TASKING VX-toolset for C166
User Guide

MA119-800 (v3.0) February 25, 2011



TASKING VX-toolset for C166 User Guide

Copyright © 2011 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium,
TASKING, and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All
other registered or unregistered trademarks referenced herein are the property of their respective owners and no
trademark rights to the same are claimed.



Table of Contents

I O 1= T o > T TS 1
L1 DALA TYPES e 1
1.2. Changing the Alignment: __unaligned and __packed__ ............cccooiiiiii 3
1.3, ACCESSING MEBMIOIY ..ottt et e e e e e e e e 4

1.3.1. Memory Type QUAlIfIErS ... 5
1.3.2. MeMOrY MOGEIS ...t 8
1.3.3. Placing an Object at an Absolute Address: __at() .......cooovvviiiiiiiiiiiee e 10
1.3.4. ACCESSING BilS ..vititii i 10
1.3.5. Accessing Hardware from C ... 13
1.4. Using Assembly in the C Source: _ asm() ..o.iuiririririiiii e aas 17
T 1] o1 (= 23
1.6. Pragmas to Control the COomPIiler ... e 26
1.7. Predefined PreproCesSOr MACIOS .. ....vui.iiiiiii e et aaaas 31
LB VANADIES ... 33
1.8.1. Initialized Variables ...........ooiiiii 33
1.8.2. Non-Initialized Variables ......... ..o 34
B TR 1 o PP 34
1.20. CONSEANTE DATA ...ttt et ettt 35
1,11, SWItCH SEAIEIMENT ... ee ettt 36
O 2 0 Tod 1o P 37
2 B O |10 To T @] 01Y7=T i o] o PPN 38
1.12.2. REQGISIET USAQE . vuviiiiiiii ettt e et 40
1.12.3. Inlining FUNCHONS: INIINE .. ..uiuit e 41
1.12.4. INterrupt FUNCHIONS ...uiniti i e aen 42
1.12.5. INtriNSIC FUNCHONS ...euitiie ettt 45
1.13. FIoating-PoOiNt TraPing ... ennititetetete ettt e e 56
1.13.1. Handling Floating-Point Traps in a C Application ............ccccviviiiiiiiiiiiiiieen 57
1.13.2. IEEE-754 Compliant Error Handling ..........coovviiiiiiiiiicei e 58
I SV X O 1 ST o] o To I PP 58
1.14.1. MAC Code Generation from Native C ..........ccviiiiiiiiiiiiiiieeeeee e 59
1.14.2. Manual MAC Qualification: __ MacC .....c.ouvuiiiiiiiii e 61
1.14.3. MAC Support by INtrinsic FUNCLIONS .......c.oviiiiiiiee e 62
1.14.4. Using the MAC Status WOrd .......c.iuiririiii e 63
1.14.5. Evaluation of a Single EXPresSSion ... 64
L1.14.6. HArdWare LOOPS ....ouiuieitititit ittt ettt e e e aanas 64
1.14.7. Considerations when Using the MAC .........cooiiiiiiiiiiii e 65
TS Y= Yor i [o o T A= T o PP 65
1.16. TASKING Volatile Implementation ............cooiiiiii e e 66

B O - o 11 =T = 69
2.1. C++ Language EXtension KEYWOIS ........c.iuiiiiiiiiiiiii e 69
2.2. CH+ DialeCt ACCEPIEA ..ot 69

2.2.1. Standard Language Features ACCEPed .......o.vviiiiiiiiiiiiii e 70
2.2.2. C++0x Language Features ACCEPIEA .......cuiuirirititi e eaaaes 73
2.2.3. ANachronisms ACCEPIEA ... ..vitit it 74
2.2.4. Extensions Accepted in Normal C++ MOde .........ccovviiiiiiiiiii e 75
2.3, GNU EXEENSIONS ... tietitiiete et ettt ettt et et ettt ettt et eneaees 77
2.4, NAMESPACE SUPPOIT ... eueeeeee ettt ettt et et ettt ettt e e e e e et et e e e aeens 87
2.5. Template INStANtAtION ... e 89



TASKING VX-toolset for C166 User Guide

2.5.1. Automatic INSTANLIAtION .......vuieii e 90
2.5.2. InStantiation MOGES ...t 91
2.5.3. Instantiation #pragma DIF€CHVES ..........ovuiiiiiiiiiii e 92
2.5.4. IMPICIt INCIUSION .. cveet e et 93
2.5.5. EXpOrted TEMPIALES ......eniiitiite e e 94

2.6. INliNING FUNCHIONS ... e e e 97
2.7. EXtern INline FUNCHONS ... ...uinitii et e 98
2.8. Pragmas to Control the C++ COMPIIET ......oviei e 98
2.9. Predefined MACIOS ...t e 99
2.10. Precompiled HEAAEIS ... ..uiieie e e 103
2.10.1. Automatic Precompiled Header ProCessing ..........cocovvirieniiiiiiiinienienienes, 103
2.10.2. Manual Precompiled Header ProCeSSiNg ..........cceuiiiiiiiniiiiiiiiieiieieieenes 106
2.10.3. Other Ways to Control Precompiled Headers ...............coooviiiiiiiiniinncenn. 107
2.10.4. PerformancCe ISSUES .......cuiuiuitiiit ettt et eas 107

3. ASSEMDBIY LANGUAGE ... .eneeeeteee ettt et ettt et ettt et 109
3.1 ASSEMDBIY SYNTAX ...ttt 109
3.2. Assembler Significant CharacCters ............c.viiiuiiiiii e 110
3.3. Operands of an Assembly INSIIUCHION .........ooiiuiiiii e 111
3.4, SYMDBDOI NAIMES ..ot 111
3.4.1. Predefined Preprocessor SYmMbOIS .........cooiiiiiiiiii e 112

D RIS .ttt e 113
3.6. Special FUNCHON REGISTEIS .....uiiititit et 113
3.7. ASSEMDIY EXPIESSIONS ...viiiiiieie ittt e 114
3.7.1. NUMEFIC CONSLANTS ...ttt ettt e et eae s 114
N S 1 o - PP PEPPPPI 115
3.7.3. EXPresSSioN OPEIALOIS .. ...uueutinitiett ettt ettt e et e 115
3.7.4. Symbol Types and EXPression TYPES ...c.uie ettt 118

3.8. BUilt-in ASSEMDBIY FUNCHONS ...oeieiitiei e e 121
3.9. Assembler Directives and CONIOIS ........cuivuiiieii e 127
3.9.1. ASSEMDIET DIFECHIVES ....eeieeietiit et 127
3.9.2. ASSEMDIEr CONLIOIS ....vieit e e 172

I KO I\ F- (o (o @] o T=T = o] I PRI 191
3.10.1. DEfiNING @ MACKO .. eueiiteei et 191
3.10.2. CAlliNG @ MBCTO ...eneeetieiie et 191
3.10.3. Using Operators for Macro ArgUMENTS .........cuvuiiieieirieiineeiee e ieeeeneenes 192

3.11. GENETIC INSIIUCLIONS ... ettt ettt ettt e e e eenas 195
4.USING the C COMPIIET ...eeeei ettt e e 199
4. 1. CoMPIlALION PIOCESS ....eniiiie et et 199
4.2. Calling the C COMPIIET ...\t eeaes 200
4.3.The C STArtUP COOE ....uvniiitiei ettt e n e e 202
4.3.1. ICACHE SUPPOIT « .ottt et ettt 205

4.4. How the Compiler Searches Include Files ........ ..o 206
4.5. Compiling fOr DEDUGGING ... enereieeee e e 207
4.6. Compiler OPMIZALIONS ........ireetee e et 208
4.6.1. Generic Optimizations (frontend) ............ooiiieiiii e 209
4.6.2. Core Specific Optimizations (backend) ............cooiiiiiiii e 212
4.6.3. Optimize for SiZe OF SPEEM ......viiniiii e 214

4.7. Influencing the BUild TIMe ... e 218
4.8. StatiC COUE ANAIYSIS ... ettt 221
4.8.1. C Code Checking: CERT € .. .uvuiriiiiiieiie et 222



TASKING VX-toolset for C166 User Guide

4.8.2. C Code Checking: MISRA-C ..ot 224

4.9. C CoMPIlEr ErrOr MESSAGES ... cutuettiiiet ettt ettt et et aaenes 225
5.USING the CH+ COMPIIET ..ottt e 227
5.1. Calling the CH+ COMPIIET ....veei e 227
5.2. How the C++ Compiler Searches Include Files ..........c.coviiiiiiiiii e 229
5.3. C++ CoMPIlEr ErrOr MESSAQES ... vueutiiin ittt 230
8. PrOfIlING et 233
6.1. What is Profiling? ..o 233
6.1.1. Methods of Profiling ..........covieiiiii e 233

6.2. Profiling using Code Instrumentation (Dynamic Profiling) .............coocoviiiiiiniiienns 234
6.2.1. Step 1: Build your Application for Profiling ...........c.coooiiiiiii, 235
6.2.2. Step 2: Execute the APPlICAtION .........oouieiiiii e 237
6.2.3. Step 3: Displaying Profiling RESUItS ...........ccoiiiiiii e 239

6.3. Profiling at Compile Time (Static Profiling) ............cocoiiiiii e 242
6.3.1. Step 1: Build your Application with Static Profiling .............cccooeiiiiiiiinn, 242
6.3.2. Step 2: Displaying Static Profiling REeSUILS ...........ccoviiiiiiiiie, 243

7. USING the ASSEMDIET ... ..ot 245
7.1 ASSEMDIY PrOCESS ...ttt e et 245
7.2. Calling the ASSEMDIET .. ..o e 245
7.3. How the Assembler Searches Include Files ...........cooiiiiiiiii e, 247
7.4. Assembler OPtiMIZAtiONS ......c..ieie e 248
7.5.Generating @ LISt FIlE ...v.ieie e 249
7.6. ASSEMDIET EITOr MESSAUES ... .vueniteit ettt et 249
8. USING the LINKET .. .ot 251
8.1, LINKING PrOCESS ....eiitiitiit ettt et et et 251
8.1.1. Ph@SE 1: LINKING .. .ueuerinitaeet ettt e 253
8.1.2. PhaSE 2: LOCALING ... tteeneteiete ettt et 254

8.2. CalliNg the LINKET ... et e 255
8.3. LiNKiNg WIth LIDraries ........ieiei e 256
8.3.1. How the Linker Searches Libraries ...........oooiviiiiiiii e 259
8.3.2. How the Linker Extracts Objects from Libraries ..............cooiveiiiiiiiiniiineennen. 259

8.4. Incremental LINKING ......oueeiie e e 260
8.5. IMporting BiNAry FilES ... 260
8.6. LiNKer OPtMIZALIONS .. ..cvieiiiieie et e 261
8.7. Controlling the Linker With @ SCFPt ........ouiei e 262
8.7.1. Purpose of the Linker Script LangUage ..........covuviiriiiiiiiiiieenee e 262
8.7.2. ECIPSE @NA LSL ...eiieiiiie e e 263
8.7.3. Structure of a Linker SCript File .........ccieiii e 265
8.7.4. The Architecture Definition ...........cciiiiiii e 268
8.7.5. The Derivative DefiNItion ...........oviiiii e 272
8.7.6. The Processor Definition ...........c.oveiiiiiiiiiii e 273
8.7.7.The Memory DefiNition ........oc.iiiiiii e 273
8.7.8. The Section Layout Definition: Locating SeCtionS ............covveiieiiieniniiinieinnn. 275
8.7.9. Copying Code Sections to PSRAM at Startup .........cocoerveiiiiiiiieiieeeeeenn 277
8.7.10. PSRAM MITOIS ...ttt et et 277
8.7.11. ICACHE Support and Named Memory Mappings .........ccoveerveerniienienieanennss 279
8.7.12. Duplicate Section Removal and Mirrors ...........coovvieiiiiiiiiee e 285

8.8. LINKEr LADEIS ... 286
8.9.Generating aMap File ..o e 287
8.10. LINKEr ErrOr MESSAUES .. uuvuiiitiietiett ettt ettt et et et 288



TASKING VX-toolset for C166 User Guide

9. USING the ULIIIES ... ettt ettt 291
9.1, CONEIOI PrOGIaM .. .einete ettt ettt et et e en e 291
9.2. Make ULIlIty MKLBBG .......enieiie e 293

9.2.1. Calling the Make ULIIItY .........c.ouiiiiiiii e 294
9.2.2. Writing a Makefile ... 295
9.3. MaKe ULIlItY 8IMK ...oeee et 304
9.3.1. MaKEFIle RUIES ..ot 304
9.3.2. MAKETIIE DIFECHIVES ....veeitee e 306
9.3.3. MACrO DEfINItIONS ..o 306
9.3.4. MaKefile FUNCHONS ... .uieeii e e 309
9.3.5. ConditioN@l PrOCESSING ....uuviieiieieii e 309
9.3.6. MAKETIIE PAISING .. .uieeieii e 310
9.3.7. Makefile Command ProCESSING .....vuieitiiiiiii e 311
9.3.8. Calling the amk Make ULIlItY .........oovuiriiii e 311
0.4, ATCRIVET o 313
9.4.1. Calling the ArChIVET ... . ..o 313
9.4.2. ArChiVEr EXAMPIES ..o e 315
9.5, HLL ODbjJECE DUMIPET <. ettt et et ettt et e aenes 317
9.5, 1. INVOCALION . ..eeet ettt e e ettt et et 317
9.5.2. HLL DUMP OUPUL FOIMAL ... e 317

10. USING the DEDUGOET . ...ttt ettt et ettt ene e 323
10.1. Reading the Eclipse DOCUMENTALION ..........ouieieiiiiiiic et 323
10.2. Creating a Customized Debug Configuration ..............cocviiiiiiiieiiieeen 323
10.3. TrOUDBIESROOING ... et e 329
10.4. TASKING DebUQ PEISPECLIVE .....euiteiiiieit e e 329

10.4.1. DEDBUQG VIEW ...t et 330
10.4.2. BreakpOinNtS VIEW ......cuieeie ittt e ees 332
10.4.3. File System Simulation (FSS) VIEW .........vuiriiiiiii e 333
10.4.4. DiSASSEMDIY VIBW ....oeiiiitii ettt 334
10.4.5. EXPreSSIONS VIEW ...ouiiiiiitiie ettt e 334
10.4.6. MEMOIY VIBW .. .uieiitiie ettt et ettt et eenes 335
10.4.7. Compare APPlICAtION VIBW ........ouiiie e 336
F0.4.8. HEBAP VIBW ettt et et et 336
10.4.9. LOGGING VIBW ...ttt ettt et ettt eas 336
10.4.20. RTOS VIBW .ttt et ettt et e ettt et ees 337
10.4.10. REQISIEIS VIBW ... eetitiet ettt ettt et 337
10.4.12. TrACE VIBW ..ottt ettt et et ees 338
10.5. Multi-Core Debug SUPPOrt (MCDS) ....c.viieiiiiiie e 338
10.5.1. Triggers - MCDS VIEW .....uinitiiet ettt et 339
10.5.2. TraCe - MCDS VIBW ...cuiiiiiiitiee ettt ees 341
10.6. Programming & FIash DEVICE .......c.ouuiuiii e 342

11. Target BOAIrA SUPPOIT . ... .eueeie et ettt et et et e et e e et e e e e aenes 347
11.1. Overview of SUPPOIted BOAIAS .........cvieieiitie e 347

2 [oTo 1 I @ o1 i o] o I PSPPI 349
12.1. Configuring the Command Line ENVIroNmMEeNt ...........coooviiniiiiiiniiiieeieeeeee 349
12.2. C COMPIIEr OPLIONS ...eieeteeeie e ettt e 350
12.3. C++ COMPIIET OPLIONS ....eniteeteee ettt es 439
12.4. ASSEMDIET OPLIONS ...ttt e et 554
12.5. LINKEE OPLIONS ...ttt ettt 598
12.6. Control Program OPLONS ........vucreitae ittt e e e e en e 647

Vi



TASKING VX-toolset for C166 User Guide

12.7. Make ULIlity OPUIONS ...ttt e e 716
12.8. Parallel Make ULility OPLIONS ... ..iuriieitieii e e 744
12.9. ArChIVET OPLIONS . ..eieit e e 754
12.10. HLL Object DUMPET OPLIONS . ..vuteiiteeteee e et ene s 768
T o = T4 =T PP P TP PUPRPPR 787
13.1. LIBrary FUNCHONS ...t e et 788
1300, @SSO N e 789
13.1.2. COMPIEX.N Lo 789
13,03, OO AN N e e 790
13.1.4. ctype.h and WCLYPE.N ..o 790
13,05, dBG. N e 791
13.L.6. ITNO.N L 791
13, L. 7 fONtL N e 792
13,08, NV 792
13.1.9. FlOALN e 793
13,100 FPDIES. N e 794
13.1.11. inttypes.h and Stdint.h ... 794

I T 2 To N PP PP PP 795
131130 0806468.1 et 795
L3104, IMIES. N e e 795
13105, 10CAIE.N oo 795
13.1.16. MAIIOC.N o 796
13.1.17. math.h and tgmath.h ... 797
13,108, SEUMPL N e 801
13,109, SIGNALIN o 801
13.1.20. SEAANG.N e 802
13.1.20. StADOOLN .o 802
13.1.22. StAAEf N oo 803
13,123 SEAINE N oo 803
13.1.24. stdio.h @and WCharn ... 803
13.1.25. stdlib.h @and wWehar.h ... 810
13.1.26. string.h and Wehar.h ... 814
13.1.27. time.h and WChar.h ... 816
13.1.28. UNISEA.N oo 819
13.1.29. WCNAIN o 819
13,130, WOEYPE. N e 820

13.2. C Library REENIIANCY .....cuuiiiiieiee ittt e 821
I TS O = o g o £ PRI 833
14.1. Assembler List File FOrMAL .......c.ovuiiiiiie e 833
14.2. Linker Map File FOIMAL .. ..c.eie e 834
15. OBJECE File FOIMALS ... .uenie it ettt ettt e e e enenas 843
15.1. ELF/DWARF ODJECT FOMMAL ....ouieeiecii et 843
15.2. Intel HEX RECOIA FOIMAL ......viiteit et e 843
15.3. Motorola S-ReCOrd FOIMAL ..ot 846
16. Linker SCript LANGUAGE (LSL) .. .uuiiitieie et ettt e 849
16.1. Structure of @ Linker SCript File ... 849
16.2. Syntax of the Linker SCript LANQUAJE ........cvuieieieirieieiee et 851
16.2.1. PrePrOCESSING . cvueueetiieteet ettt ettt e e 851
16.2.2. LEXICAI SYNTAX .. eutiiitieeee ettt et 852
16.2.3. 1dentifiers @nd TAOS . ..vvvnieiiieie e 852

Vil



TASKING VX-toolset for C166 User Guide

16.2.4. EXPIESSIONS ...vuititieet ettt ettt 853
16.2.5. BUIlt-IN FUNCLIONS ....viinitei et e 853
16.2.6. LSL Definitions in the Linker Script File .........coooviiiii e 855
16.2.7. Memory and Bus Definitions ..........c.oviuiiiiiii e 855
16.2.8. Architecture Definition ...........coieeiuiiii e 857
16.2.9. Derivative Definition ..........c.ouiiuiiiii 860
16.2.10. Processor Definition and Board Specification ..............cocoovviiiiiiiiiiniiinnenne. 861
16.2.11. Section Layout Definition and Section SEtup ...........ccoveiriiiiriiniieeiiiienennes 861

16.3. EXPression EValuation ..............coiiiiiiiiii 866
16.4. Semantics of the Architecture Definition ... 866
16.4.1. Defining an ArChitECIUIE ..........ieiii e 867
16.4.2. Defining INternal BUSES .........oiieiiiei e 868
16.4.3. Defining AdAreSS SPACES ......uiriiiitiiie e 868
16.4.4. MAPPINGS - vnenetenttee et ettt et e 872

16.5. Semantics of the Derivative Definition .............cooiiiiii 874
16.5.1. Defining @ DEriVALIVE ..... ..ot 875
16.5.2. Instantiating Core ArChiteCIUIrES ........oevuieiieiii e 875
16.5.3. Defining Internal Memory and BUSES ..........cc.veiiiiiiiiiiiiiieeceeeeeea 876

16.6. Semantics of the Board SpecifiCation .............cooiiiiiiiiii e 877
16.6.1. DefiniNg @ PrOCESSON ... euieieieiie e 877
16.6.2. Instantiating DEerVALIVES .........c.iiuitiiii e 878
16.6.3. Defining External Memory and BUSES ..........cvviiiiiiiiiiiiiiiiee e 878

16.7. Semantics of the Section Setup Definition ............cooeiiiiiiii 879
16.7.1. SEttiNg UP 8 SECHION ...uvutiiit ittt ettt e 880

16.8. Semantics of the Section Layout Definition .............ccovviiiiiiii e 880
16.8.1. Defining @ SECHON LAYOUL ......c.uveitieiieei et 881
16.8.2. Creating and Locating Groups Of SECHONS ..........ccvvviiiiiiiiiiieieieeeene 882
16.8.3. Creating or Modifying Special SECHONS ..........oeiviiiiiiiiiiieeeeee 888
16.8.4. Creating SYMDOIS ... 891
16.8.5. Conditional Group StateMENTS ........c.ireeiiieinii e 891

17. Debug Target Configuration FileS ...........oouiiiiiiii e 893
17.1. CuStOM BOArd SUPPOIT .. ...ttt et 893
17.2. Description of DTC Elements and AtrDULES ...........oouiiiiiiiiii e 894
17.3. Special Resource 1dentifiers ..........oc.oeiee i 897
17.4. INitIaliZe EIBMENLS ...ooie e 898
18. CPU Problem Bypasses and CheCKS .........c.ouiiiiiii e 899
19. CERT C Secure CodiNg StanTard ...........covuieieieii et 929
19.1. PreproCeSSOr (PRE) ....u ittt et e 929
19.2. Declarations and Initialization (DCL) .......cuvuiriiiiiiii e 930
19.3. EXPreSSIONS (EXP) ..ottt 931
19,4, INEEOEIS (INT ) ettt ettt et ettt 932
19.5. Floating POINt (FLP) ... .t 932
19.6. AITAYS (ARR) ..ttt 932
19.7. Characters and StringS (STR) ....vuiriiii e 933
19.8. Memory Management (MEM) ... 933
19.9. ENVIroNmMeENt (ENV) ..o 934
19.10. SIGNAIS (SIG) .ttt 934
19.11. MiISCEllANEOUS (MSC) . .niiitiiiee i e ee 934
20. MISRA-C RUIES ..ottt ettt et ettt 935
20.1. MISRA-C:IL1998 ..ottt et 935

viii



TASKING VX-toolset for C166 User Guide

20.2. MISRA-C:2004 ..ot e 939
21. Migrating from the Classic Tool Chain to the VX-t0oISet ...............ccooviiiiiiiiii 949
21.1. Importing an EDE Project in EClPSe .........c.oouiiiiii e, 949
21.2. CONVEISION TOOI CNV2VX ..euititieeiet et et et 951
21.3. Conversion TOOIIO2IS] ........ouei e 952
21.4. Converting Command Line Options and Makefiles ...............cocoiii, 952
21.5. C++ Compiler MIGration ........c.oouoeiniii e 953
21.6. C Compiler MIQratiOn ..........c.ouiiuieei e et 956
21.6.1. C COMPIIEr OPLIONS ....eetetetee e et e 956

P B e = o [ 1 T PP 958
21.6.3. MEMOIY MOGEIS ... e 960
21.6.4. Calling CONVENLION ...ttt e e 961
21.6.5. Language Implementation Migration .............cccovvieiiiiiiiiie e 961
21.6.6. PreproCessor SYMDOIS .......uuiiiei e 965
21.6.7. C Compiler Implementation Differences ............coooviiiiiiiiiiiee, 966

21.7. ASSEMDIEr MIGration ......cuiie e 970
21.7.1. ASSEMDIET CONCEPLS ...vieieitetete et 970
21.7.2. ASSEMDIET DIr€CHVES .. ..ii et 970
21.7.3. Assembler and Macro Preprocessor CONtrolS ............cooovviiiiiiiiininiennennn, 971
21.7.4. Mapping of CHECKCPUP ....c.tiiieee e 972
21.7.5. Symbol Types and Predefined Symbols ...........ccoiiiiiiiiiiii 973
21.7.6. Section Directive AtIHDULES .......o.iuiiii e 974
21.7.7. MACKO PrEPIOCESSON .. .ttt ettt ettt ettt e e e e 976
21.7.8. Assembler Implementation Differences ............ccoooviiiiiiiiii 977

21.8. LINKEr MIGIatiOn ... ..ieenieiet et et e ettt en e 979
21.8.1. LINKEI CONLIOIS ... ettt et et e e e e 979
21.8.2. Section, Class and Group NamMeS .......c.ouiuiiiiiiiii e 981
21.8.3. ODJECE FlES ..eeeitie i e 982

22. Migrating from Kl ... 983
22.1. Importing a Keil Project in ECHPSE ... ..ouiiii e 983
22.2. Conversion TOOI KEII2VX .......c.ieii e 984
22.3. PVision2 t0 EClipSe MIgration .........c.cueeieiiniei et 985
22.4. C Compiler MIgratiOn ..........cuouieit e e 987
22.4.1. MeMOIY MOTEIS ... e 987
22.4.2. Language Implementation Migration .............cccoovieeiiiiiiiiie e 987
22.4.3. PTA0MAS . .oueneieniiite e e 990

22.5. ASSEMDBIEr MIGration ... ....iie e 991
22.5.1. ASSEMDIEr DIr€CHVES .. ..iutiniiie e 991
22.5.2. Assembler and Macro Preprocessor CONtrols .............ocovveiieiiiinininiennennn, 992



TASKING VX-toolset for C166 User Guide



Chapter 1. C Language

This chapter describes the target specific features of the C language, including language extensions that
are not standard in ISO-C. For example, pragmas are a way to control the compiler from within the C
source.

The TASKING C compiler for c166® fully supports the ISO-C standard and add extra possibilities to
program the special functions of the target.

In addition to the standard C language, the compiler supports the following:

» keywords to specify memory types for data and functions

« attribute to specify absolute addresses

« intrinsic (built-in) functions that result in target specific assembly instructions
» pragmas to control the compiler from within the C source

 predefined macros

« the possibility to use assembly instructions in the C source

» keywords for inlining functions and programming interrupt routines

* libraries

All non-standard keywords have two leading underscores (__).

In this chapter the target specific characteristics of the C language are described, including the above
mentioned extensions.

1.1. Data Types

Fundamental data types

The C compiler supports the ISO C99 defined data types. The sizes of these types are shown in the
following table.

CType Size Align Limits

__bit 1 1 Oor1l

_Bool 8 8 Oor1l

signed char 8 8 [-0x80, +0x7F]
unsigned char 8 8 [0, OXFF]

short 16 16 [-0x8000, +0x7FFF]
unsigned short 16 16 [0, OXFFFF]

int 16 16 [-0x8000, +0x7FFF]




TASKING VX-toolset for C166 User Guide

CType Size Align Limits
unsigned int 16 16 [0,0xFFFF]
enum 8 8 [-0x80, +0x7F] or [0, OXFF]

16 16 [-0x8000, +0x7FFF] or [0,0xFFFF]
long 32 16 [-0x80000000, +0x7FFFFFFF]
unsigned long 32 16 [0,0xFFFFFFFF]
long long 64 16 [-0x8000000000000000,

+0x7FFFFFFFFFFFFFFF]
unsigned long long 64 16 [0, OXFFFFFFFFFFFFFFFF]
float (23-bit mantissa) 32 16 [-3.402E+38, —1.175E-38]
[+1.175E-38, +3.402E+38]
double 64 16 [-1.797E+308, -2.225E-308]
long double (52-bit mantissa) [+2.225E-308, +1.797E+308]
_Imaginary float 32 16 [-3.402E+38i, —1.175E-38i]
[+1.175E-38i, +3.402E+38i]
_Imaginary double 64 16 [-1.797E+308i, -2.225E-308i]
_Imaginary long double [+2.225E-308i, +1.797E+308i]
_Complex float 64 16 real part + imaginary part
_Complex double 128 16 real part + imaginary part
_Complex long double
__near pointer to data or function 16 16 [0,0xFFFF]
__far pointer ” 32 16 [0,0xFFFFFF]
__shuge pointer 32 16 [0,0xFFFFFF]
__huge pointer to data or function 32 16 [0,0xFFFFFF]

“When you use the enumtype, the compiler will use the smallest sufficient type (char , unsi gned
char ori nt), unless you use C compiler option --integer-enumeration (always use 16-bit integers
for enumeration).

” __far pointers are calculated using 14-bit arithmetic, __shuge pointers are calculated using
16-bit arithmetic.

Automatic bit objects never reside on the user stack, because the stack is not bit-addressable. So, it is
not possible to take the address of an automatic bit object, or to create automatic bit-arrays, because
these operations would force an object on the stack.

Aggregate and union types

Aggregate types are aligned on 16 bits by default. All members of the aggregate types are aligned as
required by their individual types as listed in the table above. The struct/union data types may contain
bit-fields. The allowed bit-field fundamental data types are _Bool , (un)si gned char and (un)si gned
i nt . The maximum bit-field size is equal to that of the type’s size. For the bit-field types the same rules



C Language
regarding to alignment and signed-ness apply as specified for the fundamental data types. In addition,
the following rules apply:

» The first bit-field is stored at the least significant bits. Subsequent bit-fields will fill the higher significant
bits.

» A bit-field of a particular type cannot cross a boundary as is specified by its maximum width. For example,
a bit-field of type short cannot cross a 16-bit boundary.

« Bit-fields share a storage unit with other bit-field members if and only if there is sufficient space in the
storage unit.

* An unnamed bit-field creates a gap that has the size of the specified width.

» As a special case, an unnamed bit-field having width 0 (zero) prevents any further bit-field from residing
in the storage unit corresponding to the type of the zero-width bit-field.

Bit structures

The __bi t data type is allowed as a struct/union member, with the restriction that no other type than
__bi t is member of this structure. This creates a bit-structure that is allocated in bit-addressable memory.
Its alignment is 1 bit.

There are a number of restrictions to bit-structures. They are described below:
« Itis not possible to pass a bit-structure argument to a function.

* Itis not possible to return a bit-structure.

« Itis not possible to make an automatic bit-structure.

The reason for these restrictions is that a bit-structure must be allocated in bit-addressable memory;,
which the user stack is not.

__bitsizeof() operator

The si zeof operator always returns the size in bytes. Use the __bi t si zeof operator in a similar way
to return the size of an object or type in bits.

__bitsizeof ( object | type )

1.2. Changing the Alignment: __unaligned and __packed
Normally data, pointers and structure members are aligned according to the table in the previous section.
Suppress alignment

With the type qualifier __unal i gned you can specify to suppress the alignment of objects or structure

members. This can be useful to create compact data structures. In this case the alignment will be one bit
for bit-fields or one byte for other objects or structure members.



TASKING VX-toolset for C166 User Guide

At the left side of a pointer declaration you can use the type qualifier __unal i gned to mark the pointer
value as potentially unaligned. This can be useful to access externally defined data. However the compiler
can generate less efficient instructions to dereference such a pointer, to avoid unaligned memory access.

You can always convert a normal pointer to an unaligned pointer. Conversions from an unaligned pointer
to an aligned pointer are also possible. However, the compiler will generate a warning in this situation,
with the exception of the following case: when the logical type of the destination pointer is char orvoi d,
no warning will be generated.

Example:

struct

{

char c;
__unaligned int i; /* aligned at offset 1! */
}os;

__unaligned int * up = & s.1i;

Packed structures

To prevent alignment gaps in structures, you can use the attribute __packed__. When you use the
attribute __packed___ directly after the keyword st r uct , all structure members are marked __unal i gned.

For example the following two declarations are the same:

struct _ packed__

{
char c;
int * i;
} s,
struct
{
char __unaligned c;
int * _unaligned i; /* __unaligned at right side of '*' to pack pointer nenber */
} s2;

The attribute __packed__ has the same effect as adding the type qualifier __unal i gned to the
declaration to suppress the standard alignment.

You can also use __packed___ in a pointer declaration. In that case it affects the alignment of the pointer
itself, not the value of the pointer. The following two declarations are the same:

int * _ _unaligned p;
int * p __packed__;

1.3. Accessing Memory

The TASKING VX-toolset for C166 internally knows the following address types:

» 32-bit linear, ‘huge’ addresses. The address notation is in bytes, starts at 0 and ends at 16M.



C Language

» 32-bit paged, ‘far’ addresses. In the address notation the high word contains the 10-bit page nhumber
and the low word contains the 14-bit offset within the 16 kB page.

» 16-bit, ‘near’ addresses. The high 2 bits contain the DPP number and the low 14 bits are the offset
within the 16 kB page.

» 12-bit bit-addressable addresses. This embodies an 8-bit word offset in the bit-addressable space and
a 4-bit bit number.

» 8-bit SFR addresses. This is an offset within the SFR space or within the extended SFR space.

The TASKING VX-toolset for C166 toolset has several keywords you can use in your C source to specify
memory locations. This is explained in the sub-sections that follow.

1.3.1. Memory Type Qualifiers

In the C language you can specify that a variable must lie in a specific part of memory. You can do this
with a memory type qualifier. If you do not specify a memory type qualifier, data objects get a default
memory type based on the memory model.

You can specify the following memory types:

Qualifier |Description Location Maximum Pointer Pointer Section
object size size arithmetic |name and
type
_ bt |Bitaddressable |Bitaddressable |1 bit 16-bit 12-bit bit
memory
__bita |Bit addressable |Bit addressable |Size of bit 16-bit 16-bit bita
memory addressable
memory
__iram |Internal RAM Internal RAM Size of internal |16-hit 16-hit iram
data RAM
__near [Near data In the 4 near data |16 kB 16-hit 16-bit near
pages
_ far Far data Anywhere 16 kB 32-bit 14-bit far
__shuge [Segmented huge | Anywhere 64 kB 32-bit 16-bit shuge
data
__huge [Huge data Anywhere no limit 32-bit 32-bit huge

" The default section name is equal to a combination of the generated section type and the object
name. You can change the section name with the #pr agma sect i on or command line option
--rename-sections.

” __bit is not areal qualifier, it is in fact a data type with an implicit memory type of type bit.



TASKING VX-toolset for C166 User Guide

There are no SFR qualifiers. SFRs are accessible in the near address space. The compiler knows which
absolute address ranges belong to SFR areas and extended SFR areas and knows which addresses are
bit addressable. The compiler generates the appropriate SFR addressing modes for these addresses.

Examples using explicit memory types

__bhita unsi gned char bitbyte;
__bhita unsi gned short bitword;
__near char text[] = "No snoking";
__far i nt array[ 10][4];

The memory type qualifiers are treated like any other data type specifier (such as unsi gned). This means
the examples above can also be declared as:

unsigned char __bita bi t byt e;

unsi gned short __bita bi t wor d;

char __near text[] = "No snoking";
i nt __far array|[ 10] [ 4];

__farand __shuge code generation

The __far and __shuge qualifiers have only very little difference in code generation. There are two
basic differences:

» Accessing __f ar objects is done using EXTP instructions and accessing __shuge objects is done
using EXTS instructions. This has no impact on code size or execution speed, and therefore it is in
general preferred to use __shuge, because objects can be as large as 64 kB, while with __f ar the
size of a single object is limited to 16 kB.

» Code generation for accessing objects on stack is a little bit more efficient for __f ar pointers than for
__shuge pointers.

1.3.1.1. Pointers with Memory Type Qualifiers
Pointers for the C166 can have two types: a 'logical’ type and a memory type. For example,
char _ _far * _ near p;

means p has memory type __near (p itself is allocated in near data), but has logical type ‘character in

target memory space far'. The memory type qualifier used to the left of the *', specifies the target memory
of the pointer, the memory type qualifier used to the right of the *', specifies the storage memory of the

pointer.

__farand __shuge pointer comparison

By default all __f ar pointer arithmetic is 14-bit. This implies that comparison of __f ar pointers is also
done in 14-bit. For __shuge the same is true, but then with 16-bit arithmetic. This saves code significantly,
but has the following implications:

» Comparing pointers to different objects is not reliable. It is only reliable when it is known that these
objects are located in the same page.



C Language

» Comparing with NULL is not reliable. Objects that are located in another page at offset 0x0000 have
the low 14 bits (the page offset) zero and will also be evaluated as NULL. In the following example the
i f( p ) isfalse, because the page offset of p is zero:

__far int i __at(0x10000);
_far int * p = & ;
if( p) ptt;

In most cases these restrictions will not yield any problems, but in case problems exist, the following
solutions are available:

» Cast the problematic comparison to long, e.g.:i f( (long)p )

» Use the C compiler option -AF to tell the compiler to generate 32-bit pointer comparisons. Note that it
is also required to rebuild the C library if C library routines are used.

Pointer conversions
Conversions of pointers with the same qualifiers are always allowed. The following table contains the

additionally allowed pointer conversions. Other pointer conversions are not allowed to avoid possible
run-time errors.

Source pointer Destination pointer
__bita __iram

__bita __hear

__bita _ far

__bita __shuge

__bita __huge

__iram __hear

__iram _ far

__iram __shuge

__iram __huge

__hear _ far

__near __shuge

__near __huge

_ far __shuge

_ far __huge

__shuge __huge
__near,__bita, __iram(16-bit) pointer conversions to and from non-pointer types:

» A conversion from a 32-bit integer to a 16-bit pointer, or from a 16-bit pointer to a 32-bit integer, is
implemented as a 32-bit linear address conversion.



TASKING VX-toolset for C166 User Guide

« All other non-pointer conversions to and from a 16-bit pointer are implemented as a conversion to or
from a 16-bit integer type.

__far (32-bit) pointer conversions to and from non-pointer types:

» A conversion from a 16-bit integer to a __f ar pointer, or from a __f ar pointer to a 16-bit integer, is
implemented as a 16-bit linear address conversion. The behavior of a __f ar pointer to 16-bit integer
conversion is undefined when __f ar pointer contains an address with page number larger than 3.

» A conversion from a 32-bit integer to a __f ar pointer, or from a __f ar pointer to a 32-bit integer, is
implemented as a 32-bit linear address conversion.

« All other non-pointer conversions to and from a __f ar pointer are implemented as a conversion to or
from a 32-bit integer type.

__('s) huge (32-bit) pointer conversions to and from non-pointer types:

 All non-pointer conversions to and from a __('s) huge pointer are implemented as a conversion to or
from a 32-bit integer.

1.3.2. Memory Models

The C compiler supports four data memory models, listed in the following table.

Memory model |Letter |Default data memory type
Near n __near

Far f _ far

Segmented Huge |s __shuge

Huge h __huge

Each memory model defines a default memory type for objects that do not have a memory type qualifier
specified. By default, the C166 compiler uses the near memory model. With this memory model the most
efficient code is generated. With the C compiler option --model you can specify another memory model.

For information on the memory types, see Section 1.3.1, Memory Type Qualifiers.

__MODEL__

The compiler defines the preprocessor symbol __MODEL__to the letter representing the selected memory
model. This can be very helpful in making conditional C code in one source module, used for different
applications in different memory models.

Example:

#if _ MODEL__ == 'f'
/* this part is only for the far menory nodel */

#endi f



C Language

DPP usage

The compiler uses EXTP/EXTS instructions to access far, shuge and huge data in all data models. This
means that it does not use DPP loads and DPP prefixes. All DPPs point to the near data space at anytime.

The advantages of not using DPPs are:
» There are always four near data pages.
* Interrupt functions will not save/restore any DPPs.

» You can use a DPP for your own purpose by letting the linker not assign the DPP to a near page. The
best way to do this is to assign the DPP in LSL to an unused page in memory and reserve that page.

 Bit 14 and bit 15 do not need to be masked when converting a pointer to stack (which is near) to far.
Near data
Near data is paged in all memory models. The linker takes care of assigning DPPs in the code.

With a trick in the LSL file (by defining the __ CONTI GUOUS_NEAR macro) it is possible to remove this
page restriction and get a linear space, even if the near data pages are scattered throughout the memory.
The linker takes care of locating the sections in such a way that the compiler can assume them to be
contiguous through the near data pages. This also implies that the linker can split sections and put parts
in non-consecutive near data pages. When this LSL trick is applied, you should be very cautious when
accessing near data with far or shuge pointers, because objects may cross page or segment boundaries.

Stack

In all memory models the stack is restricted to 16 kB and must be in-page. With a trick in the LSL file (by
defining the __ CONTI GUOUS_NEAR macro) it is possible to remove the page limitation of the stack. But
this should only be done when you do not use far, shuge or huge pointers to access objects on the stack,
because page or segment boundaries may be crossed, and the compiler will use the begin of stack to
perform casts to stack objects.

For XC16x and Super10 derivatives, multiple stacks are created in the LSL file, one for each local register
bank. The C startup code controls the creation of these stacks, by referring the begin of stack symbols.

Heap

In the far, huge and segmented huge models the heap is located as huge data. The memory allocation
routines in the C library will take care of keeping the data in pages or segments for far and shuge data.
In the near data model the default heap is located as near data. Optionally a huge heap can be allocated
allocating far/shuge/huge data.

Threshold

In the far, segmented huge and huge data models the compiler supports a threshold for allocating default
objects in near data. Objects that are smaller than or equal to the threshold area automatically allocated
in near data. The threshold can be defined on the command line with option --near-threshold. By default
the threshold is 0 (off), which means that all data is allocated in the default memory space. In the far,

huge and segmented huge memory models, near data sections that result from the threshold optimization

9



TASKING VX-toolset for C166 User Guide

will be marked to be located inpage, because sections may not cross page boundaries when access
through an external far, huge or shuge declaration is done.

1.3.3. Placing an Object at an Absolute Address: __ at()

Just like you can declare a variable in a specific part of memory (using memory type qualifiers), you can
also place an object or a function at an absolute address in memory.

With the attribute __at () you can specify an absolute address. The address is a 32-bit linear (huge)
address. If you use this keyword on __bi t objects or functions, the address is a bit address.

The compiler checks the address range, the alignment and if an object crosses a page boundary.
Examples
unsi gned char Display[80*24] __ at( 0x2000 );

The array Di spl ay is placed at address 0x2000. In the generated assembly, an absolute section is
created. On this position space is reserved for the variable Di spl ay.

int i __at(0x1000) = 1;

The variable i is placed at address 0x1000 and is initialized.

void f(void) __at( OxfOoff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an absolute address:
» The argument of the __at () attribute must be a constant address expression.

» You can place only global variables at absolute addresses. Parameters of functions, or automatic
variables within functions cannot be placed at absolute addresses.

» A variable that is declared ext er n, is not allocated by the compiler in the current module. Hence it is
not possible to use the keyword __at () on an external variable. Use __at () at the definition of the
variable.

* You cannot place structure members at an absolute address.

» Absolute variables cannot overlap each other. If you declare two absolute variables at the same address,
the assembler and/or linker issues an error. The compiler does not check this.

1.3.4. Accessing Bits

There are several methods to access single bits in the bit-addressable area. The compiler generates
efficient bit operations where possible.

10



C Language

Masking and shifting
The classic method to extract a single bit in C is masking and shifting.

__bita unsigned short bitword;
void foo( void )

i f( bitword & 0x0004 ) Il bit 2 set?

{

bi tword &= ~0x0004; /Il clear bit 2
}
bi tword | = 0x0001; /'l set bit O;

}
Built-in macros __getbit() and __putbit()

The compiler has the built-in macros __get bi t () and __put bi t () . These macros expand to shift/and/or
combinations to perform the required result.

__bita unsigned short bw,
void foo( void )

{
if( __getbit( bw, 2 ) )
__putbit( 0, bw, 2);
}
__putbit( 1, bw, 0);
}

Accessing bits using a struct/union combination

typedef _ _bita union

{

unsi gned short word;

struct

{
int b0 : 1;
int bl : 1;
int b2 : 1;
int b3 : 1;
int b4 : 1;
int b5 : 1;
int b6 : 1;
int b7 : 1;
int b8 : 1;
int b9 : 1;
int bl0: 1;
int bll: 1;
int bl2: 1;
int bl3: 1;
int bl4: 1;

11



TASKING VX-toolset for C166 User Guide

int bl5: 1;
} bits;
} bitword_t;
bitword_t bw;

void foo( void )

{ if( bw. bits.b3 )
{ bw. bits. b3 = 0;
1{Jw.bits.bo = 1;

}

void reset( void )

i bw. word = 0;

Declaring a bit variable with __atbit() (backwards compatibility only)

For backwards compatibility, you can still use the __at bi t () keyword to define a bit symbol as an alias
for a single bit in a bit-addressable object. However, we recommend that you use one of the methods
described above to access a bit.

The syntax of __atbit () is:

__atbit(object, offset)

where object is a bit-addressable object and offset is the bit position in the object.
The following restrictions apply:

» This keyword can only be applied to __bi t type symbols.

» The bit must be defined vol at i | e explicitly. The compiler issues a warning if the bit is not defined
volatile and makes the bit volatile.

» The bitword can be any vol ati | e bit-addressable (__bi t a) object. The compiler issues a warning if
the bit-addressable object was not volatile and makes it volatile.

» The bit symbol cannot be used as a global symbol. An extern on the bit variable, without __at bit (),
will lead to an unresolved external message from the linker, so therefore __at bi t () is required.

Examples

/* Module 1 */
volatile __bita unsigned short bitword;

volatile __bit b __atbit( bitword, 3 );

/* Module 2 */

12



C Language

extern volatile __bita unsigned short bitword;
extern volatile __bit b __athit( bitword, 3);

Drawbacks of __atbit()

e __atbit() requires all involved objects to be volatile. If your application does not require these objects
to be volatile, you may see in many cases that the generated code is less optimal than when the objects
were not volatile. The reason for that is that the compiler must generate each read and write access
for volatile objects as written down in the C code. Fortunately the standard C language provides methods
to achieve the same result as with __at bi t () . The compiler is smart enough to generate efficient bit
operations where possible.

» No debug information is generated for objects defined with __at bi t () , meaning that these objects
are not visible in the debugger.

1.3.5. Accessing Hardware from C

Using Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from C. The SFRs are
defined in a special function register file (*. sfr and *. asf r ) as symbol names for use with the compiler.
An SFR file contains the names of the SFRs and the bits in the SFRs. These SFR files are also used by
the assembler and the simulator engine. The debugger and integrated environment use the XML variants
of the SFR files. The XML files include full descriptions of the SFRs and the bit-fields. Also the bit-field
values are described. To decrease compile time the . sfr and . asf r files do not contain the descriptions.
The . sfr and . asfr files are in written C and are derived from the XML files.

SFRs in the SFR area and extended SFR area are addressed in the near address space. The compiler
knows the effective address ranges and generates SFR addressing modes for this. The generated
addressing modes to access the registers depend on the address. Some SFRs cannot be addressed
with a REG addressing mode, although they are within the SFR area or the extended SFR area. These
registers are:

RSTCON |OxF1EO
RSTCON2 | 0xF1E2
SYSSTAT |OxF1E4

The compiler will never emit REG addressing for these addresses.

You can find a list of defined SFRs and defined bits by inspecting the SFR file for a specific processor.
The files are named r egcpu. sfr andr egcpu. asf r, where cpu is the CPU specified with the C compiler
option --cpu. The compiler automatically includes this register file, unless you specify option
--no-tasking-sfr. The files are located in the sf r subdirectory of the standard i ncl ude directory.

For new devices (XC2xxx, XE16x) most SFR names use a standard naming convention prescribed by
Infineon:

* UNIT_SFRNAME for SFRs

* UNIT_SFRNAME_BITNAME for bit-fields, when using the standard . sfr files

13



TASKING VX-toolset for C166 User Guide

For example:

| MB_MARO
| MB_MARO_HREADO

For some of these names aliases are defined that do not include the unit name. For example, SYSCONO
as an alias for SCU_SYSCONO. As a rule of thumb aliases are available only where needed to make the
cstart. c code generic between older and newer devices.

.sfr - the standard SFR file format

These files are read by the C++ compiler, C compiler, assembler and simulator engine. The SFRs and
SFR bit-fields are defined as C preprocessor macros using #def i ne-s. The *. sfr files are the default
for the toolset.

Example use in C (with use of alias definitions):

voi d set_sfr(void)

{

POL = 0x88; /1 use port nane

AD3 = 1; /1 use of bit nane

if (A4 == 1)

{

AD3 = 0

}

| EN = 1; /1 use of bit nane
}

The compiler generates (with option --cpu=c167):

nmovw Oxf f 00, #0x88
bset 0xff00.3
jnb Oxff00.4, 2
bclr 0xff00.3

bset Oxff10.11

When the SFR contains fields, the layout of the SFR is defined by a typedef-ed union of a struct with bits,
a signed integer and an unsigned integer:

typedef volatile union __PSW.uni on

{
struct __ PSWstruct

{
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned usrO0

é(‘DN<O:
o
RPRRPRPRRRPR

14



C Language

unsi gned usril 1;
unsi gned bank 2;
unsi gned hl den 1;
unsi gned ien 1;
unsi gned il vl 4;

} B

int |;

unsi gned U

} __PSWtype;

Read-only fields can be marked by using the const keyword.
Note that the bit-field names are in lower case to avoid conflicts with their macro definition.

The base SFR is defined by a cast to a ‘typedef-ed union’ pointer. The SFR address is given in parenthesis.
This definition is the same inthe *. sfr and *. asf r files and is therefore also used in the C startup code
(cstart.c)

#define _ PSW(*( __PSWtype *)0xFF10)

The definition of the actual SFR name as it should be used in your code:

#defi ne PSW __PSWuU

A bit-field is defined as:

#define PSWN _ PSWB.n

You can also use an alias definition for the bit-field:

#define N PSW N

Note that if the bit-field in the st r uct definition would be uppercase it would give a hame clash.
.asfr - the alternative SFR file format

These files can optionally be used by the C compiler instead of the . sf r files. These files are named
r egcpu. asf r. This format does not contain alias definitions for SFRs and SFR bit-fields.

You can select . asfr instead of . sfr files, with option --alternative-sfr-file.
Example in C when you use this alternative format:

voi d set_sfr(void)

{
POL. U = 0x88; /1 use port nane as unsi gned integer
POL.1 = 136; /1 use port nane as signed integer
POL. B. AD3 = 1; /! use of bit nane
if (POL.B. AD4 == 1)
{

POL. B. AD3 = 0;
}

15



TASKING VX-toolset for C166 User Guide

PSWB. | EN = 1; /1 use of bit nane
}

The compiler generates (with options --cpu=c167 --alternative-sfr-file):

nmovw Oxf f 00, #0x88
nmovw Oxf f 00, #0x88
bset 0xff00.3
jnb Oxff00.4, 2
bclr 0xff00.3

bset Oxff10.11

When the SFR contains fields, the layout of the SFR is defined by a typedef-ed union of a struct with bits,
a signed integer and an unsigned integer:

typedef volatile union _ PSWunion
{
struct __PSWstruct
{
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned MJLIP
unsi gned USRO
unsi gned USR1
unsi gned BANK
unsi gned HLDEN
unsi gned | EN
unsi gned | LVL
} B
int |;
unsi gned U
} __PSWtype;

mN<OZ

AR RPNRRRRRERRERRR

Note that the bit-fields are in upper case.
Read-only fields can be marked by using the const keyword.

The base SFR is defined by a cast to a ‘typedef-ed union’ pointer. The SFR address is given in parenthesis.
This definition is the same inthe *. sfr and *. asf r files and is therefore also used in the C startup code
(cstart.c)

#define _ PSW(*( __PSWtype *)O0xFF10)
The definition of the actual SFR name as it should be used in your code:
#defi ne PSW __PSW

To access the SFRs in the alternative format, you should use the following syntax:

16



C Language

.U Ful | SFR, unsigned
| Ful | SFR, signed
. B. Bit-field

For example:

WDTREL. U = 0x300;
U0OCO_I N0O. I = -12;
PSWB. | EN = 1;

Choosing between the standard and alternative SFR file format

It depends on the coding of the application which format can be used. It is recommended to use the
alternative SFR file format for new applications because of the following benefits:

» Less namespace pollution because of the lack of alias definitions.

In the standard SFR file format (. sf r) all bit-fields are defined as C preprocessor macros using
#def i ne. This gives namespace pollution with the risk of a name clash with the application. For
example, applications that define a macro N are not so seldom, and will give a clash with the bit-field

» Faster compilation due to smaller SFR files.

The compiler needs significantly more time to process all the additional bit-field definitions in a standard
SFR file (. sfr). Processing a . asf r file may be twice as fast as processing a . sf r file. For new
devices with a large amount of SFRs this will result in measurable shorter build times.

1.4. Using Assembly in the C Source: __asm()

With the keyword __asmyou can use assembly instructions in the C source and pass C variables as
operands to the assembly code. Be aware that C modules that contain assembly are not portable and
harder to compile in other environments.

The compiler does not interpret assembly blocks but passes the assembly code to the assembly source
file; they are regarded as a black box. So, it is your responsibility to make sure that the assembly block
is syntactically correct. Possible errors can only be detected by the assembler.

You need to tell the compiler exactly what happens in the inline assembly code because it uses that for
code generation and optimization. The compiler needs to know exactly which registers are written and
which registers are only read. For example, if the inline assembly writes to a register from which the
compiler assumes that it is only read, the generated code after the inline assembly is based on the fact
that the register still contains the same value as before the inline assembly. If that is not the case the
results may be unexpected. Also, an inline assembly statement using multiple input parameters may be
assigned the same register if the compiler finds that the input parameters contain the same value. As
long as this register is only read this is not a problem.

General syntax of the __asm keyword
__asn( "instruction_tenplate"

[ : output_paramli st

17



TASKING VX-toolset for C166 User Guide

[ : input_paramli st
[ : register_save list]]] );

instruction_template

Yoparm_nr
output_param_list
input_param_list

&

constraint _char

C_expression

register_save_list
register_name

Assembly instructions that may contain parameters from the input
list or output list in the form: %parm_nr

Parameter number in the range 0 .. 9.
[[ "=[&]constraint_char"(C_expression)],...]
[[ "constraint_char"(C_expression)],...]

Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

Constraint character: the type of register to be used for the
C_expression.

Any C expression. For output parameters it must be an Ivalue, that
is, something that is legal to have on the left side of an assignment.
[["register_name"],...]

Name of the register you want to reserve. You can use byte registers
RLO - RL7, RHO - RH7 and word registers RO - R15. Note that saving
too much registers can make register allocation impossible.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

You can reserve the registers that are used in the assembly instructions, either in the parameter lists or
in the reserved register list (register_save_list). The compiler takes account of these lists, so no
unnecessary register saves and restores are placed around the inline assembly instructions.

Constraint Type Operand Remark

character

b byte register RLO - RL7, RHO - input/output constraint
RH7

w word register RO - R15 input/output constraint

i indirect address register |RO - R3 input constraint only

number

type of operand it is
associated with

same as %number

Input constraint only. The number must
refer to an output parameter. Indicates
that %number and number are the
same register.

If an input parameter is modified by the inline assembly then this input parameter must also be

added to the list of output parameters (see Example 6). If this is not the case, the resulting code
may behave differently than expected since the compiler assumes that an input parameter is not
being changed by the inline assembly.

18




C Language

Loops and conditional jumps

The compiler does not detect loops with multiple __asn{) statements or (conditional) jumps across
__asn() statements and will generate incorrect code for the registers involved.

If you want to create a loop with __asn{( ) , the whole loop must be contained in a single __asm()
statement. The same counts for (conditional) jumps. As a rule of thumb, all references to a label in an
__asn{) statement must be in that same statement. You can use numeric labels for these purposes.

Example 1: no input or output

A simple example without input or output parameters. You can use any instruction or label. When it is
required that a sequence of __asn() statement generates a contiguous sequence of instructions, then
they can be best combined to a single __asm() statement. Compiler optimizations can insert instruction(s)
in between __asn() statements. Use newline characters ‘\n’ to continue on a new lineina __asn()
statement. For multi-line output, use tab characters '\t' to indent instructions.

__asn( "nop\n"
"\'tnop" );

Example 2: using output parameters

Assign the result of inline assembly to a variable. A register is chosen for the parameter because of the
constraint b; the compiler decides which register is best to use. The %9 in the instruction template is
replaced with the name of this register. The compiler generates code to assign the result to the output
variable.

char out;
voi d addone( void )
{
__asn( "MWV 99, #1"
p"=b" (out) );
}

Generated assembly code:

MOV rh4, #1
novb _out,rh4

Example 3: using input parameters

Assign a variable to an SFR. A word register is chosen for the parameter because of the constraint w;
the compiler decides which register is best to use. The %0 in the instruction template is replaced with the
name of this register. The compiler generates code to move the input variable to the input register. Because
there are no output parameters, the output parameter list is empty. Only the colon has to be present.

int in;
void initsfr( void)
{
__asm "MOVW POL, 90"

19



TASKING VX-toolset for C166 User Guide

wWo(in) );
}

Generated assembly code:

nmovw rl1ll, _in
MOVW  POL, r11

Example 4: using input and output parameters

Multiply two C variables and assign the result to a third C variable. Word registers are necessary for the
input and output parameters (constraint w, ¥® for out 1, %4 for out 2, 92 for i n1 and %8 for i n2 in the
instruction template). The compiler generates code to move the input expressions into the input registers
and to assign the result to the output variables.

int inl, in2;
long int out;
void multiply32( void )

{
unsigned int outl, out?2;
__asm "CoMJL %2, 9%3\n"
"\t COSTORE %9, MAL\n"
"\t COSTORE %4, MAH\n"
"=w' (outl), "=w' (out?2)
"w'o(inl), "w' (in2) );
out = outl | (signed |ong)out2<<16;
}

Generated assembly code:

; Code generated by C conpiler
movw rl1l, _inl
movw r12, _in2

; __asm statenment expansion
CoMJL r11, r1l2
CoSTORE r12, NAL
CoSTORE r11, NAH

; Code generated by C conpiler
movw _out, rl2
nmovw _out+2, ri1l

Example 5: reserving registers
Sometimes an instruction knocks out certain specific registers. The most common example of this is a

function call, where the called function is allowed to do whatever it likes with some registers. If this is the
case, you can list specific registers that get clobbered by an operation after the inputs.

20



C Language

Same as Example 4, but now registers R11 and R12 are reserved registers. You can do this by adding
areserved register list (: "R11","R12"). As you can see in the generated assembly code, registers R11
and R12 are not used (the first register used is R13).

int inl, in2;

long int out;

void multiply32( void )
{

unsigned int outl, out?2;

__asnm( "CoMJL %, 9%3\n"
" CoSTORE %9, MAL\n"
"CoSTORE 94, MAH\ n"
"=w' (outl), "=w' (out?2)
"w' (inl), "w' (in2)
"R11","R12" );

out = outl | (signed |ong)out2<<16;
}

Generated assembly code:

; Code generated by C conpil er
nmovw r13, _inl

nmovw r 14, _in2

; __asm statenment expansion
CoMJL r13, rl4

CoSTORE r14, NAL

CoSTORE r13, NMAH

; Code generated by C conpil er
movw _out, ri14

movw _out +2, rl13

Example 6: use the same register for input and output

As input constraint you can use a number to refer to an output parameter. This tells the compiler that the
same register can be used for the input and output parameter. When the input and output parameter are
the same C expression, these will effectively be treated as if the input parameter is also used as output.
In that case it is allowed to write to this register. For example:

inline int foo(int parl, int par2, int * par3)
{

int retval ue;

__asn(
"shl 94, #2\n\t"
"add %2, 9%\ n\t"
"mov [9%2], %\ n\t"
"mov %9, %6\ n"
"=&wW' (retvalue), "=w' (parl), "=w' (par?2)
"1" (parl), "2" (par2), "w' (par3)

21



TASKING VX-toolset for C166 User Guide

)
return retval ue;

}

int result,parm

voi d func(void)
{

result = foo(1000, 1000, &arm ;
}

In this example the "1" constraint for the input parameter par 1 refers to the output parameter par 1, and
similar for the "2" constraint and par 2. In the inline assembly %4 (par 1) and %2 (par 2) are written. This
is allowed because the compiler is aware of this.

This results in the following generated assembly code:

movw r 11, #0x3e8
movw r12,r1l
movw r 13, # parm

shl r11, #2
add ri12,r11
nov [r12],r13
mov r14,r13

novw _result,rl4

However, when the inline assembly would have been as given below, the compiler would have assumed
that %4 (par 1) and 92 (par 2) were read-only. Because of the i nl i ne keyword the compiler knows that
par 1 and par 2 both contain 1000. Therefore the compiler can optimize and assign the same register to
% and %2. This would have given an unexpected result.

__asn(
"shl %, #2\n\t"
"add 92,9\ n\t"
"mov [9%2], 9B\ n\t"
"mov %9, %38\ n"
"=&wW' (retval ue)
"w' (parl), "w' (par2), "w' (par3)
)

Generated assembly code:

nmovw r 11, #0x3e8
nmovw r 12, #_parm

shl r11, #2

add r11,r11 ; same register, but is expected read-only
nov [rl1],r12

mov rl13,r12

22



C Language

nmovw _result,rl13 ; contains unexpected result

1.5. Attributes

You can use the keyword __at t ri but e__ to specify special attributes on declarations of variables,
functions, types, and fields.

Syntax:
_attribute__((name,...))
or:

nane

The second syntax allows you to use attributes in header files without being concerned about a possible
macro of the same name. For example, you may use __nor et ur n___ instead of
__attribute__((noreturn)).

alias("symbol")

Youcanuse __attribute__((alias("synbol"))) to specify that the declaration appears in the
object file as an alias for another symbol. For example:

void _f() { /* Do sonmething */; }
void f() __attribute_ ((weak, alias("__f"));

declares 'f ' to be a weak alias for'__f".

const

Youcanuse __attribute__ ((const)) to specify that a function has no side effects and will not
access global data. This can help the compiler to optimize code. See also attribute pur e.

The following kinds of functions should not be declared __const __:
« A function with pointer arguments which examines the data pointed to.

» A function that calls a non-const function.
expo rt

Youcanuse __attribute__((export)) to specify that a variable/function has external linkage and
should not be removed by the compiler. During MIL linking, the compiler treats external definitions at file
scope as if they were declared st at i c. As a result, unused variables/functions will be eliminated, and
the alias checking algorithm assumes that objects with static storage cannot be referenced from functions
outside the current module. During MIL linking not all uses of a variable/function can be known to the
compiler. For example when a variable is referenced in an assembly file or a (third-party) library. With
the export attribute the compiler will not perform optimizations that affect the unknown code.

int i __attribute__((export)); /* 'i' has external |inkage */

23



TASKING VX-toolset for C166 User Guide

format(type,arg_string_index,arg_check_start)

Youcanuse __attribute_ ((format(type,arg_string_index,arg_check_start))) to
specify that functions take pri ntf, scanf, strfti me or st rf non style arguments and that calls to
these functions must be type-checked against the corresponding format string specification.

type determines how the format string is interpreted, and should be pri ntf, scanf,strfti me or
strfnon.

arg_string_index is a constant integral expression that specifies which argument in the declaration of the
user function is the format string argument.

arg_check_start is a constant integral expression that specifies the first argument to check against the
format string. If there are no arguments to check against the format string (that is, diagnostics should only
be performed on the format string syntax and semantics), arg_check_start should have a value of 0. For
strfti me-style formats, arg_check_start must be 0.

Example:
int foo(int i, const char * ny_format, ...) __attribute__ ((format(printf, 2, 3)));

The format string is the second argument of the function f oo and the arguments to check start with the
third argument.

malloc

Youcanuse __attribute__((malloc)) toimprove optimization and error checking by telling the
compiler that:

» The return value of a call to such a function points to a memory location or can be a null pointer.

» Onreturn of such a call (before the return value is assigned to another variable in the caller), the memory
location mentioned above can be referenced only through the function return value; e.g., if the pointer
value is saved into another global variable in the call, the function is not qualified for the malloc attribute.

» The lifetime of the memory location returned by such a function is defined as the period of program
execution between a) the point at which the call returns and b) the point at which the memory pointer
is passed to the corresponding deallocation function. Within the lifetime of the memory object, no other
calls to malloc routines should return the address of the same object or any address pointing into that
object.

noinline

Youcanuse __attribute__((noinline)) toprevent afunction from being considered for inlining.
Same as keyword __noi nl i ne or #pragnma noi nl i ne.

always_inline
With __attribute__((al ways_inline)) you force the compiler to inline the specified function,

regardless of the optimization strategy of the compiler itself. Same as keyword i nl i ne or #pr agna
i nline.

24



C Language

noreturn

Some standard C function, such as abort and exit cannot return. The C compiler knows this automatically.
Youcanuse __attribute__((noreturn)) to tell the compiler that a function never returns. For
example:

void fatal () __attribute__((noreturn));
void fatal ( /* ... */ )

[* Print error nessage */
exit(1);
}

The function f at al cannot return. The compiler can optimize without regard to what would happen if
fat al everdid return. This can produce slightly better code and it helps to avoid warnings of uninitialized
variables.

protect

Youcanuse __attribute__ ((protect)) toexclude avariable/function from the duplicate/unreferenced
section removal optimization in the linker. When you use this attribute, the compiler will add the "protect"
section attribute to the symbol's section. Example:

int i __attribute__ ((protect));

Note that the protect attribute will not prevent the compiler from removing an unused variable/function
(see the used symbol attribute).

This attribute is the same as#pr agna prot ect/ endpr ot ect .
pure
Youcanuse _attribute__ ((pure)) to specify that a function has no side effects, although it may

read global data. Such pure functions can be subject to common subexpression elimination and loop
optimization. See also attribute const .

section("section_name")

Youcanuse __attribute__((section("nanme"))) to specify that a function must appear in the
object file in a particular section. For example:

extern void foobar(void) __attribute_ ((section("bar")));
puts the function f oobar in the section named bar .

See also #pragnma secti on.

25



TASKING VX-toolset for C166 User Guide

used

Youcanuse __attribute__((used)) to prevent an unused symbol from being removed, by both the
compiler and the linker. Example:

static const char copyright[] __attribute_ ((used)) = "Copyright 2010 Altium BV";

When there is no C code referring to the copyr i ght variable, the compiler will normally remove it. The
__attribute__((used)) symbol attribute prevents this. Because the linker should also not remove
this symbol, __attribute__ ((used)) implies__attribute__((protect)).

unused

Youcanuse __attribute__ ((unused)) to specify that a variable or function is possibly unused. The
compiler will not issue warning messages about unused variables or functions.

weak

Youcanuse __attribute__ ((weak)) tospecify that the symbol resulting from the function declaration
or variable must appear in the object file as a weak symbol, rather than a global one. This is primarily
useful when you are writing library functions which can be overwritten in user code without causing
duplicate name errors.

See also #pragnma weak.

1.6. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options. Put pragmas in your C source where you want them to take effect. Unless stated
otherwise, a pragma is in effect from the point where it is included to the end of the compilation unit or
until another pragma changes its status.

The syntax is:

#pragma pragnme- spec pragnma-argunents [on | off | default | restore]

or:

_Pragma( "pragne-spec pragma-argunments [on | off | default | restore]" )

Some pragmas can accept the following special arguments:

on switch the flag on (same as without argument)
of f switch the flag off

def aul t set the pragma to the initial value

restore restore the previous value of the pragma

The compiler recognizes the following pragmas, other pragmas are ignored.

26



C Language

alias symbol=defined_symbol
Define symbol as an alias for defined_symbol. It corresponds to an alias directive (. ALl AS) at assembly

level. The symbol should not be defined elsewhere, and defined_symbol should be defined with static
storage duration (not extern or automatic).

clear / noclear

By default, uninitialized global or static variables are cleared to zero on startup. With pragma nocl ear,
this step is skipped. Pragma cl ear resumes normal behavior. This pragma applies to constant data as
well as non-constant data.

See C compiler option --no-clear.

clear_bit / noclear_bit

Same as cl ear/ nocl ear, except that it only applies to __bi t variables.

See C compiler option --no-clear-bit.

compactmaxmatch {value | default | restore}

With this pragma you can control the maximum size of a match.

See C compiler option --compact-max-size.

constant_memory {space | default | restore}

Controls the allocation of constants, automatic initializers and switch tables. The memory space must be
one of: __near,__far,__shuge, __huge or nodel .

See C compiler option --constant-memory.
extension isuffix [on | off | default | restore]

Enables a language extension to specify imaginary floating-point constants. With this extension, you can
use an "i" suffix on a floating-point constant, to make the type _I nagi nary.

extern symbol

Normally, when you use the C keyword ext er n, the compiler generates an . EXTERN directive in the
generated assembly source. However, if the compiler does not find any references to the ext er n symbol
in the C module, it optimizes the assembly source by leaving the . EXTERN directive out.

With this pragma you can force an external reference (. EXTERN assembler directive), even when the
symbol is not used in the module.

indirect_access {address[-address],... | default | restore}

Specify address ranges that should only be accessed using an indirect addressing mode.

27



TASKING VX-toolset for C166 User Guide

inline / noinline / smartinline

Instead of the i nl i ne qualifier, you can also use pragma i nl i ne and pragma noi nl i ne to inline a
function body:

int wXx,vy,z;

#pragma inline
int add( int a, int b))
{

int i=4;

return( a + b );
}

#pragma noi nline

void main( void )

{ .

add( 1, ,

w 2)
add( x, y );

z

}

If a function has ani nl i ne or __noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the optimization C compiler option --optimize=+inline (-Oi), small functions that are not too often
called (from different locations), are inlined. This reduces execution time at the cost of code size. With
the pragma noi nl i ne / pragma smar ti nl i ne you can temporarily disable this optimization.

See also Section 1.12.3, Inlining Functions: inline

inline_max_incr /inline_max_size {value | default | restore}

With these pragmas you can control the automatic function inlining optimization process of the compiler.
It has only effect when you have enabled the inlining optimization (--optimize=+inline (-Oi)).

See C compiler options --inline-max-incr and --inline-max-size.
integer_enumeration [on | off | default | restore]

With this pragma the compiler always treats enumtypes as integers. Same as C compiler option
--integer-enumeration

linear_switch / jump_switch / binary_switch / smart_switch
With these pragmas you can overrule the compiler chosen switch method:

| i near _swi tch force jump chain code. A jump chain is comparable with an if/else-if/else-if/else
construction.

28



C Language

jump_switch force jump table code. A jump table is a table filled with jump instructions for each
possible switch value. The switch argument is used as an index to jump within this
table.

bi nary_swi tch force binary lookup table code. A binary search table is a table filled with a value to
compare the switch argument with and a target address to jump to.

smart_switch letthe compiler decide the switch method used
See also Section 1.11, Switch Statement.

mac / nomac

Enable/disable automatic MAC code generation for a function. The pragma works the same as C compiler
option --mac

macro / nomacro [on | off | default | restore]

Turns macro expansion on or off. By default, macro expansion is enabled.

maxcalldepth {value | default | restore}
With this pragma you can control the maximum call depth. Default is infinite (-1).

See C compiler option --max-call-depth.

message "message" ...

Print the message string(s) on standard output.

nomisrac [nr,...] [default | restore]

Without arguments, this pragma disables MISRA-C checking. Alternatively, you can specify a
comma-separated list of MISRA-C rules to disable.

See C compiler option --misrac and Section 4.8.2, C Code Checking: MISRA-C.
optimize [flags | default | restore] / endoptimize

You can overrule the C compiler option --optimize for the code between the pragmas opt i ni ze and
endopt i m ze. The pragma works the same as C compiler option --optimize.

See Section 4.6, Compiler Optimizations.
profile [flags | default | restore] / endprofile

Control the profile settings. The pragma works the same as C compiler option --profile. Note that this
pragma will only be checked at the start of a function. endpr of i | e switches back to the previous profiling
settings.

29



TASKING VX-toolset for C166 User Guide

profiling [on | off | default | restore]

If profiling is enabled on the command line (C compiler option --profile), you can disable part of your
source code for profiling with the pragmas profili ng of f and profiling.

protect [on | off | default | restore] / endprotect
With these pragmas you can protect sections against linker optimizations. This excludes a section from

unreferenced section removal and duplicate section removal by the linker. endpr ot ect restores the
default section protection.

ramdata / noramdata

With pragma r andat a non-automatic constant data is allocated in both ROM and RAM. At startup RAM
is initialized from ROM. This pragma affects const variables, string literals, initializers and constants that
are allocated in memory. With pragma nor andat a non-automatic constant data is allocated in ROM
only.

See also Section 1.10, Constant Data.
romdata / noromdata

With pragma r ondat a the compiler allocates all non-automatic non-constant variables in ROM only. With
pragma nor ondat a the variables are allocated in RAM and initialized from ROM at startup.

See also Section 1.8.1, Initialized Variables.

runtime [flags | default | restore]

With this pragma you can control the generation of additional code to check for a number of errors at
run-time. The pragma argument syntax is the same as for the arguments of the C compiler option --runtime.
You can use this pragma to control the run-time checks for individual statements. In addition, objects
declared when the "bounds" sub-option is disabled are not bounds checked. The "malloc" sub-option
cannot be controlled at statement level, as it only extracts an alternative malloc implementation from the
library.

savemac / nosavemac

Enable/disable save/restore of MAC-accumulator in a function’s prologue/epilogue.

section [type=name | default | restore] / endsection

Generate code/data in a new section. See Section 1.15, Section Naming for more information.

source [on | off | default | restore] / nosource
With these pragmas you can choose which C source lines must be listed as comments in assembly output.

See C compiler option --source.

30



C Language

stack_address_conversion mode [default | restore]

Controls how stack addresses are converted. The mode can be one of:st ati ¢, fi xed- dpp ordynami c.
See C compiler option --stack-address-conversion.

stdinc [on | off | default | restore]

This pragma changes the behavior of the #i ncl ude directive. When set, the C compiler options
--include-directory and --no-stdinc are ignored.

string_literal_memory {space | default | restore}

Controls the allocation of string literals. The memory space must be one of: __near, __far, __shuge,
__huge or nodel .

See C compiler option --string-literal-memory.

tradeoff {level | default | restore}

Specify tradeoff between speed (0) and size (4).

warning [number[-number],...] [default | restore]

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed.

weak symbol

Mark a symbol as "weak" (. WEAK assembler directive). The symbol must have external linkage, which
means a global or external object or function. A static symbol cannot be declared weak.

A weak external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference. When a weak external reference cannot be resolved, the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

1.7. Predefined Preprocessor Macros

The TASKING C compiler supports the predefined macros as defined in the table below. The macros are
useful to create conditional C code.

Macro Description

_ BIG_ENDIAN__ Expands to 0. The processor accesses data in little-endian.

31



TASKING VX-toolset for C166 User Guide

Macro Description

__BUILD__ Identifies the build number of the compiler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
compiler, __BUILD__ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__Cl66__ Identifies the compiler. You can use this symbol to flag parts of the source
which must be recognized by the c166 compiler only. It expands to 1.

_ CORE__ Expands to the name of the core depending on the C compiler options --cpu
and --core. The symbol expands to c16x when no --cpu and no --core is
supplied.

__CORE_core___ A symbol is defined depending on the options --cpu and --core. The core
is converted to upper case. For example, if --cpu=xc167ci is specified, the
symbol __CORE_XC16X__is defined. When no --core or --cpu is supplied,
the compiler defines __CORE_C16X__.

__CPU__ Expands to the name of the CPU supplied with the option --cpu. When no
--cpu is supplied, this symbol is not defined. For example, if --cpu=xc167ci
is specified, the symbol __CPU__ expands to xc167ci .

_ CPU_cpu__ A symbol is defined depending on the option --cpu=cpu. The cpu is converted
to uppercase. For example, if --cpu=xc167ci is specified, the symbol
__CPU_XC167C __is defined. When no --cpu is supplied, this symbol is
not defined.

_ DATE__ Expands to the compilation date: “mmm dd yyyy”.

_ DOUBLE_FP__ Expands to 1 if you did not use option --no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__FILE__ Expands to the current source file name.

__LINE__ Expands to the line number of the line where this macro is called.

__LITTLE_ENDIAN___ Expands to 1. The processor accesses data in little-endian.

_ MODEL__ Identifies the memory model for which the current module is compiled. It

expands to a single character constant: 'n' (near), 'f' (far), 's' (shuge) or 'h'
(huge).

__NEAR_FUNCTIONS__

Expands to 1 if you used option --near-functions, otherwise unrecognized
as macro, meaning that huge functions are default.

__PROF_ENABLE__

Expands to 1 if profiling is enabled, otherwise expands to 0.

__REVISION__

Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__SFRFILE__ (cpu)

This macro expands to the filename of the used SFR file, including the

pathname and the < >. The cpu is the argument of the macro. For example,
if --cpu=xc167ci is specified, the macro __ SFRFI LE__(__CPU_) expands
to__ SFRFI LE__(xc167ci ), which expandsto<sfr/regxcl67ci.sfr>.

32




C Language

Macro Description

__SILICON_BUG_num___ |This symbol is defined if the number num is defined with the option
--silicon-bug.

__SINGLE_FP__ Expands to 1 if you used option --no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

__STDC__ Identifies the level of ANSI standard. The macro expands to 1 if you set
option --language (Control language extensions), otherwise expands to 0.

__STDC_HOSTED__ Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_VERSION___ Identifies the 1ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

__TASKING__ Identifies the compiler as a TASKING compiler. Expands to 1 if a TASKING
compiler is used.

_ TASKING_SFR__ Expands to 1 if TASKING . sf r files are used. Not defined if you used option
--no-tasking-sfr.

__TIME__ Expands to the compilation time: “hh:mm:ss”

__USER_STACK___ Expands to 1 if you used option --user-stack, otherwise unrecognized as
macro.

__USMLIB__ Expands to __usmif you used option --user-stack, otherwise it expands to

__nousm You can use this macro to qualify functions explicitly.

__VERSION__ Identifies the version number of the compiler. For example, if you use version
2.1r1 of the compiler, _ VERSION__ expands to 2001 (dot and revision
number are omitted, minor version number in 3 digits).

_ VX __ Identifies the VX-toolset C compiler. Expands to 1.
Example

#if _ MODEL__ == "'f'

/* this part is only for the far menory nodel */

#endi f

1.8.Variables

1.8.1. Initialized Variables

Automatic initialized variables are initialized (run-time) each time a C function is entered. Normally, this
is done by generating code which assigns the value to the automatic variable.

The ISO C standard allows run-time initialization of automatic integral and aggregate types. To support
this feature, the C166 C compiler generates code to copy the initialization constants from ROM to RAM
each time the function is entered.

There is a lot of existing C source which use static initializations. Static initialized variables normally use
the same amount of space in both ROM and RAM. This is because the initializers are stored in ROM and

33



TASKING VX-toolset for C166 User Guide

copied to RAM at start-up. The only exception is an initialized variable residing in ROM, by means of
either the #pr agnma r ondat a or the const type qualifier.

const char b = 'b'; /* 1 byte in ROM*/
#pragma norondat a /* default, may be omitted, unless pragna
rondata was used before */
i nt i = 100; /* 2 bytes in ROM 2 bytes in | RAM */
char a="'a; /* 1 byte in ROM 1 byte in |RAM*/
char * p = "ABCD"; /* 5 bytes in ROM (for "ABCD') */
/* 2 bytes in ROM 2 bytes in | RAM
(for p)*/
#pragma rondat a /* Needed for ROMonly allocation */
i nt j = 100; /* 2 bytes in ROM */
char * g = "WKYZ"; /* 5 bytes in ROM (for "WKYZ") */

/* 2 bytes in ROM (for p) */
1.8.2. Non-Initialized Variables

In some cases there is a need to keep variables unchanged even if power is turned off (see for an example
Section 8.7.8, The Section Layout Definition: Locating Sections). In these systems some of the RAM is
implemented in EEPROM or in a battery-powered memory device. In a simulator environment, clearing
non-initialized variables might not be wanted too. To avoid the ‘clearing' of non-initialized variables at
startup, one of the following things should be performed:

» Define (allocate) these variables in a special C module and compile this module with option --no-clear.
From Eclipse: From the Project menu, select Properties for, expand C/C++ Build, select Settings
and open the Tool Settings tab, select C/C++ Compiler » Allocation and disable the option Clear
non-initialized global variables.

» Define (allocate) these variables between #pr agma nocl ear and #pragna cl ear.

» Use inline assembly to allocate the special variables in a special data section (NOT used by other C
variables).

» Make a separate assembly module, containing the allocation of these variables in a special data section.

1.9. Strings

In this context the word 'strings' means the separate occurrence of a string in a C program. So, array
variables initialized with strings are just initialized character arrays, which can be allocated in any memory
type, and are not considered as 'strings'.

Strings have static storage. The ISO C standard permits string literals to be put in ROM. Because there
is no difference in accessing ROM or RAM, the C166 C compiler allocates strings in ROM only. This
approach also saves RAM, which can be very scarce in an embedded (single chip) application.

As mentioned before, the C compiler offers the possibility to allocate a static initialized variable in ROM
only, when declared with the const qualifier or after a #pr agma r ondat a. This enables the initialization
of a (const) character array in ROM:

34



C Language
const char ronhel p[] = "hel p";
/* allocation of 5 bytes in ROMonly */
Or a pointer array in ROM only, initialized with the addresses of strings, also in ROM only:

char * const nessages[] = {"hello","alarn,"exit"};

Allocation of string literals

By default the C compiler allocates string literals in the memory model's default memory space. You can
overrule this with #pragma string_literal _nenory:

#pragma string_literal _menory space

The space must be one of: __near, __far,__shuge, __huge or nodel . Instead of this pragma you
can also use the equivalent command line option --string_literal_memory.

String literals as use in:

char * s = "string";
or:
printf("formatter %\n", "string");

are affected by this pragma/option.
Example:

#pragma string_literal _nmenory _ huge /* allocate strings in __huge nmenory */
__huge char * txt = "text1l";

1.10. Constant Data

By default const variables, string literals, initializers, switch tables and constants allocated in memory
are stored in ROM only. You can change this behavior with #pr agma r andat a. When this pragma is
active, const variables, string literals, initializers and constants allocated in memory will be allocated in
ROM and RAM. At startup RAM will be initialized from ROM, in the same way as initialized variables. To
achieve this the "i ni t " instead of the "r ontdat a" section attribute is used. The ROM copy will always
be located in the __shuge memory space.

Example:

#pragnma randat a
const char * const p = "copied to RAM;
/* both p and the string literal are copied fromROMto RAM */

near 1 str .section near, byte, init, new

_$1$str . | abel near byt e
.db 0x63
.db Ox 6f
.db 0x70

35



TASKING VX-toolset for C166 User Guide

. db 0x69
.db 0x65
.db 0x64
. db 0x20
.db 0x74
. db 0x6f
. db 0x20
.db 0x52
.db 0x41
. db 0x4d
.db 0x0
; End of section
near _p .section near, init, new
.global _p
p . | abel near wor d
. dw (_$1$str & Oxffff)

1.11. Switch Statement

The TASKING C compiler supports three ways of code generation for a switch statement: a jump chain
(linear switch), a jump table or a binary search table.

A jump chain is comparable with an if/else-if/else-if/else construction. A jump table is a table filled with
jump instructions for each possible switch value. The switch argument is used as an index to jump within
this table. A binary search table is a table filled with a value to compare the switch argument with and a
target address to jump to.

#pragma snart_swit ch is the default of the compiler. The compiler tries to use the switch method
which uses the least space in ROM (table size in ROMDATA plus code to do the indexing). With the C
compiler option --tradeoff you can tell the compiler to emphasis more on speed than on ROM size.

Especially for large switch statements, the jump table approach executes faster than the binary search
table approach. Also the jump table has a predictable behavior in execution speed: independent of the
switch argument, every case is reached in the same execution time.

With a small number of cases, the jump chain method can be faster in execution and shorter in size.

