MA001-043-00-00
Doc. ver.: 10.142

"ITL* afile;

3% 4 1 W wlers yz e b

sfile = fopen (Z:1]

if(sfile == NTILT

{

r—iturn -1;

68K/ColdFire v10.0

CrossView Pro Debugger
User’s Manual

TASKING

Altrum.

A publication of
Altium BV
Documentation Department

Copyright [2003 Altium BV

All rights reserved. Reproduction in whole or part is prohibited
without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXIm is a registered trademark of Globetrotter Software, Inc.
Motorola is a trademark of Motorola, Inc.
MS-DOS and Windows are registered trademarks of Microsoft Corporation.
IBM is a trademark of International Business Machines Corp.
SUN is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com
http://www.altium.com

The information in this document bas been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
Jfor inaccuracies in this document. Furthermore, the delivery of this
information does not convey (o the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

al TASKING [

SLN3LNOO

Table of Contents

OVERVIEW 1-1
1.1 Introduction 1-3
1.2 CrossView Pro’s Features 1-3
13 Source Level Debugging 1-8
1.4 How CrossView Pro Works 1-10
1.5 Program Development 1-12
1.6 Getting Started 1-17
1.6.1 Before Starting oo 1-17
1.6.2 Setting Up the Execution Environment 1-17
1.6.3 Starting CrossView Pro 1-18
1.6.3.1 CrossView Pro Target Settings 1-19
1.6.3.2 Configuring CrossView Pro 1-21
1.6.3.3 Loading Symbolic Debug Information 1-22
1.6.4 Executing an Application 1-24
1.6.5 Debugging an Application 1-27
1.6.6 CrossView Pro Output 1-29
1.6.7 Exiting CrossView Pro......................... 1-30
1.6.8 What You May Have Done Wrong 1-31
1.6.9 Building Your Executable 1-32
1.6.9.1 Using EDE 1-32

SOFTWARE INSTALLATION 2-1
2.1 Introduction i 2-3
2.2 Note about Filenames 2-3
23 Configuring the X Windows Motif Environment . . . 2-3
2.4 Using X ReSOUICESo 2-4

COMMAND LANGUAGE 3-1
3.1 Introduction il 3-3
3.2 CrossView Pro Expressions 3-3
33 CONSLANLS © .ottt 3-4
3.4 Variables 3-7
3.5 Formatting Expressions 3-13

VI Table of Contents

3.6 OPEratorst 3-17
3.7 Special Expressions oo 3-18
3.8 Conditional Evaluation 3-19
3.9 Functions i 3-20
3.10 Case Sensitivity 3-21
USING CROSSVIEW PRO 4-1
4.1 Introduction i 4-3
4.2 Using the CrossView Pro Interface 4-3
4.3 Starting CrossView Pro 4-4
4.4 Startup OPtoONSot 4-5
4.4.1 What You May Have Done Wrong 4-9
4.5 The CrossView Pro Desktop 4-11
4.5.1 MENUS .o\ttt 4-13
4.5.1.1 Local Popup Menus 4-14
4.5.2 Window Operation 4-14
4.5.3 Dialog BOXESo 4-16
4.5.4 Customizing CrossView Pro 4-17
4.5.5 CrossView Pro Messages 4-19
4.6 CrossView Pro Windows 4-20
4.6.1 Command Window 4-21
4.6.2 Source Window oo 4-23
4.6.3 Register Window 4-26
4.6.4 Memory Window i 4-27
4.6.5 Data Window i 4-29
4.6.6 Stack Window 4-32
4.6.7 Trace Window, 4-33
4.6.8 Terminal Window 4-34
4.6.9 Data Analysis Window 4-36
4.6.10 Pop-Up WindOws, 4-37
4.7 Control Operations for CrossView Pro 4-38
4.7.1 Echoing Commands 4-38
4.7.2 Mouse/Menu/Command Equivalents 4-38
4.8 Using the On-line Help 4-39

Table of Contents

4.8.1 Accessing On-line Help 4-39
4.8.2 Using MS-Windows Help 4-39
CONTROLLING PROGRAM EXECUTION 5-1
5.1 Source Positioning o oo 5-3
5.1.1 Changing the Viewing Position 5-4
5.1.2 Changing the Execution Position 5-5
5.1.3 Synchronizing the Execution and Viewing Positions 5-7
5.2 Controlling Program Execution 5-8
5.2.1 Starting the Program 5-8
5.2.2 Halting and Continuing Execution 5-9
5.2.3 Single-Step Execution 5-9
5.2.4 Stepping through at the Machine Level 5-12
53 Notes About Program Execution 5-14
5.4 Calling a Function, 5-14
5.5 Searching through the Source Window 5-15
5.5.1 Searching fora Function 5-15
5.5.2 Searching fora String 5-16
5.5.3 Jumping to a Source Line 5-17
ACCESSING CODE AND DATA 6-1
6.1 Introduction i 6-3
6.2 Accessing Variables 6-3
6.2.1 Viewing Variables, Structures and Arrays 6-3
6.2.2 Changing Variables 6-7
6.2.3 Thel Command 6-8
6.3 EXPressionsouiiieii 6-10
6.3.1 Evaluating Expressions 6-10
6.3.2 Monitoring Expressions, 6-11
6.3.3 Formatting Datacooinoiiin.. 6-13
6.3.4 Displaying Memoryc.oviun... 6-14
6.3.5 Displaying Memory Addresses 6-16
6.4 Displaying Disassembled Instructions 6-17

i

Vil

Table of Contents

6.4.1 Intermixed Source and Disassembly 6-18
6.5 The Stack 6-19
6.5.1 How the Stack is Organized 6-19
6.5.2 The Stack Window 6-20
6.5.3 Listing Locals and Parameters of a Function 6-22
6.5.4 Low-level Viewing the Stack 6-22
6.6 Trace Window o i, 6-23
6.6.1 Trace Window Setup, 6-23
6.7 Register Window 6-25
6.7.1 Register Window Setup 6-25
6.7.2 Editing Registerscoiviiiiii.. 6-26
BREAKPOINTS AND ASSERTIONS 7-1
7.1 Introduction to Breakpoints 7-3
7.1.1 Code Breakpoints 7-3
7.1.2 Data Breakpoints i 7-7
7.1.3 Listing Breakpoints 7-8
7.2 Setting Breakpoints o 0 7-8
7.2.1 Data Breakpoints over a Range of Addresses 7-11
7.2.2 Temporary Breakpoints 7-12
7.2.3 Breakpoint Names 7-13
7.2.4 Setting the Count 7-14
7.2.5 Sequence Breakpoints o oo 7-15
7.3 Deleting Breakpoints 7-16
7.4 Enabling/Disabling Breakpoints 7-17
7.5 Breakpoint Commands 7-18
7.5.1 Attaching Conditionals to a Breakpoint 7-21
7.5.2 Attaching Macros to a Breakpoint 7-21
7.5.3 Attaching Strings to a Breakpoint 7-22
7.6 Suppressing Breakpoint Messages 7-22
7.7 Up-level Breakpoints 7-22
7.8 Patches 7-25
7.8.1 Patching Code out of a Program 7-25
7.8.2 Patching Code into a Program 7-26

Table of Contents

7.8.3 Replacing Code in a Program 7-26
7.9 Diagnostic Output and Statistical Information 7-27
7.10 ASSEItiONS . ..o 7-28
7.10.1 Assertion Mode e 7-28
7.10.2 Defining an Assertion 7-29
7.10.3 Editing an Assertion 0. 7-31
7.10.4 Activating and Suspending Assertions 7-31
7.10.5 Deleting ASSErtionsc..cooveun... 7-32
7.10.6 Using ASSErtionSooveiuiie, 7-33
7.10.7 Gathering Statistics with Assertions 7-35
DEFINING AND USING MACROS 8-1
8.1 CrossView Pro Macros 8-3
8.2 Defining Macros 8-3
8.2.1 Listing Macrost 8-5
8.2.2 Redefining a Macro 8-5
8.2.3 Saving Macro Definitions to a File 8-6
8.2.4 Loading Macro Definitions from a File 8-7
8.2.5 Deleting Macros, 8-8
8.3 Macro Parametersiiiia. 8-9
8.4 Redefining Existing CrossView Pro Commands 8-10
8.5 Using the Toolbox 8-11
8.5.1 Opening the Toolbox 8-11
8.5.2 Connecting Macros to the Toolbox 8-11
8.5.3 Removing a Macro Connection 8-12
COMMAND RECORDING & PLAYBACK 9-1
9.1 Recording Commands 9-3
9.1.1 Entering Comments 9-4
9.1.2 Suspend Recording 9-5
9.1.3 Resume Recording 9-5
9.1.4 Check Recording Status 9-6

9.1.5 Close File for Recording 9-6

Table of Contents

9.1.6 Command Recording Example 9-7
9.2 Playing Back Command Files 9-8
9.2.1 Setting the Type of Playback 9-9
9.2.2 Calling Other Playback Files 9-9
9.23 Quitting Playback Mode 9-10
9.3 Command Line Batch Processing 9-10
9.4 LOGEING . .. o 9-12
9.4.1 Setting up Logging 9-13
9.4.2 Recording Commands and Logging Screen Output 9-15
9.4.3 Command Window Log File Example 9-15
9.4.4 Suspending and Resuming Output Log 9-15
9.4.5 Closing the Output Log File 9-17
9.5 Startup Options 9-18
9.6 CrossView Pro Command History Mechanism 9-19
1/0 SIMULATION 10-1
10.1 Introduction i 10-3
10.2 I/O Streams 10-3
10.2.1 Setting Up File I/O Streams 10-4
10.2.2 Redirecting I/O Streams 10-6
10.3 File System Simulation 10-7
10.3.1 File System Simulation Libraries 10-8
10.4 Debug Instrument I/O, 10-9
10.5 The Terminal Window 10-10
10.5.1 Terminal Window Keyboard Mappings 10-10
SPECIAL FEATURES 11-1
11.1 Transparency Mode 11-3
11.2 RTOS Aware Debugging 11-4
11.3 COVEIAZE . .ot o e 11-6
11.4 Profiling 11-8
11.5 Data Analysis i 11-11

11.5.1 Supplied Data Analysis Window Scripts 11-13

Table of Contents

11.5.2 Syntax of CrossView eXtension Language (CXL) .. 11-19
11.6 Background Mode o 11-28
11.6.1 Configuration i 11-28
11.6.2 Manual Refresh 11-29
11.6.3 Entering Background Mode 11-30
11.6.4 Leaving Background Mode 11-31
11.6.5 The Stack in Background Mode 11-32
11.6.6 Local and Global Variables 11-32
11.6.7 Refresh Limitation 11-32
11.6.8 ASSErtiONSo 11-33
DEBUGGING NOTES 12-1
12.1 Debugging Assembly Language 12-3
12.2 Debugging Multiple Programs 12-3
COMMAND REFERENCE 13-1
13.1 Conventions Used in this Chapter 13-3
13.2 Commands: Summary 13-4
13.2.1 Viewing Commands 13-4
13.2.2 Data Monitoringt 13-5
13.2.3 Data Analysis 13-7
13.2.4 Execution Control Commands 13-8
13.2.5 Record & Playback 13-11
13.2.6 MACIOS o oot 13-12
13.2.7 Input/Output Simulation 13-12
13.2.8 File System Simulation 13-13
13.2.9 Target System Control 13-13
13.2.10 Save and Restore Target State 13-14
13.2.11 Help Commandsc...... 13-14
13.2.12 Search Commands 13-14
13.3 Commands: Detailed Descriptions 13-15

Xl

X

=

Table of Contents

ERROR MESSAGES 14-1
14.1 What this Chapter Covers 14-3
14.2 Error MESSAZES « . oo oo e e 14-3

GLOSSARY 15-1
15.1 What this Chapter Covers 15-3
15.2 Glossary Terms ..., 15-3

INTERPROCESS COMMUNICATION A-1
1 COM Interface, A-3
1.1 Introduction A-3
1.2 Using the COM Object Interface A-3
1.2.1 Run-Time Environment A-3
1.2.2 Command Line Options A-3
1.2.3 Startup Directory i A-4
1.3 COM Interfaces A-5
13.1 Activating the COM object A-5
1.3.2 Methods A-6
1.3.3 Implementation Details A-7
1.4 Events A-8
1.5 COM Examples, A-12
151 Python Examples A-12
1.5.2 Visual Basic Examples A-16
153 WORD Examples A-17
1.5.4 Excerpt of the MIDL Definition A-19
2 DDE Server Interface A-20
2.1 Introduction i A-20
2.2 DDE Items and Topics A-20
2.3 DDE Events ..., A-27
23.1 Packet Format A-27
2.4 CrossView Pro DDE Specific Options

and Commands oo A-28
24.1 Command Line Options A-28

Table of Contents

242 Commands i A-28

2.5 Examples A-29

25.1 Evaluating an Expression A-29

252 Reading Target Memory A-30

253 Writing Into Target Memory A-31

254 Requesting Current File and Line Number A-32

2.5.5 Using CrossView Pro as Pure Server A-32

REGISTER MANAGER B-1

1 Introduction i B-3

2 Invocation i i B-3

3 Syntax of a Register File B-4

4 SFR Base Address Register Special Variables B-5

5 Fixed Register Set B-6

6 Derivatives B-7

SOUND SUPPORT (MS-Windows) c-1

SIMULATOR Sim-1

1 Introduction i Sim-3

2 Supported Features Sim-3

2.1 Mapping MEmMoOry Sim-3
2.2 Simulating I/O via 1I/O Port Address Blocks

and Devices Sim—4

23 Setting I/O Device Attributes Sim-14

3 RestriCtions i Sim-15

4 Simulator Commands, Sim-16

SmartMON ROM MONITOR Rom-1

1 Introduction o Rom-3

1.1 OVEIVIEW ..o Rom-3

1.2 SmartMON’s Debugging Features Rom—-5

Xl

X1V Table of Contents

1.2.1 Initialize and Download
1.2.2 Stepping, Executing, and Halting
1.2.3 Setting Breakpoints
1.2.4 Full Disassembler
1.2.5 Displaying and Setting Memory and Registers
1.2.6 Tracing ...
1.2.7 Diagnostic Capabilities
1.2.8 System Calls
1.3 SmartMON Distribution Contents
2 Using SmartMON
2.1 OvVerview
2.2 SmartMON’s Resource Requirements
2.3 SmartMON'’s Use of Interrupts and Traps
2.4 The Three Operational Modes of SmartMON
2.5 How SmartMON Sets Breakpoints
25.1 Setting Breakpoints on RAM Code

Without Trace Mode Active
252 Instruction Breakpoints on ROM Code
253 Data Breakpoints i
254 Complex Breakpoints
2.6 SmartMON’s Tracing Features
2.6.1 Trace Points i
262 Trace Buffer Operation
2.7 Single Stepping and Step-out-of-range
2.8 The Six Different Submodes of Execution Mode . .
2.9 How SmartMON Processes I/O
29.1 Interrupt Driven I/O oo
292 Polled I/Oo
293 Character Buffering
294 I[JOSystem Calls
2.10 How SmartMON is Initialized
2.11 Run-time Notes
2.11.1 Stacks
2.11.2 Interrupt Service Routines

2.11.3 Downloading an ISR for Debugging

Rom-27
Rom-27
Rom-29

Table of Contents

2.11.4

3.1
3.2
3.2.1
3.2.2
33
3.3.1
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.12.1
3.12.2
3.12.3
3.12.4
3.13
3.13.1
3.13.2
3.14

4.1
4.1.1
412
4.13
4.2
4.2.1
4.3
4.3.1
432

System Control Rom-30
Target Interface Package Rom-31
Whatis the TIP? Rom-31
TIP Module #1: usreq.68k Rom-32
Values Required by SmartMON Rom-33
More Information on the usrequ.68k Labels Rom-34
TIP Module #2: rmain.68k Rom-37
Stacks ... Rom-38
RM INIT Call o, Rom-38
ROMM GO System Call Rom-42
Creating Your Own rmain.68k Rom-43
TIP Module #3: io drv.68k Rom-44
portinit Call Rom-44
Serial Port Interrupt Service Routine Rom-45
TX CHAR ... Rom-45
RX CHAR ... o Rom-46
How to Create Your Own io_drv.68k Rom-46
Serial Port Polled I/O Rom-47
TX CHAR Using Polled I/O Rom-47
RX CHAR Using Polled I/O Rom-48
Creating a Polled I/O io_drv.68k Rom-48
TIP Modules #4 and #5: sysstp.68k and sys_go.68k ~ Rom-48
SYS 8O it Rom-48
SYS_STOP + v vttt Rom-49
TIP Module #6: diag tbl.68k Rom-49
Building SmartMON Rom-50
Overview of the Build Process Rom-50
Preparing the Build Environment Rom-51
Assembling the TIP Rom-51
Linking and Locating the Object Modules Rom-52
Formatting i Rom-53
Programming the PROMs Rom-54
Notes on Building Applications for SmartMON Rom-54
Step 1: Modify pmain.68k Rom-55

Step 2: Build the Demo Object Modules Rom-57

XV

XVI

Table of Contents

4.4 Starting—up SmartMON with CrossView Pro Rom-58
4.5 Troubleshooting Rom-59
4.5.1 Locatingthe TIP Rom-60
452 Programming EPROMS Rom-61
4.6 Starting SmartMON with a Terminal or
Terminal Emulator Rom-62
5 SmartMON Command Language Rom-63
5.1 OVEIVIEW .. oot Rom-63
5.2 Control Characters Rom-04
5.3 Operation Modes oo, Rom-64
5.3.1 Command Mode i, Rom-65
53.2 Download Mode Rom-65
533 Execution Mode o i Rom-65
5.4 Command Descriptions Rom-66
6 System Calls Rom-111
6.1 Introduction i Rom-111
7 DiagnostiCso Rom-124
7.1 SmartMON Diagnostics, Rom-124
7.1.1 OVEIVIEW ..ttt Rom-124
7.1.2 RAM TESES . o oo Rom-124
7.2 User Diagnostics, Rom-135
7.2.1 OVEIVIEW ..o Rom-135
7.2.2 How to Write a User Diagnostic Rom-138
7.2.3 Linking Diagnostics with SmartMON Rom-140
7.2.4 Downloading and Running User Diagnostics Rom-141
7.2.5 How SmartMON Processes UD Commands Rom-141
7.2.6 Installing RAM Based Diagnostics Rom-141
7.2.7 Running a Test Rom-142
BACKGROUND DEBUG MODE Bdm-1
1 Introduction i Bdm-3
2 Background Debug Mode as a CrossView Pro
Execution Environment Bdm-3
2.1 Additional Software Contents Bdm-4

Table of Contents

3.1
3.2
3.3
3.4

4.1
4.2

5.1

5.2
5.3

INDEX

BDM Installation Bdm-5
Hardware Installation Bdm-5
Software Installation Bdm-6
Configuration Options Bdm-7
Target Environment Setup Bdm-7
BDM Command Interface (Emulator Mode) Bdm-9
Operation Modes i Bdm-9
Command Descriptions Bdm-10
TroublEshooting Bdm-31
Unable to Open Driver from OpenDriver Bdm-31
Open Failed from CrossView Pro Bdm-31
Unexpected Responses Bdm-31
Other Considerations Bdm-32

XVII

XVII

CONTENTS

Table of Contents

Manual Purpose and Structure XIX

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the CrossView Pro debugger for the
68K/ColdFire family. It assumes that you are familiar with programming
the 68K/ColdFire.

MANUAL STRUCTURE

Related Publications
Conventions Used In This Manual

CHAPTERS

1. Overview
Highlights specific CrossView Pro features and capabilities, and shows
how to compile code for debugging.

2. Software Installation
Describes how to install CrossView Pro on your system.

3. Command Language
Details the syntax of CrossView Pro’s command language.

4. Using CrossView Pro
Describes the basic methods of invoking, operating, and exiting
CrossView Pro.

5. Controlling Program Execution
Describes the various means of program execution.

6. Accessing Code and Data
Describes how to view and edit the variables in your source program.

7. Breakpoints and Assertions
Describes breakpoints and assertions.

XX

=

Manual Purpose and Structure

8. Defining and Using Macros
Describes how to simplify a complicated procedure by creating a
“shorthand” macro which can be used to execute any sequence of
CrossView Pro or C language commands and expressions.

9. Command Recording & Playback
Describes the record and playback functions of CrossView Pro.

10.1/0 Simulation
Describes how to simulate your input and output using File System
Simulation (FSS), File I/O (FIO) or Debug Instrument I/O (DIO).

11. Special Features
Describes special features of CrossView Pro, such as the Transparency
Mode, RTOS Aware Debugging, Coverage, Profiling and the
Background Mode.

12. Debugging Notes
Contains some notes about debugging in special situations.

13. Command Reference
An alphabetical list of all CrossView Pro commands. Consult this
chapter for specifics and the exact syntax of any CrossView Pro
command.

14. Error Messages
Contains CrossView Pro error messages and gives advice for correcting
them.

15. Glossary
Defines the most common terms used in embedded systems
debugging.

Manual Purpose and Structure XXI

APPENDICES

A. Interprocess Communication
Contains a description of the COM interface and the DDE interface.

B. Register Manager
Contains a description of the register manager rm68k.

C. Sound Support (MS-Windows)
Describes how to add sound to CrossView Pro events under
MS-Windows.

ADDENDUM

Simulator Mode

Contains information specific to Simulator Mode.

SmartMON ROM Monitor

Contains a description of the ROM Monitor.

Background Debug Mode
Contains a description of the Background Debug Mode.

INDEX

XXl

=

Manual Purpose and Structure

RELATED PUBLICATIONS

The C Programming Language (second edition) by B. Kernighan and
D. Ritchie (1988, Prentice Hall)

ANSI X3.159-1989 standard [ANSI]
ISO/IEC 9899:1999(E), Programming languages — C [ISO/IEC]

68K/ColdFire C Compiler/Assembler User’s Manual [TASKING,
MA001-022-00-00]

68K/ColdFire C Compiler/Assembler Reference Manual [TASKING,
MA001-020-00-00]

Manual Purpose and Structure

CONVENTIONS USED IN THIS MANUAL

Notation for syntax

The following notation is used to describe the syntax of command line

input:

bold Type this part of the syntax literally.

italics Substitute the italic word by an instance. For example:

Sfilename

means: type the name of a file in place of the word
filename.

{} Encloses a list from which you must choose an item.

[] Encloses items that are optional.

| Separates items in a list. Read it as OR.

You can repeat the preceding item zero or more times.

For example
command[option]... filename

This line could be written in plain English as: execute the command
command with the optional options option and with the file filename.

XXMI

XXIV Manual Purpose and Structure

=

Hllustrations

The following illustrations are used in this manual:

@ This is a note. It gives you extra information.

This is a warning. Read the information carefully.

@2 This illustration indicates actions you can perform with the mouse.
This illustration indicates keyboard input.

This illustration can be read as “See also”. It contains a reference to
another command, option or section.

OVERVIEW

al TASKING [

d31dVHO

Overview

1.1 INTRODUCTION

This chapter highlights many of the features and capabilities of CrossView
Pro, including an Introduction to Source Level Debugging and the
Embedded Development Environment.

This chapter also contains the section Getting Started, which shows you
how to compile a program to work with the debugger.

1.2 CROSSVIEW PRO’S FEATURES

CrossView Pro is TASKING’s high—level language debugger. CrossView Pro
is a real-time, source-level debugger that lets you debug embedded
microprocessor systems at your highest level of productivity. Its powerful
capabilities include:

Multi-Window Graphical User Interface

C and Assembly level debugging

C Expression Evaluation including Function Calls
Breakpoints (both hardware and software)
Probe Points

Assertions (software data breakpoints)
C—trace, Instruction Trace

I/0O Simulation (I0S)

Data Monitoring

Single Stepping

Coverage

Profiling

Macros

Flexible Record & Playback Facilities
Real-Time Kernel Support

On-line context sensitive Help

Documentation

1-3

1-4 Chapter 1

=

Multi-Window Interface

This interface uses your host’s native windowing system, so that you
already know how to open, close and resize windows. With windows you
can keep track of information concerning registers, the stack, and
variables. CrossView Pro automatically updates each window whenever
execution stops.

You have great freedom in designing a suitable display. You can hide and
resize the various windows if you choose.

Statement Evaluation

You can enter C expressions, CrossView Pro commands or any
combination of the two for CrossView Pro to evaluate. You may also call
functions defined in your source code from the command line. Expression
evaluation is an ideal way to test subroutines by passing them sample
values and checking the results.

Breakpoints

Breakpoints halt program execution and return control to you. There are
several types of breakpoints: code, data, instruction count, cycle count,
timer and sequence.

Code breakpoints let you halt the program at critical junctures of program
execution and observe values of important variables.

You may place data breakpoints to determine when memory addresses are
read from, written to, or both. With data breakpoints, you can easily track
the use and misuse of variables.

An instruction count breakpoint halts the program after a specified number
of instructions have been executed; a cycle count breakpoint stops the
program after a number of CPU cycles; a timer breakpoint stops the
program after a number of micro seconds or ticks and sequence
breakpoints stop the program when a number of breakpoints are hit in a
specified sequence.

Data breakpoints, instruction count breakpoints, cycle count breakpoints
and timer breakpoints are not available for all execution environments,
please check the Addendum.

Overview

Probe Point Breakpoints

A breakpoint can be treated as a probe point. When a probe point
breakpoint is hit, the associated commands are executed and program
execution is continued. Probe points are used with File I/O simulation and
sequence breakpoints.

Assertions

A powerful assertion mechanism lets you catch hard-to—-find—errors. An
assertion is a command, or series of commands, executed after every line
of source code. You may use assertions to test for all sorts of error
conditions throughout the entire length of your program.

C-Trace

CrossView Pro has a separate window that displays the most recently
executed C statements or machine instructions. This feature uses the
execution environment’s trace buffer along with symbolic information
generated during compilation. This feature is depending on the execution
environment.

1/0 Simulation (10S)

With I/O simulation you can debug programs before the actual input and
output devices are present. CrossView Pro can read input data from the
keyboard or a file, or can send output to a window or a file. You can
view the data in several formats, including hexadecimal and character. You
can have an unlimited number of simulated I/O ports, which can be
associated with the screen and displayed in windows.

Data Monitoring
You may place variables and expressions in the Data window, where
CrossView Pro updates their values when execution stops.

Single Stepping

With CrossView Pro, you can single step through your code at source
level or at assembly level, into or over procedure calls. Running your
program one line at a time lets you check variables and program flow.

1-5

1-6 Chapter 1

=

Coverage

When a command such as StepInto or Continue executes the application,
CrossView Pro traces all memory access, i.e. memory read, memory write
and instruction fetch. Through code coverage you can find executed and
non—-executed areas of the application program. Areas of unexecuted
code may exist because of programming errors or because of unnecessary
code. It may be that your program input, your test set, is incomplete; It
does not cover all paths in the program. Data coverage allows you to
verify which memory locations, i.e. which variables, are accessed during
program execution. Additionally, you can see stack and heap usage. The
availability of this feature depends on the execution environment.

Profiling

Profiling allows you to perform timing analysis on your software. Two
forms of profiling are implemented in CrossView Pro.

Function profiling, also called cumulative profiling, gives you timing
information about a particular function or set of functions. CrossView Pro
shows: the number of times a function is called, the time spent in the
function, the percentage of time spent in the function, and the
minimum/maximum/average time spent in the function. The timing results
include the time spent in functions called by the profiled function.

Code range profiling presents timing information about a consecutive
range of program instructions. CrossView Pro displays the time consumed
by each line (source or disassembly) in the Source Window. Next to this,
the Profile Report dialog shows the time spend in each function. The
timing results do not include the time consumed in functions called by the
profiled function.

The availability of profiling depends on the execution environment.
Function profiling can be supported if the execution environment provides
a clock that starts and stops whenever execution starts and stops. Code
range profiling heavily relies on special profiling features in the execution
environment. Normally code range profiling is only supported by
instruction set simulators.

Overview

Macros

Macros let you store and recall complex commands and expressions with a
minimal number of keystrokes. You can store macros in a "toolbox”,
making it possible to execute complex functions with the touch of a
mouse button. You can also place macros in command lists of breakpoints
and assertions. You can use flow control statements within macros, and
macros can call other macros, allowing you to construct arbitrarily
complex sequences. Macros can accept multiple parameters, be saved and
loaded from files and can even rename existing CrossView Pro commands.

Record & Playback

At any time, you can record the commands you type, and optionally their
output, to a file. You can also play back files of commands all at once or
in a single-step playback mode. These functions are helpful for setting up
standardized debugging tests or to save results for later study or
comparison.

Kernel Support

CrossView Pro supports RTOS (Real-Time Operating System) aware
debugging for various kernels. Since each kernel is different, the RTOS
aware features are not implemented in the CrossView Pro executable, but
in a library that will be loaded at run-time by CrossView Pro. The amount
of windows and dialogs and their contents is kernel dependent.

On-Line Help
When you click on a Help button or when you press the F1 function key
in an active window, the CrossView Pro help system opens at the
appropriate section. From this point, you can also access the rest of the
help system.

Documentation

CrossView Pro has a comprehensive set of documentation for both new
and experienced users. The manual includes an installation guide,
description of debugging with CrossView Pro, error messages, and a
command reference section. The documentation tries to cover a wide
range of expertise, by making few assumptions about the technical
experience of the reader.

1-7

1-8 Chapter 1

=

1.3 SOURCE LEVEL DEBUGGING

CrossView Pro is a source level debugger. Source level means that
debugging works on the actual C code or assembly code. CrossView Pro
can deal with global and local variables that are both statically and
dynamically allocated variables. Therefore, it can deal with compiled
addresses of variables that move around the stack. CrossView Pro knows
the compiler’s addressing conventions for variables of any type.

The Debugging Environment

All debugging configurations follow a similar pattern. There is a host
system where the debugger runs, and a farget system (usually an
execution environment), where the program being debugged runs. There
may also be a probe that can plug into the actual hardware of the
embedded system being designed.

CrossView Pro provides a high-level interface between you, the user,
working at the host system and a program running at the target system
(execution environment). This means that you may issue commands that
refer directly to the variables, source files, and line numbers as they
appear in the source program. You can do this because CrossView Pro
uses symbol information generated during compilation to translate the
high-level commands that you type into a series of low level instructions
that the target system understands. Using Generic Debug Instrument (GDI)
calls towards a shared library for the simulator, or using a connection
between the host and target, CrossView Pro finds out information about
the state of the target program and then tells the target to perform the
requested actions.

A host-target arrangement can perform functions beyond the reach of
traditional software-based debuggers. Since the target contains the actual
chip, CrossView Pro can observe its operations without interfering. The
existence of CrossView Pro and the host is invisible to the target program.
This means that the program under debug runs exactly the same as the
final program will in a real embedded system (except for real-time
situations like timings).

Overview

With CrossView Pro, you may also take advantage of any advanced
capabilities of your target hardware through emulator mode (transparency
mode). In transparency mode you can communicate with the target as if
the host system were a terminal directly connected to the target. You can
enter and leave transparency mode freely without restarting the debugger
or the target system. CrossView Pro therefore does not interfere with the
normal operation of the target hardware. Thus the debugger is a powerful
accessory to the machine-level debugging that you might do with the
target system alone. The transparency mode is not available for all
execution environments.

1-9

1-10

Chapter 1

Although it is not necessary to know how CrossView Pro performs its
debugging, you may be curious how CrossView Pro works.

Whenever you enter a debugger command, CrossView Pro obtains
information from or controls the execution environment by sending
appropriate commands over the host-target link. A typical session may go
something like this:

Highlight initval and click on the Show Expression button in the
Source Window.

E Source : demo.c M= E
e MILESED E Rw QO @ @ 0 E =
LA
|51 jlﬂx1428 jlmain leource lines leourceIinestep j
int loopwvar: /% the loop counter *F
long Sum; /% will be 174sum of factorials from 0 teo 7 +/
char cvar; /% sample char wariable L
initwal = 17;

Awiell = recordwvar.a)

/% This loop has an upper limit which is too high. */
/% &z a result, initwal will get clobbered. L

for {loopwar = 0; loopwar <= §; ++loopwar)
{
| |

Figure 1-1: Inspect a variable

CrossView Pro converts this action into a command. Depending on

preferences you have set, the variable is shown in the Data Window or the
Expression Evaluation dialog is shown.

CrossView Pro consults the symbol table to deduce the type and address

of initval . Suppose initval is a variable of type int which lies at
absolute location 100.

The debugger forms a command asking the target system to read two
bytes starting at address 100 (the size of an int equals 2).

CrossView Pro then transmits the command to the target system and
receives the response.

Overview 1-11

6. CrossView Pro interprets the response, and for example determines that

initval equals 17.
7. CrossView Pro then displays initval=17 since it knows initval s type.

Command: Crozs¥Yiew M= =

== ﬂ

maingds: if [(initwal > recordwar.a)

> 8

maingso: sum = 0O;

> initwal

initwal = 17

%
%
initval

IE Execute | Halt |

L e fled

Figure 1-2: CrossView Pro Command Output

This is a simplified example, many CrossView Pro commands require
several complex transactions, but all take place without you being aware
of them.

1-12 Chapter 1

=

1.5 PROGRAM DEVELOPMENT

The CrossView Pro debugger is part of a toolchain that provides an
environment for modular program development and debugging. Figure
1-3 shows the structure of the toolchain.

Apart from the debugger the toolchain contains the following elements:

Compiler

The compiler translates C source into machine instructions for the target
microprocessor. The input is one or more source programs. The C
language implemented conforms to the ANSI C standard ANSI/ISO
9899-1990.

Compiler output is an object module suitable for linking with other
modules. These object modules can also be catalogued in a library using
the librarian utility. The compiler has optional listings which show
interleaved source and generated machine instructions, along with
cross—reference listings.

Run-time Library

The 68K/ColdFire toolset includes full run—time libraries: math functions,
memory allocation functions, standard I/O functions, string manipulation
functions, and floating point routines.

Assembler

The 68K/ColdFire toolset includes a macro assembler. The source format is
manufacturer-compatible. That is, existing manufacturer—compatible
assembly code is easily reassembled using the TASKING assembler. Minor
changes may be needed if the assembled modules are to be invoked by
compiled modules.

The input to the assembler is one or more source programs. The output is
a corresponding number of object modules suitable for linking to other
modules. The object modules can be catalogued in a library. Assembler
object modules are compatible with C compiler object modules. Source,
cross—reference, and symbol table listings are available from the assembler.

Overview 1-13

C++
Source Code

C
Source Code

Assembly
Source Code

Olsize

Assembler Compiler 3
¢ e Symlist
Object Object
Module Module
Gsmap
Linking

Librarian B

Locator

Assembly
Source Code

C
Source Code

C++
Source Code

Absolute Object
Module

IEEE695)
Formatter i — CrossView Pro
Symbol File Debugger
Download File
Target Execution
Microprocessor Environment

Figure 1-3: Toolchain development flow

1-14

=

Chapter 1

Utilities

The TASKING compiler and assembler software includes a full set of
utilities. These tools increase programming productivity by reducing the
time spent on repetitive software building tasks. A brief description of the
utilities is given below

Linking Locator

The Linking Locator integrates the results of separate compilations and
assemblies into a single absolute module. This is done in three separate
steps, any or all of which can be performed in a single invocation of
the linking locator. The first step, called “linking”, consists of
combining separate object modules into a composite module by
resolving references. Usually these object modules are produced by the
assembler and/or compiler, but pre-linked object modules may be also
used as input. The linking locator searches libraries to satisfy any
unresolved references in the module it is constructing.

The second (optional) step, called “ROM processing”, consists of
building initialization segments used to initialize read—write data. All
ROM-based systems must execute code to initialize their read—write
data, since the initial values cannot be maintained in RAM
(random-access memory), and read-write data cannot be allocated in
ROM (read only memory). This data could be initialized by large
numbers of assignment statements, but it is more convenient and
efficient to employ ROM processing instead. Unlike the read—write
data, the initialization segment is suitable for placement in ROM. The
initial data values are copied from ROM to RAM at the time of
initialization by the library routine rcopy .

The final step, called “locating”, consists of assigning absolute
target-memory locations to relocatable segments and resolving address
references. The linking locator gives you complete control over
placement of all code and data, but it also has the capacity; to
automatically locate collections of segments in bounded areas of the
target memory. The output is an object module with absolute addresses
substituted where appropriate. A completely located module contains
all the information necessary to load and execute the code on the
target microprocessor. The linking locator can resolve the problem of
storing a program into a fragmented memory space consisting of ROM,
RAM and I/O mapped device addresses.

Overview

Formatter

The formatter converts the contents of an absolute object module into
one of the industry standard formats, in either an ASCII hex or a binary
format. The formats provide for loading of object text, that is, code and
data, into memory of the target processor using a loader. The loader is
generally provided by an emulator or other instrumentation system, or
by a ROM-resident monitor program. The formatter offers many
different formats in order to be compatible with a wide range of
loaders.

The input is a module from the linking locator and the output is a
formatted load file. The formats may also be used as input to a PROM
burner to program read-only memory.

Librarian

The librarian is a tool for managing libraries of program modules at the
pre-link or post-link phase of development. The librarian creates,
maintains, and selectively lists library index files. A library index file is
a text file defining an indexing structure which describes a collection of
object modules. It consists of a series of index entries, one for each
object module. The librarian’s input is taken from the library and/or
object modules named on the command line or through options
specified on the command line. The object modules named on the
command line or in a file are added to the library. Libraries simplify the
task of linking modules, since the linking locator can automatically
search libraries for required modules.

Global Symbol Mapper

The global mapper (gsmap) displays global symbols either
alphabetically or by address. Gsmap can be used before or after linking
or locating to list external names and the definitions of global symbols.
The gsmap listing shows an absolute address (after locating), length,
class, and alignment for each segment.

Object Size List Utility

The object size list utility (olsize) lists the total number of words of
code, data, and constant data in an object module.

1-15

1-16

Chapter 1

Symbol List Utility

The symbol list utility (symlist) produces a listing of all global and
local symbols. When the debugger option, (-d), is used in compilation
or assembly, target locations for source lines of input code are included
in the listing. The input may be any combination of unlinked object
modules, linked object modules, and absolute modules. The symlist
listing is composed of three parts: a table of executable line numbers
and code addresses, a listing of all symbols and their attributes, and an
alphabetical list of all symbols with pointers to each symbol’s definition
and attributes.

Overview

1.6 GETTING STARTED

1 I6I1

BEFORE STARTING

Before using CrossView Pro, there are several things that you must do:

Install the CrossView Pro software. Directions for your particular
system are found in the Software Installation chapter.

Configure your execution environment as described in the
Execution Environment addendum.
Compile the program that you want to debug. A brief description

of this process is outlined in the section Building Your Executable
later in this chapter.

For the purpose of getting you started quickly, we have supplied you with
a demo program that you can debug. The demo program is demo.abs .

1 I6I2

SETTING UP THE EXECUTION ENVIRONMENT

The following text only applies to ROM monitor and emulator versions of
CrossView Pro.

In order for the host and execution environment to communicate, a proper
connection must exist between the two machines. Here are some
important considerations:

Use the correct kind of RS-232 cable. Note there are at least two
types of cables, null modem and direct. Consult the execution
environment’s manual for the correct type.

Make sure the execution environment is configured to communicate
with the host at the baud rate that CrossView Pro expects. Usually,
the baud rate is 9600, but this is not always the case.

Use the correct ports on both the execution environment and host.
Many machines have two ports. If you use a different port on the
host than the default (COM1 for PC), you will have to use a special
startup switch, =D. See the startup options of the Using CrossView
Pro chapter.

See the addendum for details on the connection to the execution
environment.

1-17

1-18

-

Chapter 1

1.6.3 STARTING CROSSVIEW PRO

To invoke CrossView Pro, simply double—click on its icon. CrossView Pro
starts up and opens the command window, source window and other
windows.

Breakpoint

Toggle Local Toolbar Main Toolbar

‘% CrossView Pro - Demo.abs

Tools Settings “iew ‘'wWindow Help

BlEAL S I m > ILE 62 65 [2 52 X2 v 32
0 e : demo] S
I R 4
|4? jl 0x140a jlmain leourceIines leource line: step j
roid main (void)
i
int loopvar; /* the loop counter *f J
long Sum; /¥ will be 17+sum of factorials from O ta 7 */
char ovar; /% gample char wvariable L
= if (initval > recordvar.s)
i
=] sum = 0
+ -
<] | H 4
Command: Cross¥iew o =] B
> /% stopped at the breakpoint we set. ﬂ
> /% In the Source window, CrossView Pro alwar
> /* statement to be executed. To single ste]
> /% by one C statement we can use the 's' cor
A
> initwvalin [
initval = 0 = |70
I I | F
b d O /main() [.\demo.cl:47]
R
initvaldn ﬂ
I Execute | Halt |
[: [
Main Local Source Window
Status Bar Toolbars Status Bar

Figure 1-4: Command Window

Overview

CrossView Pro can be passed the name of an execution (*.abs) file. This
can be done from a command line, but the native windowing system often
provides alternatives. Usually this involves dragging the program to be
debugged onto the CrossView Pro executable from the Windows Explorer
for Windows 95/98/XP/NT/2000, and dropping it there or associating
CrossView Pro to be the application to start when double—clicking an

.abs icon. CrossView Pro will start and load the symbol information from
that file.

1.6.3.1 CROSSVIEW PRO TARGET SETTINGS

You can specify specific CrossView Pro startup settings in the Target
Settings dialog.

To open the Target Settings dialog:

e From the Target menu, select Settings...
The Target Settings dialog box appears as shown in figure 1-5.

Target Settings [2] x]

Target configuration

C:\targethetchsample?. cig
C:\targetietchzample3. cig

™ Show configuration tifes Browse... |
CPU type: Icpu‘] j
Erecufic enyirammert: I j
Configuration: I Simulatar j
D escriptior file: Ic: “targethetchtarget dec j Browse... |

Source directories:

L]

— Configure... |

"

Help |

Figure 1-5: CrossView Pro Target Seitings

Cancel |

1-20 Chapter 1

You can set the following items in this dialog:

e Select a target configuration file (*.cfg) containing some target
specific configuration items. This file is optional. See the text below
for more information.

* Select the CPU type.

e Specify the source directories for CrossView Pro. Click on the
Configure... button to change the list of source directories.

Target Configuration

The available targets are described by the target configuration files (*.cfg
in the etc subdirectory). The target configuration files are text files and
can be edited with any text editor.

Empty lines, lines consisting of only white space are allowed. Comment
starts at an exclamation—-sign ('!") and ends at the end of the line.

An information line has the following synopsis:

[! comment] field: field-value
field one of the keywords described below
field-value the value assigned to the field

comment optional comment

The fields listed in the configuration file are:

Field Description

title The full name of the configuration. This
name will be displayed in the Target
configuration field of the Target
Settings dialog.

cpu_type The name of the CPU. You can specify
multiple CPU types separated by white
space.

debug_instrument_module The name of the Debug Instrument (using
GDI) used for debugging.

radm The name of the Debug Instrument (using
KDI) used for RTOS aware debugging.
(optional).

Overview

Field

Description

transparent_cmd

The terminal emulator program command
line to use when entering transparency
mode via the View | Transparent

Mode menu item (ROM monitor only).

BDM_DelayFactor

(0—453556) set the timing delay factory for
communications to the BDM port (BDM
68K only).

Notes:

* TFields not required for the target can be omitted.

* CrossView Pro searches for the *.cfg files in the current directory and

in the etc directory.

1.6.3.2 CONFIGURING CROSSVIEW PRO

You may have to configure CrossView Pro to talk to the emulator or ROM
monitor. If you have a simulator version this step is not needed and the
associated menu item is grayed. To configure CrossView Pro:

e From the Target menu, select Communication Setup...
The Communication Setup dialog box appears as shown in figure

1-6.

e Adjust the communication parameters (baud rate and I/O port) to
match your hardware configuration.

* Close the dialog box by clicking on the OK button.

* The settings in this dialog (and other dialogs) will be saved on
exiting CrossView Pro, when the Save desktop and target settings
check box in the Save tab of the Options dialog is set. This dialog
always appears on exiting CrossView Pro.

1-21

1-22 Chapter 1

-

Select link type: [~ Serial Port Settings

~| | Paort: m

Baud rate: m
Timeout factor: I‘I—

;I Handshake
© Hondoff W Exclusive access
I RTSACTS

& None

Help... | 0k I Cancel

Figure 1-0: Setting up CrossView Pro Communications

1.6.3.3 LOADING SYMBOLIC DEBUG INFORMATION

You must tell CrossView Pro which program that you want to debug. To
do this:

e From the File menu, select Load Symbolic Debug Info...

The Load Symbolic Debug Info dialog box appears, as shown in
figure 1-7.

* Type in the path and file name of the program that you want to
debug, or click on the Browse... button to bring up a file selection
dialog box. In our example we are using demo.abs . Note that in
most cases you will want to set the code bias field to 0x0000.

e Set the Download image too check box by clicking on it, if you
want to download the image of your absolute object file to the
target. You can decide to postpone downloading to the target. In
that case you can select Download Application... from the File
menu any time afterwards.

* Set the Reset target system check box if you want to reset the
target system to its initial state. You can decide to postpone resetting
the target. In that case you can select Reset Target System from
the Run menu afterwards.

Overview

Set the Goto main check box if you want to execute the startup
code. This automatically enables the Reset application check box.
You can decide to postpone going to the main function. In that
case you can execute a high-level single step afterwards.

Set the Use memory definition file check box if you want
CrossView Pro to process an application specific memory definition
file before a new application file is loaded and/or downloaded to
the target. CrossView Pro uses such a file to determine how much
memory must be allocated from the system and how logical
addresses are mapped to physical addresses.

When you click on the Communication setup... button (if
available), the Communication Setup dialog box appears as shown
in figure 1-6. With the Target Settings... button you can open the
Target Settings dialog. Please check the information in these dialogs
before downloading an application.

When you click on the Load button, the program’s symbol file will
be loaded into the debugger and, if you have set the Download
image too check box, the image of your absolute object file will be
downloaded.

Clicking on Cancel ignores all actions.

Load Symbolic Debug Info EE

—application

Application ko debug: Idemo.abs

Code address bias:

¥ Fleset tanget system
¥ Download image too

[Signal download ready

IDHDDDD

™ Show load statistics
¥ Reset application

v Gota main

j Browse... |

™ Break on exit

V¥ Ca++ hame demangling

—Debug
[Debug without symbolic debug file

— Dptions

[Eommunieation Setup,.

Target Settings...

¥ Execute these settings at CrossWisw startup

Help |

Load Cancel

Figure 1-7: Loading Symbolic Debug Information

1-23

1-24

Chapter 1

CrossView Pro remembers all previously saved settings. In this case, the
Load Symbolic Debug Info dialog already contains the previously saved
configuration, so you only have to click the Load button to perform your
actions.

Compare Application

You can use the File | Compare Application... dialog to check if a file
matches the downloaded application. This can be useful when your
program has changed some of your code.

1.6.4 EXECUTING AN APPLICATION

To view your source while debugging, the Source Window must be open.
To open this window,

¢ From the View menu, select Source | Source lines

Before starting execution you have to reset the target system to its initial
state. The program counter, stack pointer and any other registers must be
set to their initial value. The easiest way to do this is:

e Set the Reset target system check box and the Goto main check
box in the Load Symbolic Debug Info dialog box. (See the previous
section) Goto main automatically enables the Reset application
check box.

@ Depending on your execution environment a target system reset may have
undesired side effects. For this reason, the target system reset is executed
before the code is downloaded to the target.

If you have not checked these items:

e From the Run menu, select Reset Target System

e From the Run menu, select Reset Application

* Execute a high-level single step (either into or over) using the
toolbar in the Source Window (or F11/F10).

The first single step executes the startup code and stops at the first line of
code in main() . You should see your program’s source code.

Another way of getting there is:

e Set a breakpoint at the entry of in main() by clicking on a
breakpoint toggle at the left side of the text in the Source Window.
See figure 1-8.

Overview

Start the application with Run | Reset Application and Run |
Run.

To set a breakpoint you can:

Click on a breakpoint toggle (as shown in figure 1-8) to set or to
remove a breakpoint. A green colored toggle shows that no
breakpoint is set. A red colored toggle shows that a breakpoint is
installed. An orange colored toggle shows that an installed
breakpoint is disabled.

Due to compiler optimizations it is possible that a C statement does
not translate in any executable code. In this case you cannot set a
breakpoint at such a C statement. No breakpoint toggle is shown in
this case.

B Source : demo.c M=l 3
m > BIGECE I E E
|49 jIDxN'IB jlmain leource lines leourcelinestep j
woid main (void)
{
int loopvar: /% the loop counter '-J
long Sum; /% will be 17+sum of factorials from O to| 7
char CVar: /% sample char wvariable
Elw | 0.000% initwal = 17:
E~ | 0-.000% if (initwal > recordwvar.a)
Er | o.ooos
i -
1 | H o4
Breakpoint Coverage Profiling Current Status

Toggles

Markers Execution Position Bar

Figure 1-8: Getting Control

Now it is time to execute your program:

From the Run menu, select Run

1-25

1-26

Chapter 1

In the Source Window the current execution position (the statement at the
address identified by the current value of the program counter) is
higlighted in blue. As a result, when execution stops, the line you set a
breakpoint on is highlighted. You can now single step through your
program using the Step Into and Step Over buttons in the Source
Window. Or you may choose to execute the rest of the program (or at
least until the next breakpoint) with the Run button.

At any point you can interrupt the emulator and regain control by clicking
on the Halt button in either the Source Window or the Command
Window.

For more information on executing a program, see the chapter Controlling
Program Execution.

Overview 1-27

1.6.5 DEBUGGING AN APPLICATION

When debugging your application you probably want to see the calling
sequence of your program, and inspect the contents of variables and data
structures used within your program.

To see the calling sequence of your program the Stack Window must be
open. The stack window shows the functions that are currently on the
stack. To open the stack window,

¢ From the View menu, select Stack
To see the value of the local variables of a function,
¢ From the View menu, select Data | Watch Locals Window

‘¢ CrossView Pro - Demo.abs =] &2
File Target Edt Run EBreakpoints Dats Tools Settings Wiew Window Help

BlE M m » D WILEEEGE[Z62%
M Source : demo.c M [=1E3
m b [EGE ewm @O E &M E =
|48 lexMTB jlmain leDurce lines leource line: step j
roid main (woid)
{
int loopwar: /% the loop counter L J
lang sum; /% will bhe 17+4sum of factorials from 0 ta 7 */
char oVar; /* sample char wvariable +/
=
=]]
El oum = 0: All Local Variables M=l &=
G
! W wEES &0
4
—I—I— LOCAL loopvard/n @ <deads
Command: CrossView = =] = LOCAL sum/n : -1
;I LOCAL cwvar/n : <deads
> recordvar/n - recordvar/n @ struct rec = |
recordvar = struct rec_s { a = -1; -
&= -1 + h = 0x10Z8 "TASKING":
b = 0x1028 "TASKING"; o = 987654321;
© = 957654321; eolor = blus:
color = blue; 1 + recordvar
! =
<] 3]|
prst ;I 3
B N
recordvar/n =l | o waing [-Yedemo.c:47]
Is Execute Halt |

Figure 1-9: Watch variables

1-28

Chapter 1

To inspect the value of global variables and data structures,
e Double—-click on the variable name in the Source Window.

Depending on preferences you have set, the variable is shown in the Data
Window as shown in figure 1-9 or the dialog displayed in figure 1-10 is
shown.

: Expression Evaluation EHE
Expressian: |rec:u:urdvan"n j Browse... |

— Optional dizplay format

Shyle: IN.;.[ma| vl Mumber of values: I Yalue size: IDefauIt vl

> recordvar/n ;I
recordvar = struct rec = {

a = -1;

b = 0x10Z8 "TASKING";

o o= 987E54321;
color = blue;
i

Help | Add watch Add Show

Figure 1-10: Expression evaluation

Pointers, structures and arrays displayed in the data window have a
compact and expanded form. The compact form for a structure is just
<struct> | while the expanded form shows all the fields. The compact
form of a pointer is the value of the pointer, while the expanded form
shows the pointed-to object. The compact form is indicated by putting a
'+ at the start of the display. (i.e., the object is expandable), while a '~
indicates the expanded form (i.e., the object is contractible). Nesting is
supported, so structures within structures can likewise be expanded, ad
infinitum.

To expand a pointer or a structure:

¢ (Click on the '+ in the Data Window

Overview 1-29

1.6.6 CROSSVIEW PRO OUTPUT

Nearly every CrossView Pro command can be given using the graphical
user interface. These commands and the debugger’s response is logged in
the Command Output Window which is the upper part of the Command
Window. Alternatively, CrossView Pro commands can be entered directly

(without using the menu system) in the command edit field of the
command window.

To open the Command Window:
e From the View menu, select Command | CrossView

Figure 1-11 shows an example of the Command Window. Commands can
be typed into the command edit field (bottom field) or selected from the
command history list (middle field) and edited then executed. The top
field is referred to as the Command Output Window. Each command,
echoed from the command edit field, is displayed with a "> prefix.
CrossView’s response to the command is displayed below the command.

CrossView Command CrossView Response Output Window

Command: Crozs¥Yiew [_ (O] <]

> 3 | =
maingds: if [(initwal > recordwar.a)
]

maingsi: sum = 0;

» initwal

initwal = 17

%
%
initval

IE i Execute | Hailt |

Command Edit FieldJ Command History List —

Lo DAled

Figure 1-11: CrossView Pro Command Output

You can choose to clear the command edit field after executing a
command. From the File menu, select Options... and select the Desktop
tab. Enable the Clear command line after executing command check
box. You can use the clear command to clear the Output Window.

1-30 Chapter 1

=

1.6.7 EXITING CROSSVIEW PRO

To quit a debugging session:
e From the File menu, select Exit or close the Command Window.

* In the Options dialog that appears, select in the Save tab the
options you want to be saved for another debug session.

e Click on the Exit button in the Options dialog.
If you selected one or more items in the Options dialog, your settings will

be saved in the initialization file xvw.ini . This file is located in the
startup directory.

Workspace files

If you have set the Save desktop and target settings check box in the
Save tab, CrossView Pro will create a workspace file (.cws) for each
debugged or loaded application. The settings will be restored in a
following debug session. If CrossView Pro cannot find a workspace file for
a loaded application it uses the default workspace file xvw.cws in the etc
directory.

A CrossView Pro workspace file contains:

* Window positions and sizes

e Local toolbars status

e Main toolbar configuration

e Monitored variables in Data windows

* Memory window settings

e Terminal window settings

e Coverage and profiling display settings in the Source window
* Color settings

Overview 1-31

1.6.8 WHAT YOU MAY HAVE DONE WRONG

Most problems in starting up CrossView Pro for a debugging session stem
from improperly setting up the execution environment or from an
improper connection between the host computer and the execution
environment. Some targets will require you to enter transparency mode to
set the execution environment for a debugging session. Check the notes
for your particular execution environment.

Here are some other common problems:

e Specifying the wrong device name when invoking the debugger.

* Specifying a baud rate different from the one the execution
environment is configured to expect.

* Not supplying power to the execution environment or an attached
probe.

e Using the wrong kind of RS-232 cable.

e Plugging the cable into an incorrect port on the execution
environment or host. Some target machines and hosts have several
ports.

e Installation of a device driver or resident application that uses the
same communications port on the host system.

e The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process.

1-32

=

Chapter 1

1.6.9 BUILDING YOUR EXECUTABLE

The subdirectory xvw in the examples subdirectory contains a demo
program for the 68K/ColdFire toolchain.

In order to debug your programs, you will have to compile, assemble, link
and locate them for debugging using the TASKING 68K /ColdFire tools.
You can use EDE, the Embedded Development Environment (which uses a
project file and a makefile) or you can call the makefile from the
command line.

1.6.9.1 USING EDE

&

EDE stands for "Embedded Development Environment” and is the
Windows oriented Integrated Development Environment you can use with
your TASKING toolchain to design your application.

To use EDE on the demo program, located in thesubdirectory xvw in the
examples subdirectory of the 68k product tree, follow the steps below.

A detailed description of the process creating the sample program
demo.abs is described below. This procedure is outlined as a guide for
you to build your own executables for debugging.

The dialog boxes shown in this manual serve as an example. They may
slightly differ from the ones in your product.

How to Start EDE

You can launch EDE by double-clicking on the EDE shortcut on your
desktop.

Fﬁ

The EDE screen provides you with a menu bar, a toolbar (command
buttons) and one or more windows (for example, for source files), a status
bar and numerous dialog boxes.

Overview 1-33

Project Options Compile Build Rebuild Debug On-line Manuals

51 TASKING EDE [Toolchain - C:\target\examples\demo\demo.pjt]
File Edit Seach Project Bulld Test Document Customize Tooks Window Help

|evs- osEgsma o] -H# 9
I 1
C:\targethexamplestdemao.psp

demo 1 Praject]

i8] demo (5 Files)

\

Project W indow
Contains several
tabs for viewing f struct rec_s
information about
projects and other
files.

B C:\target\examples\demo\DEMO.C
#include <string.h>
#include <stdio.h>

#define BELL_CHAR

typedef emm color e Document W indows
! — | Used to view and edit files.

red, yellow, blue

L type;

Output Window
Contains several tabs to display _:El
and manipulate results of EDE
operations. For example, to view
the results of builds or compiles.

File Find 4 Seach A Browse A Difference 4 Shell 4 Symbols

g g e |= JoJ
[[=@ s [|lnet1 [Coln

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the
correct toolchain of the product you purchased is selected and displayed
in the title of the EDE desktop window.

If you selected the wrong toolchain or if you want to change toolchains do
the following:

1. From the Project menu, select Select Toolchain...

The Select Toolchain dialog appears.

1-34

Chapter 1

Select Toolchain
Product Falder: T
|ebarget
Toalchaing: Cancel

TASKING <toolchain: <wersion:

Browsze...

Scan Digk...

F ALk

¥ Display 'Toolchain switched to ' message Delete

Z

2. Select the toolchain you want. You can do this by clicking on a toolchain

in the Toolchains list box and click OK.

If no toolchains are present, use the Browse... or Scan Disk... button to
search for a toolchain directory. Use the Browse... button if you know the
installation directory of another TASKING product. Use the Scan Disk...
button to search for all TASKING products present on a specific drive.
Then return to step 2.

How to Open an Existing Project

Follow these steps to open an existing project:

1. From the Project menu, sclect Set Current —>.

2. Select the project file to open. For the demo program select the file

demo.pjt , located in the subdirectory xvw in the examples subdirectory
of the 68K/ColdFire product tree. If you have used the defaults, the file
demo.pjt s in the directory c:\...\c68k version \examples\xvw

How to Load/Open Files

The next two steps are not needed for the demo program because the file
demo.c is already open. To load the file you want to look at:

1. From the Project menu, select Load Files...

The Choose Project Files to Edit dialog appears.

Overview 1-35

Choose Project Files to Edit

Project Files: 1 of & zelected

C:Mbargethexampleshdemotiwelcome. bt akK
<t demohreadre: bt

" dermo. o
C:Mtargetiexampleshdemot.addone. asm
C:Mrargetherampleshdamat, s Slibharchatart asm

Cancel

Help

Irvert

dddy.

LClear

2. Choose the file(s) you want to open by clicking on it. You can select
multiple files by pressing the <Ctrl> or <Shift> key while you click on a
file. With the <Ctrl> key you can make single selections and with the
<Shift> key you can select everything from the first selected file to the file
you click on. Then click OK.

This launches the file(s) so you can edit it (them).

Check the directory paths

1. From the Project menu, select Directories...

The Directories dialog appears.

[X]

Directories

Executable Files Path:

|$[PHDDDIH]\hin Configure... |

Include Filez Path:

|$[F'F|DDDIF|]\in-:Iude Configure... |

Library Files Path:

|$[PHDDDIH]\Iih Configure... |

Output directary [instead of project directaory] -

I Browse... |
Cancel | Default |

Z

2. Check the directory paths for programs, include files and libraries. You can
add your own directories here, separated by semicolons.

1-36 Chapter 1

-

3. Click OK.

How to Build the Demo Application

The next step is to compile the file(s) together with its dependent files so
you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify
additional build options such as to stop the build process on errors and to
keep temporary files that are generated during a build.

1. From the Build menu, select Options...
The Build Options dialog appears.

Build Options K3

— Build
W Use TASKIMG build and emor parser settings

¥ Save file[s) before starting a command

¥ Stop build process on emor
™ Keep temparany files that are generated during a build
™ Use additional make options:

™ Use estemal makefile (instead of 'demo.mak’] :

| Erawse).

™ Use absolute path names in gensrated makefile

I Include userdefined makefile in generated makefils:

I Erawse).

Output directory (instead of project directary] :

| Erowse...

Debug
’]7 “whamn if target file is not up-to-date when starting the debugger ‘

Cancel | Drefault
i

2. Make your changes and press the OK button.
3. From the Build menu, select Scan All Dependencies.

4. Click on the Execute 'Make’ command button. The following button is
the execute Make button which is located in the toolbar.

If there are any unsaved files, EDE will ask you in a separate dialog if you
want to save them before starting the build.

Overview 1-37

How to View the Results of a Build

Once the files have been processed you can inspect the generated
messages in the Build tab.

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and
formatted they can be executed by CrossView Pro.

To execute CrossView Pro:

1. Click on the Debug application button. The following button is the
Debug application button which is located in the toolbar.

&

CrossView Pro is launched. CrossView Pro will automatically download the
compiled file for debugging.

How to Start a New Project

When you first use EDE you need to setup a project space and add a new
project:

1. From the File menu, select New Project Space...
The Create a New Project Space dialog appears.

2. Give your project space a name and then click OK.
The Project Properties dialog box appears.

3. Click on the Add new project to project space button.
The Add New Project to Project Space dialog appears.

4. Give your project a name and then click OK.

The Project Properties dialog box then appears for you to identify the files to
be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

1-38

-

Chapter 1

Project Properties [%]
2 <Default Settings> Directaries I embers I Toals I Ermars I Filters l
demo (1 Project) Praject: C:\target'exampleshdemo’.demo. pjt

[Files B =S

Add new file Add existing files
Scan existing files

e If you do not have any source files yet, click on the Add new file to
project button in the Project Properties dialog. Enter a new filename
and click OK.

* To add existing files to a project by specifying a file pattern click on
the Scan existing files into project button in the Project Properties
dialog. Select the directory that contains the files you want to add to
your project. Enter one or more file patterns separated by semicolons.
The button next to the Pattern field contains some predefined
patterns. Next click OK.

e To add existing files to a project by selecting individual files click on
the Add existing files to project button in the Project Properties
dialog. Select the directory that contains the files you want to add to
your project. Add the applicable files by double-clicking on them or by
selecting them and pressing the Open button.

The new project is now open.

From the Project menu, select Load Files... to open the files you want on
your EDE desktop.

EDE automatically creates a makefile for the project. EDE updates the
makefile every time you modify your project.

SOFTWARE
INSTALLATION

al TASKING [

d31dVHO

Software Installation

2.1 INTRODUCTION

This chapter describes additional notes for running the CrossView Pro
debugger under the X Windows environment on UNIX.

Installation of the TASKING CrossView Pro debugger is part of the
installation of the TASKING 68K/ColdFire product, which is described in
chapter Installation Guide of the 68K/ColdFire Getting Started Manual.

2.2 NOTE ABOUT FILENAMES

Members of the CrossView Pro family of debuggers use the following
name convention for their executables:

xfw68

2.3 CONFIGURING THE X WINDOWS MOTIF
ENVIRONMENT

To run the Motif version of CrossView Pro on a Sun, you must define the
environment variable LD_LIBRARY_PATH to where the library file
libMrm.a resides. For example:

LD_LIBRARY_PATH=/usr/dt/lib
export LD_LIBRARY_PATH

CrossView Pro uses a binary resource file for appearance-related
specifications for windows, menus, dialog boxes, and strings to be
accessed at run—time. The name of the resource file has the same name as
the executable but with .uid extension. Be sure that the .uid file is
present in one of the following directories:

1. the current directory
2. the directory specified by the UIDPATH environment variable

The environment variable UIDPATH specifies the path used by Motif to
locate the resource (.uid) file. If not set, it is set to a default value. The
resource file is installed in the same directory as the associated executable.
So, you should set UIDPATH as follows (Bourne shell syntax):

UIDPATH=path_to uid/%U
export UIDPATH

2-4

Chapter 2

Replace path_to _uid by the path to the directory in which the resource
file is installed. The %Uis required.

For more details refer to MrmOpenHierarchy in the OSF/Motif
Programmer’s Reference manual.

2.4 USING X RESOURCES

X toolkit resources specify GUI object (widget) attributes. Resources are
specified in either the .Xdefaults file or in application class—specific
files.

The .Xdefaults file is (typically) loaded into the X server at the start of
the session. Any changes take effect only in a new session, or after using
xrdb. Alternatively, application class resource files may be used.
Application resource files have the same name as the executable
CrossView Pro version they refer to (first letter NOT capitalized).
Application resource files must be present either in the directory specified
by the HOME environment variable, or in the app—defaults directory.
The app—defaults directory is typically located under /usr/lib/X11

X recognizes various environment variables for specifying paths to the
application resource files. For more information, consult the chapter on X
resources in O’Reilly’s X Toolkit Intrinsics Programming Manual and your
system documentation.

The X resource specification allows either global (loosely) bound
specifications (*foreground: black) or per—widget instance
specifications (*button.foreground: black).

The following list shows the relevant widgets used by the Motif version of
CrossView Pro:

Windows:
TOP-LEVEL - XmMainWindow => XmDrawingArea
CHILD — XmScrolledWindow => XmDrawingArea
Dialog:
MODAL — XmBulletinBoard

MODELESS — XmBulletinBoard

Software Installation

Menu:
MENUBAR — XmMenuShell
PULLDOWN — XmCascadeButton
Controls:
CHECKBOX - XmToggleButton
RADIOBUTTON - XmToggleButton
TEXT — XmlLabel
EDIT — XmText
LISTBOX — XmScrolledWindow => XmlList
SCROLLBAR — XmScrollBar
PUSHBUTTON — XmPushButton
LISTBUTTON — XmText & XmArrowButton &
XmScrolledWindow => XmlList
LISTEDIT — XmText & XmArrowButton &
XmScrolledWindow => XmList
GROUPBOX — XmFrame => XmLabel
ICON - XmLable with pixmap
FILESELECTION - XmFileSelectionBox
ERRORPOPUP - XmMessageBox

CrossView Pro repaints its windows in the default color as specified with
the Motif widget resource settings. It is possible to overrule this behavior
with a resource setting like: *XmDrawingArea.background: blue "

CrossView Pro uses a non proportional font in all of its windows. The font
size is selected using the "Desktop Setup dialog”. You can use the “font”
resource (*fontList on Motif) to select the font to be displayed in the
menubar and dialogs, it won’t affect the font displayed in the CrossView
Pro windows.

The CrossView Pro stack and data windows are implemented using a
XmsScrolledWindow widget on Motif.

The following list show the contents of an example app—defaults file
intended for Motif environments. Of course you may adjust the colors and
font to your preferences. Sample app—defaults files are delivered with
the product in the etc directory (app_def.mwm for Motif).

*fontList: 7x13bold
*foreground: black
*XmMainWindow.background: white

2-5

2-6

Chapter 2

*XmScrolledWindow*background: white
*XmDrawingArea.background: white
*XmBulletinBoard.background: DarkSeaGreen
*XmToggleButton*background: gray

*XmLabel*background: gray
*XmText*background: white
*XmScrollBar*background: gray
*XmPushButton*background: gray
*XmFrame*background: SeaGreen
*XmArrowButton*background: gray
*XmForm.background: SeaGreen
*XmMenuShell*background: DarkSeaGreen

*XmCascadeButton*background: SeaGreen

If you encounter any problems due to incorrect resource settings, like
invisible text caused by identical text and background color, clear the
RESOURCE_MANAGHRe the following procedure to clear the
RESOURCE_MANAGER

. Save a copy of the .Xdefaults file located in your home directory.
. Install an empty .Xdefaults file.

. Execute xrdb —all .Xdefaults to actually clear the

RESOURCE_MANAGERperty.

. Restart CrossView Pro and check if windows and dialogs are displayed

correctly.

. Now you add the saved resources (one by one) back into the

Xdefaults file and execute xrdb to install them in the server. Restart
CrossView Pro and check the influence of the new resource settings.
Adapt your saved resources when necessary.

COMMAND
LANGUAGE

al TASKING [

d31dVHO

Command Language

3.1 INTRODUCTION

The syntax and semantics of CrossView Pro’s command language is
discussed here. This language is mainly used to enter textual commands in
the command edit field of the Command Window. The mouse and menus
allow you to access most actions without knowing the command language,
although the command language is more powerful. The command
language is also used when evaluating expressions and in commands
associated with assertions, breakpoints and macros. For information about
specific CrossView Pro commands, refer to Chapter 13, Command
Reference.

3.2 CROSSVIEW PRO EXPRESSIONS

There are several methods that you can use to input an expression into
CrossView Pro:

It is possible to display both monitored and unmonitored expressions in
the Data Window. Monitored expressions are updated after every halt in
execution. Unmonitored expressions are just one-shot inspections of the
expressions value. Refer to section 4.6, CrossView Pro Windows for a
detailed description of the Data Window.

To evaluate a simple expression:

Double click on a variable in the Source window. The result of the
expression appears in the data window. Alternatively, depending on the
preferences you set in the Data Display Setup dialog, the expression
appears in the Evaluate Expression dialog. Click the Add Watch or

Add Show button to display the result of the expression in the Data
Window. Click the Evaluate button to display the result of the expression
in the output field of the Evaluate Expression dialog.

To evaluate a complex expression:

From the Data menu, select Evaluate Expression... and type in any C
expression in the Evaluate Expression dialog box. Optionally select a
display format. Click the Evaluate button.

Window followed by a return or click the Execute button.

3-3

Chapter 3

Expressions can be any length in most windows and dialog boxes;
CrossView Pro provides a horizontal scroll bar if an expression exceeds
the visible length of the entry field.

In CrossView Pro, C expressions may consist of a combination of numeric
constants, character constants, strings, variables, register names, C
operators, function names, function calls, typecasts and some CrossView
Pro-specific symbols. Each of these is described in the next sections.

Evaluation Precision

CrossView Pro evaluates expressions using the same data types and
associated precision as used by the target architecture when evaluating the
same expression.

3.3 CONSTANTS

CrossView Pro, like C, supports integer, floating point and character
constants.

Integers

Integers are numbers without decimal points. For example, CrossView Pro
will treat the following as integers:

5 9 23
The following number, however, are not treated as integers:

51 9.27 0.23

Negative integers, if they appear as the first item on a line, must have
parentheses around the number:

(-5)4

This is to prevent confusion with CrossView Pro’s own - (minus sign)
command.

In addition, CrossView Pro supports standard C octal, hexadecimal and
binary notation. You can specify a hexadecimal constant using a leading
Ox or a trailing H (or h). The first character must be a decimal digit, so it
may be necessary to prefix a hexadecimal number with the ’0’ character.
The hexadecimal representation for decimal 16 is:

0x10 or 10H

Command Language

&

For the hexadecimal digits a through f you can use either upper or lower

case. The following are all correct hexadecimal representations for decimal

43981:
Oxabcd OxABCD OabCdH 0AbcDh

You can specify a binary constant using a trailing B or Y (or b or y). The
following are all binary representations for decimal 5:

0101b 101y 00000101B

You can specify an octal constant using a leading '0’. The octal
representation for 8 decimal is:

010

You can use an L to indicate a long integer constant. For example,
CrossView Pro will recognize the following as long integers:

oL 57L OxffL

CrossView Pro uses the same ANSI C integral type promotion scheme as
the C compiler.

Floating Point

A floating point number requires a decimal point and at least one digit
before the decimal point. The following are valid examples of floating
point numbers:

12.34 5.6 7.89

Exponential notation, such as 1.234e01 , is not allowed. The following
are not valid floating point numbers:

.02 1.234e01 5
As with integers, bracket a negative number with parentheses:

(-54.321)

Expressions combining integers and floating point numbers will evaluate
to floating point values:

22*2
4.4

3-5

3-6 Chapter 3

=

Character
Character constants are single characters or special constants that follow

the C syntax for special characters. Examples of valid character constants
include:

lml in i\ni
Character constants must be a single byte and are delimited by ” (single
quotation marks). For instance:

$mychar="m’

Remember not to confuse character constants with strings. A character
constant is a single byte, in this example, the ASCII value of m

Strings

Strings are delimited by (double quotation marks). In C all strings end
with a null (zero) character. Strings are referenced by pointer, not by
value. This is standard C practice. In CrossView Pro, you may assign a
string literal to a variable which is of type char* (pointer to character):

$ystring = "name”

CrossView Pro supports the standard C character constants shown below:

Code ASCII Hex Function

\b BS 08 Backspace

\f FF ocC Formfeed

\n NL (LF) 0A Newline

\r CR 0D Carriage return

\t HT 09 Horizontal tab

\\ \ 5C Back slash

\? ? 3F Question mark

\ ' 27 Single quote

\" " 22 Double quote

\ 0ooo 3—digit octal number
\x hhh hexadecimal number

Table 3—1: C character codes

Command Language

Trigraph sequences are not supported.

3.4 VARIABLES

CrossView Pro lets you use variables in the C expressions you type. You
may reference two classes of variables: variables defined in the source
code and special variables.

Variables defined in your source code fall into two categories: local
variables and global variables.

Storage Classes

Variables may be of any C storage class. The size of each class is target
dependent. Consult the C Compiler/Assembler User’s Manual for specific
sizes.

You may cast variables from one class to another:

(long) $mychar

Local Variables

You define local variables within a function; their values are maintained on
the stack or in registers. When the program exits the function, you lose
local variable values. This means that you can only reference local
variables when their function is active on the stack.

Local variables of type static retain values between calls. Therefore, you
can reference static variables beyond their functions, but only if their
function is active on the stack.

CrossView Pro knows whether the compiler has allocated a local variable
on the stack or directly in a register and whether the register is currently
on the stack. The compiler may move some local variables into registers
when optimizing code.

If a part of your source code looks like this:

X =5;
y=Xx
and you stopped the program after the assignment to x, and set X to

another value, this may not prevent the second statement from setting y to
5 due to "constant folding” optimizations performed by the compiler.

3-8 Chapter 3

-

Global Variables

Global variables are defined outside every function and are not local to
any function. Global (non-static) variables are accessible at any point
during program execution, after the system startup code has been
executed.

Global variables can be defined static in a module. These variables can
only be accessed when a function in this module is active on the stack, or
when that file is in the Source Window using the e command.

Specifying Variables in C expressions

The following table specifies how CrossView Pro treats different variables
in C expressions. The left column is the variable’s syntax in the expression,
the right column is the CrossView Pro semantics.

Variable Syntax CrossView Pro Behavior

variable CrossView Pro performs a scope search starting at
the current viewing position and proceeding outwards.
The debugger first checks locals, local statics and
parameters, followed by statics and globals explicitly
declared in the current file. Finally, globals in other
files are checked.

functionttvariable CrossView Pro searches for the first instance of
function. If found, the debugger uses the frame’s
address to perform a scope search for variable.
Variables are available only if the specified function is
active. That is, the stack frame for that function can be
found on the run—time stack.

numberitvariable The frame at stack level number is used by the
debugger for the scope search. The current function is
always at stack level 0. This format is very useful if
you are debugging a recursive function and there are
multiple instances of a variable on the stack.

:variable CrossView Pro searches for a global variable named
either variable or _variable, in that order.

$variable CrossView Pro searches the list of special variables
for $variable.

Table 3-2: Variables in C expressions

Command Language

Variables and Scoping Rules

A variable is in scope at any point in the program if it is visible to the C
source code. For instance, if you have a local variable initval declared
in main() , and then step (or move the viewing position) into factorial ,
initval will be out of scope. You can still find the value of initval by

typing:
main#initval

In this case CrossView Pro will search the stack for the function main()
then look outwards from that function for the first occurrence of initval
in scope and report its value. Note that main() must be active, that is,
program execution must have passed through main() and not yet
returned, in order for initval to have a value.

You can also use the Browse... button in the Expression Evaluation dialog
box. This dialog box appears when you click the New Expression button
in the toolbar or select Evaluate Expression... from the Data menu.

Special Variables

CrossView Pro maintains a set of variables that are separate from those
defined in your program being debugged. These special variables reside in
memory on the host computer, not on the target system. They contain the
values of the target processor’s registers, information about the debugger’s
status, and user—defined values. Special variables are case insensitive. Use
the opt command to display and set these variables (without using the
'$—sign).

The following is a list of the reserved special variables for CrossView Pro:

Reserved Variable Description

$ARG(n) Contains the value of the nth int-sized argument of the
current function. Allows access to arguments of variable
argument list functions without knowing the name of the
argument.

$FILE Contains the name of the file that holds the current
viewing position.

$IN(function) Contains the value 1 if the current pc is inside the
specified function, otherwise O.

$LINE Contains the line number of the current viewing position.
This variable is often used in assertions to monitor
program flow.

3-10

Chapter 3

Reserved Variable

Description

$PROCEDURE

Contains the name of the procedure at the current
viewing position.

$ASMHEX

Contains a string "ON” or "OFF". The value "ON”
specifies that the disassembled code as displayed in the
assembly window will display hexadecimal opcodes.
Default is "OFF”.

$AUTOSRC

Contains a string "ON” or "OFF". The value "ON”
specifies that the debugger will automatically switch
between the source window and the assembly window
display depending on the presence of symbolic debug
information at the current location. The value "OFF”
prevents the automatic window switching. Default is
"OFF".

$CPU

Contains a string indicating the current CPU type.

$FP

Contains the value of the frame pointer.

$MIXEDASM

Contains a string "ON” or "OFF”. The value "ON”
specifies that the disassembled code as displayed in the
assembly window will be intermixed with the
corresponding source lines. The value "OFF”
suppresses this intermixing. Default is "ON".

$MORE

Contains a string "ON” or "OFF”. The value "ON”
specifies that the more output pager is enabled. The
value "OFF" disables the more output pager. Default is
"ON™.

$PC

Contains the value of the program counter.

$register

Contains the value of the specified register.

$SP

Contains the value of the stack pointer.

$SYMBOLS

Contains a string "ON” or "OFF” indicating if local
symbols and symbolic addresses (e.g. main:56+0x4)
or absolute addresses are present in disassembly.
Default is "ON”.

$SRCLINENRS

Contains a string "ON” or "OFF". The value "ON”
specifies that line numbers should be printed in the
source window. The value "OFF” suppresses printing of
line numbers. Default is "OFF”.

$SRCMERGELIMIT

Contains the value for the source merge limit in the
assembly window, the number of source lines to be
intermixed in the assembly window. Value 0 indicates
that there is no limit. Default is 0.

Table 3-3: Reserved special variables

Command Language 3-11

Registers

You can reference registers and special function registers (SFRs) directly.
The format is $register. For instance, type:

$DO0 = 0x12345678 Set value of register DO to 0x12345678

$SR Inspect value of status register

For CrossView Pro, a fixed set of registers is always available. Additional
SFRs can be added by using the utility rm68. See appendix B, Register
Manager, for more information about rm68.

You can configure which (and in which order) registers must appear in the
register window in the Register Window Setup dialog (Settings | Register
Window Setup...).

It is possible to request the address of an SFR by using the address
operator &.

&$sp
Location of $SP is reg [SP]
Operand for ‘&’ incorrect

&$my_sfr
0x578218

In addition to the standard register special variables, CrossView Pro
supplies the special variables: $sp (the stack pointer), $pc (the program
counter) and $fp (the current frame pointer).

The values of Reserved special variables cannot be changed interactively
(i.e., on the CrossView Pro command line).

User-defined Special Variables

During a debugging session, you may need some new variables for your
own debugging purposes, such as counting the number of times you
encounter a breakpoint. CrossView Pro allows you to create and use your
own special variables for this purpose. CrossView Pro does not allocate
space for these variables in target memory; it maintains them on the host
computer.

The names of these variables, which must begin with a $ (dollar sign), are
defined when they are first used. For instance:

$count =5

3-12

Chapter 3

defines a variable named $count of type int with a value of 5. Special
variables are of the same type as the last expression they were assigned.
For example:

$name="john”
then:
$name=3*4

creates a special variable $name of type (char *). The second statement
creates a special symbol $name and assigns it the value of 12 of type int .

Special variables are just like any other variables, except you cannot
meaningfully take the address of them. CrossView Pro allows as a default
26 user-defined special variables. You can change this limit with the -s
option at startup, or by selecting the Options... menu item from the File
menu and choosing the Initialization tab.

@]j See the startup options in Chapter 4, Using CrossView Pro.

Command Language

3.5 FORMATTING EXPRESSIONS

&

By default, CrossView Pro displays the value of an expression using the
appropriate format for the type of expression. CrossView Pro follows
several simple rules for displaying variables:

The defaults are: addresses appear in hexadecimal format,
characters as ASCII and integers as decimal.

There are four possible formats to show one integer value:
decimal, hexadecimal, octal, and ASCILI.

There are two different formats to display one floating point value:
decimal real and hexadecimal. If the absolute value is either too
big or too small (with too many non-significant zeroes), the
debugger automatically converts the format to one with fixed
decimal point and exponent.

ASCII is the only format to display a string. Note that you can opt
for the array format. Unpredictable characters are output as \xhh,
where bb is a hexadecimal value. Control characters are output as
~C.

All the values in an array appear in the same format. You are free to
select this format from the available options.

If All the values of a structure appear in the same format. You are
free to select this format from the available options.

You can determine in which format a variable is displayed. Once the

format has been selected, however, you must enter values or change

values in the appropriate format. When editing is finished, the debugger

interprets all values in terms of the currently selected formats.

You may, however, tell CrossView Pro to display an expression in a

particular format other than the default format. The format code follows

the variable, in one of two ways:

The simplest method of specifying display formats is from the Evaluate

Expression dialog box. To access this dialog box:

From the Data menu, select Evaluate Expression...

In the Command Window, you can use several format codes shown in

the next table to specify the variable display. The format codes can be

entered as:

variable/format

3-13

3-14 Chapter 3

to display the variable in format format, or:
variable@format
to display the variable’s address in format format.
The structure of the formatting code is:
[count| style [size]

Count is the number of times to apply the format style style. Size indicates
the number of bytes to be formatted. Both count and size must be
numbers, although you may use ¢ (char), s (short), i (int), and 1 (long) as
shorthand for size. Legal integer format sizes are 1, 2, and 4; legal float
format sizes are 4 and 8.

@ Be sure not to confuse CrossView Pro format codes with C character
codes, e.g. \a . CrossView Pro uses a forward slash / not a backward slash

\.

Style Description

a Print the specified number of characters of the character array; any
positive size is OK. Use the expression’s value as the address of the
first byte.

c Print a character; any positive size is OK; default size is sizeof(char).

D Print in decimal; needs NO size specifier; size is sizeof(long).

d Print in decimal; can have a size specifier; default size is

sizeof(expression).

E Print in “e” floating point notation; needs NO size specifier; default size
is sizeof(double).

e Print in “e” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

F Print in “f” floating point notation; needs NO size specifier; default size
is sizeof(double).

f Print in “f” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

G Print in “g” floating point notation; needs NO size specifier; default size
is sizeof(double).

Command Language

Style

Description

Print in “g” floating point notation; the size specifier can be sizeof(float)
or sizeof(double); default size is sizeof(expression).

Print the function, source line, and disassembled instruction at the
address.

Print the disassembled instruction at address.

Print in the “natural” format, based on type; use it for printing variables
that have the same name as an CrossView Pro command.

Print in octal; needs NO size specifier; size is sizeof(long).

Print in octal; can have a size specifier; default size is
sizeof(expression).

Print the name of the function at the address.

Print the names of the file, function, and source line at the address.

Print the specified number of characters of the string, using the
expression’s value as the address of a pointer to the first byte.
Equivalent to * expression/a . If no size is specified the entire string,
pointed to by expression, is printed (till nil-character).

Display the type of the indicated variable or function.

Print in unsigned decimal; needs NO size specifier; size is
sizeof(long).

Print in unsigned decimal; can have a size specifier; default size is
sizeof(expression).

Print in hexadecimal; needs NO size specifier; size is sizeof(long).

Print in hexadecimal; can have a size specifier; default size is
sizeof(expression).

Table 3-4: Format style codes

For example, typing:

initval/4xs

displays four, hexadecimal two-byte memory locations starting at the
address of initval

The following piece of C—code can be accessed in CrossView Pro using
the string format codes:

char text[] = "Sample\n”;
char *ptext = text;

3-15

3-16

Chapter 3

text What is the address of this char array
text = 0x8200

text/a Print it as a string
text = "Sample”J”

ptext What is the contents of this pointer
string = 0x8200

ptext/s Print it as a string
string = "Sample”J”

&ptext Where does ptext itself reside
0x8210

With format codes, you may view the contents of memory addresses on
the screen. For instance, to dump the contents of an absolute memory
address range, you must think of the address being a pointer. To show
(dump) the memory contents you use the C language indirection operator
. Example:

*0x4000/2x4
0x4000 = 0x00DB0208 0x5A055498

This command displays in hexadecimal two long words at memory
location 0x4000 and beyond. Instead of using the size specifier in the
display format, you can force the address to be a pointer to unsigned
long by casting the value:

*(unsigned long *)0x4000/2x
0x4000 = 0x00DB0208 0x5A055498

To view the first four elements of the array table from the demo.c
program, type:

table/4d4
table =1 1 2 6

This command displays in decimal the first four 4-byte values beginning at
the address of the array table

Command Language 3-17

3.6 OPERATORS

Standard C Operators

&

CrossView Pro supports the standard C operators in the ANSI defined
order of precedence. The order of precedence determines which operators
execute first.

The semicolon character (;) separates commands on the same line. In this
way, you may type multiple commands on a single line. Comments
delimited by /* and */ are allowed; CrossView Pro simply ignores them.

Order of Precedence
(in descending order)

00—

P~44+ —+ —*&(type sizeof

*] %

+ —

<< >>

<<=>>=

===

&

N

I

&&

I

?: = += —= *= [= Qp= &= "= |: <<= >>=

Table 3-5: Order of precedence of standard C operators

The * | — and + operators appear twice since they exist as both unary and
binary operators and unary operators have higher precedence than binary.

Division is represented by // (two slashes) not / (one slash). This is to
avoid confusion with CrossView Pro’s format specifier syntax.

3-18

=

Chapter 3

Using Addresses

To specify an address, you may use the & operator. To determine the
address of initval | type:

&initval

If you try to use the & operator on a local variable in a register, CrossView
Pro issues an error message and tells you which register holds the variable.

3.7 SPECIAL EXPRESSIONS

String Commands

Whenever CrossView Pro encounters an expression consisting solely of a
string by itself, it simply echoes the string. For example:

"hello, world\n”
hello, world

Use this technique to place helpful debugging messages on breakpoints.
For example, setting the following breakpoint:

60 b {"now in for loop\n”; sum; C }

this cause CrossView Pro to echo the message now in for loop , to
display the value of sum in the Command Window, and to continue when
line 60 is encountered. You can also enter this breakpoint and the
associated commands via the Breakpoints dialog box, which you can open
by selecting the Breakpoints... menu item from the Breakpoints menu.

The Period Operand

As a shorthand, CrossView Pro supports a special operand, period ‘.’; that
stands for the value of the last expression CrossView Pro calculated. For
instance, in the following example, the period in the second command
equals the value 11, which is the result of the previous expression:

5+6
11
4%,
44

Command Language

&

The period operand assumes the same size and format implied by the
specifier used to view the previous item. Thus if you look at a long as a
char , a subsequent ‘.’ is considered to be one byte. Use this technique to
alter specified pieces of a larger data item, such as the second highest byte
of a long , without altering the rest of the long . The period operand may
be used in any context valid for other variables.

‘" is the name of a location. When you use it, it is dereferenced like any
other name. If you want the address of something that is 30 bytes farther
on in memory, do not type .+30 as this takes the contents of dot and
adds 30 to it. Type instead &.+30 which adds 30 to the address of the
period operand.

3.8 CONDITIONAL EVALUATION

CrossView Pro supports the if construct. Use this construct in breakpoints
and assertions to alter program flow conditionally. For example, if you
reset the following breakpoint:

60 b {if (sum<=5931){C}{sum}}

CrossView Pro compares the value of sum with 5931 when the program
stops at line 60. If sum is less than or equal to 5931, CrossView Pro
continues. Otherwise, CrossView Pro displays the value of sum with 5931
when the program stops at line 60.

You can also use the expl ? exp2 : exp3 C ternary operator for conditional
expressions. For example:

$myvar=(5>2)?1:-1

assigns the value 1 to myvar .

3-19

3-20

=

Chapter 3

3.9 FUNCTIONS

&

A

In CrossView Pro expressions, you can include functions defined in the
program’s code.

Command line function calls are only allowed in an application that uses a
reentrant stack frame. When a static stack frame is used, the locator
overlays stack frames based on the application’s call graph. A command
line function call may conflict with the calling sequence in the call graph
and corrupt the stack when executed.

You can call functions through the Call a Function dialog box. Note that
only the results of the function call are shown. You cannot enter
expressions in this field. If you want to use the results of the function call
in an expression, then type the expression into the Evaluate Expression
dialog box or type in the command into the Command Window (described
in the keyboard method below).

¢ From the Run menu, select Call a Function...
» List all functions by clicking the Browse... button.

* You can place parameters in the Parameters field of the Call a
Function dialog box, separated by commas, but without the usual
parentheses or select from the drop—down history list.

The Command Window receives the results of the function call.

Type in the expression containing a function call directly into the
Command Window.

To execute a function on the target type the function name and the
arguments as you would do in your C program. For example,

do_sub(2, 1) or: a =do_add(3,4)

Command Language

3.10 CASE SENSITIVITY

The absolute file supplies the case sensitivity information for variable
names. It is initially case sensitive for the C language. You may toggle case
sensitivity by:

@2 From the Edit menu, select Search String... to view the Search String
dialog box. This dialog contains the Case Sensitive check box.

