6D62 6572 >....test number
200020: 2033 2066 6169 6C65 6420 2D20 4E20 7263 3 failed – N rc
200030: 7664 0020 2020 2020 2020 2020 2020 2020 vd.
200040: 2020 2020 2020 2020 2020 2020 2020 2020
>

In this example, we will display 5 bytes of memory starting at location

300300.

>DMB 300300 5
00300300: 12 53 12 14 15 S...
>

Execution EnvironmentRom–82
R

O
M

 M
O

N
IT

O
R

DR

Function

Display Registers.

Syntax

DR [reg_name]

reg_name = A valid register name for the target.

Description

This command causes SmartMON to display the contents of a particular

register or registers. If no arguments are specified then all the registers will

be displayed. The active stack will be flagged with an asterisk �* ".

Example

In this example, we will display all the registers of a Motorola 68010 based

target system. Notice the SSP or Supervisor Stack Pointer is the current

stack pointer used in A7 (Address Register 7).

>DR

D0 = 00000000 D1 = 00000000 D2 = 00000000 D3 = 00000000
D4 = 00000000 D5 = 00000000 D6 = 00000000 D7 = 00000000
A0 = 00000000 A1 = 00000000 A2 = 00000000 A3 = 00000000
A4 = 00000000 A5 = 00000000 A6 = 00000000 A7 = 00E84000
USP = 00E85000 SSP*= 00E84000 PC = 00F00086 SR = 2000
VBR = 00E80000 SFC = 0007 DFC = 0007
>

In this example, first set some registers with values and then display these

registers in different order.

>SRL A0 100000 A3 120000 D1 1234 D3 55

>DR D1 D3 A0 A3

D1 = 00001234 D3 = 00000055 A0 = 00100000 A3 = 00120000
>

SR - Set Register

SmartMON ROM Monitor Rom–83

• • • • • • • •

DT

Function

Display Trace.

Syntax

DT[arg1][arg2] [count]

arg1 = B = backwards (default)

F = forwards

arg2 = F = full trace with data movements

count = Number of locations to be displayed (default is 20 lines of

information).

Description

This command allows the user to examine the contents of the trace buffer.

The trace buffer contains the program history up to the point of

SmartMON becoming active. This is the result of leaving execution mode

and entering command mode. The trace buffer will have valid history only

if tracing had previously been enabled, either directly with the Trace

Enable (TE) command or indirectly by setting a data breakpoint, for

example. The trace buffer contains PC history and/or data movement

information, depending on the configuration parameters selected using the

Configure command (CF).

Execution EnvironmentRom–84
R

O
M

 M
O

N
IT

O
R

Example

In this example, we display the last four instructions that were executed.

SmartMON was previously configured for capturing full trace with data

movements. Notice the instructions with data movements. The display will

show the address and data, where applicable, of the source, destination

before the instruction was executed, and destination after the instruction

was executed.

>DTBF 4

4.–––
00EC00f2 bra.l $00EC0000
3.–––
00EC0000 moveq.l #$ffffffff,d0 FFFFFFFF,00000000–>FFFFFFFF
2.–––
00EC0004 move.l d0,d1 FFFFFFFF, 00000000 –>FFFFFFFF
1.–––
00EC0008 move.b d0,(a0) (00EE0000)(00EE0000) 000000FF, 00 –> FF
>

In this example, we will show a trace display, without the data

movements, of three instructions that were previously executed.

>DTB 3

19. 00ea6070 2080 move.b d1,(a0)
18. 00ea6074 10BC00AA move.l #$AA,(a0)
17. 00ea6076 2210 move.l (a0),d1 >

CF - Configure

SB - Set Break

TE - Trace Enable

SmartMON ROM Monitor Rom–85

• • • • • • • •

GO

Function

Start Execution.

Syntax

GO[flag] [addr]

flag = D = trace disabled

T = trace enabled

addr = An optional hex address where execution mode will resume.

The default is the PC.

Description

This command causes SmartMON to go into execution mode. The

execution mode will continue until either a breakpoint occurs or an

interrupt is received from the host. If breakpoints are enabled, a TRAP
instruction is inserted into the target code at each breakpoint address. This

will allow real-time execution of target code and still allow for breakpoints

to be taken.

If the location where execution begins contains a breakpoint TRAP, then

that breakpoint is temporarily disabled until the program is stepped off of

the breakpoint. If an assertion has been set then, the GO command will

enable the TRACE buffer and check for break conditions after each

instruction is executed. After the GO command has been issued,

SmartMON will display one of the following messages indicating the mode

of execution:

• ..RUNNING REAL–TIME

• ..RUNNING REAL–TIME WITH BREAKPOINTS

• ..TRACING (PC only)

• ..TRACING (PC only) WITH ASSERTIONS

• ..TRACING (PC and Data Movements)

• ..TRACING (PC and Data Movements)
 WITH ASSERTIONS

Execution EnvironmentRom–86
R

O
M

 M
O

N
IT

O
R

The last function performed, before starting the execution of user's code,

is a call SYS_GO. This function is used to enable user specific operations

that are suspended when SmartMON is active. Refer to the System Control
section of the Using SmartMON chapter.

The flag argument is a way to combine the Trace Enable (TE) or Trace

Disable (TD) commands with the GO command. This is optional and if not

specified there will be no effect on the execution mode, other than

conditions previously set. The tracing mode will remain in effect until it is

specifically changed by another GO command or by the TE or TD

commands.

Example

In this example, we will first examine the instructions located at address

10000 and then set a breakpoint and verify that it is the only condition

setup. We will also disable tracing and issue the GO command, which will

allow execution mode to operate in real-time. Notice the message

displayed.

>DI 10000 F

0010000 2200 move.l D0,D1
0010002 4282 clr.l D2
0010004 D401 add.b 1,D2
0010006 E289 lsr.l 1,D1
0010008 66FA bne.b $10004
001000A E20A lsr.b #1,D2
001000C 55C2 scs D2
001000E 60FE bra.b $1000E

>SB 1000E

>DB

Code Break–Points

1. 01000E count = 0001 actual = 0000 enabled

>GO 10000

..RUNNING REAL–TIME WITH BREAKPOINTS

!BREAK! – Breakpoint at 001000E
>

SmartMON ROM Monitor Rom–87

• • • • • • • •

In this example, we will assume only one address breakpoint is set at

location 1000E. First, we issue a GO with trace enabled and then go again

from the same place. Finally, disable tracing and go again. Notice that

tracing is still enabled for the second GO command.

>GOT 10000

..TRACING (PC only) WITH ASSERTIONS

!BREAK! – Code Breakpoint at 001000E

>GO 10000

..TRACING (PC only) WITH ASSERTIONS

!BREAK! – Code Breakpoint at 001000E

>GOD 10000

..RUNNING REAL–TIME WITH BREAKPOINTS !

BREAK! – Breakpoint at 001000E
>

DB - Display Breakpoints

DI - Disassemble

SB - Set Breakpoint

TE - Trace Enable

TD - Trace Disable

Execution EnvironmentRom–88
R

O
M

 M
O

N
IT

O
R

GON

Function

Go to Next Instruction.

Syntax

GON

Description

This command causes SmartMON to set a temporary breakpoint at the

address of the next instruction following the current instruction, then go

into execution mode. This command is useful when debugging modular

code because it allows a subroutine to execute without having to step

through the code. The call SYS_GO is the last function performed before

starting execution of user code.

Example

In this example, first show the user's code and a subroutine of that code,

then set a breakpoint on the call to the subroutine. Execute up to that

subroutine, then issue a GON command. This will skip stepping through

the subroutine, but break upon its return.

>DI 6000 4

0006000 7003 moveq.l #3,D1
0006002 7201 moveq.l #1,D1
0006004 D4006FF8 bsr.w $7000
0006008 E289 move.l D0,D1
000600A D401 add.b D1,D2

>DI 7000 2

0007000 D081 add.l D1,D0
0007002 4E75 rts

>SB 6004

>GO 6000

..RUNNING REAL–TIME WITH BREAKPOINTS

!BREAK! – Breakpoint at 6004

SmartMON ROM Monitor Rom–89

• • • • • • • •

>GON

..RUNNING REAL–TIME WITH BREAKPOINTS

!BREAK! – Breakpoint at 6008
>

DB - Display Breakpoints

DI - Disassemble

GO - Start Execution

SB - Set Breakpoint

Execution EnvironmentRom–90
R

O
M

 M
O

N
IT

O
R

HE

Function

Help.

Syntax

HE [cmd]

cmd = An optional two-letter command name.

If omitted, the help menu will be displayed.

Description

This command causes SmartMON to display the help menu. This menu

shows the syntax of the command set. Additional help for each command

may be specified by passing the command name as an argument on the

HE command line.

Example

In this example, we will display help for the Display Register (DR)

command.

>HE DR

DR {register}{cr} = display registers

{register} if not specified all registers displayed
>

This command is only available in the extended version of SmartMON.

SmartMON ROM Monitor Rom–91

• • • • • • • •

IN

Function

Initialize.

Syntax

IN

Description

This command causes SmartMON to identify its version number, set default

configuration parameters, and put SmartMON into command mode.

Example

For this example, we will show an IN (initialize sequence) for a Motorola

68000 based system.

>IN

SmartMON target: M68000 Version: 4.0

Copyright (c) 1997 Tasing, Inc., As Modified
>

In this example, we will show an IN (initialize sequence) for a Motorola

68010 based system.

>IN

SmartMON target: M68010 Version: 4.0

Copyright (c) 1997 Tasing, Inc., As Modified
>

Initialization of SmartMON does NOT imply initialization of the target

system.

The revision numbers used in the examples are sample numbers for this

manual only.

Execution EnvironmentRom–92
R

O
M

 M
O

N
IT

O
R

MM

Function

Modify Memory.

Syntax

MM[unit] addr values

unit = B = byte

W = word (default)

L = long

addr = The start address for the set, in hex.

values = A space-separated list of values to write to memory.

Description

This command causes SmartMON to fill memory with the hex byte values

specified and without verification of the write (write only).

Example

In this example, we will display the contents of memory both before and

after we set three bytes of memory to the specified values.

>DMB 200010 3

200010: FF 0F 00 ...

>MMB 200010 0B 7F 34

>DMB 200010 3

200010: 0B 7F 30 ..0
>

DM - Display Memory

SmartMON ROM Monitor Rom–93

• • • • • • • •

RB

Function

Remove Breakpoint.

Syntax

RB[type] [addr]

type = C = code (default)

D = data

R = range

addr = An optional address that specifies the breakpoint to be

removed.

If type and addr are omitted, then all breakpoints will be removed.

Description

This command causes SmartMON to remove a software breakpoint at the

address specified. If no arguments are specified, then all breakpoints will

be removed. If an address is specified, then the default argument is

assumed to be a code breakpoint.

Example

In this example, first display some breakpoints that were previously setup

and then remove a code breakpoint at address 10000. Finally, verify that

the breakpoint has been removed. Notice that the second code breakpoint

will become the first breakpoint after the RB command is executed.

>DB

Code Break–Points

1. 010000 count = 0002 actual = 0000 enabled
2. 010010 count = 0001 actual = 0000 enabled

Data Break–Points

1. EA0000 data mask = 000ff cmp_flags = enabled
Word_cmp_BEQ

>

Execution EnvironmentRom–94
R

O
M

 M
O

N
IT

O
R

>RBC 10000

>DB

Code Break–Points

1. 010010 count = 0001 actual = 0000 enabled

Data Break–Points

1. EA0000 data mask = 000ff cmp_flags = enabled
Word_cmp_BEQ

>

DB - Display Breakpoints

SmartMON ROM Monitor Rom–95

• • • • • • • •

SB

Function

Set Conditional Breakpoints.

Syntax

For setting a conditional breakpoint and checking a register value:

SB addr [count] > R reg [value] [condition]

For setting a conditional breakpoint and checking a memory location:

SB addr [count] > D [data_addr] [value] [condition]

For setting a conditional breakpoint to enable/disable tracing:

SB addr [count] > { TE | TD }

addr = The address to set the breakpoint.

count = The number of times that the breakpoint must be

encountered before testing for condition.

reg = The name of a target register to check.

value = The test value to compare.

data_addr = The memory location to compare against value.

condition = unit type test

unit = B = byte

W = word

L = long

type = A = and

C = compare

test = E = equal

N = not equal

The default condition is LCE - long compare break if equal.

TE,TD = Enable or disable trace respectively.

Execution EnvironmentRom–96
R

O
M

 M
O

N
IT

O
R

Description

This command causes SmartMON to set a conditional software breakpoint

at the address specified. The conditional tests will be done when the

address is encountered count times.

The following is a list of those conditions which may be checked:

• Check an ADDRESS or DATA REGISTER for specific value.

• Check a MEMORY location for a particular value.

• Enable Tracing.

• Disable Tracing.

When entering the execution mode, the mode of operation message,

displayed by the GO command, will only indicate the mode that was

started.

Example

In this example, we will set a conditional breakpoint to occur when the

program counter reaches address 10000 and register D0 has a value of

000FFFFF. First set the conditional breakpoint and then issue the GO

command.

>SB 10000 > R D0 FFFFF

>GO FF00

..RUNNING REAL–TIME WITH BREAKPOINTS

!BREAK! – Breakpoint at 10000
>

In this example, we will set a conditional breakpoint to trace a specific

subroutine's execution. First set a conditional breakpoint that will enable

tracing during the subroutine and also set a conditional breakpoint that

will disable tracing at the end of that subroutine. Finally, issue the GO

command. Begin by displaying the code that will execute. Notice that

when entering execution mode, the code will be running real-time; only

during the subroutine will the code not run in real-time.

>DI 6000 5

0006000 7003 moveq.l #3,D1
0006002 7201 moveq.l #1.D1
0006004 D4006FF8 bsr.w $7000
0006008 E289 move.l D0,D1
000600A D401 add.b D1,D2

SmartMON ROM Monitor Rom–97

• • • • • • • •

>DI 7000 4

0007000 D081 add.l D1,D0
0007002 E289 move.l D0,D1
0007004 D401 add.b D1,D2
0007006 4E75 rts

>SB 7000 > TE

>SB 7006 > TD

>SB 600A

>GO 6000

..RUNNING REAL–TIME WITH BREAKPOINTS

!BREAK! – Breakpoint at 600A

>DTB

4. 0007000 D081 add.l D1,D0
3. 0007002 E289 move.l D0,D1
2. 0007004 D401 add.b D1,D2
1. 0007006 4E75 rts

>

In the basic version of SmartMON, the SB command is translated to SBC

and any option after count is treated as a syntax error.

DI - Disassemble

DT - Display Trace Buffer

GO - Start Execution

Execution EnvironmentRom–98
R

O
M

 M
O

N
IT

O
R

SBC

Function

Set Address Breakpoint.

Syntax

SBC addr [count]

addr = The code address for the breakpoint's location.

count = An optional count that specifies the number of times the

breakpoint must be encountered before executing the

breakpoint.

Description

This command causes SmartMON to set a software breakpoint at the

address specified.

Example

In this example, set a breakpoint at address 10000. We do not want this

breakpoint to be taken until this code has executed 16 (10 hex) times.

Verify that the breakpoint exists and issue a GO command.

