
MA039–000–00–00
Doc. ver.: 1.22

DSP56xxx v3.6

CROSS–ASSEMBLER,
LINKER/LOCATOR,
UTILITIES
USER’S GUIDE

A publication of

Altium BV

Documentation Department

Copyright 2008 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

OVERVIEW 1-1

1.1 Introduction 1-3.

1.2 DSP56xxx Family Program Development 1-4.

1.3 Definition of Terms 1-6.

1.4 Basic Assembly, Linking and Locating of a

DSP56xxx Program 1-7.

1.4.1 Using EDE 1-7.

1.4.2 Using the Control Program 1-15.

1.4.3 Using the Makefile 1-17.

1.5 Environment Variables 1-18.

1.6 Temporary Files 1-19.

1.7 Debugging with CrossView Pro 1-20.

1.8 File Extensions 1-21.

1.9 Preprocessing 1-21.

1.10 Assembler Listing 1-22.

1.11 Errors and Warnings 1-22.

1.12 Command Line Processing 1-22.

1.12.1 Batch Files 1-22.

1.12.2 UNIX Scripts 1-23.

ASSEMBLER 2-1

2.1 Description 2-3.

2.2 Invocation 2-4.

2.3 Detailed Description of Assembler Options 2-6.

2.4 Environment Variables 2-37.

2.5 Optimizations 2-37.

2.5.1 Introduction 2-37.

2.5.2 Move Symbolic Debug Information 2-38.

2.5.3 Move Parallelization 2-39.

2.5.4 Branch Optimization 2-39.

2.5.5 NOP Removal 2-39.

2.5.6 Optimize for Speed 2-39.

2.5.7 Single Instruction DO Loops to REP 2-40.

2.5.8 Split Parallel Instructions 2-40.

Table of ContentsVI
C
O
N
T
E
N
T
S

2.5.9 Retain Instruction Order 2-40.

2.5.10 Generic Moves 2-40.

2.5.11 DO Loop Code Duplication 2-41.

2.5.12 Software Pipelining 2-42.

2.6 List File 2-44.

2.6.1 Absolute List File Generation 2-44.

2.6.2 Page Header 2-45.

2.6.3 Source Listing 2-46.

2.6.4 Optimizations in Source Listing 2-49.

SOFTWARE CONCEPT 3-1

3.1 Introduction 3-3.

3.2 Modules 3-3.

3.2.1 Modules and Symbols 3-3.

3.3 Sections 3-4.

3.3.1 Section Names 3-4.

3.3.2 Absolute Sections 3-8.

3.3.3 Section Examples 3-8.

3.4 Scopes 3-9.

3.4.1 Scope Example 3-9.

3.4.2 Scopes and Symbol Names 3-11.

ASSEMBLY LANGUAGE 4-1

4.1 Input Specification 4-3.

4.2 Assembler Significant Characters 4-4.

4.3 Registers 4-24.

OPERANDS AND EXPRESSIONS 5-1

5.1 Operands 5-3.

5.1.1 Operands and Addressing Modes 5-3.

5.2 Expressions 5-5.

5.2.1 Number 5-6.

Table of Contents VII

• • • • • • • •

5.2.2 Expression String 5-7.

5.2.3 Symbol 5-8.

5.2.4 Expression Type 5-8.

5.2.5 Memory Spaces 5-12.

5.2.6 Example 5-13.

5.3 Operators 5-14.

5.3.1 Addition and Subtraction 5-15.

5.3.2 Sign Operators 5-15.

5.3.3 Multiplication and Division 5-16.

5.3.4 Shift Operators 5-16.

5.3.5 Relational Operators 5-17.

5.3.6 Bitwise Operators 5-17.

5.3.7 Logical Operators 5-18.

5.4 Functions 5-19.

5.4.1 Mathematical Functions 5-19.

5.4.2 Conversion Functions 5-20.

5.4.3 String Functions 5-21.

5.4.4 Macro Functions 5-21.

5.4.5 Assembler Mode Functions 5-21.

5.4.6 Detailed Description 5-22.

MACRO OPERATIONS 6-1

6.1 Introduction 6-3.

6.2 Macro Operations 6-3.

6.3 Macro Definition 6-4.

6.4 Macro Calls 6-6.

6.5 Dummy Argument Operators 6-7.

6.5.1 Dummy Argument Concatenation Operator - \ 6-7.

6.5.2 Return Value Operator - ? 6-8.

6.5.3 Return Hex Value Operator - % 6-9.

6.5.4 Dummy Argument String Operator - " 6-10.

6.5.5 Macro Local Label Override Operator - ^ 6-11.

6.6 DUP, DUPA, DUPC, DUPF Directives 6-12.

6.7 Conditional Assembly 6-13.

Table of ContentsVIII
C
O
N
T
E
N
T
S

ASSEMBLER DIRECTIVES 7-1

7.1 Overview 7-3.

7.1.1 Debugging 7-4.

7.1.2 Assembly Control 7-4.

7.1.3 Symbol Definition 7-5.

7.1.4 Data Definition/Storage Allocation 7-5.

7.1.5 Listing Control and Options 7-6.

7.1.6 Object File Control 7-6.

7.1.7 Macros and Conditional Assembly 7-7.

7.1.8 Structured Programming 7-7.

7.2 Directives 7-8.

STRUCTURED CONTROL STATEMENTS 8-1

8.1 Introduction 8-3.

8.2 Structured Control Directives 8-3.

8.3 Syntax 8-4.

8.3.1 .BREAK Statement 8-5.

8.3.2 .CONTINUE Statement 8-6.

8.3.3 .FOR Statement 8-7.

8.3.4 .IF Statement 8-8.

8.3.5 .LOOP Statement 8-9.

8.3.6 .REPEAT Statement 8-10.

8.3.7 .WHILE Statement 8-11.

8.4 Simple and Compound Expressions 8-12.

8.4.1 Simple Expressions 8-12.

8.4.1.1 Condition Code Expressions 8-12.

8.4.1.2 Operand Comparison Expressions 8-14.

8.4.2 Compound Expressions 8-15.

8.5 Statement Formatting 8-16.

8.5.1 Expression Formatting 8-16.

8.5.2 .FOR/.LOOP Formatting 8-16.

8.5.3 Assembly Listing Format 8-17.

8.6 Effects on the Programmer's Environment 8-17.

Table of Contents IX

• • • • • • • •

INSTRUCTION SET 9-1

9.1 Introduction 9-3.

9.2 The Instruction Set 9-3.

9.2.1 Arithmetic Instructions 9-3.

9.2.2 Logical Instructions 9-5.

9.2.3 Bit Manipulation Instructions 9-6.

9.2.4 Loop Instructions 9-6.

9.2.5 Move Instructions 9-6.

9.2.6 Program Control Instructions 9-7.

LINKER 10-1

10.1 Overview 10-3.

10.2 Linker Invocation 10-4.

10.2.1 Detailed Description of Linker Options 10-5.

10.3 Libraries 10-26.

10.3.1 Library Search Path 10-26.

10.3.2 Linking with Libraries 10-28.

10.3.3 Library Member Search Algorithm 10-29.

10.4 Linking CLAS COFF Objects 10-29.

10.5 Linker Output 10-30.

10.6 Overlay Sections 10-33.

10.7 Type Checking 10-34.

10.7.1 Introduction 10-34.

10.7.2 Recursive Type Checking 10-35.

10.7.3 Type Checking between Functions 10-35.

10.7.4 Missing Types 10-37.

10.8 Linker Messages 10-38.

LOCATOR 11-1

11.1 Overview 11-3.

11.2 Invocation 11-4.

11.2.1 Detailed Description of Locator Options 11-5.

11.2.2 Format Suboptions 11-24.

Table of ContentsX
C
O
N
T
E
N
T
S

11.3 Getting Started 11-25.

11.4 Locator Target Board Support 11-27.

11.5 Force Const Sections 11-28.

11.6 Calling the Locator via the Control Program 11-29.

11.7 Locator Output 11-29.

11.8 Locator Messages 11-30.

11.9 Address Space 11-30.

11.10 Locator Labels 11-33.

11.10.1 Locator Labels Reference 11-34.

UTILITIES 12-1

12.1 Overview 12-3.

12.2 ar563 12-4.

12.3 byte_sel 12-8.

12.4 cc563 12-9.

12.5 mk563 12-15.

12.6 order 12-28.

12.7 pr563 12-30.

12.7.1 Preparing the Demo Files 12-33.

12.7.2 Displaying Parts of an Object File 12-33.

12.7.2.1 Option -h, display general file info 12-33.

12.7.2.2 Option -s, display section info 12-34.

12.7.2.3 Option -c, display call graphs 12-36.

12.7.2.4 Option -e, display external part 12-38.

12.7.2.5 Option -g, display global type information 12-40.

12.7.2.6 Option -d, display debug information 12-43.

12.7.2.7 Option -i, display the section images 12-47.

12.7.3 Viewing an Object at Lower Level 12-49.

12.7.3.1 Object Layers 12-49.

12.7.3.2 The Level Option -ln 12-50.

12.7.3.3 The Verbose Option -vn 12-53.

Table of Contents XI

• • • • • • • •

ASSEMBLER ERROR MESSAGES A-1

1 Introduction A-3.

2 Warnings (W) A-4.

3 Errors (E) A-10.

4 Fatal Errors (F) A-26.

LINKER ERROR MESSAGES B-1

1 Introduction B-3.

2 Warnings (W) B-3.

3 Errors (E) B-6.

4 Fatal Errors (F) B-9.

5 Verbose (V) B-11.

LOCATOR ERROR MESSAGES C-1

1 Introcuction C-3.

2 Warnings (W) C-3.

3 Errors (E) C-7.

4 Fatal Errors (F) C-11.

5 Verbose (V) C-13.

ARCHIVER ERROR MESSAGES D-1

1 Introduction D-3.

2 Warnings (W) D-3.

3 Errors (E) D-4.

4 Fatal Errors (F) D-4.

EMBEDDED ENVIRONMENT ERROR MESSAGES E-1

1 Introduction E-3.

2 Errors (E) E-3.

3 Warnings (W) E-5.

Table of ContentsXII
C
O
N
T
E
N
T
S

MIGRATION FROM MOTOROLA CLAS F-1

1 Introduction F-3.

2 Absolute and Relative Mode F-3.

3 Object Format F-3.

4 Assembler Directives F-4.

4.1 Unsupported Directives F-4.

4.2 Changed Directives F-5.

4.3 New Directives F-6.

5 Structured Control Statements F-7.

6 Sections and Overlaying F-7.

7 Assembler Functions F-7.

8 Expressions F-7.

9 Forward References F-7.

10 Optimizations F-8.

DESCRIPTIVE LANGUAGE FOR EMBEDDED

ENVIRONMENTS G-1

1 Introduction G-3.

2 Getting Started G-3.

2.1 Introduction G-3.

2.2 Basic Structure G-3.

3 CPU Part G-6.

3.1 Introduction G-6.

3.2 Address Translation: map and mem G-8.

3.3 Address Spaces G-10.

3.4 Addressing Modes G-11.

3.5 Busses G-13.

3.6 Chips G-15.

3.7 External Memory G-16.

4 Software Part G-17.

4.1 Introduction G-17.

4.2 Load Module G-17.

4.3 Layout Description G-17.

4.4 Space Definition G-19.

Table of Contents XIII

• • • • • • • •

4.5 Block Definition G-20.

4.6 Selecting Sections G-21.

4.7 Cluster Definition G-23.

4.8 Amode Definition G-24.

4.9 Manipulating Sections in Amodes G-25.

4.10 Section Placing Algorithm G-26.

5 Memory Part G-27.

5.1 Introduction G-27.

6 Delfee Preprocessing G-28.

6.1 Introduction G-28.

6.2 User Defined Macros G-28.

6.3 File Inclusion G-29.

6.4 Conditional Statements G-31.

7 Delfee Keyword Reference G-32.

7.1 Abbreviation of Delfee Keywords G-78.

7.2 Delfee Keywords Summary G-78.

DELFEE SYNTAX H-1

IEEE-695 OBJECT FORMAT I-1

1 TIOF and IEEE-695 I-3.

2 Command Language Concept I-3.

3 Notational Conventions I-5.

4 Expressions I-5.

4.1 Functions without Operands I-8.

4.2 Monadic Functions I-8.

4.3 Dyadic Functions and Operators I-8.

4.4 MUFOM Variables I-9.

4.5 @INS and @EXT Operator I-10.

4.6 Conditional Expressions I-10.

5 MUFOM Commands I-11.

5.1 Module Level Commands I-11.

5.1.1 MB Command I-11.

Table of ContentsXIV
C
O
N
T
E
N
T
S

5.1.2 ME Command I-11.

5.1.3 DT Command I-11.

5.1.4 AD Command I-12.

5.2 Comment and Checksum Command I-12.

5.3 Sections I-13.

5.3.1 SB Command I-13.

5.3.2 ST Command I-13.

5.3.3 SA Command I-15.

5.4 Symbolic Name Declaration and Type Definition I-15.

5.4.1 NI Command I-15.

5.4.2 NX Command I-16.

5.4.3 NN Command I-16.

5.4.4 AT Command I-16.

5.4.5 TY Command I-17.

5.5 Value Assignment I-18.

5.5.1 AS Command I-18.

5.6 Loading Commands I-18.

5.6.1 LD Command I-18.

5.6.2 IR Command I-18.

5.6.3 LR Command I-19.

5.6.4 RE Command I-20.

5.7 Linkage Commands I-20.

5.7.1 RI Command I-20.

5.7.2 WX Command I-20.

5.7.3 LI Command I-21.

5.7.4 LX Command I-21.

6 MUFOM Functions I-22.

MOTOROLA S-RECORDS J-1

INTEL HEX RECORDS K-1

INDEX

Manual Purpose and Structure XV

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the DSP5600x, DSP563xx and DSP566xx

cross-assembler, linker, locator and utilities. It assumes that you are

familiar with programming the DSP5600x, DSP563xx or DSP566xx.

INSTALLATION

The software installation is described in the C Cross-Compiler User's Guide.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Overview

Makes you familiar with the assembler itself, through the use of sample

programs.

2. Assembler

Describes the actions and invocation of the TASKING DSP56xxx

assemblers (as56 or as563).

3. Software Concept

Describes the basics of modular programming and sections.

4. Assembly Language

Describes the formats of the possible statements for an assembly

program.

5. Operands and Expressions

Describes the operands and expressions to be used in the assembler

instructions and directives.

6. Macro Operations

Describes the use of macros and conditional assembly.