3-21

3-22 Chapter 3

LANGUAGE

USING
CROSSVIEW PRO

al TASKING [

d31dVHO

Using CrossView Pro

4.1 INTRODUCTION

This chapter and the following 8 chapters give you a comprehensive
picture of CrossView Pro’s features. In order to address the broadest range
of expertise, the contents range from introductory examples to the more
technical aspects and techniques of debugging with CrossView Pro. While
it is not necessary for you to read the chapters straight through, you may
find it especially helpful to do so. All of the examples are from the sample
program demo.c which comes with CrossView Pro. For a complete
description of the commands presented in this chapter, consult the
Command Reference chapter.

Each CrossView Pro command introduced in the text has a matching box
summarizing its syntax and semantics. The command description follows
these general rules:

Items in bold font are the actual CrossView Pro commands: save, set.
Items in éfalics are names for the things you should type: filename,
commands. In addition, the | symbol means or. For instance, screen |
filename means you can use the word ”screen” or a filename in the syntax.

4.2 USING THE CROSSVIEW PRO INTERFACE

This manual uses the word “Windows” to generically refer to the host
computer system’s windowing system. On IBM-PCs and compatibles, this
is equivalent to Microsoft Windows (95/98/XP, NT or 2000). On UNIX
workstations, this refers to the X Window System. Generally, this manual
makes no distinctions between the various windowing systems unless
needed to clarify the discussion.

This manual assumes you possess a basic familiarity with Windows
software. For this reason, discussion focuses on how CrossView Pro
works, rather than how to use the Window interface. For more information
on your Windows system, consult the Windows documentation provided
with your host system.

You can execute most CrossView Pro commands using either mouse or
textual commands. Mouse commands are executed by means of buttons
and pull-down menus in each of the separate CrossView Pro windows.
Text commands are typed at the prompt in the Command Window. In
most cases, there is no difference in functionality between mouse and text
equivalents.

4-4 Chapter 4

=

This manual discusses both methods of performing CrossView Pro
functions. For a quick-reference guide to all CrossView Pro commands,
refer to the Command Reference chapter.

4.3 STARTING CROSSVIEW PRO

Once an absolute file has been made it can be executed by CrossView
Pro. There are several ways to invoke CrossView Pro.
From EDE

To start CrossView Pro from EDE (the Embedded Development
Environment), click on the Debug application button. The following
button is the Debug application button which is located in the toolbar.

&

From the desktop

With MS-Windows you can start CrossView Pro through the Start menu.
Or in the Windows Explorer you can double—click on an absolute file if
the .abs extension is associated with the CrossView Pro executable.

@ On the PC, CrossView Pro is a Microsoft Windows application. As such,
you must invoke it from the Windows environment.

From the command line

To begin the debugging session, type the name of the CrossView Pro
debugger and optionally the name of the target program (absolute file).

xfw68 [absolute—file 1[option 1]...

Using CrossView Pro

4.4 STARTUP OPTIONS

CrossView Pro allows you to specify several options when you invoke the
program. Type these startup options (or switches as they are sometimes
called) after the optional basename of the application. The basename can
also contain a path specification. In this case, CrossView Pro sets its
current directory to the specified path. A minus sign proceeds each option;
the options can appear in any order.

Note that some versions of CrossView Pro have different startup options
and procedures than the ones described here. Please consult the
Addendum (at the end of this manual), for precise information about
starting up CrossView Pro with your target hardware.

From EDE

You can select the execution environment, setup communication
parameters, specify record and playback files and set some maximum
values via the CrossView Pro entry of the Project | Project Options...
dialog.

From CrossView Pro

You can set many of CrossView Pro’s options by using the dialog boxes
called by the Target | Settings... and File | Options... menu items. You
can save the options in the xvw.ini file and they are automatically used
upon startup.

In Windows 95/98/XP, Windows NT 4.0 or Windows 2000 (or higher), add
startup options to the program’s property sheet:

* Right—click on the CrossView Pro shortcut icon, shown in your
program installation folder.

* Select Properties. The Program Item Properties dialog box
appears.

* Enter the startup options after the executable’s name in the Target
field of the shortcut.

@ Use menus to set options. After setting the options in the menus and

selecting the appropriate options in the Save Options dialog on exit,
CrossView Pro saves the settings in the file xvw.ini for future debug
sessions.

To start up CrossView Pro type:

xfw68

4-6

Chapter 4

When your execution environment itself has a human-oriented ASCII
interface, you can use transparency mode with the =T option. In
transparency mode you can configure the execution environment’s
memory. Check the Addendum, the hardware-specific section of this
manual. In—circuit emulators generally require you to map the address
space, allocating memory ranges to the execution environment and/or the
target system. Fortunately, this generally does not mean you need to learn
your emulator’s command set, just a rote sequence of startup commands.
When your CrossView Pro version does not support transparency mode,
you do not need to configure the memory, and the =T option is not
needed.

If your target system supports serial communication and if the target
system is connected to a port other than the default port (see Chapter 1,
Overview, to determine the default port for your host), you can use the =D
option to specify the port name. The default baud rate is 9600. You may
use the =D option to specify the baud rate if the execution environment is
not the same as the default. For example:

xfw68 —D rs232,com2,19200

instructs CrossView Pro to use the COM2 port at 19200 baud. See your
execution environment in the Addendum of this manual for specific
communication information.

When you specify a startup option in CrossView Pro, the option overrules
the corresponding value in the current xvw.ini file.

There are many different options you can invoke when starting up
CrossView Pro. The listing below gives an overview of all startup options.

There are several startup options having to do with the recording and
playing back of CrossView Pro command files. See also Chapter 9,
Command Recording & Playback.

Using CrossView Pro

Startup Option

Description

—a number
—b number
—C number

—C cpu

—-D device _type,optl[,optZ]

—D rs232, port,speed

—D parallel, port

-D tcp, host,port

Sets the maximum number of assertions (the
default is 100).

Sets the maximum number of code breakpoints
(the default is 200).

Sets the maximum number of instruction trace for
the trace buffer (the default is 32).

Forces CPU type selection. This option also
determines which register file (regcpu.dat) will be
used. The default is 68000.

Selects a device and specifies device specific
options, such as communication port and baud
rate. The allowed combinations for your execution
environment are described in the manual
addendum for that specific execution environment.
The following combinations are possible:

Select RS—232 communication.

port For PC this is COM1, COM2, COM3 or
COMA4. A colon should not be added. For
UNIX this is the full path of the RS-232
device driver (e.g., /dev/tty01). By
default CrossView Pro uses the first
RS-232 port.

speed This is the baud rate used for the specified
port. The default is 9600.

Select parallel communication.

port For PC this is LPT1 or LPT2. Do not add a
colon. For UNIX this is the full path of the
parallel device driver. By default CrossView
Pro uses the first parallel port.

Select TCP/IP communication. On UNIX the
standard TCP/IP implementation is used. On
MS-Windows the WINSOCK.DLLimplementation
is used.

host The name of the host to be accessed via
TCP/IP.

port The port number on host to be accessed.

4-7

4-8

Chapter 4

Startup Option

Description

—D dev, device—file

—-D isa, io—port,address

—f file

—fss_root_dir="path”

-G path

—L file

—n address
—orti= file

—p file
—P file

—r file
—R file
—radm= file

—S number

Use a UNIX device driver as communication
channel. For RS-232 devices use the —D rs232
option, described above.
device—file

The full path of the UNIX device file.

Select communication channel to an (E)ISA
interface card in the PC.
io—port
PC 1/0 port number or I/O channel used for
accessing the (E)ISA card.

address
The memory address used to access the
(E)ISA card.

Read command line options from file.
Specify root directory for File System Simulation.
Specify startup directory for CrossView Pro.

Has CrossView Pro download the image of the
absolute object file.

Keeps a log of CrossView—to—target
communications in a file. Not available for all
execution environments.

Informs CrossView Pro that the program was
loaded into memory at an address other than zero.

Specify the name of an OSEK/ORTI file for RTOS
aware debugging.

Starts playing back commands from file.

Starts playing back commands from file with
commands single step.

Starts recording commands in file.
Starts recording screen output in file.

Same as the radm field in the target configuration
file: specify the name of the Debug Instrument
(using KDI) used for RTOS aware debugging.

Sets the maximum number of special variables
(variables independent of the program that
CrossView Pro provides for your use). The default
is 26.

Using CrossView Pro

Startup Option Description

—sd directory [;directory]... Specifies the directories CrossView Pro should
search for source files. Relative paths are allowed.
When the Ncommand is used to load a new
symbol file, the current directory is set to the
directory containing the symbol file and CrossView
Pro now searches for source files relative to this
directory. Directories must be separated by
semicolons.

—tcfg file Specify a target configuration file. This overrules
the filename specified in xvw.ini . See section
CrossView Pro Target Settings in the Overview
chapter.

—timeout= n_seconds Start CrossView Pro command line batch
operation mode and terminate after n_seconds.

=T [file] Starts CrossView in transparency mode if present;
if file is given, commands in file are sent to the
execution environment.

Table 4-1: CrossView Pro Startup Options

4.4.1 WHAT YOU MAY HAVE DONE WRONG

Most problems in starting up CrossView Pro for a debugging session stem
from improperly setting up the execution environment or from an
improper connection between the host computer and the execution
environment. Some execution environments require you to enter
transparency mode to set the execution environment for a debugging
session. Check the notes for your particular execution environment and
the Addendum of this manual.

Here are some other common problems:

* Specifying the wrong device name when invoking the debugger.

e Specifying a baud rate different from the one the execution
environment is configured to expect.

* Not supplying power to the execution environment or an attached
probe.

e Using the wrong kind of communication cable.

* Plugging the cable into an incorrect port. Some target machines
have several ports.

4-9

4-10 Chapter 4

» Installation of a device driver or resident applications that use the
same communications port on the host system.

* The port is already in use by another user or login process on some
UNIX hosts.

* Specifying no or an invalid cpu type with the —=C option.

Using CrossView Pro 4-11

4.5 THE CROSSVIEW PRO DESKTOP

The CrossView Pro desktop is the screen background in which all
windows, icons and dialog boxes appear (see figure 4-1). Under some
windowing systems, the desktop is itself a window that does not contain
all other CrossView Pro windows.

The desktop always has the Command Window opened or iconized.

Window Menu Bar Toolbar Local Status Bar

#:CrossYiew Pro - Demo.abs

File Target Edit Bun Breakpointz Data Toole Settings Mew ‘Window Help
BlE| I m » D PILECEGE[Z02 % W =

e S |

" PIETED Eew QAR @ O [F
|47 jIUMHUa dlmain dlSnulcElinEs jISDUICEhI’]ESlED d —
t [R— TN N S %,
PN scochsting | Y |
char c *
String: I j

El~ | o.o00% § initval

Direction ——————————
0.000% :'f (inity Up ' Down ™ Case Sensitive

0. 000% Sum =
Search I Cancel |

} Help |
Data

w wEAES &0

[Command; ... [EIEIET||: Stack 20| x|
L

|
Dialog Box J Main Status Bar
Scroll Bar —

L L Minimized Window
Breakpoint Toggles Local Toolbar

Figure 4-1: CrossView Pro Desktop

At the top of the desktop is the Menu Bar, which contains the menus
applicable to the currently active window. Below the menu bar is the main
Toolbar, from which you can execute commands to control program
execution as button functions. Except for the Command Window, the
desktop can contain other windows as well.

Along the bottom of the desktop there is a Main Status Bar. The status
bar displays messages such as short “help messages” when you move the
cursor over any button in any CrossView Pro window.

4-12

=

Chapter 4

Menus

Each CrossView Pro window may have a menu associated with it. Under
Microsoft Windows, the active window’s menu is displayed in the menu
bar of the desktop.

Depending on your execution environment some menu items are always
grayed out. For example, Communication Setup is grayed out if your
target is an instruction set simulator.

Windows

&

The debugger supports two types of windows: primary windows and
dialog boxes. Dialog boxes are the windows you access from a primary
window. For the remainder of this manual, the term “window” denotes a
primary window.

This manual also uses the term pop-up window. A pop—up window is a
primary window that contains supplemental information such as on-line
help.

CrossView Pro Windows are used to display information and to get user
input through either buttons, commands typed in input fields, or menu
selections. Windows may be moved around the desktop, sized, or
iconized. All windows can be opened from the View menu. The section
on CrossView Pro Windows provides more detail about each window.

A window is considered opened even if it is iconized (under Microsoft
Windows, this is called minimized). A window is considered closed if it
does not exist on the desktop in any form.

Dialog Boxes

Certain menu items or push buttons may call up a dialog box to complete
an action, display information, or get additional data. No other actions can
be performed until the dialog box is closed.

Using CrossView Pro

Each window in CrossView Pro uses the menu as shown in figure 4-2.
The method of selection of a menu item varies depending on the
windowing system being used. See your Windowing System’s manual for
details of how to do this.

Each window has a hidden control menu (the icon on the top-left of the
window), to manipulate the window. The menu Close command in the
control menu closes the current window. Your implementation of the
windowing system may have additional features. See your documentation
for further details.

't; CrossYiew Pro - Demo._abs

Fil= Target Edit Breakpointz Data Toolz Settings Wiew Window Help
Bl El =l s Shift+F5 ||:: P Wy

Rezet Application

et Tagacon |
m» WI[LE Aun F5 @ @ M E

Run to Curzor F7

|4? j' Im J i b Eursar, ﬂlSource lines

Return from Function

Backgreund/iode r

/% the loop countey
Step Mode b
: DE o /% will be 17+sum g
tep Ower /% gample char wvar]
Step Into F1

@l | 0.0ogs Anmate
[Fallla Funchen. .
Er— |l n nons

irar =

Figure 4-2: CrossView Pro Menus

4-13

4-14

=

Chapter 4

4.5.1.1 LOCAL POPUP MENUS

On MS-Windows environments CrossView Pro supports local popup
menus. Local popup menus are invoked by clicking the right mouse
button. The menu contents is context sensitive. If the mouse pointer is on
top of the global (main) toolbar the Configure Toolbar dialog is shown. If
the mouse pointer is located in the MDI window (task window or
background) the View Menu is shown which allows you to open new
windows.

Within the Source Window four different local popup menus may appear.
If the cursor is within the display area of the window the Run Menu is
shown. The Run Menu contains commands associated with program
execution. If your cursor is at a breakpoint indicator, the Breakpoints
dialog is shown. If the cursor is on a code coverage marker then the local
popup menu contains commands to move the cursor to the next or
previous block of (not)covered statements. If your cursor is in the profile
column you can change the format of the timing figures. All other
windows have their own local popup menu. The exception to the rule is
the command window which does not have a local popup. See figure 4-3
for an example of the local popup menu of the Memory Window.

Fill...
Single Fill...
Lopy...
Search...

v Toolbar
Setup...

Figure 4-3: CrossView Pro Local Popup Menu (Memory Window)

4.5.2 WINDOW OPERATION

Windows can be opened, made active, and closed.

Opening Windows

The View menu of the menu bar lists all windows. Selecting a window
name from this list causes the window to open up. Selecting a window
that is already open brings that window to the front.

Using CrossView Pro 4-15

Selecting a Window

At any one time, a particular window is active. Most operations act (by
default) on the active window. The active window is distinguished by
highlighting the title bar. Only one window may be active at a time. There
are several ways to select a2 window (that is, make a window active).

* Open the window from the View menu. If the window is already
open it will be brought to the front.

* Click on the window’s border (or on any portion of the window in
some windowing systems). It will be brought to the front.

* Select the window name from the Window menu. The window will
be made active and is brought to the front. (This option is available
under Microsoft Windows only).

Closing a Window

Windows are closed by selecting Close from the Control menu, or by
clicking a Close button, as shown in figure 4-4. Selecting this item from
the Command Window will exit CrossView Pro.

Control Menu — Close Button

Elestare

tMove
Size
tininnize
td aimize

Cloze Cul+F4
MHext Ctrl+FE |

hvdemo.c:d7]

Figure 4-4: Closing a Window

4-16 Chapter 4

5

4.5.3 DIALOG BOXES

The debugger uses dialog boxes to acquire information needed to
complete a requested operation. The debugger also uses dialog boxes to
display information. If a button or menu item displays an ellipsis (...) after
its name, then there is an associated dialog box.

For example, the dialog box shown in figure 4-5 searches for a string.
This dialog box uses a list edit field to enter a search string, radio buttons
to select the search direction, a check box to specify case sensitivity and
push buttons to allow certain functions to be performed.

List Edit Field Check Box
Search String
String: I ‘ j
Direction
’7 i lp = Down [Case Sensitive
Help | Search I Cancel
Radio Button- Push Buttons —

Figure 4-5: Dialog Box

Using CrossView Pro 4-17

4.5.4 CUSTOMIZING CROSSVIEW PRO

You can customize CrossView Pro’s visual appearance and operative
parameters to best suit your debugging environment.

Changing the Visual Appearance

Windows can be organized by resizing and moving them around the
desktop (see your Windowing System’s manual for details on how to do
this). All windows under Microsoft Windows have an additional Window
menu item. This menu allows the user to arrange all opened windows in
a tiled or cascaded format. In the tiled format, selected by Window | Tile,
all windows become the same size. All windows are the visible, the same
size and do not overlap. In the cascaded format, selected by Window |
Cascade, all open windows are changed to the same size and overlapped
in a cascade with a constant vertical and horizontal offset. Iconized
(minimized) windows can be automatically rearranged by selecting
Arrange Icons from the Window menu.

See the section Using X Resources in the chapter Software Installation for
details on changing the visual appearance of CrossView Pro under X
Windows.

Changing Operative Parameters

You can adjust the operative parameters for CrossView Pro using the
various menus in CrossView Pro.

In the Target menu you will find:

e Settings: Allows you to specify the execution environment and the
CPU type, and the source directories for CrossView Pro. The values
are processed at CrossView Pro startup before executing commands
entered in the Command Window or before the target is accessed as
a result of opening a window. So, first edit this dialog when you
start CrossView Pro. If you have not loaded a symbol file yet, you
do not have to restart CrossView Pro.

¢ Communication Setup: Allows you to set parameters for
communication between CrossView Pro and your target board.

4-18

=

Chapter 4

In the File | Options... dialog you will find:

Initialization: Allows you to specify the maximum number of
breakpoints, assertions, special variables, C-trace instructions,
command history lines, command output lines, emulator output
lines. All values are processed at CrossView Pro startup, except for
C-trace. Changing the maximum number of C-trace instructions has
an immediate effect on the Trace window.

Desktop: Allows you to specify color settings for the execution
position in the Source Window and the colors used in the Memory
Window to show how a memory location has been accessed by the
application program. You can also specify font sizes to be used in
output windows.

Toolbar: Allows you to configure the main toolbar to your personal
preferences.

In the Tools menu you will find:

Record, Playback, and Log: Allow you to set command recording
and playback options.

Toolbox Setup, and Macro Definitions: Allow you to define
macros, and assign them to a push button in the Toolbox.

In the Data menu you will find:

Data Display Setup: Allows you to specify how CrossView Pro
displays data. This dialog also determines if the Expression
Evaluation dialog box must be bypassed or not.

In the Settings menu you will find:

Source Window Setup: Allows you to specify the step mode,
symbolic disassembly, automatically switching between source lines
and disassembly source to be displayed in the Source Window and
display code coverage information.

Register Window Setup: Allows you to specify the registers that
appear in the Register Window. And you can set the display format
to hexadecimal or decimal.

Memory Window Setup: Allows you to specify the mode and size
of the data and the number of data rows and columns to be shown
in the Memory Window. It also allows you to automatically refresh
the Memory Window and to display data coverage information.

Data Analysis Window Setup: Allows you to configure the graph
display of a Data Analysis Window.

Using CrossView Pro

I/0 Simulation Setup: Allows you to specify the I/O streams to be
used in the Terminal Windows.

Terminal Window Setup: Allows you to specify the input and
output format of a Terminal Window. You can map linefeeds to
carriage-return linefeeds, wrap at the end of a line, specify buffered
input or specify that the window must be cleared at system reset
and program reset. You can also log the input and output data to a
file.

Background Mode Setup: Allows you to specify which windows
to automatically refresh when running in background mode. This
feature is only available if it is supported by your execution
environment.

Saving Changes on Exit

If you find yourself using a particular configuration, you may want to save
your configuration when you exit CrossView Pro:

From the File menu, select Exit or close the Command Window.

In the Save tab of the Options dialog that appears, select the
options you want to be saved for another debug session.

Click on the Exit button in the Options dialog.

CrossView Pro exits. If you selected one or more items in the Save tab of
the Options dialog your settings are saved in the initialization file

XVw.ini

4.5.5

. This file is in the startup directory.

CROSSVIEW PRO MESSAGES

CrossView Pro communicates with you in a variety of ways. The
command window displays the results of commands. Important messages,
such as errors, appear in dialog boxes that pop up.

4-19

4-20

=

Chapter 4

4.6 CROSSVIEW PRO WINDOWS

The two prominent windows used in CrossView Pro are the Command
Window and the Source Window. From the Command Window you can
type CrossView Pro and emulator commands, and gain access to all other
windows. You can accomplish most global operations from either the
menu bar or the Command Window. Only from the Command Window
can you accomplish Single step playback. When you close the Command
Window, you exit CrossView Pro.

The Source Window focuses on the program being debugged. This
window controls most of the commonly-used execution operations, such
as breakpoints and searching functions.

Available Windows

You can open all CrossView Pro windows (except for the Data Analysis
windows) from the View menu by selecting the name of the window.
Selecting a window in this case brings the window to front and makes it
the active window. Available windows are:

Command Window: Supports two modes: CrossView or Emulator.
Displays all CrossView Pro commands and responses or Emulator
commands and responses.

Source Window: Controls the execution of the program and
displays the source file or disassembly.

Register Window: Displays the current state of the processor’s
registers.

Memory Window: Displays target memory and allows you to
change it.

Data Window: Displays the values of data that are being
monitored.

Data Analysis Window: Graphically displays signal data for
analysis.

Stack Window: Displays the application’s stack trace.
Trace Window: Displays the most recently executed lines.

Terminal Windows: Can be used for I/O simulation of an
application.

Using CrossView Pro 4-21

Improving CrossView Pro Performance

CrossView Pro updates every window that is open (except for the Data
Analysis windows), even if it is iconized (minimized). Keeping a window
up to date usually involves extra communication with the emulator;,
slowing CrossView Pro down. For instance, if the Register Window is
open, CrossView Pro asks the emulator to dump the contents of all
displayed registers after each single step. Thus it is a good idea to keep
only those windows open that you need.

4.6.1 COMMAND WINDOW

The Command Window allows you to:

e Enter CrossView Pro and emulator commands from the keyboard.
* View a history of CrossView Pro commands or emulator commands.

¢ View the result of CrossView Pro commands or emulator
commands.

e Execute playback files (in single step mode).

From the View menu you can specify if you want the Command Window
to be a CrossView Pro Command Window or an Emulator Command
Window. This way you can specify whether CrossView Pro interprets
commands or they go directly to the emulator.

Figure 4-6. shows the Command Window. You can type commands into
the command edit field (bottom field) or select them from the command
history list (middle field), edit and execute them. The command history
field displays previously entered commands. You can select and execute
one or more commands. The command history list provides you with a
clear, comfortable way to re-execute specific commands or sequences of
commands by preserving them in a scrollable list.

You can switch between the history list and the command edit field by
hitting the <Tab> key. Hitting the <Esc> key (escape) returns you to an
empty edit field.

The top field is the Command Output Window or the Emulator Output
Window, depending on the type of Command Window you choose. Each
command, echoed from the command edit field, appears with a > prefix.
CrossView Pro displays its response (or the emulator’s response if the
window is an Emulator Command Window) to the command immediately
following the command. You can use the clear command to clear this
window.

4-22 Chapter 4

-

CrossView Command CrossView Response Output Window

Command: CrossYiew =] &

> 3 | =
maingds: if (initwal > recordwar.a)
x5

maingsi: sum = 0;

> initwal

initwal = 17

%
%
initval

it Execute Hailt
i

Command Edit FieldJ Command History List —

KN L2 (RN

Figure 4-6: CrossView Pro Command Window

The Command Window also has two push buttons that provide rapid
access to frequently used actions. The Execute button executes the
current command (or sequence of commands if more than one command
is selected). Note that the <Enter> or <Return> key is equivalent. Use
the Halt button to interrupt commands executing in continuous mode, or
to stop the emulator.

The Command Window maintains a history of recently executed
commands. To re—perform previously executed commands simply
double-click on it or select the command(s) from the command history list
in the Command Window and press the Execute button. By hitting the
<Tab> key, it is also possible to select one or more entries. Hitting <Tab>
or <Esc> will return you to the command edit field.

@ The maximum number of lines saved to the CrossView Pro command

buffer list is set during debugger startup. The default is 100 lines. To
change the default select Options... from the File menu and select the
Initialization tab. This number can also be modified via a startup option.

Using CrossView Pro

The Source Window offers most of the debugging functions you will need
on a regular basis. It allows you to:

View the source file (source lines, disassembly or both).
Set and clear assertions (not in Toolbar).

Set and clear breakpoints.

Monitor and inspect variables.

Search for strings, functions, lines, addresses.

Control execution.

Call functions (not in Toolbar) and evaluate expressions.
View code coverage information.

View profiling/timing information.

An example of the source window is shown in figure 4-7.

B Source : demo.c H=] 3
BERESED E oW Q@@ &N =
|49 jID:-:N‘IB jlmain leource lines leourcelinestep j
oid main (void)
{
int loopwar: /% the loop counter '-J
long Sum; f% will be 17+sum of factorials from O to| 7
char CVar; £ gample char wvariable
EIW | 0.000% initval = 17:
E[| o.000% if (initwval > recordvar.a)
{
E[| 0.000% sum = 0O;
' -
i | 7
Breakpoint Coverage Profiling Current Status
Toggles Markers Execution Position Bar
Figure 4-7: CrossView Pro Source Window

You can specify the step mode, symbolic disassembly and source lines /
disassembly with the Source Window Setup dialog box (Settings | Source
Window Setup...) or with Run | Step Mode. Alteratively, you can use the
drop-down menus in the Source Window’s status bar.

4-23

4-24 Chapter 4

=

@ The default step modes are:

Source lines Window: Source line step
Disassembly Window: Instruction step
Source and Disassembly Window: mode of previous window!

(assumes the step mode of the previous Source Window setting)

The location of the cursor is also the viewing position. The line number
and address of the viewing position, appears at the top-left position of the
Source Window. This does NOT represent the current execution position
($pc). The current execution position appears in reverse or blue color.
The cursor appears as a dotted line.

On MS-Windows the so—called "quick watch” feature is supported. When
you position the mouse cursor over a variable or a function, a bubble help
box appears showing the value of the variable or the type information of
the function respectively.

A green colored toggle shows that no breakpoint is set. A red colored
toggle indicates an installed breakpoint. An orange colored toggle
indicates an installed but disabled breakpoint. If code coverage is enabled,
coverage markers appear to the right of the breakpoint toggles. If a
checkmark appears next to a line, it has been executed. If no checkmark
appears next to a line, it has not been executed.

The Source Window provides a local Toolbar containing the following
buttons, nearly all of which are shortcuts (using selected text) to
operations that you can perform via the menu bar:

Stop program or command

Run or continue execution (same as F5)

E N =

Run to cursor (same as F7)

+
Il

Step (over function calls)

]
Tunl

Step (into function calls)

Restart application

i | ¥

Find program counter (PC)

Using CrossView Pro 4-25

Show selected source expression
Watch selected source expression
Find symbol

Search for a text string

Repeat search for text string

Edit current source file

Edit breakpoint at cursor

%
)
Q
Q
&
@
L)

Display code coverage

Display profiling

You can toggle the appearance of this local toolbar by selecting Local
Toolbars | Source from the View menu.

Edit Source

To edit the current source file in the Source Window, select Edit | Edit
Source or press the Edit Source button. On MS-Windows the Codewright
editor will be called with the filename and line number of the file that is
currently in the debugger. on UNIX systems the xvwedit program will be
called with the filename and line number of the file that is currently in the
debugger.

The xvwedit program is a shell script. You can adapt it to your specific
requirements.

4-26 Chapter 4

Figure 4-8 shows the Register Window. This window allows you to view
and edit register contents.

% Hegister _ [O] x|

C3P =0000 IF =1404 (=]
RO =1170 Rl =1348
Rz =84%55 R3 =FFFF
R4 =1548 R5 =0000
Ra =FFFF R7 =FFFF
k3 =FFFF B3 =FFFF
R10 =FFFF R1l1 =FFFF —
R1z =0000 R13 =0000
k14 =0000 R15 =FFFF
DPFPO=0000 DFP1=0001 ;I

Figure 4-8: CrossView Pro Register Window

@ Note that the contents of the Register Window for your particular target
may be different from the one shown in figure 4-8.

You can specify which register set definition appears in the Register
Window with the Register Window Setup dialog box (Settings | Register
Window Setup...). In this dialog you can also specify the display format
of values in the Register Window: hexadecimal or decimal.

CrossView Pro supports multiple Register Windows. Register Windows
either have the title "Register” or "Register — register set name”. The
"Register” title indicates the default register set.

In-situ editing allows you to change the registers contents directly by
clicking on the corresponding cell.

Using CrossView Pro 4-27

4.6.4 MEMORY WINDOW

The Memory Window is shown in figure 4-9. This window allows you to
view and edit the target memory.

Depending on the setting of the Automatically refresh check box in the
Memory Window Setup dialog, CrossView Pro updates the displayed
values every time the program is stopped or only updates the values by
user request. For example, by pressing the Update Memory Window
button located on the toolbar.

addressz + 0 +1

Q=0 OxF& 0x00
Ox2 OxC4d Oxla
04 0xF& 0x00 _I
14 0x04 000
05 0xF& 0x00
Oxa 0=03 0x00
0= 0xFa | 0x00

[

Figure 4-9: CrossView Pro Memory Window

To edit the target memory, click on a memory cell and type a new value.
To display another memory region: click on an address cell and type a
new address. CrossView Pro accepts input in symbolic format, so you can
enter expressions instead of just values.

CrossView Pro supports multiple instances of the Memory Window. If your
target supports multiple memory spaces, the Memory Window supports
them all. Refer to the section about memory space keywords to become
familiar with the memory space keywords and associated syntax your
target system uses.

4-28

Chapter 4

You can specify the way data appears in the Memory Window by opening
the Memory Window Setup dialog. From the Settings menu, select
Memory Window Setup... to open this dialog. The memory contents can
appear in many formats including ASCII character, hexadecimal, decimal,
signed, unsigned, and floating point formats. You can specify the size of
the memory window. You specify the number of memory cells that
appear within the window. The number of cells is fixed in the sense that if
you re-size the window the number of cells does not change.

Besides the current value of memory locations, the Memory Window also
displays whether memory locations have been accessed during program
execution. This is called ’data coverage’. An application program may read
from, write to, or fetch an instruction from a memory location. Of course
all combinations may be legal. Although writing data to a memory location
from which an instruction has been fetched is suspicious. All types of
accesss, read, write, fetch or combinations of these, can be shown using
different foreground and background colors. The color combination used
to show "rwx” access are specified in the Desktop Setup dialog. Change
the background color if instructions are fetched from a memory location,
and change the foreground color to show read and write access.

You can display data coverage information in the Memory Window by
clicking on the Coverage button in the Memory Window or by setting the
Display data/code coverage check box in the Memory Window Setup
dialog.

The Memory Window has the ability to highlight memory cells of which
the contents have been changed. Click on the Highlight Value Changes
button in the Memory Window to see the changed cells. With the Freeze
Highlight Reference Values button you can enter a new reference point
for highlighting. All the cells that have been changed since that reference
point are highlighted.

The Memory Window provides a local Toolbar containing the following
buttons:

E Fill memory

4 Fill single memory address
ﬂ Copy memory

E Find memory

Using CrossView Pro 4-29

ﬂ Display data coverage

Highlight changed values

Set highlighted values as reference

g Refresh memory window

You can toggle the appearance of this local toolbar by selecting Local
Toolbars | Memory from the View menu.

4.6.5 DATA WINDOW

The Data Window is shown in figure 4-10. This window allows you to
show the value of monitored expressions and variables.

The Data Window updates the values shown every time the program
stops, and after an o command.

It is possible to display both monitored and unmonitored data expressions
in the Data Window. CrossView Pro monitors and updates "WATCH”
expressions after every halt in execution, and marks them with the text
"WATCH” at the start of the display line in the Data Window. "SHOW”
expressions, on the other hand, are one-shot inspections of an
expression’s value, and CrossView Pro does not update them until you
click on the Update Selected Data Item button or Update Old Data
Items button. When a "SHOW?” expressions is no longer actual, it is
marked with the word “OLD”.

4-30

Chapter 4

Data _ O]]
w BwEHES OO

initwval/n @ 0
- WATCH recordvar/hn @ STruct rec_2 |
+ b = 0x1028 "TAREING™:
Cc = 937654321;
color = blue;
} recordwvar

Figure 4-10: CrossView Pro Data Window

To set the default display format of the data shown, select the proper
format in the Data | Data Display Setup... dialog.

To inspect the value of global variables and data structures, double—click
on the variable name in the Source Window. Depending on preferences
you set in the Data Display Setup dialog, the variable appears immediately
in the Data Window, see figure 4-10, or the Expression Evaluation dialog
appears first.

In-situ editing allows you to change the contents of everything in this
window by clicking the value you want to change.

If you have set the Display addresses check box in the Data Display
Setup dialog box the addresses of the variables are also shown.

Pointers, structures and arrays displayed in the data window have a
compact and expanded form. The compact form for a structure is just
<struct> |, while the expanded form shows all the fields. The compact
form of a pointer is the value of the pointer, while the expanded form
shows the pointed-to object. Indicate the compact form by putting a ’+ at
the start of the display. (i.e., the object is expandable), and indicate the
expanded form with (i.e., the object is contractible). Nesting is supported,
so you can expand structures within structures ad infinitum.

Using CrossView Pro 4-31

To expand a pointer, structure or an array, double—click on the '+ in the
Data Window.

The Data Window provides a local Toolbar containing the following
buttons:

Show or watch a new expression

Toggle watch attribute of selected item “on” or "off”
Reformat selected item

Update selected data item

Delete selected data item

Update old data items

Delete old data items

@@ @ B3 &

You can toggle the appearance of this local toolbar by selecting Local
Toolbars | Data from the View menu.

The auto—-watch locals feature may be activated or deactivated. When
active, a selected Data Window becomes the "auto-watch” window, and
all local variables from the current top—of-stack frame appear in that Data
Window. The text “LOCAL” appears at the start of the display for variables
displayed in this manner. As the execution position changes, the
auto-watch window deletes and adds locals as necessary, so that the locals
on the current top—of stack frame always appear.

To see the value of the local variables of a function, Select Data | Watch
Locals Window from the View menu.

CrossView Pro supports multiple Data Windows. Data Windows either
have the title "Data Window #n” or "All Local Variables”. The "All Local
Variables” title indicates the auto—watch window if it exists (as explained
above).

4-32 Chapter 4

The stack records the return addresses of all functions the application has
called, and CrossView Pro can use this information to reconstruct the path
to the current execution position. The Stack Window, shown in figure
4-11, displays the function calls on the stack with the values of the
parameters passed to them in an easily accessible and understandable
form.

The Stack Window can help you assess program execution and allows you
to view parameter values. The stack window allows you to:

e View the stack trace which includes information about function
names, parameter values, source line numbers and stack level.

* Easily switch to the call statement of a stack level by clicking on it
once.

Set temporary and permanent breakpoints at any level of the stack,
by double—clicking on the desired level.

E N 8

maini) [.%demo.c:d7]

i
m

=

Figure 4-11: CrossView Pro Stack Window with Toolbar

Using CrossView Pro 4-33

The Stack Window provides a local Toolbar containing the following
buttons:

=| Set stack breakpoint after call to function
= Set stack breakpoint at function entry point

Bl Show local variables in selected stack frame

“a'-‘g Watch local variables in selected stack frame

% Find call site

You can toggle the appearance of this local toolbar by selecting the Local
Toolbars | Stack from the View menu.

The Trace Window, shown in figure 4-12, allows you to:
» Display the most recently executed lines of code.

CrossView Pro automatically updates the Trace Window each time you halt
execution, as long as the window is open, allowing you to check the
progress and flow of your program throughout the debugging session.

The Trace Window is only supported if your execution environment
supports the trace facility.

Trace Source [_ (O]

-—— Comtinge —-—- ;'
demo. c:mainffsa: initwal = 17;

demo . c:mainfbs: if {(initwal > recordwar.al
demo. comainfs0: sum = 0;

demo. c:mainfeé: for {(loopvar = 0; loopwar

_
=l

Figure 4-12: CrossView Pro Trace Window

4-34 Chapter 4

=

4.6.8 TERMINAL WINDOW

The Terminal Windows, shown in figure 4-13, let you observe and test the
input and output of your program.

The CrossView Pro Terminal windows provide an interface to exchange
data with the application on the target. This I/O facility can be
implemented in various ways. Using standard I/O stream function calls like
printf() in your source, you can test I/O to and from the target system or
simulator.

The File System Simulation feature redirects I/O to a Terminal Window if
the filename FSS_window: window_name is used in the "open” call,
window name is the name of a Terminal Window.

A terminal window can be connected to multiple I/O streams of various
types. For example, streams 0, 1 and 2 can be mapped to one terminal
window. An I/O stream, however, can be mapped to one terminal window
only. Each terminal window must have a unique name.

Terminal: F55 output I =] 3
| -

Terminal: F55 input _ (O]]
| -

1| | AV

Figure 4-13: CrossView Pro Terminal Windows

Using CrossView Pro 4-35

You can specify the characteristics of the Terminal Window by opening the
Terminal Window Setup dialog. From the Settings menu, select Terminal
Window Setup... to open this dialog, or click with the right mouse button
in the Terminal Window to bring up a popup menu and select Setup....
You can specify the input and output format of the terminal window. The
input format can be a VT100-like terminal. The output format can be a
VT100 terminal, display control codes, decimal, octal or hexadecimal. You
can map linefeeds to carriage-return linefeeds, wrap at the end of a line,
specify buffered input or specify that the window must be cleared at
system reset and program reset. You can also log the input and output
data to a file.

The default size of a terminal window is 24 lines of 80 characters.
Everything that scrolls outside this window is lost. The visual window size
can be smaller (scroll-bars are shown). You can specify another size in the
Terminal Window Setup dialog.

Each terminal window has a local popup menu, which you can activate by
clicking the right mouse button.

Reszet
Clear

Reverze
v Local echo

Setup...

Figure 4-14: Terminal Window Local Popup Menu

Reset clears the contents of the terminal window and it also clears all
attributes set with escape sequences. A Clear just clears the contents of a
terminal window. Reverse changes the foreground and background colors
and Local echo enables echoing back of typed characters in a terminal
window. Setup... opens the Terminal Window Setup dialog.

You can connect an I/O stream to a terminal window in the Connections
tab of the Settings | I/O Simulation Setup... dialog box.

4-36

Chapter 4

CrossView Pro incorporates an advanced signal analysis interface designed
to enable developers to monitor signal data more critically and thoroughly.
This feature is useful when developing signal processing software for
application areas such as communication, wireless and image processing.

Contrary to the other CrossView Pro windows the Data Analysis window
(as shown in figure 4-15) is not opened from the View menu, but is
opened as result of processing a data analysis script (or from the Settings
menu). Most other CrossView Pro windows are updated whenever the
target application stops execution due to, for example, a breakpoint. The
Data Analysis window is only updated on user request. This is done
because a large set of data is shown in the Data Analysis window and this
set of data must be available and complete at the time the window is
updated. Therefore, the user normally constructs a complex breakpoint to
trigger the update of the Data Analysis window.

'#; Dutput freq domain =]
o Bl o (85, -16.0)

‘I l]

2']

3']

4']

5']

El]

20 410 60 80

Figure 4-15: CrossView Pro Data Analysis Window

The Data Analysis Window provides a local Toolbar containing the
following buttons:

ﬂ Zoom in horizontally

E Zoom out horizontally

Using CrossView Pro 4-37

Unzoom horizontally to normal (show all collected data)
Zoom in vertically
Zoom out vertically

Unzoom vertically to normal (show all collected data)

@ B @B

Update Data Analysis window

The graph displayed in the Data Analysis window is constructed by
processing a CXL script. Refer to the CXL syntax specification in section
11.5.2, Syntax of CrossView eXtension Language (CXL), for details.
TASKING provides scripts for standard signal analysis such as FFT.
However, the programmer can write CXL scripts and process the data in
the format he desires.

ﬂ? See section 11.5, Data Analysis, for more details on data analysis.

4.6.10 POP-UP WINDOWS

Finally, two more windows can appear in certain situations:

Help Window: Activated with function key F1 or when a Help button is
pressed inside a dialog.

Toolbox: This window contains user defined buttons.

4-38

Chapter 4

4.7 CONTROL OPERATIONS FOR CROSSVIEW PRO

All control operations can take place in any CrossView Pro Window. You
can select and save startup options. You can record and play back
playback files. You can define macros and assign them a button in the
toolbox (allowing you to configure up 16 buttons).

4.7.1 ECHOING COMMANDS

The Command Window echoes every command given to CrossView Pro.
CrossView Pro translates most button actions and menu selections into the
CrossView Pro keyboard command equivalents. The Command Window
echoes the equivalent commands just as if you had typed them there.

4.7.2 MOUSE/MENU/COMMAND EQUIVALENTS

Actions in CrossView Pro are performed by using keyboard commands
typed into the Command Window, selecting a menu item, by clicking on a
push button and sometimes by direct manipulation of objects with the
mouse. Many actions can be accomplished several ways. For instance
there are three different ways to set a breakpoint. You can:

1. Use the line b command in the command entry field.

2. Click on a breakpoint toggle in the Source Window.

3. From the Breakpoints menu, select Breakpoints... to open up the

Breakpoints dialog box.

Using CrossView Pro

4.8 USING THE ON-LINE HELP

CrossView Pro has an extensive on-line help system to aid you. Help
topics cover all CrossView Pro Windows, commands, and dialog boxes.

4.8.1 ACCESSING ON-LINE HELP

You can access help in several ways:
1. Click the Help button on a dialog box

Opens the help system with information about how to perform the task or
about the meaning of the dialog.

2. Click on the question mark in the upper right corner of a dialog, then click
the element in the dialog you want help on.

A yellow box briefly explains the element you asked help on.
3. Select the Help | Help menu item or press the Fl-key.

Opens the help system with information about the active window.
4. Hover the mouse pointer over a toolbar button.

A yellow box shows the title of the button. A more complete description is
shown in the status bar at the bottom of the screen.

4.8.2 USING MS-WINDOWS HELP

You enter help at a topic that explains the current window or dialog. By
clicking on links, you can follow different paths. To return to your starting
point click the Back button or open the Options | Display History
Window and click on the node that you want to return to.

The Contents tab displays a list of main subjects. The Index tab displays
a list of keywords that relate to certain topics. When you click the Find
tab, you can search for a string pattern.

To save time, you can iconize the Help Window and maximize it when
necessary.

4-39

USING

Chapter 4

CONTROLLING
PROGRAM
EXECUTION

al TASKING [

d31dVHO

Controlling Program Execution

5.1 SOURCE POSITIONING

When you have the Source Window open and it displays a source file,
there are two points of reference to keep in mind: the execution position
and the viewing position.

The execution position refers to the line of source at the Program
Counter address. This line is always the next statement or instruction to be
executed. When you load a file into the Source Window, CrossView Pro
automatically displays the portion of the source code that contains the
execution position.

The viewing position (also called 'cursor’) is the line currently being
examined in the displayed source file. Since many Source Window
operations act on this line, you can think of the viewing position as the
‘current line’. For instance, if you set a breakpoint without specifying a line
number, CrossView Pro sets the breakpoint at the line marked by the
viewing position. Please note that it is the viewing position that appears to
the left of the Source Window (NOT the execution position!).

The execution position and the viewing position refer to the same line
when a source file is first loaded into the Source Window. You can then
change the viewing position, if you wish.

The execution position and the viewing position appear different to

distinguish them from the rest of the source code. The execution position
line appears in the execution position highlight colors, while the viewing
position appears as a broken-line frame, also called the cursor. Note that
a line containing a breakpoint appears in the breakpoint highlight colors.

A combination of execution position, cursor and breakpoint (all of which
are potentially active on the same line) appear accordingly.

5-4

=

Chapter 5

5.1.1 CHANGING THE VIEWING POSITION

When a program is active the viewing position is always visible in the
Source Window. You can change the viewing position to move throughout
the source file. Usually, whenever the execution position changes, the
viewing position automatically follows suit. But you may easily change the
viewing position without affecting the execution position.

@? To change the viewing position use any of the following possibilities:

* Use the vertical scroll bar to move a line or a page at a time. The
view point stays on the same line until it is no longer visible. It
then stays on the first or last line of the display, depending on the
direction of scrolling.

e Click on the desired, unmarked source line.

e From the Edit menu, select Find Line... to specify to which
particular line you wish to move.

In the upper-left corner of the Source Window, there are two text fields.
These fields show the line number of the current viewing position and the
address of the first machine instruction for that line. CrossView Pro
updates the Line and Address values each time the viewing position
changes.

You can change the viewing position to the first executable line of a
particular function with the € command. For instance:

e main

will make the first executable line of main() the current viewing position
and display it in the Source window. You may also use the stack depth as
an argument, if you place it before the e:

le

This will change the viewing position to stack depth 1, that is, the line that
called the current function.

FUNCTION: Change the viewing position.

COMMAND: stack e
e function

Controlling Program Execution

To change the viewing position to a specified address, you can use the ei
command. This command is useful for viewing some code in the assembly
window, without changing the program counter, since the execution
position is not changed.

FUNCTION: Change the viewing position to address.
COMMAND: address ei

5.1.2 CHANGING THE EXECUTION POSITION

There may be times when you want to start or resume execution at a
different line than the one marked by the current execution position.

Exercise caution when changing the execution position. Often each line of
C source code compiles into several machine language instructions.
Moving the program counter to a new address in the middle of a series of
related assembly instructions is sometimes risky. Moreover, even though
you change the program counter, registers and variables may not have the
expected values if you bypass parts of the code.

In the Source Window you can change the execution position to the
viewing position with the menu entry Run | Jump to Cursor. This menu
entry is disabled in Source file window mode to prevent problems by
skidding pieces of C code which are required to be executed. See also the
g and gi commands below.

When the program halts, you can change the execution position with the g
command in the Command Window. The g command moves the
execution position, but does not continue the program. To resume
execution from your new execution position, use the C command.

Although risky, the g command does have its uses, especially in
conjunction with breakpoints to patch code. Refer to the Breakpoints and
Assertions chapter for more information.

For example, to change the execution position from the current line, 54, to
line 62, enter:

g 62

5-5

5-6

Chapter 5

When you resume execution in this program, it is from line 62 instead of
line 54.

FUNCTION: Change the execution position to a specified C source
line

COMMAND: g line_ number

You can also change the execution position to a specified address directly,
although the same warnings apply. To do so, use the gi command. For
instance:

0x800 gi

FUNCTION: Change the execution position to address.
COMMAND: address gi

Of course, moving the program counter (gi command) is even more
potentially reckless than using the g command. Use both with caution
especially when debugging a program which has instructions re-ordered
due to optimizations.

To determine the address of a line of source, use the P command:

80P
80:(0x1486): sum =sum + 1,

The hexadecimal number in parentheses is the instruction address for line
80.

FUNCTION: Print a source line and its instruction address.

COMMAND: line_number P

Controlling Program Execution

5.1.3 SYNCHRONIZING THE EXECUTION AND
VIEWING POSITIONS

Each time you stop execution, the position of the program counter (PC) is
visible in the source window. However, it may disappear from the window
when scrolling through the source or when you loaded a new program.
To find the program counter again:

Click on the Find PC button in the Source Window or select Find PC
from the Edit menu.

From the Command Window, use the L command.

The L Command

The L command is shorthand for 0 e. It synchronizes the viewing and the
execution positions, adjusting the viewing position if the two are different.
The L command never affects the execution position. The L command is
useful if you have changed your viewing position and do not remember
where your execution position is.

FUNCTION: Synchronize viewing and execution position.

COMMAND: L

5-7

5-8 Chapter 5

=

5.2 CONTROLLING PROGRAM EXECUTION

Using the mouse in the Source Window, you can direct the execution of
your source programs. Among your options are:

e Starting execution from the first instruction or from the current
execution position.

e Manually stopping execution whenever you want.

* Executing the program a single line at a time.

* Executing functions by calling them directly.

5.2.1 STARTING THE PROGRAM

To restart a program from its first instruction:

@? Click on the Restart program button in the Source Window.
or:

e From the Run menu, select Reset Application

e From the Run menu, select Run, or click on the Run/Continue
button.

@ This is NOT a target system reset. Refer to the rst command for
information about side effects that may be introduced due to a target
system reset.

After restarting a program, you can stop execution only by a breakpoint,
an assertion or a halt operation from the user.

FUNCTION: Reset program; run program.
COMMAND: R

Controlling Program Execution

5.2.2 HALTING AND CONTINUING EXECUTION

To stop or continue execution:

Click on the Halt button in the Source Window to stop execution. Click
on the Run/Continue button to resume execution.

@2 From the Run menu selct Halt to stop execution. Select the Run menu
item to resume execution.

Use the C command or function key F5 to resume execution.

When you halt the program, all the active windows update automatically
to reflect the program’s current status. For instance, if you have any
expressions monitored in the Data Window, their current value appears.

Note that when you use any of the above methods to stop the program,
CrossView Pro halts at the machine instruction that was on when
interrupted. While this is a convenient way to stop the program, it is
hardly an accurate one — you may stop execution in the middle of a C
source statement.

To stop a program at a precise line of C source code, set a breakpoint. For
more about breakpoints see the Breakpoints and Assertions chapter.

When continuing, CrossView Pro resumes execution as if the program had
never stopped.

FUNCTION: Continue execution from the current execution position.

COMMAND: C

5.2.3 SINGLE-STEP EXECUTION

When the program stops, you can continue execution, or you can step
through it one line or instruction at a time. This is called single-step
execution.

5-9

5-10 Chapter 5

Single-stepping is a valuable tool for debugging your programs. The effect
is to watch your programs run in stop motion. You can observe the values
of variables, registers, and the stack at a precise point in a program’s
execution. You can catch many potential bugs by watching a program run
line by line.

When you single step, CrossView Pro normally executes one line of your
source and advances to the next sequential line of the program. If you
single step to a line that contains a function call, however, you have two
options: step into the function or step over the function call.

Source Single-Step Into

There are several methods you can use to single step into:

Click on the Step Into button in the Source Window or select Step Into
from the Run menu.

Press function key F8 or type the s command in the Command Window.
You have the option of setting the number of lines you want to execute.
For example, to execute 2 lines of the program, type: 2's .

FUNCTION: Step through a program one source line at a time.
COMMAND: number s

Stepping Into Functions

Stepping into a function means that CrossView Pro enters the function and
executes its prologue machine instructions, halting at the first C statement.
When you reach the end of the function, CrossView Pro brings you back
to the line after the function call and continues with the flow of the
program. The debugger changes the source code file displayed in the
Source Window, if necessary.

@ If you accidentally step into a function that you meant to step over, you
can select Return from Function from the Run menu to escape quickly.

For example, suppose you are at line 59 of a file, which contains a call to
the function factorial()

main#59: table[loopvar] = factorial(loopvar)

Controlling Program Execution 5-11

By performing one Step Into action, you can step into the source code for
factorial() . Your Execution and viewing position change to:

factorial#103: char locvar = 'X’;

CrossView Pro shows you the current function and line number and the C
source code for the current execution position.

Source Single-Step Over

To step over a statement or a function call:

Click on the Step Over button in the Source Window or select the Step
Over from the Run menu.

Press function key F10 or enter the S command in the Command Window.
You have the option of setting the number of lines you want the debugger
to execute. For example, to execute three lines of source, single stepping
over functions, enter: 3 S .

FUNCTION: Single step, but treat function calls as single statements.
COMMAND: number S

Stepping over Functions

Stepping over a function means that CrossView Pro treats function calls as
a single statements and advances to the next line in the source. This is a
useful operation if a function has already been debugged or if you do not
want to take the time to step through a function line by line.

For example, suppose you reach line 59 in demo.c , which calls the
function factorial() , as in the example above. If you give a Step Over
command, the execution position moves to line 60 of the source code in
the main() function immediately, without entering the source code for
factorial() . CrossView Pro has executed the function call as a single
statement.

5-12

Chapter 5

If you try to step over a function that contains a breakpoint or that calls
another function with a breakpoint, CrossView Pro halts at that breakpoint.
Once execution stops, the step over command is complete. Therefore, if
you resume execution by clicking on the Run button or with the C
command, you do not regain control at the entrance to the function with
the breakpoint. You can either single step through the rest of the function,
or select the Run | Return from Function menu item to return to the
line after the point of entry.

5.2.4 STEPPING THROUGH AT THE MACHINE LEVEL

While single stepping through code at the source level is informative, you
might need a lower level approach. CrossView Pro can step through a
program at the assembly language instruction level.

While more time—consuming than a source level step—through, an
instruction level step-through allows you to examine how your code has
been compiled. As you advance through the assembly instructions, notice
how CrossView Pro translates data addresses to variable names, and
correlates branch addresses to points in the source code. This makes it
much easier to follow the source at the instruction level.

@ The default step modes are:

Source lines Window: Source line step
Disassembly Window: Instruction step
Source and Disassembly Window: mode of previous window!

(assumes the step mode of the previous Source Window setting)

@z Mouse and menu actions:

* The Step Into and Step Over buttons, and Run | Step Over and
Run | Step Into menus can be set to step by instructions by
selecting Run | Step Mode | Instruction step from the menu bar.

» To change back to stepping by source lines, select Run | Step
Mode | Source line step.

* Another way to set the step mode is to select the Source line step
or Instruction step radio button in the Settings | Source
Window Setup dialog box.

Controlling Program Execution

To control this function from the Command Window, use the Si and si

&

commands. The Si and the si commands are analogous to the S and s
commands, Si will treat function calls (more precisely, jump to subroutine
instructions) as single statements, while si will enter the function.

FUNCTION: Single step at instruction level. Step into functions.
COMMAND: number si

FUNCTION: Single step at instruction level. Step over functions.
COMMAND: number Si

As an example of stepping through instruction level code, restart the
program. Then select Run | Step Mode | Instruction step. Once it
stops at the breakpoint you installed, advance execution one assembly
language instruction at a time by using the Step Over and Step Into
buttons. Or give the Si or si commands.

CrossView Pro will display disassembly of the next machine instruction
that forms part of the C code in the Command Output Window:

main#47+0x4: disassembled instruction

Different types of targets, of course, have different assembly code, so
debugging at the assembly level is hardware dependent.

Notice that a single C statement is usually compiled into several,
sometimes many, machine instructions.

CrossView Pro supports debugging on machine instruction level using the
Intermixed or Assembly mode of the Source Window.

5-13

5-14 Chapter 5

=

5.3 NOTES ABOUT PROGRAM EXECUTION

If you stop the program in a module without debug symbols, then an S or
s command attempts to step to a module with symbols. CrossView Pro
does this by searching the run-time stack for a return address in a module
with symbols, then setting a temporary breakpoint there, and running. This
process relies on two assumptions: that the stack layout is uniform, and
that each function eventually returns. In the unlikely event that these
assumptions are violated, the program may run away when you attempt to
single step.

5.4 CALLING A FUNCTION

You can execute a function by calling it directly, without waiting for the
program to run to the function’s position in the code. CrossView Pro gives
you the capability of passing input parameters to the function and allows
you to examine the return value after the function executes.

After you manually call a function, CrossView Pro returns to the current
execution position and restores the values of all your registers to the state
before calling the function.

You can call a function by selecting a menu item with a mouse or by use
of a command in the Command Window.

@? From the Run menu, select Call a Function... to view the Call a Function
dialog box.

The Call a Function dialog box contains two fields, in each field there are
drop—-down history lists. In the first, you write the name of the function.
Alternatively, click on the Browse... button in the dialog box, which
opens the Function Lists dialog box where you can search for global and
local functions.

The second field allows you to enter all the values for the input
parameters to this function. The syntax for the parameters is exactly the
same as used in the source code. That is, each parameter is input as an
expression and separated by commas. You do not need to enter any
parentheses or semicolons, and you can use names of variables and
constants in the expressions.

The return value appears in the Command Output Window.

Controlling Program Execution 5-15

To call a function from the Command Window, simply enter the name of
the function along with the appropriate parameter values. For example,
the following demonstrates calling the function factorial()

factorial(3)
6

You can also use functions in expressions, as in:

factorial(3) — 2
4

@ Command line function calls are only allowed in an application that uses a

reentrant stack frame. When a static stack frame is used, the locator
overlays stack frames based on the application’s call graph. A command
line function call may conflict with the calling sequence in the call graph
and corrupt the static stack frame when executed.

5.5 SEARCHING THROUGH THE SOURCE WINDOW

CrossView Pro can search for addresses and functions in the entire
application and for line numbers, and strings in the current source file. A
string search starts from the current viewing position and "wraps around”
the end (or begin) of the current source file. The string search ends when
a matching string is found or when it returns to the starting point.

5.5.1 SEARCHING FOR A FUNCTION

There are several ways to find a function:

@2 Using the mouse:

From the Edit menu, select Find Symbol... to open the Find
Symbol dialog box. Select the function you are looking for.

* Click on the Find Symbol button in the Source Window to open
the Find Symbol dialog box.

e Select a function in the Stack Window (double—click) to show the
line that called it.

From the Command Window, you can either specify e followed by the
function name, or a stack position followed by e. For example:

5-16

Chapter 5

e main Find the function main().
le Find the line that called the current function.

CrossView Pro searches through all the relevant source code files to find
the one containing the body of the function. The part of the file containing
the function appears in the Source Window.

5.5.2 SEARCHING FOR A STRING

CrossView Pro allows you to search for a particular string in the current
source file. CrossView Pro searches the Source Window from the current
viewing position. If it finds the string, it moves the viewing position to the
corresponding line. This does not affect the execution position.

To find a string:

@? Open the Search String dialog box by clicking on the Find Text String
button, or select Search String... from the Edit menu. Click on the Case
Sensitive check box to turn case sensitivity on or off.

You can also highlight a text fragment in the source code and click on the
Find Next Text String button to find that fragment again.

In the Command Window, use the / or ? commands. The / command
searches forwards and the ? command searches backwards. For example,
to find the string initval |, enter:

finitval Search forward for the string “initval”

CrossView Pro’s searches "wrap around” beyond the top or bottom of the
file if necessary.

FUNCTION: Search forward for a string.
COMMAND: / string

FUNCTION: Search backward for a string.
COMMAND: ? string

Controlling Program Execution

If no string is supplied to the / or ? command, or if you hit carriage return,
or press the function key F3 or select the Search Next String from the
Edit menu item, CrossView Pro searches again for the last string
requested.

5.5.3 JUMPING TO A SOURCE LINE

As mentioned earlier in the Changing the Viewing Position section, you
can use the scroll bar to scroll through the source code or use the arrow
keys or the + and - keys. To find a specific line, you can use one of
several methods:

From the Edit menu, select Find Line... to open the Find Line dialog box.

After you enter a line number (or select one from the history list) in this
dialog box and click on the Find button, CrossView Pro will change the
viewing position to the indicated line number. At the first use, the Find
Line dialog box contains no line number, but on subsequent invocations it
will show the line number you entered before.

Enter the line number on the command line.

5-17

Chapter 5

5-18

NOILNJ3IX3 WvHOO0Hd

ACCESSING CODE
AND DATA

al TASKING [

d31dVHO

Accessing Code and Data

6.1 INTRODUCTION

This chapter discusses topics related to viewing and editing the variables
in your source program and execution environment, including accessing
variables and registers, viewing and modifying the data space, using
monitors, viewing the source file, and disassembling code.

6.2 ACCESSING VARIABLES

&

This section describes how to view and edit your program variables using
the debugger. You can monitor data so that every time you stop the
program, CrossView Pro updates the current value.

The Data Window displays the values of variables and expressions. As
long as the this window is open, CrossView Pro automatically updates the
display for each monitored variable and expression each time the program
stops.

Uninitialized variables will not have meaningful values when you first start
the debugger, since your program’s startup code has not been executed.
Also note that global data is initialized at load time. Re-running a program
may produce unexpected results. To guarantee that global data is
initialized properly, download the program again.

6.2.1 VIEWING VARIABLES, STRUCTURES AND

ARRAYS

You may view variable values, and change them, from the Source Window
and the Command Window. CrossView Pro returns the variable in the
format var_name = value in the Command Window.

It is possible to display both monitored and unmonitored expressions in
the Data Window. After every halt in execution, CrossView Pro updates
monitored expressions. Unmonitored expressions are just one-shot
inspections of the expressions value. Refer to section 4.6, CrossView Pro
Windows for a detailed description of the Data Window.

To set the default display format of the data shown, select the proper
format in the Data | Data Display Setup... dialog.

6-3

6-4

=

Chapter 6

To show the contents of a variable or to show the type information of
a function:

Position the mouse cursor over a variable or a function in the Source
Window. A bubble help box appears showing the value of the variable or
the type information of the function, respectively.

To evaluate a simple expression:

Double—click on a variable in the Source window. The result of the
expression is shown in the Data Window. Alternatively, depending on the
preferences you set in the Data Display Setup dialog, the expression
appears in the Evaluate Expression dialog. Click the Add Watch or

Add Show button to display the result of the expression in the Data
Window. Click the Evaluate button to display the result of the expression
in the output field of the Evaluate Expression dialog.

To evaluate a complex expression:

From the Data menu, select Evaluate Expression... and type in any C
expression in the Evaluate Expression dialog box. Optionally select a
display format. Click the Evaluate button.

Type the expression into the command edit field of the Command
Window followed by a return or click the Execute button.

For example, to find the value of initval in demo.c type:
initval
and CrossView Pro will display:

initval = 17

FUNCTION: Display the value of a variable.
COMMAND: variable’s_ name

@ For variables having the same name as an CrossView Pro command, use
/n as format style code.

Accessing Code and Data

&

Any expression that can be typed into the Command Window can also be
typed in the Expression field of the Expression Evaluation dialog box.
Throughout this discussion, expressions can be typed in either location,
depending on what is convenient.

Viewing Structures

You can also view structures.

By using any of the methods described above, you can print out the entire
structure. For example:

recordvar

and CrossView Pro prints out the structure of recordvar and values of
recordvar s fields in correct C notation:

recordvar = struct rec_s {
a=-1,
b = 0x1028 "TASKING”;
c = 987654321,
color = blue;

} recordvar

Displaying Individual Fields

&

Similarly, you can instruct the debugger to print the value of an individual
field.

In the Source Window, highlight recordvar.color and click the Show
Expression button. Or, in the Expression edit field of the Expression
Evaluation dialog box or in the Command Window, type the structure
name followed by a period and the field name. For instance, to see the
field color for the structure recordvar , enter:

recordvar.color Command
color = blue Output

Note that CrossView Pro returns the value in the form field name = value.
CrossView Pro also displays enumerated types correctly.

Variables will not have meaningful values when you first start CrossView
Pro, since your program’s startup code has not been executed.

6-6 Chapter 6

=

Displaying the Address of an Array

If you enter the name of an array in the Expression Evaluation dialog box
or in the Command Window, the debugger returns its address. For
instance, to find the address for the array table, select table from the
browse list in the dialog box or type the name in the Command Window:

table Command
table = 0x200 Output

Note that CrossView Pro returns the address in the form array name =
address.

The debugger can also display the address and value of an individual
element of an array. Enter the name of the array and the number of the
element in brackets. For instance, to find the address and value of the
third element of array table, enter:

table[3] Command
0x20C =0 Output

Note that CrossView Pro returns the information in the form address =
value.

Displaying Character Pointers and Character Arrays
The following piece of C code can be accessed in CrossView Pro using the
string format codes:

char text[] = "Sample\n”;
char *ptext =text;

text What is the address of this char array
text = 0x8200

text/a Print it as a string
text = "Sample”J”

ptext What is the contents of this pointer
string = 0x8200

ptext/s Print it as a string
string = "Sample”J”

&ptext Where does ptext itself reside
0x8210

Accessing Code and Data

Sizing Structures
With structured variables, it is especially useful to know the size of a
variable.

In the Command Window, you can determine the size of a variable with
the sizeof() function. For instance, to determine the size of the structure
recordvar , enter:

sizeof(recordvar)
24

6.2.2 CHANGING VARIABLES

With CrossView Pro, you can not only view your variables, but change
them. This function allows you to easily test your code by single-stepping
through the program and assigning sample values to your variables. For

instance, to set the variable initval to 100, enter:
initval=100

and CrossView Pro confirms initval ’s new value:
initval = 100

Note that CrossView Pro returns the values of variables with the syntax:
var_name = value, with any right-hand side expression evaluated to a
single value.

Changing variables in the Data Window

@? To change a variable in the Data Window, follow these steps:
e In the Data Window, double—click on the variable you wish to edit.
In-situ editing will be activated.
* Specify the new value in the edit control and hit the Enter key.
When in-situ editing is active, you can use the Tab key to move the edit

field to the next variable value or use the Shift+Tab key combination to
move the edit control to the previous variable.

6-8 Chapter 6

=

Assigning Structures

CrossView Pro also allows you to assign whole structures to one another.

You can use a simple equation to assign the structures. For instance, to
assign statrec to recordvar , enter:

statrec = recordvar

6.2.3 THE | COMMAND

CrossView Pro’s windows contain a great deal of information about the
current debugging session. Occasionally, however, you have a few closed
windows, or wish the information to appear in the Command window (for
instance, when you are recording output). Using the 1 (list) command, you
can find out all sorts of things about the current state of the debugger and
have the information appear in the Command window.

Arguments of the | Command

a assertions k kernel state data

b breakpoints m memory map (of application code sections)
d directory p procedures (functions)

f files (modules) r registers

g globals s special variables

For configurations that support real-time kernels the 1 k command can
have additional arguments. See the description of the 1 command in the
Command Reference for details.

You may for example view the contents of the registers:
Ir

Or the list of procedures (that is, functions):
Ip

a complete list of global variables:

lg

Accessing Code and Data

The 1f command (list files) also shows the address where CrossView Pro
placed the first procedure in the module. If the module is a data module
then the address reflects the first item’s placement.

With all of these 1 commands you can specify a string:
| g record

and CrossView Pro searches the globals for a match with the same initial
characters; in this case global variables that begin with record

6-9

6-10 Chapter 6

=

6.3 EXPRESSIONS

6.3.1 EVALUATING EXPRESSIONS

CrossView Pro expressions use standard C syntax, semantics, and allow
special variables. You can calculate and show the values of expressions in
CrossView Pro by using a variety of methods:

It is possible to display both monitored and unmonitored expressions in
the Data Window. CrossView Pro updates monitored expressions after
every halt in execution. Unmonitored expressions are just one-shot
inspections of the expressions value. Refer to section 4.6, CrossView Pro
Windows for a detailed description of the Data Window.

To evaluate a simple expression:

Double—click on a variable in the Source window. The result of the
expression appears in the data window. Alternatively, depending on the
preferences you set in the Data Display Setup dialog, the expression
appears in the Evaluate Expression dialog. Click the Add Watch or

Add Show button to display the result of the expression in the Data
Window. Click the Evaluate button to display the result of the expression
in the output field of the Evaluate Expression dialog.

To evaluate a complex expression:

From the Data menu, select Evaluate Expression... and type in any C
expression in the Evaluate Expression dialog box. Optionally select a
display format. Click the Evaluate button.

CrossView Pro calculates the result and displays the value in the
appropriate format. For details about expression formats see the section
Formatting Expressions in the chapter CrossView Pro Command Language.

Type the expression in the Command Window.

Expressions can contain variable names as arguments. For instance, if the
variable initval has a value of 17 and you enter:

initval * 2
CrossView Pro displays:

34

Accessing Code and Data 6-11

The expression can contain names of variables, constants, function calls
with parameters, and so forth; anything that you can write directly at the
Command Window, you can use in the Evaluate Expression dialog box.
For more information on expressions and the CrossView Pro command
language, refer to the section CrossView Pro Expressions in the Command
Language chapter.

The Dot Operand

Using the dot shorthand ”.” can save you some typing. The dot stands for
the last value CrossView Pro displayed. For instance:

initval
initval = 17

Now you can use the value 17 in another expression by typing:

L*2
34

The value is the result of the new expression.

Naturally, using the dot operand saves you from retyping complex
expressions.

6.3.2 MONITORING EXPRESSIONS

CrossView Pro allows you to monitor any variable or expression.
Monitoring means that the debugger evaluates a particular expression and
displays the result each time the program stops. If you are in window
mode, CrossView Pro displays the values of the monitored variables and
expressions in the Data window.

Momitor Set Up

To set up a monitor you can:

From the Data menu, select Evaluate Expression... or double-click on a
variable in the Source Window, or click on the Watch Expression button
to view the Expression Evaluation dialog box. From this dialog box, you
can enter an expression and monitor (watch) its value in the Data
Window. You can skip the Expression Evaluation dialog if you activate the
Bypass Expression Evaluation dialog check box in the Data Display
Setup dialog.

6-12

&

Chapter 6

Alternatively, click on the New Expression button in the Data Window.

The Data Window must be open to display the result. Otherwise

CrossView Pro does not monitor the expression. Therefore, CrossView Pro
opens the Data Window automatically when you choose to show or watch

an expression.

Type the m expression command in the Command Window.
To place the variable initval in the Data window type:
m initval

initval remains in the Data window. You may run the program, step
through it, and the display updates continually. Even if you are not in
window mode, CrossView Pro still displays the value of initval after
every CrossView command.

FUNCTION: Monitor an expression or variable.

COMMAND: m expression

Similarly, if you want twice the value of initval you could type:
m initval*2
And the expression initval*2 is monitored.

Monitored expressions are evaluated exactly as if you had typed them in

from the command line; therefore, if you are monitoring a variable, say R,

identical to an CrossView Pro command, use the /n format, in this
example R/n .

Momitor Delete

To remove a monitored expression you can:

Select the item in the Data Window and click on the Delete Selected Data

Item button from the Data Window, or select Data | Delete | Item.

To remove all expressions from the Data Window, select Data | Delete |
All

Type the number m d command in the Command Window.

Accessing Code and Data 6-13

To remove initval from your Data Window #1, type the number of the
expression (first item of the Data Window has number 0) and m d
(monitor delete):

Omd

and CrossView Pro removes initval (in this case, assuming it is the first
variable listed in the window) from the Data Window.

FUNCTION: Remove an expression from the Data Window
COMMAND: number md

Since local variables have no meaning beyond their range, CrossView Pro
issues error messages if you try to evaluate local variables beyond their
scope. Some variables also become invisible when the program call
another function. For instance, if you are in main() , monitoring sum, and
main() calls factorial() , the unqualified name sum is no longer
visible inside factorial() . You can get around this problem, however,
by monitoring main#sum instead.

6.3.3 FORMATTING DATA

When you display a particular variable, CrossView Pro displays it in the
format the symbolic debug information defines for it. You may, however,
easily specify another format using dialogues or keyboard commands. See
the section Formatting Expressions in the chapter CrossView Pro
Command Language.

Examples
To print the value of initval in hexadecimal format, enter
initval/x

Be sure not to confuse CrossView Pro format codes with C character
codes. CrossView Pro uses a / (forward slash) not a \ (backward slash).

6-14

Chapter 6

Don’t worry about trying to memorize the list, you probably won’t have
occasion to use all these formats. Notice, however, that the /t format code
give information about a particular value. For instance, if you wanted to
find out what the type of initval is, type:

initval/t
global long initval

You can also take more low-level actions, such as finding out which
function contains the hexadecimal address 0x100.

0x100/P
main

CrossView Pro tells you that address 0x100 is in the function main() .

6.3.4 DISPLAYING MEMORY

CrossView Pro supports several methods to display memory contents. The
Memory Window provides a very user—friendly yet powerful way to
display the raw contents of the target memory.

Refer to section 4.6.4 for a description of the Memory Window.

Format codes also give you control over the number and size of multiple
pieces of data to display beginning at a particular address. The debugger
accepts format codes in the following form:

[count| style [size]

Count is the number of times to apply the format style style. Size indicates
the number of bytes to be formatted. Both count and size must be
numbers, although you may use ¢ (char), s (short), i (int), and 1 (long) as
shorthand for size. Legal integer format sizes are 1, 2, and 4; legal float
format sizes are 4 and 8.

For instance:
initval/4xs

displays four, hexadecimal two-byte memory locations starting at the
address of initval

Accessing Code and Data 6-15

With format codes, you may view the contents of memory addresses on
the screen. For instance, to dump the contents of an absolute memory
address range, you must think of the address being a pointer. To show the
memory contents you use the C language indirection operator *. Example:

*0x4000/2x4
0x4000 = 0x00DB0208 0x5A055498

This command displays in hexadecimal two long words at memory
location 0x4000 and beyond. Instead of using the size specifier in the
display format, you can force the address to be a pointer to unsigned
long by casting the value:

*(unsigned long *)0x4000/2x
0x4000 = 0x00DB0208 0x5A055498

To view the first four elements of the array table from the demo.c
program, type:

table/4d4
table =1 1 2 6

This command displays in decimal the first four 4-byte values beginning at
the address of the array table

By typing the a space followed by a carriage return you can advance and
see the succeeding values in the same format:

[Enter]
0x11 =24 120 720 5040

You may recognize that the array table contains the factorials for the
integers 0 through 7.

Displaying memory in this way is particularly effective when you have
two-dimensional arrays. In this case you can display each row by
specifying the appropriate count. For instance, if myarr is defined as int
myarr[5][8]

myarr/8ds

displays the values for the eight elements in the first row of myarr . Typing
the carriage return repeatedly then display subsequent rows in the same
format.

6-16 Chapter 6

=

To scroll back in memory, type the * (caret) sign:

AN

0x9=1126

FUNCTION: Display value(s) at previous memory location.
COMMAND: ~

6.3.5 DISPLAYING MEMORY ADDRESSES

The f command lets you specify in which notation CrossView Pro displays
memory addresses. It takes the same arguments as the printf() function
in C.

FUNCTION: Specify memory address notation.
COMMAND: f " printf-style-format” |

For instance, if you wish to display all memory addresses in octal, type:
f"0%0”

Now all addresses appear in octal. To return to the default hexadecimal,
type:

f n%xn

Using the f command without an argument also returns to hexadecimal
address display.

Accessing Code and Data

6.4 DISPLAYING DISASSEMBLED INSTRUCTIONS

&

To show disassembled instructions:

From the View menu, select Source | Disassembly to open the
Disassembly Source Window.

Use the /i format switch to display disassembled code in the Command

Window.

By using an address and the /i format it is possible to display
disassembled code at any point. Suppose you wish to see how the
factorial() function has been compiled. One method would be to
examine the instructions displayed as you single step through a program at
the assembly language level. There is however a quicker method that does
not require you to execute the instructions. Type:

factorial/10i

This command displays the first ten assembly language instructions of
factorial() . Remember that in C a function’s name is also its address.
Thus factorial is the address of the function factorial()

Note that CrossView Pro keeps track of variable and function names for
you in the disassembled code. You can also disassemble from the current
execution position by using the program counter:

$pc/5i

This command disassembles five assembly language instructions from the
current execution line.

You can display disassembled code for any function:
main#56/7i
disassembles seven instructions from line 56.

See also the ei command for displaying disassembly in a window.

Labels in Disassembly

&

To show labels in disassembly:

From the Settings menu, select the Source Window Setup... to open the
Source Window Setup dialog box and enable the Symbolic disassembly
check box.

6-17

6-18 Chapter 6

=

Turn the $symbols special variable "ON” by typing the following
command in the Command Window:

opt symbols=on

6.4.1 INTERMIXED SOURCE AND DISASSEMBLY

To show intermixed source and disassembly:

@ From the View menu, select Source | Source and Disassembly to open
the Source and Disassembly Window.

Use the /I format switch to display intermixed C and disassembled code
in the Command Window.

The /I format works exactly as the /i format, except CrossView Pro
intermixes the pseudo-assembly listing with the original C source. This
feature is often helpful in displaying long portions of code.

Auto Switch between Source and Disassembly

To automatically switch between source and disassembly window
depending on the presence of symbols:

@? From the Settings menu, select the Source Window Setup... to open the
Source Window Setup dialog box.
Enable the Show assembly when SDI is missing check box.

Turn the $autosrc special variable "ON” by typing the following
command in the Command Window:

opt autosrc=on

Accessing Code and Data 6-19

6.5 THE STACK

During debugging, you frequently find yourself lost or unable to pinpoint
your location through a series of function calls. The stack helps you with
the problem by recording the return addresses of all functions you have
passed through. CrossView Pro can use this information to reconstruct the
path to your current location.

The following diagram shows the structure of the stack.

Higher Addresses
Calling Routine’s -<—— Caller's Frame Pointer
Frame
Parameter n

(positive offsets from Frame Pointer)

Parameter 1

Return Address

Old Frame Pointer <—— Frame Pointer (A6)

Local Variables (negative offsets from Frame Pointer)

<—— Stack Pointer (A7)

Lower Addresses

Figure 6-1: Stack frame layout

6.5.1 HOW THE STACK IS ORGANIZED

Whenever your program calls a function, the calling function pushes the
arguments (in reverse order) onto the stack.

6-20

Chapter 6

The function’s prologue creates its own stack frame, by reserving enough
room on the stack for any local variables and temporary data storage, and
saves the return address after jumping to the function’s code. When the
function is finished, the epilogue code performs the above steps in reverse
order: it dismantles the local frame and jumps to the return address.

The compiler may optimize some of the function frames away. The ~do
(disable all optimizations that interfere with debugging) compiler switch
ensures that functions always have frames on the stack, thus allowing
stack traceback to work.

6.5.2 THE STACK WINDOW

The Stack Window shows the current contents of the stack after the
program has been stopped. This window helps you assess program
execution and allows you to view program values. You can also set
breakpoints for different stack levels from this window, as described in the
chapter Breakpoints and Assertions.

The Stack Window displays the following information for each stack level:

e The name of the function that was called
e All parameters specified to the function

¢ The line number in the source code from which the function was
called

Each stack level shown in the Stack Window is displayed with its level
number first. The levels are numbered sequentially from zero. That is, the
lowest/last pushed level in the function call graph is always assigned zero.

When you first see stack information, the lowest level appears against a
darker background than the other lines in the window. The marked line in
the Stack Window is the selected stack level, meaning that this line is
selected for window operations. You can change the selected stack level
by clicking on a different line.

Checking the Stack from the Command Window

The stack information is also accessible from the Command Window with
the t and T commands. The t command reconstructs the program’s calling
path. For instance, if you stepped into the function factorial() and
issue a t (trace) command:

t

Accessing Code and Data 6-21

CrossView Pro displays:

0 factorial(num=0) [demo.c:105]
1 main() [demo.c:59]

The numbers to the left indicate the depth of each function on the stack.
The function at the zero stack level is your current function. CrossView
Pro tells you the line number where the function was called

([demo.c: line_nr 1) and the value of the argument passed

(num=value). With this information it is fairly easy to reconstruct your
calling path, and see what parameter values your functions have received.

FUNCTION: Trace stack to reconstruct program’s calling path.
COMMAND: t

There is a slight variation on the t command called the T command. The
two are identical, except that the T command also displays the local
variables for each function. For instance:

T
0 factorial(num=0) [demo.c:105]
locvar =X’
1 main() [demo.c:59]
loopvar =0
sum =0
cvar = "\xff’

FUNCTION: Trace stack and display local variables.
COMMAND: T

6-22 Chapter 6

=

6.5.3 LISTING LOCALS AND PARAMETERS OF A
FUNCTION

As mentioned in the previous section, CrossView Pro displays all
parameters of a function. You can view the local variables and parameters
of any single function active on the stack To do this:

@? Follow these steps:

* Open up the Expression Evaluation dialog box by clicking on the
New Expression button from the toolbar or selecting Evaluate
Expression... from the Data menu.

* Click on the Browse... button.
In the Command Window, use the 1 (lowercase L) command.

For example, assuming you are still in factorial() , issue an 1
command:

| factorial
num =0
locvar = 'X’

You can accomplish the same task by specifying the stack depth instead of
a function name:

10

6.5.4 LOW-LEVEL VIEWING THE STACK

You can directly view the contents of the stack. Although CrossView Pro
provides several high level methods of tracing functions on the stack, you
can view its contents directly with the frame pointer special variable, $fp .
For instance, the command:

$fp[0]/ax1

displays the four one-byte values in hexadecimal to which the frame
pointer points. Notice that the stack frame is not really an array, but by
pretending it is, you can display the memory much as you did with the
table array. Refer to the Accessing Variables section in this chapter for
more information.

Accessing Code and Data

6.6 TRACE WINDOW

&

C level trace is not available for all execution environments. Please check
the Addendum for details.

The Trace Window displays the most recently executed lines of code each
time program execution stops. CrossView Pro automatically updates the
Trace Window each time execution halts, as long as the window is open.

For each executed line of code, the Trace Window displays:

* The name of the source file
* The name of the function
* The line number and corresponding source code

¢ The window shows all the code executed since the the last time the
program halted.

6.6.1 TRACE WINDOW SETUP

The Trace Window’s only function is to display the contents of the
emulator’s/ simulator’s trace buffer. The only operation you can perform in
this window that directly affects the contents is to set the maximum
number of instructions in the display.

To set the displaying limit, select the Initialization tab in the File |
Options... dialog. You can change the maximum number of C-Trace
machine instructions to fetch from the execution environment’s trace
buffer and the maximum number of trace output lines in the Trace
Window.

To view the most recently executed source statements from the Command
Window, use the ct command preceded by the number of machine
instructions you want to list. For example, to view the last source lines
corresponding to the last ten machine instructions, enter:

10 ct

FUNCTION: Display in the Command window the most recently
executed C statements.

COMMAND: number ct

6-23

6-24

=

Chapter 6

To activate the source level trace window:

From the View menu, select Trace | Source Level to view the Trace
Source Window.

You can view the last machine instructions executed with the ct i
command. For example:

15 cti

displays the last 15 machine instructions in disassembled form in the
Command Window.

FUNCTION: Display the most recently executed machine
instructions.

COMMAND: number cti

To activate the instruction level trace window:

@? From the View menu, select Trace | Instruction Level to view the Trace
Instructions Window.

You can view a raw trace with the ct r command. For example:
20 ctr

displays the last 20 trace frames in the Command Window.

FUNCTION: Display a raw trace.
COMMAND: number ctr

To activate the raw trace window:

@2 From the View menu, select Trace | Raw to view the Trace Raw Window.

Accessing Code and Data

6.7 REGISTER WINDOW

The Registers Window shows you the values of internal registers on your
target processor.

You can create multiple Register Windows and each Registers Window
contains the names and contents of all currently selected registers in the

selected register set definition. Values are displayed in hexadecimal format.

As long as the window is open, the debugger automatically updates the
values when the program stops.

To show the list of current registers and their contents in the Command
Window, enter the list registers command (1 r).

CrossView Pro also supplies the following special variables:

$sp stack pointer
$pc program counter
$fp current frame pointer

for all targets. For more information, refer to the Command Language
chapter.

6.7.1 REGISTER WINDOW SETUP

&

You can configure which register set definition with which (and in which
order) registers must be displayed in the Register Window; using the
Settings | Register Window Setup... dialog. Since you can have more
than one Register Window, the last active Register Window will be
configured when you select this menu item.

To configure a Register Window follow these steps:

e Select a Register Window.

* From the Settings menu, select Register Window Setup... to view
the Register Window Setup dialog box.

The dialog will show the active register set definition and the list of
available and selected registers for this particular register set
definition.

* You can create a new register set definition by entering an unique
register set definition name in the Name edit field and using the
Add button.

6-25

6-26

Chapter 6

* You can delete a register set definition by selecting an item from the
defined register set definition list and using the Delete button. Note
that when you delete a register set definition, any Register Window
displaying a deleted register set will be closed.

* You can select a register set definition by selecting an item from the
defined register set definition list. The list of available and selected
registers will be updated according to the configuration of the
selected regisetr set definition.

Once you have selected a register set definition, follow these steps to
configure this register set definition:

* You can add registers to the list of selected registers by selecting
registers from the list of available registers by highlighting those
registers in the left list box and using the Add-> or Add All button
or by double-clicking on the register you want to add.

* You can remove registers from the list of selected registers by
highlighting those registers in the right list box and using the
Remove <- or Remove All button, or by double—clicking on the
register you want to remove.

* By using the Move Up and Move Down buttons you can change
the display order of the selected registers in the Register Window.

CrossView Pro automatically updates all Register Windows and places the
registers in each Register Window starting at the top-left position on one
line, wrapping to the next line if the next register does not fit.

6.7.2 EDITING REGISTERS

CrossView Pro lets you change the contents of registers in a simple and
direct manner.

@z Follow these steps:

e In the Register Window, click on the register value you wish to edit.
In-situ editing will be activated.

e Specify the new value in the edit control and hit the Enter key.

If the edited value is not acceptable, the debugger will emit an error
message and reset the old value.

Accessing Code and Data

When in-situ editing is active, you can use the Tab key to move the edit
field to the next register value or use the Shift+Tab key combination to
move the edit control to the previous register. Use the Esc key to cancel
in—situ editing. When a register is not in view the contents of the Register
Window will be updated automatically.

You can enter any expression in the Registers Window.

Registers which can be edited symbolically have a special marker just
before the register name. You can click on this marker to activate the
Assign Register Symbolically dialog.

To access registers from the Command Window, use the $ designation and
the register name in the format:

$register = value

6-27

Chapter 6

6-28

V1vd dNV 3d09

BREAKPOINTS AND
ASSERTIONS

al TASKING [

d31dVHO

Breakpoints and Assertions

You can use breakpoints to stop program execution at specified locations
and return control to the user. An assertion is 2 number of statements
executed by the debugger each time the target executes a program line.

Use assertions to track down bugs, the cause of which is very hard to find.

7.1 INTRODUCTION TO BREAKPOINTS

Breakpoints halt program execution and return control to you. There are
several types of breakpoints: code, data, instruction count, cycle count,
timer and sequence. A code breakpoint halts the program on a particular
statement or instruction; a data breakpoint stops the program when a
particular memory address (or range of addresses) is accessed; an
instruction count breakpoint halts the program after a specified number of
instructions have been executed; a cycle count breakpoint stops the
program after a number of CPU cycles; a timer breakpoint stops the
program after a number of micro seconds or ticks and sequence
breakpoints stop the program when a number of breakpoints are hit in a
specified sequence.

Data breakpoints, instruction count breakpoints, cycle count breakpoints
and timer breakpoints are not available for all execution environments,
please check the Addendum.

7.1.1 CODE BREAKPOINTS

A code breakpoint is set on a line in the code and makes the program
halt exactly before that line executes. When you define a code breakpoint,
you can include four elements:

* A count, which is the number of times the breakpoint must be
encountered before it stops the program (default is 1).

e A reset count, which is the value assigned to the count after the
program has stopped on a breakpoint (default is 1).

* A name, which is the symbolic name you can associate with a
breakpoint.

* A list of commands, which will be executed when the program hits
the breakpoint.

7-3

-4

Chapter 7

In the Source Window, a green colored toggle shows that no breakpoint is
set. A red colored toggle shows that a breakpoint is installed. An orange
colored toggle indicates an installed but disabled breakpoint. If coverage is
enabled, coverage markers are present to the right of the breakpoint
toggles. An executed line is marked and not executed lines are not
marked.

E Source : demo.c H=l =
B RIESED E 0w Q@ @ 0 F =l
I 43 jl 01416 jlmain leource lines jl Source line step j
oid main (void)
{
int loopwar; /% the loop counter '-J
long Sum; A% will be 174+sum of factorials from 0 to| 7
char CVAar; /% sample char varisbhle
[Elw | O.000% initwal = 17:
E | o.000% if (initwval > recordwvar.a)
Er | o.ooo%
i -
1 | H o4
Breakpoint Coverage Profiling Current Status
Toggles Markers Execution Position Bar

Figure 7-1: Code Breakpoint

Permanent/Temporary Code Breakpoints

Code breakpoints can be: permanent or temporary. A permanent
breakpoint exists until explicitly deleted. A temporary breakpoint only
exists until it stops the program once.

Probe Point Code Breakpoints

A breakpoint can be treated as a probe point. When a probe point
breakpoint is hit, the associated commands are executed and program
execution is continued. Probe points are used with File I/O simulation and
sequence breakpoints.

Breakpoints and Assertions

How CrossView Pro Sets Code Breakpoints

CrossView Pro depends on the symbol table for information about how
machine instructions map to lines of source. In general, the C compiler
issues line symbols at the start of each statement or line, whichever comes
first. This can lead to some surprising results. If you look carefully, you
can tell on which line CrossView Pro set the breakpoint, since CrossView
Pro tells you on which line the program stopped, a line that may be
different from the one you expected. To find out what happens if you
install a code breakpoint, use single stepping and watch the order in
which the source lines print out.

Multiple Statements on a Single Source Line

If you frequently include multiple statements on a single line in your
source code, you may have difficulties setting code breakpoints at certain
locations. For instance, suppose you have a source line containing:

a=0;b=1

Suppose you want to halt execution after the assignment to a and before
the one to b. A normal code breakpoint does not work here, because
execution stops at the first instruction of the source line. CrossView Pro
provides you with the capability of disassembling the code and inserting
breakpoints at the machine level. You can use the Assembly Source
Window or the Intermixed Source Window to spot the right location.

For more information on machine level breakpoints, see below.

Setting Breakpoints for Multi-line Statements

Code breakpoints have a special behavior for multiple-line statements,
such as a multiple-line if . In an if clause, a line symbol is generated at
the beginning of the list of conditions, and the other lines of the
conditions are generally associated with the first line of the clause. In an
i—then—else construct, the } character before the else is associated
with the branch-around to the end of the statement.