You can overrule the compiler chosen switch method by using a pragma:

#pragma |inear_switch force jump chain code

#pragma junp_swi tch force jump table code

#pragma bi nary_switch force binary search table code

#pragnma smart_switch let the compiler decide the switch method used

The switch pragmas must be placed before the swi t ch statement. Nested swi t ch statements use the
same switch method, unless the nested swi t ch is implemented in a separate function which is preceded
by a different switch pragma.

Example:

36



C Language

/* place pragma before function body */

#pragnma j unp_swi tch

voi d test(unsigned char val)

{ I'* function containing the switch */
switch (val)

{
}

/* use junp table */
}
1.12. Functions

Near and huge functions

By default functions are huge. With the C compiler option --near-functions you can set the default to use
near functions. But you can also use the __near or __huge function pointer qualifiers.

__near Define function called with intra-segment calls. The sections generated for __near functions
are grouped in a group called __near _functi ons.

__huge Define function called with inter-segment calls.

Example:

__near nfunc(void){ /* a near function */ }

Function pointers

The size of a pointer to a __near function is two bytes. The size of a pointer to a __huge function is four
bytes. Both pointers are aligned on two bytes.

Note that you cannot cast a near function pointer to a huge function pointer due to possible run-time
errors.

Function call return addresses

The compiler uses a ‘user stack’ to pass parameters and to allocate variables and temporary storage.
The function return addresses are placed on the system stack by the processor with a call instruction.
With the C compiler option --user-stack function return addresses are placed on the user stack. The
code compaction optimization (-Or) has no effect for functions with the return address on the user stack.

Instead of the option --user-stack, you can use the __usmor __nousmfunction pointer qualifiers.

__usm Use the user stack for function call return addresses.
__nousm Use the system stack for function call return addresses.

37



TASKING VX-toolset for C166 User Guide

1.12.1. Calling Convention

Parameter passing

A lot of execution time of an application is spent transferring parameters between functions. The fastest
parameter transport is via registers. Therefore, function parameters are first passed via registers. If no
more registers are available for a parameter, the compiler pushes parameters on the stack.

The following conventions are used when passing parameters to functions.

Registers available for parameter passing are USRO, R2, R3, R4 R5, R11, R12, R13 and R14. Parameters
<= 64 bit are passed in registers except for 64-bit structures:

Parameter Type Registers used for parameters

1 bit USRO, R2.0..15, R3.0..15, R4.0..15, R5.0..15
8 hit RL2, RH2, RL3, RH3, RL4, RH4, RL5, RH5
16 bit R2, R3, R4, R5, R11, R12, R13, R14

32 bit R2R3, R4R5, R11R12, R13R14

64 bit R2R3R4R5, R11R12R13R14

The parameters are processed from left to right. The first not used and fitting register is used. Registers
are searched for in the order listed above. When a parameter is > 64 bit, or all registers are used, parameter
passing continues on the stack. The stack grows from higher towards lower address, each parameter on
the stack is stored in little-endian. The first parameter is pushed at the lowest stack address. The alignment
on the stack depends on the data type as listed in Section 1.1, Data Types

Example with three arguments:

funcl( int a, long b, int * c)

a (first parameter) is passed in registers R2.

b (second parameter) is passed in registers R4R5.
¢ (third parameter) is passed in registers R3.
Variable argument lists

Functions with a variable argument list must push all parameters after the last fixed parameter on the
stack. The normal parameter passing rules apply for all fixed parameters.

Function return values

The C compiler uses registers to store C function return values, depending on the function return types.

USRO, R2, R3, R4 and R5 are used for return values <=64 hit:

Return Type Register
1 bit USRO

38



C Language

Return Type Register

8 bit RL2

16 bit R2

32 bit R2R3

64 bit R2R3R4R5

The return registers have an overlap with the parameter registers, which yields more efficient code when
passing arguments to child functions.

Return values > 64 bits are returned in a buffer, allocated on the stack. The caller must pass a pointer to
the return buffer in the last parameter register (R14). It is the caller’s responsibility to allocate and release
the space used for the return buffer. The callee will put the return value in the allocated buffer.

Stack usage

The stack on the C166 consists of a system stack and a user stack. The system stack is used for the
return addresses and for data explicitly pushed with the PUSH instruction. The compiler usually does not
push anything on the system stack, with exception to interrupt functions . The user stack is used for
parameter passing, allocation of automatics and temporary storage. The compiler uses R15 as user stack
pointer. The data on the stack is aligned depending on the data type as listed in Section 1.1, Data Types.
The stack pointer itself is always aligned at 16-bit. In the Super10/XC16x a user stack is allocated for
each local bank. The user stack grows from high to low. The user stack is always located in near memory,
the maximum size depends on the chosen memory model. The DPP register used for the user stack is

determined at link time.

The stack pointer always refers to the last occupied slot. Meaning that the stack pointer first has to be
decreased before data can be stored. A typical stack frame is outlined in the following picture:

39



TASKING VX-toolset for C166 User Guide

J l High address
-
Optional return value E o
c
=
Z
o
o =
Argument passing area 2
o
=
p=2]
Function entry Return address (__usm) v g
........b . E
)
5
Callee saved registers =
73]
=1}
c
=
_ o
Local objects =
3
Frame pointer (RS)
“ariable length arrays
Stack pointer (R15) ¥ -
Low address

Before a function call, the caller pushes the required parameters on the stack. This area is called the
argument passing area. For user stack functions the return address is saved on the user stack. After the
call has been made, the callee will save the used callee-saved registers in the "callee saved” area. Next,
the space for the local objects is allocated. After this, variable length arrays (VLAS) can be allocated. If
VLAs are used in a function, register R8 is used to access the local objects and stack parameters. If no
VLAs are used, R8 is available for other purposes. When the called function returns an object > 64 bit on
the stack, the caller must reserve a stack area to hold the return value. After the function call, the caller
must release this stack area. This also applies to the argument passing area. After the stack frame has
been built, the stack pointer points to the argument passing area.

1.12.2. Register Usage

The C compiler uses the general purpose registers according to the convention given in the following
table.

Register Class Purpose

USRO caller saves Parameter passing and return values
RO, RLO, RHO callee saves Automatic variables

R1, RL1, RH1 callee saves Automatic variables

R2, RL2, RH2 caller saves Parameter passing and return values

40




C Language

Register Class Purpose

R3, RL3, RH3 caller saves Parameter passing and return values
R4, RL4, RH4 caller saves Parameter passing and return values
R5, RL5, RH5 caller saves Parameter passing and return values
R6, RL6, RH6 callee saves Automatic variables

R7, RL7, RH7 callee saves Automatic variables

R8 callee saves Automatic variables, User stack frame pointer
R9 callee saves Automatic variables

R10 callee saves Automatic variables

R11 caller saves Parameter passing

R12 caller saves Parameter passing

R13 caller saves Parameter passing

R14 caller saves Parameter passing, return buffer pointer
R15 dedicated User stack pointer

The registers are classified: caller saves, callee saves and dedicated.

caller saves These registers are allowed to be changed by a function without saving the contents.
Therefore, the calling function must save these registers when necessary prior to a
function call.

callee saves These registers must be saved by the called function, i.e. the caller expects them not
to be changed after the function call.

dedicated The user stack pointer register R15 is dedicated.

The user stack frame pointer register R8 is used for functions containing variable length arrays.

Registers RO, R1, R2 and R3 can be used directly in an arithmetic instruction like: ADD Rx, [RO].

1.12.3. Inlining Functions: inline

With the C compiler option --optimize=+inline, the C compiler automatically inlines small functions in
order to reduce execution time (smart inlining). The compiler inserts the function body at the place the
function is called. The C compiler decides which functions will be inlined. You can overrule this behavior
with the two keywords i nl i ne (ISO-C) and __noi nl i ne.

With the i nl i ne keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

41



TASKING VX-toolset for C166 User Guide

If a function with the keyword i nl i ne is not called at all, the compiler does not generate code for it.

You must define inline functions in the same source module as in which you call the function, because
the compiler only inlines a function in the module that contains the function definition. When you need to
call the inline function from several source modules, you must include the definition of the inline function
in each module (for example using a header file).

With the __noi nl i ne keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

Using pragmas: inline, noinline, smartinline

Instead of the i nl i ne qualifier, you can also use #pr agma i nl i ne and #pr agma noi nl i ne to inline
a function body:

#pragma inline
unsi gned int abs(int val)

{
unsi gned int abs_val = val;
if (val < 0) abs_val = -val;
return abs_val;

}

#pragma noi nli ne
void main( void )
{ . .

int i;

i = abs(-1);
}

If a function has an i nl i ne/__noi nl i ne function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pr agma noi nl i ne /#pragma smarti nl i ne you can temporarily disable the default behavior
that the C compiler automatically inlines small functions when you turn on the C compiler option
--optimize=+inline.

1.12.4. Interrupt Functions

The TASKING C compiler supports a number of function qualifiers and keywords to program interrupt
service routines (ISR). An interrupt service routine (or: interrupt function, interrupt handler, exception
handler) is called when an interrupt event (or: service request) occurs.

42



C Language

Defining an interrupt service routine: __isr, __interrupt()

You can use the type qualifier __i sr to declare a function as an interrupt service routine, but this does

not bind the function to an interrupt vector. You can assign an unbound function to an interrupt vector in

the linker LSL file. With the function type qualifier __i nt errupt () you can bind the function to a specific
vector in the C source. The function type qualifier __i nt errupt () takes one interrupt number (0..127)
as an argument. The linker generates the sections with the vectors of the specified interrupt numbers.

For backward compatibility, __ i nterrupt (-1) isthe sameas __i sr.
The __interrupt () function qualifier implies the __i sr type qualifier.

Interrupt functions cannot return anything and must have a void argument type list:

void __isr __interrupt(interrupt_nunber)
isr( void)
{
}
The __i sr type qualifier must also be used when a pointer to an interrupt function is declared.
For example:
void __interrupt( 7 ) serial_receive( void )
{ /* __isr is added automatically by __interrupt() */
}
void __isr unbound_isr( void) /* sane as: __interrupt( -1) */
{ /* unbound I SR can be bound in LSL file */
}
extern void __isr external _isr( void );
/* reference to external interrupt function, vector nunber irrelevant */
void __isr (*pisr)( void ) = external _isr;

/* declare pointer to interrupt function */
GPRs are pushed on the system stack, unless you use the __r egi st er bank() qualifier.
Interrupt frame: __ frame()

With the function qualifier __f rane() you can specify which registers and SFRs must be saved for a
particular interrupt function. Only the specified registers will be pushed and popped from the stack. If you
do not specify the function qualifier __f r ame() , the C compiler determines which registers must be
pushed and popped. The syntax is:

void __interrupt(interrupt_nunber)
_ frame(reg[, reg]...) isr( void)
{

43



TASKING VX-toolset for C166 User Guide

The reg can be any register defined as an SFR. The compiler generates a warning if some registers are
missing which are normally required to be pushed and popped in an interrupt function prolog and epilog
to avoid run-time problems.

Example:

void __interrupt(8) _ frame(MdL, MDH ) foo (void)
{

}...

You can also use the __frane() qualifier in conjunction with the __r egi st er bank() qualifier to add
code for the context switch in the interrupt frame.

When you do not want the interrupt frame (saving/restoring registers) to be generated you can use the
C compiler option --no-frame. In that case you will have to specify your own interrupt frame. For this you
can use the inline capabilities of the compiler.

Register bank switching: _ registerbank()
It is possible to assign a new register bank to an interrupt function, which can be used on the processor

to minimize the interrupt latency because registers do not need to be pushed on stack. You can switch
register banks with the __r egi st er bank() function qualifier. The syntax is:

void __interrupt(interrupt_nunber)
__regi sterbank(["regbank” | |ocal bank[, "regbank"]])
isr( void)
{
}
regbank The string specifies the name of a global register bank to be used. The compiler

generates a section for the register bank. The compiler assumes that the BANK field in
the PSW register already selects a global register bank.

44



C Language

localbank The number of the local register bank to be used. With a negative number, the compiler
assumes that the register bank switch is done automatically by the processor. With a
positive number, the compiler generates code to select the local register bank. With
zero, the compiler generates code to select a global register bank. In the last case, an
extra argument can be used to specify the name of the global register bank. If omitted,
the compiler will generate a name. The following numbers are available:

-3 Use local register bank 3 but assume the hardware automatically switches the
register bank upon interrupt.

-2 Use local register bank 2 but assume the hardware automatically switches the
register bank upon interrupt.

-1 Use local register bank 1 but assume the hardware automatically switches the
register bank upon interrupt.

0 Use global register bank as usual.

Use local register bank 1 and emit instruction in interrupt frame to select the correct
local register bank.

2 Use local register bank 2 and emit instruction in interrupt frame to select the correct
local register bank.

3 Use local register bank 3 and emit instruction in interrupt frame to select the correct
local register bank.

For the Superl0XC16x a user stack is allocated for each bank. The user stack pointers
are initialized in the C startup code. For the user stack in the global register bank you
can use the linker label _| c_ub_user _st ack. For the local register banks 1, 2 and 3
use linker labels | ¢_ub_user _stackl, |c_ub_user_ stack2 and

_l c_ub_user_st ack3 respectively.

When no regbank-argument is supplied the compiler generates and uses a register bank with the name
_%$fname_regbank, where fname represents the name of the interrupt function.

Whenthe __regi st er bank() qualifier is omitted, the compiler will save the GPRs on the system stack.

When the __regi st er bank() qualifier, that selects a global register bank, is used on the reset vector
(__interrupt( 0 )), the context pointer will be initialized, instead of being saved.

1.12.5. Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions are predefined functions
that are recognized by the compiler. The compiler generates the most efficient assembly code for these
functions. Intrinsic functions this way enable the use of these specific assembly instructions.

The compiler always inlines the corresponding assembly instructions in the assembly source (rather than
calling it as a function). This avoids parameter passing and register saving instructions which are normally
necessary during function calls.

Intrinsic functions produce very efficient assembly code. Though it is possible to inline assembly code by

hand, intrinsic functions use registers even more efficiently. At the same time your C source remains very
readable.

45



TASKING VX-toolset for C166 User Guide

You can use intrinsic functions in C as if they were ordinary C (library) functions. All intrinsics begin with
a double underscore character.

Many CoXXX instructions are automatically generated if a special sequence is recognized. For example,

__CoLOAD( argl );
_ CoABY();

generates the CoABS opl, op2 instruction.

__CoMJL( argl, arg2 );
__CoRNIX() ;

generates the CoMUL op1, op2, rnd instruction.

__CoSUB( argl );
__CoNEY() ;

generates the CoSUBR op1, op2 instruction.

__CoABS

void _ CoABS( void );

Use the CoABS instruction to change the MAC accumulator's contents to its absolute value.
__CoADD

void _ CoADD( long x );

Use the CoADD instruction to add a 32-bit value to the MAC accumulator.

__CoADD2

void _ CoADD2( long x );

Use the CoADD? instruction to add a 32-bit value, multiplied by two, to the MAC accumulator.
__CoASHR

voi d _ CoASHR( unsigned int count );

Use the CoASHR instruction to (arithmetic) shift right the contents of the MAC accumulator count times.

The CoASHR instruction has a maximum value for count . Check your CPU manual for the COASHR
behavior for large arguments.

__CoCMP
unsigned int _ CoCWP( long x );

Inline code is generated by the C compiler to compare the MAC accumulator contents with a 32-bit value.
The returned value is a copy of the MSW register.

46



C Language

__CoLOAD

void __CoLOAD( long x );

Use the CoLOAD instruction to copy a 32-bit value to the MAC accumulator.

__CoLOAD2

void _ CoLOAD2( long X );

Use the CoLOAD?2 instruction to copy a 32-bit value, multiplied by two, to the MAC accumulator.
__CoMAC

void __CoMAC( int x, int y);

Use the CoMAC instruction to add the multiplication result of two signed 16-bit values to the MAC
accumulator.

__ _CoMACsu
void _ CoMACsu( int x, unsigned int y );

Use the CoMACsu instruction to add the multiplication result of a signed 16-bit value with an unsigned
16-bit value to the MAC accumulator.

__CoMACu
void _ CoMACu( unsigned int x, unsigned int y );

Use the CoMACu instruction to add the multiplication result of two unsigned 16-bit values to the MAC
accumulator.

__CoMACus
void _ CoMACu( unsigned int x, signed int y );

Use the CoMACus instruction to add the multiplication result of an unsigned 16-bit value with a signed
16-bit value to the MAC accumulator.

__CoMAC_min
void __CoMAC min( int x, int y);

Use the CoMAC- instruction to subtract the multiplication result of two signed 16-bit values from the MAC
accumulator.

__CoMACsu_min

void _ CoMACsu_min( int x, unsigned int y );

47



TASKING VX-toolset for C166 User Guide

Use the CoMACsu- instruction to subtract the multiplication result of a signed 16-bit value with an unsigned
16-bit value from the MAC accumulator.

__ _CoMACu_min
void _ CoMACu_mn( unsigned int x, unsigned int y );

Use the CoMACu- instruction to subtract the multiplication result of two unsigned 16-bit values from the
MAC accumulator.

__CoMACus_min
void _ CoMACus_mi n( unsigned int x, signed int y );

Use the CoMACus- instruction to subtract the multiplication result of an unsigned 16-bit value with a
signed 16-bit value from the MAC accumulator.

__CoMAX
void _ CoMAX( long x );

Use the CoMAX instruction to change the MAC accumulator's contents if its value is lower than the
argument’s value.

__CoMIN
void __CoMN( long x );

Use the CoMIN instruction to change the MAC accumulator's contents if its value is higher than the
argument's value.

__ CoMUL
void __CoMUL( int x, int y);

Use the CoMUL instruction to store the multiplication result of two signed 16-bit values in the MAC
accumulator.

__CoMULsu
void _ CoMJLsu( int x, unsigned int y );

Use the CoMULsu instruction to store the multiplication result of a signed 16-bit value with an unsigned
16-bit value in the MAC accumulator.

__CoMULu
void _ CoMJLu( unsigned int x, unsigned int y );

Use the CoMULu instruction to store the multiplication result of two unsigned 16-bit values in the MAC
accumulator.

48



C Language

__CoMULus
void _ CoMJLus( unsigned int x, signed int y );

Use the CoMULus instruction to store the multiplication result of an unsigned 16-bit value with a signed
16-bit value in the MAC accumulator.

__CoMUL_min
void __CoMJL_min( int x, int y);

Use the CoMUL- instruction to store the negated multiplication result of two signed 16-bit values in the
MAC accumulator.

__CoMULsu_min
void _ CoMJLsu_min( int x, unsigned int y );

Use the CoMULsu- instruction to store the negated multiplication result of a signed 16-bit value with an
unsigned 16-bit value in the MAC accumulator.

__CoMULu_min
void _ CoMJLu_m n( unsigned int x, unsigned int y );

Use the CoMULu- instruction to store the negated multiplication result of two unsigned 16-bit values in
the MAC accumulator.

__CoMULus_min
void __ CoMJLus_m n( unsigned int x, signed int y );

Use the CoMULus- instruction to store the negated multiplication result of an unsigned 16-bit value with
a signed 16-bit value in the MAC accumulator.

__CoNEG

void _ CoNEG void );

Use the CoNEG instruction to change the MAC accumulator's contents to its negated value.
__CoNOP

void __ CoNOP( void );

A CoNOP instruction is generated.

__CoRND

void __ CoRND( void );

Use the CoRND semi-instruction to change the MAC accumulator's contents to its rounded value.

49



TASKING VX-toolset for C166 User Guide

__CoSHL
void _ CoSHL( unsigned int count );
Use the CoSHL instruction to shift left the contents of the MAC accumulator count times.

The CoSHL instruction has a maximum value for count . Check your CPU manual for the CoSHL behavior
for large arguments.

__CoSHR
void _ CoSHR( unsigned int count );
Use the CoSHR instruction to (logical) shift right the contents of the MAC accumulator count times.

The CoSHR instruction has a maximum value for count . Check your CPU manual for the CoSHR behavior
for large arguments.

__CoSTORE

Il ong __CoSTORE( void );

Use the CoSTORE instruction to retrieve the 32-bit value, stored in the MAC accumulator MAH and MAL.
__ CoSTOREMAH

int _ CoSTOREMAH( void );

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAH.
__ CoSTOREMAL

int _ CoSTOREMAL( void );

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAL.
__ CoSTOREMAS

int _ CoSTOREMAS( void );

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MAS.
__ CoSTOREMSW

int _ CoSTOREMBW void );

Use the CoSTORE instruction to retrieve the 16-bit value, stored in MSW.
__CoSUB

void _ CoSUB( long x );

50



C Language

Use the CoSUB instruction to subtract a 32-bit value from the MAC accumulator.

__CoSuB2

void _ CoSUB2( long x );

Use the CoSUB?2 instruction to subtract a 32-bit value, multiplied by two, from the MAC accumulator.
__alloc

void __near * volatile __alloc( __size_t size);

Allocate memory on the user stack. Returns a pointer to space in external memory of size bytes length.
NULL if there is not enough space left.

__dotdotdot___

char * _ dotdotdot__( void );

Variable argument '..." operator. Used in library function va_st art () . Returns the stack offset to the
variable argument list.

__free

void volatile __free( void * p);

Deallocate the memory pointed to by p. p must point to memory earlier allocated by acallto __al | oc() .
__getsp

__near void * volatile __getsp( void );

Get the value of the user stack pointer. Returns the value of the user stack pointer.
__setsp

void volatile __setsp( __near void * value );

Set the value of the user stack pointer to val ue.

__get_return_address

__codeptr volatile __get_return_address( void );

Used by the compiler for profiling when you compile with the option --profile. Returns the return address
of a function.

rol

unsigned int __rol( unsigned int operand,
unsi gned int count );

51



TASKING VX-toolset for C166 User Guide

Use the ROL instruction to rotate oper and left count times.

ror

unsigned int _ _ror( unsigned int operand,
unsi gned int count );

Use the ROR instruction to rotate oper and right count times.
__testclear
__bit __testclear( __bit semaphore );

Read and clear semaphore using the JBC instruction. Returns 0 if semaphore was not cleared by the
JBC instruction, 1 otherwise.

__testset
__bit __testset( __bit senmaphore );

Read and set semaphore using the JINBS instruction. Returns 0 if semaphore was not set by the INBS
instruction, 1 otherwise.

__bfld

void _ _bfld( volatile unsigned int __unaligned * operand,
unsi gned short mask, unsigned short val ue );

Use the BFLDL/BFLDH instructions to assign the constant val ue to the bit-field indicated by the constant
nmask of the bit-addressable oper and.

__getbit
__bit __gethit( operand, bitoffset );

Return the bit at bi t of f set of the bit-addressable oper and for usage in bit expressions.

___putbit

void __putbit( __bit value, operand, bitoffset );

Assign val ue to the bit at bi t of f set of the bit-addressable oper and.

__int166

void __int1l66( intno );

Execute the C166/ST10 software interrupt specified by the interrupt number i nt no via the software trap

(TRAP) instruction. __i nt 166( 0 ); emits an SRST (Software Reset) instruction. __i nt 166( 8 );
emits an SBRK (Software Break) instruction (only for super10/superl0m345/xc16x cores).

52



C Language

__idle
void __idle( void);

Use IDLE instruction to enter the idle mode. In this mode the CPU is powered down while the peripherals
remain running.

__nop

void _ _nop( void );

A NORP instruction is generated, before and behind the nop instruction the peephole is flushed.
__prior

unsigned int _ _prior( unsigned int value );

Use PRIOR instruction to prioritize val ue.

__pwrdn

void _ _pwdn( void );

Use PWRDN instruction to enter the power down mode. In this mode, all peripherals and the CPU are
powered down until an external reset occurs.

__srvwdt

void _ srvwdt( void );

Use SRVWDT instruction to service the watchdog timer.
__diswdt

void __diswdt( void );

Use DISWDT instruction to disable the watchdog timer.
__enwdt

void __enwdt( void );

Use ENWDT instruction to enable the watchdog timer.
__einit

void __einit( void);

Use EINIT instruction to end the initialization.

53



TASKING VX-toolset for C166 User Guide

__mul32
long __mul32( int x, int y);

Use MUL instruction to perform a 16-bit by 16-bit signed multiplication and returning a signed 32-bit result.
The overflow bit V is set by the CPU when the result cannot be represented in an i nt data type.

__mulu32

unsigned long __mul u32( unsigned int x,
unsigned int y );

Use MULU instruction to perform a 16-bit by 16-bit unsigned multiplication and returning a unsigned 32-bit
result. The overflow bit V is set by the CPU when the result cannot be represented in an i nt data type.

__div32
int _div32( long x, int y);

Use DIVL instructions to perform a 32-bit by 16-bit signed division and returning a signed 16-bit result.
The overflow bit V is set by the CPU when the result cannot be represented in an i nt data type or when
the divisor yy was zero.

__divu3d2

unsigned int _ divu32( unsigned |ong x,
unsigned int y );

Use DIVLU instructions to perform a 32-bit by 16-bit unsigned division and returning an unsigned 16-bit
result. The overflow bit V is set by the CPU when the result cannot be represented in an i nt data type
or when the divisor y was zero.

__mod32
int _ nod32( long x, int y);

Use DIVL instructions to perform a 32-bit by 16-bit signed modulo and returning a signed 16-bit result.
The overflow bit V is set by the CPU when the quotient cannot be represented in an i nt data type or
when the divisor y was zero.

__modu32

unsi gned int __nodu32( unsigned |ong X,
unsigned int y );

Use DIVLU instructions to perform a 32-bit by 16-bit unsigned modulo and returning a unsigned 16-bit

result. The overflow bit V is set by the CPU when the quotient cannot be represented in an i nt data type
or when the divisor y was zero.

—_pag

unsigned int _ pag( void * p);

54



C Language

Inline code is generated by the C compiler to get the 10-bit page number of pointer p
__pof

unsigned int _ pof( void * p);

Inline code is generated by the C compiler to get the 14-bit page offset of pointer p
__Seg

unsigned int _ _seg( void * p);

Inline code is generated by the C compiler to get the 8-bit segment number of pointer p

__sof
unsigned int _ sof( void * p);
Inline code is generated by the C compiler to get the 16-bit segment offset of pointer p

__mkfp

void _ far * _ nkfp( unsigned int pof,
unsigned int pag );

Inline code is generated by the C compiler to make a far pointer from a page offset pof and page number
pag. The arguments pag and pof are expected to be in a valid range.

__mkhp

void _ _huge * _ nkhp( unsigned int sof,
unsi gned int seg );

Inline code is generated by the C compiler to make a huge pointer from a segment offset sof and segment
number seg. The arguments sof and seg are expected to be in a valid range.

__mksp

void __shuge * _ nksp( unsigned int sof,
unsi gned int seg );

Inline code is generated by the C compiler to make a shuge pointer from a segment offset sof and
segment number seg. The arguments sof and seg are expected to be in a valid range.

sat

void __sat( void);

Enable saturation. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRS).

55



TASKING VX-toolset for C166 User Guide

__hosat
void _ nosat( void );

Disable saturation. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRS).

__scale
void _ scale( void );

Enable scaler. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRs).

__noscale
void _ noscale( void );

Disable scaler. The compiler will automatically save/restore the MCW register in a functions
prologue/epilogue (both regular functions and ISRs).

1.13. Floating-Point Trapping

Two sets of floating-point libraries are delivered with the compiler, one with a floating-point trapping
mechanism and one without a floating-point trapping mechanism (Chapter 13, Libraries explains the
naming conventions).

The floating-point libraries with a trapping mechanism call a trapping routine which is in module t r ap. obj .
You can replace this routine with your own trapping routine, or link your own trap routine to your application.
By default, the trapping routine as delivered with the floating-point libraries will never return. The infinite
loop on a public label called __f pt r apl oop is easy to find in a debug session. For the source of the
trapping routine, see filet rap. src inthel i b/ src directory of the product.

To see an example of how floating-point traps can be handled import the f pt r ap example project. In the
example all the possible exceptions are generated. You can use this example to write a program which
handles the exception without "hanging" the program.

A floating-point routine calls the trap routine if an error condition occurs. The type of error is specified by
a trap code which is passed via register R1 to the trap routine. The result of a floating-point operation is
not undefined in an error situation. On error the result will be a special floating-point number, such as
infinite, not a number etc., except when a floating point underflow or overflow occurs.

The following table lists all the trap codes and the corresponding error description and result:

Error Description Trap code Result float/integer

Undefined float 1 NAN (float result)

Divide by zero 2 +INF or -INF or NAN (float result)
Integer overflow 3 0x7FFF or 0x8000 (integer result)
Floating overflow 4 +INF or -INF (float result)

56



C Language

Error Description Trap code Result float/integer
Floating underflow 8 0.0 (float result)
Conversion error 32 0 (integer result)

INF Infinite which is the largest absolute floating-point number.

NAN Not A Number, special notation for undefined floating point number.

1.13.1. Handling Floating-Point Traps in a C Application

This section explains how program execution can be continued after a floating-point trap and how
floating-point trap codes are passed from the floating-point trap handler to a C application.

Only the floating-point libraries which perform floating-point trapping contain a floating-point trap stub.
This floating-point trap stub loops infinitely, which is very helpful when you want to find a bug in your
application. But when it is expected or allowed or even wanted that floating-point operations generate
results that are out of range, then program execution must continue after entering the floating-point trap
handler.

It is not possible to simply return from the floating-point trap handler, because the floating-point
accumulator(s) contain a value which is out of range. In the same floating-point operation or else in a
next floating-point operation there will be another call to the floating-point trap handler, because the value
in the floating-point accumulator(s) remain out of range. This results in a succession of floating-point
traps.

It is impossible to assign a value to the floating-point accumulator(s) which is in range and then continue
program execution. If you try to assign a value to the floating-point accumulators the result will always
be undefined.

Interpretation of the error condition in the floating-point trap handler and then continuing the floating-point
operation will result in most cases in a new error condition or unpredictable result. So, this is not a good
solution to handle floating-point error situations.

Itis better to stop immediately the floating-point operation which causes the floating-point trap, by returning
back to your application and there decide what to do with the floating-point error condition. Therefore,
you have to predefine an environment in your application to return to. Simply jumping back is not possible
because the system stack and user stack are then corrupted. The floating-point trap code must also be
returned to the application to examine the cause of the trap.

An environment to return to in an application can be saved with the C library function set j np. The C
library function | ongj np can be used in the floating-point trap handler to return immediately to this saved
environment. The | ongj np restores the stack pointers, jumps back and passes the trap code to be
processed.

The file f pt r ap. c in the f pt r ap example project delivered with the product shows how to save an
environment with set j np. The assembly listing of the floating-point trap handler in the file t r ap. src in
I'i b/ src shows how | ongj np is used to return to the saved environment.

There are several ways to write a C function which handles floating-point traps using set j np and | ongj np.
Always keep in mind that the | ongj np function restores the environment saved by the most recent

57



TASKING VX-toolset for C166 User Guide

invocation of the set j np function. And the environment must be saved before the | ongj np function is
called by the floating-point trap handler, else program execution will be undefined.

The floating-point trap handler checks if an environment is setin __FP_ENV to return to. When the return
address contains a NULL pointer it is supposed that there is no environment set and the trap handler
continues looping infinitely. When a return address is set, the address of the jump buffer __FP_ENV and
the trap code are passed to | ongj np. Calling the | ongj np function at the end of the trap handler restores
the environment saved in __FP_ENV.

The data section containing the floating-point jump buffer __FP_ENV s cleared at startup. The initialization
codes for it are stored in the near _| i bf p section.

There are two entry points available in the floating-point trap handler, one for double precision floating-point
functions causing a trap (__f pt r ap8), and one for single precision floating-point functions causing a
trap (__f pt r ap4). This default trap handler is precision independent, but if you want to write a trap
handler for each precision you need these two entry points.

You can use your own floating-point trap handler by linking the object module, overruling the floating-point
trap handler of the floating-point library. Or you can replace the floating-point trap object module in the
floating-point library with the object module of your own floating-point trap handler.

1.13.2. IEEE-754 Compliant Error Handling

When you use the floating-point libraries without trapping, the routines continue calculation with erroneous
input values. This behavior is not conforming to the IEEE-754 standard, but does deliver the highest
speed because the input value checking is omitted.

If your application requires IEEE-754 compliant handling of erroneous input values, you should use the
trapping version of the floating-point libraries. But if you do not want to handle the error conditions with
a trap routine, but just continue calculation conform to IEEE-754, you can provide an empty trap function.
You can add the following trap handling code to your application to achieve this:

#i ncl ude <setj np. h>

#pragma nocl ear
jmp_buf __ FP_ENV;

void _ fptrap8( void ) /* double precision */
{
}
void _ fptrap4( void ) /* single precision */

{
}

1.14. MAC Unit Support

The C166 compiler supports the MAC-unit in the XC16x/Super10 core in four ways:

1. Code generation directly from native C

58



C Language

2. Manual qualification.
3. Intrinsic functions.

4. Evaluation of a single expression.
1.14.1. MAC Code Generation from Native C

Implementation

In the XC16x/Superl0 cores, the MAC-unit basically consists of three SFRs that build a single accumulator
and an instruction set that operates upon it. Because there is only one accumulator the risk of spilling is
high. To spill the accumulator to GPRs, three moves are needed, and another three for the restore. This
is expensive. Furthermore, in terms of code size the MAC instruction set is not always the cheapest.

To generate code for the MAC unit, the compiler searches for local objects of type (unsigned) long. This
type is chosen, because it is closest to the 40-bit accumulator.

Next, the compiler analyzes the code associated with the objects found. For each operation, the compiler
estimates the costs for using the MAC instruction set, compared to the non-MAC instruction set.

The MAC instruction set uses the accumulator as an input, as well as to store the result. Therefore
compound expressions with an operation that maps well upon the MAC instruction set will turn out to be
the most beneficial. Other operations may be used, but they will have a negative effect upon the overall
costs of the object.

As described above there is only one accumulator and spilling is expensive. Therefore, the next step is
to perform lifetime analysis upon the selected objects. Using the lifetime analysis and the computed costs,
object(s) that are the most beneficial and that do not have overlapping lifetimes are preferred for allocation
in the accumulator. This avoids spilling.

Automatic allocation is done by assigning the __rmac qualifier to an object. Example

I ong mac( const short * a, const short * b, long sqr, long * sum)
{

int i; /1 1 oop counter

long dotp = *sum /1 accumul at or

for (i =0; i < 150; i++)
{
dotp += (long)b[i] * a[i];
sqr += (long)b[i] * b[i];
}
*sum = dot p;
return sqr;

}
When compiled with--core=xc16x --mac --no-savemac, this results in:
_mac . proc far
; mac.c 11 {
; nAc. c 12 int i; /1 1oop counter

59



TASKING VX-toolset for C166 User Guide

; Mmac.c 13 long dotp = *sum // accumul ator
novw riz, r11

; mac.c 14

; mac.c 15 for (i = 0; i < 150; i++)
nmovw MRW #0x95
novw ri13,[rl2+]
CoLOAD r13,[r12]

_2:

; Mmac.c 16 {

; Mmac.c 17 dotp += (long)b[i] * a[i];
novw ri2, [r3+]

-usrl CoMAC  r12,[r2+]

; Mmac.c 18 sqr += (long)b[i] * b[i];
mul ri2,r12
addw r4, MDL
addcw r5, MDH
jnp cc_nusrl, 2

; Mmac.c 19 }

; mac.c 20

; Mmac.c 21 *sum = dot p;

CoSTORE [r11+], MAL
CoSTORE [r11], MAH

; mac.c 22 return sqr;
novw r2,ra
novw r3,r5

; Mmac.c 23 }

ret

As you can see, the compiler has chosen to allocate variable ‘dot p' in the accumulator.

Operation costs
The costs of operations can be measured in two ways:
1. Code size.

2. Number of cycles.

When optimize for size (-t4) is selected, costs will be computed using the code size only. When optimize
for speed (-t0) is selected only the number of cycles will be taken into account. In the latter case, the

compiler will multiply the costs by the estimated number of loop iterations.

The size in bytes and cycles are weighed with the trade-off setting:

Trade-off value Time Size
-t0 100% 0%

-t1 75% 25%
-t2 50% 50%
-t3 25% 75%




C Language

Trade-off value Time Size
-t4 0% 100%

The estimated execution frequency of an instruction is multiplied by the number of cycles.

The MAC unit can perform complex operations in one cycle, which is in most cases faster than using the
non-MAC instruction set. Therefore, the MAC instruction set is more useful when speed optimization is
selected. For example, the code for shifting a long to the left is:

si ze cycles si ze cycles
CoSHL #1 4 1 addw r2,r2 2 1
addcw r3,r3 2 1
—_=—== 4 ====== + —_=—== 4 ====== +
t ot al 4 1 4 2

As you can see, it will not be beneficial to use the MAC instruction here when optimizing for code size,
however when optimizing for speed it is possible to save a cycle by using the MAC instruction set.

1.14.2. Manual MAC Qualification: __mac

With the keyword __mac you can allocate an automatic object in the MAC accumulator. The __nmac
keyword is advisory to the compiler. It is only honoured for plain automatics and parameter objects of
type (unsigned) long. The object cannot be volatile, and it is not allowed to take the address of the object.
The compiler will also never assign the __nmac qualifier automatically if these restrictions are not met.
The compiler will never automatically choose an object for MAC allocation if it has an overlapping lifetime
with manually qualified objects. When the __mac keyword is ignored, the compiler generates a warning.

Example:
| ong mac( const short * a, const short * b, _ mac long sqr, long * sum)
{

int i; /1 1oop counter

long dotp = *sum /I accumul at or

for (i =0; i < 150; i++)
{
dotp += (long)b[i] * a[i];
sqr += (long)b[i] * b[i];
}
*sum = dot p;
return sqr;

}

This is the same example as the previous example, with the exception that object 'sqr ' has now been
qualified explicitly. When compiled with--core=xc16x --mac --no-savemac, this results in:

_mac . proc far
;. mac.c 11
;. mac.c 12 int i; /1 1oop counter
;. mac.c 13 long dotp = *sum // accumul at or

61



TASKING VX-toolset for C166 User Guide

novw riz,r11
CoLOAD r4,r5
; mac.c 14
; mac.c 15 for (i = 0; i < 150; i++)
nmovw MRW #0x95
novw ri13,[rl2+]
novw ri2,[r12]
_2:
; Mmac.c 16 {
; Mmac.c 17 dotp += (long)b[i] * a[i];
novw ri4,[r3]
novw r4,[r2+]
mul rid,r4
-usrl CoMAC  r14,[r3+]
addw r13, MDL
addcw  r12, MDH
jnp cc_nusrl, 2
; Mmac.c 18 sqr += (long)b[i] * b[i];
; Mmac.c 19 }
; mac.c 20
; Mmac.c 21 *sum = dot p;
novw [r11],r13
novw [r11+#0x2],r12
; mac.c 22 return sqr;

CoSTORE r 2, MAL
CoSTORE r 3, MAH

; Mmac.c 23 }
ret

Now 'sqr ' has been allocated in the MAC accumulator. Because the lifetime of this object overlaps with
that of 'dot p', the latter cannot be allocated in the accumulator.

1.14.3. MAC Support by Intrinsic Functions

It is also possible to use the MAC- unit by making use of intrinsic functions, which are described in
Section 1.12.5, Intrinsic Functions. As is the case with manual qualification, the compiler will not
automatically choose an object for MAC allocation when its lifetime overlaps with the intrinsic functions.
It is possible to mix-in intrinsic functions though. Example:

#pragma nac
#pragma nosavenac

long f( int a, int b, int ¢, int d, long e )

{
| ong sum /* __mac qualifier assigned automatically */
sum = (long)a * b;
sum-= (long)c * d;
/*
* End lifetinme of sum start lifetime of "intrinsic functions”
*/

62



C Language

__CoLOAD( sum);

__CoNE(() ;

__CoRNIX() ;

/*
* End lifetime of "intrinsic functions" start lifetine of sum
*/

sum = _ CoSTORE() + e;
sum <<= 1;

sum += (long)a * d;
return sum

}

#pragnma savenac

#pragnma nonac

When compiled with --core=xc16x, this results in:

code_f .section code, new
. gl obal _f

f . proc far
CoMUL r2,r3
CoMACR r4,r5,rnd
CoADD r11,r12
CoSHL  #0x1
CoMAC r2,r5
CoSTORE r 2, VAL
CoSTORE r 3, VAH
ret

From this example you can see thatthe __ CoLOAD( ) and __ CoSTORE( ) intrinsic functions are optimized
away. The CoMAC generated by the C statement: sum -= (long) ¢ * d; is combined with the
__CoNEF) and __CoRND() intrinsic functions into a single instruction: COMACR r 4, r 5, r nd.

1.14.4. Using the MAC Status Word

Just like the PSW flags, the MSW flags are compiler resources, they are not intended for direct use from
the C code. If it is necessary to make decisions upon the MSW flags, use the intrinsics __ CoSTOREMSW( )
or __CoCMP() . For example:

long f( void)

__CoLQADX( X );
if ( _CoCMP( y ) & (1 << 10) ) /* test the MC flag */
{

}

return y;

return x;

63



TASKING VX-toolset for C166 User Guide

1.14.5. Evaluation of a Single Expression

When the MAC accumulator is not used by one of the previous methods, the code generator may decide
to use the MAC unit for evaluation of a single (sub-) expression. The difference with (automatic) __mac
qualification is that an object will not actually live inside the accumulator, but the accumulator will be
temporarily used to evaluate a (complex) expression. Once the expression is evaluated, the result will
be stored immediately into a register pair. This method is only useful when an expression is complex
enough to compensate for the CoL QAD/Co STORE operations needed to initialize/unload the accumulator.

Example:

#pragma nmac
#pragma nosavenac
int * mac_shift( long value, int * buf )
{
*puf ++ = (int)(value >> 12);
return buf;
}
#pragma savenmac
#pr agma nonmac

When compiled with --core=xc16x, this will generate the following code:

CoLOAD r2,r3
CoSHL #0x4
CoSTORE [r4+], MAH
nmovw r2,r4

ret

Here, 'val ue' is temporarily loaded into the MAC accumulator, shifted, and the result is stored. The
compiler can make use of the 40-bit shift instruction and the post-increment feature of the CoSTORE
instruction.

1.14.6. Hardware Loops

When MAC instructions are generated in a loop body it is sometimes possible to convert a loop into a
hardware loop. However, there are some prerequisites:

» There must be a MAC instruction on every path in the loop. This is necessary to ensure that the MRW
register is updated in every iteration.

» The compiler must be able to find the iteration register, and the instruction that updates it. Furthermore,
the update must match the update that is applied automatically to the MRW register when a MAC
instruction is passed, i.e. subtract one in each iteration.

» The loop iteration variable cannot be used inside the loop or after the loop.

The compiler itself will actively assist by trying to transform a loop in such a form that it can be converted
into a hardware loop. As you may have noticed in the previous examples, the loop iteration variable is
used inside the loop and yet it is converted into a hardware loop. This is possible because the compiler

64



C Language

has applied strength reduction to the code. This optimization replaces the subscripted array by pointers.
This eliminates the use of the loop variable inside the loop and enables the hardware loop optimization.

Loop optimizations are controlled by the option -Ol (loop transformations).

1.14.7. Considerations when Using the MAC

All MAC registers follow the callee-saves strategy. The costs for the save/restore of MAC registers in a
function's prologue/epilogue are not taken into account during the cost analysis of the automatic allocation
process. This is done on purpose, because the save/restore of MAC registers can sometimes be avoided.
To do this, it is advised to pick the functions that you want to be MAC optimized with care. You can do
this by enclosing a function in #pr agma mac/nomac directives, rather than to enable the MAC unit
application wide using the option --mac. Next, make sure that the MAC registers do not contain valid data
when the functions you have picked are called. In general this will be the case when no caller or any other
function up in the call tree that calls the MAC optimized function, uses MAC optimizations itself. It is now
relatively easy to analyze this because the MAC unit is enabled selectively instead of application wide.
When you are sure the MAC registers are not used, add #pr agna nosavenac/savenac to disable the
save/restore of MAC registers. By using these pragmas some significant overhead can be avoided.

1.15. Section Naming

The C compiler generates sections and uses a combination of the memory type and the object name as
section names. The memory types are: code, near, far, huge, shuge, bit, bita and iram. See also
Section 1.3.1, Memory Type Qualifiers. The section names are independent of the section attributes such
as clear, init, and romdata.

Section names are case sensitive. By default, the sections are not concatenated by the linker. This means
that multiple sections with the same name may exist. At link time sections with different attributes can be
selected on their attributes. The linker may remove unreferenced sections from the application.

You can rename sections with a pragma or with a command line option. The syntax is the same:
--renane-sections=[type=]format_string[,[type=]format_string]...
#pragma section [type=]format_string[,[type=]format_string]...

With the memory type you select which sections are renamed. The matching sections will get the specified
format string for the section name. The format string can contain characters and may contain the following
format specifiers:

{attrib} section attributes, separated by underscores
{ nodul e} module name

{nane} object name, name of variable or function
{type} section type

The default compiler generated section names are {t ype} _{ nane}.

Some examples (file t est . ¢):

65



TASKING VX-toolset for C166 User Guide

#pragma section near={nodul e} _{type} {attrib}
__near int x;
/* Section nane: test_near_near_clear */

#pragma section near=_c166_{nodul e} {nane}
__near int status;
/* Section nanme: _cl66_test_status */

#pragma secti on near =RENAMED_{ nane}
__near int barcode;
/* Section name: RENAMED barcode */

With #pr agma endsect i on the naming convention of the previous level is restored, while with #pr agma
section def aul t the default section naming convention is restored. Nesting of pragma
section/endsection pairs will save the status of the previous level.

Examples (file exanpl e. c)

__near char a; /1 allocated in 'near_a'
#pragma secti on near =MyNear Dat al

__near char b; /1 allocated in ' MyNearDatal'
#pragma secti on near =MyNear Dat a2

__near char c; /1 allocated in ' MyNear Dat a2’
#pragma endsection

__near char d; /1 allocated in ' MyNearDatal'
#pragma endsection

__near char e; /1 allocated in 'near_e'

1.16. TASKING Volatile Implementation

Volatile objects are objects defined with the keyword vol at i | e. For example:
vol atil e unsigned int port;

Read and write operations on volatile variables in the C code always result in a read or write operation
from/to the object. The compiler will not cache values of volatiles in registers. Operations on volatiles are
kept in the order as they appear in the C code, even if there are no obvious relations between these
operations. For non-volatile objects the compiler may change the order of operations when there is no
dependency between these operations. This is also the case when intermixing volatile operations with
non-volatile operations. The volatile operations will be kept in the sequence they have in the C code, but
the non-volatile operations can be moved freely.

Mutual exclusion (mutex) can be used to avoid the simultaneous use of a common resource, such as a
global variable, by pieces of C code called critical sections.

For example:

vol atil e unsigned int updating _data = O;
unsi gned | ong dat a;

voi d foo( unsigned |ong val ue )

66



C Language

{
updating _data = 1;
data = value; // The conpiler can nove this assignnment
updating_data = O;

}

In this example an attempt is made to create a mutex with the volatile variable updat i ng_dat a. But the
compiler is still free to move ‘critical code’, the assignment of dat a, to earlier or later in the function,
making the protection of the assignment void.

The C compiler has an option to make the volatile operations behave as fences for other operations, the
--language=+volatile (-Av) option. In the given example the critical code can then never be moved across
the setting and clearing of the mutex, nor is it possible that any other code moves into the critical code
region.

It is quite common that when programming mutexes, a function call is used as a fence. For example:

voi d foo( unsigned | ong val ue )

{
set _nmut ex( &updating_data ); /'l enter the critical code
data = val ue; /1 do some safe processing
clear_mutex( &updating_data ); // leave the critical code
}

In general this has the same effect as with the volatiles and the --language=+volatile (-Av) option. Even
better, in this example the mutex updat i ng_dat a, does not need to be volatile.

However, with advanced optimizations such as automatic inlining it is possible that the functions to set
and clear the mutex will be inlined, meaning that the fences around the critical code have disappeared.
Even putting the mutex set and clear functions into another module may not be safe when MIL linking is
used in combination with automatic inlining. There are several solutions to avoid this problem:

» exclude the mutex set and clear functions from inlining, either by placing them in a module or library
that is not included in the MIL linking or by adding the __noi nl i ne keyword to the function definitions
and prototypes

* use volatile objects in combination with the --language=+volatile (-Av) option

 use fences with inline assembly, for example __asnm( "nop" );

67



TASKING VX-toolset for C166 User Guide

68



Chapter 2. C++ Language

The TASKING C++ compiler (cp166) offers a new approach to high-level language programming for the
C166 family. The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:1998 standard
and modified by TC1 for that standard. It also accepts the language extensions of the C compiler (see
Chapter 1, C Language).

This chapter describes the C++ language implementation and some specific features.

Note that the C++ language itself is not described in this document. For more information on the C++
language, see

» The C++ Programming Language (second edition) by Bjarne Straustrup (1991, Addison Wesley)

» ISO/IEC 14882:1998 C++ standard [ANSI] More information on the standards can be found at
http://www.ansi.org/

2.1. C++ Language Extension Keywords

The C++ compiler supports the same language extension keywords as the C compiler. When option
--strict is used, the extensions will be disabled.

Additionally the following language extensions are supported:
attributes

Attributes, introduced by the keyword __at tri but e__, can be used on declarations of variables,
functions, types, and fields. The al i as, al i gned, cdecl , const, construct or, depr ecat ed,
destructor,format,format_arg,init_priority, mall oc, node, naked,
no_check_menory_usage, no_i nstrunent _f uncti on, noconmon, nor et ur n, packed, pure,
section,sentinel,stdcall,transparent_uni on,unused,used,visibility,volatil e,and

weak attributes are supported.
pragmas
The C++ compiler supports the same pragmas as the C compiler and some extra pragmas as explained

in Section 2.8, Pragmas to Control the C++ Compiler. Pragmas give directions to the code generator of
the compiler.

2.2. C++ Dialect Accepted

The C++ compiler accepts the C++ language as defined by the ISO/IEC 14882:1998 standard and modified
by TC1 for that standard.

Command line options are also available to enable and disable anachronisms and strict
standard-conformance checking.

69


http://www.ansi.org/

TASKING VX-toolset for C166 User Guide

2.2.1. Standard Language Features Accepted

The following features not in traditional C++ (the C++ language of "The Annotated C++ Reference Manual”
by Ellis and Stroustrup (ARM)) but in the standard are implemented:

The dependent statement of ani f , whi | e, do- whi | e, or f or is considered to be a scope, and the
restriction on having such a dependent statement be a declaration is removed.

The expression tested inan i f, whi | e, do-whi | e, or f or, as the first operand of a "?" operator, or
as an operand of the "&&", ": ", or "! "operators may have a pointer-to-member type or a class type that
can be converted to a pointer-to-member type in addition to the scalar cases permitted by the ARM.

Qualified names are allowed in elaborated type specifiers.
A global-scope qualifier is allowed in member references of the form x. : : A : Band p->: : A: : B.
The precedence of the third operand of the "?" operator is changed.

If control reaches the end of the mai n() routine, and mai n() has an integral return type, it is treated
asifareturn 0; statement were executed.

Pointers to arrays with unknown bounds as parameter types are diagnosed as errors.

A functional-notation cast of the form A() can be used even if Ais a class without a (nontrivial)
constructor. The temporary created gets the same default initialization to zero as a static object of the
class type.

A cast can be used to select one out of a set of overloaded functions when taking the address of a
function.

Template friend declarations and definitions are permitted in class definitions and class template
definitions.

Type template parameters are permitted to have default arguments.

Function templates may have nontype template parameters.

A reference to const vol ati | e cannot be bound to an rvalue.

Quialification conversions, such as conversion from T** to T const * const * are allowed.
Digraphs are recognized.

Operator keywords (e.g., not , and, bi t and, etc.) are recognized.

Static data member declarations can be used to declare member constants.

When option --wchar_t-keyword is set, wchar _t is recognized as a keyword and a distinct type.
bool is recognized.

RTTI (run-time type identification), including dynami c_cast and the t ypei d operator, is implemented.

70



C++ Language

Declarations in tested conditions (ini f, swi t ch, f or, and whi | e statements) are supported.
Array newand del et e are implemented.

New-style casts (st ati c_cast, reinterpret_cast, and const _cast) are implemented.
Definition of a nested class outside its enclosing class is allowed.

mut abl e is accepted on non-static data member declarations.

Namespaces are implemented, including usi ng declarations and directives. Access declarations are
broadened to match the corresponding usi ng declarations.

Explicit instantiation of templates is implemented.
The t ypename keyword is recognized.
explicit is accepted to declare non-converting constructors.

The scope of a variable declared inthe f or -i ni t - st at enent of af or loop is the scope of the loop
(not the surrounding scope).

Member templates are implemented.
The new specialization syntax (using "t enpl at e <>") is implemented.
Cv-qualifiers are retained on rvalues (in particular, on function return values).

The distinction between trivial and nontrivial constructors has been implemented, as has the distinction
between PODs and non-PODs with trivial constructors.

The linkage specification is treated as part of the function type (affecting function overloading and
implicit conversions).

ext ern inline functions are supported, and the default linkage for i nl i ne functions is external.
A typedef name may be used in an explicit destructor call.

Placement delete is implemented.

An array allocated via a placement new can be deallocated via delete.

Covariant return types on overriding virtual functions are supported.

enumtypes are considered to be non-integral types.

Partial specialization of class templates is implemented.

Partial ordering of function templates is implemented.

Function declarations that match a function template are regarded as independent functions, not as
"guiding declarations" that are instances of the template.

It is possible to overload operators using functions that take enumtypes and no cl ass types.

71



TASKING VX-toolset for C166 User Guide

Explicit specification of function template arguments is supported.

Unnamed template parameters are supported.

The new lookup rules for member references of the form x. A: : Band p- >A: : B are supported.
The notation : : tenpl at e (and - >t enpl at e, etc.) is supported.

In a reference of the form f () - >g() , with g a static member function, f () is evaluated. The ARM
specifies that the left operand is not evaluated in such cases.

enumtypes can contain values larger than can be contained in ani nt .

Default arguments of function templates and member functions of class templates are instantiated only
when the default argument is used in a call.

String literals and wide string literals have const type.
Class name injection is implemented.
Argument-dependent (Koenig) lookup of function names is implemented.

Class and function names declared only in unqualified friend declarations are not visible except for
functions found by argument-dependent lookup.

A voi d expression can be specified on a return statement in a voi d function.

Function-try-blocks, i.e., try-blocks that are the top-level statements of functions, constructors, or
destructors, are implemented.

Universal character set escapes (e.g., \ uabcd) are implemented.

On a call in which the expression to the left of the opening parenthesis has class type, overload resolution
looks for conversion functions that can convert the class object to pointer-to-function types, and each
such pointed-to "surrogate function" type is evaluated alongside any other candidate functions.

Dependent name lookup in templates is implemented. Nondependent names are looked up only in the
context of the template definition. Dependent names are also looked up in the instantiation context, via
argument-dependent lookup.

Value-initialization is implemented. This form of initialization is indicated by an initializer of "()" and
causes zeroing of certain POD-typed members, where the usual default-initialization would leave them
uninitialized.

A partial specialization of a class member template cannot be added outside of the class definition.
Qualification conversions may be performed as part of the template argument deduction process.

The export keyword for templates is implemented.

72



C++ Language

2.2.2. C++0x Language Features Accepted

The following features added in the working paper for the next C++ standard (expected to be completed
in 2009 or later) are enabled in C++0x mode (with option --c++0x). Several of these features are also
enabled in default (honstrict) C++ mode.

» A"right shift token" (>>) can be treated as two closing angle brackets. For example:

tenpl at e<typenane T> struct S {};
S<S<int>>s; // OK No whitespace needed
/1 between cl osing angl e brackets.

» The friend class syntax is extended to allow nonclass types as well as class types expressed through
a typedef or without an elaborated type name. For example:

typedef struct S ST,

class C {
friend S /1 OK (requires S to be in scope).
friend ST; /1 K (sanme as "friend S;").
friend int; /1 OK (no effect).

friend S const; // Error: cv-qualifiers cannot
/| appear directly.
3

» Mixed string literal concatenations are accepted (a feature carried over from C99):

wchar t *str = "a" L"b"; // OK, sane as L"ab".

 Variadic macros and empty macro arguments are accepted, as in C99.

A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enumE { e, };
« Ifthe command line option --long-long is specified, the type | ong | ong is accepted. Unsuffixed integer
literals that cannot be represented by type | ong, but could potentially be represented by type unsi gned

| ong, have type | ong | ong instead (this matches C99, but not the treatment of the | ong | ong
extension in C89 or default C++ mode).

» The keyword t ypenane followed by a qualified-id can appear outside a template declaration.

struct S { struct N {}; };
typename S::N *p; // Silently accepted
/'l in C++Ox node

73



TASKING VX-toolset for C166 User Guide

2.2.3. Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled (with --anachronisms):

over | oad is allowed in function declarations. It is accepted and ignored.

Definitions are not required for static data members that can be initialized using default initialization.
The anachronism does not apply to static data members of template classes; they must always be
defined.

The number of elements in an array may be specified in an array del et e operation. The value is
ignored.

A single oper at or ++() and oper at or - - () function can be used to overload both prefix and postfix
operations.

The base class name may be omitted in a base class initializer if there is only one immediate base
class.

Assignment to t hi s in constructors and destructors is allowed. This is allowed only if anachronisms
are enabled and the "assignment to t hi s" configuration parameter is enabled.

A bound function pointer (a pointer to a member function for a given object) can be cast to a pointer to
a function.

A nested class name may be used as a non-nested class name provided no other class of that name
has been declared. The anachronism is not applied to template classes.

A reference to a non-const type may be initialized from a value of a different type. A temporary is
created, it is initialized from the (converted) initial value, and the reference is set to the temporary.

A reference to a non-const class type may be initialized from an rvalue of the class type or a derived
class thereof. No (additional) temporary is used.

A function with old-style parameter declarations is allowed and may participate in function overloading
as though it were prototyped. Default argument promotion is not applied to parameter types of such
functions when the check for compatibility is done, so that the following declares the overloading of
two functions named f :

int f(int);
int f(x) char x; { return x; }

Note that in C this code is legal but has a different meaning: a tentative declaration of f is followed by
its definition.

When option --nonconst-ref-anachronism is set, a reference to a non-const class can be bound to a
class rvalue of the same type or a derived type thereof.

struct A {
A(int);
A operator=(A8);
A operator+(const A&);

74



C++ Language

3
main () {

A b(1);

b = A1 + A(2); // Allowed as anachroni sm
}

2.2.4. Extensions Accepted in Normal C++ Mode

The following extensions are accepted in all modes (except when strict ANSI/ISO violations are diagnosed
as errors or were explicitly noted):

A fri end declaration for a class may omit the cl ass keyword:

class A {
friend B; // Should be "friend class B"

I

Constants of scalar type may be defined within classes:

class A {
const int size = 10;
int a[size];

I

In the declaration of a class member, a qualified name may be used:

struct A {
int A:f(); // Should be int f();

I

Therestrict keyword is allowed.

A const qualified object with file scope or namespace scope and the __at () attribute will have external
linkage, unless explicitly declared st at i ¢. Examples:

const int i = 5; /1 internal |inkage
const int j __at( 0x1234 ) = 10; /'l external |inkage
static const int k __at( 0x1236 ) = 15; // internal |inkage

Note that no warning is generated when 'j ' is not used.

Implicit type conversion between a pointer to an ext ern " C' function and a pointer to an ext ern
" C++" function is permitted. Here's an example:

extern "C'" void f(); // f's type has extern "C' |inkage
void (*pf)() // pf points to an extern "C++" function
= &f; /1 error unless inmplicit conversion is
/1 allowed

75



TASKING VX-toolset for C166 User Guide

This extension is allowed in environments where C and C++ functions share the same calling
conventions. It is enabled by default.

» A"?" operator whose second and third operands are string literals or wide string literals can be implicitly
converted to "char *"or"wchar _t *".(Recall that in C++ string literals are const . There is a
deprecated implicit conversion that allows conversion of a string literal to "char *", dropping the const .
That conversion, however, applies only to simple string literals. Allowing it for the result of a "?" operation
is an extension.)

char *p = x ? "abc" : "def";
» Default arguments may be specified for function parameters other than those of a top-level function

declaration (e.g., they are accepted on t ypedef declarations and on pointer-to-function and
pointer-to-member-function declarations).

» Non-static local variables of an enclosing function can be referenced in a non-evaluated expression
(e.g., asi zeof expression) inside a local class. A warning is issued.

* In default C++ mode, the friend class syntax is extended to allow nonclass types as well as class types
expressed through a typedef or without an elaborated type name. For example:

typedef struct S ST;

class C {
friend S; /1 OK (requires S to be in scope).
friend ST; /1 OK (same as "friend S;").
friend int; /1 OK (no effect).

friend S const; // Error: cv-qualifiers cannot
/| appear directly.

b

* In default C++ mode, mixed string literal concatenations are accepted. (This is a feature carried over
from C99 and also available in GNU modes).
wchar _t *str = "a" L"b"; // OK same as L"ab".

* In default C++ mode, variadic macros are accepted. (This is a feature carried over from C99 and also
available in GNU modes.)

* In default C++ mode, empty macro arguments are accepted (a feature carried over from C99).

A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over
from C99):

enumE { e, };

76



C++ Language

2.3. GNU Extensions

The C++ compiler can be configured to support the GNU C++ mode (command line option --g++). In this
mode, many extensions provided by the GNU C++ compiler are accepted. The following extensions are
provided in GNU C++ mode.

» Extended designators are accepted
« Compound literals are accepted.
* Non-standard anonymous unions are accepted

» The t ypeof operator is supported. This operator can take an expression or a type (like the si zeof
operator, but parentheses are always required) and expands to the type of the given entity. It can be
used wherever a typedef name is allowed

typeof (2*2.3) d; // Declares a "double"
typeof (int) i; /'l Declares an "int"

This can be useful in macro and template definitions.

e The __ext ensi on__ keyword is accepted preceding declarations and certain expressions. It has no
effect on the meaning of a program.

__extension__ __inline__ int f(int a) {
return a >0 ? a/l2: f(__extension__ 1-a);

* In all GNU C modes and in GNU C++ modes with gnu_version < 30400, the type modifiers signed,
unsigned, long and short can be used with t ypedef types if the specifier is valid with the underlying
type of the typedef in ANSI C. E.g.:

typedef int I;
unsigned | *pui; // OKin GNU C++ node;
/1 same as "unsigned int *pui

« Ifthe command line option --long-long is specified, the extensions for the | ong | ong and unsi gned
| ong | ong types are enabled.

» Zero-length array types (specified by [0]) are supported. These are complete types of size zero.

» C99-style flexible array members are accepted. In addition, the last field of a class type have a class
type whose last field is a flexible array member. In GNU C++ mode, flexible array members are treated
exactly like zero-length arrays, and can therefore appear anywhere in the class type.

» The C99 _Pragma operator is supported.

» The gcc built-in <stdarg.h> and <varargs.h> facilities (__builtin_va_list, __builtin_va_arg, ...) are
accepted.

* The si zeof operator is applicable to voi d and to function types and evaluates to the value one.

77



TASKING VX-toolset for C166 User Guide

Variables can be redeclared with different top-level cv-qualifiers (the new qualification is merged into
existing qualifiers). For example:

extern int volatile x;
int const x = 32; // x is now const volatile
The "assembler name" of variables and routines can be specified. For example:

int counter __asm _("counter_v1") = 0;

Register variables can be mapped on specific registers using the asm keyword.
register int i asn("eax");

/1 Map "i" onto register eax.

The keyword i nl i ne is ignored (with a warning) on variable declarations and on block-extern function
declarations.

Excess aggregate initializers are ignored with a warning.

struct S { int a, b; };
struct Sal ={ 1, 2, 3 };

/1 "3" ignored with a warning; no error
int a2[2] ={ 7, 8, 9 };

/1 "9" ignored with a warning; no error

Expressions of types voi d*, voi d const*,void volatil e* andvoid const volatil e* can
be dereferenced; the result is an Ivalue.

The __restrict__ keyword is accepted. It is identical to the C99 restri ct keyword, except for its
spelling.

Out-of-range floating-point values are accepted without a diagnostic. When IEEE floating-point is being
used, the "infinity" value is used.

Extended variadic macros are supported.
Dollar signs ($) are allowed in identifiers.
Hexadecimal floating point constants are recognized.

The __asm__ keyword is recognized and equivalent to the asmtoken. Extended syntax is supported
to indicate how assembly operands map to C/C++ variables.

asm("fsinx %d,9®" : "=f"(x) : "f"(a));

/1 Map the output operand on "x",
/1 and the input operand on "a".

The \ e escape sequence is recognized and stands for the ASCII "ESC" character.

78



C++ Language
The address of a statement label can be taken by use of the prefix "&&" operator, e.g., void *a =
&&L. A transfer to the address of a label can be done by the "goto *" statement, e.g., got o *a.
Multi-line strings are supported, e.g.,

char *p = "abc

def";

ASCII "NULL" characters are accepted in source files.

A source file can end with a backslash ("\") character.

Case ranges (e.g., "case 'a’ ... 'z":") are supported.

A number of macros are predefined in GNU mode. See Section 2.9, Predefined Macros.
A predefined macro can be undefined.

A large number of special functions of the form __bui I ti n_xyz (e.g., __builtin_all oca) are
predeclared.

Some expressions are considered to be constant-expressions even though they are not so considered
in standard C and C++. Examples include "((char *)&((struct S *)0)->c[0]) - (char
*)0"and"(int)"Hello" & 0"

The macro ___ GNUC__is predefined to the major version number of the emulated GNU compiler.
Similarly, the macros __GNUC_M NOR__ and __GNUC_PATCHLEVEL___ are predefined to the
corresponding minor version number and patch level. Finally, __VERSI ON__is predefined to a string
describing the compiler version.

The __t hr ead specifier can be used to indicate that a variable should be placed in thread-local storage
(requires gnu_version >= 30400).

An extern inline function that is referenced but not defined is permitted (with a warning).
Trigraphs are ignored (with a warning).

Non-standard casts are allowed in null pointer constants, e.g., (i nt) (i nt *) 0 is considered a null
pointer constant in spite of the pointer cast in the middle.

Statement expressions, e.g., ({int j; j = f(); j;)} are accepted. Branches into a statement
expression are not allowed. In C++ mode, branches out are also not allowed. Variable-length arrays,
destructible entities, try, catch, local non-POD class definitions, and dynamically-initialized local static
variables are not allowed inside a statement expression.

Labels can be declared to be local in statement expressions by introducing them witha __| abel __
declaration.

({ __label__ lab; int i =4; lab: i = 2*i-1; if (!(i%7)) goto lab; i; })

Not-evaluated parts of constant expressions can contain non-constant terms:

79



TASKING VX-toolset for C166 User Guide

int i;
int af 1 || i ]; // Accepted in g++ node

» Casts on an Ivalue that don't fall under the usual "Ilvalue cast" interpretation (e.g., because they cast
to a type having a different size) are ignored, and the operand remains an Ivalue. A warning is issued.

int i;
(short)i = 0; // Accepted,cast is ignored; entire int is set

 Variable length arrays (VLAs) are supported. GNU C also allows VLA types for fields of local structures,
which can lead to run-time dependent sizes and offsets. The C++ compiler does not implement this,
but instead treats such arrays as having length zero (with a warning); this enables some popular
programming idioms involving fields with VLA types.

void f(int n) {
struct {
int a[n]; // Warning: n ignored and
/'l replaced by zero

I

» Complex type extensions are supported (these are the same as the C99 complex type features, with
the elimination of _| magi nary and the addition of __conpl ex, __real , __i mag, the use of "~" to
denote complex conjugation, and complex literals such as "1. 2i ").

« If an explicit instantiation directive is preceded by the keyword ext er n, no (explicit or implicit)
instantiation is for the indicated specialization.

» An explicit instantiation directive that names a class may omit the cl ass keyword, and may refer to a
typedef.

» An explicit instantiation or extern template directive that names a class is accepted in an invalid
namespace.

* std::type_info does not need to be introduced with a special pragma.

» A special keyword __nul | expands to the same constant as the literal "0", but is expected to be used
as a null pointer constant.

« When gnu_version < 30400, names from dependent base classes are ignored only if another name
would be found by the lookup.

const int n = 0;
tenpl ate <class T> struct B {
static const int m= 1; static const int n = 2;
b
tenplate <class T> struct D: B<T> {
int f() { return m+ n; }
/1l B::m+ ::n in g++ node

I

80



C++ Language

» A non-static data member from a dependent base class, which would usually be ignored as described
above, is found if the lookup would have otherwise found a nonstatic data member of an enclosing
class (when gnu_version is < 30400).

tenplate <class T> struct C {

struct A{ int i; };
struct B: public A {
void f() {
i =0; // g++ uses A::i not C:i
}
b
int i;

* A new operation in a template is always treated as dependent (when gnu_version >= 30400).

tenplate <class T > struct A {
void f() {
void *p = 0;
new (&) int(0); // calls operator new
/'l decl ared bel ow
}
}s

voi d* operator new(size_t, void* p);

» When doing name lookup in a base class, the injected class name of a template class is ignored.

nanespace N {
tenmpl ate <class T> struct A {};

}
struct A {
int i;
b
struct B: N:A<int> {
B() { Ax; x.i =1; } /] g++ uses ::A not N:A
b

* The injected class name is found in certain contexts in which the constructor should be found instead.

struct A {
ACint) {};

3

A A a(l);

« In a constructor definition, what should be treated as a template argument list of the constructor is
instead treated as the template argument list of the enclosing class.

81



TASKING VX-toolset for C166 User Guide

tenplate <int ul> struct A{ };
tenplate <> struct A<1> {

tenplate<class T> A(T i, int j);
}

tenmplate <> A<1>::A<1>(int i, int j) { }
/1 accepted in g++ node

» A difference in calling convention is ignored when redeclaring a typedef.

typedef void F();

extern "C' {
typedef void F(); // Accepted in GNU C++ node
/1 (error otherw se)

* The macro __GNUG__ is defined identically to __ GNUC___ (i.e., the major version number of the GNU
compiler version that is being emulated).

» The macro _GNU_SOURCE is defined as "1".

» Guiding declarations (a feature present in early drafts of the standard, but not in the final standard) are
disabled.

* Namespace st d is predeclared.

» No connection is made between declarations of identical names in different scopes even when these
names are declared extern "C'.E.g.,

extern "C' { void f(int); }
nanespace N {
extern "C' {
void f() {} // Warning (not error) in g++ node
}
}

int min() { f(1); }

This example is accepted by the C++ compiler, but it will emit two conflicting declarations for the function
f.

* When a using-directive lookup encounters more than one ext ern " C' declaration (created when
more than one namespace declares an ext ern " C"' function of a given name, as described above),
only the first declaration encountered is considered for the lookup.

extern "C'" int f(void);

extern "C' int g(void);

nanespace N {
extern "C' int f(void); // same type
extern "C" void g(void); // different type

82



C++ Language

3

usi ng nanespace N,

int i =f(); // calls ::f
int j =g(); // calls ::f

» The definition of a member of a class template that appears outside of the class definition may declare
a nontype template parameter with a type that is different than the type used in the definition of the
class template. A warning is issued (GNU version 30300 and below).

template <int I> struct A{ void f(); };
tenmpl ate <unsigned int 1> void A<I>::f(){}

» A class template may be redeclared with a nontype template parameter that has a type that is different
than the type used in the earlier declaration. A warning is issued.

tenplate <int I> class A
tenplate <unsigned int 1> class A {};

« Afri end declaration may refer to a member typedef.

class A {
class B {};
typedef B ny_b;
friend class ny_b;

I

» When a friend class is declared with an unqualified name, the lookup of that name is not restricted to
the nearest enclosing namespace scope.

struct S;
nanespace N {
class C {
friend struct S; // ::S in g++ node,
[/ N:Sin default node

H

» Afriend class declaration can refer to names made visible by using-directives.

nanespace N { struct A{ }; }
usi ng namespace N;
struct B {
void f() { Aa; }
friend struct A; // in g++ node N :A
1 // not a new declaration of ::A

» An inherited type name can be used in a class definition and later redeclared as a typedef.

83



TASKING VX-toolset for C166 User Guide

struct A { typedef int I; };
struct B: A {

typedef | J; /1 Refers to A :l
typedef double I; // Accepted in g++ node
}; /1 (introduces B::1)

 In a catch clause, an entity may be declared with the same name as the handler parameter.

try { }
catch(int e) {

char e;

}

» The diagnostic issued for an exception specification mismatch is reduced to a warning if the previous
declaration was found in a system header.

» The exception specification for an explicit template specialization (for a function or member function)
does not have to match the exception specification of the corresponding primary template.

» Atemplate argument list may appear following a constructor name in constructor definition that appears
outside of the class definition:

tenplate <class T> struct A {
A();

}

tenplate <class T> A<T>:: A<T>()({}

» When gnu_version < 30400, an incomplete type can be used as the type of a nonstatic data member
of a class template.

cl ass B;

tenplate <class T> struct A {
B b;

b

» A constructor need not provide an initializer for every nonstatic const data member (but a warning is
still issued if such an initializer is missing).

struct S {
int const ic;
S() {} /1 Warning only in GNU C++ node
/1l (error otherw se).

I

» Exception specifications are ignored on function definitions when support for exception handling is
disabled (normally, they are only ignored on function declarations that aren't definitions).

» Afriend declaration in a class template may refer to an undeclared template.

84



C++ Language

tenplate <class T> struct A {
friend void f<>(A<T>);
3

When gnu_version is < 30400, the semantic analysis of a friend function defined in a class template is
performed only if the function is actually used and is done at the end of the translation unit (instead of
at the point of first use).

A function template default argument may be redeclared. A warning is issued and the default from the
initial declaration is used.

tenpl ate<class T> void f(int i
tenpl ate<class T> void f(int i
int main() {

f <voi d>();
}

1),
2){}

A definition of a member function of a class template that appears outside of the class may specify a
default argument.

tenmplate <class T> struct A{ void f(T); };
tenplate <class T> void A<T>::f(T value = T() ) { }
Function declarations (that are not definitions) can have duplicate parameter names.

void f(int i, int i); // Accepted in GNU C++ node

Default arguments are retained as part of deduced function types.
A namespace member may be redeclared outside of its namespace.
A template may be redeclared outside of its class or namespace.

nanespace N {
tenpl ate< typenane T > struct S {};

}
tenpl ate< typenane T > struct N.:S;

The injected class name of a class template can be used as a template argument.

tenplate <tenplate <class> class T> struct A {};
tenplate <class T> struct B {

A<B> a;
3

A partial specialization may be declared after an instantiation has been done that would have used the
partial specialization if it had been declared earlier. A warning is issued.

85



TASKING VX-toolset for C166 User Guide

tenplate <class T> class X {};
X<int*> xi;
tenplate <class T> class X<T*> {};

» The "." or "->" operator may be used in an integral constant expression if the result is an integral or
enumeration constant:

struct A{ enum{ el =1 1}; };

int min () {
A a;
int x[a.el]; // Accepted in GNU C++ nopde
return O;

» Strong using-directives are supported.

usi ng nanespace debug __attribute_ ((strong));

« Partial specializations that are unusable because of nondeductible template parameters are accepted
and ignored.

tenmpl ate<cl ass T> struct A {class C{ }:};
templ ate<cl ass T> struct B {enum {e = 1}; };
templ ate <class T> struct B<typename A<T>::C> {enum {e = 2}; };
int main(int argc, char **argv) {
printf("%l\n", B<int>::e);
printf("%\n", B<A<int>::C>::e);

» Template parameters that are not used in the signature of a function template are not ignored for partial
ordering purposes (i.e., the resolution of core language issue 214 is not implemented) when gnu_version
is < 40100.

tenplate <class S, class T> void f(T t);
tenplate <class T> void f(T t);
int main() {
f<int>(3); // not anbi guous when gnu_version
/1 is < 40100

* Prototype instantiations of functions are deferred until the first actual instantiation of the function to
allow the compilation of programs that contain definitions of unusable function templates (gnu_version
30400 and above). The example below is accepted when prototype instantiations are deferred.

class A {};
tenplate <class T> struct B {
B () {}; // error: noinitializer for
/'l reference menber "B<T>::a"

86



C++ Language

A& a;
I

* When doing nonclass prototype instantiations (e.g., gnu_version 30400 and above), the severity of the
diagnostic issued if a const template static data member is defined without an initializer is reduced to
a warning.

tenplate <class T> struct A {
static const int i;
b

tenpl ate <class T> const int A<T>::i;

* When doing nonclass prototype instantiations (e.g., gnu_version 30400 and above), a template static
data member with an invalid aggregate initializer is accepted (the error is diagnosed if the static data
member is instantiated).

struct A {
A(doubl e val);

3

tenplate <class T> struct B {
static const A I[1];

3

tenplate <class T> const A B<T>::1[1]={
{1.,0.,0.,0.}

3

The following GNU extensions are not currently supported:

» The forward declaration of function parameters (so they can participate in variable-length array
parameters).

» GNU-style complex integral types (complex floating-point types are supported)

* Nested functions

2.4. Namespace Support

Namespaces are enabled by default. You can use the command line option --no-namespaces to disable
the features.

When doing name lookup in a template instantiation, some names must be found in the context of the
template definition while others may also be found in the context of the template instantiation. The C++
compiler implements two different instantiation lookup algorithms: the one mandated by the standard
(referred to as "dependent name lookup"), and the one that existed before dependent name lookup was
implemented.

Dependent name lookup is done in strict mode (unless explicitly disabled by another command line option)
or when dependent name processing is enabled by either a configuration flag or command line option.

87



TASKING VX-toolset for C166 User Guide

Dependent Name Processing

When doing dependent name lookup, the C++ compiler implements the instantiation name lookup rules
specified in the standard. This processing requires that non-class prototype instantiations be done. This
in turn requires that the code be written using the t ypenane and t enpl at e keywords as required by
the standard.

Lookup Using the Referencing Context

When not using dependent name lookup, the C++ compiler uses a name lookup algorithm that
approximates the two-phase lookup rule of the standard, but does so in such a way that is more compatible
with existing code and existing compilers.

When a name is looked up as part of a template instantiation but is not found in the local context of the
instantiation, it is looked up in a synthesized instantiation context that includes both names from the
context of the template definition and names from the context of the instantiation. Here's an example:

namespace N {
int g(int);
int x = 0O;
tenpl ate <class T> struct A {
TFf(Tt) { return g(t); }
Tf() { return x; }

b
}
namespace M {
int x = 99;
doubl e g(doubl e);
N : A<int> ai;
int i =ai.f(0); Il N:A<int>:f(int) calls
/Il N :g(int)
int i2 =ai.f(); /'l N:A<int>:f() returns
/1 0 (= N:x)
N: : A<doubl e> ad;
double d = ad.f(0); // N :A<doubl e>::f(double)
/1 calls M:g(double)
double d2 = ad.f(); // N :A<double>: :f() also
/1 returns 0 (= N :Xx)
}

The lookup of names in template instantiations does not conform to the rules in the standard in the
following respects:

 Although only names from the template definition context are considered for names that are not functions,
the lookup is not limited to those names visible at the point at which the template was defined.

» Functions from the context in which the template was referenced are considered for all function calls
in the template. Functions from the referencing context should only be visible for "dependent” function
calls.

88



C++ Language

Argument Dependent Lookup

When argument-dependent lookup is enabled (this is the default), functions made visible using
argument-dependent lookup overload with those made visible by normal lookup. The standard requires
that this overloading occurs even when the name found by normal lookup is a block extern declaration.
The C++ compiler does this overloading, but in default mode, argument-dependent lookup is suppressed
when the normal lookup finds a block extern.

This means a program can have different behavior, depending on whether it is compiled with or without
argument-dependent lookup --no-arg-dep-lookup, even if the program makes no use of namespaces.
For example:

struct A { };
A operator+(A, double);
void f() {
A al;
A operator+(A, int);
al + 1.0; // calls operator+(A, double)
/1l with arg-dependent | ookup enabl ed but
/1 otherwise calls operator+(A, int);

}
2.5. Template Instantiation

The C++ language includes the concept of templates. A template is a description of a class or function
that is a model for a family of related classes or functions.® For example, one can write a template for a
St ack class, and then use a stack of integers, a stack of floats, and a stack of some user-defined type.
In the source, these might be written St ack<i nt >, St ack<f | oat >, and St ack<X>. From a single
source description of the template for a stack, the compiler can create instantiations of the template for
each of the types required.

The instantiation of a class template is always done as soon as it is needed in a compilation. However,
the instantiations of template functions, member functions of template classes, and static data members
of template classes (hereafter referred to as template entities) are not necessarily done immediately, for
several reasons:

» One would like to end up with only one copy of each instantiated entity across all the object files that
make up a program. (This of course applies to entities with external linkage.)

» The language allows one to write a specialization of a template entity, i.e., a specific version to be used
in place of a version generated from the template for a specific data type. (One could, for example,
write a version of St ack<i nt >, or of just St ack<i nt >: : push, that replaces the template-generated
version; often, such a specialization provides a more efficient representation for a particular data type.)
Since the compiler cannot know, when compiling a reference to a template entity, if a specialization for
that entity will be provided in another compilation, it cannot do the instantiation automatically in any
source file that references it.

ISince templates are descriptions of entities (typically, classes) that are parameterizable according to the types they operate upon,
they are sometimes called parameterized types.

89



TASKING VX-toolset for C166 User Guide

» C++templates can be exported (i.e., declared with the keyword expor t ). Such templates can be used
in a translation unit that does not contain the definition of the template to instantiate. The instantiation
of such a template must be delayed until the template definition has been found.

» The language also dictates that template functions that are not referenced should not be compiled,
that, in fact, such functions might contain semantic errors that would prevent them from being compiled.
Therefore, a reference to a template class should not automatically instantiate all the member functions
of that class.

(It should be noted that certain template entities are always instantiated when used, e.g., inline functions.)

From these requirements, one can see that if the compiler is responsible for doing all the instantiations
automatically, it can only do so on a program-wide basis. That is, the compiler cannot make decisions
about instantiation of template entities until it has seen all the source files that make up a complete
program.

This C++ compiler provides an instantiation mechanism that does automatic instantiation at link time. For
cases where you want more explicit control over instantiation, the C++ compiler also provides instantiation
modes and instantiation pragmas, which can be used to exert fine-grained control over the instantiation
process.

2.5.1. Automatic Instantiation

The goal of an automatic instantiation mode is to provide painless instantiation. You should be able to
compile source files to object code, then link them and run the resulting program, and never have to worry
about how the necessary instantiations get done.

In practice, this is hard for a compiler to do, and different compilers use different automatic instantiation
schemes with different strengths and weaknesses:

» AT&T/USL/Novell's cfront product saves information about each file it compiles in a special directory
called pt r eposi t ory. It instantiates nothing during normal compilations. At link time, it looks for
entities that are referenced but not defined, and whose mangled names indicate that they are template
entities. For each such entity, it consults the pt r eposi t or y information to find the file containing the
source for the entity, and it does a compilation of the source to generate an object file containing object
code for that entity. This object code for instantiated objects is then combined with the "normal” object
code in the link step.

If you are using cfront you must follow a particular coding convention: all templates must be declared
in . h files, and for each such file there must be a corresponding . cc file containing the associated
definitions. The compiler is never told about the . cc files explicitly; one does not, for example, compile
them in the normal way. The link step looks for them when and if it needs them, and does so by taking
the . h filename and replacing its suffix.?

This scheme has the disadvantage that it does a separate compilation for each instantiated function

(or, at best, one compilation for all the member functions of one class). Even though the function itself
is often quite small, it must be compiled along with the declarations for the types on which the instantiation
is based, and those declarations can easily run into many thousands of lines. For large systems, these
compilations can take a very long time. The link step tries to be smart about recompiling instantiations
only when necessary, but because it keeps no fine-grained dependency information, it is often forced

>The actual implementation allows for several different suffixes and provides a command line option to change the suffixes sought.