>SB 10000 10

>DB

Code Break–Points

1. 010000 count = 0010 actual = 0000 enabled

>GO

..RUNNING REAL–TIME WITH BREAKPOINTS

!BREAK! – Breakpoint at 10000
>

Since a code breakpoint is the default, SB may be used instead of SBC if
desired.

DB - Display Breakpoints

GO - Start Execution

SmartMON ROM Monitor Rom–99

• • • • • • • •

SBD

Function

Set Data Breakpoint.

Syntax

SBD addr data condition

addr = The data address to evaluate.

data = The data value to compare to see if the breakpoint should be

executed.

condition = unit type test

unit = B = byte

W = word

L = long

type = A = and

C = compare

test = E = equal

N = not equal

The default is LCE - long compare break if equal.

Description

This command causes SmartMON to compare data at the address specified

while tracing through execution mode. The data is compared against the

value residing at the specified address using the conditions set forth by the

arguments. The breakpoint will occur if the test condition is satisfied.

Execution EnvironmentRom–100
R

O
M

 M
O

N
IT

O
R

Example

In this example, we set a data breakpoint for the word data residing at

address E00000. We would like to find the section of code that is

overwriting a variable at this address. The breakpoint will be taken if the

data changes to any value other than FFFF. First, display the contents of

the variable and then set the data breakpoint, issue the GO, and verify the

variable's contents.

>DMW E00000 1
E00000: FFFF

>SBD E00000 FFFF WCN

>GO

..TRACING (PC only) WITH ASSERTIONS

!BREAK! – Data Breakpoint at F00440

>DMW E00000 1
E00000: FFFE
>

In this example, we set a data breakpoint for the word data residing at

address E00010. We would like to find what section of code is setting a bit

flag at this address. Setup the breakpoint to occur if the least significant bit

gets set. First, display the contents of the flag word and then set the data

breakpoint, issue the GO, and verify the flag word's contents.

>DMW E00010 1
E00010: FFFE

>SBD E00000 0001 WAE

>GO

..TRACING (PC only) WITH ASSERTIONS

!BREAK! – Data Breakpoint at F03510

>DMW E00000 1
E00010: FFFF
>

DM - Display Memory

GO - Start Execution

SmartMON ROM Monitor Rom–101

• • • • • • • •

SBR

Function

Set Data Range Breakpoint.

Syntax

SBR[unit] addr low_data high_data [test]

unit = B = byte

W = word

L = long (default)

addr = The data address to evaluate.

low_data = The low value of the data range.

high_data = The high value of the data range.

test = E = Equal or break on data outside range

 - no break on boundaries (default).

N = Not equal or break on data inside range

 - break on boundaries.

Description

This command will set up a data breakpoint condition where the value at

a specific location must fall either within or outside a certain range. The

breakpoint will occur if the test condition is satisfied.

Execution EnvironmentRom–102
R

O
M

 M
O

N
IT

O
R

Example

In this example, we will set a data range breakpoint for the word data

residing at address E00000. We would like to determine when a certain

variable will exceed a specified limit. The breakpoint will be setup to

occur when the value of this variable is outside a certain range. First,

display the contents of the variable and then set the data range breakpoint,

issue the GO command, and verify the variable's contents. Notice the

values are long only.

>DML E00000 1
E00000: 0000A000

>SBR E00000 9FFF B000 E

>GO

..TRACING (PC only) WITH ASSERTIONS

!BREAK! – Data Range Breakpoint at F01424

>DM E00000
E00000: 0000 B001 0000 0000 0000 0000 0000 0000...........
>

In this example, we will set a data range breakpoint for the word data

residing at address E00000. We would like to determine when a certain

variable will fall within our specified limit. The breakpoint will be taken

when the value of this variable is inside a certain range. First, we will

display the contents of the variable. Then we will set the data range

breakpoint, issue the GO and verify the variable's contents.

>DML E00000 1
E00000: 0000A000

>SBR E00000 AAAA B000 N <cr>

>GO

..TRACING (PC only) WITH ASSERTIONS

!BREAK! – Data Range Breakpoint at F0186A

>DM E00000
E00000: 0000 AAAB 0000 0000 0000 0000 0000 0000
>

DM - Display Memory

GO - Start Execution

SmartMON ROM Monitor Rom–103

• • • • • • • •

SI

Function

Single Step Instruction.

Syntax

SI [DR] [DI] [count]

DR = Display all registers, if specified.

DI = Disassemble the last instruction executed, if specified.

count = An optional number of target instructions to execute. The

default is one instruction.

Description

This command causes SmartMON to go into execution mode with tracing

enabled.

Example

In this example, we will single step the target for one instruction. We

would like to see the contents of the registers and the instruction that was

executed.

>SIDIDR

..TRACING (PC only) WITH ASSERTIONS

D0 = 00000000 D1 = 00000000 D2 = 00000000 D3 = 00000000
D4 = 00000000 D5 = 00000000 D6 = 00000000 D7 = 00000000
A0 = 00200000 A1 = 00000000 A2 = 00000000 A3 = 00000000
A4 = 00000000 A5 = 00000000 A6 = 00000000 A7 = 00000000
USP = 00000000 SSP = 00000000 PC = 00000000 SR = 0000
VBR = 00000000 SFC = 0000 DFC = 0000

MOVE.W #$7F00,(A0)

This command is only available in the extended version of SmartMON.

Execution EnvironmentRom–104
R

O
M

 M
O

N
IT

O
R

SM

Function

Set Memory.

Syntax

SM[unit] addr values

unit = B = byte

W = word (default)

L = long

addr = The start address for the set, in hex.

values = A space-separated list of values to write to memory.

Description

This command causes SmartMON to fill memory with the hex byte values

specified.

Example

In this example, we will display the contents of memory both before and

after we set three bytes of memory to the specified values.

>DMB 200010 3

200010: FF 0F 00 ...

>SMB 200010 0B 7F 34

>DMB 200010 3

200010: 0B 7F 34 ..4
>

DM - Display Memory

SmartMON ROM Monitor Rom–105

• • • • • • • •

SO

Function

Step Out of Address Range.

Syntax

SO start end

start = The starting address for the range.

end = The ending address for the range.

Description

This command causes SmartMON to go into execution mode with trace

enabled. The execution mode will continue until any of the following

conditions occurs: a breakpoint is encountered, an instruction outside of

the specified range is about to be executed, or an interrupt is received

from the host.

Example

In this example, we will single step the code until the program falls

outside the specified range.

>SO 0001000 0001fff

..TRACING (PC only) WITH ASSERTIONS

!BREAK! – Code Step out of Range at 0002154
>

Execution EnvironmentRom–106
R

O
M

 M
O

N
IT

O
R

SR

Function

Set Registers.

Syntax

SR[unit] reg value [reg value ...]

unit = B = byte

W = word

L = long (default)

reg = A valid target register (you may not modify the value of A7).

The keyword all may be specified to mean all registers other

than A7.

value = A hex value to write to the register.

Description

This command causes SmartMON to modify the register or registers

specified.

Example

In this example, we will set address register A0 and data register D2 with

word values. Then display these registers to verify their contents. Notice

that only the lower word of the register will be affected by this command.

>DR A0 D2

A0 = 00000000 D2 = FFFFFFFF

>SR A0 005B D2 7F34

>DR A0 D2

A0 = 0000005B D2 = FFFF7F34

>

DR - Display Registers

SmartMON ROM Monitor Rom–107

• • • • • • • •

SS

Function

Search for String.

Syntax

SS[unit] addr range string

unit = A = ASCII (default)

H = hex

addr = The starting address of the search.

range = The size of search in bytes.

string = The string to be searched for.

Description

This command allows the user to search for a string in memory.

Example

In this example, we will search for the ASCII string �hello " for 32 (20

hex) memory locations. Find one string and continue the search until all

the locations have been checked. There will be only one occurrence of

this string in the memory that will be searched.

>SSA 10000 20 hello

String found at 1000f

><CR>

String not found

This command is only available in the extended version of SmartMON.

Execution EnvironmentRom–108
R

O
M

 M
O

N
IT

O
R

TD

Function

Trace Disable.

Syntax

TD

Description

This command causes SmartMON to disable tracing of target execution

code. Tracing may not be disabled if assertions are set. Programs will run

in real-time when tracing is disabled.

Example

In this example, we will assume no other assertions are set. Disable trace

and issue a GO command. Execution mode will run in real-time.

>TD

>GO

..RUNNING REAL–TIME

In this example, we will assume that another assertion is set. Disable trace

and issue a GO command. Execution mode will NOT run in real-time.

>TD

>GO

..TRACING (PC only) WITH ASSERTIONS

GO - Start Execution

SmartMON ROM Monitor Rom–109

• • • • • • • •

TE

Function

Trace Enable.

Syntax

TE

Description

This command causes SmartMON to enable tracing of target execution

code.

The default configuration parameter for tracing is trace the PC history only.

If tracing with full data movements is enabled (see the CF command),

then the data associated with �move" type commands will be saved in the

trace buffer. Once the trace parameter has been selected, all subsequent

TE commands will be in that mode.

CF - Configure

Execution EnvironmentRom–110
R

O
M

 M
O

N
IT

O
R

UD

Function

User Diagnostics.

Syntax

UD[type] number

type = C = run test continuously

H = run test continuously, halt on error

I = install RAM diagnostics

The default is to run tests once.

number = n - number of tests to be run

A - all tests

Description

SmartMON allows the user to create his own diagnostics to run under the

monitor. See the Diagnostics chapter for more information.

This command is only available in the extended version of SmartMON.

SmartMON ROM Monitor Rom–111

• • • • • • • •

6 SYSTEM CALLS

This chapter is a reference for the system calls used to access selected

functional routines contained within SmartMON.

6.1 INTRODUCTION

System calls can be used to access selected functional routines contained

within SmartMON. The access to SmartMON is through the user defined

TRAP# called RM_TRP (USREQU.68K). In order to select the appropriate

function, a system call code is loaded into D0 and a trap is then made to

SmartMON. SmartMON decodes the value passed in D0 and takes the

appropriate action.

System calls are used by the user-supplied I/O driver. The serial port ISR
informs SmartMON of a pending character or buffer empty after

transmission of a character. System calls may also be used by the user's

application code to access communication services.

The following information includes a description of the system calls, the

function codes, its return values, and any necessary guidelines.

Not all system calls are available in the basic version of SmartMON.

Execution EnvironmentRom–112
R

O
M

 M
O

N
IT

O
R

EVT_COPY

Function

A user may wish to create a separate vector table in memory to contain its

exception vectors. If the user wishes to use SmartMON services, he must

copy over those vector addresses used by SmartMON.

When this system call is issued, SmartMON will copy the current EVT
(Exception Vector Table) to a location starting at an address specified in

A0. When SmartMON copies it performs a write read verify. If this check

fails an error is returned.

Example

LEA start evt,A0 ;load address pointer
MOVE.W #EVT_COPY,D0 ;load system call
TRAP #ROMM ;trap

Input

D0 = EVT_COPY 000A
A0 = address of new EVT

Output

D0 = return code

Returns

0000 = RET OK successful return

0001 = FAIL unable to write EVT

VBR must not be changed until after this system call.

SmartMON ROM Monitor Rom–113

• • • • • • • •

IN_CHAR

Function

When this system call is issued SmartMON will read a �>" character from

the input buffer. SmartMON returns the next character from its input

buffer.

If there is no character present in the buffer, IN_CHAR returns the error

code NO CHAR.

Example

MOVE.W #IN_CHAR,D0
TRAP #ROMM ;trap

Input

D0 = IN_CHAR 0010

Output

D0 = return code

D1[7:0] = character

Returns

0000 = RET OK successful return

0001 = NO CHAR

Execution EnvironmentRom–114
R

O
M

 M
O

N
IT

O
R

IN_STR

Function

When this system call is issued SmartMON will read a string from the input

buffer. SmartMON places the string in a buffer pointed to by an address in

A0. A string consists of a number of characters terminated with a <cr>.

If a complete string is not present in the buffer, IN_STR returns the error

code NO STR.

Example

LEA buff ptr,A0 ;load address pointer
MOVE.W #IN_STR,D0
TRAP #ROMM ;trap

Input

D0 = IN_STR 0011
A0 = address of buffer

Output

D0 = return code

Returns

0000 = RET OK successful return

0001 = NO STR

This function is only available in the extended version of SmartMON.

SmartMON ROM Monitor Rom–115

• • • • • • • •

INT_COMP

Function

This call exits an ISR (interrupt service routine). When you INT_ENTER at

the start of the ISR, you must terminate the ISR with this call. Refer to

INT_ENTER for enter interrupt service handler. There is no return to the

interrupt service routine for this system call. Execution resumes wherever

code was executing previous to the interrupt service routine's execution.

Input

D0 = INT_COMP 0002

Output

no return is possible

Because register D0 is needed to make the INT_COMP call to SmartMON, it

is assumed that the original value of D0 saved at the start of the ISR is now

on top of the stack. The stack must have the following format when

calling INT_COMP:

D0
ISP OR SSP––> SR

PC
Format I/D *

*MC68010 and 68020 only

Execution EnvironmentRom–116
R

O
M

 M
O

N
IT

O
R

INT_ENTER

Function

This call is used to signal SmartMON that an ISR has been entered.

INT_COMP must be used to exit the ISR that begins with INT_ENTER.

Refer to the INT_COMP command in this section.

Example

MOVE.W D0,–(sp) ;save D0
MOVE.W #INT_ENTER,D0 ;load D0
TRAP #ROMM ;trap

Input

D0 = INT_ENTER 0001

Output

D0 = return code

Returns

0000 = RET OK successful return

Your ISR must save the contents of register D0 of size word onto the stack

before this call is made.

SmartMON ROM Monitor Rom–117

• • • • • • • •

INT_RX

Function

An ISR uses this call to transfer each character to SmartMON as it is

received from the supported I/O device.

Input

D0 = INT_RX 0004

Output

D0 = return code

Returns

0000 = RET OK successful return

Execution EnvironmentRom–118
R

O
M

 M
O

N
IT

O
R

INT_TX

Function

An ISR uses this call to inform SmartMON that it is ready to transmit

another character to the supported I/O device. SmartMON returns the next

character from its output buffer to the ISR.

If there is no character present in the buffer, INT_TX returns the error

code of 0001 , which is a NO CHAR return code.

Input

D0 = INT_TX 0003

Output

D0 = return code

D1[7:0] = character

Returns

0000 = RET OK successful return

0001 = NO CHAR

SmartMON ROM Monitor Rom–119

• • • • • • • •

OUT_CHAR

Function

When this system call is issued SmartMON will write a character out to the

serial port.

Example

MOVE.B CHAR,D1
MOVE.W #OUT_CHAR,D0
TRAP #ROMM ;trap

Input

D0 = OUT_CHAR 0013
D1 = character to be transmitted

Output

D0 = return code

Returns

0000 = RET OK successful return

Execution EnvironmentRom–120
R

O
M

 M
O

N
IT

O
R

OUT_DATA

Function

When this system call is issued SmartMON will read data from the buffer

pointed to by an address in A0 for a count contained in D1. The data is

converted to ASCII hex before transmission.

