Using the ARM Embedded
Tools

MA101-024-00-00 June 11, 2007

Software, hardware, documentation and related materials:
Copyright © 2007 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or
electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited
without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or
imprisonment. Altium, TASKING, CrossView Pro and their respective logos are trademarks or registered trademarks
of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein are the
property of their respective owners and no trademark rights to the same are claimed.

Table of Contents

Table of Contents

Software Installation and Configuration 1-1
1.1 Software Installation 1-1
1.2 Software Configuration i 1-2
1.21 Configuring the Embedded Development Environment 1-2
1.2.2 Configuring the Command Line Environment 1-3
1.3 Licensing TASKING Productscooiiiiiiininnnn.. 1-5
1.3.1 Obtaining License Information 1-5
1.3.2 Installing Node-Locked Licenses 1-6
1.3.3 Installing Floating Licenses ..., 1-6
1.3.4 Modifying the License File Location 1-7
1.3.5 How to Determinethe HostIDo it 1-8
1.3.6 How to Determinethe HostName 1-9

Getting Started with Embedded Software 2-1
21 Introduction 2-1
2.2 Embedded Software Tools 2-1
2.3 Embedded Development Environment 2-4
24 Creating an Embedded Project 2-5
2.41 Adding a new source file tothe project 2-7
242 Adding an existing source file to the project 2-9
25 Setting the Embedded Project Options 2-10
2.5.1 Selecting atarget processor 2-10
252 Settingthe tooloptions i 2-10
2.6 Building your Embedded Application 2-12
2.6.1 Compiling a single sourcefile 2-12
26.2 Rebuiling your entire application 2-12
2.7 Debugging your Embedded Application 2-13

C Language 3-1
3.1 Introduction 3-1
3.2 Data TyPes ..o e 3-2
3.2.1 Changing the Alignment: __unaligned and __packed__ 3-3
3.3 Placing an Object at an Absolute Address: _at() 3-4
3.4 Using Assembly inthe C Source: _asm() 3-4
3.5 Pragmas to Control the Compiler 3-9
3.6 Predefined Preprocessor Macros, 3-11
3.7 Functions 3-12
3.7.1 Parameter Passingc. i 3-12
3.7.2 Function Return Types i 3-13
3.7.3 Inlining Functions:inline i 3-13
3.7.4 Intrinsic Functions 3-15

Using the ARM Embedded Tools

3.7.5 Interrupt Functions / Exception Handlers 3-15
3.7.5.1 Defining an Exception Handler: __interrupt keywords 3-16
3.7.5.2 Interrupt Frame: _frame() 3-17
3.8 Librarieso 3-18
3.8.1 Overview of Libraries oo i 3-18
3.8.2 Printf and Scanf Routines o i, 3-19
Assembly Language 4-1
41 Assembly Syntax 4-1
4.2 Assembler Significant Characters 4-2
4.3 Operands of an Assembly Instruction 4-3
4.4 SymbolNames 4-3
4.5 Registerso 4-4
4.6 Assembly EXpressions i 4-4
4.6.1 Numeric Constants ...ttt 4-5
4.6.2 SHNGS 4-5
4.6.3 Expression Operators ...t 4-6
4.7 Built-in Assembly Functions i 4-7
4.8 Assembler Directives i 4-8
4.9 Macro Operationsouiiiiiiiiiiiiiiiia 4-10
491 DefiningaMacro ... 4-11
49.2 CallingaMacrocoiiiii e 4-12
4.9.3 Using Operators for Macro Arguments 4-13
49.4 Using the .FOR and .REPEAT Directives as Macros 4-16
495 Conditional Assembly 4-16
Using the Compiler 5-1
51 Introduction 5-1
5.2 Compilation Processuiinii i 5-2
5.3 Callingthe Compiler ... 5-3
5.3.1 Overview of C Compiler Options 5-4
54 How the Compiler Searches Include Files 5-7
5.5 Compiling for Debugg@ingccoiiiiiiiii 5-8
5.6 Compiler Optimizations 5-8
5.6.1 Generic optimizations (frontend) 5-9
5.6.2 Core specific optimizations (backend) 5-11
5.6.3 Optimize for SizeorSpeed ... i 5-11
5.7 C Code Checking: MISRA-Ct 5-12
5.8 C Compiler Error Messagesoovviiiiiiiiiiinnn. 5-13
Profiling 6-1
6.1 What is profiling? 6-1
6.1.1 Three methods of profiling 6-1
6.2 Profiling using Code Instrumentation 6-3
6.2.1 Step 1: Build your Application for Profiling 6-4

Table of Contents

6.2.1.1 Profiling Modules and Libraries 6-5
6.2.1.2 Linking Profiling Libraries i 6-5
6.2.2 Step 2: Execute the Application 6-5
6.2.3 Step 3: Displaying Profiling Results 6-7
Using the Assembler 7-1
71 Introduction 7-1
7.2 Assembly ProCesst 7-2
7.3 Callingthe Assembler i 7-2
7.3.1 Overview of Assembler Options oo, 7-3
7.4 How the Assembler Searches Include Files 7-5
7.5 Assembler Optimizations, 7-6
7.6 GeneratingaListFile i 7-7
7.7 Assembler Error Messagesoiiiiiiiiiiii 7-7
Using the Linker 8-1
8.1 Introduction e 8-1
8.2 Linking Processo 8-2
8.2.1 Phase 1: Linking 8-3
8.2.2 Phase2:Locatingcooiiiiiiiii 8-4
8.3 Callingthe Linker ... e 8-6
8.3.1 Overview of Linker Options ..., 8-7
8.4 Linking with Libraries i 8-9
8.4.1 How the Linker Searches Libraries 8-11
8.4.2 How the Linker Extracts Objects from Libraries 8-11
8.5 Incremental Linking 8-12
8.6 Linkingthe C StartupCodet 8-13
8.7 Importing Binary Files i 8-13
8.8 Linker Optimizationsoiiiiiiiiiiiiiieea... 8-14
8.9 Controlling the Linker witha Script, 8-15
8.9.1 Purpose of the Linker Script Language 8-15
8.9.2 EDEand LSL 8-16
8.9.3 Structure of a Linker ScriptFile 8-17
8.9.4 The Architecture Definition 8-19
8.9.5 The Derivative Definition o i 8-21
8.9.6 The Processor Definition: Using Multi-Processor Systems 8-23
8.9.7 The Memory Definition i 8-23
8.9.8 The Section Layout Definition: Locating Sections 8-25
8.10 Linker Labels i 8-27
8.1 GeneratingaMapFile i 8-28
8.12 Linker Error Messages ..o 8-29

Using the ARM Embedded Tools

Vi

Using the Utilities

9.1
9.2
9.2.1
9.2.2
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2
9.4.3

Index

9-1
Introduction 9-1
Control Programt 9-2
Calling the Control Program 9-2
Overview of Control Program Options 9-3
Make Utility 9-6
Callingthe Make Utility i 9-7
Overview of Make Utility Optionst 9-8
Writinga MakeFile 9-9
Librarian 9-17
Callingthe Librarian i 9-17
Overview of Librarian Optionst 9-18
EXamples 9-19

Manual Purpose and Structure

Manual Purpose and Structure

Windows Users

The documentation explains and describes how to use the TASKING ARM toolchain to program an
ARM processor.

You can use the tools either with the graphical EDE or from the command line in a command prompt
window.