Consider the following example:

22: if ((a == b)&&

23: (c==4d)){
24 x=2;
25: }else {
26: y=3;

27}

7-6

Chapter 7

If you try to set a code breakpoint at line 23, CrossView Pro sets the
breakpoint on the preceding statement. If you try to set a breakpoint on
line 22, CrossView Pro highlights line 23. If you set a breakpoint on line
25, it hits after the assignment to X, but before the jump to line 27. Notice
that it is not hit unless the if clause is true. In other words, a breakpoint
on line 25 is really a break on the } , not on the else { . The same
behavior applies when the else { statement is on the next source line.

Breakpoints and For Loops and While Loops

The code generated for a C ’for’ statement has three parts: the
initialization; the body of the loop; and the increment, test, and branch.
The initialization part and the increment, test, and branch are different
parts of code, but are both associated with the ’for’ statement itself. For
example consider:

99: for (i=0;i<9;i++) {
100: myfunction(i);
101:}

A breakpoint placed on line 99 will only be hit once, because it is hit at
the initialization code. The code for the increment, test, and branch is
associated with line 101, not 99, as you might expect.

The same applies to "while’ loops.

Breakpoints and Emulator Mode

Upon entering emulator mode, the debugger removes any breakpoints it
established in the target code. Removing breakpoints ensures that you can
access unmodified target code. When emulator mode ends, CrossView Pro
reestablishes breakpoints as necessary.

As long as you avoid the debugger’s own breakpoint trap, you may
establish arbitrary breakpoint conditions while in emulator mode. These
will not be removed by CrossView Pro and thus remain active, however,
after you exit emulator mode. If one of these breakpoints is hit during
normal debugging, CrossView Pro will issue a message such as:

Stopped on breakpoint not set by debugger.

Breakpoints and Assertions

System Startup Code

It is possible (for example, by using the si command) to debug system
level startup code that initializes the target environment. You should not
use any global variables in CrossView Pro expressions until the data area
has been initialized. CrossView Pro assertions and other CrossView Pro
commands that examine C variables may deliver erroneous information or
cause memory access errors if used before the C environment is
established.

7.1.2 DATA BREAKPOINTS

&

A data breakpoint instructs the execution environment to watch a
particular data address or address range and halt execution if the program
reads from or writes to that address. Data breakpoints are a powerful
feature for tracking the use, and possible misuse, of pointers, global
variables and memory mapped I/O ports.

Data breakpoints are not available for all execution environments, please
check the Addendum.

When setting a data breakpoint, you can specify whether the breakpoint
stops the program when data is read from, written to, or both.

Data breakpoints are implemented in hardware. As a consequence, the
number of allowable data breakpoints is limited by your execution
environment. A simulator does not have these restrictions. Refer to the
environment-specific Addendum for more information.

On the 68K/ColdFire family of microprocessors, some skidding may occur
when you use data breakpoints. Skidding means that the execution
environment executes the next several instructions after the data
breakpoint stops the program. This occurs because the microprocessor
executes instructions in its cache before stopping. You should know,
therefore, that the data breakpoint may not stop the program at the precise
line of code where the break occurred.

You may set a data breakpoint on a local variable, but only if the local
variable is active. CrossView Pro notifies you when program execution
passes beyond a local variable’s scope, and a breakpoint set on such a
variable is deleted automatically. Data breakpoints for static variables do
not have this restriction.

7-7

Chapter 7

Note that any local variables placed in registers cannot be tracked with
data breakpoints. In this case, you must use an assertion. Refer to the
Assertions section later in this chapter for more information.

7.1.3 LISTING BREAKPOINTS

To see a listing of all of the currently defined breakpoints:

@? From the Breakpoints menu, select Breakpoints... to view the
Breakpoints dialog box.

In the Command Window, enter the 1 b or B commands. The list appears
in the Command Window.

For example entering the B command can result in:

B
0 ena CODE main (CODE:0x78) 2/2

The breakpoint’s number (used when deleting breakpoints) is listed first,
then if it is enabled or disabled, then its type: such as CODEfor code
breakpoints and DATAfor data breakpoints. Next, CrossView Pro lists the
function and/or address, its count and reset count, and finally any attached
commands enclosed by { and }.

FUNCTION: View all breakpoints in the Command window.
COMMAND: B

CrossView Pro decrements the count each time the breakpoint is hit.
When the breakpoint’s count reaches 0, CrossView Pro halts the program.

7.2 SETTING BREAKPOINTS

You may set a code or data breakpoint by:

e Using the mouse to open the Breakpoints dialog box.
e Using the mouse in the Source Window.

e Using the Stack Window.

e Using the command line in the Command Window.

Breakpoints and Assertions

When you set a new breakpoint using the mouse, without using the
Breakpoint dialog box, the type is always permanent, the count 1 and the
location corresponds to the current viewing position, if the Source
Window is open. These variables are described in more detail below.

Setting Breakpoints from the Menu

To set a breakpoint from the menu, select Breakpoints... from the
Breakpoints menu to view the Breakpoints dialog box. From this dialog
box, you can define several types of breakpoints.

@ To set a code break point at line number # of the C source, click the

Add > button and select Code Breakpoint.... Click the Break At...
button, choose a C module (for example demo.c) and click the OK
button. Now you can enter a line number to set the breakpoint at.

Breakpoints 2] x|
All Code |Data I Instructionl Cycle | Timer I Sequencel Add »
Tupe | Mame | When | Accessl Enuntl Taskld| Internal| Temp | Probe | Commands | e |
[MconE #0 0x1c18 11 F55

Hemiaye |
Femove Al |

Add Code Breakpoint EHER
ferences... |
Break At... | Idemo.cﬂEB

Line: E = Cancel |
Mame: | Help |
- TakiD: | =l Advanced >> |

Help | OK | Cancel

Figure 7-2: Breakpoints dialog box

The last entry of the list is always empty. Select it to start defining a new
breakpoint.
Setting Breakpoints from the Source Window

You can set or remove a code breakpoint directly from the Source
Window by clicking on:

e The breakpoint toggle next to the source lines in the Source
Window.

To set data breakpoints use the menu as described above.

7-9

7-10

=

Chapter 7

Setting Breakpoints from the Stack Window

See the section Up-level Breakpoints later in this chapter.

Setting Breakpoints from the Command Window

i+

You can set a code breakpoint from the Command Window using the
break code command or the b command, and set a data breakpoint using
the break data command. Several options are available after these
commands.

See the break command in the Command Reference for detailed
information.

For example, the following command sets a code breakpoint at the
address specified by function main :

break code main

To set a code breakpoint at a specific source line, you can enter a
breakpoint address in the form: filename#line after the break command,
or you can specify a line number, followed by the b command and any
commands you want to attach to the breakpoint. For example, to set a
code breakpoint at line 51 in your source, enter:

break demo.c#51
or
51b

If you do not specify a line number, a breakpoint will be set at the current
viewing position.

FUNCTION: Set a code breakpoint.
COMMAND: break [code| address |,option)...

FUNCTION: Set a code breakpoint.
COMMAND: [line_number] b [commands)

Breakpoints and Assertions 7-11

To set a data breakpoint, you must specify the break data command,
followed by an address, followed by any commands you want to attach to
the breakpoint. There are three types of data breakpoints:

* A data read breakpoint to see if a variable is read from (break data
adldpress, access_type=r command)

e A data write breakpoint to watch if a variable is written to (break
data address, access_type=w command)

e A data read or write breakpoint to check if a variable is either read
from or written to (break data address, access_type=rw
command)

For example, to set a data breakpoint to watch the lowest byte in memory
of the global variable initval | enter:

break data &initval, access_type=w

This command instructs CrossView Pro to set a data breakpoint that will
halt execution if the program writes to the lowest byte in memory of the
variable initval . Note that you have to specify the variable’s address,
otherwise the variable’s value is used.

FUNCTION: Set a data breakpoint.
COMMAND: break data address [option)...

7.2.1 DATA BREAKPOINTS OVER A RANGE OF
ADDRESSES

You can also use data breakpoints to watch a contiguous range of
memory. As with standard data breakpoints, data breakpoints over a range
of addresses can be set to watch for reading, writing or both. To set a data
breakpoint of this type:

@? Using mouse and menu:

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box.

* Select the data breakpoint you want to edit and click the Edit...
button, or click the Add > button and select Data Breakpoint...

e Specify a start address and click on the Advanced button.

7-12 Chapter 7

=

* Select one of the Type options: break on read, write, read or write.
* Specify an end address. The end address is part of the range.

From the Command Window:

* Type break data address, end_addr=end_address, access_type=r
to set a data read breakpoint over a range.

* Type break data address, end_addr=end _address, access_type=w
to set a data write breakpoint over a range.

* Type break data address, end_addr=end_address,
access_type=rw to set a data breakpoint for both reading and
writing over a range.

)

For example, to ensure that the program stops if any of recordvar ’s
fields are either written to or read from:

break data &recordvar, end_addr=(int) \
&recordvar+sizeof(recordvar)-1, access_type=rw

FUNCTION: Set a data breakpoint over a range of addresses.
COMMAND: break data address, end_addr=end address |[option)...

7.2.2 TEMPORARY BREAKPOINTS

Breakpoints can be: permanent or temporary. A breakpoint exists until it is
manually deleted. A temporary breakpoint is automatically removed by
CrossView Pro after it halts the program once.

To set a temporary breakpoint:

@? Follow these steps:

¢ Open the Source Window by selecting Source | Source lines from
the View menu.

* Open the Breakpoints dialog by selecting Breakpoints... from the
Breakpoints menu.

e Click on the Add > button and select Code Breakpoint...

e Enter an address in the Break At field and click on the Advanced
button.

¢ Enable the Remove when hit check box in the Behavior field.

Breakpoints and Assertions 7-13

* Click on the Continue button in the Source Window when the
program halts. This removes the temporary breakpoint at the
viewing position and the program continues.

e Alternatively, scroll to the line that you want to stop at and click
once (to establish a viewing position). From the Run menu, select
Run to Cursor to continue execution until you reach this
temporary breakpoint.

From the Command Window:

e Type break code address, temporary=true to set a temporary
code breakpoint.

e Type the C command followed by a line number, to set a temporary
breakpoint at a line number.

For example,
Ch51

sets a temporary breakpoint at line 51 and resumes execution at the
current execution position.

FUNCTION: Set a temporary code breakpoint.
COMMAND: break code adldress, temporary=true |,0ption)...

7.2.3 BREAKPOINT NAMES

You can associate a symbolic name with a breakpoint. You can then use
this name with the following commands: break set and break delete.
Breakpoint names must be unique and cannot be a number or the word
"all”. Allowed characters are a-z, A-Z, 0-9 and ’_".

To assign a name to a breakpoint:

@? Follow these steps:

e From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box.

e Select a breakpoint to edit and click on the Edit... button.

e Alternatively, click on the Add > button and select a breakpoint
type to create.

7-14

-~

Chapter 7

* Enter the breakpoint information in the first field, for example an
address.

* Enter a symbolic name in the Name field.

Use the name=name option of the break command in the Command
Window.

For example,
break code 0x1234, name=brk_1

sets a code breakpoint at address 0x1234 with the name brk_1 .

7.2.4 SETTING THE COUNT

CrossView Pro allows you to set a breakpoint’s count. The count defines
how many times you encounter the breakpoint before it halts the program.
For example, a breakpoint with a count of 3 means the program stops on
the third hit. Each time the breakpoint is hit, CrossView Pro decrements
the count. When the count reaches 0, CrossView Pro halts the program,
and resets the count to the value of the reset count. The default reset
count is 1.

To set a breakpoint’s count,

@? Follow these steps:

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box.

* When you add or edit a breakpoint, click on the Advanced button.
* Enter a breakpoint’s count in the Breakpoint count field.
* Enter a reset count in the Reset count field.

From the Command Window,

e Use the count= argument with the break command to set both the
current count and the reset count.

* Use the curr_count= and/or reset_count= arguments with the
break command to set the current count and the reset count
separately.

Breakpoints and Assertions 7-15

For example, suppose you have a breakpoint set at address 0x59 of your
source code. The first time the program halts at address 0x59, enter:

break code 0x59, curr_count=3, reset_count=4

This command sets the breakpoint’s count to 3 and the reset count to 4.
You can observe a breakpoint’s current count and reset count when you
list the breakpoints in the Command Window with the 1 b command.

FUNCTION: Set the count and reset count for a breakpoint.
COMMAND: break 1ype address, count=count

FUNCTION: Set the count and reset count for a breakpoint
separately.

COMMAND: break #ype address, count=count,
reset_count=resel_count

7.2.5 SEQUENCE BREAKPOINTS

A sequence breakpoint is a special kind of breakpoint. Only if other
breakpoints are hit in a specified order, the sequence breakpoint itself will
hit.

To hit a breakpoint without halting the program, the breakpoint in the
sequence must be specified as a Probe point. When a probe point is hit,
the associated commands are executed and program execution is
continued.

When all specified probe points are passed in the logical sequence you
specified, the program stops at the last breakpoint in the sequence.

To set a sequence breakpoint:

@? Follow these steps:

* From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box.

e Click on the Add > button and select Sequence Breakpoint...

7-16

Chapter 7

* Click the Sequence... button to open the Edit Sequence Breakpoint
dialog box.

* Select a breakpoint from the Available Breakpoints list box and
add it to the sequence with the buttons ADD, AND or OR. Use the
NOT button for a breakpoint that should 7ot be passed. All
breakpoints you add to the list must be enabled, otherwise the
sequence breakpoint itself will not hit.

From the Command Window:

e Use the sequence argument of the break command with a list of
breakpoints to specify the sequence.

For example,

break sequence (0)(1 and 3)(2)

In this example, the sequence breakpoint hits when probe point 0 is hit
first, then 1 and 3 are hit in any order, and finally probe point 2 is hit.

FUNCTION: Set a sequence breakpoint.
COMMAND: break sequence sequence [, option)...

7.3 DELETING BREAKPOINTS

You can delete a breakpoint directly from the source code, using the menu
items, or through the Command Window. To see a list of active
breakpoints, select Breakpoints... from the Breakpoints menu or use the
1b command in the Command Window.

To delete a code breakpoint:

Click on the corresponding red breakpoint toggle next to the source line
in the Source Window. This deletes the code breakpoint and the
breakpoint toggle turns green.

@? You can also follow these steps:

e From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. This box contains a remove function.

e Select the Breakpoint from the list.

Breakpoints and Assertions

¢ C(Click the Remove button.

Use the break delete breakpoint_number | name command in the
Command Window. You need to know the breakpoint’s number or name
for this command.

For example, to delete the breakpoint numbered 1, enter:

break delete 1

FUNCTION: Delete a breakpoint.

COMMAND: break delete breakpoint number
break delete breakpoint_name

To clear all the breakpoints in the program, type:

break delete all
Do you want to delete all breakpoints? y

FUNCTION: Delete all breakpoints.
COMMAND: break delete all

7.4 ENABLING/DISABLING BREAKPOINTS

You can enable or disable a breakpoint directly from the source code,
using the menu items, or through the Command Window. To see a list of
active breakpoints, select Breakpoints... from the Breakpoints menu or
use the 1 b command in the Command Window.

To enable or disable a code breakpoint:

@? Follow these steps:

e From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. This box contains an edit function.

On Windows:

* In the list of breakpoints toggle the check box in front of the
breakpoint to enable or disable the breakpoint.

7-17

7-18

Chapter 7

On UNIX:

e Select the breakpoint form the list.

¢ (Click the Enable or Disable button to enable or disable a
breakpoint.

Use the break enable or break disable command in the Command
Window to enable or disable a breakpoint. You need to know the
breakpoint’'s number or name for these commands.

For example, to disable the breakpoint numbered 1, enter:

break disable 1

FUNCTION: Disable a breakpoint.

COMMAND: break disable breakpoint_number
break disable breakpoint_name

To enable the breakpoint numbered 1, enter:

break enable 1

FUNCTION: Enable a breakpoint.

COMMAND: break enable breakpoint_number
break enable breakpoint name

7.5 BREAKPOINT COMMANDS

CrossView Pro allows you to attach commands to code and data
breakpoints. When execution halts at a breakpoint, CrossView Pro

executes the commands. Valid commands are almost any C statements and

CrossView Pro commands, giving you a very powerful tool for
manipulating a debugging session. To do this:

@? Follow these steps:

e From the Breakpoints menu, select Breakpoints... to open the

Breakpoints dialog box.

Breakpoints and Assertions

* Select an existing breakpoint from the list and click on the Edit...
button or click on the Add > button and select a type of breakpoint
you want to add.

* Enter the breakpoint information in the first field, for example an
address.

e Click on the Advanced button. Note that the button is only visible
when there is more information available on the breakpoint.

¢ (Click in the Commands edit area.

* Type in the commands to be executed when the breakpoint is
reached.

@ You do not need to enclose a group of commands in brackets. However,
each individual command must be delimited by a semicolon.

Add Code Breakpoint HE
Break At | Idemo.cﬁSE

Ling: 56 =i Cancel
Name: I Help
Task ID: I vI Standard <<

— Count

Breakpoint count: I1 _,::‘

Reset count: |1 _I;
~Method—————— Behavior

" Hardware Braakpoint [~ Remove when hit

" Software Breakpoint [Probe poirt

& Mo preference
r~ Comrand:

iritval.C =

: _>|J

Figure 7-3: Breakpoint Commandls

Type the commands, enclosed in brackets and delimited by semicolons,
after commands= argument of the break command in the Command
Window.

7-20

Chapter 7

For instance, suppose you want a program to stop at a breakpoint, display
a variable’s value, and resume execution all in one stroke. To perform this
function, you need to attach the appropriate commands to a breakpoint.
Enter:

break code main, commands={initval;C}

This places a breakpoint at address main . When execution stops at the
breakpoint, CrossView Pro displays the value of initval and immediately
resumes execution.

If you enable the Probe point check box, you can omit the C command.
This is done automatically.

You can attach almost any valid CrossView Pro commands or C statement
to breakpoints. This latitude allows you to use breakpoints in powerful
ways. Later on you find out how breakpoints can create patches in your
program.

CrossView Pro does not check the syntax of attached commands until the
breakpoint is hit.

Data breakpoints accept command lists the same way as code breakpoints.
For instance, to set a data breakpoint that monitors the lowest byte in
memory of the value of initval | enter:

break data &initval, access_type=w, commands={initval; C}

Every time the program writes to the lowest byte in memory of the
variable initval | this breakpoint halts the program, prints the value of
initval and continues execution.

For more information on the use of attached commands, see the Patches
and Diagnostic Output and Statistical Information sections later in this
chapter.

Breakpoints and Assertions

7.5.1 ATTACHING CONDITIONALS TO A BREAKPOINT

You can pass standard C conditionals to a breakpoint.
For example:

break code demo.c#63, commands= {if (initval==17) {C}
{initval/n}}

stops the program at line 63, checks to make sure the variable initval is
17, and resumes execution if it is. If initval ~ ’s value does not equal 17,
CrossView Pro prints the value, and the program remains halted.

7.5.2 ATTACHING MACROS TO A BREAKPOINT

+

You can attach any currently defined macro to a breakpoint in a command
list. For example, suppose you define a macro named rg that checks the
value of the variable initval . The command to define this macro is:

set rg "if (initval != 17) {initval/n} {C}”

If the value does not equal 17, the macro prints the value and halts the
program. Otherwise, execution continues.

You can include this macro at any point by attaching it to a breakpoint.
Entering:

break code demo.c#51, commands={rg}
break code demo.c#63, commands={rg}

this is a very efficient way to insert the macro with breakpoints at lines 51
and 63.

For more information on macros, refer to Defining and Using Macros
chapter.

7-21

7-22 Chapter 7

=

7.5.3 ATTACHING STRINGS TO A BREAKPOINT

You can attach strings to a breakpoint’s command list. This feature is
useful for placing comments and reminders within your breakpoints.
Attaching a string to a breakpoint also eliminates the need for diagnostic
printf() statements in your compiled code.

For example, you could place a breakpoint on line 49 such as:
49 b {"Passed line 47\n";C}

Whenever the breakpoint on line 49 is hit, CrossView Pro prints the string
and continues execution.

7.6 SUPPRESSING BREAKPOINT MESSAGES

Whenever a breakpoint is hit, CrossView Pro displays in the Command
Window, the name of the function, line number and file in which the
breakpoint appears. You can suppress this information by setting
breakpoint “silent” mode. In the silent mode, the current location is not
printed out.

To set silent mode you can use the Q (for quiet) command as part of the
command attached to a breakpoint definition.

Pass the Q command to a breakpoint first. For example:
51 b {Q; initval = 5}

stops the program on line 51, but does not print a message stating where
the break occurred.

7.7 UP-LEVEL BREAKPOINTS

Up-level breakpoints are breakpoints set at the entrance and/or exit of
functions. Basically, up-level breakpoints are code breakpoints that are
directly connected to the current HLL stack handling.

To see the current HLL stack, open the Stack Window or enter the t
command in the Command Window.

Breakpoints and Assertions

You can set up-level breakpoints via the Stack Window or in the
Command Window. You cannot set up-level breakpoints in the Source
Window:

Double—click on the function in the Stack Window to install a stack
breakpoint after the function call.

@2 You can also follow these steps:

¢ C(Click on the function in the Stack Window.

¢ From the Breakpoints menu, select either Stack Breakpoint |
After Call to Function or Stack Breakpoint | At Function Entry

You have the option of setting the breakpoint before (function entry) or
after (up-level) a selected function.

@ All breakpoints set through the Stack Window are temporary by default.

To make a breakpoint permanent, select Breakpoints... from the
Breakpoints menu to open the Breakpoints dialog. Select the breakpoint
you want to edit and click on the Edit... button. Click on the Advanced>>
button and disable the Remove when hit check box.

In the Command Window, use the following commands:

Command Function Type
bU Sets breakpoint after call to function temporary
bu Sets breakpoint after call to function permanent
bB Sets breakpoint at beginning of function temporary
bb Sets breakpoint at beginning of function permanent

For example, suppose you have accidentally single-stepped into a
function called factorial() . If you do not want to single step through
the function, an up-level breakpoint can help you. Enter:

buU

7-23

7-24

Chapter 7

The bU command sets a temporary breakpoint after return of the function.
Now, instead of having to single step all the way through the function,
you can start continuous execution, which stops when it hits the new
breakpoint at the function’s return. Note that it makes no difference
whether the function has several possible points of return; the up-level
breakpoint works at all points of return. Note that when the function that
contains the breakpoint is called from one of the functions that are located
below it on the stack, the execution may be stopped before returning at
the desired stack level, for example with recursive functions.

When setting up-level breakpoints from the Command Window, you can
specify how deep in the stack the function’s address is located. For
example, if you are two functions down from the main() program,
enter:

2byU

This command breaks when you return to the top level of the call graph.

FUNCTION: Set a temporary breakpoint after call to function.
COMMAND: [stack] U [commands)

FUNCTION: Set a permanent breakpoint after call to function.
COMMAND: [stack] bu [commands)

FUNCTION: Set a temporary breakpoint at function entry.
COMMAND: [stack] BB [commands)

FUNCTION: Set a permanent breakpoint at function entry.
COMMAND: [stack] bb [commands)

Breakpoints and Assertions 7-25

7.8 PATCHES

A patch is a means of using CrossView Pro to change the execution of
your program without recompiling. Patches involve manipulating
breakpoints to skip code, include code, or replace existing code with new
code.

Basically, a patch is a breakpoint with certain associated commands that
enable you to alter program execution. This capability is a useful
debugging tool.

You can associate the commands used to patch code with a breakpoint
through either the Command Window or through the Commands edit box
in the Breakpoint dialog box. The examples below set breakpoints using
CrossView Pro commands typed in the Command Window. You can also
set breakpoints in the Breakpoints | Breakpoints... dialog. In this case
the commands between the brackets are entered into the Command edit
area.

7.8.1 PATCHING CODE OUT OF A PROGRAM

To patch code out of a program, you can set a breakpoint that changes the
execution position. For instance, suppose you want to patch an infinite
loop out of your source.

78: while (loopvar)

79:

80: sum=sum + 1;
81l }

82:

83. sum=sum +5;

On line 78, place a breakpoint that jumps to line 83, effectively bypassing
the loop. In the Command Window, enter:

78 b {g 83; C}

This creates a breakpoint on line 78 that does nothing more than move the
execution position beyond the loop and issue a C command. Remember
that the breakpoint on line 78 is hit before the C statement on that line
executes.

7-26

=

Chapter 7

7.8.2 PATCHING CODE INTO A PROGRAM

You can also patch code into a program by just including the code in the
breakpoint command. For example, suppose you want to add an equation
with the variable loopvar

78: while (loopvar)

79:

80: sum =sum + 1;
81l }

82:

83: sum =sum + 5;

In the Command Window, enter:
78 b {loopvar = 0;C}

This command halts execution at line 78, adds the statement loopvar=0
to the program, and continues execution.

7.8.3 REPLACING CODE IN A PROGRAM

Finally, you can combine the two techniques described above to replace
code in a program. For instance, suppose you want to replace an infinite
loop with new code.

78: while (loopvar)

79:

80: sum =sum + 1;
81l }

82:

83: sum =sum + 5;

In the Command Window, enter:
78 b {Q; if (Sum<100) {sum++; g 78; C} {g 83; C}}

This command sets a breakpoint that halts execution (quietly) at line 78
and inserts an if statement into the program. If sum is less than 100, sum
increments and line 78 executes again. If sum equals 100, CrossView Pro
moves the execution position to line 83 (beyond the infinite loop) and
resumes execution.

Breakpoints and Assertions 7-27

7.9 DIAGNOSTIC OUTPUT AND STATISTICAL
INFORMATION

Breakpoints with attached commands allow you to report on various
variables while the program executes. In the past, one inefficient method
of tracking variables was to litter code with printf() statements. Using
breakpoints makes that process unnecessary.

For instance, suppose you want to keep track of the variable loopvar at
line 59 of a program. Install a breakpoint with the following command:

59 b {Q; loopvar; C}

The breakpoint halts the program, prints the value of loopvar |, and
resumes execution. The Q command suppresses the listing of where the
break occurred. This breakpoint does not affect the source code and no
recompilation is necessary.

Using special variables, you can also keep statistics about your program,
such as how many times a line of code executes or how many times a
variable is accessed.

For example, suppose you want to know how many times line 60
executes. You must define a special variable to keep track of your
statistical data, and set a breakpoint to accumulate the data for you.

First, define the special variable. In the Command Window, enter:
$test =0

This command defines the special variable $test and sets it to zero. For
convenience, you can also set a breakpoint at the beginning of the
program that initializes $test

Secondly, set a breakpoint at line 60 that increments $test and continues
execution every time the program hits line 60:

60 b {$test++ ; C}

7-28

=

Chapter 7

7.10 ASSERTIONS

An assertion is a collection of debugger commands executed by the
debugger after each program line. When you execute a program using
assertions, the debugger is in assertion mode. Running the debugger in
assertion mode is a way of executing continuous control of certain data.

Using assertions, you can have continuous control of certain data and stop
program execution if any of the set conditions are fulfilled. In this respect,
assertions are similar to data breakpoints. Assertions, however, are more
versatile than data breakpoints. For instance, a data breakpoint can only
detect when a variable is accessed. An assertion, on the other hand, can
check that the variable’s value falls within a certain range. Also, an
assertion can monitor variables whose values are kept in registers.

The default limit for the number of assertions you can define is 16. It is
possible to increase the number of assertions by selecting the
Initialization tab in the File | Options... dialog box. Each individual
assertion can be activated or deactivated. In addition, you can also choose
to suppress all assertions by turning off the global assertion mode.

Opening the Assertions Dialog Box
@? From the Breakpoints menu, select Assertions...

The Assertions dialog box contains scrollable lists of all defined assertions,
and provides functions for defining, activating, suspending, editing and
deleting assertions.

7.10.1 ASSERTION MODE

The debugger is running in assertion mode when there is at least one
active assertion. A program executing in assertion mode is actually being
single-stepped very quickly, to ignore breakpoints. Because the program
is single-stepping, however, it runs significantly slower than at normal
speed.

An Assertion Mode Active checkbox is available that activates all marked
(*) assertions. Clear this option if you want to suspend all assertions
temporarily. To activate marked assertions:

Open the Assertions dialog box and activate all marked assertions by
enabling the Assertion Mode Active check box.

Breakpoints and Assertions

In the Command Window, enter the A command:

e Aa — activates assertion mode
* As — suspends assertion mode
c A — (by itself) toggles the assertion mechanism

The Global Active state activates all assertions. Globally activating the
assertion mode, however, does not change how each assertion is marked.

FUNCTION: Activate assertion mechanism.
COMMAND: Aa

FUNCTION: Suspend assertion mechanism.
COMMAND: As

FUNCTION: Toggle assertion mechanism.
COMMAND: A

7.10.2 DEFINING AN ASSERTION

To define or edit an assertion:

@? Follow these steps:

* From the Breakpoints menu, select Assertions... to open the
Assertions dialog box.

e Click on the New... button to open a text edit dialog box as shown
in figure 7-4 to type in commands.

7-29

7-30

Chapter 7

Aszzertions 2] |

M ocarhimie [e

Mew Aszsertion

Azzertion |d: #O Cancel

i

— Commands Mew...

i (iitval > 17) {at =

it

[VElete

- Help
q b

Help | 0 I Cancel |

ail;

Figure 7-4: Defining Assertions

Use the a command followed by a list of commands.

FUNCTION: Create an assertion.
COMMAND: a commands

Assertions accept standard C statements and certain CrossView Pro
commands as arguments.

An assertion usually contains a conditional. For example, suppose you
want to create an assertion that watches the value of the global variable
initval to see that it’s value does not exceed a certain limit. In this case,
you enter in the Assertion dialog box (or into the Command Window after
the a command):

if (initval > 17) {x}

This command creates an assertion with the condition that if initval
exceeds 17, CrossView Pro halts the program. The {x} is a special
assertion command that tells CrossView Pro to halt the program and return
control to you.

Breakpoints and Assertions

7.10.3 EDITING AN ASSERTION

To edit the contents of an assertion:

@2 Follow these steps:

* From the Breakpoints menu, select Assertions... to open the
Assertions dialog box.

e (Click on the assertion to edit.

* Click on the Edit... button. A text edit dialog box opens allowing
you to edit the assertion. Click on OK or Cancel when finished.

You must delete the specific assertion (section 7.10.5) and define a new
assertion (previous section) with the desired command.

7.10.4 ACTIVATING AND SUSPENDING ASSERTIONS

A particular assertion is either active or suspended. A suspended assertion
does not execute before every line, but it retains its definition.

You may find it helpful to use activate and suspend assertion commands in
conjunction with code breakpoints, since assertions tend to slow the target
program. By attaching commands to a breakpoint to activate and suspend
assertions, you can turn assertions on only for certain sections of code
where a particular value needs checking. This method can dramatically
speed up the program.

@? From the Breakpoints menu, select Assertions... and double-click on
the assertion’s number.

To activate or suspend an assertion from the Command Window, you must
know the assertion’s number. To see a list of assertions and their assigned
numbers:

e Enter 1 a, the list assertions command, in the Command Window.
To activate an assertion:
* Enter assertion_number a a command. For example:

2aa activates assertion 2

7-31

7-32 Chapter 7

To suspend an assertion:
* Enter the assertion_number a s command. For example:

2as suspends assertion 2

FUNCTION: Activate an assertion.

COMMAND: assertion_number a a

FUNCTION: Suspend an assertion.

COMMAND: assertion_number a s

7.10.5 DELETING ASSERTIONS

Deleting an assertion removes its definition. It is important to note the
difference between suspending an assertion and deleting an assertion:
deleting an assertion removes its definition for good, while suspending it
retains the definition but prevents its execution.

@? Follow these steps:

* From the Breakpoints menu, select Assertions... to open the
Assertions dialog box.

¢ Click on the assertion to delete.
¢ C(Click the Delete button. Click on OK or Cancel when finished.

e List the assertion numbers with 1a command in the Command
Window.

* In the Command Window, enter the assertion number followed by
the a d command. For example:

2ad Deletes assertion 2.

FUNCTION: Delete an assertion.
COMMAND: assertion_number ad

Breakpoints and Assertions 7-33

7.10.6 USING ASSERTIONS

You can use assertions for almost any type of debugging task. For
example, if you want to check the value of a global variable,

global_val | during the execution of a certain function, f() . A data
breakpoint or a straightforward CrossView Pro assertion does not suffice
for this task since there is no way to make either method limited to that
function’s code range. The solution lies in creating an assertion that is
active only over a specific range of lines. In this case, you could solve
your problem with the following steps:

110: void f(void)

111: {

112: if (global_flag)
113: {

114: ++global_val,
115: }

116: else

117: {

118: global_val = g();
119:

120: }

@2 Using the mouse and menu:

1. From the Breakpoints menu, select Assertions... to open the Assertions
dialog box.

2. Click on the New... button.
3. Set up the assertion to check the value of global_val . Enter:
if (global_val == 17) {x}

This assertion halts program execution if the value of global_val equals
17.

4. From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Code
Breakpoint...

5. We want to establish a breakpoint at line 112, the first line of the function
f() and attach commands to the breakpoint to activate assertion mode
and continue execution. Change the Line number to 112. Click in the
Command edit area and enter:

7-34

=

0.

Chapter 7

Aa;C Activate the assertion and continue.

Create an assertion whose only function is to check that the current line
number is still valid for assertion mode. To do this, use the reserved
special variable $LINE , which contains the line number of the current
execution position. In the Assertions dialog box, click on New... and
enter:

if (SLINE >= 120) {A s; 1 x; C}

If the line number exceeds 120, the program is about to leave the function
f() and CrossView Pro deactivates assertion mode. Normally, the x
command would make the program stop, but the non-zero value tells
CrossView Pro to execute the rest of the commands in the list, in this case,
C for continue.

You must enter all commands in the Command Window.
First set up the assertion you want:
a if (global_val == 17) {x}

Now set a breakpoint on the first line of the function factorial() that
will activate assertion mode, and continue execution:

110 b{A a; C}

Now create an assertion that does nothing but make sure that the current
line number is still valid for assertion mode. If the line number exceeds
120, you know you have left the function f() and assertion mode should
be suspended.

aif (SLINE >= 120) {A s; 1 x; C}

$LINE is a reserved special variable that CrossView Pro maintains
containing the number of the line currently executing. If it becomes equal
to 120, assertion mode is turned off. Normally, the x would make the
program stop, but the non-zero value 1 tells CrossView Pro to execute the
rest of the commands in the list, in this case, C for continue.

In this manner you have created an assertion that is only active over a
limited range of source lines.

Breakpoints and Assertions 7-35

7.10.7 GATHERING STATISTICS WITH ASSERTIONS

You can also use assertions to gather statistics about your code. For
instance, you can find out how many lines of C code execute in a
particular session:

a {$numlines++}

$numlines is a user—defined special variable that increments on each line
of C code. When the program stops, type:

$numlines

and CrossView Pro gives the result. To start again, you may want to
re—initialize $numlines to zero:

$numlines =0

Or just set a breakpoint on the first line of code to do the same.

7-36

Chapter 7

L

SNOILH3SSY ANV SINIOdMVIHS

DEFINING AND
USING MACROS

al TASKING [

d31dVHO

Defining and Using Macros

8.1 CROSSVIEW PRO MACROS

A macro is a user—created shorthand for any sequence of CrossView Pro
or C commands and expressions. Macros allow you to debug more
efficient when using CrossView Pro by substituting a short string for a
longer combination of words and evaluators.

You can use a macro anywhere an CrossView Pro or C expression is valid:
in a breakpoint’s command list, with assertions, from the keyboard, among
other places. CrossView Pro also allows you to save macro definitions, so
they are always available. By passing parameters to a macro, you can
create powerful and flexible macros to debug your code more efficiently.

You can use macros in the Command Window, or connect them to the
graphic interface in a feature called the toolbox. You can have this toolbox
visible as a CrossView Pro window and use it to execute a macro by
clicking a button. You control which macros have corresponding buttons,
making the toolbox easy to adapt to different situations.

8.2 DEFINING MACROS

You can create as many macros as you want:

From the Tools menu, select Macro Definitions... to open the Macro
Definitions dialog box and click on the New... button.

Macro Definitions 2]

—Maemo
Macros: Commands:

| |

Hew Macio [2]x]

Macro name: IIoopvar

Command

j 78 b ([loopvar=0;] ;I

—File

Cuurrent file: ¥
4 ¥
™ Autcload I
| Help | akK | Cancel
Load...

Help | 0K | Cancel |

Figure 8-1: Macro Definitions

&

Chapter 8

In the Command Window, use the set command followed by the macro’s
invocation name and the list of commands. Note that the list of commands
must be in (double) quotation marks. For example, the command:

set st e main; R”

creates a macro call st that tells CrossView Pro to change the viewing
position to be the first executable line in the function main() and restart
the program from the beginning. Each time you enter st in the Command
Window, CrossView Pro substitutes the lengthier list of commands in the
definition.

FUNCTION: Create a macro.
COMMAND: set name “commands”

Note that there is no rule that the macro definition must be shorter than
the commands it represents. For instance, you could substitute break for
the b command, to make CrossView Pro’s command language more
expressive:

set break "b”
Now instead of typing 74 b to set a breakpoint, you can also type:
74 break

Macros defined using either the command line or the graphic interface are
accessible both from the Command Window and the Toolbox.

Macros may call other macros, so it is possible to use simple macros as
building blocks for more complex functionality. No macro, however, can
call itself, or another macro that refers to the calling macro, since this type
of action results in infinite recursion.

Because of the order in which CrossView Pro parses statements, you may
not use the CrossView Pro commands # or % in a macro.

Defining and Using Macros

8.2.1 LISTING MACROS

@? From the Tools menu, select Macro Definitions... to open the Macro
Definitions dialog box. This dialog box contains a scrollable list of the
macros.

To see the current definition of a macro:

@? Follow these steps:

e From the Tools menu, select Macro Definitions... to open the
Macro Definitions dialog box.

e Click on the macro that you want to see.

* The Commands box shows (a part of) the macro. If you need to see
more, click on the Edit... button.

Type the echo name command in the Command Window. For instance, to
see the definition for the st macro:

echo st Command.
e main; C 56 Output.

FUNCTION: Display macro expansion.
COMMAND: echo name

8.2.2 REDEFINING A MACRO

If you want to change the definition of a macro:

@? From the Tools menu, select Macro Definitions... to open the Macro
Definitions dialog box. Click on the name of the macro you want to
change and click on the Edit... button.

In the Command Window, use the set command again, but enter an
exclamation point after the macro name. For instance, to redefine the
macro st , which was defined in the example above, use the command:

set st! "e main; C 56"

8-5

8-6 Chapter 8

Now, the st macro changes the viewing position and restarts program
execution, placing a temporary breakpoint at line 56. Be sure you do not
include a space before the exclamation point. Otherwise, CrossView Pro
may interpret the ! as the C “not” operator.

8.2.3 SAVING MACRO DEFINITIONS TO A FILE

You can save all the macros you define in a debugging session in an
external file. This way, you do not lose the definitions when the program
ends.

To save macros to an external file:

@? Follow these steps:

e From the Tools menu, select Macro Definitions... to open the
Macro Definitions dialog box.

e Click on the Save as... button. A Save Macro File dialog box opens.

* If you want to save a file previously opened, click on the Save
button. This saves the file without opening the Save Macro File
dialog box.

* Alternatively, you can use the Autosave check box. When
Autosave is checked, all macros are saved in the ’current file’ when
you leave CrossView Pro.

saves your macros to the file of your choice. For instance:

save macro.mac writes all your macros to macro.mac

FUNCTION: Save macros to a file.
COMMAND: save filename

Defining and Using Macros

8.2.4 LOADING MACRO DEFINITIONS FROM A FILE

You can load saved macros anytime you want to re-use a definition. There
is no limit to the number of times you can load macros.

To load a macro file:

@2 Follow these steps:

e From the Tools menu, select Macro Definitions... to open the
Macro Definitions dialog box.

e Click on the Load... button and select the macro file you want to
load.

* Alternatively, you can use the Autoload check box. When
Autoload is checked, the macros saved in the ’current file’ are
loaded at startup.

To reinstate your macro definitions from the Command Window, use:
< filename.mac

You must load a program before you can read a macro definition file.
Autoload will be ignored when the Execute these settings at
CrossView startup check box in the Load Symbolic Debug Info dialog
box is not checked.

For more information on record and playback functions, see the next
chapter, Command Recording & Playback.

87

8-8 Chapter 8

8.2.5 DELETING MACROS

To delete a specific macro:

@2 Follow these steps:

e From the Tools menu, select Macro Definitions... to open the
Macro Definitions dialog box.

* Highlight the name of the macro.

e Click on the Delete button. To delete all the macro definitions at
the same time, click on the Delete All button. CrossView Pro
prompts you for confirmation.

Type the unset command in the Command Window. For example, to
remove the st macro, enter:

unset st!

When you are removing a macro definition in this manner, you must place
an exclamation point after the macro name to prevent CrossView Pro from
expanding the name to its full macro definition. To update your macro
definition files, issue a save command after using unset.

You can remove all existing macro definitions by entering the unset
command by itself. CrossView Pro prompts you for confirmation before
deleting the macros:

unset
Do you want to delete all macros? y

FUNCTION: Delete a macro.
COMMAND: unset name!

Defining and Using Macros

8.3 MACRO PARAMETERS

Macros can accept arguments. Parameters are labelled sequentially in a
macro definition: $1, $2, $3, etc. Note that $0 has no meaning. When
you invoke a macro with parameters, enclose the parameters with
parentheses and separate them with commas.

CrossView Pro macros can accept any number of parameters, so it is
possible to create very complex command shortcuts. You may use any
type of parameter when defining a macro, including integers, strings, or
addresses. Note, however, that you must pass the macro the correct type at
invocation.

For instance, suppose you want to set a detailed breakpoint on any
number of lines and a parameter is to specify each line number on which
to install a breakpoint. Defining a macro named brk , type in the Macro
Definitions dialog box:

$1 b {Q; initval; recordvar.a; if (initval > 1) {C}}
or type in the Command Window:

set brk "$1 b {Q; initval; recordvar.a; if (initval >

D{cy

In this case, the argument $1 represents the intended line number. To use
the brk macro, type:

brk(72) From the Command Window

CrossView Pro replaces every instance of $1 with the value 72. For this
example, that means a breakpoint is set at line 72.

8-10

=

Chapter 8

8.4 REDEFINING EXISTING CROSSVIEW PRO

&

COMMANDS

Using macros, you can even redefine an existing CrossView Pro command.

For instance, you could redefine the breakpoint command b to always
place a breakpoint at line 72 of your source code. To do this, enter the
command:

setb "72 b!”
CrossView Pro now interprets the b command as 72 b .

The exclamation point in the definition is necessary to prevent infinite
recursion. It tells CrossView Pro to take the command literally and to not
expand it into a macro definition. For example:

66 b!

CrossView Pro interprets this command as the standard breakpoint
command and places a breakpoint at line 66, despite the macro definition
for b.

Be sure not to have any space between the command and the exclamation
point. Otherwise CrossView Pro may interpret the ! as the C not operator.

Defining and Using Macros

8.5 USING THE TOOLBOX

The CrossView Pro toolbox, shown in figure 8-2, is controlled from the
View menu. Using the Tools menu, you can configure the toolbox and
define the macros for it. You can resize the toolbox to the size you want.

#: Toolbox =

Del®lBrk

b ain

Ferin

Reset

Fieturn

Figure 8-2: CrossView Pro Toolbox

8.5.1 OPENING THE TOOLBOX

To open the toolbox:
@2 From the View menu, select Toolbox.

@ The Toolbox is a pop—up window that remains on top of the CrossView
Pro Desktop while you work in other windows.

8.5.2 CONNECTING MACROS TO THE TOOLBOX

To configure the toolbox, select Toolbox Setup... from the Tools menu to

view the Toolbox Setup dialog box, shown in figure 8-3. This dialog box
displays the toolbox buttons and an alphabetized list of the current macro
definitions.

To connect a macro to a toolbox button:

@2 Follow these steps:

* Click on the button you wish to change
* Scroll through the macro list to highlight the desired function

8-11

8-12 Chapter 8

* Click on the Assign button or press the Enter key

Note that double clicking on the macro name in the alphabetized list
performs the third step automatically. The name of the new function
appears on the selected button and the connection is performed.

Toolbox Setup K E
Macros: Buttons:
DelalBrk = DeltlBik ok |
[SET
Rerun [LET
Reszet Cancel |
Rerun

Fieset Clear |

Feturn

Help |
[

Figure 8-3: Setting Up the Toolbox

@ Do not assign parameterized macros to the toolbox since there is no way
to pass in parameter values.

To delete a macro definition from the toolbox:

@? Follow these steps:

From the Tools menu, select Toolbox Setup... to open the
Toolbox Setup dialog box.

e Select the desired button.
¢ C(Click Clear.

This deletes the macro definition from the toolbox.

COMMAND
RECORDING &
PLAYBACK

al TASKING [

d31dVHO

Command Recording & Playback

9.1 RECORDING COMMANDS

CrossView Pro lets you save a series of CrossView Pro commands to the

file of your choice. This is record mode. You can re-load a saved file to
repeat parts of debugging tasks or replay a debugging session (up to the
point where you left the last time).

Record mode means that all CrossView Pro commands from the keyboard,
mouse or menu are recorded to a disk file. The debugger can read this file
and execute the commands as if they were entered into the Command
Window. This is called playback mode, see more about playback mode
later in this chapter.

@ Record and playback modes can never be active at the same time.

You can record CrossView Pro commands and/or Emulator commands.
When recording on CrossView Pro command level, all commands that you
type in the Command Window, as well as the CrossView Pro command
language equivalents of dialog actions and menu selections are saved in a
file. When you (also) want to record commands entered in the Emulator
Command Window, you can record them in a separate dialog or combine
them with the CrossView Pro commands.

From the Command Window you control record mode using either the
mouse or keyboard commands. To start or setup recording:

@? From the menu system:

From the Tools menu, select Record | CrossView... to open the
Record CrossView dialog box, or select Record | Emulator... to
open the Record Emulator dialog box.

The Record dialog box contains an Automatically at CrossView
startup check box. If you select this check box the debugger enters
record mode at every startup.

¢ Enter the name of the file in the Command file: edit field, or click
on the Browse... button to select an existing file. The default
filename extension is .cmd .

e Optionally, select Include emulator commands in the Record
CrossView dialog. In this case all recorded emulator commands are
also recorded, preceded by the "0” command.

* Click on the OK button to save the current settings into the
initialization file xvw.ini for following debugging sessions.

* Click on the Start button to start recording.

Chapter 9

Enter the > command with the name of the file to start recording. For

example, enter:

>session.cmd

After you invoke this command, CrossView Pro saves every executed
command, whether using the mouse or manually typed into the Command
Window, to the file session.cmd

FUNCTION: Save CrossView Pro commands to a file.

COMMAND: >filename

FUNCTION: Save CrossView Pro commands to a file and force
flushing.

COMMAND: Slfilename

FUNCTION: Save CrossView Pro and emulator commands to a file.

COMMAND: >@filename

FUNCTION: Save emulator commands to a file.

COMMAND: >#filename

9.1.1 ENTERING COMMENTS

Every command, whether typed into the Command Window or the result
of a mouse or menu action goes into the recording file. To add comments
to a file recording CrossView Pro commands, enclose text typed in the
Command Window with C comments delimiters, “/*” and “*/”. When
logging emulator commands, refer to your emulator documentation for the
appropriate comment characters.

Command Recording & Playback

9.1.2 SUSPEND RECORDING

This function acts like the pause button on a tape recorder: the recording
mechanism stays in place, but suspends temporarily. CrossView Pro does
not save to file any commands you enter while you suspend recording,
but the file remains open and ready to accept input. To suspend
recording:

@? From the Tools menu, select Record | CrossView... or select Record |
Emulator... Click on the Suspend button.

In the Command Window, use the >f o >#f command (for “false”).

FUNCTION: Suspend recording CrossView Pro commands.
COMMAND: >f

FUNCTION: Suspend recording emulator commands.

COMMAND: >#f

9.1.3 RESUME RECORDING

This function is the counterpart of the suspend recording function.
CrossView Pro resumes adding commands to the current record file. Any
new command you enter appears in the file; they do not affect the
commands already saved.

@? From the Tools menu, select Record | CrossView... or select Record |
Emulator... Click on the Resume button to resume recording.

In the Command Window, use the >t or >#t command (for “true”).

FUNCTION: Resume recording CrossView Pro commands.

COMMAND: >t

9-6 Chapter 9

=

FUNCTION: Resume recording emulator commands.

COMMAND: >Ht

9.1.4 CHECK RECORDING STATUS

If at any point you do not remember whether recording is on or off, check
by:

@? From the Tools menu, select Record | CrossView... or select Record |
Emulator... If record mode is active, the Stop button is enabled. If the
Start and OK buttons are enabled, record mode is off.

This command shows the status of the recording and logging mechanism.
For example, if you enter > you might see:

>
Output logging is OFF

Command recording is ON

Emulator command recording is OFF
Target communication logging is OFF

The > command gives you the status for the different recording
mechanisms. Output logging and target communication logging are
described below.

9.1.5 CLOSE FILE FOR RECORDING

Closing a file for recording differs from suspending recording in that when
you close a file, you may not add any more commands to it. If you were
to start recording again using the same filename, the old commands in the
file would be deleted. (Note that this does not exclude editing the file
manually by some other means, since the file is saved as ASCII text.)

@? From the Tools menu, select Record | CrossView... or select Record |
Emulator... Click on the Stop button to stop recording.

Command Recording & Playback

Enter the >c or >#c command to close the file.

FUNCTION: Close command recording file.
COMMAND: >c

FUNCTION: Close emulator command recording file.

COMMAND: >#c

9.1.6 COMMAND RECORDING EXAMPLE

For example, consider the following command sequence (from the
Command Window):

>session.cmd ————— Start Recording to File
initval
p 12
————— Carriage Return
>f ————— Suspend Recording
b
sum
>t ————— Resume Recording
[* This is a comment! */
>C

This series starts with a command to record to a file named session.cmd
The blank line above represents a carriage return. After the last command,
¢, if you were to view this file, it contains:

initval
p 12
/* This is a comment! */

The saved command file contains simply the commands, without any
output. Note that commands entered while recording was suspended (1 b
and sum) do not appear in the file. Carriage returns are not recognized as
commands.

9-7

9-8

=

Chapter 9

9.2 PLAYING BACK COMMAND FILES

&

&

3.

Once you have recorded a set of CrossView Pro commands, you can play
them back to recreate a debugging session or repeat often—used
sequences. Running the debugger while reading commands from a file is
playback mode.

Remember that for a file to be played back, it can only contain CrossView
Pro or emulator commands. For this reason, screen output files cannot be
used in playback mode. Refer to the Recording Commands section earlier
in this chapter for more information.

As with recording, the Command Window controls playback mode. To
playback a command file:

Follow these steps:

From the Tools menu, select Playback | CrossView... to open the
CrossView Playback dialog box, or select Playback | Emulator... to open
the Emulator Playback dialog box.

You can choose to playback either CrossView Pro commands or Emulator
commands. Open the Emulator Command Window if the playback file
contains commands sent directly to your emulator.

Type the playback filename or use the Browse... button to select the file.
The default filename extension is .cmd .

In the Playback dialog box, you have two additional options: Playback at
XVW startup and Continuous playback. CrossView Pro enters playback
mode automatically when you start the debugger if you click on the
Playback at XVW startup check box in the Playback dialog box. The
entire playback file executes if you enable the Continuous playback
check box.

Click on the Execute button to start the playback.

In the Command Window, use the < or << filename command to
playback CrossView Pro commands.

On the command line of CrossView Pro give the option -T filename to
start CrossView Pro in transparency mode and playback emulator
commands. This is not available for all execution environments.

Command Recording & Playback

9.2.1 SETTING THE TYPE OF PLAYBACK

@? Enable the Continuous playback check box in the CrossView Playback
dialog box to turn on continuous play back of commands.

In the Command Window, there are two commands for the type of
playback. The < filename command starts playback. Commands are read
from a file and executed without any stop. For example:

<session.cmd load and execute all the commands

time, similar to single-stepping through code. For example:
<<session.cmd read a command from the file.

Clicking the Execute button or pressing the Enter key executes the next
command.

FUNCTION: Play back a file of CrossView Pro commands.
COMMAND: <filename

FUNCTION: Play back a file of CrossView Pro commands, one
command at a time.

COMMAND: <<filename

9.2.2 CALLING OTHER PLAYBACK FILES

A playback file can call another playback file in the course of its
execution.

When CrossView Pro creates a command file, it saves all commands in
their textual form, whether entered by the mouse or as text. You must edit
this file to use the < and << commands.

When the debugger reaches a < or << command in a playback file,
playback execution switches to the new file, but does not return to the
original file. In other words, you chain playback files but not nest them.

9-10 Chapter 9

=

9.2.3 QUITTING PLAYBACK MODE

Playback mode stops automatically when CrossView Pro reaches the end
of the command file. If you want to end playback mode before this point,
click the Halt button.

9.3 COMMAND LINE BATCH PROCESSING

CrossView Pro supports command line batch file processing, but
CrossView Pro will halt if a modal dialog is encountered or if the target
program contains an endless loop. The command line option
——timeout=r2_seconds switches CrossView Pro to a different mode of
operation, without the two drawbacks mentioned above.

In order to process files in batch mode you have to do the following:
1. Create a temporary directory.

2. Start CrossView Pro from this temporary directory. For Windows
95/98/XP/NT/2000 you can create a separate icon or shortcut to start
CrossView Pro, which has the working directory (Start in:) set to the
temporary directory.

3. Close all CrossView Pro windows except the Command Window.
4. Exit CrossView Pro (with Save desktop and target settings enabled).
You now have generated an xvw.ini file with minimal GUI overhead.

5. Save the xvw.ini file and remove the temporary directory.

For each batch run of CrossView Pro you have to do the following:
1. Create a temporary directory.
2. Copy the saved xvw.ini file to the temporary directory.

3. Create a command file in the temporary directory.

Command Recording & Playback 9-11

The following command file session.cmd loads the .abs file,
downloads the code, runs the code and exits.

N hello.abs load the symbols

dn download the program

__exithi set a breakpoint at the exit point

R run the program

$pc optional: show the program counter
qy exit CrossView Pro

where hello.c contains

#include <stdio.h>
void main()

printf("Hello World\n");
}

4. Copy the .abs file to the temporary directory. This is needed because
CrossView Pro changes its working directory when the N command is
used.

5. The following line executes CrossView Pro in batch mode and waits for it
to finish:

Windows 95/98/XP/NT/2000:

start /wait c:\c68k\bin\xfw68 —timeout=120 —tcfg sim.cfg
—p session.cmd —R session.log

UNIX:
xfw68 —timeout=120 —tcfg sim.cfg —p session.cmd —R session.log

This command must be issued in the temporary directory! After the
execution has ended, the file session.log contains a transcript of the
commands.

6. Save the output files and clean up (or remove) the temporary directory.
This must be done because the xvw.ini file has been modified now. If
CrossView Pro would be started again in the temporary directory, the file
session.cmd would be executed again.

The —-timeout=rn_seconds command activates the batch operation mode
of CrossView Pro. It causes CrossView Pro to terminate when the specified
amount of time has elapsed, which is crucial in batch processing: if a

9-12

Chapter 9

program does not terminate, the timeout will terminate CrossView Pro, so
that the next program in the batch can be executed. CrossView Pro will
also terminate in the batch mode if a modal dialog pops up, since this
requires user interaction to continue. Before CrossView Pro exits, the text
in the dialog will be written to the log file. A special case of this dialog is
the ’End of program reached " dialog. For this reason, the line __exit
bi has to be added to the .cmd file, so it is possible to do some things
(for example, read registers modified by a machine code program) after
the program is finished. If the breakpoint at __exit is absent, CrossView
Pro immediately exits after having executed the R command, so any
consecutive commands will be ignored.

9.4 LOGGING

Logging means that all output text to a particular window is saved in a file
for later use. Two windows allow logging:

e Command Output Window
(upper part of the CrossView Command Window)

e Emulator Output Window
(upper part of the Emulator Command Window)

"GDI Accesses” can also be logged. This is the information transferred
between CrossView Pro and the Debug Instrument (DI).

You can control logging from the Tools menu or from the Command
Window.

You can also determine the status of each logging function:

From Tools menu, select Log | Command Input/ Output..., Log |
CrossView-Emulator I/O... or Log | CrossView-GDI Accesses...

If a logging function is is active, the Stop button is enabled. If the Start
and OK buttons are enabled, logging is off.

Enter the >> , >& or >* command in the Command Window.

Each type of logging is described in the following section.

Command Recording & Playback

@ The Emulator Output Window is primarily a diagnostic tool. It should be

used wisely, since it generates substantial amounts of output, the format of
which is emulator dependent. For emulators that have an ASCII interface,
the actual command/response dialogue will be displayed. For emulators
with a binary interface, CrossView Pro will generate a record of function
calls with their associated input and output parameters. This also applies
to the GDI Accesses output logging.

9.4.1 SETTING UP LOGGING

To setup logging:

@? From the menu system:

From Tools menu, select Log | Command Input/ Output..., Log
| CrossView-Emulator I/O... or Log | CrossView-GDI
Accesses... to open the appropriate dialog box.

* Type in the name of the log file or use the Browse... button to
select a filename. The default filename extension is .log

Each Log dialog box has an Automatically at CrossView startup
check box. This check box instructs CrossView Pro to start
recording the output of a particular window or information stream
upon starting up of CrossView Pro.

e Click on the OK button to save the current settings into the
initialization file xvw.ini for following debugging sessions.

* Click on the Start button to start logging.

You can open up a log file for CrossView Command Output by using the
>> filename command as in:

>>screen.log
You can force flushing by using the >>! filename command as in:

>>lscreen.log

You can open up a log file for Emulator Output by using the >& filename
command as in:

>&target.log

9-13

9-14 Chapter 9

=

You can force flushing by using the >&! filename command as in:

><arget.log

You can open up a log file for GDI accesses output logging by using the
>* filename command as in:

>*gdi.log
You can force flushing by using the > filename command as in:

>*Igdi.log

FUNCTION: Save CrossView Pro commands and command window
output to a file.

COMMAND: >>filename

FUNCTION: Force flushing of CrossView Pro commands and
command window output to a file.

COMMAND: >>lfilename

FUNCTION: Log target communications.
COMMAND: >&filename

FUNCTION: Force flushing of target communication logging.
COMMAND: >&!filename

FUNCTION: Log GDI accesses.
COMMAND: >*filename

Command Recording & Playback 9-15

FUNCTION: Force flushing of GDI accesses logging.
COMMAND: >Hfilename

9.4.2 RECORDING COMMANDS AND LOGGING SCREEN
OUTPUT

It is possible to have command recording, command output logging and
target communication logging on at the same time. That is, you can have
one file recording just the CrossView Pro commands, and another file
concurrently recording both the commands and the computer responses.
Refer to the previous section for information on command record files.

Since the Command Window log file contains both your commands and
the computer responses, you cannot use it in playback mode.

9.4.3 COMMAND WINDOW LOG FILE EXAMPLE

For example, if you entered the following commands:

>>screen.log
initval
la

The output file, screen.log , contains:
> initval
initval = 0

>la
no assertions

9.4.4 SUSPENDING AND RESUMING OUTPUT LOG

You can resume and suspend the Logging process from the menu or from
the Command Window:

@? From Tools menu, select Log | Command Input/ Output..., Log |
CrossView-Emulator I/0... or Log | CrossView-GDI Accesses... tO
select the appropriate dialog box.

9-16 Chapter 9

=

To suspend logging:

@? Click on the Suspend button.

In the Command Window, use the >>f command for suspending the
logging of the Command Output Window. Type >&f to suspend the
Emulator Output Window. Type >*f to suspend GDI accesses logging.
After you issue this command, CrossView Pro does not save all subsequent
commands and their computer responses.

To resume logging:
@z Click on the Resume button.

In the Command Window, use the >>t command to resume logging the
Command Output Window. Type >&t to resume the Emulator Output
Window. Type >* to resume GDI accesses logging. After you issue this
command, CrossView Pro saves all subsequent commands and their
computer responses.

FUNCTION: Suspend output logging (logging is false).
COMMAND: >>f

FUNCTION: Resume output logging (logging is true).
COMMAND: >>t

FUNCTION: Suspend target logging (logging is false).
COMMAND: >&f

FUNCTION: Resume target logging (logging is true).
COMMAND: >&t

Command Recording & Playback

FUNCTION: Suspend GDI acesses logging (logging is false).
COMMAND: >#f

FUNCTION: Resume GDI acesses logging (logging is true).
COMMAND: >

9.4.5 CLOSING THE OUTPUT LOG FILE

To close the output file:

@Z From Tools menu, select Log | Command Input/ Output..., Log |
CrossView-Emulator I/0... or Log | CrossView-GDI Accesses... (0
select the appropriate dialog box. Click on the Stop button to stop

logging.

Command Output and Emulator Output log files. These commands end
the recording for the currently specified output log file.

FUNCTION: Close output log file.
COMMAND: >>C

FUNCTION: Close target log file.
COMMAND: >&c

9-17

9-18 Chapter 9

=

9.5 STARTUP OPTIONS

When starting up CrossView Pro you may immediately start recording or
playing back files. For instance,

xfw68 fact —p session

plays back the commands in the file session . A -P option single-steps
through each command, prompting you for a return after each command.
You can also start recording:

xfw68 fact —r session

This command records all your commands (just like the > command) to
the file session , while:

xfw68 fact —R session

logs your commands and screen output to the file session (just like the >>
command).

You can also use the Automatically at CrossView startup option in the
Record, Playback, and Log dialogs to immediately start recording, playback
or logging at CrossView Pro startup.

@? You can also enter record and playback files via EDE. From the Project
menu, select Project Options... Expand the CrossView Pro entry and
select Logging. Enter your record and playback filenames.

Command Recording & Playback 9-19

9.6 CROSSVIEW PRO COMMAND HISTORY
MECHANISM

CrossView Pro stores the command history in the list box of the Command
Window.

You can select a command from the history list by clicking on it or
jumping with the <Tab> key to the history listing and using the arrow
keys.. The command appears in the edit field of the Command Window.
You may edit the command if you want.

To execute the command, click on the Execute button.

If you do not want to edit the command, double—click on the selected
command in the list box to execute the command, or hit the <Return>
key.

Chapter 9

9-20

AIVEAV1d B A40034

/O SIMULATION

al TASKING [

d31dVHO

10

I/O Simulation 10-3

10.1 INTRODUCTION

The CrossView Pro Terminal windows provide an interface to exchange
data with the application on the target. You can use the following 1/O
simulation types for this purpose.

File I/O (FIO)

With File I/O you can connect actions to a probe point. Probe points are
breakpoints that do not update the graphical user interface (GUI) and
when they are hit, connected actions are performed and execution
continues. The actions are in this case I/O actions to a file and/or a
terminal window.

File System Simulation (FSS)

With FSS you can use standard stream I/O function calls like printf() in
your source, to test I/O to and from the target system or simulator.

Debug Instrument 1/0 (DIO)

If you have a debug instrument that supports it, the debug instrument can
perform input and output using GDI callback functions.

10.2 1/0 STREAMS

You can setup I/0 streams with the I/O Simulation Setup dialog. There is
virtually no limit on the number of streams that can be opened or created.
Each type of I/O stream (FIO, FSS, DIO) has its own numbering:

FIO 0,1,2,....k
FSS 0,1,2,...,m
DIO 0,1,2,....n

You can map multiple streams to one terminal window.

For File I/O you can use the ios_ commands to open or close a FIO
stream on the command line. Streams can be opened manually or are
opened at the first call or operation that accesses a specified I/O stream
(for Debug Instrument I/O handling). For FSS the target application can
open streams with open() calls and close streams with close() calls.

10-4

Chapter 10

Streams can be mapped to a terminal window and/or a file that is NOT the
terminal log file. If a stream is mapped to a terminal window and a file the
output will go to the terminal window and also to the file. In case of input
the input will be read from the file. The read input will be echoed on the
connected terminal window.

I/0 streams opened by FSS are closed when end of program is reached or
if a program reset occurs. I/O streams opened by CrossView Pro will be
rewound. The windows to which the streams are mapped remain open.

In the I/O Simulation Setup dialog you can connect an I/O stream to a
terminal window before the stream is opened by specifying the stream
type, filename and terminal window name.

10.2.1 SETTING UP FILE 1/O STREAMS

You can set up an input or output stream. For input you may specify
either a file or the keyboard, for output either a file or the screen. Each
stream has its own identifying number.

You can also specify the format of the stream’s values. The default is
character, but you may want to use hexadecimal or octal values when
directing data to or from a file.

To setup a File I/O stream:

@2 From the menu system:

From the Settings menu, select I/O Simulation Setup... to open
the I/O Simulation Setup dialog box.

* Open the File I/O tab to setup a File I/O stream.

* Select the Configure... button. This opens the File I/O
Configuration dialog.

* In the Probe point list box, select an existing probe point or press
the New... button to set a new probe point. The Breakpoints dialog
appears.

* In the Stream list box, select a stream or press the New... button to
create a new stream. Select a new stream and click OK.

* Enter the Address and Length (in minimum addresable units,
MAU) of the memory location you want to read from or write to.

e Optionally, enable the Use hexadecimal format check box when
you want the data to be interpreted as a hexadecimal value.

I/O Simulation 10-5

* Choose the Direction: Input if the stream must provide input to the
application, or Output if the stream must be an output stream.

* Click on the Apply button to accept the contents and enter another
configuration or click on the OK button to close this dialog box.

open a File I/O stream.

FUNCTION: Open a File I/O stream
COMMAND: ios_open ["file”[,[mode][,[t][,$xvw_variable]])|

FUNCTION: Open a File I/O stream and map the stream to a
terminal window

COMMAND: ios_wopen [["terminal_window”|[,$xvw_variable]|

Enter the ios_read or ios_write command in the Command Window to
read from or write to a File I/O stream.

FUNCTION: Read from a File 1/O stream

COMMAND: ios_read {stream | *file”}address,number_of maus|,x|

FUNCTION: Write to a File I/O stream

COMMAND: ios_write {stream | “file”}address,number of maus|,x|

To read 1 MAU hexadecimal value from file mydata.dat and store it at
address 0x100, type:

ios_read "mydata.dat”,0x100,1,x

10-6 Chapter 10

=

10.2.2 REDIRECTING 1/O STREAMS

In the I/O Simulation Setup dialog you can connnect an I/O stream to a
terminal window before the stream is opened or you can redirect an
existing stream to a file and/or terminal window.

To redirect an I/O stream to a file and/or terminal window:

@? From the menu system:

From the Settings menu, select I/O Simulation Setup... to open
the I/O Simulation Setup dialog box.

e In the Connection tab select the I/O stream you want to change
and select the Redirect... button.

* In the Connection Configuration dialog enter a filename and/or a
terminal window name.

* Click OK to accept the changes and close the dialog.

Enter the ios_open or ios_wopen command in the Command Window to
open a File I/O stream.

To disconnect an I/O stream from a file and/or terminal window:

@? From the menu system:

From the Settings menu, select I/O Simulation Setup... to open
the I/O Simulation Setup dialog box.

e In the Connection tab select the I/O stream you want to change
and select the Redirect... button.

* In the Connection Configuration dialog erase the filename and/or
terminal window name.

e Click OK to accept the changes and close the dialog.

Enter the ios_close command in the Command Window to close a File
I/O stream.

FUNCTION: Close a File 1/O stream
COMMAND: ios_close {stream | “file”}

I/O Simulation 10-7

To disable/enable an I/O stream:

@? From the menu system:

From the Settings menu, select I/O Simulation Setup... to open
the I/O Simulation Setup dialog box.

¢ In te Connection tab clear the check box in front of the I/O stream
you want to disable. Set the check box to enable the stream.

Disabling a File I/O stream means that I/O actions will not be honored.
Writing is not passed to the output file, and reading does not result in new
data being placed in the target buffer.

10.3 FILE SYSTEM SIMULATION

File system simulation enables the application on the target board to use
system calls (such as open, read, write) that are handled by the host
system file 1/O services. These files can be read directly from the host
system, and output can be written to a file on the host system or in a
CrossView Pro window. File system simulation is available for all
execution environments.

The File System Simulation feature redirects I/O to a Terminal Window if
the filename FSS_window: window_name is used in the "open” call,
window_name is the name of a Terminal Window.

You can specify a root directory for FSS. CrossView Pro will search for the
file from the root directory downwards. You can do this in the I/O
Simulation Setup dialog, by entering a directory name in the FSS root
directory field of the Options tab. This setting is saved in the xvw.ini
file. Another possibility is to set a temporary resource by specifying the
command line option ——fss_root_dir="path” on CrossView Pro startup.

You can redirect File System Simulation streams to a file or another stream.
Redirection to a file can be needed when a stream is only mapped to a
window and you want it to be mapped to a file also.

Redirection can be used for scripting purposes, using the FSS command.

FSS {< | > K&stream | file”}

10-8

Chapter 10

For example,

FSS 2>&1
FSS 1<&4
FSS 4<"data.txt”
FSS 3>"data.txt”

The first example will redirect output of stream 2 to stream 1. The second
example will retrieve input for stream 1 from stream 4. The third example
will retrieve input for stream 4 from file "data.txt ”. The fourth example
will redirect output of stream 3 to file "data.txt .

Disabling an FSS stream means in effect connecting the stream to
/dev/null or NUL, causing writes to go into oblivion, and reads to return
EOF.

10.3.1 FILE SYSTEM SIMULATION LIBRARIES

The low-level I/O functions such as _open() , _close() , _read() and
_write() are implemented in the C library to use File System Simulation.
These funtions redirect high—level 1/O calls such as printf() and

scanf() type functions through CrossView Pro’s FSS feature, allowing
you to perform stdin | stdout and stderr I/O by just using these
standard C library functions.

The libraries have been optimized to only attach the file I/O routines if the
application actually uses file I/O. The default I/O streams stdin , stdout
and stderr are opened on the fly whenever file I/O is used; this behavior
is transparent to the user. It is no longer necessary to inform CrossView
Pro about the use of any streams.

For more information see the section Run-Time Library Routines in the C
Compiler/Assembler Reference Manual.

I/O Simulation 10-9

10.4 DEBUG INSTRUMENT 1/0

If you have a debug instrument that supports it, the debug instrument can
perform input and output using GDI callback functions. The Debug
Instrument I/O (DIO) stream number is passed as parameter to these
callbacks. The output can be redirected to DDE (Windows only). The first
access to a DIO stream will create a new terminal window and the title of
the window will be "DIO x”, where x is is the number of the used stream.
No new window will be created if the used stream is already mapped to a
terminal window. You can use the I/O Streams Terminal Map dialog to
map one or more streams to one window.

10-10 Chapter 10

=

10.5 THE TERMINAL WINDOW

If you direct I/O simulation to the screen, CrossView Pro displays the
output in the terminal window. Similarly, if you direct input from the
keyboard; whatever you input appears in the appropriate terminal
window. See section 4.6.8, Terminal Window for more information.

10.5.1 TERMINAL WINDOW KEYBOARD MAPPINGS

The following keyboard mappings, being both control codes and escape
sequences, are supported by the VT100-like terminal mode of the terminal

windows:

Key Character Sequence
and/or Decimal Value

Backspace 8d

TAB 9d

DEL 127d

ESC 27d

Insert ESC[2~

Prev/Page Up ESC[5~

Next/Page Down ESC[6~

Arrow Up ESC[A

Arrow Right ESC[B

Arrow Left ESC[C

Arrow Down ESC[D

Table 10-1: General Keyboard Mappings

I/O Simulation

Display Control

The VT100-like terminal mode of the terminal windows comprises the

following control codes and escape sequences for displaying:

ASCII Decimal Operation

Code Value

BELL 7 Ring the bell

BS 8 Move cursor one position back
TAB 9 Move cursor to next tab stop

LF 10 Move cursor one line down

CR 13 Move cursor to start of line

ESC 27 Start escape sequence (see below)

Table 10-2: Control Codes

Escape Sequences

Escape Operation

Sequence

ESCD Cursor one line down (scrolls if already at last line)
ESCE Cursor one line down and to left margin (scrolls)
ESCM Cursor one line up (scrolls if already at top line)
ESC[niA Cursor n1lines up

ESC[niB Cursor n1 characters right

ESC[nicC Cursor n1 characters left

ESC[niD Cursor n1 lines down

ESC[H Cursor home

ESC[nl1;n2H Move cursor to (n1,n2) with n1=row, n2=col

Table 10-3: Cursor Motion

@ Parameters 721 and/or n2 may be left out, in which case a value of 1 is

assumed.

10-11

10-12

Chapter 10

Escape
Sequence

Operation

ESC[J

Clear screen from cursor till bottom-right

ESC[p1J

0: Clear screen from cursor till bottom-right
1: Clear screen from top—left till cursor
2: Clear entire screen

ESC[K

Clear line from cursor till end

ESC[plK

0: Clear line from cursor till end
1: Clear line from begin to cursor
2: Clear entire line

Table 10-4: Erasing

For example, to clear the entire screen in the C programming language,

you can enter:

printf("\033[H\033[2J");

fflush(stdout);

Escape
Sequence

Operation

ESC[n1@

Insert characters

ESC[niP

Delete n1 characters

ESC[niL

Insert n1 lines

ESC[niM

Delete n1 lines

Table 10-5: Inserting and Deleting

@ Parameter 7 may be left out, in which case a value of 1 is assumed.

I/O Simulation

Escape Operation
Sequence

ESC[m Turn off all attributes

ESC[nim 0: turn off all attributes
1: bold

4: underline

5: blinking

7: reverse

8: invisible

22: turn off bold

24: turn off underline
25: turn off blinking
27: turn off reverse
28: turn off invisible

Table 10-6: Character Attributes
Multiple parameters may be specified simultaneously:
ESC[nl1; .. ; nNm

Some attributes or combinations of attributes are mapped to a regular
standout mode.

Parameters may be left out, in which case a value of 0 is assumed.

Escape Operation
Sequence
ESC[121 Local echo on
ESC[12h Local echo off
ESC[?7h Wrap around on
ESC[? 7] Wrap around off
ESC[?25h Cursor on
ESC[? 251 Cursor off
ESC[?92] Enquire after the window's size
Response:
ESC[? rows, columns c

Table 10-7: Miscellaneous

10-13

10-14

/O SIMULATION

Chapter 10

SPECIAL FEATURES

al TASKING [

d31dVHO

11

Special Features

11.1 TRANSPARENCY MODE

Transparency mode allows you to communicate directly with the
execution environment. Most of the time CrossView Pro will handle all the
low level communications, freeing you to concentrate on the high level C
code. Depending on the type of execution environment, however, you
may have to enter transparency mode to set up the execution environment
when the machine is first turned on.

To enter transparency mode:

From the View menu, select Command | Emulator.

All commands entered in the Emulator Command Window are passed
directly to the execution environment.

To exit transparency mode:

From the View menu, select Command | CrossView.

In CrossView Pro, you can pass a string directly to the execution
environment without leaving CrossView Pro with the o command:

0 map

This passes the command map directly to the execution environment,
while you remain in CrossView Pro. Naturally you will have to learn your
execution environment’s command set to make use of the 0 command.

FUNCTION: Pass a command to the execution environment.

COMMAND: o string

Do not issue one-shot transparency commands that result in large output
(or otherwise require intervention other than a carriage return to terminate
output). Instead, enter transparency mode first, then issue the command.

You may also enter transparency mode upon startup with the =T option.
See the section on startup options.

11-3

11-4 Chapter 11

=

11.2 RTOS AWARE DEBUGGING

CrossView Pro supports RTOS (Real-Time Operating System) aware
debugging for various kernels. Since each kernel is different, the RTOS
aware features are not implemented in the CrossView Pro executable, but
in a library (RADM: RTOS aware debugging module) that will be loaded at
run-time by CrossView Pro. The amount of windows and dialogs and their
contents is kernel dependent.

CrossView Pro for the 68K/ColdFire supports an OSEK RADM
(osek_radm.dll) according to the OSEK standard. You have to create
your own OSEK Run Time Interface (ORTI) and specify this file to
CrossView Pro. CrossView Pro supports ORTI specifications v2.0 and v2.1.

EDE

From the Projects menu, select Project Options... Expand the
CrossView Pro entry and select RTOS Aware Debugging Module. Select
OSEK and specify the name of the ORTI file, or select User Defined and
specify your RADM DLL name.

CrossView Pro

Within the CrossView Pro’s Target Settings dialog (Target |

Settings...), select the CrossView Pro configuration you will use by
selecting a "Target configuration”. These target configuration files are
normal ASCII text files. The name of the shared library that contains the
kernel aware code can be specified in the target configuration. The "radm”
configuration item specifies the name of the shared library that contains
the kernel aware code.

The syntax of a target configuration file is:
[! comment] field : field-value

Sield one of the defined keywords

field-value the value assigned to the field

comment optional comment

Empty lines, lines consisting of only white space are allowed. Comments
start at an exclamation—-sign (") and end at the end of the line.

The line for the shared library that supports RTOS aware code could be:

radm: yourrtos.dll

Special Features

Or you can specify the RADM filename on the CrossView Pro command
line with the following option:

—radm=osek_radm.dll

You can specify the ORTI filename on the CrossView Pro command line
with the following option:

—orti= ORT—filename

The OSEK RADM adds an OSEK/ORTI menu to CrossView Pro that has
several items (each description in the notation '<text>’ is represented in
the syntax of the OSEK Run Time Interface file):

OSEK implementation name (if reading of the ORTI file succeeded)

The OSEK implementation name is specified with <name> in the
<declaration_section> of the ORTI file.

For each <declaration spec> a sub menu item will be created with the
name represented for <object>. When selecting an object item a
window will appear with all objects from the <information_section> for
the specified <object>. The new created window always contains the
Object column and then the columns represented in the

<object_decl list> of the specified object.

Info Messages

This menu item lists all expressions from the ORTI file that could not
be evaluated. This could be an expression within the
<declaration_section> represented in the <enum value list>. However
evaluating the expressions from the objects in the
<information_section> also could have problems. The problems could
occur when the expression is to difficult to be evaluated or when one
of the variables of the expression is not available when the symbolic
debug info is loaded.

When an expression could not be evaluated it results into 'N.A.” for the
specified window object entry item. When the expression could be
evaluated but the enumerated type could not be found or the specified
type could not be converted correctly this will result into 'n.a.” for the
specified window object entry item.

11-5

11-6

Chapter 11

So, there are two situations:

n.a. : Expression could be evaluated but could not be converted
correctly at current moment. This expression will not occur in
the list when the menu item "Info Message’ is selected.

N.A. : Expression could not be evaluated and will not change until
the ORTI file is updated with a valid expression.

For the second situation you can type the expression in the command
window and CrossView Pro will show a message box with the reason
why the expression could not be evaluated.

e About RADM

This menu item shows the supported OSEK/ORTI version and the
RADM version.

11.3 COVERAGE

&

A

You can only use this feature if it is supported by the execution
environment (see the addendum).

When the application program is executed as a result of a command such
as SteplInto or Continue, CrossView Pro traces all memory access, i.e.
memory read, memory write and instruction fetch. Through code
coverage, executed and not execute areas of the application program can
be found. Areas of unexecuted code may exist in case of programming
errors or simply dead code which could be eliminated. Alternatively, your
program input, your test set, is incomplete. It does not cover all paths in
the program. Data coverage allows you to verify which memory locations,
i.e. which variables, are accessed during program execution. Additionally,
stack and heap usage can be shown.

To enable/disable coverage:

From the Tools menu, select the Coverage checked menu item.

When the menu item is checked, coverage is enabled. Select the menu
item again to disable coverage.

Type the ce or cd command on the command line:

ce

Special Features 1-7

FUNCTION: Enable coverage.
COMMAND: ce

FUNCTION: Disable coverage.
COMMAND: cd

Two dialogs are present to give you coverage information. The code
coverage dialog shows the percentage of executed code within
application, module and function scope. Code coverage information can
also be displayed in the Source Window. The data coverage dialog shows
the data access of HLL variables in the executed program. Data coverage
can also be displayed in the Memory Window. The coverage dialogs can
be opened via the Tools menu.

FUNCTION: List coverage information to output window or file.

COMMAND: covinfo [[all | module or_function_name||filename)|

You can display code coverage information in the Source Window by
clicking on the Coverage button in the Source Window. In this case an
extra column appears to the right of the breakpoint toggles (to the left of
the source line). For each source code line that is executed (covered), the
source line is marked. The not executed lines are not marked. CrossView
Pro has special commands to move the cursor to the next or previous
covered or uncovered line:

FUNCTION: Move cursor to next covered line.

COMMAND: nC

FUNCTION: Move cursor to next uncovered line.

COMMAND: nU

11-8

Chapter 11

FUNCTION: Move cursor to previous covered line.

COMMAND: pC

FUNCTION: Move cursor to previous uncovered line.

COMMAND: pU

You can display data coverage information in the Memory Window by
clicking on the Code Coverage button in the Memory Window. Besides
the current value of memory locations, the memory window also displays
whether memory locations have been accessed during program execution.
An application program may read from, write to, or fetch an instruction
from a memory location. Of course all combinations may be legal.
Although writing data to a memory location from which an instruction has
been fetched is suspicious. All types of accesss, read, write, fetch or
combinations of these, can be shown using different foreground and
background colors. The color combination used to show "rwx” access are
specified in the Desktop tab of the File | Options... menu item. It is
advised to change the background color if instructions are fetched from a
memory location, and to change the foreground color to show read and
write access.

11.4 PROFILING

&

You can only use this feature if it is supported by the execution
environment (see the addendum).

Profiling allows you to perform timing analysis on your software. Two
forms of profiling are implemented in CrossView Pro. Both forms of
profiling are fully implemented in the CrossView Pro debugger. You do
not have to recompile your source code to enable the profiling features.

Special Features 11-9

Function profiling, also called cumulative profiling, gives timing
information about a particular function or set of functions. The time spent
in functions called by the function being profiled is included in the timing
results. Within the Cumulative Profiling Setup dialog you select one or
more functions to be profiled. The gathered profile is shown in the
Cumulative Profiling Report dialog. For each function the number of calls,
the minimum/maximum/average and total time spent in the function are
shown. Also, the relative amount of time consumed by a function in
respect to the time consumed by the application is shown.

Function profile data is gathered whenever the program is executed using
the Continue command (not single stepped). Function profiling can be
supported if the execution environment provides a clock that starts and
stops whenever execution starts and stops. Basically function profiling is
implemented by using a special type of breakpoint. Breakpoints are
inserted at the function entry address and all it’s return addressed.
Whenever execution stops due to a profile-breakpoint hit, CrossView Pro
will read the clock, update the internal profile tables, and restart
execution.

To specify the functions to be profiled:

@z From the Tools menu, select Cumulative Profiling Setup...

cproinfo add main

To view the profiling results:

@? From the Tools menu, select Cumulative Profiling Report...

cproinfo
FUNCTION: List cumulative profining results to output window or
file, or add or remove functions from the list of profiled
functions.

COMMAND: cproinfo |[all|filename| | {add | remove } function|

11-10 Chapter 11

=

Code range profiling presents timing information about a consecutive
range of program instructions. CrossView Pro displays the time consumed
by each statement, C or assembly, in the source window. The timing data
can be displayed in three different formats: absolute, relative to program,
and relative to function. To change the display format: position the cursor
on the profile column and click the right mouse button. Select the
appropriate format from the popup menu.

Next to the source window, the profile report dialog (Tools |

Profiling Report...) shows the time spent in each function. The time
consumed by functions called from the function being profiled is not
included in the displayed time.

FUNCTION: List profile information to output window or file.
COMMAND: proinfo [[all | module or function namel|,filenamel)

Code range profiling data is gathered whenever the program is executed.
It does not matter if the program executes due to a continue, step—over or
step—into command. Code range profiling heavily relies on special
profiling features in the execution environment. Normally code range
profiling is only supported by instruction set simulators.

To enable/disable profiling:

@2 From the Tools menu, select the Profiling checked menu item.

When the menu item is checked, code range profiling is enabled. Enabled
means that the execution environment starts gathering profiling data.
Select the menu item again to disable profiling.

pe

FUNCTION: Enable profiling.
COMMAND: pe

Special Features 11-11

FUNCTION: Disable profiling.
COMMAND: pd

Select the Profiling button in the Source Window to display profile data
in the Source Window. If profiling is not enabled, this button also starts
gathering of profiling data.

@ Normally both function and code range profiling will slow down the

execution speed of the application being debugged. Therefore, switch off
profiling whenever the timing information is not required.

11.5 DATA ANALYSIS

CrossView Pro incorporates an advanced signal analysis interface designed
to enable developers to monitor signal data more critically and thoroughly.
This feature is useful when developing signal processing software for
application areas such as communication, wireless and image processing.

The Data Analysis window (as shown in figure 4-15) is used for this
purpose. This window is opened as result of processing a data analysis
script (CXL script) and is only updated on user request. TASKING provides
scripts for standard signal analysis such as x-t plotting, x—y plotting, FFT
power spectrum, FFT waterfall, combined FFT power spectrum and phase,
and eye diagram. However, the programmer can write CXL scripts and
process the data in the format he desires.

@]j Refer to the CXL syntax specification in section 11.5.2, Syntax of CrossView
eXtension Language (CXL), for details.

Four processes are associated with the graph window:
1. Get raw data
2. Transform data
3. Generate representation

4. Draw

11-12

Chapter 11

The get raw data process retrieves data from the target and stores the data
at the host system in one or more CrossView Pro internal acquisition data
buffers. Since these buffers reside on the host system it is possible to
maintain a history of data.

The transform data process takes the raw data as input, processes it, and
the result of the transformation, a set of (x, y) pairs, is saved in the
processed data buffer associated with a window. Since the transformations
are described in CXL (CrossView eXtension Language) the user can
program the data transformation that is of most interest for him. For
example, an FFT power spectrum would produce (frequency, power)
pairs.

The generate representation process takes data from the processed data
buffer, (x, y) pairs, as input and generates a display list. This process scales
the data according to the given display window size. This process is coded
in CXL. So, in addition to the scripts provided by TASKING, the user can
write his own representation processes. For example, an FFT power
spectrum is usually represented by a bar graph.

The drawing engine process takes the display list as input and produces
the graph that is displayed in the Data Analysis window. The drawing
engine is part of the CrossView Pro executable and cannot be configured
by the user.

A clear separation between data transformation (the transform data
process) and data presentation (generate representation process) has been
made to increase the reusability of complex data presentation scripts.

Once the scripts are written (a number of frequently used operations are
supplied), the following three steps must be made in order to display data:

Set the display mode for the desired window using the graphm
command. For example,

”

graphm "demo”,”show_x_t.cxI”

”demo” will be shown in the title bar of the window. It is also the name
used to refer to the window.

Retrieve data from the target into a buffer using the memget command.
For example,

memget ((int []) 0x0)[$i],128,$buffer

Special Features 11-13

$i is the "iterator” to walk 128 times through the expression (Note: the
retrieved elements are assumed to be equidistantly placed in memory) and
store the results in $buffer

Optionally the buffer contents can be appended to another buffer using
the bufa command, in order to maintain a (limited) history. For example,

bufa $all_data,$buffer,1024

3. Transform the buffer contents to displayable data using the graph
command. For example,

graph "demo”,"x_t.cxI”,$buffer,0,1

For details of the arguments provided to x_t.cxl , see below. Now a used
buffer can be freed using the bufd command (if the target data is not to
be used anymore).

Steps 1. and 2. can be repeated as many times as desired. The display
mode can be changed at any time by issuing a graphm command for the
window to be changed. Using the graphp command, a window can be
positioned anywhere on the screen.

11.5.1 SUPPLIED DATA ANALYSIS WINDOW SCRIPTS

@ The following scripts and commands are described for completeness.

Normally, you will not use the commands directly, because they are
automatically invoked when you click OK in the Data Analysis Window
Setup dialog.

For some graphm scripts both x— and y-axis can be user specified. If the
limits are not specified or low >= high, then autoscaling is used.

X-T plotting

An x-t plot is the most straightforward way of displaying data. Data is
taken from one buffer, each value is taken as the x value and the t value is
increasing linearly. It is displayed as a graph the way it is found in the
buffer (memory). The layout of the scales and the form of the graph (line,
bar, dot) can be selected as shown below.

11-14 Chapter 11

=

1. Generating window data pairs:
graph “win_title”, ”x_t.cx1”, $buffer, t_offset, t_increment

generates (t, X) pairs: (¢_offset + i * t_increment, $buffer[i]). The
generated data is attached to the specified window.
2. Setting the display mode:

9

graphm "win_title”, ”show_x_t.cx1” |, low_x, high_x [, low_y, bigh y]]
displays lines drawn between successive coordinates specified by the
window data pairs.

9 9

graphm “win_title”, ’show_cross.cx1” |, low x, high _x [, low_y, bigh y]]

displays 'x’s at the coordinates specified by the window data pairs.

9

graphm "win_title”, ’show_plus.cx1” |, low _x, high _x [, low _y, bigh y]|

displays '+’s at the coordinates specified by the window data pairs.

9

graphm "win_title”, ’show_bars.cx1” [, low_x, high_x |, low y, high y]|

displays bars at the coordinates specified by the window data pairs.
The x-coordinates are expected to be equidistant.

X-Y plotting

An x-y plot takes values from two buffers, one from each at a time. The
first is interpreted as the x-value, the second as the y-value of a point to
display. No further processing is done on these values. The most common
display mode is x’s or '+’s (show_cross.cxl , show_plus.cxl | see
previous description) to give a scattergram. The values can also be
interconnected in order (show_x_y.cxl) to create Lissajous-like displays.