90



C++ Language

to "recompile the world" for a minor change in a . h file. In addition, cfront has no way of ensuring that
preprocessing symbols are set correctly when it does these instantiation compilations, if preprocessing
symbols are set other than on the command line.

Borland's C++ compiler instantiates everything referenced in a compilation, then uses a special linker
to remove duplicate definitions of instantiated functions.

If you are using Borland's compiler you must make sure that every compilation sees all the source code
it needs to instantiate all the template entities referenced in that compilation. That is, one cannot refer
to a template entity in a source file if a definition for that entity is not included by that source file. In
practice, this means that either all the definition code is put directly in the . h files, or that each . h file
includes an associated . cc (actually, . cpp) file.

Our approach is a little different. It requires that, for each instantiation of a non-exported template, there
is some (normal, top-level, explicitly-compiled) source file that contains the definition of the template
entity, a reference that causes the instantiation, and the declarations of any types required for the
instantiation. This requirement can be met in various ways:

The Borland convention: each . h file that declares a template entity also contains either the definition
of the entity or includes another file containing the definition.

Implicit inclusion: when the compiler sees a template declaration in a . h file and discovers a need to
instantiate that entity, it is given permission to go off looking for an associated definition file having the
same base name and a different suffix, and it implicitly includes that file at the end of the compilation.
This method allows most programs written using the cfront convention to be compiled with our approach.
See Section 2.5.4, Implicit Inclusion.

The ad hoc approach: you make sure that the files that define template entities also have the definitions
of all the available types, and add code or pragmas in those files to request instantiation of the entities
there.

Exported templates are also supported by our automatic instantiation method, but they require additional
mechanisms explained further on.

The automatic instantiation mode is enabled by default. It can be turned off by the command line option
--no-auto-instantiation. If automatic instantiation is turned off, the extra information about template
entities that could be instantiated in a file is not put into the object file.

2.5.2. Instantiation Modes

Normally, when a file is compiled, template entities are instantiated everywhere where they are used.
The overall instantiation mode can, however, be changed by a command line option:

--instantiate=used

Instantiate those template entities that were used in the compilation. This will include all static data
members for which there are template definitions. This is the default.

3Isn't this always the case? No. Suppose that file A contains a definition of class X and a reference to St ack<X>: : push, and that
file B contains the definition for the member function push. There would be no file containing both the definition of push and the
definition of X.

91



TASKING VX-toolset for C166 User Guide

--instantiate=all

Instantiate all template entities declared or referenced in the compilation unit. For each fully instantiated
template class, all of its member functions and static data members will be instantiated whether or not
they were used. Non-member template functions will be instantiated even if the only reference was a
declaration.

--instantiate=local

Similar to --instantiate=used except that the functions are given internal linkage. This is intended to
provide a very simple mechanism for those getting started with templates. The compiler will instantiate
the functions that are used in each compilation unit as local functions, and the program will link and run
correctly (barring problems due to multiple copies of local static variables.) However, one may end up
with many copies of the instantiated functions, so this is not suitable for production use. --instantiate=local
cannot be used in conjunction with automatic template instantiation. If automatic instantiation is enabled
by default, it will be disabled by the --instantiate=local option.

In the case where the cc166 command is given a single file to compile and link, e.g.,
ccl66 test.cc

the compiler knows that all instantiations will have to be done in the single source file. Therefore, it uses
the --instantiate=used mode and suppresses automatic instantiation.

2.5.3. Instantiation #pragma Directives

Instantiation pragmas can be used to control the instantiation of specific template entities or sets of
template entities. There are three instantiation pragmas:

» The instantiate pragma causes a specified entity to be instantiated.

» The do_not_instantiate pragma suppresses the instantiation of a specified entity. It is typically used
to suppress the instantiation of an entity for which a specific definition will be supplied.

» The can_instantiate pragma indicates that a specified entity can be instantiated in the current
compilation, but need not be; it is used in conjunction with automatic instantiation, to indicate potential
sites for instantiation if the template entity turns out to be required.

The argument to the instantiation pragma may be:

» atemplate class name A<i nt >

» atemplate class declaration cl ass A<i nt >

» a member function name A<i nt >: : f

* a static data member name A<i nt >: : i

+ astatic data declarationi nt A<int>::i

» a member function declaration voi d A<i nt>::f(int, char)

» atemplate function declaration char* f(int, float)

92



C++ Language

A pragma in which the argument is a template class name (e.g., A<i nt >orcl ass A<i nt >)is equivalent
to repeating the pragma for each member function and static data member declared in the class. When

instantiating an entire class a given member function or static data member may be excluded using the

do_not_instantiate pragma. For example,

#pragma instantiate A<int>
#pragma do_not _instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an instantiation to occur.
If an instantiation is explicitly requested by use of the instantiate pragma and no template definition is
available or a specific definition is provided, an error is issued.

templ ate <class T> void f1(T); // No body provided
templ ate <class T> void g1(T); // No body provided

void f1(int) {} // Specific definition
voi d mai n()
{ . .
int i;
doubl e d;
f1(i);
f1(d);
g1(i);
gi(d);
}

#pragma instantiate void f1(int) // error - specific
[/ definition

#pragma instantiate void gl(int) // error - no body
/1 provided

f 1(doubl e) and g1( doubl e) will not be instantiated (because no bodies were supplied) but no errors
will be produced during the compilation (if no bodies are supplied at link time, a linker error will be
produced).

A member function name (e.g., A<i nt >: : f) can only be used as a pragma argument if it refers to a
single user defined member function (i.e., not an overloaded function). Compiler-generated functions are
not considered, so a name may refer to a user defined constructor even if a compiler-generated copy
constructor of the same name exists. Overloaded member functions can be instantiated by providing the
complete member function declaration, as in

#pragme instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated function, an inline function,
or a pure virtual function.

2.5.4. Implicit Inclusion

When implicit inclusion is enabled, the C++ compiler is given permission to assume that if it needs a
definition to instantiate a template entity declared in a . h file it can implicitly include the corresponding

. cc file to get the source code for the definition. For example, if a template entity ABC: : f is declared in
file xyz. h, and an instantiation of ABC: : f is required in a compilation but no definition of ABC. : f appears

93



TASKING VX-toolset for C166 User Guide

in the source code processed by the compilation, the compiler will look to see if a file xyz. cc exists, and
if so it will process it as if it were included at the end of the main source file.

To find the template definition file for a given template entity the C++ compiler needs to know the path
name specified in the original include of the file in which the template was declared and whether the file
was included using the system include syntax (e.g., #i ncl ude <fil e. h>). This information is not
available for preprocessed source containing #| i ne directives. Consequently, the C++ compiler will not
attempt implicit inclusion for source code containing #| i ne directives.

The file to be implicitly included is found by replacing the file suffix with each of the suffixes specified in
the instantiation file suffix list. The normal include search path mechanism is then used to look for the file
to be implicitly included.

By default, the list of definition-file suffixes tried is . ¢, . cc, . cpp, and . cxx.

Implicit inclusion works well alongside automatic instantiation, but the two are independent. They can be
enabled or disabled independently, and implicit inclusion is still useful when automatic instantiation is not
done.

The implicit inclusion mode can be turned on by the command line option --implicit-include. If this option
is turned on, you cannot use exported templates.

Implicit inclusions are only performed during the normal compilation of a file, (i.e., not when doing only
preprocessing). A common means of investigating certain kinds of problems is to produce a preprocessed
source file that can be inspected. When using implicit inclusion it is sometimes desirable for the
preprocessed source file to include any implicitly included files. This may be done using the command
line option --no-preprocessing-only. This causes the preprocessed output to be generated as part of a
normal compilation. When implicit inclusion is being used, the implicitly included files will appear as part
of the preprocessed output in the precise location at which they were included in the compilation.

2.5.5. Exported Templates

Exported templates are templates declared with the keyword expor t . Exporting a class template is
equivalent to exporting each of its static data members and each of its non-inline member functions. An
exported template is special because its definition does not need to be present in a translation unit that
uses that template. In other words, the definition of an exported (non-class) template does not need to
be explicitly or implicitly included in a translation unit that instantiates that template. For example, the
following is a valid C++ program consisting of two separate translation units:

/Il File 1:
#i ncl ude <stdio. h>
static void trace() { printf("File 1\n"); }

export tenplate<class T> T const& mn(T const& T consté&);

int main()
{

trace();

return mn(2, 3);
}

94



C++ Language

/'l File 2:
#i ncl ude <stdio. h>
static void trace() { printf("File 2\n"); }

export tenplate<class T> T const& mn(T const &, T const &b)
{

trace();

return a<b? a: b;

}

Note that these two files are separate translation units: one is not included in the other. That allows the
two functions t r ace() to coexist (with internal linkage).

Support for exported templates is enabled by default, but you can turn it off with command line option
--no-export.

You cannot use exported templates together with the command line option --implicit-include.
2.5.5.1. Finding the Exported Template Definition

The automatic instantiation of exported templates is somewhat similar (from a user's perspective) to that
of regular (included) templates. However, an instantiation of an exported template involves at least two
translation units: one which requires the instantiation, and one which contains the template definition.

When a file containing definitions of exported templates is compiled, a file with a . et suffix is created
and some extra information is included in the associated . ti file.The . et files are used later by the C++
compiler to find the translation unit that defines a given exported template.

When a file that potentially makes use of exported templates is compiled, the compiler must be told where
to look for . et files for exported templates used by a given translation unit. By default, the compiler looks
in the current directory. Other directories may be specified with the command line option
--template-directory. Strictly speaking, the . et files are only really needed when it comes time to generate
an instantiation. This means that code using exported templates can be compiled without having the
definitions of those templates available. Those definitions must be available when explicit instantiation is
done.

The . et files only inform the C++ compiler about the location of exported template definitions; they do
not actually contain those definitions. The sources containing the exported template definitions must
therefore be made available at the time of instantiation. In particular, the export facility is not a mechanism
for avoiding the publication of template definitions in source form.

2.5.5.2. Secondary Translation Units

An instantiation of an exported template can be triggered by an explicit instantiation directive, or by the
command line option --instantiate=used. In each case, the translation unit that contains the initial point
of instantiation will be processed as the primary translation unit. Based on information it finds in the . et
files, the C++ compiler will then load and parse the translation unit containing the definition of the template
to instantiate. This is a secondary translation unit. The simultaneous processing of the primary and
secondary translation units enables the C++ compiler to create instantiations of the exported templates
(which can include entities from both translation units). This process may reveal the need for additional

95



TASKING VX-toolset for C166 User Guide

instantif\tions of exported templates, which in turn can cause additional secondary translation units to be
loaded™.

When secondary translation units are processed, the declarations they contain are checked for consistency.
This process may report errors that would otherwise not be caught. Many these errors are so-called "ODR
violations" (ODR stands for "one-definition rule"). For example:

/1 File 1:
struct X {
int x;

}s

int main() {
return mn(2, 3);

}
/'l File 2:
struct X {
unsigned x; // Error: X :x declared differently
/1l inFile 1
b

export tenplate<class T> T const& mn(T const &, T const &b)

{
}

If there are no errors, the instantiations are generated in the output associated with the primary translation
unit. This may also require that entities with internal linkage in secondary translation units be "externalized"
so they can be accessed from the instantiations in the primary translation unit.

return a<b? a: b;

2.5.5.3. Libraries with Exported Templates

Typically a (non-export) library consists of an i ncl ude directory and a | i b directory. The i ncl ude
directory contains the header files required by users of the library and the | i b directory contains the
object code libraries that client programs must use when linking programs.

With exported templates, users of the library must also have access to the source code of the exported
templates and the information contained in the associated . et files. This information should be placed

in a directory that is distributed along with the i ncl ude and | i b directories: This is the expor t directory.
It must be specified using the command line option --template-directory when compiling client programs.

The recommended procedure to build the export directory is as follows:
1. Foreach. et fileinthe original source directory, copy the associated source file to the export directory.

2. Concatenate all of the . et files into a single . et file (e.g., myl i b. et) in the export directory. The
individual . et files could be copied to the export directory, but having all of the . et information in one
file will make use of the library more efficient.

‘Asa consequence, using exported templates may require considerably more memory that similar uses of regular (included)
templates.

96



C++ Language

3. Create an export _i nf o file in the export directory. The export _i nf o file specifies the include
search paths to be used when recompiling files in the export directory. If no export _i nf o file is
provided, the include search path used when compiling the client program that uses the library will
also be used to recompile the library exported template files.

The export _i nf o file consists of a series of lines of the form
i ncl ude=x

or

sys_i ncl ude=x

where x is a path name to be placed on the include search path. The directories are searched in the order
in which they are encountered in the expor t _i nf o file. The file can also contain comments, which begin
with a "#", and blank lines. Spaces are ignored but tabs are not currently permitted. For example:

# The include directories to be used for the xyz library

i nclude = /diskl/xyz/include
sys_incl ude = /disk2/abc/incl ude
i ncl ude=/di sk3/jkl/include

The include search path specified for a client program is ignored by the C++ compiler when it processes
the source in the export library, except when no export _i nf o file is provided. Command line macro
definitions specified for a client program are also ignored by the C++ compiler when processing a source
file from the export library; the command line macros specified when the corresponding . et file was
produced do apply. All other compilation options (other than the include search path and command line
macro definitions) used when recompiling the exported templates will be used to compile the client
program.

When a library is installed on a new system, it is likely that the expor t _i nf o file will need to be adapted
to reflect the location of the required headers on that system.

2.6. Inlining Functions

The C++ compiler supports a minimal form of function inlining. When the C++ compiler encounters a call
of a function declared i nl i ne it can replace the call with the body of the function with the parameters
replaced by the corresponding arguments. When a function call occurs as a statement, the statements
of the function body are inserted in place of the call. When the function call occurs within an expression,
the body of the function is rewritten as one large expression and that expression is inserted in the proper
place in the containing expression. It is not always possible to do this sort of inlining: there are certain
constructs (e.g. loops and inline assembly) that cannot be rendered in expression form. Even when inlining
is done at the statement level, there are certain constructs that are not practical to inline. Calls that cannot
be inlined are left in their original call form, and an out-of-line copy of the function is used. When enabled,
a remark is issued.

A function is disqualified for inlining immediately if any of the following are true:
» The function has local static variables.

* The function has local constants.

97



TASKING VX-toolset for C166 User Guide

The function has local types.

» The function has block scopes.

The function includes pragmas.

» The function has a variable argument list.

2.7. Extern Inline Functions

Depending on the way in which the C++ compiler is configured, out-of-line copies of extern i nli ne
functions are either implemented using static functions, or are instantiated using a mechanism like the
template instantiation mechanism. Note that out-of-line copies of inline functions are only required in
cases where the function cannot be inlined, or when the address of the function is taken (whether explicitly
by the user, by implicitly generated functions, or by compiler-generated data structures such as virtual
function tables or exception handling tables).

When static functions are used, local static variables of the functions are promoted to global variables
with specially encoded names, so that even though there may be multiple copies of the code, there is
only one copy of such global variables. This mechanism does not strictly conform to the standard because
the address of an extern inline function is not constant across translation units.

When the instantiation mechanism is used, the address of an extern inline function is constant across
translation units, but at the cost of requiring the use of one of the template instantiation mechanisms,
even for programs that don't use templates. Definitions of extern inline functions can be provided either
through use of the automatic instantiation mechanism or by use of the --instantiate=used or
--instantiate=all instantiation modes. There is no mechanism to manually control the definition of extern
inline function bodies.

2.8. Pragmas to Control the C++ Compiler

Pragmas are keywords in the C++ source that control the behavior of the compiler. Pragmas overrule
compiler options.

The syntax is:
#pragma pragnme- spec

The C++ compiler supports the following pragmas and all C compiler pragmas that are described in
Section 1.6, Pragmas to Control the Compiler

instantiate / do_not_instantiate / can_instantiate

These are template instantiation pragmas. They are described in detail in Section 2.5.3, Instantiation
#pragma Directives.

hdrstop / no_pch

These are precompiled header pragmas. They are described in detail in Section 2.10, Precompiled
Headers.

98



once

C++ Language

When placed at the beginning of a header file, indicates that the file is written in such a way that including
it several times has the same effect as including it once. Thus, if the C++ compiler sees #pr agma once
at the start of a header file, it will skip over it if the file is #included again.

A typical idiom is to place an #ifndef guard around the body of the file, with a #define of the guard variable

after the #ifndef:

#pragma once /1 optional
#i f ndef FILE_H
#define FILE H
body of the header file ...
#endi f

The #pragna once is marked as optional in this example, because the C++ compiler recognizes the
#ifndef idiom and does the optimization even in its absence. #pr agma once is accepted for compatibility
with other compilers and to allow the programmer to use other guard-code idioms.

ident

This pragma is given in the form:
#pragma i dent "string"
or

#i dent "string"

2.9. Predefined Macros

The C++ compiler defines a number of preprocessing macros. Many of them are only defined under
certain circumstances. This section describes the macros that are provided and the circumstances under

which they are defined.

Macro

Description

__ABI_COMPATIBILITY_VERSION

Defines the ABI compatibility version being
used. This macro is set to 9999, which means
the latest version. This macro is used when
building the C++ library.

__ABI_CHANGES_FOR_RTTI

This macro is set to TRUE, meaning that the
ABI changes for RTTI are implemented. This
macro is used when building the C++ library.

__ABI_CHANGES_FOR_ARRAY_NEW_AND_DELETE

This macro is set to TRUE, meaning that the
ABI changes for array new and delete are
implemented. This macro is used when
building the C++ library.

99



TASKING VX-toolset for C166 User Guide

Macro

Description

__ABI_CHANGES_FOR_PLACEMENT_DELETE

This macro is set to TRUE, meaning that the
ABI changes for placement delete are
implemented. This macro is used when
building the C++ library.

__ARRAY_OPERATORS

Defined when array newand del et e are
enabled. This is the default.

__BASE_FILE__ Similarto __FILE__ but indicates the primary
source file rather than the current one (i.e.,
when the current file is an included file).

_BOOL Defined when bool is a keyword. This is the
default.

__BUILD__ Identifies the build number of the C++

compiler, composed of decimal digits for the
build number, three digits for the major branch
number and three digits for the minor branch
number. For example, if you use build 1.22.1
of the compiler, __ BUILD__ expands to
1022001. If there is no branch number, the
branch digits expand to zero. For example,
build 127 results in 127000000.

__CHAR_MIN/__CHAR_MAX

Usedinlim ts. h to define the
minimum/maximum value of a plain char
respectively.

__CP166__ Identifies the C++ compiler. You can use this
symbol to flag parts of the source which must
be recognized by the cp166 C++ compiler
only. It expands to 1.

_ CORE__ Expands to a string with the core depending
on the C++ compiler options --cpu and --core.
The symbol expands to “c16x” when no --cpu
and no --core is supplied.

__cplusplus Always defined.

__CPU__ Expands to a string with the CPU supplied with
the option --cpu. When no --cpu is supplied,
this symbol is not defined.

_ DATE__ Defined to the date of the compilation in the
form "Mmm dd yyyy".

_ DELTA_TYPE Defines the type of the offset field in the virtual
function table. This macro is used when
building the C++ library.

_ DOUBLE_FP__ Expands to 1 if you did not use option

--no-double (Treat ‘double’ as ‘float’),
otherwise unrecognized as macro.

100




C++ Language

Macro

Description

__embedded_cplusplus

Defined as 1 in Embedded C++ mode.

__EXCEPTIONS Defined when exception handling is enabled
(--exceptions).

__FILE__ Expands to the current source file name.

__FUNCTION__ Defined to the name of the current function.
An error is issued if it is used outside of a
function.

_ func__ Same as __FUNCTION___ in GNU mode.

__IMPLICIT_USING_STD

Defined when the standard header files should
implicitly do a using-directive on the st d
namespace (--using-std).

__JMP_BUF_ELEMENT_TYPE

Specifies the type of an element of the setjmp
buffer. This macro is used when building the
C++ library.

__JMP_BUF_NUM_ELEMENTS

Defines the number of elements in the setjmp
buffer. This macro is used when building the
C++ library.

__LINE__

Expands to the line number of the line where
this macro is called.

__ MODEL__

Identifies the memory model for which the
current module is compiled. It expands to a
single character constant: ‘n’ (near), ‘f’ (far),
‘s’ (shuge) or ‘h’ (huge).

_ NAMESPACES

Defined when namespaces are supported (this
is the default, you can disable support for
namespaces with --no-namespaces).

__NO_LONG_LONG

Defined when the | ong | ong type is not
supported. This is the default.

__NULL_EH_REGION_NUMBER

Defines the value used as the null region
number value in the exception handling tables.
This macro is used when building the C++
library.

_ PLACEMENT_DELETE

Defined when placement delete is enabled.

__PRETTY_FUNCTION__

Defined to the name of the current function.
This includes the return type and parameter
types of the function. An error is issued if it is
used outside of a function.

__PTRDIFF_MIN/_ PTRDIFF_MAX

Used in st di nt . h to define the
minimum/maximum value of apt rdi ff _t
type respectively.

101



TASKING VX-toolset for C166 User Guide

Macro

Description

__REGION_NUMBER_TYPE

Defines the type of a region number field in
the exception handling tables. This macro is
used when building the C++ library.

__REVISION__

Expands to the revision number of the C++
compiler. Digits are represented as they are;
characters (for prototypes, alphas, betas) are
represented by -1. Examples: v1.0r1 -> 1,
v1.0rb ->-1

__RTTI

Defined when RTTI is enabled (--rtti).

__RUNTIME_USES_NAMESPACES

Defined when the run-time uses namespaces.

__ SFRFILE__(cpu)

This macro expands to the filename of the
used SFR file, including the pathname and the
<>.The cpu is the argument of the macro.
For example, if --cpu=xc167ci is specified,
themacro__ SFRFI LE__(__CPU__) expands
to_ SFRFI LE__(xc167ci),whichexpands
to<sfr/regxcl67ci.sfr>.

__SIGNED_CHARS__

Defined when plain char is signed.

__SINGLE_FP__

Expands to 1 if you used option --no-double
(Treat ‘double’ as ‘float’), otherwise
unrecognized as macro.

__SIZE_MIN/__SIZE_MAX

Used in st di nt . h to define the
minimum/maximum value of a si ze_t type
respectively.

_ STDC__

Always defined, but the value may be
redefined.

__STDC_VERSION__

Identifies the ISO-C version number. Expands
to 199901L for ISO C99, but the value may be
redefined.

_STLP_NO_IOSTREAMS

Defined when option --io-streams is not used.
This disables I/O stream functions in the
STLport C++ library.

_ TASKING__ Always defined for the TASKING C++
compiler.
__TIME__ Expands to the compilation time: “hh:mm:ss”

__TYPE_TRAITS_ENABLED

Defined when type traits pseudo-functions (to
ease the implementation of ISO/IEC TR
19768; e.g., __i s_uni on) are enabled. This
is the default in C++ mode.

__VAR_HANDLE_TYPE

Defines the type of the variable-handle field
in the exception handling tables. This macro
is used when building the C++ library.

102




C++ Language

Macro Description

_ _VERSION__ Identifies the version number of the C++
compiler. For example, if you use version 2.1r1
of the compiler, _ VERSION___ expands to
2001 (dot and revision number are omitted,
minor version number in 3 digits).

__VIRTUAL_FUNCTION_INDEX_TYPE Defines the type of the virtual function index
field of the virtual function table. This macro
is used when building the C++ library.
__VIRTUAL_FUNCTION_TYPE Defines the type of the virtual function field of

the virtual function table. This macro is used
when building the C++ library.

__WCHAR_MIN/_WCHAR_MAX Used in st di nt . h to define the
minimum/maximum value of awchar _t type
respectively.

_WCHAR_T Defined when wchar _t is a keyword.

2.10. Precompiled Headers

It is often desirable to avoid recompiling a set of header files, especially when they introduce many lines
of code and the primary source files that #i ncl ude them are relatively small. The C++ compiler provides
a mechanism for, in effect, taking a snapshot of the state of the compilation at a particular point and writing
it to a disk file before completing the compilation; then, when recompiling the same source file or compiling
another file with the same set of header files, it can recognize the "snapshot point", verify that the
corresponding precompiled header (PCH) file is reusable, and read it back in. Under the right
circumstances, this can produce a dramatic improvement in compilation time; the trade-off is that PCH
files can take a lot of disk space.

2.10.1. Automatic Precompiled Header Processing

When --pch appears on the command line, automatic precompiled header processing is enabled. This
means the C++ compiler will automatically look for a qualifying precompiled header file to read in and/or
will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the "header stop" point. The header stop
point is typically the first token in the primary source file that does not belong to a preprocessing directive,
but it can also be specified directly by #pragma hdrstop (see below) if that comes first. For example:

#i ncl ude "xxx.h"
#i ncl ude "yyy. h"
int i;

The header stop pointisi nt (the first non-preprocessor token) and the PCH file will contain a snapshot
reflecting the inclusion of xxx. h and yyy. h. If the first non-preprocessor token or the #pr agrma hdr st op
appears within a #i f block, the header stop point is the outermost enclosing #i f . To illustrate, heres a
more complicated example:

103



TASKING VX-toolset for C166 User Guide

#i ncl ude "xxx. h"
#i f ndef YYY_H
#define YYY_H 1
#i ncl ude "yyy. h"
#endi f

#if TEST

int i;

#endi f

Here, the first token that does not belong to a preprocessing directive is again i nt , but the header stop
point is the start of the #i f block containing it. The PCH file will reflect the inclusion of xxx. h and
conditionally the definition of YYY_Hand inclusion of yyy. h; it will not contain the state produced by #i f
TEST.

A PCH file will be produced only if the header stop point and the code preceding it (mainly, the header
files themselves) meet certain requirements:

The header stop point must appear at file scope -- it may not be within an unclosed scope established
by a header file. For example, a PCH file will not be created in this case:

/1 xxx.h
class A {

/1l xxx.C
#i ncl ude "xxx.h"
int i; };

The header stop point may not be inside a declaration started within a header file, nor (in C++) may it
be part of a declaration list of a linkage specification. For example, in the following case the header
stop point is int, but since it is not the start of a new declaration, no PCH file will be created:

/'l yyy.h
static

/1 yyy.C
#i ncl ude "yyy. h"

int i;
Similarly, the header stop point may not be inside a #i f block or a #def i ne started within a header
file.

The processing preceding the header stop must not have produced any errors. (Note: warnings and
other diagnostics will not be reproduced when the PCH file is reused.)

No references to predefined macros __DATE__ or __TI ME__ may have appeared.
No use of the #l i ne preprocessing directive may have appeared.

#pragma no_pch (see below) must not have appeared.

104



C++ Language

» The code preceding the header stop point must have introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers. The minimum number of declarations required
is 1.

When the host system does not support memory mapping, so that everything to be saved in the
precompiled header file is assigned to preallocated memory (MS-Windows), two additional restrictions

apply:

» The total memory needed at the header stop point cannot exceed the size of the block of preallocated
memory.

* No single program entity saved can exceed 16384, the preallocation unit.

When a precompiled header file is produced, it contains, in addition to the snapshot of the compiler state,
some information that can be checked to determine under what circumstances it can be reused. This
includes:

* The compiler version, including the date and time the compiler was built.
» The current directory (i.e., the directory in which the compilation is occurring).
* The command line options.

» The initial sequence of preprocessing directives from the primary source file, including #i ncl ude
directives.

» The date and time of the header files specified in #i ncl ude directives.

This information comprises the PCH prefix. The prefix information of a given source file can be compared
to the prefix information of a PCH file to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

/'l a.cc
#i ncl ude "xxx. h"
// Start of code
/'l b.cc
#i ncl ude "xxx. h"
// Start of code

When a. cc is compiled with --pch, a precompiled header file named a. pch is created. Then, when b. cc
is compiled (or when a. cc is recompiled), the prefix section of a. pch is read in for comparison with the
current source file. If the command line options are identical, if xxx. h has not been modified, and so
forth, then, instead of opening xxx. h and processing it line by line, the C++ compiler reads in the rest of
a. pch and thereby establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the largest (i.e., the one
representing the most preprocessing directives from the primary source file) is used. For instance, consider
a primary source file that begins with

#i ncl ude "xxx. h"
#i ncl ude "yyy. h"
#include "zzz. h"

105



TASKING VX-toolset for C166 User Guide

If there is one PCH file for xxx. h and a second for xxx. h and yyy. h, the latter will be selected (assuming
both are applicable to the current compilation). Moreover, after the PCH file for the first two headers is
read in and the third is compiled, a new PCH file for all three headers may be created.

When a precompiled header file is created, it takes the name of the primary source file, with the suffix
replaced by an implementation-specified suffix (pch by default). Unless --pch-dir is specified (see below),
it is created in the directory of the primary source file.

When a precompiled header file is created or used, a message such as
"test.cc": creating preconpiled header file "test.pch"
is issued. The user may suppress the message by using the command line option --no-pch-messages.

When the option --pch-verbose is used the C++ compiler will display a message for each precompiled
header file that is considered that cannot be used giving the reason that it cannot be used.

In automatic mode (i.e., when --pch is used) the C++ compiler will deem a precompiled header file obsolete
and delete it under the following circumstances:

« if the precompiled header file is based on at least one out-of-date header file but is otherwise applicable
for the current compilation; or

« if the precompiled header file has the same base name as the source file being compiled (e.g., xxx. pch
and xxx. cc) but is not applicable for the current compilation (e.g., because of different command line
options).

This handles some common cases; other PCH file clean-up must be dealt with by other means (e.g., by
the user).

Support for precompiled header processing is not available when multiple source files are specified in a
single compilation: an error will be issued and the compilation aborted if the command line includes a
request for precompiled header processing and specifies more than one primary source file.

2.10.2. Manual Precompiled Header Processing

Command line option --create-pch=file-name specifies that a precompiled header file of the specified
name should be created.

Command line option --use-pch=file-name specifies that the indicated precompiled header file should
be used for this compilation; if it is invalid (i.e., if its prefix does not match the prefix for the current primary
source file), a warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with --pch-dir, the indicated file name (which may
be a path name) is tacked on to the directory name, unless the file name is an absolute path name.

The options --create-pch, --use-pch, and --pch may not be used together. If more than one of these
options is specified, only the last one will apply. Nevertheless, most of the description of automatic PCH
processing applies to one or the other of these modes -- header stop points are determined the same
way, PCH file applicability is determined the same way, and so forth.

106



C++ Language

2.10.3. Other Ways to Control Precompiled Headers

There are several ways in which the user can control and/or tune how precompiled headers are created
and used.

» #pragma hdrstop may be inserted in the primary source file at a point prior to the first token that does
not belong to a preprocessing directive. It enables you to specify where the set of header files subject
to precompilation ends. For example,

#i ncl ude "xxx. h"
#i ncl ude "yyy. h"
#pragma hdr st op
#i nclude "zzz. h"

Here, the precompiled header file will include processing state for xxx. h and yyy. h but not zzz. h.
(This is useful if the user decides that the information added by what follows the #pragma hdrstop
does not justify the creation of another PCH file.)

» #pragma no_pch may be used to suppress precompiled header processing for a given source file.

« Command line option --pch-dir=directory-name is used to specify the directory in which to search for
and/or create a PCH file.

Moreover, when the host system does not support memory mapping and preallocated memory is used
instead, then one of the command line options --pch, --create-pch, or --use-pch, if it appears at all, must
be the first option on the command line.

2.10.4. Performance Issues

The relative overhead incurred in writing out and reading back in a precompiled header file is quite small
for reasonably large header files.

In general, it does not cost much to write a precompiled header file out even if it does not end up being
used, and if it is used it almost always produces a significant speedup in compilation. The problem is that
the precompiled header files can be quite large (from a minimum of about 250K bytes to several megabytes
or more), and so one probably does not want many of them sitting around.

Thus, despite the faster recompilations, precompiled header processing is not likely to be justified for an
arbitrary set of files with nonuniform initial sequences of preprocessing directives. Rather, the greatest
benefit occurs when a number of source files can share the same PCH file. The more sharing, the less
disk space is consumed. With sharing, the disadvantage of large precompiled header files can be
minimized, without giving up the advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should expect to reorder the
#i ncl ude sections of their source files and/or to group #i ncl ude directives within a commonly used
header file.

Below is an example of how this can be done. A common idiom is this:

#i nclude "commfile.h"
#pragma hdr st op
#include ...

107



TASKING VX-toolset for C166 User Guide

where comfi | e. h pulls in, directly and indirectly, a few dozen header files; the #pr agma hdr st op is
inserted to get better sharing with fewer PCH files. The PCH file produced for cormf i | e. h can be a bit
over a megabyte in size. Another idiom, used by the source files involved in declaration processing, is
this:

#i nclude "comfile.h"
#i ncl ude "decl _hdrs. h"
#pragma hdrstop

#i nclude ...

decl _hdr s. h pulls in another dozen header files, and a second, somewhat larger, PCH file is created.
In all, the source files of a particular program can share just a few precompiled header files. If disk space
were at a premium, you could decide to make commfi | e. h pull in all the header files used -- then, a
single PCH file could be used in building the program.

Different environments and different projects will have different needs, but in general, users should be

aware that making the best use of the precompiled header support will require some experimentation
and probably some minor changes to source code.

108



Chapter 3. Assembly Language

This chapter describes the most important aspects of the TASKING assembly language. For a complete
overview of the architecture you are using, refer to the target's Core Reference Manual.

3.1. Assembly Syntax

An assembly program consists of statements. A statement may optionally be followed by a comment.
Any source statement can be extended to more lines by including the line continuation character (\) as
the last character on the line. The length of a source statement (first line and continuation lines) is only
limited by the amount of available memory.

Mnemonics, directives and other keywords are case insensitive. Labels, symbols, directive arguments,
and literal strings are case sensitive.

The syntax of an assembly statement is:

[label [:]] [instruction | directive | macro_call] [;conmment]

label A label is a special symbol which is assigned the value and type of the current
program location counter. A label can consist of letters, digits, dollar ($) and
underscore characters (). The first character cannot be a digit or a $. The label
can also be a number. A label which is prefixed by whitespace (spaces or tabs)
has to be followed by a colon (:). The size of an identifier is only limited by the
amount of available memory.

number is a number ranging from 1 to 255. This type of label is called a numeric
label or local label. To refer to a numeric label, you must put an n (next) or p
(previous) immediately after the label. This is required because the same label
number may be used repeatedly.

Examples:
LABl1: ; This label is followed by a colon and
; can be prefixed by whitespace
LAB1 ; This label has to start at the beginning
;o of aline
1: b 1p ; This is an endl ess | oop

; using nuneric |abels

109



TASKING VX-toolset for C166 User Guide

instruction An instruction consists of a mnemonic and zero, one or more operands. It must
not start in the first column.

Operands are described in Section 3.3, Operands of an Assembly Instruction.
The instructions are described in the target's Core Reference Manual.

The instruction can also be a so-called 'generic instruction’. Generic instructions
are pseudo instructions (no instructions from the instruction set). Depending on
the situation in which a generic instruction is used, the assembler replaces the
generic instruction with appropriate real assembly instruction(s). For a complete
list, see Section 3.11, Generic Instructions.

directive With directives you can control the assembler from within the assembly source.
Except for preprocessing directives, these must not start in the first column.
Directives are described in Section 3.9, Assembler Directives and Controls.

macro_call A call to a previously defined macro. It must not start in the first column. See
Section 3.10, Macro Operations.

comment Comment, preceded by a ; (semicolon).

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a so-called ‘control line' in your
assembly source file. These lines start with a $ in the first column and alter the default behavior of the
assembler.

$cont rol

For more information on controls see Section 3.9, Assembler Directives and Controls.

3.2. Assembler Significant Characters

You can use all ASCII characters in the assembly source both in strings and in comments. Also the
extended characters from the 1ISO 8859-1 (Latin-1) set are allowed.

Some characters have a special meaning to the assembler. Special characters associated with expression
evaluation are described in Section 3.7.3, Expression Operators. Other special assembler characters
are:

Character |Description

; Start of a comment

5 Unreported comment delimiter

\ Line continuation character or macro operator: argument concatenation
? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

N Macro operator: override local label

Macro string delimiter or quoted string . DEFI NE expansion character

! String constants delimiter

110



Assembly Language

Character |Description

@ Start of a built-in assembly function
$ Location counter substitution

[] Instruction grouping operator

# Immediate addressing

Note that macro operators have a higher precedence than expression operators.

3.3. Operands of an Assembly Instruction

In an instruction, the mnemonic is followed by zero, one or more operands. An operand has one of the
following types:

Operand Description

symbol A symbolic name as described in Section 3.4, Symbol Names. Symbols can also occur
in expressions.

register Any valid register as listed in Section 3.5, Registers.

expression Any valid expression as described in Section 3.7, Assembly Expressions.

address A combination of expression, register and symbol.

3.4. Symbol Names

User-defined symbols
A user-defined symbol can consist of letters, digits and underscore characters (_). The first character
cannot be a digit. The size of an identifier is only limited by the amount of available memory. The case

of these characters is significant. You can define a symbol by means of a label declaration or an equate
or set directive.

Predefined preprocessor symbols

These symbols start and end with two underscore characters, __symbol__, and you can use them in your
assembly source to create conditional assembly. See Section 3.4.1, Predefined Preprocessor Symbols.

Labels

Symbols used for memory locations are referred to as labels.

Reserved symbols

Symbol names and other identifiers beginning with a period (.) are reserved for the system (for example

for directives or section names). Instructions are also reserved. The case of these built-in symbols is
insignificant.

111



TASKING VX-toolset for C166 User Guide

Examples
Valid symbol names:

| oop_1
ENTRY
aBc
_aBC

Invalid symbol names:

1 | oop ; starts with a nunber
. DEFI NE ; reserved directive nanme

3.4.1. Predefined Preprocessor Symbols

The TASKING assembler knows the predefined symbols as defined in the table below. The symbols are
useful to create conditional assembly.

Symbol Description

__BUILD__ Identifies the build number of the assembler, composed of decimal digits for
the build number, three digits for the major branch number and three digits
for the minor branch number. For example, if you use build 1.22.1 of the
assembler, _ BUILD___ expands to 1022001. If there is no branch number,
the branch digits expand to zero. For example, build 127 results in
127000000.

__Cl66__ Identifies the assembler. You can use this symbol to flag parts of the source
which must be recognized by the as166 assembler only. It expands to 1.

__CORE__ Expands to a string with the core depending on the assembler options --cpu
and --core. The symbol expands to “c16x” when no --cpu and no --core is
supplied.

_ CORE_core___ A symbol is defined depending on the options --cpu and --core. The core
is converted to upper case. Example: if --cpu=xc167ci is specified, the
symbol __CORE_XC16X__is defined. When no --core or --cpu is supplied,
the assembler defines _ CORE_C16X__.

CPU__ Expands to a string with the CPU supplied with the option --cpu. When no
--cpu is supplied, this symbol is not defined.

_ CPU_cpu__ A symbol is defined depending on the option --cpu=cpu. The cpu is converted
to uppercase. For example, if --cpu=xc167ci is specified the symbol
__CPU_XC167C __is defined. When no --cpu is supplied, this symbol is
not defined.

_ REVISION__ Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__SILICON_BUG_num___ |This symbol is defined if the number num is defined with the option
--silicon-bug.

112



Assembly Language

Symbol Description

_ _TASKING__ Identifies the assembler as a TASKING assembler. Expands to 1 if a
TASKING assembler is used.

__VERSION__ Identifies the version number of the assembler. For example, if you use
version 2.1r1 of the assembler, _ VERSION___ expands to 2001 (dot and
revision number are omitted, minor version number in 3 digits).

Example

.if @lefined('__CPU XC167C1I__")
; this part is only for the XCl167C

endi f
3.5. Registers

The following register names, either upper or lower case, should not be used for user-defined symbol
names in an assembly language source file:

RO .. Ri15 (general purpose registers)
RLO .. RL7 (byte registers)
RHO .. RH7 (byte registers)

3.6. Special Function Registers

It is easy to access Special Function Registers (SFRs) that relate to peripherals from assembly. The
SFRs are defined in a special function register file (*.sfr) as symbol names for use with the compiler and
assembler. The assembler reads the SFR file as defined by the selected derivative with the command
line option --cpu (-C). The format of the SFR file is exactly the same as the include file for the C compiler.
For more details on the SFR files see Section 1.3.5, Accessing Hardware from C. Because the SFR file
format uses C syntax and the assembler has a limited C parser, it is important that you only use the
described constructs.

SFRs in the SFR area and extended SFR area are addressed in the near address space. Some SFRs
cannot be addressed with a REG addressing mode, although they are within the SFR area or the extended
SFR area. These registers are:

RSTCON |OxF1EO
RSTCON2|0OxF1E2
SYSSTAT |OxF1E4

Example use in assembly:

movw POL, #0x88 ; use of port name
bset POL_3 ; use of bit nane
jnb POL_4, 2

bclr POL_3

113



TASKING VX-toolset for C166 User Guide
_2:
bset | EN ; use of bit nane

Without an SFR file the assembler only knows the general purpose registers R0O-R15 and the SFRs PSW
(and its bits), DPPO, DPP1, DPP2 and DPP3.

3.7. Assembly Expressions

An expression is a combination of symbols, constants, operators, and parentheses which represent a
value that is used as an operand of an assembler instruction (or directive).

Expressions may contain user-defined labels (and their associated integer values), and any combination
of integers or ASCI| literal strings.

Expressions follow the conventional rules of algebra and boolean arithmetic.

Expressions that can be evaluated at assembly time are called absolute expressions. Expressions where
the result is unknown until all sections have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is relocatable. Relocatable
expressions are emitted in the object file and evaluated by the linker.

The assembler evaluates expressions with 64-bit precision in two's complement.
The syntax of an expression can be any of the following:

* numeric constant

* string

* symbol

 expression binary_operator expression

* unary_operator expression

 (expression)

« function call

All types of expressions are explained in separate sections.
3.7.1. Numeric Constants

Numeric constants can be used in expressions. If there is no prefix, by default the assembler assumes
the number is a decimal number. Prefixes and suffixes can be used in either lower or upper case.

Base Description Example
Binary A Ob prefix followed by binary digits (0,1). Or use a b or y suffix|0b1101
11001010b

114



Assembly Language

Base Description Example
Octal Octal digits (0-7) followed by a o suffix 7770
Hexadecimal A Ox prefix followed by a hexadecimal digits (0-9, A-F, a-f). Or |Ox12FF
use a h suffix 0x45
0f al0h
Decimal Decimal digits (0-9), optionally followed by a d or t 12
1245d
3.7.2. Strings

ASCII characters, enclosed in single (') or double (") quotes constitute an ASCII string. Strings between
double quotes allow symbol substitution by a . DEFI NE directive, whereas strings between single quotes
are always literal strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character is replaced by its ASCII
value). Strings in expressions can have a size of up to 8 characters or less depending on the operand of
an instruction or directive; any subsequent characters in the string are ignored. In this case the assembler
issues a warning. An exception to this rule is when a string is used in a . DB assembler directive; in that
case all characters result in a constant value of the specified size. Null strings have a value of 0.

Examples

" ABCD ; (0x41424344)

79 ; to enclose a quote double it
"A"BC ; or to enclose a quote escape it
"AB' +1 ; (0x4143) string used in expression

; null string

3.7.3. Expression Operators

The next table shows the assembler operators. They are ordered according to their precedence. Operators
of the same precedence are evaluated left to right. Parenthetical expressions have the highest priority
(innermost first).

Valid operands include numeric constants, literal ASCII strings and symbols.

Type Operator Name Description
O parenthesis Expressions enclosed by parenthesis are evaluated
first.
Unary + plus Returns the value of its operand.
- minus Returns the negative of its operand.
~ one's complement Integer only. Returns the one’s complement of its
operand. It cannot be used with a floating-point
operand.

115



TASKING VX-toolset for C166 User Guide

Type

Operator

Name

Description

|
NOT

logical negate

Returns 1 if the operands' value is O; otherwise 0.
For example, if buf is 0 then ! buf is 1. If buf has
a value of 1000 then ! buf is 0.

DPPn:

DPP override

Specify the DPP number used in bit 14 and 15 of
the address. The DPPn is one of DPPO, DPP1,
DPP2, DPP3

PAG

page number

Returns the page number of the operand (operand
>>14), same as @ag() function.

POF

page offset

Returns the page offset of the operand (operand &
0x3FFF), same as @of () function.

SEG

segment number

Returns the segment number of the operand
(operand >> 16), same as @eg() function.

SOF

segment offset

Returns the segment offset of the operand (operand
& OXFFFF), same as @of () function.

BOF

bit offset

Returns the bit offset of a bit operand, same as
@of () function.

HIGH

high byte

Returns the high byte of the operand ((operand >>
8)&0xFF), same as @rsb() function.

LOW

low byte

Returns the low byte of the operand (operand &
OxFF), same as @ sb() function.

type

type cast

Any of the valid assembler symbol types can be used
as a type cast operator.

Arithmetic

*

multiplication

Yields the product of its operands.

division

Yields the quotient of the division of the first operand
by the second. For integer operands, the divide
operation produces a truncated integer result.

%
MOD

modulo

Used with integers, this operator yields the remainder
from the division of the first operand by the second.
Used with floating-point operands, this operator
applies the following rules:

Y®NZ=YifZ=0

Y % Z = X if Z <> 0, where X has the same sign as
Y, is less than Z, and satisfies the relationship: Y =
integer * Z + X

addition

Yields the sum of its operands.

subtraction

Yields the difference of its operands.

Shift

116

<<
SHL

shift left

Integer only. Causes the left operand to be shifted
to the left (and zero-filled) by the number of bits
specified by the right operand.




Assembly Language

Type Operator Name Description
>> shift right Integer only. Causes the left operand to be shifted
SHR to the right by the number of bits specified by the
right operand. The sign bit will be extended.
Relational < less than Returns an integer 1 if the indicated condition is
LT TRUE or an integer 0 if the indicated condition is
<= less than or equal FALSE.
LE In either case, the memory space attribute of the
> greater than resultis N
GT
o reater than or equal For example, if D has a value of 3 and E has a value
G_E 9 q of 5, then the result of the expression D<Eis 1, and
the result of the expression D>E is 0.
== equal
EQ Use tests for equality involving floating-point values
I= not equal with caution, since rounding errors could cause
NE unexpected results.
ULT unsigned less than | The unsigned operators are implemented as signed
ULE unsigned less than or operators that mask out the top bit of the
equal expressions. This makes them effectively 63-bit
: operators.
UGT unsigned greater than
UGE unsigned greater than
or equal
Bit and bit position Specify bit position (right operand) in a bit
Bitwise addressable byte or word (left operand).
& AND Integer only. Yields the bitwise AND function of its
AND operand.
| OR Integer only. Yields the bitwise OR function of its
OR operand.
N exclusive OR Integer only. Yields the bitwise exclusive OR function
XOR of its operands.
Logical && logical AND Returns an integer 1 if both operands are non-zero;
otherwise, it returns an integer 0.
I logical OR Returns an integer 1 if either of the operands is

non-zero; otherwise, it returns an integer 1

The relational operators and logical operators are intended primarily for use with the conditional assembly
. i f directive, but can be used in any expression.

117



TASKING VX-toolset for C166 User Guide

3.7.4. Symbol Types and Expression Types

Symbol Types

The type of a symbol is determined upon its definition by the directive it is defined with and by the section
in which it is defined. The following table shows the symbol types that are available.

Symbol Section type where symbol is Directive resulting in the symbol type
type defined

NEAR CODE with or after a . PROC NEAR
FAR CODE with or after a . PROC FAR
BIT BIT .dbit, .dsbit, .ds, .bit

BYTE FAR, SHUGE, HUGE .db, .ds, .dsb

WORD FAR, SHUGE, HUGE .dw, .dl, .dll, dsw, dsl, dslI
BITBYTE BIT, BITA .db, .dsb

BITWORD |BIT, BITA .dw, .dl, .dll, dsw, dsl, dslI
NEARBYTE |NEAR, IRAM .db, .ds, .dsb

NEARWORD |NEAR, IRAM .dw, .dl, .dll, dsw, dsl, dslI
DATA3 .equ, .set

DATA4 .equ, .set

DATAS8 .equ, .set

DATA16 .equ, .set

INTNO CODE .proc intno

REGBANK .regbank, .label

SFR .extern (internal)

Besides the mentioned directives it is also possible to explicitly define the symbol’s type with the . LABEL
directive and with the . EXTERN directive. Labels not on the same line as the directive still are assigned
the type for that directive if they immediately precede the directive:

farsect .section far
nyl abel: ; this label gets the WORD type
.dw 1

When you make a symbol global with the . GLOBAL directive, the symbol’s type will be stored in the object
file. The . EXTERN directive used for importing the symbol in another module must specify the same type.
If the type is omitted in the . EXTERN directive, the assembler will assume the following when using the
symbol:

Symbol used in Symbol type
bit operation BIT
byte operation BYTE

118



Symbol used in Symbol type
word operation WORD

left of dot operator BITWORD
generic call FAR
immediate operands DATA16

If none of the directives are used that result in a symbol type, the symbol gets a default type based on

the section it is defined in:

Assembly Language

Section type Default symbol type Possible symbol types

BIT BIT BIT

BITA BITWORD BITWORD, BITBYTE

IRAM NEARWORD NEARWORD, NEARBYTE, REGBANK
NEAR NEARWORD NEARWORD, NEARBYTE

FAR WORD WORD, BYTE

SHUGE WORD WORD, BYTE

HUGE WORD WORD, BYTE

CODE FAR FAR, NEAR, INTNO

For creating bit addressable bytes or words with the type BITBYTE or BITWORD, BIT or BITA sections
must be used. For defining a BITBYTE the label must be byte aligned and for a BITWORD it must be
word aligned.

Example with a BITA section:

bi tasect .section bita

bith .dsb 1 ;. BI TBYTE
.align 2
bi tw . dsw 1 ;. Bl TWORD

The . ALI GNdirective is used here because the assembler issues a warning on unaligned word definitions.

Symbols defined with . EQU or . SET inherit the type of the expression. The result of an expression is
determined by the type of symbols used in the expression.

Symbols of type WORD or BYTE

As you can see from the table above, the assembler cannot make a difference between a far, shuge and
a huge symbol, it only knows the symbol types WORD and BYTE as possible symbol types in a far, shuge
or huge section. As a consequence the linker also cannot know whether the symbol is far, shuge or huge.
This can result in an error from the linker, E109: addr ess space m snat ch. For example, when a
huge symbol is located in shuge memory. To workaround this, use a sect i on_I| ayout : : huge in the
LSL file to assign a value to a far or shuge symbol.

119



TASKING VX-toolset for C166 User Guide

Type Checking

When you use a symbol or expression as an operand for an instruction, the assembler will check if the
type of this symbol or expression is valid for the used instruction. If it is not valid, the assembler will issue
an error. For generic instructions the assembler uses the symbol type to select the smallest instruction.

When a relocatable expression is used as a word address operand, the linker checks if the result of the
expression is word aligned. An error will be issued if this is not the case. This is done independently of
the used type.

Expression Types

When evaluating an expression, the result of the expression is determined by the operands of the
expression and the operators. The types of the symbols are divided in two groups: constant types and
address types

Constant types: DATA3, DATA4, DATA8, DATA16 and INTNO

Address types:  NEAR, FAR, BIT, BYTE, WORD, BITBYTE, BITWORD, NEARBYTE, NEARWORD
and REGBANK

Address types may each relate to incompatible memory spaces. Unary operators are not allowed on
address types. A unary operator applied to a constant type will yield the same constant type as result of
the expression. The following table shows the resulting operand types for a binary operator:

Binary operator Operand combination
Constant/Constant|Address/Constant or Address/Address
Constant/Address
- (subtraction) Largest constant Address type Constant type if the address types
type are compatible.

remarks: the section
information of the address |lllegal address operation if the
operand is used for the addresses are incompatible.

result
remarks: There is no relocation if
both addresses are from the same
section.
bitwise OR, XOR |Largest constant Address type Address type

and AND type
lllegal address operation if the

addresses are incompatible.

remarks: There is no relocation if
both addresses are from the same
section.

120



Assembly Language

Binary operator Operand combination
Constant/Constant|Address/Constant or Address/Address
Constant/Address
+ (addition) Largest constant Address type Address type
type
lllegal address operation if the
addresses are incompatible.
remarks: There is no relocation if
both addresses are from the same
section.
. (dot) BIT BIT lllegal address operation
remarks: only allowed if
type of address is
BITBYTE or BITWORD
==, EQ, !5, NE, DATA3
>=, GE, <=, LE, >,
GT, <, LT, ULT,
UGT, ULE, UGE
other binary Largest constant Address type lllegal address operation
operator type
remarks: the section
information of the address
operand is used for the
result

3.8. Built-in Assembly Functions

The TASKING assembler has several built-in functions to support data conversion, string comparison,
and math computations. You can use functions as terms in any expression.

Syntax of an assembly function
@ unction_nane([argunent[,argunment]...])

Functions start with the '@’ character and have zero or more arguments, and are always followed by
opening and closing parentheses. White space (a blank or tab) is not allowed between the function name
and the opening parenthesis and between the (comma-separated) arguments.

The names of assembly functions are case insensitive.

121



TASKING VX-toolset for C166 User Guide

Overview of assembly functions

Function

Description

@\BS( expr)

@\RE ' symbol' | expr)
@3l TBYTE( expr)

@Bl TWORD( expr)
@OF( expr)

@NT()

@PP( label)

@-AR( expr)

@ SB( expr)

@-SW expr)

@vBB( expr)

@BW expr)

@NEAR( expr)

@AG expr)

@POF( expr)

@EQ expr)

@BOF( expr)

@TRCAT( strl, str2)
@TRCMP( strl, str2)
@STRCWVPI ( strl, str2)
@TRLEN( string)

@TRPOS( strl, str2[ , start] )
@UBSTR( str, exprl, expr2)

@EF!I NED( ' symbol' | symbol)

Absolute value

Test whether macro argument is present
Bitbyte of the expression

Bitword of the expression

Bit offset of the expression

Return number of macro arguments
Test whether symbol exists

Return DPP register to access the label
Far result of the expression

Least significant byte of the expression
Least significant word of the expression
Most significant byte of the expression
Most significant word of the expression
Near result of the expression

Page number of the expression

Page offset of the expression

Segment number of the expression
Segment offset of the expression
Concatenate strl and str2

Compare strl with str2

Compare strl with str2 case insensitive
Return length of string

Return position of str2 in strl

Return substring

122




Assembly Language

Detailed Description of Built-in Assembly Functions

@ABS(expression)

Returns the absolute value of the expression.

Example:

AVAL . SET @BS(-2) ; AVAL = 2

@ARG('symbol’ | expression)

Returns integer 1 if the macro argument represented by symbol or expression is present, 0 otherwise.

You can specify the argument with a symbol name (the nhame of a macro argument enclosed in single
guotes) or with expression (the ordinal number of the argument in the macro formal argument list). If you
use this function when macro expansion is not active, the assembler issues a warning.

Example:

IF @RE ' TWDDLE' ) ;is argunment tw ddle present?
I F @G\RE(1) ;is first argunent present?

@BITBYTE(expression)

Returns the bitbyte of the result of the expression. The result of the expression must be a bit address.
@BITWORD(expression)

Returns the bitword of the result of the expression. The result of the expression must be a bit address.
@BOF(expression)

Returns the bit offset of the result of the expression. The result of the expression must be a bit address

@CNT()

Returns the number of macro arguments of the current macro expansion as an integer. If you use this
function when macro expansion is not active, the assembler issues a warning.

Example:
ARGCOUNT . SET @NT() ; reserve argunent count
@DEFINED('symbol' | symbol)

Returns 1 if symbol has been defined, O otherwise. If symbol is quoted, it is looked up as a . DEFI NE
symbol; if it is not quoted, it is looked up as an ordinary symbol, macro or label.

Example:

123



TASKING VX-toolset for C166 User Guide

. | F @DEFI NED(' ANGLE') ;is symbol ANGLE defined?
. | F @DEFI NED({ ANGLE) ;does | abel ANGLE exist?
@DPP(label)

Expands to the DPP register needed to access the near label. The assembler issues an error if the label
is not of the type near. Function can be used anywhere where a short or long address can be used,
including expressions.

@FAR(expression)
Returns the far result of the expression.
@LSB(expression)

Returns the least significant byte of the result of the expression. The result of the expression is calculated
as 16 bit.

Example:
.DB  @.SB(0x1234) ; stores 0x34
.DB @vBB(0x1234) ; stores 0x12

@LSW(expression)

Returns the least significant word of the result of the expression. The result of the expression is calculated
as a long (32 bit).

Example:
.DW @SW 0x12345678) ; stores 0x5678
.DW @/BW 0x123456) ; stores 0x0012

@MSB (expression)

Returns the most significant byte of the result of the expression. The result of the expression is calculated
as 16 bit.

@MSW(expression)

Returns the most significant word of the result of the expression. The result of the expression is calculated
as a long (32 bit).

@NEAR(expression)
Returns the near result of the expression.
@PAG(expression)

Returns the page number of the result of the expression. The result of the expression is calculated as
long (32 bit).

124



Assembly Language

Example:

| SEC .SECTION near,init

AWORD . DW @AG(COUNT) ; Initialize with the page nunber where COUNT is | ocated.
COUNT .DS 1

| SEC . ENDS

@POF(expression)

Returns the page offset of the result of the expression. The result of the expression is calculated as long
(32 bit).

Example:

DSEC . SECTION near,init
TAB2 .DWS8
DSEC . ENDS

CSEC . SECTI ON code
MOV RO, #@OF(TAB2) ; Fill RO with the page of fset
;. offset of variable TAB2
CSEC . ENDS

@SEG(expression)

Returns the segment number of the result of the expression. The result of the expression is calculated
as long (32 bit).

Example:

DSEC . SECTI ON near,init

AWORD . DW @EG TABX) ; Initialize with the segnent nunber where TABX is | ocated.
TABX .DS 1

TABY .DS 20

DSEC . ENDS

@SOF(expression)

Returns the segment offset of the result of the expression. The result of the expression is calculated as
long (32 bit).

@STRCAT(string1,string2)

Concatenates stringl and string2 and returns them as a single string. You must enclose stringl and
string2 either with single quotes or with double quotes.

Example:

.DEFI NE I D "@TRCAT(' TAS',"KING )" ; 1D = "'TASKI NG

125



TASKING VX-toolset for C166 User Guide

@STRCMP(stringl,string2)

Compares string1 with string2 by comparing the characters in the string. The function returns the difference
between the characters at the first position where they disagree, or zero when the strings are equal:

<0 if stringl < string2

0 if stringl == string2

>0 if stringl > string2

Example:

.IF (@TROW(STR "'MAIN ))==0 ; does STR equal 'MAIN ?
@STRCMPI(stringl1,string?2)

Same as @STRCVP( ) , but compares strings case insensitive.

@STRLEN(string)

Returns the length of string as an integer.
Example:

SLEN . SET @TRLEN(' string') ; SLEN = 6
@STRPOS(stringl,string2|[,start])

Returns the position of string2 in string1 as an integer. If string2 does not occur in stringl, the last string
position + 1 is returned.

With start you can specify the starting position of the search. If you do not specify start, the search is
started from the beginning of string1.

Example:
ID .set @TRPOS(' TASKING ,"ASK') ; ID=1
ID.set @TRPOS(' TASKING ,'BUG) ; ID=7

@SUBSTR(string,expressionl,expression2)

Returns the substring from string as a string. expressionl is the starting position within string, and
expression?2 is the length of the desired string. The assembler issues an error if either expressionl or
expression2 exceeds the length of string. Note that the first position in a string is position 0.

Example:

.DEFINE ID "@UBSTR(' TASKING ,3,4)" ;ID ="KING

126



Assembly Language

3.9. Assembler Directives and Controls

An assembler directive is simply a message to the assembler. Assembler directives are not translated
into machine instructions. There are three main groups of assembler directives.

» Assembler directives that tell the assembler how to go about translating instructions into machine code.
This is the most typical form of assembly directives. Typically they tell the assembler where to put a
program in memory, what space to allocate for variables, and allow you to initialize memory with data.
When the assembly source is assembled, a location counter in the assembler keeps track of where
the code and data is to go in memory.

The following directives fall under this group:

* Assembly control directives

« Symbol definition directives

< Data definition / Storage allocation directives
« High Level Language (HLL) directives

« Directives that are interpreted by the macro preprocessor. These directives tell the macro preprocessor
how to manipulate your assembly code before it is actually being assembled. You can use these
directives to write macros and to write conditional source code. Parts of the code that do not match the
condition, will not be assembled at all.

» Some directives act as assembler options and most of them indeed do have an equivalent assembler
(command line) option. The advantage of using a directive is that with such a directive you can overrule
the assembler option for a particular part of the code. Directives of this kind are called controls. A typical
example is to tell the assembler with an option to generate a list file while with the controls $LIST and
$NOLIST you overrule this option for a part of the code that you do not want to appear in the list file.
Controls always appear on a separate line and start with a '$' sign in the first column.

The following controls are available:
¢ Assembly listing controls
* Miscellaneous controls

Each assembler directive or control has its own syntax. You can use assembler directives and controls
in the assembly code as pseudo instructions. The assembler recognizes both upper and lower case for
directives and controls.

3.9.1. Assembler Directives

Overview of assembly control directives

Directive Description
. END Indicates the end of an assembly module
. | NCLUDE Include file

127



TASKING VX-toolset for C166 User Guide

Overview of symbol definition directives

Directive Description

. ALI AS Create an alias for a symbol

. ASSUME Assume DPP usage

. CGROUP, . DGROUP Create a group of code sections or data sections
. EQU Set permanent value to a symbol

. EXTERN Import global section symbol

. GLOBAL Declare global section symbol

. LABEL Define a label of a specified type

. PRCC, . ENDP Define a procedure

. REGBANK Define register bank

. SECTI QN, . ENDS Start a new section

. SET Set temporary value to a symbol

. SOURCE Specify name of original C source file
. EEAK Mark a symbol as 'weak’

Overview of data defi

nition / storage allocation directives

Directive Description

.ALI GN Align location counter
.DBIT Define bit

. DB Define byte

. DW Define word (16 bits)

. DL Define long (32 bits)

. DLL Define long long (64 bits)

. DBFI LL, . DWFI LL,
. DLFI'LL, . DLLFI LL

. DBPTR, . DPPTR, . DSPTR

.DS,.DSBI'T,. DSW. DSL,
. DSLL

Fill block of memory

Define pointer values in memory
Define storage

Overview of macro and conditional assembly directives

Directive Description

. DEFI NE Define substitution string

. BREAK Break out of current macro expansion

. REPEAT, . ENDREP Repeat sequence of source lines

. FOR, . ENDFOR Repeat sequence of source lines n times

128




Assembly Language

Directive Description

.IF,.ELIF,.ELSE Conditional assembly directive

. ENDI F End of conditional assembly directive
. MACRO, . ENDM Define macro

. UNDEF Undefine . DEFI NE symbol or macro

Overview of HLL directives

Directive Description

. CALLS Pass call tree information and/or stack usage information
. DEBUG Pass debug information

. M SRAC Pass MISRA-C information

129



TASKING VX-toolset for C166 User Guide

ALIAS

Syntax

al i as-name . ALI AS functi on- nane
Description

With the . ALI AS directive you can create an alias of a symbol. The C compiler generates this directive
when you use the #pragma al i as.

Example

_malloc .ALIAS __ hmall oc

130



Assembly Language

ALIGN

Syntax

. ALI GN expressi on
Description

With the . ALI GNdirective you instruct the assembler to align the location counter. By default the assembler
aligns on the alignment specified with the . SECTI ON directive.

When the assembler encounters the . ALI GN directive, it advances the location counter to an address
that is aligned as specified by expression and places the next instruction or directive on that address.
The alignment is in minimal addressable units (MAUs). The assembler fills the ‘gap’ with NOP instructions
for code sections or with zeros for data sections. If the location counter is already aligned on the specified
alignment, it remains unchanged. The location of absolute sections will not be changed.

The expression must be a power of two: 2, 4, 8, 16, ... If you specify another value, the assembler changes
the alignment to the next higher power of two and issues a warning.

The assembler aligns sections automatically to the largest alignment value occurring in that section.
A label is not allowed before this directive.
Example

CSEC .section code
.ALI GN 16 ; the assenbler aligns
instruction ; this instruction at 16 MAUs and
; fills the "gap' with NOP instructions.

CSEC2 .section code
.ALIGN 12 ; WVRONG not a power of two, the
instruction ; assenbler aligns this instruction at
; 16 MAUs and issues a warning.

Example with a BIT section to create a bit addressable byte or word with the type BITBYTE or BITWORD:

bitsect .section bit,word

.ds 1 ; single bit
.ALIGN 8

bb .dsb 1 . BI TBYTE
.ALI GN 16

bw .dsw 1 : Bl TWORD

The section is word aligned, because of the . dswdirective. It is impossible to align the . dswdirective
correctly if the section is not aligned at word or a multiple of words. The . ALI GN directives are needed
to place the . dsb and . dswdirectives at the correct location.

131



TASKING VX-toolset for C166 User Guide

ASSUME

Syntax

. ASSUME DPPn: sectpart[, DPPn:sectpart]...
or

. ASSUME NOTHI NG

Description

You can use the . ASSUME directive to specify what the contents of the DPP registers will be at run-time.
This is done to help the assembler to ensure that the data referenced will be addressable.

The assembler checks each data memory reference for addressability based on the contents of the

. ASSUME directive. The . ASSUME directive does not initialize the DPP registers; it is used by the assembler
to help you be aware of the addressability of the data. Unless the data is addressable (as defined either
by an . ASSUME or a page override), the assembler produces an error.

Field values

DPPn

One of the C166 Data Page Pointer (DPP) registers: DPPO, DPP1, DPP2, and DPP3.
sectpart

With this field you can define a page number. It can have the following values:

* section name, as in . ASSUVE DPPO: DSEC1, DPP1: DSEC3

All variables and labels defined in section DSEC1 are addressed with DPPO and all variables defined
in the section DSEC3 are addressed with DPP1. This applies to all sections with the same name in the
current module.

e group name, as in . ASSUVE DPP2: DGRP

All variables and labels defined in sections which are member of the group DGRP are addressed with
DPP2.

» variable name or label name, as in . ASSUVE DPPO: Var Or LabNane

If the variable or label name is defined in a module internal section, all variables or labels defined in
this section are addressed with DPPO. If the variable or label name is defined in a module-external
section, only this variable can be addressed with DPPOQ.

* NOTHI NGkeyword, as in . ASSUME DPP1: NOTHI NG

This indicates that nothing is assumed in the DPP register at that time. If a DPP register is assumed
to contain nothing, the assembler does not implicitly use this DPP register for memory addressing. Also
possible is: . ASSUME NOTHI NG This is the same as: . ASSUVE DPP1: NOTHI NG DPP1: NOTHI NG,

132



Assembly Language
DPP2: NOTHI NG, DPP3: NOTHI NGThis is the default which remains in effect until the first . ASSUME
directive is found.
» SYSTEMkeyword, as in . ASSUVE DPP1: SYSTEM

This keyword enables the addressability of system ranges (via SFR) if a SFR is used in a virtual operand
combination.

Search sequence

When you use a label that is assumed directly, via the section it is defined in or via the group of the section
it is defined in, the following sequence is searched:

1. if the used label as a DPP assumed, this DPP is used

2. if the used label does not have a DPP assumed, but the section it is defined in does have a DPP
assumed, the DPP on the section is used

3. if the used label does not have a DPP assumed and the section it is defined does not have a DPP
assumed, the assume of a DPP on the group is used if present

Example
Specify an existing processor:

DESC1 .section far

AWORD . dw 0O
DESC2 .section far
BYTELl .db O
DESC3 .section far
BYTE2 .db O

CSEC .section code

. ASSUVE DPPO: DSEC1, DPP1: DSEC3
MoV DPP0O, #PAG DSEC1

MoV DPP1, #PAG DSEC3

MoV DPP2, #PAG DSEC2

MOV RO, AWORD : The .assune covers the reference

; DPPO points to the base of
; section DSECl1 that contains AWORD

MOV RL1, DPP2:BYTE1l ; Explicit code. The page override
; operator covers the reference

MOV RL1, BYTE1L ; Error!: No DPP register used and
;. no ASSUME has been nmde

MOV RL2, BYTE2 : The .assune covers the reference

133



TASKING VX-toolset for C166 User Guide

; DPP1 points to the base of
; section DSEC3 that contains BYTE2

When several DPPs are assumed to one sectpart, the lowest DPP number is used as DPP prefix. This
also happens if, for example, both a label and the section it belongs to are assumed to different DPPs,
or if both a section and the group it belongs to, are assumed to different DPPs:

. ASSUVE DPP1: AGRP, DPP2: AVARL
DSEC1 .section far, group( AGRP )
AVARL .dw 1
DESC2 .section far, group( AGRP )

CSEC . section code

MOV RO, AVARL ; DPPl is used for AVARL

. ASSUVE DPP1: NOTHI NG
MOV RO, AVAR1 ; DPP2 is used for AVARL
MOV RO, AGRP ; DPP2 is used for AGRP

RET
. ASSUME directives can forward reference a name. Also double forward references are allowed:

. ASSUME DPPO: DSEC1 ; Forward reference
. ASSUVE DPP1: Avar ; Double forward reference.
DSEC1 .section far

Avar .equ w7ar + 2
DSEC1 . section far
war .dw 0

.dw 0

134



Assembly Language

.BREAK
Syntax

. BREAK
Description

The . BREAK directive causes immediate termination of a macro expansion, a . FOR loop expansion or a
. REPEAT loop expansion. In case of nested loops or macros, the . BREAK directive returns to the previous

level of expansion.

The . BREAK directive is, for example, useful in combination with the . | F directive to terminate expansion
when error conditions are detected.

The assembler does not allow a label with this directive.

Example

.FOR MYVAR I N 10 TO 20

; assenbly source |ines
. I F MYWAR > 15
. BREAK
. ENDI F
. ENDFOR

135



TASKING VX-toolset for C166 User Guide

.CALLS
Syntax

.CALLS "caller’, callee’

or
.CALLS "caller’,’’, ssk,usk
Description

The first syntax creates a call graph reference between caller and callee. The linker needs this information
to build a call graph. caller and callee are names of functions.

The second syntax specifies stack information. When callee is an empty name, this means we define the
stack usage of the function itself. The usage count can be specified for the system stack (ssk) and the
user stack (usk). The values specified are the stack usage in bytes at the time of the call including the
return address.

This information is used by the linker to compute the used user stack and system stack within the
application. The information is found in the generated linker map file within the Memory Usage.

This directive is generated by the C compiler. Normally you will not use it in hand-coded assembly.
Example

The function _mai n calls the function _nf unc:

. CALLS ' _main', ' _nfunc'

The function _nmi n() uses 4 bytes on the system stack and no user stack:

.CALLS ' _main','"',4,0

136



Assembly Language

.CGROUP, .DGROUP
Syntax

groupnane . CGROUP sectnane [, sectnane]...
groupnane .DGROUP sectnane [, sectnane]. ..

Description

With the . CGROUP directive you can create a group (groupname) of code sections. All sections within the
same group will be placed within the same segment. With the . DGROUP directive you can create a group
of data sections. All data sections with one group must be within the same space (section’s space attribute).
The group will be located as follows:

Space Locate behavior

near the whole group in the same page

far the whole group in the same page

shuge the whole group in the same segment

huge no restrictions are made by the group, in LSL the sections can be selected with the group
bit no restrictions are made by the group, in LSL the sections can be selected with the group

One special sectname in a data group is the SYSTEMsection. When SYSTEMis grouped with the data
group, the whole group will be placed in the SYSTEM page, page 3. The LSL file of the locator defines
an empty SYSTEM section at the start of the system page to achieve this.

Example

CSEC1 .section code
CSEC1 . ends

CSEC2 .section code
CSEC2 . ends

CODEGRP . CGROUP CSEC1, CSEC2 ; G oup conbination of the CODE
sections CSEC1 and CSEC2

137



TASKING VX-toolset for C166 User Guide

.DBIT, .DB, .DW, .DL, .DLL

Syntax

[label] .DBIT argunent[, argunent]...
[label] .DB argunent[,argunent]. ..
[label] .DWargunent[, argunent]. ..
[label] .DL argunent[,argunent]...
[label] .DLL argunent[,argunent]...

Description

With these directive you can define memory. With each directive the assembler allocates and initializes
one or more bytes of memory for each argument.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

An argument can be a single- or multiple-character string constant, an expression or empty. Multiple
arguments must be separated by commas with no intervening spaces. Empty arguments are stored as
0 (zero). For single bit initialization (. DBI T) the argument must be a positive absolute expression and
each argument represents a bit to be initialized.

Multiple arguments are stored in successive byte locations. One or more arguments can be null (indicated
by two adjacent commas), in which case the corresponding byte location will be filled with zeros.

The following table shows the number of bits initialized.

Directive Bits Alignment
.DBIT 1 1 bit

.DB 8 8 bit

. DW 16 16 bit

. DL 32 16 bit
.DLL 64 16 bit

The directive must be placed on an address that is aligned as listed in the table. A warning is issued if
the directive is not aligned properly. You can use the . ALl GN directive to align the location counter.

When these directives are used in a BIT section, each argument initializes the number of bits defined for
the used directive and the location counter of the current section is incremented with this number of bits.

The . DBI T directive can be used in a BIT section only. Each argument represents a bit to be initialized
to 0 or 1. The location counter of the current section is incremented by a number of bits equal to the
number of arguments.

The value of the arguments must be in range with the size of the directive; floating-point numbers are not

allowed. If the evaluated argument is too large to be represented in a word / long / long long, the assembler
issues a warning and truncates the value.

138



Assembly Language

String constants

Single-character strings are stored in a byte whose lower seven bits represent the ASCII value of the
character, for example:

.DB 'R ;= 0x52

Multiple-character strings are stored in consecutive byte addresses, as shown below. The standard C
language escape characters like ‘\n’ are permitted.

.DB "AB',,'C ; = 0x41420043 (second argunent is enpty)

Example

When a string is supplied as argument of a directive that initializes multiple bytes, each character in the
string is stored in consecutive bytes whose lower seven bits represent the ASCII value of the character.

For example:

WBL: .DW'ABC,,'D ; results in 0x424100004400 , the 'C is truncated
LTBL: .DL ' ABC ; results in 0x43424100

Related Information
. DBFI LL (Fill Block)

. DS (Define Storage)

139



TASKING VX-toolset for C166 User Guide

.DBFILL, .DWFILL, .DLFILL, .DLLFILL

Syntax

[1abel] .DBFILL count[,argunent]
[1abel] .DWFILL count[,argunent]
[label] .DLFILL count[,argunent]
[label] .DLLFILL count[, argunent]

Description

With these directives the assembler allocates and initializes a block of memory filled with argument. The
number of items in the block is defined by the constant expression count. The width of each item and the
alignment of the block depends on the used directive:

Directive Bits Alignment
. DBFI LL 8 8 bit

. DWFI LL 16 16 bit

. DLFI LL 32 16 bit

. DLLFI LL 64 16 bit

The argument can be a single- or multiple-character string constant or an expression. If you omit the
argument, the block is filled with zeros.

The value of the argument must be in range with the size of the directive; floating-point numbers are not
allowed. If the evaluated argument is too large, the assembler issues a warning and truncates the value.

Example

DSEC . section far

.DB 84,101, 115,116 ; initialize 4 bytes

. DBFI LL 96, OxFF ; reserve another 96 bytes, initialized with OxFF
Related Information

. DB (Define Memory)

. DS (Define Storage)

140



.DBPTR, .DPPTR, .DSPTR

Syntax

[l abel] .DBPTR argunent[, argunent]
[l abel] .DPPTR argunent[, argunent]
[l abel] .DSPTR argunent[, argunent]

Description

Assembly Language

With these directives the assembiler allocates and initializes pointer values in memory. These directives

are included for backwards compatibility.

141



TASKING VX-toolset for C166 User Guide

.DEBUG

Syntax

. DEBUG section-nane[ [,] cluster nang]
Description

Create a DWARF debug section. Debug sections are not allocated by the linker. They contain high level
language information generated by the compiler. This information is required for the debugger. The debug
section names always start with a period as determined in the DWARF debug information specification

for the C166 toolset. The sections contains constants and relocations referring to line numbers, register
usage, variable lifetime and other debug information.

With ‘cluster name’ this debug section is clustered with companion debug and code sections. It is used
by the linker during removal of unreferenced sections. The name must be unique for this module (not for
the application).

Normally you will not use this directive in hand-coded assembly.
Example

. DEBUG . debug_i nfo

142



Assembly Language

.DEFINE

Syntax

. DEFI NE synbol string
Description

With the . DEFI NE directive you define a substitution string that you can use on all following source lines.
The assembler searches all succeeding lines for an occurrence of symbol, and replaces it with string. If
the symbol occurs in a double quoted string it is also replaced. Strings between single quotes are not
expanded.

This directive is useful for providing better documentation in the source program. A symbol can consist
of letters, digits and underscore characters (_), and the first character cannot be a digit.

Macros represent a special case. . DEFI NE directive translations will be applied to the macro definition
as it is encountered. When the macro is expanded, any active . DEFI NE directive translations will again
be applied.

The assembler issues a warning if you redefine an existing symbol.

Example

Suppose you defined the symbol LEN with the substitution string "32":
. DEFI NE LEN " 32"

Then you can use the symbol LEN for example as follows:

. DS LEN
$MESSAGE( |, "The length is: LEN")

The assembler preprocessor replaces LEN with "32" and assembles the following lines:

.DS 32
$MESSAGE( I, "The length is: 32")

Related Information
. UNDEF (Undefine a .DEFINE symbol or macro)

. MACRO, . ENDM (Define a macro)

143



TASKING VX-toolset for C166 User Guide

.DS, .DSBIT, .DSB, .DSW, .DSL, DSLL

Syntax

[1abel] .DS expression
[label] .DSBIT expression
[1abel] .DSB expression
[1abel] .DSW expression
[1abel] .DSL expression

[l abel] .DSLL expression

Description

The . DS directive reserves a block in memory. The reserved block of memory is not initialized to any
value.

If you specify the optional label, it gets the value of the location counter at the start of the directive
processing.

The expression specifies the number of MAUs (Minimal Addressable Units) to be reserved, and how
much the location counter will advance. The expression must evaluate to an integer greater than zero
and cannot contain any forward references (symbols that have not yet been defined). In a bit section, the
MAU size is 1, thus the . DS directive will initializes a number of bits equal to the result of the expression.

The . DSB, . DSW . DSL and . DSLL directives are variants of the . DS directive. The difference is the
number of bits that are reserved per expression argument:

Directive Reserved bits Alignment
.DSBI T 1 1 bit

. bSB 8 8 bit

. DSW 16 16 bit

. DSL 32 16 bit

. DSLL 64 16 bit

The directive must be placed on an address that is aligned as listed in the table. A warning is issued if
the directive is not aligned properly. You can use the . ALl GN directive to align the location counter.

Example

DSEC .section far
RES: .DS 5+3 ; allocate 8 bytes

Related Information
. DB (Define Memory)

. DBFI LL (Fill Block)

144



Assembly Language

.END
Syntax

. END
Description

With the . END directive you tell the assembiler that the end of the module is reached. The assembler will
not process any lines following an . END directive. If the command line option --require-end is used the
assembler will issue an error if the . END directive is not found before end of file. If a generator (e.g., a C
compiler) stops generating before finishing the assembly file, the assembler can detect this by a missing
. END directive.

The assembler does not allow a label with this directive.
Example

CSEC . section code
; source |ines
. END ; End of assenbly nodul e

Related Information

Assembler option --require-end

145



TASKING VX-toolset for C166 User Guide

.EQU

Syntax

synbol . EQU expression
Description

With the . EQU directive you assign the value of expression to symbol permanently. The expression can
be relative or absolute. Once defined, you cannot redefine the symbol. With the . GLOBAL directive you
can declare the symbol global.

The symbol defined with the . EQU gets a type depending on the resulting type of the expression. If the
resulting type of the expression is none the symbol gets no type when the . EQUis used outside a section
and it gets the type of the section when it is defined inside a section.

Example

To assign the value 0x4000 permanently to the symbol MYSYMBOL :
MYSYMBOL . EQU 0x4000

Related Information

Section 3.7.4, Symbol Types and Expression Types

. SET (Set temporary value to a symbol)

146



Assembly Language

.EXTERN

Syntax

. EXTERN [ DPPx: ] synbol [:type]
Description

With the . EXTERNdirective you define an external symbol. It means that the specified symbol is referenced
in the current module, but is not defined within the current module. This symbol must either have been
defined outside of any module or declared as globally accessible within another module with the . GLOBAL
directive.

The type of the symbol is inherited from the section in which it is defined or from the directive used to
define it. The assembler uses the type to check the symbol’s use. In other words, if the symbol does not
fit the instruction’s operand, the assembler will issue a warning. If you do not specify the type information
with the . EXTERN directive, the assembler will not check the use of the specified symbol.

You can use the DPPx prefix to specify the DPP register to be used to access the external symbol.

If you do not use the . EXTERN directive and the symbol is not defined within the current module, the
assembler issues a warning and inserts the . EXTERN directive.

A label is not allowed with this directive.
Example

. EXTERN DPP2: AVAR: WORD ; extern declaration

CSEC . section code

MOV RO, AVAR ;. AVAR is used here

Related Information
See Section 3.7.4, Symbol Types and Expression Types for more information on the type keywords.

. GLOBAL (Declare global section symbol)

147



TASKING VX-toolset for C166 User Guide

.FOR, .ENDFOR
Syntax

[label] .FOR var IN expression[,expression]...
| ENDFCR

or:

[label] .FOR var IN start TO end [ STEP st ep]
| ENDFCR

Description

With the . FOR/ . ENDFOR directive you can repeat a block of assembly source lines with an iterator. As
shown by the syntax, you can use the . FOR/ . ENDFOR in two ways.

1. In the first method, the block of source statements is repeated as many times as the number of
arguments following | N. If you use the symbol var in the assembly lines between . FORand . ENDFOR,
for each repetition the symbol var is substituted by a subsequent expression from the argument list. If
the argument is a null, then the block is repeated with each occurrence of the symbol var removed. If
an argument includes an embedded blank or other assembler-significant character, it must be enclosed
with single quotes.

2. In the second method, the block of source statements is repeated using the symbol var as a counter.
The counter passes all integer values from start to end with a step. If you do not specify step, the
counter is increased by one for every repetition.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

In the following example the block of source statements is repeated 4 times (there are four arguments).
With the . DB directive you allocate and initialize a byte of memaory for each repetition of the loop (a word
for the . DWdirective). Effectively, the preprocessor duplicates the . DB and . DWdirectives four times in
the assembly source.

_FOR VARL IN 1,2+3, 4,12
. DB VARL
. DW ( VARL* VAR1)

. ENDFOR

In the following example the loop is repeated 16 times. With the . DWdirective you allocate and initialize
four bytes of memory for each repetition of the loop. Effectively, the preprocessor duplicates the . DW
directive 16 times in the assembled file, and substitutes VAR2 with the subsequent numbers.

_FOR VAR2 IN 1 to 0x10
. DW ( VARL* VAR1)
. ENDFOR

148



Assembly Language

Related Information

. REPEAT, . ENDREP (Repeat sequence of source lines)

149



TASKING VX-toolset for C166 User Guide

.GLOBAL

Syntax

. GLOBAL synbol [, synbol ]. ..
Description

All symbols or labels defined in the current section or module are local to the module by default. You can
change this default behavior with assembler option --symbol-scope=global.

With the . GLOBAL directive you declare one of more symbols as global. It means that the specified
symbols are defined within the current section or module, and that those definitions should be accessible
by all modules.

To access a symbol, defined with . GLOBAL, from another module, use the . EXTERN directive.
Only program labels and symbols defined with . EQU can be made global.

The assembler does not allow a label with this directive. The type of the global symbol is determined by
its definition.