Structure

The toolchain documentation consists of a user’s manual (this manual), which includes a Getting
Started section, and a separate reference manual (ARM Embedded Tools Reference).

First you need to install the software. This is described in Chapter 1, Software Installation and
Configuration.

After installation you are ready you are ready to follow the Getting Started in Chapter 2.

Next, move on with the other chapters which explain how to use the compiler, assembiler, linker and the
various utilities.

Once you are familiar with these tools, you can use the reference manual to lookup specific options
and details to make full use of the TASKING toolchain.

Vii

Using the ARM Embedded Tools

Short Table of Contents

Chapter 1: Software Installation and Configuration

Guides you through the installation of the software. Describes the most important settings, paths and
filenames that you must specify to get the package up and running.

Chapter 2: Getting Started

Overview of the toolchain and its individual elements. Explains step-by-step how to write, compile,
assemble and debug your application. Teaches how you can use embedded projects to organize your
files.

Chapter 3: C Language

The TASKING C compilers are fully compatible with ISO-C. This chapter describes the specific target
features of the C language, including language extensions that are not standard in ISO-C. For
example, pragmas are a way to control the compiler from within the C source.

Chapter 4: Assembly Language

Describes the specific features of the assembly language as well as 'directives’, which are pseudo
instructions that are interpreted by the assembler.

Chapter 5: Using the Compiler

Describes how you can use the compiler. An extensive overview of all options is included in the
reference manual.

Chapter 6: Profiling
Describes the process of collecting statistical data about a running application.

Chapter 7: Using the Assembler

Describes how you can use the assembler. An extensive overview of all options is included in the
reference manual.

Chapter 8: Using the Linker

Describes how you can use the linker. An extensive overview of all options is included in the reference
manual.

Chapter 9: Using the Utilities

Describes several utilities and how you can use them to facilitate various tasks. The following utilities
are included: control program, make utility and librarian.

viii

Manual Purpose and Structure

Conventions Used in this Manual

Notation for syntax

The following notation is used to describe the syntax of command line input:

bold Type this part of the syntax literally.
italics Substitute the italic word by an instance. For example:
filename

Type the name of a file in place of the word filename.

{} Encloses a list from which you must choose an item.
[1 Encloses items that are optional. For example
carm [-?]

Both carm and carm -? are valid commands.
Separates items in a list. Read it as OR.

You can repeat the preceding item zero or more times.

Example
carm [option)... filename

You can read this line as follows: enter the command carm with or without an option, follow this by zero
or more options and specify a filename. The following input lines are all valid:

carm test.c
carm -g test.c
carm -g -s test.c

Not valid is:
carm -g

According to the syntax description, you have to specify a filename.

Using the ARM Embedded Tools

Icons

The following illustrations are used in this manual:

@ Note: notes give you extra information.

Warning: read the information carefully. It prevents you from making serious mistakes or from
loosing information.

This illustration indicates actions you can perform with the mouse. Such as EDE menu entries
and dialogs.

Command line: type your input on the command line.

% Reference: follow this reference to find related topics.

Manual Purpose and Structure

Related Publications

C Standards

e ISO/IEC 9899:1999(E), Programming languages - C [ISO/IEC]
More information on the standards can be found at http://www.ansi.org

MISRA-C
* Guidelines for the Use of the C Language in Vehicle Based Software [MIRA limited, 1998]
See also http://www.misra.org.uk

* MISRA-C:2004: Guidelines for the use of the C Language in critical systems [MIRA limited, 2004]
See also http://www.misra-c.com

TASKING Tools

¢ ARM Embedded Tools Reference
[Altium, MB101-024-00-00]

* ARM CrossView Pro Debugger User’s Manual
[Altium, MA101-043-00-00]
ARM

¢ ARM Architecture Reference Manual - ARM DDI 0100l
[2005, ARM Limited]

* ARM v7-M Architecture Application Level Reference Manual - ARM DDI 0405A-01
[2006, ARM Limited]

Xi

Using the ARM Embedded Tools

Xii

1 Software Installation and
Configuration

Summary This chapter guides you through the procedures to install
the software on a Windows system.
The software for Windows has two faces: a graphical
interface (Embedded Development Environment) and a
command line interface. After the installation, it is explained
how to configure the software and how to install the license
information that is needed to actually use the software.

1.1 Software Installation

1. Start Windows 95/98/XP/NT/2000, if you have not already done so.
2. Insert the CD-ROM into the CD-ROM drive.

If the TASKING Showroom dialog box appears, proceed with Step 5.
3. Click the Start button and select Run...

4. In the dialog box type d: \setup (substitute the correct drive letter for your CD-ROM drive) and
click on the OK button.

The TASKING Showroom dialog box appears.
5. Select a product and click on the Install button.
6. Follow the instructions that appear on your screen.

7. License the software product as explained in section 1.3, Licensing TASKING Products.

1-1

Using the ARM Embedded Tools

1.2 Software Configuration

Now you have installed the software, you can configure both the Embedded Development Environment
and the command line environment for Windows.

1.2.1 Configuring the Embedded Development Environment

After installation on Windows, the Embedded Development Environment is automatically configured
with default search paths to find the executables, include files and libraries. In most cases you can use
these settings. To change the default settings, follow the next steps:

1. Double-click on the EDE icon on your desktop to start the Embedded Development Environment
(EDE).
2. From the Project menu, select Directories...

The Directories dialog box appears.

3. Fillin the following fields:
* In the Executable Files Path field, type the pathname of the directory where the executables
are located. The default directory is $ (PRODDIR) \bin.

* Inthe Include Files Path field, add the pathnames of the directories where the compiler and
assembler should look for include files. The default directory is $ (PRODDIR) \include.
Separate pathnames with a semicolon (;).

The first path in the list is the first path where the compiler and assembler look for include files.
To change the search order, simply change the order of pathnames.

* Inthe Library Files Path field, add the pathnames of the directories where the linker should
look for library files. The default directory is $ (PRODDIR)\1ib. Separate pathnames with a
semicolon(;).

The first path in the list is the first path where the linker looks for library files. To change the
search order, simply change the order of pathnames.

@ Instead of typing the pathnames, you can click on the Configure... button.

A dialog box appears in which you can select and add directories, remove them again and
change their order.

1-2

Software Installation and Configuration

1.2.2 Configuring the Command Line Environment

To facilitate the invocation of the tools from the command line (Windows command prompt), you can

set environment variables.

You can set the following variables:

Environment Variable

Description

PATH

With this variable you specify the directory in which the executables
reside (for example: c:\carm\bin). This allows you to call the
executables when you are not in the bin directory.

Usually your system already uses the PATH variable for other purposes.
To keep these settings, you need to add (rather than replace) the path.
Use a semicolon (;) to separate pathnames.

CARMINC

With this variable you specify one or more additional directories in which
the C compiler carm looks for include files. The compiler first looks in
these directories, then always looks in the default include directory
relative to the installation directory.

ASARMINC

With this variable you specify one or more additional directories in which
the assembler asarm looks for include files. The assembler first looks in
these directories, then always looks in the default include directory
relative to the installation directory.

CCARMBIN

With this variable you specify the directory in which the control program
ccarm looks for the executable tools. The path you specify here should
match the path that you specified for the PATH variable.

LIBARM

With this variable you specify one or more alternative directories in which
the linker lkarm looks for library files for a specific core. The linker first
looks in these directories, then always looks in the default 1ib directory.

LM_LICENSE_FILE

With this variable you specify the location of the license data file. You only
need to specify this variable if the license file is not on its default location
(c:\flex1lm for Windows, /usr/local/flexlm/licenses for UNIX).