Example

LEA buff ptr,A0 ;load address pointer
MOVE.W COUNT,D1 ;load the number of bytes
MOVE.W #OUT_DATA,D0
TRAP #ROMM ;trap

buff ptr: dc.b $24,$48,$fe

Input

D0 = OUT_DATA 0015
A0 = address of buffer

Output

D0 = return code

Returns

0000 = RET OK successful return

0001 = NO STR

This function is only available in the extended version of SmartMON.

SmartMON ROM Monitor Rom–121

• • • • • • • •

OUT_STR

Function

When this system call is issued SmartMON will read a string from the a

buffer pointed to by an address in A0. A string consists of a number of

characters terminated with a null.

If more than 254 characters are present without a null, OUT_STR returns

the error code STR_TO_LONG.

Example

LEA buff ptr,A0 ;load address pointer
MOVE.W #OUT_STR,D0
TRAP #ROMM ;trap

buff ptr: dc.b ”Hello”,$a,$d,$o

Input

D0 = OUT_STR 0014
A0 = address of buffer

Output

D0 = return code

Returns

0000 = RET OK successful return

0001 = STR TO LONG

This function is only available in the extended version of SmartMON.

Execution EnvironmentRom–122
R

O
M

 M
O

N
IT

O
R

RD_STR

Function

When this system call is issued SmartMON will read a string from the input

buffer. SmartMON places the string in a buffer pointed to by an address in

A0. A string consists of a number of characters terminated with a <cr>.

This function does not return to the caller until a <cr> is received.

Example

LEA buff ptr,A0 ;load address pointer
MOVE.W #RD_STR,D0
TRAP #ROMM ;trap

Input

D0 = RD_STR 0012
A0 = address of buffer

Output

D0 = return code

Returns

0000 = RET OK successful return

This function is only available in the extended version of SmartMON.

SmartMON ROM Monitor Rom–123

• • • • • • • •

ROMM_GO

Function

When this system call is issued SmartMON becomes active and a �>" will

appear on the terminal. This call is typically made at the end of

RMAIN.68K , but may be placed anywhere in user code to invoke

SmartMON.

Example

MOVE.W D0,–(sp) ;save D0
MOVE.W #ROMM_GO,D0 ;load D0
TRAP #ROMM ;trap

Input

D0 = ROMM_GO 0005

Output

D0 = no return possible

Returns

0000 = RET OK successful return

Execution EnvironmentRom–124
R

O
M

 M
O

N
IT

O
R

7 DIAGNOSTICS

This chapter describes diagnostic functions which are utility routines and

special tests that are useful for exposing memory problems. Diagnostics

can be performed both by using SmartMON diagnostic commands or by

using user-written custom diagnostic routines. This chapter includes the

following major sections:

• SmartMON Diagnostics

• User Diagnostics

Diagnostic functions and their utilities are only available in the extended

version of SmartMON.

7.1 SMARTMON DIAGNOSTICS

7.1.1 OVERVIEW

The diagnostic functions are a group of utility routines and special tests.

They are useful for exposing memory problems and giving the user the

ability to write and execute custom diagnostics, both ROM and RAM

based.

SmartMON has provided RAM tests, scope loops, and CRC tests for basic

conveniences. For integrating customized diagnostics, see the User
Diagnostics section later in this chapter. The rest of this section will

describe the tests that are already incorporated into SmartMON.

7.1.2 RAM TESTS

These pre written RAM tests check to see if target memory is operating

properly. Simple and complete RAM tests are supported in both single

pass and continuous pass modes.

SmartMON ROM Monitor Rom–125

• • • • • • • •

DF0

Function

Simple RAM Test, Single Pass.

Syntax

DF[unit] 0 start end

unit = B = byte

W = word (default)

L = long

start = The starting memory location to test.

end = The ending memory location to test.

Description

Run a simple RAM test for a single pass.

Example

A simple RAM test will be executed on a 128 word memory space. There

will be no errors.

>DFW 0 00000 000FF

>complete

A simple RAM test will be executed on a 128 word memory space. There

will a bad memory bit 12 at address 0000E . A bit will be stuck low.

>DFW 0 00000 000FF

memory failure: $0000E=$4555 not $5555

complete
>

Execution EnvironmentRom–126
R

O
M

 M
O

N
IT

O
R

DF1

Function

Complete RAM Test, Single Pass.

Syntax

DF[unit] 1 start end

unit = B = byte

W = word (default)

L = long

start = The starting memory location to test.

end = The ending memory location to test.

Description

Run a complete RAM test for a single pass.

Example

A complete RAM test will be executed on a 128 word memory space.

There will be no errors.

>DFW 1 00000 000FF

>complete

A complete RAM test will be executed on a 128 word memory space.

There will a bad memory bit 12 at address 0000E . A bit will be stuck low.

>DFW 1 00000 000FF

memory failure: $0000E=$efff not $ffff
memory failure: $0000E=$0000 not $1000

complete
>

SmartMON ROM Monitor Rom–127

• • • • • • • •

DF2

Function

Simple RAM Test, Continuous.

Syntax

DF[unit] 2 start end

unit = B = byte

W = word (default)

L = long

start = The starting memory location to test.

end = The ending memory location to test.

Description

Run a simple RAM test continuously. This test can be stopped by an

interrupt control character (^C) from the host.

Example

A simple RAM test will be executed continuously on a 128 word memory

space. There will be no errors.

>DFW 2 00000 000FF

TEST IS LOOPING PRESS ^C TO ABORT

NUMBER OF COMPLETE LOOPS = $XXXX

A simple RAM test will be executed continuously on a 128 word memory

space. There will a bad memory bit 12 at address 0000E . A bit will be

stuck low.

>DFW 2 00000 000FF

TEST IS LOOPING PRESS ^C TO ABORT
memory failure: $0000E=$4555 not $5555
PASS# = 1
memory failure: $0000E=$4555 not $5555
PASS# = 2
UNTIL ^C

Execution EnvironmentRom–128
R

O
M

 M
O

N
IT

O
R

DF3

Function

Complete RAM Test, Continuous.

Syntax

DF[unit] 3 start end

unit = B = byte

W = word (default)

L = long

start = The starting memory location to test.

end = The ending memory location to test.

Description

Run a complete RAM test continuously. This test can be stopped by an

interrupt control character (^C) from the host.

A complete RAM test will be executed continuously on a 128 word

memory space. There will be no errors.

>DFW 3 00000 000FF

TEST IS LOOPING PRESS ^C TO ABORT

NUMBER OF COMPLETE LOOPS = $XXXX

A complete RAM test will be executed continuously on a 128 word

memory space. There will a bad memory bit 12 at address 0000E .

>DFB 3 00000 000FF

TEST IS LOOPING PRESS ^C TO ABORT

memory failure: $0000F=$ef not $ff memory failure:
$0000F=$00 not $10

PASS# = 1

memory failure: $0000F=$ef not $ff memory failure:
$0000F=$00 not $10

PASS# = 2
...

SmartMON ROM Monitor Rom–129

• • • • • • • •

DF4

Function

CRC Text.

Syntax

DF 4 start end

start = The starting memory location to test.

end = The ending memory location to test.

Description

Run a CRC test over a specified range of memory.

Example

A CRC test will be executed on a 128 word memory space.

>DF 4 00000 000FF

CRC = 437B

Execution EnvironmentRom–130
R

O
M

 M
O

N
IT

O
R

DF5

Function

Scope Loop: Read from Location.

Syntax

DF[unit] 5 addr

unit = B = byte

W = word (default)

L = long

addr = The memory location to test.

Description

The scope loop routines are useful when troubleshooting with an

oscilloscope. Read/write continuously from/to an address, and write then

read data are supported routines.

This command will continuously read from the specified address. This test

can be stopped by an interrupt control character (^C).

Example

Scope loop reading a location.

>DF 5 E80000

DF 5 reading a location press ^C to abort

SmartMON ROM Monitor Rom–131

• • • • • • • •

DF6

Function

Scope Loop: Write to Location.

Syntax

DF[unit] 6 addr value

unit = B = byte

W = word (default)

L = long

addr = The memory location to test.

value = The hex value to write to addr.

Description

Continuously write a specified pattern to the address specified. This test

can be stopped by an interrupt control character (^C).

Example

Scope loop writing data to a location.

>DF 6 E80000 5555

DF 6 writing a location press ^C to abort

Execution EnvironmentRom–132
R

O
M

 M
O

N
IT

O
R

DF7

Function

Scope Loop: Write and Compliment.

Syntax

DF[unit] 7 addr value

unit = B = byte

W = word (default)

L = long

addr = The memory location to test.

value = The hex value to write to addr.

Description

Consecutively write a specified pattern to the address specified and then

write its complement. This test can be stopped by an interrupt control

character (^C).

Example

Scope loop writing data then its complement to a location.

>DF 7 E80000 5555

DF 7 writing value then complementing
press ^C to abort

SmartMON ROM Monitor Rom–133

• • • • • • • •

DF8

Function

Scope Loop: Write Rotating Value.

Syntax

DF[unit] 8 addr value

unit = B = byte

W = word (default)

L = long

addr = The memory location to test.

value = The hex value to write to addr.

Description

Write a specified pattern to the address specified and rotate the pattern.

This test can be stopped by an interrupt control character (^C).

Example

Scope loop writing rotating data to a location.

>DF 8 E80000 0001

DF 8 writing value then rotating press ^C to abort

Execution EnvironmentRom–134
R

O
M

 M
O

N
IT

O
R

DF9

Function

Scope Loop: Write then Read.

Syntax

DF[unit] 9 addr value

unit = B = byte

W = word (default)

L = long

addr = The memory location to test.

value = The hex value to write to addr.

Description

Write a specified pattern to the address specified and then read it back.

This test can be stopped by an interrupt control character (^C).

Example

Scope loop writing then reading data to/from a location.

>DF 9 E80000 5555

DF 9 writing value then read press ^C to abort

SmartMON ROM Monitor Rom–135

• • • • • • • •

7.2 USER DIAGNOSTICS

7.2.1 OVERVIEW

In the area of manufacturing, SmartMON's ability to control and execute

user diagnostics makes an ideal interface between the manufacturing

technician and the diagnostics. These services create a menu of available

tests with the ability to execute the tests individually or as a set. The

debugging tools also allow the diagnostic engineer to debug his

diagnostics in the same environment they will eventually run in.

SmartMON supplies the following services to support these diagnostics:

• A menu listing of all user diagnostics.

• The ability to run a test or all the tests once or continuously with an

option to halt on error.

• The ability to report errors to the host.

The user can include up to eight diagnostics as part of SmartMON image

which will be linked and burned into the target EPROMS. This allows the

user to select and run these tests under SmartMON.

SmartMON also supports eight downloaded diagnostics. After the

diagnostics have been downloaded, a UDI (User Diagnostic Install)

command with the address of the diagnostic table is issued. SmartMON

will then install these diagnostics into the UD menu. Figure Rom-9

contains the layout of the diagnostic table structure.

Execution EnvironmentRom–136
R

O
M

 M
O

N
IT

O
R

diag1_msg

diag1_main

diag1_error

diag2_msg

diag2_main

diag2_error

num of diags

diag1_msg

diag1_main

diag1_error

diag2_msg

diag2_main

diag2_error

diagnostic table

diag #1

diag #2

address of first table
entry
used in UDI command
to inform SmartMON
where diagnostics are
located

this is the message
in
SmartMON’s users
diagnostic table

the address in the
table points to this
module, an RTS is
required

this module is
called when
diag1_main returns
a non–zero error
code

the diagnostic mod-
ules
can take advantage
of SmartMON’s I/O
system calls to send
and receive mes-
sages

Figure Rom-9: Diagnostic table structure

SmartMON ROM Monitor Rom–137

• • • • • • • •

User Diagnostic Commands

Syntax

UDtype number

type = C = Run test continuously.

H = Run test continuously halt on error.

I = Install RAM diagnostics.

Default is to run test once.

number = # number of test to be run

A = all tests

If type and number are omitted, then a list of available tests is displayed.

Example

In this example, we will display the list of available tests on the target.

>UD
USER DIAGNOSTICS

ROM BASED RAM BASED

1. USER DIAGNOSTIC 9. not installed
MEMORY TEST

2. TEST TWO A. not installed

3. not available B. not installed

4. not available C. not installed

5. not available D. not installed

6. not available E. not installed

7. not available F. not installed

8. not available 10. not installed

type UD< type > < test number > to execute test

TO install downloaded diagnostics type UDI < address >
<address > = address of RAM DIAG_TABLE

Execution EnvironmentRom–138
R

O
M

 M
O

N
IT

O
R

In this example, we will run test #1 once. There are no errors found

during this test.

>UD 1

RUNNING TEST NUMBER 1 :– USER DIAGNOSTIC
MEMORY TEST

COMPLETE

In this example we will run test #1 once. An error will be found during

this test. The message �TEST FAILED" will be printed by SmartMON, while

the message following it is printed out by the user's error routine.

>UD 1

RUNNING TEST NUMBER 1 :– USER DIAGNOSTIC
MEMORY TEST
TEST FAILED
ERROR MESSAGE:– TEST FAILED DURING READ
>

In this example, we will run all tests continuously. When each test is about

to be executed, its menu message will be printed by SmartMON. These

tests can be stopped the interrupt control character (^C).

>UDC A

RUNNING TEST NUMBER 1 :– USER DIAGNOSTIC
MEMORY TEST

7.2.2 HOW TO WRITE A USER DIAGNOSTIC

The user creates each test in three sections: the diagnostic message, the

diagnostic test and the error reporting routine. The starting addresses of

each of these sections are then placed in the diagnostic table. In order for

SmartMON to access the diagnostics the starting address of this table is

required. For ROM based diagnostics, this table address is specified in the

configuration table found in USREQU.68K. After downloading RAM based

diagnostics, the table's address is specified by issuing the UDI command

with the table's address. The first value in each of these tables is the

number of diagnostics to follow. Each diagnostic must have three entries

in the table (an address for each of the three sections in the diagnostic) as

follows:

1. TST MSG - Diagnostic Message

SmartMON ROM Monitor Rom–139

• • • • • • • •

2. TST MAIN - Diagnostic Test Routine

3. TST ERR - Error Reporting Routine

Diagnostic Messages

This is the first section of a diagnostic and simply contains a message. This

message is used by SmartMON to describe the test. The message can be

up to 30 characters long and must be terminated with a null character.

The following message will be printed out by SmartMON when either the

UD menu is selected or when the test is executed. This is an example of a

test message defined:

TST1 MSG: DC.B ”USER DIAGNOSTIC MEMORY TEST”,0

Diagnostic Test

This is the actual test to be executed. The test routine must be terminated

with an RTS and the error code returned in D0.

The following is an example of what the end of a diagnostic test might

look like:

TST1 MAIN
: :

BEQ.S TST1 GOOD ; any errors found ?
MOVE.B #01,D0 ; yes, errors found
BRA.S TST1 END ; skip good return

TST1 GOOD MOVE.B #00,D0 ; no, test passed
TST1 END RTS

Error Reporting

This part of the test allows the user to print additional information about a

particular failure. This function is called by SmartMON when the diagnostic

test produced an error. The only exception is when the test is to run in

continuous mode and not halt on errors. If the user does not wish to

produce additional information, this function need only contain an RTS.