1. Generating window data pairs:
graph “win_title”, ’x_y.cx1”, $x_buffer, $y_buffer
2. Setting the display mode:

graphm "win_title”, ’show_x_y.cx1” [, low_x, high _x |, low _y, high _y]|

draws lines from all (x[i] , y[i]) to (X[i+1] ,y[i+1]). When
autoscaling is active, some space is reserved on both x- and y-axis.

Special Features 11-15

FFT power spectrum

The FFT power spectrum plot takes a buffer of arbitrary size to compute
the power of all frequencies present in the signal (in decibels). If the
buffer size is not a power of two, it will expand its input set to the next
higher power and augment it with zeroes. To handle non-recurrent data
correctly, several window functions can be applied in the process. If no
reference level is given the maximum level is calculated and set to be 0
dB. The usual display mode is bars, although all x-t display methods can
be used. The horizontal axis is in frequency steps, the vertical axis in
decibels.

1. Generating window data pairs:
graph “win_title”, *fft.cx1”, $buffer, filter index, frequency step|,ref level

generates pairs (i * frequency_step, log_powerli]). The filter index
specifies one of the following FFT windowing functions:

0 rectangular

1 triangular

2 Hanning

3 Blackman-Harris

ref level is the 0 dB reference level.

2. For displaying the generated pairs, any of the x—t plotting display scripts
can be used. "show_bars.cxl 7 is recommended.

Multi FFT power spectrum ("waterfall”)

The multi FFT power spectrum displays a chronilogical series of FFT
power spectra. This diagram is also known as FFT waterfall. The FFT
power spectrum plot takes a buffer of arbitrary size and splits it up in a
number of frames of size 2/4°_eXp, You can specify the overlap between
successive frames. The overlap can be negative indicating gaps between
successive frames. For each frame, the power (in decibels) of all
frequencies present in the signal is computed.

1. Generating window data pairs:

graph “win_title”, "multi_fft.cx1”, $buffer, filter index, frequency_step,
two_exp|,overlap|,ref level)|

generates pairs (i * frequency step, log_powerli]). The filter index
specifies one of the following FFT windowing functions:

11-16

Chapter 11

rectangular
triangular
Hanning
Blackman-Harris

WN PO

2two_exp s the width of one single frame in number of input samples.
two_exp must be a value between 2 and 14 (inclusive). If the input
buffer does not contain enough samples to fill the last frame, the frame
is completed with zeros.

overlap
|
|
input buffer
F1 |
F2

|
| [| F4
ptwo_exp the rest of frame F4

will contain zeros

overlap is the number points shared by successive frames. When
negative, a "gap’ will occur between processed points. The first sample
taken from the input buffer of frame N is equal to the first sample of
frame N + 2/wo_exp — operlap. overlap must be smaller than 2/wo_exp,

ref level is the 0 dB reference level.

2. For displaying the generated pairs, the display script
”show_multi_bars.cxl ” is required.

Multi FFT power spectrum in lines

Displays the same multi FFT power spectrum, but now in lines instead of
bars. Here a 3D graph is shown. The script name is
show_multi_lines.cxl

Multi FFT power spectrum in lines and grid

Displays the same multi FFT power spectrum as the multi lines spectrum..
Now each point on a curve is interconnected with a point with the same
x—coordinate of the previous graph. What you see here is a ’grid’ with the
values. The script name is show_multi_grid.cxl

Special Features 11-17

Use of colors in Multi FFT power spectrum

For all three graphm scripts show_multi_bars.cxl ,
show_multi_lines.cxl and show_multi_grid.cxl an optional third
parameter can be added to set the color offset value. This allows you to
create a dynamic display in which the color of each curve remains the
same. The color offset can range from 0 to the maximum number of
colors, and the maximum number of colors is the number of curves to be
plotted. When the color offset exceeds the number of colors, the modulo
will be taken; if it is negative it will be set to zero. The colors selected for
the curves are spread evenly over the color spectrum. The number of
colors can also be set as an (optional) fourth parameter of the script.

An example of a command file for a running script can be:

/* INITIALIZE */

rst /* Rerun the program when the script is executed */
$fast_mode=2 /* If on the simulator, go to fast mode */
S /* Step to the main() routine to allow access */

/* to the output([] array. */

memget output[$i],256,$t /* It's clear now. */

bufa $f,$t,4096 /* Construct an empty time domain history */
bufa $f,$t,4096

bufa $f,$t,4096

bufa $f,$t,4096

bufa $f,$t,4096

bufa $f,$t,4096

bufa $f,$t,4096

bufa $f,$t,4096

$color=0 /* Initialize the $color variable to track the graphs */

/* DEFINE THE TIME DOMAIN WINDOW */
graphp "Output time domain”,50,25,716,295 /* set window position */
graphm "Output time domain”,”show_x_t.cxl” /* set draw method */
graph "Output time domain”,"x_t.cxI",$t,0,1

/* use the 't’ buffer */

graph_clear_updates "Output time domain”

/* Set 'Output time domain’ window update actions: */
graph_add_update "Output time domain”,memget output[$i],256,$t

/* Get new time domain data from output[] into $t buffer ~ */
graph_add_update "Output time domain”,graph "Output time
domain”,"x_t.cxI”,$t,0,1

* This command recalculates and redraws the window */

/* DEFINE THE FREQUENCY DOMAIN WINDOW */
graphp "Output freq domain”,50,350,716,295

/* set window position */
graphmn "Output freq domain”,”show_multi_grid.cxI",—120,5,($color)
/* set draw method */

graph "Output freq domain”,"multi_fft.cxI”,$f,0,1,256
/* use the 'f’ buffer */

11-18

Chapter 11

graph_clear_updates "Output freq domain”

/* Set 'Output freq domain’ window update actions: */
graph_add_update "Output freq domain”, bufa $f,$t,4096

/* Add new data to buffer, max size 4096 (purging oldest) */
graph_add_update "Output freq domain”, $color = ($color+1) % 16

/* 4096/256 = 16 graphs, increment color offset to follow */
graph_add_update "Output freq domain”, graphmn "Output freq
domain”,”show_multi_grid.cxI",—120,5,($color)

/* Use the graphmn command to avoid double redraws */

* Place $color in braces to avoid confusion with buffers */
graph_add_update "Output freq domain”,graph "Output freq
domain”,"multi_fft.cxI”,$f,0,1,256

[* This command recalculates and redraws the window */

/* PLACE COMPLEX BREAKPOINT, HAVE IT UPDATE THE GRAPHICAL DATA
WINDOWS */

main#141 bi { update! "Output time domain”; update! "Output freq

domain”; C}

/* CONTINUE RUNNING THE PROGRAM */
C

For passing the parameter $color , the command interpreter requires
parentheses around it, otherwise it is interpreted as a buffer.

Combined FFT power spectrum and phase

The combined FFT power spectrum and phase plot adds a display of the
phase of each component to the FFT power spectrum. The phase is
normalized between -180 degrees and +180 degrees. To display both
features of the input data a special display script must be used
(show_fft_pairs.cxl).

1. Generating window data pairs:

graph “win_title”, ”tft_pairs.cx1”, $buffer, filter index, freq_stepl,ref level]

The filter_index specifies one of the following FFT windowing
functions:

0 rectangular

1 triangular

2 Hanning

3 Blackman-Harris

ref level is the 0 dB reference level.

2. Setting the display mode:

For displaying the generated display list, the display script
“show_fft_pairs.cxl " is required.

Special Features 11-19

graphm “win_title”, >show_fft_pairs.cx1” [, min_power, max_power
Eye diagram

The eye diagram is a recurrent x—t plot. The input data is not processed,
but the time parameter is reset when the signal crosses the trigger level,
and also after a specified interval (wrap_limit). After crossing trigger level,
retriggering is suppressed during the #rigger hold_off next data values. The
eye diagram uses the X-t plot method and exploits the feature of
suppressing the fly-back of the displayed line.

1. Generating window data pairs:

graph “win_title”, eye.cx1”, $buffer, wrap limit [, _increment |, t_offSet
[, trigger level |, trigger hold off]]]]

2. Setting the display mode:
graphm "win_title”, ’show_x_t.cx1” |, low _x, high_x |, low_y, bigh y]]

displays lines drawn between successive coordinates specified by the
window data. If x[i+1] < x[i] (going back in time), no line is
drawn from (X[i] , y[il) to (x[i+1] ,y[i+1]), which can be
regarded as the fly-back suppression in an oscilloscope.

11.5.2 SYNTAX OF CROSSVIEW EXTENSION
LANGUAGE (CXL)

CXL has a C-like syntax, the basic differences from C are:

* No preprocessor, so no defines.
e Only ”// ” comments.

» 9

* No structs or unions, so the operators ”.” and "—>" are not
supported.

e No type definition

e No enums

* No switch statement.

* Blocks must not be empty ("1; ” is the minimal expression).

e No ’main’, all the script code is to be enclosed within a { and ¥
pair.

11-20

Chapter 11

Function prototypes and function definitions can be nested, but
must be preceded by the keyword "sub”. They can be used
anywhere in the source. Following the scope rules, a function
declaration hides a previous definition when it is defined.

No casts allowed. Casts are (like in C) performed automatically.
When explicit rounding/casts are needed, you can use the floor()
function. E.g. by floor(x) (chopping) or floor(x+0.5)
(rounding off to nearest integer).
No ? : operator allowed.
Single statements after a flow control statement (if, else, for, while)
should always be between braces. For example, the usual C
expression
if (x<0)

X =0;

should be written as

if(x<0)
{

X =0;
}

Initializers in declarations are not allowed. For example,

inti=1,

should be written as

inti;

... possible other variable declarations ...

i=1,

Modifiers such as signed , unsigned |, register and static are
not supported.

Floating point numbers below 1 should always be preceded by a

zero. For example, the number .15 is treated as invalid, this should
be 0.15 .

Special Features

Furthermore, the syntax is like the C syntax.

Example:
{
sub void p(function f)
outd(f());
outc(\n");

}

sub int h() { return 1; }

{ /[This is the "main” entry point

p(h);
sub int h() { return 2; }
p(h);
}
}
This example would print the following output in the command window:
1
2
Base Types
CXL supports the following base types:
e char
e int
* long
» float
e double
e string (only allowed for parameters)
e function (only allowed for parameters)

Internally, char , int and long are treated the same, as are float and
double . Since they are the same, types belonging to one group can be
interchanged freely.

Pointer to base type is only supported for parameters not for other
variables. Pointers to variables are the result of the "address—of” operator

and are treated as arrays of the mentioned base type with upper-bound 1.

11-21

11-22

5

A return value can be of any base type. Data type void

return type.

Compound Types

CXL supports the following compound types:

e array of char

e array of int

e array of long

e array of float

e array of double

Chapter 11

is also a valid

Structures, unions and type definitions are not part of the CXL syntax.

Predefined Functions

1.

2.

Mathematical functions:

double sin(double x);
double cos(double x);
double tan(double x);
double acos(double x);
double asin(double x);
double atan(double x);
double sinh(double x);
double cosh(double x);
double tanh(double x);
double log(double x);
double log10(double x);
double exp(double x);
double sqgrt(double x);
double ceil(double x);
double floor(double x);
double fabs(double x);
double pow(double x, double y);

Functions to send output to the command window:

double outc(double x); —> { printf("%c”, (int) x); return x; }
double outd(double x); —> { printf("%Id”, (long) x); return x;}
double outf(double x); —> { printf("%f", x); return x; }
Upperbound of an array:

long upperbound(array a);

Special Features 11-23

4. GUI interaction functions available when a script is passed to the graph
command::

void add_point(double x, double y);

This function adds graph points to the acquisition buffer.
void printf(string format, ...);

The output of printf is written to the command window.

5. GUI interaction functions available when a script is passed to the graphm
command::

void printf(string format, ...);

The output of printf is sent to the "window contents script”.

@ This at first sight strange function name of printf is chosen to facilitate

development and debugging graphm scripts using a host system C
development environment. The C code can be very easily ported to CXL
afterwards. The output is in fact a command of the drawing engine and is
therefore not the same as a usual printf and no the same as printf in
the graph command. Logging to the command window from a graphm
script is not possible via printf

The following drawing commands are supported:
clear

Clear drawing area. This is usually the first command issued in a
drawing sequence.

graph_area x-offset, y—offset, x-size, y-size
printf("graph_area %d,%d,%d,%d/n”, xo, yo, Xs, ys)

Set graph area size. The offset determines the lower left corner of
the graph area. Size is the exact number of pixels.

axis xlow, ylow, xhigh, ybhigh

Define the axes ranges, for determining the cross—hair cursor
coordinates (to be displayed in the cursor field and to be passed to
the representation generator). The axes range up-to the top-right
coordinate, which is excluded (reduces axis drawing maths, but
mind axis lengths of 0). The axes are linear.

11-24

Chapter 11

pen_color color

Set pen color. Black is the default color. The color can be specified
by name or by RGB number in the form red green,blue as decimal
number for each base color for 0 to 255. E.g. 255,128,0 is orange.
Valid names are:

black, red, yellow, green, blue, cyan, magenta,
dkgray, gray, ltgray, white

brush_color color

Color used for filling areas. Black is the default color. See
pen_color for possible colors. The value background sets the
brush to the current background color which is
WINDOW_BACKGROUNIer Windows.

filled_rectangle x7, yi,x2,y2

Puts a rectangle, filled with the latest set brush_color, bounded by
(x1,yl) and (x2,y2) (both points inclusive). Coordinates are
expressed in pixels. The origin is the lower left corner.

dot x1,y!

Draw pixel. Coordinates are expressed in pixels. The origin is the
lower left corner.

line x7,y1,x2,y2

Draw line from (x1, y1) up-to and including (x2, y2)
Coordinates are expressed in pixels. The origin is the lower left
corner.

polygon x7,yl,x2,y2, ..x1, yn
polyline x1,y1,x2,y2, .. xn,yn

Puts a polyline, using the latest set pen_color, from line sections
from the points (x1, y1) to (xn,yn) , where n >= 3 (which
means at least 2 lines). Coordinates are in pixels.

Special Features 11-25

filled_polygon x1,y1,x2,y2, ... xn, yn

Puts a polygon, filled with the latest set brush_color, bounded by a
polygon formed by the line sections between the points (x1, y1)

to (xn, yn) and back to (x1, yl) , where n >= 3. Coordinates
are in pixels. As with filled_rectangle, the pen is only temporarily
set to the same color as the current brush and restored when the
call is finished.

filled_polygon_brush x7,y1,x2,y2, ... xn, yn

As with filled_polygon, but using a separate brush and pen, that
is, using the latest brush and pen color also when they are different.

text x, y, anchor, "text”

Draw text with its anchor at location (X, y) . The anchor is the
point in the text string, which will get placed at the specified
location. For example, anchor 7 specifies that the text must be
placed such that the bottom-left side of the text is at the specified
position. Coordinates are expressed in pixels. The origin is the
lower left corner.

Anchors:
1—2—3
| I
4 5 6
| I
7——8—9

Text may include any characters, except a nil character. Double
quote and backslash characters must be escaped by a backslash
character. Text will be formatted using the current font settings. See
below for the font info exchange between the window and the
representation generator.

11-26

5

0.

Chapter 11

long get_attr(string attribute);
Supported attributes are:

"draw—area—x—size”
"draw—area—y-size”
"x—scrollbar—present”
"x—scrollbar-size”
"x—scrollbar-low”
"x—scrollbar—high”
"y—scrollbar—present”
"y—scrollbar-size”
"y—scrollbar—low”
"y—scrollbar—high”
"selection—available”
"selection—start”
"selection—end”

long get_text_attr(string attribute, string text_format, ...);
Supported attributes are:

"leading”
"ascent”
"descent”
"width”

Argument passing.

The graph and graphm commands can be given a number of arguments.
These arguments are accessible as follows.

long n_args;
The number of arguments.
argl..argN

with N =n_args are added to the global scope and have type
double * for buffers, type string for strings and type double for
evaluated expressions.

Parsing the script will fail if a certain argument has not been provided.
Evaluation of the script will fail if the type of the argument does not match
its use.

Special Features 11-27

For argument testing and argument retrieval the following functions are
provided:

long is_string_arg(long n);

long is_double_arg(long n);
long is_buffer_arg(long n);
double get_double_arg(long n);
string get_string_arg(long n);
double *get_buffer_arg(long n);

Numerical arguments can be retrieved by using get_double_arg() .In
the graphm command, the (x, y) pairs produced by a sequence of calls to
add_printf() in the graph script are accessible via global variables x
and y of data type array of double

11-28

=

Chapter 11

11.6 BACKGROUND MODE

&

Background mode is a feature for running the application under debug
and CrossView Pro at the same time. This allows you to monitor the target
application using CrossView Pro, while the application is running.
Depending on the target hardware and/or debug instrument connected to
CrossView Pro, target execution can even be real-time.

Since CrossView Pro’s monitoring of the target hardware must be
non-intrusive, not all functions of the debugger are enabled while running
in background mode.

You can only use this feature if it is supported by the execution
environment (see the addendum).

11.6.1 CONFIGURATION

&
&

CrossView Pro can be instructed to automatically refresh one or more
windows of the debugger periodically while running in background mode.
You can use the Background Mode Setup dialog for specifying the desired
set of windows to be refreshed.

From the Settings menu, select Background Mode Setup... to open the
Background Mode Setup dialog.

A distinction has been made between updating the Source lines window
and updating the Disassembly window. Updating the Disassembly window
may be to time-consuming, so you may want to disable its updating in
Background mode, while still keeping the Source lines window
up-to—date when that is displayed on screen.

Use the u command to toggle the updating of windows in background
mode.

FUNCTION: Toggle update of window in background mode.
COMMAND: [interval)u [d|k|r|cd|ck|cr|s|a|mem |t

Special Features

&

The following windows can be updated in background mode:

d (Data), k (Stack), r (Register),
s (Source), a (Assembly), mem (Memory), t (Trace)

Initially only the data window will be updated. CrossView Pro repeatedly
looks at the execution environment to react on changes. It
pseudo-simultaneously looks for user commands from the keyboard (or
from the playback file), and periodically it updates the windows.

If all windows would be updated the update frequency would drop. That
is why you can toggle a switch for each window. To toggle the updating
of the register window, you can type:

xvw% u r

If the switch for a window is 'on’; it will be updated, otherwise it will be
skipped.

You can also specify a new update interval.

Without arguments, CrossView Pro displays all windows updated
periodically plus the update interval.

Notice that simulated I/O is done through ’invisible’ breakpoints, and these
must be handled inside the loop. Hence, if updating the windows takes a
lot of time (many monitor commands), it will also slow down simulated
I/0.

11.6.2 MANUAL REFRESH

If you have windows which you do not want to refresh periodically, you
can disable them in the Background Mode Setup dialog’s refresh list, and
refresh these windows manually.

From the View menu, select Background Mode and select one of the
refresh options.

Use the ubgw command.

11-29

11-30 Chapter 11

=

FUNCTION: Update the appropriate window when the target runs in
the background.

COMMAND: ubgw [s|a|k|r|d| mem |t]|all]

@]3 Section Refresh Limitation in this chapter.

11.6.3 ENTERING BACKGROUND MODE

To run a program in background mode:
@? From the Run menu, select Background Mode | Run in Background

i- Type the CB command on the command line.

FUNCTION: Run a program in background mode.
COMMAND: [count] CB [linenumber|

This will start the application under debug to run continuously (as with
the C command), and switch CrossView Pro from Halted to Background
Mode. count is assigned to the breakpoint at the current execution
position as the number of times to hit this breakpoint before execution to
stop. linenumber specifies the source line to place a temporary
breakpoint.

The mouse pointer changes to an arrow with a small watch face
underneath. This indicates that CrossView Pro is now in background
mode. Some commands are treated a little different in this mode, because
they can otherwise influence the running program badly. Commands that
need information from the stack (like bU, bu, bb or bB) are not allowed
because that information is not reliable. Other commands require great
care, for example the o command.

For example if you type the g while in background mode you will see:
xXvw% g 56

Command "g” is not allowed while the emulator is
running in background.

Special Features 11-31

11.6.4 LEAVING BACKGROUND MODE

You can leave Background Mode in three ways:

1. Stop the target immediately:

@? From the Run menu, select Background Mode | Halt Target

Enter the st command:
xvw% st

2. Let CrossView wait for the target to stop:

@? From the Run menu, select Background Mode | Wait for Target to Stop

To wait for a breakpoint, you can use the wt command:

xvw% wt

3. A program running in background mode also stops when it encounters a
breakpoint.

FUNCTION: Stop a program in background mode.
COMMAND: st

The wt command behaves just as if you have typed the C command.
CrossView Pro returns with a prompt, after the program hits a breakpoint.
However, there is an interesting difference with the C command. If you
push the Halt button, it returns with the background prompt. The
program that runs in the execution environment continues without
interruption.

FUNCTION: Wait for the running process to stop
COMMAND: wt

11-32

=

Chapter 11

11.6.5 THE STACK IN BACKGROUND MODE

While the execution environment runs in background, CrossView Pro does
not allow the use of information that comes from the stack. The reason is
that the running program must be stopped in order to get consistent
information from the stack. Stopping (and afterwards continuing) the
program conflicts with the “real-time” nature of the background mode.

If there is a need for it, you can make a macro that performs the desired
operations.

11.6.6 LOCAL AND GLOBAL VARIABLES

&

In background mode you can continuously monitor variables. However,
realize that local variables (in CrossView Pro variables are called "local’ if
they reside on the stack) cannot be monitored. Instead you will see
“unknown name”. Global variables have a fixed address, so CrossView Pro
knows where to get their contents from.

If you are very anxious to see local variables you can first get an address
and then use that address to monitor the contents. For example:

$adr_sum = &sum
m *(adr_sum)/x4

In this example sum is a long (4 bytes). You must be sure that sum
remains at that address while the program is running.

The values you get this way are only valid under specific conditions. Local
variables from the function main normally meet these conditions.

11.6.7 REFRESH LIMITATION

While running the application in the background mode, the automatic
refresh functionality may not be able to keep up with all the debugging
information produced by the running target. Typically, the collected
information will be correctly displayed and automatically updated in the
current open views and no information will be lost. You might lose the
debugging information when scrolling these views during the background
mode. The reason is that either CrossView Pro does not run fast enough or
the communication with the target hardware is not handled fast enough by
the operating system.

Special Features 11-33

The information that cannot be processed by CrossView Pro within the
specified update interval, is displayed as either '<unknown>" or dashes.
The way the lost information is displayed depends on the internal
communication level within CrossView Pro where the information is lost.
Information lost during communication with the target hardware is
displayed as ’<unknown>’. Information lost by CrossView Pro while
processing and interpreting this information, is displayed as dashes.

On the next automatic or manual update, all debugging information in the
currently open views is automatically updated. All visible '<unknown>"
values and dashes are replaced with their actual values as produced by the
running target.

11.6.8 ASSERTIONS

CrossView Pro automatically suspends assertions with the CB command.

Chapter 11

11-34

S3dN1v3d 1vIO3dS

DEBUGGING NOTES

al TASKING [

d31dVHO

12

Debugging Notes 12-3

Here are a few notes about debugging in special situations:

12.1 DEBUGGING ASSEMBLY LANGUAGE

You may debug assembly language programs or modules much as you do
C source. The s, S and si commands single step through the assembly
source. You may place code breakpoints on assembly language
instructions with the bi command.

For additional information on debugging assembly code, see $autosrc
$mixedasm and $symbols in the Reserved Special Variables table in
section 3.4.

There is a restriction on debugging assembly language code:

* Assembly language subroutines cannot be called from the command
line.

12.2 DEBUGGING MULTIPLE PROGRAMS

You probably have only one linked and located absolute object file that
describes the whole system load. However, for various reasons, you may
want to build your system load by linking and locating into several files.
The debugger can handle the symbols from only one load module in one
absolute object file at a time. Consequently, if there are several absolute
files or several load modules within one absolute file, you will have to
change the context from one to another explicitly. Use the N command or
the Load Symbolic Debug Info dialog to load the appropriate
symbols. This does not disturb the state of the target system.

You can also download the image part of another absolute object file
(using the dn command), without leaving the debugger.

12-4

Chapter 12

S310N ONIDONE3d

COMMAND
REFERENCE

al TASKING [

d31dVHO

13

Command Reference 13-3

This chapter contains a summary of all CrossView Pro commands,
followed by a complete description of each command.

13.1 CONVENTIONS USED IN THIS CHAPTER

Each CrossView Pro command has a particular syntax, that is, the form it
must take for CrossView Pro to recognize it. To help you learn the syntax
of each command, this chapter uses a special notation to describe the
syntax of each command. Consider the following example:

ios_read {stream | >file”}address,number_of maus|,x|

Command items in bold font are the actual command keywords typed
from the keyboard. In the example above, ios_read is in bold font since
you must type it exactly as shown.

Items in #talics are names of the command part. Here stream is in italics,
since you must substitute the appropriate value for stream. The
Description section for each command describes what kinds of values
should be substituted for italicized terms.

Expressions in [brackets] are optional items you may include in a particular
command. In this example ,x is not necessary for the ios_read command
to work. Usually if you omit an optional expression, CrossView Pro uses a
default value.

The | symbol means or. For instance, {stream | ”file”} means a stream
number or a filename between double—-quotes (but not both) can be used
in the command.

13-4 Chapter 13

=

13.2 COMMANDS: SUMMARY

13.2.1 VIEWING COMMANDS

~[format) Display contents of preceding memory location.
exp Print value of expression using /n format.

exp @ formatPrint address of expression exp in format format.
exp/format Print value of expression exp in format format.
line Move viewing position to line line.

clear Clear the Command Output Window.

number ¢t Display a source-level trace corresponding to the last
number of machine instructions executed.

number cti Display a disassembled assembly-level trace corresponding
to the last number of machine instructions executed.

number ct r Display a raw trace corresponding to the last number of trace

frames.

e [func | file]
Enter function func or file file or view current viewing
position.

stack e Enter function using stack address.

laddr| ei View current viewing position or view instruction at address
addr.

f ["printf-style—format”)
Change default address display format.

gus {on | off}
Suppress or reactivate CrossView Pro window updating.

L Synchronize the viewing position with the execution
position. Print current file, function and line number.

Command Reference

1{a|b|d|f|g|k|l|L|m|p]|r]|s]|S} [szring]

1 [func]

1 stack
nC

nU

List assertions, breakpoints, directories, files, globals, kernel
state data, labels (on module scope), all Labels, memory map
(of application code sections), procedures, registers, special
variables, Symbol tables. If given, only those starting with
string.

List all parameters and locals of function func. Without a
function, this command lists all parameters and locals of the
current function in view.

List all parameters and locals of function at depth stack.
Move viewing position to next covered line.

Move viewing position to next uncovered line.

opt [option [= valuel|

[line] P [exp)

lline] p [exp]
pC

pU

lexp] T

lexp] t

td

te

List or set option value. Without an argument, list all option
values.

Print exp lines of source starting at line /ine, include machine
addresses.

Print exp lines of source starting at line /ine.

Move viewing position to previous covered line.

Move viewing position to previous uncovered line.

Trace the stack for exp number of levels, list local variables.

Trace the stack for exp number of levels, printing active
functions and parameters passed.

Disable tracing.

Enable tracing.

13.2.2 DATA MONITORING

cd

ce

Disable, turn off, gathering of coverage data.

Enable, turn on, gathering of coverage data.

13-5

13-6 Chapter 13

covinfo [[all | module or_function_name||filename)|
List coverage info.

cproinfo [all],filename| | {add | remove } function)
List cumulative profiling info or add or remove functions
from the list of profiled functions.

dis address [, laddress | #count} [,i)]
Disassemble a range of memory.

dump address |, laddress | #count) |, [style [width)] |, filename |,a]|
Dump a memory range.

M Display list of monitored expressions in the Command
window.
m exp Monitor the expression exp.

num md Remove monitored expression labeled num.

addr start mcp addr_end, addr dest
Memory copy.

addr mF exp[exp...
Single fill memory address addr with expressions.

addyr start mf addr_end, exp|,exp)...
Fill memory address range with expressions and repeat the
pattern until the end address of the memory region is
reached.

addr start ms addr _end, exp|,exp)...
Search memory address range for a given pattern.

pd Disable, turn off, profiling.
pe Enable, turn on, profiling.

proinfo |[[all | module or function name|,filenamel)
List profiling info.

Command Reference

13.2.3 DATA ANALYSIS

bufa target buffer name,added buffer namel,size limit]
Add the contents of buffer added buffer name to buffer
target_buffer name.

bufd buffer name
Discard the specified buffer.

9 9

graph "window”,”script”|,arg]...
Create Data Analysis window and execute CXL script.

9 9

graphm "window”,”script”|,arg]...
Set the representation script for the window specified.

graphmn "window”,”script”|,arg]...
Similar to the graphm command, but without an update of
the graph window.

graphp “window” left_top_x,left top y,width,height
Position the named window at the specified screen
coordinates.

graph_add_update "window” command
Add command to the sequence of update commands for the
specified window.

graph_clear_updates “window”
Clear the update commands associated with the specified
window.

graph_close "window”
Close the specified window.

graph_debug expression
Enable the "graphical data window debugging mode”,
showing all communication between the scripts and the
windows in the command window.

memget expr,count,buffername
Retrieve symbolically specified data from the target system
and store the data in the acquisition buffer.

rawmemget caddress,type,count,buffername |,interleave]
Retrieve data from the target system and store the data in the
acquisition buffer.

13-7

13-8 Chapter 13

=

update “window”
Update the window specified.

13.2.4 EXECUTION CONTROL COMMANDS

A [a]s] Toggle state of assertion mechanism.
a cmds Create a new assertion with the command list cmds.
exp afa|d|s}

Activate, delete, suspend assertion exp.
B List all breakpoints.

(line] b [cmds)
Set breakpoint at source line /ine, and associate command list
cmds with breakpoint.

[stack] BB [cmds|
Set temporary breakpoint at beginning of function at stack
level stack and associate command list cnds.

[stack] bb [cmds)
Set breakpoint at beginning of function at stack level stack
and associate command list cmds.

[number| be [count) [reset_count]
Set breakpoint count and reset_count for breakpoint with
number number.

count bCYC [cmdls)]
Set temporary breakpoint after the specified cycle cournt and
associate command list cmnds.

count beyc [cmds)
Set breakpoint after the specified cycle count and associate
command list cmds.

exp bD {r|w|b} exp2 [cmds)
Set a data range breakpoint (between addresses exp and
exp?2) read (r), write (w) or both read and write (b), and
associate command list cmds.

Command Reference

exp bd {r|w|b} [cmds)
Set a data breakpoint, read (r), write (w) or both read and
write (b) at address exp, and associate command list cmds.

num bdis Disable code breakpoint.
num bena Enable code breakpoint.

laddr] bI [cmds)
Set temporary breakpoint at machine instruction and
associate command list cmds.

laddy] bi [cmds)
Set breakpoint at machine instruction and associate command
list cmds.

count BINST [cmdls)
Set temporary breakpoint after count machine instructions
and associate command list cmnds.

count binst [cmds|
Set breakpoint after count machine instructions and associate
command list cmds.

break [type| where [, option)...
Universal breakpoint command. Several types of breakpoints
are available. The meaning of where depends on the selected
type. Breakpoint options must be separated by commas.

time bTIM [cmds)
Set temporary breakpoint after #me number of seconds and
associate command list cmds.

time btim [cmds)]
Set breakpoint after t/me number of seconds and associate
command list cmds.

[stack] BU [cmds)
Set a temporary up-level breakpoint at stack level stack and
associate command list cmds.

[stack] bu [cmds)
Set up-level breakpoint at stack level stack and associate
command list cmds.

13-9

13-10

Chapter 13

lexp] C [line] Continue execution from current value of program counter. If

line is specified, execution continues up to that line.
Breakpoint’s count is set to exp.

lexp] CB |line]

D

Dy
[number] d
cpu eC
[cpu] ec

g line

address gi

Continue execution in background from current value of
program counter. If /ine is specified, execution continues up
to that line. Breakpoint’s count is set to exp.

Delete all breakpoints.

Delete all breakpoints without prompt for confirmation.
Delete breakpoint number.

Start execution on the current CPU and switch to cpu.
Select CPU or show current CPU number.

Go to the specified line in the current procedure.

Go to the specified adrress.

if (exp) {cmds} {cmds)]

prst

Q

qly]
qs

R

rst
lexp] S
lexp] s
lexp] Si

lexp] si

Conditionally execute commands.

Reset program counter.

Report breakpoint quietly.

Quit debugger (do not save desktop settings).
Save current desktop settings and quit debugger.
Reset program counter and start execution.
Reset target system to initial conditions.

Single step for exp lines, step over function calls.
Single step for exp lines, step into function calls.

Single machine step for exp machine instructions, step over
subroutine calls.

Single machine step for exp machine instructions, step into
subroutine calls.

Command Reference

st

Stop the execution of the target immediately.

[interval) u [d|k|r|s|a|mem |t

Toggle updating of the appropriate window when the target
runs in the background. You can specify the update interval,
in seconds. If interval is zero, never update automatically.

ubgw [s|a|k|r|d|mem |t]all

use [path]...

lexp] x

Refresh the appropriate window, or all open windows, when
the target runs in the background. This command is not
available for all execution environments.

Clear source directory search path or use the specified path
to search for source files.

Wait for the completion of the target.

Force an exit from assertion mode. If exp is non-zero, finish
executing command list of the current assertion.

13.2.5 RECORD & PLAYBACK

<file
<<file
>file
>{t|f|c}
>

>#file
>#(t|f|c}

>@file
>@{t|f|c}

>>file

>>{t|f|c}

Play back commands from file.

Play back commands with single step from file.
Record CrossView Pro commands in file.

Set recording file status, true (t), false (f) or closed (c).
Report status of command recording mechanism.
Record emulator commands in file.

Set emulator recording file status, true (t), false (f) or closed

©
Record CrossView Pro and emulator commands in file.

Set CrossView Pro/emulator recording file status, true (t),
false (f) or closed (c)

Log commands and screen output in file.

Set logging file status, true (t), false (f) or closed (c)

13-11

13-12 Chapter 13

>> Report status of command and screen output logging
mechanism.
>&file Log host-to-target communication in file.

>&{t|f|c} Turn target communication logging on (t), off (f) or close (c)

log file.
>& Report status of target communication logging mechanism.
>*file Log GDI accesses in file.

>Ht|f| c} Set GDI accesses log file status, true (t), false (f) or closed (c)

13.2.6 MACROS

echo string Display macro expansion of string.
save file Save current macros to file.
set Display all macros.

set macro “cmds”
Define macro macro as command list cmds.

unset Delete all macros.

unset 7macro!
Delete definition of macro macro.

macro! Prevent expansion of macro.

13.2.7 INPUT/OUTPUT SIMULATION

ios_open [file”|,[mode][,[t][,$xvw_variable]]]]
Open a CrossView Pro File I/O stream.

ios_wopen [[terminal_window”)[,$xvw _variable||
Open a CrossView Pro File I/O stream an map the stream to
a terminal window.

ios_close {stream | file”}
Close a CrossView Pro File I/O stream.

Command Reference

ios_read {stream | “file”}address,number_of maus|,x|
Read binary data from a File I/O stream. Optionally, interpret
the read data as hexadecimal values.

ios_readf {stream | ”file”},”format” expression
Formatted read from a File I/O stream (scanf).

ios_write {stream | “file”address,number of maus|,x|
Write binary data to a File I/O stream. Optionally, interpret
the data as hexadecimal values.

ios_writef {stream | “file”},”format” expression
Formatted write to a File I/O stream (printf).

ios_rewind {stream | ”file”}
Move File I/0 file pointer to the beginning of the file.

13.2.8 FILE SYSTEM SIMULATION

FSS {< | > K&stream | “file”}
Redirect to or from a stream or file.

FSS_stdio_open filename rwdirection streamnumber
Redirect the output of a stream to a file.

FSS_stdio_close streamnumber
Close the specified stream.

13.2.9 TARGET SYSTEM CONTROL

dcmp [file|,[number _of hits|[,d]]
Compare an application file with the memory contents and
display differences.

dn Download the image part of the current absolute file,
specified when CrossView Pro was invoked or loaded with
the N command.

dn file Download the image part of the absolute file file.

load [file] Load symbol table of file in CrossView Pro and download the
image part to the target. This is a combination of N and dn.

13-13

13-14 Chapter 13

N [file] Load symbol table of file in CrossView Pro.

n (addr| Set code address bias (for overlays) to addr. If no address is
given, then display the current bias.

o [cmd) Enter transparency mode (exit with ct7/-D). If cmd is present,
pass cmd to the execution environment.

! [command-line)
Execute shell command command-line or invoke new shell.

13.2.10 SAVE AND RESTORE TARGET STATE

This feature is only available when it is supported by the debug
instrument.

di_state open state_name
Open the state with the specified state_name.

di_state save state_name, number
Save the state of the debug instrument with the specified
state_name and number.

di_state restore siate_name, number
Restore the state of the debug instrument with the specified
state_name and number.

di_state close state_name, delete
Close the state with the specified state_name. delete can be 1
to delete the state or use 0 to keep the state.

13.2.11 HELP COMMANDS

I Print information about debugger state.

13.2.12 SEARCH COMMANDS

z Toggle case sensitivity in searches.

/[string] Search forwards in source file for string. If string is not
present, perform previous search again.

Command Reference

?[string) Search backwards in source file for string. If string is not
present, perform previous search again.

’string” Print string.

13.3 COMMANDS: DETAILED DESCRIPTIONS

The rest of this chapter provides the detailed descriptions of the CrossView
Pro commands.

13-15

13-16

=

Chapter 13

expression

Function

Print the value or address of an expression.

From the Data menu, select Evaluate Expression... Enter an expression
and optionally select a display format. You may set up a monitor, which
instructs the debugger to evaluate a particular expression each time the
program stops, from the Source Window by selecting text there and by
clicking on the Watch Expression button.

Enter the expression in the Command Window. You may specify in which

format you want CrossView Pro to display the answer.

Description

In the Command Window, the syntax for this command is:
exp |/ format |@ format]

Print the value or address of exp with format format. A / (slash) is used to
print the value of exp and a @ (commercial at) is used to print the address
of exp. If format is not supplied, the natural (/n) format of the expression
is used.

Formats have the syntax:
[count] style [size]

count is the number of times to apply the format style and defaults to 1.
style may be one of:

acDOUXdouxEFGefgilnPpst

See Chapter 6, Accessing Code and Data, and section 3.5 Formatting
Expressions in Chapter 3, Command Language, for details on each of the
format styles.

size indicates the number of bytes to be formatted. Rather than a number
for the integer type styles, size can also be: ¢ for char, s for short, i for int,
and 1 for long.

The default action, if no modifier is specified, is to print the value of exp
using the /n (normal) format.

Command Reference 13-17

Be careful with one letter variable names, as they may be taken as an
CrossView Pro command rather than as a variable. If an expression begins
with a variable that might be mistaken for a command, then eliminate any
white space between the variable and the first operator. For example: use
h=9 instead of h=9

To display the value of a variable that has the same name as an CrossView
Pro command you must use the natural format modifier. For example: to
print the value of the variable C, use C/n .

Variables may be altered as a side effect of evaluation of exp. See the
example below.

Example
To set variable aux to t times 8, type:
aux = t++*8
As a side effect the variable t is post-incremented. If you type:
$s_aux = func(t,s)

CrossView Pro will set special variable $s_aux to the result of the function
call to func with the variables t and s passed as parameters. If you type:

$s_aux/x4

Print the value of the special variable $s_aux as four hex bytes; you could
also use: $s_aux/xl

@]j,\

13-18 Chapter 13

=
line

Function

Display the C source line numbered /izze in the current source file.

@? From the Edit menu, select Find Line... Enter the line number and click
on the Find button. Alternately, you may click on the desired source line
in the Source Window.

Enter the line number in the Command Window. The syntax is:
line

Description

The current viewing position becomes line.

Example

To display the twelfth line in the current source file, type:

12

Bocos

Command Reference

string

Function

Echo a string to the terminal.

Enter the string to the Command Window.

Description

A string may contain standard C escapes, such as \n for a newline. The
syntax for a string in the Command Window is:

”Sl,rl'ng”

Example

This function can be useful for labelling breakpoints. For example, to
insert a breakpoint at line 12 and have a message printed when that line is
reached, enter:

12 b {"At the twelfth line\n”; C}

When CrossView Pro reached line 12, the message “At the twelfth line”
will be printed and the program will continue. If you only type:

"Debug”

CrossView Pro will simply echo the word “Debug.”

@]j Q, expression

13-19

13-20 Chapter 13

Function

Instruct CrossView Pro to interpret a command literally, ignoring any
macro definitions of the same name. Also, enter a shell command.

[string | !
or:
! [string |

Description

This command is useful whenever string should be treated literally and not
as a potential macro invocation. It can be used, for example, in executing
an CrossView Pro command whose name has been defined as a macro.

Example

To enter the host environment under a new shell, type:
[

To execute the host date command, type:
ldate

To execute the CrossView Pro command b instead of the macro named b,
type:

b!

@j set, unset, echo, save

Command Reference

/

Function
Search down (forward) for a string.
To search for a string in the Source Window, select Search String... from

the Edit menu and select the up radio button. To repeat your search click
on the Find Next Text String button.

The command line syntax is:
/ | string |

Description

The search begins with the line after the current line. If the string is found
the viewing position is changed to the line containing the string. The
execution position is not affected. If you do not specify a string to search
for, CrossView Pro will look for the most recent specified string.

Searches wrap around to the beginning of the file. Regular expressions are
not recognized.

Example

To look for the next occurrence of Randomin the current file, beginning
with the line after the current line, type:

/Random

I

13-21

13-22 Chapter 13

=

?

Function
Search up (backward) for a string.
To search for a string in the Source Window, select select Search String...

from the Edit menu and select the down radio button. To repeat your
search click on the Find Next Text String button.

The command line syntax is:
? [string |

Description

The search begins with the line before the current line. If string is found,
the current line is changed to point to the line containing the string. The

execution position is not affected. If you do not specify string, CrossView
Pro searches for the previously—specified string again.

Searches wrap around to the end of the file. Regular expressions are not
recognized.

Example

To look for the previous occurrence of Randomin the current file,
beginning with the line above the current line, type:

?Random

&

Command Reference

<

Function

Continuous command playback. Read commands continuously from a file.

To setup command playback, select Playback | CrossView... from the
Tools menu. Enable the Continuous playback check box and click on
the Execute button.

The command line syntax is:
< file

Description

All the commands in file will be read and executed. If a playback file
contains either a < or << command, playback switches to the newly
specified file and does not return to the original file.

Record and playback options can also be specified via command line
parameters.

If the execution of commands from the playback file is interrupted with
the Halt button, CrossView Pro will begin reading the remainder of
commands in file using single step playback (see the << command.)

Example

To read and execute the commands found in the file command.cmd, type:

<command.cmd

@j <<, > 1

13-23

13-24 Chapter 13

<<

Function
Single-step command playback.
To setup command playback, select Playback | CrossView... from the

Tools menu. Disable the Continuous playback check box and click on
the Execute button.

The command line syntax is:

<<file

Description

Commands will be played back one at a time. Each command will be
loaded sequentially into the entry field of the Command Window. The
command can then be edited and executed.

The carriage return will execute the current command and stop at the next
one.

If a playback file contains either a < or << command, playback switches to
the newly specified file and does not return to the original file. Record and
playback options can also be specified via command line parameters.

Example

To read and execute the commands found in the file command.cmd, type:

<< command.cmd

@j<,>,l

Command Reference

>

Function

Record CrossView Pro commands to a file.

To start recording or toggle the state of the command recording
mechanism, select Record | CrossView... from the Tools menu. Type or
select a file to record commands in and click on the Start button to start
recording. To suspend recording click on the Suspend button. To resume
recording click on the Resume button. To stop recording click on the
Stop button.

The command line syntax is (note that the greater than sign must be typed
as shown):

>[1][file | t]f]c]

Description

CrossView Pro will start recording commands in a file if file is specified,
otherwise, turn recording on (t), off (f), or close (c) the recording file.
Specifying a different file while recording is on will cause the old output
file to be closed and all successive commands will be sent to the new file.
If no arguments are given, the state of the recording mechanism will be
displayed.

The optional '’ forces flushing of the output after every write.

The commands recorded can be played back by using the < or <<
command. It is possible to have a command recording file and a screen
output recording file to be open concurrently. The file is also closed as a
side effect of the q command.

Commands issued to the emulator under transparency mode are not
recorded.

Files may not be named: t, f or c.

Example

To set (or change) the command recording file to command.cmd and turn
command recording on, type:

>command.cmd

13-25

13-26 Chapter 13

To suspend recording commands, type:
>f

To resume recording the commands to the recording file, type:
>t

To stop recording commands and close the file, type:
>C

To display the state of the recording mechanism, type:

>

@]j >> >&, <, <<, 1 q

Command Reference

>@

Function

Record CrossView Pro and emulator commands to a file.

To start recording or toggle the state of the command recording
mechanism, select Record | CrossView... from the Tools menu. Type or
select a file to record commands in, select Include emulator commands
and click on the Start button to start recording. To suspend recording
click on the Suspend button. To resume recording click on the Resume
button. To stop recording click on the Stop button.

The command line syntax is (note that the greater than sign must be typed
as shown):

>@ [V [file | t]| f] c]

Description

CrossView Pro will start recording commands in a file if file is specified,
otherwise, turn recording on (t), off (f), or close (c) the recording file.
Specifying a different file while recording is on will cause the old output
file to be closed and all successive commands will be sent to the new file.
If no arguments are given, the state of the recording mechanism will be
displayed.

The optional '’ forces flushing of the output after every write.

The commands recorded can be played back by using the < or <<
command. It is possible to have a command recording file and a screen
output recording file to be open concurrently. The file is also closed as a
side effect of the q command.

Commands issued to the emulator under transparency mode are also
recorded, but each command is preceded by the o command.

Files may not be named: t, f or c.

Example

To set (or change) the command recording file to command.cmd and turn
command recording on, type:

>@command.cmd

13-27

13-28 Chapter 13

To suspend recording commands, type:
>@f

To resume recording the commands to the recording file, type:
>t

To stop recording commands and close the file, type:

>@c

d]j > >#, >> >&, <, <<, I, q

Command Reference

>H#

Function

o)

Record emulator commands to a file.

To start recording or toggle the state of the command recording
mechanism, select Record | Emulator... from the Tools menu. Type or
select a file to record commands in and click on the Start button to start
recording. To suspend recording click on the Suspend button. To resume
recording click on the Resume button. To stop recording click on the
Stop button.

The command line syntax is (note that the greater than sign must be typed
as shown):

>#] [file | t| f]c]

Description

CrossView Pro will start recording emulator commands in a file if file is
specified, otherwise, turn recording on (t), off (f), or close (c) the
recording file. Specifying a different file while recording is on will cause
the old output file to be closed and all successive commands will be sent
to the new file. If no arguments are given, the state of the recording
mechanism will be displayed.

The optional '’ forces flushing of the output after every write.

The emulator commands recorded can only be played back by selecting
Playback | Emulator... from the Tools menu It is possible to have a
command recording file and a screen output recording file to be open
concurrently. The file is also closed as a side effect of the q command.

Files may not be named: t, f or c.

Example

To set (or change) the emulator command recording file to emu.cmd and
turn command recording on, type:

>#emu.cmd

13-29

13-30 Chapter 13

To suspend recording emulator commands, type:
>#f

To resume recording the emulator commands to the recording file, type:
>Ht

To stop recording emulator commands and close the file, type:

>Hc

d]j > >> >&, <, <<, I, q

Command Reference 13-31

>>

Function

Log Command Window screen output. All Command Window input and
output will be saved to a file.

To create a log of Command Window screen output, select Log |
Command Input/Output... from the Tools menu. Type or select a file to
log to and click on the Start button to start logging. To suspend logging
click on the Suspend button. To resume logging click on the Resume
button. To turn off logging click on the Stop button.

The command line syntax is:
>> (1] [file | t | f]c]

Description

Start logging the commands typed and their output in a file if file is
specified, otherwise, turn logging on (t), off (f), or close (c) the log file.
Specifying a different file while logging is on will cause the old output file
to be closed and all successive Command window output will be sent to
the new file. If no arguments are given, the state of the recording and
logging mechanism is displayed.

The optional " forces flushing of the output after every write.

Because output is logged as well as commands, files logged using >>
cannot be played back like those recorded with the > command.

It is possible to have both a command recording file and a screen output
logging file open concurrently. The log file is also closed as a side effect
of the q command. Log files may not be named: t, f or c.

Example

To set (or change) screen output recording file to the file screen.log
and turn screen output recording on, type:

>>screen.log
To suspend recording the screen output, type:

>>f

13-32 Chapter 13

To resume recording the screen output in the recording file, type:
>>t

To stop recording the screen output and close the file, type:
>>C

To display the state of the recording mechanism, type:

>>

@j >, >&, I q

Command Reference

>&

Function

Log communications between debugger and emulator.

To save debugger/emulator communications, select Log |
CrossView-Emulator I/0... from the Tools menu. Type or select a file to
log to and click on the Start button to start logging. To suspend logging
click on the Suspend button. To resume logging click on the Resume
button. To turn off logging click on the Stop button.

The command line syntax is:
>& (1] [file | t|f]c]

Description

Start host-to—execution environment communication logging in a file if file
is specified; otherwise, turn logging on (t), off (f), or close (c) the log file.
This feature is most often used to diagnose problems with CrossView Pro
itself.

The optional 'Y forces flushing of the output after every write.

The commands captured cannot be played back the way commands
recorded by the > command can. The log file is also closed as a side effect
of the q command.

Example

To open the file out.log and put the following host-to—emulator
communications in this file, type:

>&out.log

To suspend logging communications in the log file, type:
>&f

To resume logging communications in the log file, type:

>&t

13-33

13-34 Chapter 13

=

To stop logging communications and close the file, type:

>&C

d]j > >>q

Command Reference

>*

Function

Log GDI accesses.

To save GDI accesses, select Log | CrossView-GDI Accesses... from the
Tools menu. Type or select a file to log to and click on the Start button to
start logging. To suspend logging click on the Suspend button. To resume
logging click on the Resume button. To turn off logging click on the Stop
button.

The command line syntax is:
>¥[1] [file | t]f]c]

Description

Start GDI accesses logging in a file if file is specified; otherwise, turn
logging on (t), off (f), or close (c) the log file. This feature is most often
used to diagnose problems with the Debug Instrument.

The optional 'V’ forces flushing of the output after every write.

The commands captured cannot be played back the way commands
recorded by the > command can. The log file is also closed as a side effect
of the q command.

Example
To open the file gdi.log and start logging GDI accesses in this file, type:
>*gdi.log
To stop logging GDI accesses and close the file, type:

>*C

d]j > >>q

13-35

13-36

Chapter 13

Function

Display contents of preceding memory location based on the size of the
last data item displayed.

~ | format |
Description
Use previous format or format, if supplied. Formats have the syntax:
[count| style [size|

count is the number of times to apply the format style and defaults to 1.
style may be one of:

acDOUXdouxEFGefgilnPpst

@j See Chapter 6, Accessing Code and Data, and section 3.5 Formatting
Expressions in Chapter 3, Command Language, for details on each of the
format styles.

size indicates the number of bytes to be formatted. Rather than a number
for the integer type styles, size can also be: ¢ for char, s for short, i for int,
and 1 for long.

This command is most often used in combination with exp/format to look
at the value of some variable or memory location.

Example
To display the variable aux as two octal values of length two, type:
M aux/202
To show the eight bytes before aux in hexadecimal format, next type:

N2xX4

@]j expression

Command Reference

A

Function

Toggle the state of the assertion mode.

To activate or suspend assertion mode, select Assertions... from the
Breakpoints menu, and enable or disable the Assertion Mode Active
check box.

The command line syntax is:
Ala|s]

Description

Activate (A a) or suspend (A s) overall state of the assertion mechanism. If
no operand is given, toggle the state.

Example

To activate the assertion mechanism, type:
Aa
To suspend the assertion mechanism, type:

As

To toggle the state of the assertion mechanism, simply type:

g =

A

13-37

13-38 Chapter 13

—
a

Function

Define or modify an assertion.

From the Breakpoints menu, select Assertions... to open the Assertions
dialog box. Click the New... button to define an assertion. Select an
assertion and click the Edit... button to modify an assertion.

The command line syntax is:
exp a{a|d]|s}
a cmds

Description

The a command is used to invoke two different commands. The syntax for
each command is distinct. The first version allows modification of the state
of the assertion specified by the expression exp. (The assertion can be
activated (a a), deleted (a d) or suspended (a s).) The second version
creates a new assertion with the given command list cmds. Using the
mouse, you can create a new assertion or toggle the state of an existing
one from the Assertions dialogue box.

Suspended assertions continue to exist, but are not active. Deleted
assertions must be explicitly redefined in order to be made active again.

The commands for every active assertion are executed after every source
statement is executed. The x command in an assertion command list
forces an exit from assertion mode.

This command is not allowed when the target runs in the background.
Example
To suspend assertion 3, type:
3as
To delete assertion 1, type:

lad

Command Reference 13-39

To set an assertion to stop the program when global variable myvar
exceeds 3, type:

a if (myvar > 3) {x}

@jA,l,X

13-40 Chapter 13

=
B

Function
List all of the currently defined breakpoints.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box.

The command line syntax is:
B

Description

Breakpoints are listed with numbers associated with them. These numbers
can be used to delete individual breakpoints.

@]j break, b, bb, bB, bi, bl, bu, bU, R, C, D, 1

Command Reference 13-41

b

Function
Set a code breakpoint.
From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Code
Breakpoint... to open the Add Code Breakpoint dialog. Enter the name of

the source module or click the Break At... button to select a source
module and enter a line number.

Alternatively, you can set a code breakpoint directly in the source by
clicking on a green breakpoint toggle next to the source line.

The command line syntax is:

[line] b [commands]

Description

You can attach a list of CrossView Pro commands with the breakpoint. If
no line is given, set the breakpoint at the current viewing position.

When the breakpoint is hit execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next, any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the b
command.

Example

To set a breakpoint at the current line, type:
b

To set a breakpoint at line 10 that will list all global variables and halt
execution, type:

10 b {l g}

@]j break, bd, bD, bdis, bena, bb, bB, bi, b, bt, bti, btI, bu, bU, Q

13-42 Chapter 13

=
bB

Function
Set a temporary breakpoint at the beginning of a function.

In the Stack Window, click on the desired function and select Stack
Breakpoint | At Function Entry from the Breakpoints menu.

The command line syntax is:
[stack | BB [cmds |

Description

The function is designated by the stack level stack. If no function is
specified, CrossView Pro uses the current function (stack level 0), and
associates the list of CrossView Pro commands cmds with the breakpoint.

Breakpoints set in the Stack Window are always temporary, meaning they
will be deleted after the first time you reach them. A breakpoint set in this
manner will not be visible in the Source Window.

When the breakpoint is hit, execution is halted; the breakpoint is then
removed. By default the current execution position, function, line number,
and source statement are displayed. Next, any commands associated with
the breakpoint are executed. The Q command can be used to suppress the
output from the bB command.

This command is not allowed when the target runs in the background.

Example

To set a temporary breakpoint at the beginning of the current function
which prints a stack trace, type:

bB {T}

To set a temporary breakpoint at the beginning of the function whose
stack number is 2, type:

2 bB

d]j break, b, bb, bd, bD, bi, bl, bt, bti, btl, bu, bU, Q

Command Reference 13-43

bb

Function

Set a permanent breakpoint at the beginning of a function.

In the Stack Window, click on the desired function and select Stack
Breakpoint | At Function Entry from the Breakpoints menu. To make
the stack breakpoint permanent, select Breakpoints... from the
Breakpoints menu, select the desired breakpoint and click on the Edit...
button. The Edit Code Breakpoint dialog appears. Click on the
Advanced>> button and disable the Remove when hit check box.

The command line syntax is:
[stack] bb [cmds |

Description

Set a breakpoint at the beginning of the function designated by the stack
level stack. Otherwise, use the current function (stack level 0), and
associate the list of CrossView Pro commands cmds with the breakpoint.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next, any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bb command.

This command is not allowed when the target runs in the background.

Example

To set a breakpoint at the beginning of the current function, which prints a
stack trace, type:

bb {T}

To set a breakpoint at the beginning of a function whose stack number is
2, type:

2 bb

@j break, b, bB, bd, bD, bi, bI, bt, bti, btI, bu, bU, Q

13-44 Chapter 13

=
bc

Function

Set a breakpoint’s count and reset count.

From the Breakpoints menu, select Breakpoints... , select the
breakpoint for which you want to set the count and reset count and click
on the Edit... button. The Edit Code Breakpoint dialog appears. Click on
the Advanced button and enter a breakpoint count.

The command line syntax is:

[number | bc [count | | reset_count |

Description

Set the count and reset _count for the breakpoint with breakpoint number
number. When no arguments are given, the breakpoint at the current
viewing position is set to a count of 1 and a reset count of 1. If no
breakpoint is present at the current viewing position, the message "No
such breakpoint” appears.

Each time a breakpoint is hit, CrossView Pro decrements the count. When
the count reaches 0, execution is halted and the count is reset to the
reset_count.

This command is not allowed when the target runs in the background.

Example

To set a breakpoint’s count and reset count to 1 for the breakpoint at the
current viewing position, type:

bc

To set the count to 3 and the reset count to 4 for the breakpoint whose
breakpoint number is 2, type:

Command Reference 13-45

bCYC

Function

Set a temporary cycle count breakpoint.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Cycle
Breakpoint... to open the Add Cycle Breakpoint dialog. Click the
Advanced button and enable the Remove when hit check box.

The command line syntax is:
count bCYC [cmds)

Description

Set a temporary breakpoint after the specified cycle count. count can be
any expression evaluating to a number. The list of CrossView Pro
commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted; the breakpoint is then
removed. By default the current execution position, function, line number,
and source statement are displayed. Next any commands associated with
the breakpoint are executed. The Q command can be used to suppress the
output from the bCYC command.

Example

To set a temporary breakpoint after 4 clock cycles and list all global
variables, type:

4 bCYC {l g}

d]j break, b, bcyc, bINST, binst, bTIM, btim, D

13-46 Chapter 13

=
bcyc

Function

Set a permanent cycle count breakpoint.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Cycle
Breakpoint... to open the Add Cycle Breakpoint dialog. Enter a cycle
count and click the OK button.

The command line syntax is:

count beyc [cmds)

Description

Set a permanent breakpoint after the specified cycle count. count can be
any expression evaluating to a number. The list of CrossView Pro
commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bcyc command.

Example

To set a cycle count breakpoint after 4 clock cycles and list all global
variables, type:

4 beyc {l g}

@j break, b, bCYC, bINST, binst, bTIM, btim, D

Command Reference 13-47

bD

Function

Set a read and/or write data breakpoint over a range of addresses.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Data
Breakpoint... to open the Add Data Breakpoint dialog. Enter an address
or click the Address... button to select a symbol to use as the address.
Click the Advanced button. Enter an address in the End adress field or
click the Browse... button to select a symbol to use as the end address.
Click the OK button to add the data breakpoint.

The command line syntax is:
expl bD {r | w | b} exp2 [cmds]

Description

Set a read, write, or both (read and write) data breakpoint in the address
range expl to exp2 and associate the list of CrossView Pro commands
cmds with the breakpoint.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next, any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bD command.

If exp1 is the address of a local (stack) variable, the function in which it
was declared must be currently active on the stack. If the local variable
corresponding to a data breakpoint goes out of scope due to a return from
the function in which it is currently active, the data breakpoint will be
removed and a message will be printed telling the user that the variable is
no longer active.

Example
To set a data breakpoint that includes the entire structure recl | type:
&recl bD r (int)&recl+sizeof(recl)-1

This breakpoint will be hit only if any address in the range of addresses is
read from.

13-48 Chapter 13

To set a data breakpoint for the address range 10 to 10f hex (256 bytes)
that will list all global variables, type:

0x10 bD b 0x10f {l g;}

This breakpoint will be hit if any memory locations within the range
10-10f hex are either read from or written to.

ﬁ]j break, b, bb, bB, bd, bi, bl, bt, bti, btl, bu, bU, Q

Command Reference 13-49

bd

Function

Set a read and/or write data breakpoint at an address.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Data
Breakpoint... to open the Add Data Breakpoint dialog. Enter an address
or click the Address... button to select a symbol to use as the address.
Click the OK button to add the data breakpoint.

The command line syntax is:
exp bd {r | w | b} [cmds]

Description

Set a read, write or both (read and write) data breakpoint at the address
specified by exp and associate the list of CrossView Pro commands cmds
with the breakpoint.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bd command.

If exp corresponds to a local (stack) variable, the function in which it was
declared must be currently active on the stack. If the local variable
corresponding to a data breakpoint goes out of scope due to a return from
the function in which it is currently active, the data breakpoint will be
removed and a message will be printed telling you that the variable is no
longer active.

Example

To set a breakpoint at the variable count which will all be hit only if the
variable is read from memory, type:

&count bd r

13-50 Chapter 13

To set a breakpoint at address 10 hex that will list all global variables,
type:

0x10 bd b {l g}

This breakpoint will be hit if address 10 hex is either read from or written
to.

@j break, b, bb, bB, bD, bi, bl, bt, bti, btI, bu, bU, Q

Command Reference

bdis

Function
Disable code breakpoint.
@? From the Breakpoints menu, select Breakpoints... On Windows toggle
the check box in front of the breakpoint to enable or disable the

breakpoint. On UNIX select the breakpoint and click the Enable or
Disable button.

number bdis

Description

Disable the code breakpoint associated with the given number.

This does not delete the code breakpoint. It disables the code breakpoint
until you enable it again with the bena command.

This command does not work on data breakpoints, only on code
breakpoints

Example

To disable code breakpoint number 3, type:

13-51

13-52 Chapter 13

=
bena

Function

Enable code breakpoint.

@? From the Breakpoints menu, select Breakpoints... On Windows toggle
the check box in front of the breakpoint to enable or disable the
breakpoint. On UNIX select the breakpoint and click the Enable or
Disable button.

number bena

Description
Enable the code breakpoint associated with the given number, which was
previously disabled by the bdis command.

This command does not work on data breakpoints, only on code
breakpoints

Example

To enable code breakpoint number 3, type:

Command Reference 13-53

bl

Function

Set a temporary low-level breakpoint at a machine instruction.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Code
Breakpoint... to open the Add Code Breakpoint dialog. Edit the Break
At... field. In the Advanced dialog enable the Remove when hit check
box.

The command line syntax is:
laddr] bI [cmds)

Description

Set a temporary breakpoint at the machine instruction at address addy, or
the current viewing position’s address if addr is not specified; the list of
CrossView Pro commands cmds are executed when the breakpoint is hit.

Make sure that addr is the start address of a machine instruction,
otherwise the results are unpredictable. When the breakpoint is hit
execution is halted. By default the current execution position, function,
line number, and source statement are displayed. Next any commands
associated with the breakpoint are executed. The Q command can be used
to suppress the output from the bI command.

Example

To set a temporary breakpoint at the current viewing position’s address,
type:

bl

To set a temporary breakpoint at address 100 that will print the addresses
of the next five source statements, type:

100 bl {P 5}

@]j break, b, bb, bB, bd, bD, bi, bt, bti, btl, bu, bU, Q

13-54 Chapter 13

=
bi

Function

Set a permanent low-level breakpoint at a machine instruction.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Code
Breakpoint... to open the Add Code Breakpoint dialog. Edit the Break
At... field. In the Advanced dialog disable the Remove when hit check
box.

Alternatively, you can place a breakpoint in the intermixed window or
assembly window by double clicking on the desired instruction.

The command line syntax is:
laddr] bi [cmds)

Description

Set a permanent breakpoint at the machine instruction at address addr, or
the current viewing position’s address if addr is not specified; the list of
CrossView Pro commands cmds are executed when the breakpoint is hit.

Make sure that addr is the start address of a machine instruction,
otherwise the results are unpredictable. When the breakpoint is hit
execution is halted. By default the current execution position, function,
line number, and source statement are displayed. Next any commands
associated with the breakpoint are executed. The Q command can be used
to suppress the output from the bi command.

Example
To set a breakpoint at the current viewing position’s address, type:
bi

To set a breakpoint at address 100 that will print the addresses of the next
five source statements, type:

100 bi {P 5}

ﬂj break, b, bb, bB, bd, bD, bI, bt, bti, btI, bu, bU, Q

Command Reference 13-55

bINST

Function

Set a temporary instruction count breakpoint.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Instruction
Breakpoint... to open the Add Instruction Breakpoint dialog. Type a
value in the Instruction count field and enable the Remove when hit
check box in the Advanced dialog.

The command line syntax is:
count bINST [cmdls)

Description

Set a temporary breakpoint after the specified count number of machine
instructions have been executed. count can be any expression evaluating
to a number. The list of CrossView Pro commands cmds are executed
when the breakpoint is hit.

When the breakpoint is hit, execution is halted; the breakpoint is then
removed. By default the current execution position, function, line number,
and source statement are displayed. Next any commands associated with
the breakpoint are executed. The Q command can be used to suppress the
output from the bINST command.

Example

To set a temporary breakpoint after execution of 5 instructions and list all
global variables, type:

5 bINST {l g}

@]3 break, b, bCYC, bcyc, binst, bTIM, btim, D

13-56 Chapter 13

=
binst

Function

Set a permanent instruction count breakpoint.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Instruction
Breakpoint... to open the Add Instruction Breakpoint dialog. Type a
value in the Instruction count field and disable the Remove when hit
check box in the Advanced dialog.

The command line syntax is:

count binst [cmds]

Description

Set a permanent breakpoint after the specified count number of machine
instructions have been executed. count can be any expression evaluating
to a number. The list of CrossView Pro commands cmds are executed
when the breakpoint is hit.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
binst command.

Example

To set a permanent breakpoint after execution of 5 instructions and list all
global variables, type:

5 binst {l g}

@]j break, b, bCYC, bcyc, bINST, bTIM, btim, D

Command Reference

break

Function

Universal breakpoint command.

From the Breakpoints menu, select Breakpoints... to
add/remove/enable/disable breakpoints.

The general command line syntax is:
break [type] where [, option)...
Description
This is a universal breakpoint command.

fype can be one of: code | data | instructions | cycles | time |
sequence | set | delete | enable | disable. The type can be
abbreviated. So, t|ti|tim | time are the same. When the type field is not
specified the type defaults to code.

Depening on the type field the where field will evaluate to an address,
count, name, breakpoint number or a sequence.

The available options are listed below.

Code breakpoints
Syntax:

break code addpress |, option)...

address can be any expression evaluating to an address.

Data breakpoints
Syntax:

break data address [, option)...

address can be any expression evaluating to an address.

13-57

13-58 Chapter 13

-

Instruction count breakpoints
Syntax:

break instructions count [, option)...
count can be any expression evaluating to the number of instructions.
Cycle count breakpoints
Syntax:
break cycles count |, option...
count can be any expression evaluating to the number of cycles.
Timer breakpoints
Syntax:
break timer t/me |, option)]...

time can be any expression evaluating to a time value. Depending on the
setting of the timer_unit option this value is in seconds or timer ticks
(default is in seconds).

Sequence breakpoints
Syntax:
break sequence sequence |, option)...
sequence is a combination of breakpoints.
Set/change breakpoint attributes
Syntax:
break set bp _number | bp_name [, option|...

bp_number is the breakpoint number. If the breakpoint has a name
(bp_name) you can use this name instead of a number.

Command Reference

Delete breakpoint attributes
Syntax:

break delete bp_number | bp_name | all |, option)...

bp_number is the breakpoint number. If the breakpoint has a name
(bp_name) you can use this name instead of a number.

Enable/disable breakpoints
Syntax:

break enable bp_number | bp name
break disable bp_number | bp_name

bp_number is the breakpoint number. If the breakpoint has a name
(bp_name) you can use this name instead of a number.

Options
name=sir

Change/set the name of a breakpoint. Note that when a name of a
breakpoint which name is used in a sequence is changed the name in
the sequence is not automatically changed.

temporary|=bool]

Single shot breakpoint, temporary breakpoints are deleted after they
are hit.

enabled[=bool]

Enable or disable a breakpoint.
curr_count=expr

Set current count.
reset_count=expr

Set reset count.
count=expr

Set current and reset count of a breakpoint.

13-59

13-60 Chapter 13

access_type=r | w | rw

Set the access type of a data breakpoint: read (r), write (W) or
read/write (rw).

addr=expr

Set the (start)address for a code or data breakpoint.
value=expr

set the value for a data breakpoint.
method=hardware | software | none

Set the breakpoint method.
probe_point[=bool|

Treat the breakpoint as a probe point. When a probe point breakpoint
is hit the associated commands are executed and program execution is
continued. Probe points do not update CrossView Pro windows.

size=expr
Length of a data or code breakpoint (end_addr = begin_addr+size-1).
end_addr=expr
The end address of a range is inclusive.
end_value=expr
The end value is inclusive.
value_is_absolute[=bool|

For instructions and cycles breakpoints only, the specified value is an
absolute count, breakpoint will hit when count has value, otherwise
repeat every number of instructions.

commands={ commands }
Set breakpoint commands.
timer_unit=seconds | ticks

The specified timer value is in seconds or ticks.

Command Reference 13-61

bool
1| 0 | true | false
True/false, case insensitive.

expr
Appropriate CrossView expression.

Example

To set a code breakpoint at an address range, type:
break code code:0x10, end_addr=code:0x1f

To set a code breakpoint at an address range by specifying a size, type:
break code:0x10, size=0x10

To set a code breakpoint with a name, type:
break code:0x10, name=brk_1

To disable the breakpoint with name brk_1 | type:
break dis brk_1

To set a cycle count breakpoint and treat the value as an absolute count,
type:

break cycles 1000, value_is_absolute

@j Chapter 7, Breakpoints.

13-62 Chapter 13

=
bt

Function

Set a task aware code breakpoint.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Code
Breakpoint... to open the Code Breakpoint dialog. Fill in the Task ID
field.

The command line syntax is:
(line] bt “Taskld” [cmds)

Description

Set a task aware code breakpoint at the specified source /ine and associate
the list of CrossView Pro commands cmds with the breakpoint. If no line is
given, set the breakpoint at the current viewing position. The 7askld is the
identification of the task as displayed in the Tasks Window or specified by
the 1 k command.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next, any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bt command.

Example
To set a breakpoint for task 4 at the current viewing position, type:
bt 11411

To set a breakpoint for task 4 at line 10, which lists all global variables,
type:

10 bt "4” {I g}

@j break, b, bb, bB, bd, bD, bi, b, bti, btI, bu, bU, 1, Q

Command Reference 13-63

btl

Function

Set a temporary low-level task aware breakpoint at a machine instruction.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Code
Breakpoint... to open the Code Breakpoint dialog. Edit the Break At...
field and fill in the Task ID field. In the Advanced dialog enable the
Remove when hit check box.

The command line syntax is:
laddr] btl “Taskld” [cmds)

Description

Set a temporary task aware breakpoint at the machine instruction at
address addr, or the current viewing position’s address if addr is not
specified; the list of CrossView Pro commands cmds are executed when
the breakpoint is hit. The Taskld is the identification of the task as
displayed in the Tasks Window or specified by the 1k command.

Make sure that addr is the start address of a machine instruction,
otherwise the results are unpredictable. When the breakpoint is hit
execution is halted. By default the current execution position, function,
line number, and source statement are displayed. Next any commands
associated with the breakpoint are executed. The Q command can be used
to suppress the output from the btI command.

Example

To set a temporary breakpoint for task 4 at the current viewing position’s
address, type:

btl ”4”

To set a temporary breakpoint for task 4 at address 0XxFOO and print the
message, type:

0xFO0O0 btl "4” {"breakpoint triggered:
address 0xF0O, task 47}

@]j break, b, bb, bB, bd, bD, bi, bl, bt, bti, bu, bU, 1, Q

13-64 Chapter 13

-
bti

Function

Set a permanent low-level task aware breakpoint at a machine instruction.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Code
Breakpoint... to open the Code Breakpoint dialog. Edit the Break At...
field and fill in the Task ID field. In the Advanced dialog disable the
Remove when hit check box.

The command line syntax is:
laddr] bti ”Taskld” [cmds)

Description

Set a permanent task aware breakpoint at the machine instruction at
address addr, or the current viewing position’s address if addr is not
specified; the list of CrossView Pro commands cmds are executed when
the breakpoint is hit. The 7askld is the identification of the task as
displayed in the Tasks Window or specified by the 1 k command.

Make sure that addr is the start address of a machine instruction,
otherwise the results are unpredictable. When the breakpoint is hit
execution is halted. By default the current execution position, function,
line number, and source statement are displayed. Next any commands
associated with the breakpoint are executed. The Q command can be used
to suppress the output from the bti command.

Example

To set a breakpoint for task 4 at the current viewing position’s address,
type:

bti "4”

To set a breakpoint for task 4 at address 0OxFOO and print the message,
type:

O0xF0O bti "4” {"breakpoint triggered:
address 0xF0O, task 47}

@]j break, b, bb, bB, bd, bD, bi, bl, bt, btl, bu, bU, 1, Q

Command Reference 13-65

bTIM

Function

Set a temporary time breakpoint.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Timer
Breakpoint... to open the Add Timer Breakpoint dialog. Enter a value in
the Time field and enable the Remove when hit check box in the
Advanced dialog.

The command line syntax is:

time bTIM [cmds)

Description

Set a temporary breakpoint after the specified t/me (in seconds). time can
be any expression evaluating to a number. The list of CrossView Pro
commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted; the breakpoint is then
removed. By default the current execution position, function, line number,
and source statement are displayed. Next any commands associated with
the breakpoint are executed. The Q command can be used to suppress the
output from the bTIM command.

Example

To set a temporary breakpoint after 0.5 seconds and list all global
variables, type:

0.5 bTIM {l g}

ﬂj break, b, bCYC, bcyc, bINST, binst, btim, D

13-66

=

Chapter 13

btim

Function

Set a permanent time breakpoint.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click the Add > button and select Timer
Breakpoint... to open the Add Timer Breakpoint dialog. Enter a value in
the Time field and disable the Remove when hit check box in the
Advanced dialog.

The command line syntax is:

time btim [cmdls)]

Description

Set a permanent breakpoint after the specified time (in seconds). time can
be any expression evaluating to a number. The list of CrossView Pro
commands cmds are executed when the breakpoint is hit.

When the breakpoint is hit, execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
btim command.

Example

To set a permanent breakpoint after 0.5 seconds and list all global
variables, type:

0.5 bTIM {l g}

ﬂj break, b, bCYC, bcyc, bINST, binst, bTIM, D

Command Reference 13-67

bU

Function

Set a temporary up-level breakpoint (to finish the function at a specific
stack level).

In the Stack Window, double—click on the desired function. Alternately,
you can click on the desired function in the Stack Window and select
Stack Breakpoint | After Call to Function from the Breakpoints menu.

The command line syntax is:

[stack] bU [commands]

Description

This command sets a temporary up-level breakpoint immediately after the
call to the function designated by the stack number stack, otherwise the
currently viewed function is used. Associate the list of CrossView Pro
commands commands with the breakpoint.

When the breakpoint is hit execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bU command.

Breakpoints set in the Stack Window are always temporary, meaning they
will be deleted after the first time you reach them. A breakpoint set in this
manner will not be visible in the Source Window.

This command is not allowed when the target runs in the background.

Example

To set a temporary up-level breakpoint immediately after the call to the
currently viewed function, type:

buU

To set a temporary up-level breakpoint immediately after the call to the
function at stack level 2, type:

2 bU {1}

13-68 Chapter 13

5

After stopping, this command will cause CrossView Pro to print out the
function’s local variables and arguments.

@j break, b, bb, bB, bd, bD, bi, b, bt, bti, btl, bu, Q

Command Reference 13-69

bu

Function

Set a permanent up-level breakpoint (to finish the function at a specific
stack level).

Click on the desired function in the Stack Window and select Stack
Breakpoint | After Call to Function from the Breakpoints menu. To
make the stack breakpoint permanent, select Breakpoints... from the
Breakpoints menu, select the desired stack breakpoint and click on the
Edit... button. The Edit Code Breakpoint dialog appears. Click on the
Advanced>> button and disable the Remove when hit check box.

The command line syntax is:

[stack] bu [commands |

Description

Set a permanent up-level breakpoint immediately after the call to the
function designated by the stack number stack, otherwise the currently
viewed function is used. Associate the list of CrossView Pro commands
commands with the breakpoint.

When the breakpoint is hit execution is halted. By default the current
execution position, function, line number, and source statement are
displayed. Next any commands associated with the breakpoint are
executed. The Q command can be used to suppress the output from the
bu command.

This command is not allowed when the target runs in the background.

Example

To set a temporary up-level breakpoint immediately after the call to the
currently viewed function, type:

bu

To set an up-level breakpoint immediately after the call to the function at
stack level 2 and, after stopping, print out the local variables and
arguments of that function, type:

2 bu {1}

13-70 Chapter 13

-

% break, b, bb, bB, bd, bD, bi, bl, bt, bti, btl, bU, Q

Command Reference

bufa

Function

Append the contents of one buffer to another buffer.

The command line syntax is:
bufa target buffer name,added buffer name|,size limil|

Description

Add the contents of buffer added buffer name to buffer

target_buffer name. If size limit is specified, buffer target _buffer name
will be trimmed down to the specified size (keeping size limit elements of
the tail of the buffer).

Example

To append the contents of $buffer to buffer $all_data , and keep the
last 1024 elements, type:

bufa $all_data,$buffer,1024

bufd, graph, memget.
Section 11.5, Data Analysis, in Chapter Special Features.

13-71

13-72 Chapter 13

-
bufd

Function

Free a used buffer.

The command line syntax is:
y
bufd buffer name

Description

Discard the specified buffer (if the target data is not to be used anymore).

Example
To discard buffer $buffer | type:

bufd $buffer

bufa, graph, memget.
Section 11.5, Data Analysis, in Chapter Special Features.

Command Reference

C

Function

Continue using the current value of the program counter.

In the Source Window, click on the Run/Continue button. You can also
select Ran from the Run menu.

The command line syntax is:
[exp] C [line]

Description

If exp is specified and you are stopped at a breakpoint, then the
breakpoint count is set to this value. If /ine is specified, a temporary
breakpoint is set at that line number. Note that this temporary breakpoint
will overwrite any existing breakpoint at that line.

The C command can be used in the command lists of breakpoints to
resume execution automatically.

This command is not allowed when the target runs in the background.
Example
To continue execution from the current target program counter, type:
C
To set the breakpoint’s count to 4 and continue, type:
4C
To set a temporary breakpoint at line 52 and continue, type:

C52

@j break, bc, g, R, CB

13-73

13-74 Chapter 13

=
CB

Function

Continue execution in background using the current value of the target
program counter.

[exp] CB |line]

Description

If exp is specified and you are stopped at a breakpoint, then the
breakpoint count is set to this value. If /ine is specified, a temporary
breakpoint is set at that line number. Note that this temporary breakpoint
will overwrite any existing breakpoint at that line.

The CB command can be used in the command lists of breakpoints to
resume execution automatically.

This command is not allowed when the target runs in the background.
Example
To continue execution from the current target program counter, type:
CB
To set the breakpoint’s count to 4 and continue, type:
4CB
To set a temporary breakpoint at line 52 and continue, type:

CB 52

@j g? R, C? St7 Wt

Command Reference

cd

Function

Disable, turn off, gathering of coverage data.

@? From the Tools menu, select Coverage if this item was set.

cd

Description
If coverage is supported by your version of CrossView Pro, this command
disables the coverage system. Normally, you should disable coverage if
you are not interested in the coverage results, as this will often improve
the performance of the execution environment.

Example

To disable coverage, type:

cd

@3 ce, nC, nU, pC, pU

13-75

13-76 Chapter 13

ce

Function

Enable, turn on, gathering of coverage data.

@? From the Tools menu, select Coverage if this item was not set.

ce

Description

If coverage is supported by your version of CrossView Pro, this command
enables the coverage system. Normally, you should disable coverage if
you are not interested in the coverage results, as this will often improve
the performance of the execution environment.

Example

To enable coverage, type:

ce

d]j cd, nC, nU, pC, pU

Command Reference 13-77

clear

Function
Clear the Command Output Window.

The command line syntax is:

clear

Description

Use this command if you want to clear the output window part of the
Command Window.

Example
To clear the Command Output Window, type:

clear

13-78 Chapter 13

=
covinfo

Function

List coverage information.

@? From the Tools menu, select Code Coverage..., make your changes and
select the Update button.

The command line syntax is:

covinfo [[all | module or function name||filename|

Description

If coverage is supported by your version of CrossView Pro and coverage is
enabled, this command lists the coverage information. Without arguments
(same as all) this command lists the coverage information of all modules
and functions.

Instead of listing the results you can also save the results in a file with
extension .CoV .

Normally, you should disable profiling if you are not interested in the
profiling results, as this will often improve the performance of the
execution environment.

Example

To list the coverage information of all modules and functions to the output
window, type:

ce
covinfo

To list coverage information of function main to the output window, type:
covinfo main

To list coverage information of all modules and functions in file
hello.cov | type:

covinfo all,hello.cov

d]? cd, ce, proinfo

Command Reference

cproinfo

Function

List cumulative profiling results or add or remove functions from the list of
profiled functions.

From the Tools menu, select Cumulative Profiling Setup..., make your
changes and click the OK button. Select Cumulative Profiling Report...
to see the cumulative profiling report.

cproinfo [allfilename] | {add | remove } function|

Description

If profiling is supported by your version of CrossView Pro and profiling is
enabled, this command lists the cumulative profiling results. Without
arguments (same as all) this command lists the cumulative profiling
information of all functions.

Instead of listing the results you can also save the results in a file with
extension .cpr .

Normally, you should disable profiling if you are not interested in the
profiling results, as this will often improve the performance of the
execution environment.

Example

To list the cumulative profiling results of all functions to the output
window, type:

pe
cproinfo

To dump cumulative profile information of all functions in file
hello.cpr | type:

cproinfo all,hello.cpr
To add function main to the list of profiled functions, type:

cproinfo add main

13-79

13-80 Chapter 13

=

To remove function main from the list of profiled functions, type:

cproinfo remove main

@j proinfo, pd, pe

Command Reference

ct

Function

Display a C—execution trace.

From the View menu, select Trace | Source Level. The Trace Window
displays the most recently executed lines of code every time program
execution is stopped. CrossView Pro automatically updates the Trace
Window each time execution is halted, as long as the window is open.

The command line syntax is:

number ct

Description
Display a C-execution trace in the Command window, corresponding to
the last number of machine instructions executed. Since the ¢t command
relies on the emulator’s trace buffer, the ct command will not be
implemented on some emulators.
For each executed line of code, the Trace Window displays:

¢ The name of the source file
¢ The name of the function
e The line number and corresponding source code

The window shows all the code executed since the the last time the
program halted.

This command is not allowed when the target runs in the background.

Example

To display, in the Command window, the last C statements (corresponding
to the last ten machine instructions) executed, type:

10 ct

@]j cti,ctr

13-81

13-82 Chapter 13

=
cti

Function

Display a disassembled trace.

From the View menu, select Trace | Instruction Level. The Trace
Window displays the most recently executed lines of code every time
program execution is stopped. CrossView Pro automatically updates the
Trace Window each time execution is halted, as long as the window is
open.

The command line syntax is:

number ct i

Description
Display a disassembled trace in the Command window, corresponding to
the last number of machine instructions executed.

Since the ct i command relies on the emulator’s trace buffer, the ct i
command will not be implemented on some emulators (or implemented
differently).

This command is not allowed when the target runs in the background.

Example

To display in the Command window the last 20 disassembled instructions
executed, type:

20 cti

@]j ct, ctr

Command Reference

ctr

Function

Display a raw trace.

From the View menu, select Trace | Raw. The Trace Window displays the
most recently executed lines of code every time program execution is
stopped. CrossView Pro automatically updates the Trace Window each
time execution is halted, as long as the window is open.

The command line syntax is:

number ct r

Description

Display a raw trace in the Command window, corresponding to the last
number of trace frames. This command merely shows the contents of the
emulator’s trace buffer.

Since the ct r command relies on the emulator’s trace buffer, the ct r
command will not be implemented on some emulators.

This command is not allowed when the target runs in the background.

Example

To display in the Command window the last 20 trace frames, type:

20ctr

@]j ct, cti

13-83

13-84

=

Function

Delete all currently defined breakpoints.

From the Breakpoints menu, select Breakpoints... to open the
Breakpoints dialog box. Click on the Remove All button.

The command line syntax is:
Dly]

Description

D deletes all currently defined breakpoints. Dy does not ask for
confirmation.

@]j break, B, d

Chapter 13

Command Reference

d

Function

Delete a specific breakpoint.

To delete a code breakpoint directly from the C source, click on the red
breakpoint toggle next to the corresponding, source line in the Source
Window.

Otherwise, select Breakpoints... from the Breakpoints menu to open the
Breakpoints dialog box. Select the breakpoint you want to remove and
click on the Remove button.

I'he command line syntax is:
[number| d

Description

Delete the breakpoint associated with the given number. If no number is
given, delete the breakpoint at the current line. If there is no breakpoint at
the current line, a B command will be executed to display all breakpoints.

Whenever a breakpoint is deleted the remaining breakpoints are
renumbered starting at 0.

Example

To delete a breakpoint at the current line, type:
d
To delete breakpoint number 3, type:

3d

@]j break, b, bb, bB, bd, bD, bi, bl, bt, bti, btl, bu, bU, B, D

13-85

13-86

=

Chapter 13

dcmp

Function

Compare a file with the downloaded application.

From the File menu, select Compare Application... Specify an
application file and click on the Compare button.

The command line syntax is:
dcmp |[file|,[number of bits][,d]]

Description

Compare an application file with the memory contents and display
differing memory addresses or addresses and values. If you have already
loaded an application you can invoke this command without specifying a
file name. You can limit the number of differences by specifying a
number_of bits. The value 0 means there is no limit on the number of
differences.

This command is not allowed when the target runs in the background.

Example

To compare the currently loaded application, there is no limit on the
number of differences and the contents of differing memory addresses are
not displayed, type:

dcmp

To compare the currently loaded application and stop when the number of
differences equals 10, type:

dcmp ,10

To compare the currently loaded application there is no limit on the
number of differences and display the contents of differing memory
addresses, type:

dcmp ,,d

Command Reference 13-87

To compare file test.abs | stop if the number of differences equals 5 and
display the contents of differing memory addresses, type:

dcmp "test.abs”,5,d

I o

13-88 Chapter 13

=
di_state

Function

Open, save/restore, close a debug instrument state.

@? From the Target menu, select Save/Restore Target State...

di_state open state_name

di_state save state_name, number
di_state restore state_name, number
di_state close state_name, delete

Description

Before a state can be saved, restored or closed it must be opend first. To
open a state use the di_state open state_name command. When opened
successfully the name is added to the available state names list.

With the di_state save command you can now save the state of the debug
instrument with the specified state name and number. With di_state
restore you can restore a previously saved state of the debug instrument
with the specified state_name and number.

Use di_state close to close a state. The delete flag can be 1 to delete the
state or use 0 to keep the state.

Example
To open and save a state, type:

di_state open S1
di_state save S1, 0

To restore a state, type:

di_state restore S1, 0

Command Reference

[}
dis
Function

Disassemble a range of memory.

From the View menu, select Source | Disassembly or Source | Source
and Disassembly to open the Disassembly or Source and Disassembly
window respectively.

The command line syntax is:

dis address [,{address | #count} [,i||

Description
Disassemble a range of memory. The output is interleaved with source
lines when i is specified. You can enter valid expressions as well for
address and count.

Example

To disassemble 4 instructions starting at 3 bytes behind the start address of
the function main ., type:

dis main+3,#4

To disassemble memory for (initval+1) instructions, starting at the
address of the function main ., type:

dis main+3,#initval+1

To disassemble from 0x2000 up to and including the instruction at 0x2100
and also interleave C source lines of any function resident in that memory
range, type:

dis 0x2000,0x2100,i

@]j dump, expression

13-89

13-90 Chapter 13

=
dn

Function

Download a file.

From the File menu, select Download Application... to download the
image part of the file to the execution environment.

The command line syntax is:
dn | file]

Description

Download the image part of the specified file to the execution
environment. If no file is specified, use the file specified when CrossView
Pro was invoked, and from which the symbolic information was read
during startup, or the file specified in either the N command or the Load
Symbolic Debug Info dialog.

Downloading a file only copies an image part into target memory. It will
not cause CrossView Pro to re-read symbolic information.

This command is not allowed when the target runs in the background.
Example
To download the current file, type:
dn
To download the IEEE file demo.abs , type:
dn demo.abs
To download the hex file test.hex | type:

dn test.hex

Jors

Command Reference 13-91

dump

Function

Dump a range of memory.

@? From the View menu, select Memory | New to open a Memory Window.

dump address |, |address | #count) [, [style [width] |, filename |al)]

Description

The dump command can dump memory as hexadecimal data or as C
variables. You can enter valid C expressions as well for address and count.
You can also dump Motorola S records or Intel hex records. Also, you can
specify a filename in which the dump is to be written or appended.

style can be one of:
acDOUXdouxEFGefgnPpRrstIM

Style I dumps Intel hex and style M specifies Motorola S records output.
See Chapter 6, Accessing Code and Data, and section 3.5, Formatting
Expressions, in Chapter 3, Command Language, for details on each of the
other format styles. The R and r style are only available for targets that
support the fractional type.