TASKING_LIC_WAIT

If you set this variable, the tool will wait for a license to become available,
if all licenses are taken. If you have not set this variable, the tool aborts
with an error message. (Only useful with floating licenses)

TMPDIR

With this variable you specify the location where programs can create
temporary files. Usually your system already uses this variable. In this
case you do not need to change it.

Table 1-1: Environment variables

1-3

Using the ARM Embedded Tools

The following examples show how to set an environment variable using the PATH variable as an
example.

Example for Windows 95/98
Add the following line to your autoexec.bat file:
set PATH=%path%;c:\carm\bin

@ You can also type this line in a Command Prompt window but you will loose this setting after you
close the window.

Example for Windows NT

1. Right-click on the My Computer icon on your desktop and select Properties from the menu.
The System Properties dialog appears.

2. Select the Environment tab.

3. Inthe list of System Variables select Path.

4. Inthe Value field, add the path where the executables are located to the existing path information.
Separate pathnames with a semicolon (;). For example: c: \carm\bin.

5. Click on the Set button, then click OK.

Example for Windows XP / 2000

1. Right-click on the My Computer icon on your desktop and select Properties from the menu.
The System Properties dialog appears.

2. Select the Advanced tab.

3. Click on the Environment Variables button.
The Environment Variables dialog appears.

4. Inthe list of System variables select Path.

5. Click on the Edit button.
The Edit System Variable dialog appears.

6. Inthe Variable value field, add the path where the executables are located to the existing path
information. Separate pathnames with a semicolon (;). For example: c:\carm\bin.

7. Click on the OK button to accept the changes and close the dialogs.

1-4

Software Installation and Configuration

1.3 Licensing TASKING Products

TASKING products are protected with license management software (FLEXIm). To use a TASKING
product, you must install the license key provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a floating license. When you order a
TASKING product determine which type of license you need (UNIX products only have a floating
license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the product on that particular
PC only.

Floating license

This license type manages the use of TASKING product licenses among users at one site. This license
type does not lock the software to one specific PC or workstation but it requires a network. The
software can then be used on any computer in the network. The license specifies the number of users
who can use the software simultaneously. A system allocating floating licenses is called a license
server. A license manager running on the license server keeps track of the number of users.

1.3.1 Obtaining License Information

Before you can install a software license you must have a "License Key” containing the license
information for your software product. If you have not received such a license key follow the steps
below to obtain one. Otherwise, you can install the license.

Windows

1. Run the License Administrator during installation and follow the steps to Request a license key
from Altium by E-mail.

2. E-mail the license request to your local TASKING sales representative. The license key will be sent
to you by E-mail.

UNIX

1. If you need a floating license on UNIX, you must determine the host ID and host name of the
computer where you want to use the license manager. Also decide how many users will be using
the product. See section 1.3.5, How to Determine the Host ID and section 1.3.6, How to Determine
the Host Name.

2. When you order a TASKING product, provide the host ID, host name and number of users to your
local TASKING sales representative. The license key will be sent to you by E-mail.

1-5

Using the ARM Embedded Tools

1.3.2 Installing Node-Locked Licenses

If you do not have received your license key, read section 1.3.1, Obtaining License Information, before
continuing.

1. Install the TASKING software product following the installation procedure described in section 1.1,
Software Installation, if you have not done this already.

2. Create a license file by importing a license key or create one manually:

Import a license key

During installation you will be asked to run the License Administrator. Otherwise, start the License
Administrator (licadmin.exe) manually.

In the License Administrator follow the steps to Import a license key received from Altium by
E-mail. The License Administrator creates a license file for you.

Create a license file manually

If you prefer to create a license file manually, create a file called "1icense.dat” inthe c:\flexlm
directory, using an ASCII editor and insert the license key information received by E-mail in this file.
This file is called the "license file”. If the directory c: \f1lex1m does not exist, create the directory.

@ If you wish to install the license file in a different directory, see section 1.3.4, Modifying the
License File Location.

@ If you already have a license file, add the license key information to the existing license file. If
the license file already contains any SERVER lines, you must use another license file. See
section 1.3.4, Modifying the License File Location, for additional information.

The software product and license file are now properly installed.

1.3.3 Installing Floating Licenses

If you do not have received your license key, read section 1.3.1, Obtaining License Information, before
continuing.

1. Install the TASKING software product following the installation procedure described earlier in this
chapter on each computer or workstation where you will use the software product.

2. On each PC or workstation where you will use the TASKING software product the location of a
license file must be known, containing the information of all licenses. Either create a local license
file or point to a license file on a server:

Add a licence key to a local license file
A local license file can reduce network traffic.

On Windows, you can follow the same steps to import a license key or create a license file
manually, as explained in the previous section with the installation of a node-locked license.

1-6

Software Installation and Configuration

On UNIX, you have to insert the license key manually in the license file. The default location of the
license file 1icense.dat is in directory /usr/local/flexlm/licenses for UNIX.

@ If you wish to install the license file in a different directory, see section 1.3.4, Modifying the
License File Location.

@ If you already have a license file, add the license key information to the existing license file.

If the license file already contains any SERVER lines, make sure that the number of
SERVER lines and their contents match, otherwise you must use another license file. See
section 1.3.4, Modifying the License File Location, for additional information.

Point to a license file on the server

Set the environment variable LM_LICENSE_FILE to "port@host”, where host and port come from
the SERVER line in the license file. On Windows, you can use the License Administrator to do this
for you. In the License Administrator follow the steps to Point to a FLEXIm License Server to get
your licenses.

3. If you already have installed FLEXIm v8.4 or higher (for example as part of another product) you
can skip this step and continue with step 4. Otherwise, install SW000098, the Flexible License
Manager (FLEXIm), on the license server where you want to use the license manager.

@ It is not recommended to run a license manager on a Windows 95 or Windows 98 machine. Use
Windows XP, NT or 2000 instead, or use UNIX or Linux.

4. If FLEXIm has already been installed as part of a non-TASKING product you have to make sure
that the bin directory of the FLEXIm product contains a copy of the Tasking daemon. This file part
of the TASKING product installation and is present in the £1ex1m subdirectory of the toolchain. This
file is also on every product CD that includes FLEXIm, in directory 1icensing.

5. On the license server also add the license key to the license file. Follow the same instructions as
with "Add a license key to a local license file” in step 2.

See the FLEXIm PDF manual delivered with SW000098, which is present on each TASKING
product CD, for more information.

1.3.4 Modifying the License File Location

The default location for the license file on Windows is:

c:\flexlm\license.dat
On UNIX this is:

/usr/local/flexlm/licenses/license.dat

1-7

Using the ARM Embedded Tools

If you want to use another name or directory for the license file, each user must define the environment
variable LM_LICENSE_FILE.

If you have more than one product using the FLEXIm license manager you can specify multiple license
files to the LM_LICENSE_FILE environment variable by separating each pathname (/fpath) with a’;’
(on UNIX?):

Example Windows:
set LM LICENSE FILE=c:\flexlm\license.dat;c:\license.txt
Example UNIX:
setenv LM LICENSE_FILE /usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set LM_LICENSE_FILE to port@host; where
host is the host name of the system which runs the FLEXIm license manager and port is the TCP/IP
port number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting with "SERVER”. The fourth
field on this line specifies the TCP/IP port number on which the license server listens. For example:

setenv LM LICENSE_FILE 7594@elliot

% See the FLEXIm PDF manual delivered with SW000098, which is present on each TASKING
product CD, for detailed information.