Execution EnvironmentRom–140
R

O
M

 M
O

N
IT

O
R

This is an example of an error reporting routine. It will check for a valid

user-defined error code and will print a corresponding error message. This

routine will only be called if its diagnostic test has failed:

TST1 RSP:

RSP1 CMPI 01,D0 ;check if error 1 occurred
BNE RSP2 ;no keep checking
MOVE #OUT_STR,d0 ;setup for string xmit
LEA ERROR 1,A0 ;point to error message
TRAP #ROMM ;make system call
RTS ;exit

RSP2 CMPI 02,D0 ;check if error 2 occurred
BNE RSP3 ;not a valid error code
MOVE #OUT_STR,D0 ;setup for string xmit
LEA $ERROR 2,A0 ;point to error message
TRAP #ROMM ;make system call

RSP3 RTS ;exit

ERROR 1: DC.B ”TEST FAILED DURING READ”,$a,$d,0

ERROR 2: DC.B ”TEST FAILED DURING WRITE”$a,$d,0

7.2.3 LINKING DIAGNOSTICS WITH SMARTMON

For SmartMON to know what user diagnostics are available, the following

data structure must be created:

XDEF DIAG_TABLE

DIAG_TABLE: DC.W 0001 ;number of tests = 1
DC.l TST1 MSG ;function containing msg
DC.l TST1 MAIN ;diagnostic test
DC.l TST1 RSP ;error routine

This table must be available even if no diagnostics are to be included, in

which case, the table must look as follows:

 XDEF DIAG_TABLE

DIAG_TABLE: DC.W 0000 ;number of tests = 0

SmartMON ROM Monitor Rom–141

• • • • • • • •

7.2.4 DOWNLOADING AND RUNNING USER

DIAGNOSTICS

When diagnostics are downloaded, SmartMON has to be informed of their

location in memory. This is done by creating the diagnostic table as

described above which becomes part of the downloaded image. In this

case, the diagnostics are not linked with SmartMON. In order for

SmartMON to recognize the diagnostics, the starting address of the

diagnostic table (RAM_DIAG) must be known. To define a location where

you would like the diagnostic table to reside, add the following line to

your locate command file:

LOCATE (RAM_DIAG : #<address>)

These tests can then be included in SmartMON's diagnostic menu by

issuing the UDI command with the address of the DIAG_TABLE. The UDI
<address> command takes the table and loads the diagnostic names into

SmartMON's UD menu, after which these tests can be selected and run.

Unlike the ROM based diagnostics, if the user chooses not to use

downloadable diagnostics, a DIAG_TABLE with test number set to 0 does

not have to exist.

7.2.5 HOW SMARTMON PROCESSES UD COMMANDS

When SmartMON is initialized, part of the process is to install the ROM

based diagnostics. This is done by examining the DIAG_TABLE to

determine how many diagnostics are available. For each diagnostic

available, SmartMON takes the diagnostic message and places it in the

menu, allowing the user to display the available tests with a UD command.

7.2.6 INSTALLING RAM BASED DIAGNOSTICS

When the UDI <address> command is issued, SmartMON goes to the

address specified and examines the DIAG_TABLE to determine how many

diagnostics are available. For each diagnostic available, SmartMON takes

the diagnostic message and places it in the menu, allowing the user to

display the available tests with a UD command.

Execution EnvironmentRom–142
R

O
M

 M
O

N
IT

O
R

7.2.7 RUNNING A TEST

Entering a UD 1 command causes SmartMON to print out a test running

message and the test message located at address TST1 MSG. SmartMON

then calls the TST1 MAIN diagnostic and the test will execute. Upon

returning to SmartMON, the error code in register D0 is checked and a

message is displayed indicating the test passed or failed. If a non-zero

value was returned in D0, TST1 ERR the error routine is then called and

the error code is also passed in D0. This routine may now print out any

additional information using system calls. Upon completion the routine is

terminated with a RTS.

If a UDC 1 command had been entered, then TST1 MAIN would be called

repeatedly and the PASS COUNT would be updated. If an error is

encountered the error message is displayed and the test is halted. Entering

a <cr> will continue execution of the test.

BACKGROUND
DEBUG MODE

A
D

D
E

N
D

U
M

Execution EnvironmentBdm–2
B
D
M

A
D

D
E

N
D

U
M

Background Debug Mode Bdm–3

• • • • • • • •

1 INTRODUCTION

This addendum explains how to use CrossView Pro with the Background

Debug Mode (BDM), a special feature available on Motorola CPU32 family

processors. It includes the following major sections:

• Background Debug Mode as a CrossView Pro Execution

Environment

• BDM Hardware and Software Installation

• BDM Command Interface (Emulator Mode)

• Troubleshooting

• Other Considerations at this Time

2 BACKGROUND DEBUG MODE AS A CROSSVIEW PRO

EXECUTION ENVIRONMENT

Background Debug Mode (BDM) is a special feature available on the

Motorola CPU32 family processors. The feature is implemented in CPU

microcode and incorporates a full set of debug options. The BDM is

documented in the Development Support section of Motorola's CPU32
Reference Manual.

CrossView Pro for BDM is only available on MS-Windows.

Additional System Requirements

The following are the hardware requirements:

• Parallel printer port (LPT1, LPT2, or LPT3)

• Macraigor Wiggler cable (optional with BDM version of CrossView

Pro for 68K processors)

• P&E ClodFire BDM cable (optional with BDM version of CrossView

Pro for ColdFire processors)

• CPU32 or CPU32+ or ColdFire target (MC68330, MC68331, MC68332,

MC68333, MC68340, or MC68360, MCF5102, etc)

Execution EnvironmentBdm–4
B
D
M

2.1 ADDITIONAL SOFTWARE CONTENTS

Chip Select Initialization Files

CPU32 targets have a programmable chip�select sub�module. After a

power�on reset, you must initialize the chip�select registers. The

initialization values depend on memory map, wait states required, and

other properties of the target hardware. The CrossView Pro delivery

contains chip�select initialization files for many popular target boards.

TASKING is constantly adding support for new targets. If you do not see

an initialization file for your target, contact your TASKING Sales Engineer

for updated information. This release includes Chip Select Initialization for

the following targets:

Target Board Filename

EST SBC 360 cse360.cmd

Matrix 360 csmat360.cmd

Motorola EVK332 csevk2.cmd

Motorola EVK340 csm340.cmd

Motorola MPD16/32 csmpd32.cmd

Motorola QUADS mot_quad.cmd

Vesta SBC332 csv332.cmd

AVNET MCF5282 av_mcf5282.cmd

NetBurner MCF5206E nb_mcf5206e.cmd

Background Debug Mode Bdm–5

• • • • • • • •

3 BDM INSTALLATION

3.1 HARDWARE INSTALLATION

The hardware installation consists of connecting a Macraigor Wiggler cable

or P&E cable from your PC to the target board.

It is strongly recommended that both the PC and the target board be

powered off during the installation. It is also strongly recommended by

Motorola that installation to the BDM connection follow electrostatic

conventions to prevent damage to the target CPU.

The power off sequence should be as follows:

1. Power off the target board first.

2. Power off the PC using the procedure recommended by the PC

manufacturer.

The power on sequence should be as follows:

1. Power on the PC first.

2. Then power on the target board.

The Macraigor Wiggler cable (for 68K processors) is a DB25 connector

with a ribbon cable that has a 10 pin in-line connector. The DB25

connects to the PC parallel port (usually labelled LPT1, LPT2, or LPT3).

DB25

PC side

Pin1

Macraigor

Wiggler

Cable

Indicator

Berg
Connector

10 pin

Figure Bdm-1: Macraigor Wiggler Cable

The P&E ColdFire BDM cable has a ribbon cable with a 26 pin connector.

Its use is identical to the Macraigor Wiggler cable. For additional

information on this cable see http://www.pemicro.com.

Execution EnvironmentBdm–6
B
D
M

The 10/26 pin Berg connector must be connected in the correct

orientation.

Some 68K targets use a 10 pin connector while others use an 8 pin

connector.

On the 10 pin connector, simply plug the cable in with Pin 1 connected to

Pin 1.

On targets that use 8 pin Berg connectors, the cable needs to be shifted so

that Pin 3 of the cable is connected to Pin 1 of the target.

If the ribbon cable is not connected to the DB25 housing, reconnect it so

that the Pin 1 indicator is near the center of the DB25 housing. Note that

the Pin 1 indicator in the 10 pin plug should be on top.

BDM

pin 9

pin 10

pin 8

pin 7

pin 1

pin 1

pin 2

pin 2

Target

. . . .

. . . .

.

.

Figure Bdm-2: 68K BDM Cable Connection

If the ICD cable is not long enough to reach between the PC and the

target board, use a standard printer extension cable or a direct 25 to 25 pin

connector.

3.2 SOFTWARE INSTALLATION

By default the Macraigor or P&E drivers are installed during the TASKING

68K/ColdFire installation.

Background Debug Mode Bdm–7

• • • • • • • •

3.3 CONFIGURATION OPTIONS

Target Configuration File

In the CrossView Pro Target Settings dialog box make sure you have

selected the correct Target configuration: 68KBDM Wiggler or ColdFire

BDM.

Macraigor Wigglers (68K) / P&E (ColdFire)

The CrossView Pro installation performs all the required installation for the

device drivers on MS-Windows. You need to specify the parallel port to

which the BDM interface is connected (LPT1, LPT2, or LPT3). This is done

in the CrossView Pro Communication Dialog box. By default CrossView

Pro uses LPT1.

3.4 TARGET ENVIRONMENT SETUP

BDM provides faster and less intrusive debugging than typical ROM-based

debuggers and in-circuit emulators. With BDM, the user's target runs in

real-time between breakpoints and does not require any target resources

(ROM, RAM, interrupts, etc.).

As with an in-circuit emulator, the memory for CPU32 targets must be

mapped after a target board power-up. This is because the hardware reset

clears any chip selects to the default values. In order for CrossView Pro to

download and debug, the CPU32 chip selects must first be set to reflect

the hardware memory configuration.

The initialization of chip selects and other memory map options should be

added to the startup code for your application (the __main routine in the

standard TASKING 68K/ColdFire libraries). However, until you have

written the necessary startup code, you can perform initialization through

BDM commands in CrossView Pro's emulator mode.

Sample playback files are provided as part of the CrossView Pro

distribution. The sample in the table below (csv332.cmd) was developed

for a Vesta SBC332 with 128K of RAM. For details on the commands see

the Command Descriptions section later in this chapter. To playback a

chip-select initialization file:

1. From the Tools menu, select Playback | Emulator... to open the

Emulator Playback dialog box.

Execution EnvironmentBdm–8
B
D
M

2. Type the playback filename or use the Browse... button to select the file.

The default filename extension is .cmd .

3. Enable the Continuous playback check box.

4. Click on the Execute button to start the playback.

Command Explanation

rs Reset the target and enable Background Debug
Mode. This also causes the memory map to be
reset.

sr a6 0 Clear the stack frame pointer. This prevents
CrossView Pro from trying to decode invalid
stack frames.

smw fffffa20 000d Configure SYPCR to disable Software Watchdogsmw fffffa20 000d Configure SYPCR to disable Software Watchdog
Timer (WDT), enable bus monitor functions, and

MH l k f i i
e (W), e ab e bus o to u ct o s, a d

use 16MHz system clock for timing.

smw fffffa04 7f00 Set SYNCR to default.

smw fffffa00 424f Set MCR to allow the break signal to freeze timerssmw fffffa00 424f Set MCR to allow the break signal to freeze timers
(including WDT), configure bus monitor to enable

l bi i d ll i
(c ud g W), co gu e bus o to to e ab e
external arbitration, and allow system registers to
b t i d

y g
be set in user mode.

smw fffffa4c 0004
smw fffffa50 0004

Set up chip selects for 128KB RAM starting at 0.

smw fffffa48 0604 Set up chip selects for 128KB ROM at 60000.

sml fffffa44 ffffffff Enable all chip select pins.

smw fffffa4e 5830
smw fffffa52 3830

Chip select for RAM: read/write no wait states.

smw fffffa4a 78f0 Chip select for EPROM: read–only, 3 wait states.

Table Bdm-1: Sample Chip�select Initialization File for Vesta SBC332

Background Debug Mode Bdm–9

• • • • • • • •

4 BDM COMMAND INTERFACE (EMULATOR MODE)

BDM driver communication is performed via the SendDriverMessage
function within the Windows API. The driver has a 300-character input

buffer for input commands. It will send back a complete response, except

for the Dump Memory command. The Dump Memory command will

restrict the output to 256 memory units (approximately 2560 bytes).

Control Characters

The following control codes may be entered for command line editing,

interrupting BDM.

The presence of the upward caret, "^ ", before a character indicates that

the Control or CTRL must be held down while striking the character key.

^C (interrupt) This character will terminate any operation, flush the

character buffer and return a response prompt. This

includes returning the target back to Background

Mode.

^J (CR) This returns a prompt.

^X (line delete) This acts the same as ^C.

4.1 OPERATION MODES

BDM has three modes of operation, each of which changes the user

interface slightly. The rest of this section will describe these modes, which

are as follows:

• Command Mode

• Download Mode

• Execution Mode

Command Mode

The target does not execute instructions in this mode. Commands typed in

at the CrossView Pro emulator mode are interpreted by the BDM driver.

Command Mode is the user's interface to the target. The user can control

resources and place the target into a known state. Most interactions take

place in command mode, which is distinguishable by its prompt. For more

details on all the commands see the Command Descriptions section.

Execution EnvironmentBdm–10
B
D
M

Download Mode

This mode is used to send down the user's application code, in Motorola

S-Record format, to the target's RAM. Download mode is used mostly

during the debug stages of a project. This mode is entered through the

Download command (DL) and stays in effect until either the S7, S8, or S9

record, or an interrupt control character is received. For more information,

see the DL command in the Command Descriptions section of this chapter.

Execution Mode

This mode is in effect when the target is executing instructions. This

usually happens as a result of issuing a GO Command. Execution mode

operates in real-time. See the Set Breakpoint command (SB) in the

Command Descriptions section of this chapter. A breakpoint or an

interrupt control character will place the BDM driver back into command

mode. For more details on entering execution mode, see the GO, Single

Step (SI), and Step Out Of Range (SO) commands in the Command
Descriptions section of this chapter. During execution mode most

commands are disabled. An attempt to issue a disabled command will

result in the message �!error! Not in Background Mode ".

4.2 COMMAND DESCRIPTIONS

This section contains descriptions of each of the commands that can be

used with the BDM driver. Each section will detail information about a

particular command and its options. Most sections are provided with one

or more examples. These examples are formatted for clarity and actual

screen displays may vary from machine to machine. All the command

responses will end with a carriage return, line feed, and a prompt.

Background Debug Mode Bdm–11

• • • • • • • •

DB

Function

Display Breakpoint

Syntax

DB

Description

This command causes the BDM driver to display all software breakpoints.

Example

>DB

1. 010000
2. 010010

GO - Go

SB - Set Breakpoint

Execution EnvironmentBdm–12
B
D
M

DC

Function

Display Configuration

Syntax

DC

Description

The command allows the user to examine the environmental resources

that are configured for the BDM driver, which include:

• microprocessor type (CPU 32 family)

• communication port

• delay factor

Example

>DC

Background Debug Mode
Target=M6833X M68340 M68360
Communication Port=Lpt1
Delay Factor=1

>

GO - Go

Background Debug Mode Bdm–13

• • • • • • • •

DDD

Function

Debug DFC Display

Syntax

DDD

Description

This command displays the current debug mode value of the Destination

Function Code.