@ Mind the following:

the commas are required
* the addresses can also be C expressions
e default width is MAU (usually byte) sized words
e additional style M: Motorola S records
e additional style I: Intel hex
e asemicolon is a command terminator
* the dump is end address INclusive

Example
To dump the first byte of the function main ., type:

dump main

13-92 Chapter 13

To dump the first 10 bytes of the function main as Motorola S records in
the file main.sre | type:

dump main,main+10,M,main.sre

To dump the first 5 bytes of the function main . as 1 string, type:
dump main,main+10,M,main.sre,a

To append the first 5 bytes of the function main . as 1 string, type:
dump main,,c5

To dump the resulting value bytes of 'the address of main binary anded
with 3, type:

dump main+1,#main&3

@]j dis, expression

Command Reference 13-93

e

Function

Establish viewing position

From the File menu, select Open Source... to view a file. In the Source
Window, click on the Find Symbol button to find a function, or select
Find Symbol... from the Edit menu.

In the Stack Window click once on the function to be examined.

The command line syntax is:

e |[file | function
stack e

Description

The e option invokes two distinct commands. The first version establishes
the viewing position to be the first line of file, the first executable line of
the function function or the current viewing position if no argument is
given.

The second version establishes the viewing position to be the line at stack
level stack in the stack trace. (See the t command.)

The stack e command is not allowed when the target runs in the
background.

The L command is equivalent to O e.
Example
To view the function main, type:
e main
To view the test file test.c | type:
e test.c
To view the call site of the current function, type:

Oe

13-94 Chapter 13

=

To view the line at stack level 3, type:

3e

43?9/7ei71‘5pip5t

Command Reference

eC

Function

Start execution on current CPU and switch to another CPU.

The command line syntax is:

cpu_number eC
Description
Start execution on the current CPU and switch to CPU cpu_number.

This command can only be issued when the currently selected CPU is in
debug mode.
Example

To start execution on the current CPU and select the CPU indicated by
number 1, type:

1leC

b «

13-95

13-96 Chapter 13

—
ecC

Function

Select a CPU or show current CPU number.

The command line syntax is:
[cpou_number| ec

Description

The ec command allows you to select a CPU in your current Execution
Environment if your target has multi-CPU support.

This command can only be issued when the currently selected CPU is in
debug mode.

Example
To view the current CPU selection, type:
ec
To select the CPU indicated by number 1, type:

1lec

b e

Command Reference

echo

Function

Display the definition of a macro name without executing the macro.

@? From the Tools menu, select Macro Definitions... to view the definition
of a macro.

The command line syntax is:
echo rext

Description

Perform macro expansion on fext without executing. This allows you to
see how a macro is expanded. It is particularly informative when macros
call other macros.

Example
If you type:

echo macro(3)

CrossView Pro will display the expansion of macro(3)

@]j set, unset, save, !

13-97

13-98 Chapter 13

el

Function

Establish viewing position at a specified address.

@2 From the Edit menu, select Find Address...

laddr] ei

Description

The ei command establishes the viewing position to be at the instruction
specified.

This command is useful for viewing some code in the assembly window,
without changing the program counter, since the execution position is not
changed.

Example
To view the current viewing position, type:
ei
To view the instruction at address 0x100 , type:

0x100 ei

@3?7/,e71‘7p7plt

Command Reference 13-99

et

Function

Select the specified task’s context.

@? In the Tasks Window click once on the task to be examined.

et "Taskld”

Description
Select the specified task’s context. The Taskld is the identification of the
task as displayed in the Tasks Window or specified by the 1 k command.

The current execution position, function, line number, and source
statement are displayed. All other windows, except for the Kernel
Windows, are updated accordingly.

Subsequent CrossView Pro commands use the context of the selected task.
For example, the t command shows a stack trace of the selected task.

Example
To select task 4, type:

=%

et "4”

13-100 Chapter 13

=
f

Function

Set default address printing format

The command line syntax is:
f |7 printf-style-format " |

Description

Set the default address printing format, using a printf format
specification.

If there is no argument, the format defaults to %x which prints an address
in hexadecimal.

This command is intended to allow users to see memory addresses in
decimal, octal or a format of their choosing.

Example
To display addresses in octal, type:
f "%OH
To display addresses in hex, type:
f

@j expression

Command Reference

FSS

Function

File System Simulation redirection.

The command line syntax is:
FSS {< | > H&stream | “file”}

Description

Redirect a File System Simulation stream to a file or another stream.
Redirection to a file can be needed when a stream is only mapped to a
window and you want it to be mapped to a file also.

Example

To redirect the output of stream 2 to stream 1, type:
FSS 2>&1

To retrieve input for stream 1 from stream 4, type:
FSS 1<&4

To retrieve input for stream 4 from file "data.txt 7, type:
FSS 4<"data.txt”

To redirect the output of stream 3 to file "data.txt 7, type:

FSS 3>"data.txt”

é]? Section 10.3, File System Simulation in Chapter /O Simulation.

13-101

13-102 Chapter 13

=
FSS_stdio_close

Function

Close a stream previously opened by FSS_stdio_open.

The command line syntax is:
FSS_stdio_close streamnumber

Description

Close the stream indicated by streamnumber.
Example
To close stream 1, type:

FSS_stdio_close 1

@j FSS_stdio_open.

Section 10.3, File System Simulation in Chapter I/O Simulation.

Command Reference

FSS_stdio_open

Function

Redirect the output of a stream to a file.

The command line syntax is:

FSS_stdio_open filename,rwdirection streamnumber

Description

Redirect the stream indicated by streamnumber to the file filename.
rwdirection can be an r for read-only, w for writable, or rw for
read/write.

Example

To redirect stream 1 (output, so w for writable) to the file myfile.out
type:

FSS_stdio_open myfile.out,w,1
The following command is used to close the stream.

FSS_stdio_close 1

@]j FSS_stdio_close.

Section 10.3, File System Simulation in Chapter I/O Simulation.

13-103

13-104

=

Chapter 13

Function

Change the program counter to a new execution position.

@2 Click on a source line and select Jump to Cursor from the Run menu.

g line

Description
This command changes the program counter so that /ine becomes the
current execution position. Lize must be a line in the current function.

This command changes only the program counter. It does not cause the
target to begin execution.

Exercise caution when changing the execution position. Oftentimes, each
line of C source code is compiled into several machine language
instructions. Moving the program counter to a new address in the middle
of a series of related assembly instructions is sometimes risky. Moreover,
even though you change the program counter, registers and variables may
not have the expected values if parts of the code are bypassed.

This command is not allowed when the target runs in the background.

Example

To change the program counter so that the next instruction to be executed
corresponds to line 127, type:

g 127

d]j C, gi, R

Command Reference

Function

Change the program counter to a new execution position.

@? Click on a source line and select Jump to Cursor from the Run menu.

address gi

Description

This command changes the program counter so that address becomes the
current execution position.

This command changes only the program counter. It does not cause the
target to begin execution.

Exercise caution when changing the execution position. The Jump to
Cursor menu item is not available in the source lines window mode to
prevent problems by skipping pieces of C code which are required to be
executed. Moving the program counter to a new address in the middle of
a series of related assembly instructions is sometimes risky. Moreover, even
though you change the program counter, registers and variables may not
have the expected values if parts of the code are bypassed.

This command is not allowed when the target runs in the background.

Example

To change the program counter so that the next instruction to be executed
corresponds to address 0x0800, type:

0x0800 gi

Iocon

13-105

13-106 Chapter 13

=
graph

Function

Create Data Analysis window and execute CXL script.

The command line syntax is:

graph "window”,”script”|,arg]...

Description

Create Data Analysis window window and execute CXL script script. The
display list produced by the script is shown in the specified window.
Arguments arg are passed as global variables to the script. Each argument
is treated as an expression. Arguments starting with a ”$” refer to an
acquisition buffer. In all other cases arg is evaluated as an expression and
will be casted to type double .

@ If for example register $R1 should be passed as argument to the script you
must write "0+$R1” to avoid that $R1 is recognized as an acquisition
buffer.

Example

To transform the contents of buffer $buffer to displayable data in
window demo using CXL script X_t.cxl | type:

graph "demo”,"x_t.cxI”,$buffer,0,1

bufa, graphm, graphp, memget.
Section 11.5, Data Analysis, in Chapter Special Features.

Command Reference

graph_add_update

Function

Add a command to the sequence of update commands.

@? For the supplied scripts only. From the Settings menu, select Data
Analysis Window Setup... Enter a new window name and click New.
Click Configure... to open the Data Analysis Window Setup dialog.

The command line syntax is:

graph_add_update “window” ,command

Description

Set the sequence of update commands for Data Analysis window window
manually. These update commands are executed when the Update button
on the Data Analysis window is pressed or when the update command is
issued.

@ Prior to adding update commands, you have to remove all update
commands with the graph_clear_updates command.

Example

To retrieve data and show it in window demo, type:

graph_clear_updates "demo”

graph_add_update "demo”,memget data[$i],100,$buffer
graph_add_update "demo”,graphm "demo”,”show_x_t.cxI”
graph_add_update "demo”,graph "demo”,”x_t.cxI”,$buffer,0,1
update "demo”

@]3 graph_clear_updates, update.
Section 11.5, Data Analysis, in Chapter Special Features.

13-107

13-108 Chapter 13

=
graph_clear_updates

Function

Clear the sequence of update commands.

The command line syntax is:

graph_clear_updates “window”

Description

Clear the sequence of update commands for Data Analysis window
window. This is needed prior to adding new update commands with the
graph_add_update command.

Example

To retrieve data and show it in window demo, type:

graph_clear_updates "demo”

graph_add_update "demo”,memget data[$i],100,$buffer
graph_add_update "demo”,graphm "demo”,”show_x_t.cxI”
graph_add_update "demo”,graph "demo”,”x_t.cxI”,$buffer,0,1
update "demo”

graph_add_update, update.
Section 11.5, Data Analysis, in Chapter Special Features.

Command Reference

graph_close

Function

Close a Data Analysis window.

The command line syntax is:

graph_close "window”

Description

With the graph_close command you can close the named window.

Example

To close window demo, type:

graph_close "demo”

graph, graphm.
Section 11.5, Data Analysis, in Chapter Special Features.

13-109

13-110 Chapter 13

=
graph_debug

Function
Debug Data Analysis graph window.

The command line syntax is:
graph_debug expression

Description

If expression evaluates to a non—zero value, this value is an ORed value of
two flags:

e 1 (bit 0) the "graphical data window debugging mode” will be
enabled, showing all communication between the scripts and the
windows in the command window. This can be useful when
developing scripts.

e 2 (bit 1) When errors occur during script processing, these errors
are logged to the command window. The total error count (per
script) is now shown in a popup window rather than logged in the
command window. The errors themselves remain logged in the
command window.

Other bits (when value & 3 equals zero, for example 4) are ignored and
treated like zero. No parameters result in value 1. A value of zero turns off
all debugging.

graph, graphm, graphmn.
Section 11.5, Data Analysis, in Chapter Special Features.

Command Reference

graphm

Function

Set Data Analysis window display mode.

The command line syntax is:
graphm "window”,”script”|,arg)...

Description
The graphm command sets the representation script for the specified
window. Depending on the script, the arguments may vary.

Several scripts are supplied with the product that you can use with the
graphm command. See section Supplied Data Analysis Window Scripts in
Chapter Special Features for more information.

Example

To set the display mode for window demo using CXL script
show_x_t.cxl and show “demo” in the title bar of the window, type:

graphm "demo”,”show_x_t.cxI”

bufa, graph, graphp, memget.
Section 11.5, Data Analysis, in Chapter Special Features.

13-111

13-112 Chapter 13

=
graphmn

Function

Set Data Analysis window display mode.

The command line syntax is:

graphmn "window”,”script”|,arg]...

Description

The graphmn command works similar to the graphm command, but it
does not update the graph window. This can be useful where a graph
and a graphm command are followed by each other, preventing the
redrawing of the same graphics twice.

Example

To set the display mode for window demo using CXL script
show_x_t.cxl and show "demao” in the title bar of the window, type:

graphmn "demo”,”show_x_t.cxI”

bufa, graph, graphp, memget.
Section 11.5, Data Analysis, in Chapter Special Features.

Command Reference

graphp

Function

Position Data Analysis window on the screen.

The command line syntax is:
graphp "window” left_top_x,left top y,width,height

Description

With the graphp command you can position the named window at the
specified screen coordinates.

Example

To put window demo at position (0,0) on the screen with a size of
100x100, type:

graphp "demo”,0,0,100,100

graph, graphm.
Section 11.5, Data Analysis, in Chapter Special Features.

13-113

13-114 Chapter 13

=
gus

Function

Suppress or reactivate window updating.

The command line syntax is:
gus {on | off}

Description

With gus on the GUI updating suppress feature is enabled. This means
that the graphical windows are no longer updated. To reactivate the
window updating use the gus off command.

Example

To suppress the updating of CrossView windows, type:

gus on

Command Reference 13-115

Function

Print out information about the state of CrossView Pro.

The command line syntax is:
I

Description

Print out information about the state of CrossView Pro, including: the
CrossView Pro version number, the execution environment version
information, the name of the program being debugged (and the number of
its files and functions), the state of the assertion mechanism, the state of
output recording, the state of command recording, the state of target
communication recording and the state of search case sensitivity.

The state of the assertion mechanism tells how many assertions have been
defined and whether the overall assertion mechanism is active or
suspended; it does not tell whether any individual assertions are active or
suspended.

@]j 1, a A > > >& Z

13-116 Chapter 13

=
if

Function

Conditional command execution.

The command line syntax is:
if (expression) { cmds} [{cmds}]

Description

If expression evaluates to a non-zero value, execute the first group of
commands. Otherwise, the second group of commands, if present, will be
executed. This command is nestable.

Leave a space between if and exp. if(@==b) parses as a function call.
The if statement is used primarily within breakpoint command lists.

Example
If you type:
if (a=b) {5t} {C}

CrossView Pro will trace back five levels on the stack if a is equal to b.
Otherwise, CrossView Pro will continue.

The command line:
if (wait>1000) {wait;| r}

will print the value of wait and list all registers if the value of wait
exceeds 1000.

Command Reference

ios_close

Function

Close a File I/O stream.

@? From the Settings menu, select I/O Simulation Setup... Select a stream in
the Connections tab and click on the Delete button.

The command line syntax is:
ios_close {stream | file”}

Description

You can specify either a filename or a stream number.

Example
To close stream number 1, type:
ios_close 1
To close file data.txt ~ and close 1 stream that is mapped to this file, type:

ios_close "data.txt”

Only 1 stream is closed, even if multiple streams are attached to this file.
The command displays which stream number has been closed.

@3 ios_open, ios_wopen

13-117

13-118

Chapter 13

ios_open

Function

Open a File I/O stream.

From the Settings menu, select I/O Simulation Setup... Open the File
I/0 tab and click on the Configure... button. Attach a stream (with a file)
to a probe point.

The command line syntax is:

ios_open [file”|,[mode][,[t][,$xvw_variable]))]

Description

This command is useful to connect a file to a stream at the command line
of CrossView. CrossView returns a stream number which is opened with
this command in the $xvw_variable and displays it too.

The filename is optional. When the filename is omitted and such a newly
opened stream receives data and is not shown in any opened terminal
window a new window will be opened that interacts with this stream.

Furthermore the mode can be specified when a I/O stream is opened:
read, write or append:

r

r+

w+

a+

Open file for reading. The file pointer is positioned at the
beginning of the file.

Open file for reading and writing. The file pointer is
positioned at the beginning of the file.

Truncate file to zero length or create file for writing. The file
pointer is positioned at the beginning of the file.

Open file for reading and writing. The file is created if it does
not exist, otherwise it is truncated. The file pointer is
positioned at the beginning of the file.

Open file for writing. The file is created if it does not exist.
The file pointer is positioned at the end of the file.

Open file for reading and writing. The file is created if it does
not exist. The file pointer is positioned at the end of the file.

Command Reference 13-119

All modes can have a b’ appended, indicating binary access. The 'b’ can
be positioned before or after the "+'. This mode affects the ios_read and
ios_write commands. The ios_read command writes host data to target
memory. In binary mode MAUs (minimum addressable units) are filled
with a number of bytes that fits in 1 MAU. For example, a MAU with a size
of 24 bits will be filled with 24/8= 3 bytes. Otherwise the least significant 8
bits of a MAU will be filled with 1 byte and the highest 16 bits will be
filled with zeros. The ios_write command writes target memory to the
host. In binary mode for each MAU the number of bytes to be written
equals the number of bytes that fits in 1 MAU. For a MAU size of 24 bits
CrossView Pro will write 3 bytes to the host. If the mode is not binary
CrossView Pro will write the least significant 8 bits (1 byte) of each MAU
to the host.

CrossView Pro opens all files by default in w+ mode, overwriting the
opened file if it already exists.

The optional '’ specifies to rewind to the beginning of the file when the
end of file is reached.

$xvw_variable is a user special variable in CrossView Pro which holds the
value of the newly opened stream number. This variable can also be used
in the read and write commands to read from or write to the file.

Example
To open a new File I/O stream, type:
ios_open

To open file data.txt ~ and assign the new stream number to $ios_nr
type:

ios_open "data.txt”,,,$ios_nr

To open file data.txt in read—-only mode and wrap around when end of
file is reached, type:

ios_open "data.txt”,r,r,$ios_nr

@]j ios_wopen, ios_close, ios_read, ios_write

13-120 Chapter 13

=
ios_read

Function

Read binary data from an 1/O stream.

The command line syntax is:

ios_read {stream | “file”}address,number_of maus|,x|

Description

You can specify a File I/O stream number or a filename. address is the
memory location where the read data will be stored. number_of maus is
the length of the data to be read in MAUs (minimum addressable units).

The optional ’,x’ specifies that the read data should be interpreted as
hexadecimal values. The hexadecimal format is a whitespace separated
(no TAB) hexadecimal string without the 0x prefix.

If the stream was opened in binary mode (see ios_open), MAUs are filled
with a number of bytes that fits in 1 MAU. For example, a MAU with a size
of 24 bits will be filled with 24/8= 3 bytes. Otherwise the least significant 8
bits of a MAU will be filled with 1 byte and the highest 16 bits will be
filled with zeros.

Example
To read 16 minimum addressable units from stream 4, type:
ios_read 4,0x100,16
To read from stream $istrm 1 MAU hex value, type:

ios_read S$istrm,0x100,1,x

@]j ios_readf, ios_write, ios_open

Command Reference

ios_readf

Function

Formatted read from an I/O stream (scanf). Store the data at the location
defined by the expression.

The command line syntax is:

ios_readf {stream | *file”},”format” expression

Description

You can specify a File I/O stream number or a filename. format is a format

specifier as used in the scanf C library function. expression can be any
CrossView Pro expression.

Valid format specifiers are:

%d
%x
%cC
%S
%t

Example

Decimal.

Hexadecimal (without Ox prefix).
Char.

String.

Float.

To read a hex value from stream 4 and store it the value of program
variable chl, type:

ios_readf 4,"%x",&chl

To read a hex value from stream 4 and store it in register R2, type:

ios_readf 4,"%x”",$R2

To read two hex values from stream $istrm and assign them to program
variable chl and target register R2, type:

ios_readf $istrm,"%x %x",&ch1,$R2

@]j ios_read, ios_write, ios_open

13-121

13-122 Chapter 13

=
ios_rewind

Function
Move File I/0O file pointer to the beginning of the file.

@? From the Settings menu, select I/O Simulation Setup... Open the File
I/0 tab and click on the Configure... button. Attach a stream to a probe
point. In the New Stream dialog enable the Wrap around check box.

The command line syntax is:
ios_rewind {stream | file”}
Description

With ios_rewind the file pointer is moved to the beginning of the file.

Example

To move the file pointer of the file connected to stream 4 to the beginning
of the file, type:

ios_rewind 4

To move the file pointer of the file connected to stream $istrm to the
beginning of the file, type:

ios_rewind $istrm

To move the file pointer to the beginning of file my.txt | which is
connected to a stream, type:

ios_rewind "my.txt”

ﬁ]j ios_read, ios_write, ios_open

Command Reference 13-123

ios_wopen

Function
Open a File I/O stream and map the stream to a terminal window.
@? From the Settings menu, select I/O Simulation Setup... Open the File

I/0 tab and click on the Configure... button. Attach a stream (which is
only connected to a terminal window) to a probe point.

The command line syntax is:

ios_wopen [[terminal_window”)[,$xvw_variable||

Description
When the name matches the name of an existing terminal window the
newly opened stream is mapped to this terminal window.

$xvw_variable is a user special variable in CrossView Pro which holds the
value of the newly opened stream number. This variable can also be used
in the read and write commands to read from or write to the
terminal_window.

You can close the opened stream with ios_close.

Example

To create a new terminal window and map the newly created stream to it.
The name of the new terminal window will be like #x., type:

ios_wopen ,$ios_nr

To open a new stream and if there is a terminal window with the name
"My terminal” map stream to it, otherwise create a new terminal and name
it "My terminal”., type:

ios_wopen "My terminal”,$ios_nr

@j ios_open, ios_close

13-124 Chapter 13

=
ios_write

Function
Write binary data to an 1/O stream.

The command line syntax is:

ios_write {stream | “file”address,number of maus|,x|

Description

You can specify a File I/O stream number or a filename. address is the
memory location where the data will be read from. number _of maus is
the length of the data to be written in MAUs (minimum addressable units).

The optional ’,x’ specifies that the data should be interpreted as
hexadecimal values. The hexadecimal format is a whitespace separated
(no TAB) hexadecimal string without the 0x prefix.

If the stream was opened in binary mode (see ios_open), for each MAU
the number of bytes to be written equals the number of bytes that fits in 1
MAU. For a MAU size of 24 bits CrossView Pro will write 3 bytes to the
host. If the mode is not binary CrossView Pro will write the least
significant 8 bits (1 byte) of each MAU to the host.

Example
To write 16 minimum addressable units to stream 4, type:
ios_write 4,0x100,16
To write 1 MAU hex value to stream $ostrm | type:

ios_write $ostrm,0x100,1,x

@]j ios_read, ios_writef, ios_open

Command Reference 13-125

ios_writef

Function

Formatted write to an 1I/O stream (printf).. The data is obtained from the C
expression, for example a variable.

The command line syntax is:
ios_writef {stream | “file”},” format” expression

Description

You can specify a File I/O stream number or a filename. format is a format
specifier as used in the printf C library function. expression can be any
CrossView Pro expression.

Valid format specifiers are:

%d Decimal.
%x Hexadecimal (without Ox prefix).

%c Char.

%s String.

%f Float.
Example

To write the hex value of program variable chl to stream 4, type:
ios_writef 4,"%x",chl

To write the hex value of register R2 to stream $ostrm | type:
ios_writef $ostrm,"%x",$R2

To write the hex values of program variable chl and target register R2 to
stream 4, type:

ios_writef 4,"%x %x”",&ch1,$R2

ﬂ? ios_read, ios_write, ios_open

13-126 Chapter 13

=
L

Function

Synchronize the viewing and execution positions.

To synchronize the positions manually, click on the Find PC button in the
Source Window or select Find PC from the Edit menu.

The command line syntax is:
L

Description

This command synchronizes the viewing and execution positions. It also
lists the current file, function and line number of the current program
counter. The viewing position is always moved to match the execution
position.

The L command is synonymous with a 0 € command and does not affect
the execution position.

@ This command is not allowed when the target runs in the background.

Example

To synchronize the viewing and execution positions, then list current file,
function, and line number, type:

L

I

Command Reference 13-127

Function
List.

In general, the dialog box in which you define a feature also contains a
list.

The command line syntax is:

1{a[b| d| f| g| k| 1| L| m| p| r[s| S} [string]
1 [func]
1 stack

Description

In the first case above, list one of the following: assertions, breakpoints,
directories, files, globals, kernel state data, labels (on module scope), all
Labels, memory map (of application code sections), procedures, registers,
special variables, Symbol tables. If string is present, then list only those
items that start with string.

In the second case, list the values of all parameters and locals of the
function func. Without a function, this command lists all parameters and
locals of the current function in view.

In the third case, list all parameters and locals of the function at depth
stack.

The 1 f and 1 m commands also show the address of the modules’ first
procedure. The 1 m command is identical to 1 £, list files, but the list of
files is sorted on ascending segment addresses. func must be a function
on the stack or the current function.

13-128

=

Chapter 13

For configurations that support real-time kernels, the 1 k command can
have one of the following arguments (1 k is the same as specifying 1 k t):

ReTeega g~

Example

Display tasks.

Display mailboxes.

Display queues.

Display pipes.

Display semaphores.

Display events.

Display HISRs (High-level Interrupt Service Routines)
Display signals.

Display timers.

Display partition memory.

Display dynamic memory.

Display resources.

Display miscellaneous information.

To list defined assertions and the state of the assertion mechanism, type:

la

To list all locals and parameters of the current function, type:

I'p

Data is displayed using the normal (/m) format. To list all the parameters
and locals of the function fcn | type:

| fcn

To list queue information for the current tasks (only if your configuration
Ssupports it), type:

lkq

@]j L, et

Command Reference 13-129

load

Function

Load a program’s symbol file and download the image part.

@? From the File menu, select Load Symbolic Debug Info... This dialog
allows you to specify the file.

The command syntax is:
load [filename)]
Description
This command performs the N and dn commands sucessively.

Downloading a file only copies the image part into target memory (dmn). It
will not cause CrossView Pro to re-read symbolic information (N). The
load command does both.

@ This command is not allowed when the target runs in the background.

Example

To load the symbol table of file demo.abs in CrossView Pro and
download the image part, type:

load demo.abs

d]j dl‘l,N

13-130 Chapter 13

-
[l

Function

List the data currently being monitored.

Refer to the Data Window. Each time the program stops, the debugger
evaluates all monitored expressions and displays the results in the Data
Window.

The command line syntax is:
M

Description

List all C expressions being monitored by CrossView Pro. The listing
associates a unique number with each expression. This number is used to
specify the deletion of monitored data.

=

Command Reference 13-131

Function
Monitor (watch) an expression. (Also delete a monitor.)
From the Source Window, double—click on an expression. A new monitor
is created in the Data Window or the Expression Evaluation dialog is
opened if the Bypass Expression Evaluation Dialog check box in the
Data Display Setup dialog is not set. If the latter is the case, click on the
Add Watch button to create a new monitor in the Data Window. To

remove an existing monitor, select the monitor in the Data Window and
click on the Delete Selected Data Item button.

The command syntax is:

m exp
number m d

Description

The m command has two distinct functions. The first monitors the given
expression. The second deletes the monitoring of the expression specified
by number.

Data monitoring takes place whenever the program stops execution, that
is, for a breakpoint, assertion, single step, or user interrupt (cz7/-C). In
window mode, the values of all currently monitored data are displayed in
the Data window. Each piece of monitored data has a unique identifying
number that is used when deleting it.

Example
To monitor the value of the variable myvar , type:
m myvar
To monitor the address of variable myvar , type:
m &myvar
To monitor the element alpha+1l of array , type:

m array[alpha+1]

13-132 Chapter 13

=

To delete expression number 2 of the monitored data, type:

d]jM,b,a,s,R,C

Command Reference 13-133

mcp

Function
Memory copy.

From the Memory Window, click on the Copy Memory button to open
the Copy Memory dialog. Enter the start address and the end address
(inclusive) of the memory region you want to copy. Enter the destination
address and click on the OK button.

The command syntax is:

addr_start mcp addr_end, addr_dest

Description

The mcp command copies a block of target memory starting at address
addyr start to destination address addr _dest. The size of the memory block
is defined as: ‘addr _end — addr_start + 1’. The data item located at address
addr _end is included in the copy.

If your target supports multiple memory spaces then it is legal to copy data
between different memory spaces. Of course addr_start and addr_end
must be located in the same memory space. This command does not have
any effect on code breakpoints.

Example

To copy the contents of variable buf to address 0x200 , type:

&buf mcp &buf+sizeof(buf), 0x200

@]j mF, mf

13-134 Chapter 13

=
memget

Function

Retrieve data from the target into a buffer.

The command line syntax is:

memget expr,count,buffer name

Description

The memget command is used to retrieve data from the target system and
to store the data in the acquisition buffer buffer name. Data in the
acquisition buffer is of type double . CrossView Pro will automatically
handle data conversion based upon the type of expression expr.

Expression expr contains the iterator "$i 7 which initially starts at 0 and
increments to count —1.

Notation convention:
“expr <$i{ n}>” means “expr in which all instances of "$i ” are substituted
by 77n7’.

To correctly retrieve the data from the target CrossView Pro needs to know
the start address, the size of the data elements, and the number of items to
fetch. The number of items to fetch from the target is specified by cournt.
The following algorithm is used to fill the acquisition buffer:

addr0 = (char *) &expr<$i{0}>

addrl = (char *) &expr<$i{1}>

delta = addrl - addrO

elem_size = sizeof(expr<$i{0}>)

type = C-type(expr<$i{0}>)

for (i = 0; i < count; i++)

{
value = read elem_size MAUs from address addr0 + (i * delta)
buffer[i] = convert_to_double(type, value);

Command Reference

Example

1. C structure access.

struct

double re,
im;
int f;
} data[100];
To store the data[x].re values into acquisition buffer $a:
memget data[$i].re,100,%a
To store the data[x].im values into acquisition buffer $b:
memget data[$i].im,100,$b

2. Memory access.

To retrieve 18 integer values from memory starting at address 0x100 and
store these in acquisition buffer $buffer

memget ((int[]) 0x100)[$i],3*6,$buffer

bufa, bufd, graph, rawmemget.
Section 11.5, Data Analysis, in chapter Special Features.

13-135

13-136 Chapter 13

=
mF

Function
Memory single fill.

From the Memory Window, click on the Fill Single Memory Address
button to open the Single Fill Memory dialog. Enter the start address the
memory region you want to fill. Enter one or more expressions separated
by commas and click on the OK button.

The command syntax is:

addr mF expr [,expr]...

Description

The mF command fills target memory with data. The value defined by exp
is written to address addr in target memory. Multiple exps separated by
commas may be entered. Each exp is written to a subsequent MAU.

If your target supports multiple memory spaces then addr may refer to any
memory space.

If the sizeof a given exp occupies more than one MAU, only the least
significant MAU will be written to memory. This command does not have
any effect on code breakpoints.

Example

To store value 0x12 at memory location 0x400 and value OXAB at location
0x401 , type:

0x400 mF 0x12, OxAB

é]j mcp, mf

Command Reference 13-137

mf

Function

Memory fill, repeating the specified pattern until the specified region is
filled.

From the Memory Window, click on the Fill Memory button to open the
Memory Fill dialog. Enter the start address and end address (inclusive) of
the memory region you want to fill. Enter one or more expressions
separated by commas and click on the OK button.

The command syntax is:
addyr_start mf addr_end, expr |,expr]...

Description

The mf command fills a block of target memory with a pattern. The
memory region starting at address addr start and ending at address

addr _end is filled with the pattern defined by exp [,exp]. Multiple exps
separated by commas may be entered. Each exp is written to a subsequent
MAU.

The specified pattern is repeated until the end address of memory region
is reached.

If your target supports multiple memory spaces then addr may refer to any
memory space.

If the sizeof a given exp occupies more than one MAU, only the least
significant MAU will be written to memory. This command does not have
any effect on code breakpoints.

Example

To store values 0x01 and 0x02 at succeeding memory locations in the
range 0x400 to 0x404 , type:

0x400 mf 0x404, 0x01, 0x02

13-138 Chapter 13

=

The result of this command is:

address: 0x400 0x401 0x402 0x403 0x404

value: 1 2 1 2 1

d]? mcp, mf

Command Reference

ms

Function
Memory search.
From the Memory Window, click on the Find Memory button to open the
Search Memory dialog. Enter the start address and end address (inclusive)

of the memory region you want to search. Enter one or more search
patterns separated by commas and click on the OK button.

The command syntax is:

addr_start ms addr_end, expr |,expr]...

Description

The ms command searches for a pattern within a block of target memory.
The memory region starting at address addr_start and ending at address
addr _end (inclusive) is searched for the pattern defined by exp [,exp].
Multiple exps separated by commas may be entered. Each exp corresponds
to a subsequent MAU.

If your target supports multiple memory spaces then addr may refer to any
memory space.

This command does not have any effect on code breakpoints.

Example

Suppose the memory range 0x400 to Ox4ff was filled using the following
commands:

0x400 mf Ox4ff, O
0x400 mf 0x404, 1, 2

To search for the values 0x01 and 0x02 at memory locations in the range
0x400 to Ox4ff | type:

0x400 ms 0x4ff, 0x01, 0x02
The result of this command is:

FOUND pattern at 0x400
FOUND pattern at 0x402

13-139

13-140 Chapter 13

d]j mcp, mF, mf

Command Reference 13-141

Function

Load a program’s symbol file.

From the File menu, select Load Symbolic Debug Info... This menu
item allows you to specify the file.

The command syntax is:
N (|path]filename|.abs])

Description

Load the symbol table of the specified file in CrossView Pro. If no filename
is given, the file being debugged is reloaded. In this case only the
breakpoints set by the user are removed. Monitors, I/O simulation streams,
assertions and CrossView Pro local variables remain active.

If a new file (different filename) is loaded, all breakpoints, monitors, I/O
simulation streams, assertions and CrossView Pro local variables are
removed.

If a path is supplied, CrossView Pro changes its current directory according
to the specified path. In case a relative search path to source files was
provided at startup time, CrossView Pro will search relative to the new
working directory.

This command is automatically executed during CrossView Pro startup
when a filename was given on the command line. Use the dn command to
send the associated executable code to the target.

Example
To load the symbol table of file demo.abs in CrossView Pro, type:

N demo.abs

I o

13-142 Chapter 13

’/
n

Function

Set address bias

From the File menu, select Load Symbolic Debug Info... In the Load
Symbolic Debug Info dialog you can edit the Code address bias field.

The command syntax is:
n [addr]

Description

Set address bias of overlay files to addr. If no address is given, then
display current bias.

If a program is to be loaded at a different address than that indicated in
the linked and located (absolute object) file, then the address information
in the debugger’s symbol file will be incomplete, since it does not know
where the program is actually going to be loaded. This command will
normalize the addresses by adding the bias to every address.

Example
To add a bias of 1000 to every address in the code, type:
n 1000
To display the current bias, type:

n

Command Reference

nC

Function

Set the viewing position to the next covered block of statements.

@? Use the scroll bar and click on the desired line.

nC

Description

If code coverage is supported by your version of CrossView Pro, this
command enables you to skip to the next block of statements that have
been executed while the program was running on the target.

Example

To move the cursor to the next executed block, type:

nC

(= nu. vc. pu

13-143

13-144 Chapter 13

=
nU

Function

Set the viewing position to the next not covered block of statements.

@? Use the scroll bar and click on the desired line.

nU

Description

If code coverage is supported by your version of CrossView Pro, this
command enables you to skip to the next block of statements that have
not been executed while the program was running on the target.

Example

To move the cursor to the next not executed block, type:

nU

(= nc vc. pu

Command Reference

o

Function

Enter emulator mode.

From the View menu, select Command | Emulator. If you know the
emulator-level command language, you can communicate directly with the
emulator from this window.

The command line syntax is:

o string

Description

Pass string to emulator and show the emulator response.

The o command lets you communicate with the emulator directly via
emulator commands.

Do not issue one-shot transparency emulator commands that result in
large output (or otherwise require intervention other than a carriage return
to terminate output). Instead, enter transparency mode first, then issue the
command.

Example

To send the string map to the emulator, type:

0 map

13-145

13-146 Chapter 13

=
opt

Function

Set or display specific options.

@? Option values can be changed in various dialogs and menus.

opt [option_name [= option_value))

Description

If no arguments are passed, all options with their current value are listed.
By specifying an option’s name, the current value of that option is
displayed. By specifying an option name followed by a valid value, the
option is set to that new value.

The options are a sub-set of CrossView’s so—called "special variables”. See
Chapter 3, Command Language, for a list of all special variables.

Example
To display all options, type:
opt

To disable mixing of disassembly code and source lines in the assembly
window, type:

=%

opt mixedasm=off

Command Reference 13-147

P

Function
Print source lines, including machine addresses.

In the Source Window, the machine address of the line at the current
viewing position is displayed in the address field in the upper left corner.

The command line syntax is:
[line | P [exp]

Description
Print exp lines of source starting at line /ine, including machine addresses.
If exp is omitted, print one line. If /ine is omitted, start from the current
viewing position.

Example

To print source lines 4, 5, 6, 7 and 8 (displaying machine addresses) of the
current source file, type:

4P5

g v

13-148 Chapter 13

=
P

Function

Print source lines.

@? C source is displayed in the Source Window.

[line] p [exp]

Description

Print exp lines of source starting at line /ine. If exp is omitted, print one
line. If /ine is omitted, start from the current viewing position.

Example

To print source lines 4, 5, 6, 7 and 8 of the current source file, type:

4p5

/=

Command Reference

pC

Function

Set the viewing position to the previous covered block of statements.

@? Use the scroll bar and click on the desired line.

pC

Description

If code coverage is supported by your version of CrossView Pro, this
command enables you to skip to the previous block of statements that
have been executed while the program was running on the target.

Example

To move the cursor to the previous executed block, type:

pC

@]j nC, nU, pU

13-149

13-150 Chapter 13

=
pd

Function
Disable, turn off, profiling.

@? From the Tools menu, select Profiling if this item was set.

pd

Description

If profiling is supported by your version of CrossView Pro, this command
disables the profiling system. Normally, you should disable profiling if you
are not interested in the profiling results, as this will often improve the
performance of the execution environment.

Example

To disable profiling, type:
pd

I

Command Reference

pe

Function

Enable, turn on, profiling.

@? From the Tools menu, select Profiling if this item was not set.

pe

Description

If profiling is supported by your version of CrossView Pro, this command
enables the profiling system. Normally, you should disable profiling if you
are not interested in the profiling results, as this will often improve the
performance of the execution environment.

Example

To enable profiling, type:

dow

pe

13-151

13-152 Chapter 13

=
proinfo

Function
List profiling results.

@? From the Tools menu, select Profiling Report...
Make your changes and select the Update button.

The command line syntax is:

proinfo [[all | module or function _name|,filenamel)

Description

If profiling is supported by your version of CrossView Pro and profiling is
enabled, this command lists the profiling results. Without arguments (same
as all) this command lists the profiling information of all modules and
function.

Instead of listing the results you can also save the results in a file with
extension .pro .

Normally, you should disable profiling if you are not interested in the
profiling results, as this will often improve the performance of the
execution environment.

Example

To list the profiling results of all modules and functions to the output
window, type:

pe
proinfo

To list profile information of function main to the output window, type:
proinfo main

To list profile information of all modules and functions in file hello.pro |
type:

proinfo all,hello.pro

d]j cproinfo, pd, pe

Command Reference 13-153

prst

Function
Reset the application being debugged to initial conditions. That is, set the
program counter to the start address of the application.

@? From the Run menu, select Reset Application.

The command line syntax is:

prst

Description

The program counter is set to the start address of the application being
debugged. This command does NOT perform a hardware reset of the
target system. That is, no registers are modified except for the program
countetr.

@ This command is not allowed when the target runs in the background.

@]j R, rst

13-154 Chapter 13

=
pU

Function

Set the viewing position to the previous not covered block of statements.

@? Use the scroll bar and click on the desired line.

pU

Description

If code coverage is supported by your version of CrossView Pro, this
command enables you to skip to the previous block of statements that
have not been executed while the program was running on the target.

Example

To move the cursor to the previous not executed block, type:

pU

@]j nC, nU, pC

Command Reference 13-155

Q

Function
Quiet breakpoint reporting.
The command line syntax is:
Q

Description

If this appears as the first command in a breakpoint’s command list, the
debugger does not make the usual announcement of:

Junction: line number: source file
when the breakpoint is hit.

The purpose of this command is to allow quiet breakpoint reporting. For
example, to check the value of a variable without cluttering the screen
with text.

Example
If you type the following:

21 b {Q; varl}

CrossView Pro will set a breakpoint at line 21. When that breakpoint is hit,
CrossView Pro will print the value of varl , but will not print the current
function, line number, and source file.

=

13-156 Chapter 13

=
q

Function

Quit a debugging session.

@2 From the File menu, select Exit.

q[s|vy]

Description

CrossView Pro will prompt you if you really want to quit if you do not
specify anything. Note that the current desktop settings are NOT saved
then!

Typing q s saves the current desktop settings and quits the debugger
without confirmation.

Typing q y does not save the current desktop settings and quits the
debugger without confirmation.

Inside a command line procedure call it will just quit from this.

When the target runs in the background CrossView Pro will first stop the
target.

Command Reference

Function

Reset program and begin execution from initial conditions.

@? From the Run menu, select Reset Application and then Run.

R

Description

Reset the application being debugged and begin execution from initial
conditions. The program counter is set to the start address of the
application being debugged. This command does NOT perform a
hardware reset of the target system. That is, no registers are modified
except for the program counter.

@ This command is not allowed when the target runs in the background.

13-157

13-158 Chapter 13

=
rawmemget

Function

Retrieve data from the target into a buffer.

The command line syntax is:

rawmemget address,lype,count,buffername [interleave]

Description

The rawmemget command is used to retrieve data from the target system
and to store the data in the acquisition buffer buffername. Data in the
acquisition buffer is of type double . CrossView Pro will automatically
handle data conversion based upon the #ype of the data. It reads count
elements of type type from the target starting at address address into the
buffer.

interleave indicates the distance between successive elements. The default
value is sizeof(type).

Example

To retrieve 18 integer values from memory starting at address 0x100 and
store these in acquisition buffer $buffer

rawmemget 0x100,int,3*6,$buffer

bufa, bufd, graph, memget.
Section 11.5, Data Analysis, in chapter Special Features.

Command Reference

rst

Function

Reset target system to initial conditions.

@? From hte Run menu, select Reset Target System.

rst

Description

The target is initialized according to the power—up sequence for the
processor. Almost all registers, including the system stack pointer and
program counter are initialized.

@ A target system reset may have undesired side effects. To be sure that the
application code is correct, a download must be performed after a target

system reset.

@ This command is not allowed when the target runs in the background.

d]? R, prst

13-159

13-160 Chapter 13

=
S

Function

Single step C statements, stepping over function calls.

To step over a function, click on the Step Over button in the Source
Window. You can also select Step Over from the Ran menu. Check the
Step Mode menu item in the Run menu: Source line step must be
selected.

The command line syntax is:
[exp]S

Description

If you try to step over a call to a function which contains a breakpoint (or
which calls another function with a breakpoint) then the breakpoint will
be hit.

Stepping over a function means that CrossView Pro treats function calls as
a single statement and advances to the next line in the source. This is a
useful operation if a function has already been debugged or if you do not
want to take the time to step through a function line by line.

When multiple statements are present on one line, they are all executed by
this single step.

@ This command is not allowed when the target runs in the background.

Example

To step one C statement, type:
S

To step five C statements, type:

@]j C, s, si, Si

Command Reference

S

Function

Single step C statements, stepping into function calls

To step into a function (single step), click on the Step Into button in the
Source Window. You can also select Step Into from the Run menu. Check
the Step Mode menu item in the Run menu: Source line step must be
selected.

The command line syntax is:
[exp]s
Description
Single step exp (default is 1), C statements, stepping into function calls.

Stepping into a function means that CrossView Pro enters the function and
executes its prologue machine instructions halting at the first C statement.
When the end of the function is reached, CrossView Pro brings you back
to the line after the function call. The debugger changes the source code
file displayed in the Source Window, if necessary.

@ This command is not allowed when the target runs in the background.

Example
To step one source instruction, type:
S
To step five source instructions, type:

5s

@]3 C, S, si, Si

13-161

13-162 Chapter 13

save

Function
Save macros.
From the Tools menu, select Macro Definitions... to open the Macro
Definitions dialog box. From this dialog box, you can save macros with

the Save button. To save macro definitions in a file other than the current
one, click on the Save as... button.

The command line syntax is:

save file

Description

Save all currently defined macros in the specified file. This file is in the
format of a sequence of set commands, and thus can be loaded by
reading it as a playback file. See the < and << commands.

An existing save file with the same name will be overwritten.

Example

To save the definitions of the currently defined macros in the file
mac.sav , type:

save mac.sav

@]j set, unset, echo, !, <, <<

Command Reference 13-163

set

Function

Definition and display of macros.

To create a macro, select Macro Definitions... from the Tools menu.
Click on the New... button and add a new macro.

The command line syntax is:

set [name | "cmds” | |

Description

The set command allows for definition and display of macros. If name and
cmds are supplied, a macro entry is made associating the name with the
commands. If only name is supplied, the body of the specified macro is
displayed.

If no arguments are supplied the names of all currently defined macros are
displayed. Macro definitions must contain the body of the macro in double
quotation marks.

Macros may take arguments. In the body of a macro formal arguments are
referred to as $n, where n is the argument number starting from 1.

It is important to understand that macro expansion takes place for all
names. Therefore, if you wish to pass the name of an existing macro to a
command, such as set, you must escape it with ", to keep CrossView Pro
from expanding the name.

Example
To display the names of all currently defined macros, type:
set
To display the body of the macro named macro, type:
set macro!

To define macro to be a macro which lists the registers then enters the
function given by its first argument, type:

set macro "l r; e $1”

13-164 Chapter 13

=

To invoke this macro, you might type, for example:

macro(main)

d]j unset, echo, save, !

Command Reference

Si

Function

Single step machine instructions, stepping over subroutine calls

From the Run menu, select Step Mode | Instruction step. Then click on
the Step Over button in the Source Window, or select Step Over from the
Run menu.

The command line syntax is:

[exp] Si

Description

&

Single step exp (default is 1) machine instructions, stepping over
subroutine calls.

If you try to step over a call to a subroutine which contains a breakpoint
(or which calls another subroutine with a breakpoint) then the breakpoint
will be hit.

The next instruction to be executed is shown as a disassembled
instruction, not as a C statement.

This command is not allowed when the target runs in the background.

Example

i+

To step one machine instruction, type:
Si

To step five machine instructions, type:

C,s,S,si, R

13-165

13-166

=

Chapter 13

si

Function

Single step machine instructions, stepping into subroutine calls

From the Run menu, select Step Mode | Instruction step. Then click on
the Step Into button in the Source Window, or select Step Into from the
Run menu.

The command line syntax is:
[exp] si

Description

Single step exp (default is 1), machine instructions, stepping into
subroutine calls.

The next instruction is shown as a disassembled instruction, not as a C
statement.

@ This command is not allowed when the target runs in the background.

Example
To step one machine instruction, type:

si
To step five machine instructions, type:

5si

@3 C, S, S, Si,R

Command Reference 13-167

st

Function

Stop the execution of the target immediately.

The command line syntax is:

st

Description

This command stops the running process immediately.

@j CB, wt

13-168 Chapter 13

-
T

Function

Stack trace with local variables

The command line syntax is:
[exp] T

Description

Produce a trace of functions on the stack and show local variables. Only
the first exp levels of the stack trace will be displayed. If exp is omitted, all
of the levels of the stack trace (up to 20) will be printed.

This command works independently of the Stack Window.
@ This command is not allowed when the target runs in the background.

Example
To print out a stack trace of 20 levels with corresponding local variables,
type:

T

To print out the top five levels of the stack trace with corresponding local
variables, type:

5T

@]je,l,t

Command Reference

t

Function

Stack trace.

From the View menu, select Stack. The Stack Window shows the current
situation in the stack after the program has been stopped. It displays the
following information for each stack frame:

* The name of the function that was called
* The value of all input parameters to the function

¢ The line number in the source code from which the function was
called

The command line syntax is:
[exp]t

Description

Produce a trace of functions on the stack.

exp specifies the number of levels of the stack trace to be displayed. If
omitted, up to 20 levels of the stack trace will be printed.

Each stack level shown in the Stack Window is displayed with its level
number first. The levels are numbered sequentially from zero. That is, the
lowest/last level in the function call chain is always assigned zero.

@ This command is not allowed when the target runs in the background.

Example
To print out a stack trace of 20 levels, type:
t

To print out the top five levels of the stack trace, type:

5t

d]je,l,T

13-169

13-170 Chapter 13

=
td

Function

Disable, turn off, trace.

@? From the Tools menu, select Trace if this item was set.

td

Description

If trace is supported by your version of CrossView Pro, this command
disables tracing (both instruction level, high level and raw). Trace is
automatically disabled when you close the Trace Window.

Example
To disable tracing, type:

td

b «

Command Reference

te

Function

Enable, turn on, trace.

@? From the Tools menu, select Trace if this item was not set.

te

Description

If trace is supported by your version of CrossView Pro, this command
enables tracing (both instruction level, high level and raw). Trace is
automatically enabled when you open a Trace Window.

Example

To enable tracing, type:

b «

te

13-171

13-172 Chapter 13

’/
u

Function

Toggle the updating of the appropriate window when the target runs in
the background.

[intervall u [d|k|r|s|a|mem |t
Description
The following windows can be updated:

d (Data), k (Stack), r (Register),
s (Source), a (Assembly), mem (Memory), t (Trace)

With interval you can specify the update interval (in seconds). If interval
is zero, no window is automatically updated.

The updating of the Data Window is ON at startup, the others are OFF

If all windows are being updated and/or many monitor commands are
active it will increase the load on the communication between CrossView
Pro and the target.

@ This command is not available if the background mode is not supported
(check the addendum).

Example
To toggle the updating of the Register Window, type:
ur
To toggle the updating of the Source Window, type:
us
To disable period updating, type:
Ou

@]j CB, llbgW

Command Reference

ubgw

Function

Update the appropriate window when the target runs in the background.

@? From the View menu, select Background Mode and select one of the
refresh options.

The command line syntax is:
ubgw [s|a|k|r|d| mem|t]all]
Description
The following windows can be updated:

s (Source), a (Assembly), k (Stack), r (Register), d (Data), mem
(Memory), t (Trace), all (all open windows)

Without an argument, the ubgw command refreshes all windows selected
by the background mode (u command).

The ubgw all command refreshes all open windows.

This command is not available if the background mode is not supported
(check the addendum).

Example
To update the Source Window, type:

ubgw s

To update the Memory Window, type:

g -

ubgw mem

13-173

13-174 Chapter 13

-
unset

Function
Delete a macro definition.
From the Tools menu, select Macro Definitions... to open the Macro

Definitions dialog box. Highlight the name of the macro and click on the
Delete button.

The command line syntax is:

unset | name !|

Description

The unset command deletes a macro. If name is supplied, the specified
macro is deleted. If no arguments are supplied, all currently defined
macros are deleted after CrossView Pro confirms your intent.

It is important to understand that macro expansion takes place for all
names. Therefore if you wish to pass the name of a macro to a command,
for example unset, you must escape it with ‘!, to keep from expanding
the name.

Example
To delete all macros, type:
unset

CrossView Pro will first ask for confirmation. To delete all the macro
definitions at the same time, click on the Delete all button in the Macro
Definitions dialog box.

To delete the macro named macro, type:

unset macro!

ﬂj set, echo, save, !

Command Reference 13-175

update

Function
Update a Data Analysis window.

Click on the Update Data Analysis Window button in a Data Analysis
window.

The command line syntax is:

update “window”

Description

Update Data Analysis window window by issuing a sequence of update
commands. These update commands were added with the
graph_add_update command.

When you use the update command in a complex breakpoint, you should
append a 'Y character to prevent early macro expansion.
Example

To retrieve data and show it in window demo, type:

graph_clear_updates "demo”

graph_add_update "demo”,memget data[$i],100,$buffer
graph_add_update "demo”,graphm "demo”,”show_x_t.cxI”
graph_add_update "demo”,graph "demo”,”x_t.cxI”,$buffer,0,1
update "demo”

To update window demo as part of a complex breakpoint, type:

0x100 bi {update! "demo”}

graph_add_update, graph_clear_updates.
Section 11.5, Data Analysis, in chapter Special Features.

13-176 Chapter 13

use

Function
Change source directories run—time.
From the Target menu, select Settings... to open the Target Settings

dialog box. Click on the Configure... button and specify the names of the
directories containing your source files. Relative paths are allowed.

The command line syntax is:

use | path |...

Description

The use command changes the source directories. Without a path this
command empties the search path, except for the path . (current
directory). If one or more paths are supplied, this command adds the,
semicolon separated, paths to the list of searched directories. Relative
paths are allowed.

Example
To clear the source directory path, type:
use

To search for source files in the directory /project/src and in the src
directory relative to your current directory, type:

use /project/src;../src

o

Command Reference

wit

Function
Wait for the completion of the target.
The command line syntax is:
wt

Description

This command can only be used if the target runs in the background
mode.

This command waits for the running process to stop.

Waiting can be interrupted by typing ct7/-C. The target continues to run
without interruption. It could be that some informational messages from
the target are displayed in the command window. They can be ignored.

é?&i> CB, st

13-177

13-178 Chapter 13

’/
X

Function

Force an exit from assertion mode.

The command line syntax is:
[exp] x

Description
Normally this command stops execution immediately, but if exp is present
and its value is non-zero, then CrossView Pro finishes executing the entire
command list of the current assertion.

Example

To define an assertion to stop the program when the value of global
variable myvar exceeds 10, type:

a if (myvar > 10) {x}

To define an assertion to suspend the assertion mechanism and continue
program execution when global variable myvar exceeds 10, type:

aif (myvar >10) {A's; 1 x; C}

@]ja,A,l

Command Reference

Z

Function

Toggle case sensitivity in searches

From the Edit menu, select Search String... to open the Search String
dialog box. This dialog contains the Case Sensitive check box.

The command line syntax is:
V4

Description

Toggle case sensitivity in searches. The initial state of this toggle depends
on information in the currently loaded absolute file. Use the I command to
find out the state of the case sensitivity.

This command affects everything: file names, function names, variables
and string searches.

T

13-179

13-180

REFERENCE

Chapter 13

ERROR MESSAGES

al TASKING [

d31dVHO

14

Error Messages 14-3

14.1 WHAT THIS CHAPTER COVERS

The following is a list of common user error messages, and some
suggested ways to solve the problem.

CrossView Pro is a complex program running on several hosts. From time
to time, slight differences between the documentation and the program’s
operations do occur. The list of errors presented below and the suggested
remedies may not be, therefore, entirely comprehensive.

If you get a message that begins with "XVW Error” or "XVW Fatal Error”
please contact TASKING technical support for help.

14.2 ERROR MESSAGES

(in alphabetical order):

" member—name " is not defined for "enum enum”

You cannot assign or compare an enum type with a name that is not in the
enumeration’s members. Try casting the enum to a different type.

'save’ must have a filename; type 'help save’ for more information

The save command requires a file to be supplied. Note: if the supplied file
name already exists, it will be overwritten.

*** Fatal XVW error

CrossView Pro has detected a error which it can not handle. If information
is displayed, you may be able to detect the source of the error and correct
it. Otherwise, if the message persists, please contact TASKING Technical
Support.

Oxvalue is an invalid value. The register register is unchanged.

The value supplied is incorrect for the specified register. Verify that both
the value and the register are correct and retry.

Adding 2 pointers not allowed

You cannot add two pointers together in an expression. If you intended to
add to a pointer, make sure that the argument is a value, not another
pointer.

14-4

Chapter 14

Address not allowed for ' or ~ or % operator’

The "Not”, "One’s complement”, and "Modulus” operators cannot be used
with an address. If you intended to perform the operation on the contents
of the address, please be sure to dereference the pointer.

Addresses not allowed in * or / operator’

The multiply and divide operators cannot be used with address data. If
you intended to perform the operation on the contents of the address,
please be sure to dereference the pointer.

Addresses not allowed in’ bitwise logical or logical or shift operators ’

Bitwise logical (&, ", or |), logical (&& or | |), and shift (<< >>) operators
only work on data, not addresses. If you intended to perform the
operation on the contents of the address, please be sure to dereference the
pointer.

Attempt to set breakpoint at invalid address

The memory location is not available. If the memory location is not out of
the target chip’s range, you may need to map the target system’s memory
to allow access to this location.

Bad argument to the command command

The argument you have given to the sio or f command is not allowed.
Refer to the Command Reference chapter, for allowable arguments and
their meanings.

Bad assertion number: number

The number number is not a valid assertion number. List assertions with
the 1a (list assertions) command to determine which assertion numbers
are valid.

both expressions must be addresses for ‘relational operator

If one of the expressions is an address type, both expressions for relational
operators (<, <=, >, >=, ==, and !=) must be address types. Retry with both
expressions as either addresses or arithmetic types.

Breakpoint is (or at the address of) an CrossView internal breakpoint. It
can not be deleted.

You may not install a breakpoint over an CrossView Pro internal
breakpoint. See Breakpoints and Assertions chapter for more information.

Error Messages 14-5

com return code= code

The MS-DOS version of CrossView Pro received a status condition from
the monitor communication channel which it can not handle. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

command takes no arguments.

The command command needs no arguments. Refer to the Command
Reference chapter, for the command syntax.

Can not open file (file)

CrossView Pro could not open the file file. Check the spelling of file and
check that the file is in the correct directory. You should also check the
permission of file. With MS-DOS, check the CONFIG.SYS file for the
maximum number of open files allowed. Increase the number and reboot
if necessary.

Can not output to input stream

An attempt was made to output to an input stream. The most common
case is incorrectly setting up your simulated i/o streams. Correct and retry.

Can not scroll that window

The window you have tried to scroll is not scrollable. Examine your
choice of window and/or your choice of windowing commands.

Can’t define macro: out of space

There is not enough host memory to add your macro. Eliminate one or
more unused macros before adding a new one.

Can’t expand macro: out of space

There is not enough host memory to expand your macro. Eliminate one or
more unused macros before adding a new one.

Can’t monitor data: out of space

CrossView Pro cannot add any more variables or expressions to monitor.
You must delete one or more variables or expressions before adding any
more.

14-6

Chapter 14

Can't open logfile—name as log file

CrossView Pro could not open the specified host-to-target system
communications logfile. Check the spelling of logfile-name and that
logfile-name is in the correct directory. Check permissions of
logfile-name. With MS-DOS, check the CONFIG.SYS file for the maximum
number of open files allowed. Increase the number and reboot if
necessary. Make sure the filename is valid for the host Operating System.

Can't open output-file—-name as output file

CrossView Pro could not open the specified output file. Check the spelling
of output-file-name and that output—file-name is in the correct directory.
Check permissions of output—file-name. With MS-DOS, check the
CONFIG.SYSfile for the maximum number of open files allowed. Increase
the number and reboot if necessary. Make sure the filename is valid for
the host operating system.

Can't open playback—file—name as playback file

CrossView Pro could not open the specified playback file. Check the
spelling of playback-file-name and that playback-file-name is in the
correct directory. Check permissions of playback-file-name. With
MS-DOS, check the CONFIG.SYS file for the maximum number of open
files allowed. Increase the number and reboot if necessary. Make sure the
filename is valid for the host operating system.

Can't open record—file—name as record file

CrossView Pro could not open the specified recording file. Check the
spelling of record-file-name and that record-file-name is in the correct
directory. Check permissions of record-file-name. With MS-DOS, check
the CONFIG.SYS file for the maximum number of open files allowed.
Increase the number and reboot if necessary. Make sure the filename is
valid for the host operating system.

Can't openfile * file’

CrossView Pro could not open the specified file. Check the spelling of file
and that file is in the correct directory. Check permissions of file. With
MS-DOS, check the CONFIG.SYS file for the maximum number of open
files allowed. Increase the number and reboot if necessary. Make sure the
filename is valid for the host operating system.

Error Messages 14-7

Can’t perform trace, out of memory

There is not enough host memory to support tracing. Reduce memory
demands and retry again. If the problem persists, please contact the
TASKING Technical Support staff for assistance.

Can’t set breakpoint; either the current file has no symbols, or line
line# is not inside any procedure in the current file.

CrossView Pro was unable to set the breakpoint that you specified. First
check the location of line /ine# and verify that it is in the current
procedure being debugged. If it is within the current procedure, then you
may need to compile/assemble/link/locate for debugging. Refer to chapter
Overview for details.

Can't start a new process. Feature not implemented.
Your host system does not support shell commands. Any attempt to issue
shell commands will cause this message to be displayed.

Can't write to a read—only SFR.

The SFR register is a read—only register. It can not be set or altered.

Cannot allocate memory for symbol table

Allocating memory for storing the symbol table failed. Remove some tasks
from memory or add more memory to your computer system.

Cannot allocate symbol table memory buffers

The symbol table is too large for CrossView Pro. You may need to
selectively compile with the =g switch only those files and procedures that
most interest you.

Cannot allow that combination of operand(s) and operator

The operand(s) is/are incompatible for this type of operation. For
example, you may not add two structures. Please verify the operation and
data types you are using.

Character constant is missing ending ’

Character constants must be delimited with single quotes. Example: ’a’.

14-8

Chapter 14

Command ' command’ not allowed while emulator running in
background

The target is running, this command is not allowed unless the target is
stopped. See the st command.

couldn't error-message

VMS is reporting a condition that CrossView Pro can not handle. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

Data already being monitored ” task—id ":* symbol ’
The variable or expression symbol is already being monitored by
CrossView Pro. You do not need to enter it again.

Display format required
The display command expected an output format option that was not
supplied. See chapter Command Language for valid format options and
their meanings.

Double not allow in "% or ~ operator’
You may not use the one’s complement or modulus operators on double
floating point types.

Double not allow in* bitwise operator ’
You may not use bitwise operators (&, ~ and |) on double floating point
types.

ERROR: you must enter ?,i,r,d
CrossView Pro’s line editor only supports the following commands: ?-help,
i—insert, r-replace, d-delete, and <cr> to execute command.

Establish a file context first.
The command executed requires an active file. Verify the file you specified
to CrossView Pro on start up.

Establish a procedure context first

The command executed requires an active procedure. Either execute the
command from within a procedure, or give a procedure name as an
argument to the command.

Error Messages 14-9

Exiting procedure call state

An unknown system signal caused the end of a command line function
call.

Expecting stream number

The following forms of the sio command expect a stream number:
stream sio {i| o} {file | screen}
stream sio d
stream sio p prompt

Expression garbaged

The symbol table contains a type that is unknown to CrossView Pro.
Please verify that you are using the compiler and utilities supplied to you.
If the condition persists, please contact the TASKING Technical Support
staff for assistance.

file has already been edited, going to NEW file

The command executed requires that the file be edited only once. A new
file has been created.

failed to allocate the SIO tables

Entries for recording simulated input/output information could not be
allocated due to lack of host memory. Please contact your system
administrator, or call the TASKING Technical Support staff for assistance.

Float not allowed in "% or ~ operator’

You may not use the modulus or one’s complement operators on floating
point types. Change the data type to an appropriate type, for example,
integer.

Float not allowed in’ bitwise or shift operator ’

You may not use the bitwise (&, ~, or |) or shift (>>, or <<) operators on
floating point types. Change the data type to an appropriate type, for
example, integer.

Framing Error on COM port number

The host computer detected a data frame communication error on COM
port number. Check the host and target communication set up as well as
line connections. If the problem persists, please contact your system

administrator, or call the TASKING Technical Support staff for assistance.

14-10

Chapter 14

| can’t put something that big in the child process

The size of the expression exceeds the buffer size needed to spawn a
child process. Be sure you have linked end.c in your application. This
module implies space for CrossView Pro in your execution environment.
Refer to section Building Your Executable in chapter Overview. If this
condition persists, please contact the TASKING Technical Support staff for
assistance.

| don’'t have symbols for this procedure

You will need to re-compile, assemble, link and locate with the proper
debugging options before using this command. See section Building Your
Executable in chapter Overview for details.

I have no source file for this address

The program counter holds an address which is outside all the address
ranges that CrossView Pro knows about. This may happen if program
execution has reached a file that was not compiled with the —g generate
debug symbols switch.

I need a linenumber
The go g command requires a line number. Enter a line number and the
command will be executed.

lllegal address for Emulator Hardware Breakpoint
The address specified is out of emulator hardware breakpoint memory
range. Verify the address and retry.

lllegal argument ("0”) to 'p’ command
You must specify a number greater than 0 for the p command, which
prints the specified number of lines.

lllegal argument to’ command’ command:’ argument’
You have passed an illegal argument to the specified command. Refer to
chapter Command Reference for legal arguments.

lllegal argument to ct: * argument’

You have passed an illegal argument to the C-trace command. Refer to
chapter Command Reference for legal arguments.

Error Messages 14-11

lllegal data monitor command

You have passed an illegal argument to the m data monitor command.
Legal commands are:

mexp to set up monitoring

idmd to delete monitoring of a specific expressions

md to delete monitoring of all expressions

lllegal third arg to set: * argument’

The set command may have only two arguments: the name by which the
macro is known and the command string to be executed when the macro
is invoked. Enclose the command string in quotes, separating the
individual commands with semicolons. Refer to chapter Command
Reference for more information.

Improper floating point format length

You have specified a format length that is inconsistent with floating
numbers. Legal lengths are 4 and 8 bytes.

Improper integer format length

You have specified a format length that is inconsistent with integer
numbers. Legal length are 1, 2, and 4 bytes. You may also choose b, s, or 1
for 1, 2, and 4 byte integers.

Improper string format length

You have specified a format length that is inconsistent with character
strings. Choose a positive number.

Input buffer overflow

CrossView Pro is over—-running the input buffer. Contact your system
administrator to either increase the input buffer or lower the
communication line baudrate.

Input communications buffer overflow on COM port

CrossView Pro is over—-running the input buffer. Contact your system
administrator to either increase the input buffer or lower the
communication line baudrate.

14-12

Chapter 14

Input from stdin longer than max—input—size characters: input-string
Command truncated

The input data is longer that the input buffer, therefore the data was
truncated at max—-input-size. Try to reduce the input data and/or
commands.

Internal error while setting an instruction level breakpoint

If this error condition persists, please contact the TASKING Technical
Support staff for assistance.

Invalid assertion maintenance command

You have entered an illegal assertion command. Valid commands are:
aa to activate assertions
ad to delete assertions
as to suspend assertions

Invalid value for uplevel break.

You have entered an illegal value for an uplevel break. The form of the
command is exp bU or exp bU, where exp determines how many returns
from functions should occur before the break. Execute the t command to
find out how many levels down in the stack you are, then choose an
appropriate value for the uplevel break. See chapter Command Reference
for more information.

Invoking procedure calls not allowed while emulator is running in the
background

The target is running, this command is not allowed unless the target is
stopped. See the st command.

Macro Expansion error: expansion looping

CrossView Pro looped 50 times while trying to expand this macro without
completing the expansion. Check the logic of the macro arguments. It may
need to be corrected or simplified.

Macro Expansion error: expansion too large

The macro expansion exceeds 200 commands. The macro must be
simplified.

Error Messages 14-13

Macro Expansion error: missing '(’

See the command reference page or use the help command to review
macro command syntax.

Macro Expansion error: missing ’)’
See the command reference page or use the help command to review
macro command syntax.

Macro Expansion error: missing ’,’
See the command reference page or use the help command to review
macro command syntax.

Macro Expansion error: not enough args
See the command reference page or use the help command to review
macro command syntax.

Macro Expansion error: out of space
There is not enough memory to expand the macro. Eliminate one or more
unused macros before adding a new one.

Maximum trace size is: max—trace-size
CrossView Pro can perform C tracing only up to max—trace-size source
lines. Choose a number less than max-trace-size with the ct command.

Missing { after if command

The required format for the if command is: if exp {commands}

Missing file name or 'screen’

The sio command was missing a required parameter for setting up a
simulated i/o stream. See chapter Command Reference for command
definition and format.

Missing format character
You did not specify a display format type with your command. Either
remove '/ from the command, or add a format character.

Missing prompt string

You did not specify a prompt string with the sio command. Either remove
p from the sio command, or add a prompt string.

14-14

Chapter 14

Must supply 'b’ or 'f’

The color command requires a value of f for foreground or b for
background to modify the screen color.

Must supply 'r’;w’ or 'b’
Both the data range (bD) and data (bd) breakpoint commands require the
type of data modification to generate a break condition. Use r for read, w
for write, and b for both read/write. Please see chapter Command
Reference for more information.

Must supply data to be monitored

You did not specify a variable or expression to the m monitor command.
Please provide a variable or expression to be monitored, for example, m
myvar.

Must supply second address with bD command.

The bD command requires two addresses. Either specify an upper limit if
you want to break anywhere in memory range, or use the bd command if
you want to break on an individual address.

Negative /baudrate value ignored. (VAX)
or
Negative baud rate (—S) value ignored.

The baudrate specified was a negative value. Please specify a legal value
or use the default.

Negative /TIMEOUT value ignored. (VAX)
or
Negative timeout interval (-I) value ignored.

The time out value specified was negative. Please specify a legal timeout
value or use the default.

No child process

The CrossView Pro internal data structure containing user information
about child processes is not as expected. Please contact the TASKING
Technical Support staff for assistance.

No current file

Undefined special variable, $file ; probably due to debugging where no
symbols are present.

Error Messages 14-15

No current line number

Undefined special variable, $line ; probably due to debugging where no
symbols are present.

No current procedure

Undefined special variable, $proc ; probably due to debugging where no
symbols are present.

No host memory

There is not enough space in memory to execute this command. Check
whether you have unnecessary processes running in the background or
resident in memory.

No host memory for command

There is not enough space in memory to execute this command. Check
whether you have unnecessary processes running in the background or
resident in memory.

No macros to save; file not created

CrossView Pro found no macros to save, therefore the save command did
not create a file.

No Match — pattern

CrossView Pro did not find the specified pattern in its search of this file.
Check your spelling or case-sensitivity. Use the Z command to toggle
case—sensitivity if necessary.

No memory space

There is not enough host memory to execute this command. Check
whether you have unnecessary processes running in the background or
resident in memory.

No more hardware breakpoints available

The target system uses hardware breakpoints to support the data
breakpoint function. To continue, you must explicitly delete a data
breakpoint before placing a new one.

No more room for directories (> max—dir-size)

You can reference no more that max-dir-size directories for source files.

14-16

Chapter 14

No more SIO windows, 1/0 to command window.

Only four SIO streams can be displayed simultaneously in the SIO
window. Subsequent SIO streams’ output will be displayed in the
command window.

No name of symbol file specified

CrossView Pro cannot deduce the name of a symbol file. No filename was
given to the N command and no symbol file was currently loaded.

No playback name specified

Give the name of the playback file to be used for this session.

No process

CrossView Pro only allows one process to be debugged at the same time.

No such breakpoint

The breakpoint number was incorrect. List breakpoints with the 1 b
command to find the correct breakpoint.

No such field name ” name” for "< structure | union > name”

The field name is not recognized for the specified structure or union.
Check the spelling of field name. The /t format will show you the names
and types of a particular structure’s or union’s fields.

No Such Line

CrossView Pro can not find the specified line number in any of its known
files. Please check the source window or a source listing for legal line
numbers.

No such procedure, ” name”.

CrossView Pro does not recognize name as a procedure name. Check the
spelling and whether the file was compiled/assembled/linked/located for
debugging. Check that the file is in the appropriate directory.

No such procedure or file name: procedure

CrossView Pro does not recognize procedure as a procedure or file name.
Check the spelling and whether the file was
compiled/assembled/linked/located for debugging. Check that the file is in
the appropriate directory.

Error Messages 14-17

No such PSW register state

Check register name and selected target.

No such register

The target processor does not have a register with that name.

No such sr reg state

Check register name and selected target.

No such stream

The stream you tried to delete does not exist. Check the stream number,
correct, and retry.

No symbols — unable to determine end—of—procedure

CrossView Pro has no symbol information for this procedure. To facilitate
debugging this procedure, you must compile, assemble, link and locate
with the appropriate switches. Refer to the Overview chapter for details.

No symbols available in active procedures.

To get symbol information you must compile, assemble, link, and locate
with the appropriate switches. Refer to the Overview chapter for details.

No symbols for that procedure

To get symbol information you must compile, assemble, link, and locate
with the appropriate switches. Refer to the Overview chapter for details.

No User or System special variable matches prefix name

The string argument of the 1 s command did not match any user or system
special defined variables. Check spelling and case-sensitivity and retry.
You may also enter 1's to print out all the user and system special defined
variables.

Not enough memory available to start up windows. Either use the —nw
(no window) option or remove resident programs from memory.

CrossView Pro has detected that there is not enough host memory to
execute the windowing software. You may need to use the -nw option to
start up CrossView Pro in line mode. Check whether you have
unnecessary processes running in the background or resident in memory.

14-18

Chapter 14

Not enough memory to execute shell command.

The attempt to create a child process for the shell command failed due to
the lack of host memory. Check whether you have unnecessary processes
running in the background or resident in memory.

Not enough memory to start window mode

CrossView Pro has detected that there is not enough host memory to
execute the windowing software. You may need to use the -nw option to
start up CrossView Pro in line mode. Check whether you have
UNNECessary processes

Not enough space

CrossView Pro has detected a general error due to lack of host memory.
Check whether you have unnecessary processes running in the
background or resident in memory.

Not in known territory. Could not set breakpoint.

CrossView Pro’s current location is not in a file or procedure that it knows
about. The breakpoint request can not be performed.

Not in window mode

The command issued requires CrossView Pro windows to be active. Use
the WW command and repeat the previous command.

Not that many levels active on the stack.

A stack level was specified that does not exist. Execute the t command to
determine levels on the stack. See chapter Command Reference for more
information.

Oops called with sig = signal-number

CrossView Pro has received a signal that it can not handle. Continuing
from this point may result in a fatal process condition. If this condition
persists, please contact your system administrator, or call the TASKING
Technical Support staff for assistance.

Placement of the breakpoint handler must be in one of
the restart vectors. Choose a value from 0 to 7.
Try again. (Hit <cr> to exit)?

The specified placement for the breakpoint handler was not valid for this
target. CrossView Pro is requesting a valid location.

Error Messages

Procedure ” name” is not active on the stack.

The procedure name was not found on the current stack. Execute the t
command to list functions which are active on the stack.

Procedure ' name’ is not at that stack depth

The procedure name was not found on the specified stack. Execute the t
command to list functions which are active on the stack.

Procedure ” procedure " is not active

The procedure procedure was not found on the current stack. Execute the
t command to list functions which are active on the stack or 1 p for list of
procedures known to CrossView Pro.

Program not completely loaded

An error occurred during loading a symbol file. Check what cause the
problem (illegal filename or file format). You may retry to load a symbol
file.

Prompt too long (> max—number)

Choose a prompt of no more than max-number characters.

Ran out of memory reading symbol file into memory

Reduce the size of the symbol file by re-compiling only the "interesting”
files with the —g debug switch.

Read /O request could not be queued

VMS detected an error for a read 1/0 queue which CrossView Pro can not
handle. If the condition persists, please contact your system administrator,
or call the TASKING Technical Support staff for assistance.

Readprompt 1/0O request could not be queued

VMS detected an error for a read I/O queue which CrossView Pro can not
handle. If the condition persists, please contact your system administrator,
or call the TASKING Technical Support staff for assistance.

Redo: line too large

Limit line length to fewer than 256 characters.

14-19

14-20

Chapter 14

Result type too large for command line call.

A command line function call must pass the result back in a register. The
specified function does not. You cannot call functions whose return value
is greater than an integer, for instance floating point types and structures.

Result type undefined
Type casting from the expression or variable to the result type was not
possible.

Second address smaller then first
When specifying a range of addresses for a data breakpoint, the second
address must be higher than the first.

Sim I/O request too long (> max—number bytes)

The 1/0 request exceeds the maximum length.

Simulated I/O stream out of range

Choose a stream value between 0 and 7.

Sorry, the "v’ command is not supported on this host

No visual editor is available on this host.

Stream already active

Either choose another stream, or deactivate this one before re—assigning it.

String constant is missing ending ”

String constants must be delimited with double quotes: ”

Subtracting 2 pointers not allowed

You cannot subtract two pointers in an expression. If you intended to
subtract from a pointer, make sure that the argument is a value, not
another pointer.

Symbol file is either unreadable or too short

The symbol file is not an absolute IEEE-695 file, or the file format is not
correct, or the file is not an IEEE-695 file at all.

Error Messages 14-21

Symbol file is not formatted correctly
The symbol file is not intended for the type of microprocessor you are
using.

Symbol not in current procedure

There is no symbol by this name in the current procedure. Check the
spelling of the symbol name.

The 'command ' command accepts no args

The command command does not accept any arguments. See chapter
Command Reference for more information on command.

The window would be too large; Total lines must not be greater that
max-size
The window size options specified would create a window that would
have exceeded the screen size. Retry with corrected window size options.

There is insufficient information to do a structure dump

CrossView Pro cannot uniquely identify the structure or part of the
structure to be dumped.

There is no associated source.

The program counter holds an address which is outside all the address
ranges that CrossView Pro knows about. This may happen if program

execution has reached a file that was not compiled with the —g debug
switch.

There is no available source line for the current address.
$pc= address

CrossView Pro is reporting that the current position has no associated
source line. This may happen if you are trying to debug a routine that was
not compiled with =g debug switch or are trying to debug a runtime
library routine.

This does not appear to be a struct or a union

The data entered is not recognizable as a structure or union. Check the
specified variable.

14-22

Chapter 14

Timed read 1/O request could not be queued

VMS reported a condition on a timed read i/o request that CrossView Pro
could not handle. If the condition persists, please contact your system
administrator, or call the TASKING Technical Support staff for assistance.

Too many args to unset:’ argument’

You may specify only one macro at a time, for example, unset name, or
you may remove all macros at once with unset.

Too many assertions (> max—number)

The maximum number of assertions allowed is max-number as shown in
the error message. Remove a previous assertion before trying to add one,
or reinvoke CrossView Pro with the —a option to increase the maximum
number of assertions.

Too many breakpoints (> max_number)

The maximum number of breakpoints allowed is max-number as shown
in the error message. You must explicitly delete a breakpoint before
adding any new ones. Alternatively, you could re-invoke CrossView Pro
with the —b option to increase the maximum number of breakpoints.

Too many locals (> max—number)
Eliminate some existing locals or reinvoke CrossView Pro with the -s
switch to increase the number of locals allowed.

Too many modules
The symbol file describes an application that was constructed from more
than 1818 modules.

Too many processes (> max—number)

CrossView Pro allows only one process to be debugged.

Too many streams (> max—number)

The maximum number of 1/O streams, max-number, has been reached.
You must eliminate an I/O stream before adding a new one.

Trace size is required

The required format of the command is exp ct, where exp is the number
of statements to trace. Re—enter the command with a value for exp.

Error Messages

Type ' r’, to run program from power—on conditions or’ ¢ ' to continue
with current program pointer

This is to inform you that command 7 is not implemented and that you
should used 7 or c.

Type of command-line—expression is too complex
The command line function returns a data type that CrossView Pro cannot
handle. An example would be a function returning a structure.

Unexpected breakpoint type ’ type’

CrossView Pro has encountered a breakpoint with an unknown type
attribute. Verify the previous break commands and re-try. If the condition

persists, please contact the TASKING Technical Support staff for assistance.

Unknown command * command’ (<number >)

CrossView Pro does not recognize command, and has echoed the
command number for Technical Support purposes. Please check the
spelling and retry. If the condition persists, please contact the TASKING
Technical Support staff for assistance.

Unknown data monitor id " number’

The monitor number number that you tried to delete does not exist. Use
the M command to list currently monitored variables.
Unknown data size

Valid data sizes are 1, 2, 4, or 8 bytes.

Unknown display mode

See chapter Accessing Code and Data, for a list of display mode options.

Unknown name ' name’

Variable name is not in scope or is undefined.

Unknown procedure ” name”.

The function name does not exist in any file that CrossView Pro knows
about. The file containing name may not have been compiled with the —-g
debug switch.

14-23

14-24

Chapter 14

Unknown macro’ name’

CrossView Pro does not recognize the macro name as given. Please check
the spelling. You may list all current macros by using the set command
with no arguments, or display the Macro window for currently defined
macros.

Unknown window

CrossView Pro does not recognize the window name as given. See chapter
Command Reference for valid window arguments.

Unsupported format type (parameter)
Supported types are ¢ (character), x (hex), and o (octal).

Value number is not defined for this enum.

The member specified was not part of the enumerated set. Please check
the spelling and verify that the correct enum was used.

Value exceeds depth of stack.

A stack level was specified that does not currently exist. Please check the
value and retry. Check the stack window for valid stack levels, or execute
a t command (trace stack) to determine the depth of the stack.

VMS error : cannot establish handler for signals

CrossView Pro on VMS could not establish proper error handlers. If the
condition persists, please contact the TASKING Technical Support staff for
assistance.

VMS error : cannot establish pasteboard

CrossView Pro on VMS can not establish the running environment. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

VMS error : cannot establish virtual keyboard

CrossView Pro on VMS can not establish the running environment. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

Error Messages

VMS error code = number \ Attempt to get message text fail.

CrossView Pro on VMS received an error while attempting to provide an
error diagnostic message from the host error message library. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

Warning: NULL pointer dereference

The expression contained a null pointer dereference. Check the expression
for possible errors, or verify that the pointer should in fact be null.

Warning: pointer dereference with invalid segment selector.

The pointer is addressing invalid memory and the dereference may report
unexpected data results. Check the initialization of the pointer or verify
that it has been set correctly.

Warning: too few parameters.

The command given was not invoked with the proper number of
arguments. CrossView Pro will supply the command with defaults which
may or may not produce the result you expected.

Warning: Using file—b instead of file-a

CrossView Pro could not find file-a, or file-a’s status was such that
CrossView Pro could not use it. If file-b is not correct, check file-a spelling
and its directory.

Warning: X=Y: X is x—size bytes and Y is y-size bytes

The assignment of two different size variables may cause unexpected
results. Please correct the condition if possible. This condition is common
when assigning string variables where string y is shorter than string x.

Warning: X=Y: X is x—size words and Y is y-Size words

The assignment of two different size variables may cause unexpected
results. Please correct the condition if possible. This condition is common
when assigning string variables where string y is shorter than string x.

14-25

14-26

Chapter 14

Warning: CrossView comment terminated by end of command line
source—command-line

The playback file has a comment that was not terminated. It is by default
terminated, but if the next line was the continuation of the comment, then
unexpected results may occur. Please terminate comment strings on each
line to avoid this warning.

Windows not enabled; use WW to enable

The command issued can only be used when windows are enabled.

Write 1/O request could not be queued

CrossView Pro received a condition that it could not handle. If the
condition persists, please contact your system administrator, or call the
TASKING Technical Support staff for assistance.

Write—only register . Value may not be valid.

CrossView Pro set a write—only register but has no way of verifying the
correctness of the register contents.

Wrong storage class for data breakpoint

You may not set a data breakpoint at the address of a register variable or
special variables.

CrossView could not disassemble the emulator’s trace buffer because
the address information in the buffer is incorrect.

The trace buffer may be corrupted. Re-check the commands leading to
this condition, and retry. If the condition persists, please contact the
TASKING Technical Support staff for assistance.

XVW error — message
or
XVW Fatal error — message

These messages are generated by internal conditions that should not
normally occur. The message is usually encrypted and should be brought
to the attention of the TASKING staff. Please contact the TASKING
Technical Support staff for assistance.

Error Messages

XVW:main — Cannot continue, incomplete initialization.

CrossView Pro’s initialization was interrupted and could not be completed.
Please re—start CrossView Pro, and if the condition persists, contact the
TASKING Technical Support staff for assistance.

You can't goto a line outside of the current procedure

The specified line number is outside the current procedure. Change the
line number to one within the procedure or enter the correct procedure
before executing this command.

You may not assign from a host system string/array

The expression given performs an assignment that CrossView Pro can not
perform at this time.

You may not assign from a void function

The expression attempts to assign a variable from a void function. Please
check the return value of the function and verify that you are referencing
the correct function.

You may not assign more than max—size bytes to a special variable
An attempt was made to assign greater than the maximum number of
bytes to a special variable. Check the expression for errors, and check the
variable’s spelling.

You may not assign to a constant
The value of a constant cannot be changed. Check the name that you have
specified.

You may not mix assignment of a scalar and an aggregate

An attempt was made to assign incompatible types of data. Please check
the data types and retry.

You need to supply a program name.

CrossView Pro requires a program name to debug on the invocation line.

14-27

14-28

ERRORS

Chapter 14

GLOSSARY

al TASKING [

d31dVHO

15

Glossary 15-3

15.1 WHAT THIS CHAPTER COVERS

This chapter defines terms common to CrossView Pro and source-level
embedded systems debugging. Italicized items in definitions are also
glossary entries.

15.2 GLOSSARY TERMS

absolute file. The IEEE-695 file (.abs) that contains symbolic debug
information and the final executable code of the target system.

active window. The window last selected by the user in CrossView Pro
that commands operate on as a default. An active window’s title appears in
a different color (on color monitors) or inverse video (on monochrome).

analysis. See trace analysis.

analysis window. The window where you can select to Modify, Begin,
Halt, Display or Reset a trace analysis. See also trace analysis.

assertion. A command or set of commands to be executed before every
line of source code, assessing the application state on validity. Assertions
are especially useful in tracking down hard to find bugs when other
methods fail. Individual assertions may either be active or suspended. See
also assertion mode.

assertion mode. A mode of CrossView Pro operation under which
assertions will be executed. Before CrossView Pro executes a source line
of code, it assesses all assertions active. Since CrossView Pro is single
stepping, breakpoints will not be effective. As long as there is at least one
assertion active, CrossView Pro operates in assertion mode. A program
running in assertion mode will be stopped when an asserted command
executes the x (exit assertion mode) command.

15-4

Chapter 15

background mode. A target dependent feature in CrossView Pro that lets
the execution environment run and at the same time allows you to enter a
reduced set of CrossView Pro commands, for example to monitor memory
contents.

bias. A value added to program code addresses to tell CrossView Pro
where the application has actually been loaded into memory. The bias can
be set in the Load Application dialog or with the —n startup option.

breakpoint. A mechanism for stopping target program execution, for
example at a particular line of code (see code breakpoint), when a
memory address is accessed (see data breakpoint), or at a return from a
function (see up-level breakpoint). There are two general kinds of
breakpoints. Hardware, which the emulator or on-chip debug support
sets in its circuitry, and software, which are special instructions placed in
user code. Since the number of simultaneous hardware breakpoints is
limited in number, CrossView Pro uses both kinds by default. Other types
of breakpoints are for example instruction count breakpoint, cycle
count breakpoint, timer breakpoint and sequence breakpoint. See
also probe point.

breakpoint window. A CrossView Pro dialog displaying all breakpoints,
and any attached commands.

C-trace window. A CrossView Pro window keeping a record of the most
recently executed C or machine statements.

cache. Some microprocessors keep a copy of the most recently executed
instructions in on—chip memory to speed—up execution.

code breakpoint. A breakpoint that halts program execution when a
particular line of code is reached. A code breakpoint can have a command
list. A breakpoint can be set on a line of source code or at the address of a
machine instruction. See also count.

code coverage. See coverage.

command window. A CrossView Pro window that gives access to
CrossView Pro via a command line interface with history.

Glossary 15-5

command list. A series of CrossView Pro commands and/or C
(assignment) statements attached to a code or data breakpoint, executed
when the breakpoint is hit.

count. The number of times a breakpoint must be hit to finally stop
execution. Breakpoints are created with a count of 1. The C command
may be used to change the count of a breakpoint.

coverage. With code coverage the source line is marked for each source
code line that is executed. Through code coverage you can find executed
and non-executed areas of the application program. Data coverage
allows you to verify which memory locations, i.e. which variables, are
accessed during program execution. Additionally, you can see stack and
heap usage. The availability of this feature depends on the execution
environment.

cycle count breakpoint. A breakpoint that halts program execution after
a specified number of CPU cycles. A cycle count breakpoint can have a
command list.

current function. The function that is currently being executed. The
current function is always at level 0 on the stack. Also stored in the
CrossView Pro special variable $PROCEDURE

data breakpoint. A breakpoint that halts program execution when a
particular memory address (or an address within a particular range) is
written to, read from, or both. A data breakpoint may have a command list
and a count.

data coverage. See coverage.

data monitoring. CrossView Pro allows you to monitor expressions and
variables in the Data window. CrossView Pro updates their values
whenever execution stops.

data window. A CrossView Pro window displaying the values of
monitored expressions.

diagnostic output. Program output designed for debugging purposes.
With CrossView Pro, probe points and data monitoring can be used for
diagnostic output, eliminating the need for intrusive and annoying printf
calls compiled into code.

15-6

Chapter 15

disassembly window. A CrossView Pro window showing a part of the
disassembled program space. It also displays other information such as the
current execution position, viewing position and installed breakpoints.

” 9

dot operand. The period character ”.” used in an expression to represent
the last value CrossView Pro calculated. The dot operand is useful as
shorthand.

embedded system. Computer(s) executing an application program built
to run in (semi) real-time. An embedded system usually is part of a larger,
non-computer system, hence the term "embedded.” The TASKING product
line is designed for embedded systems programming.

emulator. A device used to monitor and control various aspects of a
microprocessor’s operation. An emulator usually is built around two chips,
the target microprocessor and a controlling chip. The controller chip can
start and stop the target chip’s program execution, and can examine and
change registers and memory. An emulator can be connected via a probe
to a hardware prototype to fully emulate the behavior of the target chip.
See ROM monitor.

end. A run-time library routine used to implement command line
function calls. It must be linked into the object code.

execution position. The source line to be executed next. See viewing
position.

File System Simulation (FSS). A facility to redirect all C library file I/O
operations on the target, to the host system via CrossView Pro. File system
simulation is often used to provide input to an application for which no
hardware 1/0O is available yet and to log test results.

format. The manner in which CrossView Pro displays addresses and data;
for instance, hexadecimal, character and octal are different formats. You
may include special format codes when specifying variables.

Glossary 15-7

hardware breakpoint. See breakpoint.

help window. A window explaining the use of CrossView Pro windows
and dialogs and summarizing the syntax and function of CrossView Pro
commands.

history mechanism. A facility for modifying and executing previous
CrossView Pro commands.

host system. The computer system on which CrossView Pro is run. The
host system is connected to the target system, usually with an RS-232
cable.

image part. This is the downloadable part of the absolute file that
contains the executable code of the target program. See also absolute file.

instruction count breakpoint. A breakpoint that halts program
execution when a number of instructions have been executed. An
instruction count breakpoint can have a command list.

interrupt key. The key that interrupts ongoing processes. On many
systems this is ct7/-C.