1.3.5 How to Determine the Host ID

The host ID depends on the platform of the machine. Please use one of the methods listed below to
determine the host ID.

Platform Tool to retrieve host ID Example host ID
Linux hostid 11ac5702
Windows licadmin (License Administrator, | 0060084dfbe9

or use Imhostid)

Table 1-2: Determine the host ID
On Windows, the License Administrator (licadmin) helps you in the process of obtaining your license
key.

@ If you do not have the program licadmin you can download it from our Web site at:
http://www.tasking.com/support/flexim/licadmin.zip. It is also on every product CD that includes
FLEXIm, in directory 1icensing.

1-8

http://www.tasking.com/support/flexlm/licadmin.zip

Software Installation and Configuration

1.3.6 How to Determine the Host Name

To retrieve the host name of a machine, use one of the following methods.

Platform Method

UNIX hostname

Windows NT licadmin or:
Go to the Control Panel, open "Network”. In the "Identification” tab look for
"Computer Name”.

Windows XP/2000 | licadmin or:

Go to the Control Panel, open "System”. In the "Computer Name” tab look for
"Full computer name”.

Table 1-3: Determine the host name

1-9

Using the ARM Embedded Tools

2 Getting Started with Embedded
Software

Summ ary This tutorial shows how to create an embedded software
project with EDE.

2.1 Introduction

This tutorial presumes you are familiar with programming in C/assembly and have basic knowledge of
embedded programming. It contains an overview of the TASKING tools available in the Embedded
Development Environment (EDE). It describes how you can add, create and edit source files in an
embedded project and how to build an embedded application.

The example used in this tutorial is a Hello World program in C. Other examples are supplied in the
\Program Files\Tasking\carm\examples\ folder.

2.2 Embedded Software Tools

With the TASKING embedded software tools in EDE you can write, compile, assemble and link
applications for ARM. Figure2-1 shows all components of the TASKING toolchain with their input and
output files.

The bold names in the figure are the executable names of the tools.

2-1

Using the ARM Embedded Tools

Csourcefile
.C

{

Ccompiler
carm
T
assemblyfile
assemblyfile asm - ST
(handcoded) vy
assembler
asarm - - - - > errormessages .ers
T
librarian ~—— relocatableobjectfile
ararm - .obj

relocatableobjectlibrary
.1ib

r - - - ® errormessages .err

——» listfile .lst

.out

relocatablelinkerobjectfile —‘

linkerscriptfile ~— linker ——» linkermapfile .map
.1sl lkarm - - - - = errormessages .elk
relocatablelinkerobjectfile J * r'pemorydefinition
file .mdf
.out
IntelHex ELF/DWARF2 MotorolaS-record
absoluteobjectfile absoluteobjectfile absoluteobjectfile
.hex .abs .sre
debugger
simulator
or
hardware

Figure 2-1: Toolchain overview

2-2

Getting Started with Embedded Software

The following table lists the file types used by the TASKING toolchain.

Extension | Description

Source files

.c C source file, input for the C compiler
.asm Assembler source file, hand coded
sl Linker script file

Generated source files

.Src Assembler source file, generated by the C compiler, does not contain macros
Obiject files

.obj ELF/DWAREF 2 relocatable object file, generated by the assembler

Jdib Archive with ELF/DWARF 2 object files

.out Relocatable linker output file

.abs ELF/DWARF 2 absolute object file, generated by the locating part of the llinker
.hex Absolute Intel Hex object file

.sre Absolute Motorola S-record object file

List files

st Assembler list file

.map Linker map file

.mcr MISRA-C report file

.mdf Memory definition file

Error list files

.err Compiler error messages file

.ers Assembler error messages file

.elk Linker error messages file

Table 2-1: File extensions

2-3

Using the ARM Embedded Tools

2.3 Embedded Development Environment

The TASKING Embedded Development Environment (EDE) is a Windows application that facilitates
working with the tools in the toolchain and also offers project management and an integrated editor.

To start EDE, double-click on the EDE shortcut on your desktop or launch EDE via the program folder
create by the installation program (Start » Programs » TASKING toolchain » EDE).

Figure 2-2: EDE icon

The EDE screen contains a menu bar, a toolbar with command buttons, one or more windows (default,
a window to edit source files, a project window and an output window) and a status bar.

ProjectOptions Compile Build Rebuild Debug On-lineManuals

i TASKING EDE [Toolchain - C:\larget\examples\demo\demo.pit]

File Edit Seach Praject Buld Test Document Customize Tooks Window Help

RN = N — . Y O
E =]
C:Atargetsexamplestdemo. psp

demo 1 Praject]

i) demo (5 Files)

\

Project Window
Contains several
tabs for viewing T struct rec_s
information about
projects and other
files.

B C:\target\examples\demo\DEMOD.C

#include <string.h>
#include <stdio.h>

#define BELL_CHAR

typedef emum color e Document Windows
‘ — | Used to view and edit files.

red, yellow, hlue

type;

Output Window
Contains several tabs to display _EE
and manipulate results of EDE

operations. For example, to view
the results of builds or compiles. _

g |E e Je o |
\ el ool = B 0 = T

FileFind 4 Search 4 Bowse 4 Difference 4, Shel A Symbols

Figure 2-3: EDE desktop

2-4

Getting Started with Embedded Software

2.4 Creating an Embedded Project

To start working with EDE, you first need a project space and a project. A project space holds a set of
projects and must always contain at least one project. Before you can create a project you have to
setup a project space. All information of a project space is saved in a project space file (. psp). Within a
project space you can create projects. A project makes managing your source documents and any
generated outputs much easier. All information of a project is saved in a project file (.pjt).

To create a new Embedded Software project:

Create a new project space
1. Select File » New Project Space... form the menu.

The Create a New Project Space dialog appears.

Create a Hew Project Space E

Current Directony:
C:htargethexamples

Filename:

v Look in zame directory for external workspace

Wwiorkspace:
Type:
[T} Sute syme werkepace
Browsze. ..] Cancel Help

2. In the the Filename field, enter a name for your project space (for example MyProjects). Click the
Browse button to select a directory first and enter a filename.

3. Check the directory and filename and click OK to create the . psp file in the directory shown in the
dialog.

A project space information file with the name MyProjects.psp is created and the Project
Properties dialog box appears with the project space selected.

2-5

Using the ARM Embedded Tools

Project Properties [%]

% <Default Settings> Directories I Members I Toolks I Errors I Filters I
e () et Project Space: C:\targettexamplesiMyProjects psp

I PFrojects: ﬁ E‘Xl .]!I

|Add new project to project space [AlteM] ‘

™ Hide projects already in project space

 External ‘Warkspace:
fone
<hone> R

Cancel | Help |

Add a new project to the project space

4. In the Project Properties dialog, click on the Add new project to project space button (see
previous figure).

The Add New Project to Project Space dialog appears.

Add Hew Project to Project Space E3

Current Directony:
C:hkargethexamples

Filenarne:

getztarthgetztart. pit

v Look in zame directory for external makefile
I akefile:

Type:
™| fute sime makefie

Eruwse...l Ok I Cancel Help

5. Give your project a name, for example getstart\getstart.pjt (a directory name to hold your
project files is optional) and click OK.

i

A project file with the name getstart.pjt is created in the directory getstart, which is also
created. The Project Properties dialog box appears with the project selected.