BDM uses a default value of 5 to allow complete access to the target

memory areas. Under special conditions this value may be modified in

order to access a special register (i.e., mbar on the MC68360). This is not

the execution value of the DFC, only the Debug Command mode value.

Example

>DDD
>Debugger DFC = 5
>

DDS - Debug DFC Set

DSD - Debug SFC Display

DSS - Debug SFC Set

Execution EnvironmentBdm–14
B
D
M

DDS

Function

Debug DFC Set

Syntax

DDS <Level (0-7)>

Description

This command modifies the debug Destination Function Code (DFC) used

by BDM in Command Mode.

The most common reason to modify the values of DFC is to set the mbar
register of the MC68360.

The Debug DFC should be returned to the default value of 5 after

completion of the operation requiring it to be changed.

Example

>DDS 1
>

DDD - Debug DFC Display

DSD - Debug SFC Display

DSS - Debug SFC Set

Background Debug Mode Bdm–15

• • • • • • • •

DL

Function

Download

Syntax

DL

Description

The download command invokes a special mode of operation, called the

download mode. Once entered, all information sent to the BDM driver is

assumed to be data (S record format) until a Motorola EOF record (S7, S8,

S9) is encountered or the interrupt control character (^C) is received.

A positive acknowledgement �+" (PACK) is returned if no problem is

detected in memory storage. The download will abort if a bad S record is

received. A PACK will also be returned upon the initial download request

before the first data record is transferred.

The BDM driver returns to command mode when an EOF is encountered.

If a download is aborted with a ^C, all download records following the

abort will be treated as commands and will be handled as invalid. It is

therefore the responsibility of the host to stop transmission of records after

issuing the ^C.

Example

In this example, the code was originally located at address ED0000. The

display will show the positive acknowledgements and the echoed

characters.

>DL

+S00600004844521B
+S213ED0000000700ED005600ED006C00ED007800F7
+S213ED000FED00A400ED00BA00ED00C600ED00EA2E
+S213ED001E00ED010000ED013000ED017700ED0182
+S213ED002D8E00ED01C800ED025800ED026E00EDFD
+S804000000FB
>

Execution EnvironmentBdm–16
B
D
M

DM

Function

Display Memory

Syntax

DM[unit] addr count

unit = B = byte

W = word (default)

L = long

addr = The starting address of the memory to display.

count = The number of memory locations (size unit) to display.

Description

This command causes the BDM driver to return the contents of the

memory location(s) requested. This command will display only the address

and the hex data.

Example

In this example, we will display 32 (20 hex) words of memory starting at

location 200010.

>DM 200010 20

200010. 3E2E 2E2E 0074 6573 7420 6E75 6D62 6572
200020. 2033 2066 6169 6C65 6420 2D20 4E20 7263
200030. 7664 0020 2020 2020 2020 2020 2020 2020
200040. 2020 2020 2020 2020 2020 2020 2020 2020
>

In this example, we will display 5 bytes of memory starting at location

300300.

>DMB 300300 5
00300300. 12 53 12 14 15
>

Background Debug Mode Bdm–17

• • • • • • • •

DR

Function

Display Registers

Syntax

DR [reg_name]

reg_name = A valid register name for the target.

Description

This command causes the BDM driver to display the contents of a

particular register or registers. If no arguments are specified then all the

registers will be displayed.

Example

In this example, we will display all the registers of a Motorola 68332 based

target system.

>DR

D0 = 00000000 D1 = 00000000 D2 = 00000000 D3 = 00000000
D4 = 00000000 D5 = 00000000 D6 = 00000000 D7 = 00000000
A0 = 00000000 A1 = 00000000 A2 = 00000000 A3 = 00000000
A4 = 00000000 A5 = 00000000 A6 = 00000000 A7 = 00E84000
USP = 00E85000 SSP = 00E84000 PC = 00F00086 SR = 2000
VBR = 00E80000 SFC = 0007 DFC = 0007
>

In this example, first set some registers with values and then display these

registers in different order.

>SRL A0 100000 A3 120000 D1 1234 D3 55

>DR D1 D3 A0 A3

D1 = 00001234 D3 = 00000055 A0 = 00100000 A3 = 00120000
>

SR - Set Register

Execution EnvironmentBdm–18
B
D
M

DSD

Function

Debug SFC Display

Syntax

DSD

Description

This command displays the current Debug Mode value of the Source

Function Code (SFC).

BDM uses the default value of 5 to access most of the target register and

memory. This value may be modified to access the special register (i.e.,

mbar of MC68360).

Example

>DSD
>Debugger SFC = 5
>

DDD - Debug DFC Display

DDS - Debug DFC Set

DSS - Debug SFC Set

Background Debug Mode Bdm–19

• • • • • • • •

DSS

Function

Debug SFC Set

Syntax

DSS <Value 0-7>

Description

This command modifies the debug Source Function Code (SFC) used by

BDM in Command Mode.

The most common reason for changing SFC is to display the mbar register

of the MC68360.

The Debug SFC should be returned to the default value of 5 after

completion of the operation requiring it to be changed.

Example

>DSS 1
>

DDD - Debug DFC Display

DDS - Debug DFC Set

DSD - Debug SFC Display

Execution EnvironmentBdm–20
B
D
M

FR

Function

Check for Freeze

Syntax

FR

Description

This command will check the target status and return either:

! Executing

or:

! Breakpoint or Background Mode entered.

Example

In this example, we will set a breakpoint, cause the target to go into

execution, and poll status twice.

>SB 1000

>go
>FR
!executing
>FR
!Breakpoint or Background Mode entered.

GO - Start Executing

SB - Set Breakpoint

SR - Set Register

Background Debug Mode Bdm–21

• • • • • • • •

GO

Function

Start Execution

Syntax

GO

Description

This command causes the BDM driver to go into execution mode. The

execution mode will continue until either a breakpoint occurs, an interrupt

(^x | ^C) is received from the host, or a double bus fault (as specified in

the Development Support section of Motorola's CPU32 Central Processor
Unit Reference Manual). If breakpoints are set, a BGND instruction is

inserted into the target code at each breakpoint address. This will allow

real-time execution of target code and still allow for breakpoints to be

taken.

If the location where execution begins contains a breakpoint BGND, then

that breakpoint is temporarily disabled until the program is stepped off the

breakpoint. This command will return immediately with the target in the

executing mode.

Example

>GO
>

DB - Display Breakpoints

FR - Check for Freeze

S0 - Single Step

SB - Set Breakpoint

SO - Step Out of Range

Execution EnvironmentBdm–22
B
D
M

HE

Function

Help

Syntax

HE

Description

This command causes the BDM driver to display the help menu. This

menu shows the syntax of the command set.

Background Debug Mode Bdm–23

• • • • • • • •

IN

Function

Initialize

Syntax

IN

Description

This command causes BDM to identify its version number.

Example

>IN

Wiggler by Macraigor System Inc.
Target M6833X M68340 M68360
Version 1.4
(c) 1999 TASKING Inc.
>

The revision numbers used in the example are sample numbers for this

manual only.

Execution EnvironmentBdm–24
B
D
M

RB

Function

Remove Breakpoint

Syntax

RB [addr]

addr = An optional address that specifies the breakpoint to be

removed.

If addr is omitted, then all breakpoints will be removed.

Description

This command causes the BDM driver to remove a software breakpoint at

the address specified. If no arguments are specified, then all breakpoints

will be removed. If an address is specified and no breakpoint exists at that

address, an error message will be returned.

Example

In this example, first display some breakpoints that were previously setup

and then remove a code breakpoint at address 10000. Finally, verify that

the breakpoint has been removed. Notice that the second code breakpoint

will become the first breakpoint after the RB command is executed.

>DB

1. 010000
2. 010010

>RB 10000

>DB

1. 010010

>

DB - Display Breakpoints

SB - Set Breakpoints

Background Debug Mode Bdm–25

• • • • • • • •

RS

Function

Reset

Syntax

RS

Description

This command causes BDM to reset the target and enable background

mode. It is primarily used to reset background mode after the target was

reset by other means than through BDM. See the Development Support
section of Motorola's CPU32 Central Processor Unit Reference Manual for

information of enabling the BDM mode.

Example

>RS
>

>RS
!error! unable to enter background mode

Execution EnvironmentBdm–26
B
D
M

SB

Function

Set Breakpoints

Syntax

SB addr

Description

This command causes BDM to set a software breakpoint at the address

specified.

Example

In this example, we will set a breakpoint to occur when the program

counter reaches address 10000. First set the breakpoint and then issue the

GO command.

>SB 10000

>GO

>FR

>!Breakpoint in Background Entered.

DB - Display Breakpoint

GO - Start Execution

RB - Remove Breakpoint

Background Debug Mode Bdm–27

• • • • • • • •

SI

Function

Single Step Instruction

Syntax

SI [count]

count = An optional number of target instructions to execute. The

default is one instruction.

Description

This command causes the BDM driver to go into execution mode for

count instructions.

Example

In this example, we will single step the target for one instruction.

>SI

>

Execution EnvironmentBdm–28
B
D
M

SM

Function

Set Memory

Syntax

SM[unit] addr values

unit = B = byte

W = word (default)

L = long

addr = The start address for the set, in hex.

values = A space-separated list of values to write to memory.

Description

This command causes the BDM driver to fill memory with the hex byte

values specified.

Example

In this example, we will display the contents of memory both before and

after we set three bytes of memory to the specified values.

>DMB 200010 3

200010: FF 0F 00

>SMB 200010 0B 7F 34

>DMB 200010 3

200010: 0B 7F 34
>

DM - Display Memory

Background Debug Mode Bdm–29

• • • • • • • •

SO

Function

Step Out of Address Range

Syntax

SO start end

start = The starting address for the range.

end = The ending address for the range.

Description

This command causes the BDM driver to go into execution mode. The

execution mode will continue until any of the following conditions occurs:

a breakpoint is encountered, an instruction outside of the specified range

is about to be executed, an interrupt is received from the host, or a double

bus fault.

Example

In this example, we will single step through the code until the program

falls outside the specified range.

>SO 0001000 0001fff

>

The BDM driver will execute until the command is complete, but only

return a prompt. Do not select a range of values that will cause an infinite

loop to occur. If this does occur, the driver will lock out any host

interaction. A reboot may be required to abort this condition.

Execution EnvironmentBdm–30
B
D
M

SR

Function

Set Registers

Syntax

SR reg value [reg value ...]

reg = A valid target register (you may not modify the value of A7).

value = A hex value to write to the register.

Description

This command causes the BDM driver to modify the register or registers

specified.

Example

In this example, we will set address register A0 and data register D2 with

word values. Then we will display these registers to verify their contents.

>DR A0 D2

A0 = 00000000 D2 = FFFFFFFF

>SR A0 005B D2 7F34

>DR A0 D2

A0 = 0000005B D2 = 00007F34

>

DR - Display Registers

Background Debug Mode Bdm–31

• • • • • • • •

5 TROUBLESHOOTING

• BDM has its own unique set of communication failures. CrossView Pro

error messages caused by BDM communication failures fall into three

categories:

• Unable to open driver from OpenDriver.

• Open failed.

• Unexpected responses.

5.1 UNABLE TO OPEN DRIVER FROM OPENDRIVER

This failure usually occurs if the device driver is not installed. Refer to the

BDM Software and Hardware Installation section earlier in this appendix.

Another reason for this failure is that the driver is opened by another task.

An example of this would be that the control panel is performing setup

and CrossView Pro attempts to load a function. This can be corrected by

completing one of the tasks and closing the device driver.

5.2 OPEN FAILED FROM CROSSVIEW PRO

If CrossView Pro fails with this message, then the parallel port is

unavailable. Refer to the Configuration Options section of this manual for

information on how to set up communication to the correct port.

5.3 UNEXPECTED RESPONSES

• Unable to read/write memory at xxx

The message is generated by the download request and indicates that

the address could not be modified by a write/read test. This is most

likely caused by a chip select not being set up correctly.

• Loss of BDM mode

This is a result of the target not being reset via the BDM connection.

Use the RS command to regain control.

The RS command causes the target to be reset.

Execution EnvironmentBdm–32
B
D
M

• Bus error

The address specified generated a bus error. It is possible that an

application program error occurred or that the chip select was not set

up correctly.

• Target communication failure, unable to alter register

This message occurs if CrossView Pro's initial attempt to communicate

with the target fails.

• Other unexpected responses

There is no single test to determine what actually failed. The following

possibilities should be tested:

- Wiggler cable is incorrectly connected to the target CPU.

- The parallel port is disabled.

- There is a bad cable connection to the Wiggler DB25 connector.

- The parallel port is malfunctioning.

- The target CPU is malfunctioning.

- Failure to follow Device Driver installation instructions. The

device driver should not be copied into the CrossView Pro

directory.

6 OTHER CONSIDERATIONS

• BDM does not support tracing. Therefore, C-trace is not available in

CrossView Pro.

• BDM only supports data breakpoints with assertion mode.

• BDM supports a maximum of 32 breakpoints.

• BDM will return a maximum of 256 memory units (byte, word, long)

per display request.