I/0 Simulation. A technique to intercept input and output for debugging
purposes. I/O Simulation is often used for testing a program before the
actual input and output hardware devices are present. See also stream.

local variable. A variable that can only be referenced from within its
defining function.

low-level breakpoint. A code breakpoint placed on an individual
machine instruction. Low-level breakpoints can be set with the break
code address command.

15-8

Chapter 15

macro. A user—created shorthand for a CrossView Pro command
sequence. Macros can accept parameters and can be saved to a file.

main(). The function where a C program’s execution begins. See also
system startup code.

MAU. See minimum addressable unit.

memory map. The configuration of an emulator’s memory that specifies
which addresses are read—only, and which addresses are read/write. With
many emulators, you must first set up a memory map before using
CrossView Pro, for example via transparency commands.

minimum addressable unit. For a given processor, the amount of
memory located between an address and the next address. It is not
necessarily equivalent to a word or a byte. Abbreviated MAU.

monitoring. See data monitoring.

object language. A representation for target machine instructions, with
the ability to represent either relocatable or absolute address locations.

on-line help. A complete summary of all CrossView Pro commands and
individual descriptions available while CrossView Pro is running.

on-line tutorial. A playback file supplied with CrossView Pro that
demonstrates CrossView Pro’s capabilities.

output buffer. The location in memory where CrossView Pro directs I/O
simulation output. See also 1/O Simulation.

patch. A technique to alter program flow (without recompiling the source
code) with CrossView Pro commands and/or C expressions. With
CrossView Pro, it is possible to use breakpoints to alter program flow by
patching in new code or moving the execution position around existing
code.

Glossary 15-9

pop-up window. A window that appears in certain situations that
overlaps the current display. Pop—up windows usually contain information
(like a command definition) that need not be continuously displayed.

probe. A part of an emulator that can be inserted in place of the target
chip in the actual embedded systems hardware.

probe point. A special kind of breakpoint. When a probe point
breakpoint is hit, the associated commands are executed and program
execution is continued.

profiling. For each source code line that is executed, the timing
information is given.

quiet command. A Q instruction at the start of the command list of a
breakpoint suppressing the default display of function: line number:
source file.

record & playback. The ability to save CrossView Pro commands (and, if
desired, Command window output) to a file. CrossView Pro can play back
simple text files consisting solely of CrossView Pro commands.

register window. A CrossView Pro window showing the contents of the
target miCroprocessor’s registers.

reserved special variables. Special variables ($LINE , $PROCEDURE
$FILE) whose values CrossView Pro maintains to reflect the current status
of the debugging session. See also special variables.

ROM monitor. A program which supervises or controls, at an elementary
level, the overall operation of an embedded system. Because of the limited
hardware features of most boards containing ROM monitors, some
CrossView Pro features may not be supported. See also emulator.

RS-232 cable. A cable that exchanges asynchronous data between the
host and target systems.

15-10

Chapter 15

scope. The extent to which a variable can be referred to. Global variables
are always in scope; local variables are only in scope when their defining
function is the current function.

select. To make a window active.

sequence breakpoint. A breakpoint that halts program execution when
breakpoints are hit in a specified sequence. A sequence breakpoint can
have a command list.

single stepping. Executing a source statement or a machine instruction
then halting. Single stepping lets you observe a program executing in
stop—motion, to observe registers, variables and program flow.

skidding. When a microprocessor executes a few instructions after a data
breakpoint halts execution. On some microprocessors, execution may not
stop until all instructions in its pipeline have been executed. It is important
to realize therefore that a target program may not halt at the precise
instruction where the data breakpoint occurred.

software breakpoint. See breakpoint.

source level debugger. A debugger capable of correlating source code
and variable names with object code. CrossView Pro is a source level
debugger.

source window. A CrossView Pro window displaying the high-level
language program code. It also displays such information as the current
execution position, viewing position and installed breakpoints.

special variable. A variable independent of the target program that
CrossView Pro maintains for the user’s benefit. Special variables start with
a $ and are defined when first mentioned. CrossView Pro also maintains
reserved special variables that contain information about the state of the
debugging session.

stack depth. The level that a particular return address from a function
resides on the stack. The current function is always at stack depth zero.

stack traceback. An operation in which CrossView Pro reads the return
addresses and passed parameters off the stack to reconstruct program
flow.

Glossary 15-11

stack window. A CrossView Pro window showing the function calls on
the stack, with the values of the parameters passed to them.

startup options. Special command line switches passed to CrossView
Pro when the debugger is first loaded. These options control items such as
the number of assertions allowed, or can perform various actions such as
to start recording screen output to a file.

stream. A particular input or output data path for I/O simulation. Per
method, File System Simulation, File I/O or Debug Instrument 1/O, a
unique stream numbering scheme is used.

switches. See startup options.

symbolic debugger. A type of debugger generally limited to dealing with
global, non-dynamic variables. Symbolic debuggers know nothing of the
data types; they translate global names and global subroutines into
addresses. See also source level debugger.

symbol information. The necessary information for CrossView Pro to
correlate object code with source code. The symbol information is part of
the absolute file. See also absolute file.

system startup code. A run-time library routine written in assembly
language source that initializes the target environment before calling
main() . See also main().

target communication. The low-level communication between the host
and the target system. For the most part, CrossView Pro handles target
communications, allowing the programmer to concentrate on the
high-level information.

target microprocessor. The chip on which the target program runs.

target system. The targeted microprocessor where the embedded
application runs.

terminal window. A CrossView Pro window containing all the input and
output streams directed to the screen. CrossView Pro can display several
windows at a time.

15-12

Chapter 15

timer breakpoint. A breakpoint that halts program execution after a
specified number of seconds or timer ticks. A timer breakpoint can have a
command list.

trace buffer. A target-resident buffer that contains the most recent
instructions executed by the target microprocessor. CrossView Pro uses this
buffer to deduce a C-trace.

trace analysis. An emulation bus analyzer captures bus cycle information
from the address, data, and status buses of an emulation processor in sync
with the processor clock. The states captured show a history of activity on
the emulation processor bus.

transparency mode. The mode in which CrossView Pro passes user
input directly to the emulator. Transparency mode is often used when
setting up memory maps.

up-level breakpoint. A code breakpoint set at the return from a
function at a specified stack depth.

viewing position. The line of source code currently being viewed. This
line contains the dashed line cursor. Some commands operate by default
on the viewing position. The viewing position and the execution position
are initially the same, but you may adjust each individually.

INTERPROCESS
COMMUNICATION

al TASKING [

XIAN3ddV

Interprocess Communication A-3

1 COM INTERFACE

1.1 INTRODUCTION

CrossView Pro provides a COM object interface on MS-Windows
platforms. The purpose of the COM object interface is to make the
command-line interface of the command window available to the outside
world. Simultaneously, a callback mechanism is provided which allows the
outside world to tap into events that occur within CrossView Pro (for
example a breakpoint hit message). This is achieved by a COM connection
point interface to which multiple programming languages can connect.

The CrossView Pro COM object can be used in programming languages
like Python, Visual C++ or Visual Basic. Applications that are COM clients
can also make full use of the CrossView Pro COM object interface. COM is
a binary reusable object technology, linked tightly to MS-Windows. COM
is closely related to ActiveX and Automation. ActiveX consists of a set of
predefined interfaces to be implemented in a COM object and used to
create plugable GUI components. Automation is a similar set of predefined
COM interfaces, but with a wider range of applications than ActiveX.

1.2 USING THE COM OBJECT INTERFACE

1.2.1 RUN-TIME ENVIRONMENT

The CrossView Pro COM object executes as an out—of-process server.
Only one client per instantiated CrossView Pro COM object can connect.
Each CrossView Pro executable has a unique identification (so—called
UUID or GUID), independent of the version number. This is especially
important for Visual Basic which stores the TypeLib UUID. This requires
recompilation if the UUID changes across different versions of the same
CrossView Pro executable.

1.2.2 COMMAND LINE OPTIONS

To prevent initialization dialogs at CrossView Pro startup (for example a
dialog to specify which CPU type you use), you can use several
command-line options which you can specify via the Init() method.

A-4

/e

Appendix A

Use the following options instead of startup dialogs:

-tcfg file Specifies a target configuration file which contains, among
other things, the GDI module to be loaded among other
things. This overrules the filename specified in xvw.ini

-C cpu Specifies the CPU type.

=D device type,optl|,opt2)
Specifies communications parameters such as communication
port and baud rate.

-G path Specifies the startup directory for CrossView Pro

—ini Specifies the xvw.ini file.

Section 4.4, Startup Options in Chapter Using CrossView Pro

1.2.3 STARTUP DIRECTORY

The startup directory of CrossView Pro determines where the xvw.ini file
is written. When CrossView Pro is invoked via its COM interface on
MS-Windows, the startup directory is usually C:\WINNT\system32 . You
can change the location of the xvw.ini file with the -G command line
option. This feature is useful when you are using two different CrossView
Pro instances simultaneously.

Interprocess Communication

1.3 COM INTERFACES

The following interfaces are provided with CrossView Pro:

ICommandLine

Default interface; provides CrossView Pro command interpreter access.

ICommandlLineEvents

Connection point; provides the events output stream of CrossView Pro.
Works as a callback.

1.3.1 ACTIVATING THE COM OBJECT

Command line options are passed to CrossView Pro via the Init()

method. It is necesarry to call the Init() method before you can use the
CrossView Pro COM object. CrossView Pro does not start as COM object,
until after you have actually called the Init() method. If you do not
need to pass any options, invoke Init() with an empty string.

Registering the server

Before you can use the COM object, you must register it in the
MS-Windows Registry. Run CrossView Pro from the command line as
follows:

xfw68 —RegServer
Similarly, you can remove the COM object from the Registry:
xfw68 —UnRegServer

To avoid the popup message when registering, two more command line
options are available that are useful when you use batch files:

—RegServerS Same as -RegServer, but without message
—UnregServerS Same as -UnregServer, but without message box

A-6

=

Appendix A

1.3.2 METHODS

This section lists the methods that are supported by the CrossView Pro
COM object’s default interface ICommandLine’. The data types and return
values are expressed as COM base types. For example, BSTR is a
wide—character UNICODE string type, which is the same type as Visual
Basic strings.

Init()

i+

void Init(BSTR CommandlineOptions)

Passes command line options to the CrossView Pro COM. It is necesarry to
call the Init() method before you can use the CrossView Pro COM
object. If you do not need to pass any options, invoke Init() with an
empty string.

CommandlineOptions
The string with the command line options. The options are
written as on a regular command line.

The list of supported command-line options can be found in the
CrossView Pro User Manual.

See Section 4.4, Startup Options in Chapter Using CrossView Pro for a
complete overview of all available command line options.

Execute

BOOLEAN Execute(BSTR Command, long SequenceNumber,
BSTR *Result)

Passes a command to CrossView Pro, executes it and returns TRUE or
FALSE after the command has been executed.

Command The command to be executed by CrossView Pro.

SequenceNumber
A number that is unique for each command. You can use this
number to distinguish the output in the events stream. If you
do not use this, specify a value of 0.

Interprocess Communication

Result The textual output of the command window, encapsulated in
an annotated format. See CmdAnnotatedOutput in section
1.4 Events for the format description. Specify NULL if you do
not want any output.

Returns: TRUE on success, FALSE on error.

ExecuteNoWait

BOOLEAN ExecuteNoWait(BSTR Command,
long SequenceNumber)

Queues a command for execution and returns TRUE of FALSE after the
command has been passed but before it is executed.

Command The command to be executed by CrossView Pro.

SequenceNumber
A number that is unique for each command. You can use this
number to distinguish the output in the events stream. If you
do not use this, specify a value of 0.

Returns: TRUE if the command is successfully passed, FALSE on error.

Halt
void Halt(void)

Halts the execution of the current command.

1.3.3 IMPLEMENTATION DETAILS

A multi-threading (MTA) type of appartment is used with a free-threading
model, for example, ThreadModel=Free . However, each CLSID can have
its own distinct ThreadingModel. Only one client can connect to a COM
object instance of CrossView Pro. Each next CoCreatelnstance() will
result in a new CrossView Pro COM object instance being created.

Be aware that DLLs are not supposed to call Colnitialize themselves.
Once the concurrency model for a thread is set, it cannot be changed. A
call to Colnitialize on an apartment that was previously initialized as
multithreaded will fail and return RPC E CHANGED MODE

Appendix A

Typically, the COM library is initialized on a thread only once. Subsequent
calls to Colnitialize or ColnitializeEx on the same thread will
succeed, as long as they do not attempt to change the concurrency model,
but will return S FALSE. To close the COM library gracefully, each
successful call to Colnitialize or ColnitializeEx , including those that
return S FALSE, must be balanced by a corresponding call to
CoUninitialize . However, the first thread in the application that calls
Colnitialize(0) or ColnitializeEX(COINIT APARTMENTTHREADED)
must be the last thread to call CoUninitialize() . If the call sequence is
not in this order, then subsequent calls to Colnitialize on the STA will
fail and the application will not work.

Because there is no way to control the order in which in—-process servers
are loaded or unloaded, it is not safe to call Colnitialize ,
ColnitializeEx , or CoUninitialize from the DIIMain function.

So, take care when establishing more CLSIDs in a GDI module.

1.4 EVENTS

CrossView Pro provides an events source, into which a client can tap via a
COM connection point. Examples of events are “reporting which
breakpoint has been hit” and "symbols have been loaded”. Currently the
following events are defined. Each event is terminated by a newline
character. Prepare your client for new events, basically by ignoring
unrecognized ones.

CommandlInterpreterBusy

The debugger’s command interpreter is executing a command line, or a
GUI operation is in progress. A command line can comprise multiple
target execution commands, so arbitrary Running and Stopped events may
occur before the command line has been finished. An example for using
this event is the disabling of menu entries in your tool.

You can send multiple CommandInterpreterBusy events without the
CommandInterpreterReady counterpart. New commands can be send to
the debugger after this event has been issued, but they will be queued
until the debugger is ready for new command input.

Interprocess Communication

CommandlInterpreterReady

The entire command line or GUI operation has either been executed
completely or aborted. You can send multiple CommandInterpreterReady
events without the CommandInterpreterBusy counterpart.

CommandCanceledByUser

The entire command line or GUI operation has can been canceled by the
user, usually via the Halt button.

In case of DDE, the CrossView Pro command queue will be emptied. The
command queue of all other IPCs, for example COM, will be preserved.
This has been designed for the multi-core debugger which relies on
commands —submitted by the multi-core debug system- always being
executed, even if the user hits the Halt button.

Note that every command can be canceled this way, even when asking a
variable’s value. Often no value will be returned at all, because Halt
aborted the evaluation.

HaltButtonPressed

Tells that the user has pressed the Halt button. This is necessary because
in CrossView Pro Halt means stop executing the current command line. If
an external client needs to know this too, the Halt button must be
reported explicitly. If not, only when the Halt button actually is hit during
a command line execution, cancellation is the case, and reported via an
event. If the command line just finished, nothing is being done, so needs
to be canceled, hence no cancellation is reported either.

An example would be a client interpreting breakpoint hits and issuing

continue commands to resume execution. If the halt button should also

stop the client from doing this, the HaltButtonPressed event must be used.
Running

Started executing the target.

RunningInBackground
Started target execution in background mode. This is usually a mode in
which a restricted set of operations can be performed, for example read
from a memory location.

Stopped cause

Stopped target execution. The cause is reported. Possible causes:

A-10 Appendix A

STEP A single step of any kind was finished. Be aware that when
using single—step, the debugger does not report any
breakpoints the program counter arrives at.

BREAKPOINT "name”
Breakpoint name was hit. This includes cycle breakpoints,
time elapsed or number of instructions types. Breakpoints
that the user has set are reported as well.
Nameless breakpoints are reported using as name #number#,
where number is the CrossView Pro administration number.
If no name or number is known, NAMELESS BREAKPOINT
will be used.

ASSERTION number
Assertion number was hit.

UNKNOWN The process has stopped. The cause is unknown or cannot
be described with one of the previous reasons.
One of the causes may be that the user presssed the Halt
button.

More causes may be added in the future.

Reset

Hardware reset command has been executed by the debugger.

ResetProgram

Software reset of the program command has been executed by the
debugger.

ViewedLineNrChanged number

The line being displayed changed to the specified one. If the source
window is closed, or the cursor is not in a file but somewhere in
assembly, this event will not be sent.

SourceFileChanged ’filename”

)

The debugger displays an other source file. An empty file name ”” will be

sent if no source is being displayed at all.

DidLoadSymbols "filename”

The symbols of an application have been loaded.

Interprocess Communication A-11

DidAddSymbols “filename”

An application’s symbols have been added to the ones already
present.

DidDownloadImage "filename”

The code and data image of an application has been downloaded into
target memory.

DestroyedAllSymbols “filename”

The symbol table of the application filename has been destroyed.

BreakpointsChanged

The list of breakpoints changed (for example when a breakpoint was
added).

AssertionsChanged

Either the list of assertions or assertion mode changed (for example when
an assertion was added). Note that the assertion numbering can be entirely
altered when an assertion is removed.

MenuEntrySelected id-string”

The menu entry id-string was selected by the user. Only menu entries
created with the AddDDEMenuEntry or AddCOMMenuEntry command are
reported.

CmdAnnotatedOutput<\n>
annolated-output

Provides the command window output in an annotated form.

The first line indicates the error status and says OK, ERROR or NOT
EXECUTED. The second line has the form SEQ:sequence _number, where
the sequence number is either 0 or the number specified with the
command. Although the sequence number is optional (it may be omitted
in some commands) this line is always present. The next lines are either
output or error messages. A label indicates the type (OUTPUT or ERROR)
and the number of lines that follow.

A-12

Appendix A

Example

ERROR

SEQ: 9284
OUTPUT:1

Hello World
ERROR:1

No such name: xy

The reason behind this event is the inevitable merging of all data streams
into one when TCP/IP server is provided next to for example the DDE
Server.

Quit
The debugger is about to terminate. This is not necessarily the last event.

nor is it guaranteed that a CommandInterpeterReady event was send
before. The quit event may not be send at all, due to technical restrictions.

1.5 COM EXAMPLES

1.5.1 PYTHON EXAMPLES

To use COM objects for Python, you must first install the Python
interpreter and the Win32COM extensions. You can use the Python
interpreter distributed with the TASKING EDE. Or you can download the

Python interpreter from http://www.python.org (May 2001) or use

win32all.exe from http://aspn.activestate.com/ASPN/

Downloads/ActivePython/Extensions/Win32all (May 2001).
Synchronous Calls

Replace all occurences of Xfw<targ> in the example below by the name
of your CrossView Pro executable to make the text applicable.

#
Example without events callback
#

import win32com.client
Python 1.4 requires "import ni” first.

Interprocess Communication A-13

class Xfw<targ>:
"Xfw<targ> via COM wrapper class”
def __init__(self, cmdline_options = "):
try:
self.COMobject = win32com.client.Dispatch(
"Xfw<targ>.CommandLine”)
self. COMobject.Init(cmdline_options)
except Exception,e:
print ’(Is the Xfw<targ> COM object installed,
using "xfw<targ>.exe —RegServer"?)’
raise e

def Execute(self, text, sequence_number = 0):
result = self. COMobject.Execute(text, sequence_number)

convert Unicode to Python string
retval = (result[0], str(result[1]))

return retval

def test_xfw<targ>_com_object():
xvw = Xfw<targ>(r"—sd c:\\testdir")

(success, result) = xvw.Execute("echo Hello from Python”)
print "received”, result

(success, result) = xvw.Execute("l d”)
print "success=",success

print result

(success, result) = xvw.Execute("++$hoi”)
print result

(success, result) = xvw.Execute("++$hoi")
print result

(success, result) = xvw.Execute("++$hoi")
print result

del xvw

” "

if_name__=="_main__"
test_xfw<targ>_com_object()

A-14

5

Events Callback

#
Example with Events callback
#

import win32com.client
Python 1.4 requires "import ni” first.
import win32ui

import re
seen_ready event =0

class xvw_events:
def OnCrossViewEvent(self, strUnicode):
global seen_ready_event
print "CrossViewEvent: ” + str(strUnicode)

if (re.match("CommandinterpreterReady.*", str(strUnicode))):

seen_ready_event=1

class Xfw<targ>:
def __init__(self, cmdline_options = ™):
self.COMobject = win32com.client.DispatchWithEvents(
"Xfw<targ>.CommandLine”, xvw_events)
self. COMobject.Init(cmdline_options)

def Execute(self, text, sequence_number = 0):
result = self. COMobject.Execute(text, sequence_number)

convert Unicode to Python string
retval = (result[0], str(result[1]))

return retval

” .

if_name__=="_main__"
xvw = Xfw<targ>("-sd testdirl”)

print xvw.Execute(""hello Python”;$hoi++’)

while seen_ready_event == 0:
win32ui.PumpWaitingMessages(0, —1)

print "terminating”

del xvw

Appendix A

Interprocess Communication A-15

Python Makepy Utility

In the examples above Python will load the type info dynamically from the
COM object. This is called 'dynamic’ binding or ’late’ binding in
PythonCOM jargon. However, PythonCOM also provides a mechanism to
generate a Python module which contains this type info and thus speeds
up the loading process. This is called early binding in the PythonCOM
package.

Python uses the makepy utility to support early-bound automation.
Makepy is a Python script that translates the COM type library to a Python
module which wraps the COM object’s interfaces. Once you use the
makepy utility, early binding for the objects is automatically supported.
There’s no need to do anything special to take advantage of the early
binding.

Advantages:

¢ Method invocation is faster.

* Constants defined in the type library are available via the COM
interface module.

e It allows much better support for advanced parameter types. Especially
parameters declared by COM as BYREF can only be used with makepy
wrapped objects.

Disadvantages:

e The makepy wrapper script depends on the COM object to be wrapped
by makepy. Generation can be automated.

e The module that is generated by makepy, can be large. The file
generated for Microsoft Excel for example, is about 800 Kb.

To speed up starting a Python script that loads the CrossView Pro COM
object, you can generate a Python module with makepy.py :

cd ...\python20\win32com\client
python makepy.py ...\xfw<targ>.exe

This script will place a module in the win32com\gen_py subdirectory.

For more information on COM programming with Python refer to Python
Programming on Win32 - Help for Windows Programmers (Mark
Hammond & Andy Robinson; 1st Edition January 2000; 1-56592-621-8).

A-16 Appendix A

=

1.5.2 VISUAL BASIC EXAMPLES

Replace all occurences of Xfw<targ> in the example below by the name
of your CrossView Pro executable to make the text applicable.

Synchronous Calls

This example demonstrates plain commands being executed in CrossView
Pro, without receiving any events from CrossView Pro.

Dim Xvw As Object
Dim Result As String

" here we invoke the PowerPC \xvw{}

" replace xfw<targ> by your executable name

Set Xvw = CreateObject("Xfw<targ>.CommandLine”)
Call Xvw.init(")

Call Xvw.Execute("l", Result, 0)
MsgBox Result

End

Events Callback

Visual Basic provides a special feature, WithEvents, to connect to the
connection point of a COM interface. It is also available in VBA 5.0. You
must use WithEvents in a variable declaration. There is a catch, however:
you can only use it in a class module (including form modules) and it
must appear in the declaration section. You cannot declare a variable
using WithEvents in the body of a procedure. For this example, first
select Xfw<targ> type library in the Project References dialog:

1. In Microsoft Word or Microsoft Excel, start the Visual Basic editor and go
to Tools|References or:

In Visual Basic, go to Project|References

@ Note that VBA differs from VB. See the Word example for VBA.

2. Search and check the CrossView COM Interface Type Library entry.

Interprocess Communication

Option Explicit

Public WithEvents Xvw As Xfw<targ>

Private Sub Form_Load()
Dim Result As String

Set Xvw = CreateObject("Xfw<targ>.CommandLine”)
Call Xvw.Init(")

Call Xvw.Execute("echo Hello”, Result, 0)
End
End Sub

Private Sub Xvw_CrossViewEvent(ByVal EventText As String)
MsgBox "Called back with: ” & EventText
End Sub

1.5.3 WORD EXAMPLES

W

Here is an example of connecting to CrossView Pro PowerPC. It starts
xfw<targ> and shows all messages that CrossView Pro sends to Word.
Visual Basic for Applications provides a special feature, WithEvents, to
connect to the connection point of a COM interface. You must use
WithEvents in a variable declaration. There is a catch, however: You can
only use it in a class module (including form modules) and it must appear
in the declaration section. You cannot declare a variable using
WithEvents in the body of a procedure.

Replace all occurences of Xfw<targ> in the example below by the name
of your CrossView Pro executable to make the text applicable. To add the
example to Word:

Start the Visual Basic editor and go to Tools|References

Search and check the CrossView COM Interface Type Library entry
Insert a class module, via the menu bar: Insert|Class Module
Change its name to clsXfw<targ> in the properties pane

Paste the following text:

A-17

A-18

Appendix A

' Class module clsXfw<targ>

'Option Explicit

" members
Public WithEvents oXfw<targ> As Xfw<targ>

Private Sub Class_|Initialize()
End Sub

Private Sub oXfw<targ>_CrossViewEvent(ByVal strEvent
As String)

MsgBox strEvent
End Sub

6. Insert a module, via the menu bar: Insert|Module

7. Paste the following text:

" Module testXfw<targ>
Option Explicit
Dim oXfw<targ>1 As New clsXfw<targ>

" run automatically when your Addin loads
" and your Addin will automatically load when Word
loads.
Public Sub AutoExec()
Set oXfw<targ>1.oXfw<targ> = New Xfwppc
call oXfw<targ>1.oXfw<targ>.Init("")
End Sub

Interprocess Communication A-19

1.5.4 EXCERPT OF THE MIDL DEFINITION

The 'ICommandLine’ interface is dual, the 'ICommandLineEvents’
connection point interface is not. Replace all occurences of Xfw<targ> in
the example below by the name of your CrossView Pro executable to
make the text applicable.

interface ICommandLine

{
HRESULT Init([in] BSTR CommandLine);

HRESULT Execute([in] BSTR Command,
[in] long SequenceNumber,
[out] BSTR *Result,
[out, retval] VARIANT_BOOL *OKk);

HRESULT Halt(void);

HRESULT ExecuteNoWait([in] BSTR Command,
[in] long SequenceNumber,
[out, retval] VARIANT_BOOL *OKk);

h
library CrossViewLibXfw<targ>
{
dispinterface _ICommandLineEvents
{
methods:void CrossViewEvent([in] BSTR);
h
coclass Xfw<targ>
{
[default] interface ICommandLine;
[default, source] dispinterface _ICommandLineEvents;
h

k

A-20 Appendix A

=

2 DDE SERVER INTERFACE

2.1 INTRODUCTION

CrossView Pro offers an Interprocess Communications (IPC) option using
the Microsoft Windows Dynamic Data Exchange (DDE) interface for
external control of CrossView Pro. The DDE interface offers direct access
to the CrossView Pro command interpreter. Via the DDE interface you can
execute every CrossView Pro command that you can access via the regular
CrossView Pro command window, and retrieve the output produced by
the executed command.

2.2 DDE ITEMS AND TOPICS

DDE function calls always return, whether they succeed or fail. They do
not report application command errors. Retrieve and interpret the
cmdoutput item or cmdannotatedoutput item to check for errors.

Help
Topic
System

Iltem
Help

Operations
Request, Advise

Description

Returns a brief overview of the topics and items in ASCII text format.

Interprocess Communication A-21

cmdoutput

Topic

Command

Item

cmdoutput

Operations
Request, Advise

Description

Retrieves all command window output of the last executed command via
the Command topic. This item empties itself after it has been requested.

A-22 Appendix A

cmdanotatedoutput

Topic

Command

Item

cmdannotated output

Operations
Request, Advise

Description

The first line indicates the error status and says OK, ERROR or

NOT _EXECUTED. The second line has the form SEQ:sequence number,
where the sequence number is either 0 or the number specified with the
execext command. Although the sequence number is optional (it may be
omitted in some commands) this line is always present. The next lines are
either output or error messages. A label indicates the type (OUTPUT or
ERROR) and the number of lines that follow.

Example

ERROR

SEQ: 9284
OUTPUT:1

Hello World
ERROR:1

No such name: xy

Interprocess Communication A-23

execext

Topic

Command

Item

execext:options:string

Operations

Execute

Description

Passes the specified string without interpreting it to CrossView Pro’s
command interpreter (see also Command\cmdannotatedoutput). The
execext: prefix is part of the entire command string: it makes a distinction
between the various commands. For example exec, execext or halt,
received via the Command topic.

Options

wait=yesno yesno is 1 or 0. If you specify wait=1 is, the execext
command blocks the DDE transaction until CrossView Pro
has finished executing the command. Issue the Halt
command in this case via a second conversation.
Be aware of the time limitation imposed by the DDE
interface. It can wait for a period of 25 days. Use exec
combined with either waiting for an Advise on the
cmdoutput item, or with interpreting the event item to
handle very long lasting commands.
When you do not specify a value, 1 is assumd by default.

seq=number A unique number to identify a command’s specific result in
the stream of events output via the event item. See the event
item and cmdannotatedoutput item for more details.

silent=yesno yesno is 1 or 0. If 1, the command window output will be
suppressed. See section 2.5.5 Using CrossView Pro as Pure
Server for the gus command.
When you do not specify a value, 1 is assumd by default.

Example
execext:seq=424564,wait:echo test

A-24

Appendix A

exec

Topic

Command

Item

exec

Operations

Execute

Description

Passes the specified string without interpreting it to CrossView Pro’s
command interpreter (see also Command\cmdoutput).

A major difference with regular MS-Windows applications is the immediate
acknowledge of a command, before it has been completed. This is
because the sender does not have to wait for the answer and can peform
other tasks meanwhile. For example, you are able to issue a halt
command to stop the debugger.

To simulate wait-till-completion command execution, wait until the
cmdoutput item is assigned to the command’s output via an Advisory link
event, or interpret the event item.

The exec: prefix is part of the entire command string: it makes a
distinction between the various commands. For example, exec, execext
or halt, received via the Command topic.

Interprocess Communication A-25

halt

Topic

Command

Item
halt

Operations

Execute

Description

Forces CrossView Pro to stop target execution. You can issue the
command via a second conversation.

A-26 Appendix A

event

Topic

Command

Item

event

Operations
Advise

Description

Reports event occurrences to the client, asynchronously. An event is
reported by a string. To ensure capturing all events, use an Advise link.
CrossView Pro only keeps the last event.

Request is not meant to be used; it can only be used after establishing an
Advise link.

Interprocess Communication

result

Topic

Command

Item

result:name

Operations

Execute

Description

The name that you specify provides a serve as DDE requestable item to
obtain a message which describes the reason why a DDE command failed
to execute. It does not return the CrossView Pro error message. It is
always deleted after it has been requested.

The result: prefix is part of the entire command string: it makes a
distinction between the various commands. For example, exec, execext
or halt, received via the Command topic.

2.3 DDE EVENTS

2.3.1 PACKET FORMAT

Each event is wrapped in a record and one DDE message contains one or
more of these records. This means that multiple events can be received
simultaneously in one DDE transaction. This is done because DDE can
lose ("combines”) events when XTYPF ACKREQ mode is selected, and
because this channel will be redirected to TCP/IP in the future for portable
IPC support in CrossView Pro.

To handle events with more than one line, a header (not a newline) is
used to distinguish between the individual events. The header format is:

EVENT: number-of-characters<newline>

So you must always split events that arrive in one DDE message. An
example of such a multi-event DDE message is:

A-27

A-28 Appendix A

EVENT: 27
SourceFileChanged "demo.c”
EVENT: 23
ViewedLineNrChanged 93
EVENT: 27

Stopped BREAKPOINT "input”
EVENT: 24
CommandInterpreterReady
EVENT: 79
CmdAnnotatedOutput

OK\r

OUTPUT:1\r

Error breakpoint name ’input’ is not uniquel\r

@]3 For an overview of all available events, see section 1.4 Events

2.4 CROSSVIEW PRO DDE SPECIFIC OPTIONS AND
COMMANDS

2.4.1 COMMAND LINE OPTIONS

—ddeservername=name

This command line option specifies a unique DDE server name. This way
it is easier to distinguish between multiple instances of the same debugger.

If you do not use this option, the server name is the name of the
CrossView executable. To distinguish between multiple DDE servers with
the same name, you must connect to all DDE servers using
DdeConnectLists() and obtain distinguishing information.

2.4.2 COMMANDS

With regard to DDE support, the following commands are available
enhance integration support.

AddDDEMenuEntry
Syntax:

AddDDEMenuEntry “label”, id-string” |, AlwaysEnabled)

Interprocess Communication A-29

Creates a menu entry with given label and id-string. The label also
specifies the path from the main menu bar, for example:

AddDDEMenuEntry "Options|CaseTool|Configure...”,
"config—menu—entry”

An entry cannot be removed or replaced once it has been created. Neither
is there support for enabling or disabling entries via this interface, this is
somewhat problematic, since we are communicating across an
asynchronous interface, so the disable may not be executed immediately.

AlwaysEnabled is either 1 (true) or 0 (false, default). CrossView Pro by
default disables the menu entry when the command window disallows
entering a command, for example when running an application.

To define the shortcut character of a menu entry, place a & before the

character. The shortcut character will be underlined. To add a seperator
line in the menu, start the next menu entry with a '+’. The seperator line
will precede this menu entry. For example:

"&Options|&CaseTool|+&Reset”

2.5 EXAMPLES

2.5.1 EVALUATING AN EXPRESSION

To get the value of an expression, pass it to the command interpreter. The
syntax of the returned value is:

identifier = value

The value can even be a complete structure or union. For example,
execute via the Command topic:

execext:main
The returned string could look like:

main = 0x0

A-30 Appendix A

=

2.5.2 READING TARGET MEMORY

You can retrive target memory either via requesting a variable’s value, or
with the dump command. The dump command can dump both byte
(MAU) sized hex values or C type values, for example long or double. The
resulting output must be interpreted to get the values.

The basic syntax of the returned values for plain MAU size hex dumps is:
address: value value ASCII-dump

The basic syntax of the returned values for formatted dumps is:
address = value value

For example, execute via the Command topic a hex dump command:
execext:dump main,#16

The returned text could be:
0x2000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 QO

For example, execute via the Command topic a formatted dump
command, requesting 16bit integers:

execext:dump datal,#16,d2
The returned text could be:

0x2000=00000000
0x2010=00000000

The number of values per line differs. This depends on both the size and
type of the values, as well as the architecture of the processor that is
connected to the debugger.

Interprocess Communication A-31

2.5.3 WRITING INTO TARGET MEMORY

To write to target memory, use one of the following three methods.
1. Assign a value to a variable.
2. Use one of the the mF or mf commands.

For example, the following stores the byte (MAU) sized values 12 3 4 5 in
memory starting at memory location 0x2000.

0x2000 mF 1, 2, 3,4, 5
3. Write into memory using a type cast.
For example:

(long)0x2000 = 0x12345

A-32 Appendix A

=

2.5.4 REQUESTING CURRENT FILE AND LINE NUMBER

To determine the location of the source window cursor position, request
the following special variables:

$FILE The file in which the source window cursor position is. If the
position is outside any file, the error message 'No current file’
is returned.

$PROCEDURE
The name of the function in which the source window cursor
position is. If the position is outside any function, the error
message 'No current function’ is returned.

$LINE The line number of the cursor in the source window. If the
position is outside any file, the error message 'No current
line’ is returned.

You can also use the command “1 s” to get all special variables, including
the ones above. If a variable is not set, it is not included in the list, or set
with the error message as described above.

To make sure the cursor is at the current execution position, precede the L
command before requesting the variable. For example, issue:

L; $FILE; $PROCEDURE; $LINE
Error messages appear when a variable fails.

To obtain the current execution positions, you can also interpret the result
of the L command directly.

2.5.5 USING CROSSVIEW PRO AS PURE SERVER

To have CrossView Pro act as server only, updating windows can be
turned off with the command gus on. This inhibits all windows from
being updated, except for the command window. Note that also the GUI
does not refresh anymore.

Also the execext:silent=1:... command via DDE inhibits the command
window output.

REGISTER
MANAGER

al TASKING [

XIAN3ddV

Register Manager

1 INTRODUCTION

CrossView Pro uses a so-called “register definition file” that specifies the
register name to register number mapping for CrossView Pro. In case a
register is a memory mapped register, the register number specifies the
register’'s memory address.

A number of register definition files are included in the CrossView Pro
release. Register definition files use the following naming convention:
reg cpu.dat .

If you use another derivative you can use the register manager to create
new register definition files.

2 INVOCATION

CrossView Pro has a user definable set of special function registers (SFRs).
CrossView Pro reads the registers from a binary file (reg cpu.dat)
specified by the cpu_type field in xvw.ini or a target configuration file

(*.cfg):
cpu_type: 68000

You can overrule the CPU type (and thus the reg cpu.dat file) to be used
by CrossView Pro with the —=C option. The tool for generating this binary
file from a text file is the Register Manager rm68.

The invocation syntax is:

rm68 [register—file |,register—file]... | [-o outfile]
rm68 -?
rm68 -V

@ When you use a UNIX shell (Bourne shell, C-shell), arguments containing
special characters (such as ()’ and ’?") must be enclosed with” ” or
escaped. The -? option in the C-shell becomes: ” -?" or —-\? .

The optional register—file (or several files) contains the user’s definition of
SFRs (Special Function Registers). The syntax of this text file is described
in the next section. The rm68 tool always generates a fixed set of registers
in the binary output file. If no register—file is supplied, only this set is
generated. A list of the fixed set appears in the section Fixed Register Set.

Appendix B

The -0 outfile option lets you specify the name of the generated binary
register file. If you omit this option, the default outfile name is reg*.dat

The -? option causes rm68 to print a tiny manual, and the =V option
prints the version header only.

3 SYNTAX OF A REGISTER FILE

The syntax of the register file is quite simple. Comment starts with a
semi-colon (;) and ends at the end of the line.

Register file syntax:
name size { [basetaddress | REGISTER:id} attribute |; comment|

Field Values:
name A unique register name. If a name is multiply defined an
error is issued. If a fixed name is redefined, a warning is
issued and the redefinition is ignored.
size The SFR size in bits (8, 16 and 32).
base+ You can use this optional prefix for SFR addresses that are

relative to a special base register address. Supported base
addresses are:

IPSBAR BASE Base address specified by Internal
Peripheral System Base Address
Register (MCF5280, MCF5282)

MBAR_BASE Base address specified by Module Base
Address Register (ColdFire, MC68330,
MC68340, MCG68360)

MBAR2_BASE Base address specified by Module Base
Address Register (MCF5249)
SIMCR_BASE Control register block address indicated

by MM bit of SIM Configuration
Register (MC68331, MC68332,
MC68F375, MC68376)

BAR BASE Base address specified by Base Address
Register (MC68302)

Register Manager

Setting the IPSBAR BASE and SIMCR BASE is explained in
the following section. See your CPU Manual for more
information on how to initialize the other base registers.

address An absolute address or an offset relative to a base register.
The last character identifies the format: h(ex), b(inary),
o(ctal), default is decimal. Alternatively you can use the $
prefix for hexadecimal numbers.
Hex format examples: 400h, $27

id A unique number 23 or higher. You can use the REGISTER:id
construction to add an internal register. Register numbers
0-22 are in use by the fixed register set.

attribute The following attributes are available:

R read only
\\4 write only
RW read and write
- not accessible

Examples:

CCR 8 REGISTER:23 RW ; Condition Code Register
IMR 16 MBAR_BASE+$0036 RW ; Interrupt Mask Register
MCR 16 $fffa00 RW ; Module Control Register

4 SFR BASE ADDRESS REGISTER SPECIAL VARIABLES

Some 68K/ColdFire targets use base registers to determine where SFR
addresses are mapped in memory. In case of the base registers IPSBAR
(MCF5280 and MCF5282) and SIMCR (MC68331, MC68332, MCG68330,
MC68F375 and MC68376), CrossView Pro cannot determine the contents of
the base register because its base address depends on the contents of the
base register itself. To know the contents of these base registers, you can
pass these to CrossView Pro through special variables: $IPSBAR_BASE and
$SIMCR_BASE.

B-6

Appendix B

For example, if the MM bit in the SIMCR base address register is set, then
the SFR registers are located at memory locations OxFFFO00-0xFFFFFF. If
the MM bit is not set (zero), the SFR registers are located at

0x7FF000-0x7FFFFF. The corresponding value for $SIMCR_BASE will be:

If SIMCR[MM] = 0, $SIMCR_BASE = 0x7FF000
If SIMCRMM] = 1, $SIMCR_BASE = 0xFFF000

At startup, CrossView Pro use the reset values of the corresponding base
address registers to initialize the special variables:

$IPSBAR_BASE = 0x40000000
$SIMCR_BASE = 0xFFF000

You can specify an alternative value, via the command line:

xfw68 —IPSBAR_BASE= value
xfw68 —SIMCR_BASE= value

It is your responsibility to keep the contents of these special variables
up-to-date. This means that when the IPSBAR register or SIMCR is
changed, you have to change the value of the corresponding special
variable.

For example, to change the IPSBAR register from the CrossView Pro
command window, use the following commands (in that order):

$IPSBAR = 0x80000001
$IPSBAR_BASE = 0x80000000

FIXED REGISTER SET

rm68 defines the following registers, and you cannot overwrite them.

DO...D7, AO...A7, PC, SR, USP, FP, SP, CCNT, CBRK

Table B-1: Fixed Register Set

Register Manager

DO0...D7, A0...A7, PC, SR, USP
The standard 68K registers. Target-specific core registers (i.e.
ISP, DTTO) are specified in supplementary reg*.def files
provided with the debugger package. See the section
Derivatives for details.

FP, SP Pseudo registers defining the current frame pointer and stack
pointer, respectively.

CCNT, CBRK
Pseudo registers used by the simulator for profiling.

6 DERIVATIVES

The CrossView Pro package for the 68K/ColdFire contains a number of
register register files (reg*.def) and the corresponding binary files
(reg*.dat) in the etc directory. You can create your own version of an
existing file or build a new one for a derivative which is not (yet)
supported.

For instance, to create a binary version for the 68020, type:
rm68 reg68020.def —o reg68020.dat
The following rules are used to find the reg*.dat files:
1. Look if the files are present in the current directory

2. Use the etc subdirectory of your product tree.

Appendix B

d3OVNVIN 431S1934

SOUND SUPPORT
(MS-Windows)

al TASKING [

XIAN3ddV

Sound Support (MS—Windows) Cc-3

You can have sound effects being played when a predefined event in
CrossView Pro occurs. You can configure the sound in the Sound settings
of the Control Panel of MS-Windows. Similar to assigning a sound to a
system event, you can assign a sound to a CrossView Pro event.

Currently the following events are supported:

Breakpoint hit

File has been downloaded
CrossView Pro has started execution
CrossView Pro is exiting
Run command/button

Step command/button
StepOver command/button
Halt command/button
Symbols Loaded

Fatal (system) error occurred
Non-fatal error

How to add sound support

1. Firstly all events must be specified to MS-Windows. You can do this by
adding the following lines to the Registry under:
My Compute\HKEY_CURRENT_USER\AppEvents\EventLabels\

Use regedit to start the registry editor.

snd_xvw_bphit "XVW Breakpoint Hit”
snd_xvw_download "XVW Program Download”

snd_xvw_start "XVW Start”
snd_xvw_exit "XVW Exit”
snd_xvw_run "XVW Run”
snd_xvw_step "XVW Step Into”
snd_xvw_stepover "XVW Step Over”
snd_xvw_stop "XVW Stop”

snd_xvw_syms_load "XVW Load Symbols”
snd_xvw_syserror "XVW syserror”
snd_xvw_uerror "XVW uerror”

2. You must also add the same list of keys (without values) to
My Compute\HKEY_CURRENT_USER\AppEvents\Schemes\Apps\.Default\

3. Now go and start the Sound settings in your Control Panel. Here you can
assign a sound to each event. You can also assign None to an event, which
prevents CrossView Pro from playing a sound if that specific event occurs.

c-4 Appendix C

=

4. For the sound effects to become operational, you also have to edit the
xvw.ini file. You can do this using any editor, e.g. the Windows
notepad command. Add the following line at an arbitrary line to your
xvw.ini file:

sound_effects: TRUE
It is also possible to disable the sound effects by changing this line into:
sound_effects: FALSE

Now all sound effects are disabled.

SIMULATOR

al TASKING [

NNAN3IAAV

Simulator Sim-3

1 INTRODUCTION

This addendum contains information specific to the simulator version of
CrossView Pro for the 68K/ColdFire microprocessor family.

In general, the simulator for the 68K/ColdFire family attempts to duplicate
the behavior of the common architecture of the microprocessor family.
The simulator is a generic 68K/ColdFire family instruction set simulator,
and this package does not support processor-specific features. However,
there are several functional areas which deserve a brief discussion. The
following sections describe simulator-specific features.

2 SUPPORTED FEATURES

Except for the restrictions mentioned in section 3 in this addendum, the
simulator version of the debugger cleanly supports all the standard
features of CrossView Pro, including single stepping, breakpoints, trace
support, C expression evaluation and record/playback capability. With
respect to setting breakpoints the simulator version of the debugger is
capable of supporting all breakpoint types, including separate data-read
and data—write breakpoints. The simulator also supports code and data
coverage and profiling.

Because this is a simulator version, you do not have to setup
communication at startup, as with an emulator.

The transparency mode is available to enter simulator commands.

2.1 MAPPING MEMORY

Simulator memory is defined in terms of address blocks. Each address
block has a type (RAM, ROM, or IO_PORT), an associated address range,
and a slot number. In the default simulator configuration, slot number 0 is
type RAM and has and address range of 0 to Ox1FFFF (128K).

If your program won't fit in the first 128K of memory (covered by the
default address block in slot 0), then you need to define more simulation
memory before downloading your program. If you attempt to download
into an address for which there is no simulation memory, an error message
appears.

Sim—4 Execution Environment

-

2.2 SIMULATING 1/O VIA 1/0 PORT ADDRESS BLOCKS
AND DEVICES

Simulation of a device is performed using the generic 'TO_PORT’ address
block and device.

IO_PORT is a generic set of “registers” representing a device whose
behaviour is user-defined (a UART for example). A single device also
called the I/O PORT, is associated with this address block type. The device
contains a window which displays the current contents of the I/O Port
registers, and which also allows the behavior of the simulated device to
be controlled, either interactively or through the use of an I/O Port control
script.

When an IO_PORT address block is created via the S_ABA simulator
command, an I/O Port Device Window for the associated I/O Port device
will appear. This window displays the current value of a portion of the
register set, as well as two buttons labeled I/O Control and Setup.

For example, enter the following command in the Emulator Command
Window:

s_aba 14 io_port ffa000

'#;170 Port at DOFFADDD =]

Current % aluss

0OFFAQOO Q0 00FFA00Z2 00 il
0OFFAQOL Q0 00FFA003 00 LI
[0 Control Setup |

Figure Sim—-1: 1/O Port device window

The Setup button brings up the I/O Port Setup dialog box, allowing you
to specify such attributes as the radix and size of displayed values,
enabling and disabling of event logging, the name of the log file, and the
control mode for this address block/device (Interactive or Script). See the
1/O Port Logging section below for more information.

Simulator Sim-5

1/0 Port Setup Ed |

[0 Caontral Mode
] = Script

Dizplay Size
v BEyte = word ™ Lang

Dizplay B adi=
' Hex = Decimal

Logging
[Logging Enabled
Lagfile |

Ok, I Cancel |

Figure Sim-2: 1/O Port Setup dialog

The behavior of the device may be controlled either interactively or
through the use of a control script. The I/O Control button in the device
display window brings up a separate dialog through which the behavior of
the device is controlled. The dialog that is displayed after you click this
button depends on the I/O Control Mode field in the I/O Port Setup
dialog. The choices are Interactive and Script.

If the control mode for the device is Script mode, selecting the I/O
Control button will bring up the I/O Port Script Control dialog. This
dialog allows you to load and execute a script file which controls the
device’s behavior. (See /O Port Script Control for more details).

If the control mode for the device is Interactive mode, selecting the I/O
Control button will bring up the I/O Port Interactive Control dialog. This
dialog allows you to input a value into a device register and generate
interrupts at any time, even during instruction simulation. (See /O Port
Interactive Control for more details).

Sim-6 Execution Environment

-

I/0 Port Script Control
If the I/O Control Mode field in the I/O Port Setup dialog is set to be

Script, the I/O Port Script Control dialog will be displayed.
‘ez 10 Port Script Control M=l E3

Statuz: Script File Mat Loaded
Seript file |

=

~|

Load | Show Line Info |

Figure Sim-3: 1/O Port Script Control dialog

The script-based control window allows you to load and execute a script
file which controls the device’s behavior. Using the I/O Port Control Script
language, the simulated device can be programmed to automatically
respond to CPU accesses to certain registers, change the values of
registers, delay for a specified amount of time, and generate interrupts.

See 1/O Port Control Script Language for additional information on how to
generate a script. The script can be loaded, suspended, resumed, stopped,
and restarted at any time, even while instruction simulation is in progress.

To load a script, click the Load button. Once a script is loaded, the Start
button will start the execution of the script (simulation must be in progress
for the script to run). Once a script is started, the Suspend button will
suspend script execution until you click the Resume button. The Stop
button will stop a script that has been started. You can restart the script
with the Restart button. To unload a script, click the Unload button.

Simulator Sim-7

The script control window also provides a show line information’ mode
under which the current values of script variables and outstanding time
delays are displayed. To enable the 'show line information’ mode, click the
Show Line Info button. To disable this mode, click the No Line Info
button.

I/0 Port Control Script Language
The following is a list of statements supported in the I/O Port Control
Script language. See Scripting Examples for some scripting examples.

@ RVAL means an existing variable or a specified static value. V1 | V2 | ...
means that one of the specified values MAY optionally appear. <V1 | V2 |
..> means that one of the specified values MUST appear.

IOVAR <Var name> <BYTE | WORD | LONG> <RVAL offset>

Declare an I/O Variable, which gives the name, size, and offset of one
of the registers. Offset must be less than the size of the address block
(e.g. use O for the first address in the block).

INTR <RVAL Pri>

Send an interrupt using the autovector for the specified priority.
INTR <RVAL Pri> <RVAL Vec>

Send an interrupt using the specified priority and vector.
DELAY <Rval count> USEC | MSEC | SEC

Delay for the specified number of microseconds, milliseconds, or
seconds. If no unit is specified, microseconds are used. US,
MICROSECONDS, and MICROSECS are aliases for USEC; MS,
MILLISECONDS, and MILLISECS are aliases for MSEC: SECONDS is an
alias for SEC.

WAIT FOR <READ | WRITE | ACCESS> I/O Var Name

Wait for a read, write, or any access to a register by the (simulated)
CPU during instruction simulation. If no register is specified, a
read/write/access to any register in the address block will satisfy the
wait.

Sim-8

Execution Environment

<Variable> = <RVAL>

Set the value of the script local variable or I/O variable to the specified
RVAL. If the variable name is not recognized, a local variable with this
name is created; this is the mechanism by which local variables are
created.

<Variable> = <RVAL> <BINARY OP> <RVAL>

Assign the result of the arithmetic operation to the script local variable
or 1/0 variable, creating a new local variable if necessary.
BINARY_OPs supported are +, —, * /, << (left shift), >> (right shift),
% (modulo), & (binary AND), | (binary OR), and "~ (binary XOR).
Accepted aliases are MOD for %, AND for &, OR for |, and XOR for *.

IF <RVAL> <COND_OP> <RVAL> THEN
ELSE IF <RVAL> <COND_OP> <RVAL> THEN
ELSE

END IF

Execute the first block of statements whose IF or ELSE IF condition is
satisfied. If no condition is satisfied, execute the ELSE block (if
present). Condition operators supported are =, =, <, <=, > and >=.
Accepted aliases are == for =, and <> for !=.

LOOP DO ... END LOOP

Loop indefinitely, executing the block of statements. DONE is an alias
for END.

LOOP <RVAIL> TIMES DO END LOOP
Loop the specified number of times, executing the block of statements.
WHILE <RVAL> <COND_OP> <RVAL> DO END WHILE

Loop executing the block of statements while the specified condition is
true.

CONTINUE

Go to the start of the nearest enclosing loop/while

Simulator Sim-9

BREAK

Go to the first statement after the end of the nearest enclosing
loop/while.

EXIT
Terminate execution of the script.
RAND

Special ’variable’ which yields a (pseudo-)random number whenever
used as an RVAL. Cannot be assigned.

// or ; (semi-colon)

Comment strings. These and the following characters on a line are
ignored.

General script notes: Identifiers/tokens must be separated by white
space (spaces or tabs). Zero or one statement per line. In order to allow
the language to resemble C a little more, the following are true:
Parentheses are allowed but are simply matched up and ignored. Open
bracket is an alias for the ignored DO and THEN reserved words. Close
bracket is an alias for END. Close bracket followed by ELSE is an alias for
ELSE. Reserved words (e.g. INTR, DELAY) are case insensitive. Variable
names are case sensitive, and only the first 32 characters are significant. All
script local variables, including RAND, are 32-bit unsigned integers.
Atomic execution of control scripts is guaranteed. This means that while
the simulator is executing script statements, no instructions are simulated.
Instruction simulation resumes only when all active scripts are executing
WAIT or DELAY statements. When an instruction is executed which
satisfies an outstanding WAIT or DELAY, the simulator executes script
statements without simulation of instructions, until the script again WAITs
or DELAYs.

Sim-10

-

Scripting Examples

Some script examples follow:

; Example 1
; Loop 10 times, inputting random values and
; generating interrupts.
; Register format:
; Offset Size Register Name Description
; 0 LONG InputReg Input Value
IOVAR InputReg LONG 0 ; 32-bit register at offset 0
LOOP 10
InputReg = RAND ;Write a random value to the register

INTR 6 ;Generate an interrupt using priority
;6 autovector
WAIT FOR READ ;Wait for the CPU to fetch the
;input value
END LOOP
/I Example 2

/I Generate interrupts until the CPU writes a STOP
/I command to the command register.
/I Register format:
/I Offset Size Register Name Description
/I 0 BYTE CmdReg Command Register
/I Register declarations
IOVAR CmdReg BYTE 0;
/I 'Constant Variables’
STOP_CMD = 1,
DELAY_NUSEC = 800;
INTR_PRI = 6;
INTR_VEC = 100;
/I Loop until the STOP command is received, sending
/I interrupts and waiting.
while (CmdReg !'= STOP_CMD)
INTR INTR_PRI INTR_VEC;
DELAY DELAY_NUSEC;

Execution Environment

Simulator Sim-11

/I Example 3

/I Accept input X from the CPU, generate some f(X), and
/I interrupt the CPU tosignal completion of the

/I function.

/I Register format:

/I Offset Size Register Name Description

/' 0 LONG InputValueReg Input value X

/I provided by CPU

/I 4 LONG CmdReg CPU—>device command
/I — if non—zero,
I find f(X).

/I 8 LONG OutputValueReg Output value f(X)
/I returned to CPU
/I Register declarations
IOVAR InputValueReg LONG 0
IOVAR CmdReg LONG 4
IOVAR OutputValueReg LONG 8
loop
/I Wait for the command register to become non—zero.
while (CmdReg == 0)
WAIT FOR WRITE CmdReg;

/I Retrieve input X, find f(X), send output and
/I generate interrupt.

X = InputValueReg;

fX =X + 100; Il Trivial f(X)
OutputValueReg = fX;

INTR 4

Sim-12

-

Execution Environment

1/0 Port Interactive Control

If the I/O Control Mode field in the I/O Port Setup dialog is set to be
Interactive, the I/O Port Interactive Control dialog will be displayed.

'#;1/0 Port Interactive Control M= E3

[nput
Address IEIEIFF.-’-‘-.EIEIEI
Data IEI
Interrupt
Frioity I'I
Wectar % |se Autovector
" Alternate WYeckaor |E4
Send Input | nterrupt I

Figure Sim—4: 1/O Port Interactive Control dialog

The interactive control window allows you to input a value into a device
register and generate interrupts at any time, even during instruction
simulation. To input a value into a device register, enter the desired
register address into the Address field and the desired data value to be
sent to this register into the Data field. Once this has been done, click the
Send Input button to send the data to the specified register.

Interrupts can also be generated from this window. You can select the
priority of the interrupt and specify if the interrupt uses the autovector for
that priority interrupt or uses an alternate vector. If you want to use an
alternate vector, you can define the vector in the space provided. Once
you have defined the interrupt parameters, click the Interrupt button
when you wish to send the interrupt.

Simulator Sim-13

I/0 Port Logging

The ”1/O Port Setup” window has fields that allow you to enable logging
and specify a log file where this information will be stored. I/O Port
Logging allows you to see the information sent from or to an I/O device.
An example listing of the information stored in a typical I/O device log file
is shown below:

DEV 02 < 00FFAO00
DEV 02 < 00FFAO00
DEV 000003E8 < 00FFA004
CPU 00 > 0OOFFA000
CPU 06 > 00FFA001
CPU 01 > 0O0OFFA002
CPU 00 > 0O0FFA003
CPU 000003ES8 > 00FFA004
CPU 02 > 00FFA000
DEV 01 < O00FFA002
DEV 06 < 00FFA001
DEV 02 < 00OFFA000
DEV 02 < 00OFFA000
DEV 000003E8 < 00FFA004

What does this information show you? Notice that each line either starts
with "DEV” or "CPU”. If a line starts with "DEV”, it means that the I/O
script for the device manipulated the data in the manner shown. If a line
starts with "CPU”, it means that your code (and thus, the CPU)
manipulated the data in the manner shown. An example of each type of
access is shown as follows:

DEV 02 < 00FFA000 ;Script read byte 02 from device
;reg @ addr 0OFFA000

DEV 06 > 00FFA001 ;Script wrote byte 06 to device
;reg @ addr 0OFFA001

DEV 000003E8 < 00FFA004 ;Script read long word 000003E8
;from device reg @ addr OOFFA004

CPU 00 > 00FFA000 ;Code wrote byte 00 to device
;reg @ addr 0OFFA000

CPU 06 < 00FFA001 ;Code read byte 06 from device
;reg @ addr 0OFFA001

CPU 000003E8 > 00FFA004 ;Code wrote long word 000003ES8 to
;device reg @ addr 0OFFA004

@ I/0 logging can also be controlled via the S_ABDEVSET simulator
command. See Setting 1/O Device Attributes for more information.

Sim-14

=

Execution Environment

2.3 SETTING 1/O DEVICE ATTRIBUTES

Each I/O device has an associated list of attributes, which may be viewed
and set. Use the simulator commands in the following table to view or set
I/O device attributes:

Command Purpose

S_ABDEVL Lists all devices currently configured
S_ABDEVLV Verbose listing of device attributes
S _ABDEVSET Set device attributes

The following is an example of a command with sample output from the
simulator.

To list the names of all devices currently configured:
s_abdevl

Slot Dev Device Name
14 0 1/O Port at 0OFFA000

To list the attributes for a particular device:
s_abdevl 14 0

Device_Name=l/O Port at 00FFA000’

Display_Window_Enabled=TRUE

Display_Window_Position="(83,30,188,330)’

Display_Width=BYTE

Display_Radix=HEX

Control_Mode=INTERACTIVE

Control_Window_Enabled=FALSE

Interactive_Control_Window_Position=
’(291,50,491,320)

Script_Control_Window_Position="(239,42,489,407)’

Script_File="

Logging_Enabled=FALSE

Logfile="

To list the verbose attributes for a particular device:

s_abdevlv 14 0

Simulator

Device_Name{STRING}='I/O Port at 00FFA000’
Display_Window_Enabled{BOOLEAN}=TRUE
Display_Window_Position{WINDOW_POSITION}=
’(83,30,188,330)
Display_Width{ENUM BYTE,WORD,LONG}=BYTE
Display_Radix{fENUM HEX,DECIMAL}=HEX
Control_Mode{ENUM INTERACTIVE,SCRIPT}=INTERACTIVE
Control_Window_Enabled{BOOLEAN}=FALSE
Interactive_Control_Window_Position
{WINDOW_POSITION}='(291,50,491,320)’
Script_Control_Window_Position{WINDOW_POSITION}=
'(239,42,489,407)
Script_File{FILENAME}="
Logging_Enabled{BOOLEAN}=FALSE
Logfile{FILENAME}="

To set selected attributes for a device:

s_abdevset 14 0 device_name="Timer’logfile=
mdgs.log

@ Logging occurs only if the device has logging enabled and logfile is

specified; the format of the logging information is address block
type—-specific. Logging can also be enabled from the "I/O Port Setup”
window. See /O Port Logging for additional information.

3 RESTRICTIONS

Facilities for background mode are absent in the simulator version of
CrossView Pro. As a consequence, the CrossView Pro commands CB, st, u,
ubgw and wt for background mode, are not available.

Sim-15

Sim-16 Execution Environment

=

4 SIMULATOR COMMANDS

S_ABA (Add an Address Block)

This command adds an address block at the specified address. If no end
address is specified, the default size for the specified type is used. The
format of this command is:

S_ABA addr block_slot type start_address lend_address)
where:

addr block_slot is the slot where the block is to be located
type is the address block type (RAM, ROM, or IO_PORT)
start_address is the beginning address of the block
end_address is the ending address of the block

S_ABD (Delete an Address Block)

This command deletes an address block in specified slot. The format of
this command is:

S_ABD addr block_slot
where addr block_slot is the slot to be deleted.

S_ABDEVL (List All Devices Currently Configured)

This command, when entered with no options, lists all devices that are
currently configured. If a certain device is specified, all attributes for the
device are shown. If you wish to list all devices that are currently
configured, the format of this command is:

S_ABDEVL

If you wish to view the attributes for a certain device, the format of this
command is:

S_ABDEVL addr _block_slot device number
where:

addr block_slot is the slot where the device is located
device_ number is the number of the device

Simulator Sim-17

S_ABDEVLYV (Verbose Listing Of Device Attributes)

This command provides a verbose listing of the attributes for the specified
device. This verbose listing gives a description of the type along with
valid values for each attribute. The format of this

command is:

S_ABDEVLYV addr block_slot device number
where:

addr block_slot is the slot where the device is located
device_ number is the number of the device

S_ABDEVSET (Set Device Attributes)

This command allows you to set the value of one or more attributes for
the specified device. The format of this command is:

S_ABDEVSET addr block_slot device number attribute name=value
where:

addr block_slot is the slot where the device is located
device number is the number of the device

attribute name is the name of the attribute to be changed
value is the desired value for the attribute

S_ABL (Display Address Block Attributes)

This command displays the type, size, start, and end addresses for the
specified address block, or for all active slots if none is specified. To
display the above information for all active slots, enter the following
command:

S_ABL

To display the above information for a specific slot, enter the following
command:

S_ABL addyr block_slot
where:

addr block slot is the slot where the device is located.

Sim-18

SIMULATOR

Execution Environment

SmartMON ROM
MONITOR

al TASKING [

NNAN3IAAV

SmartMON ROM Monitor

1 INTRODUCTION

This chapter introduces SmartMON and some of its features. It includes the
following major sections:

Overview
SmartMON’s Debugging Features
SmartMON Distribution Contents

1.1 OVERVIEW

Welcome to SmartMON. SmartMON is a software-only, real-time debugger
that resides on your 68xxx target system. Once activated, you have access
to a powerful set of commands that let you control and monitor your
application software directly through CrossView Pro source-level
debugger. Figure Rom-1 shows the typical SmartMON debugging
configuration.

You can use a PROM programmer to burn SmartMON into ROM or use a
Flash programmer to program a FLASH device.

SmartMON is a ROM monitor, and ROM monitors have existed since
the first 4-bit microprocessor. However, SmartMON gives you
several important advantages over older monitor technology:

SmartMON has a far more extensive command language. In addition
to standard monitor features like software breakpoints, read/write
memory, read/write registers, and start/break execution, SmartMON
also allows tracing (instruction and data), data breakpoints,
conditional breakpoints, breakpoints on ROM code, and block
memory operations.

SmartMON incorporates features that make it a valuable tool for
field testing and manufacturing QA. Its extensive custom
diagnostics, in addition to the SmartMON system call facility, allow
SmartMON to be used throughout the life cycle of your embedded
application. For example, SmartMON can be used by field-test
engineers to trouble-shoot systems via a terminal interface.

Unlike most monitors, SmartMON has a built-in interface to the
CrossView Pro C source-level debugger. With CrossView Pro and
SmartMON, you get a powerful, real-time C source level debugging
solution that delivers increased efficiency for C programmers.

Rom-3

Rom-4 Execution Environment

* Finally, SmartMON has been ported to many off-the-shelf single
board computers (SBC). The driver packages for some of these
SBC’s are all included in this release. Batch files have been
supplied to build SmartMON for many popular VME boards or
683xx or ColdFire evaluation boards (sold by Motorola).

RS-232 Cable

T Y

Terminal

EPROMSs or FLASH ——8 (I3
containing SmartMON |

Your 68K or ColdFire
Target Board

@ (- RS-232 Cable
| |
[=

- =

PC or Workstation
running terminal emulation software

or the CrossView Pro C source level debugger

Figure Rom—1: SmartMon debugging configuration

SmartMON ROM Monitor

1.2 SMARTMON’S DEBUGGING FEATURES

The table below shows a list of SmartMON’s commands that can be used

to debug your 68xxx application. A description of the major types of
commands follows.

Command Function Command Function

CF configure GO go

BD disable break point HE online help

BE enable break point IN initialize sequence
BF block fill RB remove break point
BM block move SB set break point
DB display break point Sl single step

DC display configuration SM set memory

DF diagnostic functions SO step out of range
DI disassemble SR set register

DL download S record SS search for string
DM display memory TE enable trace

DR display registers TD disable trace

DT display trace ub user diagnostics

Table Rom~—1: ROM monitor commands

1.2.1

INITIALIZE AND DOWNLOAD

SmartMON includes a special initialize command that re-boots the

software system and executes the RMAIN initialization code. RMAIN is part
of the Target Interface Package (TIP) which must be modified for your

hardware environment.

Through RMAIN, you have the choice of entering the debugger upon

initialization and power—up, or booting your application software directly.

If you boot your software upon initialization, SmartMON can remain
dormant in your product and invoked at anytime with a control-C
character through the serial port.

Rom-5

Rom-6 Execution Environment

=

1.2.2 STEPPING, EXECUTING, AND HALTING

SmartMON provide a full set of commands that let you single step,
multi-step, or run your application in real-time. You can optionally
request to see disassembly or register display with every step command.

The debugger supports both interrupt—driven and polled I/O serial
communications. If you use an interrupt—driven 1/O driver, you can halt
your software application by typing a control C at the host or terminal. If
you are using a polled I/O driver, you may want to include a hardware
means to break execution, for example, an abort button.

1.2.3 SETTING BREAKPOINTS

SmartMON offers numerous breakpoint commands that result in a
powerful and flexible means to control your application program. The
debugger implements real-time breakpoints by substituting trap
instructions at specified RAM addresses. You can append conditions to
these real-time breakpoints to form complex breakpoints. SmartMON also
cleanly handles breakpoints in interrupt service routines.

Through a unique assertion mode, you can instruct SmartMON to break on
ROM based code. The debugger builds a table containing ROM based
breakpoints, and then after a GO command is issued, it steps the processor
and compares the next instruction’s address with the addresses in the
breakpoint table.

Also through this assertion mode, SmartMON implements data breakpoints.
It builds a table of memory or register values that you wish to halt the
processor. While the assertion mode does not execute in real-time, it can
offer an invaluable tool in finding complex system bugs.

1.2.4 FULL DISASSEMBLER

SmartMON includes a full-featured disassembler that gives you an intuitive
display of target memory, as well as the trace buffer. (Extended version
only.)

SmartMON ROM Monitor Rom-7

1.2.5 DISPLAYING AND SETTING MEMORY AND
REGISTERS

SmartMON gives you full control over your target’s memory and registers.
With the display memory command, the debugger shows you the hex
values and the ASCII equivalents.

1.2.6 TRACING

SmartMON includes a unique trace capability allowing a history of
program execution to be stored in the target’s local memory (trace buffer).
This gives the user the ability to playback program execution. The
program playback includes not only the instruction executed, but also the
data movements associated with the actual operation. (Data movement is
available only in the extended version of SmartMON.)

For example, let’s say the contents of one register, the source, is to be
transferred or moved to another register, the destination. The playback will
show the values contained in the source register, the destination register
prior to the move, and the destination register after the move. When
tracing is enabled, user code does not execute in real time, but debugging
with tracing typically provides a higher confidence level when you begin
debugging your code in real-time. Tracing may be selectively enabled or
disabled.

1.2.7 DIAGNOSTIC CAPABILITIES

SmartMON provides memory tests and scope loops for testing specific
areas of the target. Also embedded in SmartMON is a diagnostic executive
which can control the execution of user—written diagnostics. These
diagnostics, may be burned into ROM with SmartMON or down-loaded
into RAM and executed. SmartMON creates a menu of available tests,
which may be executed in batch mode or one at a time. (Extended version
only.)

Rom-8 Execution Environment

=

1.2.8 SYSTEM CALLS

SmartMON also supplies a mechanism that lets you access SmartMON'’s
features and services from your application code. By embedding system
calls in your diagnostic routines, you can create a suite of interactive tests
that can be run during field testing, manufacturing QA, or when isolating
failures in the repair department.

SmartMON handles all character transmission and reception, including
flow control and line buffering. These services allow the diagnostic
engineer to make his tests interactive with the user. The system calls may
also be used by the system software designer as a means of reporting
errors to a local terminal or modem.

1.3 SMARTMON DISTRIBUTION CONTENTS

SmartMON supports a variety of Motorola 68K/ColdFire target
MiCroprocessors.

SmartMON is normally delivered with the CrossView Pro Source Level
Debugger. The SmartMON distribution contains the following
subdirectories:

e Infiles - Two object files are supplied: smon68kb.In and
smon68ke.In . These are the core of the basic and extended
versions of SmartMON, respectively.

e boards - There are several subdirectories under boards , one for
each supported target board. Everything is included to build the
ROM monitor for the target board. Alternatively, you may use one
of the supported targets as the basis for customizing the ROM
monitor to another board.

e drivers — Sample drivers for controlling UART chips reside in this
subdirectory.

SmartMON ROM Monitor Rom-9

2 USING SMARTMON

This chapter describes the operation of SmartMON on your embedded
microprocessor board. It should be read and understood before you
proceed to the next chapter. Understanding SmartMON’s basic operation
will allow you to more easily follow the TIP (Target Interface Package)
examples and make the necessary modifications for your board. This
chapter includes the following major sections:

e Overview

e SmartMON’s Resource Requirements

* SmartMON’s Use of Interrupts and Traps

e The Three Operational Modes of SmartMON

* How SmartMON Sets Breakpoints

¢ SmartMON'’s Tracing Features

e Single Stepping and Step—out-of-range

* The Six Different Submodes of Execution Mode

e How SmartMON Processes 1/O

e How SmartMON is Initialized

* Run-time Notes

2.1 OVERVIEW

SmartMON is a command line driven, software debugger that resides on
your 68xxx target board. It controls and monitors your embedded software
application in response to user commands that are sent to it over the serial
communications line.

SmartMON allows you to run your application in real-time, without any
performance penalty placed on your target system. To achieve this
real-time performance, you should execute your code (issue a GO
command) with only code breakpoints set, and no ROM based code
breakpoints set.

SmartMON also gives you advanced features for tracking-down complex
bugs. Some of these features, such as data breakpoints, breakpoints on
ROM code, and tracing, require that SmartMON be activated during the
running of your application code, which means that your code does not
run in real-time. However, you will still find that these features afford you
quite a bit of flexibility and power in isolating target problems.

Rom-10

Execution Environment

2.2 SMARTMON'’S RESOURCE REQUIREMENTS

SmartMON requires the following resources from your target system:

Code Space

54 Kbytes for the extended version, 20 Kbytes for the basic version.
SmartMON is typically burned into ROM, but it can also be downloaded
and booted from RAM.

Data Space

6-21 Kbytes of RAM (This includes SmartMON’s internal data structures
and a 1 Kbyte trace buffer. The trace buffer can be expanded in 1K
increments up to 16K).

Traps

The 68xxx trace vector and 2 user-defined traps, one used for
breakpoints, and the other used for entering SmartMON. For
interrupt—driven I/O, a serial port interrupt is also required.

2.3 SMARTMON'’S USE OF INTERRUPTS AND TRAPS

Most microprocessors support interrupts. An interrupt changes the normal
flow of program execution and passes control to an interrupt service
routine (ISR). When the ISR has completed, control returns to the next
instruction in the normal program flow.

The 68000 has 3 interrupt lines, allowing 7 levels of interrupts to occur.
For instance, if an interrupt is generated by a serial device (indicating a
character has been received or transmitted), the processor passes control
to an ISR routine to handle that interrupt. This is achieved by vectoring to
an address specified in the Exception Vector Table (EVT). The address of
the ISR is loaded into the vector table during SmartMON initialization. The
addresses of the breakpoint and system traps are taken from information
provided by the configuration table, found in the user equates file,
USREQU.68k The I/O ISR address is taken from portinit in
io_drv.68k.

A TRAP works in much the same way as an interrupt. Unlike interrupts,
however, traps are actual machine instruction that cause exceptions. High
level or compiled code usually does not contain traps. SmartMON makes
use of this by temporarily placing them into user code for breakpoints.

SmartMON ROM Monitor Rom-11

When the trap is encountered, execution is passed to a SmartMON
exception—handling routine. Traps, therefore, provide a means to halt
program flow deliberately and at specific points in user code. Once the
program is halted, SmartMON can ascertain information about the target.

For example, when power is first turned on, control jumps to the routine
pointed to by the restart vector. When a breakpoint trap occurs in user
code, control is passed to SmartMON through the breakpoint trap vector.
Similarly, when a serial port interrupt occurs, the address in the vector
table points to the serial port interrupt service routine.

Finally, the SmartMON system uses a trap that is referred to as the “pointer
to SmartMON.” This is the trap that is used to enter the debugger for most
circumstances (other ways to enter or activate the debugger are via the
breakpoint trap or a call to the initialization routine, RMINIT).

Rom-12 Execution Environment

=

Restart Vectors to Initialization Code

restart vector
USER
CODE
trace vector
. SmartMON
break point trap
CODE
INIT
CODE pointer to SmartMO
. . NOTE:
interrupt for serial port This is the trap
Serial used for entering
erial SmartMON. It is
b also referred to as
ort the ROMM trap in
SR the manual.

Figure Rom=2: Traps and Interrupts Used by SmartMon

Typically before this ROMM trap is used, a code is loaded into DO that tells
SmartMON the reason why it has been entered. For example, DO=5 is a
ROMM_GEbde, which tells SmartMON that it is being invoked after system
initialization or directly from the application code.

SmartMON ROM Monitor

The general term for using this SmartMON enter trap is “system calls.” It is
very important to note that system calls have two distinct functions:

Required System Calls

There are two instances when you must use system calls. One is in the
RMAIN.68K routine after the system has been initialized and you are ready
to enter the debugger (although one option is not to boot the debugger at
all, but rather directly boot your application code and have SmartMON lie
dormant). This is the ROMM_G§&ystem call, DO=5. The other instance of
required system calls is in the serial port driver routines to re—enter
SmartMON after the ISR has executed (or after your polled 1/O routine, if
you are not using interrupt driven I/O). Here, the system call is not an
option, but rather the predetermined scheme for SmartMON to process
characters. The next chapter, Creating the TIP, explains more about using
these required system calls in the initialization module (RMAIN.68K) and
the I/O driver (I0_DRV.68K).

Optional System Calls

i+

SmartMON gives you the ability to use system calls directly from your
application code. The best use of these optional system calls is for
character I/O routines, where you want your code to output a test
message by sharing SmartMON'’s resources and serial driver routine.

Both the required and optional system calls are described further in the
System Calls chapter.

2.4 THE THREE OPERATIONAL MODES OF SMARTMON

At any one instance, SmartMON is in one of these three modes:

Command Mode

When the monitor is continuously active and running on the target
microprocessor, it is in command mode. In this mode, SmartMON may
accept commands from a host or terminal to perform such tasks as
examining the stack, registers, and memory, or to resume target program
execution.

Rom-13

Rom-14 Execution Environment

=

Execution Mode

Whenever the user application code is running, the monitor is in
execution mode. Since it is not active, it cannot accept commands from the
terminal or from CrossView Pro. There are five ways to force SmartMON to
become active, thereby leaving execution mode and entering command
mode.

* Encounter a previously set breakpoint.

* Type a control-C from CrossView Pro or a control-X from a dumb
terminal (or from CrossView Pro’s transparency mode).

e Use the ROMM_G§&¥stem call (D0=5) from the application code.

e Turn tracing on. Through the trace vector, SmartMON will become
active after each instruction is executed.

e Encounter an interrupt or trap that was not assigned by the user.

Download Mode

Whenever you issue a download command from command mode,
SmartMON goes into a special download mode in which all subsequent
data is loaded into the target system’s RAM. The download information is
in Motorola standard S-record format. This download mode is terminated
when an EOF (end-of-file) S-record is received. Download can also be
terminated by typing a control-C from CrossView Pro or a control-X from
a dumb terminal (or from CrossView Pro’s transparency mode).

2.5 HOW SMARTMON SETS BREAKPOINTS

Breakpoints are the primary mechanism used to control the execution of
your program. While SmartMON is a software-only debugger that does not
have hardware to monitor the bus (which means that hardware
breakpoints cannot be accomplished), it does offer several flexible
breakpoint schemes. These are:

* Real-time simple instruction breakpoints on RAM code.

* Real-time instruction breakpoints on RAM code, with comparisons
and actions to be automatically executed after the breakpoint is hit
(complex breakpoints).

* Non-real-time instruction breakpoints on ROM code, either simple
or complex.

* Non-real-time data breakpoints.

SmartMON ROM Monitor Rom-15

* Any of the above breakpoints with tracing enabled; the first two
breakpoint classes become non-real-time when the tracing feature
is enabled

The sections below describe how SmartMON sets the breakpoints listed
above.

2.5.1 SETTING BREAKPOINTS ON RAM CODE
WITHOUT TRACE MODE ACTIVE

If the user wishes to set a breakpoint in his code, he must use the SB (set
breakpoint command), which will instruct SmartMON to install a
breakpoint at a specific location in memory. When this command is
received, SmartMON goes to that specific location in memory and removes
the instruction stored at that location and installs a TRAPinstruction in its
place. This means that when the user’s program encounters that location, a
TRAPwill occur which will activate SmartMON. Once activated, SmartMON
stores away the register contents and removes the TRAPinstruction
replacing it with the original code. This allows real-time execution of user
code during debugging.

2.5.2 INSTRUCTION BREAKPOINTS ON ROM CODE

As previously mentioned, breakpoints are achieved by installing trap
instructions in the user code. However, this can only be done when the
user code is in Read/Write memory. In order to achieve breakpoints in
read only memory, a breakpoint table is built, and the user program is run
with trace enabled. After the execution of each instruction, SmartMON
examines the table to look for a match. If the current address equals one
of the addresses in the table, a break will occur.

2.5.3 DATA BREAKPOINTS

Using the breakpoint table also enables SmartMON to break on data. The
user can define a conditional break when data at a particular location
equals a specified value. This is achieved in trace mode. After each
instruction execution, the address specified is checked for the required
value. If the value is equal to the conditions set forth then a break occurs.

Rom-16 Execution Environment

=

2.5.4 COMPLEX BREAKPOINTS

Complex breakpoints allow many options in debugging. It allows you to,
after reaching an address, check either a register or memory location for
specified values before taking the breakpoint. This is very useful for
debugging modular code which has global variable access. You may want
to use this feature for single stepping a certain routine after a specific
variable changes. This would be accomplished by setting a complex
breakpoint in the function, after the specific variable reaches a certain
value. Then, you may begin single stepping.

2.6 SMARTMON'’S TRACING FEATURES

One of the unique features of SmartMON is its Tracing capabilities.
SmartMON has the ability to replay code execution, which is achieved by
running your code with trace enabled. This tracing may be set for Program
Counter (PC) only or full trace with data movements. Once enabled,
information is stored in a trace buffer (an area in target RAM reserved for
SmartMON) after every instruction is executed. When execution is halted
and command mode is entered, the trace buffer may be displayed, either
forward or backward, showing the disassembled code that has executed.
This feature is further enhanced when full trace is enabled. Full trace
includes the data movements associated with each executed opcode in the
trace information.

Tracing would typically be used when you are trying to find a problem in
a subroutine. Let’s say you are single stepping through code with full trace
enabled, when you encounter the subroutine in question. You may issue
the GON (go next instruction) command, which allows the subroutine to
execute without having to single step through each instruction. When the
routine returns, SmartMON indicates the call is complete. At this point,
simply play back the trace buffer to not only see if the bug is in the
subroutine, but also to find the source of the problem. This technique
allows you to quickly find the offending module. Alternatively, simply
setting a breakpoint and running with trace enabled will allow you to play
back information prior to that breakpoint.

SmartMON ROM Monitor Rom-17

2.6.1 TRACE POINTS

One issue that causes problems is using tracing to debug time—critical
code. SmartMON supplies a trace point feature which uses conditional
breakpoints to allow trace to be enabled or disabled. For example, if an
ISR is time critical and you do not wish to include a trace history on this
event, setting a Trace disable at the entry to the ISR and a trace enable at
the exit allows the routine to run in real-time.

>SB ea0000 > td;when ea0000 is encountered stop trace
>SB ea000f > te;when ea000f is encountered start trace

This feature may be used in another way. Lets say that you have a
common time out loop and you would like to know what code executed
prior to entering this loop. You could accomplish this by setting a
conditional breakpoint and disabling trace at the beginning of this loop.
You may stop the code by setting a breakpoint after the time out loop
routine or by typing ~C if you know the code is stuck looping. The trace
buffer will now contain the code that was executed prior to this loop.

2.6.2 TRACE BUFFER OPERATION

The trace buffer is a FIFO architecture and stores the previously executed
instruction. The trace buffer is configurable from 1k to 16k bytes in size.
This allows users with limited memory space to tailor the buffer size to
their environment. When tracing with data movements is enabled,
approximately 50 instructions are stored per kilobyte. When tracing PC
only is active, 128 instructions per kilobyte is possible. This gives you 2048
of the previous instructions executed when using a 16k trace buffer using
PC only trace and 800 instruction with full data movements.

2.7 SINGLE STEPPING AND STEP-OUT-OF-RANGE

These two SmartMON features are accomplished by the debugger’s general
tracing capability. Single stepping allows the user to step through his code
for debugging. This is done by an SI command, which instructs SmartMON
to execute a single instruction. To accomplish this, SmartMON sets the
trace bit in the processor status register. which causes an exception after
each instruction is executed. This trace exception causes SmartMON to be
re—activated, and only one instruction in user code is executed.

Rom-18

Execution Environment

The Step—out-of-range function allows the user to set a range of addresses
within which to execute. If the code steps outside this range, then the
program will halt and SmartMON is entered. This function also operates by
setting the processor’s trace bit and forcing a trace exception after each
instruction is executed.

2.8 THE SIX DIFFERENT SUBMODES OF EXECUTION
MODE

Within execution mode, SmartMON has six different way of executing
your code. These submodes depend on what types of breakpoint are set,
and whether or not tracing has been set. The execution submodes are:

Running Real-time

User code is running real-time and SmartMON has no impact on system
performance.

Running Real-time with Breakpoints

User code is running real-time and breakpoints are installed; when a
breakpoint is encountered, user program execution will stop and
SmartMON becomes active.

Tracing (PC only)

User code is running with tracing enabled; after executing each line of
user code, SmartMON is activated and stores the PC value in the trace
buffer then continues to allow the next line of user code to execute. User
code now executes approximately 100 times slower than normal.

Tracing (PC only) with Assertions

User code is running with tracing enabled; in addition to storing the PC
value, other conditions are being tested such as data breakpoints, step out
of range, etc.

Tracing (PC and Data Movements)

User code is running and tracing is enabled; in addition to storing the PC
value, the instruction is disassembled and the data movements associated
with the operation are stored in the trace buffer. This will cause the user
code to execute at approximately 800 times slower than normal.

SmartMON ROM Monitor Rom-19

Tracing (PC and Data Movements) with Assertions

User code is running with full tracing and other conditions are being
tested.

2.9 HOW SMARTMON PROCESSES 1/0

SmartMON allows two different types of I/O schemes, interrupt driven I/O
and polled I/O. Interrupt driven I/O is recommended because it provides
the best performance and because it allows you to break the execution of
the application code by typing a control-C at the host or terminal .
However, sometimes the polled I/O scheme must be used because of the
device type, or a lack of available interrupts.

With either interrupt driven or polled I/O, SmartMON requires a driver
routine called 10_DRV.68K . This routine, along with five other routines,
make up the TIP, Target Interface Package. The next chapter tells you how
to modify or supply a TIP for your board. Because I/O drivers, both
interrupt—driven and polled, are supplied for the most widely used
USARTS, chances are that you will only have to choose the proper driver
from the supplied library and make minor modifications.

The next several pages give you an overview of how SmartMON processes
serial I/0O.

Rom-20 Execution Environment

=

2.9.1 INTERRUPT DRIVEN 1/O0

Whenever either the target (SmartMON) or the host wants to send a
character, it places it in the serial device, called the USART (universal
synchronous/asynchronous receiver/transmitter). The serial I/O device
generates an interrupt, which invokes an interrupt service routine. For
most serial devices, there are separate ISRs for transmit and receive;
however, sometimes only one ISR handles both cases.

A flowchart of how SmartMON and the serial driver process characters for
interrupt driven I/O is shown in Figure Rom-3. For example, suppose the
Host sends a character to SmartMON. This character is received by the
serial port device, which generates an interrupt to the processor indicating
that a character is available in its input buffer. This interrupt signal causes
the processor to pass control to an ISR (the address of which is stored in
the appropriate place in the EVT). The receive ISR then takes the character
from the serial port buffer and places the character in the D1 register.
Then, an INT_RX code is loaded into DO and the ISR traps to SmartMON.
SmartMON recognizes the INT_RX code in DO, so it knows to process the
character that was passed to it in D1.

When SmartMON wishes to send a character to the Host, it follows a
slightly more complicated procedure. SmartMON must first indicate to the
USART that a message is about to be sent. To start this process, SmartMON
calls a routine called TX_CHAR with the first character of the string to be
transmitted in register D1. TX_CHARtakes the character from D1 and places
it in the serial port output buffer. The remaining characters are transmitted
by the transmit ISR. This is possible because after the first character has
been transmitted the interrupt generated indicates that the serial device is
ready for the next character. The transmit ISR, when first entered, places
an INT_TX code in DO and traps to SmartMON. SmartMON returns to the
ISR with the next character for transmission in D1. This process continues
until SmartMON has no more characters to send, in which case it places a
NO CHARin DO.

SmartMON’s steps to transmit characters is summarized below:
1. SmartMON has a message for the host.

2. In order to prepare the USART to transmit characters, SmartMON calls
TX_CHARwith the first character in the message.

3. TX_CHARwrites the first character of the message to the serial port,
enables serial port interrupts and returns to SmartMON.

SmartMON ROM Monitor Rom-21

4. When the USART is ready for the next character, an interrupt occurs which
invokes the transmit ISR.

5. The transmit ISR places an INT_TX code in DO and traps to SmartMON.

6. SmartMON recognizes the INT_TX code in DO, places the next character in
D1 and returns to the ISR.

7. The transmit ISR writes the character in D1 to the serial port.

8. Upon completion the ISR traps to SmartMON with INT_COMP SmartMON
does not return to the ISR after this system call.

9. Steps 4-8 are repeated for each character of the message. When
SmartMON has no more characters to send, it places a NO CHARvalue in
DO.

Rom-22 Execution Environment

SYSTEM CALL
int_enter

Y

Read USART
Status

SYSTEM CALL
int_tx

Is

Interrupt

RX ? There A

Character
Read Character
From UART NO YES
¢ Output CHAR
SYSTEM CALL Spurious
int_rx Interrupt Clear to UART

vy
'

SYSTEM CALL
int_comp

Figure Rom-3: Character processing for interrupt driven I/O

SmartMON ROM Monitor Rom-23

Figure Rom-3 shows the flow of the serial port ISR. The ISR first traps to
SmartMON with an INT_ENTER (interrupt enter) code to signal that an
interrupt has occurred. Control is then returned back to the ISR, which
checks for a character having been transmitted. If so, it asks SmartMON for
a character by making an INT_TX system call. If SmartMON returns a
character, it is written to the USART. The ISR then exits after calling
SmartMON with an INT_COMP(interrupt complete) code in DO.

If a character has been received, the ISR reads the character from the
USART, and passes it to SmartMON with a INT_RX system call. The ISR the
exits after making an INT_COMPsystem call.

2.9.2 POLLEDI/O

In the polled environment, characters are passed from SmartMON to the
Host by placing a character in the serial port transmit buffer. Unlike
interrupt-driven I/O, which will create an interrupt when the USART
transmit buffer is empty, the TX_CHARdriver must monitor the USART’s
status by waiting for the transmit buffer empty status to indicate that the
character has been transmitted. At that point, the TX_CHARroutine will
make a system call to request another character. If a character is available,
it is placed in the serial device’s transmit buffer. This process continues
until the system call indicates that there are no more characters available.
At this point, the TX_CHARroutine returns to SmartMON. See Figure
Rom—4 for the flowchart of a polled transmit routine.

When the host transmits a character to SmartMON, the program is looping
and continually calling RX_CHARooking for another character. When a
character is received, it is placed in SmartMON’s line buffer. This process
continues until a complete message is received. At which point,
SmartMON will process the command. If additional characters are sent
during command processing, an overrun condition may occur. This should
not be a problem under normal operation. See Figure Rom-5 for the
flowchart of a polled receive routine.

Rom-24 Execution Environment

— - | Write Character
To UART

Y

Read UART
Status

SYSTEM CALL
int_tx

NO

SYSTEM CALL
int_enter

Figure Rom—4: Transmitting polled 1/O characters

SmartMON ROM Monitor

Read UART
Status

Y

Is
RX Buffer

Full
?