2-6

Getting Started with Embedded Software

Project Properties [%]
4 <Default Settings> Directories I Members | Tools I Erars | Filters I
MyProjects (1 Project) Praoject: C:\targethexamples aetstarthgetstart. pit

getstart [0 Files]

IFi\es: [E] =5 jrat |

Add new file Add existing files
Scan existing files

™ Hide files alieady in project

~ Extemal i akefile:
<hones B 4
=Y EE Froest
<rianE> g
I} &odd project files b YES Frojest

Cancel | Help |

v

Now you can add all the files you want to be part of your project.

2.4.1 Adding a new source file to the project
If you want to add a new source file (C or assembly or text file) to your project, proceed as follows:

1. In the Project Properties dialog, click on the Add new file to project button.
Alternatively: In the Project Window, right-click on getstart and select Add New File...

The Add New File to Project dialog appears.

Add New File to Project |

Current Directary:
C:htargethexampleshgetstart

Filenarme:;

hello. o

¥ [Ereate rew it

Browsze. .. | (] 8 I Cancel Help

2. Enter a new filename (for example hello.c) and click OK.

A new emply file is created and added to the project. Repeat steps 1 and 2 if you want to add more
files.

3. Click OK.
The new project is now open. EDE loads the new file(s) in the editor in separate document

windows.

2-7

Using the ARM Embedded Tools

EDE automatically creates a makefile for the project (in this case getstart.mak). This file contains
the rules to build your application. EDE updates the makefile every time you modify your project.

4. Enter the source code required. For this tutorial enter the following code:
#include <stdio.h>
void main(void)

{
printf(”Hello World!\n”);

}

Save the source file:

5. Click on the Save the changed file <Ctrl-S> button.

H|

EDE saves the file.

2-8

Getting Started with Embedded Software

2.4.2 Adding an existing source file to the project

If you want to add an exisiting source file to your project, proceed as follows:

1.

In the Project Properties dialog, click on the Add existing files to project button.
Alternatively: In the Project Window, right-click on getstart and select Add Existing Files »

Browse...

The Select One or More Files to Add to Project dialog appears.

Select One or More Files to Add to Project EE

Loaok jr: I 3 demo

= Bl gl [=E

I demo.C5_ dermao.cmd demo.zic

_demo.ilo demo. matk demo_tut. cmd

_dema.ine demao. oprm M akefile

addone. azm demo.pit 2] Readme.tst

addone. src demo. sbl start.src

demo.c demno. smp E] welcome.txt

File name: I Open
Files of bype: I.fi‘-.ll Files(*.%] j Cancel

Help

dil

In the Look in box, select the directory that contains the files you want to add to your project.

Select the files you want to add (hold down the Ctrl-key to select more than one file) and click

Open.

All the selected files will be added to your project.

2-9

Using the ARM Embedded Tools

2.5 Setting the Embedded Project Options

An embedded project in EDE has a set of embedded options associated with it. After you have added
files to your project, and have written your application (hello.c in our example), the next steps in the
process of building your embedded application are:

* selecting a target processor architecture
* specifying the options of the tools in the toolchain, such as the C compiler, assembler and linker

options. (Different toolchain configurations may have different sets of options.)
2.5.1 Selecting a target processor
For an embedded project, you must specify the configuration and processor type first:
1. From the Project menu, select Project Options...

The Project Options dialog appears.
2. Select Processor Definition.

3. Select a processor architecture. You can specify the Manufacturer, Device, Core or just an
Architecture.

4. Click OK to accept the new project settings.

2.5.2 Setting the tool options

You can set embedded options commonly for all files in the project and you can set file specific options.

Setting project wide options
1. From the Project menu, select Project Options...
The Project Options dialog appears.

2. Inthe left pane, expand the C Compiler entry.
This entry contains several pages where you can specify C compiler settings.

2-10

Getting Started with Embedded Software

ARM ¥X-toolset Project Options [GETSTART.PIT]
- Processor Definition - Optirnization
* Cr Eompller Optimization lewvel: W edium optirmization [default) -
= C Compiler S —
. -alf: -
- Code Generation I2edspes) rfa e. offi] Level 2 —
- Preprocessing [Etistam aptmieation:
= Clpti ion Coalezcer remove Unnecessan moves -
- Language Interprocedural register optimizations
- Debugaing Common zubexprezsion elimination [C5E)
- Prafiling Exprezsion simplification
- Floating-Point Control fovs simplification
- Diagnostics Genernc azzembly code optimizations
- MISRA-C] Functian inlining j
- Mizcelaneous o :
B Assembler = &l Esinlire firstien e als
[#- Linker vl aximun cade siEe nerease caused by inlinim| [F]: |25
- Crossiien Fro Il Bt @iz fan functions to alivapsinlite (wends]; |25
Options string:
CARMwAT -callinfo -align-composites=n “Weo-02 Wo-t2 we-c93 ;l
fe-tGx wio-ga el "$IPRODDIR include™
=

QK I Cancel | Default... | Help |

2

3. Inthe right pane, set the options to the values you want. Do this for all pages.

4. Repeat steps 2 and 3 for the other tools like assembler, linker and CrossView Pro.

5. Click OK to confirm the new settings.

Based on the embedded project options, EDE creates a so-called makefile which it uses to build your

embedded application.

With the Default... button you can restore the default project options (for the current page, or for
all pages). If available, the Options string field shows how your settings are translated to
command line options.

Setting options for an individual document
1. From the Project menu, select Current File Options...
The File Options dialog appears.

Steps 2 to 5 are the same as the steps for setting project wide options.

Using the ARM Embedded Tools

2.6 Building your Embedded Application

You are now ready to build your embedded application.

1. Select Build » Build or click on the Execute ’Make’ command button.

The TASKING program builder compiles, assembles, links and locates the files in the embedded
project that are out-of-date or that have been changed during a previous build. The resulting file is
the absolute object file getstart.abs in the ELF/DWARF format.

2. You can view the results of the build in the Build tab of the Output window (Window » Output).

2.6.1 Compiling a single source file
If you want to compile a single source file:
1. Select the window (hello.c) containing the file you want to compile or assemble.

2. Select Build » Compile or click on the Execute ’Compile’ command button.

If you selected hello.c, this results in the compiled and assembled file hello.obj.

2.6.2 Rebuiling your entire application

If you want to build your embedded application from scratch, regardless of their date/time stamp, you
can perform a recompile:

1. Select Build » Rebuild or click on the Execute ’Rebuild’ command button.

2. The TASKING program builder compiles, assembles, links and locates all files in the embedded
project unconditionally.

You can now debug the resulting absolute object file getstart.abs.

2-12

Getting Started with Embedded Software

2.7 Debugging your Embedded Application

When you have built your embedded application, you can start debugging the resulting absolute object
file with the simulator.

To start the debugger:
* Select Build » Debug or click on the Debug application button.

R

CrossView Pro is launched. CrossView Pro will automatically download the file getstart .abs for
debugging.

ﬁ]j See the CrossView Pro Debugger User’s Manual for more information.

2-13

Using the ARM Embedded Tools

2-14

3 C Language

SU m mary This chapter describes the target specific features of the C
language, including language extensions that are not
standard in ISO-C. For example, pragmas are a way to
control the compiler from within the C source.

3.1 Introduction

The TASKING compiler(s) fully support the ISO C standard and add extra possibilities to program the
special functions of the targets.