Manual Purpose and StructureXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

7. Assembler Directives

Describes the assembler directives to pass information to the assembler

program.

8. Structured Control Statements

Describes the use of structured control statements for loops and

conditional branches.

9. Instruction Set

Gives a list of assembly language instruction mnemonics.

10. Linker

Describes the action of, and options/controls applicable, to the linker.

11. Locator

Describes the action of, and options/controls applicable, to the locator.

12. Utilities

Contains descriptions of the utilities supplied with the package, which

may be useful during program development.

APPENDICES

A. Assembler Error Messages

Gives a list of error messages which can be generated by the

assembler.

B. Linker Error Messages

Gives a list of error messages which can be generated by the linker.

C. Locator Error Messages

Gives a list of error messages which can be generated by the locator.

D. Archiver Error Messages

Gives a list of error messages which can be generated by the archiver.

E. Embedded Environment Error Messages

Gives a list of error messages from the embedded environment which

can be generated by the linker/locator.

F. Migration from Motorola CLAS

Describes how you can migrate your assembly program from the

Motorola CLAS assembler to one of the TASKING DSP56xxx assemblers

(as56 or as563).

Manual Purpose and Structure XVII

• • • • • • • •

G. DEscriptive Language For Embedded Environments

Describes the Delfee description language.

H. Delfee Syntax

Contains a syntax description of the Delfee language.

I. IEEE-695 Object Format

Contains a description of the IEEE-695 object format and the TIOF

format.

J. Motorola S-Records

Contains a description of the Motorola S-records.

K. Intel Hex Records

Contains a description of the Intel Hex format.

INDEX

Manual Purpose and StructureXVIII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

TASKING Tools

• DSP56xxx C Cross-Compiler User's Guide

[TASKING, MA039-002-00-00]

• DSP56xxx CrossView Pro Debugger User's Guide

[TASKING, MA039-049-00-00]

Core Reference Manuals

• DSP56000 Digital Signal Processor Family Manual [Motorola, Inc.]

• DSP560xx Digital Signal Processor User's Manual [Motorola, Inc.]

• DSP56300 24-Bit Digital Signal Processor Family Manual

[Motorola, Inc.]

• DSP563xx 24-Bit Digital Signal Processor User's Manual

[Motorola, Inc.]

• DSP56L307 24-Bit Digital Signal Processor User's Manual

[Motorola, Inc.]

• DSP56600 Digital Signal Processor Family Manual [Motorola, Inc.]

• DSP5660x Digital Signal Processor User's Manual [Motorola, Inc.]

• DSP56652 Baseband Digital Signal Processor User's Manual

[Motorola, Inc.]

• DSP56654 Baseband Digital Signal Processor User's Manual

[Motorola, Inc.]

Manual Purpose and Structure XIX

• • • • • • • •

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and StructureXX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

1

OVERVIEW
C

H
A

P
T

E
R

Chapter 11–2
O
V
E
R
V
IE
W

1

C
H

A
P

T
E

R

Overview 1–3

• • • • • • • •

1.1 INTRODUCTION

TASKING offers a complete toolchain for the Motorola DSP56xxx Family of

Digital Signal Processors (DSPs) and their derivatives. The DSP5600x

(24-bit), the DSP563xx (24-bit) and the DSP566xx (16-bit) versions of the

DSP56xxx family are supported. This manual uses 'DSP5600x' to indicate

the derivatives that have a '0' in the third and fourth position (e.g.

DSP56002) and 'DSP563xx' and 'DSP566xx' along the same lines. In this

manual all core versions are treated identical unless implementation

differences require otherwise. 'DSP56xxx' is used as a shorthand notation

for the Motorola DSP56xxx Family of Digital Signal Processors (DSPs) and

their derivatives.

The DSP5600x and DSP563xx/DSP566xx family toolchain produces load

files running on the DSP5600x, and DSP563xx/DSP566xx family

respectively. The assembler as56 accepts programs written according to

the Motorola assembly language specification for the DSP5600x and as563

accepts programs written according to the Motorola assembly language

specification for the DSP563xx and DSP566xx. The assemblers are

compatible with the Motorola CLAS assembler for the DSP56xxx family.

However, there are some implementation differences. For more

information see Appendix F, Migration from Motorola CLAS.

The assembler generates relocatable object files in the IEEE-695 object

format. This file format specifies code parts as well as symbol definition

and symbolic debug information parts. The locator optionally produces

absolute output files in Motorola S-record format or Intel Hex format. You

can load these formats into a PROM programmer. The locator is also

capable of generating Motorola CLAS COFF object format files. You can

use this format to load a program in the Motorola CLAS simulator.

The DSP563xx/DSP566xx toolchain contains the following programs (for

the DSP5600x toolchain the executable names end in '56'):

cc563 A handy control program which activates the other programs

depending on its input files.

c563 The C compiler which produces an assembly file.

as563 The assembler program which produces a relocatable object

file from a given assembly file.

lk563 A linker that links several objects and object libraries into one

target load file.

Chapter 11–4
O
V
E
R
V
IE
W

lc563 A locator that links one or more linker output files into one

absolute load file. This program can also produce files in

Motorola S-record format, Intel Hex format and Motorola

CLAS COFF object format.

ar563 An IEEE archiver. This is a librarian facility, which can be

used to create and maintain object libraries.

pr563 An IEEE object reader. This utility dumps the contents of

IEEE files which have been created by a tool from the

TASKING DSP563xx/DSP566xx family toolchain.

mk563 A utility program to maintain, update and reconstruct groups

of programs.

All DSP563xx/DSP566xx executables are used in this manual as the

general names for both DSP56xxx toolchains, unless explicitly stated

otherwise.

1.2 DSP56XXX FAMILY PROGRAM DEVELOPMENT

The DSP56xxx family toolchain provides an environment for modular

program development and debugging. The following diagram shows the

structure of the toolchain.

Overview 1–5

• • • • • • • •

assembly file
.src

assembler
as563

relocatable object

incremental
linker lk563

locator
lc563

.out

High level language

CrossV iew xfw56x

library maintainer
ar563

C++ compiler
cp563

C++ source file
.cc

relocatable object
.a

module .obj

locator description

linker map file

locator map file
.map

.lnl

debugger

library

object reader
pr563

DSP56xxx

control
program

CLAS object file

C compiler
c563

C source file
.c

C preprocessor
&

list file .lst

Motorola S–record
object file

.sre

IEEE–695 absolute
object file

.abs

Execution

cc563

.cln

CLAS absolute
object file

.cld

Environment

.dscfile

CLAS assembly file
.asm

Intel Hex
object file

.hex

.ic

(no debug info)

linker object file

Figure 1-1: DSP563xx development flow

Chapter 11–6
O
V
E
R
V
IE
W

1.3 DEFINITION OF TERMS

Since the Motorola DSP architectures are different from normal

microprocessors, the programmer may not be familiar with some of the

terms used in this document. The following discussion serves to clarify

some of the concepts discussed later in this manual.

The Motorola DSP5600x, DSP563xx and DSP566xx architecture can have

as many as five separate memory spaces referred to as the X, Y, L, P

(Program), and E (EMI - Extended Memory Interface) memory spaces. L

memory space is a concatenation of X and Y data memory and is

considered by the assembler as a superset of the X and Y memory spaces.

E memory is specific to the DSP56004 processor, and provides for different

data representations for various memory hardware configurations. The

assembler can generate object code for each memory space, but object

code is restricted to one memory space at a time.

The Motorola digital signal processors are capable of performing

operations on modulo and reverse-carry buffers, two data structures

useful in digital signal processing applications. The assembler provides

directives for establishing buffer base addresses, allocating buffer space,

and initializing buffer contents. For a buffer to be located properly in

memory the lower bits of the starting address which encompass the buffer

size must be zero. For example, the lowest address greater than zero at

which a buffer of size 32 may be located is 32 (20 hexadecimal). More

generally, the buffer base address must be a multiple of 2k, where 2k is

greater than or equal to the size of the buffer. Buffers can be allocated

manually or by using the assembler buffer directives (see Chapter 7,

Assembler Directives).

Overview 1–7

• • • • • • • •

1.4 BASIC ASSEMBLY, LINKING AND LOCATING OF A

DSP56XXX PROGRAM

This section illustrates the typical input format of a DSP56xxx assembly

program for the cross-assembler. As a part of the installation a directory

examples\asm (examples/asm for UNIX) is created depending on the

place where you installed the package on your system. This example

directory contains, among others, the following assembly source files:

startup.asm calc.asm

Note that this program has been written for illustrative purposes only.

1.4.1 USING EDE

EDE stands for "Embedded Development Environment" and is the

Windows oriented Integrated Development Environment you can use with

your TASKING toolchain to design and develop your application.

To use EDE on the calc demo program in the subdirectory asm in the

examples subdirectory of the DSP56xxx product, follow the steps below.

How to Start EDE

You can launch EDE by double-clicking on the EDE shortcut on your

desktop.

The EDE screen provides you with a menu bar, a toolbar (command

buttons) and one or more windows (for example, for source files), a status

bar and numerous dialog boxes.

Chapter 11–8
O
V
E
R
V
IE
W

Output Window
Contains several tabs to display
and manipulate results of EDE
operations. For example, to view
the results of builds or compiles.

Document W indows
Used to view and edit files.

Project W indow
Contains several
tabs for viewing
information about
projects and other
files.

Compile Build Rebuild Debug On–line Manuals

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the

correct toolchain of the product you purchased is selected and displayed

in the title of the EDE desktop window.

If you have more than one TASKING product installed and you want to

change toolchains, do the following::

1. From the Project menu, select Select Toolchain...

The Select Toolchain dialog appears.

Overview 1–9

• • • • • • • •

2. Select the toolchain you want. You can do this by clicking on a toolchain

in the Toolchains list box and click OK.

If no toolchains are present, use the Browse... or Scan Disk...
button to search for a toolchain directory. Use the Browse... button if

you know the installation directory of another TASKING product. Use the

Scan Disk... button to search for all TASKING products present on a

specific drive. Then return to step 2.

How to Open an Existing Project

Follow these steps to open an existing project:

1. Access the Project menu and select Set Current... .

2. Select the project file to open. For the calc demo program select the file

asm.pjt , located in the subdirectory asm in the examples subdirectory

of the DSP56xxx product tree. If you have used the defaults, the file

asm.pjt is in the directory c:\c563\examples\asm for the

DSP53xx/DSP566xx (use c56 for the DSP5600x).

How to Load/Open Files

The next two steps are not needed for the demo program because the files

sieve.c and makefile are already open. To load the file you want to

look at.

1. From the Project menu, select Load Files...

The Choose Project Files to Edit dialog appears.

Chapter 11–10
O
V
E
R
V
IE
W

2. Choose the file(s) you want to open by clicking on it. You can select

multiple files by pressing the <Ctrl> or <Shift> key while you click on

a file. With the <Ctrl> key you can make single selections and with the

<Shift> key you can select everything from the first selected file to the

file you click on. Then click OK.

This launches the file(s) so you can edit it (them).

Check the directory paths

1. From the Project menu, select Directories... .

The Directories dialog appears.

Overview 1–11

• • • • • • • •

2. Check the directory paths for programs, include files and libraries. You can

add your own directories here, separated by semicolons.

3. Click OK.

How to Select a CPU Type

The next step is to compile the file(s) together with its dependent files so

you can debug the application. But first you need to specify for which

CPU type you want to build your application:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Select CPU Selection .

3. In the CPU family/type box, select the CPU or CPU family for which

you want to build your application and click OK.

How to Build the Demo Application

Now you can build your application.

Steps 1 and 2 are optional. Follow these steps if you want to specify

additional build options such as to stop the build process on errors and to

keep temporary files that are generated during a build.

1. From the Build menu, select Options...

The Build Options dialog appears.

Chapter 11–12
O
V
E
R
V
IE
W

2. Make your changes and press the OK button.

3. From the Build menu, select Scan All Dependencies .

4. Click on the Execute ’Make’ command button. The following button is

the execute Make button which is located in the ribbon bar.

If there are any unsaved files, EDE will ask you in a separate dialog if you

want to save them before starting the build.

How to View the Results of a Build

Once the files have been processed you can inspect the generated

messages in the Output window.

You can see the commands (and corresponding output captured) which

have been executed by the build process in the Build tab:

TASKING program builder v x. yr z Build nnn SN 00000000
Assembling ”calc.asm”
Linking to ”asm.out”
Creating IEEE–695 absolute file ”asm.abs”

Overview 1–13

• • • • • • • •

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and

formatted they can be executed by CrossView Pro.

To start CrossView Pro:

1. Click on the Debug application button. The following button is the

Debug application button which is located in the toolbar.

CrossView Pro is launched. CrossView Pro will automatically download the

compiled file for debugging.

How to Load an Application

You must tell CrossView Pro which program you want to debug. To do

this:

1. From the File menu, select Load Symbolic Debug Info...

The Load Symbolic Debug Info dialog box appears.

2. Click Load .

How to View and Execute an Application

To view your source while debugging, the Source Window must be open.

To open this window:

1. From the View menu, select Source | Source lines .

The source window opens.

Before starting execution you have to reset the target system to its initial

state. The program counter, stack pointer and any other registers must be

set to their initial value. The easiest way to do this is:

2. From the Run menu, select Reset Target System .

To run your application step-by-step:

3. From the Run menu, select Animate .

Chapter 11–14
O
V
E
R
V
IE
W

The program calc.abs is now stepping through the high level language

statements. Using the toolbar or the menu bar you can set breakpoints,

monitor data, display registers, simulate I/O and much more. See the

CrossView Pro Debugger User's Guide for more information.

How to Start a New Project

When you first use EDE you need to setup a project space and add a new

project:

1. From the File menu, select New Project Space...

The Create a New Project Space dialog appears.

2. Give your project space a name and then click OK.

The Project Properties dialog box appears.

3. Click on the Add new project to project space button.

The Add New Project to Project Space dialog appears.

4. Give your project a name and then click OK.

The Project Properties dialog box then appears for you to identify

the files to be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

• If you do not have any source files yet, click on the Add new file
to project button in the Project Properties dialog. Enter a new

filename and click OK.

• To add existing files to a project by specifying a file pattern click on

the Scan existing files into project button in the Project
Properties dialog. Select the directory that contains the files you

want to add to your project. Enter one or more file patterns separated

by semicolons. The button next to the Pattern field contains some

predefined patterns. Next click OK.

Overview 1–15

• • • • • • • •

• To add existing files to a project by selecting individual files click on

the Add existing files to project button in the Project
Properties dialog. Select the directory that contains the files you

want to add to your project. Add the applicable files by

double-clicking on them or by selecting them and pressing the Open
button.