Example

LOOPA .EQU 1 ; definition of synbol LOOPA
.GLOBAL LOCPA ; LOOPA will be globally
; accessi bl e by other nodul es

Related Information

. EXTERN (Import global section symbol)

150



Assembly Language

IF, .ELIF, .ELSE, .ENDIF

Syntax

.1 F expression

[.ELIF expression] ; the .ELIF directive is optional
[ . ELSE] ; the .ELSE directive is optional
. ENDI F

Description

With the . | F/. ENDI F directives you can create a part of conditional assembly code. The assembler
assembles only the code that matches a specified condition.

The expression must evaluate to an absolute integer and cannot contain forward references. If expression
evaluates to zero, the IF-condition is considered FALSE, any non-zero result of expression is considered
as TRUE.

If the optional . ELSE and/or . ELI F directives are not present, then the source statements following the
. | Fdirective and up to the next . ENDI F directive will be included as part of the source file being assembled
only if the expression had a non-zero result.

If the expression has a value of zero, the source file will be assembled as if those statements between
the . | F and the . ENDI F directives were never encountered.

If the . ELSE directive is present and expression has a nonzero result, then the statements between the
. | Fand . ELSE directives will be assembled, and the statement between the . ELSE and . ENDI F directives
will be skipped. Alternatively, if expression has a value of zero, then the statements between the . | F and
. ELSE directives will be skipped, and the statements between the . ELSE and . ENDI F directives will be
assembled.

You can nest . | F directives to any level. The . ELSE and . ELI F directive always refer to the nearest
previous . | F directive.

A label is not allowed with this directive.
Example

Suppose you have an assemble source file with specific code for a test version, for a demo version and
for the final version. Within the assembly source you define this code conditionally as follows:

A F TEST
. ; code for the test version
. ELI F DEMO

. ; code for the denp version
. ELSE

151



TASKING VX-toolset for C166 User Guide
; code for the final version
. ENDI F

Before assembling the file you can set the values of the symbols TEST and DEMOin the assembly source
before the . | F directive is reached. For example, to assemble the demo version:

TEST .SET 0O
DEMO . SET 1

152



Assembly Language

INCLUDE

Syntax

.INCLUDE "filenane" | <filenane>
Description

With the . | NCLUDE directive you include another file at the exact location where the . | NCLUDE occurs.
This happens before the resulting file is assembled. The . | NCLUDE directive works similarly to the

#i ncl ude statement in C. The source from the include file is assembled as if it followed the point of the
. | NCLUDE directive. When the end of the included file is reached, assembly of the original file continues.

The string specifies the filename of the file to be included. The filename must be compatible with the
operating system (forward/backward slashes) and can contain a directory specification. If you omit a
filename extension, the assembler assumes the extension . asm

If an absolute pathname is specified, the assembler searches for that file. If a relative path is specified
or just a filename, the order in which the assembler searches for include files is:

1. The current directory if you use the "filename" construction.
The current directory is not searched if you use the <filename> syntax.
2. The path that is specified with the assembler option --include-directory.
3. The path that is specified in the environment variable AS1661 NC when the product was installed.
4. The default i ncl ude directory in the installation directory.
The assembler does not allow a label with this directive.

The state of the assembler is not changed when an include file is processed. The lines of the include file
are inserted just as if they belong to the file where it is included. The assembler always opens an include
file, even if the . | NCLUDE directive is in between an inactive . | F/ . ENDI F:

if 0

.include "foo.asnt

.endif

This means that the include file always should be present.

Example

It is allowed to start a new section in an included file. If this file is included somewhere in another section,
the contents of that section following the included file will belong to the section started in the include file:

; file incfile.asm
i nsect .section near

.db 5
.db 6

153



TASKING VX-toolset for C166 User Guide

file minfile. asm

mai nsect .section near
.db 1
.db 2
. I NCLUDE "incfile.asnt
.db 3
.db 4

The resulting sections have the following contents:

mai nsect: 0x01 0x02
incsect: 0x05 0x06 0x03 0x04

154



Assembly Language

.LABEL

Syntax

| abel .LABEL type

Description

Define a label of the specified type. The label is assigned the current location counter.

A label can be a code label, ending with a semicolon (e.g. cl abl: ), or a data label, without a semicolon.

Example

DSEC . SECTI ON NEAR

AVWORD . LABEL WORD ; label of type WORD
LOMBYTE .DB 1

HBYTE . LABEL BYTE ; |abel of type BYTE

H GHBYTE .DB 1
Related Information

See Section 3.7.4, Symbol Types and Expression Types for more information on the type keywords.

155



TASKING VX-toolset for C166 User Guide

#line

Syntax

#[1ine] linenunber ["filenane"]
Description

The line directive is the only directive not starting with a dot, but with a hash sign. It allows passing on
line number information from higher level sources. This linenumber is used when generating errors. When
this directive is encountered, the internal line number count is reset to the specified number and counting
continues after the directive. The line after the directive is assumed to originate on the specified line
number. The optional file name will, when specified, reset the module file name for purposes of error
generation.

This directive is generated by the preprocessor phase of the C compiler. Normally you will not use it in
hand-coded assembly.

Example

#line 1

156



Assembly Language

.MACRO, .ENDM

Syntax

macr o_nanme . MACRO [argunent[, argunent]...]
lm.a;:ro_defi nition_statenments
- ENDM

Description

With the . MACROdirective you define a macro. Macros provide a shorthand method for handling a repeated
pattern of code or group of instructions. You can define the pattern as a macro, and then call the macro
at the points in the program where the pattern would repeat.

The definition of a macro consists of three parts:

» Header, which assigns a name to the macro and defines the arguments (. MACRO directive).
» Body, which contains the code or instructions to be inserted when the macro is called.

» Terminator, which indicates the end of the macro definition (. ENDMdirective).

The arguments are symbolic names that the macro processor replaces with the literal arguments when
the macro is expanded (called). Each formal argument must follow the same rules as symbol names: the
name can consist of letters, digits and underscore characters (_). The first character cannot be a digit.
Argument names cannot start with a percent sign (%).

Macro definitions can be nested but the nested macro will not be defined until the primary macro is
expanded.

You can use the following operators in macro definition statements:

Operator |[Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

A Macro local label override Prevents name mangling on labels in macros.

Example

The macro definition:

macro_a .MACRO argl, arg2 ; header
.db argl ; body

157



TASKING VX-toolset for C166 User Guide
.dw (argl*arg2)
. ENDM

The macro call:

DSEC .section .data
macro_a 2,3

The macro expands as follows:

.db 2
Cdw (2*3)

Related Information
Section 3.10, Macro Operations

. DEFI NE (Define a substitution string)

158

;term nator



Assembly Language

.MISRAC
Syntax

. M SRAC string
Description

The C compiler can generate the . M SRACdirective to pass the compiler's MISRA-C settings to the object
file. The linker performs checks on these settings and can generate a report. It is not recommended to
use this directive in hand-coded assembly.

Example

. M SRAC ' M SRA- C: 2004, 64, e2, Ob, e, ell, 27, 6, ef 83, el, ef , 66,
ch75, af1, eff, e7, e7f, 8d, 63, 87ff 7, 6ff 3, 4

Related Information
Section 4.8.2, C Code Checking: MISRA-C

C compiler option --misrac

159



TASKING VX-toolset for C166 User Guide

.PROC, .ENDP
Syntax

| abel . PROC NEAR
[[1abel] . ENDP]

| abel .PROC FAR
[[Iabel] .ENDP]

| abel .PROC | NTNO [ [ nane] =] [ nunber]
[[I abel] . ENDP]

Description

Define a procedure with the name label. The following type of procedures can be defined:

Procedure [Description

type

near Near procedures are called using the CALLA instruction and must have a RETN as return
instruction.

far Far procedures are called using the CALLS instruction and must have a RETS as return
instruction.

intno Interrupt procedures, requiring RETI as return instruction. The interrupt can be assigned
with a name and a number, used to define the interrupt vector table at link time.

The procedure type is applied to all labels that follow the . PROC directive until the procedure is ended.
The label gets the defined procedure type. For interrupt functions the labels do not get a type because
interrupt functions cannot be called.

The . ENDP ends the procedure, but is optional. The procedure also ends when a new . PRCC s started
in the same section or when the section ends.

Example
The following example defines and calls a far procedure:

GLOBALCODE . section code

AFARPRCC . PROCC FAR ; far procedure

RETS
AFARPROCC . ENDP

; far return
SPECSEC .section code

CALLS AFARPROC ; far intra segnent call.

160



Assembly Language

Definition of an interrupt (trap) function:

_tfunc .PROC INTNO tfunc_trap = -1

RETI

161



TASKING VX-toolset for C166 User Guide

.REGBANK

Syntax

bank- nane . REGBANK [regi ster-range]
Description

With the . REGBANK directive you can define a register bank with name bank-name. The registers used
in the instructions must be defined in the . REGBANK directive. The assembler does not check this. The
directive generates a section named bank-name with the iram section.

The label bank-name gets the type REGBANK and is placed at the location where RO is positioned, even
if RO is not part of the register-range. The assembler checks if the GPRs being used in the source match
those specified in the . REGBANK directive. Multiple . REGBANK directives per source file are allowed.

A section generated by the . REGBANK directive is defined from the lowest up to and including the highest
register in the register range. If RO is not in the register range, the section label will lie outside of the
regbank section. When two modules use the same register bank name, the register banks are overlaid
(section with MAX attribute). The linker overlays the start of the register banks, even if that location does
not refer to the same register. This can be used for simple register bank sharing as follows:

nodul el:
bankname . REGBANK RO- R5

nodul e2:
bankname . REGBANK R10- R15

In this case, the section banknane is overlaid. Both modules use a local label called bankname when
they need to load the context pointer. The final register bank has a size of 6 words, pointing to either
RO-R5 for nodul el or to R10-R15 for nodul e2.

The assembler allows multiple definitions of the same register bank (with the same register range) in one
module, which results in a single register bank:

nodul e3:

banknane . REGBANK RO- R5

banknane . REGBANK RO- R15 o K
banknane . REGBANK R5- R10 . error

Complex register bank definitions without .REGBANK

To make complex register bank definitions it is recommended not to use the . REGBANK directive. Instead
you should create an iram section. All symbols in such a section must get the type r egbank. For example:

banks .section iram
; bank1 bank?2 bank3
bank1 . | abel regbank
. dsw 1 0
bank2 . | abel regbank
. dsw 1 1 0
. dsw 1 ;2 1

162



bank3

banks
Example

. NEW

.dsw 1 ;3
.dsw 1 ;4

. | abel regbank
.dsw 1 ;5
.dsw 15 ; 6-15
. ends

4
6-15

0
1-15

Assembly Language

163



TASKING VX-toolset for C166 User Guide

.REPEAT, .ENDREP

Syntax

[1abel ] . REPEAT expression
| ENDREP

Description

With the . REPEAT/. ENDREP directive you can repeat a sequence of assembly source lines. With expression
you specify the number of times the loop is repeated. If the expression evaluates to a number less than
or equal to 0, the sequence of lines will not be included in the assembler output. The expression result
must be an absolute integer and cannot contain any forward references (symbols that have not already
been defined). The . REPEAT directive may be nested to any level.

If you specify label, it gets the value of the location counter at the start of the directive processing.
Example

In this example the loop is repeated 3 times. Effectively, the preprocessor repeats the source lines (. DB
10) three times, then the assembler assembles the result:

. REPEAT 3
.DB 10 ; assenbly source |ines
. ENDFOR

Related Information

. FOR, . ENDFOR (Repeat sequence of source lines n times)

164



Assembly Language

.SECTION, .ENDS
Syntax

name . SECTION type[,attribute...][,"'classnane']

[ [ name] . ENDS]
Description

Use this directive to define section names and declaration attributes and for activating the section. For
compatibility reasons, the commas between the operands of the . SECTI ON directive are optional. By
default, the assembler tries to resume a previous section with the same name. If no such section exists,
it creates a new section.

The name specifies the name of the section. The type operand specifies the section’s space and must
be one of:

Type Description

BIT Located in the bit addressable area. The section locator counts in bits.

BITA Located in the bit addressable area. The section locator counts in bytes.

IRAM Located in the internal RAM.

NEAR Data section in a 64 kB address space. The underlying pages can be mapped anywhere
in memory.

FAR Data section that can be located anywhere in memory. Sections cannot be larger than 16
kB and cannot cross page boundaries.

SHUGE Data section that can be located anywhere in memory. Sections cannot be larger than 64
kB and cannot cross segment boundaries.

HUGE Data section that can be located anywhere in memory.

CODE Code section that can be located anywhere in memory. Sections cannot be larger than 64

kB and cannot cross segment boundaries.

The type of the labels in a code section depends on the used . PROC directive. Labels
defined in a code section outside the . PROC directive get the type FAR. This can be
overruled with the . LABEL directive and . PROC directive.

The section type and attributes are case insensitive.

The defined attributes are:

Attribute Description

AT address Locate the section at the given address.

BYTE Make the section byte aligned.

CLASS Adds the classname to section hame, separated with a dot (name.classname).
‘classname’

165



TASKING VX-toolset for C166 User Guide

Attribute

Description

CLEAR

Sections are zeroed at startup.

CLUSTER ‘name’

Cluster code sections with companion debug sections. Used by the linker during
removal of unreferenced sections. The name must be unique for this module (not
for the application).

DWORD

Align the section on a double word boundary.

GLOBAL

Tells the linker to combine sections with the same name and attributes to one single
section.

GROUP ‘group

Used to group sections, for example for placing in the same page. You can also use
the . CGROUP or . DGROUP directive for this.

INIT Defines that the section contains initialization data, which is copied from ROM to
RAM at program startup.

INPAGE Defines that the section must be located within a page and cannot cross page
boundaries. Only applicable to near, far, shuge and huge sections.

INSEGMENT Defines that the section must be located with a segment and cannot cross page

boundaries. Only applicable to shuge and huge sections.

LINKONCE ‘tag’

For internal use only.

MAX

When data sections with the same name occur in different object modules with the
MAX attribute, the linker generates a section of which the size is the maximum of
the sizes in the individual object modules

NEW Tells the assembler to start a new section. Use this for example when this section’s
name is equal to a previously started section with the same or different attributes.

NOCLEAR Not zeroed at startup. This is a default attribute for data sections.

NOINIT Defines that the section contains no initialization data. This is a default attribute for
all data sections.

PAGE Align the section on a page boundary. When you want to start locating at the first
address in the page, you must also define the symbol __ PAGE_START=0 to the
linker. You can do this in the LSL file with #def i ne __PAGE_START 0 or you can
specify command line option -D__PAGE_START=0 to the linker. See also the file
arch_c166. | sl inthe directory i ncl ude. | sl .

PRIVATE Tells the linker not to combine this section with sections with the same name and
attributes. This is the default.

PROTECT Tells the linker to exclude a section from unreferenced section removal and duplicate
section removal.

ROMDATA Section contains data to be placed in ROM

SEGMENT Align the section on a segment boundary.

WORD Make the section word aligned. This is the default for all sections.

Section names

The GROUP attribute results in an extended section name. This is similar to using the . CGROUP or
. DGROUP directives. The classname is added to the section’s name and makes it possible to select
sections in the LSL file for locating. The name resulting from the section directive is as follows:

166




secti on- nane[ . cl ass- nane] [ @r oup]
Example

DSEC .SECTION near,init
TAB2 .DWS8 ; initialized section
DSEC . ENDS

ABSSEC . SECTION far, at 0x100
absol ute section

Related Information

Section 3.7.4, Symbol Types and Expression Types.

Assembly Language

167



TASKING VX-toolset for C166 User Guide

SET

Syntax

synbol . SET expression

.SET synbol expression
Description

With the . SET directive you assign the value of expression to symbol temporarily. If a symbol was defined
with the . SET directive, you can redefine that symbol in another part of the assembly source, using the
. SET directive again. Symbols that you define with the . SET directive are always local: you cannot define
the symbol global with the . GLOBAL directive.

The . SET directive is useful in establishing temporary or reusable counters within macros. expression
must be absolute and cannot include a symbol that is not yet defined (no forward references are allowed).

Example

COUNT .SET O ; Initialize count. Later on you can
; assign other values to the synbol

Related Information

. EQU (Set permanent value to a symbol)

168



Assembly Language

.SOURCE
Syntax

. SOURCE string
Description

With the . SOURCE directive you specify the name of the original C source module. This directive is
generated by the C compiler. You do not need this directive in hand-written assembly.

Example
. SOURCE "nai n. c"

Related Information

169



TASKING VX-toolset for C166 User Guide

.UNDEF
Syntax

. UNDEF synbol
Description

With the . UNDEF directive you can undefine a macro or a substitution string that was previously defined
with the . DEFI NE directive. The substitution string associated with symbol is released, and symbol will
no longer represent a valid . DEFI NE substitution or macro.

The assembler issues a warning if you redefine an existing symbol.
The assembler does not allow a label with this directive.
Example

The following example undefines the LEN substitution string that was previously defined with the . DEFI NE
directive:

. UNDEF LEN
Related Information
. DEFI NE (Define a substitution string)

. MACRO, . ENDM (Define a macro)

170



Assembly Language

WEAK

Syntax

. VEAK synbol [, synbol ]. ..
Description

With the . VEAK directive you mark one or more symbols as 'weak'. The symbol can be defined in the
same module with the . GLOBAL directive or the . EXTERN directive. If the symbol does not already exist,
it will be created.

A 'weak' external reference is resolved by the linker when a global (or weak) definition is found in one of
the object files. However, a weak reference will not cause the extraction of a module from a library to
resolve the reference.

You can overrule a weak definition with a . GLOBAL definition in another module. The linker will not
complain about the duplicate definition, and ignore the weak definition.

Only program labels and symbols defined with . EQU can be made weak.
Example

LOOPA .EQU 1 ; definition of synbol LOOPA
.GLOBAL LOOPA ; LOOPA will be globally
; accessible by other nodul es
. VEAK LOCPA ; mark symbol LOOPA as weak

Related Information
. EXTERN (Import global section symbol)

. GLOBAL (Declare global section symbol)

171



TASKING VX-toolset for C166 User Guide

3.9.2. Assembler Controls

Controls start with a $ as the first character on the line. Unknown controls are ignored after a warning is
issued. The arguments of controls can optionally be enclosed in braces (). All controls have abbreviations
of 2 characters (or 4 characters for the $no.. variant).

Overview of assembler controls

Control Description

$[ NO ASMLI NEI NFO Generate source line information for assembly files
$[ NQ CHECK Enable or disable the check for a silicon bug
$DATE Set the date in the list file page header

$[ NO DEBUG Control debug information generation

$EJECT Generate form feed in list file page header

$[ NQ LI ST Print / do not print source lines to list file

$[ NQ LOCALS Control generation of local symbols

$VESSAGE Programmer generated message

$[ N OPTI M ZE Control optimization

$PACGELENGTH Set list file page length

$PAGEW DTH Set list file page width

$[ NO PAG NG Control pagination of list file

$[ NO RETCHECK Control checking of return instruction

$SAVE /| $RESTORE Save and restore the current value of the $LI ST / $NOLI ST controls
$[ N SYmB Control generation of symbolic debug information
$TABS Specify tab size

$TI TLE Set program title in header of assembly list file

$[ NO WARNI NG Enable or disable a warning

172




Assembly Language

$ASMLINEINFO / $SNOASMLINEINFO
Syntax

$ASMLI NEI NFO
$NOASMLI NEI NFO

Default

$NOASMLI NEI NFO
Abbreviation

$AL / $SNOAL
Description

With the $ASMLI NEI NFOcontrol the assembler generates assembly level debug information. This matches
the effect of the --debug-info=+asm (-ga) command line option. When you use the command line option,
it sets the default, but the control will override its effect.

Example

$ASM.I NEI NFO
;generate line and file debug information
MOV RO, R12

$NOASMLI NEI NFO
;stop generating line and file information

Related Information
Assembler option --debug-info

Assembler control $SDEBUG

173



TASKING VX-toolset for C166 User Guide

$CHECK / $NOCHECK
Syntax

$CHECK( nunber)
$NOCHECK[ ( nunber) ]

Default

$NOCHECK (for all numbers)
Abbreviation

$CH / $NOCH
Description

The $CHECK control enables the check for silicon problem with index number. For the list of numbers,
see Chapter 18, CPU Problem Bypasses and Checks. You can use the $NOCHECK control to disable the
check of a specific silicon problem number.

Example

To specify to check for silicon bug 18 from within the assembly source, specify:
$CHECK( 18)

Related Information

Assembler option --silicon-bug

Chapter 18, CPU Problem Bypasses and Checks

174



Assembly Language

$DATE

Syntax
$DATE(stri ng)
Abbreviation
$DA

Description

This control sets the date as subtitle of the list file page header. When no $DATE is used the assembler
uses the date and time when the list file was generated. The string argument of the $DATE control is not
checked for a valid date, in fact any string can be used.

Example

: Feb 03 2006 in header of list file
$dat e(' Feb 03 2006')

Related Information

Assembler option --list-file

175



TASKING VX-toolset for C166 User Guide

$DEBUG / SNODEBUG
Syntax

$DEBUG
$NODEBUG

Default
$NODEBUG
Abbreviation
$DB / $NODB
Description

With the $DEBUG control you enable the assembler to generate debug information. If no high-level language
debug information is present, debug information on assembly level is generated. This control also generates
debug information on local symbols. This matches the effect of the --debug-info=+local,+smart (-gls)
command line option. When you use the command line option, it sets the default, but the control will
override its effect.

Example

$DEBUG
;generate smart debug information and information on |ocal synbols
MOV RO, R12

Related Information

Assembler option --debug-info
Assembler control $ASMLINEINFO
Assembler control $LOCALS

Assembler control $SYMB

176



Assembly Language

$EJECT

Syntax

$EJECT

Default

A new page is started when the page length is reached.
Abbreviation

$EJ

Description

If you generate a list file with the assembler option --list-file, with the $EJECT control the list file generation
advances to a new page by inserting a form feed. The new page is started with a new page header. The
$EJECT control generates empty lines when $NOPAG NGis set.

Example

;. assenbl er source lines

$EJECT ; generate a fornfeed

Related Information
Assembler option --list-file

Assembler control $PAGING

177



TASKING VX-toolset for C166 User Guide

$LIST / $SNOLIST
Syntax

$LI ST
$NOLI ST

Default

$LI ST

Abbreviation

$LI / $NOLI

Description

If you generate a list file with the assembler option --list-file, you can use the $LI ST/ $NCLI ST controls

to specify which source lines the assembler must write to the list file. Without the assembler option --list-file
these controls have no effect. The controls take effect starting at the next line.

Example

.. ; source lineinlist file
$NOLI ST

.. : source line not inlist file
$LI ST

; source line alsoinlist file
Related Information
Assembler option --list-file

Assembler control $SAVE / SRESTORE

178



Assembly Language

$LOCAL / SNOLOCALS
Syntax

$LOCALS
$NOLOCALS

Default
$LOCALS
Abbreviation
$LC / $NOLC
Description

With the $LOCALS control the assembler generates debug information on local symbol records. This
matches the effect of the --debug-info=+local (-gl) command line option. When you use the command
line option, it sets the default, but the control will override its effect.

Example

$NOLOCALS ; the assenbl er keeps no | ocal synbol information
; of the followi ng source |lines

Related Information

Assembler option --debug-info
Assembler control $ASMLINEINFO
Assembler control SDEBUG

Assembler control $SYMB

179



TASKING VX-toolset for C166 User Guide

$SMESSAGE

Syntax

SMESSAGE( type, {str|exp}[,{str|exp}]... )
Abbreviation

$SME

Description

With the $MESSAGE control you tell the assembler to print a message to st der r during the assembling
process.

With type you can specify the following types of messages:

I Information message. Error and warning counts are not affected and the assembler continues
the assembling process.

W Warning message. Increments the warning count and the assembler continues the assembling
process.

Error message. Increments the error count and the assembler continues the assembling process.

F Fatal error message. The assembler immediately aborts the assembling process and generates
no object file or list file.

An arbitrary number of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified to describe the nature of the generated message. Each subsequent argument
is printed directly after the previous argument.

The $MESSAGE control is for example useful in combination with conditional assembly to indicate which
part is assembled.

Example

$MESSACE( |, ' Generating tables')

ID.EQU 4
$MESSAGE(E, ' The value of IDis ', 1D

. DEFI NE LONG " SHORT"
$MESSAGE(|, ' This is a LONG string')
$MESSAGE(Il, "This is a LONG string")

Within single quotes, the defined symbol LONGis not expanded. Within double quotes the symbol LONG
is expanded so the actual message is printed as:

This is a LONG string
This is a SHORT string

180



Assembly Language

$OPTIMIZE / SNOOPTIMIZE
Syntax

$OPTI M ZE
$NOOPTI M ZE

Default

$OPTI M ZE
Abbreviation
$OP / $NOOP
Description

With these controls you can turn on or off conditional jump optimization, expansion of generic instructions
and jump chain optimizations. This control overrules the --optimize (-O) command line option.

Please note that all instructions that have a word and a byte variant (and sometimes a bit variant) are
implemented as generic instructions. Use the mnemonic ending in ‘W’ for word variants and the mnemonic
ending in ‘B’ for byte variants. Combining $NOOPTI M ZE and generic instructions causes syntax errors.

Example

$noop
; turn optim zation off
; source |ines
$op
; turn optim zation back on
; source |ines

Related Information

Assembler option --optimize

181



TASKING VX-toolset for C166 User Guide

$PAGELENGTH

Syntax

$PAGELENGTH( pagel engt h[, bl ankt op, bl ankbt n] )
Default

$PAGELENGTH( 72, 0, 0)

Abbreviation

$PL

Description

If you generate a list file with the assembler option --list-file, the $PAGELENGTH control sets the number
of lines in a page in the list file and the top and bottom margins of a page.

The arguments may be any positive absolute integer expression, and must be separated by commas.

pagelength Total number of lines per page. The default is 72, the minimum is 10.
As a special case, a page length of 0 turns off page breaks.

blanktop Number of blank lines at the top of the page. The default is 0, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

blankbtm Number of blank lines at the bottom of the page. The default is O, the
minimum is 0 and the maximum must be a value so that (blanktop +
blankbtm) < (pagelength - 10).

Example
$PL(55) ; page length is 55 with no top and bottom nargin
$PL(55,4,2) ; page length is 55 with 4 blank lines at the top

and 2 at the bottom
Related Information
Assembler option --list-file

Assembler control $PAGEWIDTH

182



Assembly Language

$PAGEWIDTH

Syntax

$PAGEW DTH( pagewi dt h[, bl ankl eft] )
Default

$PAGEW DTH( 132, 0)

Abbreviation

$PW

Description

If you generate a list file with the assembler option --list-file, the $PAGEW DTH control sets the width of
a page in the list file and the left margin of the page.

The arguments may be any positive absolute integer expression, and must be separated by a comma.

pagewidth Number of columns per line. The default is 132, the minimum is 40.

blankleft Number of blank columns at the left of the page. The default is 0, the
minimum is 0, and the maximum must maintain the relationship: blankleft
< pagewidth.

Example

$PW 80, 8) ; set the pagewidth to 80 characters and start with 8 spaces

Related Information
Assembler option --list-file

Assembler control $SPAGELENGTH

183



TASKING VX-toolset for C166 User Guide

$PAGING / SNOPAGING
Syntax

$PAG NG
$NOPAG NG

Default
$NOPAG NG
Abbreviation
$PA / $NOPA
Description

If you generate a list file with the assembler option --list-file, you can use these controls to turn the
generation of form feeds in the list file on or off.

Example

$pa
turn paging on: fornfeed before each page header

Related Information
Assembler option --list-file

Assembler control $EJECT

184



Assembly Language

$RETCHECK / SNORETCHECK
Syntax

$RETCHECK
$NORETCHECK

Default
$NORETCHECK
Abbreviation
$RC / $NORC
Description

$RETCHECK turns on the checking for the correct return instruction from a routine. For example, an
interrupt function must be returned from with a RETI instruction. If the assembler finds another return
instruction within the interrupt function an error will be generated. $NORETCHECK turns off the checking
for the correct return instruction from a subroutine.

Example

$RETCHECK

PRC . PROC I NTNO i sr=1
: source |ines
RETS ; error, RETI expected

The assembler will give an error on the RETS instruction, because an interrupt procedure must be ended
with a RETI instruction.

Related Information

Assembler option --retcheck

185



TASKING VX-toolset for C166 User Guide

$SAVE / $RESTORE
Syntax

$SAVE
$RESTORE

Abbreviation
$SA | $RE
Description

The $SAVE control stores the current value of the $LI ST / $NOLI ST controls onto a stack. The SRESTORE
control restores the most recently saved value; it takes effect starting at the next line. You can nest $SAVE
controls to a depth of 16.

Example
$nol i st
: source |ines
$save ; save values of $LIST / $NOLI ST
$list
$restore ; restore value ($nolist)

Related Information
Assembler option --list-file

Assembler control $LIST

186



Assembly Language

$SYMB / SNOSYMB
Syntax

$SYMB
$NOSYMB

Default
$NOSYMB
Abbreviation
$SB / $NCSB
Description

With the $SYMB control the assembler enables generation of high-level language debug information. This
matches the effect of the --debug-info=+hll (-gh) command line option. When you use the command
line option, it sets the default, but the control will override its effect.

Example

$SYMB
;generate high-1evel |anguage debug information

Related Information
Assembler option --debug-info

Assembler control $SDEBUG

187



TASKING VX-toolset for C166 User Guide

$TABS

Syntax

$TABS( nunber)
Default

$TABS( 8)
Abbreviation
$TA

Description

$TABS specifies the tab positions in the list file. For each tab character a maximum of number of blanks
is inserted until the next tab position is reached.

Example

$TABS(4)
; use 4 spaces for a tab

Related Information

Assembler option --list-file

188



Assembly Language

$TITLE

Syntax

$TI TLE([string])
Default

The module name.
Abbreviation

$TT

Description

The $TI TLE initializes the program title to the string specified in the operand field. The program title will
be printed after the banner at the top of all succeeding pages of the source listing until another $T1 TLE
control is encountered. An exception to this is the first $TI TLE control, which sets the title of the first and
following pages in the listing until the next $TI1 TLE control is encountered.

A $TI TLE with no string argument causes the current title to be blank. The title is initially the name of the
module. The $TI TLE control will not be printed in the source listing.

Example
$TITLE("This is the newtitle in the list file")
Related Information

Assembler option --list-file

189



TASKING VX-toolset for C166 User Guide

SWARNING / SNOWARNING
Syntax

$WARNI NG nunber )
NOMRNI NG nunber )

Default
$VWARNI NG
Abbreviation
$VWA / SNOWA
Description

This control allows you to enable or disable all or individual warnings. The number argument can have
the following values:

0 Select no warning messages

1,2 Select all warning messages

>2 Select a specific warning message number.

Example

$SNOWARNI NG( 1) ; disable all warnings
$SWARNI NG( 1) ; enabl e all warnings
SNOMARNI NG( 735) ; disable warning W735

Related Information

Assembler option --no-warnings

190



Assembly Language

3.10. Macro Operations

Macros provide a shorthand method for inserting a repeated pattern of code or group of instructions. You
can define the pattern as a macro, and then call the macro at the points in the program where the pattern
would repeat.

Some patterns contain variable entries which change for each repetition of the pattern. Others are subject
to conditional assembly.

When a macro is called, the assembler executes the macro and replaces the call by the resulting in-line
source statements. 'In-line' means that all replacements act as if they are on the same line as the macro
call. The generated statements may contain substitutable arguments. The statements produced by a
macro can be any processor instruction, almost any assembler directive, or any previously-defined macro.
Source statements resulting from a macro call are subject to the same conditions and restrictions as any
other statements.

Macros can be nested. The assembler processes nested macros when the outer macro is expanded.

3.10.1. Defining a Macro

The first step in using a macro is to define it.
The definition of a macro consists of three parts:
» Header, which assigns a name to the macro and defines the arguments (. MACROdirective).
» Body, which contains the code or instructions to be inserted when the macro is called.
» Terminator, which indicates the end of the macro definition (. ENDMdirective).
A macro definition takes the following form:
macr o_name . MACRO [argument [, argument]...]
rracr o_definition_statenments
. ENDM
For more information on the definition see the description of the . MACRO directive.

3.10.2. Calling a Macro

To invoke a macro, construct a source statement with the following format:

[l abel] macro_name [argunent[,argunent]...] [; conment]

where,

label An optional label that corresponds to the value of the location counter
at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first column.

191



TASKING VX-toolset for C166 User Guide

argument One or more optional, substitutable arguments. Multiple arguments
must be separated by commas.

comment An optional comment.

The following applies to macro arguments:

» Each argument must correspond one-to-one with the formal arguments of the macro definition. If the
macro call does not contain the same number of arguments as the macro definition, the assembler
issues a warning.

« If an argument has an embedded comma or space, you must surround the argument by single quotes
0-
» You can declare a macro call argument as null in three ways:
« enter delimiting commas in succession with no intervening spaces
macr onane ARGL, , ARG3 ; the second argunent is a null argunent
« terminate the argument list with a comma, the arguments that normally would follow, are now

considered null

macr onane ARGL, ; the second and all follow ng argunents are null

 declare the argument as a null string

» No character is substituted in the generated statements that reference a null argument.
3.10.3. Using Operators for Macro Arguments
The assembler recognizes certain text operators within macro definitions which allow text substitution of

arguments during macro expansion. You can use these operators for text concatenation, numeric
conversion, and string handling.

Operator [Name Description

\ Macro argument concatenation | Concatenates a macro argument with adjacent
alphanumeric characters.

? Return decimal value of symbol | Substitutes the ?symbol sequence with a character string
that represents the decimal value of the symbol.

% Return hex value of symbol Substitutes the %symbol sequence with a character string
that represents the hexadecimal value of the symbol.

“ Macro string delimiter Allows the use of macro arguments as literal strings.

N Macro local label override Prevents name mangling on labels in macros.

Example: Argument Concatenation Operator -\

Consider the following macro definition:

192



Assembly Language

MAC A . MACRO reg, val
nmov r\reg, #val
. ENDM

The macro is called as follows:

MAC A O, 1

The macro expands as follows:
nmov ro0, #1

The macro preprocessor substitutes the character '0' for the argument r eg, and the character '1' for the
argument val . The concatenation operator (\) indicates to the macro preprocessor that the substitution
characters for the arguments are to be concatenated with the character 'r'.

Without the '\' operator the macro would expand as:
nov rreg, #1

which results in an assembler error (invalid operand).
Example: Decimal Value Operator - ?

Instead of substituting the formal arguments with the actual macro call arguments, you can also use the
value of the macro call arguments.

Consider the following source code that calls the macro MAC_A after the argument AVAL has been set to
1.

AVAL .SET 1
MAC A 0, AVAL

If you want to replace the argument val with the value of AVAL rather than with the literal string " AVAL' ,
you can use the ? operator and modify the macro as follows:

MAC_A . MACRO reg, val
mov r\reg, #?val
. ENDM

Example: Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?) except that it returns the
hexadecimal value of a symbol.

Consider the following macro definition:

GEN_LAB . MACRO LAB, VAL, STMI
LAB\ %/AL  STMT
. ENDM

The macro is called after NUMhas been set to 10:

193



TASKING VX-toolset for C166 User Guide
NUM . SET 10
GEN_LAB  HEX, NUM NOP
The macro expands as follows:
HEXA NOP

The %/AL argument is replaced by the character ‘A’ which represents the hexadecimal value 10 of the
argument VAL.

Example: Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the argument string operator (*)
in the macro definition.

Consider the following macro definition:

STR_MAC . MACRO STRI NG
. DB " STRI NG’
. ENDM

The macro is called as follows:
STR_MAC ABCD

The macro expands as follows:
. DB ' ABCD

Within double quotes . DEFI NE directive definitions can be expanded. Take care when using constructions
with single quotes and double quotes to avoid inappropriate expansions. Since . DEFI NE expansion
occurs before macro substitution, any . DEFI NE symbols are replaced first within a macro argument string:

. DEFINE LONG ' short’
STR MAC  .MACRO STRING
$MESSAGE(!, ' This is a LONG STRING )
$MESSAGE(!,"This is a LONG STRING')
. ENDM

If the macro is called as follows:
STR_MAC sentence
it expands as:

$MESSAGE(I, "' This is a LONG STRING )
$MESSAGE(|, ' This is a short sentence')

Macro Local Label Override Operator -~

If you use labels in macros, the assembler normally generates another unique name for the labels (such
as LOCAL__M_L000001).

194



Assembly Language

The macro ~-operator prevents name mangling on macro local labels.
Consider the following macro definition:

INNT . MACRO addr
LOCAL: nov r0, “addr
. ENDM

The macro is called as follows:

LOCAL.:
I NI T LOCAL

The macro expands as:
LOCAL__M L0O00001: nov rO, LOCAL

If you would not have used the ~ operator, the macro preprocessor would choose another name for LOCAL
because the label already exists. The macro would expand like:

LOCAL__M LO0O0O0O1: nov ro, LOCAL__M L0O00001

3.11. Generic Instructions

The assembler supports so-called 'generic instructions'. Generic instructions are pseudo instructions (no
instructions from the instruction set). Depending on the situation in which a generic instruction is used,
the assembler replaces the generic instruction with appropriate real assembly instruction(s).

The assembler knows the following generic instructions:
CALL

» CALLR -> If the target address operand has the type NEAR and the address fits within the relative
range.

» CALLA -> If the target address operand has the type NEAR and the address does not fit within the
relative range.

» CALLS -> If the target address operand type is FAR or if 2 non-address operands are used (segment
and segment offset).

e CALLI -> If an indirect operand is used.
» PCALL ->If the first operand is a register to be pushed.

If a condition code is omitted, the cc_UC condition code is used.

JMP

* JMPR -> If the target address fits within the relative range within the same section or when the target
address is a label with the SHORT type.

195



TASKING VX-toolset for C166 User Guide
« JMPA -> If the target address has the type NEAR or if the target address operand does not fit within
the relative range.

* JMPS -> If the target address operand has the type FAR or if 2 non-address operands are used (segment
and segment offset).

* JMPI -> If the operand is indirect.

If a condition code is specified only JMPR or JMPA can be chosen and FAR target address operands
are not allowed. If a condition code is omitted, the cc_UC condition code is used.

JB

Results in JB if the target address is within the relative range. If the target is not within the relative range,
a combination of INB/JMPA (NEAR type operand) or INB/JMPS (FAR type operand) is used.

JNB

Results in JNB if the target address is within the relative range. If the target is not within the relative range,
a combination of JB/JMPA (NEAR type operand) or JB/JMPS (FAR type operand) is used.

RET

Results in a return instruction, depending on the procedure type specified with the . PROC directive:
* RETN -> For . proc near

* RETS ->For. proc far

* RETI->For.proc intno

Jump optimizations that cannot be done by the assembler are postponed to the linker.
RETV

RETV is a virtual return instruction. It disables generation of the warning message "procedure
procedure-name contains no RETurn instruction”. No code is generated for this instruction. You can put
this instruction just before the . ENDP directive of the procedure that caused the warning message.

ADD, ADDC, AND, CMP, CPL, MOV, NEG, OR, SUB, SUBC, XOR

When word, byte or (for some) bit operands are supplied, these instructions result in their respective
word, byte or bit variants. Forcing a specific variant is done by appending a ‘W’ for word-variant or a ‘B’
for byte-variant or by prepending a ‘B’ for the bit-variant. This yields four variants of each instruction.

Example with the AND:
* AND -> Generic, can result in ANDW, ANDB or BAND depending on its operands.
« ANDW -> Word instruction, requires word operands.

« ANDB -> Byte instruction, requires byte operands.

196



Assembly Language

* BAND -> Bit instruction, requires bit operands.

When both word and byte variants are possible, the word variant is chosen. This occurs for the double
indirect addressing modes (i.e.mov [ R1], [ R2]) and the REG, IMM addressing mode (i.e. mov

DPPO, #2). If word aligned labels are used, the word variant is chosen, even though the byte variant would
fit as well (i.,e. rov DPPO, _I abel).

197



TASKING VX-toolset for C166 User Guide

198



Chapter 4. Using the C Compiler

This chapter describes the compilation process and explains how to call the C compiler.

TASKING VX-toolset for C166 under Eclipse can use the internal builder (default) or the TASKING makefile
generator (external builder) to build your entire embedded project, from C source till the final ELF/DWARF
object file which serves as input for the debugger.

Although in Eclipse you cannot run the C compiler separately from the other tools, this section discusses
the options that you can specify for the C compiler.

On the command line it is possible to call the C compiler separately from the other tools. However, it is
recommended to use the control program for command line invocations of the toolset (see Section 9.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line.

The C compiler takes the following files for input and output:

Csource file
.C
1 .
compiler
Ccompiler intermediate file
| ] - .mil
assembly file

. 8IC

This chapter first describes the compilation process which consists of a frontend and a backend part.
Next it is described how to call the C compiler and how to use its options. An extensive list of all options
and their descriptions is included in Section 12.2, C Compiler Options. Finally, a few important basic tasks
are described, such as including the C startup code and performing various optimizations.

4.1. Compilation Process

During the compilation of a C program, the C compiler runs through a number of phases that are divided
into two parts: frontend and backend.

The backend part is not called for each C statement, but starts after a complete C module or set of modules
has been processed by the frontend (in memory). This allows better optimization.

The C compiler requires only one pass over the input file which results in relative fast compilation.
Frontend phases
1. The preprocessor phase:
The preprocessor includes files and substitutes macros by C source. It uses only string manipulations
on the C source. The syntax for the preprocessor is independent of the C syntax but is also described

in the ISO/IEC 9899:1999(E) standard.

2. The scanner phase:

199



TASKING VX-toolset for C166 User Guide

The scanner converts the preprocessor output to a stream of tokens.
3. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a syntactic and semantic
analysis of the program, and generates an intermediate representation of the program. This code is
called MIL (Medium level Intermediate Language).

4. The frontend optimization phase:

Target processor independent optimizations are performed by transforming the intermediate (MIL)
code.

Backend phases
1. Instruction selector phase:

This phase reads the MIL input and translates it into Low level Intermediate Language (LIL). The LIL
objects correspond to a processor instruction, with an opcode, operands and information used within
the C compiler.

2. Peephole optimizer/instruction scheduler/software pipelining phase:

This phase replaces instruction sequences by equivalent but faster and/or shorter sequences, rearranges
instructions and deletes unnecessary instructions.

3. Register allocator phase:

Performs target processor independent and dependent optimizations which operate on the Low level
Intermediate Language.

4. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly language output.

4.2. Calling the C Compiler

C166 under Eclipse can use the internal builder (default) or the TASKING makefile generator (external
builder) to build your entire project. After you have built your project, the output files are available in a
subdirectory of your project directory, depending on the active configuration you have set in the C/C++
Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (!*!). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

200



Using the C Compiler

Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (%), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behaviour tab of the C/C++ Build page of the Project » Properties for dialog.

See also Section 4.7, Influencing the Build Time.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1.

3.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

From the Processor selection list, select a processor.

To access the C/C++ compiler options

1.

From the Project menu, select Properties for

The Properties dialog appears.

In the left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

On the Tool Settings tab, select C/C++ Compiler.

Select the sub-entries and set the options in the various pages.

201



TASKING VX-toolset for C166 User Guide

Note that the C/C++ compiler options are used to create an object file from a C or C++ file. The
options you enter in the Assembler page are not only used for hand-coded assembly files, but
also for intermediate assembly files.

You can find a detailed description of all C compiler options in Section 12.2, C Compiler Options.

Invocation syntax on the command line (Windows Command Prompt):

cl66 [ [option]... [file]... ]...
4.3.The C Startup Code

You need the run-time startup code to build an executable application. The startup code consists of the
following components:

« Initialization code. This code is executed when the program is initiated and before the function mai n()
is called. It initializes the processor's registers and the application C variables.

 Exit code. This controls the close down of the application after the program's main function terminates.

To add the C startup code to your project

When you create a new project with the New C/C++ Project wizard (File » New » TASKING VX-toolset
for C166 C/C++ Project), fill in the dialogs and enable the option Add C startup code to the project in
the following dialog (this is the default setting).

B New C/C++ Project El@@

C166 Project Settings

@ Select a processor to continue

Frocessor selection:

| InF?neon 186 Fami\}.u'
[[] Infinean XC166 Family
[ tnfireon %C2000 Farnily
[[] Infinean XE166 Family
[[] sTHicroelectronics ST10

[ Miscellaneous
[] Custam

Actions:
[#] Add C startup cade to the project
[¥] add Linker script File to the praject

@

202



Using the C Compiler

This adds the files cst art . c and cst art . h to your project. These files are copies of
lib/src/cstart.candinclude/cstart. h.If youdo notadd the startup code here, you can always
add it later with File » New » cstart.c/cstart.h Files.

To change the C startup code configuration and registers

The project Properties dialog contains two pages where you can change the C startup code.

1.

From the Project menu, select Properties for
The Properties dialog appears.
In the left pane, expand C/C++ Build and select Startup Configuration or Startup Registers.

In the right pane the Startup Configuration page or Startup Registers page appears.

W Properties for myproject

Startup Configuration -
Resource
Euilders Settings
= CfCH++ Buid Enable interrupts

Build Yariables
Discovery Options
Emviranment

Execute EINIT instruction
[JEnable passing arge/argy ko main()

Logging Buffer size far argw: 256

;"em“'”‘ Sek WECSEG ko the segment: of the vecbor kable in the LS file
racessar

Settings et SPSEG to the segment of the system stack in the L3L file

[initislize user stack pointer of local registerbank 1

[initialize user stack pointer of lacal registerbank 2

Weckor Table

CfC++ General
Project References
RunyDebug Settings

(D) Settings are stored in the project startup header File! cstark.h

Restare Defaults Apply
A
@

On the Startup Configuration page, you can make changes to the C startup code configuration.
For example, you can choose to disable interrupts.

On the Startup Registers page, you can specify the registers and their settings that must be known
to the startup code. Enable the option Initialize in startup code to add a register setting to the startup
code. For some registers you can also enable the option Use mask for initialization. A define ending
on _DO MASKis set in the file cst ar t . h. This will mask out bits in the register in cst art . ¢ that

could have been set by hardware. If you made changes to a register and you want to reset the register
to its original value, click on the Default button. See Section 4.3.1, ICACHE Support for an example.

Click OK.

The file cstart.h in your project is updated with the new values.

203



TASKING VX-toolset for C166 User Guide

The values of the startup registers for a project are only set to their default values at project
creation for the at that time selected processor.

When you switch to a different processor afterwards, in the Project » Properties for » C/C++
Build » Processor property page, the registers are not set to their defaults again. The reason for
that is that you may have set specific values in the startup registers that you want to keep.

If you want to set all registers to their default values for the selected processor, you can do that
any time by clicking on the Restore Defaults button on the Project » Properties for » C/C++
Build » Startup Registers property page.

When you use Import Board Configuration wizard to import (register) settings required for a certain
board, only the registers needed to get the board going in the default situation are changed.

To change the C startup code in Eclipse manually
1. Double-click on the filecstart.c orcstart. h.

The file opens in the editor area.

|c| cstark.c &3 — 0
#ifndef _ LITE /% the Lite edition &
# pragma nomisrac /% Zuppress MISRA-C
#endif

#include <=tdlib.h>

#include <_cptable.h>

#ifdef _ CPU__

#include _ SFRFILE_ (_ CPU_ ) /% include 3FR file
/% (gives indexer wa

#endif

#include "cs=tart.h™ /% include configurs
FE:

* library references

w/

#if __ PROF_ENABLE

extern wvoid _ prof_init( woid ):

#endif

#pragma extern main

extern int main| int argc, char %argv[] |

#pragma wesk exit
#ipragma extern _Exit
#ifndef _ LITE /% these pragmas arey

< >

2. You can edit the C startup code directly in the editor.
A * appears in front of the name of the file to indicate that the file has changes.

3. click [ or select File » Save to save the changes.

204



Using the C Compiler

4.3.1. ICACHE Support

Some of the newer Infineon devices, such as the XC2268I have a cache on the flash memory, the so-called
ICACHE. To use the ICACHE it must be enabled in the C startup code and the linker script file must be
modified to get sections located in the memory ranges that are covered by the ICACHE (see Section 8.7.11,
ICACHE Support and Named Memory Mappings).

To use the ICACHE it must be enabled on the processor at startup. You can do this by setting the
| CACHE_CTRL. | CEN bit. The C startup code, cst art . c, can initialize the | CACHE_CTRL SFR.

To enable the ICACHE in Eclipse
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Startup Registers.

In the right pane the Startup Registers page appears.

W Properties for myproject ‘;‘@@
-

Startup Registers =1
Resaurce
Builders xCZ2268i Registers ICACHE_CTRL: ICACHE Control Register (default: 0:0004)
= CfC++ Build CAPCOMZ Value: 07 [l mitialize in startup code
Bulld arlables CrU [ use mask For initialization
Discowvery Options EBC
Environment FLASH Bit# | Description Value Arcess
Logging GPT1Z 0 ICACHE_CTRL_ICEN: ICACHE Enable  ICACHE enabled i
Memory = ICACHE 1 ICACHE_CTRL_BPICEM: Bit Protectia. .. ICE_N is updated with the_wr\tten value w
Processor BT GG o e e 2 TCACHE_CTRL_CLRY: Clear Yalid Flag  Mirite: Invalidats instruction cache; .. rih
Settings ICACHE_DACON' LCACHE D 3 ICACHE_CTRL_CLREDF: Clear Errar ...  ICACHE_EDCON,SED/DED not changed w
a H ata Access C
StackiHeap ICACHE_EDCON: ICACHE Error Detectior
QD3
RTC
el
CiC++ General
Project References
Run/Debug Settings
< b

(1) Settings are stored in the project startup header fils; cstart.h

Restore Defaults Apphy
\
@

3. Expand the ICACHE registers.
4. Select| CACHE_CTRL.
5. Setthe field ICACHE_CTRL_IEN: ICACHE_Enable to "I CACHE enabl ed"

6. Setthe field ICACHE_CTRL_BPICEN: Bit Protection for ICACHE_Enableto"l CEN i s updat ed
with the witten val ue"

7. Enable option Initialize in startup code to add the setting to the startup code.

205



TASKING VX-toolset for C166 User Guide

8. Click OK.
The file cstart.h in your project is updated with the new values.

The | CACHE_CTRL register is only available on devices that have an ICACHE. If you do not see
this register, then select the appropriate processor first.

To enable the ICACHE manually
1. Make sure the latestcstart. c and cst art . h files are included in your project.
2. Openthefile cstart. hinan editor.
3. Search for __I CACHE_CTRL.
4. Change the macro definitions as follows:
#define _ ICACHE CTRL_INIT 1
#define _ | CACHE _CTRL_VALUE 0x7

When the __| CACHE_CTRL_I NI T macro is set to 1 the | CACHE_CTRL SFR will be initialized at startup
The __| CACHE_CTRL_VALUE macro defines the initialization value.

If you already have acstart. c and cst art . h file from a version v2.4 or older in your project,
you must update these files to obtain ICACHE support. You can find the files in the product's
installation directory: i ncl ude/ cstart.handlib/src/cstart.c.

4.4. How the Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #i ncl ude statement contains an absolute pathname, the compiler looks for this file. If no path
or a relative path is specified, the compiler looks in the same directory as the source file. This is only

possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified in the C/C++
Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to the -1 command line option).

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable C1L661 NC.

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

206



Using the C Compiler

Example
Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the compiler as follows:
c166 -1 nmyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable C1661 NC and then in the default
i ncl ude directory.

The compiler now looks for the file nyi nc. h, in the directory where t est . ¢ is located. If the file is not
there the compiler searches in the directory myi ncl ude. If it was still not found, the compiler searches
in the environment variable C1661 NC and then in the default i ncl ude directory.

4.5. Compiling for Debugging

Compiling your files is the first step to get your application ready to run on a target. However, during
development of your application you first may want to debug your application.

To create an object file that can be used for debugging, you must instruct the compiler to include symbolic
debug information in the source file.

To include symbolic debug information
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Debugging.

4. Select Default in the Generate symbolic debug information box.

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain debug information is optimized
away. Therefore, if you encounter strange behavior during debugging it might be necessary to reduce
the optimization level, so that the source code is still suitable for debugging. For more information on
optimization see Section 4.6, Compiler Optimizations.

Invocation syntax on the command line (Windows Command Prompt)

The invocation syntax on the command line is:

207



TASKING VX-toolset for C166 User Guide

cl66 -g file.c

4.6. Compiler Optimizations

The compiler has a number of optimizations which you can enable or disable.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Optimization.
4. Select an optimization level in the Optimization level box.
or:

In the Optimization level box select Custom optimization and enable the optimizations you want
on the Custom optimization page.

Optimization levels

The TASKING C compiler offers four optimization levels and a custom level, at each level a specific set
of optimizations is enabled.

» Level 0 - No optimization: No optimizations are performed. The compiler tries to achieve a 1-to-1
resemblance between source code and produced code. Expressions are evaluated in the order written
in the source code, associative and commutative properties are not used.

* Level 1 - Optimize: Enables optimizations that do not affect the debug-ability of the source code. Use
this level when you encounter problems during debugging your source code with optimization level 2.

» Level 2 - Optimize more (default): Enables more optimizations to reduce the memory footprint and/or
execution time. This is the default optimization level.

» Level 3 - Optimize most: This is the highest optimization level. Use this level when your
program/hardware has become too slow to meet your real-time requirements.

» Custom optimization: you can enable/disable specific optimizations on the Custom optimization page.
Optimization pragmas

If you specify a certain optimization, all code in the module is subject to that optimization. Within the C
source file you can overrule the C compiler options for optimizations with #pr agma opti m ze fl ag
and #pragnma endopti m ze. Nesting is allowed:

#pragma optim ze e /* Enabl e expression

sinplification */
C source ...

208



Using the C Compiler

#pragnma optinmze ¢ /* Enabl e common expression
el i mnation. Expression
C source ... sinplification still enabled */

#pragnma endoptinmze /* Disable comopn expression

elimnation */
#pragnma endoptimze /* Disable expression
sinplification */

The compiler optimizes the code between the pragma pair as specified.

You can enable or disable the optimizations described in the following subsection. The command line
option for each optimization is given in brackets.

4.6.1. Generic Optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)

The compiler detects repeated use of the same (sub-)expression. Such a "common" expression is replaced
by a variable that is initialized with the value of the expression to avoid recomputation. This method is
called common subexpression elimination (CSE).

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of O are removed. Such useless expressions may
be introduced by macros or by the compiler itself (for example, array subscripting).

Constant propagation (option -Op/-OP)
A variable with a known value is replaced by that value.
Automatic function inlining (option -Oi/-Ol)

Small functions that are not too often called, are inlined. This reduces execution time at the cost of code
size.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing unnecessary code and reducing
the number of jumps. For example:

» Switch optimization: A number of optimizations of a switch statement are performed, such as removing
redundant case labels or even removing an entire switch.

» Jump chaining: A (conditional) jump to a label which is immediately followed by an unconditional jump
may be replaced by a jump to the destination label of the second jump. This optimization speeds up
execution.

209



TASKING VX-toolset for C166 User Guide

» Conditional jump reversal: A conditional jump over an unconditional jump is transformed into one
conditional jump with the jump condition reversed. This reduces both the code size and the execution
time.

» Dead code elimination: Code that is never reached, is removed. The compiler generates a warning
messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-0S)

An array or pointer subscripted with a loop iterator variable (or a simple linear function of the iterator
variable), is replaced by the dereference of a pointer that is updated whenever the iterator is updated.

Loop transformations (option -OlI/-OL)

Transform a loop with the entry point at the bottom, to a loop with the entry point at the top. This enables
constant propagation in the initial loop test and code motion of loop invariant code by the CSE optimization.

Forward store (option -Oo/-O0)
A temporary variable is used to cache multiple assignments (stores) to the same non-automatic variable.
Branch prediction (option -O-predict/-O+predict)

A prediction is done if branches are likely to be taken or not. Based on this, other optimizations can take
place.

MIL linking (Control program option --mil-link)

The frontend phase performs its optimizations on the MIL code. When all C modules and/or MIL modules
of an application are given to the C compiler in a single invocation, the C compiler will link MIL code of
the modules to a complete application automatically. Next, the frontend will run its optimizations again
with application scope. After this, the MIL code is passed on to the backend, which will generate a single
. sr c file for the whole application. Linking with the run-time library, floating-point library and C library is
still necessary. Linking with the C library is required because this library contains some hand-coded
assembly functions, that are not linked in at MIL level.

In the ISO C99 standard a "translation unit" is a preprocessed source file together with all the headers
and source files included via the preprocessing directive #i ncl ude. After MIL linking the compiler will
treat the linked sources files as a single translation unit, allowing global optimizations to be performed,
that otherwise would be limited to a single module.

210



Using the C Compiler

Optional

....... + _._._._._._*

linker

MIL splitting (option --mil-split)

When you specify that the C compiler has to use MIL splitting, the C compiler will first link the application
at MIL level as described above. However, after rerunning the optimizations the MIL code is not passed
on to the backend. Instead the frontend writes a . s file for each input module. A . s file has the same
formatasa. nil file.Only . ns files that really change are updated. The advantage of this approach is
that it is possible to use the make utility to translate only those parts of the application to a . sr c file that
really have changed. MIL splitting is therefore a more efficient build process than MIL linking. The penalty
for this is that the code compaction optimization in the backend does not have application scope. As with
MIL linking, it is still required to link with the normal libraries to build an ELF file.

211



TASKING VX-toolset for C166 User Guide

Cfile 1 Cfile 2 L Cfile N

:

MIL file 1 MIL file 2 MIL file &

MIL split MIL split

source 1 source 2

ssembler ssembler

To read more about how MIL linking influences the build process of your application, see Section 4.7,
Influencing the Build Time.

4.6.2. Core Specific Optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV instruction) by smart use of
registers. This optimizes both speed and code size.

Interprocedural register optimization (option -Ob/-OB)
Register allocation is improved by taking note of register usage in functions called by a given function.
Peephole optimizations (option -Oy/-QY)

The generated assembly code is improved by replacing instruction sequences by equivalent but faster
and/or shorter sequences, or by deleting unnecessary instructions.

Instruction Scheduler (option -Ok/-OK)

The instruction scheduler is a backend optimization that acts upon the generated instructions. When two
instructions need the same machine resource - like a bus, register or functional unit - at the same time,

they suffer a structural hazard, which stalls the pipeline. This optimization tries to rearrange instructions
to avoid structural hazards, for example by inserting another non-related instruction.

First the instruction stream is partitioned into basic blocks. A new basic block starts at a label, or right
after a jump instruction. Unschedulable instructions and, when -Av is enabled, instructions that access
volatile objects, each get their own basic block. Next, the scheduler searches the instructions within a

212



Using the C Compiler

basic block, looking for places where the pipeline stalls. After identifying these places it tries to rebuild
the basic block using the existing instructions, while avoiding the pipeline stalls. In this process data
dependencies between instructions are honoured.

Note that the function inlining optimization happens in the frontend of the compiler. The instruction
scheduler has no knowledge about the origin of the instructions.

Code compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: large chunks of code that occur more than once, are
transformed into a function. This reduces code size at the cost of execution speed.

Generic assembly optimizations (option -Og/-OG)
A set of target independent optimizations that increase speed and decrease code size.
Automatic near data allocation (application wide) (option --automatic-near)

In the far, shuge and huge memory models this optimization tries to move objects to the near memory
space automatically. In addition, pointers to these objects will also be qualified near automatically.
Because near memory can be accessed more efficiently than far/shuge/huge this will save code and the
generated code will be faster. This optimization can only be used together with the MIL linking or MIL
splitting build process, because it needs application scope. Only objects and pointers that are in the
default memory space are affected, objects and pointers explicitly qualified as __far/__shuge/__huge
are not a candidate for this optimization.

Because the C compiler must allocate objects in the near memory space, it needs to know how much
near memory is available, which parts of it are ROM and RAM, etc. To obtain this information, the C
compiler reads the LSL file. This must be the same LSL file as the linker uses. The C compiler only
considers the near memory space and expects it to be free. This will be verified using the LSL file. It is
possible to define heap, stack, vector table and reserved areas, select them and locate them at an absolute
address. Because the C compiler does not have information about assembly sections, it is not possible
to select other sections, and try to locate them in the address range of the near memory space.

Limitations

For the qualification of pointers and objects this optimization uses a special pointer qualifier that is not
available at C level: __near 32. A__near 32 pointer behaves like a __near pointer, but will take 32 bits
of storage in memory/stack. The upper 16 bits of a __near 32 pointer are not used. The reason for this
storage inefficiency is that the si zeof () operator must return the same value for the pointer rewritten
to 'near' by the automatic near data optimization as for a far/shuge/huge pointer.

When an object/pointer is rewritten by the optimization, the debugger will show a __near 32 pointer.
Other limitations of the automatic near data optimization are:

 pointers that are passed to a function in a variable argument list cannot be rewritten.

 pointers that are a struct/union member cannot be rewritten.

« the optimization cannot trace pointers with more than one indirection level.

213



TASKING VX-toolset for C166 User Guide

Note that also pointers related to the pointers in the cases above will not be rewritten. For example
(test.c):

struct
{

char * p;
}os;
char * q;
char c;

void main( void )

{
q = &c;
S.p =0Q,
}
Invocation:

ccl66 test.c -M --mil-split --automatic-near

Because 'q'is assigned to 's. p' both pointers will be not be rewritten, and therefore 'c' cannot be relocated
tothe __near 32 space. Because 's' and 'q’ are both unrelated, the storage of these objects will be moved
to __near 32.

4.6.3. Optimize for Size or Speed

You can tell the compiler to focus on execution speed or code size during optimizations. You can do this
by specifying a size/speed trade-off level from 0 (speed) to 4 (size). This trade-off does not turn optimization
phases on or off. Instead, its level is a weight factor that is used in the different optimization phases to
influence the heuristics. The higher the level, the more the compiler focusses on code size optimization.
To choose a trade-off value read the description below about which optimizations are affected and the
impact of the different trade-off values.

Note that the trade-off settings are directions and there is no guarantee that these are followed. The
compiler may decide to generate different code if it assessed that this would improve the result.

Optimization hint: Optimizing for size has a speed penalty and vice versa. It takes an average
of 42% more code to gain 8% speed (measured with the near model for xc16x, using option -O2).
This is largely caused by the Code Compaction optimization. The advice is to optimize for size
by default and only optimize those areas for speed that are critical for the application with respect
to speed. Using the tradeoff options -t0, -t1 and -t2 globally for the application is not recommended.

To specify the size/speed trade-off optimization level:
1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

214



Using the C Compiler

In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Optimization.
4. Select a trade-off level in the Trade-off between speed and size box.
See also C compiler option --tradeoff (-t)
Instruction Selection
Trade-off levels 0, 1 and 2: the compiler selects the instructions with the smallest number of cycles.
Trade-off levels 3 and 4: the compiler selects the instructions with the smallest number of bytes.
Switch Jump Chain versus Jump Table

Instruction selection for the swi t ch statements follows different trade-off rules. A switch statement can
result in a jump chain or a jump table. The compiler makes the decision between those by measuring
and weighing bytes and cycles. This weigh is controlled with the trade-off values:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%
3 25% 75%
4 0% 100%

Subscript Strength Reduction
The trade-off limits the total number of additional pointers of a particular type in a particular loop.

The C166 has 14 registers that you can use as 16-bit pointers (14 word registers) or as 32-bit pointers
(7 double-word registers).

The performance always increases when more subscript pointers can be allocated for an ideal situation.
Ideal is when no registers are needed for other objects than subscripts. This is rarely the case, therefore
we control the number of word registers with the trade-off option.

Trade-off value Number of word registers
0 12

1 10

2

3

4

215



TASKING VX-toolset for C166 User Guide

Loop Optimization

For a top-loop, the loop is entered at the top of the loop. A bottom-loop is entered at the bottom. Every
loop has a test and a jump at the bottom of the loop, otherwise it is not possible to create a loop. Some
top-loops also have a conditional jump before the loop. This is only necessary when the number of loop
iterations is unknown. The number of iterations might be zero, in this case the conditional jump jumps
over the loop.

Bottom loops always have an unconditional jump to the loop test at the bottom of the loop.

Trade-off value Try to rewrite top-loops to [Optimize loops for
bottom-loops size/speed
0 no speed
1 yes speed
2 yes speed
3 yes size
4 yes size
Example:
int a;
void i( int I, int m)
{
int i;
for (i =m i <|1; i++)
{
a++;
}
return;
}
Coded as a bottom loop (compiled with --tradeoff=4) is:
jmp 2 ;; unconditional junp to loop test at bottom
_3:
subw _a, ONES
addw r3, #0x1
_2: ;; loop entry point

cnpw r3,r2
jmp cc_slt, 3

Coded as a top loop (compiled with --tradeoff=0) is:

movw rll, a

subw r2,r3

cmpw 12, #0x0 ;; test for at least one loop iteration

jnmp cc_sle, 4 ;; can be om tted when nunber of iterations is known

216



Using the C Compiler

3: ;; loop entry point
addw r11, #0x1
subw r2, #0x1
jnmp cc_ne, 3

4.

Automatic Function Inlining

You can enable automatic function inlining with the option --optimize=+inline (-Oi) or by using #pr agrma
optim ze +inline.This option is also part of the -O3 predefined option set.

When automatic inlining is enabled, you can use the options --inline-max-incr and --inline-max-size (or
their corresponding pragmas i nl i ne_max_i ncr / inline_nmax_si ze) to control automatic inlining.
By default their values are set to -1. This means that the compiler will select a value depending upon the
selected trade-off level. The defaults are:

Trade-off value inline-max-incr inline-max-size
0 360 22
1 270 19
2 180 16
3 90 13
4 0 10

For example with trade-off value 1, the compiler inlines all functions that are smaller or equal to 19 internal
compiler units. After that the compiler tries to inline even more functions as long as the function will not
grow more than 270%.

When these options/pragmas are set to a value >= 0, the specified value is used instead of the values
from the table above.

Static functions that are called only once, are always inlined, independent of the values chosen for
inline-max-incr and inline-max-size.

MAC Optimizations

The compiler tries to judge what the gain will be if MAC instructions are used instead of regular instructions.
This is measured in bytes and cycles. For the resulting gain, the size in bytes and cycles are weighed
with the trade-off setting:

Trade-off value Time Size
0 100% 0%

1 75% 25%
2 50% 50%
3 25% 75%
4 0% 100%

The estimated execution frequency of an instruction is multiplied by the number of cycles.

217



TASKING VX-toolset for C166 User Guide

When the compiler generates MAC instructions, it has the following favors:
» Trade-off levels 0, 1 and 2: speed

+ Trade-off levels 3 and 4: size

Code Compaction

Trade-off levels 0 and 1: code compaction is disabled.

Trade-off level 2: only code compaction of matches outside loops.

Trade-off level 3: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 10.

Trade-off level 4: code compaction of matches outside loops, and matches inside loops of patterns that
have an estimate execution frequency lower or equal to 100.

For loops where the iteration count is unknown an iteration count of 10 is assumed.
For the execution frequency the compiler also accounts nested loops.

See C compiler option --compact-max-size

4.7. Influencing the Build Time

In general many settings have influence on the build time of a project. Any change in the tool settings of
your project source will have more or less impact on the build time. The following sections describe several
issues that can have significant influence on the build time.

SFR File

SFR files for recent devices like XC2287M define such a large number of SFRs that compiling the SFR
file alone already takes up a significant part of the build time. There are two ways to reduce the build time:

« Disable the automatic inclusion of the SFR file and include the SFR file only in the source modules
where the SFRs are used, with a #i ncl ude directive. You can disable the automatic inclusion of the
SFR file with option --no-tasking-sfr of the tools. In Eclipse you can find this option on the "C/C++
Compiler » Preprocessing" and the "Assembler » Preprocessing" pages.

When you include the SFR file in the source, be aware that the SFR files are in the sf r subdirectory
of the include files, so you must use: #i ncl ude <sfr/regxc2287m sfr>

» Use the alternative SFR file format. The product'si ncl ude/ sf r directory also contains SFR files with
the suffix . asf r. These alternative SFR files do not include a macro definition for each bit-field and
SFRs must be accessed using the correct struct/union fields, for example:

PSW U = 0x0010; (instead of PSW= 0x0010;)
PSWB. N = 0; (instead of N = 0;)

You can select the alternative SFR files with the C compiler option --alternative-sfr-file. In Eclipse you
can find this option on the C/C++ Compiler » Preprocessing page.

218



Using the C Compiler

Of course you can combine both ways: disable automatic SFR file inclusion and use #i ncl ude
<sfr/regxc2287m asfr> where SFRs are used.

MIL Linking

With MIL linking it is possible to let the compiler apply optimizations application wide. This can yield
significant optimization improvements, but the build times can also be significantly longer. MIL linking
itself can require significant time, but also the changed build process implies longer build times. The MIL
linking settings in Eclipse are:

» Build for application wide optimizations (MIL linking)

This enables MIL linking. The build process changes: the C files are translated to intermediate code
(MIL files) and the generated MIL files of the whole project are linked together by the C compiler. The
next step depends on the setting of the option below.

» Application wide optimization mode: Optimize more/Build slower

When this option is enabled, the compiler runs the code generatorimmediately on the completely linked
MIL stream, which represents the entire application. This way the code generator can perform several
optimizations, such as "code compaction”, at application scope. But this also requires significantly more
memory and requires more time to generate code. Besides that, it is no longer possible to do incremental
builds. With each build the full MIL linking phase and code generation has to be done, even with the
smallest change that would in a normal build (not MIL linking) require only a single module to be
translated.

» Application wide optimization mode: Optimize less/Build faster

When this option is disabled, the compiler splits the MIL stream after MIL linking in separate modules.
This allows the code generation to be performed for the modified modules only, and will therefore be
faster than with the other option enabled. Although the MIL stream is split in separate modules after
MIL linking, it still may happen that modifying a single C source file results in multiple MIL files to be
compiled. This is a natural result of global optimizations, where the code generated for multiple modules
was affected by the change.

In general, if you do not need code compaction, for example because you are optimizing fully for speed,
it is recommended to choose Optimize less/Build faster.

Application wide automatic near allocation

The C compiler option --automatic-near, in Eclipse enabled on page C/C++ Compiler » Allocation with
option Application wide automatic near data allocation, requires MIL linking. As described in the
previous section, MIL linking will already increase the build time. The automatic near allocation itself also
increases the build time.

Optimization Options
In general any optimization may require more work to be done by the compiler. But this does not mean
that disabling all optimizations (level 0) gives the fastest compilation time. Disabling optimizations may

result in more code being generated, resulting in more work for other parts of the compiler, like for example
the register allocator.

219



TASKING VX-toolset for C166 User Guide

Automatic Inlining

Automatic inlining is an optimization which can result in significant longer build time. The overall functions
will get bigger, often making it possible to do more optimizations. But also often resulting in more registers
to be in use in a function, giving the register allocation a tougher job.

Code Compaction

When you disable the code compaction optimization, the build times may be shorter. Certainly when MIL
linking is used where the full application is passed as a single MIL stream to the code generation. Code
compaction is however an optimization which can make a huge difference when optimizing for code size.
When size matters it makes no sense to disable this option. When you choose to optimize for speed
(--tradeoff=0) the code compaction is automatically disabled.

Header Files

Many applications include all header files in each module, often by including them all within a single
include file. Processing header files takes time. It is a good programming practice to only include the
header files that are really required in a module, because:

* itis clear what interfaces are used by a module
» an incremental build after modifying a header file results in less modules required to be rebuild

* it reduces compile time
Parallel Build

The make utility amk, which is used by Eclipse, has a feature to build jobs in parallel. This means that
multiple modules can be compiled in parallel. With today's multi-core processors this means that each
core can be fully utilized. In practice even on single core machines the compile time decreases when
using parallel jobs. On multi-core machines the build time even improves further when specifying more
parallel jobs than the number of cores.
In Eclipse you can control the parallel build behavior:
1. From the Project menu, select Properties for

The Properties dialog appears.
2. Inthe left pane, select C/C++ Build.

In the right pane the C/C++ Build page appears.

3. On the Behaviour tab, select Use parallel build.

4. You can specify the number of parallel jobs, or you can use an optimal number of jobs. In the last
case, amk will fork as many jobs in parallel as cores are available.

220



Using the C Compiler

Number of Sections

The linker speed depends on the number of sections in the object files. The more sections, the longer
the locating will take. You can decrease the link time by creating output sections in the LSL file. For
example:

section_layout ::code

{
group (ordered)
{
section "code_outputl" ( size = 64k, attributes = x, fill=0xFF,
overflow = "code_out put2")
{
sel ect "*__cocofun*";
}
}
}

4.8. Static Code Analysis

Static code analysis (SCA) is a relatively new feature in compilers. Various approaches and algorithms
exist to perform SCA, each having specific pros and cons.

SCA Implementation Design Philosophy

SCA is implemented in the TASKING compiler based on the following design criteria:

* An SCA phase does not take up an excessive amount of execution time. Therefore, the SCA can be
performed during a normal edit-compile-debug cycle.

» SCA is implemented in the compiler front-end. Therefore, no new makefiles or work procedures have
to be developed to perform SCA.

* The number of emitted false positives is kept to a minimum. A false positive is a message that indicates
that a correct code fragment contains a violation of a rule/recommendation. A number of warnings is
issued in two variants, one variant when it is guaranteed that the rule is violated when the code is
executed, and the other variant when the rules is potentially violated, as indicated by a preceding
warning message.

For example see the following code fragment:

extern int some_condition(int);
void f(void)

{
char buf[10];

int i;
for (i =0; i <= 10; i++)
{

if (some_condition(i))

{

221



TASKING VX-toolset for C166 User Guide

buf[i] = 0; /* subscript may be out of bounds */

}

As you can see in this example, if i =10 the array buf [ ] might be accessed beyond its upper boundary,
depending on the result of sone_condi ti on(i).If the compiler cannot determine the result of this
function at run-time, the compiler issues the warning "subscript is possibly out of bounds" preceding
the CERT warning "ARR35: do not allow loops to iterate beyond the end of an array". If the compiler
can determine the result, or ifthe i f statement is omitted, the compiler can guarantee that the "subscript
is out of bounds".

» The SCA implementation has real practical value in embedded system development. There are no real
objective criteria to measure this claim. Therefore, the TASKING compilers support well known standards
for safety critical software development such as the MISRA guidelines for creating software for safety
critical automotive systems and secure "CERT C Secure Coding Standard" released by CERT. CERT
is founded by the US government and studies internet and networked systems security vulnerabilities,
and develops information to improve security.

Effect of optimization level on SCA results
The SCA implementation in the TASKING compilers has the following limitations:

» Some violations of rules will only be detected when a particular optimization is enabled, because they
rely on the analysis done for that optimization, or on the transformations performed by that optimization.
In particular, the constant propagation and the CSE/PRE optimizations are required for some checks.
It is preferred that you enable these optimizations. These optimizations are enabled with the default
setting of the optimization level (-O2).

» Some checks require cross-module inspections and violations will only be detected when multiple
source files are compiled and linked together by the compiler in a single invocation.

4.8.1. C Code Checking: CERT C

The CERT C Secure Coding Standard provides rules and recommendations for secure coding in the C
programming language. The goal of these rules and recommendations is to eliminate insecure coding
practices and undefined behaviors that can lead to exploitable vulnerabilities. The application of the secure
coding standard will lead to higher-quality systems that are robust and more resistant to attack.

For details about the standard, see the CERT C Secure Coding Standard web site. For general information
about CERT secure coding, see www.cert.org/secure-coding.

Versions of the CERT C standard

Version 1.0 of the CERT C Secure Coding Standard is available as a book by Robert C. Seacord
[Addison-Wesley]. Whereas the web site is a wiki and reflects the latest information, the book serves as
a fixed point of reference for the development of compliant applications and source code analysis tools.

The rules and recommendations supported by the TASKING compiler reflect the version of the CERT
web site as of June 1 2009.

222


https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
http://www.cert.org/secure-coding

Using the C Compiler
The following rules/recommendations implemented by the TASKING compiler, are not part of the book:
PRE11-C, FLP35-C, FLP36-C, MSC32-C

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 19, CERT C Secure Coding Standard.

Priority and Levels of CERT C

Each CERT C rule and recommendation has an assigned priority. Three values are assigned for each
rule on a scale of 1 to 3 for

* severity - how serious are the consequences of the rule being ignored
1. low (denial-of-service attack, abnormal termination)
2. medium (data integrity violation, unintentional information disclosure)
3. high (run arbitrary code)

« likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1. unlikely
2. probable
3. likely
» remediation cost - how expensive is it to comply with the rule
1. high (manual detection and correction)
2. medium (automatic detection and manual correction)
3. low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules (low severity, unlikely, expensive to
repair flaws), 6-9 are level 2 (medium severity, probable, medium cost to repair flaws), and 12-27 are
level 1 (high severity, likely, inexpensive to repair flaws).

The TASKING compiler checks most of the level 1 and some of the level 2 CERT C recommendations/rules.

For a complete overview of the supported CERT C recommendations/rules by the TASKING compiler,
see Chapter 19, CERT C Secure Coding Standard.

To apply CERT C code checking to your application
1. From the Project menu, select Properties for

The Properties dialog appears.

223


http://doc.tasking.com/cert/pre11.html
http://doc.tasking.com/cert/flp35.html
http://doc.tasking.com/cert/flp36.html
http://doc.tasking.com/cert/msc32.html

TASKING VX-toolset for C166 User Guide

2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » CERT C Secure Coding.
4. Make a selection from the CERT C secure code checking list.

5. If you selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

On the command line you can use the option --cert.
c166 --cert={all | nane [-nane],...]

With --diag=cert you can see a list of the available checks, or you can use a three-letter mnemonic to
list only the checks in a particular category. For example, --diag=pre lists all supported checks in the
preprocessor category.

4.8.2. C Code Checking: MISRA-C

The C programming language is a standard for high level language programming in embedded systems,
yetitis considered somewhat unsuitable for programming safety-related applications. Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA-C code
checking helps you to produce more robust code.

MISRA-C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).

The compiler also supports MISRA-C:1998, the first version of MISRA-C. You can select this version with
the following C compiler option:

--m srac-versi on=1998
For a complete overview of all MISRA-C rules, see Chapter 20, MISRA-C Rules.
Implementation issues

The MISRA-C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA-C rules are indicated with error messages
and the build process is halted.

MISRA-C rules are divided in required rules and advisory rules. If rules are violated, errors are generated
causing the compiler to stop. With the following options warnings, instead of errors, are generated for
either or both the required rules and the advisory rules:

--m srac-required-warni ngs
--m srac-advi sory-war ni ngs

224



Using the C Compiler

Note that not all MISRA-C violations will be reported when other errors are detected in the input
source. For instance, when there is a syntax error, all semantic checks will be skipped, including
some of the MISRA-C checks. Also note that some checks cannot be performed when the
optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA-C rules throughout the entire project, the TASKING linker can
generate a MISRA-C Quality Assurance report. This report lists the various modules in the project with
the respective MISRA-C settings at the time of compilation. You can use this in your company's quality
assurance system to provide proof that company rules for best practice programming have been applied
in the particular project.

To apply MISRA-C code checking to your application
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » MISRA-C.
4. Select the MISRA-C version (2004 or 1998).

5. Inthe MISRA-C checking box select a MISRA-C configuration. Select a predefined configuration
for conformance with the required rules in the MISRA-C guidelines.

6. (Optional) In the Custom 2004 or Custom 1998 entry, specify the individual rules.
On the command line you can use the option --misrac.

c166 --msrac={all | nunber [-nunber],...]

4.9. C Compiler Error Messages

The C compiler reports the following types of error messages in the Problems view of Eclipse.
F ( Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced unless you have
set the C compiler option --keep-output-files (the resulting output file may be incomplete).

225



TASKING VX-toolset for C166 User Guide

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the compiler for a situation which may not be correct. You can control warnings
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties for menu (C compiler option --no-warnings).

| (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

SO##: internal consistency check failed - please report

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » General » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the C compiler option --diag to see an explanation of a diagnostic
message:

c166 --diag=[format:]{all | nunber,...]

226



Chapter 5. Using the C++ Compiler

This chapter describes the compilation process and explains how to call the C++ compiler. You should
be familiar with the C++ language and with the ISO C language.

The C++ compiler can be seen as a preprocessor or front end which accepts C++ source files or sources
using C++ language features. The output generated by the C++ compiler (cp166) is intermediate C, which
can be translated with the C compiler (c166).

The C++ compiler is part of a complete toolset, the TASKING VX-toolset for C166. For details about the
C compiler see Chapter 4, Using the C Compiler.

The C++ compiler takes the following files for input and output:

CHsource file
.CC
1

CH+ campiler

I
intermediate Cfile
Jic

Although in Eclipse you cannot run the C++ compiler separately from the other tools, this section discusses
the options that you can specify for the C++ compiler.

On the command line it is possible to call the C++ compiler separately from the other tools. However, it
is recommended to use the control program for command line invocations of the toolset (see Section 9.1,
Control Program). With the control program it is possible to call the entire toolset with only one command
line. Eclipse also uses the control program to call the C++ compiler. Files with the extensions . cc, . cpp
or . cxx are seen as C++ source files and passed to the C++ compiler.

The C++ compiler accepts the C++ language of the ISO/IEC 14882:1998 C++ standard, with some minor
exceptions documented in Chapter 2, C++ Language. It also accepts embedded C++ language extensions.

The C++ compiler does no optimization. Its goal is to produce quickly a complete and clean parsed form
of the source program, and to diagnose errors. It does complete error checking, produces clear error
messages (including the position of the error within the source line), and avoids cascading of errors. It
also tries to avoid seeming overly finicky to a knowledgeable C or C++ programmer.

5.1. Calling the C++ Compiler

Under Eclipse you cannot run the C++ compiler separately. However, you can set options specific for the
C++ compiler. After you have built your project, the output files are available in a subdirectory of your
project directory, depending on the active configuration you have set in the C/C++ Build » Settings page
of the Project » Properties for dialog.

Building a project under Eclipse
You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.

227



TASKING VX-toolset for C166 User Guide

1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (1),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (“2), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item.

Select a target processor (core)

Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Processor.
In the right pane the Processor page appears.

3. From the Processor selection list, select a processor.

To access the C/C++ compiler options

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select C/C++ Compiler.

4. Select the sub-entries and set the options in the various pages.

228



Using the C++ Compiler

Note that C++ compiler options are only enabled if you have added a C++ file to your project, a
file with the extension . cc, . cpp or . cxX.

Note that the options you enter in the Assembler page are also used for intermediate assembly
files.

You can find a detailed description of all C++ compiler options in Section 12.3, C++ Compiler Options.
Invocation syntax on the command line (Windows Command Prompt):
cpl66 [ [option]... [file]... ]...

5.2. How the C++ Compiler Searches Include Files

When you use include files (with the #i ncl ude statement), you can specify their location in several ways.
The C++ compiler searches the specified locations in the following order:

1. If the #i ncl ude statement contains an absolute pathname, the C++ compiler looks for this file. If no
path or a relative path is specified, the C++ compiler looks in the same directory as the source file.

This is only possible for include files that are enclosed in ™.

This first step is not done for include files enclosed in <>.

2. When the C++ compiler did not find the include file, it looks in the directories that are specified in the
C/C++ Compiler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the
Project Properties dialog (equivalent to the --include-directory (-I) command line option).

3. When the C++ compiler did not find the include file (because it is not in the specified include directory
or because no directory is specified), it looks in the path(s) specified in the environment variable
CP1661 NC.

4. When the C++ compiler still did not find the include file, it finally tries the default i ncl ude. cpp and
i ncl ude directory relative to the installation directory.