In addition to the standard C language, the compiler supports the following:

e intrinsic (built-in) functions that result in target specific assembly instructions
* pragmas to control the compiler from within the C source

e predefined macros

* the possibility to use assembly instructions in the C source

» attribute to specify absolute addresses

* keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (_).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

3-1

Using the ARM Embedded Tools

3.2 Data Types
The TASKING C compiler for the ARM architecture (carm) supports the following fundamental data
types:
Size | Align -
Type C Type (bit) (bit) Limits
Boolean _Bool 8 8 Oor1
Character cljlar 8 8 o7 o7_1
signed char
unsigned char 8 8 0. 28-1
Integral shoxt 16 | 16 ~215 2151
signed short
unsigned short 16 16 0. 2161
enum 32 32 -281 2314
int
i d int
sroned n 32 32 231 9314
long
signed long
unsigned int 32 | 32 0. 2321
unsigned long
l?ng long 64 64 _063 963_1
signed long long
unsigned long long 64 64 0.. 2641
Pointer pointer to function or data 32 32 0..252-1
Floating-Point) . -3.402¢38 .. -1.175¢°38
float (23-bit mantissa) 32 32 11756-38 .. 3.402638
double 64 6a | ~1.798e%%8 . -2.205¢-308
long double (52-bit mantissa) 2.225¢7308 {,798€308
_Imaginary float 32 32 -3.402¢%8i .. -1.175¢738]
1.175e38; .. 3.402°38
_Imaginary double 64 64 -1.798e308j .. _2 205o-308;
_Imaginary long double 2.225¢-308j 1 798e308;
_Complex float 64 32 real part + imaginary part
_Complex double . .
128 64 real part + imaginary part
_Complex long double

Table 3-1: Data Types for the ARM

3-2

C Language

3.2.1 Changing the Alignment: __unaligned and __packed

Normally data, pointers and structure members are aligned according to the table in the previous
section. With the type qualifier __unaligned you can specify to suppress the alignment of objects or
structure members. This can be useful to create compact data structures. In this case the alignment will
be one bit for bit-fields or one byte for other objects or structure members.

At the left side of a pointer declaration you can use the type qualifier __ unaligned to mark the pointer
value as potentially unaligned. This can be useful to access externally defined data. However the
compiler can generate less efficient instructions to dereference such a pointer, to avoid unaligned
memory access.

Example:

struct

{

char c;
__unaligned int i; /* aligned at offset 1 ! */
} s

__unaligned int * up = & s.i;

Packed structures

To prevent alignment gaps in structures, you can use the attribute _packed_ . When you use the
attribute _packed__ directly after the keyword struct, all structure members are marked
__unaligned. For example the following two declarations are the same:

struct _ packed

{
char c;
int 1i;
} sl;
struct
{
__unaligned char c;
__unaligned int i;
} s2;

The attribute __packed__ has the same effect as adding the type qualifier __unaligned to the
declaration to suppress the standard alignment.

You can also use __packed__in a pointer declaration. In that case it affects the alignment of the
pointer itself, not the value of the pointer. The following two declarations are the same:

int * _ unaligned p;
int * p _ packed_ ;

3-3

Using the ARM Embedded Tools

3.3 Placing an Object at an Absolute Address: at()

With the attribute _at () you can specify an absolute address.

Examples
unsigned char Display[80*24] _ at(0x2000);

The array Display is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Display.

int i _ at(0x1000) = 1;
The variable i is placed at address 0x1000 and is initialized at 1.
void f(void) _ at(OxfO0ff + 1) { }

The function £ is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:

e The argument of the __at () attribute must be a constant address expression.

* You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

* When declared extern, the variable is not allocated by the compiler. When the same variable is
allocated within another module but on a different address, the compiler, assembler or linker will not
notice, because an assembler external object cannot specify an absolute address.

* When the variable is declared static, no public symbol will be generated (normal C behavior).
* You cannot place structure members at an absolute address.

* Absolute variables cannot overlap each other. If you declare two absolute variables at the same
address, the assembler and / or linker issues an error. The compiler does not check this.

* When you declare the same absolute variable within two modules, this produces conflicts during
link time (except when one of the modules declares the variable "extern’).

3.4 Using Assembly in the C Source: asm()

With the __asm keyword you can use assembly instructions in the C source. Be aware that C modules
that contain assembly are not portable and harder to compile in other environments.

Furthermore, assembly blocks are not interpreted by the compiler: they are regarded as a black box.
So, it is your responsibility to make sure that the assembly block is syntactically correct.

General syntax of the _asm keyword

__asm(”instruction_ template”
[: output_param list
[: input_param list
[¢ register save_list]]]);

3-4

C Language

instruction_template

Yparm_nr[.regnum]

output_param_list
input_param_list
&

constraint _char

C _expression

register_save_list
register_name:q
char a, b;

int result;

void main(void)

{

Assembly instructions that may contain parameters from the input list or
output list in the form: Y%parm_nr

Parameter number in the range 0 .. 9. With the optional .regnum you can
access an individual register from a register pair.

[[”=[&]constraint_char”(C_expression)],...]
[[“constraint_char”(C_expression)],...]

Says that an output operand is written to before the inputs are read, so
this output must not be the same register as any input.

Constraint character: the type of register to be used for the
C_expression.

Any C expression. For output parameters it must be an Ivalue, that is,
something that is legal to have on the left side of an assignment.

[[’register_name™),...]

Name of the register you want to reserve.

a = 3;
b = 4;
__asm("ADD %0,%1,%2"” : "=r”(result): "r”(a), "r”"(b));

}

%0 corresponds with the first C variable, 1 with the second and so on.

Generated assembly code:

main: .type func

ldr rl,L 2
mov r0,#3
strb r0,[rl,#0]
mov r2,#4
strb r2,[rl,#1]
ADD r0,r0,r2
str r0,[rl,#4]
bx 1r
.size main,S$-main
.align 4

L2
.dcw a

3-5

Using the ARM Embedded Tools

Specifying registers for C variables

With a constraint character you specify the register type for a parameter. In the example above, the r is
used to force the use of registers (Rn) for the parameters a and b.

You can reserve the registers that are already used in the assembly instructions, either in the
parameter lists or in the reserved register list (register_save_list, also called "clobber list”). The
compiler takes account of these lists, so no unnecessary register saving and restoring instructions are
placed around the inline assembly instructions.

Constraint | Type Operand Remark
character
R general purpose |10 .. r11 Thumb mode r0 .. r7

register (64 bits) Based on the specified register, a

register pair is formed (64-bit). For
example rOr1.

r general purpose | r0 .. r11,1Ir Thumb mode r0 .. r7
register

i immediate value | #value

I label label

m memory label variable stack or memory operand, a fixed
address

number other operand same as %number used when in- and output operands

must be the same.

Use %number.0 and %number.1 to
indicate the first and second half of a
register pair when used in
combination with R.

Table 3-2: Available input/output operand constraints for the ARM

Loops and conditional jumps

The compiler does not detect loops that are coded with multiple __asm statements or (conditional)
jumps across __asm statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asm, the whole loop must be contained in a single __asm
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
___asm statement must be contained in the same statement.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. Note that
you can use standard C escape sequences.