The new project is now open.

6. From the Project menu, select Load Files... to open the files you

want on your EDE desktop.

EDE automatically creates a makefile for the project. EDE updates the

makefile every time you modify your project.

1.4.2 USING THE CONTROL PROGRAM

1. Instead of invoking all the individual translation phases by hand, it is

possible (and recommended) to use the control program cc563 (use cc56

for the DSP5600x), which calls all phases automatically:

cc563 –M –nolib startup.asm calc.asm –o calc.abs

As you can see, you may enter multiple input files on the command line.

Also, you may specify options and controls for the assembler, linker and

locator together. The control program recognizes the options and controls

and places them in the appropriate command when invoking the

assembler, linker or locator. The control program is described in detail in

Chapter 12, Utilities.

The -M option specifies to generate map files.

The -nolib option specifies not to link with the standard libraries.

The -o option specifies the name of the output file.

2. If you want to see how the control program calls the assembler, linker and

locator, you can use the -v0 option or -v option. The -v0 option only

displays the invocations without executing them. The -v option also

executes them.

cc563 –M –nolib startup.asm calc.asm –o calc.abs –v0

Chapter 11–16
O
V
E
R
V
IE
W

The control program shows the following command invocations without

executing them (UNIX output):

startup.asm:
+ as563 –o startup.obj –M24x startup.asm
calc.asm:
+ as563 –o calc.obj –M24x calc.asm
+ lk563 –o/tmp/cc7301b.out –ddef_targ.dsc startup.obj calc.obj
+ lc563 –ocalc.abs –ddef_targ.dsc –f1 –M /tmp/cc7301b.out

The -M24x option of the assembler selects the 24-bit memory model with

default data space in X memory.

3. In step 2, the tools use temporary files for intermediate results. If you want

to keep the intermediate files you can use the -tmp option. The following

command makes this clear.

cc563 –M –nolib startup.asm calc.asm –o calc.abs –v0 –tmp

This command produces the following output:

startup.asm:
+ as563 –o startup.obj –M24x startup.asm
calc.asm:
+ as563 –o calc.obj –M24x calc.asm
+ lk563 –ocalc.out –ddef_targ.dsc startup.obj calc.obj
+ lc563 –ocalc.abs –ddef_targ.dsc –f1 –M calc.out

Assuming the program assembles successfully, the assembler produces the

relocatable object modules, startup.obj and calc.obj .

Linking and locating the program to absolute addresses is done by two

programs: the linker combines objects into a relocatable file with the

extension .out . The locator binds the program to absolute addresses. The

linker takes a.out as the default name of the output file. If this name is

not suitable, you can specify another filename with the -o option.

Due to the -M option, the locator produces the locator map file

calc.map .

Besides the output file produced by the linker, the locator can take a

so-called description file as input. This file contains a description of the

virtual and physical addresses of the program. The chapter Locator
discusses the exact contents and layout of a description file.

The result of locator command is the absolute output file calc.abs . The

file calc.abs can be loaded into the CrossView Pro debugger.

Overview 1–17

• • • • • • • •

1.4.3 USING THE MAKEFILE

The subdirectories in the examples directory each contain a makefile
which can be processed by mk563 (use mk56 for the DSP5600x). Also

each subdirectory contains a readme.txt file with a description of how

to build the example.

To build the calc demo example follow the steps below. This procedure

is outlined as a guide for you to build your own executables for

debugging.

1. Make the subdirectory asm of the examples directory the current working

directory.

This directory contains a makefile for building the calc demo example. It

uses the default mk563 rules.

2. Be sure that the directory of the binaries is present in the PATH

environment variable.

3. Compile, assemble, link and locate the modules using one call to the

program builder mk563:

mk563

This command will build the example using the file makefile .

To see which commands are invoked by mk563 without actually

executing them, type:

mk563 –n –a

The option -a causes all files to be rebuilt, regardless wether they are out

of date or not.

This command produces the following output:

TASKING DSP563xx/6xx program builder v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000
cc563 –g –M calc.asm –o calc.abs

The -M option in the makefile is used to create the linker list file (.lnl)

and the locator map file (.map).

To remove all generated files type:

mk563 clean

Chapter 11–18
O
V
E
R
V
IE
W

1.5 ENVIRONMENT VARIABLES

This section contains an overview of the environment variables used by

the DSP56xxx family toolchain.

Environment
Variable

Description

AS56INC Specifies an alternative path for include files for the
assembler as56.

AS563INC Specifies an alternative path for include files for the
assembler as563.

C56INC Specifies an alternative path for #include files for the
C compiler c56.

C563INC Specifies an alternative path for #include files for the
C compiler c563.

C56LIB Specifies a path to search for library files used by
the linker lk56 . See also the section Library Search
Path in the chapter Linker.

C563LIB Specifies a path to search for library files used by
the linker lk563 . See also the section Library
Search Path in the chapter Linker.

CC56BIN When this variable is set, the control program, cc56 ,
prepends the directory specified by this variable to
the names of the tools invoked.

CC563BIN When this variable is set, the control program,
cc563 , prepends the directory specified by this
variable to the names of the tools invoked.

CC56OPT Specifies extra options and/or arguments to each
invocation of cc56 . The control program processes
the arguments from this variable before the
command line arguments.

CC563OPT Specifies extra options and/or arguments to each
invocation of cc563 . The control program processes
the arguments from this variable before the
command line arguments.

LM_LICENSE_FILE Identifies the location of the license data file. Only
needed for hosts that need the FLEXlm license
manager.

Overview 1–19

• • • • • • • •

DescriptionEnvironment
Variable

PATH Specifies the search path for your executables.

TMPDIR Specifies an alternative directory where programs
can create temporary files. Used by c56, cc56 ,
as56, lk56 , lc56 , ar56 for the DSP5600x and the
563 versions for the DSP563xx/DSP566xx. See also
the next section.

Table 1-1: Environment variables

1.6 TEMPORARY FILES

The assembler, linker, locator and archiver may create temporary files. By

default these files will be created in the current directory. If you want the

tools to create temporary files in another directory you can enforce this by

setting the environment variable TMPDIR.

PC:

set TMPDIR=c:\tmp

UNIX:

 Bourne shell, Korn shell:

TMPDIR=/tmp ; export TMPDIR

 csh:

setenv TMPDIR /tmp

Note that if you create your temporary files on a directory which is

accessible via the network for other users as well, conflicts in the names

chosen for temporary files may arise. It is more safe to create temporary

files in a directory that is solely accessible to yourself. Of course this does

not apply if you run the tools with several users on a multi-user system,

such as UNIX. Conflicts may arise if two different computer systems use

the same network directory for tools to create their temporary files. For

speed reasons a local directory is recommended.

Chapter 11–20
O
V
E
R
V
IE
W

1.7 DEBUGGING WITH CROSSVIEW PRO

To facilitate debugging, you can include symbolic debug information in

the load file. During compilation of a high-level-language program,

symbolic debug information must be retained that serves as input for the

symbolic debugger (-g option). The compiler passes symbolic debug

information to the assembler by generating SYMB assembler directives in

the assembly source file. The assembler translates the SYMB directives to

be included in the symbolic debug part of an IEEE-695 object file.

The CrossView Pro debugger (XVW) accepts files with the IEEE-695

format. This is the default output format of the locator. So, you can directly

load the file generated by the locator into the CrossView Pro debugger.

The simplest way to build this assembly program ready for debugging is:

cc563 –M –nolib startup.asm calc.asm –o calc.abs

The result of this command is (output of -v0 option):

startup.asm:
+ as563 –o startup.obj –M24x startup.asm
calc.asm:
+ as563 –o calc.obj –M24x calc.asm
+ lk563 –o/tmp/cc22061b.out –ddef_targ.dsc startup.obj calc.obj
+ lc563 –ocalc.abs –ddef_targ.dsc –f1 –M /tmp/cc22061b.out

The control program is described in detail in Chapter 12, Utilities.

You can start the debugger for debugging the absolute file calc.abs
with:

xfw56x calc.abs

For more information on the debugger, see the DSP56xxx CrossView Pro
Debugger User's Guide.

The debugger examples are installed in the subdirectory xvw of the

examples directory.

Overview 1–21

• • • • • • • •

1.8 FILE EXTENSIONS

The extension .src or .asm is used as input file for the assembler. Files

with the extension .src are output files of a C compiler. Actually, the

assembler accepts files with any extension (or even no extension), but by

adding the extension .asm to assembler source files, you can distinguish

them easily.

If you do not provide a filename extension the assembler will try:

1. the filename itself

2. the filename with .asm extension

3. the filename with .src extension

So,

as563 text

only has the same effect as

as563 text.asm

if the file text is not present. In this case, both these commands assemble

the file text.asm and create a relocatable object module text.obj .

For compatibility with future TASKING Cross-Software the following

extensions are suggested:

.asm input assembly source file for as563

.src output from the C compiler c563 / input for as563

.obj relocatable object files

.a object library files, output from ar563

.out relocatable output files from lk563

.dsc description file, input for lc563 and CrossView Pro debugger

.abs absolute output files from lc563

1.9 PREPROCESSING

The assemblers as56 and as563 have a built-in macro preprocessor. For a

description of the possibilities offered by the macro preprocessor see the

chapter Macro Operations.

Chapter 11–22
O
V
E
R
V
IE
W

1.10 ASSEMBLER LISTING

The assemblers do not generate a listing file by default. You can generate

a listing file with the -l option. (See also the -L option, for the listing

options). As a result of the command:

as563 –l text.src

the listing file text.lst is created.

1.11 ERRORS AND WARNINGS

Any errors detected by the assembler are displayed in the listing file after

the actual line containing the error is printed. If no listing file is produced,

error messages are still displayed to indicate that the assembly process did

not proceed normally.

1.12 COMMAND LINE PROCESSING

This section contains a description of the use of batch files and UNIX

scripts. The use of Makefiles is explained in the chapter Utilities.

1.12.1 BATCH FILES

Batch files are a facility on the PC whereby one or more commands can be

executed from within a file.

Assume that the following sequence of calls is frequently used:

cc563 –c ifile .asm –o outfile .obj

The files ifile and outfile may vary from one call to the next. To reduce the

number of calls you can make a batch file, for example, proj.bat .

Whatever the batch file is called it must end with the file extension .bat .

The file should contain:

cc563 –c %1.asm –o %2.obj

Overview 1–23

• • • • • • • •

On invocation %1 and %2 will be replaced by the first and second

parameters after the batch file name. Using the name mentioned above

(proj - note that the file extension .bat is not needed for invocation) the

call becomes:

proj ifile outfile

The Windows command prompt will return on the screen the actual

command line executed, with all the parameters expanded to the values

used.

1.12.2 UNIX SCRIPTS

Scripts are a facility within UNIX whereby one or more commands can be

executed from within a file.

Assume that the following sequence of calls is frequently used:

cc563 –c ifile .asm –o outfile .obj

The files ifile and outfile may vary from one call to the next. To reduce the

number of calls you can make a script, for example, proj . The file should

contain:

cc563 –c $1.asm –o $2.obj

On invocation $1 and $2 will be replaced by the first and second

parameters after the script file name. Using the name mentioned above

(proj) and after you have set the execute bits of proj (chmod +x proj)

the call becomes:

proj ifile outfile

Chapter 11–24
O
V
E
R
V
IE
W

2

ASSEMBLER
C

H
A

P
T

E
R

Chapter 22–2
A
S
S
E
M
B
L
E
R

2

C
H

A
P

T
E

R

Assembler 2–3

• • • • • • • •

2.1 DESCRIPTION

The DSP5600x assembler as56 and the DSP563xx/DSP566xx assembler

as563 are optimizing assemblers. In this chapter these assemblers are all

referred to by as563 unless explicitly stated otherwise. During assembly

the assembler builds an internal representation of the program. This

representation, the flow graph, is used to optimize the program. Examples

of the optimizations are parallelization of moves, exchanging instructions

and removal of delay slots. After optimization the object file and,

optionally, the list file are generated.

The following phases can be identified during assembly:

1. Preprocess, check the syntax and create the flow graph

2. Resolve references to labels in nested scopes (see note)

3. Type determination of all expressions

4. Legality check of all instructions

5. Optimization

6. Address calculation, jump optimization

7. Generation of object and (when requested) list file

As the section information cannot be represented in the IEEE-695 object

format the assembler must resolve all label references to labels not

contained in the referring section.

The assembler generates relocatable object files using the IEEE-695 object

format. This file format specifies a code part and a symbol part as well as a

symbolic debug information part.

File inclusion and macro facilities are integrated into the assembler. See the

chapter Macro Operations for more information.

Chapter 22–4
A
S
S
E
M
B
L
E
R

2.2 INVOCATION

The compiler control program cc563 may call the assembler automatically.

cc563 translates some of its command line options to options of as563.

However, the assembler can be invoked as an individual program also.

The PC invocation of as563 is:

as563 [option]... source-file [map-file]
as563 -V

as563 -?

When you use a UNIX shell (C-shell, Bourne shell), options containing

special characters (such as '()') must be enclosed with ” ” . The

invocations for UNIX and PC are the same, except for the -? option in the

C-shell:

as563 ” -?” or as563 -\?

Invocation with -V only displays a version header. -? shows the

invocation syntax.

The source-file must be an assembly source file. This file is the input

source of the assembler. This file contains assembly code which is either

user written or generated by c563. Any name is allowed for this file. If this

name does not have an extension, the extension .asm is assumed or, if

the file is still not found, the extension .src is assumed.

In the default situation, an object file with extension .obj is produced.

With the -l option a list file with extension .lst is produced also. If

additionally a map-file is specified, only an absolute list file is produced.

Options are preceded by a '-' (minus sign). Options can not be combined

after a single '-'. If all goes well, the assembler generates a relocatable

object module which contains the object code, with the default extension

.obj . You can specify another output filename with the -o option. Error

messages are written to the terminal, unless they are directed to an error

list file with the -err assembler option.

The following list describes the assembler options briefly. The next section

gives a more detailed description.