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

Symbols
. (period) operand, 3-18

! command, 13-20

? command, 5-16, 13-22

& operator, 3-18

@format code, 3-13

--ddeservername, A-28

--timeout, 9-10

/ command, 5-16, 13-21

/format code, 3-13

^ command, 13-36

< command, 13-23

<< command, 13-24

> command, 13-25

>& command, 13-33

># command, 13-29

>@ command, 13-27

>* command, 13-35

>> command, 13-31

A
A command, 13-37

a command, 13-38

absolute file, 15-3

accelerator bar, 4-24

accelerator button, 4-11, 4-24

accessing code and data, 6-1

AddDDEMenuEntry, A-28

adding files to a project, 1-37

address bias, set, 13-142

addresses

in expressions, 3-18
specifying format of, 6-16

analysis, 15-3

window, 15-3
ANSI C conformity, 1-12

application

debugging, 1-27
executing, 1-24

argument of a function, 3-9

arrays

display address of, 6-6
display character, 3-15, 6-6
displaying two-dimensional, 6-15
viewing contents of, 3-16, 6-15

assembly window

hexadecimal display, 3-10
intermixed assembly, 3-10
source merge limit, 3-10

assertion mode, 7-28, 15-3

assertions, 1-5, 7-28, 15-3

activating, 7-28
activating and suspending, 7-31
assertion mode, 7-28
debugging with, 7-33
define or modify assertion, 13-38
defining, 7-29
deleting, 7-32
editing, 7-31
quit assertion mode, 13-178
statistics, 7-35
toggle mode, 13-37

AssertionsChanged, A-11

autosrc, 6-18

B
B command, 13-40

b command, 13-41

background color, 2-5

background debug mode, Bdm-1,

Bdm-3�Bdm-32

command descriptions,
Bdm-10�Bdm-32

command interface, Bdm-9�Bdm-32
configuration options,

Bdm-7�Bdm-32
emulator mode, Bdm-9�Bdm-32
hardware, Bdm-5�Bdm-32

IndexIndex–4
IN
D
E
X

installation
hardware, Bdm-5
software, Bdm-6�Bdm-7

software, Bdm-5�Bdm-32
software content, Bdm-4
system requirements, Bdm-3�Bdm-4
target environment setup,

Bdm-7�Bdm-9
trouble shooting, Bdm-31�Bdm-32
with CrossView Pro, Bdm-3�Bdm-32

background mode, 11-28, 15-4

assertions, 11-33
leaving, 11-31
local and global variables, 11-32
manual refresh, 11-29
refresh limitations, 11-32
running a program, 11-30
stack, 11-32
starting, 11-30
stopping a program, 11-31
updating windows, 11-28
waiting, 11-31

batch mode, 9-10

batch processing, 9-10

bB command, 13-42

bb command, 13-43

bc command, 13-44

bCYC command, 13-45

bcyc command, 13-46

bD command, 13-47

bd command, 13-49, Rom-67

bdis command, 13-51

BDM. See background debug mode

be command, Rom-68

bena command, 13-52

bf command, Rom-69

bI command, 13-53

bi command, 13-54

bias, 15-4

binary constants, 3-5

binary notation, 3-4

bINST command, 13-55

binst command, 13-56

block fill, Rom-69

block move, Rom-71

bm command, Rom-71

break command, 13-57

breakpoint disable, Rom-67

breakpoint enable, Rom-68

breakpoint toggle, 4-23, 7-4

breakpoints, 1-4, 7-1, 13-57, 15-4

and diagnostic output, 7-27
and multi-line statements, 7-5
and multiple statements, 7-5
and statistical information, 7-27
attaching macros to, 7-21
code, 7-3
commands associated with, 7-18
complex, Rom-16
conditionals, 7-21
count, 15-5
count of, 7-3
cycle count, 7-3, 13-45, 13-46
data, 7-7, Rom-15
data breakpoints over a range of

addresses, 7-11
delete, 13-85
delete all, 13-84
deleting, 7-16
disable, 7-17, 13-51
emulator mode, 7-6
enable, 7-17, 13-52
for loops, 7-6
function, permanent, 13-43
instruction, Rom-15
instruction count, 7-3, 13-55, 13-56
list, 13-40
listing, 7-8
low-level, 15-7
name, 7-3
names, 7-13
patching code with, 7-25
permanent, 7-4
permanent low-level, 13-54

task aware, 13-64
permanent up-level, 13-69

Index Index–5

• • • • • • • •

probe point, 1-5, 7-4
quiet reporting of, 7-22
reset count, 7-3, 7-14
sequence, 7-15
set at beginning of function, 13-42
set count, 13-44
setting, 1-25, 7-8, Rom-14�Rom-142

from command window, 7-10
from menu, 7-9
from source window, 7-9
from stack window, 7-10

setting the count of, 7-14
strings, 7-22
system startup code, 7-7
task aware

code, 13-62
permanent low-level, 13-64
temporary low-level, 13-63

temporary, 7-4, 7-12
temporary low-level, 13-53

task aware, 13-63
temporary up-level, 13-67
time, 13-65, 13-66
timer, 7-3
up-level, 7-22
while loops, 7-6
without trace mode, Rom-15

BreakpointsChanged, A-11

bt command, 13-62

btI command, 13-63

bti command, 13-64

bTIM command, 13-65, 13-66

bU command, 13-67

bu command, 13-69

bufa command, 13-71

bufd command, 13-72

C
C, character constants, 3-6

C command, 5-12, 13-73

C trace, 1-5, 13-81

cache, debugging with, 15-4

calling functions, 5-14

case sensitivity, 3-21, 13-179

casting values, 3-16, 6-15

CB command, 13-74

CBRK, B-7

CCNT , B-7

cd command, 13-75

ce command, 13-76

cf command, Rom-72

character buffing, Rom-25

character codes, 6-13

character codes table, 3-6

character constants, 3-6

check for freeze, Bdm-20

chip select initialization files, Bdm-4

clear command, 13-77

close a file I/O stream, 13-117

CmdAnnotatedOutput, A-11

cmdannotatedoutput, A-22

cmdoutput, A-21

code breakpoints

See also breakpoints
set breakpoint, 13-41

task aware, 13-62
code coverage, 1-6

color, windows, 2-5

color offset, 11-17

color settings, 2-5

COM interfaces, A-5

COM methods

Execute, A-6
ExecuteNoWait, A-7
Halt, A-7
Init(), A-6

COM object interface, A-3

activating, A-5
events, A-8
examples, A-12
methods, A-6
using, A-3

IndexIndex–6
IN
D
E
X

command history, displaying recent

commands, 9-19

command language, 3-1

command line, batch processing, 9-10

command line options, 4-5

command mode, Rom-65, Bdm-9

Command Window, 4-21

displaying data in, 6-8
opening, 1-29

CommandCanceledByUser, A-9

CommandInterpreterBusy, A-8

CommandInterpreterReady, A-9

commands

descriptions, Rom-66�Rom-142,
Bdm-10�Bdm-32

multiple, 3-17
syntax, 4-3

comments, 3-17

communication setup, 1-21

compare application, 1-24, 13-86

conditional command execution,

13-116

conditional keywords, 3-19

configure, Rom-72

configure CrossView Pro, 1-21

constants, 3-4

binary, 3-5
character, 3-6
character constants in C, 3-6
floating point, 3-5
hexadecimal, 3-4
long integer, 3-5
octal, 3-5
strings, 3-6

continue execution, 5-9

control characters, Rom-64,

Bdm-9�Bdm-32

control operations, 4-38

coverage, 1-6, 11-6, 15-5

disable, 11-6, 13-75
enable, 11-6, 13-76
information, 13-78
marker, 4-23, 7-4

memory window, 4-28
next covered block, 13-143
next not covered block, 13-144
previous covered block, 13-149
previous not covered block, 13-154
source window, 4-24

covinfo command, 13-78

cproinfo command, 13-79

CPU, reserved variable, 3-10

CPU selection, 4-7

cpu selection, 13-95, 13-96

cpu_type, 1-20

CRC test, Rom-129

creating a makefile, 1-38

CrossView

and command line options, 4-5
command files, 4-6
command language, 3-1
command line batch processing,

9-10
command reference, 13-1
commands summary, 13-4, 13-15
customizing, 4-17
desktop, 4-11
features of the execution

environment, Sim-3
invoking, 4-4
restrictions of execution

environment, Sim-15
sound support, C-1
special features, 11-1
starting, 4-4
state of, 13-115
using, 4-1

CrossView Pro

background debug mode execution,
Bdm-3�Bdm-32

before starting, 1-17
debugging environment, 1-8
documentation, 1-7
exiting, 1-30
features, 1-3
how it works, 1-10

Index Index–7

• • • • • • • •

invoking, 1-18
output, 1-29
source level debugging, 1-8
target settings, 1-19
using windows, 1-4
windows, 1-4

CrossView Pro workspace, 1-30

ct command, 13-81

ct i command, 13-82

ct r command, 13-83

cursor, 5-3

CXL script, 4-37

supplied scripts, 11-13
syntax, 11-19

CXL syntax, 11-19

base types, 11-21
compound types, 11-22
predefined functions, 11-22

cycle count, breakpoints, 7-3

D
D command, 13-84

d command, 13-85

data

displaying, 6-1
enumerated, 6-5
list data monitors, 13-130

data analysis, 11-11

add update commands, 13-107
bufa, 13-71
bufd, 13-72
clear sequence of update commands,

13-108
close window, 13-109
create window, 13-106
graph, 13-106
graph debug, 13-110
graph_add_update, 13-107
graph_clear_updates, 13-108
graph_close, 13-109

graph_debug, 13-110
graphm, 13-111
graphmn, 13-112
graphp, 13-113
memget, 13-134
position window, 13-113
rawmemget, 13-158
supplied scripts, 11-13
update, 13-175
update window, 13-175

Data Analysis Window, 4-36

toolbar, 4-36
data breakpoints

set at an address, 13-49
set over range of addresses, 13-47

data coverage, 1-6, 4-28

data monitoring, 1-5, 15-5

removing expressions, 6-12
Data Window, 1-5, 4-29, 6-11

toolbar, 4-31
db command, Rom-73

dc command, Rom-75

dcmp command, 13-86

DDE command line options,

--ddeservername, A-28

DDE commands, AddDDEMenuEntry,

A-28

DDE events, A-27

DDE items

cmdannotatedoutput, A-22
cmdoutput, A-21
event, A-26
exec, A-24
execext, A-23
halt, A-25
Help, A-20
result, A-27

DDE server interface, A-20

debug

DFC display, Bdm-13
DFC set, Bdm-14
SFC display, Bdm-18

IndexIndex–8
IN
D
E
X

SFC set, Bdm-19
debug instrument, 13-14

save/restore state, 13-88
debug instrument I/O, 10-9

debug_instrument_module, 1-20

debugger, starting, 1-37

debugging

and optimized code, 3-7
assembly language, 12-3
code without symbols, 5-14
environment, 1-8
multiple programs, 12-3
notes about, 12-1
source-level, 1-8
viewing source while, 1-24

debugging an application, 1-27

debugging features, Rom-5

derivatives, B-7

description file, Sim-3

desktop, 4-11

DestroyedAllSymbols, A-11

development flow, 1-12

df command, Rom-77

di command, Rom-78

di_state command, 13-88

diagnostic function, Rom-77

diagnostic output, and breakpoints,

7-27

diagnostics, 15-5, Rom-124�Rom-142

SmartMON, Rom-124�Rom-142
user, Rom-135�Rom-142

dialog boxes, 4-16

DidAddSymbols, A-11

DidDownloadImage, A-11

DidLoadSymbols, A-10

dis command, 13-89

disassemble, Rom-78

disassemble memory, 13-89

disassembly, 6-17

window, 15-6
display, customizing, 4-17

display breakpoint, Rom-73, Bdm-11

display configuration, Rom-75,

Bdm-12

display formats, set default, 13-100

display memory, Rom-81, Bdm-16

display registers, Rom-82, Bdm-17

display trace, Rom-83

dl command, Rom-79

dm command, Rom-81

dn command, 13-90

documentation, 1-7

dot operand, 6-11

download, Rom-79, Bdm-15

download a file, 13-90

download image, 13-129

download mode, Rom-65, Bdm-10

downloading, files to the execution

environment, 1-22

dr command, Rom-82

dt command, Rom-83

dump, 3-16, 6-15

dump command, 13-91

Dy command, 13-84

E
e command, 5-15, 13-93

eC command, 13-95

ec command, 13-96

echo command, 13-97

echo string to terminal, 13-19

EDE, 1-32

build an application, 1-36
load files, 1-34
open a project, 1-34
select a toolchain, 1-33
start a new project, 1-37
starting, 1-32

edit source, 4-25

ei command, 13-98

Index Index–9

• • • • • • • •

embedded development environment.

See EDE

embedded system, 15-6

emulator, setting up execution

environment, 1-17

emulator communication setup, 1-21

emulator mode, 1-9, Bdm-9�Bdm-32

environment variable

LD_LIBRARY_PATH, 2-3
UIDPATH, 2-3

EPROMS, programming,

Rom-61�Rom-136

error messages, alphabetical listing of,

14-1

Esc key, 4-21

et command, 13-99

evaluate expression, 13-16

event, A-26

events, A-8, A-27

AssertionsChanged, A-11
BreakpointsChanged, A-11
CmdAnnotatedOutput, A-11
CommandCanceledByUser, A-9
CommandInterpreterBusy, A-8
CommandInterpreterReady, A-9
DestroyedAllSymbols, A-11
DidAddSymbols, A-11
DidDownloadImage, A-11
DidLoadSymbols, A-10
HaltButtonPressed, A-9
MenuEntrySelected, A-11
Quit, A-12
Reset, A-10
ResetProgram, A-10
Running, A-9
RunningInBackground, A-9
SourceFileChanged, A-10
Stopped, A-9
ViewedLineNrChanged, A-10

example

starting EDE, 1-32
using EDE, 1-32

exec, A-24

execext, A-23

executable, building for CrossView

Pro, 1-32

Execute, A-6

ExecuteNoWait, A-7

executing an application, 1-24

execution control commands,

summary of, 13-8

execution environment, Sim-1, Rom-1,

Bdm-1

connecting to CrossView, 4-6
downloading files to, 1-22

execution mode, Rom-65, Bdm-10

submodes, Rom-18
execution position, 5-3

changing the, 5-5
definition of, 15-6
sync with viewing position, 5-7

exit, 4-19

exponential notation, 3-5

expression evaluator, 1-4

expressions, 3-3

C character codes, 3-6
character constants, 3-6
evaluating, 6-10
evaluation precision, 3-4
floating point constants, 3-5
format of, 3-13
monitoring, 6-11
removing monitored, 6-12
show, 4-29
special expressions, 3-18
specifying variables in, 3-8
strings, 3-6
watch, 4-29

extension language, 11-19

eye diagram, 11-19

F
f command, 13-100

IndexIndex–10
IN
D
E
X

FFT power spectrum, 11-15

combined with phase, 11-18
multi, 11-15
multi in lines, 11-16
multi in lines and grid, 11-16