¢YES

SYSTEM CALL
int_rx

NO

.

End

Figure Rom-5: Receiving polled 1/O characters

2.9.3 CHARACTER BUFFERING

SmartMON communicates with the host by means of a line buffer. This
means a command is not processed until a line has been entered. A line is
defined as a series of characters terminated with a Carriage Return. This
allows the editing of a line before it is processed. Once a complete
command has been entered, processing begins. SmartMON allows type
ahead for one line which means that characters may be entered at the
same time the previous command is being processed. This type ahead
feature also generates an XOFF to the host when a complete command is
in the type ahead buffer.

Rom-25

Rom-26

=

Execution Environment

2.9.4 1/0 SYSTEM CALLS

As discussed earlier in the SmartMON’s Use of Interrupts and Traps section
earlier in this chapter, SmartMON must be re—entered after the I/O driver
routine, 10_DRV.68K , has received or transmitted or character (or
determined that there are no more characters to process.) As with all
system calls, the way to do this is via the ROMM trap (the SmartMON enter
trap) and an enter code in DO. The code in DO tells the debugger why it
has been entered. In the case of the I/O routines, the I/O data, if any, will
be located in D1.

The function codes and parameters passed via the ROMM trap are defined
as follows:

Codes Function Response

codein DO=01 |ISR enter code none

code in DO=02 | ISR exit code none

code in DO =03 | transmit character tx_char (D1), no char flag (DO)
code in DO =04 | receive character rx_char (D1)

code in DO =05 | SmartMON enter code none

Table Rom-2: Function codes

2.10 HOW SMARTMON IS INITIALIZED

SmartMON is initialized through one of two functions. The first function,
(RM_INIT), is called by the board initialization code, (RMAIN.68K).
SmartMON configures itself according to the data contained in the
configuration table found within the USREQU.68k file. This allows the
user to define SmartMON’s resources, such as the beginning of
SmartMON’s RAM space, which traps are to be used, etc. The (RM_INIT)
function builds the vector table with a generalized exception and installs
all the traps to be handled by SmartMON. It also sets up all data structures
and variables required by SmartMON.

SmartMON ROM Monitor Rom-27

The second function is (NV_RM_INIT). This a non-vectored ROM monitor
initialization routine. This is supplied for those users who wish to build
their own vector table. This normally applies to applications where the
vector table is in Read Only Memory (ROM). This initialization routine sets
up SmartMON without building the vector table. The user must install
SmartMON’s vector addresses into the vector table in order for SmartMON
to operate properly.

The next chapter, Target Interface Package, explains these two
initialization options in greater detail.

2.11 RUN-TIME NOTES

This section provides some helpful notes about running your application
code in conjunction with SmartMON. Figure Rom-6 shows graphically
how SmartMon interacts with your application code.

2.11.1 STACKS

SmartMON will always execute in supervisory mode. The User will allocate
at least 6K of RAM for SmartMON’s variables, stack space, and trace buffer.
This will suffice for proper SmartMON operation. However, in some cases,
such as system calls, where SmartMON has not gained total control over
the processor and the user’s code, SmartMON will rely on the user’s
supervisory stack. SmartMON needs a minimum of 24 bytes in order to
operate. We do recommend having more stack space available.

2.11.2 INTERRUPT SERVICE ROUTINES

If you have interrupt service routines (ISR) that will continue to execute
while SmartMON is active, there are a few precautions that should be
followed. Upon entry, your ISR must save all of the microprocessor’s
registers before they are used. Any register that is used for pointing to
global data space must be reinitialized. Upon exit, all registers must be
restored. This will ensure proper SmartMON operation. Please note that
the system calls INT_ENTER INT_COMPR INT_RX, and INT_TX are only
required for SmartMON’s I/O communications.

Rom-28 Execution Environment

When trace mode is enabled,
SmartMON is activated after every
instruction. -
Instruction #1
Instruction #2
Target ROM SmariVioN -
returns to
execute the
Init Code next instruction
if a break
condition is not
' encountered.
GO command
goes from current
. PC value.
—>
SmartMON Breakpoint
> M‘ Breakpoint Trap
-
' A ctrC is
received over
Serial Port serial port.
ISR and USER CODE
Driver
The PC value is stored in the
trace buffer after each instruc—
. tion is executed in trace mode.
Breakpoint Trace
RS—232 Tab'e Buﬂ:er
Hard—
ware
The breakpoint table is checked after each

instruction in trace mode. If a value in the table
matches current conditions, the SmartMON does
not return to user code.

Figure Rom—6: Application code interaction

SmartMON ROM Monitor Rom-29

2.11.3 DOWNLOADING AN ISR FOR DEBUGGING

If the user is going to download interrupt service routines for debugging,
then the addresses of these exception routines may be pre—-defined. Once
these routines are debugged, then its only a matter of changing their
addresses to reside in ROM. This task can be accomplished with some
additions to the RMAIN.68K module and the use of your Locating Tools.

Example

SmartMON will be burned into PROM, whose address starts at 000000.
There will be 64K of RAM space residing at hex address E90000, which
will be used for downloading and debugging user code. The Vector Base
Register will reside at hex address ES0000. We would like to debug a timer
interrupt service routine named “timer”. The vector address of the timer
ISR is at hex offset 200 off the VBR. We have defined other user defined
vector routines in RMAIN.68K using the declare long address (dc.!

routine name). The following is the modifications to the RMAIN.68K code:

Define the timer routine to be externally referenced:
XREF TIMER

Declare the timer routine to be a long address:
DC.L TIMER

Install the timer routine’s address at hex offset 200 of the vector base
register:

MOVE.| # TIMER,$E80200
During the locate part of the build process in the locate command file add:
Declare the _timer routine’s address to be hex E90000.

After SmartMON has been built and burned into PROMS, then at offset 200
off the VBR, there will be the timer ISR’s address 00E90000. The only
modification necessary to the user’s build process is to add a locate
statement directing the timer routine to reside at hex E90000. For example:

LOCATE (timer : #£90000);

Rom-30 Execution Environment

=

After downloading the user code, the timer ISR will reside at address
$E90000. This will coincide with the vector offset pointer at $200. The
timer ISR may now be debugged.

2.11.4 SYSTEM CONTROL

The routines SYSSTP.68K and SYS_GO.68K have been provided so that
target hardware functions may be disabled and re—-enabled while
SmartMON is active. This is particularly useful for controlling timer
hardware. For example, if you need to suspend your timer when not
operating in real-time, then these functions would be used. These routines
are under your control and may be customized for your particular needs.
SmartMON simply calls these routines when the debugger is activated and
deactivated, no matter what these routines are customized to do.

SmartMON ROM Monitor

3 TARGET INTERFACE PACKAGE

This chapter describes in detail how to provide an interface from
SmartMON to your own custom hardware. The SmartMON object module
is designed to be completely target and environment independent.
Information is included here on how to provide SmartMON with routines
and information, called the Target Interface Package (TIP), that are specific
to your hardware. This chapter includes the following major sections:

What is the TIP?

TIP Module #1: usreq.68k

TIP Module #2: rmain.68k

TIP Module #3: io_drv.68k

TIP Modules #4 and #5: sysstp.68k and sys_go.68k
TIP Module #6: diag_tbl.68k

3.1 WHAT IS THE TIP?

The Target Interface Package (TIP) is a set of six assembly language
modules that you modify for your target environment. All six modules
must be included for SmartMON to operate. The TIP provides SmartMON
with the following functions:

a configuration table with labels for important target-specific data
hardware and software initialization code

a UART driver

system start functions

system stop functions

a custom diagnostic table

Rom-31

Rom-32 Execution Environment

=

The six file names and their functions are shown below:

TIP Component File Name
Environment Configuration Data usrequ.68k
Board Initialization rmain.68k
Communication Software (UART driver) io_drv.68k
Application—specific System Startup Code Sys_go.68k
Application—specific System Stop Code sysstp.68k
User Diagnostics diag_tbl.68k

Table Rom-3: TIP file names

3.2 TIP MODULE #1: USREQ.68K

The usrequ.68k file is one of the six TIP modules that must be included
with the SmartMON object module in order for the debugger to operate on
your board.

usreq.68k contains a table of important hardware information about the
environment. The information is read from this file during ROM monitor
initialization.

SmartMON ROM Monitor

3.2.1 VALUES REQUIRED BY SMARTMON

SmartMON requires the information shown in the table below:

Label Contents
Config_TBL A data configuration table which consists of the following:
tx_char A pointer to a serial port transmit routine.
rx_char A pointer to a serial port receive routine.
Sys_stop A pointer to a routine called when SmartMON is
activated.
sys_go A pointer to a routine called when SmartMON is
deactivated.
DIAG_TABLE | A pointer for custom diagnostics.

RM_RAM Start of the SmartMON'’s data space (6K is the minimum
RAM required — additional RAM may be allocated to the
trace buffer).

RM_VBR Location of the vector table. Set this value to 0 for
processors that do not have a vector base register.

RM_INT The Interrupt level of the UART.

RM_BRK The trap assigned to breakpoints.

RM_TRP Trap assigned to SmartMON system calls.

Micro The microprocessor type.

RM_TSZ Size of the trace buffer in 1K blocks of RAM.

Table Rom—4: Labels

Rom-33

Rom-34

=

Execution Environment

3.2.2 MORE INFORMATION ON THE USREQU.68K

LABELS

All of the labels shown on the previous page must be included in the
usrequ.68k files for your board. The following is detailed information
about each of these labels:

tx_char

rx_char

sys_stop

Sys_go

(size=long) This is a pointer to the user-supplied transmit
routine which the ROM monitor uses to transmit data over
the I/O port. See the section on io_drv.68k for details on
the actual routine.

(size=long) This is a pointer to the user—supplied routine
rx_char used by the ROM monitor when the I/O port is set
up to operate in polled mode. This routine must exist in all
environments during the time the ROM monitor is active and
waiting for character input. If polled mode is not being used
the routine need only contain an RTS instruction. Another
use of this routine is to keep a watchdog timer alive. If
sys_stop of sys_go do not satisfy your requirements for
disabling a watchdog timer, this routine may be used to keep
the watchdog alive. See the section on io_drv.68k for
details on the actual routine.

(size=long) This is a pointer to the sys_stop routine. The
ROM monitor calls this routine when it is activated. Activation
occurs as the result of a breakpoint, a ctrl-X, a ctrl-C, or a
ROM go system call. See sysstop.68k for details on the
actual routine.

(size=long) This is a pointer to the Sys_go routine which is
called by the ROM monitor when a GO command is issued.
This allows you to reactivate critical hardware prior to
executing user code. See sys_go.68k for details on the
actual routine.

DIAG_TABLE

(size=long) The extended version of the ROM monitor uses
this pointer to install diagnostics into the user diagnostic
menu. In the Base version this must be replaced with a:

dc.I $00000000 . See diag_thl.68k and the SmartMON
Command Language chapter on how to write user
diagnostics.

SmartMON ROM Monitor

RM_RAM

RM_VBR

RM_INT

RM_BRK

RM_TRP

(size=long) This is the RAM start address that has been
reserved for the ROM monitor. During initialization, the ROM
monitor will set up its internal data structures, variables and
buffers starting at this location. This data space is a minimum
of 6K in size. A typical location of this RAM would be after
the vector table (VBR value+$400 hex).

(size=long) This is the location of the VBR to be used by the
target. If the target does not have VBR (such as the 68000 and
68302) then this value should be set to zero.

(size=word) This mask value, used when the ROM monitor is
active, ensures that ROM monitor will not respond to
interrupts of a lower value while it is active. If you are using
interrupt driven I/O make sure the level is no higher than
your serial port. If you wish to mask higher level interrupts
than the serial port, then polled I/O must be implemented.
For those interrupts that are going to remain active when the
ROM monitor is running, the associated ISR must save all the
registers they are using. In addition, registers such as A5 have
to be reinitialized in the ISR.

(size=byte) This is the trap number assigned to breakpoints.
When the ROM monitor installs a break point, this is the trap
that will be used.

(size=byte) This is the trap number assigned to system calls.

Rom-35

Rom-36

Execution Environment

Micro (size=word) This is used to tell the ROM monitor which type
of microprocessor is being used. Enter the value for Micro
that corresponds to the CPU in your target board:

target CPU Micro target CPU Micro target CPU Micro

68000 $0000 68060 $0060 MCF5204 $5204
68EC000 $ECO00 68070 $0070 MCF5206 $5206
68010 $0010 68302 $0302 | MCF5206E | $5207
68EC010 $ECI0 68306 $0306 MCF5249 $5249
68020 $0020 68307 $0307 MCF5272 $5272

68EC020 $EC20 68332 $0332 MCF5280 $5280

68030 $0030 CPU32 $0C32 MCF5282 $5282

68EC030 $EC30 68340 $0340 MCF5307 $5307

68040 $0040 MCF5102 $5102 MCF5407 $5407

68EC040 $EC40 MCF5202 $5202

Table Rom-5: Microprocessor selection

RM_TSZz (size=byte) This is the size (in 1K blocks) to be assigned to
the trace buffer. Value may range from $1 to $F.

RM_INIT is the start location of the ROM monitor image. During
initialization the ROM monitor subtracts $30 from this address and reads
the usr_equ structure, takes the value of RM_RAMnd copies the user
equates into this space. Therefore the section RMUSER_EQbhust be
located exactly $30 before the start of the ROM monitor code. See the
section on linking and locating the ROM monitor for more information.

After installing the ROM monitor software onto your host, you will find a
ready—-made copy of usrequ.68k in the vmel05, vmel33, 68302ads ,
and other board directories. This file describes the parameters for the
named target board. Simply take the file and modify the values to support
your environment. You may find samples that more closely match your
hardware configuration in subdirectories of the boards directory. In order
to modify the files, you must understand the memory map for your target
and the interrupt structure.

SmartMON ROM Monitor Rom-37

3.3 TIP MODULE #2: RMAIN.68K

The next TIP module which you must modify and supply with SmartMON
is rmain.68k . rmain.68k is the file called by SmartMON to initialize the
hardware environment.

Initialization includes all preliminary activities that place the system into a
known state before application execution. The initialization code is
executed when the system is powered up or reset. This module should be
located at the beginning of the PROM or wherever the Reset vector
resides.

The User’s hardware initialization code simply makes a call to the starting
location of SmartMON code and the debugger initializes itself based on the
data stored in the configuration table. SmartMON then returns to the user
code and is ready for operation. The debugger is then activated by either
typing a “C or by making a ROMM_GO system call. Initialization code
consists of the following:

* Define initial stack pointer and restart vectors.

e Set the status register to SUPERVISORY MODEnd turn off
interrupts.

* Optionally, set up devices that do NOT require an interrupt vector,
but must be initialized before anything else can operate; such as an
MMU (memory management units).

e Install reset vector and stack addresses into the exception vector
table {EVT}.

e Call RM_INIT or NV_RM_INIT to initialize SmartMON. This
initialization code resides at SmartMON’s starting address (see
RM_INIT call for details).

e Optionally, set up devices that DO require an interrupt vector. This
type of device initialization must take place after the RM_INIT call,
because the SmartMON initializes all vectors in the EVT during this
call.

e Call the serial port initialization routine, PORTINIT, which sets the
serial port device up to the correct configuration and installs the
correct vector into the EVT for the ISR.

* Set the stack frame pointer A6 to zero.

e Clear all registers.

* Enable interrupts.

Rom-38

Execution Environment

e Make a system call by using 2 ROMM trap (SmartMON enter trap)
with DO=ROMM_GO=Bee ROMM_G®r details) or jump straight to
user’s code.

3.3.1 STACKS

The initial stack should be set up to have at least 24 bytes of scratch area.
This stack is used for the initial call to RM_INIT and for any system calls,
such as serial communications, before any application code has been
downloaded and new stacks setup. During user code debug, you still need
at least 24 bytes. However, we recommend allocating 1K bytes for each
stack. The initial stack(s) may be reused or reallocated for this purpose.
For example, your target has 128K of RAM available starting at address 0.
Figure Rom-8 shows a typical memory map layout for a 68000 example.

3.4 RM_INIT CALL

During the RM_INIT function, SmartMON fills all of the exceptions in the
exception vector table with a generalized exception routine. This assists in
the debugging of user code by trapping all unassigned vectors. SmartMON
then installs the specific exception routines required for its operation into
the vector table. Upon return from this function, the user may then install
his own vectors. Be careful not to overwrite SmartMON’s vectors for this
may cause unpredictable results. Interrupts must be disabled before the
RM_INIT call is made and enabled after RM_INIT is complete.

If the vector table is hard coded, then a separate initialization routine
(NV_RM_INIT) should be used. This function initializes SmartMON but
does not build the vector table. It is then the responsibility of the user to
hard code the vectors required by SmartMON. The table below Figure
Rom-8 contains a list of addresses which the user should install into the
vector table for SmartMON.

SmartMON ROM Monitor

File Name = RMAIN.68K

File Name = USREQU.68K

ROMM INIT

Initialization

call RM_init

call Port_init

do other device
initialization +

enable
interrupts

trap to ROMM

* read user

equates

e setup

environment

* load vector table

with generalized
trap

install system trap,
break trap, and
trace trap

RETURN

User Equates

File Name =10 DRV.68K

/

PORT INIT

initialize
transmitter

intitialize receiver

initialize vector
in vector table

RETURN

*required for interrupt |

/0

Other Device INIT

+ optional

initialize devices

initialize vector
in vector table

RETURN

Figure Rom~-7: Initialization

1. start of ROMM
data space

2. vector base
address

3. serial port
interrupt level

4. breakpoint trap
number

5. ROMM trap
number

6. microprocessor
type

Rom-39

Rom-40 Execution Environment

F00000 {S_rst_vecs}
Reset Vector Storage
F00008 {rmuser_code}
RMAIN
I0_DRV
sys_stp
sys_go
F00400
I
30 Hlex USER EQUATES {rmuser_equ}
F00430
SmartMON RM_INIT
Code

Figure Rom~8: Memory map

SmartMON ROM Monitor

SmartMON Addresses

BASE ADDRESS = Start Address of SmartMON image

Offset Address Function

(Symbolic Name)
0 RM_INIT SmartMON's vectored initialization
address.
4 NV_RM_INIT SmartMON'’s non—vectored initialization
address.

8 BUS ERROR Bus error {Vector #2} (optional).
(be_trp)

C ADDRESS ERROR Address error {Vector #3} (optional).
(ae_trp)

10 ILLEGAL lllegal instruction error {Vector #4}
INSTRUCTION (optional).
(illtrp)

14 DIVIDE BY ZERO Zero divide error {Vector #5} (optional).
ERROR
(divtrp)

18 PRIVILEGE Privilege violation {Vector #8} (optional).
VIOLATION
(prvtrp)

1C GENERAL Generalized exception may be used on
EXCEPTION unused vectors (optional).
(gentrp)

20 TRACE VECTOR Trace exception used by SmartMON for
(trcisr) single stepping.

24 BREAKTRAP Trap vector used by SmartMON for
(break_trp) breakpoints.

28 SYSTEM CALL TRAP Trap vector used by SmartMON for
(ROMM communications and system calls.

Table Rom—6: SmartMON addresses

Lets assume the following conditions for an example:

e The exception vector table is going to be hardcoded.
* The target EPROM is located at address 0000.

e SmartMON is going to be located at address 1000.

e TRAP #15 is to be used for system calls.

Rom-41

Rom-42

Execution Environment

When SmartMON is called to be initialized, the call will be made to
address 1004 (NV_RM_INIT - The NON-Vectored Initialization Routine).
The user must ensure that the exception vector for Trap #15 (Vector #47) is
loaded with address 1028. In addition, the user must also install the
addresses of all his exception routines at their corresponding vector
locations.

3.5 ROMM_GO SYSTEM CALL

When all of the above routines have been completed, you may decide
whether to enter the ROM monitor. Normally during the development
stage, the ROM monitor is entered on power-up. If you wish to leave the
ROM monitor in the prototype for product support, then, on power—up,
the ROM monitor would not be entered and the user code would boot
and run. The ROM monitor would only become active if a terminal was
connected and a ctrl-C or ctrl-X was entered.

If you wish to power up directly into the ROM monitor, then at the end of
the initialization code, place a ROMMrap with a ROMM_G@bde (the value
5) in register DO. The ROMMrap is the standard system call to invoke the
ROM monitor.

If the application program is to run directly upon power—up, omit the
ROMMrap from the initialization code.

SmartMON ROM Monitor Rom-43

3.6 CREATING YOUR OWN RMAIN.68K

The pseudo code on the following page outlines the operation of RMAIN
Working examples of rmain.68k , as well as all of the other TIP modules,
are included for many single board computers in the boards directory.

The pseudo—-code for the operation of rmain.68k is shown below:

* PSEUDO CODE

section S rst vecs
define initial stack pointer
define restart vector (start:)

section rmuser code

label= start:
set status register to supervisory mode
with INTS disabled

set up VBR to value defined in USREQU.68k
copy stack pointer to vector 0 in vector table
copy restart vector to vector 1 in vector table

call RM_INIT to initialize the ROM Monitor

initialize other target hardware
add other ISR address to vector table

call portinit to initialize serial port

set stack frame pointer A6 to zero
clear all registers

set status register to supervisory mode
with INTS enabled
system call ROMM_GO

END

EE I T S T I R N N R I S R R I

Rom-44

=

Execution Environment

3.7 TIP MODULE #3: 10_DRV.68K

SmartMON communicates with the dumb terminal or host computer
through a serial communication device. io_drv.68 is the module which
provides the serial driver for SmartMON.

Data is passed to and from the debugger through a trap handler. A
character is passed to the monitor by trapping to it with the character to be
processed in register D1. A character is passed from the monitor by
trapping to the ROM monitor and returning to the calling routine with the
character in register D1. You must therefore supply a routine which passes
characters to and from the ROM monitor and transmits or receives
characters through the serial port device.

io_drv.68k contains four major functions:

portinit A routine which is called by rmain.68k to
initialize the serial port.

The serial port ISR: The interface between SmartMON and the serial
port device.

TX_CHAR The transmit character routine.

RX_CHAR The receive character routine.

Each of these functions are described in this section.

3.8 PORTINIT CALL

portinit is a routine in io_drv.68k which is called by the initialization
code rmain.68k . This routine configures the serial port to the correct
configuration and loads the serial port interrupt vector into the vector
table.

SmartMON ROM Monitor Rom-45

3.9 SERIAL PORT INTERRUPT SERVICE ROUTINE

The serial port ISR is the interface between the serial port device and the
ROM monitor. When the serial port device generates an interrupt, a
software routine to service the interrupt is invoked. This routine is known
as an Interrupt Service Routine (ISR) or an interrupt handler.

An interrupt is generated when the device is ready to accept another
character for transmission or when it has received a character available to
input. For some types of UARTs. the same interrupt signals that a character
has been received or one may be transmitted. In this case you can write
only on ISR to handle both input and output.

A receiver ISR gets a character from the UART and passes it to the ROM
monitor by means of a ROMMrap with a INT_RX code in DO and the
received character in D1.

A transmitter ISR traps to the ROM monitor with a INT_TX code in DO. The
ROM monitor returns to the ISR with a character for transmission in D1. If
the call to the ISR was the result of the last character being transmitted the
ROM monitor will not return a character but, will set NO_CHARn DO. This
status indicates to the ISR that there are no more characters for
transmission.

Some UARTS use the same interrupt to signal that the transmitter is empty
or the receiver is full. In this case, the ISR must determine the device’s
status before proceeding.

3.10 TX_CHAR

In addition to the ISRs a routine called TX_CHARmust exist which the
ROM monitor calls with the first character of a new message. As previously
stated, the transmit ISR is only activated when the UART is ready to accept
another character for transmission. Therefore, in order to initiate this
process, the first character in a message must be loaded into the UART
through TX_CHARroutine. All the remaining characters in the message will
be transmitted by the transmit ISR. The transmit ISR requests the next
character in the message from the ROM monitor until all characters have
been transmitted.

Rom-46

=

Execution Environment

3.11 RX CHAR

RX_CHARS a receive character driver used in polled I/O. This label must
exist even in the interrupt-driven version of the ROM monitor, but need
only contain a single RTS instruction.

3.12 HOW TO CREATE YOUR OWN 10_DRV.68K

The source for several I/O drivers is included in the drivers directory of
the SmartMON release. There are also complete I0_DRV.68K modules
included with the complete TIPs in the boards directory.

The pseudo—-code for the operation of io_drv.68k is shown below:

EE T S I I I I D . T

EE I S

PSEUDO CODE
section rmuser code

label = portinit:
initialize the uart

load uart ISR address in vector table
return

section rmuser code

label = uart int:
INT ENTER system call to ROM Monitor
read uart status register
IF RX buffer full
THEN GOTO RECEIVE INT
ENDIF
IF TX buffer empty
THEN GOTO TRANSMIT INT
ENDIF
GOTO ERROR

RECEIVE INT:
read uart receive buffer

INT_RX system call to ROM Monitor
INT COMP system call ;no rtn from this call
END

TRANSMIT INT:
INT_TX system call
IF character to transmit
THEN write character to uart output buffer
ELSE clear interrupt
ENDIF

SmartMON ROM Monitor Rom-47

INT COMP system call ;no rtn from this call
END
ERROR:

clear the error

INT COMP system call ;no rtn from this call
END

label = tx_char:
write character to uart output buffer
rts

label = rx_char:
rts

E I S R D

3.12.1 SERIAL PORT POLLED 1/O0

In the polled I/O mode, characters are passed from SmartMON to the Host
using the serial device’s transmit buffer. The transmit routine, TX_CHAR
must monitor the device’s status register by waiting for the transmit buffer
empty status to indicate that the character has been transmitted. At this
point, TX_CHARmust make a system call, INT_TX, to request another
character. If a character is available, then the character is placed in the
serial device’s transmit buffer. This process continues until there are no
more characters available to transmit. This is indicated by the return code
of the INT_TX system call. Once all the characters are transmitted, then
the INT COMP system call is made, from which there is no return.
Execution either returns to User code or invokes the SmartMON debugger.

For character reception, SmartMON continually calls the receive routine,
RX_CHARIooking for another character. When a character is received,
RX_CHARmust make a system call, INT_RX, to inform SmartMON that a
character has been received. This process continues until a complete
message is received. At this point, SmartMON will process the command.
Additional characters received during the processing of this command may
result in an overrun condition.

3.12.2 TX_CHAR USING POLLED 1/O

The transmit character routine, TX_CHAR is used by SmartMON for
sending out all the characters of a message.

Rom-48 Execution Environment

=

3.12.3 RX CHAR USING POLLED I/O

The RX_CHARoutine must poll the device to check for a character
received. Once a character is received, then it is passed to SmartMON by
means of a system call trap with a INT_RX code in DO and the received
character in D1.

3.12.4 CREATING A POLLED /0 10_DRV.68K

Several popular UART drivers have been provided for installation ease.
Check to see if any are applicable to your specific application. If none of
the drivers are applicable, one may be used as a template for writing your
own. See the Using SmartMON chapter to better understand the polled 1/0O
mode of operation.

3.13 TIP MODULES #4 AND #5: SYSSTP.68K AND
SYS_GO.68K

In a an operating system environment when SmartMON is in command
mode, all normal operation should be suspended. In order to achieve this,
the ROM monitor will disable interrupts while in the debugger state.
However, you must supply any other target hardware specific operations
that need to be suspended.

These operations must be placed in the sysstp.68k and sys_go.68k
modules. The sys_stop routine is used for suspending operation and the
sys_go for reactivating the operations. These routines are always called
by the ROM monitor when the debugger is activated and deactivated.

3.13.1 SYS_GO

This routine, used for activating a user—defined operation, must be
included even if there are no special requirements. In this case, the
module need contain only an RTS instruction.

SmartMON ROM Monitor Rom-49

3.13.2 SYS_STOP

This routine for suspending a user-defined operation, must be included
even if there are no special requirements. In this case, the module need
contain only an RTS instruction.

3.14 TIP MODULE #6: DIAG_TBL.68K

The diag_tbl.68k contains a data structure that tells SmartMON about
the user—supplied diagnostics that will be included with the debugger.

The routine must be provided with the TIP, even if you do not plan to
include and custom diagnostics. In this case, the only information required
is the first line of the example below, the number of test, where n=0. Refer
to the Diagnostics chapter for more information.

* module name diag_tbl.68k

XDEF DIAG_TABLE

DIAG_TABLE:
DC.W 000n ; number of tests = n
DC.L TST1_MSG ; Menu message for test #1
DC.L TST1_MAIN ; User Diagnostic Test #1
DC.L TST1_ERR ; User Error Routine for #1
DC.L TSTn_MSG ; Menu message for test #n
DC.L TSTn_MAIN ; User Diagnostic Test #n

DC.L TSTn_ERR ; User Error Routine for #n

Rom-50

=

Execution Environment

4 BUILDING SMARTMON

This chapter describes how to use the 68K/ColdFire C Toolkit to create an
image of SmartMON that can be downloaded to a PROM burner, or
downloaded directly into RAM on your target board. It includes the
following major sections:

* Overview of the Build Process

e Notes on Building Applications to Work with SmartMON

e Starting—up SmartMON with CrossView Pro

e Troubleshooting

e Starting SmartMON with a Terminal or Terminal Emulator

4.1 OVERVIEW OF THE BUILD PROCESS

ISANE

The steps required to build SmartMON for your board are listed below.
Note that Steps 1 through 4 are covered in the previous chapter, Target
Interface Package.

Fill in the information in usrequ.68k to describe your board.

Modify the rmain.68k system initialization module, which will set up the
restart vector for the processor, call RM_INIT to initialize SmartMON,
initialize the serial port (call portinit), initialize other devices, and
optionally TRAPto the debugger.

Supply the ISRs and initialization code for the USART (io_drv.68k).

Develop code for sys_stop and sys_go , if necessary (sysstp.68k and
sys_go0.68k). Fill in the diagnostic structure contained in the
diag_tbl.68k file.

Assemble all the modules.

Link and locate code into appropriate place in user memory space.

7. Format for programming EPROMS.

Download code to PROM programmer.

Burn EPROMS.

SmartMON ROM Monitor

&

The examples in this chapter are for a VME105 board with a 68010
microprocessor. The SmartMON release contains batch files for building
the monitor and a demo program for each 68000 family board that is
directly supported. The batch files are under the specific board directory.
If you are building SmartMON for your own custom board, you may wish
to examine the batch files for a board that contains your microprocessor.
However, the batch files and the locator command files may need to be
modified for your board. Where you locate your ROM Monitor and
applications depends on the memory map of your board.

4.1.1 PREPARING THE BUILD ENVIRONMENT

For your convenience, create a WORKlirectory amd then copy the six
modified TIP source modules and the SmartMON object module into this
directory. Make sure that your path and environment variables are
properly set to ensure that you have access to all of the tools from this
WORKlirectory.

4.1.2 ASSEMBLING THE TIP

&

The six source files of the TIP need to be assembled. Using the TASKING
68010 assembler on PC/DOS, the commands and switches are:

asm68010 rmain.68k —I rmain.Ist —s —d —g —P.
asm68010 io_drv.68k —l io_drv.Ist —s —d —g —P.
asm68010 sys_go.68k —I sys_go.Ist -s -d —g —P
asm68010 sysstp.68k —I sysstp.Ist —s —d —g —P
asm68010 usrequ.68k —I usrequ.Ist —s —d —g —P
asm68010 diag_thl.68k —I diag_tbl.Ist —s —d —g —P

If you are using the base version of SmartMON with CrossView Pro, the
diag_tbl.68k module is not required.

The assembly options used above are not required, but their use simplifies
debugging when developing new TIP modules for custom boards.

Here is a summary of the assembler switches used:
-1 file Generate listing in file file.
-S Generate source listing.

-d Create debug information.

Rom-51

Rom-52

Execution Environment

-g Generate global symbol information.
-P Show generated structure syntax.

Please refer to the 68K/ColdFire C Compiler/Assembler User’s Manual for
more information.

4.1.3 LINKING AND LOCATING THE OBJECT MODULES

The linking locator utility, LLINK, allows you to specify a link file and a
locate command file on the command line. The link file, which in this
example is named rm.ols , contains object file names (in IMSI's .ol or
In format) that will be linked together. The locate command file, named
loc68k.cmd in this example, gives you a mnemonic means to specify the
memory map and place the SmartMON and TIP labels at the key
addresses.

The rm.ols link file contains the following:

rmain.ol

io drv.ol
sysstp.ol
sys_go.ol
diag tbl.ol
usrequ.ol
smon68ke.In

Note that the diag tbl.ol would not be listed in the rm.ols file when
building the base version of SmartMON (smon68kb.In). To build the base
version you would also have to remove the reference to DIAG_TABLE in
usrequ.68k . See the source file for the appropriate line.

For the VME105 example, the loc68k.cmd locator file would contain the
following locator directives:

locate (S_RST_VECS : #F00000);

locate (RMUSER_CODE : after #F00000);
locate (RMUSER_EQU : #F00400);

locate (est_bug : after #700430);

The ROM monitor will not function unless the user equates (section
RMUSER_EQUire exactly 30 (hex) locations before the start of the ROM
monitor code (est_bug).

SmartMON ROM Monitor Rom-53

The LLINK utility command line that references these link and locate files
is as follows:

llink —i rm.ols —o rm.ab —c loc68k.cmd —v
Here is a summary of the relevant linking locator switches:

-i rm.ols Take name of input modules from file rm.ols
See file contents below.

-o rm.ab Write output to file rm.ab .
-c loc68k.cmd Read locator commands for loc68k.cmd
-v Report linker actions as they are performed.

4.2 FORMATTING

The formatter takes an .ab (linked and absolute located) object module
and converts it to an object module in one of several industry standard
download formats. The default format, which we will use in this case, is
Motorola S records.

The formatter also allows us to apply a bias to the composite .ab file and
to split the object module into odd and even PROMs. We will take
advantage of these features in this example. Note that if we were planning
to download our composite SmartMON S records file into RAM, we would
not need biasing or split object modules.

The following are the formatter commands used on our composite rm.ab
file that was generated by the LLINK utility above:

form rm.ab —b 0 2 —f xm —a FO0O000 —o rmev.hex
form rm.ab —b 1 2 —f xm —a FO0000 —o rmod.hex

If the previous sequence of commands runs without any error you will be
left with the two hex files, rmev.hex and rmod.hex . These files are
ready to be downloaded and burned into PROMs. Here is a summary of
the formatter switches used:

-b 02 Control PROM byte slicing, output every second byte, even
address.

-b12 Output every second byte, odd address.

Rom-54

Execution Environment

—f xm Format the hex files in extended Motorola hex format.

-a FO0O000 Apply bias of FO0000 to each record. The bias allows you to
program PROMs (which need to have code loaded at address
0 of their memory space) while locating your code and data
beginning at address FOO000 of the target memory space.

-0 filename Write output hex file to filename. We specified rmev.hex
and rmod.hex , respectively.

4.2.1 PROGRAMMING THE PROMS

After the two hex files (even and odd) have been built, they must be
burned into PROM or EPROM chips. Before programming the chips, you
should check the PROM programmer’s documentation to make sure it is
able to program the chips. Also compare the microprocessor and board
requirements against the PROM/EPROM chip specifications to see if the
chips are the correct speed and if they are compatible with the
microprocessor and board. Different burners operate differently. Please
consult the PROM programmer’s manual to learn how to create the
PROMs.

4.3 NOTES ON BUILDING APPLICATIONS FOR

SMARTMON

This section describes building a demo application program to run with
SmartMON. All of the demonstration files can be found in the demo
subdirectory. The pmain startup code and the locate command file must
be customized to work with a specific single board computer and
microprocessor. Customized versions of pmain.68k and apploc.cmd can
be found in each board’s subdirectory. Some examples are:

68010 VME 105
68020 VME 133
68030 VME 147
CPU32 68332 EVS
68302 68302 ADS

The steps for building the demo program are described in the following
sections.

SmartMON ROM Monitor Rom-55

@ The following steps are only an example. You must know the memory
map and other characteristics of your board in order to make any
modifications.

4.3.1 STEP 1: MODIFY PMAIN.68K

pmain.68k contains the startup code required for executing user
applications. The source for pmain.68k is found in the run—time library
on the 68K/ColdFire product distribution. To execute user code with the
ROM monitor you will first need to modify pmain.68k , assemble it, and
link in the resulting object module, pmain.ol , instead of the default
run—time library version. If you plan eventually to run user code without
the ROM monitor, be sure to save the original pmain.68k

You will need to modify the code in pmain.68k to relocate the System
Stack Pointer (SSP/MSP) and the User Stack Pointer (USP). This means
changing the address of the stack pointers in two lines of code. The stack
pointer must be changed so that the stacks do not reside in the same area
of RAM memory that the ROM monitor uses. The following examples
illustrate the changes for pmain.68k when the target system is a Motorola
VME105 single board computer. This is the same target system used in
other examples in the manual. The following lines must be changed:

Change the commented line:

movea.l #$00007ffc,A7 ;:Set SSP (A7) to
:absolute address
:00007ffc

To:

movea.l #$00ea7ffc,A7 ;Set SSP (A7) to
;absolute address
;00ea7ffc

Change the commented line:

movea.l #$00007f00,A7 ;Set USP (A7) to
;absolute address
:00007f00

Rom-56

S

Execution Environment

To:

movea.l #$00ea7f00,A7 ;Set USP (A7) to
;absolute address
;00ea7f00

Because SmartMON will use the reset vectors for the stack pointer and
program counter, pmain.68k should not allocate data to these memory
locations. The segment, therefore, that defines the reset vectors must be
removed. The following lines of pmain.68k must be commented out for
the VME105 board:

org 0
dc.l $00007ffc
dc.l __main
To:
org €a0000
* dc.I $00ea7ffc
* dc.| main

The modifications to pmain.68k listed above must be done for all user
programs that will run on hardware with SmartMON present.

Refer to the Run-time Library appendix of the 68K/ColdFire C
Compiler/Assembler Reference Manual for information on incorporating
modified routines into the run—-time library.

Many options can interfere with normal SmartMON operations or cause
unsuspected results.

If Watch Dog Timer (WTD) is being used, be sure that sys_go.68k and
sysstp.68k are also modified to disable and re-enable the WTD time to
prevent it from resetting the target board during monitor control.

Upon return from the main procedure, you may go into an infinite loop. If
the trap to monitor is used, the monitor will reset itself and lose all
breakpoint information and any other operating functions (e.g., trace
enable).

SmartMON ROM Monitor Rom-57

4.3.2 STEP 2: BUILD THE DEMO OBJECT MODULES

Compile and assemble the demo files while generating symbolic
information for the CrossView Pro C source-level debugger. The command
lines are:

€c68000 demo.c —d —do
asm68000 pmain. —d
asm68000 addone.68k —d

Link and locate the code, saving symbolic information while linking in the
debugging routines. The user code must be located in an area of RAM
memory not used by the ROM monitor. The address to start locating the
user code is determined by subtracting the original value of the SSP in
pmain.68k from the value that it was changed to. Using the above
examples they would be:

0Oea7ffc — 00007ffc = 00ea0000

You should create a locator command file, locdemo.cmd , for the VME105
board which would contain the following line:

LOCATE({code}}Hdata}{usep}{constant}:AFTER #ea0000);

Assuming the modified pmain.ol will be linked in directly (instead of
using the librarian to insert it into the run—time library), the command to
run the linking locator would be:

llink demo.ol pmain.ol addone.ol end.In —0
—L libc68kdm.nf —v —c demo.loc

@ Do not use the llink —=x switch. The -x switch, which is used to build
programs to be debugged with emulator-based versions of the debugger,
will link in the run—time library object modules end.In and break.In

Although end.In should be linked with the application, breakpt.In will

interfere with the way the ROM monitor handles code breakpoints.
Instead, end.In should be linked in explicitly on the llink command line.
end.In contains code which allows you to take advantage of CrossView
Pro’s ability to evaluate function calls on the debugger command line.

The file end.In can be found in the appropriate compiler run—time
library. If the library containing pmain.68k has been modified on a
permanent basis it is not necessary to explicitly link in pmain.ol

Rom-58

Execution Environment

To format the code, saving symbolic information, type:
form demo.ab —x

The above four steps will produce a CrossView Pro symbol table file,
demo.abs , and a hex file, demo.hex , that can be downloaded and
executed.

4.4 STARTING-UP SMARTMON WITH CROSSVIEW PRO

Upon startup, CrossView Pro tries to establish contact with SmartMON,
using the settings specified on the CrossView Pro command line by
environment variables.

CrossView Pro has the ability to determine where the user code is and
what procedures are currently on the stack. When CrossView Pro first
communicates with the ROM monitor, the following communication takes
place between CrossView Pro and the ROM monitor:

CrossView Pro issues an IN command to determine the processor type.

CrossView Pro requests the first instruction of user code, looking for LINK
instructions, so it can correctly synchronize the source code with machine
instructions.

CrossView Pro requests the following registers: PC, A5, A6, and A7. If the
PC is within the bounds of the code to be debugged the appropriate
source code is displayed.

CrossView Pro then looks at the value of A6, the frame pointer. If this
value is not zero, CrossView Pro will follow the frame pointer to
determine what procedures have been called. CrossView Pro will follow
the current active stacks, depending on the value of the status register.
This allows CrossView Pro to build a stack window showing the current
status of the stack. It is very important that A6 is set to zero in RMAIN This
ensures that CrossView Pro does not have to chase down an invalid frame
pointer.

When a reset and run is issued (CrossView Pro R command), the following
communication takes place between CrossView Pro and SmartMON:

1. CrossView Pro issues a DC command to find the vector base register.

SmartMON ROM Monitor Rom-59

2. CrossView Pro issues a display memory at vector zero of the VBR. This is
the initial stack pointer for the system and is setup by RMAIN CrossView
Pro sets either the ISP or SSP to the value contained at that location.

3. CrossView Pro sends a command to reset all the registers to zero.
4. CrossView Pro sets the status register to 2700.

5. CrossView Pro goes to the symbol table and finds MAIN and loads that
address into the PC.

6. CrossView Pro then sets any breakpoints.
7. CrossView Pro then issues a GO command.

If the debugger has trouble communicating with the ROM monitor, it
prints a message starting with:

Sorry, the monitor is not responding.

This indicates that no reply was detected after sending data to the target
system. The debugger will try to reset the ROM monitor. If the debugger
can then get a response, you will be given another chance to
communicate in transparency mode. If the debugger still cannot get any
response, it will give up and exit. See the Troubleshooting section later in
this chapter.

If you get no response when invoking CrossView Pro, restart, and enter
transparency mode. Also, it is best to enable target/emulator output
logging for technical support help. Use the DC (Display Configurator)
command to see if the monitor is responding with the correct information.
If you get no response, there in no communication with the ROM monitor.
Refer to the following Troubleshooting section.

4.5 TROUBLESHOOTING

Most problems in starting up CrossView Pro for a debugging session stem
from improperly setting up the target system or from an improper
connection between the host computer and the target.

Here are some common problems:

* Specifying the wrong device name when invoking the debugger.

Rom-60

Execution Environment

* If you have installed the monitor with interrupt-driven I/0,
problems may exist with interrupt handling. Try installing the ROM
monitor with a polled-driven I/O driver to verify this is the
problem.

e The ROM trap number defined in usrequ.68k is not the same trap
number used in rmain.68k and io_drv.68k

e Specifying a baud rate different from the one the UART is
configured to expect.

e Not supplying power to the target system.
e Using the wrong kind of RS-232 cable.

* Plugging the cable into an incorrect port on the target or host. Some
target boards and hosts have several ports.

4.5.1 LOCATING THE TIP

The important thing to note is that the configuration table, found in
USREQU.68K MUST reside 30 hex locations before the start of SmartMON
code. This requirement is absolutely necessary in order for SmartMON to
initialize its environment. Locating the rest of the TIP is not as restrictive,
since the addresses will be resolved by the configuration table’s contents.

For example, if you wanted to place SmartMON at address 1000 Hex, then
the configuration table must reside at OFDO Hex (1000 - 30). In this
example, the user supplied code is defined in three sections:

S_RST_VECS This section contains only the addresses of the
restart vectors.

RMUSER_CODE This section contains the initialization code, the
system start and stop functions and the I/O
driver.

RMUSER_EQU This section contains the configuration table

and the user equates.

The reason for defining these sections is not only for clarity but also to
ensure that the restart vectors and the user’s configuration table may be
placed at specified addresses of the EPROMS.

SmartMON ROM Monitor

A Sample Locate Command File: Vectored

declare(RM_INIT : #f00430);

locate (S_RST_VECS: #f00000);

locate (RMUSER_CODE : after #f00000);
locate (RMUSER_EQU : #f00400);
locate (est_bug : #f00430);

A Sample Locate Command File: Non-vectored

declare(NV RM_INIT : #f00434);
declare(Trace VEC : #f00450);

declare(BreakTrap VEC : #f00454);
declare(SysCallTrap VEC: #f00458);

locate (S_RST_VECS: #f00000);

locate (RMUSER_CODE : after #f00000);
locate (RMUSER_EQU : #f00400);
locate (est_bug: #f00430);

4.5.2 PROGRAMMING EPROMS

&

First, download the TIP image to the beginning of the PROM
programmer’s buffer. Then download the SmartMON’s image to the correct
offset of the PROM programmer’s buffer. The correct offset being 30 hex
locations after the configuration table. Last, burn the PROM and verify its
contents.

If you are splitting your image to burn two PROMs, divide the start
location of SmartMON by two. Use this number for SmartMON’s offset.

When downloading a file to your PROM programmer buffer, the PROM
programmer should prompt you with the starting address in the buffer that
you wish to load your code. If the programmer does not, check the
manual for setting buffer offset.

Using the VME105 example above and assuming the TIP has been
formatted with the correct bias and the split images are named TIP.odd
and TIP.eve . Starting with the odd file, download TIP.odd to the PROM
programmer buffer starting a offset 0000. Then take SmartMON image
68kxe.odd and download it to the PROM programmer starting at hex
location 0218 (half of 430 because it is split). Burn and verify the PROM.
Repeat for the even side.

Rom-61

Rom-62 Execution Environment

=

@ 68kxe.odd and 68kxe.eve are not supplied but can be created by
linking rom68ke.In with a command locate and then formatted to
generate the two files.

4.6 STARTING SMARTMON WITH A TERMINAL OR
TERMINAL EMULATOR

Once the PROMs are programmed, simply plug them into the correct
sockets on your target hardware. Apply power and the SmartMON banner
should appear on your terminal/PC’s screen. The SmartMON banner will
look as follows:

SmartMON target: M68xxx Version x.xx
Copyright (c) 1997 Tasking, Inc., As Modified
>

SmartMON ROM Monitor Rom-63

5 SMARTMON COMMAND LANGUAGE

This chapter is a reference for the commands that can be issued to
SmartMON in direct communication mode. It includes the following major
sections:

* Overview

* Control Characters

e Operation Modes

* Command Descriptions

5.1 OVERVIEW

This chapter is a reference for the interactions between the user and
SmartMON in direct communication mode. Here, direct communication
mode means that you are talking to SmartMON via a dumb terminal or
terminal emulation program from a PC or workstation.

For information on how to drive SmartMON via the CrossView Pro
source-level interface, see the CrossView Pro Debugger User’s Manual.
CrossView Pro supports a direct target communications mode, called
emulator mode, in which you will be able to invoke all of the SmartMON
commands described in this section. You may wish to use emulator mode
with CrossView Pro in order to access SmartMON’s tracing, diagnostics,
data break points, and block memory operations features.

SmartMON uses a standard ASCII protocol with XON/XOFF flow control. It
uses two 512 character buffers; one for commands and the other for
responses. A command will not be interpreted until a termination character
is received. In other words, a command will not be executed until a line of
characters, including the termination character, has been entered. At most,
only two commands can be stored in the character buffer at a given time,
the command that is being executed and the one about to be executed.
Most commands have responses associated with them. All responses will
end with a Carriage Return (CR) and Line Feed (LF), followed by a prompt

).

Character processing is case insensitive. A command name is at least two
characters in length. Most commands can accept optional arguments or
parameters. A space character is used as the delimiting character between
command names and arguments.

Rom-64 Execution Environment

=

5.2 CONTROL CHARACTERS

The following control codes may be entered for command line editing,
interrupting SmartMON, and flow control processing.

@ The presence of the upward caret, """, before a character indicates that
the Control or CTRL must be held down while striking the character key.

~C (interrupt) This character will terminate any operation,
including an XOFF condition, flush the
character buffer, and return a response prompt.
If the user program is operating with serial port
interrupt disabled the command will not be
seen until interrupts are enabled.

"H (backspace) The cursor is moved back one space and the
character at that position is deleted.

*J (CR) The carriage return character is used as the line
termination character. In some cases, it may
repeat the last command.

*Q (XON) This character will restart the flow of characters.
*S (XOFF) This character will stop the flow of characters.
"X (line delete) The cursor is backspaced to the beginning of

the line. The last line of characters in the buffer
is flushed. A response prompt is sent.

5.3 OPERATION MODES

SmartMON has three modes of operation, each of which changes the
user’s interface slightly. The rest of this section will describe these
modes, which are as follows:

e Command Mode

e Download Mode

e Execution Mode

SmartMON ROM Monitor Rom-65

5.3.1 COMMAND MODE

The target does not execute instructions in this mode. Commands typed in
at the terminal/PC are interpreted by SmartMON. Command Mode is the
user’s interface to the target. The user can control resources and place the
target into a known state in this mode. Most interactions take place in
command mode, which is distinguishable by its prompt. For more details
on all the command see the Command Descriptions section of this chapter.

5.3.2 DOWNLOAD MODE

This mode is used to send down the user’s application code to the target’s
RAM. Download mode is used mostly during the debug stages of a project.
This mode is entered through the Download command (DL) and stays in
effect until either the end of file is reached or an interrupt control
character is received. For more information, see the DL command in the
Command Descriptions section of this chapter. Also, see the format of a
Motorola S-Record in the Object Module Formats appendix in the
68K/ColdFire C Compiler/Assembler User’s Manual.

5.3.3 EXECUTION MODE

This mode is in effect when the target is executing instructions. This
usually happens as a result of issuing a GO Command. Execution mode
operates in either real-time, non real-time, or some combination of both,
depending on the conditions that are setup in command mode. Data
breakpoints and code breakpoints in ROM code results in non real-time
execution, while either no breakpoints or code breakpoints in RAM code
permits real-time execution. Some complex breakpoints conditions will
run in real-time up to a point and then go into non real-time execution.
There are many combinations possible. See the Set Breakpoint command
(SB) in the Command Descriptions section of this chapter. A breakpoint or
an interrupt control character will place SmartMON back into command
mode. For more details on entering the execution mode, see the GO,
Single Step (SI), and Step Out Of Range (SO) commands in the Command
Descriptions section of this chapter.

Rom-66 Execution Environment

=

5.4 COMMAND DESCRIPTIONS

This section contains descriptions of each of the commands that can be
used with SmartMON. Each section will detail information about a
particular command and its options. Most sections are provided with one
or more examples for your convenience. These examples are formatted for
clarity in this manual. Actual screen displays may vary from machine to
machine. Some commands may be repeatable by hitting a carriage return.
Some of these will simply repeat the command exactly, like DB — Display
Breakpoints; while others will execute the command but increment the
addresses, like DM — Display Memory. Repeatable commands are
represented by an asterisks “*” in their section names. All the command
responses will end with a carriage return, line feed, and a prompt, as
indicated by <CRLF>.

SmartMON ROM Monitor Rom-67

Function
Breakpoint Disable.

Syntax
BDtype[addr]
type = C =code
D =data
R =range
addr = An optional breakpoint address.
Description

This command causes SmartMON to disable all (if addr is omitted), some,
or one of the software breakpoints currently enabled.

Example

In this example we will disable a breakpoint at address EA0000. First,
display all breakpoints, which also contain current status, and then disable
the breakpoint. Finally, verify the status of the breakpoint. Notice the
status change of the “cmp flags .

>DB

Data Break—Points

1. OEA0000 data mask = 000ff cmp_flags = enabled Word_cmp_BEQ
>BDC EA0000

>DB

1. OEA0000 data mask = 000ff cmp_flags = disabled Word_cmp_BEQ
>

DB - Display Breakpoints
SB - Set Breakpoint

Rom-68

Execution Environment

Function
Breakpoint Enable.

Syntax
BEtype[addr]
type = C =code
D =data
R =range
addr = An optional breakpoint address.
Description

This command causes SmartMON to enable all (if addr is omitted), some,
or one of the software breakpoints currently disabled.

Example

For this example, we will enable the breakpoint at address EA0000, which
has previously been disabled. First, show all breakpoints and their status
and then enable the breakpoint. Finally, verify the status of the breakpoint
by issuing a DB command. Notice the status change of the “cmp_flags ”

>DB

1. OEA0000 data mask = 000ff cmp_flags = disabled Word_cmp_BEQ
>

>BEC EA0000

>DB

1. OEA0000 data mask = 000ff cmp_flags = enabled Word_cmp_BEQ
>

DB - Display Breakpoints
SB - Set Breakpoint

SmartMON ROM Monitor Rom-69

BF

Function
Block Fill.

Syntax
BF[unit] base_addr hex_valueount

unit = B = byte
W = word (default)
L =long

base_addr = The start address for the fill, in hex.
bex_value = The value to be used to fill memory, in hex.

count = The number of units, in hex.

Description

This command causes SmartMON to fill a block of data starting at addr for
count number of the specified unit size.

Example

In this example, we will fill a block of memory, 32 bytes (20 hex) in
length with a hex word_string = 4121. First, display memory contents
and then fill the block. Finally, verify the command.

>DM 1000 20
001000 0000 0000 0000 0000 0000 0000 0000 0000
001010 0000 0000 0000 0000 0000 0000 0000 0000

>BF 10000 4121 20

>DM 1000 20
001000 4121 4121 4121 4121 4121 4121 4121 4121 AIAIAIAIAIAIAIAL

001010 4121 4121 4121 4121 4121 4121 4121 4121 AIAIAIAIAIAIAIAL
>

Rom-70 Execution Environment

For this example, we will change the command unit size from the last
example of a word to a size long.

>DM 1000 20

001000 0000 0000 0000 0000 0000 0000 0000 0000

001010 0000 0000 0000 0000 0000 0000 0000 0000

>BFL 10000 4121 20

>DM 1000 20

001000 0000 4121 0000 4121 0000 4121 0000 4121 ..Al.AL.AL.Al

001010 0000 4121 0000 4121 0000 4121 0000 4121 ..Al.Al. AL Al
>

@ This command is only available in the extended version of SmartMON.

d]j DM - Display Memory

SmartMON ROM Monitor

Function
Block Move.
Syntax
BM{[unit] src_addr dest_addr count
unit = B = byte
W = word (default)
L =long

src_addr = The start address of the data to copy.
dest_addr = The address where the data should be copied to.

count = The number of units, in hex.

Description

This command causes SmartMON to move blocks of data from one
address to another.

Example

In this example, we will move a 32 byte (20 hex) block from one area of
memory to another. First, display the memory contents of both the source
and destination address using the display memory command with a longer
block. Then, execute the block move command and display the new
memory contents.

>DM 1000 20
001000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
001010 0000 0000 0000 0000 0000 0000 0000 0000

>BM 1000 1010 OF

>DM 1000 20

001000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
001010 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!
>

@ This command is only available in the extended version of SmartMON.

@3 DM - Display Memory

Rom-71

Rom-72 Execution Environment

CF

Function

Configure.

Syntax
CF [flags]
flags = TF = tracing with full data movements
TP = tracing program counter only (default)
Description

This command allows the user to change the tracing configuration
parameters of SmartMON. Tracing full or tracing program counter only (the
default) may be selected. When tracing full is selected, SmartMON not only
stores the program counter, but also the data movements associated with
each instruction.

@ This command is only available in the extended version of SmartMON.

ﬂ? DT - Display Trace Buffer

SmartMON ROM Monitor

Function
Display Breakpoint.

Syntax
DB

Description

This command causes SmartMON to display all software breakpoints and
their status.

Example

Code breakpoint #1 causes SmartMON to go into command mode from
execution mode. Notice that this breakpoint was set to break after
reaching this address for a second time. Code breakpoint #2 is set to break
anytime the instruction at this address will be executed. Code breakpoint
#3 is a temporary breakpoint set as a result of issuing a GONcommand.
The GONcommand was issued placing SmartMON into execution mode
and code breakpoint #1 was taken placing SmartMON back into command
mode. A data breakpoint was set to break if the word at address EA0000
becomes equal to 00FF. A data range breakpoint was also set to break if
the value at address EA1234 goes lower than 7 or higher than 9.

>DB<cr>

Code Break—Points

1. 010000 count = 0002 actual = 0002 enabled ***

2. 010010 count = 0001 actual = 0000 enabled

3. 010408 count = 0001 actual = 0000 enabled (temporary)

Data Break—Points

1. EA000O data mask = 000000ff cmp_flags = enabled Word_cmp_BEQ

Data Range Break—Points

1. EA1234 Low = 0007 High = 0009 cmp_flags = enable outside check
>

Rom-73

Rom-74

=

&

Execution Environment

Breakpoint status includes whether the break is enabled or disabled and
the conditions on which to break. For viewing convenience, each
breakpoint is assigned a number within each category type: code, data,
and data range. In addition to this, after a breakpoint has occurred, a flag
indicates which breakpoint has interrupted execution mode and placed
SmartMON into command mode.

Either type of data breakpoint causes SmartMON to go into non real-time
execution mode.

GON - Go to Next Instruction
SB - Set Breakpoint

SmartMON ROM Monitor

DC

Function

Display Configuration.

Syntax
DC

Description

The command allows the user to examine the environmental resources
that are configured for SmartMON, which include:

microprocessor type

address of vector base register

beginning of SmartMON’s RAM space

ending address of SmartMON’s RAM including trace buffer
interrupt mask level

trap number used for breakpoints

trap number used for system calls

size of the trace buffer

type of storage used by the trace buffer, PC only or PC with data
movements

mode of operation, if entering the execution mode

All of this information, except for the trace buffer storage and mode of
operation, is read directly from the configuration table, which is setup as
part of the TIP elements. The trace buffer storage may be changed by
using a Configure command (CF). The mode of operation is determined
by many conditions, including tracing and conditional breakpoints.

Rom-75

Rom-76

=

I o

Example

Execution Environment

In this example, we will display a configuration setup for SmartMON. The
microprocessor is a Motorola 68010, with the vector base register setup at
address ES80000. SmartMON’s RAM space, including the trace buffer, starts
at E90000 and ends at E91800. Interrupts greater than level 4 will be
allowed to run while SmartMON is active. The I/O and breakpoint traps
will be assigned to traps 13 & 14, respectively. There is a 1K byte buffer
setup for storing trace information, which is configured for the program
counter only. If no other breakpoint conditions are set before you issue a
GO command, the execution mode will run in real-time.

>DC

GO

SmartMON uses the following resources:

Micro Type = M68010

VBR = 00E80000

RAM Start = 00E90000

RAM End = 00E91800

INT Mask = 0400

Break Trap = 14

1/0 Trap = 13

Trace Buffer = 1K

Trace Buffer Storage = PC only **

Mode of Operation = ..Running Real-Time

** = may be modified with CF command

- Configure
- Go

SmartMON ROM Monitor

DF

Function

Diagnostic Function.

Syntax
DF[unit] n[args]
unit = B = byte
W = word (default)
n= A number corresponding to a particular diagnostic.
args = Optional parameters containing addresses and hex strings.
Description

This command will run a diagnostic function. See the Diagnostics chapter
for more details.

@ This command is only available in the extended version of SmartMON.

Rom-77

Rom-78

Function

Disassemble.

Syntax

DI [addr] [count]

addr =

count =

Description

Execution Environment

The address to begin disassembling (the PC is the default).

The number of lines (in hex) to disassemble:

1 - default
20 — maximum

This command causes SmartMON to disassemble target code beginning at
either the program counter or the address specified for a length of count
number of lines. This command can also be used in combination with the

Single Step (SI) command.

Example

In this example, we will disassemble 8 lines of user’s code located at
address 10000. The display will show the address, the opcodes, and the

disassembled instructions.

>DI 10000 8

0010000
0010002
0010004
0010006
0010008
001000A
001000C
001000E
>

2200
4282
D401
E289
66FA
E20A
55C2
60FE

move.|
clr.l
add.b
Isr.l
bne.s
Isr.b
scs
bra.s

DO,D1
D2
D1,D2
#1,D1
$10004
#1,D2
D2
$1000E

@ This command is only available in the extended version of SmartMON.

@]3 SI - Single Step

SmartMON ROM Monitor

DL

Function

Download.

Syntax
DL [addr]

addr = An optional address offset to be added to each S record.

Description

The download command invokes a special mode of operation, called the
download mode. Once entered, all information sent over the serial port is
assumed to be data (S record format) until an EOF is encountered or the
interrupt control character ("*C) is received.

During downloading, the characters received are echoed back to the host.
Also, as a result of receiving a good S record and checksum, a positive
acknowledgement “+” (PACK is returned. A negative acknowledgement
“~” (NACK will be returned for a bad S record or checksum. A PACKwill
also be returned upon the initial download request before the first data
record is transferred.

SmartMON returns to command mode when an EOF is encountered. If a
download is aborted with a *C, all download records following the abort
will be treated as commands and will be handled as invalid. It is therefore
the responsibility of the host to stop transmission of records after issuing
the "C.

For relocatable code, you may send an optional offset with the command.
This offset will be added to the address specified by the S record. Hence,
the code may be downloaded to any available memory space.

Rom-79

Rom-80 Execution Environment

=

Example

In this example, the code was originally located at address ED0000, but we
will add an offset of 1000 to this address. The display will show the
positive acknowledgements and the echoed characters.

>DL 1000

+S00600004844521B
+S213ED0000000700EDO05600EDOO06COOEDOO07800F7
+S213EDOOOFEDOOA400EDOOBAOOEDOOCG00EDOOEAZE
+S213ED001EOOEDO010000ED013000ED017700ED0182
+S213ED002D8EOOEDO01C800ED025800EDO26EOOEDFD
+S804000000FB

>

SmartMON ROM Monitor Rom-81

Function
Display Memory.

Syntax
DM{[unit] addr count
unit = B = byte
W = word (default)
L =long
addr = The starting address of the memory to display.
count = The number of memory locations (size unit) to display.
Description

This command causes SmartMON to return the contents of the memory
location(s) requested. This command will display not only the address and
the hex data, but also the ASCII representation of that data.

Example

In this example, we will display 32 (20 hex) words of memory starting at
location 200010.

>DM 200010 20

200010: 3E2E 2E2E 0074 6573 7420 6E75 6D62 6572 >....test number
200020: 2033 2066 6169 6C65 6420 2D20 4E20 7263 3 failed — N rc
200030: 7664 0020 2020 2020 2020 2020 2020 2020 vd.

200040: 2020 2020 2020 2020 2020 2020 2020 2020

>

In this example, we will display 5 bytes of memory starting at location
300300.

>DMB 300300 5
00300300: 12 53 12 14 15 S..
>

Rom-82

Execution Environment

Function
Display Registers.

Syntax
DR [reg_namg

reg name = A valid register name for the target.

Description

This command causes SmartMON to display the contents of a particular
register or registers. If no arguments are specified then all the registers will
be displayed. The active stack will be flagged with an asterisk “*”.

Example

In this example, we will display all the registers of a Motorola 68010 based
target system. Notice the SSP or Supervisor Stack Pointer is the current
stack pointer used in A7 (Address Register 7).

>DR

DO = 00000000 D1 = 00000000 D2 = 00000000 D3 = 00000000
D4 = 00000000 D5 = 00000000 D6 = 00000000 D7 = 00000000
A0 = 00000000 A1 = 00000000 A2 = 00000000 A3 = 00000000
A4 = 00000000 A5 = 00000000 A6 = 00000000 A7 = 00E84000
USP = 00E85000 SSP*= 00E84000 PC = 00F00086 SR = 2000
VBR = 00E80000 SFC = 0007 DFC = 0007

>

In this example, first set some registers with values and then display these
registers in different order.

>SRL A0 100000 A3 120000 D1 1234 D3 55
>DR D1 D3 A0 A3

D1 = 00001234 D3 = 00000055 A0 = 00100000 A3 = 00120000
>

@]j SR - Set Register

SmartMON ROM Monitor Rom-83

DT

Function
Display Trace.

Syntax
DT[argl][arg2] [count]
argl = B = backwards (default)
F = forwards
arg2 = F = full trace with data movements
count = Number of locations to be displayed (default is 20 lines of

information).

Description

This command allows the user to examine the contents of the trace buffer.
The trace buffer contains the program history up to the point of
SmartMON becoming active. This is the result of leaving execution mode
and entering command mode. The trace buffer will have valid history only
if tracing had previously been enabled, either directly with the Trace
Enable (TE) command or indirectly by setting a data breakpoint, for
example. The trace buffer contains PC history and/or data movement
information, depending on the configuration parameters selected using the
Configure command (CF).

Rom-84 Execution Environment

=

Example

In this example, we display the last four instructions that were executed.
SmartMON was previously configured for capturing full trace with data
movements. Notice the instructions with data movements. The display will
show the address and data, where applicable, of the source, destination
before the instruction was executed, and destination after the instruction
was executed.

>DTBF 4

4.
00ECO00f2 bra.l $00EC0000
3.
00ECO0000 moveq.| #$ffffffff,d0 FFFFFFFF,00000000—>FFFFFFFF
2.
00EC0004 move.| d0,d1 FFFFFFFF, 00000000 —>FFFFFFFF
1

00EC0008 move.b d0,(a0) (OOEE0000)(00EE0000) 000000FF, 00 —> FF
>

In this example, we will show a trace display, without the data
movements, of three instructions that were previously executed.

>DTB 3

19. 00ea6070 2080 move.b di,(a0)

18. 00ea6074 10BCOOAA move.| #3AA,(a0)
17. 00ea6076 2210 move.| (a0),d1 >

d]j CF - Configure

SB — Set Break
TE — Trace Enable

SmartMON ROM Monitor

GO

Function

Start Execution.

Syntax
GO[flag] [addr]

flag = D = trace disabled
T = trace enabled

addr = An optional hex address where execution mode will resume.
The default is the PC.

Description

This command causes SmartMON to go into execution mode. The
execution mode will continue until either a breakpoint occurs or an
interrupt is received from the host. If breakpoints are enabled, a TRAP
instruction is inserted into the target code at each breakpoint address. This
will allow real-time execution of target code and still allow for breakpoints
to be taken.

If the location where execution begins contains a breakpoint TRAR then
that breakpoint is temporarily disabled until the program is stepped off of
the breakpoint. If an assertion has been set then, the GO command will
enable the TRACEbuffer and check for break conditions after each
instruction is executed. After the GO command has been issued,
SmartMON will display one of the following messages indicating the mode
of execution:

* ..RUNNING REAL-TIME

* ..RUNNING REAL-TIME WITH BREAKPOINTS

* _TRACING (PC only)

e .TRACING (PC only) WITH ASSERTIONS

¢ _TRACING (PC and Data Movements)

e _.TRACING (PC and Data Movements)
WITH ASSERTIONS

Rom-85

Rom-86

Execution Environment

The last function performed, before starting the execution of user’s code,
is a call SYS_GOThis function is used to enable user specific operations

that are suspended when SmartMON is active. Refer to the System Control
section of the Using SmartMON chapter.

The flag argument is a way to combine the Trace Enable (TE) or Trace
Disable (TD) commands with the GO command. This is optional and if not
specified there will be no effect on the execution mode, other than
conditions previously set. The tracing mode will remain in effect until it is
specifically changed by another GO command or by the TE or TD
commands.

Example

In this example, we will first examine the instructions located at address
10000 and then set a breakpoint and verify that it is the only condition
setup. We will also disable tracing and issue the GO command, which will
allow execution mode to operate in real-time. Notice the message
displayed.

>DI 10000 F

0010000 2200 move.| DO,D1
0010002 4282 clr.l D2
0010004 D401 add.b 1,D2
0010006 E289 Isr.I 1,D1
0010008 66FA bne.b $10004
001000A E20A Isr.b #1,D2
001000C 55C2 scs D2
001000E 60FE bra.b $1000E
>SB 1000E

>DB

Code Break—Points

1. 01000E count = 0001 actual = 0000 enabled
>GO 10000

..RUNNING REAL-TIME WITH BREAKPOINTS

IBREAK! — Breakpoint at 001000E
>

SmartMON ROM Monitor Rom-87

In this example, we will assume only one address breakpoint is set at
location 1000E. First, we issue a GO with trace enabled and then go again
from the same place. Finally, disable tracing and go again. Notice that
tracing is still enabled for the second GO command.

>GOT 10000

.. TRACING (PC only) WITH ASSERTIONS
IBREAK! — Code Breakpoint at 001000E

>GO 10000

..TRACING (PC only) WITH ASSERTIONS
IBREAK! — Code Breakpoint at 001000E

>GOD 10000

..RUNNING REAL-TIME WITH BREAKPOINTS !

BREAK! — Breakpoint at 001000E
>

d]j DB - Display Breakpoints
DI — Disassemble
SB - Set Breakpoint
TE - Trace Enable
TD - Trace Disable

Rom-88

GON

Function

Go to Next Instruction.

Syntax
GON

Description

Execution Environment

This command causes SmartMON to set a temporary breakpoint at the
address of the next instruction following the current instruction, then go
into execution mode. This command is useful when debugging modular
code because it allows a subroutine to execute without having to step
through the code. The call SYS_GGis the last function performed before

starting execution of user code.

Example

In this example, first show the user’s code and a subroutine of that code,
then set a breakpoint on the call to the subroutine. Execute up to that

subroutine, then issue a GON command. This will skip stepping through
the subroutine, but break upon its return.

>DI 6000 4

0006000 7003
0006002 7201
0006004 D4006FF8
0006008 E289
000600A D401
>DI 7000 2

0007000 D081
0007002 4E75
>SB 6004

>GO 6000

moveq.|
moveq.|
bsr.w
move.|
add.b

add.|
rts

..RUNNING REAL-TIME WITH BREAKPOINTS

IBREAK! — Breakpoint at 6004

#3,D1
#1,D1
$7000
DO,D1
D1,D2

D1,D0

SmartMON ROM Monitor Rom-89

>GON
..RUNNING REAL-TIME WITH BREAKPOINTS

IBREAK! — Breakpoint at 6008
>

DB - Display Breakpoints
DI — Disassemble

GO - Start Execution

SB - Set Breakpoint

Rom-90 Execution Environment

Function
Help.

Syntax
HE [cmd]
cmd = An optional two-letter command name.
If omitted, the help menu will be displayed.

Description

This command causes SmartMON to display the help menu. This menu
shows the syntax of the command set. Additional help for each command
may be specified by passing the command name as an argument on the
HE command line.

Example

In this example, we will display help for the Display Register (DR)
command.

>HE DR
DR {register}{cr} = display registers

{register} if not specified all registers displayed
>

@ This command is only available in the extended version of SmartMON.

SmartMON ROM Monitor

Function

Initialize.

Syntax
IN

Description

This command causes SmartMON to identify its version number, set default
configuration parameters, and put SmartMON into command mode.

Example

For this example, we will show an IN (initialize sequence) for a Motorola
68000 based system.

>IN
SmartMON target: M68000 Version: 4.0

Copyright (c) 1997 Tasing, Inc., As Modified
>

In this example, we will show an IN (initialize sequence) for a Motorola
68010 based system.

>IN
SmartMON target: M68010 Version: 4.0

Copyright (c) 1997 Tasing, Inc., As Modified
>

@ Initialization of SmartMON does NOT imply initialization of the target
system.

The revision numbers used in the examples are sample numbers for this
manual only.

Rom-91

Rom-92 Execution Environment

Function
Modify Memory.

Syntax
MM{[unit] addr values
unit = B = byte
W = word (default)
L =long
addr = The start address for the set, in hex.
values = A space-separated list of values to write to memory.
Description

This command causes SmartMON to fill memory with the hex byte values
specified and without verification of the write (write only).

Example

In this example, we will display the contents of memory both before and
after we set three bytes of memory to the specified values.

>DMB 200010 3
200010: FF OF 00
>MMB 200010 OB 7F 34
>DMB 200010 3

200010: 0B 7F 30 .0

>
ﬁ]j DM - Display Memory

SmartMON ROM Monitor Rom-93

Function

Remove Breakpoint.

Syntax
RBJ[type] [addr]
type = C = code (default)
D =data
R =range
addr = An optional address that specifies the breakpoint to be
removed.

If type and addr are omitted, then all breakpoints will be removed.

Description

This command causes SmartMON to remove a software breakpoint at the
address specified. If no arguments are specified, then all breakpoints will
be removed. If an address is specified, then the default argument is
assumed to be a code breakpoint.

Example

In this example, first display some breakpoints that were previously setup
and then remove a code breakpoint at address 10000. Finally, verify that
the breakpoint has been removed. Notice that the second code breakpoint
will become the first breakpoint after the RBcommand is executed.

>DB
Code Break—Points

1. 010000 count = 0002 actual = 0000 enabled
2. 010010 count = 0001 actual = 0000 enabled

Data Break—Points
1. EAO00O data mask = 000ff cmp_flags = enabled

Word_cmp_BEQ
>

Rom-94 Execution Environment

>RBC 10000

>DB

Code Break—Points

1. 010010 count = 0001 actual = 0000 enabled
Data Break—Points

1. EAO00O data mask = 000ff cmp_flags = enabled

Word_cmp_BEQ
>

@j DB - Display Breakpoints

SmartMON ROM Monitor Rom-95

SB

Function

Set Conditional Breakpoints.

Syntax
For setting a conditional breakpoint and checking a register value:

SB addr [count] > R reg [value] [condition]

For setting a conditional breakpoint and checking a memory location:
SB addr [count] > D [data_addr] [value] [condition]

For setting a conditional breakpoint to enable/disable tracing:
SB addr [count] > { TE |TD }

addr = The address to set the breakpoint.

count = The number of times that the breakpoint must be
encountered before testing for condition.

reg = The name of a target register to check.
value = The test value to compare.
data_addr = The memory location to compare against value.

condition = unit type test

unit= B =Dbyte
W = word
L =long

type = =and

A
C = compare
E

test = = equal

N = not equal
The default condition is LCE - long compare break if equal.

TE,TD = Enable or disable trace respectively.

Rom-96 Execution Environment

=

Description

This command causes SmartMON to set a conditional software breakpoint
at the address specified. The conditional tests will be done when the
address is encountered count times.

The following is a list of those conditions which may be checked:

e Check an ADDRESSr DATA REGISTERfor specific value.
e Check a MEMORYocation for a particular value.

e Enable Tracing.

e Disable Tracing.

When entering the execution mode, the mode of operation message,
displayed by the GO command, will only indicate the mode that was
started.

Example

In this example, we will set a conditional breakpoint to occur when the
program counter reaches address 10000 and register DO has a value of
OOOFFFFF. First set the conditional breakpoint and then issue the GO
command.

>SB 10000 > R DO FFFFF
>GO FF00
..RUNNING REAL-TIME WITH BREAKPOINTS

IBREAK! — Breakpoint at 10000
>

In this example, we will set a conditional breakpoint to trace a specific
subroutine’s execution. First set a conditional breakpoint that will enable
tracing during the subroutine and also set a conditional breakpoint that
will disable tracing at the end of that subroutine. Finally, issue the GO
command. Begin by displaying the code that will execute. Notice that
when entering execution mode, the code will be running real-time; only
during the subroutine will the code not run in real-time.

>DI 6000 5

0006000 7003 moveq.| #3,D1
0006002 7201 moveq.| #1.D1
0006004 D4006FF8 bsr.w $7000
0006008 E289 move.| DO,D1

000600A D401 add.b D1,D2

SmartMON ROM Monitor

Rom-97

T &

>DI 7000 4
0007000
0007002
0007004
0007006

>SB 7000 > TE
>SB 7006 > TD
>SB 600A

>GO 6000

..RUNNING REAL-TIME WITH BREAKPOINTS

IBREAK! — Breakpoint at 600A

>DTB

4. 0007000
3. 0007002
2. 0007004
1. 0007006

\%

D081
E289
D401
4E75

D081
E289
D401
4E75

add.|
move.|
add.b
rts

add.|
move.|
add.b
rts

D1,D0
DO,D1
D1,D2

D1,D0
DO,D1
D1,D2

In the basic version of SmartMON, the SB command is translated to SBC
and any option after count is treated as a syntax error.

DI — Disassemble

DT - Display Trace Buffer

GO - Start Execution

Rom-98 Execution Environment

SBC

Function
Set Address Breakpoint.

Syntax
SBC addr [count]
addr = The code address for the breakpoint’s location.
count = An optional count that specifies the number of times the
breakpoint must be encountered before executing the
breakpoint.
Description

This command causes SmartMON to set a software breakpoint at the
address specified.

Example

In this example, set a breakpoint at address 10000. We do not want this
breakpoint to be taken until this code has executed 16 (10 hex) times.
Verify that the breakpoint exists and issue a GO command.

>SB 10000 10

>DB

Code Break—Points

1. 010000 count = 0010 actual = 0000 enabled
>GO

..RUNNING REAL-TIME WITH BREAKPOINTS

IBREAK! — Breakpoint at 10000
>

@ Since a code breakpoint is the default, SB may be used instead of SBCif
desired.

DB - Display Breakpoints
GO - Start Execution

SmartMON ROM Monitor Rom-99

SBD

Function
Set Data Breakpoint.

Syntax
SBD addr datacondition
addr = The data address to evaluate.
data = The data value to compare to see if the breakpoint should be
executed.

condition = unit type test

unit= B = byte

W = word

L =long
type= A =and

C = compare
test = E =equal

N = not equal

The default is LCE - long compare break if equal.

Description

This command causes SmartMON to compare data at the address specified
while tracing through execution mode. The data is compared against the
value residing at the specified address using the conditions set forth by the
arguments. The breakpoint will occur if the test condition is satisfied.

Rom-100 Execution Environment

=

Example

In this example, we set a data breakpoint for the word data residing at
address E00000. We would like to find the section of code that is
overwriting a variable at this address. The breakpoint will be taken if the
data changes to any value other than FFFF. First, display the contents of
the variable and then set the data breakpoint, issue the GO, and verify the
variable’s contents.

>DMW E00000 1
E00000: FFFF

>SBD E00000 FFFF WCN

>GO

..TRACING (PC only) WITH ASSERTIONS
IBREAK! — Data Breakpoint at F00440
>DMW E00000 1

E00000: FFFE
>

In this example, we set a data breakpoint for the word data residing at
address E00010. We would like to find what section of code is setting a bit
flag at this address. Setup the breakpoint to occur if the least significant bit
gets set. First, display the contents of the flag word and then set the data
breakpoint, issue the GO, and verify the flag word’s contents.

>DMW E00010 1
E00010: FFFE

>SBD E00000 0001 WAE

>GO

..TRACING (PC only) WITH ASSERTIONS
IBREAK! — Data Breakpoint at F03510
>DMW E00000 1

E00010: FFFF
>

DM - Display Memory
GO - Start Execution

SmartMON ROM Monitor Rom-101

SBR

Function
Set Data Range Breakpoint.

Syntax
SBR[unit] addr low_data high_data[tes]
unit = B = byte
W = word

L =long (default)
addr = The data address to evaluate.
low_data = The low value of the data range.
bigh_data = The high value of the data range.

test = E = Equal or break on data outside range
- no break on boundaries (default).
N = Not equal or break on data inside range
- break on boundaries.

Description

This command will set up a data breakpoint condition where the value at
a specific location must fall either within or outside a certain range. The
breakpoint will occur if the test condition is satisfied.

Rom-102 Execution Environment

=

Example

In this example, we will set a data range breakpoint for the word data
residing at address E00000. We would like to determine when a certain
variable will exceed a specified limit. The breakpoint will be setup to
occur when the value of this variable is outside a certain range. First,
display the contents of the variable and then set the data range breakpoint,
issue the GO command, and verify the variable’s contents. Notice the
values are long only.

>DMLEO00000 1
EOO0000: 0O0OO0OAOGOO Ll

>SBR E00000 9FFF B0O00 E

>GO

..TRACING (PC only) WITH ASSERTIONS
IBREAK! — Data Range Breakpoint at F01424

>DM EO00000
E00000: 0000 BOO1 0000 0000 0000 0000 0000 0000...........
>

In this example, we will set a data range breakpoint for the word data
residing at address E00000. We would like to determine when a certain
variable will fall within our specified limit. The breakpoint will be taken
when the value of this variable is inside a certain range. First, we will
display the contents of the variable. Then we will set the data range
breakpoint, issue the GO and verify the variable’s contents.

>DML E00000 1
EO00000: 0000AOCO L

>SBR E00000 AAAA BOOO N <cr>

>GO

..TRACING (PC only) WITH ASSERTIONS
IBREAK! — Data Range Breakpoint at FO186A
>DM E00000

E00000: 0000 AAAB 0000 0000 0000 0000 0000 0000
>

DM - Display Memory
GO - Start Execution

SmartMON ROM Monitor Rom-103

Si

Function
Single Step Instruction.

Syntax
SI[DR][DI] [count]
DR = Display all registers, if specified.
DI = Disassemble the last instruction executed, if specified.
count = An optional number of target instructions to execute. The

default is one instruction.

Description
This command causes SmartMON to go into execution mode with tracing
enabled.

Example

In this example, we will single step the target for one instruction. We
would like to see the contents of the registers and the instruction that was

executed.

>SIDIDR

..TRACING (PC only) WITH ASSERTIONS

DO = 00000000 D1 = 00000000 D2 = 00000000 D3 = 00000000
D4 = 00000000 D5 = 00000000 D6 = 00000000 D7 = 00000000
A0 = 00200000 A1 = 00000000 A2 = 00000000 A3 = 00000000
A4 = 00000000 A5 = 00000000 A6 = 00000000 A7 = 00000000

USP = 00000000 SSP = 00000000 PC = 00000000 SR = 0000
VBR = 00000000 SFC = 0000 DFC = 0000

MOVE.W #$7F00,(A0)

@ This command is only available in the extended version of SmartMON.

Rom-104 Execution Environment

=
SM

Function
Set Memory.
Syntax
SM[unit] addr values
unit = B = byte
W = word (default)
L =long
addr = The start address for the set, in hex.
values = A space-separated list of values to write to memory.
Description
This command causes SmartMON to fill memory with the hex byte values
specified.
Example

In this example, we will display the contents of memory both before and
after we set three bytes of memory to the specified values.

>DMB 200010 3
200010: FF OF 00
>SMB 200010 0B 7F 34
>DMB 200010 3

200010: OB 7F 34 .4

>
ﬁ]j DM - Display Memory

SmartMON ROM Monitor Rom-105

SO

Function
Step Out of Address Range.

Syntax
SO startend
start = The starting address for the range.
end = The ending address for the range.
Description

This command causes SmartMON to go into execution mode with trace
enabled. The execution mode will continue until any of the following
conditions occurs: a breakpoint is encountered, an instruction outside of
the specified range is about to be executed, or an interrupt is received
from the host.

Example

In this example, we will single step the code until the program falls
outside the specified range.

>S0 0001000 0001fff
..TRACING (PC only) WITH ASSERTIONS

IBREAK! — Code Step out of Range at 0002154
>

Rom-106 Execution Environment

-
SR

Function
Set Registers.

Syntax
SR[unit] reg valug reg value ..]
unit = B = byte
W = word
L =long (default)
reg = A valid target register (you may not modify the value of A7).
The keyword all may be specified to mean all registers other
than A7.
value = A hex value to write to the register.
Description
This command causes SmartMON to modify the register or registers
specified.
Example

In this example, we will set address register A0 and data register D2 with
word values. Then display these registers to verify their contents. Notice
that only the lower word of the register will be affected by this command.

>DR A0 D2
AO = 00000000 D2 = FFFFFFFF
>SR A0 005B D2 7F34

>DR A0 D2

A0 = 0000005B D2 = FFFF7F34

>
@j DR - Display Registers

SmartMON ROM Monitor

SS

Function
Search for String.

Syntax

SS[unit] addrrangestring

unit = A = ASCII (default)

H = hex

addr = The starting address of the search.

range = The size of search in bytes.

string = The string to be searched for.
Description

This command allows the user to search for a string in memory.

Example

In this example, we will search for the ASCII string “hello ” for 32 (20
hex) memory locations. Find one string and continue the search until all
the locations have been checked. There will be only one occurrence of
this string in the memory that will be searched.

>SSA 10000 20 hello
String found at 1000f
><CR>

String not found

@ This command is only available in the extended version of SmartMON.

Rom-107

Rom-108 Execution Environment

-
TD

Function

Trace Disable.

Syntax
TD

Description

This command causes SmartMON to disable tracing of target execution
code. Tracing may not be disabled if assertions are set. Programs will run
in real-time when tracing is disabled.

Example

In this example, we will assume no other assertions are set. Disable trace
and issue 2 GO command. Execution mode will run in real-time.

>TD
>GO
..RUNNING REAL-TIME

In this example, we will assume that another assertion is set. Disable trace
and issue a GO command. Execution mode will NOT run in real-time.

>TD
>GO

..TRACING (PC only) WITH ASSERTIONS

ﬁ]j GO - Start Execution

SmartMON ROM Monitor Rom-109

TE

Function

Trace Enable.

Syntax
TE

Description

This command causes SmartMON to enable tracing of target execution
code.

@ The default configuration parameter for tracing is trace the PC history only.

If tracing with full data movements is enabled (see the CF command),
then the data associated with “move” type commands will be saved in the
trace buffer. Once the trace parameter has been selected, all subsequent
TE commands will be in that mode.

ﬂ? CF - Configure

Rom-110 Execution Environment

=
UuD

Function

User Diagnostics.

Syntax
UD[type] number

type = C = run test continuously
H = run test continuously, halt on error
I install RAM diagnostics

The default is to run tests once.

number = n - number of tests to be run
A - all tests

Description

SmartMON allows the user to create his own diagnostics to run under the
monitor. See the Diagnostics chapter for more information.

@ This command is only available in the extended version of SmartMON.

SmartMON ROM Monitor Rom-111

6 SYSTEM CALLS

This chapter is a reference for the system calls used to access selected
functional routines contained within SmartMON.

6.1 INTRODUCTION

System calls can be used to access selected functional routines contained
within SmartMON. The access to SmartMON is through the user defined
TRAP# called RM_TRP(USREQU.68K. In order to select the appropriate
function, a system call code is loaded into DO and a trap is then made to
SmartMON. SmartMON decodes the value passed in DO and takes the
appropriate action.

System calls are used by the user-supplied I/O driver. The serial port ISR
informs SmartMON of a pending character or buffer empty after
transmission of a character. System calls may also be used by the user’s
application code to access communication services.

The following information includes a description of the system calls, the
function codes, its return values, and any necessary guidelines.

@ Not all system calls are available in the basic version of SmartMON.

Rom-112

=

Execution Environment

EVT_COPY

Function

A user may wish to create a separate vector table in memory to contain its
exception vectors. If the user wishes to use SmartMON services, he must
copy over those vector addresses used by SmartMON.

When this system call is issued, SmartMON will copy the current EVT
(Exception Vector Table) to a location starting at an address specified in
AO0. When SmartMON copies it performs a write read verify. If this check
fails an error is returned.

Example
LEA start evt,A0 ;load address pointer
MOVE.W #EVT_COPY,DO ;load system call
TRAP #ROMM ;trap
Input
DO = EVT_COPY 000A
A0 = address of new EVT
Output
DO = return code
Returns
0000 = RET OK successful return
0001 = FAIL unable to write EVT

@ VBRmust not be changed until after this system call.

SmartMON ROM Monitor Rom-113

IN_CHAR

Function

When this system call is issued SmartMON will read a “>” character from
the input buffer. SmartMON returns the next character from its input
buffer.

If there is no character present in the buffer, IN_CHAR returns the error
code NO CHAR

Example
MOVE. W #IN_CHAR,DO
TRAP #ROMM ;trap
Input
DO = IN_CHAR 0010
Output
DO = return code
D1[7:0] = character
Returns
0000 = RET OK successful return

0001 = NO CHAR

Rom-114

=

Execution Environment

IN_STR

Function

When this system call is issued SmartMON will read a string from the input
buffer. SmartMON places the string in a buffer pointed to by an address in
AO. A string consists of a number of characters terminated with a <cr>.

If a complete string is not present in the buffer, IN_STR returns the error
code NO STR

Example
LEA buff ptr,A0 ;load address pointer
MOVE.W #IN_STR,DO
TRAP #ROMM ;trap
Input
DO = IN_STR 0011
AO = address of buffer
Output
DO = return code
Returns
0000 = RET OK successful return
0001 = NO STR

@ This function is only available in the extended version of SmartMON.

SmartMON ROM Monitor Rom-115

INT_COMP

Function

This call exits an ISR (interrupt service routine). When you INT_ENTER at
the start of the ISR, you must terminate the ISR with this call. Refer to
INT_ENTER for enter interrupt service handler. There is no return to the
interrupt service routine for this system call. Execution resumes wherever
code was executing previous to the interrupt service routine’s execution.

Input
DO = INT_COMP 0002

Output

no return is possible

@ Because register DO is needed to make the INT_COMPcall to SmartMON; it
is assumed that the original value of DO saved at the start of the ISR is now
on top of the stack. The stack must have the following format when

calling INT_COMP

DO

ISP OR SSP—> SR
PC
Format I/D *

*MC68010 and 68020 only

Rom-116

=

Execution Environment

INT_ENTER

Function

This call is used to signal SmartMON that an ISR has been entered.
INT_COMPmust be used to exit the ISR that begins with INT_ENTER
Refer to the INT_COMPcommand in this section.

Example
MOVE.W D0,—(sp) ;save DO
MOVE.W #INT_ENTER,DO :load DO
TRAP #ROMM ;trap

Input
DO = INT_ENTER 0001

Output
DO = return code

Returns
0000 = RET OK successful return

@ Your ISR must save the contents of register DO of size word onto the stack

before this call is made.