Assembler 2–5

• • • • • • • •

Option Description

–? Display invocation syntax

–Dmacro[=def] Define preprocessor macro

–Idirectory Look in directory for include files

–J[a|l|r] Select branch mode (as563 only)

–L[flag...] Select listing file layout

–Mmodel Select memory model: 16–bit, 16/24–bit or 24–bit or
DSP566xx (as563 only)

–O[flag...] Optimization on/off switches

–R[flag...] Remove restrictions

–S[x] Generate Motorola compatible assembly file

–V Display version header only

–c Switch to case insensitive mode (default case sensitive)

–e Remove object file on assembly errors

–err Redirect error messages to error file

–f file Read options from file

–g[flag...] Generate assembly level debug information

–l Generate listing file

–mmask Select processor mask (as563 only)

–o filename Specify name of output file

–t Display section summary

–v Verbose mode. Print the filenames and numbers of the
passes while they progress

–w[num] Suppress one or all warning messages

Table 2-1: Options summary

Chapter 22–6
A
S
S
E
M
B
L
E
R

2.3 DETAILED DESCRIPTION OF ASSEMBLER OPTIONS

With options that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

-?

Option:

-?

Description:

Display an explanation of options at stdout.

Example:

as563 –?

Assembler 2–7

• • • • • • • •

-c

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Miscellaneous .

Disable the Assembler works case sensitive check box.

-c

Default:

Case sensitive

Description:

Switch to case insensitive mode. By default, the assembler operates in case

sensitive mode.

Example:

To switch to case insensitive mode, enter:

as563 –c test.src

Chapter 22–8
A
S
S
E
M
B
L
E
R

-D

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Miscellaneous . Define a macro (syntax:

macro[=def]) in the Define user macros field. You can define more

macros by separating them with commas.

-Dmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro as in 'define'. If def is not given ('=' is absent), '1' is

assumed. Any number of symbols can be defined.

Example:

as563 –DPI=3.1416 test.src

Assembler 2–9

• • • • • • • •

-e

Option:

EDE always removes the object file on errors.

-e

Description:

Use this option if you do not want an object file when the assembler

generates errors. With this option the 'make' utility always does the proper

productions.

Example:

as563 –e test.src

Chapter 22–10
A
S
S
E
M
B
L
E
R

-err

Option:

In EDE this option is not useful.

-err

Description:

The assembler redirects error messages to a file with the same basename

as the output file and the extension .ers . The assembler uses the

basename of the output file instead of the input file.

Example:

To write errors to the test.ers instead of stderr , enter:

as563 –err test.src

Assembler 2–11

• • • • • • • •

-f

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Miscellaneous .

Add the option to the Additional options field.

-f file

Arguments:

A filename for command line processing. The filename "-" may be used to

denote standard input.

Description:

Use file for command line processing. To get around the limits on the size

of the command line, it is possible to use command files. These command

files contain the options that could not be part of the real command line.

Command files can also be generated on the fly, for example by the make

utility.

More than one -f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command

file.

2. To include whitespace in the argument, surround the argument with either

single or double quotes.

3. If single or double quotes are to be used inside a quoted argument, we

have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the

opposite quote around the argument. Thus, if a argument should

contain a double quote, surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such

a way that each embedded quote is surrounded by the opposite type

of quote.

Chapter 22–12
A
S
S
E
M
B
L
E
R

Example:

”This has a single quote ’ embedded”

or

’This has a double quote ” embedded’

or

’This has a double quote ” and \
a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of lines within a text

file. To circumvent this limitation it is possible to use continuation lines.

These lines end with a backslash and newline. In a quoted argument,

continuation lines will be appended without stripping any whitespace on

the next line. For non-quoted arguments, all whitespace on the next line

will be stripped.

Example:

”This is a continuation \
line”

–> ”This is a continuation line”

control(file1(mode,type),\
file2(type))
–>

control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file mycmds contains the following line:

–err
test.src

The command line can now be:

as563 –f mycmds

Assembler 2–13

• • • • • • • •

-g

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Output .

Enable one or more of the following check boxes:

1. Assembler source line information (excludes 2 and 4)

2. Pass HLL debug information (excludes 1, 3 and 4)

3. Local assembly symbols debug information (excludes 2 and 4)

4. Smart debug (excludes 1, 2 and 3)

-g[flag...]

Default:

-gAhLS (only HLL debug)

Description:

Specify to generate debug information. If you do not use this option or if

you specify -g without a flag, the default is -gAhLS, which only passes

the high level language debug information.

Flags can be switched on with the lower case letter and switched off with

the uppercase letter.

An overview of the flags is given below.

a - assembler source line information

h - pass HLL debug information

l - local symbols debug information

s - always debug; either "AhL" or "aHl"

With -ga you enable assembler source line information. With -gh the

assembler passes the high level language debug information from the

compiler to the object file. These two types of debug information cannot

be used both. So, -gah is not allowed.

Chapter 22–14
A
S
S
E
M
B
L
E
R

With -gl you enable the generation of local symbols debug information.

You can use this option independent of the setting of the -ga and -gh

options.

With -gs you instruct the assembler to always generate debug information.

If HLL debug information is present in the source file, the assembler

passes this information (same as -gAhL). If no HLL debug information is

present, the assembler generates assembler source line information and

local symbols debug information (same as -gaHl).

Examples:

To pass high level symbolic debug information to the output files and

generate local symbols debug information, enter:

as563 –ghl test.src

To generate assembler source line information, enter:

as563 –ga test.src

To always generate debug information, depending on the debug

information in the source file, enter:

as563 –gs test.src

Assembler 2–15

• • • • • • • •

-I

Option:

Select the Project | Directories... menu item. Add one or more

directory paths to the Include Files Path field.

-Idirectory

Arguments:

The name of the directory to search for include file(s).

Description:

Change the algorithm for searching include files whose names do not have

an absolute pathname to look in directory. Thus, include files whose

names are enclosed in "" are searched for first in the directory of the file

containing the include line, then in the current directory, then in

directories named in -I options in left-to-right order. If the include file is

still not found, the assembler searches in a directory specified with the

environment variable AS563INC (for DSP563xx/DSP566xx), AS56INC (for

DSP5600x), AS56INC and AS563INC can contain more than one directory.

Separate multiple directories with ';' for PC (':' for UNIX). Finally, the

directory ../include relative to the directory where the assembler binary

is located is searched.

For include files whose names are in <>, the directory of the file

containing the include line and the current directory are not searched.

However, the directories named in -I options (and the one in AS563INC

(AS56INC for DSP5600x), and the relative path) are still searched.

Example:

as563 –I/proj/include test.src

Chapter 22–16
A
S
S
E
M
B
L
E
R

-J (as563 only)

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Branch Mode .

Select a branch mode.

-J[a | l | r]

Default:

-J

Description:

Select the branch mode. -Ja selects the absolute branch mode and -Jr

selects the relative branch mode. -Jl selects the location-independent

branch mode (branches within the source file are made relative, all others

absolute). Specifying -J or no -J option at all, selects the default branch

mode (no changes).

Example:

To select the relative branch mode, enter:

as563 –Jr test.src

Assembler 2–17

• • • • • • • •

-L

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select List File . Make sure the Generate list
file (.lst) check box is enabled. Enable or disable one or more check

boxes in the List file generation options field.

-L[flag...]

Arguments:

Optionally one or more flags specifying which source lines are to be

removed from the list file.

Default:

-LcDEilMNpQsWXYZ2

Description:

Specify which source lines are to be removed from the list file. A list file is

generated when the -l option is specified. If you do not specify the -L

option the assembler removes source lines containing #line directives or

symbolic debug information, empty source lines and puts wrapped source

lines on one line. -L without any flags, is equivalent to

-Lcdelmnpqswxyz, which removes all specified source lines form the list

file.

Flags can be switched on with the lower case letter and switched off with

the uppercase letter. The following flags are allowed:

c Default. Remove source lines containing assembler controls (the OPT

directive).

C Keep source lines containing assembler controls.

d Remove source lines containing section directives (the ORG directive).

D Default. Keep source lines containing section directives.

e Remove source lines containing one of the symbol definition directives

EXTERN, GLOBAL, LOCAL or CALLS.

E Default. Keep source lines containing symbol definition directives.

Chapter 22–18
A
S
S
E
M
B
L
E
R

i Default. Remove source lines included from other files (INCLUDE).

I Keep source lines included from other files (INCLUDE).

l Default. Remove source lines containing C preprocessor line

information (lines with #line).

L Keep source lines containing C preprocessor line information.

m Remove source lines containing macro/dup directives (lines with

MACRO or DUP).

M Default. Keep source lines containing macro/dup directives.

n Remove empty source lines (newlines).

N Default. Keep empty source lines.

p Default. Remove source lines with false conditional assembly

conditions (IF, ELSE, ENDIF).

P Keep source lines with false conditional assembly conditions (IF, ELSE,

ENDIF).

q Remove source lines containing assembler equates (lines with EQU or

'=').

Q Default. Keep source lines containing assembler equates.

s Default. Remove source lines containing high level language symbolic

debug information (lines with SYMB).

S Keep source lines containing HLL symbolic debug information.

w Remove wrapped part of source lines.

W Default. Keep wrapped source lines.

x Remove source lines containing MACRO/DUP expansions.

X Default. Keep source lines containing MACRO/DUP expansions.

y Hide cycle counts.

Y Default. Show cycle counts.

z Show instruction lines from input file.

Z Default. Show actual coded instructions.

Assembler 2–19

• • • • • • • •

0 Hide opcode columns.

1 Show one column of opcodes.

2 Default. Show two columns of opcodes.

Example:

To remove source lines with assembler controls from the resulting list file

and to remove wrapped source lines, enter:

as563 –l –Lcw test.src

Chapter 22–20
A
S
S
E
M
B
L
E
R

-l

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select List File .

Enable the Generate list file (.lst) check box.

-l

Description:

Generate listing file. The listing file has the same basename as the output

file. The extension is .lst .

Example:

To generate a list file with the name test.lst , enter:

as563 –l test.src

-L

Assembler 2–21

• • • • • • • •

-M (as563 only)

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Miscellaneous .

Select an Assembly Mode .

-Mmodel

Arguments:

A memory model:

Model Description

 16 16-bit assembly model (constant expressions)

 1624 16/24-bit assembly model

 24 24-bit assembly model (default)

 6 DSP566xx assembly model

Description:

The DSP566xx assembly model is used to generate DSP566xx compatible

assembly. This automatically selects the 16-bit model for constant

expressions. It also conforms to the specific pipeline requirements of this

processor. This model is only available on the DSP563xx.

The 16-bit model is used to generate constants in 16-bit format for use in

the 16-bit arithmetic mode of the processor. It matches the 'opt sbm'

assembler directive. This model is only available on the DSP563xx.

The assembler accepts all memory model options (-M) from the

C compiler (see C manual). The memory model passed on the command

line is ignored except for the DSP566xx memory model. The other model

options are used to set the predefined functions @MODEL(), @DEFMEM()

and @STKMEM() that can be used to make assembly code work in any

memory model.

Chapter 22–22
A
S
S
E
M
B
L
E
R

Example:

Assemble a list of fract constants in 16-bit mode:

as563 –M16 test.src

M:ADDRSS CODE LINE SOURCELINE
 2
X:000000 3 org x:
X:000000 000CCD 4 dc 0.1,0.2,0.3
 00199A
 002666

Assembler 2–23

• • • • • • • •

-m (as563 only)

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Miscellaneous . Select a chip mask in the

Select chip mask for problem fixes field.

-mmask

Arguments:

A number indicating the mask for a DSP563xx/DSP566xx processor:

Number Mask

 0 0F92R and 1F92R

 1 3F48S

Description:

When the assembler knows different masks for a given processor then you

can select a mask using this option. Currently the assembler only supports

masks for the DSP563xx processor.

Because of pipeline problems some instructions may not be used after

(external) memory accesses, the assembler inserts NOP instructions when

necessary.

Example:

To select masks 0F92R and 1F92R, enter:

as563 –m0 test.src

Chapter 22–24
A
S
S
E
M
B
L
E
R

-O

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Optimization . Enable or disable one or

more Optimization check boxes.

-O[flag...]

Arguments:

Optionally one or more optimization flags.

Default:

-OGJMNpRS (no optimization)

Description:

Control optimization. -O without any flags is the same as specifying

-OgjmnprS, which performs all optimizations.

Flags can be switched on with the lower case letter and switched off with

the uppercase letter. The following flags are allowed:

g Move symbolic debug locations. This option only has effect when used

with the -Om option. The assembler moves lines containing symbolic

debug information to another location in order to perform a better

move parallelization.

G Default. Retain symbolic debug locations.

j Enable branch optimization. The assembler tries to replace branches

with shorter or faster functionally equivalent branches.

J Default. Disable branch optimization.

m Enable move parallelization. The assembler tries to change any

programmed MOVE instruction into a parallel move, added to a

previous or next instruction.

M Default. Disable move parallelization.

n Remove existing NOP instructions.

Assembler 2–25

• • • • • • • •

N Default. Do not perform NOP removal.

p Default. Optimize for speed rather than code size.

P Do not perform speed optimization.

r Replace a single instruction DO loop with a REP instruction.

R Default. Do not perform single instruction DO REP optimization.

s Split parallel move instructions in separate instructions before

performing optimizations.

S Default. Do not split parallel move instructions.

Example:

To enable move parallelization, enter:

as563 –Om test.src

Example of backward move parallelization:

AND X0,A1
MOVE (R5)–N5

can be changed into:

AND X0,A1 (R5)–N5

Example of forward move parallelization:

MOVE (R5)–N5
AND X0,A1

can be changed into:

AND X0,A1 (R5)–N5

If symbolic debug information was found between instructions that could

otherwise be optimized, you also have to specify -Og. For example, when

you specify -Ogm or (-O):

as563 –Ogm test.src

Chapter 22–26
A
S
S
E
M
B
L
E
R

the following code:

MOVE (R5)–N5
SYMB ALAB, Fi, #16
AND X0,A1

can be changed into:

SYMB ALAB, Fi, #16
AND X0,A1 (R5)–N5

To remove existing NOP instructions, enter:

as563 –On test.src

With this option the following code:

AND X0,A1
NOP
AND Y0,B1

can be changed into:

AND X0,A1
AND Y0,B1

To replace a single instruction DO loop with a REP instruction, enter:

as563 –Or test.src

With this option the following code:

DO #$100,label
MAC x0,x0,a x:(r1)+,x0

label:

becomes:

REP #$100
MAC x0,x0,a x:(r1)+,x0

To split parallel move instructions before performing optimizations, enter:

as563 –Os test.src

With this option the following code:

MAC x0,x0,a x:(r1)+,x0

Assembler 2–27

• • • • • • • •

becomes:

MAC x0,x0,a
MOVE x:(r1)+,x0

Chapter 22–28
A
S
S
E
M
B
L
E
R

-o

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Miscellaneous .

Add the option to the Additional options field.