5. If the include file is still not found, the directories specified in the --sys-include option are searched.

If the include directory is specified as -, e.g., -I-, the option indicates the point in the list of -1 or
--include-directory options at which the search for file names enclosed in <. . . > should begin. That is,
the search for <. . . > names should only consider directories named in -l or --include-directory options
following the -I-, and the directories of items 3 and 4 above. -I- also removes the directory containing the
current input file (item 1 above) from the search path for file names enclosed in". .. ".

An include directory specified with the --sys-include option is considered a "system" include directory.
Warnings are suppressed when processing files found in system include directories.

If the filename has no suffix it will be searched for by appending each of a set of include file suffixes.
When searching in a given directory all of the suffixes are tried in that directory before moving on to the

229



TASKING VX-toolset for C166 User Guide

next search directory. The default set of suffixes is, no extension and . st dh. The default can be overridden
using the --incl-suffixes command line option. A null file suffix cannot be used unless it is present in the
suffix list (that is, the C++ compiler will always attempt to add a suffix from the suffix list when the filename
has no suffix).

Example

Suppose that the C++ source file t est . cc contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc. h"

You can call the C++ compiler as follows:
cpl66 -1 nyinclude test.cc

First the C++ compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current
directory. If it was not found, the C++ compiler searches in the environment variable CP1661 NC and then
in the defaulti ncl ude directory.

The C++ compiler now looks for the file myi nc. h, in the directory where t est . cc is located. If the file
is not there the C++ compiler searches in the directory nyi ncl ude. If it was still not found, the C++
compiler searches in the environment variable CP1661 NC and then in the defaulti ncl ude. cpp and

i ncl ude directories.

5.3. C++ Compiler Error Messages

The C++ compiler reports the following types of error messages in the Problems view of Eclipse.
F ( Fatal errors)

Catastrophic errors, also called 'fatal errors', indicate problems of such severity that the compilation cannot
continue. For example: command-line errors, internal errors, and missing include files. If multiple source
files are being compiled, any source files after the current one will not be compiled.

E (Errors)

Errors indicate violations of the syntax or semantic rules of the C++ language. Compilation continues,
but object code is not generated.

W (Warnings)

Warnings indicate something valid but questionable. Compilation continues and object code is generated
(if no errors are detected). You can control warnings in the C/C++ Build » Settings » Tool Settings »
C/C++ Compiler » Diagnostics page of the Project » Properties for menu (C++ compiler option
--no-warnings).

R (Remarks)

Remarks indicate something that is valid and probably intended, but which a careful programmer may
want to check. These diagnostics are not issued by default. Compilation continues and object code is

230



Using the C++ Compiler

generated (if no errors are detected). To enable remarks, enable the option Issue remarks on C++ code
in the C/C++ Build » Settings » Tool Settings » C/C++ Compiler » Diagnostics page of the Project
» Properties for menu (C++ compiler option --remarks).

S (Internal errors)

Internal compiler errors are caused by failed internal consistency checks and should never occur. However,
if such a 'SYSTEM' error appears, please report the occurrence to Altium. Please include a small C++
program causing the error.

Message format

By default, diagnostics are written in a form like the following:

cpl66 E0020: ["test.cc" 3] identifier "nane" is undefined

With the command line option --error-file=file you can redirect messages to a file instead of st derr .

Note that the message identifies the file and line involved. Long messages are wrapped to additional lines
when necessary.

With the option C/C++ Build » Settings » Tool Settings » Global Options » Treat warnings as errors
(option --warnings-as-errors) you can change the severity of warning messages to errors.

For some messages, a list of entities is useful; they are listed following the initial error message:

cpl66 E0308: ["test.cc" 4] nore than one instance of overl oaded
function "f" matches the argunent |ist:
function "f(int)"
function "f(float)"
argunment types are: (double)

In some cases, some additional context information is provided; specifically, such context information is
useful when the C++ compiler issues a diagnostic while doing a template instantiation or while generating
a constructor, destructor, or assignment operator function. For example:

cpl66 E0265: ["test.cc" 7] "A:A()" is inaccessible
detected during inplicit generation of "B::B()" at line 7

Without the context information, it is very hard to figure out what the error refers to.
Termination Messages

The C++ compiler writes sign-off messages to st der r (the Problems view in Eclipse) if errors are detected.
For example, one of the following forms of message

n errors detected in the conpilation of "file".
1 catastrophic error detected in the conpilation of "file".

n errors and 1 catastrophic error detected in the conpilation of "file".

231



TASKING VX-toolset for C166 User Guide

is written to indicate the detection of errors in the compilation. No message is written if no errors were
detected. The following message

Error limt reached.

is written when the count of errors reaches the error limit (see the option --error-limit); compilation is
then terminated. The message

Conpi | ation termn nated.

is written at the end of a compilation that was prematurely terminated because of a catastrophic error.
The message

Conpi | ati on aborted

is written at the end of a compilation that was prematurely terminated because of an internal error. Such
an error indicates an internal problem in the compiler. If such an internal error appears, please report the
occurrence to Altium. Please include a small C++ program causing the error.

232



Chapter 6. Profiling

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is. This chapter
describes the TASKING profiling method with code instrumentation techniques and static profiling.

6.1. What is Profiling?

Profiling is a collection of methods to gather data about your application which helps you to identify code
fragments where execution consumes the greatest amount of time.

TASKING supplies a number of profiler tools each dedicated to solve a particular type of performance
tuning problem. Performance problems can be solved by:

« Identifying time-consuming algorithms and rewrite the code using a more time-efficient algorithm.

« Identifying time-consuming functions and select the appropriate compiler optimizations for these functions
(for example, enable loop unrolling or function inlining).

« Identifying time consuming loops and add the appropriate pragmas to enable the compiler to further
optimize these loops.

A profiler helps you to find and identify the time consuming constructs and provides you this way with
valuable information to optimize your application.

TASKING employs various schemes for collecting profiling data, depending on the capabilities of the
target system and different information needs.

6.1.1. Methods of Profiling

There are several methods of profiling: recording by an instruction set simulator, profiling with code
instrumentation techniques (dynamic profiling) and profiling by the C compiler at compile time (static
profiling). Each method has its advantages and disadvantages.

Profiling by an instruction set simulator

One way to gather profiling information is built into the instruction set simulator (ISS). The ISS records
the time consumed by each instruction that is executed. The debugger then retrieves this information and
correlates the time spent for individual instructions to C source statements.

Advantages
* it gives (cycle) accurate information with extreme fine granularity
« the executed code is identical to the non-profiled code

Disadvantages

» the method requires an ISS as execution environment

233



TASKING VX-toolset for C166 User Guide

Profiling using code instrumentation techniques (Dynamic Profiling)

The TASKING C compiler has an option to add code to your application which takes care of the profiling
process. This is called code instrumentation. The gathered profiling data is first stored in the target's
memory and will be written to a file when the application finishes execution or when the function
__prof_cl eanup() is called.

Advantages

* it can give a complete call graph of the application annotated with the time spent in each function and
basic block

« this profiling method is execution environment independent
« the application is profiled while it executes on its aimed target taking real-life input

Disadvantage

* instrumentation code creates a significant run-time overhead, and instrumentation code and gathered
data take up target memory

This method provides a valuable complement to the other two methods and is described into more detail
below.

Profiling estimation by the C compiler (Static Profiling)

The TASKING C compiler has an option to generate static profile information through various heuristics
and estimates. The profiling data produced this way at compile time is stored in an XML file, which can
be processed and displayed using the same tools used for dynamic (run-time) profiling.

Advantages

* it can give a give a quick estimation of the time spent in each function and basic block
« this profiling method is execution environment independent

« the application is profiled at compile time

* it requires no extra code instrumentation, so no extra run-time overhead
Disadvantage

* itis an estimation by the compiler and therefore less accurate than dynamic profiling

This method also is described into more detail below.

6.2. Profiling using Code Instrumentation (Dynamic Profiling)

Profiling can be used to determine which parts of a program take most of the execution time.

Once the collected data are presented, it may reveal which pieces of your code execute slower than
expected and which functions contribute most to the overall execution time of a program. It gives you
also information about which functions are called more or less often than expected. This information not

234



Profiling

only reveal design flaws or bugs that had otherwise been unnoticed, it also reveals parts of the program
which can be effectively optimized.

Important considerations

The dynamic profiling method adds code to your original application which is needed to gather the profiling
data. Therefore, the code size of your application increases. Furthermore, during the profiling process,
the gathered data is initially stored into dynamically allocated memory of the target. The heap of your
application should be large enough to store this data. Since code instrumentation is done by the compiler,
assembly functions used in your program do not show up in the profile.

The profiling information is collected during the actual execution of the program. Therefore, the input of
the program influences the results. If a part/function of the program is not activated while the program is
profiled, no profile data is generated for that part/function.

When you use dynamic profiling on a target board, function cl ock() must be added to the application
to get profiling timer results. You can add the file t i ner . ¢ from the example Profiling project to your
project as a starting point.

Itis not possible to profile applications that are compiled with the optimization code compaction (C compiler
option --optimize=+compact). Therefore, when you turn profiling on, the compiler automatically disables
parts of the code compaction optimization.

Overview of steps to perform

To obtain a profile using code instrumentation, perform the following steps:
1. Compile and link your program with profiling enabled

2. Execute the program to generate the profile data

3. Display the profile

First you need a completed project. If you are not using your own project, use the pr of i | i ng example
as described below.

1. From the File menu, select Import...
The Import dialog appears.
2. Select TASKING C/C++ » TASKING C166 Example Projects and click Next.
3. Inthe Example projects box, disable all projects except profiling.
4. Click Finish.

The profi |l i ng project should now be visible in the C/C++ view.
6.2.1. Step 1: Build your Application for Profiling

The first step is to add the code that takes care of the profiling, to your application. This is done with C
compiler options:

235



TASKING VX-toolset for C166 User Guide

1. From the Project menu, select Properties for
The Properties for profiling dialog box appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, expand the C/C++ Compiler entry and select Debugging.

4. Enable one or more of the following Generate profiling information options (the sample profi | i ng
project already has profiling options enabled).

» for block counters (not in combination with Call graph or Function timers)
» to build a call graph (not in combination with Block counters)
 for function counters
 for function timers (not in combination with Block counters/Function counters)
Note that the more detailed information you request, the larger the overhead in terms of

execution time, code size and heap space needed. The option Generate symbolic debug
information (--debug) does not affect profiling, execution time or code size.

Block counters (not in combination with Call graph or Function timers)

This will instrument the code to perform basic block counting. As the program runs, it will count how
many time it executed each branch of each if statement, each iteration of a for loop, and so on. Note
that though you can combine Block counters with Function counters, this has no effect because
Function counters is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates
the caller with the gathered profiling data.

Function counters

This will instrument the code to perform function call counting. This is a subset of the basic Block
counters.

Function timers (not in combination with Block counters/Function counters)

This will instrument the code to measure the time spent in a function. This includes the time spent
in all called functions (callees).

For the command line, see the C compiler option --profile (-p).
Profiling is only possible with optimization levels 0, 1 and 2. So:

5. Open the Optimization page and set the Optimization level to 2 - Optimize more.

236



Profiling

6. Click OK to apply the new option settings and rebuild the project (%),
6.2.1.1. Profiling Modules and C Libraries
Profiling individual modules

It is possible to profile individual C modules. In this case only limited profiling data is gathered for the
functions in the modules compiled without the profiling option. When you use the suboption Call graph,
the profiling data reveals which profiled functions are called by non-profiled functions. The profiling data
does not show how often and from where the non-profiled functions themselves are called. Though this
does not affect the flat profile, it might reduce the usefulness of the call graph.

Profiling C library functions

Eclipse and/or the control program will link your program with the standard version of the C library.
Functions from this library which are used in your application, will not be profiled. If you do want to
incorporate the library functions in the profile, you must set the appropriate C compiler options in the C
library makefiles and rebuild the library.

6.2.1.2. Linking Profiling Libraries

When building your application, the application must be linked against the corresponding profile library.

Eclipse (or the control program) automatically select the correct library based on the profiling options you
specified. However, if you compile, assemble and link your application manually, make sure you specify
the correct library.

See Section 8.3, Linking with Libraries for an overview of the (profiling) libraries.

6.2.2. Step 2: Execute the Application

Once you have compiled and linked the application for profiling, it must be executed to generate the
profiling data. Run the program as usual: the program should run normally taking the same input as usual
and producing the same output as usual. The application will run somewhat slower than normal because
of the extra time spent on collecting the profiling data.

Eclipse has already made a default simulator debug configuration for your project. Follow the steps below
to run the application on the TASKING simulator, using the debugger. (In fact, you can run the application
also on a target board.)

1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.
2. Select the simulator debug configuration (TASKING C/C++ Debugger » profiling.simulator).
3. Click the Debug button to start the debugger and launch the profiling application.

Eclipse will open the TASKING Debug perspective (as specified in the configuration) and asks for
confirmation.

4. Click Yes to open the TASKING Debug perspective.

237



TASKING VX-toolset for C166 User Guide

The TASKING Debug perspective opens while the application has stopped before it enters main()

5 Inthe Debug view, click on the ¥ (Resume) button.
A file system simulation (FSS) view appears in which the application outputs the results.

When the program has finished, the collected profiling data is saved (for details see 'After execution'
below).

Startup code

The startup code initializes the profiling functions by calling the function __pr of _i ni t () . Eclipse will
automatically make the required modifications to the startup code. Or, when you use the control program,
this extracts the correct startup code from the C library.

If you use your own startup code, you must manually insert a call to the function __pr of _i ni t just before
the call to _mai n and its stack setup.

An application can have multiple entry points, such as mai n() and other functions that are called by
interrupt. This does not affect the profiling process.

Small heap problem

When the program does not run as usual, this is typically caused by a shortage of heap space. In this
case a message is issued (when running with file system simulation, it is displayed on the Debug console).
To solve this problem, increase the size of the heap. Information about the heap is stored in the linker
script file (.Isl) file which is automatically added when a project is created.

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Stack/Heap.
In the right pane the Stack/Heap property page appears.
3. Enter larger values for nheap (near heap) and hheap (huge heap) and click OK.

The project LSL file is updated automatically according to the new settings.

Presumable incorrect call graph

The call graph is based on the compiled source code. Due to compiler optimizations the call graph may
therefor seem incorrect at first sight. For example, the compiler can replace a function call immediately
followed by a return instruction by a jump to the callee, thereby merging the callee function with the caller
function. In this case the time spent in the callee function is not recorded separately anymore, but added
to the time spent in the caller function (which, as said before, now holds the callee function). This represents
exactly the structure of your source in assembly but may differ from the structure in the initial C source.

238



Profiling

After execution

When the program has finished (returning from mai n() ), the exit code calls the function

__prof _cl eanup(voi d) . This function writes the gathered profiling data to a file on the host system
using the debugger's file system simulation features. If your program does not return from mai n() , you
can force this by inserting a call to the function __pr of _cl eanup() in your application source code.
Please note the double underscores when calling from C code!

The resulting profiling data file is named anon. prf.
If your program does not run under control of the debugger and therefore cannot use the file
system simulation (FSS) functionality to write a file to the host system, you must implement a way
to pass the profiling data gathered on the target to the host. Adapt the function
__prof _cl eanup() in the profiling libraries or the underlying 1/0 functions for this purpose.

6.2.3. Step 3: Displaying Profiling Results

After the function __pr of _cl eanup() has been executed, the result of the profiler can be displayed in
the TASKING Profiler perspective. The profiling data in the file anon. prf is then converted to an XML
file. This file is read and its information is displayed. To view the profiling information, open the TASKING
Profiler perspective:

1. From the Window menu, select Open Perspective » Other...
The Select Perspective dialog appears.
2. Select the TASKING Profiler perspective and click OK.

The TASKING Profiler perspective opens.

239



TASKING VX-toolset for C166 User Guide

W TASKING Prafiler - profiling/profiling.c - TASKING VX-toolset for C166

File Edit Source Refactor Mawigate Search Project Debug Window Help
< w g e [T R < G R i LR R B | @ TaskinG Prof.,, |
B& Cjc++ Projects 52 T Wavigator = 0/ [ profiing.c ¥ =0
= he
/% main routine calls both the critical and non critical path +/
= =% profiling [ Active - Debug ] ~ void mainivoid)
v&b Binaries 1
[ Includes printf( "Profiling examwplein®™ ):
(= Debug non_eriticall( 3 ):
€] estart.c crivicall( 3 j:
B cstart.h printf{ "Dons\n" };
@ profiling.c }
@ time.c
@ profiling.lsl -
\=| profiling.simulatar.Jaunch o
3 profiler &3 [ & & ~ =0
Module: #line | Function Tatal Time Self Time %in Function  Calls | #Callers | #Callees
_Cstart 0,000000 1
CA\profiling.c 53 non_criticall 0.000100 1 1 1
J\profiling.c &0 non_criticalz  0,000:300 0,000100 1 1 1
CAprofiling.c 38 criticall 0.000700 0.000200 1 1 2
Slprofiling.c 46 criticalz 0,000:300 0,000200 1 1 1
\profiling.c 67 non_critical3  0.000400 0.000200 2 2 1
CA\profiling.c 74 print_result 0.000300 0.000300 3 2
13- Callers | Callees &7 [&e ¢ 7 -8
Module: #line | Caller Tartal Time Self Time Contribution % Calls Calls %
_eskart 0,000300 0.000000 100.00% 1 100.0...
Madule: #lne | Callee Total Timne Self Time Contribution % Calls Calls %
.\profiling.c 53 non_criticall  0.000300 0.000100 33.33% 1 50.00%:
CAprofiling.c 38 criticall 0.000700 0.000200 FRIEW 1 50.00%
me
The TASKING Profiler perspective
The TASKING Profiler perspective contains the following Views:
Profiler view Shows the profiling information of all functions in all C source modules belonging

to your application.

Callers / Callees The first table in this view, the callers table, shows the functions that called the
view focus function.

The second table in this view, the callees table, shows the functions that are called
by the focus function.

* Clicking on a function (or on its table row) makes it the focus function.

» Double-clicking on a function, opens the appropriate C source module in the Editor view at the location
of the function definition.

» To sort the rows in the table, click on one of the column headers.

240



Profiling

The profiling information

Based on the profiling options you have set before compiling your application, some profiling data may
be present and some may be not. The columns in the tables represent the following information:

Module
#Line
Function

Total Time

Self Time

% in
Function

Calls
#Callers
#Callees

Contribution
%

Calls %

The C source module in which the function resides.
The line number of the function definition in the C source module.

The function for which profiling data is gathered and (if present) the code blocks in each
function. To show or hide the block counts, in the Profiler view click the Menu button (=)
and select Show Block Counts.

The total amount of time in seconds that was spent in this function and all of its
sub-functions.

The amount of time in seconds that was spent in the function itself. This excludes the
time spent in the sub-functions. So, self time = function's total time - total times of the
called functions.

This is the relative amount of time spent in this function, calculated as a percentage of
the total application time. These should add up to 100%. The total application time is
determined by taking the total time of the call graph. This is usually main or cstart.
Example:

Total tine of main: 0.002000
Self tinme of function foo: 0.000100
% n Function = (0.000100 / 0.002000) * 100 = 5%

Number of times the function has been executed.
Number of functions by which the function was called.
Number of functions that was actually called from this function.

In the caller table: shows for which part (in percent) the caller contributes to the time spent
in the focus function.

In the callee table: shows how much time the focus function has spent relatively in each
of its callees.

In the caller table: shows how often each callee was called as a percentage of all calls
from the focus function.

In the callee table: shows how often the focus function was called from a particular caller
as a percentage of all calls to the focus function.

Common toolbar icons

Icon Action Description
) Show/Hide Block |Toggle. If enabled, shows profiling information for block counters.

Counts
&= Link with Editor | Toggle. If enabled, updates the profiling information according to the active
o .

source file.

- Select Profiling Opens a dialog where you can specify profiling files for display.

File(s)

241



TASKING VX-toolset for C166 User Guide

Icon Action Description
o Refresh Profiler |Updates the views with the latest profiling information.
Data

Viewing previously recorded profiling results, combining results

Each time you run your application, new profiling information is gathered and stored in the file amon. prf .
You can store previous results by renaming the file anon. pr f (keep the extension . pr f); this prevents
the existing anon. prf from being overwritten by the new anon. pr f . At any time, you can reload these
profiling results in the profiler. You can even load multiple . pr f files into the Profiler to view the combined
results.

First, open the TASKING Profiler perspective if it is not open anymore:

1. In the Profiler view, click on the & (Select Profiling File(s)) button.

The Select Profiling File(s) dialog appears.
2. Inthe Profiling Type group box, select Dynamic Profiling.
3. Inthe Profiling Files group box, disable the option Use default.
4. Click the Add... button, select the . prf files you want to load and click Open to confirm your choice.
5. Make sure the correct symbol file is selected, in this example profi ling. el f.

6. Click OK to finish.

6.3. Profiling at Compile Time (Static Profiling)

Just as with dynamic profiling, static profiling can be used to determine which parts of a program take
most of the execution time. It can provide a good alternative if you do not want that your code is affected
by extra code.

Overview of steps to perform

To obtain a profile using code instrumentation, perform the following steps:
1. Compile and link your program with static profiling enabled

2. Display the profile

First you need a completed project. If you are not using your own project, use the pr of i | i ng example
as described in Section 6.2, Profiling using Code Instrumentation (Dynamic Profiling).

6.3.1. Step 1: Build your Application with Static Profiling

The first step is to tell the C compiler to make an estimation of the profiling information of your application.
This is done with C compiler options:

1. From the Project menu, select Properties for

242



5.

6.

Profiling

The Properties for profiling dialog box appears.

In the left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

On the Tool Settings tab, expand the C/C++ Compiler entry and select Debugging.
Enable Static profiling.

For the command line, see the C compiler option --profile (-p).

Profiling is only possible with optimization levels 0, 1 and 2. So:

Open the Optimization page and set the Optimization level to 2 - Optimize more.

Click OK to apply the new option settings and rebuild the project (%).

6.3.2. Step 2: Displaying Static Profiling Results

After your project has been built with static profiling, the result of the profiler can be displayed in the
TASKING Profiler perspective. The profiling data of each individual file (. sxn ), is combined in the XML
file profi | i ng. xpr of . This file is read and its information is displayed. To view the profiling information,
open the TASKING Profiler perspective:

1.

From the Window menu, select Open Perspective » Other...
The Select Perspective dialog appears.
Select the TASKING Profiler perspective and click OK.

The TASKING Profiler perspective opens. This perspective is explained in Section 6.2.3, Step 3:
Displaying Profiling Results

To display static profiling information in the Profiler view

1.

In the Profiler view, click on the & (Select Profiling File(s)) button.
The Select Profiling File(s) dialog appears.

In the Profiling Type group box, select Static Profiling.

In the Static Profiling File group box, enable the option Use default.

By default, the file project. xpr of is used (profi | i ng. xpr of ). If you want to specify another file,
disable the option Use default and use the edit field and/or Browse button to specify a static profiling
file (. xpr of ).

Click OK to finish.

243



TASKING VX-toolset for C166 User Guide

244



Chapter 7. Using the Assembler

This chapter describes the assembly process and explains how to call the assembler.

The assembler converts hand-written or compiler-generated assembly language programs into machine
language, resulting in object files in the ELF/DWARF object format.

The assembler takes the following files for input and output:

assembly file
. 5ICC
assembly file . asm ¥ |
¢hand coded? | w= listfile .1st
assemhbler

-———MF QITOrmessages  ers

relocatahle object file
.ohj

The following information is described:
» The assembly process.

» How to call the assembler and how to use its options. An extensive list of all options and their descriptions
is included in Section 12.4, Assembler Options.

» The various assembler optimizations.
» How to generate a list file.

» Types of assembler messages.

7.1. Assembly Process

The assembler generates relocatable output files with the extension . obj . These files serve as input for
the linker.

Phases of the assembly process

 Parsing of the source file: preprocessing of assembler directives and checking of the syntax of
instructions

« Optimization (instruction size and generic instructions)
» Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See Section 3.10, Macro Operations for more
information.

7.2. Calling the Assembler

C166 under Eclipse can use the internal builder (default) or the TASKING makefile generator (external
builder) to build your entire project. After you have built your project, the output files are available in a

245



TASKING VX-toolset for C166 User Guide

subdirectory of your project directory, depending on the active configuration you have set in the C/C++
Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

Build Selected File(s) (). This compiles and assembles the selected file(s) without calling the linker.
1. In the C/C++ Projects view, select the files you want to compile.

2. Right-click in the C/C++ Projects view and select Build Selected File(s).

* Build Individual Project (),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (%), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

This way of building is not recommended for C/C++ development, but to enable this feature select
Project » Build Automatically and ensure there is a check mark beside the Build Automatically
menu item. In order for this option to work, you must also enable option Build on resource save (Auto
build) on the Behaviour tab of the C/C++ Build page of the Project » Properties for dialog.

Select a target processor (core)
Processor options affect the invocation of all tools in the toolset. In Eclipse you only need to set them
once. Based on the target processor, the compiler includes a special function register file. This is a regular
include file which enables you to use virtual registers that are located in memory.
1. From the Project menu, select Properties for

The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Processor.

In the right pane the Processor page appears.

3. From the Processor selection list, select a processor.

To access the assembler options

1. From the Project menu, select Properties for

246



Using the Assembler

The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler.
4. Select the sub-entries and set the options in the various pages.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

You can find a detailed description of all assembler options in Section 12.4, Assembler Options.
Invocation syntax on the command line (Windows Command Prompt):
asl6e6 [ [option]... [file]l... ]...

The input file must be an assembly source file (. asmor . src).

7.3. How the Assembler Searches Include Files

When you use include files (with the . | NCLUDE directive), you can specify their location in several ways.
The assembler searches the specified locations in the following order:

1. If the . | NCLUDE directive contains an absolute path name, the assembler looks for this file. If no path
or a relative path is specified, the assembler looks in the same directory as the source file.

2. When the assembler did not find the include file, it looks in the directories that are specified in the
Assembler » Include Paths page in the C/C++ Build » Settings » Tool Settings tab of the Project
Properties dialog (equivalent to the -1 command line option).

3. When the assembler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable AS1661 NC.

4. When the assembiler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example

Suppose that the assembly source file t est . asmcontains the following lines:
. I NCLUDE ' nyi nc.inc'

You can call the assembler as follows:

asl1l66 -1 nyinclude test.asm

247



TASKING VX-toolset for C166 User Guide

First the assembler looks for the file nyi nc. asm in the directory where t est . asmis located. If the file
is not there the assembler searches in the directory nmyi ncl ude. If it was still not found, the assembler
searches in the environment variableAS1661 NC and then in the default i ncl ude directory.

7.4. Assembler Optimizations

The assembler can perform various optimizations that you can enable or disable.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Optimization.
4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Allow JMPA+/JMPA- for speed optimizations (option -Oa/-OA)

This optimization is only available for XC16x and Super10 targets. When this option is enabled, the generic
instructions JMP, JMP+, JMP-, JB+ and JB- can lead to an optimized JMPA+ or JMPA- instruction. When
this optimization is disabled, JMPR is used in all situations. This leads to a smaller code size. By default
this option is enabled.

Allow generic instructions (option -Og/-OG)

When this option is enabled, you can use generic instructions in your assembly source. The assembler
tries to replace instructions by faster or smaller instructions.

By default this option is enabled. If you turn off this optimization, generic instructions are not allowed. In
that case you have to use hardware instructions.

Optimize jump chains (option -Oj/-0J)
When this option is enabled, the assembler replaces chained jumps by a single jump instruction. For
example, a jump from a to b immediately followed by a jump from b to c, is replaced by a jump from a to

c. Note that this optimization has no effect on compiled C files, because jump chains are already optimized
by the compiler. By default this option is disabled.

Optimize instruction size (option -Os/-0S)

When this option is enabled, the assembler tries to find the shortest possible operand encoding for
instructions. By default this option is enabled.

248



Using the Assembler

7.5. Generating a List File

The list file is an additional output file that contains information about the generated code. You can
customize the amount and form of information.

If the assembler generates errors or warnings, these are reported in the list file just below the source line
that caused the error or warning.

To generate a list file
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » List File.
4. Enable the option Generate list file.
5. (Optional) Enable the options to include that information in the list file.
Example on the command line (Windows Command Prompt)
The following command generates the listfile t est . | st :
asle6 -1 test.asm

See Section 14.1, Assembler List File Format, for an explanation of the format of the list file.

7.6. Assembler Error Messages

The assembler reports the following types of error messages in the Problems view of Eclipse.
F ( Fatal errors)

After a fatal error the assembler immediately aborts the assembly process.

E (Errors)

Errors are reported, but the assembler continues assembling. No output files are produced unless you
have set the assembler option --keep-output-files (the resulting output file may be incomplete).

W (Warnings)

Warning messages do not result into an erroneous assembly output file. They are meant to draw your
attention to assumptions of the assembler for a situation which may not be correct. You can control
warnings in the C/C++ Build » Settings » Tool Settings » Assembler » Diagnostics page of the Project
» Properties for menu (assembler option --no-warnings).

249



TASKING VX-toolset for C166 User Guide

Display detailed information on diagnostics

1. From the Window menu, select Show View » Other » General » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

On the command line you can use the assembler option --diag to see an explanation of a diagnostic
message:

asl66 --diag=[format:]{all | nunber,...]

250



Chapter 8. Using the Linker

This chapter describes the linking process, how to call the linker and how to control the linker with a script
file.

The TASKING linker is a combined linker/locator. The linker phase combines relocatable object files

(. obj files, generated by the assembler), and libraries into a single relocatable linker object file (. out ).
The locator phase assigns absolute addresses to the linker object file and creates an absolute object file
which you can load into a target processor. From this point the term linker is used for the combined
linker/locator.

The linker can simultaneously link and locate all programs for all cores available on a target board. The

target board may be of arbitrary complexity. A simple target board may contain one standard processor

with some external memory that executes one task. A complex target board may contain multiple standard
processors and DSPs combined with configurable IP-cores loaded in an FPGA. Each core may execute
a different program, and external memory may be shared by multiple cores.

The linker takes the following files for input and output:
relocatable objectfiles . ohj

relocatahle linker ohjectfile . out —‘ ’— relocatable object library . 1ih
linkerscriptfile .11 — ink == linkermap file . map
inker
----- - errormessages | elk
relocatable linker objectfile . out J I—" memary definition
file .mdf
| 1 '
Intel Hex ELFDWARF 2 Iotorola S-record
ahsolute ohjectfile absolute obhject file absolute obhject file
Chesx .elf . &5re

This chapter first describes the linking process. Then it describes how to call the linker and how to use
its options. An extensive list of all options and their descriptions is included in Section 12.5, Linker Options.

To control the link process, you can write a script for the linker. This chapter shortly describes the purpose
and basic principles of the Linker Script Language (LSL) on the basis of an example. A complete description
of the LSL is included in Linker Script Language.

8.1. Linking Process

The linker combines and transforms relocatable object files (. obj ) into a single absolute object file. This
process consists of two phases: the linking phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files and libraries into a single
relocatable object file. In the second phase, the linker assigns absolute addresses to the object file so it
can actually be loaded into a target.

251



TASKING VX-toolset for C166 User Guide

Terms used in the linking process

Term

Definition

Absolute object file

Address
Address space

Architecture

Copy table

Core
Derivative

Library

Logical address

LSL file
MAU

Object code
Physical address
Processor

Relocatable object
file

Relocation

252

Object code in which addresses have fixed absolute values, ready to load into a
target.

A specification of a location in an address space.

The set of possible addresses. A core can support multiple spaces, for example in
a Harvard architecture the addresses that identify the location of an instruction
refer to code space, whereas addresses that identify the location of a data object
refer to a data space.

A description of the characteristics of a core that are of interest for the linker. This
encompasses the address space(s) and the internal bus structure. Given this
information the linker can convert logical addresses into physical addresses.

A section created by the linker. This section contains data that specifies how the
startup code initializes the data sections. For each section the copy table contains
the following fields:

« action: defines whether a section is copied or zeroed
» destination: defines the section's address in RAM
* source: defines the sections address in ROM

« length: defines the size of the section in MAUs of the destination space

An instance of an architecture.

The design of a processor. A description of one or more cores including internal
memory and any number of buses.

Collection of relocatable object files. Usually each object file in a library contains
one symbol definition (for example, a function).

An address as encoded in an instruction word, an address generated by a core
(CPU).

The set of linker script files that are passed to the linker.

Minimum Addressable Unit. For a given processor the number of bits between an
address and the next address. This is not necessarily a byte or a word.

The binary machine language representation of the C source.
An address generated by the memory system.

An instance of a derivative. Usually implemented as a (custom) chip, but can also
be implemented in an FPGA, in which case the derivative can be designed by the
developer.

Object code in which addresses are represented by symbols and thus relocatable.

The process of assigning absolute addresses.




Using the Linker

Term Definition

Relocation Information about how the linker must modify the machine code instructions when

information it relocates addresses.

Section A group of instructions and/or data objects that occupy a contiguous range of
addresses.

Section attributes  Attributes that define how the section should be linked or located.

Target The hardware board on which an application is executing. A board contains at least
one processor. However, a complex target may contain multiple processors and
external memory and may be shared between processors.

Unresolved A reference to a symbol for which the linker did not find a definition yet.

reference

8.1.1. Phase 1: Linking

The linker takes one or more relocatable object files and/or libraries as input. A relocatable object file, as
generated by the assembler, contains the following information:

* Header information: Overall information about the file, such as the code size, name of the source file
it was assembled from, and creation date.

» Object code: Binary code and data, divided into various named sections. Sections are contiguous
chunks of code that have to be placed in specific parts of the memory. The program addresses start
at zero for each section in the object file.

« Symbols: Some symbols are exported - defined within the file for use in other files. Other symbols are
imported - used in the file but not defined (external symbols). Generally these symbols are names of
routines or names of data objects.

» Relocation information: A list of places with symbolic references that the linker has to replace with
actual addresses. When in the code an external symbol (a symbol defined in another file or in a library)
is referenced, the assembler does not know the symbol's size and address. Instead, the assembler
generates a call to a preliminary relocatable address (usually 0000), while stating the symbol name.

» Debug information: Other information about the object code that is used by a debugger. The assembler
optionally generates this information and can consist of line numbers, C source code, local symbols
and descriptions of data structures.

The linker resolves the external references between the supplied relocatable object files and/or libraries
and combines the files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files and libraries. If the linker
encounters an unresolved symbol, it remembers its name and continues scanning. The symbol may be
defined elsewhere in the same file, or in one of the other files or libraries that you specified to the linker.
If the symbol is defined in a library, the linker extracts the object file with the symbol definition from the
library. This way the linker collects all definitions and references of all of the symbols.

Next, the linker combines sections with the same section name and attributes into single sections. The
linker also substitutes (external) symbol references by (relocatable) numerical addresses where possible.

253



TASKING VX-toolset for C166 User Guide

At the end of the linking phase, the linker either writes the results to a file (a single relocatable object file)
or keeps the results in memory for further processing during the locating phase.

The resulting file of the linking phase is a single relocatable object file (. out ). If this file contains unresolved
references, you can link this file with other relocatable object files (. obj ) or libraries (. | i b) to resolve
the remaining unresolved references.

With the linker command line option --link-only, you can tell the linker to only perform this linking phase
and skip the locating phase. The linker complains if any unresolved references are left.

8.1.2. Phase 2: Locating

In the locating phase, the linker assigns absolute addresses to the object code, placing each section in
a specific part of the target memory. The linker also replaces references to symbols by the actual address
of those symbols. The resulting file is an absolute object file which you can actually load into a target
memory. Optionally, when the resulting file should be loaded into a ROM device the linker creates a
so-called copy table section which is used by the startup code to initialize the data sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to modify this code according
to certain rules or relocation expressions to reflect the new addresses. These relocation expressions are
stored in the relocatable object file. Consider the following snippet of x86 code that moves the contents
of variable a to variable b via the eax register:

Al 3412 0000 nov a, %eax (a defined at 0x1234, byte reversed)
A3 0000 0000 mov %ax, b (b is inported so the instruction refers to
0x0000 since its |location is unknown)

Now assume that the linker links this code so that the section in which a is located is relocated by 0x10000
bytes, and b turns out to be at 0x9A12. The linker modifies the code to be:

Al 3412 0100 nov a, %eax (0x10000 added to the address)
A3 129A 0000 nov %ax, b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers in the data part of a relocatable
object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default ELF/DWARF format (. el f) contains
an image of the executable code and data, and can contain additional debug information. The Intel-Hex
format (. hex) and Motorola S-record format (. sr e) only contain an image of the executable code and
data. You can specify a format with the options --output (-0) and --chip-output (-c).

Controlling the linker

Via a so-called linker script file you can gain complete control over the linker. The script language is called
the Linker Script Language (LSL). Using LSL you can define:

* The memory installed in the embedded target system:

254



Using the Linker

To assign locations to code and data sections, the linker must know what memory devices are actually
installed in the embedded target system. For each physical memory device the linker must know its
start-address, its size, and whether the memory is read-write accessible (RAM) or read-only accessible
(ROM).

» How and where code and data should be placed in the physical memory:

Embedded systems can have complex memory systems. If for example on-chip and off-chip memory
devices are available, the code and data located in internal memory is typically accessed faster and
with dissipating less power. To improve the performance of an application, specific code and data
sections should be located in on-chip memory. By writing your own LSL file, you gain full control over
the locating process.

» The underlying hardware architecture of the target processor.

To perform its task the linker must have a model of the underlying hardware architecture of the processor
you are using. For example the linker must know how to translate an address used within the object
file (a logical address) into an offset in a particular memory device (a physical address). In most linkers
this model is hard coded in the executable and can not be modified. For the TASKING linker this
hardware model is described in the linker script file. This solution is chosen to support configurable
cores that are used in system-on-chip designs.

When you want to write your own linker script file, you can use the standard linker script files with
architecture descriptions delivered with the product.

See also Section 8.7, Controlling the Linker with a Script.

8.2. Calling the Linker

In Eclipse you can set options specific for the linker. After you have built your project, the output files are
available in a subdirectory of your project directory, depending on the active configuration you have set
in the C/C++ Build » Settings page of the Project » Properties for dialog.

Building a project under Eclipse

You have several ways of building your project:

* Build Individual Project (&),

To build individual projects incrementally, select Project » Build project.

Rebuild Project (%), This builds every file in the project whether or not a file has been modified since
the last build. A rebuild is a clean followed by a build.

1. Select Project » Clean...
2. Enable the option Start a build immediately and click OK.

 Build Automatically. This performs a build of all projects whenever any project file is saved, such as
your makefile.

255



TASKING VX-toolset for C166 User Guide

This way of building is not recommended, but to enable this feature select Project » Build Automatically
and ensure there is a check mark beside the Build Automatically menu item. In order for this option
to work, you must also enable option Build on resource save (Auto build) on the Behaviour tab of
the C/C++ Build page of the Project » Properties for dialog.

To access the linker options
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker.
4. Select the sub-entries and set the options in the various pages.

You can find a detailed description of all linker options in Section 12.5, Linker Options.
Invocation syntax on the command line (Windows Command Prompt):
| k166 [ [option]... [file]l... ...

When you are linking multiple files, either relocatable object files (. obj ) or libraries (. | i b), itis important
to specify the files in the right order. This is explained in Section 8.3, Linking with Libraries.

Example:
| k166 -dxcl6x.|sl test. obj

This links and locates the file t est . obj and generates the file t est . el f .

8.3. Linking with Libraries
There are two kinds of libraries: system libraries and user libraries.
System library

System libraries are stored in the directories:

<Cl66 installation path>\1ib\[p]1l (c16x/st10/st10nac |ibraries)
<Cl166 installation path>\1ib\2 (xcl1l6x/ super 10/ super 10845 | i brari es)

The p1 directory contains the protected libraries for CPU functional problems.

An overview of the system libraries is given in the following table:

256



Using the Linker

Libraries

Description

cl166cm[n][u][s].lib

C libraries for each model m: n (near), f (far), s (shuge), h (huge)
Optional letters:

n = near functions

u = user stack

s = single precision floating-point

c166fpm[n][u][t].lib

Floating-point libraries for each model m: n, f, s, h
Optional letters:

n = near functions

u = user stack

t = trapping

cle6rtm[n][u].lib

Run-time libraries for each model m: n, f, s, h
Optional letters:

n = near functions

u = user stack

c166pbm[n][u].lib
c166pcm[n][u].lib
c166pctm[n][u].lib
c166pdm[n][u].lib
c166ptm[n][u].lib

Profiling libraries for each model m: n, f, s, h
pb = block/function counter

pc = call graph
pct = call graph and timing
pd = dummy

pt = function timing
Optional letters:

n = near functions
u = user stack

c166cpmu][x].lib

C++ libraries for each model m: n, f, s, h
Optional letters:

u = user stack

X = exception handling

c166stim[u]x.lib ~

STLport C++ libraries for each model m: n, f, s, h
Optional letters:

u = user stack

X = exception handling

" From the STLport C++ library only the near model variant is delivered ready-to-use. The other

STLport C++ libraries are delivered in source. You can build them yourself when you need them.

See Chapter 13, Libraries for more information.

To link the default C (system) libraries

1. From the Project menu, select Properties for

The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

In the right pane the Settings appear.

257



TASKING VX-toolset for C166 User Guide

3. On the Tool Settings tab, select Linker » Libraries.
4. Enable the option Link default libraries.
5. Enable or disable the option Use trapped floating-point library.

When you want to link system libraries from the command line, you must specify this with the option
--library (-1). For example, to specify the system library c166c¢f . | i b, type:

| k166 --1ibrary=cf test.obj

User library

You can create your own libraries. Section 9.4, Archiver describes how you can use the archiver to create
your own library with object modules.

To link user libraries

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Libraries.

4. Add your libraries to the Libraries box.

When you want to link user libraries from the command line, you must specify their filenames on the
command line:

| k166 start.obj nylib.lib
If the library resides in a sub-directory, specify that directory with the library name:
| k166 start.obj nylibs\nylib.lib

If you do not specify a directory, the linker searches the library in the current directory only.

Library order

The order in which libraries appear on the command line is important. By default the linker processes
object files and libraries in the order in which they appear at the command line. Therefore, when you use
a weak symbol construction, like pri nt f , in an object file or your own library, you must position this
object/library before the C library.

With the option --first-library-first you can tell the linker to scan the libraries from left to right, and extract
symbols from the first library where the linker finds it. This can be useful when you want to use newer
versions of a library routine:

| k166 --first-library-first a.lib test.obj b.lib

258



Using the Linker

If the file t est . obj calls a function which is both presentina. | i b and b. | i b, normally the function in
b. i b would be extracted. With this option the linker first tries to extract the symbol from the first library
a.lib.

Note that routines in b. | i b that call other routines that are presentin botha. | i b and b. | i b are now
also resolved from a. | i b.

8.3.1. How the Linker Searches Libraries

System libraries

You can specify the location of system libraries in several ways. The linker searches the specified locations
in the following order:

1. The linker first looks in the Library search path that are specified in the Linker » Libraries page in
the C/C++ Build » Settings » Tool Settings tab of the Project Properties dialog (equivalent to the -L
command line option). If you specify the -L option without a pathname, the linker stops searching after
this step.

2. When the linker did not find the library (because it is not in the specified library directory or because
no directory is specified), it looks in the path(s) specified in the environment variable LI BC166.

3. When the linker did not find the library, it tries the default | i b directory relative to the installation
directory.

User library

If you use your own library, the linker searches the library in the current directory only.

8.3.2. How the Linker Extracts Objects from Libraries

A library built with the TASKING archiver ar166 always contains an index part at the beginning of the
library. The linker scans this index while searching for unresolved externals. However, to keep the index
as small as possible, only the defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the corresponding object file is
extracted from the library and is processed. After processing the object file, the remaining library index
is searched. If after a complete search of the library unresolved externals are introduced, the library index
will be scanned again. After all files and libraries are processed, and there are still unresolved externals
and you did not specify the linker option --no-rescan, all libraries are rescanned again. This way you do
not have to worry about the library order on the command line and the order of the object files in the
libraries. However, this rescanning does not work for ‘weak symbols'. If you use a weak symbol construction,
like pri nt f, in an object file or your own library, you must position this object/library before the C library.

The option--verbose (-v) shows how libraries have been searched and which objects have been extracted.
Resolving symbols

If you are linking from libraries, only the objects that contain symbols to which you refer, are extracted
from the library. This implies that if you invoke the linker like:

259



TASKING VX-toolset for C166 User Guide

[ k166 nylib.lib

nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through nyl i b. i b.

It is possible to force a symbol as external (unresolved symbol) with the option --extern (-e):
| k166 --extern=main nylib.lib

In this case the linker searches for the symbol rmai n in the library and (if found) extracts the object that
contains mai n.

If this module contains new unresolved symbols, the linker looks again in nyl i b. | i b. This process
repeats until no new unresolved symbols are found.

8.4. Incremental Linking

With the TASKING linker it is possible to link incrementally. Incremental linking means that you link some,
but not all . obj modules to a relocatable object file . out . In this case the linker does not perform the
locating phase. With the second invocation, you specify both new . obj files as the . out file you had
created with the first invocation.

Incremental linking is only possible on the command line.

| k166 -dxcl16x.lsl --increnmental testl.obj -otest.out
| k166 -dxcl6x.|sl test2.obj test.out

Thislinks the filet est 1. obj and generates the file t est . out . This file is used again and linked together
witht est 2. obj tocreatethefilet est . el f (the default name if no output filename is given in the default
ELF/DWARF format).

With incremental linking it is normal to have unresolved references in the output file until all . obj files
are linked and the final . out or . el f file has been reached. The option --incremental (-r) for incremental
linking also suppresses warnings and errors because of unresolved symbols.

8.5. Importing Binary Files

With the TASKING linker it is possible to add a binary file to your absolute output file. In an embedded
application you usually do not have a file system where you can get your data from. With the linker option
--import-object you can add raw data to your application. This makes it possible for example to display
images on a device or play audio. The linker puts the raw data from the binary file in a section. The section
is aligned on a 2-byte boundary. The section name is derived from the filename, in which dots are replaced
by an underscore. So, when importing a file called ny. np3, a section with the name nmy_np3 is created.
In your application you can refer to the created section by using linker labels.

For example:

#i ncl ude <stdio. h>
__huge extern char _lc_ub_ny_mp3; /* linker |abels */
__huge extern char _lc_ue_ny_nmp3;

260



Using the Linker

__huge char* mp3 = & lc_ub_nmy_np3;

voi d mai n(voi d)

{
int size = &lc_ue_nmy_ mp3 - & Ilc_ub_ny_np3;
int i;
for (i=0;i<size;i++)
put char (mp3[i]);
}

Because the compiler does not know in which space the linker will locate the imported binary, you
have to make sure the symbols refer to the same space in which the linker will place the imported
binary. You do this by using the memory type qualifier __huge, otherwise the linker cannot bind
your linker symbols.

Also note that if you want to use the export functionality of Eclipse, the binary file has to be part
of your project.

8.6. Linker Optimizations

During the linking and locating phase, the linker looks for opportunities to optimize the object code. Both
code size and execution speed can be optimized.

To enable or disable optimizations

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. On the Tool Settings tab, select Linker » Optimization.

4. Enable one or more optimizations.

You can enable or disable the optimizations described below. The command line option for each
optimization is given in brackets.

Delete unreferenced sections (option -Oc/-OC)

This optimization removes unused sections from the resulting object file.

First fit decreasing (option -OI/-OL)

When the physical memory is fragmented or when address spaces are nested it may be possible that a
given application cannot be located although the size of the available physical memory is larger than the

sum of the section sizes. Enable the first-fit-decreasing optimization when this occurs and re-link your
application.

261



TASKING VX-toolset for C166 User Guide

The linker's default behavior is to place sections in the order that is specified in the LSL file (that is, working
from low to high memory addresses or vice versa). This also applies to sections within an unrestricted
group. If a memory range is partially filled and a section must be located that is larger than the remainder
of this range, then the section and all subsequent sections are placed in a next memory range. As a result
of this gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first place the largest sections in the
smallest memory ranges that can contain the section. Small sections are located last and can likely fit in
the remaining gaps.

Compress copy table (option -Ot/-OT)

The startup code initializes the application's data areas. The information about which memory addresses
should be zeroed and which memory ranges should be copied from ROM to RAM is stored in the copy
table.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

Delete duplicate code (option -Ox/-OX)

Delete duplicate constant data (option -Oy/-QY)

These two optimizations remove code and constant data that is defined more than once, from the resulting
object file.

Compress ROM sections of copy table items (option -Oz/-OZ)

Reduces the size of the application's ROM image by compressing the ROM image of initialized data
sections. At application startup time the ROM image is decompressed and copied to RAM.

When this optimization is enabled the linker will try to locate sections in such a way that the copy table
is as small as possible thereby reducing the application's ROM image.

8.7. Controlling the Linker with a Script

With the options on the command line you can control the linker's behavior to a certain degree. From
Eclipse itis also possible to determine where your sections will be located, how much memory is available,
which sorts of memory are available, and so on. Eclipse passes these locating directions to the linker via
a script file. If you want even more control over the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly LSL. You can specify the script
file to the linker, which reads it and locates your application exactly as defined in the script. If you do not
specify your own script file, the linker always reads a standard script file which is supplied with the toolset.

8.7.1. Purpose of the Linker Script Language
The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture. This definition is supplied with
the toolset.

262



Using the Linker

2. It provides the linker with a specification of the memory attached to the target processor.

3. It provides the linker with information on how your application should be located in memory. This gives
you, for example, the possibility to create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the core architectures that Altium
has supplied in the i ncl ude. | sl directory. Do not change these files.

If you use a different memory layout than described in the LSL file supplied for the target core, you must
specify this in a separate LSL file and pass both the LSL file that describes the core architecture and your
LSL file that contains the memory specification to the linker. Next you may want to specify how sections
should be located and overlaid. You can do this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard C preprocessor keywords, such as #i ncl ude
and #def i ne, because the linker sends the script file first to the C preprocessor before it starts interpreting
the script.

The complete LSL syntax is described in Chapter 16, Linker Script Language (LSL).
8.7.2. Eclipse and LSL

In Eclipse you can specify the size of the stack and heap; the physical memory attached to the processor;
identify that particular address ranges are reserved; and specify which sections are located where in
memory. Eclipse translates your input into an LSL file that is stored in the project directory under the
name project_name. | sl and passes this file to the linker. If you want to learn more about LSL you can
inspect the generated file project_name. | sl .

To add a generated Linker Script File to your project
1. From the File menu, select File » New » TASKING VX-toolset for C166 C/C++ Project.
The New C/C++ Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the following dialog appears.

263



TASKING VX-toolset for C166 User Guide

New C/C++ Project |Z|@@

C166 Project Settings

<7

3 Select a processor to continue |

Processor selection:
K Inf!nenn C166 Fam||5.f Expand Al
[ Infineon %C166 Family
[ Infineon %2000 Farnily Expand Selected

[ Infineon XE166 Farmily

[] 5TMicroelectronics ST10 Collapse All

] Miscellaneous
[] Custam

Ackions:
Add C startup code ko the project
Add Linker script file to the project

©

3. Enable the option Add Linker script file to the project and click Finish.
Eclipse creates your project and the file "project_name. | sl " in the project directory.

If you do not add the linker script file here, you can always add it later with File » New » Linker Script
File (LSL).

To change the Linker Script File in Eclipse
There are two ways of changing the LSL file in Eclipse.
* You can change the LSL file directly in an editor.

1. Double-click on the file project_name. | sl .

The project LSL file opens in the editor area.

264



Using the Linker

bail myproject.lsl 53 =8
L A~
/¢ Linker script file for the ¥V¥-toolset for C186
7/

#¢ Define the near page addresses. Each DPFP will point to & hear padge.
// It is recommended to keep _ DPP3_ADDR at 0Ox00CO00

#hdefine _ DPPO_ADDR OxCOOOCO

#define _ DFP1_ADDR OxEO0OOOO

#define _ DFPZ_ADDER 0Ox00S000

#define _ DPP3_ADDR 0Ox00C0OO00O

#include <cpu.lsl>

/4 Define interrupt vector tshle

gection setup ::code
{
vector tahle "vector_tahle” [ vector_ size = 4, size = 128, run_addr = 0OxCO0000,
template="__ wvector_ template”, template symbol="_lc_ wvector target”,

vector prefix=".vector.”, £ill = loop)

vector (id=0, £ill="_ cstart”):

2. You can edit the LSL file directly in the project_name. | sl editor.

A * appears in front of the name of the LSL file to indicate that the file has changes.

3. Click [=] or select File » Save to save the changes.

» You can also make changes to the property pages Memory, Stack/Heap and Vector Table.
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory, or Stack/Heap or Vector Table.
In the right pane the corresponding property page appears.
3.  Make changes to memory, stack/heap and/or vector table and click OK.

The project LSL file is updated automatically according to the changes you make in the pages.

You can quickly navigate through the LSL file by using the Outline view (Window » Show View » Outline).

8.7.3. Structure of a Linker Script File

A script file consists of several definitions. The definitions can appear in any order.

265



TASKING VX-toolset for C166 User Guide

The architecture definition (required)

In essence an architecture definition describes how the linker should convert logical addresses into
physical addresses for a given type of core. If the core supports multiple address spaces, then for each
space the linker must know how to perform this conversion. In this context a physical address is an offset
on a given internal or external bus. Additionally the architecture definition contains information about items
such as the (hardware) stack and the interrupt vector table.

This specification is normally written by Altium. Altium supplies LSL files in the i ncl ude. | sl directory.
The file ar ch_c166. | s| defines the base architecture for all cores. The files ar ch_cor e. | sl extend
the base architecture for cor e.

The architecture definition of the LSL file should not be changed by you unless you also modify the core's
hardware architecture. If the LSL file describes a multi-core system an architecture definition must be
available for each different type of core.

The linker uses the architecture name in the LSL file to identify the target. For example, the default library
search path can be different for each core architecture.

The derivative definition

The derivative definition describes the configuration of the internal (on-chip) bus and memory system.
Basically it tells the linker how to convert offsets on the buses specified in the architecture definition into
offsets in internal memory. Microcontrollers and DSPs often have internal memory and I/O sub-systems
apart from one or more cores. The design of such a chip is called a derivative.

When you want to use multiple cores of the same type, you must instantiate the cores in a derivative
definition, since the linker automatically instantiates only a single core for an unused architecture.

Altium supplies common derivatives for each core in the files ar ch_cor e. | s| and supplies LSL files
for each derivative (deri vati ve. | sl ) which extends the common derivative.

The processor definition

The processor definition describes an instance of a derivative. A processor definition is only needed in a
multi-processor embedded system. It allows you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker automatically creates a processor
named 'A' of derivative 'A'. This is why for single-processor applications it is enough to specify the derivative
in the LSL file.

The memory and bus definitions (optional)
Memory and bus definitions are used within the context of a derivative definition to specify internal memory
and on-chip buses. In the context of a board specification the memory and bus definitions are used to

define external (off-chip) memory and buses. Given the above definitions the linker can convert a logical
address into an offset into an on-chip or off-chip memory device.

266



Using the Linker

The board specification

The processor definition and memory and bus definitions together form a board specification. LSL provides
language constructs to easily describe single-core and heterogeneous or homogeneous multi-core
systems. The board specification describes all characteristics of your target board's system buses, memory
devices, 1/0 sub-systems, and cores that are of interest to the linker. Based on the information provided
in the board specification the linker can for each core:

» convert a logical address to an offset within a memory device

* locate sections in physical memory

* maintain an overall view of the used and free physical memory within the whole system while locating
The section layout definition (optional)

The optional section layout definition enables you to exactly control where input sections are located.
Features are provided such as: the ability to place sections at a given address, to place sections in a
given order, and to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

architecture c166

{

/1 Specification of the c166 core architecture.
/1 Witten by Altium

}

architecture xcl6x extends cl166
{ /1l xcl6x inherits all features of c166

}
derivative X // derivative nane is arbitrary
{
/1 Specification of the derivative.
/1 Witten by Altium
core xcléx /1 always specify the core
{
architecture = xcl6x;
}
bus address /'l internal bus
{
/1 maps to bus "address" in "xcl6x" core
}
/'l internal menory
}
processor spe /1 processor nane is arbitrary
{

267



TASKING VX-toolset for C166 User Guide

derivative = X;

/1l You can omt this part, except if you use a
/1l multi-core system

}
menory ext_nane
{
/1l external menory definition
}
section_| ayout spe: xcl6x: shuge /1 section |ayout
{
/1 section placenent statenments
/1 sections are located in address space 'shuge
/1l of core 'xcl6x' of processor 'spe'
}

Overview of LSL files delivered by Altium

Altium supplies the following LSL files in the directory i ncl ude. | sl .

LSL file Description
arch_c166. | sl Defines the base architecture for all cores.
arch_core. | sl Extends the base architecture for core and defines a common derivative. It

includes the file ar ch_c166. | sl .

derivative. sl Extends the common derivative as defined for core and defines a single
processor. It includes the file arch_core. | sl .

templ ate. | sl This file is used by Eclipse as a template for the project LSL file. It includes
the file deri vat i ve. | sl based on your CPU selection. The CPU is specified
by the _ CPU__ macro.

defaul t.|sl Contains a default memory definition and section layout. It includes the file
derivative. | sl based on your CPU selection. The CPU is specified by the
__CPU__ macro. If you invoke the control program without a CPU specification,
the linker is called with -D__ CPU__=c16x.

When you select to add a linker script file when you create a project in Eclipse, Eclipse makes a copy of
the file t enpl at e. | sI and names it “project_name. | sl . On the command line, the linker uses the file
def aul t. | sl , unless you specify another file with the linker option --Isl-file (-d).

8.7.4.The Architecture Definition
Although you will probably not need to program the architecture definition (unless you are building your

own processor core) it helps to understand the Linker Script Language and how the definitions are
interrelated.

268



Using the Linker
Within an architecture definition the characteristics of a target processor core that are important for the
linking process are defined. These include:
» space definitions: the logical address spaces and their properties
* bus definitions: the 1/O buses of the core architecture

* mappings: the address translations between logical address spaces, the connections between logical
address spaces and buses and the address translations between buses

Address spaces

A logical address space is a memory range for which the core has a separate way to encode an address
into instructions. Most microcontrollers and DSPs support multiple address spaces. For example, separate
spaces for code and data. Normally, the size of an address space is 2N, with N the number of bits used
to encode the addresses.

The relation of an address space with another address space can be one of the following:
* one space is a subset of the other. These are often used for "small" absolute, and relative addressing.

* the addresses in the two address spaces represent different locations so they do not overlap. This
means the core must have separate sets of address lines for the address spaces. For example, in
Harvard architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units (MAU), alignment restrictions,
and page sizes. All address spaces have a number that identifies the logical space (id). The following
table lists the different address spaces for the architecture c166 as defined in arch_c166. | sl .

Space Id MAU Description

bit 1 1 Select all bit sections. This space starts at address OxFDO0O and is 0x800
bits long, ending at OXFDFF.

bita 2 8 Bit-addressable space.

iram 3 8 Internal memory, usually Dual Port RAM. The size is always 3 kB and ranges
from 0xF200 to OXFDFF.

near 4 8 Near data space, 4 16 kB pages anywhere in memory. All four DPPs each

point to one of these 4 pages. DPP3 is fixed to page 3 (0xC000) to facilitate
access of SFRs through the MEM addressing mode. DPPO, DPP1 and DPP2
can be assigned to any page in memory. It also defines a user stack and a
heap (nheap).

far 5 8 Far data, also used for grouped 'SYSTEM' sections.

shuge 6 8 Segmented huge data, contains definitions for copy table and system stack.
huge 7 8 Huge data, also defines a heap (hheap) and linker symbols.

code 8 8 Code address space, specifies the start address at the beginning of the

vector table.

By default the near space is ‘paged’ in pages of 16 kB. The first byte in each space is reserved to avoid
NULL pointer comparison problems with objects allocated at the beginning of the page. It is possible to

269



TASKING VX-toolset for C166 User Guide

remove the page restriction in the near space by defining the __ CONTI GUOUS_NEAR macro. This makes
it possible to allocate objects larger that 16 kB or to make a user stack larger than 16 kB. But with this
page restriction removed, you should not cast a near to a far or shuge pointer in C, unless you are
absolutely sure that the section of the object pointed to does not cross a page boundary.

The spaces are nested in such a way that the locate algorithm uses the right order. The linker starts with
locating the sections that are most far away from the bus definition, which means that sections for spaces
with the highest memory range restriction will be located first. The following space nesting is used:

bus: address
{---huge

:---code

{---shuge

{---far
{---near
{---iram
{---bita

The C166 architecture in LSL notation

The best way to program the architecture definition, is to start with a drawing. The figure below shows a
part of the architecture c166, it shows an example of how the near linear pages are mapped into memory.

Space near

OO0FFFF ___

LPP2

LPPE

LPP1

nPPO

ooooog ——.

270

Space far

\---bit

O1EFFF

olso0o
O1l7FFF

014000

OOFFFF

oacooo

O0ZFFF

oooooo



Using the Linker

The figure shows two address spaces called near and f ar . All address spaces have attributes like a
number that identifies the logical space (id), a MAU and an alignment. In LSL notation the definition of
these address spaces looks as follows:

#define __DPPO_ADDR 0x000000
#define __ DPP1_ADDR 0x014000
#define __DPP2_ADDR 0x018000

space near

{
id
mau
page;

4;
8;

map( src_of fset
map( src_of fset
map( src_of fset
map( src_of fset
I

0x0000, dest offset
0x4000, dest offset
0x8000, dest offset
0xC000, dest offset

__DPPO_ADDR, dest=space:far, size=16k );
__DPP1_ADDR, dest=space:far, size=16k );
__DPP2_ADDR, dest=space:far, size=16k );
0xC000, dest=space:far, size=16k );

}

space far
{
id
mau
page;
page_si ze

S5;
8;

0x4000 [ __PAGE_START..0x4000 - __ PAGE_END|;

map( size

}

16M dest = space: shuge );

space huge
{
id 7;
mau 8;
page_si ze

0x1000000 [ __PAGE_START..0x1000000 - __ PAGE_END|;

map( size 16M dest = bus:address );

}

The keyword map corresponds with the dotted lines in the drawing. You can map:
» address space => address space

» address space => bus (not shown in the drawing)

* memory => bus (not shown in the drawing)

 bus => bus (not shown in the drawing)

Next the internal bus named addr ess must be defined in LSL:

271



TASKING VX-toolset for C166 User Guide

bus address

{

24; /] there are 24 data lines on the bus

This completes the LSL code in the architecture definition. Note that all code above goes into the
architecture definition, thus between:

architecture c166

{
}
8.7.5.The Derivative Definition

/1 Al code above goes here.

Although you will probably not need to program the derivative definition (unless you are using multiple
cores) it helps to understand the Linker Script Language and how the definitions are interrelated.

A derivative is the design of a processor, as implemented on a chip (or FPGA). It comprises one or more
cores and on-chip memory. The derivative definition includes:

« core definition: an instance of a core architecture

* bus definition: the 1/0 buses of the core architecture

» memory definitions: internal (or on-chip) memory (in Eclipse this is called 'System memory")
Core

Each derivative must have at least one core and each core must have a specification of its core architecture.
This core architecture must be defined somewhere in the LSL file(s).

core Xxcléx

{
}

Bus

architecture = xcl6x;

Each derivative can contain a bus definition for connecting external memory. In this example, the bus
addr ess maps to the bus addr ess defined in the architecture definition of core xc16x:

bus address

{

mau = 8,

wi dth = 24;

map( dest =bus: xc16x: address, dest_of fset=0, size=16M);
}

272



Using the Linker

Memory

Memory is usually described in a separate memory definition, but you can specify on-chip memory for a
derivative. For example:

menory dpram

{

mau = 8;

type = ram

size = 2k;

map( dest =bus: xc16x: address, src_offset = 0, dest_offset = OxF600, size = 2k );
}

This completes the LSL code in the derivative definition. Note that all code above goes into the derivative
definition, thus between:

derivative X // name of derivative

/1 Al code above goes here

}
8.7.6.The Processor Definition

The processor definition is only needed when you write an LSL file for a multi-processor embedded
system. The processor definition explicitly instantiates a derivative, allowing multiple processors of the
same type.

processor nane

{
}

If no processor definition is available that instantiates a derivative, a processor is created with the same
name as the derivative.

derivative = derivative_nane;

Altium defines a “single processor environment” (spe) in each deri vati ve. | sl file. For example:

processor spe

{
}
8.7.7.The Memory Definition

derivative = xc2287m

Once the core architecture is defined in LSL, you may want to extend the processor with memory. You
need to specify the location and size of the physical external memory devices in the target system.

The principle is the same as defining the core's architecture but now you need to fill the memory definition:

nenory nane

{

273



TASKING VX-toolset for C166 User Guide

/1 menory definitions

}

Suppose your embedded system has 128 kB of external ROM, named xr om 64 kB of external RAM,
named xr amand 16 kB of external NVRAM, named my_nvr am All memories are connected to the bus
addr ess. In LSL this looks like:

menory ny_nvram

{

mau = 8;

type = nvram

size = 16k;

map( dest =bus: spe: address, src_offset = 0, dest_offset = 16k, size = 16k );
}
nmenory Xrom
{

mau = 8;

type = rom

size = 128k;

map( dest =bus: spe: address, src_offset = 0, dest_offset = 64k, size = 128k );
}
nmenory Xram
{

mau = 8;

type = ram

size = 64k;

map( dest =bus: spe: address, src_offset = 0, dest_offset = 192k, size = 64k );
}

If you use a different memory layout than described in the LSL file supplied for the target core, you can
specify this in Eclipse or you can specify this in a separate LSL file and pass both the LSL file that describes
the core architecture and your LSL file that contains the memory specification to the linker.

To add memory using Eclipse
1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Memory.
In the right pane the Memory page appears.
3. Open the Memory tab and click on the Add... button.
The Add new memory dialog appears.
4. Enter the memory name (for example my_nvr am, type (for example nvr am and size.

5. Click on the Add... button.

274



Using the Linker

The Add new mapping dialog appears.

6. You have to specify at least one mapping. Enter the mapping name (optional), address, size and
destination and click OK.

The new mapping is added to the list of mappings.
7. Click OK.

The new memory is added to the list of memories (user memory).
8. Click OK to close the Properties dialog.

The updated settings are stored in the project LSL file.

If you make changes to the on-chip memory as defined in the architecture LSL file, the memory is copied
to your project LSL file and the line #defi ne __ REDEFI NE_ON_CHI P_I TEMS is added. If you remove
all the on-chip memory from your project LSL file, also make sure you remove this define.

8.7.8.The Section Layout Definition: Locating Sections

Once you have defined the internal core architecture and optional memory, you can actually define where
your application must be located in the physical memory.

During compilation, the compiler divides the application into sections. Sections have a name, an indication
(section type) in which address space it should be located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections are placed in address spaces,
relative to each other, and what their absolute run-time and load-time addresses will be.

Example: section propagation through the toolset

To illustrate section placement, the following example of a C program (bat . ¢) is used. The program
saves the number of times it has been executed in battery back-upped memory, and prints the number.

#def i ne BATTERY_BACKUP_TAG O0xa5f0
#i ncl ude <stdi o. h>

int wuninitialized data;

int initialized data = 1;
#pragma section near=non_vol atile
#pragma nocl ear

int battery_backup_tag;

int battery_backup_i nvok;
#pragma cl ear

#pragma endsection

void main (void)

{
if (battery_backup_tag != BATTERY_BACKUP_TAG )

{

/1 battery back-upped nenory area contains invalid data

275



TASKING VX-toolset for C166 User Guide

/1 initialize the nenory
battery_backup_tag = BATTERY_BACKUP_TAG
battery_backup_i nvok = 0;
}
printf( "This application has been invoked % tines\n",
battery_backup_i nvok++);

}

The compiler assigns names and attributes to sections. With the #pr agma sect i on and #pr agna
endsect i on the compiler's default section naming convention is overruled and a section with the name
non_vol ati | e is defined. In this section the battery back-upped data is stored.

By default the compiler creates a section with the name "near" of section type "near" carrying section
attributes "clear" and "new" to store uninitialized data objects. The section type and attributes tell the
linker to locate the section in address space near and that the section content should be filled with zeros
at startup.

As aresult of the #pr agna secti on near=non_vol ati | e, the data objects between the pragma
pair are placed in a section with the name "non_volatile". Note that the compiler sets the "clear" attribute.
However, battery back-upped sections should not be cleared and therefore we used #pr agna nocl ear .

Section placement

The number of invocations of the example program should be saved in non-volatile (battery back-upped)
memory. This is the memory my_nvr amfrom the example in Section 8.7.7, The Memory Definition.

To control the locating of sections, you need to write one or more section definitions in the LSL file. At
least one for each address space where you want to change the default behavior of the linker. In our
example, we need to locate sections in the address space near :

section_|l ayout ::near

{
}

To locate sections, you must create a group in which you select sections from your program. For the
battery back-up example, we need to define one group, which contains the section non_vol ati | e. All
other sections are located using the defaults specified in the architecture definition. Section non_vol ati | e
should be placed in non-volatile ram. To achieve this, the run address refers to our non-volatile memory
called my_nvram

/1 Section placenent statements

group ( ordered, run_addr = nmem my_nvram)

{
}

This completes the LSL file for the sample architecture and sample program. You can now invoke the
linker with this file and the sample program to obtain an application that works for this architecture.

sel ect "non_vol atile";

276



Using the Linker

8.7.9. Copying Code Sections to PSRAM at Startup

For fast performance or preparing power-down modes it could be necessary to copy some (critical) code
portions from flash memory to PSRAM. You can do this easily from the LSL file by using the copy attribute.

section_|l ayout ::code

{
group( ordered, copy )
{
sel ect "code_libc";
}
}

This creates a ROM copy of all sections named "code_| i bc". For each selected section a ROM section
and a RAM section is created. The ROM section is named "[ code_l i bc] ", while the RAM section is
named "code_| i bc". For these sections entries will be created in the copy table, resulting in the contents
of the ROM section (in flash) being copied to RAM.

See the tables in Section 8.7.11, ICACHE Support and Named Memory Mappings for an overview of
which memory ranges are available for code (ROM and RAM).

8.7.10. PSRAM Mirrors

All XC2000/XE166 devices have on-chip Program SRAM (PSRAM), starting at address OXEQ0000. A
mirror of the PSRAM is always located starting at address OXE80000. This mirror has timing parameters
that correspond to flash timing. This mirror is therefore called Emulated PSRAM (EPSRAM). PSRAM and
EPSRAM both support code and data access.

On devices with an ICACHE there is also a second mirror of PSRAM, starting at 0xA00000. This mirror
only supports code access.

In the device specific LSL file in the product's i ncl ude. | sl directory, and on the Eclipse Memory
properties page you will see only a single PSRAM memory. This definition includes a mappings for each
mirrored area. For a device with ICACHE the LSL memory definition may look like this:

menory PSRAM

{
mau = 8;
type = ram
si ze = 64k;
priority = 1;
map max_speed ( dest=bus: xcl6x: address, dest_offset = 0xE00000,
size = 64k );
map flash_timng ( dest=bus:xcl6x: address, dest_offset = O0xE80000,
size = 64k, reserved );
map mrror ( dest=bus: xcl6x: address, dest_offset = 0xA00000,
size = 64k, reserved );
}

The mirrors at OXE80000 and 0XA00000 are reserved. This means that by default no sections will be
located in these areas. Only absolute sections and sections with a fixed memory range can be located

277



TASKING VX-toolset for C166 User Guide

in these areas. You can define an absolute section in the source file with the __at () attribute, or you
can use an LSL gr oup statement. A section can get a fixed memory range if you use an LSL gr oup
statement with an address range.

The addresses occupied by a section in one of the areas automatically implies that the same offsets in
the mirrored area(s) are occupied.

Example:

section_layout ::code

{
group( run_addr = nmem spe: PSRAM nmirror, copy )
{
sel ect "code_mmin";
}
}

In this example the r un_addr specifies the full address range of the mirror at 0XA00000. The copy
attribute is used to create a copy of the section in flash, which will be copied to PSRAM at startup.

When you want to use one of the mirrors as the default range, you can exchange the r eser ved keyword
on the mappings. To do so, you will have to copy the device specific LSL file from the product’s

i ncl ude. | sl directory to your project. Or when you use Eclipse you can simply modify the PSRAM
memory definition in the Project » Properties for » C/C++ Build » Memory » Memory page. Eclipse
will then take care of making these settings in your project LSL file.

Example:

menory PSRAM

{
mau = 8;
type = ram
size = 64k;
priority = 1;
map max_speed ( dest=bus: xcl6x: address, dest_offset = 0xE00000,
size = 64k, reserved );
map flash_timng ( dest=bus:xcl6x: address, dest_offset = O0xE80000,
size = 64k, reserved );
map mrror ( dest=bus: xcl6x: address, dest_offset = 0xA00000,
size = 64k );
}

This makes the mirror at 0XA00000 the default.

You can use EPSRAM as if it is flash by modifying the memory type from r amto r omand reserving all
ranges except the f [ ash_t i mi ng range:

menory PSRAM

{
mau = 8;
type = rom
si ze = 64k;

278



Using the Linker

priority = 1;

map max_speed ( dest=bus: xcl6x: address, dest_offset = 0xE00000,
size = 64k, reserved );

map flash_timng ( dest=bus:xcl6x: address, dest_offset = 0xE80000,
size = 64k );

map mrror ( dest=bus: xcl6x: address, dest_offset = 0xA00000,

size = 64k, reserved );

}
8.7.11. ICACHE Support and Named Memory Mappings

Some of the newer Infineon devices, such as the XC2268I have a cache on the flash memory, the so-called
ICACHE. To use the ICACHE it must be enabled in the C startup code (see Section 4.3.1, ICACHE
Support) and the linker script file must be modified to get sections located in the memory ranges that are
covered by the ICACHE.

Devices with ICACHE have two memory areas that are mapped to the on-chip flash. The standard flash
area, starting at 0xC00000, is not cached. For code that must be fetched through the cache, you must
use the area starting at 0x800000. The cached area is a mirror of the not cached area. Code located in
either of these areas is available at the other area at the same offset to the start address of the area. In
the cached area the processor can only execute code. No data shall be located in that area.

The standard linker script files (from the product's i ncl ude. | sl directory) have special provisions for
these areas. In general your project's LSL file includes the standard linker script file for the selected
processor. This standard linker script file defines the on-chip memories, reserved areas and other processor
architecture related stuff.

At the lowest level there is separation in ranges for code and data. This varies per core. The areas are
listed in the following tables. These mappings are defined in the file ar ch_c166. | sl in the product's
i ncl ude. | sl directory.

XC16x, XC2xxx, XE16x devices without ICACHE

Start |End Size Code |Data [|Description
C00000 | FFFFFF |4M X X Flash, PSRAM, EPSRAM

010000 | BFFFFF | 12M-64k |x X External memory and 1/O
00F200 | 00FDFF | 3k - X DPRAM
008000 | 00DFFF | 24k - X DSRAM

X

000000 | 007FFF |32k X External memory

XC16x, XC2xxx, XE16x devices with ICACHE

Start |End Size Code |Data |Description

C00000 | FFFFFF [4M X X Flash, PSRAM, EPSRAM
080000 | AFFFFF |3M X - Flash and PSRAM mirrors
010000 | 7FFFFF |8M-64k  |x X External memory and I/O

279



TASKING VX-toolset for C166 User Guide

Start |End Size Code |Data |Description
00F200 | 0OFDFF | 3k - X DPRAM

008000 | 00DFFF | 24k - X DSRAM

000000 | 007FFF |32k X X External memory

For all other devices the full memory is mapped for code and data.

The above address mappings do not reflect the actual (on-chip) memories. The on-chip memories are
defined in the device specific LSL file in the product's i ncl ude. | sl directory. A memory definition can
contain multiple named address mappings. An example of a flash memory definition for a device with
ICACHE support:

nenory Fl ash0

{
mau = 8;
type = rom
size = 256k;
map not _cached ( dest=bus: xcl6x: address, dest_offset = 0xC00000,
size = 256k );
map cached ( dest=bus: xcl6x: address, dest_offset = 0x800000,
size = 256k, reserved );
}

The map statements specify the addresses where this memory can be found. In the example above a
mirror is defined. Both maps have the same size, but a different destination offset (dest _of f set ). The
source offset (sr c_of f set ) is unspecified, which implies that it is 0, meaning that both maps are starting
at the same position, effectively forming a mirror.

With the keyword r eser ved the map is not available for sections to be automatically located in the
memory area of the map. Only 'absolute’ or 'ranged' sections can then be located in the memory area
specified with this map. Absolute sections can be defined in the C code (using the keyword __at ), in
assembly code (using the attribute 'at ' on the . sect i on directive) or in the linker script file with the

gr oup statement. Ranged sections are sections that are selected in the LSL file inside a group statement
with an address range.

The keyword r eser ved is placed on the map of the cached area by default. If you want to place sections
into the cached area, there are two options:

1. Make the sections absolute or ranged with an address in the cached area.
For example:

section_|l ayout ::code

{
group( run_addr = mem spe: Fl ash0/ cached )
{
select "* _code";
}
}

280



Using the Linker

The nem spe: Fl ash/ cached specification represents an address range equal to the cached map.
With the sel ect statement in this example all sections ending at"_code" are selected. You could
also use:

section_l ayout ::code

{
group( run_addr = nem spe: Fl ash0/ cached )
{
select "[a-z]*" (attributes=+x);
}
}

The "[a-z] *" inthe sel ect statement prevents selection of the . vect or * sections generated
for the interrupt vector table. These vector sections already have an absolute address and the linker
will issue warnings when trying to set a new absolute address using the group/select statement. The
+x attribute selects all executable sections.

Once selected with a sel ect statement, sections will not be selected in a later sel ect
statement. So, if a code section must be placed at a special address, this must be done before
the gr oup statement that uses a wildcard selection.

The total flash memory of the processor consists of multiple flash arrays. In the standard LSL files
each flash array has its own memory definition. In the gr oup statement it is possible to specify an
address range that covers multiple flash arrays. For example:

section_|l ayout ::code

{
group( run_addr = nmem spe: Fl ash0/ cached|
mem spe: Fl ashl/ cached|
mem spe: Fl ash2/ cached )
{
select "[a-z]*" (attributes=+x);
}
}

Remove the keyword r eser ved from the cached map and place it on the not_cached map.

An alternative solution is copying the processor's specific LSL file from the product's i ncl ude. | sl
directory to your project. Then change the location of the keyword r eser ved on the map statements
in the flash memory. For example:

nmenory Fl ash0

{
mau = 8;
type = rom
size = 256k;
map not _cached ( dest=bus:xcl6x: address, dest_offset = 0xC00000,
size = 256k, reserved );
map cached ( dest=bus:xcl6x: address, dest_offset = 0x800000,

281



TASKING VX-toolset for C166 User Guide

size = 256k);
}

Now code sections will be located in the cached map for FI ashO by default. You need to make this
modification for all flash arrays that you want to be cached.

In Eclipse you can do this in the Edit existing memory dialog (Project » Properties for » C/C++
Build » Memory » Memory » Edit...), by clicking on the Use cached button.

B Memory Properties E|

Edit existing memory

IMemary name: Flasho

Mernory bvpe: ram w
[ reserve memary (only allow absolute and ranged selections)
Memary size (Bytes): 256k

[Memory priority @ 14

IMemary mapping(s):

Marme Address Size: Feserved Destinatian
naot_cached 0xCOo0000 256k YEs bus:xciéxaddress
cached 0x 300000 256k no busixclexaddress
Use not cached
.
@ ) [ Ok ] [ Cancel ]

If you click the Use not cached button, the not cached memory is used again.

It is possible to specify per flash array what the default is, cached or not cached. The linker will then
freely distribute the sections over the flash memories. If you want to control which sections are located
in cached memory and which sections are located in not cached memory it is required to use the
group/ sel ect statements. With that in mind, it is recommended to have the flash memories either
all set to cached or all set to not-cached. You can then use gr oup/ sel ect statements only for those
sections that should not be placed in the default area.

Updating DPP addresses
When the application contains near ROM data sections, there must be at least one DPP pointing to a

ROM memory. For devices with ICACHE support it is not allowed to locate data in the cached areas. The
DPP must therefore point to a page in the not cached range.

282



Using the Linker
The DPP addresses are defined in the project's LSL file with the macros __DPPO_ADDRO, __DPP1_ADDR,
__DPP2_ADDR and __DPP3_ADDR. For example:

#defi ne __ DPPO_ADDR 0xC00000 /1 points to not cached area
#define __ DPP1_ADDR 0xC04000 /1 points to not cached area
#def i ne __DPP2_ADDR 0x008000
#define __ DPP3_ADDR 0x00C000

When no DPP is assigned to a ROM memory range the linker will create a RAM copy of the near ROM
data sections.

Example 1: Partial caching of a flash array

If you want to have only a part of a flash array cached, you should use gr oup/ sel ect statements. In
this example there are two sets of code sections: a set of sections that must be cached and a set of
sections that shall not be cached. The section names are defined with #pr agma sect i on inthe C code:

#pragma section code=cached_{nane}
/1 ... functions that shall be located in cached nmenory ...

#pragma secti on code=not_cached_{nane}
/1 ... functions that shall be located in not cached menory ...

In the LSL file the following section layout can be defined:

section_| ayout ::code

{
group( run_addr = nmem spe: Fl ash0/ cached )
{
sel ect "cached *";
}
group( run_addr = mem spe: Fl ash0/ not _cached )
{
sel ect "not _cached *";
}
}

In this example the linker is free to choose where to put the sections in the full FI ash0 range. The locations
of sections that are located in the cached range are also occupied in the not _cached mirror and vice
versa.

Instead of specifying the memory range with the nem reference, you can also specify fixed ranges. This
also allows you to separate the memory ranges strictly:

section_l ayout ::code

{
group( run_addr = [0x800000..0x81FFFF] )
{
sel ect "cached_*";
}

group( run_addr = [0xC20000..0xC3FFFF] )

283



TASKING VX-toolset for C166 User Guide

sel ect "not_cached_*";

}

Keep in mind that once a section is selected, it will not be selected again with a subsequent sel ect
statement. For example, if you want section “cached_f 00" to be located at an absolute address, say
0x810000, this must be done before the wild-card selection:

section_l ayout ::code

{
group( run_addr = 0x810000 )
{
sel ect "cached_foo";
}
group( run_addr = [0x800000..0x81FFFF] )
{
sel ect "cached_*";
}
group( run_addr = [0xC20000..0xC3FFFF] )
{
sel ect "not_cached_*";
}
}

Example 2: Mixing cached code and data in the same flash area
In this example the DPP address mappings are set as follows:

« DPPO => 0xC00000

« DPP1 => 0xC04000

« DPP2 => 0x008000

« DPP3 => 0x00C000

This means that the area of 0xC000000..0xCO7FFF must be used for near romdata.
In the memory definition, the mappings for Fl ash0 are set as follows:

* not _cached memory at address 0xC00000 is reserved

» cached memory at address 0x800000 is not reserved

This effectively implies romdata addressed with DPP0O and DPP1 cannot be located freely because this
address range is reserved (the not _cached memory range is reserved). To locate near romdata in this
address range you must locate it explicitly by using an absolute address or address range:

section_layout ::near // selections apply to near sections only

{
group( run_addr = [0xC00000..0xCO7FFF] )

284



Using the Linker

/1 select all near ROM sections
select (attributes=+r-w);

}
A similar example can be made for far, shuge and huge sections.

An alternative method is to make both the cached memory mappings and the not _cached memory
mappings not reserved. The linker is then free to locate code sections either in the cached or the not
cached area. The linker usually uses the lowest address first, but may be directed otherwise by LSL
statements. Therefore, this method requires that you inspect the generated map file carefully.