SmartMON ROM Monitor Rom-117

INT_RX

Function

An ISR uses this call to transfer each character to SmartMON as it is
received from the supported I/O device.

Input

DO = INT_RX 0004
Output

DO = return code
Returns

0000 = RET OK successful return

Rom-118

=

Execution Environment

INT_TX

Function

An ISR uses this call to inform SmartMON that it is ready to transmit
another character to the supported 1/O device. SmartMON returns the next
character from its output buffer to the ISR.

If there is no character present in the buffer, INT_TX returns the error
code of 0001, which is a NO CHARreturn code.

Input
DO = INT_TX 0003
Output
DO = return code
D1[7:0] = character
Returns
0000 = RET OK successful return

0001 = NO CHAR

SmartMON ROM Monitor Rom-119

OUT CHAR

Function

When this system call is issued SmartMON will write a character out to the
serial port.

Example

MOVE.B CHAR,D1
MOVE.W #OUT_CHAR,DO

TRAP #ROMM ;trap
Input

DO = OUT_CHAR 0013

D1 = character to be transmitted
Output

DO = return code
Returns

0000 = RET OK successful return

Rom-120

=

Execution Environment

OUT DATA

Function

When this system call is issued SmartMON will read data from the buffer
pointed to by an address in AO for a count contained in D1. The data is
converted to ASCII hex before transmission.

Example
LEA buff ptr,AQ ;load address pointer
MOVE.W COUNT,D1 ;load the number of bytes
MOVE.W #OUT_DATA,DO
TRAP #ROMM ;trap

buff ptr: dc.b $24,$48,$fe

Input
DO = OUT_DATA 0015
A0 = address of buffer
Output
DO = return code
Returns
0000 = RET OK successful return
0001 = NO STR

@ This function is only available in the extended version of SmartMON.

SmartMON ROM Monitor

OUT _STR

Function

When this system call is issued SmartMON will read a string from the a
buffer pointed to by an address in AO. A string consists of a number of
characters terminated with a null.

If more than 254 characters are present without a null, OUT_STRreturns
the error code STR_TO_LONG

Example

LEA

MOVE.W
TRAP

buff ptr,AQ ;load address pointer
#OUT_STR,DO
#ROMM strap

buff ptr: dc.b "Hello”,$a,$d,$0

Input

DO
A0

Output
DO

Returns

0000
0001

OUT_STR 0014
address of buffer

return code

RET OK successful return
STR TO LONG

@ This function is only available in the extended version of SmartMON.

Rom-121

Rom-122

=

Execution Environment

RD STR

Function

When this system call is issued SmartMON will read a string from the input
buffer. SmartMON places the string in a buffer pointed to by an address in
AO. A string consists of a number of characters terminated with a <cr>.

This function does not return to the caller until a <cr> is received.

Example
LEA buff ptr,AO0 ;load address pointer
MOVE.W #RD_STR,DO
TRAP #ROMM ;trap
Input
DO = RD_STR 0012
A0 = address of buffer
Output
DO = return code
Returns
0000 = RET OK successful return

@ This function is only available in the extended version of SmartMON.

SmartMON ROM Monitor Rom-123

ROMM _GO

Function

When this system call is issued SmartMON becomes active and a “>” will
appear on the terminal. This call is typically made at the end of
RMAIN.68K, but may be placed anywhere in user code to invoke

SmartMON.
Example
MOVE.W DO,—(sp) ;save DO
MOVE.W #ROMM_GO,D0 ;load DO
TRAP #ROMM ;trap
Input
DO = ROMM_GO 0005
Output
DO = no return possible
Returns
0000 = RET OK successful return

Rom-124 Execution Environment

=

7 DIAGNOSTICS

This chapter describes diagnostic functions which are utility routines and
special tests that are useful for exposing memory problems. Diagnostics

can be performed both by using SmartMON diagnostic commands or by
using user—written custom diagnostic routines. This chapter includes the
following major sections:

* SmartMON Diagnostics
e User Diagnostics

@ Diagnostic functions and their utilities are only available in the extended
version of SmartMON.

7.1 SMARTMON DIAGNOSTICS

7.1.1 OVERVIEW

The diagnostic functions are a group of utility routines and special tests.
They are useful for exposing memory problems and giving the user the
ability to write and execute custom diagnostics, both ROM and RAM
based.

SmartMON has provided RAM tests, scope loops, and CRC tests for basic
conveniences. For integrating customized diagnostics, see the User
Diagnostics section later in this chapter. The rest of this section will
describe the tests that are already incorporated into SmartMON.

7.1.2 RAM TESTS

These pre written RAM tests check to see if target memory is operating
properly. Simple and complete RAM tests are supported in both single
pass and continuous pass modes.

SmartMON ROM Monitor

DFO

Function
Simple RAM Test, Single Pass.

Syntax
DFJ unit] O start end
unit = B = byte
W = word (default)
L =long
start = The starting memory location to test.
end = The ending memory location to test.
Description

Run a simple RAM test for a single pass.

Example

A simple RAM test will be executed on a 128 word memory space. There
will be no errors.

>DFW 0 00000 O00OFF
>complete

A simple RAM test will be executed on a 128 word memory space. There
will a bad memory bit 12 at address 0000E. A bit will be stuck low.

>DFW 0 00000 000FF
memory failure: $0000E=$4555 not $5555

complete
>

Rom-125

Rom-126 Execution Environment

-
DF1

Function
Complete RAM Test, Single Pass.

Syntax
DF[unit] 1 start end
unit = B = byte
W = word (default)
L =long
start = The starting memory location to test.
end = The ending memory location to test.
Description

Run a complete RAM test for a single pass.

Example

A complete RAM test will be executed on a 128 word memory space.
There will be no errors.

>DFW 1 00000 O00OFF
>complete

A complete RAM test will be executed on a 128 word memory space.
There will a bad memory bit 12 at address 0000E. A bit will be stuck low.

>DFW 1 00000 000FF

memory failure: $0000E=$efff not $ffff
memory failure: $0000E=$0000 not $1000

complete
>

SmartMON ROM Monitor

DF2

Function
Simple RAM Test, Continuous.

Syntax
DF[unit] 2 start end
unit = B = byte
W = word (default)
L =long
start = The starting memory location to test.
end = The ending memory location to test.
Description

Run a simple RAM test continuously. This test can be stopped by an
interrupt control character (*"C) from the host.

Example

A simple RAM test will be executed continuously on a 128 word memory
space. There will be no errors.

>DFW 2 00000 000FF
TEST IS LOOPING PRESS *C TO ABORT
NUMBER OF COMPLETE LOOPS = $XXXX

A simple RAM test will be executed continuously on a 128 word memory
space. There will a bad memory bit 12 at address 0000E. A bit will be
stuck low.

>DFW 2 00000 000FF

TEST IS LOOPING PRESS ~C TO ABORT
memory failure: $0000E=$4555 not $5555
PASS# =1

memory failure: $0000E=$4555 not $5555
PASS# =2

UNTIL ~C

Rom-127

Rom-128 Execution Environment

-
DF3

Function
Complete RAM Test, Continuous.

Syntax
DF[unit] 3 start end
unit = B = byte
W = word (default)
L =long
start = The starting memory location to test.
end = The ending memory location to test.
Description

Run a complete RAM test continuously. This test can be stopped by an
interrupt control character (*"C) from the host.

A complete RAM test will be executed continuously on a 128 word
memory space. There will be no errors.

>DFW 3 00000 000FF
TEST IS LOOPING PRESS ~C TO ABORT
NUMBER OF COMPLETE LOOPS = $XXXX

A complete RAM test will be executed continuously on a 128 word
memory space. There will a bad memory bit 12 at address 0000E.

>DFB 3 00000 000FF
TEST IS LOOPING PRESS ~"C TO ABORT

memory failure: $0000F=$ef not $ff memory failure:
$0000F=%$00 not $10

PASS# =1

memory failure: $0000F=$ef not $ff memory failure:
$0000F=%$00 not $10

PASS# =2

SmartMON ROM Monitor

DF4

Function
CRC Text.

Syntax
DF 4 start end

start = The starting memory location to test.

end = The ending memory location to test.

Description

Run a CRC test over a specified range of memory.

Example

A CRC test will be executed on a 128 word memory space.

>DF 4 00000 O00FF

CRC =437B

Rom-129

Rom-130 Execution Environment

-
DFS5

Function

Scope Loop: Read from Location.

Syntax
DF[unit] 5 addr
unit = B = byte
W = word (default)
L =long
addr = The memory location to test.
Description

The scope loop routines are useful when troubleshooting with an
oscilloscope. Read/write continuously from/to an address, and write then
read data are supported routines.

This command will continuously read from the specified address. This test
can be stopped by an interrupt control character (*C).

Example
Scope loop reading a location.
>DF 5 E80000

DF 5 reading a location press ~C to abort

SmartMON ROM Monitor Rom-131

DF6

Function

Scope Loop: Write to Location.

Syntax
DF[unit] 6 addr value
unit = B = byte
W = word (default)
L =long
addr = The memory location to test.
value = The hex value to write to addr.
Description

Continuously write a specified pattern to the address specified. This test
can be stopped by an interrupt control character (*C).

Example
Scope loop writing data to a location.
>DF 6 E80000 5555

DF 6 writing a location press ~C to abort

Rom-132

=

Execution Environment

DF7

Function

Scope Loop: Write and Compliment.

Syntax
DF[unit] 7 addr value
unit = B = byte
W = word (default)
L =long
addr = The memory location to test.
value = The hex value to write to addr.
Description

Consecutively write a specified pattern to the address specified and then
write its complement. This test can be stopped by an interrupt control
character ("C).

Example

Scope loop writing data then its complement to a location.
>DF 7 E80000 5555

DF 7 writing value then complementing
press "C to abort

SmartMON ROM Monitor Rom-133

DF8

Function
Scope Loop: Write Rotating Value.

Syntax
DF[unit] 8 addr value
unit = B = byte
W = word (default)
L =long
addr = The memory location to test.
value = The hex value to write to addr.
Description

Write a specified pattern to the address specified and rotate the pattern.
This test can be stopped by an interrupt control character (*C).

Example
Scope loop writing rotating data to a location.
>DF 8 ES80000 0001

DF 8 writing value then rotating press ~C to abort

Rom-134 Execution Environment

-
DF9

Function
Scope Loop: Write then Read.

Syntax
DF[unit] 9 addr value
unit = B = byte
W = word (default)
L =long
addr = The memory location to test.
value = The hex value to write to addr.
Description

Write a specified pattern to the address specified and then read it back.
This test can be stopped by an interrupt control character (*C).

Example
Scope loop writing then reading data to/from a location.
>DF 9 E80000 5555

DF 9 writing value then read press ~C to abort

SmartMON ROM Monitor Rom-135

7.2 USER DIAGNOSTICS

7.2.1 OVERVIEW

In the area of manufacturing, SmartMON’s ability to control and execute
user diagnostics makes an ideal interface between the manufacturing
technician and the diagnostics. These services create a menu of available
tests with the ability to execute the tests individually or as a set. The
debugging tools also allow the diagnostic engineer to debug his
diagnostics in the same environment they will eventually run in.
SmartMON supplies the following services to support these diagnostics:

* A menu listing of all user diagnostics.

* The ability to run a test or all the tests once or continuously with an
option to halt on error.

e The ability to report errors to the host.

The user can include up to eight diagnostics as part of SmartMON image
which will be linked and burned into the target EPROMS. This allows the
user to select and run these tests under SmartMON.

SmartMON also supports eight downloaded diagnostics. After the
diagnostics have been downloaded, a UDI (User Diagnostic Install)
command with the address of the diagnostic table is issued. SmartMON
will then install these diagnostics into the UD menu. Figure Rom-9
contains the layout of the diagnostic table structure.

Rom-136 Execution Environment

=

address of first table
entry

used in UDI command
to inform SmartMON)
where diagnostics are diagl_msg this is the message
| located) in
num of diags - SmartMON'’s users
// diagnostic table
diagl_msg diagl_main
: ; ; the address in the
diag #1 diagl_main table points to this
module, an RTS is
[i) required
diagl_error \\ diag1_error q
\\
— diag2_msg \ this module is
called when
diag #2 diag2_main diagl_main returns
\ a non-zero error
code
| diag2_error \
diag2_msg
diag2_main | _
the diagnostic mod-
. ules
diag2_error can take advantage
di tic tabl \ of SmartMON'’s I/O
lagnostic table system calls to send

_I and receive mes-
sages

Figure Rom-9: Diagnostic table structure

SmartMON ROM Monitor Rom-137

User Diagnostic Commands

Syntax
UDtypenumber
type = C = Run test continuously.
H = Run test continuously halt on error.
I = Install RAM diagnostics.
Default is to run test once.
number = # number of test to be run

A = all tests

If type and number are omitted, then a list of available tests is displayed.

Example

In this example, we will display the list of available tests on the target.

>UD
USER DIAGNOSTICS
ROM BASED RAM BASED
1. USER DIAGNOSTIC 9. not installed
MEMORY TEST
2. TEST TWO A. not installed
3. not available B. not installed
4, not available C. not installed
5. not available D. not installed
6. not available E. not installed
7. not available F. not installed
8. not available 10. not installed

type UD< type > < test number > to execute test

TO install downloaded diagnostics type UDI < address >
<address > = address of RAM DIAG_TABLE

Rom-138

=

Execution Environment

In this example, we will run test #1 once. There are no errors found
during this test.

>UD 1

RUNNING TEST NUMBER 1 :— USER DIAGNOSTIC
MEMORY TEST

COMPLETE

In this example we will run test #1 once. An error will be found during
this test. The message “TEST FAILED” will be printed by SmartMON, while
the message following it is printed out by the user’s error routine.

>UD 1

RUNNING TEST NUMBER 1 :— USER DIAGNOSTIC
MEMORY TEST

TEST FAILED

ERROR MESSAGE:- TEST FAILED DURING READ
>

In this example, we will run all tests continuously. When each test is about
to be executed, its menu message will be printed by SmartMON. These
tests can be stopped the interrupt control character (*C).

>UDC A

RUNNING TEST NUMBER 1 :— USER DIAGNOSTIC
MEMORY TEST

7.2.2 HOW TO WRITE A USER DIAGNOSTIC

The user creates each test in three sections: the diagnostic message, the
diagnostic test and the error reporting routine. The starting addresses of
each of these sections are then placed in the diagnostic table. In order for
SmartMON to access the diagnostics the starting address of this table is
required. For ROM based diagnostics, this table address is specified in the
configuration table found in USREQU.68K After downloading RAM based
diagnostics, the table’s address is specified by issuing the UDI command
with the table’s address. The first value in each of these tables is the
number of diagnostics to follow. Each diagnostic must have three entries
in the table (an address for each of the three sections in the diagnostic) as
follows:

1. TST MSG- Diagnostic Message

SmartMON ROM Monitor

2. TST MAIN - Diagnostic Test Routine

3. TST ERR - Error Reporting Routine

Diagnostic Messages

This is the first section of a diagnostic and simply contains a message. This
message is used by SmartMON to describe the test. The message can be
up to 30 characters long and must be terminated with a null character.

The following message will be printed out by SmartMON when either the
UDmenu is selected or when the test is executed. This is an example of a
test message defined:

TST1 MSG:

Diagnostic Test

DC.B "USER DIAGNOSTIC MEMORY TEST”,0

This is the actual test to be executed. The test routine must be terminated
with an RTS and the error code returned in DO.

The following is an example of what the end of a diagnostic test might

look like:

TST1 MAIN
BEQ.S TST1 GOOD ; any errors found ?
MOVE.B #01,D0 ; yes, errors found
BRA.S TST1 END ; skip good return

TST1 GOOD MOVE.B #00,D0 ; no, test passed

TST1 END RTS

Error Reporting

This part of the test allows the user to print additional information about a
particular failure. This function is called by SmartMON when the diagnostic
test produced an error. The only exception is when the test is to run in
continuous mode and not halt on errors. If the user does not wish to
produce additional information, this function need only contain an RTS

Rom-139

Rom-140 Execution Environment

=

This is an example of an error reporting routine. It will check for a valid
user—-defined error code and will print a corresponding error message. This
routine will only be called if its diagnostic test has failed:

TST1 RSP:

RSP1 CMPI 01,D0 ;check if error 1 occurred
BNE RSP2 ;no keep checking
MOVE #OUT_STR,d0 ;setup for string xmit
LEA ERROR 1,A0 ;point to error message
TRAP #ROMM ;make system call
RTS ;exit

RSP2 CMPI 02,D0 ;check if error 2 occurred
BNE RSP3 ;not a valid error code
MOVE #OUT_STR,DO ;setup for string xmit
LEA $ERROR 2,A0 ;point to error message
TRAP #ROMM ;make system call

RSP3 RTS ;exit

ERROR 1: DC.B "TEST FAILED DURING READ”,$a,$d,0

ERROR 2: DC.B "TEST FAILED DURING WRITE"$a,$d,0

7.2.3 LINKING DIAGNOSTICS WITH SMARTMON

For SmartMON to know what user diagnostics are available, the following
data structure must be created:
XDEF DIAG_TABLE
DIAG_TABLE: DC.W 0001 ;number of tests = 1
DC.I TST1MSG ;function containing msg
DC.I TST1 MAIN ;diagnostic test
DC.I TST1RSP ;error routine

This table must be available even if no diagnostics are to be included, in
which case, the table must look as follows:

XDEF DIAG_TABLE

DIAG_TABLE: DC.W 0000 ;number of tests =0

SmartMON ROM Monitor Rom-141

7.2.4 DOWNLOADING AND RUNNING USER
DIAGNOSTICS

When diagnostics are downloaded, SmartMON has to be informed of their
location in memory. This is done by creating the diagnostic table as
described above which becomes part of the downloaded image. In this
case, the diagnostics are not linked with SmartMON. In order for
SmartMON to recognize the diagnostics, the starting address of the
diagnostic table (RAM_DIAG must be known. To define a location where
you would like the diagnostic table to reside, add the following line to
your locate command file:

LOCATE (RAM_DIAG : #<address>)

These tests can then be included in SmartMON'’s diagnostic menu by
issuing the UDI command with the address of the DIAG_TABLE The UDI
<address> command takes the table and loads the diagnostic names into
SmartMON’s UDmenu, after which these tests can be selected and run.
Unlike the ROM based diagnostics, if the user chooses not to use
downloadable diagnostics, a DIAG_TABLE with test number set to 0 does
not have to exist.

7.2.5 HOW SMARTMON PROCESSES UD COMMANDS

When SmartMON is initialized, part of the process is to install the ROM
based diagnostics. This is done by examining the DIAG_TABLE to
determine how many diagnostics are available. For each diagnostic
available, SmartMON takes the diagnostic message and places it in the
menu, allowing the user to display the available tests with a UD command.

7.2.6 INSTALLING RAM BASED DIAGNOSTICS

When the UDI <address> command is issued, SmartMON goes to the
address specified and examines the DIAG_TABLE to determine how many
diagnostics are available. For each diagnostic available, SmartMON takes
the diagnostic message and places it in the menu, allowing the user to
display the available tests with a UDcommand.

Rom-142 Execution Environment

=

7.2.7 RUNNING A TEST

Entering 2 UD 1 command causes SmartMON to print out a test running
message and the test message located at address TST1 MSG SmartMON
then calls the TST1 MAIN diagnostic and the test will execute. Upon
returning to SmartMON, the error code in register DO is checked and a
message is displayed indicating the test passed or failed. If a non-zero
value was returned in DO, TST1 ERR the error routine is then called and
the error code is also passed in DO. This routine may now print out any
additional information using system calls. Upon completion the routine is
terminated with a RTS

If a UDC 1 command had been entered, then TST1 MAIN would be called
repeatedly and the PASS COUNTwould be updated. If an error is
encountered the error message is displayed and the test is halted. Entering
a <cr> will continue execution of the test.

BACKGROUND
DEBUG MODE

al TASKING [

NNAN3IAAV

Background Debug Mode Bdm-3

1 INTRODUCTION

This addendum explains how to use CrossView Pro with the Background
Debug Mode (BDM), a special feature available on Motorola CPU32 family
processors. It includes the following major sections:

* Background Debug Mode as a CrossView Pro Execution
Environment

* BDM Hardware and Software Installation

* BDM Command Interface (Emulator Mode)

e Troubleshooting

e Other Considerations at this Time

2 BACKGROUND DEBUG MODE AS A CROSSVIEW PRO
EXECUTION ENVIRONMENT

Background Debug Mode (BDM) is a special feature available on the
Motorola CPU32 family processors. The feature is implemented in CPU
microcode and incorporates a full set of debug options. The BDM is
documented in the Development Support section of Motorola’s CPU32
Reference Manual.

@ CrossView Pro for BDM is only available on MS-Windows.

Additional System Requirements

The following are the hardware requirements:

* Parallel printer port (LPT1, LPT2, or LPT3)

e Macraigor Wiggler cable (optional with BDM version of CrossView
Pro for 68K processors)

e P&E ClodFire BDM cable (optional with BDM version of CrossView
Pro for ColdFire processors)

e CPU32 or CPU32+ or ColdFire target (MC68330, MC68331, MC68332,
MCG68333, MC68340, or MC68360, MCF5102, etc)

Bdm—4 Execution Environment

=

2.1 ADDITIONAL SOFTWARE CONTENTS

Chip Select Initialization Files

CPU32 targets have a programmable chip-select sub-module. After a
power-on reset, you must initialize the chip-select registers. The
initialization values depend on memory map, wait states required, and
other properties of the target hardware. The CrossView Pro delivery
contains chip-select initialization files for many popular target boards.

TASKING is constantly adding support for new targets. If you do not see
an initialization file for your target, contact your TASKING Sales Engineer
for updated information. This release includes Chip Select Initialization for
the following targets:

Target Board Filename

EST SBC 360 cse360.cmd
Matrix 360 csmat360.cmd
Motorola EVK332 csevk2.cmd
Motorola EVK340 csm340.cmd
Motorola MPD16/32 csmpd32.cmd
Motorola QUADS mot_quad.cmd
Vesta SBC332 csv332.cmd
AVNET MCF5282 av_mcf5282.cmd
NetBurner MCF5206E nb_mcf5206e.cmd

Background Debug Mode

3

BDM INSTALLATION

3.1 HARDWARE INSTALLATION

The hardware installation consists of connecting a Macraigor Wiggler cable
or P&E cable from your PC to the target board.

It is strongly recommended that both the PC and the target board be
powered off during the installation. It is also strongly recommended by
Motorola that installation to the BDM connection follow electrostatic
conventions to prevent damage to the target CPU.

The power off sequence should be as follows:

1.

2.

Power off the target board first.

Power off the PC using the procedure recommended by the PC
manufacturer.

The power on sequence should be as follows:

1.

2.

&

Power on the PC first.
Then power on the target board.

The Macraigor Wiggler cable (for 68K processors) is a DB25 connector
with a ribbon cable that has a 10 pin in-line connector. The DB25
connects to the PC parallel port (usually labelled LPT1, LPT2, or LPT3).

Pinl
DB25 . / Indicator
Macraigor
] 10 pin
Wiggler Berg
Cable Connector

PC side
Figure Bdm-1: Macraigor Wiggler Cable
The P&E ColdFire BDM cable has a ribbon cable with a 26 pin connector.

Its use is identical to the Macraigor Wiggler cable. For additional
information on this cable see http://www.pemicro.com.

Bdm-5

Bdm-6

Execution Environment

The 10/26 pin Berg connector must be connected in the correct
orientation.

Some 68K targets use a 10 pin connector while others use an 8 pin
connector.

On the 10 pin connector, simply plug the cable in with Pin 1 connected to
Pin 1.

On targets that use 8 pin Berg connectors, the cable needs to be shifted so
that Pin 3 of the cable is connected to Pin 1 of the target.

If the ribbon cable is not connected to the DB25 housing, reconnect it so
that the Pin 1 indicator is near the center of the DB25 housing. Note that
the Pin 1 indicator in the 10 pin plug should be on top.

BDM
pin1 D pin 9
pin 2 oo pin 10
pin1 oo pin 7
pin 2 A pin 8
Target

Figure Bdm-2: 68K BDM Cable Connection

If the ICD cable is not long enough to reach between the PC and the
target board, use a standard printer extension cable or a direct 25 to 25 pin
connector.

3.2 SOFTWARE INSTALLATION

By default the Macraigor or P&E drivers are installed during the TASKING
68K/ColdFire installation.

Background Debug Mode

3.3 CONFIGURATION OPTIONS

Target Configuration File

In the CrossView Pro Target Settings dialog box make sure you have
selected the correct Target configuration: 68KBDM Wiggler or ColdFire
BDM.

Macraigor Wigglers (68K) / P&E (ColdFire)

The CrossView Pro installation performs all the required installation for the
device drivers on MS-Windows. You need to specify the parallel port to
which the BDM interface is connected (LPT1, LPT2, or LPT3). This is done
in the CrossView Pro Communication Dialog box. By default CrossView
Pro uses LPT1.

3.4 TARGET ENVIRONMENT SETUP

BDM provides faster and less intrusive debugging than typical ROM-based
debuggers and in—circuit emulators. With BDM, the user’s target runs in
real-time between breakpoints and does not require any target resources
(ROM, RAM, interrupts, €tc.).

As with an in—circuit emulator, the memory for CPU32 targets must be
mapped after a target board power—up. This is because the hardware reset
clears any chip selects to the default values. In order for CrossView Pro to
download and debug, the CPU32 chip selects must first be set to reflect
the hardware memory configuration.

The initialization of chip selects and other memory map options should be
added to the startup code for your application (the __main routine in the
standard TASKING 68K/ColdFire libraries). However, until you have
written the necessary startup code, you can perform initialization through
BDM commands in CrossView Pro’s emulator mode.

Sample playback files are provided as part of the CrossView Pro
distribution. The sample in the table below (csv332.cmd) was developed
for a Vesta SBC332 with 128K of RAM. For details on the commands see
the Command Descriptions section later in this chapter. To playback a
chip-select initialization file:

1. From the Tools menu, select Playback | Emulator... to open the
Emulator Playback dialog box.

Bdm-7

Bdm-8

Execution Environment

. Type the playback filename or use the Browse... button to select the file.

The default filename extension is .cmd .

Enable the Continuous playback check box.

Click on the Execute button to start the playback.

Command

Explanation

rs

sra6 0

smw fffffa20 000d

smw fffffa04 7f00
smw fffffa00 424f

smw fffffadc 0004
smw fffffa50 0004

smw fffffa48 0604
sm fffffad4 ffffffff

smw fffffade 5830
smw fffffa52 3830

smw fffffada 78f0

Reset the target and enable Background Debug
Mode. This also causes the memory map to be
reset.

Clear the stack frame pointer. This prevents
CrossView Pro from trying to decode invalid
stack frames.

Configure SYPCRo disable Software Watchdog
Timer (WD7, enable bus monitor functions, and
use 16MHz system clock for timing.

Set SYNCRo default.

Set MCRo allow the break signal to freeze timers
(including WD, configure bus monitor to enable
external arbitration, and allow system registers to
be set in user mode.

Set up chip selects for 128KB RAM starting at 0.

Set up chip selects for 128KB ROM at 60000.
Enable all chip select pins.
Chip select for RAM: read/write no wait states.

Chip select for EPROM: read—only, 3 wait states.

Table Bdm-~1: Sample Chip-select Initialization File for Vesta SBC332

Background Debug Mode

4 BDM COMMAND INTERFACE (EMULATOR MODE)

BDM driver communication is performed via the SendDriverMessage
function within the Windows API. The driver has a 300-character input
buffer for input commands. It will send back a complete response, except
for the Dump Memory command. The Dump Memory command will
restrict the output to 256 memory units (approximately 2560 bytes).

Control Characters

The following control codes may be entered for command line editing,
interrupting BDM.

@ The presence of the upward caret, ""”, before a character indicates that
the Control or CTRL must be held down while striking the character key.

~C (interrupt) This character will terminate any operation, flush the
character buffer and return a response prompt. This
includes returning the target back to Background
Mode.

"] (CR) This returns a prompt.

"X (line delete) This acts the same as "C.

4.1 OPERATION MODES

BDM has three modes of operation, each of which changes the user
interface slightly. The rest of this section will describe these modes, which
are as follows:

e Command Mode
e Download Mode
e Execution Mode

Command Mode

The target does not execute instructions in this mode. Commands typed in
at the CrossView Pro emulator mode are interpreted by the BDM driver.
Command Mode is the user’s interface to the target. The user can control
resources and place the target into a known state. Most interactions take
place in command mode, which is distinguishable by its prompt. For more
details on all the commands see the Command Descriptions section.

Bdm-9

Bdm-10

=

Execution Environment

Download Mode

This mode is used to send down the user’s application code, in Motorola
S-Record format, to the target’s RAM. Download mode is used mostly
during the debug stages of a project. This mode is entered through the
Download command (DL) and stays in effect until either the S7, S8, or S9
record, or an interrupt control character is received. For more information,
see the DL command in the Command Descriptions section of this chapter.

Execution Mode

This mode is in effect when the target is executing instructions. This
usually happens as a result of issuing a GO Command. Execution mode
operates in real-time. See the Set Breakpoint command (SB) in the
Command Descriptions section of this chapter. A breakpoint or an
interrupt control character will place the BDM driver back into command
mode. For more details on entering execution mode, see the GO, Single
Step (SI), and Step Out Of Range (SO) commands in the Command
Descriptions section of this chapter. During execution mode most
commands are disabled. An attempt to issue a disabled command will
result in the message “lerror! Not in Background Mode ”

4.2 COMMAND DESCRIPTIONS

This section contains descriptions of each of the commands that can be
used with the BDM driver. Each section will detail information about a
particular command and its options. Most sections are provided with one
or more examples. These examples are formatted for clarity and actual
screen displays may vary from machine to machine. All the command
responses will end with a carriage return, line feed, and a prompt.

Background Debug Mode Bdm-11

Function
Display Breakpoint

Syntax
DB

Description

This command causes the BDM driver to display all software breakpoints.

Example
>DB

1. 010000
2. 010010

GO -Go
SB - Set Breakpoint

Bdm-12 Execution Environment

DC

Function
Display Configuration

Syntax
DC

Description
The command allows the user to examine the environmental resources
that are configured for the BDM driver, which include:
* microprocessor type (CPU 32 family)
* communication port

e delay factor

Example
>DC

Background Debug Mode
Target=M6833X M68340 M68360
Communication Port=Lpt1l

Delay Factor=1

>
ﬂ?(;o - Go

Background Debug Mode Bdm-13

Function
Debug DFC Display

Syntax
DDD

Description

This command displays the current debug mode value of the Destination
Function Code.

BDM uses a default value of 5 to allow complete access to the target
memory areas. Under special conditions this value may be modified in
order to access a special register (i.e., mbar on the MC68360). This is not
the execution value of the DFC, only the Debug Command mode value.

Example

>DDD
>Debugger DFC =5

@]3 DDS - Debug DFC Set
DSD - Debug SFC Display

DSS - Debug SFC Set

Bdm-14 Execution Environment

DDS

Function
Debug DFC Set

Syntax
DDS <Level (0-7)>

Description

This command modifies the debug Destination Function Code (DFC) used
by BDM in Command Mode.

The most common reason to modify the values of DFC is to set the mbar
register of the MC68360.

@ The Debug DFC should be returned to the default value of 5 after
completion of the operation requiring it to be changed.

Example

>DDS 1
>

DDD - Debug DFC Display
DSD - Debug SFC Display
DSS - Debug SFC Set

Background Debug Mode

DL

Function

Download

Syntax
DL

Description

The download command invokes a special mode of operation, called the
download mode. Once entered, all information sent to the BDM driver is
assumed to be data (S record format) until a Motorola EOF record (S7, S8,
S9) is encountered or the interrupt control character (“C) is received.

A positive acknowledgement “+” (PACK is returned if no problem is
detected in memory storage. The download will abort if a bad S record is
received. A PACKwill also be returned upon the initial download request
before the first data record is transferred.

The BDM driver returns to command mode when an EOF is encountered.
If a download is aborted with a "C, all download records following the
abort will be treated as commands and will be handled as invalid. It is
therefore the responsibility of the host to stop transmission of records after
issuing the "C.

Example

In this example, the code was originally located at address ED0000. The
display will show the positive acknowledgements and the echoed
characters.

>DL

+500600004844521B
+S213EDO000000700EDO05600EDO06CO0EDOO07800F7
+S213EDOOOFEDOOA400EDOOBAOOEDOOCG600EDOOEAZE
+S213EDO01EOOEDO010000EDO013000ED017700ED0182
+S213ED002D8EOOEDO01C800ED025800EDO26EOOEDFD
+5S804000000FB

>

Bdm-15

Bdm-16

Execution Environment

Function
Display Memory

Syntax
DM{[unit] addr count
unit = B = byte
W= word (default)
L =long
addr = The starting address of the memory to display.
count = The number of memory locations (size unit) to display.
Description

This command causes the BDM driver to return the contents of the
memory location(s) requested. This command will display only the address
and the hex data.

Example

In this example, we will display 32 (20 hex) words of memory starting at
location 200010.

>DM 200010 20

200010. 3E2E 2E2E 0074 6573 7420 6E75 6D62 6572
200020. 2033 2066 6169 6C65 6420 2D20 4E20 7263
200030. 7664 0020 2020 2020 2020 2020 2020 2020
200040. 2020 2020 2020 2020 2020 2020 2020 2020
>

In this example, we will display 5 bytes of memory starting at location
300300.

>DMB 300300 5
00300300. 12 53 12 14 15
>

Background Debug Mode

Function
Display Registers

Syntax
DR [reg_namg

reg name = A valid register name for the target.

Description

This command causes the BDM driver to display the contents of a
particular register or registers. If no arguments are specified then all the
registers will be displayed.

Example
In this example, we will display all the registers of a Motorola 68332 based
target system.

>DR

D0 = 00000000 D1 = 00000000 D2 = 00000000 D3 = 00000000
D4 = 00000000 D5 = 00000000 D6 = 00000000 D7 = 00000000
A0 = 00000000 A1 = 00000000 A2 = 00000000 A3 = 00000000
A4 = 00000000 A5 = 00000000 A6 = 00000000 A7 = OOE8B4000
USP = 00E85000 SSP = 00E84000 PC = 00F00086 SR = 2000
VBR = 00E80000 SFC = 0007 DFC = 0007

>

In this example, first set some registers with values and then display these
registers in different order.

>SRLAO 100000 A3 120000 D1 1234 D3 55
>DR D1 D3 A0 A3

D1 = 00001234 D3 = 00000055 A0 = 00100000 A3 = 00120000
>

@]j SR - Set Register

Bdm-17

Bdm-18 Execution Environment

DSD

Function
Debug SFC Display

Syntax
DSD

Description

This command displays the current Debug Mode value of the Source
Function Code (SFC).

BDM uses the default value of 5 to access most of the target register and
memory. This value may be modified to access the special register (i.e.,
mbar of MC68360).

Example

>DSD
>Debugger SFC =5
>

DDD - Debug DFC Display
DDS - Debug DFC Set
DSS - Debug SFC Set

Background Debug Mode

DSS

Function
Debug SFC Set

Syntax
DSS <Value 0-7>

Description

This command modifies the debug Source Function Code (SFC) used by
BDM in Command Mode.

The most common reason for changing SFC is to display the mbar register
of the MC68360.

@ The Debug SFC should be returned to the default value of 5 after
completion of the operation requiring it to be changed.

Example

>DSS 1
>

DDD - Debug DFC Display
DDS - Debug DFC Set
DSD - Debug SFC Display

Bdm-19

Bdm-20

Execution Environment

FR

Function

Check for Freeze

Syntax
FR

Description

This command will check the target status and return either:

I Executing
or:
I Breakpoint or Background Mode entered.
Example

In this example, we will set a breakpoint, cause the target to go into
execution, and poll status twice.

>SB 1000

>go

>FR

lexecuting

>FR

IBreakpoint or Background Mode entered.

GO - Start Executing
SB - Set Breakpoint
SR - Set Register

Background Debug Mode

GO

Function

Start Execution

Syntax
GO

Description

This command causes the BDM driver to go into execution mode. The
execution mode will continue until either a breakpoint occurs, an interrupt
("™ | MC) is received from the host, or a double bus fault (as specified in
the Development Support section of Motorola’s CPU32 Central Processor
Unit Reference Manual). If breakpoints are set, a BGNDinstruction is
inserted into the target code at each breakpoint address. This will allow
real-time execution of target code and still allow for breakpoints to be
taken.

If the location where execution begins contains a breakpoint BGNDthen
that breakpoint is temporarily disabled until the program is stepped off the
breakpoint. This command will return immediately with the target in the
executing mode.

Example
>GO

— Check for Freeze
0 - Single Step
SB - Set Breakpoint
SO - Step Out of Range

>
d]j DB - Display Breakpoints
FR
S

Bdm-21

Bdm-22 Execution Environment

Function
Help

Syntax
HE

Description

This command causes the BDM driver to display the help menu. This
menu shows the syntax of the command set.

Background Debug Mode Bdm-23

Function

Initialize

Syntax
IN

Description

This command causes BDM to identify its version number.

Example
>IN

Wiggler by Macraigor System Inc.
Target M6833X M68340 M68360

Version 1.4
(c) 1999 TASKING Inc.
>

@ The revision numbers used in the example are sample numbers for this
manual only.

Bdm-24

Execution Environment

Function

Remove Breakpoint

Syntax
RB [addr]

addr = An optional address that specifies the breakpoint to be
removed.

If addr is omitted, then all breakpoints will be removed.

Description

This command causes the BDM driver to remove a software breakpoint at
the address specified. If no arguments are specified, then all breakpoints
will be removed. If an address is specified and no breakpoint exists at that
address, an error message will be returned.

Example

In this example, first display some breakpoints that were previously setup
and then remove a code breakpoint at address 10000. Finally, verify that
the breakpoint has been removed. Notice that the second code breakpoint
will become the first breakpoint after the RB command is executed.

>DB

1. 010000
2. 010010
>RB 10000
>DB

1. 010010
>

DB - Display Breakpoints
SB - Set Breakpoints

Background Debug Mode Bdm-25

RS

Function

Reset

Syntax
RS

Description

This command causes BDM to reset the target and enable background
mode. It is primarily used to reset background mode after the target was
reset by other means than through BDM. See the Development Support
section of Motorola’s CPU32 Central Processor Unit Reference Manual for
information of enabling the BDM mode.

Example

>RS
>

>RS
lerror! unable to enter background mode

Bdm-26 Execution Environment

SB

Function
Set Breakpoints

Syntax
SB addr

Description
This command causes BDM to set a software breakpoint at the address
specified.

Example

In this example, we will set a breakpoint to occur when the program
counter reaches address 10000. First set the breakpoint and then issue the
GO command.

>SB 10000

>GO

>FR

>IBreakpoint in Background Entered.
DB - Display Breakpoint

GO - Start Execution
RB - Remove Breakpoint

Background Debug Mode Bdm-27

S

Function

Single Step Instruction

Syntax
SI [count]
count = An optional number of target instructions to execute. The
default is one instruction.
Description

This command causes the BDM driver to go into execution mode for
count instructions.

Example

In this example, we will single step the target for one instruction.
>S|

>

Bdm-28 Execution Environment

SM

Function
Set Memory
Syntax
SM[unit] addr values
unit = B = byte
W= word (default)
L =long
addr = The start address for the set, in hex.
values = A space-separated list of values to write to memory.
Description

This command causes the BDM driver to fill memory with the hex byte
values specified.

Example

In this example, we will display the contents of memory both before and
after we set three bytes of memory to the specified values.

>DMB 200010 3
200010: FF OF 00
>SMB 200010 0B 7F 34
>DMB 200010 3

200010: OB 7F 34

>
d]? DM - Display Memory

Background Debug Mode Bdm-29

SO

Function
Step Out of Address Range

Syntax
SO startend
start = The starting address for the range.
end = The ending address for the range.
Description

This command causes the BDM driver to go into execution mode. The
execution mode will continue until any of the following conditions occurs:
a breakpoint is encountered, an instruction outside of the specified range
is about to be executed, an interrupt is received from the host, or a double
bus fault.

Example

In this example, we will single step through the code until the program
falls outside the specified range.

>S0 0001000 0001fff

>

@ The BDM driver will execute until the command is complete, but only

return a prompt. Do not select a range of values that will cause an infinite
loop to occur. If this does occur, the driver will lock out any host
interaction. A reboot may be required to abort this condition.

Bdm-30

=

Execution Environment

SR

Function
Set Registers

Syntax
SR reg valug reg value ..]
reg = A valid target register (you may not modify the value of A7).
value = A hex value to write to the register.

Description

This command causes the BDM driver to modify the register or registers
specified.

Example

In this example, we will set address register A0 and data register D2 with
word values. Then we will display these registers to verify their contents.

>DR A0 D2
A0 = 00000000 D2 = FFFFFFFF
>SR A0 005B D2 7F34

>DR A0 D2

AO = 0000005B D2 = 00007F34

>
@]j DR - Display Registers

Background Debug Mode

5 TROUBLESHOOTING

5.1

BDM has its own unique set of communication failures. CrossView Pro
error messages caused by BDM communication failures fall into three
categories:

Unable to open driver from OpenDriver.
Open failed.
Unexpected responses.

UNABLE TO OPEN DRIVER FROM OPENDRIVER

This failure usually occurs if the device driver is not installed. Refer to the
BDM Software and Hardware Installation section earlier in this appendix.
Another reason for this failure is that the driver is opened by another task.
An example of this would be that the control panel is performing setup
and CrossView Pro attempts to load a function. This can be corrected by
completing one of the tasks and closing the device driver.

5.2

OPEN FAILED FROM CROSSVIEW PRO

If CrossView Pro fails with this message, then the parallel port is
unavailable. Refer to the Configuration Options section of this manual for
information on how to set up communication to the correct port.

5.3

UNEXPECTED RESPONSES

Unable to read/write memory at Xxx

The message is generated by the download request and indicates that
the address could not be modified by a write/read test. This is most
likely caused by a chip select not being set up correctly.

Loss of BDM mode

This is a result of the target not being reset via the BDM connection.
Use the RS command to regain control.

@ The RS command causes the target to be reset.

Bdm-31

Bdm-32

=

Execution Environment

Bus error ...

The address specified generated a bus error. It is possible that an
application program error occurred or that the chip select was not set
up correctly.

Target communication failure, unable to alter register

This message occurs if CrossView Pro’s initial attempt to communicate
with the target fails.

Other unexpected responses

There is no single test to determine what actually failed. The following
possibilities should be tested:

- Wiggler cable is incorrectly connected to the target CPU.

— The parallel port is disabled.

— There is a bad cable connection to the Wiggler DB25 connector.
— The parallel port is malfunctioning.

— The target CPU is malfunctioning.

— Failure to follow Device Driver installation instructions. The
device driver should not be copied into the CrossView Pro
directory.

6 OTHER CONSIDERATIONS

BDM does not support tracing. Therefore, C-trace is not available in
CrossView Pro.

BDM only supports data breakpoints with assertion mode.
BDM supports a maximum of 32 breakpoints.

BDM will return a maximum of 256 memory units (byte, word, long)
per display request.

INDEX

al TASKING [

X3ANI

Index

Symbols

. (period) operand, 3-18
I command, 13-20

? command, 5-16, 13-22
& operator, 3-18
@format code, 3-13
—ddeservername, A-28
—timeout, 9-10

/ command, 5-16, 13-21
/format code, 3-13

~ command, 13-36

< command, 13-23

<< command, 13-24

> command, 13-25

>& command, 13-33

># command, 13-29

>@ command, 13-27

>* command, 13-35

>> command, 13-31

A

A command, 13-37
a command, 13-38
absolute file, 15-3
accelerator bar, 4-24
accelerator button, 4-11, 4-24
accessing code and data, 6-1
AddDDEMenuEntry, A-28
adding files to a project, 1-37
address bias, set, 13-142
addresses

in expressions, 3-18

specifying format of, 6-16
analysis, 15-3

window, 15-3
ANSI C conformity, 1-12
application

debugging, 1-27

executing, 1-24

argument of a function, 3-9
arrays
display address of, 6-6
display character, 3-15, 6-6
displaying two-dimensional, 6-15
viewing contents of, 3-16, 6-15
assembly window
hexadecimal display, 3-10
intermixed assembly, 3-10
source merge limit, 3-10
assertion mode, 7-28, 15-3
assertions, 1-5, 7-28, 15-3
activating, 7-28
activating and suspending, 7-31
assertion mode, 7-28
debugging with, 7-33
define or modify assertion, 13-38
defining, 7-29
deleting, 7-32
editing, 7-31
quit assertion mode, 13-178
statistics, 7-35
toggle mode, 13-37
AssertionsChanged, A-11
autosrc, 6-18

B command, 13-40
b command, 13-41
background color, 2-5
background debug mode, Bdm-1,
Bdm-3-Bdm-32
command descriptions,
Bdm-10-Bdm-32
command interface, Bdm-9-Bdm-32
configuration options,
Bdm-7-Bdm-32
emulator mode, Bdm-9—-Bdm-32
hardware, Bdm-5-Bdm-32

Index—4

installation
hardware, Bdm-5
software, Bdm-6—-Bdm-7
software, Bdm-5-Bdm-32
software content, Bdm-4
system requirements, Bdm-3—-Bdm—4
target environment setup,
Bdm~7-Bdm-9
trouble shooting, Bdm-31-Bdm-32
with CrossView Pro, Bdm-3—Bdm-32
background mode, 11-28, 15-4
assertions, 11-33
leaving, 11-31
local and global variables, 11-32
manual refresh, 11-29
refresh limitations, 11-32
running a program, 11-30
stack, 11-32
starting, 11-30
stopping a program, 11-31
updating windows, 11-28
waiting, 11-31
batch mode, 9-10
batch processing, 9-10
bB command, 13-42
bb command, 13-43
bc command, 13-44
bCYC command, 13-45
bcyc command, 13-46
bD command, 13-47
bd command, 13-49, Rom-67
bdis command, 13-51
BDM. See background debug mode
be command, Rom-68
bena command, 13-52
bf command, Rom-69
bl command, 13-53
bi command, 13-54
bias, 15-4
binary constants, 3-5
binary notation, 3—4
bINST command, 13-55
binst command, 13-56

Index

block fill, Rom-69

block move, Rom-71

bm command, Rom-71

break command, 13-57
breakpoint disable, Rom—-67
breakpoint enable, Rom-68
breakpoint toggle, 4-23, 7-4
breakpoints, 1-4, 7-1, 13-57, 15-4
and diagnostic output, 7-27
and multi-line statements, 7-5
and multiple statements, 7-5
and statistical information, 7-27
attaching macros to, 7-21
code, 7-3
commands associated with, 7-18
complex, Rom-16
conditionals, 7-21
count, 15-5
count of, 7-3
cycle count, 7-3, 13-45, 13-46
data, 7-7, Rom-15
data breakpoints over a range of
addresses, 7-11
delete, 13-85
delete all, 13-84
deleting, 7-16
disable, 7-17, 13-51
emulator mode, 7-6
enable, 7-17, 13-52
Sfor loops, 7-6
Sfunction, permanent, 13-43
instruction, Rom-15
instruction count, 7-3, 13-55, 13-56
list, 13-40
listing, 7-8
low-level, 15-7
name, 7-3
names, 7-13
patching code with, 7-25
permanent, 7-4
permanent low-level, 13-54
task aware, 13-64
permanent up-level, 13-69

Index

probe point, 1-5, 7-4

quiet reporting of, 7-22

reset count, 7-3, 7-14

sequence, 7-15

set at beginning of function, 13-42
set count, 13-44

setting, 1-25, 7-8, Rom—-14—Rom-142

from command window, 7-10
Jfrom menu, 7-9
from source window, 7-9
Jfrom stack window, 7-10
setting the count of, 7-14
strings, 7-22
system startup code, 7-7
task aware
code, 13-62
permanent low-level, 13-64
temporary low-level, 13-63
temporary, 7-4, 7-12
temporary low-level, 13-53
task aware, 13-63
temporary up-level, 13-67
time, 13-65, 13-66
timer, 7-3
up-level, 7-22
while loops, 7-6
without trace mode, Rom—15
BreakpointsChanged, A-11
bt command, 13-62
btl command, 13-63
bti command, 13-64
bTIM command, 13-65, 13-66
bU command, 13-67
bu command, 13-69
bufa command, 13-71
bufd command, 13-72

C

C, character constants, 3—6
C command, 5-12, 13-73

C trace, 1-5, 13-81
cache, debugging with, 15-4
calling functions, 5-14
case sensitivity, 3-21, 13-179
casting values, 3-16, 6-15
CB command, 13-74
CBRK, B-7
CCNT , B-7
cd command, 13-75
ce command, 13-76
cf command, Rom-72
character buffing, Rom-25
character codes, 6-13
character codes table, 3-6
character constants, 3-6
check for freeze, BAm-20
chip select initialization files, Bdm-4
clear command, 13-77
close a file I/O stream, 13-117
CmdAnnotatedOutput, A-11
cmdannotatedoutput, A-22
cmdoutput, A-21
code breakpoints

See also breakpoints

set breakpoint, 13-41

task aware, 13-62

code coverage, 1-6
color, windows, 2-5
color offset, 11-17
color settings, 2-5
COM interfaces, A-5
COM methods

Execute, A-6

ExecuteNoWait, A-7

Halt, A-7

Init(), A-6
COM object interface, A-3

activating, A-5

events, A-8

examples, A-12

methods, A-6

using, A-3

Index-5

Index—6

=

command history, displaying recent
commands, 9-19
command language, 3—-1
command line, batch processing, 9-10
command line options, 4-5
command mode, Rom-65, Bdm-9
Command Window, 4-21
displaying data in, 6-8
opening, 1-29
CommandCanceledByUser, A-9
CommandInterpreterBusy, A-8
CommandInterpreterReady, A-9
commands
descriptions, Rom-66—Rom—142,
Bdm—-10-Bdm-32
mudtiple, 3-17
syntax, 4-3
comments, 3—-17
communication setup, 1-21
compare application, 1-24, 13-86
conditional command execution,
13-116
conditional keywords, 3-19
configure, Rom-72
configure CrossView Pro, 1-21
constants, 3—4
binary, 3-5
character, 3-6
character constants in C, 3-6
Sfloating point, 3-5
hexadecimal, 3—-4
long integer, 3-5
octal, 3-5
strings, 3-6
continue execution, 5-9
control characters, Rom-64,
Bdm-9-Bdm-32
control operations, 4-38
coverage, 1-6, 11-6, 15-5
disable, 11-6, 13-75
enable, 11-6, 13-76
information, 13-78
marker, 4-23, 7-4

Index

memory window, 4-28
next covered block, 13-143
next not covered block, 13-144
previous covered block, 13-149
previous not covered block, 13-154
source window, 4-24
covinfo command, 13-78
cproinfo command, 13-79
CPU, reserved variable, 3—-10
CPU selection, 4-7
cpu selection, 13-95, 13-96
cpu_type, 1-20
CRC test, Rom-129
creating a makefile, 1-38
CrossView
and command line options, 4-5
command files, 4-6
command language, 3-1
command line batch processing,
9-10
command reference, 13-1
commands summary, 13-4, 13-15
customizing, 4-17
desktop, 4-11
[features of the execution
environment, Sim-3
invoking, 4-4
restrictions of execution
environment, Sim-15
sound support, C-1
special features, 11-1
starting, 4-4
state of, 13-115
using, 4-1
CrossView Pro
background debug mode execution,
Bdm-3-Bdm-32
before starting, 1-17
debugging environment, 1-8
documentation, 1-7
exiting, 1-30
Sfeatures, 1-3
how it works, 1-10

Index

invoking, 1-18
output, 1-29
source level debugging, 1-8
target settings, 1-19
using windows, 1-4
windows, 1-4
CrossView Pro workspace, 1-30
ct command, 13-81
ct i command, 13-82
ct r command, 13-83
cursor, 5-3
CXL script, 4-37
supplied scripts, 11-13
syntax, 11-19
CXL syntax, 11-19
base types, 11-21
compound types, 11-22
predefined functions, 11-22
cycle count, breakpoints, 7-3

D command, 13-84
d command, 13-85
data
displaying, 6-1
enumerated, 6-5
list data monitors, 13-130
data analysis, 11-11
add update commands, 13-107
bufa, 13-71
bufd, 13-72
clear sequence of update commands,
13-108
close window, 13-109
create window, 13-106
graph, 13-106
graph debug, 13-110
graph_add_update, 13-107
graph_clear updates, 13-108
graph_close, 13-109

graph_debug, 13-110
grapbm, 13-111
graphmn, 13-112
graphp, 13-113
memget, 13-134
position window, 13-113
rawmemgel, 13-158
supplied scripts, 11-13
update, 13-175
update window, 13-175
Data Analysis Window, 4-36
toolbar, 4-36
data breakpoints
set at an address, 13-49
set over range of addresses, 13-47
data coverage, 1-6, 4-28
data monitoring, 1-5, 15-5
removing expressions, 6-12
Data Window, 1-5, 4-29, 6-11
toolbar, 4-31
db command, Rom-73
dc command, Rom-75
demp command, 13-86
DDE command line options,
——ddeservername, A-28
DDE commands, AddDDEMenuEntry,
A-28
DDE events, A-27
DDE items
cmdannotatedoutput, A-22
cmdoutput, A-21
event, A-26
exec, A-24
execext, A-23
halt, A-25
Help, A-20
result, A-27
DDE server interface, A-20
debug
DFC display, Bdm-13
DFC set, Bdm-14
SFC display, Bdm-18

Index—7

Index-8

=

SFC set, Bdm—19
debug instrument, 13-14
save/restore state, 13-88
debug instrument I/0, 10-9
debug_instrument module, 1-20
debugger, starting, 1-37
debugging
and optimized code, 3-7
assembly language, 12-3
code without symbols, 5-14
environment, 1-8
mudtiple programs, 12-3
notes about, 12-1
source-level, 1-8
viewing source while, 1-24
debugging an application, 1-27
debugging features, Rom-5
derivatives, B-7
description file, Sim-3
desktop, 4-11
DestroyedAllSymbols, A-11
development flow, 1-12
df command, Rom-77
di command, Rom-78
di state command, 13-88
diagnostic function, Rom-77
diagnostic output, and breakpoints,
7-27
diagnostics, 15-5, Rom-124—Rom-142
SmartMON, Rom—124—Rom—142
user, Rom-135-Rom—-142
dialog boxes, 4-16
DidAddSymbols, A-11
DidDownloadImage, A-11
DidLoadSymbols, A-10
dis command, 13-89
disassemble, Rom-78
disassemble memory, 13-89
disassembly, 6-17
window, 15-6
display, customizing, 4-17
display breakpoint, Rom-73, Bdm-11

Index

display configuration, Rom-75,
Bdm-12

display formats, set default, 13-100

display memory, Rom-81, Bdm-16

display registers, Rom—-82, Bdm-17

display trace, Rom-83

dl command, Rom-79

dm command, Rom-81

dn command, 13-90

documentation, 1-7

dot operand, 6-11

download, Rom-79, Bdm-15

download a file, 13-90

download image, 13-129

download mode, Rom—-65, Bdm-10

downloading, files to the execution
environment, 1-22

dr command, Rom-82

dt command, Rom-83

dump, 3-16, 6-15

dump command, 13-91

Dy command, 13-84

e command, 5-15, 13-93

eC command, 13-95

ec command, 13-96

echo command, 13-97

echo string to terminal, 13-19

EDE, 1-32
build an application, 1-36
load files, 1-34
open a project, 1-34
select a toolchain, 1-33
start a new project, 1-37
starting, 1-32

edit source, 4-25

ei command, 13-98

Index Index—9

embedded development environment. execext, A-23
See EDE executable, building for CrossView
embedded system, 15-6 Pro, 1-32
emulator, setting up execution Execute, A-6
environment, 1-17 ExecuteNoWait, A-7
emulator communication setup, 1-21 executing an application, 1-24
emulator mode, 1-9, Bdm-9-Bdm-32 execution control commands,
environment variable summary of, 13-8
LD LIBRARY PATH, 2-3 execution environment, Sim-1, Rom-1,
UIDPATH, 2-3 Bdm-1
EPROMS, programming, connecting to CrossView, 4-6
Rom-61-Rom-136 downloading files to, 1-22
error messages, alphabetical listing of, execution mode, Rom-65, Bdm-10
14-1 submodes, Rom—18
Esc key, 4-21 execution position, 5-3
et command, 13-99 changing the, 5-5
evaluate expression, 13-16 definition of, 15-6
event, A-26 sync with viewing position, 5-7
events, A-8, A-27 exit, 4-19
AssertionsChanged, A-11 exponential notation, 3-5
BreakpointsChanged, A-11 expression evaluator, 1-4
CmdAnnotatedOutput, A-11 expressions, 3-3
CommandCanceledByUser, A-9 C character codes, 3-6
CommandlInterpreterBusy, A-8 character constants, 3—-6
CommandInterpreterReady, A-9 evaluating, 6-10
DestroyedAllSymbols, A-11 evaluation precision, 3-4
DidAddSymbols, A-11 [floating point constants, 3-5
DidDownloadlmage, A-11 format of, 3-13
DidloadSymbols, A-10 momnitoring, 6-11
HaltButtonPressed, A-9 removing monitored, 6-12
MenuEntrySelected, A-11 show, 4-29
Quit, A-12 special expressions, 3-18
Reset, A-10 specifying variables in, 3-8
ResetProgram, A-10 strings, 3-6
Running, A-9 waitch, 4-29
RunningInBackground, A-9 extension language, 11-19
SourceFileChanged, A-10 eye diagram, 11-19
Stopped, A-9
ViewedLineNrChanged, A-10
example F
starting EDE, 1-32
using EDE, 1-32 f command, 13-100

exec, A—24

Index-10

=

FFT power spectrum, 11-15
combined with phase, 11-18
mudti, 11-15
multi in lines, 11-16
muldti in lines and grid, 11-16

FFT waterfall, 11-15

file system simulation, 10-7, 15-6
close a stream, 13-102
libraries, 10-8
redirect output to a file, 13-103
redirection, 10-7, 13-101
summary of commands, 13-13

filenames, 2-3

floating point constants, 3-5

format codes, 3-14

formats, for variables, 6-13

formatting, Rom-53—Rom-60

formatting expressions, 3—-13

frame pointer, 3—-10

FSS
redirection, 10-7
summary of commands, 13-13

FSS command, 13-101

FSS stdio_close, 13-102

FSS_stdio_open, 13-103

functions, 3-20
calling directly, 5-14
listing all, 6-8
listing local variables and parameters

of, 6-22

G

g command, 5-5, 13-104
GDI, 1-8, 9-12, 9-13
logging, 9-13, 9-15, 9-17
getting started, 1-17
gi command, 5-6, 13-105
global variables, 3-8
glossary, 15-1
go command, Rom-85
go to next instruction, Rom-88

Index

gon command, Rom-88

graph command, 13-106

graph_add update command, 13-107

graph_clear updates command,
13-108

graph_close command, 13-109

graph_debug command, 13-110

graphm command, 13-111

graphmn command, 13-112

graphp command, 13-113

GUI update suppress, 13-114

gus command, 13-114

Halt, A-7
halt, A-25
halt execution, 5-9
HaltButtonPressed, A-9
he command, Rom-90
Help, A-20
help, Rom-90, Bdm-22
on-line, 1-7, 4-39
summary of belp commands, 13-14
hexadecimal disassembly, 3-10
hexadecimal notation, 3—4
history mechanism, 15-7

I command, 13-115

I/0O simulation, 1-5
defined, 15-7
disable streams, 10-7
enable streams, 10-7
[file system simulation, 10-7
redirecting streams, 10-6
setting up streams, 10-4
terminal windows, 4-34

if command, 13-116

Index

image part, 15-7
in command, Rom-91
in—situ editing, 6-7, 6-26
Init(), A-6
initialize, Rom-91, Bdm-23
input/output
interrupt driven, Rom—20-Rom~-29
polled, Rom-23-Rom-29
system calls, Rom-26
input/output simulation, 10-1
defined, 15-7
summary of commands, 13-12
instruction count breakpoints, 7-3
integers, 3—-4
binary, 3-5
hexadecimal, 3—-4
integral promotion, 3-5
long, 3-5
negative, 3-4
octal, 3-5
integral promotion, 3-5
intermixed source and disassembly,
6-18
interprocess communication, A-1
interrupt key, 15-7
interrupt service routine (ISR),
Rom-45-Rom-60
interrupt service routines (ISRs),
Rom-27
debugging downloading, Rom-29
ios_close command, 13-117
ios_open command, 13-118
ios_read command, 13-120
ios_readf command, 13-121
ios_rewind command, 13-122
ios_wopen command, 13-123
ios_write command, 13-124
ios_writef command, 13-125

J

jump to cursor, 5-5

K

kernel support, 1-7, 11-4
keyboard mappings, 10-10
keywords, conditional, 3-19-3-22

L

L command, 13-126
1 command, 13-127
label, in disassembly, 6-17
language, 3-1
LD_LIBRARY_ PATH, 2-3
line command, 13-18
line numbers, 3-10
listing, 13-127
load command, 13-129
load symbol file, 13-129, 13-141
local variables, 3—7
and the stack, 3-7
auto-watch, 4-31
logging, 9-12
command window output, 13-31
commands and screen output, 9-15
debugger-emulator 1/0, 13-33
debugger-GDI accesses, 13-35
example, 9-15
resume, 9-15
setting up, 9-13
start, 9-13
startup options, 9-18
stop, 9-17
summary of commands, 13-11
suspend, 9-15
long integer constants, 3-5

M command, 13-130
m command, 13-131

Index-12

=

macros, 1-7, 8-1, 15-8
calling other macros, 8—4
define, 13-163
defining, 8-3
delete definition, 13-174
deleting, 8-8
echo command, 13-97
expanding, 8-5
listing, 8-5
parameters of, 8-9
reading from a file, 8-7
redefining, 8-5, 8-10
save, 13-162
saving to a file, 86

summary of commands, 13-12

using the toolbox, 8-11
main() function, 15-8
makefile

automatic creation of, 1-38

updating, 1-38
makepy utility, A-15

MAU (minimum addressable unit),

15-8

mcp command, 13-133
memget command, 13-134
memory

copy, 13-133

disassembly, 13-89

displaying, 6-14

dump, 13-91

fill, 13-137

mapping, Sim-3

search, 13-139

single fill, 13-136
memory access, tracing, 1-6
memory dump, 3-16, 6-15
memory map, 4-6, 15-8
Memory Window, 4-27

setup, 4-28

toolbar, 4-28
menu, 4-13

local popup, 4-14
menu bar, 4-11

Index

MenuEntrySelected, A-11
mF command, 13-136
mf command, 13-137
minimum addressable unit, 15-8
mm command, Rom-92
modify memory, Rom-92
monitor. See ROM Monitor
monitor data, 13—-130
monitors, 13-131
more, 3—-10
ms command, 13-139
multi FFT power spectrum, 11-15
in lines, 11-16
in lines and grid, 11-16

N command, 13-141
n command, 13-142
nC command, 13-143
nU command, 13-144

O

o command, 13-145
object modules
buildinng the demo,
Rom-~-57-Rom—-60
linking and locating,
Rom~-52—-Rom-60
octal constants, 3-5
octal notation, 3—4
open a file I/O stream, 13-118, 13-123
operation modes, Rom-64—Rom-142,
Bdm-9-Bdm-32
command, Bdm-9
download, Bdm-10
execution, Bdm—10
operational modes
command, Rom—13

Index

download, Rom-14

execution, Rom—-14
operators, 3-17

order of precedence, 3-17

using addresses, 3-18
opt command, 13-146
optimization, and debugging, 3-7
options, display or set, 13-146
OSEK/ORTI, 11-4
output paging mechanism, 3—10
overview, 1-1

P

P command, 13-147
p command, 13-148
packet format, A-27
patches, 15-8
and breakpoints, 7-25
pC command, 13-149
pd command, 13-150
pe command, 13-151
performing timing analysis, 1-6
playback, 9-8
calling other playback files, 9-9
quitting, 9-10
setting the type of, 9-9
startup options, 9-18
summary of commands, 13-11
playback mode, 1-7
continuous, 13-23
single step, 13-24
pointer, 3-16
display character, 3-15, 6-6
portinit, Rom-44

precision, evaluating expresions, 3—4

print source lines, 13-147, 13-148
probe point, 1-5, 7-4, 15-9
problems

common, 1-31

communicating with CrossView, 4-9

profiling, 1-6, 11-8, 15-9
code range, 1-6, 11-10
cumulative, 11-9
cumulative information, 13-79
disable, 11-10, 13-150
enable, 11-10, 13-151
Sfunction, 11-9
Sfunctions, 1-6
information, 13-152
program counter, 3-10, 5-7, 13-73
g command (change), 13-104
gi command (change), 13-105
inside function, 3-9
program development, 1-12
program execution
controlling, 5-1
notes about, 5-14
program reset, 13-153
proinfo command, 13-152
project files, adding files, 1-37
PROMs, programming,
Rom-54-Rom-142
prst command, 13-153
pseudo—assembly, 6-18
pU command, 13-154

Q

Q command, 13-155

q command, 13-156

quiet breakpoint recording, 13-155
Quit, A-12

quit debugger, 13-156

R command, 5-8, 13-157
radm, 1-20

Index-13

Index-14

=

RAM, installing RAM based diagnostics,
Rom-141
RAM tests, Rom-124
complete, Rom-126, Rom-128
simple, Rom—-125, Rom—-127
rawmemget command, 13-158
rb command, Rom-93
read from an I/O stream, 13—-120
Jormatted, 13-121
record
commands only, 13-25
CrossView Pro and emulator
commands, 13-27
emulator commands only, 13-29
record and playback, 9-1
definition of, 15-9
record mode, 1-7
recording
checking status, 9-6
close file for, 9-6
entering comments, 9-4
example, 9-7
resume, 9-5
start, 9-3
startup options, 9-18
stop, 9-6
summary of commands, 13-11
suspend, 9-5
refresh windows, 13-173
reg.dat, B—4
register file syntax, B—4
register manager, B-1
register set, fixed, B-6
Register Window, 4-26, 6-25
setup, 6-25
registers, 3-11
displaying the contents of, 6-8
special variable, 3-10
remove breakpoint, Rom-93, Bdm-24
Reset, A-10
reset program, 5-8, 13-153
reset target system, 13-157, 13-159
reset the target, Bdm-25

Index

ResetProgram, A-10

resource file, 2-3

result, A-27

rewind an I/O stream, 13-122

RM_INIT, Rom-38

rm68, B-1

ROM Monitor, Rom-1
debugging features, Rom-5
overview, Rom-3

ROM monitor, setting up execution

environment, 1-17

ROMM_GO, Rom-42

rst command, 13-159

RTOS aware debugging, 11-4

run—-time, Rom-27-Rom-142

Running, A-9

RunningInBackground, A-9

RX CHAR, Rom-46, Rom-48

S

S command, 5-11, 13-160

s command, 13-161

save command, 13-162

save on exit, 4-19

sb command, Rom-95

sbc command, Rom-98

sbd command, Rom-99

sbr command, Rom-101

scope loop routines
read from location, Rom—-130
write and compliment, Rom-132
write rotating value, Rom-133
write then read, Rom—-134
write to location, Rom—131

scoping rules and variables, 3-9

scroll bar, 4-11

search
backward for string, 13-22
Sforward for string, 13-21
summary of commands, 13-14

Index

search for string, Rom-107
searching, 5-15-5-18
Jor a function, 5-15
Jfor a source line, 5-17
Jor a string, 5-16
serial ports, 4-6
set address breakpoint, Rom-98
set breakpoints, Bdm-26
set command, 13-163
set conditional breakpoints, Rom-95
set data breakpoint, Rom-99
set data range breakpoint, Rom-101
set memory, Rom-104, Bdm-28
set registers, Rom—-106, Bdm-30
Si command, 5-12, 13-165
si command, 5-12, 13-166, Rom-103
signal analysis, 4-36
simulation, I/O, 1-5
simulator, Sim-1
single step instruction, Rom-103,
Bdm-27
single stepping, 1-5, 5-9-5-10,
Rom-17
at machine level, 5-12-5-18
defined, 15-10
into, 5-10
into function calls, 13-161
into functions, 5-10
machine level into functions, 13-166
machine level over functions, 13-165
over, 5-11
over function calls, 13-160
over functions, 5-11
sizeof() function, 6-7
skidding, 15-10
sm command, Rom-104
SmartMON
addresses, Rom-41
build process, Rom—-50—-Rom—142
building work code,
Rom~-54—Rom—142
initialization, Rom-26—Rom—142
linking diagnostics with, Rom-140

operational modes, Rom—-13
processing 1/0, Rom—19-Rom—142
processing UD commands, Rom-141
required values, Rom-33
resource requirements, Rom—10
setting breakpoints,
Rom—14-Rom—142
starting up with CrossView Pro,
Rom—-58—Rom—142
starting with terminal or emulator,
Rom-62
system calls, Rom—111-Rom—-142
tracing features, Rom—16—Rom—-142
use of interrupts and traps, Rom-10
so command, Rom-105
sound support, C-1
source directory, change, 13-176
source level debugging, 1-8
source line, jump to, 5-17
source merge limit, 3—10
source positioning, 5-3
Source Window, 4-23
calling functions, 5-14
change execution position, 5-5
change viewing position, 5-4
controlling program execution,
5-8-5-18
edit source, 4-25
searching in, 5-15-5-18
single stepping, 5-9
sync execution and viewing positions,
5-7
toolbay, 4-24
source window, line numbers, 3-10
SourceFileChanged, A-10
special function register, 3-11
special function registers, B-3
special variables, 3-9, 15-10
reserved, 15-9
user-defined, 3-11
sr command, Rom-106
ss command, Rom-107
st command, 13-167

Index-15

Index—16 Index

=

stack, 6-19 OUT DATA, Rom—-120
local variables, 3-7 OUI" STR, Rom—-121
organization of, 6-19 RD_STR, Rom—-122

stack pointer, 3—-10 required, Rom—13

stack trace, 13-168, 13-169 ROMM_GO, Rom-123

Stack Window, 4-32, 6-20 system control, Rom-30
toolbar, 4-33 system startup code, 15-11

start execution, Rom-85, Bdm-21
startup options, 4-5

definition, 15-11

list of, 4-7 T
static variables, 3—7 T command, 13-168
status bar, 4-11 t command, 13-169
step out of address range, Rom-105, Tab key, 4-21

Bdm-29 target communication, 15-11

step-out-of-range, Rom-17 target configuration file, 1-20
stop target execution, 13-167 Target Interface Package (TIP), Rom-9,
Stopped, A-9 Rom-19, Rom-31-Rom-142
storage classes, 3—7 assembling, Rom-51
str%ng command, 3-18 description, Rom-31-Rom-142
strings, 3-6 initialize and download, Rom-5
structures locating, Rom—60

assignment, 6-8 modules

viewing, 6-5 diag_tbl.68k, Rom-49—Rom—142
style codes, 3-14 io _drv.68k, Rom-44—Rom—142
symbol information, 15-11 rn;az'n‘68/e, Rom-37—-Rom—142
symbolic disassembly, 6-17 sys_go.68k, Rom—48-Rom—142
symbols, in disassembly, 3-10 sysstp. 68k, Rom-48-Rom—142
synchronize execution and viewing usreq. 68k, Rom-32-Rom—-142

positions, 5-7, 13-126 programming EPROMS, Rom-61

sys_go, Rom—48 required system calls, Rom-13
sys_stop, Rom-49 target program counter, 13-74
system calls, Rom-111-Rom-142 target settings, 1-19

EVI_COPY, Rom~112 target state, 13-14

1/0, Rom=26 target system, 1-8

IN_CHAR, Rom-113 task selection, 13-99

IN_STR, Rom~114 td command, 13-170, Rom-108

INT_COMP, Rom~115 te command, 13-171, Rom-109

INT_ENTER, Rom-116 Terminal Window, 4-34

INT_RX, Rom~117 keyboard mappings, 10-10

INT TX, Rom-118 setup, 4-35

optional, Rom~13 timer breakpoints, 7-3

OUT _CHAR, Rom~119

Index

title, 1-20
toolbar, 4-11
data analysis window, 4-36
data window, 4-31
memory window, 4-28
source window, 4-24
stack window, 4-33
toolbox, 8-11
toolchain, 1-12
trace
C, 13-81
disable, 13-170
disassembled, 13-82
enable, 13-171
instruction level, 6-24
raw, 6-24, 13-83
source level, 6-23
trace analysis, 15-12
trace buffer, 15-12
trace buffer operation, Rom-17
trace disable, Rom-108
trace enable, Rom-109
trace points, Rom-17
Trace Window, 4-33, 6-23
instruction level, 13-82
raw, 13-83
source level, 13-81
traceback mode, 1-5
transparency mode, 1-9, 11-3, 13-145
and CrossView startup, 4-6
defined, 15-12
entering, 11-3
one-shot commands, 11-3
startup options, 11-3
trigraph sequence, 3-7
troubleshooting, 1-31, 4-9,
Rom-59-Rom-142
TX CHAR, Rom-45, Rom-47

U

u command, 13-172

ubgw command, 13-173
ud command, Rom-110
UIDPATH, 2-3

unset command, 13-174
update command, 13-175
update windows, 13-172, 13-173
updating makefile, 1-38
use command, 13-176
user defined functions, 1-7
user diagnostics, Rom-110
using EDE, 1-32

\')

variables, 3-7
and case sensitivity, 3-21
and scoping rules, 3-9
casting, 3-7
changing, 6-7
determining the size of, 6-7
Sformats of, 6-13
global, 6-8
global variables, 3-8
local, 15-7
local variables, 3-7
scope, 15-10
special, 15-10
special variables, Pages, 3-9
specifying in expressions, 3-8
static variables, 3-7
user—defined special variables, 3-11
ViewedLineNrChanged, A-10

Index-17

Index—18 Index

=

viewing position, 3-9, 5-3 selecting, 4-15
changing the, 5-4-5-7 source positioning, 5-3
defined, 15-12 source window, 4-23
establish, 13-93 stack window, 4-32
establish at address, 13-98 terminal windows, 4-34
sync with execution position, 5-7 toolbox, 4-37

trace window, 4-33
workspace file (.cws), 1-30

w write to an 1/O stream, 13-124
Sformatted, 13-125
wait for target completion, 13177 wt command, 13-177

waiting, 11-31
window update

reactivate, 13-114 x
suppress, 13-114

windows, 4-20 x command, 13-178
active, 4-15, 15-3 X Resources, 2—-4
automatic switching between source X Widgets, CrossView Motif, 2—4

and assembly, 3-10 X Windows

closing, 4-15 Motif environment, 2-3
command window, 4-21 resources, 2—4
customizing, 4-17 x-t plotting, 11-13
data analysis window, 4-36 x-y plotting, 11-14
data window, 4-29 xvwedit, 4-25

belp window, 4-37

memory window, 4-27

opening, 4-14

pop-up, 4-37 z
register window, 4-26 Z command, 13-179

	TABLE OF CONTENTS
	1. OVERVIEW
	1.1 Introduction
	1.2 CrossView Pro's Features
	1.3 Source Level Debugging
	1.4 How CrossView Pro Works
	1.5 Program Development
	1.6 Getting Started
	1.6.1 Before Starting
	1.6.2 Setting Up the Execution Environment
	1.6.3 Starting CrossView Pro
	1.6.3.1 CrossView Pro Target Settings
	1.6.3.2 Configuring CrossView Pro
	1.6.3.3 Loading Symbolic Debug Information

	1.6.4 Executing an Application
	1.6.5 Debugging an Application
	1.6.6 CrossView Pro Output
	1.6.7 Exiting CrossView Pro
	1.6.8 What You May Have Done Wrong
	1.6.9 Building Your Executable
	1.6.9.1 Using EDE

	2. SOFTWARE INSTALLATION
	2.1 Introduction
	2.2 Note about Filenames
	2.3 Configuring the X Windows Motif Environment
	2.4 Using X Resources

	3. COMMAND LANGUAGE
	3.1 Introduction
	3.2 CrossView Pro Expressions
	3.3 Constants
	3.4 Variables
	3.5 Formatting Expressions
	3.6 Operators
	3.7 Special Expressions
	3.8 Conditional Evaluation
	3.9 Functions
	3.10 Case Sensitivity

	4. USING CROSSVIEW PRO
	4.1 Introduction
	4.2 Using the CrossView Pro Interface
	4.3 Starting CrossView Pro
	4.4 Startup Options
	4.4.1 What You May Have Done Wrong

	4.5 The CrossView Pro Desktop
	4.5.1 Menus
	4.5.1.1 Local Popup Menus

	4.5.2 Window Operation
	4.5.3 Dialog Boxes
	4.5.4 Customizing CrossView Pro
	4.5.5 CrossView Pro Messages

	4.6 CrossView Pro Windows
	4.6.1 Command Window
	4.6.2 Source Window
	4.6.3 Register Window
	4.6.4 Memory Window
	4.6.5 Data Window
	4.6.6 Stack Window
	4.6.7 Trace Window
	4.6.8 Terminal Window
	4.6.9 Data Analysis Window
	4.6.10 Pop-Up Windows

	4.7 Control Operations for CrossView Pro
	4.7.1 Echoing Commands
	4.7.2 Mouse/Menu/Command Equivalents

	4.8 Using the On-line Help
	4.8.1 Accessing On-line Help
	4.8.2 Using MS-Windows Help

	5. CONTROLLING PROGRAM EXECUTION
	5.1 Source Positioning
	5.1.1 Changing the Viewing Position
	5.1.2 Changing the Execution Position
	5.1.3 Synchronizing the Execution and Viewing Positions

	5.2 Controlling Program Execution
	5.2.1 Starting the Program
	5.2.2 Halting and Continuing Execution
	5.2.3 Single-Step Execution
	5.2.4 Stepping through at the Machine Level

	5.3 Notes About Program Execution
	5.4 Calling a Function
	5.5 Searching through the Source Window
	5.5.1 Searching for a Function
	5.5.2 Searching for a String
	5.5.3 Jumping to a Source Line

	6. ACCESSING CODE AND DATA
	6.1 Introduction
	6.2 Accessing Variables
	6.2.1 Viewing Variables, Structures and Arrays
	6.2.2 Changing Variables
	6.2.3 The l Command

	6.3 Expressions
	6.3.1 Evaluating Expressions
	6.3.2 Monitoring Expressions
	6.3.3 Formatting Data
	6.3.4 Displaying Memory
	6.3.5 Displaying Memory Addresses

	6.4 Displaying Disassembled Instructions
	6.4.1 Intermixed Source and Disassembly

	6.5 The Stack
	6.5.1 How the Stack is Organized
	6.5.2 The Stack Window
	6.5.3 Listing Locals and Parameters of a Function
	6.5.4 Low-level Viewing the Stack

	6.6 Trace Window
	6.6.1 Trace Window Setup

	6.7 Register Window
	6.7.1 Register Window Setup
	6.7.2 Editing Registers

	7. BREAKPOINTS AND ASSERTIONS
	7.1 Introduction to Breakpoints
	7.1.1 Code Breakpoints
	7.1.2 Data Breakpoints
	7.1.3 Listing Breakpoints

	7.2 Setting Breakpoints
	7.2.1 Data Breakpoints over a Range of Addresses
	7.2.2 Temporary Breakpoints
	7.2.3 Breakpoint Names
	7.2.4 Setting the Count
	7.2.5 Sequence Breakpoints

	7.3 Deleting Breakpoints
	7.4 Enabling/Disabling Breakpoints
	7.5 Breakpoint Commands
	7.5.1 Attaching Conditionals to a Breakpoint
	7.5.2 Attaching Macros to a Breakpoint
	7.5.3 Attaching Strings to a Breakpoint

	7.6 Suppressing Breakpoint Messages
	7.7 Up-level Breakpoints
	7.8 Patches
	7.8.1 Patching Code out of a Program
	7.8.2 Patching Code into a Program
	7.8.3 Replacing Code in a Program

	7.9 Diagnostic Output and Statistical Information
	7.10 Assertions
	7.10.1 Assertion Mode
	7.10.2 Defining an Assertion
	7.10.3 Editing an Assertion
	7.10.4 Activating and Suspending Assertions
	7.10.5 Deleting Assertions
	7.10.6 Using Assertions
	7.10.7 Gathering Statistics with Assertions

	8. DEFINING AND USING MACROS
	8.1 CrossView Pro Macros
	8.2 Defining Macros
	8.2.1 Listing Macros
	8.2.2 Redefining a Macro
	8.2.3 Saving Macro Definitions to a File
	8.2.4 Loading Macro Definitions from a File
	8.2.5 Deleting Macros

	8.3 Macro Parameters
	8.4 Redefining Existing CrossView Pro Commands
	8.5 Using the Toolbox
	8.5.1 Opening the Toolbox
	8.5.2 Connecting Macros to the Toolbox
	8.5.3 Removing a Macro Connection

	9. COMMAND RECORDING & PLAYBACK
	9.1 Recording Commands
	9.1.1 Entering Comments
	9.1.2 Suspend Recording
	9.1.3 Resume Recording
	9.1.4 Check Recording Status
	9.1.5 Close File for Recording
	9.1.6 Command Recording Example

	9.2 Playing Back Command Files
	9.2.1 Setting the Type of Playback
	9.2.2 Calling Other Playback Files
	9.2.3 Quitting Playback Mode

	9.3 Command Line Batch Processing
	9.4 Logging
	9.4.1 Setting up Logging
	9.4.2 Recording Commands and Logging Screen Output
	9.4.3 Command Window Log File Example
	9.4.4 Suspending and Resuming Output Log
	9.4.5 Closing the Output Log File

	9.5 Startup Options
	9.6 CrossView Pro Command History Mechanism

	10. I/O SIMULATION
	10.1 Introduction
	10.2 I/O Streams
	10.2.1 Setting Up File I/O Streams
	10.2.2 Redirecting I/O Streams

	10.3 File System Simulation
	10.3.1 File System Simulation Libraries

	10.4 Debug Instrument I/O
	10.5 The Terminal Window
	10.5.1 Terminal Window Keyboard Mappings

	11. SPECIAL FEATURES
	11.1 Transparency Mode
	11.2 RTOS Aware Debugging
	11.3 Coverage
	11.4 Profiling
	11.5 Data Analysis
	11.5.1 Supplied Data Analysis Window Scripts
	11.5.2 Syntax of CrossView eXtension Language (CXL)

	11.6 Background Mode
	11.6.1 Configuration
	11.6.2 Manual Refresh
	11.6.3 Entering Background Mode
	11.6.4 Leaving Background Mode
	11.6.5 The Stack in Background Mode
	11.6.6 Local and Global Variables
	11.6.7 Refresh Limitation
	11.6.8 Assertions

	12. DEBUGGING NOTES
	12.1 Debugging Assembly Language
	12.2 Debugging Multiple Programs

	13. COMMAND REFERENCE
	13.1 Conventions Used in this Chapter
	13.2 Commands: Summary
	13.2.1 Viewing Commands
	13.2.2 Data Monitoring
	13.2.3 Data Analysis
	13.2.4 Execution Control Commands
	13.2.5 Record & Playback
	13.2.6 Macros
	13.2.7 Input/Output Simulation
	13.2.8 File System Simulation
	13.2.9 Target System Control
	13.2.10 Save and Restore Target State
	13.2.11 Help Commands
	13.2.12 Search Commands

	13.3 Commands: Detailed Descriptions

	14. ERROR MESSAGES
	14.1 What this Chapter Covers
	14.2 Error Messages

	15. GLOSSARY
	15.1 What this Chapter Covers
	15.2 Glossary Terms

	A. INTERPROCESS COMMUNICATION
	1 COM Interface
	1.1 Introduction
	1.2 Using the COM Object Interface
	1.2.1 Run-Time Environment
	1.2.2 Command Line Options
	1.2.3 Startup Directory

	1.3 COM Interfaces
	1.3.1 Activating the COM object
	1.3.2 Methods
	1.3.3 Implementation Details

	1.4 Events
	1.5 COM Examples
	1.5.1 Python Examples
	1.5.2 Visual Basic Examples
	1.5.3 WORD Examples
	1.5.4 Excerpt of the MIDL Definition

	2 DDE Server Interface
	2.1 Introduction
	2.2 DDE Items and Topics
	2.3 DDE Events
	2.3.1 Packet Format

	2.4 CrossView Pro DDE Specific Options and Commands
	2.4.1 Command Line Options
	2.4.2 Commands

	2.5 Examples
	2.5.1 Evaluating an Expression
	2.5.2 Reading Target Memory
	2.5.3 Writing Into Target Memory
	2.5.4 Requesting Current File and Line Number
	2.5.5 Using CrossView Pro as Pure Server

	B. REGISTER MANAGER
	1 Introduction
	2 Invocation
	3 Syntax of a Register File
	4 SFR Base Address Register Special Variables
	5 Fixed Register Set
	6 Derivatives

	C. SOUND SUPPORT (MS-Windows)
	SIMULATOR
	1 Introduction
	2 Supported Features
	2.1 Mapping Memory
	2.2 Simulating I/O via I/O Port Address Blocks and Devices
	2.3 Setting I/O Device Attributes

	3 Restrictions
	4 Simulator Commands

	SmartMON ROM MONITOR
	1 Introduction
	1.1 Overview
	1.2 SmartMON's Debugging Features
	1.2.1 Initialize and Download
	1.2.2 Stepping, Executing, and Halting
	1.2.3 Setting Breakpoints
	1.2.4 Full Disassembler
	1.2.5 Displaying and Setting Memory and Registers
	1.2.6 Tracing
	1.2.7 Diagnostic Capabilities
	1.2.8 System Calls

	1.3 SmartMON Distribution Contents

	2 Using SmartMON
	2.1 Overview
	2.2 SmartMON's Resource Requirements
	2.3 SmartMON's Use of Interrupts and Traps
	2.4 The Three Operational Modes of SmartMON
	2.5 How SmartMON Sets Breakpoints
	2.5.1 Setting Breakpoints on RAM Code Without Trace Mode Active
	2.5.2 Instruction Breakpoints on ROM Code
	2.5.3 Data Breakpoints
	2.5.4 Complex Breakpoints

	2.6 SmartMON's Tracing Features
	2.6.1 Trace Points
	2.6.2 Trace Buffer Operation

	2.7 Single Stepping and Step-out-of-range
	2.8 The Six Different Submodes of Execution Mode
	2.9 How SmartMON Processes I/O
	2.9.1 Interrupt Driven I/O
	2.9.2 Polled I/O
	2.9.3 Character Buffering
	2.9.4 I/O System Calls

	2.10 How SmartMON is Initialized
	2.11 Run-time Notes
	2.11.1 Stacks
	2.11.2 Interrupt Service Routines
	2.11.3 Downloading an ISR for Debugging
	2.11.4 System Control

	3 Target Interface Package
	3.1 What is the TIP?
	3.2 TIP Module #1: usreq.68k
	3.2.1 Values Required by SmartMON
	3.2.2 More Information on the usrequ.68k Labels

	3.3 TIP Module #2: rmain.68k
	3.3.1 Stacks

	3.4 RM_INIT Call
	3.5 ROMM_GO System Call
	3.6 Creating Your Own rmain.68k
	3.7 TIP Module #3: io_drv.68k
	3.8 portinit Call
	3.9 Serial Port Interrupt Service Routine
	3.10 TX_CHAR
	3.11 RX_CHAR
	3.12 How to Create Your Own io_drv.68k
	3.12.1 Serial Port Polled I/O
	3.12.2 TX_CHAR Using Polled I/O
	3.12.3 RX_CHAR Using Polled I/O
	3.12.4 Creating a Polled I/O io_drv.68k

	3.13 TIP Modules #4 and #5: sysstp.68k and sys_go.68k
	3.13.1 sys_go
	3.13.2 sys_stop

	3.14 TIP Module #6: diag_tbl.68k

	4 Building SmartMON
	4.1 Overview of the Build Process
	4.1.1 Preparing the Build Environment
	4.1.2 Assembling the TIP
	4.1.3 Linking and Locating the Object Modules

	4.2 Formatting
	4.2.1 Programming the PROMs

	4.3 Notes on Building Applications for SmartMON
	4.3.1 Step 1: Modify pmain.68k
	4.3.2 Step 2: Build the Demo Object Modules

	4.4 Starting-up SmartMON with CrossView Pro
	4.5 Troubleshooting
	4.5.1 Locating the TIP
	4.5.2 Programming EPROMS

	4.6 Starting SmartMON with a Terminal or Terminal Emulator

	5 SmartMON Command Language
	5.1 Overview
	5.2 Control Characters
	5.3 Operation Modes
	5.3.1 Command Mode
	5.3.2 Download Mode
	5.3.3 Execution Mode

	5.4 Command Descriptions

	6 System Calls
	6.1 Introduction

	7 Diagnostics
	7.1 SmartMON Diagnostics
	7.1.1 Overview
	7.1.2 RAM Tests

	7.2 User Diagnostics
	7.2.1 Overview
	7.2.2 How to Write a User Diagnostic
	7.2.3 Linking Diagnostics with SmartMON
	7.2.4 Downloading and Running User Diagnostics
	7.2.5 How SmartMON Processes UD Commands
	7.2.6 Installing RAM Based Diagnostics
	7.2.7 Running a Test

	BACKGROUND DEBUG MODE
	1 Introduction
	2 Background Debug Mode as a CrossView Pro Execution Environment
	2.1 Additional Software Contents

	3 BDM Installation
	3.1 Hardware Installation
	3.2 Software Installation
	3.3 Configuration Options
	3.4 Target Environment Setup

	4 BDM Command Interface (Emulator Mode)
	4.1 Operation Modes
	4.2 Command Descriptions

	5 TroublEshooting
	5.1 Unable to Open Driver from OpenDriver
	5.2 Open Failed from CrossView Pro
	5.3 Unexpected Responses

	6 Other Considerations

	INDEX