-o filename

Arguments:

An output filename. The filename may not start immediately after the

option. There must be a tab or space in between.

Default:

Basename of assembly file with .obj suffix.

Description:

Use filename as output filename of the assembler, instead of the basename

of the assembly file with the .obj extension.

Example:

To create the object file myfile.obj instead of test.obj , enter:

as563 test.src –o myfile.obj

Assembler 2–29

• • • • • • • •

-R

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Optimization .

Enable or disable one or more Restrictions check boxes.

-R[flag...]

Arguments:

Optionally one or more remove restriction flags.

Default:

-RDRS (no restrictions are removed)

Description:

Remove pipeline restrictions. Some instruction sequences may cause

pipeline effects, as described in section 7.2.2 Summary of Pipeline-Related
Restrictions in Motorola's DSP56000 Digital Signal Processor Family
Manual [Motorola, inc]. as563 can remove these restrictions by inserting

NOP instructions. as563 also issues warning W139: "inserted NOP

instruction(s) to remove restriction". If a pipeline effect was found and you

did not supply any of the -R options, as563 issues warning W140:

"previous instruction sequence has a pipeline effect".

-R without any flags is the same as specifying -Rdrs, which removes all

pipeline restrictions.

Flags can be switched on with the lower case letter and switched off with

the uppercase letter. The following flags are allowed:

d Remove DO/ENDDO restrictions. With this option the assembler can

check if certain DO/ENDDO instructions may cause problems. For

example, a number of operations may not precede a DO loop target

label.

D Default. Retain DO/ENDDO restrictions.

r Remove Rn, Nn, Mn pipeline restrictions.

R Default. Retain Rn, Nn, Mn pipeline restrictions.

Chapter 22–30
A
S
S
E
M
B
L
E
R

s Remove stack restrictions. This option removes restrictions that apply to

the usage of SSH, SSL, SP, MR and CCR before a RTI or RTS instruction

and removes restrictions of SP and SSH/SSL register manipulation.

S Default. Retain stack restrictions.

Example:

To remove DO/ENDDO restrictions and Rn, Nn, Mn pipeline restrictions,

enter:

as563 –Rdr test.src

Example of removing a DO/ENDDO restriction:

do #10,L1
movec ssh,x:(R0)+

L1:

is changed into:

do #10,L1
movec ssh,x:(R0)+
nop
nop
nop

L1:

Example of removing a Rn, Nn, Mn restriction:

move #$100,R7
move x:(R7)+,x0

is changed into:

move #$100,R7
nop
move x:(R7)+,x0

Example of removing stack restriction:

move ssh,r0
RTS

Assembler 2–31

• • • • • • • •

is changed into:

move ssh,r0
nop
RTS

Section 7.2.2 Summary of Pipeline-Related Restrictions in Motorola's

DSP56000 Digital Signal Processor Family Manual [Motorola, inc]

Chapter 22–32
A
S
S
E
M
B
L
E
R

-S

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Output .

Enable the Generate assembly file instead of object file
check box.

-S[x|X]

Description:

Generate a Motorola compatible assembly file. This option is intended to

be used in combination with optimization options of the TASKING

assembler to produce an optimized assembly file, which can be used by

the Motorola assembler. -S is the same as -SX. With -Sx the assembler

does not expand macro/dup definitions in the assembly file.

Example:

The following command produces an optimized Motorola compatible

assembly file, called test.asm , with expanded macro/dup definitions.

as563 –S –Om test.src

Assembler 2–33

• • • • • • • •

-t

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Output .

Enable the Display module section size summary check box.

-t

Description:

Produce totals (section size summary). For each section its memory space,

size, total cycle counts and name is listed on stdout .

The cycle count consists of two parts. The total accumulated count for the

section and the total accumulated count for all repeated (REP/DO)

instructions. In the case of nested loops it is possible that the total

supersedes the section total.

Example:

as56 –t test.src

Section summary:

 Nr M:Loc Size Cycle/loop Name
 1 P: 000a 24/0 .ptext
 2 X: 0001 .xovl@main
 3 X: 000d .xstring

Chapter 22–34
A
S
S
E
M
B
L
E
R

-V

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Miscellaneous .

Add the option to the Additional options field.

-V

Description:

With this option you can display the version header of the assembler. This

option must be the only argument of as56. Other options are ignored. The

assembler exits after displaying the version header.

Example:

as56 –V

TASKING DSP5600x assembler v x. yr z Build nnn
Copyright 1995– year Altium BV Serial# 00000000

as563 –V

TASKING DSP563xx/6xx assembler v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000

Assembler 2–35

• • • • • • • •

-v

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Miscellaneous .

Add the option to the Additional options field.

-v

Description:

Verbose mode. With this option specified, the assembler prints the

filenames and the assembly passes while they progress. So you can see the

current status of the assembler.

Example:

as563 –v test.src

Parsing ”test.src”
 48 lines (total now 43)
Optimizing
Evaluating absolute ORG addresses
Parsing symbolic debug information
Creating object file ”test.obj”
Closing object file

Chapter 22–36
A
S
S
E
M
B
L
E
R

-w

Option:

Select the Project | Project Options... menu item. Expand the

Assembler entry and select Diagnostics . Select Display all
warnings , Suppress all warnings or Suppress only certain
warnings .

If you select Suppress only certain warnings , type the numbers of

the warnings you want to suppress in the corresponding field.

-w[num]

Arguments:

Optionally the warning number to suppress.

Description:

-w suppress all warning messages. -wnum suppresses warning messages

with number num. More than one -wnum option is allowed.

Example:

The following example suppresses warnings 113 and 114:

as563 –w113 –w114 file.src

Assembler 2–37

• • • • • • • •

2.4 ENVIRONMENT VARIABLES

AS56INC With this environment variable you can specify directories

where the as56 assembler will search for include files. You

can overrule this search path with the -I command line

option. Multiple pathnames can be separated with

semicolons.

AS563INC Same as AS56INC, but now for as563.

TMPDIR With the TMPDIR environment symbol you can specify the

directory where the assembler can generate temporary files.

If the assembler terminates normally, the temporary file will

be removed automatically. If you do not set TMPDIR, the

temporary file will be created in the current working

directory.

2.5 OPTIMIZATIONS

2.5.1 INTRODUCTION

The DSP56xxx assemblers perform various optimizations to speed up

assembled applications.

This section discusses the assembler optimizations and their possible

implications. All optimizations can be switched on and off from the

command line and by using appropriate OPT directive arguments. Some

optimizations can only be switched on module basis (last OPT is valid),

while others can be changed at any point in the source (e.g. flow).

The following optimizations are available, they are discussed hereafter. See

also the -O option.

Chapter 22–38
A
S
S
E
M
B
L
E
R

Description Option OPT Module

Move symbolic debug information –Og OPHLL Module

Branch optimization –Oj OPJMP Module

Move parallellization –Om OPPM Module

NOP removal –On OPNOP Flow

Optimize for speed –Op OPSPEED Flow

Single instruction DO to REP –Or OPREP Flow

Split parallel instructions –Os OPSP Module

Retain instruction order ORDER Flow

Generic Move instructions – –

DO loop code duplication OPPM and
OPHLL

Module

Software pipelining – –

Table 2-2: Optimizations

2.5.2 MOVE SYMBOLIC DEBUG INFORMATION

All parallellizations are done on instruction blocks surrounded by labels,

symbolic debug information, retained NOP instructions or instructions that

change the control flow.

In the C compiler generated sources extra debugging information is

inserted using SYMB directives. To maintain debugging ease it is possible

to instruct the assembler not to move instructions past the debugging

information. When debugging ease is not important but code size and

speed is, it is possible to instruct the assembler to collect all debugging

information at the start of an instruction block. In that case the assembler

has more possibilities to move and combine instructions. High level source

stepping in a debugger can behave strangely after using this option.

Assembler 2–39

• • • • • • • •

2.5.3 MOVE PARALLELIZATION

As mentioned above the assembler will try to combine instructions within

an instruction block. This is done by reordering the instructions to find

combinations of instructions that can be combined. The assembler does

not try to retain any ordering as written in the assembly source file. The

result of the instruction reordering and combination can be seen in the

listing file.

2.5.4 BRANCH OPTIMIZATION

The assembler tries to replace branches with shorter or faster functionally

equivalent branches. This is only done with branches whose targets are

not annotated with the short ('<') or long ('>') operators. Annotated

branches remain as specified in the source.

When the -Oj option is given the assembler makes extra passes over the

flow graph to check whether some branches can be made shorter or faster.

2.5.5 NOP REMOVAL

All NOP instructions (except those immediately following REP instructions)

are removed from the program. The assembler tries to reorder the

instructions so a minimum of NOP instructions is needed to accommodate

for pipeline delays. Sometimes it is necessary to retain NOP instructions. In

that case it is possible to enclose those instructions between two OPT

directives:

OPT NOOPNOP
MOVE #$13,X:$FFFC
NOP ; wait four cycles
NOP ; these NOPs will not be removed
MOVE X:$FFFD,X0
OPT OPNOP

2.5.6 OPTIMIZE FOR SPEED

The assembler tries to reduce stall cycles and tries to unroll small loops, at

the expense of code size.

Chapter 22–40
A
S
S
E
M
B
L
E
R

2.5.7 SINGLE INSTRUCTION DO LOOPS TO REP

When a DO loop with a body of only one instruction is found then the

DO instruction is changed into a REP instruction. In this case the REP

instruction is faster and shorter. The drawback is that interrupts are not

serviced during a REP loop.

2.5.8 SPLIT PARALLEL INSTRUCTIONS

It is possible to split instructions in single moves and arithmetic

instructions before the optimizer tries to reorder and combine the

instructions. In some cases this yields shorter code because the optimizer

has more combination possibilities.

2.5.9 RETAIN INSTRUCTION ORDER

Sometimes you do not want the assembler to reorder instructions,

especially when doing input or output. In this case you can surround the

instructions that must be executed in a predetermined order with the OPT

ORDER and OPT NOORDER directives. In that case the instructions will

retain their ordering, however it is still possible that other instructions can

be inserted between or combined with instructions of the sequence. When

this is not what you want, you can place a label at the start of and after the

instruction sequence, as the assembler does not move instructions past

labels.

2.5.10 GENERIC MOVES

Apart from the affected condition flags some MOVE type instructions and

arithmetic instructions have almost the same effect. To give the assembler

more combination possibilities generic move, GMOVE, instructions may be

used. Every move can be written as a GMOVE, but only some of them

map into, almost, equivalent TFR or CLR instructions.

Possible mappings are:

Assembler 2–41

• • • • • • • •

GMOVE #$0,reg CLR reg
MOVE #$0,reg (DSP5600x/3xx)
MOVEC #$0,reg

GMOVE reg,reg TFR reg,reg
MOVE reg,reg
MOVEC reg,reg

Table 2-3: Generic moves

Other GMOVE instructions are replaced by their corresponding MOVE,

MOVEC, MOVEP, MOVES or MOVEI counterparts.

2.5.11 DO LOOP CODE DUPLICATION

Sometimes it is possible to combine an instruction in the head of a DO

loop body with an instruction in the tail of the DO loop body. When this

is possible and when at the target label or directly after the target label a

VOID directive is used that lists all registers changed by the instruction,

then the instruction is combined with the instruction in the tail of the DO

loop and duplicated in front of the DO instruction.

For example:

DO R0,L1
MOVE X:(R2)+,X0
MAC X0,X0,A

L1: VOID R2,X0

Is changed into:

MOVE X:(R2)+,X0 ;duplicate move
DO R0,L1
MAC X0,X0,A X:(R2)+,X0 ;combined instr.

L1: VOID R2,X0

Using DO loop to REP optimization, this can be changed into:

MOVE X:(R2)+,X0
REP R0
MAC X0,X0,A X:(R2)+,X0

Chapter 22–42
A
S
S
E
M
B
L
E
R

2.5.12 SOFTWARE PIPELINING

In tight loops the execution speed can often be improved by reshuffling

the loop contents and adding code before and after the loop. This allows

more code parallelism and decreases pipeline delays. For example, to

create an array containing the squares of values in the input array you can

code:

Farray square:
 do #20,L1
 move x:(r0)+,x0
 mpyr x0,x0,b
 move b,y(r4)+
L1: void r0,r4,x0,b

Is changed into:

Farray square:
 move x:(r4)+,x0
 mpyr x0,x0,b x:(r4)+,x0
 do #19,L1
 mpyr x0,x0,b x:(r4)+,x0 b,y(r0)+
L1:
 move b,y(r0)+

Using DO loop to REP optimization, this can be changed into:

Farray square:
 move x:(r4)+,x0
 mpyr x0,x0,b x:(r4)+,x0
 rep #19
 mpyr x0,x0,b x:(r4)+,x0 b,y(r0)+
 move b,y(r0)+

In fact, one of the loop iterations is taken out of the loop. The assembler

then looks for the optimal placement of the loop start and finish and

places them back in the resulting code. The loop goes down from three

instructions with a pipeline restriction to only one, a gain of a factor four.

However, the code size increases slightly despite the improved parallelism.

Restrictions that apply to this optimization are:

- The loop count must be a constant.

- The loop body must contain no more than ten instructions.

Assembler 2–43

• • • • • • • •

- The VOID directive must have been used for registers that can be

destroyed due to the optimization.

- In many cases, optimize for speed (OPT OPSPEED) must be

selected to allow for a larger code size.

Chapter 22–44
A
S
S
E
M
B
L
E
R

2.6 LIST FILE

The list file is the output file of the assembler which contains information

about the generated code. The amount and form of information depends

on the use of the -L option. The name is the basename of the output file

with the extension .lst . The list file is only generated when the -l option

is supplied. When -l is supplied, a list file is also generated when

assembly errors/warnings occur. In this case the error/warning is given just

below the source line containing the error/warning.

From EDE you can enable the list file generation by enabling the

Generate list file check box in the Output tab of the Project |
Assembler Options | Project Options... menu item.

2.6.1 ABSOLUTE LIST FILE GENERATION

After locating the whole application, an absolute list file can be generated

for all assembly source input files with the assembler. To generate an

absolute list file from an assembly source file the source code needs to be

assembled again with use of the locator map file of the application the

assembly source belongs to. See section 11.7, Locator Output, how to

produce a locator map file.

An absolute list file contains absolute addresses whereas a standard list file

contains relocatable addresses.

When a map file is specified as input for the assembler, only the absolute

list file is generated when list file generation is enabled with the list file

option -l. The previously generated object file is not overwritten when

absolute list file generation is enabled. Absolute list file generation is only

enabled when a map file is specified on the input which contains the

filename extension .map .