8.7.12. Duplicate Section Removal and Mirrors

When the linker detects that sections have equal contents it removes all duplicates and it lets all references
point to the remaining section. When explicitly locating sections into mirrored ranges, it may happen that
a section has a duplicate located in one of the mirrors. The linker removes one of the duplicates, with the
result that the section is only located in one of the ranges: the original range or a mirror.

Example:
Say there are two identical functions f oo() and bar (), defined as follows:

#pragnma secti on code=cached_{nane}
int foo( int a)

{
}

return( 10*a );

#pragnma secti on code=not_cached_{nane}
int bar( int a)

{
}

Here f 0o() and bar () are clearly the same.

return( 10*a );

The LSL defined for locating the generated sections looks as follows:

section_|l ayout ::code

{
group( run_addr = nmem spe: Fl ash0/ cached )
{
sel ect "cached_*";
}
group( run_addr = nem spe: Fl ash0/ not _cached )
{
sel ect "not_cached_*";
}
}

285



TASKING VX-toolset for C166 User Guide

The linker detects that the sections generated for f oo() and for bar () are identical and decides to
remove the section (not _cached_bar ) generated for the function bar () . The references, i.e., function
calls to bar () now point to f oo( ), which is valid because it is identical. However, we intended to put
bar () into not cached memory, while f 0o() is in cached memory. Effectively bar () now also resides
in cached memory.

You can avoid this linker optimization by using the #pr agma pr ot ect in the C code:

#pragma section code=cached_{nane}
int foo( int a)

{
}

return( 10*a );

#pragma section code=not_cached_{nane}
#pragma protect
int bar( int a)

{
}

#pragma protect restore

8.8. Linker Labels

The linker creates labels that you can use to refer to from within the application software. Some of these
labels are real labels at the beginning or the end of a section. Other labels have a second function, these
labels are used to address generated data in the locating phase. The data is only generated if the label
is used.

return( 10*a );

Linker labels are labels starting with __| ¢_. The linker assigns addresses to the following labels when
they are referenced:

Label Description

__lc_ub_name Begin of section name. Also used to mark the begin of the stack or heap or
copy table.

__lc_b_nane

__lc_ue_name End of section name. Also used to mark the end of the stack or heap.

__lc_e_nane

__lc_cb_nane Start address of an overlay section in ROM.

__lc_ce_nane End address of an overlay section in ROM.

__lc_gb_nane Begin of group name. This label appears in the output file even if no reference
to the label exists in the input file.

__lc_ge_nane End of group name. This label appears in the output file even if no reference
to the label exists in the input file.

The linker only allocates space for the stack and/or heap when a reference to either of the section labels
exists in one of the input object files.

286



Using the Linker

At C level, all linker labels start with one leading underscore (the compiler adds an extra
underscore).

Additionally, the linker script file defines the following symbols:

Symbol Description

__lc_base_dpp0O Alias for __DPPO_ADDR.

__lc_base_dppl Alias for __DPP1_ADDR.

__lc_base_dpp2 Alias for __ DPP2_ADDR.

__lc_base_dpp3 Alias for __DPP3_ADDR.

__lc_copy_table Start of copy table. Same as __| c_ub_t abl e. The copy table gives the
source and destination addresses of sections to be copied. This table will be
generated by the linker only if this label is used.

__lc_vector_tabl e |[Startofvectortable. Sameas__| c_vb_vector_table_O.

Example: refer to the stack

Suppose in an LSL file a stack section is defined with the name "user _st ack" (with the keyword st ack).
You can refer to the begin and end of the stack from your C source as follows (labels have one leading
underscore):

#i ncl ude <stdio. h>

extern char _lc_ub_user_stack[];
extern char _lc_ue_user_stack[];
voi d mai n()

{
printf( "Size of stack is %\n",
_lc_ub_user_stack - _lc_ue_user_stack );
/* stack grows fromhigh to | ow */
}

From assembly you can refer to the end of the stack with:

.extern __|Ic_ue_ user_stack ; end of user stack

8.9. Generating a Map File

The map file is an additional output file that contains information about the location of sections and symbols.
You can customize the type of information that should be included in the map file.

To generate a map file
1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.

287



TASKING VX-toolset for C166 User Guide

In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Map File.
4. Enable the option Generate XML map file format (.mapxml) for map file viewer.
5. (Optional) Enable the option Generate map file (.map).
6. (Optional) Enable the options to include that information in the map file.
Example on the command line (Windows Command Prompt)
The following command generates the map file t est . map:
| k166 --map-file test.obj
With this command the map file t est . nap is created.

See Section 14.2, Linker Map File Format, for an explanation of the format of the map file.

8.10. Linker Error Messages

The linker reports the following types of error messages in the Problems view of Eclipse.
F ( Fatal errors)

After a fatal error the linker immediately aborts the link/locate process.

E (Errors)

Errors are reported, but the linker continues linking and locating. No output files are produced unless you
have set the linker option--keep-output-files.

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the linker for a situation which may not be correct. You can control warnings in the C/C++
Build » Settings » Tool Settings » Linker » Diagnostics page of the Project » Properties for menu
(linker option --no-warnings).

| (Information)

Verbose information messages do not indicate an error but tell something about a process or the state
of the linker. To see verbose information, use the linker option--verbose.

S (System errors)

System errors occur when internal consistency checks fail and should never occur. When you still receive
the system error message

S6##: nmessage

288



Using the Linker

please report the error number and as many details as possible about the context in which the error
occurred.

Display detailed information on diagnostics
1. From the Window menu, select Show View » Other » General » Problems.
The Problems view is added to the current perspective.
2. Inthe Problems view right-click on a message.
A popup menu appears.
3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.
On the command line you can use the linker option --diag to see an explanation of a diagnostic message:

| k166 --diag=[format:]{all | nunber,...]

289



TASKING VX-toolset for C166 User Guide

290



Chapter 9. Using the Utilities

The TASKING VX-toolset for C166 comes with a number of utilities:

cclé6b A control program. The control program invokes all tools in the toolset and lets you quickly
generate an absolute object file from C and/or assembly source input files. Eclipse uses
the control program to call the compiler, assembler and linker.

mk166 A utility program to maintain, update, and reconstruct groups of programs. The make utility
looks whether files are out of date, rebuilds them and determines which other files as a
consequence also need to be rebuilt.

amk The make utility which is used in Eclipse. It supports parallelism which utilizes the multiple
cores found on modern host hardware.

arl66 An archiver. With this utility you create and maintain library files with relocatable object
modules (. obj ) generated by the assembler.

9.1. Control Program

The control program is a tool that invokes all tools in the toolset for you. It provides a quick and easy way
to generate the final absolute object file out of your C/C++ sources without the need to invoke the compiler,
assembler and linker manually.

Eclipse uses the control program to call the C++ compiler, C compiler, assembler and linker, but you can
call the control program from the command line. The invocation syntax is:

ccl66 [ [option]... [file]l... ]...
Recognized input files

» Fileswitha. cc, . cxx or. cpp suffix are interpreted as C++ source programs and are passed to the
C++ compiler.

» Arguments with a . ¢ suffix are interpreted as C source programs and are passed to the compiler.

* Files with a . asmsuffix are interpreted as hand-written assembly source files which have to be passed
to the assembler.

» Files with a . sr ¢ suffix are interpreted as compiled assembly source files. They are directly passed to
the assembler.

» Fileswith a. | i b suffix are interpreted as library files and are passed to the linker.
» Files with a . obj suffix are interpreted as object files and are passed to the linker.

» Files with a . out suffix are interpreted as linked object files and are passed to the locating phase of
the linker. The linker accepts only one . out file in the invocation.

» Fileswith a . | sl suffix are interpreted as linker script files and are passed to the linker.

291



TASKING VX-toolset for C166 User Guide

Options

The control program accepts several command line options. If you specify an unknown option to the
control program, the control program looks if it is an option for a specific tool. If so, it passes the option
directly to the tool. However, it is recommended to use the control program options --pass-* (-Wcp, -Wc,
-Wa, -WI) to pass arguments directly to tools.

For a complete list and description of all control program options, see Section 12.6, Control Program
Options.

Example with verbose output

ccl66 --verbose test.c

The control program calls all tools in the toolset and generates the absolute object file t est . el f . With
option --verbose (-v) you can see how the control program calls the tools:

+ "path\c166" -Mh -0 cc3248a.src test.c

+ "path\as166" -0 cc3248b. obj cc3248a.src

+ "path\| k166" -o test.elf -D_CPU _=cl16x --map-file
cc3248b.obj -lcn -Ifpn -lrtn "-Lpath\lib\1"

The control program produces unique filenames for intermediate steps in the compilation process (such
as cc3248a. src and cc3248b. obj in the example above) which are removed afterwards, unless you
specify command line option --keep-temporary-files (-t).

Example with argument passing to a tool

ccl66 --pass-conpiler=-Cc test.c

The option -Oc is directly passed to the compiler.

292



Using the Utilities

9.2. Make Utility mk166

If you are working with large quantities of files, or if you need to build several targets, it is rather
time-consuming to call the individual tools to compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program and define an options file. You can even
create a batch file or script that invokes the control program for each target you want to create. But with
these methods all files are completely compiled, assembled and linked to obtain the target file, even if
you changed just one C source. This may demand a lot of (CPU) time on your host.

The make utility mk166 is a tool to maintain, update, and reconstruct groups of programs. The make
utility looks which files are out-of-date and only recreates these files to obtain the updated target.

Make process

In order to build a target, the make utility needs the following input:

« the target it should build, specified as argument on the command line
« the rules to build the target, stored in a file usually called makefi | e

In addition, the make utility also reads the file nk166. nk which contains predefined rules and
macros. See Section 9.2.2, Writing a Makefile.

The makef i | e contains the relationships among your files (called dependencies) and the commands
that are necessary to create each of the files (called rules). Typically, the absolute object file (. el f) is
updated when one of its dependencies has changed. The absolute file depends on . obj files and libraries
that must be linked together. The . obj files on their turn depend on . sr ¢ files that must be assembled
and finally, . sr c files depend on the C source files (. ¢) that must be compiled. In the nakef i | e this
looks like:

test.src : test.c # dependency
cl66 test.c #rule

test.obj : test.src
asl66 test.src

test.elf : test.obj
| k166 test.obj -o test.elf --map-file -lcn -1fpn -Irtn

You can use any command that is valid on the command line as a rule in the nakefi | e. So, rules are
not restricted to invocation of the toolset.

Example

To build the target t est . el f, call mk166 with one of the following lines:

nk166 test.elf

nk166 -fmynake. mak test.elf

293



TASKING VX-toolset for C166 User Guide
By default the make utility reads the file nakef i | e so you do not need to specify it on the command line.
If you want to use another name for the makefile, use the option -f.

If you do not specify a target, mk166 uses the first target defined in the makefile. In this example it would
build t est . src instead of t est . el f.

Based on the sample invocation, the make utility now tries to build t est . el f based on the makefile and
performs the following steps:

1. From the makefile the make utility reads thatt est . el f depends ont est. obj .

2. Iftest. obj does not exist or is out-of-date, the make utility first tries to build this file and reads from
the makefile thatt est . obj dependsontest. src.

3. Ift est. src does exist, the make utility now creates t est . obj by executing the rule for it: as166
test.src.

4. There are no other files necessary to create t est . el f so the make utility now can use t est . obj to
create t est. el f by executing the rule: | k166 test.obj -o test.elf

The make utility has now built t est . el f but it only used the assembler to update t est . obj and the
linker to create t est . el f.

If you compare this to the control program:
ccl66 test.c

This invocation has the same effect but now all files are recompiled (assembled, linked and located).

9.2.1. Calling the Make Utility

You can only call the make utility from the command line. The invocation syntax is:
nk166 [ [option]... [target]... [macro=def]... ]
For example:

nk166 test.elf

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

macro=def Macro definition. This definition remains fixed for the mk166 invocation. It overrides
any regular definitions for the specified macro within the makefiles and from the
environment. It is inherited by subordinate mk166's but act as an environment variable
for these. That is, depending on the -e setting, it may be overridden by a makefile
definition.

option For a complete list and description of all make utility options, see Section 12.7, Make
Utility Options.

294



Using the Utilities

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

9.2.2. Writing a Makefile

In addition to the standard makefile makef i | e, the make utility always reads the makefile nk166. nk
before other inputs. This system makefile contains implicit rules and predefined macros that you can use
in the makefile makefil e.

With the option -r (Do not read the mk166. ik file) you can prevent the make utility from reading nk166. k.

The default name of the makefile is makef i | e in the current directory. If you want to use another makefile,
use the option -f.

The makefile can contain a mixture of:

« targets and dependencies

 rules

« macro definitions or functions

 conditional processing

e comment lines

* include lines

» export lines

To continue a line on the next line, terminate it with a backslash (\):

# this cooment |ine is continued\
on the next line

If a line must end with a backslash, add an empty macro:

# this conment line ends with a backslash \ $( EMPTY)
# this is a newline

9.2.2.1. Targets and Dependencies

The basis of the makefile is a set of targets, dependencies and rules. A target entry in the makefile has
the following format:

target ... : [dependency ...] [; rule]
[rule]

295



TASKING VX-toolset for C166 User Guide

Target lines must always start at the beginning of a line, leading white spaces (tabs or spaces) are not
allowed. A target line consists of one or more targets, a semicolon and a set of files which are required
to build the target (dependencies). The target itself can be one or more filenames or symbolic names:

al | : deno.elf final.elf

deno.elf final.elf: test.obj deno.obj final.obj

You can now can specify the target you want to build to the make utility. The following three invocations
all have the same effect:

nk166
nk166 all
nk166 deno.elf final.elf

If you do not specify a target, the first target in the makefile (in this example al | ) is built. The target al |
depends on deno. el f and fi nal . el f so the second and third invocation have the same effect and
the files derp. el f and fi nal . el f are built.

You can normally use colons to denote drive letters. The following works as intended:
c:foo.obj : a:foo.c

If a target is defined in more than one target line, the dependencies are added to form the target's complete
dependency list:

all: denp.elf # These two |ines are equivalent wth:
all: final.elf # all: denp.elf final.elf

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

. | GNORE Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying the option -i on the command line.

OANT The rules following this target are executed before any other targets are built.

. PRECI QUS Dependency files mentioned for this target are never removed. Normally, if a

command in a rule returns an error or when the target construction is interrupted,
the make utility removes that target file. You can use the option -p on the command
line to make all targets precious.

. SI LENT Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying the option -s on the command line.

296



Using the Utilities

Target Description

. SUFFI XES This target specifies a list of file extensions. Instead of building a completely specified
target, you now can build a target that has a certain file extension. Implicit rules to
build files with a number of extensions are included in the system makefile nk166. nk.

If you specify this target with dependencies, these are added to the existing
. SUFFI XES target in mk166. nk. If you specify this target without dependencies,
the existing list is cleared.

9.2.2.2. Makefile Rules

A line with leading white space (tabs or spaces) is considered as a rule and associated with the most
recently preceding dependency line. A rule is a line with commands that are executed to build the
associated target. A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency
nove test.c final.c # rulel
cl166 final.c # rul e2

You can precede a rule with one or more of the following characters:

@ does not echo the command line, except if -n is used.

- the make utility ignores the exit code of the command. Normally the make utility stops if a
non-zero exit code is returned. This is the same as specifying the option -i on the command
line or specifying the special . | GNORE target.

+ The make utility uses a shell or Windows command prompt (cnd. exe) to execute the
command. If the '+'is not followed by a shell line, but the command is an MS-DOS command
or if redirection is used (<, |, >), the shell line is passed to cnd. exe anyway.

You can force mk166 to execute multiple command lines in one shell environment. This is accomplished
with the token combination ;\'. For example:

cd c:\Tasking\bin ;\
nkl166 -V

Note that the ;' must always directly be followed by the '\' token. Whitespace is not removed when it is at
the end of the previous command line or when it is in front of the next command line. The use of the '}’
as an operator for a command (like a semicolon ';' separated list with each item on one line) and the '\
as a layout tool is not supported, unless they are separated with whitespace.

Inline temporary files

The make utility can generate inline temporary files. If a line contains <<LABEL (no whitespaces!) then
all subsequent lines are placed in a temporary file until the line LABEL is encountered. Next, <<LABEL
is replaced by the name of the temporary file. For example:

| k166 -0 $@-f <<ECF
$(separate "\n" $(match .obj $!))
$(separate "\n" $(match .1ib $!))

297



TASKING VX-toolset for C166 User Guide

$( LKFLAGS)
EOF

The three lines between <<EOF and EOF are written to a temporary file (for example nkce4cOa. t np),
and the rule is rewritten as: | k166 -0 $@-f mnkce4cOa.t np.

Suffix targets

Instead of specifying a specific target, you can also define a general target. A general target specifies the
rules to generate a file with extension . ex1 to a file with extension . ex2. For example:

. SUFFI XES: .C
. C. obj
ccl66 -c $<

Read this as: to build a file with extension . obj out of a file with extension . c, call the control program
with -¢ $<. $< is a predefined macro that is replaced with the name of the current dependency file. The
special target . SUFFI XES: is followed by a list of file extensions of the files that are required to build the
target.

Implicit rules

Implicit rules are stored in the system makefile mk166. nk and are intimately tied to the . SUFFI XES
special target. Each dependency that follows the . SUFFI XES target, defines an extension to a filename
which must be used to build another file. The implicit rules then define how to actually build one file from
another. These files share a common basename, but have different extensions.

If the specified target on the command line is not defined in the makefile or has not rules in the makefile,
the make utility looks if there is an implicit rule to build the target.

Example:

LIB = -lcn -1fpn -lrtn # macro

prog.el f: prog.obj sub. obj
| k166 prog.obj sub.obj $(LIB) -0 prog.elf

prog.obj: prog.c inc.h

cl66 prog.c
asl166 prog.src

sub. obj : sub.c inc.h
cl66 sub.c
as166 sub.src

This makefile says that pr og. el f depends on two files pr og. obj and sub. obj , and that they in turn
depend on their corresponding source files (pr og. ¢ and sub. ¢) along with the common file i nc. h.

The following makefile uses implicit rules (from nmk166. nk) to perform the same job.
LDFLAGS = -lcn -Ifpn -lrtn # macro used by inplicit rules
prog. el f: prog.obj sub. obj # implicit rule used

298



Using the Utilities

prog.obj: prog.c inc.h # inplicit rule used
sub.obj: sub.c inc.h # inplicit rule used

9.2.2.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lower case or upper case characters, upper case is an accepted convention.
The general form of a macro definition is:

MACRO = text
MACRO += and npre text

Spaces around the equal sign are not significant. With the += operator you can add a string to an existing
macro. An extra space is inserted before the added string automatically.

To use a macro, you must access its contents:

$( MACRO # you can read this as
${ MACRO} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note that the expansion is done
recursively, so the body of a macro may contain other macros. These macros are expanded when the
macro is actually used, not at the point of definition:

FOOD = $(EAT) and $( DRI NK)
EAT = neat and/or vegetables
DRI NK = wat er

export FOOD

The macro FOOD is expanded as neat and/ or veget abl es and wat er atthe momentitis used in
the export line, and the environment variable FOOD is set accordingly.

Predefined macros

Macro Description

MAKE Holds the value mk166. Any line which uses MAKE, temporarily overrides the option
-n (Show commands without executing), just for the duration of the one line. This way
you can test nested calls to MAKE with the option -n.

MAKEFLAGS Holds the set of options provided to mk166 (except for the options -f and -d). If this
macro is exported to set the environment variable MAKEFLAGS, the set of options is
processed before any command line options. You can pass this macro explicitly to
nested mk166's, but it is also available to these invocations as an environment variable.

PRODDI R Holds the name of the directory where mk166 is installed. You can use this macro to
refer to files belonging to the product, for example a library source file.

DOPRI NT = $(PRODDIR)/ i b/src/ _doprint.c
When mk166 is installed in the directory c: / Taski ng/ bi n this line expands to:

DOPRI NT = c:/ Tasking/lib/src/_doprint.c

299



TASKING VX-toolset for C166 User Guide

Macro Description

SHELLCMD Holds the default list of commands which are local to the SHELL. If a rule is an
invocation of one of these commands, a SHELL is automatically spawned to handle
it.

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

Dynamically maintained macros

There are several dynamically maintained macros that are useful as abbreviations within rules. It is best
not to define them explicitly.

Macro Description

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.
$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be unreliable when used within
explicit target command lines. All macros may be suffixed with F to specify the Filename components
(e.9. ${*F}, ${ @} ). Likewise, the macros $*, $< and $@ may be suffixed by D to specify the Directory
component.

The result of the $* macro is always without double quotes ("), regardless of the original target having
double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory component) is also always without
double quotes ("), regardless of the original contents having double quotes () around it or not.

9.2.2.4. Makefile Functions

A function not only expands but also performs a certain operation. Functions syntactically look like macros
but have embedded spaces in the macro name, e.g. '$(match argl arg2 arg3 )". All functions are built-in
and currently there are five of them: mat ch, separ at e, pr ot ect, exi st and nexi st .

match

The mat ch function yields all arguments which match a certain suffix:
$(match . obj prog.obj sub.obj nylib.lib)

yields:

prog. obj sub. obj

300



Using the Utilities

separate

The separ at e function concatenates its arguments using the first argument as the separator. If the first
argument is enclosed in double quotes then \n' is interpreted as a newline character, \t' is interpreted as
atab, "\ooo'is interpreted as an octal value (where, 000 is one to three octal digits), and spaces are taken
literally. For example:

$(separate "\n" prog.obj sub. obj)
results in:

pr og. obj
sub. obj

Function arguments may be macros or functions themselves. So,

$(separate "\n" $(match .obj $!))

yields all object files the current target depends on, separated by a newline string.
protect

The pr ot ect function adds one level of quoting. This function has one argument which can contain white
space. If the argument contains any white space, single quotes, double quotes, or backslashes, it is
enclosed in double quotes. In addition, any double quote or backslash is escaped with a backslash.

Example:

echo $(protect |I'lIl show you the "protect" function)
yields:

echo "I'"lIl show you the \"protect\" function"

exist

The exi st function expands to its second argument if the first argument is an existing file or directory.
Example:

$(exist test.c ccl66 test.c)

When the file t est . c exists, it yields:

cclé6 test.c

When the file t est . ¢ does not exist nothing is expanded.

301



TASKING VX-toolset for C166 User Guide

nexist

The nexi st function is the opposite of the exi st function. It expands to its second argument if the first
argument is not an existing file or directory.

Example:
$(nexi st test.src ccl66 test.c)
9.2.2.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nane

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def ,i f ndef,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it.

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested up to 6 levels deep.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl, string2)

if-lines
el se

el se-1ines
endi f

9.2.2.6. Comment, Include and Export Lines
Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#" is inside a quoted string, it is
not treated as a comment. Completely blank lines are ignored.

test.src : test.c # this is conment and is
ccl66 test.c # ignored by the nake utility

302



Using the Utilities

Include lines

An include line is used to include the text of another makefile (like including a . h file in a C source).
Macros in the name of the included file are expanded before the file is included. You can include several
files. Include files may be nested.

i ncl ude makefil e2 nakefile3
Export lines

An export line is used to export a macro definition to the environment of any command executed by the
make utility.

GREETING = Hell o
export CREETI NG

This example creates the environment variable GREETI NG with the value Hel | 0. The macro is exported
at the moment the export line is read so the macro definition has to precede the export line.

303



TASKING VX-toolset for C166 User Guide

9.3. Make Utility amk

amk is the make utility Eclipse uses to maintain, update, and reconstruct groups of programs. But you
can also use it on the command line. Its features are a little different from mk166. The main difference
compared to mk166 and other make utilities, is that amk features parallelism which utilizes the multiple
cores found on modern host hardware, hardening for path names with embedded white space and it has
an (internal) interface to provide progress information for updating a progress bar. It does not use an
external command shell (/ bi n/ sh, cd. exe) but executes commands directly.

The primary purpose of any make utility is to speed up the edit-build-test cycle. To avoid having to build
everything from scratch even when only one source file changes, it is necessary to describe dependencies
between source files and output files and the commands needed for updating the output files. This is
done in a so called "makefile”.

9.3.1. Makefile Rules

A makefile dependency rule is a single line of the form:
[target ...] : [prerequisite ...]

where target and prerequisite are path names to files. Example:
test.obj : test.c

This states that target t est . obj depends on prerequisite t est . c. So, whenever the latter is modified
the first must be updated. Dependencies accumulate: prerequisites and targets can be mentioned in
multiple dependency rules (circular dependencies are not allowed however). The command(s) for updating
a target when any of its prerequisites have been modified must be specified with leading white space
after any of the dependency rule(s) for the target in question. Example:

test. obj
ccl66 test.c # | eadi ng white space

Command rules may contain dependencies too. Combining the above for example yields:

test.obj : test.c
ccle6 test.c

White space around the colon is not required. When a path name contains special characters such as
"', '#' (start of comment), '=' (macro assignment) or any white space, then the path name must be enclosed
in single or double quotes. Quoted strings can contain anything except the quote character itself and a
newline. Two strings without white space in between are interpreted as one, so it is possible to embed
single and double quotes themselves by switching the quote character.

When a target does not exist, its modification time is assumed to be very old. So, amk will try to make it.
When a prerequisite does not exist possibly after having tried to make it, it is assumed to be very new.
So, the update commands for the current target will be executed in that case. amk will only try to make
targets which are specified on the command line. The default target is the first target in the makefile which
does not start with a dot.

304



Using the Utilities

Static pattern rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each
target based on the target name.

[target ...] : target-pattern : [prerequisite-patterns ...]

The target specifies the targets the rules applies to. The target-pattern and prerequisite-patterns specify
how to compute the prerequisites of each target. Each target is matched against the target-pattern to
extract a part of the target name, called the stem. This stem is substituted into each of the
prerequisite-patterns to make the prerequisite names (one from each prerequisite-pattern).

Each pattern normally contains the character '%' just once. When the target-pattern matches a target,
the '%' can match any part of the target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target f 00. obj matches the pattern '% obj ', with 'f 0o' as the stem.

The targets f 00. ¢ and f 0o. el f do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the '%' in each prerequisite
pattern.

Example:

objects = test.obj filter.obj

all: $(objects)

$(objects): %obj: %c
cclé6 -c $< -0 $@

echo the stemis $*

Here '$<' is the automatic variable that holds the name of the prerequisite, '$@is the automatic variable
that holds the name of the target and '$*' is the stem that matches the pattern. Internally this translates
to the following two rules:

test.obj: test.c
ccl66 -c test.c -0 test.obj
echo the stemis test

filter.obj: filter.c
ccl66 -c filter.c -o filter.obj
echo the stemis filter
Each target specified must match the target pattern; a warning is issued for each target that does not.

Special targets

There are a number of special targets. Their names begin with a period.

Target Description

. DEFAULT If you call the make utility with a target that has no definition in the makefile, this
target is built.

305



TASKING VX-toolset for C166 User Guide

Target Description

. DONE When the make utility has finished building the specified targets, it continues with
the rules following this target.

JANT The rules following this target are executed before any other targets are built.

. PHONY The prerequisites of this target are considered to be phony targets. A phony target

is a target that is not really the name of a file. The rules following a phony target are
executed unconditionally, regardless of whether a file with that name exists or what
its last-modification time is.

For example:

. PHONY: cl ean

cl ean:
rm *. obj

With ank cl ean, the command is executed regardless of whether there is a file
named cl ean.

9.3.2. Makefile Directives

Directives inside makefiles are executed while reading the makefile. When a line starts with the word

"i ncl ude" or "-i ncl ude" then the remaining arguments on that line are considered filenames whose
contents are to be inserted at the current line. "- i ncl ude" will silently skip files which are not present.
You can include several files. Include files may be nested.

Example:
i nclude makefil e2 nmakefil e3

White spaces (tabs or spaces) in front of the directive are allowed.

9.3.3. Macro Definitions

A macro is a symbol name that is replaced with its definition before the makefile is executed. Although
the macro name can consist of lower case or upper case characters, upper case is an accepted convention.
When a line does not start with white space and contains the assignment operator '=', ":=" or '+=' then the
line is interpreted as a macro definition. White space around the assignment operator and white space
at the end of the line is discarded. Single character macro evaluation happens by prefixing the name with
'$". To evaluate macros with names longer than one character put the name between parentheses '()' or
curly braces '{}'. Macro names may contain anything, even white space or other macro evaluations.
Example:

DI NNER = $(FOOD) and $( BEVERAGE)
FOOD = pi zza

BEVERAGE = sparkling water

FOOD += with cheese

With the += operator you can add a string to an existing macro. An extra space is inserted before the
added string automatically.

306



Using the Utilities

Macros are evaluated recursively. Whenever $( DI NNER) or ${ DI NNER} is mentioned after the above,

it will be replaced by the text "pi zza wi th cheese and sparkling wat er". The left hand side in

a macro definition is evaluated before the definition takes place. Right hand side evaluation depends on
the assignment operator:

= Evaluate the macro at the moment it is used.
1= Evaluate the replacement text before defining the macro.

Subsequent '+=" assignments will inherit the evaluation behavior from the previous assignment. If there
is none, then '+='is the same as '=". The default value for any macro is taken from the environment. Macro
definitions inside the makefile overrule environment variables. Macro definitions on the amk command
line will be evaluated first and overrule definitions inside the makefile.

307



TASKING VX-toolset for C166 User Guide

Predefined macros

Macro Description

$ This macro translates to a dollar sign. Thus you can use "$$" in the makefile to represent
a single "$".

@ The name of the current target. When a rule has multiple targets, then it is the name

of the target that caused the rule commands to be run.

* The basename (or stem) of the current target. The stem is either provided via a static
pattern rule or is calculated by removing all characters found after and including the
last dot in the current target name. If the target name is 't est . ¢' then the stem is

't est ' (if the target was not created via a static pattern rule).

< The name of the first prerequisite.

MAKE The amk path name (quoted if necessary). Optionally followed by the options -n and
-S.

ORIG N The name of the directory where amk is installed (quoted if necessary).

SUBDI R The argument of option -G. If you have nested makes with -G options, the paths are

combined. This macro is defined in the environment (i.e. default macro value).

The @, * and < macros may be suffixed by 'D' to specify the directory component or by 'F' to specify the
filename component. $( @) evaluates to the directory name holding the file$( @) . $( @) / $( @) is
equivalent to $@ Note that on MS-Windows most programs accept forward slashes, even for UNC path
names.

The result of the predefined macros @, * and < and 'D' and 'F' variants is not quoted, so it may be necessary
to put quotes around it.

Note that stem calculation can cause unexpected values. For example:

$@ $*

/ home/ . wi ne/ t est / home/

/ home/ test/ . proj ect / home/ test/
/.. Ifile /.

Macro string substitution
When the macro name in an evaluation is followed by a colon and equal sign as in
$(MACRQO stringl=string2)

then amk will replace stringl at the end of every word in $( MACRO) by string2 during evaluation. When
$( MACRO) contains quoted path names, the quote character must be mentioned in both the original string
and the replacement stringl. For example:

$(MACRQ . obj "=.d")

1Internally, amk tokenizes the evaluated text, but performs substitution on the original input text to preserve compatibility here with
existing make implementations and POSIX.

308



Using the Utilities

9.3.4. Makefile Functions

A function not only expands but also performs a certain operation. The following functions are available:
$(filter pattern ...,item ...)

Thefil t er function filters a list of items using a pattern. It returns items that do match any of the pattern
words, removing any items that do not match. The patterns are written using '%,

${filter %c %h, test.c test.h test.obj readnme.txt .project output.c}
results in:

test.c test.h output.c
$(filter-out pattern ...,item ...)

Thefilter-out function returns all items that do not match any of the pattern words, removing the
items that do match one or more. This is the exact opposite of the fi | t er function.

${filter-out %c %h, test.c test.h test.obj readne.txt .project output.c}
results in:

test.obj readme.txt .project
$(foreach var-name, item ..., action)
The f or each function runs through a list of items and performs the same action for each item. The
var-name is the name of the macro which gets dynamically filled with an item while iterating through the
item list. In the action you can refer to this macro. For example:

${foreach T, test filter output, ${T}.c ${T}.h}

results in:

test.c test.h filter.c filter.h output.c output.h
9.3.5. Conditional Processing

Lines containing i f def , i f ndef, el se or endi f are used for conditional processing of the makefile.
They are used in the following way:

i fdef macro-nanme

if-lines
el se

el se-1ines
endi f

The if-lines and else-lines may contain any number of lines or text of any kind, even otheri f def ,i f ndef,
el se and endi f lines, or no lines at all. The el se line may be omitted, along with the else-lines following
it. White spaces (tabs or spaces) in front of preprocessing directives are allowed.

309



TASKING VX-toolset for C166 User Guide

First the macro-name after the i f def command is checked for definition. If the macro is defined then
the if-lines are interpreted and the else-lines are discarded (if present). Otherwise the if-lines are discarded;
and if there is an el se line, the else-lines are interpreted; but if there is no else line, then no lines are
interpreted.

When you use the i f ndef line instead of i f def , the macro is tested for not being defined. These
conditional lines can be nested to any level.

You can also add tests based on strings. With i f eq the result is true if the two strings match, with i f neq
the result is true if the two strings do not match. They are used in the following way:

i feq(stringl, string2)

if-lines
el se

el se-1ines
endi f

9.3.6. Makefile Parsing

amk reads and interprets a makefile in the following order:

1. When the last character on a line is a backslash (\) (i.e. without trailing white space) then that line and
the next line will be concatenated, removing the backslash and newline.

2. The unquoted '#' character indicates start of comment and may be placed anywhere on a line. It will
be removed in this phase.

# this comment line is continued\
on the next line
3. Trailing white space is removed.

4. When a line starts with white space and it is not followed by a directive or preprocessing directive, then
it is interpreted as a command for updating a target.

5. Otherwise, when a line contains the unquoted text '=', '+=' or ":=' operator, then it will be interpreted as
a macro definition.

6. Otherwise, all macros on the line are evaluated before considering the next steps.
7. When the resulting line contains an unquoted "' the line is interpreted as a dependency rule.

8. When the first token on the line is "i ncl ude" or "-i ncl ude" (which by now must start on the first
column of the line), amk will execute the directive.

9. Otherwise, the line must be empty.

Macros in commands for updating a target are evaluated right before the actual execution takes place
(or would take place when you use the -n option).

310



Using the Utilities

9.3.7. Makefile Command Processing

A line with leading white space (tabs or spaces) without a (preprocessing) directive is considered as a
command for updating a target. When you use the option -j or -J, amk will execute the commands for
updating different targets in parallel. In that case standard input will not be available and standard output
and error output will be merged and displayed on standard output only after the commands have finished
for a target.

You can precede a command by one or more of the following characters:

@ Do not show the command. By default, commands are shown prior to their output.
- Continue upon error. This means that amk ignores a non-zero exit code of the command.
+ Execute the command, even when you use option -n (dry run).

| Execute the command on the foreground with standard input, standard output and error
output available.

Built-in commands

Command Description

true This command does nothing. Arguments are ignored.

fal se This command does nothing, except failing with exit code 1. Arguments are
ignored.

echo arg... Display a line of text.

exit code Exit with defined code. Depending on the program arguments and/or the extra

rule options '-' this will cause amk to exit with the provided code. Please note
that 'exi t 0" has currently no result.

argfil e file arg... Create an argument file suitable for the --option-file (-f) option of all the other
tools. The first ar gf i | e argument is the name of the file to be created.
Subsequent arguments specify the contents. An existing argument file is not
modified unless necessary. So, the argument file itself can be used to create
a dependency to options of the command for updating a target.

9.3.8. Calling the amk Make Utility

The invocation syntax of amk is:

ank [option]... [target]... [macro=def]...
For example:

ank test.elf

target You can specify any target that is defined in the makefile. A target can also be one
of the intermediate files specified in the makefile.

311



TASKING VX-toolset for C166 User Guide

macro=def Macro definition. This definition remains fixed for the amk invocation. It overrides any
regular definitions for the specified macro within the makefiles and from the
environment. It is not inherited by subordinate amk's

option For a complete list and description of all amk make utility options, see Section 12.8,
Parallel Make Utility Options.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an error. Otherwise it returns an
exit status of 0.

312



Using the Utilities

9.4. Archiver

The archiver ar166 is a program to build and maintain your own library files. A library file is a file with
extension . | i b and contains one or more object files (. obj ) that may be used by the linker.

The archiver has five main functions:

» Deleting an object module from the library

» Moving an object module to another position in the library file

» Replacing an object module in the library or add a new object module
» Showing a table of contents of the library file

» Extracting an object module from the library

The archiver takes the following files for input and output:

assemhbler

T
l—— relocatable ohjectfile
= .ohj

|

archiver

relocatable object library
] linker

The linker optionally includes object modules from a library if that module resolves an external symbol
definition in one of the modules that are read before.

9.4.1. Calling the Archiver

You can create a library in Eclipse, which calls the archiver or you can call the archiver on the command
line.

To create alibrary in Eclipse

Instead of creating a C166 absolute ELF file, you can choose to create a library. You do this when you
create a new project with the New C/C++ Project wizard.

1. From the File menu, select New » TASKING VX-toolset for C166 C/C++ Project.
The New C/C++ Project wizard appears.

2. Enter a project name.

3. Inthe Project type box, select TASKING C166 Library and clickNext >.

4. Follow the rest of the wizard and click Finish.

5. Add the files to your project.

313



TASKING VX-toolset for C166 User Guide

6. Build the project as usual. For example, select Project » Build Project (1),

Eclipse builds the library. Instead of calling the linker, Eclipse now calls the archiver.
Command line invocation
You can call the archiver from the command line. The invocation syntax is:
ar 166 key option [sub _option...] library [object file]
key_option With a key option you specify the main task which the archiver should perform. You

must always specify a key option.

sub_option Sub-options specify into more detail how the archiver should perform the task that is
specified with the key option. It is not obligatory to specify sub-options.

library The name of the library file on which the archiver performs the specified action. You
must always specify a library name, except for the options -? and -V. When the library
is not in the current directory, specify the complete path (either absolute or relative) to
the library.

object_file The name of an object file. You must always specify an object file name when you
add, extract, replace or remove an object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub-option
Main functions (key options)

Replace or add an object module -r -a-b-c-u-v
Extract an object module from the library -X -V

Delete object module from library -d -V

Move object module to another position -m -a-b-v
Print a table of contents of the library -t -s0-sl
Print object module to standard output -p

Sub-options

Append or move new modules after existing module name -a name

Append or move new modules before existing module name -b name

Create library without notification if library does not exis -C

Preserve last-modified date from the library -0

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -v

Miscellaneous

314




Using the Utilities

Description Option Sub-option
Display options -?

Display version header -V

Read options from file -f file

Suppress warnings above level n -wn

For a complete list and description of all archiver options, see Section 12.9, Archiver Options.
9.4.2. Archiver Examples

Create a new library

If you add modules to a library that does not yet exist, the library is created. To create a new library with
the name nyl i b. | i b and add the object modules cst art. obj and cal c. obj toit:

arl66 -r nylib.lib cstart.obj calc.obj
Add a new module to an existing library

If you add a new module to an existing library, the module is added at the end of the module. (If the
module already exists in the library, it is replaced.)

arl1l66 -r nylib.lib npd3. obj

Print a list of object modules in the library

To inspect the contents of the library:

arle6 -t nmylib.lib

The library has the following contents:

cstart. obj

cal c. obj

nod3. obj

Move an object module to another position

To move nod3. obj to the beginning of the library, position it just before cst art . obj :
ar166 -nb cstart.obj nmylib.lib nbd3. obj

Delete an object module from the library

To delete the object module cst art . obj from the library nyl i b. |i b:

arl1l66 -d nylib.lib cstart. obj

315



TASKING VX-toolset for C166 User Guide

Extract all modules from the library
Extract all modules from the library nyl i b. | i b:

ar166 -x nylib.lib

316



Using the Utilities

9.5. HLL Object Dumper

The high level language (HLL) dumper hidump166 is a program to dump information about an object
file. Key features are a disassembler with HLL source intermixing and HLL symbol display and a HLL
symbol listing of static and global symbols.

9.5.1. Invocation

Command line invocation

You can call the HLL dumper from the command line. The invocation syntax is:

hl dunp166 [option]... file...

The input file must be an ELF file with or without DWARF debug info (. obj, .1 i b,. out or. el f).

The HLL dumper can process multiple input files. Files and options can be intermixed on the command
line. Options apply to all supplied files. If multiple files are supplied, the disassembly of each file is preceded
by a header to indicate which file is dumped. For example:

========== gbjectfile.ob] ==========

For a complete list and description of all options, see Section 12.10, HLL Object Dumper Options. With
hl dunp166 - - hel p you will see the options on st dout .

9.5.2. HLL Dump Output Format

The HLL dumper produces output in text format by default, but you can also specify the XML output format
with --output-file-type=xml. The XML output is mainly for use in the Eclipse editor. The output is printed
on st dout , unless you specify an output file with --output=filename.

The parts of the output are dumped in the following order:
1. Module list

2. Section list

3. Section dump (disassembly)

4. HLL symbol table

5. Assembly level symbol table

With the option --dump-format=flag you can control which parts are shown. By default, all parts are
shown.

Example

Suppose we have a simple "Hello World" program in a file called hel | 0. c. We call the control program
as follows:

ccl66 -g -t hello.c

317



TASKING VX-toolset for C166 User Guide

Option -g tells to include DWARF debug information. Option -t tells to keep the intermediate files. This
command results (among other files) in the files hel | 0. obj (the objectfile) and hel | 0. el f (the absolute
output file).

We can dump information about the object file with the following command:
hl dunp166 hel | 0. obj

---------- Module list ----------

Narme Ful | path
hello.c hello.c

---------- Section list ----------
Address Size Al'i gn Nane
00010000 8 2 code_nmmin
00000000 14 1 near__1 str
---------- Section dunp ----------
.section data, 'near__1 str'
.org 00000000
.db 48, 65, 6C, 6C, 6F, 20, 77, 6F, 72, 6C, 64, 21, 0A, 00 ; Hello world!.
;. End of section
.section code, 'code _nmin
00010000 OOOOF2E6 nmov r2, #0
00010004 O000OOFA j mps 0x0
;. End of section
---------- HLL symbol table ----------
Addr ess Size HLL Type Narme
---------- assenmbly | evel synmbol table ----------

Address Size Type Nane

00000000

00000000 mai n

00000000 hell 0. c
00000000 data _$1$str
00000000 near 1 str
00000000 code_main
00000000 ___printf_noarg
00000000 __cstart
00000000 _printf
00000000 code nmin

00000000 ___libc_references

You can dump information about the absolute object file with the following command:

318



hl dunp166 hel | o.

Module list

Using the Utilities

el f

This part lists all modules (C/C++ files) found in the object file(s). It lists the filename and the complete
path name at the time the module was built.

Section list

This part lists all sections found in the object file(s).

Address
Size
Align
Name

The start address of the section. Hexadecimal, 8 digits, 32-bit.

The size (length) of the section in bytes. Decimal, filled up with spaces.

The alignment of the section in number of bytes. Decimal, filled up with spaces.
The name of the section.

With option --sections=name[,name]... you can specify a list of sections that should be dumped.

Section dump

This part contains the disassembly. It consists of the following columns:

address column

encoding column

label column

disassembly column

Contains the address of the instruction or directive that is shown in the disassembly.
If the section is relocatable the section start address is assumed to be 0. The
address is represented in hexadecimal and has a fixed width. The address is
padded with zeros. No Ox prefix is displayed. For example, on a 32-bit architecture,
the address 0x32 is displayed as 00000032.

Shows the hexadecimal encoding of the instruction (code sections) or it shows the
hexadecimal representation of data (data sections). The encoding column has a
maximum width of eight digits, i.e. it can represent a 32-bit hexadecimal value.
The encoding is padded to the size of the data or instruction. For example, a 16-bit
instruction only shows four hexadecimal digits. The encoding is aligned left and
padded with spaces to fill the eight digits.

Displays the label depending on the option --symbols=[hlljasm|none]. The default
is asm, meaning that the low level (ELF) symbols are used. With hll, HLL (DWARF)
symbols are used. With none, no symbols will be included in the disassembly.

For code sections the instructions are disassembled. Operands are replaced with
labels, depending on the option --symbols=[hlljasm|none].

With option --data-dump-format=directives (default), the contents of data sections
are represented by directives. A new directive will be generated for each symbol.
ELF labels in the section are used to determine the start of a directive. ROM
sections are represented with . db, . dw, . dI kind of directives, depending on the
size of the data. RAM sections are represented with . ds directives, with a size
operand depending on the data size. This can be either the size specified in the
ELF symbol, or the size up to the next label.

319



TASKING VX-toolset for C166 User Guide

With option --data-dump-format=hex, no directives will be generated for data sections, but data sections
are dumped as hexadecimal code with ASCII translation. This only applies to ROM sections. The hex
dump has the following format:

AAAAAAAA HO HL H2 H3 H4 H5 H6 H7 H8 H9 HA HB HC HD HE HF RRRRRRRRRRRRRRRR
where,

A = Address (8 digits, 32-bit)

Hx = Hex contents, one byte (16 bytes max)

R = ASCII representation (16 characters max)

For example:

section 5 (near__1 str):
00000200 48 65 6C 6C 6F 20 77 6F 72 6C 64 21 0A 00 Hel lo world!..

With option --data-dump-format=hex, RAM sections will be represented with only a start address and
a size indicator:

AAAAAAAA Space: 48 bytes
With option --disassembly-intermix you can intermix the disassembly with HLL source code.
HLL symbol table

This part contains a symbol listing based on the HLL (DWARF) symbols found in the object file(s). The
symbols are sorted on address.

Address The start address of the symbol. Hexadecimal, 8 digits, 32-bit.
Size The size of the symbol from the DWARF info in bytes.

HLL Type The HLL symbol type.

Name The name of the HLL symbol.

HLL arrays are indicated by adding the size in square brackets to the symbol name. For example:
0000F698 80 static char __near stdin_buf[80] [_iob.c]

HLL struct and union symbols are listed by default without fields. For example:

0000F738 10 struct __near _dbg_request [dbg.c]

With option --expand-symbols all struct, union and array fields are included as well. For the fields the
types and names are indented with two spaces. For example:

0000F738 10 struct __near _dbg_request [dbg.c]
0000F738 2 i nt _errno

0000F73A 1 enum nr

0000F73C 6 uni on u

0000F73C 2 struct exit

320



Using the Utilities

0000F73C 2 i nt st at us
0000F73C 4 struct open
0000F73C 2 const char * pat hnane
0000F73E 2 unsi gned short int flags

Functions are displayed with the full function prototype. Size is the size of the function. HLL Type is the
return type of the function. For example:

0040044A 34 int __huge __nousmfputc(int _ _near c, struct _iobuf * _ near fp)
The local and static symbols get an identification between square brackets. The filename is printed if and

if a function scope is known the function name is printed between the square brackets as well. If multiple
files with the same name exist, the unique part of the path is added. For example:

0000F700 4 int count [file.c, somefunc()]
0000F704 4 int count [x\a.c]
0000F708 4 int count [y\a.c, foo()]

Global symbols do not get information in square brackets.
Assembly level symbol table

This part contains a symbol listing based on the assembly level (ELF) symbols found in the object file(s).
The symbols are sorted on address.

Address The start address of the symbol. Hexadecimal, 8 digits, 32-bit.

Size The size of the symbol from the ELF info in bytes. If this field is empty, the size is
zero.

Type Code or Data, depending on the section the symbol belongs to. If this field is empty,
the symbol does not belong to a section.

Name The name of the ELF symbol.

321



TASKING VX-toolset for C166 User Guide

322



Chapter 10. Using the Debugger

This chapter describes the debugger and how you can run and debug a C or C++ application. This chapter
only describes the TASKING specific parts.

10.1. Reading the Eclipse Documentation

Before you start with this chapter, it is recommended to read the Eclipse documentation first. It provides
general information about the debugging process. This chapter guides you through a number of examples
using the TASKING debugger with simulation as target.

You can find the Eclipse documentation as follows:
1. Start Eclipse.
2. From the Help menu, select Help Contents.
The help screen overlays the Eclipse Workbench.
3. Inthe left pane, select C/C++ Development User Guide.
4. Open the Getting Started entry and select Debugging projects.

This Eclipse tutorial provides an overview of the debugging process. Be aware that the Eclipse
example does not use the TASKING tools and TASKING debugger.

10.2. Creating a Customized Debug Configuration

Before you can debug a project, you need a Debug launch configuration. Such a configuration, identified
by a name, contains all information about the debug project: which debugger is used, which project is
used, which binary debug file is used, which perspective is used, ... and so forth.

When you created your project, a default launch configuration for the TASKING simulator is available. At
any time you can change this configuration. If you want to debug on a target board, you have to create
a custom debug configuration for your target board.

To debug or run a project, you need at least one opened and active project in your workbench.
In this chapter, it is assumed that the mypr oj ect is opened and active in your workbench.

Customize your debug configuration
To change or create your own debug configuration follow the steps below.
1. From the Debug menu, select Debug Configurations...
The Debug Configurations dialog appears.
2. Inthe left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger

» myproject.simulator.

323



TASKING VX-toolset for C166 User Guide

Or: click the New launch configuration button (.7) to add a new configuration.
The next dialog appears.

The dialog shows several tabs.
Main tab

On the Main tab, you can set the properties for the debug configuration such as a name for the configuration
and the project and the application binary file which are used when you choose this configuration.

@ Debug Configurations 3]

Create, manage, and run configurations
TASKING C/C-++ Debugger

R Hame: | myproject simulator
[E) Main 69+ Arguments | %5 Debugger | 5 Source | £ Common

Froject

i+ application:

$lpraject_lochig fuld_corfighimyproject of Search Project...

[use linkerflocator memery map file ¢.mdf) far memery map

®

* Name is the name of the configuration. By default, this is the name of the project, optionally appended
with si mul at or or boar d. You can give your configuration any name you want to distinguish it from
the project name.

« In the Project field, you can choose the project for which you want to make a debug configuration.
Because the project mypr oj ect is the active project, this project is filled in automatically. Click the
Browse... button to select a different project. Only the opened projects in your workbench are listed.

* In the C/C++ Application field, you can choose the binary file to debug. The file myproj ect. el f is
automatically selected from the active project.

» You can use the option Use linker/locator memory map file (.mdf) for memory map to find errors
in your application that cause access to hon-existent memory or cause an attempt to write to read-only
memory. When building your project, the linker/locator creates a memory description file (. mdf ) file
which describes the memory regions of the target you selected in your project properties. The debugger
uses this file to initialize the debugging target.

This option is only useful in combination with a simulator as debug target. The debugger may fail to
start if you use this option in combination with other debugging targets than a simulator.

324



Using the Debugger

Arguments tab

If your application's mai n() function takes arguments, you can pass them in this tab. Arguments are
conventionally passed in the ar gv[ ] array. Because this array is allocated in target memory, make sure
you have allocated sufficient memory space for it.

* Inthe C/C++ perspective select Project » Properties for to open the Properties dialog. Expand C/C++
Build » Startup Configuration. Enable the option Enable passing argc/argv to main() and specify
a Buffer size for argv.

@ Debug Configurations [®]
Create, manage, and run configurations
TASKING C/C++ Debugger
=R =N o jaor
= &% TASKING Cf++ Debugger CJCa++ Program Arguments
% myproject  simulator
argl argz
arg3 argt
Use default working directary
® [ ) [ ]

Debugger tab

On the Debugger tab you can set the debugger options. You can choose which debugger should be
used and with what options it should work. The Debugger tab itself contains several tabs.

325



TASKING VX-toolset for C166 User Guide

@ Debug Configurations 3]
Create, manage, and run configurations
TASKING C/C++ Debugger
B Eo
I X B3 Hame: | mypraject simulator
[E) Main | 69= Arguments | %% Debugger %5 Source | £ Common
B 3% TASKING C/C++ Debugger " -
Execution Envirarment | Communication Setup | Initislization | Miscellansous
5 mypraject simulator
Target: TASKING C166 Simulator v
Memary configuration:
[Z]Peripheral simulation
)
@

» Onthe Execution Environment tab you can select on which target the application should be debugged.
An application can run on an external evaluation board, or on a simulator using your own PC. The
information in this tab is based on the Debug Target Configuration (DTC) files as explained in Chapter 17,
Debug Target Configuration Files.

» Onthe Communication Setup tab you can select the communication method and specific settings for
the selected method (RS-232, TCP/IP, CAN) for execution environments. For the simulator this tab is
grayed out.

» On the Initialization tab enable one or more of the following options:
« Initial download of program

If enabled, the target application is downloaded onto the target. If disabled, only the debug information
in the file is loaded, which may be useful when the application has already been downloaded (or
flashed) earlier. If downloading fails, the debugger will shut down.

« Verify download of program

If enabled, the debugger verifies whether the code and data has been downloaded successfully. This
takes some extra time but may be useful if the connection to the target is unreliable.

e Program flash when downloading

If enabled, also flash devices are programmed (if necessary). Flash programming will not work when
you use a simulator.

* Reset target
If enabled, the target is immediately reset after downloading has completed.

* Goto main

326



Using the Debugger

If enabled, only the C startup code is processed when the debugger is launched. The application
stops executing when it reaches the first C instruction in the function nai n() . Usually you enable
this option in combination with the option Reset Target.

* Break on exit
If enabled, the target halts automatically when the exi t () function is called.
* Reduce target state polling

If you have set a breakpoint, the debugger checks the status of the target every number of seconds
to find out if the breakpoint is hit. In this field you can change the polling frequency.

« Monitor file (Flash settings)

Filename of the monitor, usually an Intel Hex or S-Record file.
e Sector buffer size (Flash settings)

Specifies the buffer size for buffering a flash sector.
« Workspace address (Flash settings)

The address of the workspace of the flash programming monitor.
On the Miscellaneous tab you can specify several file locations.
« Debugger location

The location of the debugger itself. This should not be changed.
¢ FSSroot directory

The initial directory used by file system simulation (FSS) calls. See the description of the FSS view.
* ORTI file and KSM module

If you wish to use the debugger's special facilities for OSEK kernels, specify the name of your ORTI
file and that of your KSM module (shared library) in the appropriate edit boxes. See also the description
of the RTOS view.

« GDI log file and Debug instrument log file

You can use the options GDI log file and Debug instrument log file (if applicable) to control the
generation of internal log files. These are primarily intended for use by or at the request of Altium
support personnel.

« Cache target access

Except when using a simulator, the debugger's performance is generally strongly dependent on the
throughput and latency of the connection to the target. Depending on the situation, enabling this

option may result in a noticeable improvement, as the debugger will then avoid re-reading registers
and memory while the target remains halted. However, be aware that this may cause the debugger

327



TASKING VX-toolset for C166 User Guide

to show the wrong data if tasks with a higher priority or external sources can influence the halted
target's state.

Source tab

On the Source tab, you can add additional source code locations in which the debugger should search
for debug data.

@ Debug Configurations 3]
Create, manage, and run configurations
TASKING C/C++ Debugger
- g
CERE% B %- Heme: | myproject simulator ]
[opefitertet ] Main | 69- Arguments | %5 Debugger & Source =] Comman
= &% TASKING C/C++ Debugger Source Lookup Path:
#5 myproject.simulator & Default Add...
[ search for duplicate seurce files on the path
@

» Usually, the default source code location is correct.

Common tab

On the Common tab you can set additional launch configuration settings.

@ Debug Configurations 3]
Create, manage, and run configurations

TASKING CJC++ Debugger ﬁ"
SR N

Heme: | myproject.simulator

&

= &% TASKING C/C++ Debugger
#5 myproject.simulator

Main | 69= Arguments | %5 Debugger | & Source | £ Common
Save as

Olocalfile
@ project fils
Oshared fie: |

Display in favorites manu
[ %5Debug (@ Default - inherited (Cp1252)
mE L O Sther

Encoding

Standard Input and Output
[ Allocate Console (necessary For inputd

[IFie \

Launch in backaround

328



Using the Debugger

10.3. Troubleshooting

If the debugger does not launch properly, this is likely due to mistakes in the settings of the execution
environment or to an improper connection between the host computer and the execution environment.
Always read the notes for your particular execution environment.

Some common problems you may check for, are:

Problem Solution

Wrong device name in the launch | Make sure the specified device name is correct.
configuration

Invalid baud rate Specify baud rate that matches the baud rate the execution
environment is configured to expect.

No power to the execution Make sure the execution environment or attached probe is powered.
environment.

Wrong type of RS—-232 cable. Make sure you are using the correct type of RS-232 cable.

Cable connected to the wrong port |Some target machines and hosts have several ports. Make sure
on the execution environment or host. |you connect the cable to the correct port.

Conflict between communication A device driver or background application may use the same
ports. communications port on the host system as the debugger. Disable
any service that uses the same port-number or choose a different
port-number if possible.

Port already in use by another user. | The port may already be in use by another user on some UNIX
hosts, or being allocated by a login process. Some target machines
and hosts have several ports. Make sure you connect the cable to
the correct port.

10.4. TASKING Debug Perspective

After you have launched the debugger, you are either asked if the TASKING Debug perspective should
be opened or it is opened automatically. The Debug perspective consists of several views.

To open views in the Debug perspective:

1. Make sure the Debug perspective is opened

2. From the Window menu, select Show View »

3. Select a view from the menu or choose Other... for more views.

By default, the Debug perspective is opened with the following views:

329



TASKING VX-toolset for C166 User Guide

W TASKING Debug - myproject/myproject.c - TASKING ¥X-toolset for C166
File Edit Source Refactor Mavigate Search Froject Debug “Window Help

- N R R C R s SR < . I X2 o £ | %5 TASKING Debug |
%5 pebug 3 = O || 9= yariables 52 %o Breskpoints = O Wl Registers 2 3 Y =0
= +# B § | Name Yalue ~
AR
i3 3 R Hame: Value oo CPLI
=i <no storage assigned> i U

i = B MCHE
Ak

E 5 mypraject smulstor [TASKING C/C-+ Debugger] ar MEMORY

= &8 TASKING Debugger (2(24/11 12:25 PM) (Suspended) siat INTERRLPT s
Do Thread [1:1:166] (Suspended) L] >

_cstart() cstart,ci562 Ox00c0462e

[€) myproject.c 53 =0 TASKING Disassembly 52 . OF Outlne =0

#include <stdio.h>
Address: 0x00c04332

int main{ void ] for (i=1; i<=3; 1++] ~
i % 0x00c04832 =0 13 mow @, #oxi

int i: printf( "sdin",i J;

for [i=1:; 1<=3: i++4] 0x00c04634 86 Bf Jreatd [-rl5], r&

{ 0x00c04836 e6 £2 54 02 mov r2, #0x254

printf| "sdin",i ): 0x00e046%a da oD Oe 49 ealls  printf (Dxe0400e)

3 0x00c0483e 08 £2 add ri5, #0xz

printf| "Hello world, " 1: for (i=1; i<=3; i+t

printf[ "this i3 “n" ]: 0x00c04640 80 38 cwpil  rE, #O0x3

printf| "a swall 3dscin",i-3 ): 0x00c045842  8d £8 Jmpr co_o, _mwain/... (0OxcO483¢

printf | "debugging example.in" }: s printf{ "Hello world, ™ ):

< B ¥ v

B console 51 ¥ Tasks x bl 7 B~ 9 70| 0 vemary 3 ] [+ G % T =0
Debug [myproject.simulatar] Manitors &
Launchiny configuration: wyproject.similator ~

Using Debug Target Configuration:
Target: TAZKING Cl66 Fimulator
Selected CPU type: xcZZ&7m
Register file: C:/Program Files/TASKING/Cl86-VI vw3.C
Comunication: Simulator e
< >
D oRe

10.4.1. Debug View

The Debug view shows the target information in a tree hierarchy shown below with a sample of the
possible icons:

Icon Session item Description

=3 Launch instance |Launch configuration name and launch type

Debugger instance | Debugger name and state

P @ g8 |Thread instance |Thread number and state

= = |Stack frame Stack frame number, function, file name, and file line number
instance

The number beside the thread label is a reference counter, not a thread identification number (TID).
Stack display
During debugging (running) the actual stack is displayed as it increases or decreases during program

execution. By default, all views present information that is related to the current stack item (variables,
memory, source code etc.). To obtain the information from other stack items, click on the item you want.

330



Using the Debugger

The Debug view displays stack frames as child elements. It displays the reason for the suspension beside
the thread, (such as end of stepping range, breakpoint hit, and signal received). When a program exits,

the exit code is displayed.

The Debug view contains numerous functions for controlling the individual stepping of your programs and
controlling the debug session. You can perform actions such as terminating the session and stopping the
program. All functions are available from the right-click menu, though commonly used functions are also
available from the toolbar in the Debug view.

Controlling debug sessions

Icon Action Description
% Remove all Removes all terminated launches.
i Reset target Resets the target system and restarts the application.
system
b Resume R_esumes the application after it was suspended (manually, breakpoint,
signal).
oo Suspend Suspends the application (pause). Use the Resume button to continue.
) Right-click menu. Restarts the selected debug session when it was
Q, Relaunch terminated. If the debug session is still running, a new debug session is
launched.
4 Reload current Reloads the current application without restarting the debug session. The
: application application does restart of course.
. Ends the selected debug session and/or process. Use Relaunch to restart
= Terminate . ; ;
this debug session, or start another debug session.
[& | Terminate all Right-click menu. As terminate. Ends all debug sessions.
@ |Terminate and Right-click menu. Ends the debug session and removes it from the Debug
*[remove view.
@ | Terminate and Right-click menu. Ends the debug session and relaunches it. This is the
Relaunch same as choosing Terminate end then Relaunch.
& Restart Right-click menu. Restarts the application. The target system is not reset.
ot Disconnect Detaches the debugger from the selected process (useful for debugging
attached processes)
Stepping through the application
Icon Action Description
= Step into Steps to the next source line or instruction
_ Steps over a called function. The function is executed and the application
i Step over . .
suspends at the next instruction after the call.
s Step return Executes the current function. The application suspends at the next

instruction after the return of the function.

331



TASKING VX-toolset for C166 User Guide

Icon Action Description

i Instruction Toggle. If enabled, the stepping functions are performed on instruction level
stepping instead of on C source line level.

0 Interrgpt aware Toggle. If enabled, the stepping functions do not step into an interrupt when
stepping it occurs.

Miscellaneous

Icon Action Description

Right-click menu. Copies the stack as text to the windows clipboard. You

Copy Stack can paste the copied selection as text in, for example, a text editor.
# Edit project... Right-click menu. O_pens_the debug configuration dialog to let you edit the
current debug configuration.
By Edit Source Right-click menu. Opens the Edit Source Lookup Path window to let you
Lookup... edit the search path for locating source files.

10.4.2. Breakpoints View

You can add, disable and remove breakpoints by clicking in the marker bar (left margin) of the Editor
view. This is explained in the Getting Started manual.

Description

The Breakpoints view shows a list of breakpoints that are currently set. The button bar in the Breakpoints
view gives access to several common functions. The right-most button = opens the Breakpoints menu.

Types of breakpoints
To access the breakpoints dialog, add a breakpoint as follows:

1. Click the Add TASKING Breakpoint button (&).

The Breakpoints dialog appears.
Each tab lets you set a breakpoint of a special type. You can set the following types of breakpoints:
» File breakpoint

The target halts when it reaches the specified line of the specified source file. Note that it is possible
that a source line corresponds to multiple addresses, for example when a header file has been included
into two different source files or when inlining has occurred. If so, the breakpoint will be associated with
all those addresses.

* Function

The target halts when it reaches the first line of the specified function. If no source file has been specified
and there are multiple functions with the given name, the target halts on all of those. Note that function
breakpoints generally will not work on inlined instances of a function.

332



Using the Debugger

* Address

The target halts when it reaches the specified instruction address.
» Stack

The target halts when it reaches the specified stack level.
» Data

The target halts when the given variable or memory location (specified in terms of an absolute address)
is read or written to, as specified.

* Instruction
The target halts when the given number of instructions has been executed.
* Cycle
The target halts when the given number of clock cycles has elapsed.
e Timer
The target halts when the given amount of time elapsed.
In addition to the type of the breakpoint, you can specify the condition that must be met to halt the program.

In the Condition field, type a condition. The condition is an expression which evaluates to ‘true’ (non-zero)
or 'false' (zero). The program only halts on the breakpoint if the condition evaluates to 'true’.

In the Ignore count field, you can specify the number of times the breakpoint is ignored before the program
halts. For example, if you want the program to halt only in the fifth iteration of a while-loop, type '4": the
first four iterations are ignored.

10.4.3. File System Simulation (FSS) View

Description

The File System Simulation (FSS) view is automatically opened when the target requests FSS input or
generates FSS output. The virtual terminal that the FSS view represents, follows the VT100 standard. If
you right-click in the view area of the FSS view, a menu is presented which gives access to some
self-explanatory functions.

VT100 characteristics

The queens example demonstrates some of the VT100 features. (You can find the queens example in
the <C166 installati on path>\exanpl es directory from where you can import it into your
workspace.) Per debugging session, you can have more than one FSS view, each of which is associated
with a positive integer. By default, the view "FSS #1" is associated with the standard streams st di n,

st dout, st derr and st daux. Other views can be accessed by opening a file named "terminal window
<number>", as shown in the example below.

333



TASKING VX-toolset for C166 User Guide

FILE * f3 = fopen("term nal w ndow 3", "rw');
fprintf(f3, "Hello, wi ndow 3.\n");
fclose(f3);

You can set the initial working directory of the target application in the Debug configuration dialog (see
also Section 10.2, Creating a Customized Debug Configuration):

1. On the Debugger tab, select the Miscellaneous sub-tab.
2. Inthe FSS root directory field, specify the FSS root directory.

The FSS implementation is designed to work without user intervention. Nevertheless, there are some
aspects that you need to be aware of.

First, the interaction between the C library code (in the files dbg*. ¢ and dbg*. h; see Section 13.1.5,
dbg.h) and the debugger takes place via a breakpoint, which incidentally is not shown in the Breakpoints
view. Depending on the situation this may be a hardware breakpoint, which may be in short supply.

Secondly, proper operation requires certain code in the C library to have debug information. This debug
information should normally be present but might get lost when this information is stripped later in the
development process.

When you use MIL linking/splitting the C library is translated along with your application. Therefore you
need to build your application with debug information generation enabled when FSS support is needed.

10.4.4. Disassembly View

The Disassembly view shows target memory disassembled into instructions and / or data. If possible, the
associated C / C++ source code is shown as well. The Address field shows the address of the current
selected line of code.

To view the contents of a specific memory location, type the address in the Address field. If the address
is invalid, the field turns red.

10.4.5. Expressions View
The Expressions view allows you to evaluate and watch regular C expressions.
To add an expression:
Click OK to add the expression.
1. Right-click in the Expressions View and select Add Watch Expression.
The Add Watch Expression dialog appears.
2. Enter an expression you want to watch during debugging, for example, the variable name "i"

If you have added one or more expressions to watch, the right-click menu provides options to Remove
and Edit or Enable and Disable added expressions.

» You can access target registers directly using #NAME. For example "ar r [ #R0 << 3] " or "#Tl MER3
= m++". If a register is memory-mapped, you can also take its address, for example, "&#ADCI N'.

334



Using the Debugger

» Expressions may contain target function calls like for example "g1 + i nvert (&g2)". Be aware that
this will not work if the compiler has optimized the code in such a way that the original function code
does not actually exist anymore. This may be the case, for example, as a result of inlining. Also, be
aware that the function and its callees use the same stack(s) as your application, which may cause
problems if there is too little stack space. Finally, any breakpoints present affect the invoked code in
the normal way.

10.4.6. Memory View

Use the Memory view to inspect and change process memory. The Memory view supports the same
addressing as the C and C++ languages. You can address memory using expressions such as:

» 0x0847d3c

« (&) +1024

e *ptr

Monitors

To monitor process memory, you need to add a monitor:

1. Inthe Debug view, select a debug session. Selecting a thread or stack frame automatically selects
the associated session.

2. Click the Add Memory Monitor button in the Memory Monitors pane.
The Monitor Memory dialog appears.
3. Type the address or expression that specifies the memory section you want to monitor and click OK.

The monitor appears in the monitor list and the Memory Renderings pane displays the contents of
memory locations beginning at the specified address.

To remove a monitor:

1. Inthe Monitors pane, right-click on a monitor.

2. From the popup menu, select Remove Memory Monitor.
Renderings

You can inspect the memory in so-called renderings. A rendering specifies how the output is displayed:
hexadecimal, ASCII, signed integer or unsigned integer. You can add or remove renderings per monitor.
Though you cannot change a rendering, you can add or remove them:

1. Click the New Renderings... tab in the Memory Renderings pane.
The Add Memory Rendering dialog appears.

2. Select the rendering you want (Traditional, Hex, ASCII, Signed Integer, Unsigned Integer or Hex
Integer) and click Add Rendering(s).

335



TASKING VX-toolset for C166 User Guide

To remove a rendering:

1. Right-click on a memory address in the rendering.
2. From the popup menu, select Remove Rendering.
Changing memory contents

In a rendering you can change the memory contents. Simply type a new value.

Warning: Changing process memory can cause a program to crash.

The right-click popup menu gives some more options for changing the memory contents or to change the
layout of the memory representation.

10.4.7. Compare Application View

You can use the Compare Application view to check if the downloaded application matches the application
in memory. Differences may occur, for example, if you changed memory addresses in the Memory view.

» To check for differences, click the Compare button.
10.4.8. Heap View

With the Heap view you can inspect the status of the heap memory. This can be illustrated with the
following example:

string = (char *) malloc(100);
strcpy ( string, "abcdefgh" );
free (string);

If you step through these lines during debugging, the Heap view shows the situation after each line has
been executed. Before any of these lines has been executed, there is no memory allocated and the Heap
view is empty.

« After the first line the Heap view shows that memory is occupied, the description tells where the block
starts, how large it is (100 MAUs) and what its content is (Ox0, 0xO0, ...).

» After the second line, "abcdef gh" has been copied to the allocated block of memory. The description
field of the Heap view again shows the actual contents of the memory block (0x61, 0x62,...).

» The third line frees the memory. The Heap view is empty again because after this line no memory is
allocated anymore.

10.4.9. Logging View

Use the Logging view to control the generation of internal log files. This view is intended mainly for use
by or at the request of Altium support personnel.

336



Using the Debugger

10.4.10. RTOS View

The debugger has special support for debugging real-time operating systems (RTOSSs). This support is

implemented in an RTOS-specific shared library called a kernel support module (KSM) or RTOS-aware
debugging module (RADM). Specifically, the TASKING VX-toolset for C166 ships with a KSM supporting
the OSEK standard. You have to create your own OSEK Run Time Interface (ORTI) and specify this file

on the Miscellaneous sub tab while configuring a customized debug configuration (see also Section 10.2,
Creating a Customized Debug Configuration):

1. From the Debug menu, select Debug Configurations...
The Debug Configurations dialog appears.

2. Inthe left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger
» myproject.simulator.

Or: click the New launch configuration button (L7) to add a new configuration.
3. Onthe Debugger tab, select the Miscellaneous tab
4. Inthe ORTI file field, specify the name of your own ORTI file.

The debugger supports ORTI specifications v2.0 and v2.1.

10.4.11. Registers View

When first opened, the Registers view shows a number of register groups, which together contain all
known registers. You can expand each group to see which registers they contain and examine the register's
values while stepping through your application. This view has a humber of features:

» While you step through the application, the registers involved in the step turn yellow.
* You can change each register's value.

» You can copy registers and/or groups to the windows clipboard: select the groups and/or individual
registers, right-click on a register(group) and from the popup menu choose Copy Registers. You can
paste the copied selection as text in, for example, a text editor.

* You can change the way the register value is displayed: right-click on a register(group) and from the
popup menu choose the desired display mode (Natural, Hexadecimal, Decimal, Binary, Octal)

» For some registers the menu entry Symbolic Representation is available in their right-click popup
menu. This opens a new view which shows the internal fields of the register. For example, the CPUCON1
register from the CPU group may be shown as follows:

337



TASKING VX-toolset for C166 User Guide

i CPUCONL £ =08
CPCOML
Value: 00 | | Update
Bit# | Description Value
i} CPUCOML_2CY: Zero Cyole Jump Enable Disabled
1 CPUCOML_BP: Branch Prediction Unit Enable Disabled
z CPUCOML_IMTSCKT: Enable Interruptability of Switch ... Mot inkerruptable
3 CPUCOML_3GTDIS: Segmentation Disable/Enable Control  Segmentation enabled
4 CPUCOML _WDTCTL: Configuration of watchdog Timer DIZwDT before EIMIT
56 CPUCOML _WECST: Scaling Fackor of Yector Table 2 words

In this view you can set the individual values in the register, either by selecting a value from a drop-down
box or by simply entering a value depending on the chosen field. To update the register with the new
values, click the Update button.

* You can fully organize the register groups as you like: right-click on a register and from the popup menu
use the menu items Add Register Group..., Edit Register Group... or Remove Register Group. This
way you not only can choose which groups should be visible in the Register view, you can also create
your own groups to which you add the registers of your interest.

To restore the original groups: right-click on a register and from the popup menu choose Restore
Default Register Groups. Be aware: groups you have created will be removed, groups you have edited
are restored to their original and groups you have deleted are placed back!

Viewing a register group in a separate view

For a better overview, you can open a register group in a separate view. To do so, double-click on the
register group name. A new Register view is opened, showing all registers from the group. You can
consider this view as a sub view of the Register view with roughly the same features.

10.4.12. Trace View

If tracing is enabled, the Trace view shows the code that was most recently executed. For example, while
you step through the application, the Trace view shows the executed code of each step. To enable tracing:

* From the Debug menu, select Trace.
A check mark appears when tracing is enabled.

The view has three tabs, Source, Instruction and Raw, each of which represents the trace in a different
way. However, not all target environments will support all three of these. The view is updated automatically
each time the target halts.

10.5. Multi-Core Debug Support (MCDS)

The debugger contains several views offering access to Infineon Multi-Core Debug Support (MCDS)
technology. You can use this only in conjunction with a hardware and software package sold by Hitex
(for example the TantinoXC / XC2000 MCDS Extension). Consult Hitex' documentation for more information
on installation and related aspects.

338



Using the Debugger

There are two debugger views that involve MCDS, each of which is discussed in the following sections.
10.5.1.Triggers - MCDS View

Triggers form one of the central concepts in MCDS. Much like a breakpoint, a trigger is a combination of
a condition and an associated action.

To add a new trigger:

1. Right-click in the Triggers - MCDS view and from the context menu, select New Trigger....

@ Memary | T Triggers - MCDS 53 %= Trace - MCDS =08

Identifier  Twpe Precondition  When Count Ackion

E Mew Trigger...

The New Trigger Definition dialog appears.

B News Trigger Definition rg|
Identifier:
Precondition:
Ackion:
Address Range

Start address:
End address: 0x0
(%) Inside range

() Outside of range

3)
o)
o

] [ Cancel

2. Specify a new trigger according to the fields described below and click OK.

339



TASKING VX-toolset for C166 User Guide

The Identifier field shows the trigger's identifier, which is a number between 0 and 15, reflecting
the fact that the hardware supports a maximum of 16 triggers.

In the Type box, you can select which processor activity should activate the trigger.

Internally, the MCDS hardware contains a state flag, which can have the value 0 (default), 1 or 2.
The Precondition box allows you to specify in which of these three states the trigger should be
activated. (See Action below about how to switch states.)

The value in the Count field defines how many times the trigger's activation should be skipped
before the actual trigger is activated.

The Action box specifies what action must be taken once the trigger's conditions have become
true. You can choose between:

* NONE. No action.
« Break. Suspends execution (making the trigger resemble a regular breakpoint).
» TraceStop. Stops tracing. See Section 10.5.2, Trace - MCDS View.

« TraceQualify. A single frame will be recorded every time the trigger's conditions are met. See
Section 10.5.2, Trace - MCDS View.

e STATEQ,1,2. Switches to a particular MCDS state (0, 1, or 2).
The contents of the bottom half of the dialog depend on the selected type.

For type Program, ReadData or WriteData, fill out the start address and end address (inclusive)
of the address range and select whether the trigger should activate upon access inside or outside
this range.

For type ReadData or WriteData, you must also define the set of values that should activate the
trigger. There are two options:

« If the Mask option is not selected, the trigger will be activated if the value falls within the range
spanned by the Minimum value and the Maximum value, or outside that range if Inverted is
selected.

« If the Mask option is selected, the logical AND of the value and the mask will be calculated. The
trigger will be activated if this equals the Minimum value or does not equal this if Inverted is
selected.

For type Combined, select which triggers should be activated (or not activated) for the combined
trigger itself to activate. Note that the triggers must be activated simultaneously.

For examples of several triggers, see the MCDS documentation of Hitex.

340



Using the Debugger

Keep in mind that in many cases the actual values read or written by the processor may differ
from what is implied by the source code. For example, if you assign a value to a variable of type
unsi gned | ong, the compiler will typically split this up into two 16-bit writes, meaning that you
cannot trigger on the 32-bit value.

10.5.2. Trace - MCDS View

MCDS makes it possible to record a trace of some or all of the following processor activities:

* the execution of instructions

* the reading of data from memory

* the writing of data to memory

To setup a trace:

1. Right-click in the Trace - MCDS view and from the context menu, select Trace Setup....

[0 Memary | . Triggers - MCDS | 5 Trace - MCDS 53 =08

Source | Instruction | Expert

Address Timesktamp ialue Type Location

v | Enable MCDS
s Feset
%, Triggers
//@Trace Setup...

The MCDS Trace Setup dialog appears.

8 MCDS Trace Setup El

Trace Recording Options

Trigger position: II 3 )

[l ereak an averflow

[ record timestamps
Cycles to Record
[CJExecute cycles
[Jread cycles (address)
[Jread cycles (data)
[[Jwrite cycles (address)
[Dierite cycles (data)

@ [ oK H Cancel

341



TASKING VX-toolset for C166 User Guide

2. Specify the trace recording options according to the fields described below and click OK.
» The Trigger position box controls functionality that is not yet available. You can ignore this field.

» The Break on overflow option controls what happens when the trace buffer is full. If selected,
MCDS will cause the target to halt. If not, the buffer will be overwritten cyclically, i.e. the oldest
data will be discarded first.

» With the Record timestamps option selected, the hardware will record a timestamp with frames,
which will be shown in the view's Time column. Note however that for compression purposes, the
hardware will only record a frame when the flow of execution changes. Consequently, some of the
frames shown in the user interface may have been reconstructed by the software. No timestamp
will be shown for these.

» The options in the Cycles to Record box allow you to specify which processor activities to record.

Because of the finite size of the on-chip buffer in which trace information is stored, depending on the
situation you may have to balance the length of the trace against the kind of information in it. For example,
if you are investigating what location a suspect memory write is unintentionally affecting, you may want
to select only the Write cycles (address) option, giving you a longer trace.

By default, the debugger records all processor activities as selected. However, with triggers you can
narrow this down to, for example, a particular address range. By setting a particular trigger's Action to
TraceStop, tracing stops at that point. Before doing this, deselect all five options in the Cycles to Record
box. Despite these being deselected, execute, read and write cycles will all be logged until the trigger is
activated. By setting it to TraceQualify, a single frame will be recorded every time the trigger's conditions
are met. In this case, normal trace recording remains active as well. So, deselect the options in the Cycles
to Record box if you only want to record the frames associated with the trigger.

10.6. Programming a Flash Device

With the TASKING debugger you can download an application file to flash memory. Before you download
the file, you must specify the type of flash devices you use in your system and the address range(s) used
by these devices.

To program a flash device the debugger needs to download a flash programming monitor to the target
to execute the flash programming algorithm (target-target communication). This method uses temporary
target memory to store the flash programming monitor and you have to specify a temporary data workspace
for interaction between the debugger and the flash programming monitor.

Two types of flash devices can exist: on-chip flash devices and external flash devices.
Setup an on-chip flash device
When you specify a target configuration board using the Import Board Configuration wizard, as explained

in the Getting Started with the TASKING VX-toolset for C166 manual, any on-chip flash devices are setup
automatically.

342



Setup an external flash device
1. From the Project menu, select Properties for

The Properties for project dialog appears.

Using the Debugger

2. Inthe left pane, expand Run/Debug Settings and select Flash Programming.

The Flash Programming pane appears.

W Properties for myproject

[psortee ]

ResoUrce
Builders
(= CfC++ Build
Build ariables
Discowvery Options
Eniranment
Logging
Memory
Pracessar
Settings
Stack/Heap
Startup Configuration
Startup Reqisters
Weckor Table
CfC++ General
Project References
= RunfDebug Settings
rrning

®

Flash Programming

Confiquration: |Debug [ Active ]

v [Manage Configurations...

©On-chip flash devices

Device Address width Chips i Unused
ACZZxAMIAC23xxAINC2,.,  0xCC0000 16 1 0200 0
HC2ZRHMIRC23xmA NG 0=CE0000 16 1 =00 0
HCZZRxMINC2 3 x AN 040000 16 1 000 0
22 IRC2 3% AN 0xC10000 16 1 000 0
RCZZMINCESxAfnC2,,,  0xC00000 16 1 000 0
External flash devices
Device Address width Chips i Unused

Restare Defaults Apply

3. Click Add... to specify an external flash device.

The Select a New Flash Device dialog appears.

343



TASKING VX-toolset for C166 User Guide

B Select a New Flash Device

Hash Device

Select a flash device

Device kype: Seckar map:

m ~ Sectar Size Start address
Infinean

Micron

Macronix

Intel

Allance Serniconductar

Fuijitsu

Hynix

Actel

Lurniniary Micro

Spansion

Akmnel

MNEC

AMD

MxP

AMIC

STMicroelectranics E

Base address:
Chip width: ™
Mumber of chips:

Number of unused address lines:

E5)

0

4. Inthe Device type box, expand the name of the manufacturer of the device and select a device.
The Sector map displays the memory layout of the flash device(s). Each sector has a size and

5. Inthe Base address field enter the start address of the memory range that will be covered by the
flash device. Any following addresses separated by commas are considered mirror addresses. This
allows the flash device to be programmed through its mirror address before switching the flash to its

base address.

6. Inthe Chip width field select the width of the flash device.

7. Inthe Number of chips field, enter the number of flash devices that are located in parallel. For
example, if you have two 8-bit devices in parallel attached to a 16-bit data bus, enter 2.

8. Fillinthe Number of unused address lines field, if necessary.

The flash memory is added to the linker script file automatically with the tag "f | ash=flash-id".

To program a flash device
1. From the Debug menu, select Debug Configurations...

The Debug Configurations dialog appears.

2. Inthe left pane, select the configuration you want to change, for example, TASKING C/C++ Debugger

» myproject.board.

344




Using the Debugger

On the Debugger tab, select the Initialization tab
Enable the option Program flash when downloading.
The Flash settings group box becomes active.

In the Monitor file field, specify the filename of the flash programming monitor, usually an Intel Hex
or S-Record file.

In the Sector buffer size field, specify the buffer size for buffering a flash sector.

Specify the data Workspace address used by the flash programming monitor. This address may
not conflict with the addresses of the flash devices.

Click Debug to program the flash device and start debugging.

345



TASKING VX-toolset for C166 User Guide

346



Chapter 11. Target Board Support

This chapter contains an overview of the target boards (sorted by manufacturer) that are currently supported
by the TASKING VX-toolset for C166. For each board is listed if you need to import special settings for
this board into your project with the Import Board Configuration wizard. For example, a board can have
extra memory or flash you want to use in your project.