FFT waterfall, 11-15

file system simulation, 10-7, 15-6

close a stream, 13-102
libraries, 10-8
redirect output to a file, 13-103
redirection, 10-7, 13-101
summary of commands, 13-13

filenames, 2-3

floating point constants, 3-5

format codes, 3-14

formats, for variables, 6-13

formatting, Rom-53�Rom-60

formatting expressions, 3-13

frame pointer, 3-10

FSS

redirection, 10-7
summary of commands, 13-13

FSS command, 13-101

FSS_stdio_close, 13-102

FSS_stdio_open, 13-103

functions, 3-20

calling directly, 5-14
listing all, 6-8
listing local variables and parameters

of, 6-22

G
g command, 5-5, 13-104

GDI, 1-8, 9-12, 9-13

logging, 9-13, 9-15, 9-17
getting started, 1-17

gi command, 5-6, 13-105

global variables, 3-8

glossary, 15-1

go command, Rom-85

go to next instruction, Rom-88

gon command, Rom-88

graph command, 13-106

graph_add_update command, 13-107

graph_clear_updates command,

13-108

graph_close command, 13-109

graph_debug command, 13-110

graphm command, 13-111

graphmn command, 13-112

graphp command, 13-113

GUI update suppress, 13-114

gus command, 13-114

H
Halt, A-7

halt, A-25

halt execution, 5-9

HaltButtonPressed, A-9

he command, Rom-90

Help, A-20

help, Rom-90, Bdm-22

on-line, 1-7, 4-39
summary of help commands, 13-14

hexadecimal disassembly, 3-10

hexadecimal notation, 3-4

history mechanism, 15-7

I
I command, 13-115

I/O simulation, 1-5

defined, 15-7
disable streams, 10-7
enable streams, 10-7
file system simulation, 10-7
redirecting streams, 10-6
setting up streams, 10-4
terminal windows, 4-34

if command, 13-116

Index Index–11

• • • • • • • •

image part, 15-7

in command, Rom-91

in-situ editing, 6-7, 6-26

Init(), A-6

initialize, Rom-91, Bdm-23

input/output

interrupt driven, Rom-20�Rom-29
polled, Rom-23�Rom-29
system calls, Rom-26

input/output simulation, 10-1

defined, 15-7
summary of commands, 13-12

instruction count breakpoints, 7-3

integers, 3-4

binary, 3-5
hexadecimal, 3-4
integral promotion, 3-5
long, 3-5
negative, 3-4
octal, 3-5

integral promotion, 3-5

intermixed source and disassembly,

6-18

interprocess communication, A-1

interrupt key, 15-7

interrupt service routine (ISR),

Rom-45�Rom-60

interrupt service routines (ISRs),

Rom-27

debugging downloading, Rom-29
ios_close command, 13-117

ios_open command, 13-118

ios_read command, 13-120

ios_readf command, 13-121

ios_rewind command, 13-122

ios_wopen command, 13-123

ios_write command, 13-124

ios_writef command, 13-125

J
jump to cursor, 5-5

K
kernel support, 1-7, 11-4

keyboard mappings, 10-10

keywords, conditional, 3-19�3-22

L
L command, 13-126

l command, 13-127

label, in disassembly, 6-17

language, 3-1

LD_LIBRARY_PATH, 2-3

line command, 13-18

line numbers, 3-10

listing, 13-127

load command, 13-129

load symbol file, 13-129, 13-141

local variables, 3-7

and the stack, 3-7
auto-watch, 4-31

logging, 9-12

command window output, 13-31
commands and screen output, 9-15
debugger-emulator I/O, 13-33
debugger-GDI accesses, 13-35
example, 9-15
resume, 9-15
setting up, 9-13
start, 9-13
startup options, 9-18
stop, 9-17
summary of commands, 13-11
suspend, 9-15

long integer constants, 3-5

M
M command, 13-130

m command, 13-131

IndexIndex–12
IN
D
E
X

macros, 1-7, 8-1, 15-8

calling other macros, 8-4
define, 13-163
defining, 8-3
delete definition, 13-174
deleting, 8-8
echo command, 13-97
expanding, 8-5
listing, 8-5
parameters of, 8-9
reading from a file, 8-7
redefining, 8-5, 8-10
save, 13-162
saving to a file, 8-6
summary of commands, 13-12
using the toolbox, 8-11

main() function, 15-8

makefile

automatic creation of, 1-38
updating, 1-38

makepy utility, A-15

MAU (minimum addressable unit),

15-8

mcp command, 13-133

memget command, 13-134

memory

copy, 13-133
disassembly, 13-89
displaying, 6-14
dump, 13-91
fill, 13-137
mapping, Sim-3
search, 13-139
single fill, 13-136

memory access, tracing, 1-6

memory dump, 3-16, 6-15

memory map, 4-6, 15-8

Memory Window, 4-27

setup, 4-28
toolbar, 4-28

menu, 4-13

local popup, 4-14
menu bar, 4-11

MenuEntrySelected, A-11

mF command, 13-136

mf command, 13-137

minimum addressable unit, 15-8

mm command, Rom-92

modify memory, Rom-92

monitor. See ROM Monitor

monitor data, 13-130

monitors, 13-131

more, 3-10

ms command, 13-139

multi FFT power spectrum, 11-15

in lines, 11-16
in lines and grid, 11-16

N
N command, 13-141

n command, 13-142

nC command, 13-143

nU command, 13-144

O
o command, 13-145

object modules

buildinng the demo,
Rom-57�Rom-60

linking and locating,
Rom-52�Rom-60

octal constants, 3-5

octal notation, 3-4

open a file I/O stream, 13-118, 13-123

operation modes, Rom-64�Rom-142,

Bdm-9�Bdm-32

command, Bdm-9
download, Bdm-10
execution, Bdm-10

operational modes

command, Rom-13

Index Index–13

• • • • • • • •

download, Rom-14
execution, Rom-14

operators, 3-17

order of precedence, 3-17
using addresses, 3-18

opt command, 13-146

optimization, and debugging, 3-7

options, display or set, 13-146

OSEK/ORTI, 11-4

output paging mechanism, 3-10

overview, 1-1

P
P command, 13-147

p command, 13-148

packet format, A-27

patches, 15-8

and breakpoints, 7-25
pC command, 13-149

pd command, 13-150

pe command, 13-151

performing timing analysis, 1-6

playback, 9-8

calling other playback files, 9-9
quitting, 9-10
setting the type of, 9-9
startup options, 9-18
summary of commands, 13-11

playback mode, 1-7

continuous, 13-23
single step, 13-24

pointer, 3-16

display character, 3-15, 6-6
portinit, Rom-44

precision, evaluating expresions, 3-4

print source lines, 13-147, 13-148

probe point, 1-5, 7-4, 15-9

problems

common, 1-31
communicating with CrossView, 4-9

profiling, 1-6, 11-8, 15-9

code range, 1-6, 11-10
cumulative, 11-9
cumulative information, 13-79
disable, 11-10, 13-150
enable, 11-10, 13-151
function, 11-9
functions, 1-6
information, 13-152

program counter, 3-10, 5-7, 13-73

g command (change), 13-104
gi command (change), 13-105
inside function, 3-9

program development, 1-12

program execution

controlling, 5-1
notes about, 5-14

program reset, 13-153

proinfo command, 13-152

project files, adding files, 1-37

PROMs, programming,

Rom-54�Rom-142

prst command, 13-153

pseudo-assembly, 6-18

pU command, 13-154

Q
Q command, 13-155

q command, 13-156

quiet breakpoint recording, 13-155

Quit, A-12

quit debugger, 13-156

R
R command, 5-8, 13-157

radm, 1-20

IndexIndex–14
IN
D
E
X

RAM, installing RAM based diagnostics,

Rom-141

RAM tests, Rom-124

complete, Rom-126, Rom-128
simple, Rom-125, Rom-127

rawmemget command, 13-158

rb command, Rom-93

read from an I/O stream, 13-120

formatted, 13-121
record

commands only, 13-25
CrossView Pro and emulator

commands, 13-27
emulator commands only, 13-29

record and playback, 9-1

definition of, 15-9
record mode, 1-7

recording

checking status, 9-6
close file for, 9-6
entering comments, 9-4
example, 9-7
resume, 9-5
start, 9-3
startup options, 9-18
stop, 9-6
summary of commands, 13-11
suspend, 9-5

refresh windows, 13-173

reg.dat, B-4

register file syntax, B-4

register manager, B-1

register set, fixed, B-6

Register Window, 4-26, 6-25

setup, 6-25
registers, 3-11

displaying the contents of, 6-8
special variable, 3-10

remove breakpoint, Rom-93, Bdm-24

Reset, A-10

reset program, 5-8, 13-153

reset target system, 13-157, 13-159

reset the target, Bdm-25

ResetProgram, A-10

resource file, 2-3

result, A-27

rewind an I/O stream, 13-122

RM_INIT, Rom-38

rm68, B-1

ROM Monitor, Rom-1

debugging features, Rom-5
overview, Rom-3

ROM monitor, setting up execution

environment, 1-17

ROMM_GO, Rom-42

rst command, 13-159

RTOS aware debugging, 11-4

run-time, Rom-27�Rom-142

Running, A-9

RunningInBackground, A-9

RX_CHAR, Rom-46, Rom-48

S
S command, 5-11, 13-160

s command, 13-161

save command, 13-162

save on exit, 4-19

sb command, Rom-95

sbc command, Rom-98

sbd command, Rom-99

sbr command, Rom-101

scope loop routines

read from location, Rom-130
write and compliment, Rom-132
write rotating value, Rom-133
write then read, Rom-134
write to location, Rom-131

scoping rules and variables, 3-9

scroll bar, 4-11

search

backward for string, 13-22
forward for string, 13-21
summary of commands, 13-14

Index Index–15

• • • • • • • •

search for string, Rom-107

searching, 5-15�5-18

for a function, 5-15
for a source line, 5-17
for a string, 5-16

serial ports, 4-6

set address breakpoint, Rom-98

set breakpoints, Bdm-26

set command, 13-163

set conditional breakpoints, Rom-95

set data breakpoint, Rom-99

set data range breakpoint, Rom-101

set memory, Rom-104, Bdm-28

set registers, Rom-106, Bdm-30

Si command, 5-12, 13-165

si command, 5-12, 13-166, Rom-103

signal analysis, 4-36

simulation, I/O, 1-5

simulator, Sim-1

single step instruction, Rom-103,

Bdm-27

single stepping, 1-5, 5-9�5-10,

Rom-17

at machine level, 5-12�5-18
defined, 15-10
into, 5-10
into function calls, 13-161
into functions, 5-10
machine level into functions, 13-166
machine level over functions, 13-165
over, 5-11
over function calls, 13-160
over functions, 5-11

sizeof() function, 6-7

skidding, 15-10

sm command, Rom-104

SmartMON

addresses, Rom-41
build process, Rom-50�Rom-142
building work code,

Rom-54�Rom-142
initialization, Rom-26�Rom-142
linking diagnostics with, Rom-140

operational modes, Rom-13
processing I/O, Rom-19�Rom-142
processing UD commands, Rom-141
required values, Rom-33
resource requirements, Rom-10
setting breakpoints,

Rom-14�Rom-142
starting up with CrossView Pro,

Rom-58�Rom-142
starting with terminal or emulator,

Rom-62
system calls, Rom-111�Rom-142
tracing features, Rom-16�Rom-142
use of interrupts and traps, Rom-10

so command, Rom-105

sound support, C-1

source directory, change, 13-176

source level debugging, 1-8

source line, jump to, 5-17

source merge limit, 3-10

source positioning, 5-3

Source Window, 4-23

calling functions, 5-14
change execution position, 5-5
change viewing position, 5-4
controlling program execution,

5-8�5-18
edit source, 4-25
searching in, 5-15�5-18
single stepping, 5-9
sync execution and viewing positions,

5-7
toolbar, 4-24

source window, line numbers, 3-10

SourceFileChanged, A-10

special function register, 3-11

special function registers, B-3

special variables, 3-9, 15-10

reserved, 15-9
user-defined, 3-11

sr command, Rom-106

ss command, Rom-107

st command, 13-167

IndexIndex–16
IN
D
E
X

stack, 6-19

local variables, 3-7
organization of, 6-19

stack pointer, 3-10

stack trace, 13-168, 13-169

Stack Window, 4-32, 6-20

toolbar, 4-33
start execution, Rom-85, Bdm-21

startup options, 4-5

definition, 15-11
list of, 4-7

static variables, 3-7

status bar, 4-11

step out of address range, Rom-105,

Bdm-29

step-out-of-range, Rom-17

stop target execution, 13-167

Stopped, A-9

storage classes, 3-7

string command, 3-18

strings, 3-6

structures

assignment, 6-8
viewing, 6-5

style codes, 3-14

symbol information, 15-11

symbolic disassembly, 6-17

symbols, in disassembly, 3-10

synchronize execution and viewing

positions, 5-7, 13-126

sys_go, Rom-48

sys_stop, Rom-49

system calls, Rom-111�Rom-142

EVT_COPY, Rom-112
I/O, Rom-26
IN_CHAR, Rom-113
IN_STR, Rom-114
INT_COMP, Rom-115
INT_ENTER, Rom-116
INT_RX, Rom-117
INT_TX, Rom-118
optional, Rom-13
OUT_CHAR, Rom-119

OUT_DATA, Rom-120
OUT_STR, Rom-121
RD_STR, Rom-122
required, Rom-13
ROMM_GO, Rom-123

system control, Rom-30

system startup code, 15-11

T
T command, 13-168

t command, 13-169

Tab key, 4-21

target communication, 15-11

target configuration file, 1-20

Target Interface Package (TIP), Rom-9,

Rom-19, Rom-31�Rom-142

assembling, Rom-51
description, Rom-31�Rom-142
initialize and download, Rom-5
locating, Rom-60
modules

diag_tbl.68k, Rom-49�Rom-142
io_drv.68k, Rom-44�Rom-142
rmain.68k, Rom-37�Rom-142
sys_go.68k, Rom-48�Rom-142
sysstp.68k, Rom-48�Rom-142
usreq.68k, Rom-32�Rom-142

programming EPROMS, Rom-61
required system calls, Rom-13

target program counter, 13-74

target settings, 1-19

target state, 13-14

target system, 1-8

task selection, 13-99

td command, 13-170, Rom-108

te command, 13-171, Rom-109

Terminal Window, 4-34

keyboard mappings, 10-10
setup, 4-35

timer breakpoints, 7-3

Index Index–17

• • • • • • • •

title, 1-20

toolbar, 4-11

data analysis window, 4-36
data window, 4-31
memory window, 4-28
source window, 4-24
stack window, 4-33

toolbox, 8-11

toolchain, 1-12

trace

C, 13-81
disable, 13-170
disassembled, 13-82
enable, 13-171
instruction level, 6-24
raw, 6-24, 13-83
source level, 6-23

trace analysis, 15-12

trace buffer, 15-12

trace buffer operation, Rom-17

trace disable, Rom-108

trace enable, Rom-109

trace points, Rom-17

Trace Window, 4-33, 6-23

instruction level, 13-82
raw, 13-83
source level, 13-81

traceback mode, 1-5

transparency mode, 1-9, 11-3, 13-145

and CrossView startup, 4-6
defined, 15-12
entering, 11-3
one-shot commands, 11-3
startup options, 11-3

trigraph sequence, 3-7

troubleshooting, 1-31, 4-9,

Rom-59�Rom-142

TX_CHAR, Rom-45, Rom-47

U
u command, 13-172

ubgw command, 13-173

ud command, Rom-110

UIDPATH, 2-3

unset command, 13-174

update command, 13-175

update windows, 13-172, 13-173

updating makefile, 1-38

use command, 13-176

user defined functions, 1-7

user diagnostics, Rom-110

using EDE, 1-32

V
variables, 3-7

and case sensitivity, 3-21
and scoping rules, 3-9
casting, 3-7
changing, 6-7
determining the size of, 6-7
formats of, 6-13
global, 6-8
global variables, 3-8
local, 15-7
local variables, 3-7
scope, 15-10
special, 15-10
special variables, Pages, 3-9
specifying in expressions, 3-8
static variables, 3-7
user-defined special variables, 3-11

ViewedLineNrChanged, A-10

IndexIndex–18
IN
D
E
X

viewing position, 3-9, 5-3

changing the, 5-4�5-7
defined, 15-12
establish, 13-93
establish at address, 13-98
sync with execution position, 5-7