When you want to generate an absolute list file, you have to specify the

same options as you did when generating the object file. If the options are

not the same you might get an incorrect absolute list file.

Example:

Suppose your first invocation was:

as563 –Oj test.src

Assembler 2–45

• • • • • • • •

then when you want to generate an absolute list file you have to specify

the same option (-Oj), the -l option and the map file:

as563 –Oj –l test.src test.map

With this command the absolute list file "test.lst" is created.

2.6.2 PAGE HEADER

The page header consists of four lines.

The first line contains the following information:

- information about assembler name

- version and serial number

- copyright notice

The second line contains a title specified by the TITLE (first page) or

STITLE (succeeding pages) directive and a page number.

The third line contains the name of the file (first page) or is empty

(succeeding pages).

The fourth line contains the header of the source listing as described in

the next section.

Example:

DSP563xx/6xx assembler v a. b r c SNzzzzzzzz –zzz (C) year TASKING, Inc.

Title for demo use only page 1

/tmp/hello.asm

M:ADDR CODE CYCLES LINE SOURCELINE

Chapter 22–46
A
S
S
E
M
B
L
E
R

2.6.3 SOURCE LISTING

The following line appears in the page header:

M:ADDR CODE CYCLES LINE SOURCELINE

The different columns are discussed below.

M:ADDR This is the memory space and location counter. The memory

space can be one of P, X, Y or L. The location counter is a (4

digit for DSP5600x, 6 digit for DSP563xx/DSP566xx)

hexadecimal number that represents the offset from the

beginning of a relocatable section or the absolute address for

an absolute section.

In lines that generate object code, the value is at the

beginning of the line. For any other line there is no display.

Example:

M:ADDR CODE CYCLES LINE SOURCELINE

 .

 .

X:0000 44 org x,”.xovl@malloc”,overlay:

 45 local ss0000

X:0000 46 ss0000: ds 49

 | RESERVED

X:0030

P:0000 48 org p,”.ptext”:

 49 global Fmalloc

 54 Fmalloc:

P:0000 05703C rrrrrr 4 4 55 movec ssh,x:ss0000

P:0002 200003 2 6 56 tst a

P:0003 0AF0A2 rrrrrr 6 12 57 jne L3

CODE This is the object code generated by the assembler for this

source line, displayed in hexadecimal format. By default two

columns are present, but you change this with the -L1 or

-L0 assembler option to display one code column or even no

code column.

The displayed code need not be the same as the generated

code that is entered in the object module. The code can also

be relocatable code or a relocatable part and external part. In

this case 'rrrrrr' is printed instead of the value.

For lines that allocate space (DS) the code field contains the

text "RESERVED".

Assembler 2–47

• • • • • • • •

Example (as563):

M:ADDR CODE CYCLES LINE SOURCELINE
 .
 .
P:000000 4 org p:
 | RESERVED
P:00007E
 5
P:00007F 000000 1 1 6 nop
 7 align cache

In this example the word "RESERVED" marks the gap

generated by the align cache directive.

CYCLES The first number is the number of instruction cycles needed

to execute the instruction as generated in the CODE field.

The second number is the accumulated cycle count of this

section. A number within parentheses is the number of cycles

of the previous DO loop.

Example:

M:LOC CODE CYCLES LINE SOURCELINE
 .
 .
P:0000 60F400 rrrrrr 4 4 28 Fmain: move #L3,r0
P:0002 0AF080 rrrrrr 6 10 29 jmp Fputs

Example (as563):

M:ADDR CODE CYCLES LINE SOURCELINE
P:000000 60F400 000300 2 2 3 move #$300,r0
 3 5 4 ; (stall 3 cycles)
P:000002 56D800 1 6 4 move x:(r0)+,a

Due to instruction pipelining the instruction on line 4 will

stall 3 cycles prior to execution. This kind of stalling can be

seen on many places, please refer to the Motorola

documentation on the pipeline behavior of the DSP563xx

processor. The assembler only shows the pipeline stalling

information when the cycle count is also shown (use opt cc

or the -LY command line option).

LINE This column contains the line number. This is a decimal

number indicating each input line, starting from 1 and

incrementing with each source line. If listing of the line is

suppressed (i.e. by NOLIST), the number increases by one

anyway.

Chapter 22–48
A
S
S
E
M
B
L
E
R

Example:

The following source part,

;Line 12
NOLIST

;Line 14
LIST

;Line 16

results in the following list file part (assemled with -LC):

M:ADDR CODE CYCLES LINE SOURCELINE
 .
 .
 12 ;Line 12
 15 LIST
 16 ;Line 16

SOURCELINE

This column contains the source text. This is a copy of the

source line from the source module. For ease of reading the

list file, tabs are expanded with sufficient numbers of blank

spaces.

If the source column in the listing is too narrow to show the

whole source line, the source line is continued in the next

listing line.

Errors and warnings are included in the list file following the

line in which they occurred.

Example:

M:ADDR CODE CYCLES LINE SOURCELINE
 .
 .
 17 MOVE X0,ABYTE
as563 E217: /tmp/tst.src line 17 : invalid parallel move
as563 W118: /tmp/tst.src line 17 : inserted ”extern ABYTE”

Assembler 2–49

• • • • • • • •

2.6.4 OPTIMIZATIONS IN SOURCE LISTING

When optimizing the source file, the assembler moves and combines

instructions. The listing file tries to resemble as much as possible the

generated object code. For this the source lines are reordered and

changed. The line number associated with a source line in the listing

resembles the line number of the line in the source file. As the lines are

reordered the line numbers are not strictly increasing. The following

examples make things clearer:

Parallelized Instructions

M:ADDR CODE CYCLES LINE SOURCELINE
P:0095 21C52A 688 asr b
 ; (692) move a,x1
P:0096 21AF00 689 move b1,b
P:0097 21E67C 691 sub y1,b
 ; (690) move b,y0

Instructions that are combined with other instructions are shown below

the latter instruction. These parallelized instructions are preceded by their

line number between parentheses.

Inserted NOP Instructions

M:ADDR CODE CYCLES LINE SOURCELINE

P:011D 60F000 rrrrrr 877 move x:ss_psearch+862,r0

P:011F 000000 877 ; nop (inserted)

P:0120 205800 879 move (r0)+

When optimizing the assembler removes all NOP instructions and

re-inserts them when it cannot reorder the source so that the NOP would

be obsolete. Assembler generated NOP instructions have the line number

of the instruction causing the restriction and are marked with the text "nop

(inserted)".

Labels Combined with Instructions

M:ADDR CODE CYCLES LINE SOURCELINE

P:0115 576600 871 move b,x:(r6)

 872 L79:

P:0116 61F000 rrrrrr 873 move x:ss_psearch+863,r1

P:0118 56F400 000001 872 move #>1,a

Chapter 22–50
A
S
S
E
M
B
L
E
R

When an instruction that was placed after a label is moved to another

place the assembler tries to avoid confusion by removing the label before

the instruction and removing the instruction after the actual label position.

In the example above the line 872 is split in two different lines. Sometimes

the assembler cannot construct the source belonging to the actual object,

in such cases a label or instruction is mentioned two or more times in the

listing file. It is guaranteed that the first occurrence of a label in the listing

file is the actual label position. All other occurrences are

ghost-occurrences and are not actually generated in the object file.

3

SOFTWARE
CONCEPT

C
H

A
P

T
E

R

Chapter 33–2
C
O
N
C
E
P
T

3

C
H

A
P

T
E

R

Software Concept 3–3

• • • • • • • •

3.1 INTRODUCTION

Complex software projects often are divided into smaller program units.

These subprograms may be written by a team of programmers in parallel,

or they may be programs written for a previous development effort that

are going to be reused. The TASKING assembler provides directives to

subdivide a program into smaller parts, modules. Symbols can be defined

local to a module, so that symbol names can be used without regard to the

symbols in other modules. Code and data can be organized in separate

sections. These sections can be named in such a way that different

modules can implement different parts of these sections. These section

can be located in memory by the locator so that concerns about memory

placement are postponed until after the assembly process. By using

separate modules, a module can be changed without re-assembling the

other modules. This speeds up the turnaround time during the

development process.

3.2 MODULES

Modules are the separate implementation parts of a project. Each module

is defined in a separate file. A module is assembled separately from other

modules. By using the INCLUDE directive common definitions and

macros can be included in each module. Using the mk563 utility the

module file and include file dependencies can be specified so only the

correct modules are re-assembled after changes to one of the files the

modules depend upon.

3.2.1 MODULES AND SYMBOLS

A module can use symbols defined in other modules and in the module

itself. Symbols defined in a module can be local (other modules cannot

access it) or global (other modules have access to it). Symbols outside of a

module can be defined with the EXTERN directive. Local symbols are

symbols defined by the LOCAL directive, '_'-local labels (underscore

labels) or symbols defined with an SET, GSET or EQU directive. Global

symbols are either normal labels (non '_'-labels), or symbols explicitly

defined global with the GLOBAL directive.

Chapter 33–4
C
O
N
C
E
P
T

The '_'-labels have their own scoping rules. The scope of such a label is

bounded by the surrounding non '_'-label definitions. The TASKING

assembler also supports the scoping as imposed by the SECTION and

ENDSEC directives, see below for a description. The linker checks the

definition of symbols with their reference. For example, when a symbol is

defined in a module as a label in P memory and is referred to from

another module as a label in X memory an error message will be given.

The assembler will perform these checks per module.

3.3 SECTIONS

Sections are relocatable blocks of code and data. Sections are defined with

the ORG directive and can be named. A section may have attributes to

instruct the locator to place it on a predefined starting address, in near or

internal memory or that it may be overlaid with another section. See the

ORG directive discussion for a complete description of all possible

attributes. Different ORGs with the same name designate the same section,

so the attributes of all these ORGs must match. The linker will check this

between different modules and emits an error message if the attributes do

not match. The linker will also concatenate all matching section

definitions into one section. So, all ".text" sections generated by the

compiler will be linked into one big ".text" chunk which will be located in

one piece. By using this naming scheme it is possible to collect all pieces

of code or data belonging together into one bigger section during the

linking phase. An ORG directive referring to an earlier defined section is

called a continuation. Only the memory type, optional name and optional

location counter can be mentioned.

3.3.1 SECTION NAMES

The assembler generates object files in relocatable IEEE-695 object format.

The assembler groups units of code and data in the object file using

sections. All relocatable information is related to the start address of a

section. The locator assigns absolute addresses to sections. A section is the

smallest unit of code or data that can be moved to a specific address in

memory after assembling a source file. The compiler requires that the

assembler supports several different sections with appropriate attributes to

assign specific characteristics to those sections. (section with read only

data, sections with code, etc.)

ORG mem[[,name][,attrib]...]:[abs-loc]

Software Concept 3–5

• • • • • • • •

A section must be declared before it can be used. The ORG directive

declares a section with its attributes. A section name can be any identifier.

The '@' character is not allowed in regular section names. The assembler

and linker use this character to create overlayable sections. This is

explained below.

The memory spaces can be:

mem : This defines in which memory space (X, Y, L, P or E) the

section is located. Currently the E memory space is not

supported.

The attributes can be:

attrib Description

FAR long addressable

NEAR short addressable

INTERNAL internal memory, same as mapping ’I’

EXTERNAL external memory, same as mapping ’E’

OVERLAY section must have an overlay name, implies ’scratch’

ABSOLUTE obsolete, the absolute–location must be an absolute
expression

BSS clear section during startup

CONST initialize during download, do not generate copy table entry

INIT initialize section during startup (this attribute is required for P
data sections)

MAX common, overlay with other parts with the same name, is
implicitly a type of ’scratch’ and ’overlay’

SCRATCH not filled, not cleared on startup. Section can only contain DS
directives, no DC or the like

Table 3-1: Section attributes

Unless disabled, the startup code in the tool chain has to clear BSS

sections. These sections contain data space allocations for which no

initializers have been specified. BSS sections are zeroed (cleared) at

program startup. Sections can be excluded from this initialization with the

SCRATCH attribute.

The INIT attribute defines that the section contains initialization data,

which is copied from ROM to RAM at program startup. Sections with the

CONST attribute, however, are initialized during download.

Chapter 33–6
C
O
N
C
E
P
T

By default P sections are executable and data memory sections are

initialized. The INIT, BSS, CONST and SCRATCH attributes are mutually

exclusive. The following table shows the effect of these attributes on

section initialization.

Attribute P section X, Y, L section

– executable code,
download only

data, init on startup from
copy table

INIT data, init on startup from
copy table

data, init on startup from
copy table

BSS data, clear on startup data, clear on startup

CONST data, download only data, download only

SCRATCH data, no action data, no action

Table 3-2: Attribute effect on sections

Sections with the NEAR attribute must be allocated in the first 64 words of

memory of the DSP56xxx. The locator produces a warning if a section

with the NEAR attribute cannot be allocated in this area.

The MAX attribute changes the way the linker determines the section size.

Normally the linker determines the section size by accumulating the

contents and the sizes of sections with the same name in different object

modules. When sections with the same name occur in different object

modules with the MAX attribute, the linker generates a section of which

the size is the maximum of the sizes in the individual object modules. The

MAX attribute applies to BSS sections only.

A section becomes overlayable by specifying the OVERLAY attribute. Only

BSS sections are overlayable. The assembler reports an error if it finds the

attribute combined with sections of other types. Because it is useless to

initialize overlaid sections at program startup time (code using overlaid

data cannot assume that the data is in the defined state upon first use), the

SCRATCH attribute is defined implicitly when OVERLAY is specified.

Overlayable section names are composed as follows:

ORG X,”OVLN@nfunc”, BSS, OVERLAY, NEAR:
 ^ ^
 | |
 pool name function name

Software Concept 3–7

• • • • • • • •

The linker overlays sections with the same pool name. To decide whether

BSS sections can be overlaid, the linker builds a call graph. Data in

sections belonging to functions that call each other cannot be overlaid.

The compiler generates pseudo instructions (CALLS) with information for

the linker to build this call graph. The CALLS pseudo has the following

syntax:

CALLS 'caller_name', 'callee_name' [, 'callee_name']...

If the function main() has overlayable data allocations in the zero page

and calls nfunc() , the following sections and call information will be

generated:

ORG X,”OVLN@nfunc”, BSS, OVERLAY, NEAR:
ORG X,”OVLN@main”, BSS, OVERLAY, NEAR:

CALLS ’main’, ’nfunc’

This type of overlaying is done by the linker using a call graph, but it is

also possible to specify overlaying by the locator using the DELFEE

language. See the DELFEE keywords contiguous and overlay in

Appendix G for more information.