11.1. Overview of Supported Boards

FS-FORTH Systeme

Name Processor Import board configuration
FS-FORTH EVA167 with C167CR Evaluation Board |C167CR yes

FS-FORTH STart27x (272) Evaluation Board ST10F272E yes

FS-FORTH STart27x (276) Evaluation Board ST10F276E yes

Infineon

Name Processor Import board configuration
Infineon XC16x Easykit Board XC16x no

Infineon XC16x Starter Kit Board XC16x yes

Infineon XC164CM U CAN XC164CM-8FF no

Infineon XC2XXX/XE166 Easykit Board | XC2xxx/XE16x no

Infineon XE164F U Connect XE164F-96F yes

I+ME ACTIA

Name Processor Import board configuration
I+ME C167C Evaluation Board |C167 yes

Phytec

Name Processor Import board configuration
Phytec kitCON-161V/K/O C1610 yes

Phytec kitCON-161CS/CI/JC |C161CS/CI/IC yes

Phytec KitCON-161PI/RI C161PI/RI yes

Phytec kitCON-163 C163 yes

Phytec kitCON-164 C164Cl yes

Phytec kitCON-165 C165 yes

Phytec kitCON-167 C167CR yes

347



TASKING VX-toolset for C166 User Guide

Name Processor Import board configuration
Phytec MiniModule-165 C165 yes
Phytec miniMODUL-167 C167CR/CS yes
Phytec nanoMODUL-164 C164ClI yes
Phytec phyCORE-161CS/JC/JI |C161CS/IC/JI yes
Phytec phyCORE-167CR C167CR/CS yes
Phytec phyCORE-ST10F276 |ST10F276E yes
Phytec phyCORE-XC161CJ |XC161CJ-16FF yes
Phytec phyCORE-XC167CI XC167Cl yes

STMicroelectronics

Name Processor Import board configuration
STMicroelectronics ST10F252 Evaluation Board | ST10F252E yes

TKtronic

Name Processor Import board configuration

TKtronic TKeval64 Evaluation Board |C164Cl

yes

TQ-Components

Name Processor Import board configuration
TQ-Components STK164C C164cClI yes
TQ-Components STKx167U XC167Cl yes
TQ-Components STKx161U XC161CJ-16FF yes
TQ-Components STK167C/LC/U/UE/UL|C167CR/CS yes

348




Chapter 12. Tool Options

This chapter provides a detailed description of the options for the compiler, assembler, linker, control
program, make utility and the archiver.

Tool options in Eclipse (Menu entry)

For each tool option that you can set from within Eclipse, a Menu entry description is available. In Eclipse
you can customize the tools and tool options in the following dialog:

1. From the Project menu, select Properties for
The Properties dialog appears.

2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.

3. Open the Tool Settings tab.
You can set all tool options here.

Unless stated otherwise, all Menu entry descriptions expect that you have this Tool Settings tab
open.

12.1. Configuring the Command Line Environment

If you want to use the tools on the command line (either using a Windows command prompt or using
Solaris), you can set environment variables.

You can set the following environment variables:

Environment Description

variable

AS166INC With this variable you specify one or more additional directories in which the
assembler looks for include files. See Section 7.3, How the Assembler Searches
Include Files.

C166INC With this variable you specify one or more additional directories in which the C
compiler looks for include files. See Section 4.4, How the Compiler Searches
Include Files.

CP166INC With this variable you specify one or more additional directories in which the C++
compiler looks for include files. See Section 5.2, How the C++ Compiler Searches
Include Files.

CC166BIN When this variable is set, the control program prepends the directory specified
by this variable to the names of the tools invoked.

349



TASKING VX-toolset for C166 User Guide

Environment Description
variable
LIBC166 With this variable you specify one or more additional directories in which the linker

looks for libraries. See Section 8.3.1, How the Linker Searches Libraries.

LM_LICENSE_FILE |With this variable you specify the location of the license data file. You only need
to specify this variable if the license file is not on its default location

(c:\flexI M1icense. dat for Windows,
lusr/local/flexlmlicenses/l|icense.dat for Solaris).

PATH With this variable you specify the directory in which the executables reside. This
allows you to call the executables when you are not in the bi n directory. Usually
your system already uses the PATH variable for other purposes. To keep these
settings, you need to add (rather than replace) the path. Use a semicolon (;) to
separate path names.

TASKING_LIC_WAIT |If you set this variable, the tool will wait for a license to become available, if all
licenses are taken. If you have not set this variable, the tool aborts with an error
message. (Only useful with floating licenses)

TMPDIR With this variable you specify the location where programs can create temporary
files. Usually your system already uses this variable. In this case you do not need
to change it.

See the documentation of your operating system on how to set environment variables.

12.2. C Compiler Options

This section lists all C compiler options.
Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the compiler via the control program. Therefore, it uses the syntax of
the control program to pass options and files to the C compiler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wc to pass the
option via the control program directly to the C compiler.

350



Tool Options

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -n sends output to stdout instead of a file and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

€cl1l66 -Cac test.c
€166 --optim ze=+coal esce, +cse test.c

When you do not specify an option, a default value may become active.

351



TASKING VX-toolset for C166 User Guide

C compiler option: --alternative-sfr-file

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Use alternative SFR file format.

Command line syntax

--alternative-sfr-file

Description

With this option the C compiler includes the alternative SFR file without alias definitions for SFRs and
SFR bit-fields. This alternative SFR file is named r egcpu. asfr and is located in the product's

i ncl ude/ sfr directory.

Use this option to speed up your compilation (smaller SFR file) and have less namespace pollution.

Related information

Section 1.3.5, Accessing Hardware from C

352



Tool Options

C compiler option: --automatic-near

Menu entry

1. Select C/C++ Compiler » Allocation.

2. Enable the option Application wide automatic near data allocation.
Command line syntax

--automati c- near

Description

With this option you enable automatic near data allocation, where default pointer qualifiers may be replaced
by more optimal qualifiers.

This optimization can only be used together with the MIL linking or MIL splitting build process, because
it needs application scope.

Related information
Section 4.6.2, Core Specific Optimizations (backend)

C compiler option --mil / --mil-split

353



TASKING VX-toolset for C166 User Guide

C compiler option: --bita-struct-threshold

Menu entry

1. Select C/C++ Compiler » Allocation

2. Inthe Threshold for putting structs in __bita field, enter a value in bytes.
Command line syntax

--bita-struct-threshol d=t hreshol d

Default: - - bi t a- struct -t hr eshol d=0

Description

With this option the compiler allocates unqualified structures that are smaller than or equal to the specified
threshold and have a bit-field of length one in the bit-addressable (__bi t a) memory space automatically.
The threshold must be specified in bytes. Objects that are qualified const or vol ati | e or objects that
are absolute are not moved.

By default the threshold is 0 (off), which means that no objects are moved.
Note that this option has no effect when you use MIL linking/splitting (--mil/--mil-split).
Example

To put all unqualified structures with a size of 4 bytes or smaller and a bit-field of length one into the
__bi t a section:

cl66 --bita-struct-threshold=4 test.c
Related information

C compiler option --mil / --mil-split

354



Tool Options

C compiler option: --cert

Menu entry
1. Select C/C++ Compiler » CERT C Secure Coding.
2. Make a selection from the CERT C secure code checking list.

3. Ifyou selected Custom, expand the Custom CERT C entry and enable one or more individual
recommendations/rules.

Command line syntax

--cert={all | nanme[-nane],...}

Default format: all

Description

With this option you can enable one or more checks for CERT C Secure Coding Standard
recommendations/rules. When you omit the argument, all checks are enabled. name is the name of a
CERT recommendation/rule, consisting of three letters and two digits. Specify only the three-letter
mnemonic to select a whole category. For the list of names you can use, see Chapter 19, CERT C Secure
Coding Standard.

On the command line you can use --diag=cert to see a list of the available checks, or you can use a
three-letter mnemonic to list only the checks in a particular category. For example, --diag=pre lists all
supported preprocessor checks.

Example

To enable the check for CERT rule STR30-C, enter:

cl1l66 --cert=str30 test.c

Related information

Chapter 19, CERT C Secure Coding Standard

C compiler option --diag (Explanation of diagnostic messages)

355



TASKING VX-toolset for C166 User Guide

C compiler option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The compiler reports any warnings and/or errors.
This option is available on the command line only.
Related information

Assembler option --check (Check syntax)

356



Tool Options

C compiler option: --compact-max-size

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Inthe Maximum size for code compaction field, enter the maximum size of a match.
Command line syntax

- - conpact - max- si ze=val ue

Default: 200

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more

than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

However, in the process of finding sequences of matching instructions, compile time and compiler memory
usage increase quadratically with the number of instructions considered for code compaction. With this
option you tell the compiler to limit the number of matching instructions it considers for code compaction.
Example

To limit the maximum number of instructions in functions that the compiler generates during code
compaction:

c1l66 --optim ze=+conpact --conpact-nmax-size=100 test.c
Related information
C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --max-call-depth (Maximum call depth for code compaction)

357



TASKING VX-toolset for C166 User Guide

C compiler option: --constant-memory

Menu entry

1. Select C/C++ Compiler » Allocation.

2. Select a Memory space for constant values.
Command line syntax

- -const ant - menor y=space

Default: --constant-memory=model
Description

With this option you can control the allocation of constant values, automatic initializers and switch tables.
The space must be one of __near, __far, __shuge, __huge or nodel .

The switch tables are never allocated in the spaces __far and __huge; __shuge will be used instead.

By default the compiler allocates constant values, automatic initializers and switch tables based on the
selected memory model (C compiler option --model).

Variables that are qualified const are not affected by this option.

When you use MIL splitting (option --mil-split) and automatic near data allocation (option
--automatic-near), you cannot set the space to __near .

Example

int foo( void )

{

int arr[] = {1, 2, 3, 4, 5 6, 7, 8, 9};
return arr[4];

}

The option --constant-memory controls the space of the section which contains the initializer { 1, 2,
3, 4, 5 6, 7, 8 91}.

long long bar( void )

{
return( 0x1234567812345678 );

}

The option --constant-memory controls the space of the section which contains the | ong | ong constant
0x1234567812345678.

To compile the file t est . ¢ for the far memory model, but allocate constant values in __near:

358



Tool Options

€166 --nodel =far --constant-nmenory=__near test.c
Related information
Pragma const ant _nenory

C compiler option --model (Select memory model)

359



TASKING VX-toolset for C166 User Guide

C compiler option: --core

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, expand Custom and select a core.
Command line syntax

--core=core

You can specify the following core arguments:

c16x C16x instruction set

st10 ST10 instruction set

stlOmac ST10 with MAC co-processor support
c166sv1l C166S v1.0 support

xc16x XC16x/XE16xx/XC2xxx instruction set
superl0 Superl0 instruction set

superl0ma345 Enhanced Superl0M345 instruction set
Default: derived from - - cpu if specified and known or else - - cor e=xc16x
Description
With this option you specify the core architecture for a target processor for which you create your

application. If --cpu is specified and the supplied CPU is known by the C compiler, the C compiler selects
the correct core automatically.

For more information see C compiler option --cpu.
Example

Specify a custom core:

€166 --core=st10 test.c

Related information

C compiler option --cpu (Select processor)

360



Tool Options

C compiler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, select a processor or expand Custom and select a core.
Command line syntax

- -cpu=cpu

- Ccpu

Description

With this option you define the target processor for which you create your application.

Based on this option the compiler always includes the special function register file r egcpu. sfr or
r egcpu. asf r, unless you specify option --no-tasking-sfr.

If you select a target from the list, the core is known. If you specify a Custom processor, you need to
select the core that matches the core of your custom processor (option --core). The C compiler knows
all CPUs with core c16x, st10, st10mac and superl0. If you specify a CPU that is not in that list, it is
assumed to be an xc16x.

The following table show the relation between the two options:

--Cpu=cpu |--core=core |core Register file
no no c16x €166, cpl66: none
as166: regcl6x.sfr
no yes core €166, cpl66: none
as166: regcore.sfr
yes no derived from cpu for core c16X, st10, stlOmac and |regcpu.sfr
super10

If the cpu is unknown core xc16x is assumed

yes yes core regcpu.sfr

The standard list of supported processors is defined in the file pr ocessor s. xml . This file defines for
each processor its full name (for example, XC2287-72F), the base CPU name (for example, xc2287), the
core settings (for example, xc16x), the on-chip flash settings, the list of silicon bugs for that processor.
Each processor also defines an option to supply to the linker for preprocessing the LSL file for the applicable
on-chip memory definitions. The option is for example -DXC2287_72M.

Example

Specify an existing processor:

€166 --cpu=cl67cs40 test.c

361



TASKING VX-toolset for C166 User Guide

Specify a custom processor:

€166 --cpu=custom --core=st10 test.c

Related information

C compiler option --core (Select the core)

C compiler option --no-tasking-sfr (Do not include SFR file)

C compiler option --alternative-sfr-file (Use alternative SFR file format)

Section 1.3.5, Accessing Hardware from C

362



Tool Options

C compiler option: --debug-info (-g)
Menu entry

1. Select C/C++ Compiler » Debugging.

2. To generate symbolic debug information, select Default, Small set or Full.
To disable the generation of debug information, select None.

Command line syntax
- -debug-i nf o[ =subopt i on]
- g[ subopti on]

You can set the following suboptions:

small 1l/c Emit small set of debug information.
default 2/d Emit default symbolic debug information.
all 3/a Emit full symbolic debug information.

Default: - - debug- i nf o (same as - - debug- i nf o=def aul t)
Description

With this option you tell the compiler to add directives to the output file for including symbolic information.
This facilitates high level debugging but increases the size of the resulting assembler file (and thus the
size of the object file). For the final application, compile your C files without debug information.

Small set of debug information

With this suboption only DWARF call frame information and type information are generated. This enables
you to inspect parameters of nested functions. The type information improves debugging. You can perform
a stack trace, but stepping is not possible because debug information on function bodies is not generated.
You can use this suboption, for example, to compact libraries.

Default debug information

This provides all debug information you need to debug your application. It meets the debugging
requirements in most cases without resulting in oversized assembler/object files.

Full debug information

With this suboption extra debug information is generated about unused typedefs and DWARF "lookup
table sections". Under normal circumstances this extra debug information is not needed to debug the
program. Information about unused typedefs concerns all typedefs, even the ones that are not used for
any variable in the program. (Possibly, these unused typedefs are listed in the standard include files.)
With this suboption, the resulting assembler/object file will increase significantly.

363



TASKING VX-toolset for C166 User Guide

Related information

364



Tool Options

C compiler option: --define (-D)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_nane[ =macr o_defi ni tion]
- Dmacr o_name[ =nacr o_defini tion]
Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the compiler with the option --option-file (-f) file.

Defining macros with this option (instead of in the C source) is, for example, useful to compile conditional
C source as shown in the example below.

Example
Consider the following C program with conditional code to compile a demo program and a real program:

void main( void )

{
#i f DEMO

deno_func(); /* conpile for the deno program */
#el se

real _func(); /* conpile for the real program*/
#endi f
}

You can now use a macro definition to set the DEMO flag:

c166 --define=DEMO test.c
c166 --defi ne=DEMO=1 test.c

365



TASKING VX-toolset for C166 User Guide

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

c166 --define="MAX(A B)=((A) > (B) ? (A : (B))" test.c
Related information
C compiler option --undefine (Remove preprocessor macro)

C compiler option --option-file (Specify an option file)

366



Tool Options

C compiler option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension . d (one for every input file).
Command line syntax

--dep-file[=file]

Description

With this option you tell the compiler to generate dependency lines that can be used in a Makefile. In
contrast to the option --preprocess=+make, the dependency information will be generated in addition to
the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
cl1l66 --dep-file=test.dep test.c

The compiler compiles the file t est . ¢, which results in the output file t est . sr ¢, and generates
dependency lines in the file t est . dep.

Related information

C compiler option --preprocess=+make (Generate dependencies for make)

367



TASKING VX-toolset for C166 User Guide

C compiler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » Basic » Problems.
The Problems view is added to the current perspective.

2. Inthe Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nmsg[-nBQ],...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. The compiler does
not compile any files. You can specify the following formats: html, rtf or text (default). To create a file

with the descriptions, you must redirect the output.

With the suboption all, the descriptions of all error messages are given (except for the CERT checks). If
you want the description of one or more selected error messages, you can specify the error message

numbers, separated by commas, or you can specify a range.

With --diag=cert you can see a list of the available CERT checks, or you can use a three-letter mnemonic
to list only the checks in a particular category. For example, --diag=pre lists all supported preprocessor

checks.

Example
To display an explanation of message number 282, enter:
€166 --di ag=282

This results in the following message and explanation:

368



Tool Options

E282: unterm nated conment

Make sure that every comment starting with /* has a matching */.
Nest ed coments are not possible.

To write an explanation of all errors and warnings in HTML format to file cer r or s. ht m , use redirection
and enter:

c166 --diag=htm:all > cerrors.htm
Related information

Section 4.9, C Compiler Error Messages

C compiler option --cert (Enable individual CERT checks)

369



TASKING VX-toolset for C166 User Guide

C compiler option: --dwarf-encoding

Menu entry

Command line syntax
- -dwar f - encodi ng=ver si on

Default: --dwarf-encoding=2
Description

The TASKING C166 ELF/DWARF ABI document describes the implementation of the ELF object format
and the DWARF 3 debug information for the TASKING VX-toolset for C166. Within the DWARF 3 debug
information two encoding versions are available to specify which TASKING type qualifier extensions are
available (see section 2.3 in the EDABI). With this option you can set the version of the DWARF 3 encoding
the C compiler should use. The TASKING debugger uses encoding version 2, which means that also the
qualifiers __bi t a and __i r amare supported. If you use a (third party) debugger that uses the older
DWARF encoding, you can set the encoding version to 1.

Related information
Section 15.1, ELF/DWARF Object Format

Section 2.3 in the latest TASKING C166 ELF/DWARF ABI document at
http://www.altium.com/TASKING/support/c166/

370


http://www.altium.com/TASKING/support/c166/

Tool Options

C compiler option: --error-file
Menu entry

Command line syntax
--error-file[=file]

Description

With this option the compiler redirects error messages to a file. If you do not specify a filename, the error
file will be named after the input file with extension . err .

Example
To write errors to error s. err instead of st der r, enter:

cl66 --error-file=errors.err test.c

Related information

371



TASKING VX-toolset for C166 User Guide

C compiler option: --global-type-checking
Menu entry

1. Select C/C++ Compiler » Diagnhostics.

2. Enable the option Perform global type checking on C code.
Command line syntax

--gl obal -t ype-checki ng

Description

The C compiler already performs type checking within each module. Use this option when you want the
linker to perform type checking between modules.

Related information

372



Tool Options

C compiler option: --help (-?)
Menu entry
Command line syntax

--help[=item

-2

You can specify the following arguments:

intrinsics i Show the list of intrinsic functions

options o] Show extended option descriptions

pragmas p Show the list of supported pragmas

typedefs t Show the list of predefined typedefs
Description

Displays an overview of all command line options. With an argument you can specify which extended
information is shown.

Example

The following invocations all display a list of the available command line options:
cl66 -?

c1l66 --help

c166

The following invocation displays a list of the available pragmas:

€166 --hel p=pragnas

Related information

373



TASKING VX-toolset for C166 User Guide

C compiler option: --ignore-memory-type-for-automatics

Menu entry

Command line syntax

--ignore-nmenory-type-for-automatics

Description

Normally the C compiler does not accept a memory type other than __near for automatic/parameter
variables. With this option any memory type is accepted, but the C compiler ignores it and uses __near

instead.

Related information

374



Tool Options

C compiler option: --include-directory (-I)

Menu entry
1. Select C/C++ Compiler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path, ...
-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the compiler searches for include files is:

1. The pathname in the C source file and the directory of the C source (only for #include files that are
enclosed in ")

2. The path that is specified with this option.

3. The path that is specified in the environment variable C1661 NC when the product was installed.
4. The default directory $( PRODDI R) \ i ncl ude (unless you specified option --no-stdinc).
Example

Suppose that the C source file t est . ¢ contains the following lines:

#i ncl ude <stdio. h>
#i ncl ude "nyinc.h"

You can call the compiler as follows:
€166 --include-directory=nyinclude test.c

First the compiler looks for the file st di 0. h in the directory nyi ncl ude relative to the current directory.
If it was not found, the compiler searches in the environment variable and then in the default include
directory.

375



TASKING VX-toolset for C166 User Guide

The compiler now looks for the file myi nc. h in the directory where t est . ¢ is located. If the file is not
there the compiler searches in the directory myi ncl ude. If it was still not found, the compiler searches
in the environment variable and then in the default include directory.

Related information

C compiler option --include-file (Include file at the start of a compilation)

C compiler option --no-stdinc (Skip standard include files directory)

376



Tool Options

C compiler option: --include-file (-H)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Pre-include files box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file,...
-Hile,...

Description

With this option you include one or more extra files at the beginning of each C source file, before other
includes. This is the same as specifying #i ncl ude "fil e" atthe beginning of each of your C sources.

Example

€166 --include-file=stdio.h testl.c test2.c

The file st di 0. h is included at the beginning of botht est 1. c and t est 2. c.
Related information

C compiler option --include-directory (Add directory to include file search path)

377



TASKING VX-toolset for C166 User Guide

C compiler option: --inline

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Enable the option Always inline function calls.
Command line syntax

--inline

Description

With this option you instruct the compiler to inline calls to functions without the __noi nl i ne function
qualifier whenever possible. This option has the same effect as a #pr agna i nl i ne at the start of the
source file.

This option can be useful to increase the possibilities for code compaction (C compiler option
--optimize=+compact).

Example

To always inline function calls:

cl1l66 --optim ze=+conpact --inline test.c

Related information

C compiler option --optimize=+compact (Optimization: code compaction)

Section 1.12.3, Inlining Functions: inline

378



Tool Options

C compiler option: --inline-max-incr / --inline-max-size

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Inthe Maximum size increment when inlining field, enter a value (default -1).

3. Inthe Maximum size for functions to always inline field, enter a value (default -1).
Command line syntax

--inline-max-incr=percentage (default: -1)
--inline-max-size=threshol d (default: -1)

Description

With these options you can control the automatic function inlining optimization process of the compiler.
These options have only effect when you have enabled the inlining optimization (option --optimize=+inline
or Optimize most).

Regardless of the optimization process, the compiler always inlines all functions that have the
function qualifier i nl i ne.

With the option --inline-max-size you can specify the maximum size of functions that the compiler inlines
as part of the optimization process. The compiler always inlines all functions that are smaller than the
specified threshold. The threshold is measured in compiler internal units and the compiler uses this
measure to decide which functions are small enough to inline. The default threshold is -1, which means
that the threshold depends on the option --tradeoff.

After the compiler has inlined all functions that have the function qualifier i nl i ne and all functions that
are smaller than the specified threshold, the compiler looks whether it can inline more functions without
increasing the code size too much. With the option --inline-max-incr you can specify how much the code
size is allowed to increase. The default value is -1, which means that the value depends on the option
--tradeoff.

Example

€166 --inline-max-incr=40 --inline-max-size=15 test.c

The compiler first inlines all functions with the function qualifier i nl i ne and all functions that are smaller
than the specified threshold of 15. If the code size has still not increased with 40%, the compiler decides
which other functions it can inline.

Related information

C compiler option --optimize=+inline (Optimization: automatic function inlining)

Section 1.12.3, Inlining Functions: inline

379



TASKING VX-toolset for C166 User Guide

Section 4.6.3, Optimize for Size or Speed

380



Tool Options

C compiler option: --integer-enumeration

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat enumerated types always as integer.

Command line syntax

--integer-enuneration

Description

Normally the compiler treats enumerated types as the smallest data type possible (char instead of i nt ).
This reduces code size. With this option the compiler always treats enum types as i nt as defined in the
ISO C99 standard.

Related information

Section 1.1, Data Types

381



TASKING VX-toolset for C166 User Guide

C compiler option: --iso (-c)

Menu entry

1. Select C/C++ Compiler » Language.

2. From the Comply to C standard list, select ISO C99 or ISO C90.
Command line syntax

--is0={90| 99}

-¢{90] 99}

Default: - - i s0=99

Description

With this option you select the ISO C standard. C90 is also referred to as the "ANSI C standard". C99
refers to the newer ISO/IEC 9899:1999 (E) standard. C99 is the default.

Example

To select the ISO C90 standard on the command line:

cl66 --is0=90 test.c
Related information

C compiler option --language (Language extensions)

382



Tool Options

C compiler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the . sr ¢ file when errors occur during compilation.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during compilation, the resulting . sr ¢ file may be incomplete or incorrect. With this
option you keep the generated output file (. sr ¢c) when an error occurs.

By default the compiler removes the generated output file (. sr ¢c) when an error occurs. This is useful
when you use the make utility. If the erroneous files are not removed, the make utility may process corrupt
files on a subsequent invocation.

Use this option when you still want to inspect the generated assembly source. Even if it is incomplete or
incorrect.

Example

c1l66 --keep-output-files test.c

When an error occurs during compilation, the generated output file t est . sr ¢ will not be removed.
Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

383



TASKING VX-toolset for C166 User Guide

C compiler option: --language (-A)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable or disable one or more of the following options:

Allow 32/16 -> 16 bit division and modulo

Use 14 bits arithmetic for far pointer comparison

Allow GNU C extensions

Allow // comments in ISO C90 mode

Check assignment of string literal to non-const string pointer

Allow optimization across volatile access

Command line syntax

- -l anguage=[ f | ags]

- Al fl ags]

You can set the following flags:

+/-div32 d/D
+/-cmpl4 fIF

+/-gcc g/G
+/-comments p/P
+/-volatile viV
+/-strings xIX

Default: - Adf GoVx

Default (without flags): - ADFGPVX

Description

32/16 -> 16-bit division and modulo instructions
14-bit arithmetic for far pointer comparison
enable a number of gcc extensions

/I comments in ISO C90 mode

don't optimize across volatile access

relaxed const check for string literals

With this option you control the language extensions the compiler can accept. By default the C166 compiler
allows all language extensions, except for gcc extensions.

The option --language (-A) without flags disables all language extensions.

32/16 -> 16 bit division and modulo instructions

When a 32 bit value is divided by a 16 bits divisor and only 16 bits of the result are being used, then the
operation can be done by a DIVL or DIVLU instruction, depending on the signed/unsigned setting of the

384



Tool Options
operands. The same applies for the modulo operator. When there are chances for overflow and the
(truncated) result must still be conform ISO C99, then it is better to switch this option off.

The next example generates a DIVL instruction when compiled with --language=+div32:

| ong nmB2;
short ml6, di vi sor;

short div3216(1ong | n82,short Idiv)

{
return (short) (I nB82/1div);
}
int main (void)
{
n82=1000;
di vi sor =250;
mL6=di v3216( nB2, di vi sor);
return ni6;
}

See also the intrinsic functions __ div32, _ divu32, _ mod32 and __modu32.
14-bit arithmetic for far pointer comparison

With --language=+cmp14 (-Af) you tell the compiler to allow 14-bit arithmetic for far pointer comparison.
14-bit arithmetic is used for far pointer comparison instead of long 32-bit arithmetic. Only the page offset
is compared. Far pointers do not cross page boundaries and if the objects pointing to are not members
of the same aggregate or (union) object, the result is undefined.

GNU C extensions

The --language=+gcc (-Ag) option enables the following gcc language extensions:
» The identifier __ FUNCTION__ expands to the current function name.
 Alternative syntax for variadic macros.

 Alternative syntax for designated initializers.

» Allow zero sized arrays.

 Allow empty struct/union.

* Allow unnamed struct/union fields.

* Allow empty initializer list.

« Allow initialization of static objects by compound literals.

» The middle operand of a ? : operator may be omitted.

» Allow a compound statement inside braces as expression.

385



TASKING VX-toolset for C166 User Guide

* Allow arithmetic on void pointers and function pointers.

» Allow a range of values after a single case label.

» Additional preprocessor directive #war ni ng.

» Allow comma operator, conditional operator and cast as Ivalue.
» Aninline function without "st at i c" or "ext er n" will be global.
* An"extern inline"function will not be compiled on its own.

« An__attribute__ directly following a struct/union definition relates to that tag instead of to the
objects in the declaration.

For a more complete description of these extensions, you can refer to the UNIX gcc info pages (info
gcce).

Comments in ISO C90 mode

With --language=+comments (-Ap) you tell the compiler to allow C++ style comments (//) in ISO C90
mode (option --is0=90). In ISO C99 mode this style of comments is always accepted.

Check assignment of string literal to non-const string pointer

With --language=+strings (-Ax) you disable warnings about discarded const qualifiers when a string
literal is assigned to a non-const pointer.

char *p;
void main( void ) { p = "hello"; }

Optimization across volatile access

With the --language=+volatile (-Av) option, the compiler will block optimizations when reading or writing
a volatile object, by treating the access as a call to an unknown function. With this option you can prevent
for example that code below the volatile object is optimized away to somewhere above the volatile object.

Example:

extern unsigned int variable;
extern volatile unsigned int access;

voi d Test Func( unsigned int flag )

{
access = 0;
variable | = flag;
if( variable == 3 )
{

vari able = 0;

}
vari abl e | = 0x8000;
access = 1;

}

386



Tool Options

Result with --language=-volatile (default):

_Test Func . proc far
nmovw ril1, variable ; <== Moved across volatile access
nmovw _access, ZEROS ; <== Vol atile access
orw rii, r2
cnpw r1l, #0x3
jmp cc_ne, 2
movw ri11, #0x0
_2:
bset r1i1. 15
movw ri12, #0x1
nmovw _access,ri2 ; <== Vol atil e access
nmovw _variable,r1l1 ; <== Myved across volatile access

ret

Result with --language=+volatile:

_Test Func . proc far
nmovw _access, ZEROS ; <== Vol atile access
orw _variable, r2
movw ri1l, #0x3
cnpw ri1, variable
jmp cc_ne, 2
nmovw _vari abl e, ZEROS

2:

movw ri11, #0x8000
orw _variable, r11
movw r1l, #0x1
nmovw _access,ri1 ; <== Vol atil e access

ret

Note that the volatile behavior of the compiler with option --language=-volatile or --language=+volatile
is ISO C compliant in both cases.

Example

€166 --1anguage=-coments, +strings --iso=90 test.c
€166 -APx -c90 test.c

The compiler compiles in ISO C90 mode, accepts assignments of a constant string to a non-constant
string pointer and does not allow C++ style comments.

Related information

C compiler option --iso (ISO C standard)

Section 1.16, TASKING Volatile Implementation

387



TASKING VX-toolset for C166 User Guide

C compiler option: --Isl-define

Menu entry

Command line syntax

--I sl -define=nacro_name[ =nmacro_definition], ...
Description

With this option you can define a macro and specify it to the LSL file preprocessor. If you only specify a
macro name (no macro definition), the macro expands as '1'.

Related information
Linker option --define (Define linker script file macro)

Section 8.7, Controlling the Linker with a Script

388



Tool Options

C compiler option: --Isl-file

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Enable the option Build for application wide optimizations (MIL linking).
3. Select Optimize less/Build faster or Optimize more/Build slower.

4. Select C/C++ Compiler » Allocation.

5. Enable the option Automatic near data allocation.

Command line syntax

--Isl-file=file,...

Description

With this option you specify one or more linker script files to the C compiler. The linker script file is used
during the MIL linking phase of the build process, in the automatic near data allocation stage.

Related information

C compiler option --mil / --mil-split

C compiler option --automatic-near (Automatic near data allocation)
Linker option --Isl-file (Linker script file)

Section 4.1, Compilation Process

Section 8.7, Controlling the Linker with a Script

389



TASKING VX-toolset for C166 User Guide

C compiler option: --Isl-include

Menu entry

Command line syntax
--Isl-include=path,...
Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the C compiler searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in ")

2. The path that is specified with this option.

3. The default directory $( PRODDI R) \'i ncl ude. | sl .

Related information

Linker option --include-directory (Add directory to LSL include file search path)
C compiler option --Isl-file (Linker script file)

Section 8.7, Controlling the Linker with a Script

390



Tool Options

C compiler option: --Isl-strategy

Menu entry
Command line syntax
--Isl-strategy=strategy

You can select the following strategy:

best-fit b Select a memory block where an object fits best. When blocks
are equally suitable, select according to the locate direction in
the LSL file.

direction d Select blocks according to the locate direction in the LSL file.

This is the default.
Default: - - | sl - strat egy=d
Description
With this option you specify the locate strategy. During automatic near data allocation, objects need to
be placed at absolute addresses. When you select the 'best-fit' strategy, this can lead to more optimal
use of memory.
Related information
C compiler option --automatic-near (Automatic near data allocation)
Linker option --Isl-file (Linker script file)
Section 4.1, Compilation Process

Section 8.7, Controlling the Linker with a Script

391



TASKING VX-toolset for C166 User Guide

C compiler option: --mac

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Enable the option Automatic MAC code generation.
Command line syntax

--mac

Description

With this option the compiler will try to use the MAC (multiply-accumulate) coprocessor automatically.
This option does not affect objects that are qualified with the __mac keyword.

Related information

Section 1.14.2, Manual MAC Qualification: __mac

C compiler option --no-savemac (Do not save MAC registers)

392



Tool Options

C compiler option: --make-target

Menu entry

Command line syntax

- - make-t ar get =nane

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension . obj .

Example

cl1l66 --preprocess=+make --make-target=nytarget.obj test.c

The compiler generates dependency lines with the default target name nyt ar get . obj instead of
test.obj.

Related information
C compiler option --preprocess=+make (Generate dependencies for make)

C compiler option --dep-file (Generate dependencies in a file)

393



TASKING VX-toolset for C166 User Guide

C compiler option: --max-call-depth
Menu entry

1. Select C/C++ Compiler » Optimization.

2. Inthe Maximum call depth for code compaction field, enter a value.
Command line syntax

- - max- cal | - dept h=val ue

Default: -1

Description

This option is related to the compiler optimization --optimize=+compact (Code compaction or reverse
inlining). Code compaction is the opposite of inlining functions: large sequences of code that occur more
than once, are transformed into a function. This reduces code size (possibly at the cost of execution
speed).

During code compaction it is possible that the compiler generates nested calls. This may cause the
program to run out of its stack. To prevent stack overflow caused by too deeply nested function calls, you
can use this option to limit the call depth. This option can have the following values:

-1 Poses no limit to the call depth (default)

0 The compiler will not generate any function calls. (Effectively the same as if you turned of
code compaction with option --optimize=-compact)

>0 Code sequences are only reversed if this will not lead to code at a call depth larger than
specified with value. Function calls will be placed at a call depth no larger than value-1.
(Note that if you specified a value of 1, the option --optimize=+compact may remain
without effect when code sequences for reversing contain function calls.)

This option does not influence the call depth of user written functions.

If you use this option with various C modules, the call depth is valid for each individual module.
The call depth after linking may differ, depending on the nature of the modules.

Related information
C compiler option --optimize=+compact (Optimization: code compaction)

C compiler option --compact-max-size (Maximum size of a match for code compaction)

394



Tool Options

C compiler option: --mil / --mil-split

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Enable the option Build for application wide optimizations (MIL linking).

3. Select Optimize less/Build faster or Optimize more/Build slower.
Command line syntax

il
—-mil-split[=file,...]

Description

With option --mil the C compiler skips the code generator phase and writes the optimized intermediate
representation (MIL) to a file with the suffix . mi | . The C compiler accepts . nmi | files as input files on the
command line.

Option --mil-split does the same as option --mil, but in addition, the C compiler splits the MIL representation
and writes it to separate files with suffix . ns. One file is written for each input file or MIL library specified
on the command line. The . ns files are only updated on a change. The C compiler accepts . ns files as
input files on the command line.

With option --mil-split you can perform application-wide optimizations during the frontend phase by
specifying all modules at once, and still invoke the backend phase one module at a time to reduce the
total compilation time. Application wide code compaction is not possible in this case.

Optionally, you can specify another filename for the . ns file the C compiler generates. Without an
argument, the basename of the C source file is used to create the . s filename. Note that if you specify
a filename, you have to specify one filename for every input file.

Build for application wide optimizations (MIL linking) and Optimize less/Build faster

This option is standard MIL linking and splitting. Note that you can control the optimizations to be performed
with the optimization settings.

Optimize more/Build slower

When you enable this option, the compiler's frontend does not split the MIL stream in separate modules,
but feeds it directly to the compiler's backend, allowing the code compaction to be performed application
wide.

Related information

Section 4.1, Compilation Process

Control program option --mil-link / --mil-split

395



TASKING VX-toolset for C166 User Guide

C compiler option: --misrac

Menu entry
1. Select C/C++ Compiler » MISRA-C.
2. Make a selection from the MISRA-C checking list.

3. Ifyou selected Custom, expand the Custom 2004 or Custom 1998 entry and enable one or more
individual rules.

Command line syntax
--misrac={all | nr[-nr]},...
Description

With this option you specify to the compiler which MISRA-C rules must be checked. With the option
--misrac=all the compiler checks for all supported MISRA-C rules.

Example

€166 --msrac=9-13 test.c

The compiler generates an error for each MISRA-C rule 9, 10, 11, 12 or 13 violation in file t est . c.
Related information

Section 4.8.2, C Code Checking: MISRA-C

C compiler option --misrac-advisory-warnings

C compiler option --misrac-required-warnings

Linker option --misrac-report

396



Tool Options

C compiler option: --misrac-advisory-warnings / --misrac-required-warnings
Menu entry

1. Select C/C++ Compiler » MISRA-C.

2. Make a selection from the MISRA-C checking list.

3. Enable one or both options Warnings instead of errors for required rules and Warnings instead
of errors for advisory rules.

Command line syntax

--m srac-advi sory-war ni ngs
--m srac-required-warni ngs
Description

Normally, if an advisory rule or required rule is violated, the compiler generates an error. As a consequence,
no output file is generated. With this option, the compiler generates a warning instead of an error.

Related information
Section 4.8.2, C Code Checking: MISRA-C
C compiler option --misrac

Linker option --misrac-report

397



TASKING VX-toolset for C166 User Guide

C compiler option: --misrac-version

Menu entry

1. Select C/C++ Compiler » MISRA-C.

2. Select the MISRA-C version: 2004 or 1998.

Command line syntax

--m srac-versi on={1998| 2004}

Default: 2004

Description

MISRA-C rules exist in two versions: MISRA-C:1998 and MISRA-C:2004. By default, the C source is
checked against the MISRA-C:2004 rules. With this option you can specify to check against the
MISRA-C:1998 rules.

Related information

Section 4.8.2, C Code Checking: MISRA-C

C compiler option --misrac

398



Tool Options

C compiler option: --model (-M)
Menu entry

1. Select C/C++ Compiler » Memory Model.

2. In the Default data box, select a memory model.
Command line syntax

- -nodel ={ near | f ar | shuge| huge}

-Mn| f]s|h}

Default: - - rodel =near

Description

By default, the C166 compiler uses the near memory model. With this memory model the most efficient
code is generated. You can specify the option --model to specify another memory model.

The table below illustrates the meaning of each memory model:

Model Memory type Location Pointer size |Pointer
arithmetic
near __near Near data pages defined |16 bit 16 bit
at link time
far __far Anywhere in memory |32 bit 14 bit
segmented huge __sShuge Anywhere in memory |32 bit 16 bit
huge __huge Anywhere in memory |32 bit 32 bit

The value of the predefined preprocessor symbol __ MODEL___ represents the memory model selected
with this option. This can be very helpful in making conditional C code in one source module, used for
different applications in different memory models. The value of _ MODEL__ is:

near model n
far model f!
segmented huge model 's'
huge model 'h'

Example
To compile the file t est . ¢ for the far memory model:

c166 --nodel =far test.c

399



TASKING VX-toolset for C166 User Guide

Related information

Section 1.3.2, Memory Models

400



Tool Options

C compiler option: --near-functions

Menu entry

1. Select C/C++ Compiler » Memory Model.

2. Enable the option Make unqualified functions near.
Command line syntax

--near-functions

Description

With this option you tell the compiler to treat unqualified functions as __near functions instead of __huge
functions. This function has the following effect:

» CALLS instructions are changed into CALLA (no change in code size or performance)
« JMPS instructions are changed into JMPA (no change in code size or performance)

* return addresses on the stack will be 2 bytes shorter (save system stack)

Related information

401



TASKING VX-toolset for C166 User Guide

C compiler option: --near-threshold

Menu entry

1. Select C/C++ Compiler » Allocation

2. Inthe Threshold for putting data in __near field, enter a value in bytes.
Command line syntax

--near-threshol d=t hreshol d

Default: - - near - t hr eshol d=0

Description

With this option the compiler allocates unqualified objects that are smaller than or equal to the specified
threshold in the __near memory space automatically. The threshold must be specified in bytes. Objects
that are qualified const orvol ati | e, external objects or objects that are absolute (__at () ) are not
moved.

By default the threshold is 0 (off), which means that all data is allocated in the default memory space.

You cannot use this option in the near (--model=near) memory model. This option has no effect when
you use MIL linking/splitting (--mil/--mil-split). You can use the automatic near data allocation instead
(--automatic-near).

Example

To put all data objects with a size of 4 bytes or smaller in __near memory:
c166 --nodel =far --near-threshol d=4 test.c

Example part of t est . c:

externint x; //will be put in default far menory
int y; //will be put in near nenory

Related information
C compiler option --model (Select memory model)
C compiler option --mil / --mil-split

C compiler option --automatic-near (Automatic near data allocation)

402



Tool Options

C compiler option: --no-clear / --no-clear-bit

Menu entry

1. Select C/C++ Compiler » Allocation.

2. Disable the option Clear non-initialized global and static variables.

3. Disable the option Clear non-initialized global and static bit variables.
Command line syntax

--no-cl ear
--no-clear-bit

Description

Normally global/static variables are cleared at program startup. With option --no-clear you tell the compiler
to generate code to prevent non-initialized global/static variables from being cleared at program startup.

This option applies to constant as well as non-constant variables.

Option --no-clear-bit is the same as --no-clear, except that it only applies to __bi t variables.
Related information

Pragmas cl ear/ nocl ear

Pragmas cl ear _bi t/ nocl ear _bi t

403



TASKING VX-toolset for C166 User Guide

C compiler option: --no-double (-F)
Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat double as float.
Command line syntax

--no-doubl e

-F

Description

With this option you tell the compiler to treat variables of the type doubl e as f | oat . Because the float
type takes less space, execution speed increases and code size decreases, both at the cost of less
precision.

Example
€166 --no-double test.c

The file t est . ¢ is compiled where variables of the type double are treated as float.

Related information

404



Tool Options

C compiler option: --no-frame

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Disable the option Generate frame for interrupt functions.
Command line syntax

--no-frame

Description

With this option you tell the compiler not to generate an interrupt frame (saving/restoring registers) for
interrupt handlers. In this case you will have to specify your own interrupt frame.

Related information

Section 1.12.4, Interrupt Functions

405



TASKING VX-toolset for C166 User Guide

C compiler option: --no-savemac

Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Disable the option Save MAC registers in function prologue.
Command line syntax

- -no- savenmac

Description

With this option the compiler will not save the MAC (multiply-accumulate) registers in the function prologue.
This will make your code smaller and faster. This option also appliesto __i nt errupt () functions.

Use this option only if you are sure that a function is never executed while the MAC unit is in use.
Related information
Pragmas savemac/ nosavenac

C compiler option --mac (Automatic MAC code generation)

406



Tool Options

C compiler option: --no-stdinc

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --no-stdinc to the Additional options field.

Command line syntax

--no-stdinc

Description

With this option you tell the compiler not to look in the defaulti ncl ude directory relative to the installation
directory, when searching for include files. This way the compiler only searches in the include file search
paths you specified.

Related information

C compiler option --include-directory (Add directory to include file search path)

Section 4.4, How the Compiler Searches Include Files

407



TASKING VX-toolset for C166 User Guide

C compiler option: --no-tasking-sfr
Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Disable the option Automatic inclusion of ".sfr' file.
Command line syntax

- - no-tasking-sfr

Description

Normally, the compiler includes a special function register (SFR) file before compiling. The compiler
automatically selects the SFR file belonging to the target you selected on the Processor page (C compiler
option --cpu).

With this option the compiler does not include the register file r egcpu. sf r as based on the selected
target processor.

Use this option if you want to use your own set of SFR files.
Related information
C compiler option --cpu (Select processor)

Section 1.3.5, Accessing Hardware from C

408



Tool Options

C compiler option: --no-warnings (-w)
Menu entry
1. Select C/C++ Compiler » Diagnhostics.
The Suppress C compiler warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas or as a range, of the warnings you want to suppress (for
example 537, 538). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

- -no-war ni ngs[ =nunber [ - nunber], ...]

-w nunber [ - nunber],...]

Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number or a range, only the specified warnings are suppressed. You
can specify the option --no-warnings=number multiple times.

Example

To suppress warnings 537 and 538, enter:

c1l66 test.c --no-warni ngs=537, 538

Related information

C compiler option --warnings-as-errors (Treat warnings as errors)

Pragma war ni ng

409



TASKING VX-toolset for C166 User Guide

C compiler option: --optimize (-O)

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Select an optimization level in the Optimization level box.
Command line syntax

--optinze[ =fl ags]

-Ofl ags

You can set the following flags:

+/-coalesce a/lA Coalescer: remove unnecessary moves
+/-ipro b/B Interprocedural register optimizations
+/-cse c/C Common subexpression elimination
+/-expression elE Expression simplification

+/-flow fIF Control flow simplification

+/-glo g/G Generic assembly code optimizations
+/-inline il Automatic function inlining
+/-schedule k/K Instruction scheduler

+/-loop I/L Loop transformations

+/-forward 0/0  Forward store

+/-propagate p/P Constant propagation

+/-compact r'R Code compaction (reverse inlining)
+/-subscript sIS Subscript strength reduction
+/-peephole ylIY Peephole optimizations

+/-predict Branch prediction

Use the following options for predefined sets of flags:

--optimize=0 -O0  No optimization
Alias for -OaBCDEFGIKLOPRSY,-predict

No optimizations are performed except for the coalescer (to allow better debug information). The compiler
tries to achieve an optimal resemblance between source code and produced code. Expressions are
evaluated in the same order as written in the source code, associative and commutative properties are
not used.

--optimize=1 -O1  Optimize
Alias for -OabcefgIKLOPRSYy,+predict

410



Tool Options

Enables optimizations that do not affect the debug ability of the source code. Use this level when you
encounter problems during debugging your source code with optimization level 2.

--optimize=2 -02  Optimize more (default)
Alias for -Oabcefglkloprsy,+predict

Enables more optimizations to reduce code size and/or execution time. This is the default optimization
level.

--optimize=3 -0O3  Optimize most
Alias for -Oabcefgikloprsy,+predict

This is the highest optimization level. Use this level to decrease execution time to meet your real-time
requirements.

Default: - - opti ni ze=2
Description

With this option you can control the level of optimization. If you do not use this option, the default
optimization level is Optimize more (option --optimize=2 or --optimize).

When you use this option to specify a set of optimizations, you can overrule these settings in your C
source file with #pr agma opti m ze fl ag/#pragna endoptin ze.

In addition to the option --optimize, you can specify the option --tradeoff (-t). With this option you specify
whether the used optimizations should optimize for more speed (regardless of code size) or for smaller
code size (regardless of speed).

Example

The following invocations are equivalent and result all in the default optimization set:

cl66 test.c

cl66 --optimze=2 test.c
cl66 -2 test.c

cl66 --optimze test.c
cl66 -Otest.c

c166 -Cabcefgl kl oprsy test.c

c166 --optim ze=+coal esce, +i pro, +cse, +expressi on, +f | ow, +gl o,
-inline, +schedul e, +l oop, +f or war d, +pr opagat e, +conpact,
+subscri pt, +peephol e test.c

Related information

C compiler option --tradeoff (Trade off between speed and size)

Pragma opti m ze/ endopti m ze

411



TASKING VX-toolset for C166 User Guide

Section 4.6, Compiler Optimizations

412



Tool Options

C compiler option: --option-file (-f)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the C compiler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file,...
Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

* Multiple arguments on one line in the option file are allowed.

» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
"This has a doubl e quote " enbedded’
'"This has a double quote " and a single quote '"' enbedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
l'i ne"

-> "This is a continuation |ine"

413



TASKING VX-toolset for C166 User Guide

* Itis possible to nest command line files up to 25 levels.
Example

Suppose the file myopt i ons contains the following lines:

- -debug-info
- - def i ne=DEMO=1
test.c

Specify the option file to the compiler:
€166 --option-fil e=myoptions
This is equivalent to the following command line:

€166 —debug-info --define=DEMO=1 test.c

Related information

414



Tool Options

C compiler option: --output (-0)

Menu entry

Eclipse names the output file always after the C source file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the compiler. Without this option
the basename of the C source file is used with extension . src.

Example
To create the file out put . src instead of t est . src, enter:

€166 --output=output.src test.c

Related information

415



TASKING VX-toolset for C166 User Guide

C compiler option: --preprocess (-E)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.
4. (Optional) Enable the option Keep #line info in preprocessor output.
Command line syntax

- - preprocess[ =fl ags]

-E[ fl ags]

You can set the following flags:

+/-comments c/C keep comments

+/-includes il generate a list of included source files
+/-list I/L generate a list of macro definitions
+/-make m/M  generate dependencies for make
+/-noline p/P strip #line source position information

Default; - ECI LMP
Description

With this option you tell the compiler to preprocess the C source. Under Eclipse the compiler sends the
preprocessed output to the file name. pr e (where name is the name of the C source file to compile).
Eclipse also compiles the C source.

On the command line, the compiler sends the preprocessed file to stdout. To capture the information in
a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C source file
in the preprocessed output.

With --preprocess=+includes the compiler will generate a list of all included source files. The preprocessor
output is discarded.

With --preprocess=+list the compiler will generate a list of all macro definitions. The preprocessor output
is discarded.

With --preprocess=+make the compiler will generate dependency lines that can be used in a Makefile.
The preprocessor output is discarded. The default target name is the basename of the input file, with the
extension . obj . With the option --make-target you can specify a target name which overrules the default
target name.

416



Tool Options

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #l i ne). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

Example

c166 --preprocess=+conments, - make,-noline test.c --output=test.pre

The compiler preprocesses the file t est . ¢ and sends the output to the file t est . pr e. Comments are
included but no dependencies are generated and the line source position information is not stripped from
the output file.

Related information

C compiler option --dep-file (Generate dependencies in a file)

C compiler option --make-target (Specify target name for -Em output)

417



TASKING VX-toolset for C166 User Guide

C compiler option: --profile (-p)
Menu entry

1. Select C/C++ Compiler » Debugging.
2. Enable or disable Static profiling.

3. Enable or disable one or more of the following Generate profiling information options (dynamic
profiling):

» for block counters (not in combination with Call graph or Function timers)

to build a call graph (not in combination with Block counters)

« for function counters

for function timers (not in combination with Block counters/Function counters)

Note that the more detailed information you request, the larger the overhead in terms of execution
time, code size and heap space needed. The option --debug does not affect profiling, execution
time or code size.

Command line syntax
--profile[=flag,...]

-p[fl ags]

Use the following option for a predefined set of flags:

--profile=g -pg Profiling with call graph and function timers.
Alias for: -pBcFSt

You can set the following flags:

+/-block b/B block counters
+/-callgraph c/C call graph

+/-function fIF function counters
+/-static s/S static profile generation
+/-time T function timers

Default (without flags): - pBCf ST

Description

Profiling is the process of collecting statistical data about a running application. With these data you can
analyze which functions are called, how often they are called and what their execution time is.

418



Tool Options
Several methods of profiling exist. One method is code instrumentation which adds code to your application
that takes care of the profiling process when the application is executed. Another method is static profiling.
For an extensive description of profiling refer to Chapter 6, Profiling.
You can obtain the following profiling data (see flags above):
Block counters (not in combination with Call graph or Function timers)

This will instrument the code to perform basic block counting. As the program runs, it counts the number
of executions of each branch in an if statement, each iteration of a for loop, and so on. Note that though
you can combine Block counters with Function counters, this has no effect because Function counters
is only a subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph. As the program runs it associates the
caller with the gathered profiling data.

Function counters
This will instrument the code to perform function call counting. This is a subset of the basic Block counters.
Function timers (not in combination with Block counters/Function counters)

This will instrument the code to measure the time spent in a function. This includes the time spent in all
sub functions (callees).

Static profiling

With this option you do not need to run the application to get profiling results. The compiler generates
profiling information at compile time, without adding extra code to your application.

If you use one or more profiling options that use code instrumentation, you must link the corresponding
libraries too! Refer to Section 8.3, Linking with Libraries, for an overview of the (profiling) libraries. In
Eclipse the correct libraries are linked automatically.

Example

To generate block count information for the module t est . ¢ during execution, compile as follows:
c166 --profil e=+block test.c

In this case you must link the library c166pbn. | i b.

Related information

Chapter 6, Profiling

419



TASKING VX-toolset for C166 User Guide

C compiler option: --ramdata

Menu entry

Command line syntax

--randat a

Description

With this option you tell the compiler to allocate non-automatic constant data in both ROM and RAM. At
startup RAM is initialized from ROM. This option affects const variables, string literals, initializers and
constants that are allocated in memory.

Related information

Pragmas r andat a/ nor antdat a

Section 1.8.1, Initialized Variables

420



Tool Options

C compiler option: --rename-sections (-R)

Menu entry
1. Select C/C++ Compiler » Allocation

The Rename sections box shows the sections that are currently renamed.
2. Torename a section, click on the Add button in the Rename sections box.

3. Type the rename rule in the format type=format or format (for example, near ={ nrodul e} _{attri b})

Use the Edit and Delete button to change a section renaming or to remove an entry from the list.

Command line syntax
--renane-sections=[type=]format_string[,[type=]format_string]...
-R[type=]format_string[,[type=]format_string]...

Default section name: {type} {name}

Description

In case a module must be loaded at a fixed address, or a data section needs a special place in memory,
you can use this option to generate a different section name. You can then use this unique section name
in the linker script file for locating.

With the memory type you select which sections are renamed. The matching sections will get the specified
format_string for the section name. The format string can contain characters and may contain the following
format specifiers:

{attrib} section attributes, separated by underscores
{ nodul e} module name

{nane} object name, name of variable or function
{type} section type

Instead of this option you can also uses the pragmas sect i on/endsect i on in the C source.
Example

To rename sections of memory type near to _c166_t est _variable_name:

€166 --rename-sections=near=_c166_{nodul e} _{nanme} test.c

Related information

See assembler directive . SECTI ON for a list of section types and attributes.

421



TASKING VX-toolset for C166 User Guide

Pragmas sect i on/endsecti on

Section 1.15, Section Naming

422



Tool Options

C compiler option: --romdata
Menu entry

Command line syntax
--rondat a
Description

With this option you tell the compiler to allocate all non-automatic non-constant variables in ROM only.
By default, the variables are allocated in RAM and initialized from ROM at startup.

Related information
Pragmas r ondat a/ nor ontdat a

Section 1.8.1, Initialized Variables

423



TASKING VX-toolset for C166 User Guide

C compiler option: --runtime (-r)

Menu entry

1. Select C/C++ Compiler » Debugging.

2. Enable or disable one or more of the following run-time error checking options:
» Generate code for bounds checking
» Generate code to detect unhandled case in a switch

» Generate code for malloc consistency checks

Command line syntax
--runtime[=flag,...]
-r[flags]

You can set the following flags:

+/-bounds b/B bounds checking
+/-case c/C report unhandled case in a switch
+/-malloc m/M  malloc consistency checks

Default (without flags): - r bcm
Description

This option controls a number of run-time checks to detect errors during program execution. Some of
these checks require additional code to be inserted in the generated code, and may therefore slow down
the program execution. The following checks are available:

Bounds checking

Every pointer update and dereference will be checked to detect out-of-bounds accesses, null pointers
and uninitialized automatic pointer variables. This check will increase the code size and slow down the
program considerably. In addition, some heap memory is allocated to store the bounds information. You
may enable bounds checking for individual modules or even parts of modules only (see #pr agna
runtime).

Report unhandled case in a switch

Report an unhandled case value in a switch without a default part. This check will add one function call
to every switch without a default part, but it will have little impact on the execution speed.

Malloc consistency checks

This option enables the use of wrappers around the functions malloc/realloc/free that will check for common
dynamic memory allocation errors like:

424



Tool Options

* buffer overflow

» write to freed memory

» multiple calls to free
 passing invalid pointer to free

Enabling this check will extract some additional code from the library, but it will not enlarge your application
code. The dynamic memory usage will increase by a couple of bytes per allocation.

Related information

Pragmarunti ne

425



TASKING VX-toolset for C166 User Guide

C compiler option: --signed-bitfields

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat "int" bit-fields as signed.

Command line syntax

--signed-bitfields

Description

For bit-fields it depends on the implementation whether a plaini nt is treated as si gned i nt orunsi gned
i nt.By default ani nt bit-field is treated as unsi gned i nt . This offers the best performance. With this
option you tell the compiler to treat i nt bit-fields as si gned i nt . In this case, you can still add the
keyword unsi gned to treat a particular i nt bit-field as unsi gned.

Related information

C++ compiler option --signed-bitfields

Section 1.1, Data Types

426



Tool Options

C compiler option: --silicon-bug

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, select a processor.

The CPU problem bypasses and checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.

Command line syntax

--silicon-bug[=bug,...]

Description

With this option you specify for which hardware problems the compiler should generate workarounds.
Please refer to Chapter 18, CPU Problem Bypasses and Checks for the numbers and descriptions. Silicon
bug numbers are specified as a comma separated list. When this option is used without arguments, all
silicon bug workarounds are enabled.

Example

To enable workarounds for problems CPU.11 and CPU.16, enter:

€166 --silicon-bug=4,5 test.c

Related information

Chapter 18, CPU Problem Bypasses and Checks

Assembler option --silicon-bug

427



TASKING VX-toolset for C166 User Guide

C compiler option: --source (-s)

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Merge C source code with generated assembly.
Command line syntax

--source

-s

Description

With this option you tell the compiler to merge C source code with generated assembly code in the output
file. The C source lines are included as comments.

Related information

Pragmas sour ce/ nosour ce

428



Tool Options

C compiler option: --stack-address-conversion
Menu entry

1. Select C/C++ Compiler » Code Generation.

2. Inthe Stack address conversion field, select a mode.
Command line syntax

- -stack- addr ess- conver si on=node

You can specify the following modes:

dynamic d Determine DPP register dynamically
fixed-dpp b/B Use stack symbol's DPP register
static S Use stack symbol

Default: static
Description

With this option you can control how stack addresses are convertedto __far and__('s) huge addresses.
This can be useful for task switching.

static

Use the linker generated stack symbol to refer to the stack address. This is the default.

fixed-dpp

Use the DPP register that refers to the linker generated stack symbol to determine the stack address.
dynamic

Determine the used DPP register dynamically. The highest two bits of the near address determine the
DPP register.

Related information

Pragma st ack_addr ess_conver si on

429



TASKING VX-toolset for C166 User Guide

C compiler option: --stdout (-n)

Menu entry

Command line syntax

- - stdout

-n

Description

With this option you tell the compiler to send the output to st dout (usually your screen). No files are
created. This option is for example useful to quickly inspect the output or to redirect the output to other

tools.

Related information

430



Tool Options

C compiler option: --string-literal-memory

Menu entry

1. Select C/C++ Compiler » Allocation.

2. Select a Memory space for string literals.
Command line syntax
--string-literal - menory=space

Default: --string-literal-memory=model
Description

With this option you can control the allocation of string literals. The space mustbe one of __near, __far,
__shuge, __huge or nodel .

When the space differs from the default memory model space, pointers to string literals may need
qualification. Also, C library functions accepting a default pointer to char /char _t may need to be
recompiled with a different name/prototype.

In the context of this option, a string literal used to initialize an array, as in:
char array[] = "string";

is not considered a string literal; i.e. this is an array initializer written as a string, equivalent to:

char array[] ={ 's', "t', 'r', "i', 'n', "¢g, "\0 };
Strings literals as used in:

char * s = "string";

or:

printf( "formatter %\n", "string" );

are affected by this option.

Example

To allocate string literals in __near memory:

€166 --nodel =far --string-literal-nenory=__near test.c
Related information

Pragmastring literal nenory

C compiler option --model (Select memory model)

431



TASKING VX-toolset for C166 User Guide

Section 1.9, Strings

432



Tool Options

C compiler option: --tradeoff (-t)

Menu entry

1. Select C/C++ Compiler » Optimization.

2. Select a trade-off level in the Trade-off between speed and size box.
Command line syntax

--tradeof f ={ 0] 1| 2| 3| 4}

-t{0] 1] 2| 3| 4}

Default: - - t r adeof f =4

Description

If the compiler uses certain optimizations (option --optimize), you can use this option to specify whether
the used optimizations should optimize for more speed (regardless of code size) or for smaller code size
(regardless of speed).

By default the compiler optimizes for code size (--tradeoff=4).

If you have not specified the option --optimize, the compiler uses the default Optimize more
optimization. In this case it is still useful to specify a trade-off level.

Example
To set the trade-off level for the used optimizations:
c1l66 --tradeoff=2 test.c

The compiler uses the default Optimize more optimization level and balances speed and size while
optimizing.

Related information
C compiler option --optimize (Specify optimization level)

Section 4.6.3, Optimize for Size or Speed

433



TASKING VX-toolset for C166 User Guide

C compiler option: --uchar (-u)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.
Command line syntax

--uchar

-u

Description

By default char is the same as specifying si gned char . With this option char is the same as unsi gned
char.

Related information

Section 1.1, Data Types

434



Tool Options

C compiler option: --undefine (-U)
Menu entry
1. Select C/C++ Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
- -undefi ne=macr o_nane
- Uracr o_nane
Description

With this option you can undefine an earlier defined macro as with #undef . This option is for example
useful to undefine predefined macros.

The following predefined ISO C standard macros cannot be undefined:

__FILE current source filename

__LINE__ current source line number (int type)
_TIME__ hh:mm:ss

__ DATE__ Mmm dd yyyy

__STDC__ level of ANSI standard

Example

To undefine the predefined macro __ TASKI NG__:

cl1l66 --undefine=_ TASKING test.c

Related information
C compiler option --define (Define preprocessor macro)

Section 1.7, Predefined Preprocessor Macros

435



TASKING VX-toolset for C166 User Guide

C compiler option: --user-stack

Menu entry

1. Select C/C++ Compiler » Memory Model.

2. Enable the option Use user stack for return addresses.

Command line syntax

- -user-stack

Description

With this option the function return address is stored on the user stack instead of on the system stack.
Also the user stack run-time libraries are used and the user stack calling convention is used to call the
run-time library functions.

Related information

Section 1.12, Functions

436



C compiler option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The compiler ignores all other options or input files.
Example

c1l66 --version

The compiler does not compile any files but displays the following version information:

TASKI NG VX-tool set for Cl66: C conpiler vX.yrz Build nnn
Copyright 2004-year Altium BV Seri al # 00000000

Related information

Tool Options

437



TASKING VX-toolset for C166 User Guide

C compiler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber[-nunber],...]

Description

If the compiler encounters an error, it stops compiling. When you use this option without arguments, you
tell the compiler to treat all warnings not suppressed by option --no-warnings (or #pr agma war ni ng)
as errors. This means that the exit status of the compiler will be non-zero after one or more compiler

warnings. As a consequence, the compiler now also stops after encountering a warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers
or ranges. In this case, this option takes precedence over option --no-warnings (and #pr agma war ni ng).

Related information

C compiler option --no-warnings (Suppress some or all warnings)

Pragma war ni ng

438



Tool Options

12.3. C++ Compiler Options

This section lists all C++ compiler options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the C++ compiler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the C++ compiler. If there is no equivalent option in
Eclipse, you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select C/C++ Compiler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, you have to precede the option with -Wcp to pass the
option via the control program directly to the C++ compiler.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

If an option requires an argument, the argument may be separated from the keyword by white space, or
the keyword may be immediately followed by =option. When the second form is used there may not be
any white space on either side of the equal sign.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

cpl66 -Ecp test.cc
cpl66 --preprocess=+coments, +noline test.cc

When you do not specify an option, a default value may become active.

The priority of the options is left-to-right: when two options conflict, the first (most left) one takes effect.
The -D and -U options are not considered conflicting options, so they are processed left-to-right for each
source file. You can overrule the default output file name with the --output-file option.

439



TASKING VX-toolset for C166 User Guide

C++ compiler option: --alternative-sfr-file

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Use alternative SFR file format.

Command line syntax

--alternative-sfr-file

Description

With this option the C++ compiler includes the alternative SFR file without alias definitions for SFRs and
SFR bit-fields. This alternative SFR file is named r egcpu. asfr and is located in the product's

i ncl ude/ sfr directory.

Use this option to speed up your compilation (smaller SFR file) and have less namespace pollution.

Related information

Section 1.3.5, Accessing Hardware from C

440



Tool Options

C++ compiler option: --alternative-tokens

Menu entry
Command line syntax
--alternative-tokens
Description

Enable recognition of alternative tokens. This controls recognition of the digraph tokens in C++, and
controls recognition of the operator keywords (e.g., not , and, bi t and, etc.).

Example
To enable operator keywords (e.g., "not", "and") and digraphs, enter:

cpl66 --alternative-tokens test.cc

Related information

441



TASKING VX-toolset for C166 User Guide

C++ compiler option: --anachronisms

Menu entry

1. Select C/C++ Compiler » Language.
2. Enable the option C++ anachronisms.
Command line syntax

- -anachroni sns

Description

Enable C++ anachronisms. This option also enables --nonconst-ref-anachronism. But you can turn this
off individually with option --no-nonconst-ref-anachronism.

Related information
C++ compiler option --nonconst-ref-anachronism (Nonconst reference anachronism)

Section 2.2.3, Anachronisms Accepted

442



Tool Options

C++ compiler option: --base-assign-op-is-default
Menu entry

Command line syntax

- - base- assi gn-op-i s-defaul t

Description

Enable the anachronism of accepting a copy assignment operator that has an input parameter that is a
reference to a base class as a default copy assignment operator for the derived class.

Related information

443



TASKING VX-toolset for C166 User Guide

C++ compiler option: --bita-struct-threshold

Menu entry

1. Select C/C++ Compiler » Allocation

2. Inthe Threshold for putting structs in __bita field, enter a value in bytes.
Command line syntax

--bita-struct-threshol d=t hreshol d

Default: - - bi t a- struct -t hr eshol d=0

Description

With this option the C++ compiler allocates unqualified structures that are smaller than or equal to the
specified threshold and have a bit-field of length one in the bit-addressable (__bi t a) memory space
automatically. The threshold must be specified in bytes. Objects that are qualified const orvol atil e
or objects that are absolute are not moved.

By default the threshold is 0 (off), which means that no objects are moved.
Example

To put all unqualified structures with a size of 4 bytes or smaller and a bit-field of length one into the
__bi t a section:

cpl66 --bita-struct-threshold=4 test.cc

Related information

444



Tool Options

C++ compiler option: --building-runtime

Menu entry

Command line syntax

--bui l di ng-runti ne

Description

Special option for building the C++ run-time library. Used to indicate that the C++ run-time library is being
compiled. This causes additional macros to be predefined that are used to pass configuration information

from the C++ compiler to the run-time.

Related information

445



TASKING VX-toolset for C166 User Guide

C++ compiler option: --c++0x

Menu entry

Command line syntax

- - c++0x

Description

Enable the C++ extensions that are defined by the latest C++ working paper.

Related information

446



Tool Options

C++ compiler option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application because the code will not actually be compiled.

The C++ compiler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

Assembler option --check (Check syntax)

447



TASKING VX-toolset for C166 User Guide

C++ compiler option: --context-limit

Menu entry

Command line syntax

--context-limt=nunber

Default: - - context-1imt=10

Description

Set the context limit to number. The context limit is the maximum number of template instantiation context
entries to be displayed as part of a diagnostic message. If the number of context entries exceeds the
limit, the first and last N context entries are displayed, where N is half of the context limit. A value of zero
is used to indicate that there is no limit.

Example

To set the context limit to 5, enter:

cpl66 --context-limt=5 test.cc

Related information

448



Tool Options

C++ compiler option: --core

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, expand Custom and select a core.
Command line syntax

--core=core

You can specify the following core arguments:

c16x C16x instruction set

st10 ST10 instruction set

stlOmac ST10 with MAC co-processor support
c166sv1l C166S v1.0 support

xc16x XC16x/XE16xx/XC2xxx instruction set
superl0 Superl0 instruction set

superl0ma345 Enhanced Superl0M345 instruction set
Default: derived from - - cpu if specified and known or else - - cor e=xc16x
Description
With this option you specify the core architecture for a target processor for which you create your
application. If --cpu is specified and the supplied CPU is known by the C++ compiler, the C++ compiler
selects the correct core automatically.
The macro __ CORE___is set to the name of the core.
For more information see C++ compiler option --cpu.
Example
Specify a custom core:
Ccpl66 --core=st10 test.cc

Related information

C++ compiler option --cpu (Select processor)

449



TASKING VX-toolset for C166 User Guide

C++ compiler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, select a processor or expand Custom and select a core.
Command line syntax

- -cpu=cpu

- Ccpu

Description

With this option you define the target processor for which you create your application.

Based on this option the C++ compiler always includes the special function register file r egcpu. sfr,
unless you specify option --no-tasking-sfr.

If you select a target from the list, the core is known. If you specify a Custom processor, you need to
select the core that matches the core of your custom processor (option --core). The C++ compiler knows
all CPUs with core c16x, st10, stl0mac and superl0. If you specify a CPU that is not in that list, it is
assumed to be an xc16x.

The following table show the relation between the two options:

--Cpu=cpu |--core=core |core Register file
no no c16x €166, cpl66: none
as166: regcl6x.sfr
no yes core €166, cpl66: none
as166: regcore.sfr
yes no derived from cpu for core c16x, st10, stl0mac and |regcpu.sfr
superl0

If the cpu is unknown core xc16x is assumed

yes yes core regcpu.sfr

The macro __CPU__ is set to the name of the cpu.

The standard list of supported processors is defined in the file pr ocessor s. xni . This file defines for
each processor its full name (for example, XC2287-72F), the base CPU name (for example, xc2287), the
core settings (for example, xc16x), the on-chip flash settings, the list of silicon bugs for that processor.
Each processor also defines an option to supply to the linker for preprocessing the LSL file for the applicable
on-chip memory definitions. The option is for example -DXC2287_72M.

Example

Specify an existing processor:

450



cpl66 --cpu=cl67cs40 test.cc

Specify a custom processor:

cpl66 --cpu=custom --core=stl10 test.cc
Related information

C++ compiler option --core (Select the core)

C++ compiler option --no-tasking-sfr (Do not include SFR file)

Tool Options

451



TASKING VX-toolset for C166 User Guide

C++ compiler option: --create-pch

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enter a filename in the Create precompiled header file field.
Command line syntax

--create-pch=fil enane

Description

If other conditions are satisfied, create a precompiled header file with the specified name. If --pch (automatic
PCH mode) or --use-pch appears on the command line following this option, its effect is erased.

Example

To create a precompiled header file with the name t est . pch, enter:
cpl66 --create-pch=test.pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

Section 2.10, Precompiled Headers

452



Tool Options

C++ compiler option: --define (-D)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax
--define=macro_name[ (parm|ist)][=macro_definition]

-Dmacro_name(parmlist)][=macro_definition]

Description

With this option you can define a macro and specify it to the preprocessor. If you only specify a macro
name (no macro definition), the macro expands as '1'.

Function-style macros can be defined by appending a macro parameter list to macro_name.
You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, you can use the option --define (-D) multiple times. If the command line exceeds
the limit of the operating system, you can define the macros in an option file which you then must specify
to the C++ compiler with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #i f , #i f def and #i f ndef , for conditional
compilations.

Example
Consider the following program with conditional code to compile a demo program and a real program:

void main( void)

{
#i f DEMO

deno_func(); /* conpile for the demo program */
#el se

real _func(); /* conpile for the real program*/
#endi f
}

You can now use a macro definition to set the DEMO flag:

453



TASKING VX-toolset for C166 User Guide

cpl66 --define=DEMO test.cc
cpl66 --define=DEMO=1 test.cc

Note that both invocations have the same effect.

The next example shows how to define a macro with arguments. Note that the macro name and definition
are placed between double quotes because otherwise the spaces would indicate a new option.

cpl66 --define="MAX(A B)=((A > (B) ? (A : (B))" test.cc
Related information
C++ compiler option --undefine (Remove preprocessor macro)

C++ compiler option --option-file (Specify an option file)

454



Tool Options

C++ compiler option: --dep-file

Menu entry

Command line syntax

--dep-file[=file]

Description

With this option you tell the C++ compiler to generate dependency lines that can be used in a Makefile.
In contrast to the option --preprocess=+make, the dependency information will be generated in addition
to the normal output file.

By default, the information is written to a file with extension . d (one for every input file). When you specify
a filename, all dependencies will be combined in the specified file.

Example
cpl66 --dep-file=test.dep test.cc

The C++ compiler compiles the file t est . cc, which results in the output file t est . i ¢, and generates
dependency lines in the file t est . dep.

Related information

C++ compiler option --preprocess=+make (Generate dependencies for make)

455



TASKING VX-toolset for C166 User Guide

C++ compiler option: --dollar

Menu entry

Command line syntax

--dol | ar

Default format: No dollar signs are allowed in identifiers.
Description

Accept dollar signs in identifiers. Names like A$VAR are allowed.

Related information

456



Tool Options

C++ compiler option: --embedded-c++

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Comply to embedded C++ subset.

Command line syntax

- - enbedded- c++

Description

The "Embedded C++" subset does not support templates, exceptions, namespaces, new-style casts,
RTTI, multiple inheritance, virtual base classes, and the nut abl e keyword. Select this option when you

want the C++ compiler to give an error when you use any of them in your C++ source.

Related information

457



TASKING VX-toolset for C166 User Guide

C++ compiler option: --error-file
Menu entry

Command line syntax
--error-file[=file]

Description

With this option the C++ compiler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the input file with extension . ecp.

Example
To write errors to err or s. ecp instead of st der r, enter:

cpl66 --error-file=errors.ecp test.cc

Related information

458



Tool Options

C++ compiler option: --error-limit (-e)
Menu entry

Command line syntax
--error-limt=nunber

- enumnber

Default: - -error-1imt=100

Description

Set the error limit to number. The C++ compiler will abandon compilation after this number of errors
(remarks and warnings are not counted). By default, the limit is 100.

Example
When you want compilation to stop when 10 errors occurred, enter:

cpl66 --error-limt=10 test.cc

Related information

459



TASKING VX-toolset for C166 User Guide

C++ compiler option: --exceptions (-x)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ exception handling.

Command line syntax

--exceptions

- X

Description

With this option you enable support for exception handling in the C++ compiler.
The macro __ EXCEPTI ONS is defined when exception handling support is enabled.

Related information

460



Tool Options

C++ compiler option: --exported-template-file
Menu entry

Command line syntax
--exported-tenplate-file=file

Description

This option specifies the name to be used for the exported template file used for processing of exported
templates.

This option is supplied for use by the control program that invokes the C++ compiler and is not intended
to be used by end-users.

Related information

461



TASKING VX-toolset for C166 User Guide

C++ compiler option: --extended-variadic-macros
Menu entry

Command line syntax

- - ext ended- vari adi c- macr os

Default: macros with a variable number of arguments are not allowed.
Description

Allow macros with a variable number of arguments (implies --variadic-macros) and allow the naming of
the variable argument list.

Related information

C++ compiler option --variadic-macros (Allow variadic macros)

462



Tool Options

C++ compiler option: --force-vtbl

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Force definition of virtual function tables (C++).
Command line syntax

--force-vthbl

Description

Force definition of virtual function tables in cases where the heuristic used by the C++ compiler to decide
on definition of virtual function tables provides no guidance.

Related information

C++ compiler option --suppress-vtbl (Suppress definition of virtual function tables)

463



TASKING VX-toolset for C166 User Guide

C++ compiler option: --friend-injection

Menu entry

Command line syntax

--friend-injection

Default: f ri end names are not injected.

Description

Controls whether the name of a class or function that is declared only in f r i end declarations is visible
when using the normal lookup mechanisms. When f r i end names are injected, they are visible to such
lookups. When f r i end names are not injected (as required by the standard), function names are visible
only when using argument-dependent lookup, and class names are never visible.

Related information

C++ compiler option --no-arg-dep-lookup (Disable argument dependent lookup)

464



C++ compiler option: --g++

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Allow GNU C++ extensions.

Command line syntax

-- g+t

Description

Enable GNU C++ compiler language extensions.
Related information

Section 2.3, GNU Extensions

Tool Options

465



TASKING VX-toolset for C166 User Guide

C++ compiler option: --gnu-version

Menu entry

Command line syntax

--gnu-versi on=versi on

Default: 30300 (version 3.3.0)

Description

It depends on the GNU C++ compiler version if a particular GNU extension is supported or not. With this
option you set the GNU C++ compiler version that should be emulated in GNU C++ mode. Version x.y.z

of the GNU C++ compiler is represented by the value x*10000+y*100+z.
Example

To specify version 3.4.1 of the GNU C++ compiler, enter:

cpl66 --g++ --gnu-versi on=30401 test.cc

Related information

Section 2.3, GNU Extensions

466



Tool Options

C++ compiler option: --guiding-decls

Menu entry

Command line syntax

--gui di ng-decl s

Description

Enable recognition of "guiding declarations" of template functions. A guiding declaration is a function
declaration that matches an instance of a function template but has no explicit definition (since its definition
derives from the function template). For example:

tenplate <class T> void f(T) { ... }
void f(int);

When regarded as a guiding declaration, f (i nt) is an instance of the template; otherwise, it is an
independent function for which a definition must be supplied.

Related information

C++ compiler option --old-specializations (Old-style template specializations)

467



TASKING VX-toolset for C166 User Guide

C++ compiler option: --help (-?)
Menu entry

Command line syntax
--help[=itenm

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify an argument you can list extended
information such as a list of option descriptions.

Example

The following invocations all display a list of the available command line options:
cple6 -?

cpl66 --help

cpl66

The following invocation displays an extended list of the available options:

cpl66 --hel p=options

Related information

468



Tool Options

C++ compiler option: --implicit-extern-c-type-conversion

Menu entry

Command line syntax

--inmplicit-extern-c-type-conversion

Description

Enable the implicit type conversion between pointerstoext ern " C' and ext ern " C++" function types.

Related information

469



TASKING VX-toolset for C166 User Guide

C++ compiler option: --implicit-include

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Implicit inclusion of source files for finding templates.
Command line syntax

--implicit-include

Description

Enable implicit inclusion of source files as a method of finding definitions of template entities to be
instantiated.

Related information

C++ compiler option --instantiate (Instantiation mode)

Section 2.5, Template Instantiation

470



Tool Options

C++ compiler option: --incl-suffixes

Menu entry

Command line syntax

--incl-suffixes=suffixes

Default: no extension and . st dh.

Description

Specifies the list of suffixes to be used when searching for an include file whose name was specified
without a suffix. If a null suffix is to be allowed, it must be included in the suffix list. suffixes is a
colon-separated list of suffixes (e.g., ": : st dh").

Example

To allow only the suffixes . h and . st dh as include file extensions, enter:

cpl66 --incl-suffixes=h:stdh test.cc

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

Section 5.2, How the C++ Compiler Searches Include Files

471



TASKING VX-toolset for C166 User Guide

C++ compiler option: --include-directory (-)
Menu entry
1. Select C/C++ Compiler » Include Paths.
The Include paths box shows the directories that are added to the search path for include files.
2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path,...
-lpath, ...

Description

Add path to the list of directories searched for #i ncl ude files whose names do not have an absolute
pathname. You can specify multiple directories separated by commas.

Example

To add the directory / pr oj / i ncl ude to the include file search path, enter:

cpl66 --include-directory=/proj/include test.cc

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

C++ compiler option --sys-include (Add directory to system include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

472



Tool Options

C++ compiler option: --include-file (-H)
Menu entry
1. Select C/C++ Compiler » Preprocessing.
The Pre-include files box shows the files that are currently included before the compilation starts.
2. To define a new file, click on the Add button in the Include files at start of compilation box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax
--include-file=file
-Hfile

Description

Include the source code of the indicated file at the beginning of the compilation. This is the same as
specifying #i ncl ude "fil e" atthe beginning of each of your C++ sources.

All files included with --include-file are processed after any of the files included with --include-macros-file.
The filename is searched for in the directories on the include search list.

Example

cpl66 --include-file=extra.h testl.cc test2.cc

The file ext r a. h is included at the beginning of botht est 1. cc and t est 2. cc.

Related information

C++ compiler option --include-directory (Add directory to include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

473



TASKING VX-toolset for C166 User Guide

C++ compiler option: --include-macros-file

Menu entry

Command line syntax

--include-macros-file=file

Description

Include the macros of the indicated file at the beginning of the compilation. Only the preprocessing
directives from the file are evaluated. All of the actual code is discarded. The effect of this option is that
any macro definitions from the specified file will be in effect when the primary source file is compiled. All
of the macro-only files are processed before any of the normal includes (--include-file). Within each
group, the files are processed in the order in which they were specified.

Related information

C++ compiler option --include-file (Include file at the start of a compilation)

Section 5.2, How the C++ Compiler Searches Include Files

474



Tool Options

C++ compiler option: --init-priority

Menu entry

Command line syntax

--init-priority=nunber

Default: 0

Description

Normally, the C++ compiler assigns no priority to the global initialization functions and the exact order is
determined by the linker. This option sets the default priority for global initialization functions. Default
value is "0". You can also set the default priority with the #pragma init_priority.

Values from 1 to 100 are for internal use only and should not be used. Values 101 to 65535 are available
for user code. A lower number means a higher priority.

Example
cpl66 --init-priority=101 test.cc

Related information

475



TASKING VX-toolset for C166 User Guide

C++ compiler option: --instantiate (-t)

Menu entry

1.

2.

Select C/C++ Compiler » Miscellaneous.

Select an instantiation mode in the Instantiation mode of external template entities box.

Command line syntax

--instanti at e=node

-t node

You can specify the following modes:

used

all

local

Default: --instantiate=used

Description

Control instantiation of external template entities. External template entities are external (that is, non-inline
and non-static) template functions and template static data members. The instantiation mode determines
the template entities for which code should be generated based on the template definition. Normally,
when a file is compiled, template entities are instantiated wherever they are used (the linker will discard
duplicate definitions). The overall instantiation mode can, however, be changed with this option. You can
specify the following modes:

used

all

local

Instantiate those template entities that were used in the compilation. This will include
all static data members for which there are template definitions. This is the default.

Instantiate all template entities declared or referenced in the compilation unit. For
each fully instantiated template class, all of its member functions and static data
members will be instantiated whether or not they were used. Non-member template
functions will be instantiated even if the only reference was a declaration.

Similar to --instantiate=used except that the functions are given internal linkage.
This is intended to provide a very simple mechanism for those getting started with
templates. The compiler will instantiate the functions that are used in each
compilation unit as local functions, and the program will link and run correctly (barring
problems due to multiple copies of local static variables). However, one may end
up with many copies of the instantiated functions, so this is not suitable for production
use.

You cannot use --instantiate=local in conjunction with automatic template instantiation.

476



Tool Options

Related information
C++ compiler option --no-auto-instantiation (Disable automatic C++ instantiation)

Section 2.5, Template Instantiation

477



TASKING VX-toolset for C166 User Guide

C++ compiler option: --integer-enumeration

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat enumerated types always as integer.

Command line syntax

--integer-enuneration

Description

Normally the C++ compiler treats enumerated types as the smallest data type possible (char instead of
i nt). This reduces code size. With this option the C++ compiler always treats enum-types as i nt as
defined in the ISO C99 standard.

Related information

Section 1.1, Data Types

478



Tool Options

C++ compiler option: --io-streams
Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ 1/O streams.
Command line syntax

--io0-streans

Description

As I/O streams require substantial resources they are disabled by default. Use this option to enable /0O
streams support in the C++ library.

This option also enables exception handling.

Related information

479



TASKING VX-toolset for C166 User Guide

C++ compiler option: --late-tiebreaker

Menu entry

Command line syntax

--late-tiebreaker

Default: early tiebreaker processing.

Description

Select the way that tie-breakers (e.qg., cv-qualifier differences) apply in overload resolution. In "early"
tie-breaker processing, the tie-breakers are considered at the same time as other measures of the

goodness of the match of an argument value and the corresponding parameter type (this is the standard
approach).