W
wait for target completion, 13-177

waiting, 11-31

window update

reactivate, 13-114
suppress, 13-114

windows, 4-20

active, 4-15, 15-3
automatic switching between source

and assembly, 3-10
closing, 4-15
command window, 4-21
customizing, 4-17
data analysis window, 4-36
data window, 4-29
help window, 4-37
memory window, 4-27
opening, 4-14
pop-up, 4-37
register window, 4-26

selecting, 4-15
source positioning, 5-3
source window, 4-23
stack window, 4-32
terminal windows, 4-34
toolbox, 4-37
trace window, 4-33

workspace file (.cws), 1-30

write to an I/O stream, 13-124

formatted, 13-125
wt command, 13-177

X
x command, 13-178

X Resources, 2-4

X Widgets, CrossView Motif, 2-4

X Windows

Motif environment, 2-3
resources, 2-4

x-t plotting, 11-13

x-y plotting, 11-14

xvwedit, 4-25

Z
Z command, 13-179

		TABLE OF CONTENTS

		1. OVERVIEW

		1.1 Introduction

		1.2 CrossView Pro's Features

		1.3 Source Level Debugging

		1.4 How CrossView Pro Works

		1.5 Program Development

		1.6 Getting Started

		1.6.1 Before Starting

		1.6.2 Setting Up the Execution Environment

		1.6.3 Starting CrossView Pro

		1.6.3.1 CrossView Pro Target Settings

		1.6.3.2 Configuring CrossView Pro

		1.6.3.3 Loading Symbolic Debug Information

		1.6.4 Executing an Application

		1.6.5 Debugging an Application

		1.6.6 CrossView Pro Output

		1.6.7 Exiting CrossView Pro

		1.6.8 What You May Have Done Wrong

		1.6.9 Building Your Executable

		1.6.9.1 Using EDE

		2. SOFTWARE INSTALLATION

		2.1 Introduction

		2.2 Note about Filenames

		2.3 Configuring the X Windows Motif Environment

		2.4 Using X Resources

		3. COMMAND LANGUAGE

		3.1 Introduction

		3.2 CrossView Pro Expressions

		3.3 Constants

		3.4 Variables

		3.5 Formatting Expressions

		3.6 Operators

		3.7 Special Expressions

		3.8 Conditional Evaluation

		3.9 Functions

		3.10 Case Sensitivity

		4. USING CROSSVIEW PRO

		4.1 Introduction

		4.2 Using the CrossView Pro Interface

		4.3 Starting CrossView Pro

		4.4 Startup Options

		4.4.1 What You May Have Done Wrong

		4.5 The CrossView Pro Desktop

		4.5.1 Menus

		4.5.1.1 Local Popup Menus

		4.5.2 Window Operation

		4.5.3 Dialog Boxes

		4.5.4 Customizing CrossView Pro

		4.5.5 CrossView Pro Messages

		4.6 CrossView Pro Windows

		4.6.1 Command Window

		4.6.2 Source Window

		4.6.3 Register Window

		4.6.4 Memory Window

		4.6.5 Data Window

		4.6.6 Stack Window

		4.6.7 Trace Window

		4.6.8 Terminal Window

		4.6.9 Data Analysis Window

		4.6.10 Pop-Up Windows

		4.7 Control Operations for CrossView Pro

		4.7.1 Echoing Commands

		4.7.2 Mouse/Menu/Command Equivalents

		4.8 Using the On-line Help

		4.8.1 Accessing On-line Help

		4.8.2 Using MS-Windows Help

		5. CONTROLLING PROGRAM EXECUTION

		5.1 Source Positioning

		5.1.1 Changing the Viewing Position

		5.1.2 Changing the Execution Position

		5.1.3 Synchronizing the Execution and Viewing Positions

		5.2 Controlling Program Execution

		5.2.1 Starting the Program

		5.2.2 Halting and Continuing Execution

		5.2.3 Single-Step Execution

		5.2.4 Stepping through at the Machine Level

		5.3 Notes About Program Execution

		5.4 Calling a Function

		5.5 Searching through the Source Window

		5.5.1 Searching for a Function

		5.5.2 Searching for a String

		5.5.3 Jumping to a Source Line

		6. ACCESSING CODE AND DATA

		6.1 Introduction

		6.2 Accessing Variables

		6.2.1 Viewing Variables, Structures and Arrays

		6.2.2 Changing Variables

		6.2.3 The l Command

		6.3 Expressions

		6.3.1 Evaluating Expressions

		6.3.2 Monitoring Expressions

		6.3.3 Formatting Data

		6.3.4 Displaying Memory

		6.3.5 Displaying Memory Addresses

		6.4 Displaying Disassembled Instructions

		6.4.1 Intermixed Source and Disassembly

		6.5 The Stack

		6.5.1 How the Stack is Organized

		6.5.2 The Stack Window

		6.5.3 Listing Locals and Parameters of a Function

		6.5.4 Low-level Viewing the Stack

		6.6 Trace Window

		6.6.1 Trace Window Setup

		6.7 Register Window

		6.7.1 Register Window Setup

		6.7.2 Editing Registers

		7. BREAKPOINTS AND ASSERTIONS

		7.1 Introduction to Breakpoints

		7.1.1 Code Breakpoints

		7.1.2 Data Breakpoints

		7.1.3 Listing Breakpoints

		7.2 Setting Breakpoints

		7.2.1 Data Breakpoints over a Range of Addresses

		7.2.2 Temporary Breakpoints

		7.2.3 Breakpoint Names

		7.2.4 Setting the Count

		7.2.5 Sequence Breakpoints

		7.3 Deleting Breakpoints

		7.4 Enabling/Disabling Breakpoints

		7.5 Breakpoint Commands

		7.5.1 Attaching Conditionals to a Breakpoint

		7.5.2 Attaching Macros to a Breakpoint

		7.5.3 Attaching Strings to a Breakpoint

		7.6 Suppressing Breakpoint Messages

		7.7 Up-level Breakpoints

		7.8 Patches

		7.8.1 Patching Code out of a Program

		7.8.2 Patching Code into a Program

		7.8.3 Replacing Code in a Program

		7.9 Diagnostic Output and Statistical Information

		7.10 Assertions

		7.10.1 Assertion Mode

		7.10.2 Defining an Assertion

		7.10.3 Editing an Assertion

		7.10.4 Activating and Suspending Assertions

		7.10.5 Deleting Assertions

		7.10.6 Using Assertions

		7.10.7 Gathering Statistics with Assertions

		8. DEFINING AND USING MACROS

		8.1 CrossView Pro Macros

		8.2 Defining Macros

		8.2.1 Listing Macros

		8.2.2 Redefining a Macro

		8.2.3 Saving Macro Definitions to a File

		8.2.4 Loading Macro Definitions from a File

		8.2.5 Deleting Macros

		8.3 Macro Parameters

		8.4 Redefining Existing CrossView Pro Commands

		8.5 Using the Toolbox

		8.5.1 Opening the Toolbox

		8.5.2 Connecting Macros to the Toolbox

		8.5.3 Removing a Macro Connection

		9. COMMAND RECORDING & PLAYBACK

		9.1 Recording Commands

		9.1.1 Entering Comments

		9.1.2 Suspend Recording

		9.1.3 Resume Recording

		9.1.4 Check Recording Status

		9.1.5 Close File for Recording

		9.1.6 Command Recording Example

		9.2 Playing Back Command Files

		9.2.1 Setting the Type of Playback

		9.2.2 Calling Other Playback Files

		9.2.3 Quitting Playback Mode

		9.3 Command Line Batch Processing

		9.4 Logging

		9.4.1 Setting up Logging

		9.4.2 Recording Commands and Logging Screen Output

		9.4.3 Command Window Log File Example

		9.4.4 Suspending and Resuming Output Log

		9.4.5 Closing the Output Log File

		9.5 Startup Options

		9.6 CrossView Pro Command History Mechanism

		10. I/O SIMULATION

		10.1 Introduction

		10.2 I/O Streams

		10.2.1 Setting Up File I/O Streams

		10.2.2 Redirecting I/O Streams

		10.3 File System Simulation

		10.3.1 File System Simulation Libraries

		10.4 Debug Instrument I/O

		10.5 The Terminal Window

		10.5.1 Terminal Window Keyboard Mappings

		11. SPECIAL FEATURES

		11.1 Transparency Mode

		11.2 RTOS Aware Debugging

		11.3 Coverage

		11.4 Profiling

		11.5 Data Analysis

		11.5.1 Supplied Data Analysis Window Scripts

		11.5.2 Syntax of CrossView eXtension Language (CXL)

		11.6 Background Mode

		11.6.1 Configuration

		11.6.2 Manual Refresh

		11.6.3 Entering Background Mode

		11.6.4 Leaving Background Mode

		11.6.5 The Stack in Background Mode

		11.6.6 Local and Global Variables

		11.6.7 Refresh Limitation

		11.6.8 Assertions

		12. DEBUGGING NOTES

		12.1 Debugging Assembly Language

		12.2 Debugging Multiple Programs

		13. COMMAND REFERENCE

		13.1 Conventions Used in this Chapter

		13.2 Commands: Summary

		13.2.1 Viewing Commands

		13.2.2 Data Monitoring

		13.2.3 Data Analysis

		13.2.4 Execution Control Commands

		13.2.5 Record & Playback

		13.2.6 Macros

		13.2.7 Input/Output Simulation

		13.2.8 File System Simulation

		13.2.9 Target System Control

		13.2.10 Save and Restore Target State

		13.2.11 Help Commands

		13.2.12 Search Commands

		13.3 Commands: Detailed Descriptions

		14. ERROR MESSAGES

		14.1 What this Chapter Covers

		14.2 Error Messages

		15. GLOSSARY

		15.1 What this Chapter Covers

		15.2 Glossary Terms

		A. INTERPROCESS COMMUNICATION

		1 COM Interface

		1.1 Introduction

		1.2 Using the COM Object Interface

		1.2.1 Run-Time Environment

		1.2.2 Command Line Options

		1.2.3 Startup Directory

		1.3 COM Interfaces

		1.3.1 Activating the COM object

		1.3.2 Methods

		1.3.3 Implementation Details

		1.4 Events

		1.5 COM Examples

		1.5.1 Python Examples

		1.5.2 Visual Basic Examples

		1.5.3 WORD Examples

		1.5.4 Excerpt of the MIDL Definition

		2 DDE Server Interface

		2.1 Introduction

		2.2 DDE Items and Topics

		2.3 DDE Events

		2.3.1 Packet Format

		2.4 CrossView Pro DDE Specific Options and Commands

		2.4.1 Command Line Options

		2.4.2 Commands

		2.5 Examples

		2.5.1 Evaluating an Expression

		2.5.2 Reading Target Memory

		2.5.3 Writing Into Target Memory

		2.5.4 Requesting Current File and Line Number

		2.5.5 Using CrossView Pro as Pure Server

		B. REGISTER MANAGER

		1 Introduction

		2 Invocation

		3 Syntax of a Register File

		4 SFR Base Address Register Special Variables

		5 Fixed Register Set

		6 Derivatives

		C. SOUND SUPPORT (MS-Windows)

		SIMULATOR

		1 Introduction

		2 Supported Features

		2.1 Mapping Memory

		2.2 Simulating I/O via I/O Port Address Blocks and Devices

		2.3 Setting I/O Device Attributes

		3 Restrictions

		4 Simulator Commands

		SmartMON ROM MONITOR

		1 Introduction

		1.1 Overview

		1.2 SmartMON's Debugging Features

		1.2.1 Initialize and Download

		1.2.2 Stepping, Executing, and Halting

		1.2.3 Setting Breakpoints

		1.2.4 Full Disassembler

		1.2.5 Displaying and Setting Memory and Registers

		1.2.6 Tracing

		1.2.7 Diagnostic Capabilities

		1.2.8 System Calls

		1.3 SmartMON Distribution Contents

		2 Using SmartMON

		2.1 Overview

		2.2 SmartMON's Resource Requirements

		2.3 SmartMON's Use of Interrupts and Traps

		2.4 The Three Operational Modes of SmartMON

		2.5 How SmartMON Sets Breakpoints

		2.5.1 Setting Breakpoints on RAM Code Without Trace Mode Active

		2.5.2 Instruction Breakpoints on ROM Code

		2.5.3 Data Breakpoints

		2.5.4 Complex Breakpoints

		2.6 SmartMON's Tracing Features

		2.6.1 Trace Points

		2.6.2 Trace Buffer Operation

		2.7 Single Stepping and Step-out-of-range

		2.8 The Six Different Submodes of Execution Mode

		2.9 How SmartMON Processes I/O

		2.9.1 Interrupt Driven I/O

		2.9.2 Polled I/O

		2.9.3 Character Buffering

		2.9.4 I/O System Calls

		2.10 How SmartMON is Initialized

		2.11 Run-time Notes

		2.11.1 Stacks

		2.11.2 Interrupt Service Routines

		2.11.3 Downloading an ISR for Debugging

		2.11.4 System Control

		3 Target Interface Package

		3.1 What is the TIP?

		3.2 TIP Module #1: usreq.68k

		3.2.1 Values Required by SmartMON

		3.2.2 More Information on the usrequ.68k Labels

		3.3 TIP Module #2: rmain.68k

		3.3.1 Stacks

		3.4 RM_INIT Call

		3.5 ROMM_GO System Call

		3.6 Creating Your Own rmain.68k

		3.7 TIP Module #3: io_drv.68k

		3.8 portinit Call

		3.9 Serial Port Interrupt Service Routine

		3.10 TX_CHAR

		3.11 RX_CHAR

		3.12 How to Create Your Own io_drv.68k

		3.12.1 Serial Port Polled I/O

		3.12.2 TX_CHAR Using Polled I/O

		3.12.3 RX_CHAR Using Polled I/O

		3.12.4 Creating a Polled I/O io_drv.68k

		3.13 TIP Modules #4 and #5: sysstp.68k and sys_go.68k

		3.13.1 sys_go

		3.13.2 sys_stop

		3.14 TIP Module #6: diag_tbl.68k

		4 Building SmartMON

		4.1 Overview of the Build Process

		4.1.1 Preparing the Build Environment

		4.1.2 Assembling the TIP

		4.1.3 Linking and Locating the Object Modules

		4.2 Formatting

		4.2.1 Programming the PROMs

		4.3 Notes on Building Applications for SmartMON

		4.3.1 Step 1: Modify pmain.68k

		4.3.2 Step 2: Build the Demo Object Modules

		4.4 Starting-up SmartMON with CrossView Pro

		4.5 Troubleshooting

		4.5.1 Locating the TIP

		4.5.2 Programming EPROMS

		4.6 Starting SmartMON with a Terminal or Terminal Emulator

		5 SmartMON Command Language

		5.1 Overview

		5.2 Control Characters

		5.3 Operation Modes

		5.3.1 Command Mode

		5.3.2 Download Mode

		5.3.3 Execution Mode

		5.4 Command Descriptions

		6 System Calls

		6.1 Introduction

		7 Diagnostics

		7.1 SmartMON Diagnostics

		7.1.1 Overview

		7.1.2 RAM Tests

		7.2 User Diagnostics

		7.2.1 Overview

		7.2.2 How to Write a User Diagnostic

		7.2.3 Linking Diagnostics with SmartMON

		7.2.4 Downloading and Running User Diagnostics

		7.2.5 How SmartMON Processes UD Commands

		7.2.6 Installing RAM Based Diagnostics

		7.2.7 Running a Test

		BACKGROUND DEBUG MODE

		1 Introduction

		2 Background Debug Mode as a CrossView Pro Execution Environment

		2.1 Additional Software Contents

		3 BDM Installation

		3.1 Hardware Installation

		3.2 Software Installation

		3.3 Configuration Options

		3.4 Target Environment Setup

		4 BDM Command Interface (Emulator Mode)

		4.1 Operation Modes

		4.2 Command Descriptions

		5 TroublEshooting

		5.1 Unable to Open Driver from OpenDriver

		5.2 Open Failed from CrossView Pro

		5.3 Unexpected Responses

		6 Other Considerations

		INDEX