Sections become absolute when an address has been specified in the

declaration. The assembler generates information in the object file which

instructs the locator to put the section contents at the specified address. It

is not allowed to make an overlayable section absolute. The assembler

reports an error if an absolute location (abs-loc) is used in combination

with the OVERLAY section attribute.

After a section has been declared, it can be re-activated with the ORG

directive:

 ORG X,”.STRING”,FAR:
 ORG X,”.STRING”:
_l001: DCB ”hello world”

All instructions and pseudos which generate data or code must be within

an active section. The assembler emits a warning if code or data starts

without a section definition and activation.

For reasons of compatibility with the Motorola CLAS assembler the

TASKING assemblers for the DSP56xxx also accepts the Motorola CLAS

section definition. See the description of the ORG directive in the chapter

Assembler Directives for more information.

Chapter 33–8
C
O
N
C
E
P
T

3.3.2 ABSOLUTE SECTIONS

Absolute sections (i.e. ORG directives with a start address) may only be

continued in the defining module (continuation). When such a section is

defined in the same manner in another module, the locator will try to

place the two sections at the same address. This results in a locator error.

When an absolute section is defined in more than one module, the section

must be defined relocatable and its starting address must be defined in the

locator description (.dsc) file. Overlay sections may not be defined

absolute.

3.3.3 SECTION EXAMPLES

Some examples of the ORG directive are as follows:

ORG P:$1000

Defines a section in P memory starting on address $1000. The section is

nameless. Other parts of the same section, and in the same module,

must be defined with:

ORG P:

ORG X,”.xabs”:$40

Defines a named section in X memory. The section starts on address

$40 and has the name ".xabs". Other parts of the same section, that

must be in the same module, must be defined with:

ORG X,”.xabs”:

ORG P,”.text”:

Defines a relocatable named section in P memory. Other parts of this

section, with the same name, may be defined in the same module or

any other module. These parts use the same ORG statement. When

necessary, it is possible to give the section an absolute starting address

with the locator description file.

ORG X,”.xdata”,BSS:

Defines a relocatable named section in X memory. The BSS attribute

instructs the locator to clear the memory located to this section. When

this section is used in another module it must be defined identically.

Continuations of this section in the same module are as follows:

Software Concept 3–9

• • • • • • • •

ORG X,”.xdata”:

ORG X,”.xovl@f”,OVERLAY:

Defines a relocatable section in X memory. The section may be

overlaid with other overlayable X sections. The function associated

with this overlayable part is "f". This is the name that should be used

with the CALLS directive to designate which function call each other so

the linker can build a correct call graph. See also the section Section
Names above.

3.4 SCOPES

The assembler also supports, on module level, the scoping mechanism as

introduced by the Motorola SECTION directive. A block enclosed in a

SECTION/ENDSEC pair is called a scope. Scopes are called sections by

Motorola, but we use the term section to designate a relocatable block of

code or data, as defined by an ORG directive. Symbols defined within a

scope are only accessible from within the scope they are defined in or

from scopes nested within the defining scope. Exceptions are symbols

that, within a scope, are defined GLOBAL. They can be referenced from

any other scope.

3.4.1 SCOPE EXAMPLE

The scoping rule can be understood by thoroughly examining the

following code fragment, in the comment there is a reference to which

symbol the instruction is referencing. Symbol references are described by

the construction "scope.symbol".

Chapter 33–10
C
O
N
C
E
P
T

; @(#)RESOLVE.ASM 1.1 95/06/26
; LABEL RESOLVING TEST
;
; This should assemble without errors or warnings
;
 ORG P:

 LOCAL BW ; (BW local to this module,
 ; not exported to object)
BW: ; (Label on module level,
 ; defined local, will not
 ; be exported to object)
 JMP S_FW ; S.S_FW (was defined global within
 ; scope S)
 JMP FW ; FW (forward reference to label
 ; on module level)
 JMP TWICE ; TWICE (forward reference to label
 ; on module level)

 SECTION S
 GLOBAL S_FW
S_FW ; = S.S_FW (global label, will be promoted
 ; to module level, is exported
 ; as S_FW)
 JMP TWICE ; S.TWICE (forward reference to section
 ; label)
TWICE ; = S.TWICE (definition hides global symbol
 ; TWICE)
 JMP TWICE ; S.TWICE (backward reference to section
 ; label)
FW ; = S.FW (definition hides global symbol
 ; FW)
 JMP FW ; S.FW (backward reference to section
 ; label)
 JMP BW ; BW (backward reference to label
 ; on module level)
 ENDSEC

TWICE ; = TWICE (label on module level, is
 ; exported by this module)
 JMP TWICE ; TWICE (backward reference)
FW ; = FW (label on module level, is
 ; exported by this module)
 JMP BW ; BW (backward reference)

Software Concept 3–11

• • • • • • • •

; AND NOW SOME STACKING OF SECTIONS....

 JMP LAB ; LAB (forward reference to label
 ; on module level)
 SECTION P
 JMP LAB ; P.LAB (forward reference to label
 ; defined in the current scope)
 SECTION Q
 JMP LAB ; Q.LAB (forward reference to local
 ; defined in the current scope)
 SECTION R
 JMP LAB ; P.LAB (Q.LAB is local so invisible
 ; to scope R, P.LAB is visible)
 ENDSEC
 ENDSEC
LAB ; = P.LAB
 ENDSEC

 SECTION Q
 LOCAL LAB ; (Define lab local to scope Q,
 ; invisible from other scopes)
LAB ; = Q.LAB (Local scope label LAB)
 ENDSEC
LAB ; = LAB (Global label LAB, exported
 ; to object)

; AND NOW SOME ’_’–LABELS:

_LAB JMP _LAB ; Link to this _LAB
 ; (_LAB is not exported to object)
NO_LAB JMP _LAB ; Link to next _LAB
 ; (NO_LAB is exported to object,
 ; previous _LAB is forgotten)
_LAB ; (New definition of _LAB)
 END

3.4.2 SCOPES AND SYMBOL NAMES

Symbols defined in a scope are prefixed with the scope name, when these

symbols are written to the object file they are transformed into legal

assembler symbols.

For example:

 SECTION sec
label: ; defines sec.label
 ENDSEC

Chapter 33–12
C
O
N
C
E
P
T

The symbol "sec.label" will be transformed to the symbol "sec_label"

before it is written to the object file. This can give name collisions with an

already defined symbol "sec_label". In that case, after renaming, the string

"_x" will be repeatedly appended to the symbol name until the name is

unique within the current module. An exception to this rule is symbols

that are defined GLOBAL within a scope. They are promoted to the

module level, outside any other scope, and placed in the object file as-is,

without any pre- or post-fixing of section names or "_x" strings.

4

ASSEMBLY
LANGUAGE

C
H

A
P

T
E

R

Chapter 44–2
L
A
N
G
U
A
G
E

4

C
H

A
P

T
E

R

Assembly Language 4–3

• • • • • • • •

4.1 INPUT SPECIFICATION

An assembly program consists of zero or more statements, one statement

per line. A statement may optionally be followed by a comment, which is

introduced by a semicolon character (;) and terminated by the end of the

input line. Any source statement can be extended to one or more lines by

including the line continuation character (\) as the last character on the

line to be continued. The length of a source statement (first line and any

continuation lines) is only limited by the amount of available memory.

Upper and lower case letters are considered equivalent for assembler

mnemonics and directives, but are considered distinct for labels, symbols,

directive arguments, and literal strings.

A statement can be defined as:

[label[:]] [instruction | directive | macro_call] [;comment]

where,

label is an identifier. A space or tab as the first character on a line

indicates that the line has no label. There is, however, one

exception: the occurrence of label: (a symbol followed by a

colon) defines a label which may be indented. A label

starting with an underscore '_' is a local label.

identifier can be made up of letters, digits and/or underscore

characters (_). The first character may not be a digit. The size

of an identifier is only limited by the amount of available

memory.

Example:

LAB1: ;This is a label

instruction is any valid DSP56xxx assembly language instruction

consisting of a mnemonic and one, two, three or no

operands and optionally one or two data transfer fields (X

and Y parallel move fields). Operands are described in the

chapter Operands and Expressions. The instructions are

described separately in the chapter Instruction Set.

Chapter 44–4
L
A
N
G
U
A
G
E

Examples:

RTI ; No operand
INC B ; One operand
ADD X0,A ; Two operands
JSSET #$17,Y:<$3F,$100 ; Three operands
NEG B X1,X:(R3)+ Y:(R6)–,A
 ; one operand and two parallel moves

directive any one of the assembler directives; described separately in

the chapter Assembler Directives.

macro_call a call to a previously defined macro. See the chapter Macro
Operations.

A statement may be empty.

4.2 ASSEMBLER SIGNIFICANT CHARACTERS

There are several one and two character sequences that are significant to

the assembler. Some have multiple meanings depending on the context in

which they are used. Special characters associated with expression

evaluation are described in Chapter 5, Operands and Expressions. Other

assembler-significant characters are:

; - Comment delimiter

\ - Line continuation character or

Macro dummy argument concatenation operator

? - Macro value substitution operator

% - Macro hex value substitution operator

^ - Macro local label override operator

" - Macro string delimiter or

Quoted string DEFINE expansion character

@ - Function delimiter

* - Location counter substitution

++ - String concatenation operator

[] - Substring delimiter

Assembly Language 4–5

• • • • • • • •

<< - I/O short addressing mode force operator

< - Short addressing mode force operator

> - Long addressing mode force operator

- Immediate addressing mode operator

#< - Immediate short addressing mode force operator

#> - Immediate long addressing mode force operator

Individual descriptions of each of the assembler special characters follow.

They include usage guidelines, functional descriptions, and examples.

Chapter 44–6
L
A
N
G
U
A
G
E

;

Comment Delimiter Character

Any number or characters preceded by a semicolon (;), but not part of a

literal string, is considered a comment. Comments are not significant to the

assembler, but they can be used to document the source program.

Comments will be reproduced in the assembler output listing. Comments

are preserved in macro definitions.

Comments can occupy an entire line, or can be placed after the last

assembler-significant field in a source statement. The comment is literally

reproduced in the listing file.

Examples:

; This comment begins in column 1 of the source file

LOOP JSR COMPUTE ; This is a trailing comment
 ; These two comments are preceded
 ; by a tab in the source file

Assembly Language 4–7

• • • • • • • •

\

Line Continuation Character or

Macro Dummy Argument Concatenation Operator

Line Continuation

The backslash character (\), if used as the last character on a line,

indicates to the assembler that the source statement is continued on the

following line. The continuation line will be concatenated to the previous

line of the source statement, and the result will be processed by the

assembler as if it were a single line source statement. The maximum

source statement length (the first line and any continuation lines) is 512

characters.

Example:

; THIS COMMENT \
EXTENDS OVER \
THREE LINES

Macro Argument Concatenation

The backslash (\) is also used to cause the concatenation of a macro

dummy argument with other adjacent alphanumeric characters. For the

macro processor to recognize dummy arguments, they must normally be

separated from other alphanumeric characters by a non-symbol character.

However, sometimes it is desirable to concatenate the argument characters

with other characters. If an argument is to be concatenated in front of or

behind some other symbol characters, then it must be followed by or

preceded by the backslash, respectively.

Section 6.5.1.

Example:

Suppose the source input file contained the following macro definition:

SWAP_REG MACRO REG1,REG2 ;swap REG2,REG2
 MOVE R\REG1,X0 ;using X0 as temp
 MOVE R\REG2,R\REG1
 MOVE X0,R\REG2
 ENDM

Chapter 44–8
L
A
N
G
U
A
G
E

The concatenation operator (\) indicates to the macro processor that the

substitution characters for the dummy arguments are to be concatenated in

both cases with the character R. If this macro were called with the

following statement,

 SWAP_REG 0,1

the resulting expansion would be:

 MOVE R0,X0
 MOVE R1,R0
 MOVE X0,R1

Assembly Language 4–9

• • • • • • • •

?

Return Value of Symbol Character

The ?symbol sequence, when used in macro definitions, will be replaced

by an ASCII string representing the value of symbol. This operator may be

used in association with the backslash (\) operator. The value of symbol
must be an integer (not floating point).

Section 6.5.2.

Example:

Consider the following macro definition:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2
 MOVE R\ ?REG1,X0 ;using X0 as temp
 MOVE R\ ?REG2,R\ ?REG1
 MOVE X0,R\ ?REG2
 ENDM

If the source file contained the following SET statements and macro call,

AREG SET 0
BREG SET 1
 SWAP_SYM AREG,BREG

the resulting expansion as it would appear on the source listing would be:

 MOVE R0,X0
 MOVE R1,R0
 MOVE X0,R1

Chapter 44–10
L
A
N
G
U
A
G
E

%

Return Hex Value of Symbol Character

The %symbol sequence, when used in macro definitions, will be replaced

by an ASCII string representing the hexadecimal value of symbol. This

operator may be used in associations with the backslash (\) operator. The

value of symbol must be an integer (not floating point).

Section 6.5.3.

Example:

Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\ %VAL STMT
 ENDM

If this macro were called as follows,

NUM SET 10
 GEN_LAB HEX,NUM,’NOP’

The resulting expansion as it would appear in the listing file would be:

HEXA NOP

Assembly Language 4–11

• • • • • • • •

^

Macro Local Label Override

The circumflex (^), when used as a unary operator in a macro expansion,

will prevent name mangling of any associated local label. Normally, the

macro preprocessor will change any local label inside a macro expansion

to a normal label local to the current module. This is done by removing

the leading underscore and appending a unique string "_M_Zxxxx" where

"xxxx" is a unique sequence number. The ^-operator has no effect on

non-local labels or outside of a macro expansion. The ^-operator is useful

for passing local labels as macro arguments to be used as referents in the

macro. Note that the circumflex is also used as the binary exclusive or

operator.

Section 6.5.5.

Example:

Consider the following macro definition:

LOAD MACRO ADDR
 MOVE P: ^ADDR,R0
 ENDM

If this macro were called as follows,

_LOCAL
 LOAD _LOCAL

the assembler would ordinarily issue an error since _LOCAL is not defined

within the body of the macro. With the override operator the assembler

retains the _LOCAL symbol and uses that value in the MOVE instruction.

Chapter 44–12
L
A
N
G
U
A
G
E

"

Macro String Delimiter or

Quoted String DEFINE Expansion Character

Macro String

The double quote ("), when used in macro definitions, is transformed by

the macro processor into the string delimiter, the single quote ('). The

macro processor examines the characters between the double quotes for

any macro arguments. This mechanism allows the use of macro arguments

as literal strings.

