Libraries

6.1 INTRODUCTION

€166 comes with libraries per memory model and with header files
containing the appropriate prototype of the library functions. The library
functions are also shipped in source code (C or assembly).

Seven sets of libraries are delivered to meet specific requirements for the
various C166, Gold, C167/ST10x167/ST10x262, C166S v2.0 and Super10
microcontroller architectures. These sets are located in separate directories:

166

166p

goldp

ext

extp

ext2

ext2p

The non-protected libraries are the default libraries for the
C166/ST10x166 and similar architectures.

The protected libraries provide a software workaround for
CPU functional problems. They must be using in conjunction
with the appropriate =B compiler option. For more details
refer to appendix G: CPU Functional Problems for more
information.

These protected libraries are the default libraries for the Gold
and similar architectures which are based on C166/ST10x166
architectures but feature 24-bit extended addressing instead
of 18-bit. Use these libraries in conjunction with the compiler
option —xm.

The extended libraries are needed for the
C167/ST10x167/ST10x262 and similar architectures. These
architectures feature the extended instruction set, extended
special function registers, 24-bit addressing and extended
PEC pointers. Use these libraries in conjunction with the
compiler option -x.

The protected libraries provide a software workaround for
CPU functional problems. Use these libraries in conjunction
with the compiler options —x and -B.

The extended 2 libraries are needed for the C166S v2.0 /
Super10 and similar architectures. These architectures feature
jump prediction, scalable and relocatable interrupt vector
table, local register banks and instruction reordering. Use
these libraries in conjunction with the compiler option -x2.

The protected libraries provide a software workaround for
CPU functional problems. Use these libraries in conjunction
with the compiler options =x2 and -B.

6-3

6-4

Chapter 6

Another seven sets of libraries are delivered to meet specific User Stack
Model requirements for the various microcontroller architectures. These
libraries must be used in conjunction with the additional compiler option
—P. These sets are located in separate directories:

ul66 The User Stack Model variant of the non—protected libraries.

ul66p The User Stack Model variant of the protected libraries.

ugoldp The User Stack Model variant of the protected Gold
architecture libraries.

uext The User Stack Model variant of the extended non—protected
libraries.

uextp The User Stack Model variant of the extended protected
libraries.

uext2 The User Stack Model variant of the extended C166S v2.0 /

Super10 architectures non—protected libraries.

uext2p The User Stack Model variant of the extended C166S v2.0 /
Super10 architectures protected libraries.

Each library set contains the following libraries:

c166?[s].lib C library. The optional [s] stands for single precision floating
point (all floating point arithmetic is in single precision
instead of ANSI double precision).

fp1667[t].lib
Floating point library. The optional [t] stands for trapping
floating point (using boundary checking and the floating
point trap mechanism).

1t166?[s][m].lib
Run-time library. The optional [s] stands for single precision
floating point. The optional [m] stands for MAC optimized
(use MAC instructions in some basic operations for
optimization).

The question mark ’? in these library names must be replaced by a letter
representing the selected memory model:

Libraries

tiny
small
medium
large

—g v~

All C library functions are described in the section C Library Interface
Description. These functions are only called by explicit function calls in
your application program. However, some compiler generated code
contain calls to run—time library functions that would use too much code
when generated as inline code. The name of a run-time library function
always contains two leading underscores. For example, to perform a long
(32 bit) signed division, the function __sdil is called.

Because ¢166 generates assembly code (and not object code) it adds a
leading underscore to the names of (public) C variables to distinguish
these symbols from 80166 registers. So if you use a function with a leading
underscore, the assembly label for this function contains two leading
underscores. This function name could cause a name conflict (double
defined) with one of the run—time library functions. Therefore, you should
avoid names starting with an underscore. Note that ANSI states that it is
not portable to use names starting with an underscore for public C
variables and functions, because results are implementation defined.

The code sections of the C166 library have the class '"CLIBRARY’,
'SHAREDCLIB’, 'RTLIBRARY’ or 'SHAREDRTLIB’ allowing the library to be
allocated in a special memory area via the CLASSES control of 1166.

6.2 SMALL, MEDIUM AND LARGE I/O FORMATTERS

The C library contains the SMALL I/O formatter version of the printf() and
scanf() functions and their variants like sprintf(), fprintf(), etc. This SMALL
version does not contain the required functionality to handle precision
specifiers and floating point I/O which can specified in the format
argument of these functions.

The following extra libraries are included to support easy switching
between the three I/O formatter versions:

MEDIUM 1/0O formatter library no floating point I/O supported
precision specifiers supported fmtio?m.lib.

LARGE I/O formatter library floating point I/O supported precision
specifiers supported fmtio?l[s].lib.

6-6

&

Chapter 6

The question mark "?" in these library names must be replaced by a
character representing the selected memory model:

tiny
small
medium
large

»—-Bmc—r

These 1/O formatter libraries are included in all library sets. The control
program options -libfmtiom and -libfmtiol can be used to selected the
MEDIUM and LARGE I/O formatter libraries.

If no ¢c166 -libfmtio* option is specified on the commandline, then the
SMALL printf()/scanf() formatter variant is linked from the C library.

6.3 SINGLE PRECISION FLOATING POINT

In ANSI C all mathematical functions (<math.h>), are based on double
arguments and double return type. So, even if you are using only float
variables in your code, the language definition dictates promotion to
double ;| when using the math functions or floating point formatters
(printf() and scanf()). The result is more code and less execution
speed. In fact the ANSI approach introduces a performance penalty.

To improve the code size and execution speed, the compiler now supports
the option =F to force single precision floating point usage. If you use =F,
a float variable passed as an argument is no longer promoted to double
when calling a variable argument function or an old style K&R function,
and the type double is treated as float . It is obvious that this affects the
whole application (including libraries). Therefore special single precision
versions of the floating point libraries are now delivered with the package.
When using -F, these libraries must be used. It is not possible to mix C
modules created with the =F option and C modules which are using the
regular ANSI approach.

For compatibility with the old -F option, the —=Fc option is introduced.
This option only treats floating point constants (having no suffix) as float
instead of double .