__asm("nop\n\t”
"nop") ;

3-6

C Language

Generated code:

nop
nop

Example 2: using output parameters

Assign the result of inline assembly to a variable. A register is chosen for the parameter because of the
constraint r; the compiler decides which register is best to use. The 20 in the instruction template is
replaced with the name of this register. Finally, the compiler generates code to assign the result to the
output variable.

char varl;

void main(void)
{
__asm("mov %0,#0xff” : "=r”(varl));

}

Generated assembly code:

mov r0,0xff
ldr rl,L 2
strb r0,[rl,#0]

bx 1r
.size main,$-main
.align 4
L 2
.dcw varl

Example 3: using input and output parameters

Add two C variables and assign the result to a third C variable. Registers are used for the input
parameters (constraint r, %1 for a and %2 for b in the instruction template) and for the output
parameter (constraint r, %0 for result in the instruction template). The compiler generates code to
move the input expressions into the input registers and to assign the result to the output variable.

char a, b;
int result;

void main(void)

{

a = 3;

b = 4;

__asm("ADD %0,%1,%2” : "=r”(result): "r”(a), "r”"(b));
}

3-7

Using the ARM Embedded Tools

Generated assembly code:

main: .type func

ldr rl,L 2
mov r0,#3
strb r0,[rl,#0]
mov r2,#4
strb r2,[rl,#1]
ADD r0,r0,r2
str r0,[rl,#4]
bx 1r
.size main,$-main
.align 4

L 2:
.dcw a

Example 4: reserve registers

Sometimes an instruction knocks out certain specific registers. The most common example of this is a
function call, where the called function is allowed to do whatever it likes with some registers. If this is
the case, you can list specific registers that get clobbered by an operation after the inputs.

Same as Example 3, but now register RO is a reserved register. You can do this by adding a reserved

register list (: ”"R0"”). As you can see in the generated assembly code, register RO is not used (the first
register used is R1).

char a, b;
int result;

void main(void)

{

a = 3;

b = 4;

__asm("ADD %0,%1,%2"” : "=r”(result): "r”(a), "r”(b) : "R0”);
}

3-8

C Language

Generated assembly code:

main: .type func
ldr r2,L 2
mov rl,#3
strb rl,[r2,#0]
mov r3,#4
strb r3,[r2,#1]
ADD rl,rl,r3
str rl,[r2,#4]

bx 1r
.size main,S$-main
.align 4
L 2
.decw a

3.5 Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:
#pragma pragma-spec [ON | OFF | DEFAULT]
or:
_Pragma("pragma-spec [ON | OFF | DEFAULT]”)

For example, you can set a compiler option to specify which optimizations the compiler should perform.
With the #pragma optimize flags you can set an optimization level for a specific part of the C
source. This overrules the general optimization level that is set in the C compiler Optimization page in
the Project Options dialog (command line option -0).

The compiler recognizes the following pragmas, other pragmas are ignored.

Pragma name Description

alias symbol=defined_symbol Defines an alias for a symbol

call near | far Controls function calls (near or far). Default: near.

extension isuffix Enables the language extension to specify imaginary
floating-point constants by adding an ’i’ to the constant

extern symbol Forces an external reference

inline Specifies function inlining.

noinline See section 3.7.3, Inlining Functions.

smartinline

macro Specifies macro expansion

nomacro

3-9

Using the ARM Embedded Tools

Pragma name

Description

message “message” ...

Emits a message to standard output

optimize flags

Controls compiler optimizations.

endoptimize See section 5.6, Compiler Optimizations in Chapter Using
the Compiler
runtime Check for run-time errors.

See compiler option -r (--runtime) in section 5.1, Compiler
Options in Chapter Tool Options of the reference manual.

section [name=]{suffix |-f|-m|-fm}
endsection

Changes section names
See compiler option -R in section 5.1, Compiler Options in
Chapter Tool Options of the reference manual.

source Specifies which C source lines must be shown in assembly
nosource output.
See compiler option =s in section 5.1, Compiler Options in
Chapter Tool Options of the reference manual.
tradeoff level Controls the speed/size tradeoff for optimizations.

See compiler option -t in section 5.1, Compiler Options in
Chapter Tool Options of the reference manual.

warning [number,...]

Disables warning messages.
See compiler option -w in section 5.1, Compiler Options in
Chapter Tool Options of the reference manual.

weak symbol

Marks a symbol as ‘'weak’

Table 3-3: Overview of pragmas

For a detailed description of each pragma, see section 1.6, Pragmas, in Chapter C Language of

the reference manual.

3-10

C Language

3.6 Predefined Preprocessor Macros

In addition to the predefined macros required by the ISO C standard, suchas _ DATE _ and
__FILE_,the TASKING C compiler supports the predefined macros as defined in the table below.
The macros are useful to create conditional C code.

Macro Description

__ _BIG_ENDIAN Expands to 1 if the processor accesses data in big-endian. Expands to O if
the processor accesses data in little-endian (ARM default).

__CARM Expands to 1 for the ARM toolchain, otherwise unrecognized as macro.

_ THUMB___ Expands to 1 if you used option =-thumb, otherwise unrecognized as
macro.

__CPU__ Expands to the CPU core name (option —-Ccpu).

__SINGLE_FP___ Expands to 1 if you used option -F (Treat 'double’ as ‘float’), otherwise
unrecognized as macro.

__DOUBLE_FP___ Expands to 1 if you did not use option -F (Treat 'double’ as ‘float’),
otherwise unrecognized as macro.

__ TASKING Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

___VERSION Identifies the version number of the compiler. For example, if you use
version 1.0r2 of the compiler, _ VERSION__ expands to 1000 (dot and
revision number are omitted, minor version number in 3 digits).

__REVISION Identifies the revision number of the compiler. For example, if you use
version 1.0r2 of the compiler, _ REVISION__ expands to 2.

___BUILD _ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, __ BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

Table 3-4: Predefined preprocessor macros

Example

#ifdef _ CARM

/* this part is only compiled for the ARM */

#endif

3-11

Using the ARM Embedded Tools

3.7 Functions

3.7.1 Parameter Passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack. See the
table below.

Parameter Type Parameter Number
1 2 3 4

_Bool r0 r1 r2 r3
char r0 r1 r2 r3
short r0 r1i r2 r3
int / long r0 r1 r2 r3
float r0 r1i r2 r3
32-bit pointer r0 r1 r2 r3
32-bit struct r0 ri r2 r3
long long ror1 rir2 r2r3 r3
double ror1 rir2 r2r3

64-bit struct ror1 rir2 rar3

Table 3-5: Register usage for parameter passing

@ If a register corresponding to a parameter number is already in use the next register is used.

Example with three arguments
funcl(int a, int b, int *c)
* a (first parameter) is passed in register r0.

* b (second parameter) is passed in register r1.
* ¢ (third parameter) is passed in register r2.

3-12

C Language

Example with one long long/double arguments and one other argument

func2(long long d, char e)
* d (first parameter) is passed in register r0 and r1
* e (second parameter) is passed in register r2.

Example with two long long/double arguments and one other argument

func3(double f, long long g, char h)
» £ (first parameter) is passed in register r0 and r1
* g (second parameter) is passed in register r2 and r3.
* h (third parameter) cannot be passed through registers anymore, and is passed via the stack.

3.7.2 Function Return Types

The C compiler uses registers to store C function return values, depending on the function return types.

Return Type Register
_Bool ro
char ro
short ro
int / long ro
float r0
32-bit pointer r0
32-bit struct ro
long long ror1
double ror1
64-bit struct ror1

Table 3-6: Register usage for function return types

Objects larger than 64 bits are returned via the stack.