In "late" tie-breaker processing, tie-breakers are ignored during the initial comparison, and considered
only if two functions are otherwise equally good on all arguments; the tie-breakers can then be used to
choose one function over another.

Related information

480



Tool Options

C++ compiler option: --list-file (-L)

Menu entry

Command line syntax

--list-file=file

-Lfile

Default: -1

Description

Generate raw listing information in the file. This information is likely to be used to generate a formatted
listing. The raw listing file contains raw source lines, information on transitions into and out of include
files, and diagnostics generated by the C++ compiler.

Each line of the listing file begins with a key character that identifies the type of line, as follows:

N
X

A normal line of source; the rest of the line is the text of the line.

The expanded form of a normal line of source; the rest of the line is the text of the line.
This line appears following the N line, and only if the line contains non-trivial modifications
(comments are considered trivial modifications; macro expansions, line splices, and
trigraphs are considered non-trivial modifications). Comments are replaced by a single
space in the expanded-form line.

A line of source skipped by an #i f or the like; the rest of the line is text. Note that the
#el se, #el i f, or #endi f that ends a skip is marked with an N.

An indication of a change in source position. The line has a format similar to the #
line-identifying directive output by the C preprocessor, that is to say

L line_nunber "file-name" [key]

where key is, 1 for entry into an include file, or 2 for exit from an include file, and omitted
otherwise.

The first line in the raw listing file is always an L line identifying the primary input file. L
lines are also output for #line directives (key is omitted). L lines indicate the source position
of the following source line in the raw listing file.

481



TASKING VX-toolset for C166 User Guide

Example

An indication of a diagnostic (R for remark, W for warning, E for error, and C for catastrophic
error). The line has the form:

S "file-name" |ine_nunber colum-nunber message-text

where Sis R, W, E, or C, as explained above. Errors at the end of file indicate the last line
of the primary source file and a column number of zero. Command line errors are
catastrophes with an empty file name (") and a line and column number of zero. Internal
errors are catastrophes with position information as usual, and message-text beginning
with (internal error). When a diagnostic displays a list (e.g., all the contending routines
when there is ambiguity on an overloaded call), the initial diagnostic line is followed by
one or more lines with the same overall format (code letter, file name, line number, column
number, and message text), but in which the code letter is the lower case version of the
code letter in the initial line. The source position in such lines is the same as that in the
corresponding initial line.

To write raw listing information to the file t est . | st , enter:

cple6 --list-file=test.lst test.cc

Related information

482



Tool Options

C++ compiler option: --long-lifetime-temps
Menu entry

Command line syntax

--long-lifetine-tenps

Description

Select the lifetime for temporaries: short means to end of full expression; long means to the earliest of
end of scope, end of switch clause, or the next label. Short is the default.

Related information

483



TASKING VX-toolset for C166 User Guide

C++ compiler option: --long-long

Menu entry

Command line syntax

--long-1ong

Description

Permit the use of | ong | ong in strict mode in dialects in which it is non-standard.

Related information

484



Tool Options

C++ compiler option: --make-target

Menu entry

Command line syntax

- - make-t ar get =nane

Description

With this option you can overrule the default target name in the make dependencies generated by the
options --preprocess=+make (-Em) and --dep-file. The default target name is the basename of the input
file, with extension . obj .

Example

cpl66 --preprocess=+nake --nake-target=mytarget.obj test.cc

The compiler generates dependency lines with the default target name nyt ar get . obj instead of
test.obj.

Related information
C++ compiler option --preprocess=+make (Generate dependencies for make)

C++ compiler option --dep-file (Generate dependencies in a file)

485



TASKING VX-toolset for C166 User Guide

C++ compiler option: --model (-M)
Menu entry

1. Select C/C++ Compiler » Memory Model.

2. In the Default data box, select a memory model.
Command line syntax

- -nodel ={ near | f ar | shuge| huge}

-Mn| f]s]| h}

Default: - - rodel =near

Description

Select the memory model for the C++ compiler.
Example

To compile the file t est . cc for the far memory model:
cpl66 --nodel =far test.cc

Related information

C compiler option --model (Select memory model)

Section 1.3.2, Memory Models

486



Tool Options

C++ compiler option: --multibyte-chars
Menu entry
Command line syntax

--mul ti byte-chars

Default: multibyte character sequences are not allowed.
Description

Enable processing for multibyte character sequences in comments, string literals, and character constants.
Multibyte encodings are used for character sets like the Japanese SJIS.

Related information

487



TASKING VX-toolset for C166 User Guide

C++ compiler option: --namespaces

Menu entry

Command line syntax

- - nanespaces

- - no- nanespaces

Default: namespaces are supported.
Description

When you used option --embedded-c++ namespaces are disabled. With option --namespaces you can
enable support for namespaces in this case.

The macro __NAMESPACES is defined when namespace support is enabled.
Related information

C++ compiler option --embedded-c++ (Embedded C++ compliancy tests)
C++ compiler option --using-std (Implicit use of the std namespace)

Section 2.4, Namespace Support

488



Tool Options

C++ compiler option: --near-functions
Menu entry

Command line syntax
--near-functions
Description

With this option you tell the C++ compiler to treat unqualified functions as __near functions instead of
__huge functions.

Related information

C compiler option --near-functions

489



TASKING VX-toolset for C166 User Guide

C++ compiler option: --near-threshold

Menu entry

1. Select C/C++ Compiler » Allocation

2. Inthe Threshold for putting data in __near field, enter a value in bytes.
Command line syntax

--near-threshol d=t hreshol d

Default: - - near - t hr eshol d=0

Description

With this option the C++ compiler allocates unqualified objects that are smaller than or equal to the
specified threshold in the __near memory space automatically. The threshold must be specified in bytes.
Objects that are qualified const or vol ati | e, external objects or objects that are absolute (__at ())
are not moved.

By default the threshold is 0 (off), which means that all data is allocated in the default memory space.
You cannot use this option in the near (--model=near) memory model.

Example

To put all data objects with a size of 4 bytes or smaller in __near memory:

cpl66 --nodel =far --near-threshol d=4 test.cc

Example part of t est . cc:

externint x; //will be put in default far menory
int vy; //will be put in near nenory

Related information
C++ compiler option --model (Select memory model)

C compiler option --model (Select memory model)

490



Tool Options

C++ compiler option: --no-arg-dep-lookup

Menu entry

Command line syntax

--no- ar g- dep- | ookup

Default: argument dependent lookup of unqualified function names is performed.
Description

With this option you disable argument dependent lookup of unqualified function names.

Related information

491



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-array-new-and-delete
Menu entry
Command line syntax

--no-array-new and-del ete

Default: array new and delete are supported.
Description

Disable support for array new and delete.

The macro __ ARRAY_OPERATORS is defined when array new and delete is enabled.

Related information

492



Tool Options

C++ compiler option: --no-auto-instantiation

Menu entry

Command line syntax

--no-auto-instantiation

Default: the C++ compiler automatically instantiates templates.

Description

With this option automatic instantiation of templates is disabled.
Related information

C++ compiler option --instantiate (Set instantiation mode)

Section 2.5, Template Instantiation

493



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-bool

Menu entry

Command line syntax

- - no- bool

Default: bool is recognized as a keyword.

Description

Disable recognition of the bool keyword.

The macro _BOCL is defined when bool is recognized as a keyword.

Related information

494



Tool Options

C++ compiler option: --no-class-name-injection

Menu entry

Command line syntax

--no-cl ass-nane-injection

Default: the name of a class is injected into the scope of the class (as required by the standard).
Description

Do not inject the name of a class into the scope of the class (as was true in earlier versions of the C++
language).

Related information

495



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-const-string-literals

Menu entry

Command line syntax

--no-const-string-literals

Default: C++ string literals and wide string literals are const (as required by the standard).
Description

With this option C++ string literals and wide string literals are non-const (as was true in earlier versions
of the C++ language).

Related information

496



Tool Options

C++ compiler option: --no-dep-name
Menu entry

Command line syntax

- - no- dep- nane

Default: dependent name processing is enabled.
Description

Disable dependent name processing; i.e., the special lookup of names used in templates as required by
the C++ standard. This option implies the use of --no-parse-templates.

Related information

C++ compiler option --no-parse-templates (Disable parsing of nonclass templates)

497



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-distinct-template-signatures

Menu entry

Command line syntax
--no-di stinct-tenpl ate-si gnatures
Description

Control whether the signatures for template functions can match those for non-template functions when
the functions appear in different compilation units. By default a normal function cannot be used to satisfy
the need for a template instance; e.g., a function "voi d f (i nt)" could not be used to satisfy the need
for an instantiation of a template "voi d f(T) " with T settoi nt.

--no-distinct-template-signatures provides the older language behavior, under which a non-template

function can match a template function. Also controls whether function templates may have template
parameters that are not used in the function signature of the function template.

Related information

498



Tool Options

C++ compiler option: --no-double (-F)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat double as float.

Command line syntax

--no-doubl e

-F

Description

With this option you tell the C++ compiler to treat variables of the type doubl e as f | oat . Because the
float_t)_/pe takes less space, execution speed increases and code size decreases, both at the cost of less
precision.

Example

cpl66 --no-double test.cc

The file t est . cc is compiled where variables of the type double are treated as float.

Related information

499



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-enum-overloading

Menu entry

Command line syntax

--no-enum overl oadi ng

Description

Disable support for using operator functions to overload built-in operations on enum-typed operands.

Related information

500



Tool Options

C++ compiler option: --no-explicit

Menu entry

Command line syntax

--no-explicit

Default: the expl i ci t specifier is allowed.

Description

Disable support for the expl i ci t specifier on constructor declarations.

Related information

501



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-export

Menu entry

Command line syntax

- - no- export

Default: exported templates (declared with the keyword expor t ) are allowed.
Description

Disable recognition of exported templates. This option requires that dependent name processing be done,
and cannot be used with implicit inclusion of template definitions.

Related information

Section 2.5.5, Exported Templates

502



Tool Options

C++ compiler option: --no-extern-inline

Menu entry

Command line syntax
--no-extern-inline

Default: i nl i ne functions are allowed to have external linkage.

Description

Disable support for i nl i ne functions with external linkage in C++. When i nl i ne functions are allowed
to have external linkage (as required by the standard), then ext ern andi nl i ne are compatible specifiers
on a non-member function declaration; the default linkage when i nl i ne appears alone is external (that
is, i nl i ne means ext ern i nli ne on non-member functions); and an i nl i ne member function takes
on the linkage of its class (which is usually external). However, when i nl i ne functions have only internal
linkage (using --no-extern-inline), then ext ern and i nl i ne are incompatible; the default linkage when
i nl i ne appears alone is internal (that is, i nl i ne means st ati c i nli ne on non-member functions);
and i nl i ne member functions have internal linkage no matter what the linkage of their class.

Related information

Section 2.7, Extern Inline Functions

503



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-for-init-diff-warning
Menu entry

Command line syntax

--no-for-init-diff-warning

Description

Disable a warning that is issued when programs compiled without the --old-for-init option would have
had different behavior under the old rules.

Related information

C++ compiler option --old-for-init (Use old for scoping rules)

504



Tool Options

C++ compiler option: --no-implicit-typename
Menu entry

Command line syntax

--no-inplicit-typenane

Default: implicit typename determination is enabled.
Description

Disable implicit determination, from context, whether a template parameter dependent name is a type or
nontype.

Related information

C++ compiler option --no-typename (Disable the typename keyword)

505



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-inlining
Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Disable the option Minimal inlining of function calls (C++).
Command line syntax

--no-inlining

Description

Disable minimal inlining of function calls.

Related information

506



Tool Options

C++ compiler option: --nonconst-ref-anachronism

Menu entry

Command line syntax

--nonconst - r ef - anachr oni sm

- -no- nonconst - r ef - anachr oni sm
Default: - - no- nonconst - r ef - anachr oni sm
Description

Enable or disable the anachronism of allowing a reference to nonconst to bind to a class rvalue of the
right type. This anachronism is also enabled by the --anachronisms option.

Related information

C++ compiler option --anachronisms (Enable C++ anachronisms)

Section 2.2.3, Anachronisms Accepted

507



TASKING VX-toolset for C166 User Guide

C++ compiler option: --nonstd-qualifier-deduction

Menu entry

Command line syntax

--nonstd-qualifier-deduction

Description

Controls whether non-standard template argument deduction should be performed in the qualifier portion
of a qualified name. With this feature enabled, a template argument for the template parameter T can be
deduced in contexts like A<T>: : Bor T: : B. The standard deduction mechanism treats these as

non-deduced contexts that use the values of template parameters that were either explicitly specified or
deduced elsewhere.

Related information

508



Tool Options

C++ compiler option: --nonstd-using-decl
Menu entry
Command line syntax

- -nonst d- usi ng- decl

Default: non-standard using declarations are not allowed.

Description

Allow a non-member using declaration that specifies an unqualified name.

Related information

509



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-parse-templates
Menu entry

Command line syntax

--no- parse-tenpl ates

Default: parsing of nonclass templates is enabled.
Description

Disable the parsing of nonclass templates in their generic form (i.e., even if they are not really instantiated).
It is done by default if dependent name processing is enabled.

Related information

C++ compiler option --no-dep-name (Disable dependent name processing)

510



Tool Options

C++ compiler option: --no-pch-messages

Menu entry

Command line syntax
--no- pch- nessages

Default: a message is displayed indicating that a precompiled header file was created or used in the
current compilation. For example,

"test.cc": creating preconpiled header file "test.pch"
Description

Disable the display of a message indicating that a precompiled header file was created or used in the
current compilation.

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

511



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-preprocessing-only

Menu entry

Eclipse always does a full compilation.

Command line syntax

- - no- preprocessi ng-only

Description

You can use this option in conjunction with the options that normally cause the C++ compiler to do
preprocessing only (e.g., --preprocess, etc.) to specify that a full compilation should be done (not just
preprocessing). When used with the implicit inclusion option, this makes it possible to generate a
preprocessed output file that includes any implicitly included files.

Example

cpl66 --preprocess --inplicit-include --no-preprocessing-only test.cc
Related information

C++ compiler option --preprocess (Preprocessing only)

C++ compiler option --implicit-include (Implicit source file inclusion)

512



Tool Options

C++ compiler option: --no-stdinc / --no-stdstlinc

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Add the option --no-stdinc or --no-stdstlinc to the Additional options field.
Command line syntax

--no-stdinc

--no-stdstlinc

Description

With option --no-stdinc you tell the C++ compiler not to look in the default i ncl ude directory relative to
the installation directory, when searching for standard include files.

With option --no-stdstlinc you tell the C++ compiler not to look in the default i ncl ude. st directory
relative to the installation directory, when searching for standard STL include files.

This way the C++ compiler only searches in the include file search paths you specified.
Related information

Section 5.2, How the C++ Compiler Searches Include Files

513



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-tasking-sfr
Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Disable the option Automatic inclusion of ".sfr' file.
Command line syntax

- - no-tasking-sfr

Description

Normally, the C++ compiler includes a special function register (SFR) file before compiling. The C++
compiler automatically selects the SFR file belonging to the target you selected on the Processor page
(C compiler option --cpu).

With this option the C++ compiler does not include the register file r egcpu. sf r as based on the selected
target processor.

Use this option if you want to use your own set of SFR files.
Related information
C++ compiler option --cpu (Select processor)

Section 1.3.5, Accessing Hardware from C

514



Tool Options

C++ compiler option: --no-typename
Menu entry
Command line syntax

--no-typenane

Default: t ypenane is recognized as a keyword.
Description

Disable recognition of the t ypenane keyword.
Related information

C++ compiler option --no-implicit-typename (Disable implicit typename determination)

515



TASKING VX-toolset for C166 User Guide

C++ compiler option: --no-use-before-set-warnings (-j)
Menu entry

1. Select C/C++ Compiler » Diagnhostics.

2. Enable the option Suppress C++ compiler "used before set" warnings.
Command line syntax

- - no- use- bef or e- set - war ni ngs

-]

Description

Suppress warnings on local automatic variables that are used before their values are set.
Related information

C++ compiler option --no-warnings (Suppress all warnings)

516



C++ compiler option: --no-warnings (-w)
Menu entry

1. Select C/C++ Compiler » Diagnhostics.

2. Enable the option Suppress all warnings.
Command line syntax

- - no- war ni ngs

-w

Description

With this option you suppress all warning messages. Error messages are still issued.

Related information

C++ compiler option --warnings-as-errors (Treat warnings as errors)

Tool Options

517



TASKING VX-toolset for C166 User Guide

C++ compiler option: --old-for-init

Menu entry

Command line syntax

--old-for-init

Description

Control the scope of a declarationinaf or - i ni t - st at ement . The old (cfront-compatible) scoping rules
mean the declaration is in the scope to which the f or statement itself belongs; the default
(standard-conforming) rules in effect wrap the entire f or statement in its own implicitly generated scope.

Related information

C++ compiler option --no-for-init-diff-warning (Disable warning for old for-scoping)

518



Tool Options

C++ compiler option: --old-line-commands

Menu entry

Command line syntax

--ol d-1ine-commands

Description

When generating source output, put out #line directives in the form # nnn instead of #line nnn.
Example

To do preprocessing only, without comments and with old style line control information, enter:
cpl66 --preprocess --old-1ine-commands test.cc

Related information

C++ compiler option --preprocess (Preprocessing only)

519



TASKING VX-toolset for C166 User Guide

C++ compiler option: --old-specializations
Menu entry

Command line syntax

--ol d-speci al i zati ons

Description

Enable acceptance of old-style template specializations (that is, specializations that do not use the
t enpl at e<> syntax).

Related information

520



Tool Options

C++ compiler option: --option-file (-f)

Menu entry

Command line syntax

--option-file=file

-f file

Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the C++ compiler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

You can specify the option --option-file multiple times.

Format of an option file

Multiple arguments on one line in the option file are allowed.
To include whitespace in an argument, surround the argument with single or double quotes.

If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"

"This has a double quote " enbedded'

'"This has a double quote " and a single quote '"' enbedded"

When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
li ne"

-> "This is a continuation |ine"

It is possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

521



TASKING VX-toolset for C166 User Guide

- -enbedded- c++
- -def i ne=DEMO=1
test.cc

Specify the option file to the C++ compiler:
cpl66 --option-fil e=nyoptions
This is equivalent to the following command line:

cpl66 --enbedded-c++ --define=DEMO=1 test.cc

Related information

522



Tool Options

C++ compiler option: --output (-0)

Menu entry

Eclipse names the output file always after the C++ source file.
Command line syntax

--output-file=file

-o file

Default: module name with . i ¢ suffix.

Description

With this option you can specify another filename for the output file of the C++ compiler. Without this
option the basename of the C++ source file is used with extension . i c.

You can also use this option in combination with the option --preprocess (-E) to redirect the preprocessing
output to a file.

Example

To create the file out put . i ¢ instead of t est . i ¢, enter:
cpl66 --output=output.ic test.cc

To use the file ny. pr e as the preprocessing output file, enter:
Cpl66 --preprocess --output=ny.pre test.cc
Related information

C++ compiler option --preprocess (Preprocessing)

523



TASKING VX-toolset for C166 User Guide

C++ compiler option: --pch

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enable the option Automatically use/create precompiled header file.
Command line syntax

--pch

Description

Automatically use and/or create a precompiled header file. If --use-pch or --create-pch (manual PCH
mode) appears on the command line following this option, its effect is erased.

Related information
C++ compiler option --use-pch (Use precompiled header file)
C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

524



Tool Options

C++ compiler option: --pch-dir

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.
2. Enter a path in the Precompiled header file directory.
Command line syntax
--pch-dir=directory-nanme

Description

Specify the directory in which to search for and/or create a precompiled header file. This option may be
used with automatic PCH mode (--pch) or manual PCH mode (--create-pch or --use-pch).

Example

To use the directory / usr/ i ncl ude/ pch to automatically create precompiled header files, enter:
cpl66 --pch-dir=/usr/include/pch --pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --use-pch (Use precompiled header file)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

525



TASKING VX-toolset for C166 User Guide

C++ compiler option: --pch-verbose
Menu entry

Command line syntax

--pch-verbose

Description

In automatic PCH mode, for each precompiled header file that cannot be used for the current compilation,
a message is displayed giving the reason that the file cannot be used.

Example

cpl66 --pch --pch-verbose test.cc
Related information

C++ compiler option --pch (Automatic PCH mode)

Section 2.10, Precompiled Headers

526



Tool Options

C++ compiler option: --pending-instantiations

Menu entry

Command line syntax

--pendi ng-i nstanti ati ons=n

where n is the maximum number of instantiations of a single template.

Default: 64

Description

Specifies the maximum number of instantiations of a given template that may be in process of being
instantiated at a given time. This is used to detect runaway recursive instantiations. If n is zero, there is
no limit.

Example

To specify a maximum of 32 pending instantiations, enter:

cpl66 --pending-instantiations=32 test.cc

Related information

Section 2.5, Template Instantiation

527



TASKING VX-toolset for C166 User Guide

C++ compiler option: --preprocess (-E)

Menu entry

1. Select C/C++ Compiler » Preprocessing.

2. Enable the option Store preprocessor output in <file>.pre.

3. (Optional) Enable the option Keep comments in preprocessor output.
4. (Optional) Enable the option Keep #line info in preprocessor output.
Command line syntax

- - preprocess[ =fl ags]

-E[ fl ags]

You can set the following flags:

+/-comments c/C keep comments
+/-make m/M  generate dependencies for make
+/-noline p/P strip #line source position information
Default: - ECVP
Description

With this option you tell the C++ compiler to preprocess the C++ source. Under Eclipse the C++ compiler
sends the preprocessed output to the file name. pr e (where name is the name of the C++ source file to
compile). Eclipse also compiles the C++ source.

On the command line, the C++ compiler sends the preprocessed file to st dout . To capture the information
in a file, specify an output file with the option --output.

With --preprocess=+comments you tell the preprocessor to keep the comments from the C++ source
file in the preprocessed output.

With --preprocess=+make the C++ compiler will generate dependency lines that can be used in a
Makefile. The preprocessor output is discarded. The default target name is the basename of the input
file, with the extension . obj . With the option --make-target you can specify a target name which overrules
the default target name.

When implicit inclusion of templates is enabled, the output may indicate false (but safe)
dependencies unless --no-preprocessing-only is also used.

With --preprocess=+noline you tell the preprocessor to strip the #line source position information (lines
starting with #l i ne). These lines are normally processed by the assembler and not needed in the
preprocessed output. When you leave these lines out, the output is easier to read.

528



Tool Options

Example
cpl66 --preprocess=+coments, - make, -noline test.cc --output=test.pre

The C++ compiler preprocesses the file t est . cc and sends the output to the file t est . pr e. Comments
are included but no dependencies are generated and the line source position information is not stripped
from the output file.

Related information
C++ compiler option --no-preprocessing-only (Force full compilation)
C++ compiler option --dep-file (Generate dependencies in a file)

C++ compiler option --make-target (Specify target name for -Em output)

529



TASKING VX-toolset for C166 User Guide

C++ compiler option: --remarks (-r)
Menu entry

1. Select C/C++ Compiler » Diagnhostics.

2. Enable the option Issue remarks on C++ code.

Command line syntax

--remarks

-r

Description

Issue remarks, which are diagnostic messages even milder than warnings.
Related information

Section 5.3, C++ Compiler Error Messages

530



Tool Options

C++ compiler option: --remove-unneeded-entities

Menu entry

Command line syntax

--renove- unneeded-entities

Description

Enable an optimization to remove types, variables, routines, and related constructs that are not really
needed. Something may be referenced but unneeded if it is referenced only by something that is itself
unneeded; certain entities, such as global variables and routines defined in the translation unit, are always

considered to be needed.

Related information

531



TASKING VX-toolset for C166 User Guide

C++ compiler option: --rtti

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Support for C++ RTTI (run-time type information).
Command line syntax

--rtti

Default: RTTI (run-time type information) features are disabled.

Description

Enable support for RTTI (run-time type information) features: dynam c_cast, t ypei d.
The macro __RTTI is defined when RTTI support is enabled.

Related information

532



Tool Options

C++ compiler option: --schar (-s)

Menu entry

1. Select C/C++ Compiler » Language.

2. Disable the option Treat "char" variables as unsigned.
Command line syntax

--schar

-s

Description

With this option char is the same as si gned char .

When plain char is signed, the macro __SI GNED_CHARS __ is defined.
Related information

C++ compiler option --uchar (Plain char is unsigned)

Section 1.1, Data Types

533



TASKING VX-toolset for C166 User Guide

C++ compiler option: --signed-bitfields

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat "int" bit-fields as signed.

Command line syntax

--signed-bitfields

Description

For bit-fields it depends on the implementation whether a plaini nt is treated as si gned i nt orunsi gned
i nt.By default ani nt bit-field is treated as unsi gned i nt . This offers the best performance. With this
option you tell the C++ compiler to treat i nt bit-fields as si gned i nt . In this case, you can still add the
keyword unsi gned to treat a particular i nt bit-field as unsi gned.

Related information

C compiler option --signed-bitfields

Section 1.1, Data Types

534



Tool Options

C++ compiler option: --special-subscript-cost

Menu entry

Command line syntax
--speci al -subscri pt - cost
Description

Enable a special nonstandard weighting of the conversion to the integral operand of the [ ] operator in
overload resolution.

This is a compatibility feature that may be useful with some existing code. With this feature enabled, the
following code compiles without error:

struct A {
A();
operator int *();
i nt operator[](unsigned);

3
void main() {
A a;
al[ 0] ; /1 Anmbi guous, but allowed with this option
/'l operator[] is chosen
}

Related information

535



TASKING VX-toolset for C166 User Guide

C++ compiler option: --strict (-A)

Menu entry

1. Select C/C++ Compiler » Language.

2. Disable the option Allow non-ANSI/ISO C++ features.
Command line syntax

--strict

-A

Default: non-ANSI/ISO C++ features are enabled.
Description

Enable strict ANSI/ISO mode, which provides diagnostic messages when non-standard features are used,
and disables features that conflict with ANSI/ISO C or C++. All ANSI/ISO violations are issued as errors.

Example
To enable strict ANSI mode, with error diagnostic messages, enter:

cpl66 --strict test.cc
Related information

C++ compiler option --strict-warnings (Strict ANSI/ISO mode with warnings)

536



Tool Options

C++ compiler option: --strict-warnings (-a)

Menu entry

Command line syntax

--strict-warnings

-a

Default: non-ANSI/ISO C++ features are enabled.

Description

This option is similar to the option --strict, but all violations are issued as warnings instead of errors.
Example

To enable strict ANSI mode, with warning diagnostic messages, enter:
cpl66 --strict-warnings test.cc

Related information

C++ compiler option --strict (Strict ANSI/ISO mode with errors)

537



TASKING VX-toolset for C166 User Guide

C++ compiler option: --suppress-vtbl

Menu entry

1. Select C/C++ Compiler » Miscellaneous.

2. Enable the option Suppress definition of virtual function tables (C++).

Command line syntax

- - suppress- vt bl

Description

Suppress definition of virtual function tables in cases where the heuristic used by the C++ compiler to
decide on definition of virtual function tables provides no guidance. The virtual function table for a class
is defined in a compilation if the compilation contains a definition of the first non-inline non-pure virtual
function of the class. For classes that contain no such function, the default behavior is to define the virtual
function table (but to define it as a local static entity). The --suppress-vtbl option suppresses the definition
of the virtual function tables for such classes, and the --force-vtbl option forces the definition of the virtual

function table for such classes. --force-vtbl differs from the default behavior in that it does not force the
definition to be local.

Related information

C++ compiler option --force-vtbl (Force definition of virtual function tables)

538



Tool Options

C++ compiler option: --sys-include
Menu entry

Command line syntax
--sys-include=directory, ...
Description

Change the algorithm for searching system include files whose names do not have an absolute pathname
to look in directory.

Example

To add the directory / pr oj / i ncl ude to the system include file search path, enter:
cpl66 --sys-include=/proj/include test.cc

Related information

C++ compiler option --include-directory (Add directory to include file search path)

Section 5.2, How the C++ Compiler Searches Include Files

539



TASKING VX-toolset for C166 User Guide

C++ compiler option: --template-directory

Menu entry

Command line syntax

--tenplate-directory=directory, ...

Description

Specifies a directory hame to be placed on the exported template search path. The directories are used
to find the definitions of exported templates (. et files) and are searched in the order in which they are
specified on the command line. The current directory is always the first entry on the search path.
Example

To add the directory export to the exported template search path, enter:

cpl66 --tenpl ate-directory=export test.cc

Related information

Section 2.5.5, Exported Templates

540



Tool Options

C++ compiler option: --timing
Menu entry

Command line syntax

--timng

Default: no timing information is generated.
Description

Generate compilation timing information. This option causes the C++ compiler to display the amount of
CPU time and elapsed time used by each phase of the compilation and a total for the entire compilation.

Example
cpl66 --timng test.cc
processed 180 lines at 8102 lines/min

Related information

541



TASKING VX-toolset for C166 User Guide

C++ compiler option: --trace-includes
Menu entry

Command line syntax
--trace-incl udes
Description

Output a list of the names of files #included to the error output file. The source file is compiled normally
(i.e. it is not just preprocessed) unless another option that causes preprocessing only is specified.

Example
cpl66 --trace-includes test.cc

iostreamh
string.h

Related information

C++ compiler option --preprocess (Preprocessing only)

542



Tool Options

C++ compiler option: --type-traits-helpers
Menu entry

Command line syntax

--type-traits-hel pers

--no-type-traits-hel pers

Default: in C++ mode type traits helpers are enabled by default. In GNU C++ mode, type traits helpers
are never enabled by default.

Description

Enable or disable type traits helpers (like __i s_uni onand __has_vi rt ual _dest ruct or). Type traits
helpers are meant to ease the implementation of ISO/IEC TR 19768.

The macro __TYPE_TRAI TS_ENABLED is defined when type traits pseudo-functions are enabled.

Related information

543



TASKING VX-toolset for C166 User Guide

C++ compiler option: --uchar (-u)

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Treat "char" variables as unsigned.
Command line syntax

--uchar

-u

Description

By default char is the same as specifying si gned char . With this option char is the same as unsi gned
char.

Related information
C++ compiler option --schar (Plain char is signed)

Section 1.1, Data Types

544



Tool Options

C++ compiler option: --undefine (-U)
Menu entry
1. Select C/C++ Compiler » Preprocessing
The Defined symbols box shows the symbols that are currently defined.

2. Toremove a defined symbol, select the symbol in the Defined symbols box and click on the Delete
button.

Command line syntax
- -undefi ne=macr o_nane
- Uracr o_nane
Description

Remove any initial definition of macro_name as in #undef . --undefine options are processed after all
--define options have been processed.

You cannot undefine a predefined macro as specified in Section 2.9, Predefined Macros, except for:

STDC

__cpl usplus
__SIGNED_CHARS

Example

To undefine the predefined macro __cpl uspl us:

cpl66 --undefine=__cplusplus test.cc
Related information

C++ compiler option --define (Define preprocessor macro)

Section 2.9, Predefined Macros

545



TASKING VX-toolset for C166 User Guide

C++ compiler option: --use-pch

Menu entry

1. Select C/C++ Compiler » Precompiled C++ Headers.

2. Enter a filename in the Use precompiled header file field.
Command line syntax

--use-pch=fil enane

Description

Use a precompiled header file of the specified name as part of the current compilation. If --pch (automatic
PCH mode) or --create-pch appears on the command line following this option, its effect is erased.

Example

To use the precompiled header file with the name t est . pch, enter:
cpl66 --use-pch=test.pch test.cc

Related information

C++ compiler option --pch (Automatic PCH mode)

C++ compiler option --create-pch (Create precompiled header file)

Section 2.10, Precompiled Headers

546



Tool Options

C++ compiler option: --user-stack

Menu entry

1. Select C/C++ Compiler » Memory Model.

2. Enable the option Use user stack for return addresses.

Command line syntax

- -user-stack

Description

With this option the function return address is stored on the user stack instead of on the system stack.
Also the user stack run-time libraries are used and the user stack calling convention is used to call the
run-time library functions.

Related information

C compiler option --user-stack

547



TASKING VX-toolset for C166 User Guide

C++ compiler option: --using-std

Menu entry

Command line syntax

--using-std

Default: implicit use of the st d namespace is disabled.

Description

Enable implicit use of the st d namespace when standard header files are included. Note that this does
not do the equivalent of putting a "usi ng nanespace std; " in the program to allow old programs to
be compiled with new header files; it has a special and localized meaning related to the TASKING versions
of certain header files, and is unlikely to be of much use to end-users of the TASKING C++ compiler.
Related information

C++ compiler option --namespaces (Support for namespaces)

Section 2.4, Namespace Support

548



Tool Options

C++ compiler option: --variadic-macros
Menu entry
Command line syntax

--vari adi c- macr os

Default: macros with a variable number of arguments are not allowed.
Description

Allow macros with a variable number of arguments.

Related information

C++ compiler option --extended-variadic-macros (Allow extended variadic macros)

549



TASKING VX-toolset for C166 User Guide

C++ compiler option: --version (-V)

Menu entry

Command line syntax

--version

-V

Description

Display version information. The C++ compiler ignores all other options or input files.
Example

cpl66 --version

The C++ compiler does not compile any files but displays the following version information:

TASKI NG VX-t ool set for Cl66: C++ conpiler vX.yrz Build nnn
Copyright 2004-year Altium BV Seri al # 00000000

Related information

550



Tool Options

C++ compiler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

If the C++ compiler encounters an error, it stops compiling. When you use this option without arguments,
you tell the C++ compiler to treat all warnings as errors. This means that the exit status of the C++ compiler

will be non-zero after one or more compiler warnings. As a consequence, the C++ compiler now also
stops after encountering a warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.
Related information

C++ compiler option --no-warnings (Suppress all warnings)

551



TASKING VX-toolset for C166 User Guide

C++ compiler option: --wchar_t-keyword

Menu entry

1. Select C/C++ Compiler » Language.

2. Enable the option Allow the 'wchar_t' keyword (C++).

Command line syntax

--wchar _t - keywor d

Default: wehar _t is not recognized as a keyword.

Description

Enable recognition of wchar _t as a keyword.

The macro _WCHAR T is defined when wchar _t is recognized as a keyword.

Related information

552



Tool Options

C++ compiler option: --xref-file (-X)

Menu entry

Command line syntax

--xref-file=file

-Xfile

Description

Generate cross-reference information in a file. For each reference to an identifier in the source program,
a line of the form

synbol _id nane X file-nane |ine-nunber col um-nnunber

is written, where X is

O C >» Z2 2 0

Py

E

for definition;

for declaration (that is, a declaration that is not a definition);
for modification;

for address taken;

for used,;

for changed (but actually meaning used and modified in a single operation, such as an
increment);

for any other kind of reference, or
for an error in which the kind of reference is indeterminate.

symbol-id is a unique decimal number for the symbol. The fields of the above line are separated by tab

characters.

Related information

553



TASKING VX-toolset for C166 User Guide

12.4. Assembler Options

This section lists all assembler options.
Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the assembler via the control program. Therefore, it uses the syntax
of the control program to pass options and files to the assembler. If there is no equivalent option in Eclipse,
you can specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Assembler » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.
Because Eclipse uses the control program, Eclipse automatically precedes the option with -Wa to

pass the option via the control program directly to the assembler.

Note that the options you enter in the Assembler page are not only used for hand-coded assembly
files, but also for the assembly files generated by the compiler.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option -V displays version header information and has no effect in Eclipse.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

asl66 -Ogs test.src
asl66 --optim ze=+generics, +instr-size test.src

When you do not specify an option, a default value may become active.

554



Assembler option: --case-insensitive (-¢)

Menu entry

1. Select Assembler » Symbols.

2. Enable the option Case insensitive identifiers.
Command line syntax
--case-insensitive

-C

Default: case sensitive

Description

Tool Options

With this option you tell the assembler not to distinguish between upper and lower case characters. By

default the assembler considers upper and lower case characters as different characters.

Assembly source files that are generated by the compiler must always be assembled case sensitive.
When you are writing your own assembly code, you may want to specify the case insensitive mode.

Example

When assembling case insensitive, the label Label Nane is the same label as | abel nane.

asl66 --case-insensitive test.src

Related information

555



TASKING VX-toolset for C166 User Guide

Assembler option: --check

Menu entry
Command line syntax
--check

Description

With this option you can check the source code for syntax errors, without generating code. This saves
time in developing your application.

The assembler reports any warnings and/or errors.
This option is available on the command line only.
Related information

C compiler option --check (Check syntax)

556



Tool Options

Assembler option: --compatibility
Menu entry
Command line syntax
--conpatibility=flag,...
You can specify the following argument:
sectionlabels Generate section name as label
Description
With this option you can adjust aspects of the assembler for backwards compatibility with the classic
TASKING C166/ST10 toolset. With the argument sectionlabels a section name can also be used as a
label instead of just as a symbol.
Example
asl66 --conpatibility=sectionlabels test.src
Related information

Assembler directive .SECTION

557



TASKING VX-toolset for C166 User Guide

Assembler option: --core

Menu entry

1. Expand C/C++ Build and select Processor.

2. From the Processor selection list, expand Custom and select a core.
Command line syntax

--core=core

You can specify the following core arguments:

c16x C16x instruction set

st10 ST10 instruction set

stlOmac ST10 with MAC co-processor support
c166sv1l C166S v1.0 support

xc16x XC16x/XE16xx/XC2xxx instruction set
superl0 Superl0 instruction set

superl0ma345 Enhanced Superl0M345 instruction set
Default: derived from - - cpu if specified and known or else - - cor e=xc16x
Description
With this option you specify the core architecture (instruction set) for a target processor for which you
create your application. If --cpu is specified and the supplied CPU is known by the assembler, the
assembler selects the correct core automatically.
For more information see assembler option --cpu.
Example
Specify a custom core:
asl66 --core=st10 test.src

Related information

Assembler option --cpu (Select processor)

558



Assembler option: --cpu (-C)

Menu entry

1. Expand C/C++ Build and select Processor.

Tool Options

2. From the Processor selection list, select a processor or expand Custom and select a core.

Command line syntax

--cpu=cpu

- Ccpu

Description

With this option you define the target processor for which you create your application.

Based on this option the assembler always includes the special function register file r egcpu. sf r, unless
you specify option --no-tasking-sfr.

If you use the control program to compile C or C++ files, the control program will not pass the --cpu option
to the assembler, but only the --core option. The reason for this is that in general all SFRs are already

processed by the C compiler, and there are no SFRs left in the assembly code. This speeds up the build
time, because the assembler does not need to read the SFR file. When you use in-line assembly in your
C code that uses SFRs, you do want the assembler to read the SFR file. In this case you need to pass

the --cpu option directly to the assembler (control program option --pass-assembler=--cpu=cpu /
-Wa-Ccpu). It is recommended to use this option only for those modules that use in-line assembly. This
avoids the impact to the build speed to a minimum.

Note that for . asmand . sr ¢ files the control program will pass the --cpu option to the assembler.

If you select a target from the list, the core is known. If you specify a Custom processor, you need to
select the core that matches the core of your custom processor (option --core). The assembler knows
all CPUs with core c16x, st10, st10mac and superl0. If you specify a CPU that is not in that list, it is
assumed to be an xc16x.

The following table show the relation between the two options:

--Cpu=cpu |--core=core |core Register file
no no c16x €166, cpl66: none
asl166: regcl6x.sfr
no yes core €166, cpl66: none
as166: regcore.sfr
yes no derived from cpu for core c16X, st10, stlOmac and |regcpu.sfr
super10
If the cpu is unknown core xc16x is assumed
yes yes core regcpu.sfr

559



TASKING VX-toolset for C166 User Guide

The standard list of supported processors is defined in the file pr ocessor s. xni . This file defines for
each processor its full name (for example, XC2287-72F), the base CPU name (for example, xc2287), the
core settings (for example, xc16x), the on-chip flash settings, the list of silicon bugs for that processor.
Each processor also defines an option to supply to the linker for preprocessing the LSL file for the applicable
on-chip memory definitions. The option is for example -DXC2287_72M.

Example

Specify an existing processor:

asl66 --cpu=cl67cs40 test.src

Specify a custom processor:

asl66 --cpu=custom --core=st10 test.src
Related information

Assembler option --core (Select the core)

Assembler option --no-tasking-sfr (Do not include SFR file)

Section 3.6, Special Function Registers

560



Tool Options

Assembler option: --debug-info (-g)

Menu entry

1. Select Assembler » Symbols.

2. Select an option from the Generate symbolic debug list.
Command line syntax

- -debug-i nf o[ =f | ags]

-g[fl ags]

You can set the following flags:

+/-asm a/lA Assembly source line information

+/-hll h/H Pass high level language debug information (HLL)
+/-local I/L Assembler local symbols debug information
+/-smart sIS Smart debug information

Default: - - debug- i nf o=+hl |

Default (without flags): - - debug- i nf o=+smart

Description
With this option you tell the assembler which kind of debug information to emit in the object file.

You cannot specify --debug-info=+asm,+hll. Either the assembler generates assembly source line
information, or it passes HLL debug information.

When you specify --debug-info=+smart, the assembler selects which flags to use. If high level language
information is available in the source file, the assembler passes this information (same as
--debug-info=-asm,+hll,-local). If not, the assembler generates assembly source line information (same
as --debug-info=+asm,-hll,+local).

With --debug-info=AHLS the assembler does not generate any debug information.
Related information

Assembler control $DEBUG

561



TASKING VX-toolset for C166 User Guide

Assembler option: --define (-D)

Menu entry
1. Select Assembler » Preprocessing.

The Defined symbols box right-below shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_nane[ =macr o_defi ni ti on]
- Dmacr o_name[ =nacr o_defini tion]
Description

With this option you can define a macro and specify it to the assembler preprocessor. If you only specify
a macro name (no macro definition), the macro expands as '1".

You can specify as many macros as you like. Simply use the Add button to add new macro definitions.

On the command line, use the option --define (-D) multiple times. If the command line exceeds the limit
of the operating system, you can define the macros in an option file which you then must specify to the
assembler with the option --option-file (-f) file.

Defining macros with this option (instead of in the assembly source) is, for example, useful in combination
with conditional assembly as shown in the example below.

This option has the same effect as defining symbols via the . DEFI NE, . SET, and . EQU directives.
(similar to #def i ne in the C language). With the . MACROdirective you can define more complex
macros.

Example

Consider the following assembly program with conditional code to assemble a demo program and a real
program:

.| F DEMO ==

; instructions for deno application

. ELSE

; instructions for the real application
. ENDI F

562



You can now use a macro definition to set the DEMO flag:

asl1l66 --define=DEMO test.src
as166 --define=DEMO=1 test.src

Note that both invocations have the same effect.
Related information

Assembler option --option-file (Specify an option file)

Tool Options

563



TASKING VX-toolset for C166 User Guide

Assembler option: --dep-file
Menu entry

Command line syntax
--dep-file[=file]

Description

With this option you tell the assembler to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to a file with extension . d. When you specify a filename, all
dependencies will be combined in the specified file.

Example
asl66 --dep-file=test.dep test.src

The assembler assembles the file t est . sr ¢, which results in the output file t est . obj , and generates
dependency lines in the file t est . dep.

Related information

Assembler option --make-target (Specify target name for --dep-file output)

564



Tool Options

Assembler option: --diag

Menu entry

1. From the Window menu, select Show View » Other » Basic » Problems.
The Problems view is added to the current perspective.

2. In the Problems view right-click on a message.
A popup menu appears.

3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.

Command line syntax

--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

Example

To display an explanation of message number 244, enter:
asl66 --diag=244

This results in the following message and explanation:

W244: additional input files will be ignored

The assenbl er supports only a single input file. Al other input files are ignored.

565



TASKING VX-toolset for C166 User Guide

To write an explanation of all errors and warnings in HTML format to file aser r or s. ht m , use redirection
and enter:

asl66 --diag=htm:all > aserrors.htnl
Related information

Section 7.6, Assembler Error Messages

566



Tool Options

Assembler option: --emit-locals

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable one or both of the following options:
» Emit local EQU symbols

« Emit local non-EQU symbols

Command line syntax
--emt-locals[=flag,...]
You can set the following flags:

+/-equs e/lE emit local EQU symbols
+/-symbols s/S emit local non-EQU symbols

Default: - -emni t - | ocal s=ES

Default (without flags): - - eni t - | ocal s=+synbol s

Description

With the option --emit-locals=+equs the assembler also emits local EQU symbols to the object file.
Normally, only global symbols and non-EQU local symbols are emitted. Having local symbols in the object
file can be useful for debugging.

Related information

Assembler directive .EQU

567



TASKING VX-toolset for C166 User Guide

Assembler option: --error-file
Menu entry

Command line syntax
--error-file[=file]

Description

With this option the assembler redirects error messages to a file. If you do not specify a filename, the
error file will be named after the input file with extension . er s.

Example
To write errors to error s. er s instead of st der r, enter:

asl66 --error-file=errors.ers test.src
Related information

Section 7.6, Assembler Error Messages

568



Tool Options

Assembler option: --error-limit

Menu entry

1. Select Assembler » Diaghostics.

2. Enter avalue in the Maximum number of emitted errors field.

Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the assembler to only emit the specified maximum number of errors. When 0
(null) is specified, the assembler emits all errors. Without this option the maximum number of errors is
42.

Related information

Section 7.6, Assembler Error Messages

569



TASKING VX-toolset for C166 User Guide

Assembler option: --help (-?)

Menu entry

Command line syntax
--help[=itenm

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
asl66 -?

asl66 --help

as166

To see a detailed description of the available options, enter:

asl66 --hel p=options

Related information

570



Tool Opti

Assembler option: --include-directory (-)

Menu entry
1. Select Assembler » Include Paths.

The Include paths box shows the directories that are added to the search path for include files.

ons

2. To define a new directory for the search path, click on the Add button in the Include paths box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax
--include-directory=path, ...
-lpath, ...

Description

With this option you can specify the path where your include files are located. A relative path will be
relative to the current directory,

The order in which the assembler searches for include files is:

1. The pathname in the assembly file and the directory of the assembly source.

2. The path that is specified with this option.

3. The path that is specified in the environment variable AS1661 NC when the product was installed.
4. The default directory $( PRODDI R) \ i ncl ude.

Example

Suppose that the assembly source file t est . sr ¢ contains the following lines:

. I NCLUDE ' nyi nc. i nc'

You can call the assembler as follows:

asl1l66 --include-directory=c:\proj\include test.src

First the assembler looks for the file nyi nc. i nc in the directory where t est . sr c is located. If it does
not find the file, it looks in the directory c: \ pr oj \ i ncl ude (this option). If the file is still not found, the

assembler searches in the environment variable and then in the default include directory.

571



TASKING VX-toolset for C166 User Guide

Related information

Assembler option --include-file (Include file at the start of the input file)

572



Tool Options

Assembler option: --include-file (-H)

Menu entry
1. Select Assembler » Preprocessing.
The upper box shows the files that are currently included before the assembling starts.
2. To define a new file, click on the Add button in the Include files at start of input file box.

3. Type the full path and file name or select a file.

Use the Edit and Delete button to change a file name or to remove a file from the list.

Command line syntax

--include-file=file,...

-Hile,...

Description

With this option (set at project level) you include one extra file at the beginning of the assembly source
file. The specified include file is included before all other includes. This is the same as specifying . | NCLUDE
"file' atthe beginning of your assembly source.

Example

asl66 --include-file=nyinc.inc test.src

The file nyi nc. i nc is included at the beginning of t est . sr ¢ before it is assembled.

Related information

Assembler option --include-directory (Add directory to include file search path)

573



TASKING VX-toolset for C166 User Guide

Assembler option: --keep-output-files (-k)

Menu entry

Eclipse always removes the object file when errors occur during assembling.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during assembling, the resulting object file (. obj ) may be incomplete or incorrect. With
this option you keep the generated object file when an error occurs.

By default the assembler removes the generated object file when an error occurs. This is useful when
you use the make utility. If the erroneous files are not removed, the make utility may process corrupt files
on a subsequent invocation.

Use this option when you still want to use the generated object. For example when you know that a
particular error does not result in a corrupt object file.

Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

574



Tool Options

Assembler option: --list-file ()

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.
Command line syntax

--list-file[=file]

-1 [file]

Default: no list file is generated

Description

With this option you tell the assembler to generate a list file. A list file shows the generated object code
and the relative addresses. Note that the assembler generates a relocatable object file with relative
addresses.

With the optional file you can specify an alternative name for the list file. By default, the name of the list
file is the basename of the source file with the extension . | st .

Related information

Assembler option --list-format (Format list file)

575



TASKING VX-toolset for C166 User Guide

Assembler option: --list-format (-L)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable or disable the types of information to be included.
Command line syntax

--list-format=flag,...

-Lfl ags

You can set the following flags:

+/-section d/D  List section directives (. SECTI ON)
+/-symbol e/E  List symbol definition directives
+/-generic-expansion g/G  List expansion of generic instructions
+/-generic il List generic instructions

+/-line I/L List #line directives

+/-macro m/M  List macro definition

+/-empty-line n/N  List empty source lines and comment lines
+/-conditional p/P  List conditional assembly

+/-equate q/Q List equate and set directives (. EQU, . SET)
+/-relocations r/R  List relocations characters 'r'

+/-hll s/S  List HLL symbolic debug informations
+/-equate-values v/V  List equate and set values

+/-wrap-lines w/W  Wrap source lines

+/-macro-expansion x/X  List macro expansions

+/-cycle-count y/Y  List cycle counts

+/-define-expansion z/[Z  List define expansions

Use the following options for predefined sets of flags:

--list-format=0 -LO All options disabled
Alias for --list-format=DEGILMNPQRSVWXYZ
--list-format=1 -L1 All options enabled

Alias for --list-format=degilmnpqrsvwxyz

Default: - - | i st -f or mat =dEG | MhPgr sVwxyZ

576



Tool Options

Description

With this option you specify which information you want to include in the list file.

On the command line you must use this option in combination with the option --list-file (-1).
Related information

Assembler option --list-file (Generate list file)

Assembler option --section-info=+list (Display section information in list file)

577



TASKING VX-toolset for C166 User Guide

Assembler option: --make-target

Menu entry
Command line syntax
- -make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension . obj .

Example
asl66 --dep-file --make-target=../nytarget.obj test.src

The assembler generates dependency lines with the default target name . . / myt ar get . obj instead of
test.obj.

Related information

Assembler option --dep-file (Generate dependencies in a file)

578



Assembler option: --nested-sections (-N)

Menu entry

1. Select Assembler » Miscellaneous.

2. Enable the option Allow nested sections.
Command line syntax

--nest ed-sections

-N

Description

Tool Options

With this option it is allowed to have nested sections in your assembly source file. When you use this

option every . SECTI ON directive must have a corresponding . ENDS directive.

Example

CSEC1 . SECTION far
; section

CSEC2 . SECTION far
; nested section

CSEC2 . ENDS

CSEC1 . ENDS

Related information

Assembler directive .SECTION

579



TASKING VX-toolset for C166 User Guide

Assembler option: --no-bit-rewrites

Menu entry

1. Select Assembler » Optimization.

2. Disable the option Allow bit-jump rewrites.
Command line syntax
--no-bit-rewites

Description

With this option you instruct the assembler that rewrites of JB and JNB instructions to out-of-range labels
are not allowed. This will cause errors on out-of-range JB and JNB instructions.

Related information

580



Tool Options

Assembler option: --no-tasking-sfr

Menu entry

1. Select Assembler » Preprocessing.

2. Disable the option Automatic inclusion of ".sfr’ file.
Command line syntax

- - no-tasking-sfr

Description

Normally, the assembler includes a special function register (SFR) file before assembling. The assembler
automatically selects the SFR file belonging to the target you select on the Processor page (assembler
option --cpu).

With this option the assembler does not include the register file r egcpu. sfr as based on the selected
target processor.

Use this option if you want to use your own set of SFR files.
Related information

Assembler option --cpu (Select processor)

581



TASKING VX-toolset for C166 User Guide

Assembler option: --no-warnings (-w)

Menu entry
1. Select Assembler » Diaghostics.

The Suppress warnings box shows the warnings that are currently suppressed.
2. To suppress a warning, click on the Add button in the Suppress warnings box.

3. Enter the numbers, separated by commas, of the warnings you want to suppress (for example
201, 202). Or you can use the Add button multiple times.

4. To suppress all warnings, enable the option Suppress all warnings.

Use the Edit and Delete button to change a warning number or to remove a number from the list.

Command line syntax

--no-war ni ngs[ =nunber, .. .]
-w nunber, .. .]
Description

With this option you can suppresses all warning messages or specific warning messages.
On the command line this option works as follows:

« If you do not specify this option, all warnings are reported.

* If you specify this option but without numbers, all warnings are suppressed.

« If you specify this option with a number, only the specified warning is suppressed. You can specify the
option --no-warnings=number multiple times.

Example

To suppress warnings 201 and 202, enter:

asl66 test.src --no-warni ngs=201, 202
Related information

Assembler option --warnings-as-errors (Treat warnings as errors)

582



Tool Options

Assembler option: --optimize (-O)

Menu entry

1. Select Assembler » Optimization.

2. Select one or more of the following options:

* Allow JMPA+/JMPA- for speed optimization

» Optimize generic instructions

» Optimize jump chains

» Optimize instruction size

Command line syntax
--optimze=flag,...
-Of |l ags

You can set the following flags:

+/-jumpa-speed alA
+/-generics /G
+/-jumpchains i

+/-instr-size s/S

Default: - - opti m ze=agJs

Description

Allow JMPA+/JMPA- for speed optimization
Allow generic instructions

Optimize jump chains

Optimize instruction size

With this option you can control the level of optimization. For details about each optimization see
Section 7.4, Assembler Optimizations

When you use this option to specify a set of optimizations, you can turn on or off the optimizations in your
assembly source file with the assembler controls $opt i m ze/ $noopti m ze.

Related information

Assembler control $OPTIMIZE

Section 7.4, Assembler Optimizations

583



TASKING VX-toolset for C166 User Guide

Assembler option: --option-file (-f)

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --option-file to the Additional options field.

Be aware that the options in the option file are added to the assembler options you have set in the
other pages. Only in extraordinary cases you may want to use them in combination.

Command line syntax
--option-file=file,...
-f file, ...
Description

This option is primarily intended for command line use. Instead of typing all options on the command line,
you can create an option file which contains all options and flags you want to specify. With this option
you specify the option file to the assembler.

Use an option file when the command line would exceed the limits of the operating system, or just to store
options and save typing.

Option files can also be generated on the fly, for example by the make utility. You can specify the option
--option-file multiple times.

Format of an option file
» Multiple arguments on one line in the option file are allowed.
» To include whitespace in an argument, surround the argument with single or double quotes.

« If you want to use single quotes as part of the argument, surround the argument by double quotes and
vise versa:

"This has a single quote ' enbedded"
'This has a doubl e quote " enbedded
"This has a double quote " and a single quote '"' enbedded"
» When a text line reaches its length limit, use a \ to continue the line. Whitespace between quotes is
preserved.

"This is a continuation \
i ne"

-> "This is a continuation |ine"

584



* Itis possible to nest command line files up to 25 levels.

Example

Suppose the file myopt i ons contains the following lines:

- - debug=+asm - | ocal
test.src

Specify the option file to the assembler:
asl1l66 --option-fil e=nyoptions
This is equivalent to the following command line:

asl66 --debug=+asm-local test.src

Related information

Tool Options

585



TASKING VX-toolset for C166 User Guide

Assembler option: --output (-0)

Menu entry

Eclipse names the output file always after the input file.
Command line syntax

--output=file

-o file

Description

With this option you can specify another filename for the output file of the assembler. Without this option,
the basename of the assembly source file is used with extension . obj .

Example
To create the file r el obj . obj instead of asm obj , enter:

as1l66 --output=relobj.obj asmsrc

Related information

586



Assembler option: --page-length

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-length to the Additional options field.

Command line syntax
- - page- | engt h=nunber
Default: 72

Description

Tool Options

If you generate a list file with the assembler option --list-file, this option sets the number of lines in a page
in the list file. The default is 72, the minimum is 10. As a special case, a page length of 0 turns off page

breaks.
Related information

Assembler option --list-file (Generate list file)

Assembler control SPAGELENGTH

587



TASKING VX-toolset for C166 User Guide

Assembler option: --page-width

Menu entry

1. Select Assembler » Miscellaneous.

2. Add the option --page-width to the Additional options field.
Command line syntax

- - page-w dt h=nunber

Default: 132

Description

If you generate a list file with the assembler option --list-file, this option sets the number of columns per
line on a page in the list file. The default is 132, the minimum is 40.

Related information
Assembler option --list-file (Generate list file)

Assembler control $PAGEWIDTH

588



Tool Options

Assembler option: --preprocess (-E)
Menu entry

Command line syntax

- - preprocess

-E

Description

With this option the assembler will only preprocess the assembly source file. The assembler sends the
preprocessed file to stdout.

Related information

589



TASKING VX-toolset for C166 User Guide

Assembler option: --preprocessor-type (-m)

Menu entry

Command line syntax

- - preprocessor-type=type

-nmtype

You can set the following preprocessor types:

none n No preprocessor
tasking t TASKING preprocessor

Default: - - pr epr ocessor - t ype=t aski ng
Description

With this option you select the preprocessor that the assembler will use. By default, the assembler uses
the TASKING preprocessor.

When the assembly source file does not contain any preprocessor symbols, you can specify to the
assembler not to use a preprocessor.

Related information

590



Tool Options

Assembler option: --require-end

Menu entry

Command line syntax

--require-end

Description

With this option the assembly source must be terminated with the . END directive.
Related information

Assembler directive .END

591



TASKING VX-toolset for C166 User Guide

Assembler option: --retcheck

Menu entry

1. Select Assembler » Diaghostics.

2. Enable the option Check if return instructions match procedure type.

Command line syntax

--retcheck

Description

With this option the assembler can check if a return statement is present in procedures, whether the
program flow stops at the end of a procedure and whether the type of return instruction used is correct
for the type of procedure.

Instead of this option you can also use the assembler control $RETCHECK in your source.

Related information

Assembler control $RETCHECK

592



Tool Options

Assembler option: --section-info (-t)

Menu entry

1. Select Assembler » List File.

2. Enable the option Generate list file.

3. Enable the option List section summary.
and/or

1. Select Assembler » Diaghostics.

2. Enable the option Display section summary.
Command line syntax
--section-info[=flag,...]

-t[flags]

You can set the following flags:

+/-console c/C Display section summary on console
+/-list I/L List section summary in list file

Default: - - secti on-i nf o=CL
Default (without flags): - - sect i on-i nf o=cl
Description

With this option you tell the assembler to display section information. For each section its memory space,
size, total cycle counts and name is listed on stdout and/or in the list file.

The cycle count consists of two parts: the total accumulated count for the section and the total accumulated
count for all repeated instructions. In the case of nested loops it is possible that the total supersedes the
section total.

Example

To writes the section information to the list file and also display the section information on stdout, enter:
asl66 --list-file --section-info asmsrc

Related information

Assembler option --list-file (Generate list file)

593



TASKING VX-toolset for C166 User Guide

Assembler option: --silicon-bug

Menu entry
1. Expand C/C++ Build and select Processor.
2. From the Processor selection list, select a processor.

The CPU problem bypasses and checks box shows the available workarounds/checks available
for the selected processor.

3. (Optional) Select Show all CPU problem bypasses and checks.

4. Click Select All or select one or more individual options.

Command line syntax

--silicon-bug[=bug,...]

Description

With this option you specify for which hardware problems the assembler should check. Please refer to
Chapter 18, CPU Problem Bypasses and Checks for the numbers and descriptions. Silicon bug humbers
are specified as a comma separated list. When this option is used without arguments, all silicon bugs are
checked.

Example

To check for problems CPU.16 and CPU.18, enter:

asl1l66 --silicon-bug=5,6 test.src

Related information

Chapter 18, CPU Problem Bypasses and Checks

594



Tool Options

Assembler option: --symbol-scope (-i)

Menu entry

1. Select Assembler » Symbols.

2. Enable or disable the option Set default symbol scope to global.
Command line syntax

- - synbol - scope=scope

-i scope

You can set the following scope:

global g Default symbol scope is global
local | Default symbol scope is local

Default: - - synbol - scope=l ocal

Description

With this option you tell the assembler how to treat symbols that you have not specified explicitly as global
or local. By default the assembler treats all symbols as local symbols unless you have defined them
explicitly as global.

Related information

Assembler directive .GLOBAL

595



TASKING VX-toolset for C166 User Guide

Assembler option: --version (-V)
Menu entry

Command line syntax

--version

-V

Description

Display version information. The assembler ignores all other options or input files.
Example

asl66 --version

The assembler does not assemble any files but displays the following version information:

TASKI NG VX-t ool set for Cl66: Assenbl er vX.yrz Build nnn
Copyright 2004-year Altium BV Serial # 00000000

Related information

596



Tool Options

Assembler option: --warnings-as-errors

Menu entry

1. Select Global Options.

2. Enable the option Treat warnings as errors.

Command line syntax

- -war ni ngs- as-errors[=nunber, ...]

Description

If the assembler encounters an error, it stops assembling. When you use this option without arguments,
you tell the assembler to treat all warnings as errors. This means that the exit status of the assembler will

be non-zero after one or more assembler warnings. As a consequence, the assembler now also stops
after encountering a warning.

You can also limit this option to specific warnings by specifying a comma-separated list of warning numbers.
Related information

Assembler option --no-warnings (Suppress some or all warnings)

597



TASKING VX-toolset for C166 User Guide

12.5. Linker Options

This section lists all linker options.

Options in Eclipse versus options on the command line

Most command line options have an equivalent option in Eclipse but some options are only available on
the command line. Eclipse invokes the linker via the control program. Therefore, it uses the syntax of the
control program to pass options and files to the linker. If there is no equivalent option in Eclipse, you can
specify a command line option in Eclipse as follows:

1. From the Project menu, select Properties for
The Properties dialog appears.
2. Inthe left pane, expand C/C++ Build and select Settings.
In the right pane the Settings appear.
3. On the Tool Settings tab, select Linker » Miscellaneous.
4. Inthe Additional options field, enter one or more command line options.

Because Eclipse uses the control program, Eclipse automatically precedes the option with -WI to
pass the option via the control program directly to the linker.

Be aware that some command line options are not useful in Eclipse or just do not have any effect. For
example, the option --keep-output-files keeps files after an error occurred. When you specify this option
in Eclipse, it will have no effect because Eclipse always removes the output file after an error had occurred.

Short and long option names

Options can have both short and long names. Short option names always begin with a single minus (-)
character, long option names always begin with two minus (--) characters. You can abbreviate long option
names as long as it forms a unique name. You can mix short and long option names on the command
line.

Options can have flags or suboptions. To switch a flag 'on’, use a lowercase letter or a +longflag. To
switch a flag off, use an uppercase letter or a -longflag. Separate longflags with commas. The following
two invocations are equivalent:

| k166 -nfkl test.obj
| k166 --map-file-format=+files, +link, +l ocate test. obj

When you do not specify an option, a default value may become active.

598



Tool Options

Linker option: --case-insensitive

Menu entry

1. Select Linker » Miscellaneous.

2. Enable the option Link case insensitive.
Command line syntax
--case-insensitive

Default: case sensitive

Description

With this option you tell the linker not to distinguish between upper and lower case characters in symbols.
By default the linker considers upper and lower case characters as different characters.

Assembly source files that are generated by the compiler must always be assembled and thus linked
case sensitive. When you have written your own assembly code and specified to assemble it case
insensitive, you must also link the . obj file case insensitive.

Related information

Assembler option --case-insensitive

599



TASKING VX-toolset for C166 User Guide

Linker option: --chip-output (-c)
Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file and/or Generate S-records file.
3. Enable the option Create file for each memory chip.
4. Optionally, specify the Size of addresses.
Eclipse always uses the project name as the basename for the output file.
Command line syntax
--chi p-out put =[ basenane] : f or mat [ : addr _si ze], . ..
-c[ basenane] : format [ : addr _si ze], . ..
You can specify the following formats:

IHEX Intel Hex
SREC Motorola S-records

The addr_size specifies the size of the addresses in bytes (record length). For Intel Hex you can use the
values 1, 2 or 4 bytes (default). For Motorola-S you can specify: 2 (S1 records), 3 (S2 records) or 4 bytes
(S3 records, default).

Description

With this option you specify the Intel Hex or Motorola S-record output format for loading into a
PROM-programmer. The linker generates a file for each ROM memory defined in the LSL file, where
sections are located:

MenNory nmemane
{ type=rom }

The name of the file is the name of the Eclipse project or, on the command line, the name of the memory

device that was emitted with extension . hex or . sr e. Optionally, you can specify a basename which
prepends the generated file name.

The linker always outputs a debugging file in ELF/DWARF format and optionally an absolute
object file in Intel Hex-format and/or Motorola S-record format.

Example
To generate Intel Hex output files for each defined memory, enter the following on the command line:

| k166 --chip-output=nyfile: | HEX testl. obj

600



Tool Options

In this case, this generates the file nyf i | e_memname. hex.
Related information

Linker option --output (Output file)

601



TASKING VX-toolset for C166 User Guide

Linker option: --define (-D)
Menu entry
1. Select Linker » Script File.
The Defined symbols box shows the symbols that are currently defined.
2. To define a new symbol, click on the Add button in the Defined symbols box.

3. Type the symbol definition (for example, denp=1)

Use the Edit and Delete button to change a macro definition or to remove a macro from the list.

Command line syntax

- -defi ne=macr o_nane[ =macr o_defi ni ti on]
- Dmacr o_name[ =nacr o_defini tion]
Description

With this option you can define a macro and specify it to the linker LSL file preprocessor. If you only
specify a macro hame (no macro definition), the macro expands as '1".

You can specify as many macros as you like; just use the option --define (-D) multiple times. If the
command line exceeds the limit of the operating system, you can define the macros in an option file which
you then must specify to the linker with the option --option-file (-f) file.

The definition can be tested by the preprocessor with #i f , #i f def and #i f ndef , for conditional locating.

Example

To define the symbol __CPU__ which is used in the linker script file def aul t . | sl to include the proper
processor specific LSL file, enter:

| k166 --define=__CPU__=c167 test.obj
Related information

Linker option --option-file (Specify an option file)

602



Tool Options

Linker option: --dep-file

Menu entry

Eclipse uses this option in the background to create a file with extension . d (one for every input file).
Command line syntax

--dep-file[=file]

Description

With this option you tell the linker to generate dependency lines that can be used in a Makefile. The
dependency information will be generated in addition to the normal output file.

By default, the information is written to the file | k166. d. When you specify a filename, all dependencies
will be combined in the specified file.

Example
| k166 --dep-file=test.dep test. obj

The linker links the file t est . obj , which results in the output file t est . el f, and generates dependency
lines in the file t est . dep.

Related information

Linker option --make-target (Target to use in dependencies file)

603



TASKING VX-toolset for C166 User Guide

Linker option: --diag
Menu entry
1. From the Window menu, select Show View » Other » Basic » Problems.
The Problems view is added to the current perspective.
2. Inthe Problems view right-click on a message.
A popup menu appears.
3. Select Detailed Diagnostics Info.
A dialog box appears with additional information.
Command line syntax
--diag=[format:]{all | nr,...}

You can set the following output formats:

html HTML output.
rtf Rich Text Format.
text ASCII text.

Default format: text

Description

With this option you can ask for an extended description of error messages in the format you choose.
The output is directed to stdout (normally your screen) and in the format you specify. You can specify the
following formats: html, rtf or text (default). To create a file with the descriptions, you must redirect the
output.

With the suboption all, the descriptions of all error messages are given. If you want the description of one
or more selected error messages, you can specify the error message numbers, separated by commas.

With this option the linker does not link/locate any files.
Example

To display an explanation of message number 106, enter:
| k166 --di ag=106

This results in the following message and explanation:
E106: unresol ved external: <nessage>

The linker could not resolve all external synbols.

604



Tool Options

This is an error when the increnental |inking option is disabled.
The <nessage> indicates the synbol that is unresol ved.

To write an explanation of all errors and warnings in HTML format to file | kerr or s. ht ml , use redirection
and enter:

| k166 --diag=htm:all > |lkerrors.htm
Related information

Section 8.10, Linker Error Messages

605



TASKING VX-toolset for C166 User Guide

Linker option: --error-file
Menu entry

Command line syntax
--error-file[=file]
Description

With this option the linker redirects error messages to a file. If you do not specify a filename, the error file
isl k166. el k.

Example
To write errors to err or s. el k instead of st der r, enter:

| k166 --error-file=errors.elk test.obj
Related information

Section 8.10, Linker Error Messages

606



Tool Options

Linker option: --error-limit
Menu entry

1. Select Linker » Diagnostics.

2. Enter avalue in the Maximum number of emitted errors field.
Command line syntax

--error-1limt=nunber

Default: 42

Description

With this option you tell the linker to only emit the specified maximum number of errors. When 0 (null) is
specified, the linker emits all errors. Without this option the maximum number of errors is 42.

Related information

Section 8.10, Linker Error Messages

607



TASKING VX-toolset for C166 User Guide

Linker option: --extern (-e)

Menu entry

Command line syntax
--extern=synbol , ...
-esynbol , . ..
Description

With this option you force the linker to consider the given symbol as an undefined reference. The linker
tries to resolve this symbol, either the symbol is defined in an object file or the linker extracts the
corresponding symbol definition from a library.

This option is, for example, useful if the startup code is part of a library. Because your own application
does not refer to the startup code, you can force the startup code to be extracted by specifying the symbol
__START as an unresolved external.

Example
Consider the following invocation:
I k166 nylib.lib

Nothing is linked and no output file will be produced, because there are no unresolved symbols when the
linker searches through myl i b. i b.

| k166 --extern=__START nylib.lib

In this case the linker searches for the symbol __START in the library and (if found) extracts the object
that contains __ START, the startup code. If this module contains new unresolved symbols, the linker looks
againinnyl i b. i b. This process repeats until no new unresolved symbols are found.

Related information

Section 8.3, Linking with Libraries

608



Tool Options

Linker option: --first-library-first

Menu entry

Command line syntax
--first-library-first
Description

When the linker processes a library it searches for symbols that are referenced by the objects and libraries
processed so far. If the library contains a definition for an unresolved reference the linker extracts the
object that contains the definition from the library.

By default the linker processes object files and libraries in the order in which they appear on the command
line. If you specify the option --first-library-first the linker always tries to take the symbol definition from
the library that appears first on the command line before scanning subsequent libraries.

This is for example useful when you are working with a newer version of a library that partially overlaps
the older version. Because they do not contain exactly the same functions, you have to link them both.

However, when a function is present in both libraries, you may want the linker to extract the most recent
function.

Example
Consider the following example:
| k166 --first-library-first a.lib test.obj b.lib

If the file t est . obj calls a function which is both presentina. | i b and b. | i b, normally the function in
b. 1 i b would be extracted. With this option the linker first tries to extract the symbol from the first library
a.lib.

Note that routines in b. | i b that call other routines that are presentinbotha.libandb.lib
are now also resolved from a. | i b.

Related information

Linker option --no-rescan (Rescan libraries to solve unresolved externals)

609



TASKING VX-toolset for C166 User Guide

Linker option: --global-type-checking
Menu entry

Command line syntax

--gl obal -type-checki ng

Description

Use this option when you want the linker to check the types of variable and function references against
their definitions, using DWARF 3 debug information.

This check should give the same result as the C compiler when you use MIL linking.

Related information

C compiler option --global-type-checking (Global type checking)

610



Tool Options

Linker option: --help (-?)
Menu entry

Command line syntax
--help[=item

-?

You can specify the following arguments:

options Show extended option descriptions

Description

Displays an overview of all command line options. When you specify the argument options you can list
detailed option descriptions.

Example

The following invocations all display a list of the available command line options:
| k166 -?

| k166 --help

| k166

To see a detailed description of the available options, enter:

| k166 --hel p=opti ons

Related information

611



TASKING VX-toolset for C166 User Guide

Linker option: --hex-format

Menu entry
1. Select Linker » Output Format.
2. Enable the option Generate Intel Hex format file.

3. Enable or disable the optionEmit start address record.
Command line syntax
--hex-format=flag, ...

You can set the following flag:
+/-start-address s/S  Emit start address record
Default: - - hex- f or mat =s
Description
With this option you can specify to emit or omit the start address record from the hex file.
Related information

Linker option --output (Output file)

612



Linker option: --hex-record-size

Menu entry

1. Select Linker » Output Format.

2. Enable the option Generate Intel Hex format file.

3. Select Linker » Miscellaneous.

4. Add the option --hex-record-size to the Additional options field.
Command line syntax

--hex-record-si ze=si ze

Default: 32

Description

With this option you can set the size (width) of the Intel Hex data records.

Related information
Linker option --output (Output file)

Section 15.2, Intel Hex Record Format

Tool Options

613



TASKING VX-toolset for C166 User Guide

Linker option: --import-object
Menu entry
1. SelectLinker » Data Objects.
The Data objects box shows the list of object files that are imported.
2. To add a data object, click on the Add button in the Data objects box.

3. Type or select a binary file (including its path).

Use the Edit and Delete button to change a filename or to remove a data object from the list.

Command line syntax

--inmport-object=file,...

Description

With this option the linker imports a binary file containing raw data and places it in a section. The section
name is derived from the filename, in which dots are replaced by an underscore. So, when importing a
file called ny. j pg, a section with the name ny_j pg is created. In your application you can refer to the
created section by using linker labels.

Related information

Section 8.5, Importing Binary Files

614



Tool Options

Linker option: --include-directory (-1)

Menu entry

Command line syntax
--include-directory=path,...
-lpath, ...

Description

With this option you can specify the path where your LSL include files are located. A relative path will be
relative to the current directory.

The order in which the linker searches for LSL include files is:

1. The pathname in the LSL file and the directory where the LSL file is located (only for #include files that
are enclosed in ™)

2. The path that is specified with this option.

3. The default directory $( PRODDI R) \ i ncl ude. | sl .

Example

Suppose that your linker script file nyl sl . | sl contains the following line:

#i ncl ude "nyinc.inc"

You can call the linker as follows:

| k166 --include-directory=c:\proj\include --Isl-file=nylsl.lsl test.obj

First the linker looks for the file myi nc. i nc in the directory where nyl sl . | sl is located. If it does not
find the file, it looks in the directory c: \ pr oj \ i ncl ude (this option). Finally it looks in the directory
$(PRODDI R)\i ncl ude. | sl .

Related information

Linker option --Isl-file (Specify linker script file)

615



TASKING VX-toolset for C166 User Guide

Linker option: --incremental (-r)

Menu entry

Command line syntax
--increnental

-r

Description

Normally the linker links and locates the specified object files. With this option you tell the linker only to
link the specified files. The linker creates a linker output file . out . You then can link this file again with
other object files until you have reached the final linker output file that is ready for locating.

In the last pass, you call the linker without this option with the final linker output file . out . The linker will
now locate the file.

Example
In this example, the files t est 1. obj , t est 2. obj and t est 3. obj are incrementally linked:
1.1k166 --incremental testl.obj test2.obj --output=test.out
testl.obj and test2.obj are linked
2.1k166 --incremental test3.obj test.out
test3.obj and test.out are linked, taskl.out is created
3.1k166 taskl. out
taskl.out is located
Related information

Section 8.4, Incremental Linking

616



Tool Options

Linker option: --keep-output-files (-k)

Menu entry

Eclipse always removes the output files when errors occurred.
Command line syntax

--keep-output-files

-k

Description

If an error occurs during linking, the resulting output file may be incomplete or incorrect. With this option
you keep the generated output files when an error occurs.

By default the linker removes the generated output file when an error occurs. This is useful when you use
the make utility. If the erroneous files are not removed, the make utility may process corrupt files on a
subsequent invocation.

Use this option when you still want to use the generated file. For example when you know that a particular
error does not result in a corrupt object file, or when you want to inspect the output file, or send it to Altium
support.

Related information

Linker option --warnings-as-errors (Treat warnings as errors)

617



TASKING VX-toolset for C166 User Guide

Linker option: --library (-I)
Menu entry
1. Select Linker » Libraries.
The Libraries box shows the list of libraries that are linked with the project.
2. To add a library, click on the Add button in the Libraries box.
3. Type or select a library (including its path).

4. Optionally, disable the option Link default libraries.

Use the Edit and Delete button to change a library name or to remove a library from the list.

Command line syntax

--library=nane

-l nane

Description

With this option you tell the linker to use system library c166name. | i b, where name is a string. The
linker first searches for system libraries in any directories specified with --library-directory, then in the
directories specified with the environment variable LI BC166, unless you used the option
--ignore-default-library-path.

Example

To search in the system library c166cn. | i b (C library):

| k166 test.obj mylib.lib --library=cn

The linker links the file t est . obj and first looks in library myl i b. | i b (in the current directory only),
then in the system library c166c¢n. | i b to resolve unresolved symbols.

Related information

Linker option --library-directory (Additional search path for system libraries)

Section 8.3, Linking with Libraries

618



Tool Options

Linker option: --library-directory (-L) / --ignore-default-library-path
Menu entry
1. Select Linker » Libraries.
The Library search path box shows the directories that are added to the search path for library files.

2. To define a new directory for the search path, click on the Add button in the Library search path
box.

3. Type or select a path.

Use the Edit and Delete button to change a path or to remove a path from the list.

Command line syntax

--library-directory=path,...
-Lpath, ...

--ignore-default-library-path
-L

Description

With this option you can specify the path(s) where your system libraries, specified with the option --library
(-1), are located. If you want to specify multiple paths, use the option --library-directory for each separate
path.

The default path is$( PRODDI R)\ | i b.

If you specify only -L (without a pathname) or the long option --ignore-default-library-path, the linker
will not search the default path and also not in the paths specified in the environment variable LI BC166.
So, the linker ignores steps 2 and 3 as listed below.

The priority order in which the linker searches for system libraries specified with the option --library (-I)
is:

1. The path that is specified with the option --library-directory.

2. The path that is specified in the environment variable LI BC166.
3. The default directory $( PRODDI R)\ | i b.

Example

Suppose you call the linker as follows:

| k166 test.obj --library-directory=c:\nylibs --library=cn

619



TASKING VX-toolset for C166 User Guide

First the linker looks in the directory c: \ nmyl i bs for library c166cn. | i b (this option). If it does not find
the requested libraries, it looks in the directory that is set with the environment variable LI BC166. Then
the linker looks in the default directory $( PRODDI R)\ | i b for libraries.

Related information

Linker option --library (Link system library)

Section 8.3.1, How the Linker Searches Libraries

620



Tool Options

Linker option: --link-only
Menu entry

Command line syntax
--link-only

Description

With this option you suppress the locating phase. The linker stops after linking and informs you about
unresolved references.

Related information

Control program option --create=relocatable (-cl) (Stop after linking)

621



TASKING VX-toolset for C166 User Guide

Linker option: --Isl-check

Menu entry
Command line syntax
--1sl-check
Description

With this option the linker just checks the syntax of the LSL file(s) and exits. No linking or locating is
performed. Use the option --Isl-file to specify the name of the Linker Script File you want to test.

Related information
Linker option --Isl-file (Linker script file)
Linker option --Isl-dump (Dump LSL info)

Section 8.7, Controlling the Linker with a Script

622



Tool Options

Linker option: --Isl-dump
Menu entry

Command line syntax
--1sl-dunp[=file]
Description

With this option you tell the linker to dump the LSL part of the map file in a separate file, independent of
the option --map-file (generate map file). If you do not specify a filename, the file | k166. | df is used.

Related information

Linker option --map-file-format (Map file formatting)

623



TASKING VX-toolset for C166 User Guide

Linker option: --Isl-file (-d)

Menu entry

An LSL file can be generated when you create your project in Eclipse:

1. From the File menu, select File » New » TASKING VX-toolset for C166 C/C++ Project.
The New C/C++ Project wizard appears.

2. Fillin the project settings in each dialog and click Next > until the C166 Project Settings appear.

3. Enable the optionAdd Linker script file to the project and click Finish.
Eclipse creates your project and the file project. | sl in the project directory.

The LSL file can be specified in the Properties dialog:

1. Select Linker » Script File.

2. Specify a LSL file in the Linker script file (.Isl) field (default . . / ${ PRQJ}. | sl ).

Command line syntax

--Isl-file=file

-dfile

Description

A linker script file contains vital information about the core for the locating phase of the linker. A linker
script file is coded in LSL and contains the following types of information:

« the architecture definition describes the core's hardware architecture.
» the memory definition describes the physical memory available in the system.
« the section layout definition describes how to locate sections in memory.

With this option you specify a linker script file to the linker. If you do not specify this option, the linker uses
a default script file. You can specify the existing file def aul t . | sl or the name of a manually written
linker script file. You can use this option multiple times. The linker processes the LSL files in the order in
which they appear on the command line.

Related information

Linker option --Isl-check (Check LSL file(s) and exit)

Section 8.7, Controlling the Linker with a Script

624



Tool Options

Linker option: --make-target

Menu entry
Command line syntax
- - make-t ar get =nane
Description

With this option you can overrule the default target name in the make dependencies generated by the
option --dep-file. The default target name is the basename of the input file, with extension . el f.

Example

| k166 --nmake-target=nytarget.elf test.obj

The linker generates dependency lines with the default target name nyt ar get . el f instead oft est . el f.
Related information

Linker option --dep-file (Generate dependencies in a file)

625



TASKING VX-toolset for C166 User Guide

Linker option: --map-file (-M)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.

3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax

--map-file[=file][:XM]

-Mfile]l[:XM]

Default (Eclipse): XML map file is generated

Default (linker): no map file is generated

Description

With this option you tell the linker to generate a linker map file. If you do not specify a flename and you
specified the option --output, the linker uses the same basename as the output file with the extension

. map. If you did not specify the option --output, the linker uses the file t ask1. map. Eclipse names the

. map file after the project.

In Eclipse the XML variant of the map file (extension . napxn ) is used for graphical display in the map
file viewer.

A linker map file is a text file that shows how the linker has mapped the sections and symbols from the
various object files (. obj ) to the linked object file. A locate part shows the absolute position of each
section. External symbols are listed per space with their absolute address, both sorted on symbol and
sorted on address.

Related information
Linker option --map-file-format (Format map file)

Section 14.2, Linker Map File Format

626



Tool Options

Linker option: --map-file-format (-m)

Menu entry

1. Select Linker » Map File.

2. Enable the option Generate XML map file format (.mapxml) for map file viewer.
3. (Optional) Enable the option Generate map file.

4. Enable or disable the types of information to be included.

Command line syntax

--map-file-format=flag,. ..

-nfl ags

You can set the following flags:

+/-callgraph c/C Include call graph information

+/-removed d/D  Include information on removed sections
+/-files fIF Include processed files information
+/-invocation i/l Include information on invocation and tools
+/-link k/IK Include link result information

+/-locate IlL Include locate result information
+/-memory m/M  Include memory usage information
+/-nonalloc n/N  Include information of non-alloc sections
+/-overlay 0/0 Include overlay information

+/-statics g/Q Include module local symbols information
+/-crossref r'R Include cross references information

+/-Isl s/S  Include processor and memory information
+/-rules u/U  Include locate rules

Use the following options for predefined sets of flags:

--map-file-format=0 -mO0  Link information

Alias for -mcDfikLMNoQrSU
--map-file-format=1 -m1 Locate information

Alias for -mCDfiKIMNoQRSU
--map-file-format=2 -m2  Most information

Alias for -mcdfikimNoQrSu

Default: - - map-fil e- f or mat =2

627



TASKING VX-toolset for C166 User Guide

Description

With this option you specify which information you want to include in the map file.

On the command line you must use this option in combination with the option --map-file (-M).
Related information

Linker option --map-file (Generate map file)

Section 14.2, Linker Map File Format

628



Tool Options

Linker option: --misra-c-report

Menu entry

Command line syntax

--msra-c-report[=file]

Description

With this opti