3.7.3 Inlining Functions: inline

During compilation, the C compiler automatically inlines small functions in order to reduce execution
time (smart inlining). The compiler inserts the function body at the place the function is called. If the
function is not called at all, the compiler does not generate code for it. The C compiler decides which
functions will be inlined. You can overrule this behaviour with the two keywords inline (ISO-C) and
__noinline.

3-13

Using the ARM Embedded Tools

With the inline keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsigned int abs val = val;
if (val < 0) abs val = -val;
return abs_val;

}

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need
to call the inline function from several source modules, you must include the definition of the inline
function in each module (for example using a header file).

With the _ noinline keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsigned int abs val = val;
if (val < 0) abs val = -val;
return abs_val;

}

Using pragmas: inline, noinline, smartinline

Instead of the inline qualifier, you can also use #pragma inline and #pragma noinline to
inline a function body:

#pragma inline
unsigned int abs(int val)

{
unsigned int abs val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

#pragma noinline
void main(void)
{
int 1i;
i = abs(-1);
}
If a function has an inline/__noinline function qualifier, then this qualifier will overrule the current
pragma setting.
With the #pragma noinline /#pragma smartinline you can temporarily disable the default
situation that the C compiler automatically inlines small functions.

3-14

C Language

3.7.4

Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions are predefined
functions that are recognized by the compiler. The compiler generates the most efficient assembly code
for these functions. Intrinsic functions this way enable the use of these specific assembly instructions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather
than calling it as a function). This avoids parameter passing and register saving instructions which are

normally necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code
by hand, intrinsic functions use registers even more efficiently. At the same time your C source remains

very readable.

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character.

% For extended information about all available intrinsic functions, refer to section 1.5, Intrinsic
Functions, in Chapter C Language of the reference manual.

3.7.5

Interrupt Functions / Exception Handlers

The TASKING C compiler supports a number of function qualifiers and keywords to program exception
handlers. An exception handler (or: interrupt function) is called when an exception occurs.

The ARM supports seven types of exceptions. The next table lists the types of exceptions and the
processor mode that is used to process that exception. When an exception occurs, execution is forced
from a fixed memory address corresponding to the type of exception. These fixed addresses are called

the exception vectors.

Exception type Mode Normal High vector | Function type
address address qualifier

Reset Supervisor 0x00000000 OxFFFF0000

Undefined instructions Undefined 0x00000004 | OxFFFFO004 | _interrupt und

Supervisor call (software | Supervisor 0x00000008 OXFFFFO008 | interrupt svc

interrupt)

Prefetch abort Abort 0x0000000C | OXxFFFFOOOC | _ interrupt_ iabt

Data abort Abort 0x00000010 | OXFFFFO010 | interrupt dabt

IRQ (interrupt) IRQ 0x00000018 | OxFFFF0018 |_interrupt irg

FIQ (fast interrupt) FIQ 0x0000001C | OxFFFFO01C | __ interrupt fiqg

Table 3-7: Exception processing modes

@ ARMv6-M and ARMv7-M (M-profile architectures) have a different exception model. Read the
ARM Architecture Reference Manual for details.

3-15

Using the ARM Embedded Tools

3.7.5.1 Defining an Exception Handler: __interrupt keywords

You can define six types of exception handlers with the function type qualifiers __interrupt und,
__interrupt_svc, interrupt iabt, interrupt dabt, interrupt_irgand
__interrupt fiq. You can also use the general __ interrupt () function qualifier.

Interrupt functions and other exception handlers cannot return anything and must have a void
argument type list:

void _ interrupt xxx

isr(void)

{

}

void __ interrupt(n)
isr2(void)

{

}

Example
void _ interrupt irq serial receive(void)

{

}

Vector symbols

When you use one or more of these __interrupt_xxx function qualifiers, the compiler generates a
corresponding vector symbol to designate the start of an execption handler function. The linker uses
this symbol to automatically generate the exception vector.

Function type qualifier Vector symbol Vector symbol
M-profile
__interrupt _und _vector_1 -
__interrupt_svc _vector_2 _vector_11
__interrupt_iabt _vector_3 -
__interrupt_dabt _vector_4 -
__interrupt irq _vector_6 -
__interrupt fiq _vector_7 -
__interrupt(n) _vector_n _vector_n

Note that the reset handler is designated by the symbol _START instead of _vector_ 0 (_vector_ 1
for M-profile architectures).

3-16

C Language

You can prevent the compiler from generating the _vector_n symbol by specifying the function
qualifier __novector. This can be necessary if you have more than one interrupt handler for the same
exception, for example for different IRQ’s or for different run-time phases of your application. Without
the _ novector function qualifier the compiler generates the _vector n symbol multiple times,
which results in a link error.

void _ interrupt_irqg _ novector another_handler(void)

{

// used __ novector to prevent multiple _vector_ 6 symbols

}

Enable interrupts in exception handlers (not for M-profile architectures)

Normally interrupts are disabled when an exception handler is entered. With the function qualifier
__nesting_enabled you can force that the link register (LR) is saved and that interrupts are
enabled. For example:

void _ interrupt svc _ nesting_enabled svc(int n)

{
if (n==2)
{
__sve(3);
}
}

3.7.5.2 Interrupt Frame: __frame()

With the function type qualifier __ frame () can specify which registers and SFRs must be saved for a
particular interrupt function. Only the specified registers will be pushed and popped from the stack. If
you do not specify the function qualifier _ frame (), the C compiler determines which registers must
be pushed and popped. The syntax is:

void _ interrupt_xxx
__frame(reg[, reg]...) isr(void)

}

where, reg can be any register defined as an SFR. The compiler generates a warning if some registers
are missing which are normally required to be pushed and popped in an interrupt function prolog and
epilog to avoid run-time problems.

Example

__interrupt_irq __ frame(R4,R5,R6) void alarm(void)

{

3-17

Using the ARM Embedded Tools

3.8 Libraries

The TASKING compilers come with standard C libraries (ISO/IEC 9899:1999) and header files with the
appropriate prototypes for the library functions. All standard C libraries are available in object format
and in C or assembly source code.

A number of standard operations within C are too complex to generate inline code for (too much code).
These operations are implemented as run-time library functions to save code.

Libraries are stored in the directory:

\Program Files\Tasking\carm\1lib\v4T\le
\Program Files\Tasking\carm\1lib\v4T\be
\Program Files\Tasking\carm\lib\v5T\1le
\Program Files\Tasking\carm\1lib\v5T\be
\Program Files\Tasking\carm\lib\véM\le
\Program Files\Tasking\carm\lib\v7M\le
\Program Files\Tasking\carm\1lib\v7M\be

Depending on your target settings in Project » Project Options... the appropriate libraries are
selected.

3.8.1

An overview of the available libraries is given in Table 3-8:

Overview of Libraries

Libraries Description

carm.lib C library, for ARM and Thumb instructions repectively
cthumb.lib (some functions also need the floating-point library)
carms.lib Single precision C library

cthumbs.lib (some functions also need the floating-point library)
fparm.lib Floating-point library (non trapping)

fpthumb.lib

fparmt.lib Floating-point library (trapping)

fpthumbt.lib

rtarm.lib Run-time library

rtthumb.lib

pbarm.lib Profiling libraries:

pbthumb.lib pb = block/function counter

pcarm.lib pc = call graph

pcthumb.lib pct = call graph and timing

pctarm.lib pd = dummy

pctthumb.lib pt = function timing

pdarm.lib

pdthumb.lib

ptarm.lib

ptthumb.lib

3-18

C Language

Libraries Description

cparm.lib C++ library, for ARM and Thumb instructions repect