Section 6.5.4.

Example:

Using the following macro definition,

CSTR MACRO STRING
 DC ”STRING”
 ENDM

and a macro call,

 CSTR ABCD

the resulting macro expansion would be:

 DC ’ABCD’

Assembly Language 4–13

• • • • • • • •

Quoted String DEFINE Expansion

A sequence of characters which matches a symbol created with a DEFINE

directive will not be expanded if the character sequence is contained

within a quoted string. Assembler strings generally are enclosed in single

quotes ('). If the string is enclosed in double quotes (") then DEFINE

symbols will be expanded within the string. In all other respects usage of

double quotes is equivalent to that of single quotes.

Example:

Consider the source fragment below:

 DEFINE LONG ’short’
STR_MAC MACRO STRING
 MSG ’This is a LONG STRING’
 MSG ”This is a LONG STRING”
 ENDM

If this macro were invoked as follows,

 STR_MAC sentence

then the resulting expansion would be:

 MSG ’This is a LONG STRING’
 MSG ’This is a short sentence’

Chapter 44–14
L
A
N
G
U
A
G
E

@

Function Delimiter

All assembler built-in functions start with the @ symbol. See section 5.4 for

a full discussion of these functions.

Example:

SVAL EQU @SQT(FVAL) ; Obtain square root

Assembly Language 4–15

• • • • • • • •

*

Location Counter Substitution

When used as an operand in an expression, the asterisk represents the

current integer value of the runtime location counter.

Example:

 ORG X:$100
XBASE EQU * +$20 ; XBASE = $120

Chapter 44–16
L
A
N
G
U
A
G
E

++

String Concatenation Operator

Any two strings can be concatenated with the string concatenation

operator (++). The two strings must each be enclosed by single or double

quotes, and there must be no intervening blanks between the string

concatenation operator and the two strings.

Example:

’ABC’ ++’DEF’ = ’ABCDEF’

Assembly Language 4–17

• • • • • • • •

[]

Substring Delimiter

[string,offset,length]

Square brackets a substring operation. The string argument is the source

string. offset is the substring starting position within string. length is the

length of the desired substring. string may be any legal string combination,

including another substring. An error is issued if either offset or length
exceed the length of string.

Example:

DEFINE ID [’DSP56000’,3,5] ; ID = ’56000’

Chapter 44–18
L
A
N
G
U
A
G
E

<<

I/O Short Addressing Mode Force Operator

Many DSP instructions allow an I/O short form of addressing. If the value

of an absolute address is known to the assembler on pass one, then the

assembler will always pick the shortest form of addressing consistent with

the instruction format. If the absolute address is not known to the

assembler on pass one (that is, the address is a forward or external

reference), then the assembler will pick the long form of addressing by

default. If this is not desired, then the I/O short form of addressing can be

forced by preceding the absolute address by the I/O short addressing

mode force operator (<<).

Example:

Since the symbol IOPORT is an external reference in the following

sequence of source lines, the assembler would pick the long absolute form

of addressing by default:

 BTST #4,Y:IOPORT
 EXTERN IOPORT

Because the long absolute addressing mode would cause the instruction to

be two words long instead of one word for the I/O short absolute

addressing mode, it would be desirable to force the I/O short absolute

addressing mode as shown below:

 BTST #4,Y: <<IOPORT
 EXTERN IOPORT

Assembly Language 4–19

• • • • • • • •

<

Short Addressing Mode Force Operator

Many DSP instructions allow a short form of addressing. If the value of an

absolute address is known to the assembler on pass one, or the FORCE

NEAR directive is active, then the assembler will always pick the shortest

form of addressing consistent with the instruction format. If the absolute

address is not known to the assembler on pass one (that is, the address is

a forward or external reference), then the assembler will pick the long

form of addressing by default. If this is not desired, then the short absolute

form of addressing can be forced by preceding the absolute address by the

short addressing mode force operator (<).

FORCE

Example:

Since the symbol DATAST is an external reference in the following

sequence of source lines, the assembler would pick the long absolute form

of addressing by default:

 MOVE Y0,Y:DATAST
 EXTERN DATAST

Because the long absolute addressing mode would cause the instruction to

be two words long instead of one word for the short absolute addressing

mode, it would be desirable to force the short absolute addressing mode

as shown below:

 MOVE Y0,Y: <DATAST
 EXTERN DATAST

Chapter 44–20
L
A
N
G
U
A
G
E

>

Long Addressing Mode Force Operator

Many DSP instructions allow a long form of addressing. If the value of an

absolute address is known to the assembler on pass one, then the

assembler will always pick the shortest form of addressing consistent with

the instruction format, unless the FORCE FAR directive is active. If this is

not desired, then the long absolute form of addressing can be forced by

preceding the absolute address by the long addressing mode force

operator (>).

FORCE

Example:

Since the symbol DATAST is known in the following sequence of source

lines, the assembler would pick the short absolute form of addressing:

 MOVE Y0,Y:DATAST
DATAST EQU Y:$23

If this is not desirable, then the long absolute addressing mode can be

forced as shown below:

 MOVE Y0,Y: >DATAST
DATAST EQU Y:$23

Assembly Language 4–21

• • • • • • • •

#

Immediate Addressing Mode

The pound sign (#) is used to indicate to the assembler to use the

immediate addressing mode.

Example:

CNST EQU $5
 MOVE # CNST,X0

Chapter 44–22
L
A
N
G
U
A
G
E

#<

Immediate Short Addressing Mode Force Operator

Many DSP instructions allow a short form of addressing. If the immediate

data is known to the assembler on pass one (not a forward or external

reference), or the FORCE NEAR directive is active, then the assembler will

always pick the shortest form of immediate addressing consistent with the

instruction. If the immediate data is a forward or external reference, then

the assembler will pick the long form of immediate addressing by default.

If this is not desired, then the short form of addressing can be forced using

the immediate short addressing mode force operator (#<).

FORCE

Example:

In the following sequence of source lines, the symbol CNST is not known

to the assembler on pass one, and therefore, the assembler would use the

long immediate addressing form for the MOVE instruction.

 MOVE #CNST,X0
CNST EQU $5

Because the long immediate addressing mode makes the instruction two

words long instead of one word for the immediate short absolute

addressing mode, it may be desirable to force the immediate short

addressing mode as shown below:

 MOVE #< CNST,X0
CNST EQU $5

Assembly Language 4–23

• • • • • • • •

#>

Immediate Long Addressing Mode Force Operator

Many DSP instructions allow a long immediate form of addressing. If the

immediate data is known to the assembler on pass one (not a forward or

external reference), then the assembler will always pick the shortest form

of immediate addressing consistent with the instruction, unless the FORCE

FAR directive is active. If this is not desired, then the long form of

addressing can be forced using the immediate long addressing mode force

operator (#>).

FORCE

Example:

In the following sequence of source lines, the symbol CNST is known to

the assembler on pass one, and therefore, the assembler would use the

short immediate addressing form for the MOVE instruction.

CNST EQU $5
 MOVE #CNST,X0

If this is not desirable, then the long immediate form of addressing can be

forced as shown below:

CNST EQU $5
 MOVE #> CNST,X0

Chapter 44–24
L
A
N
G
U
A
G
E

4.3 REGISTERS

The following register names, either upper or lower case, cannot be used

as symbol names in an assembly language source file:

A A0 A1 A2 AB
B B0 B1 B2 BA
X X0 X1
Y Y0 Y1

R0 R1 R2 R3 R4 R5 R6 R7
N0 N1 N2 N3 N4 N5 N6 N7
M0 M1 M2 M3 M4 M5 M6 M7

SR MR CCR
OMR EOM COM
VBA
EP SC SZ SP
SSH SSL
LA LC

The following registers are used by the assembler in structured control

statement processing (Chapter 8):

A X0 Y0 Y1

5

OPERANDS AND
EXPRESSIONS

C
H

A
P

T
E

R

Chapter 55–2
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

5

C
H

A
P

T
E

R

Operands and Expressions 5–3

• • • • • • • •

5.1 OPERANDS

An operand is the part of the instruction that follows the instruction

opcode. There can be one, two, three or even no operands in an

instruction. An operand of an assembly instruction has one of the

following types:

Operands Description

expr any valid expression as described in the section Expressions.

reg any valid register as described in the section Registers.

symbol a symbolic name as created by an equate. A symbol can be

an expression.

address a combination of expr, reg and symbol.

If an expression can be completely evaluated at assembly time, it is called

an absolute expression; if it is not, it is called a relocatable expression. See

the section 5.2, Expressions, for more details.

5.1.1 OPERANDS AND ADDRESSING MODES

The DSP56xxx assembly language has several addressing modes. These

are listed below with a short description. For details see the DSP56000,

DSP56300 and DSP56600 Family Manuals.

Register Direct

The instruction specifies the register which contains the operand.

Syntax:

mnemonic register

Chapter 55–4
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

Address Register Indirect

The instruction specifies the register containing the operand address.

Several forms are available.

Syntax:

mnemonic (Rn)

mnemonic (Rn)+

mnemonic (Rn)-

mnemonic (Rn)+Nn
mnemonic (Rn)-Nn
mnemonic (Rn+Nn)

mnemonic -(Rn)

mnemonic (Rn+displ) (not for DSP5600x)

Immediate

An immediate operand is a one word number or short number, which is

encoded as part of the instruction. Immediate operands are indicated by

the # sign before the expression defining the value of the operand.

Syntax:

mnemonic #number

Absolute

The instruction contains the operand address. The address can be 16 or 24

bits (absolute address), 6 bits zero extended (absolute short) or 6 bits

ones extended (I/O short).

Syntax:

mnemonic direct_address

Short Jump

The instruction contains the 12-bit address zero extended to 16 or 24 bits,

which allows addresses $000-$FFF to be accessed.

Syntax:

mnemonic jump_address

Operands and Expressions 5–5

• • • • • • • •

5.2 EXPRESSIONS

An operand of an assembler instruction or directive is either an assembler

symbol, a register name or an expression. An expression is a sequence of

symbols that denotes an address in a particular memory space or a

number.

Expressions that can be evaluated at assembly time are called absolute

expressions. Expressions where the result is unknown until all sections

have been combined and located are called relocatable expressions.

When any operand of an expression is relocatable the entire expression is

relocatable. Relocatable expressions are emitted in the object file and

evaluated by the linker or the locator. Relocatable expressions may only

contain integral functions; floating point functions and numbers are not

supported by the IEEE object format. An error is emitted when during

object creation non-IEEE relocatable expressions are found.

An expression has a type which depends on the type of the identifiers in

the expression. See section 5.2.4, Expression Type, for details.

The assembler evaluates expressions with 64-bit precision in two's

complement.

The syntax of an expression can be any of the following:

- number

- expression_string

- symbol

- expression binary_operator expression

- unary_operator expression

- (expression)

- function

Spaces are not allowed inside expressions! Example: 3 + 4 is not valid,

but 3+4 is.

All types of expressions are explained below and in the following sections.

() You can use parentheses to control the evaluation order of the

operators. What is between parentheses is evaluated first.

Chapter 55–6
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

Examples:

(3+4)*5 ; Result is 35.
; 3 + 4 is evaluated first.

3+(4*5) ; Result is 23.
; 4 * 5 is evaluated first.
; parentheses are superfluous here

5.2.1 NUMBER

Numeric constants can be used in expressions. If there is no prefix, the

assembler assumes the number is decimal.

number can be one of the following:

- %bin_num
- dec_num (or ‘ dec_num)

- $hex_num
- float_num

bin_num is a binary number formed of '0'-'1' prefixed with a '%'.

Examples: %1001; %1011; %01100100;

dec_num is a decimal number formed of '0'-'9', optionally prefixed

with a '‘ '.

Examples: 12; ‘5978;

hex_num is a hexadecimal number formed of the characters '0'-'9' and

'a'-'f' or 'A'-'F' prefixed with a '$'.

Examples: $45; $FFD4; $9abc

float_num is a floating point number formed of '0'-'9' and indicated

either by a preceding, following, or included decimal point

or by the presence of 'E' or 'e'. Floating point numbers are

always base 10.

Examples: .12; 5E10; 3.6e8

A number may be written without a leading radix indicator if the input

radix is changed using the RADIX directive. For example, a hexadecimal

number may be written without the leading dollar sign ($) if the input

radix is set to 16 (assuming an initial radix of 10). The default radix is 10.

Operands and Expressions 5–7

• • • • • • • •

5.2.2 EXPRESSION STRING

An expression_string is a string with an arbitrary length evaluating to a

number. The value of the string is calculated by taking the first 4

characters padded with 0 to the left.

string is a string of ASCII characters, enclosed in single (’) or

double (″) quotes. The starting and closing quote must be the

same. To include the enclosing quote in the string, double it.

E.g. the string containing both quotes can be denoted as:

″ ′ ″″ ″ or ′ ′ ′ ″ ′ .

See the chapter Macro Operations for the differences

between single and double quoted strings.

Examples:

’A’+1 ; a 1–character ASCII string,
 ; result $00000042
″9C″+1 ; a 2–character ASCII string,
 ; result $00003944

Two strings can be concatenated with the strings concatenation operator

(++). The two strings must each be enclosed by single or double quotes,

and there must be no intervening blanks between the operator and the

two strings:

’AB’++’CD’ ; two 2–character ASCII strings
 ; concatenated (same as ’ABCD’),
 ; result $41424344

Square brackets ([]) delimit a substring operation in the form:

[string,offset,length]

offset is the start position within string. length is the length of the desired

substring. Both values may not exceed the size of string.

DEFINE ID [’DSP56000’,3,5] ; ID = ’56000’

Chapter 55–8
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

5.2.3 SYMBOL

A symbol is an identifier. A symbol represents the value of an identifier
which is already defined, or will be defined in the current source module

by means of a label declaration or an equate directive.

Examples:

CON1 EQU $3 ; The variable CON1 represents
 ; the value of 3

MOVE CON1+$20,R1 ; Move contents of address
 ; $23 to register R1

When you invoke one of the assemblers, the following predefined symbol

exists:

_AS56 contains a string with the name of the assembler ("as56" or

"as563")

5.2.4 EXPRESSION TYPE

The type of an expression is either a number (floating point or integral) or

an address. The result type of an expression depends on the operator and

its operands. The tables below summarize all available operators.

Please note:

1. when an illegal combination (denoted as *) is found, a warning is emitted

and the expression type will be undefined;

2. a label is of type 'address'; an equate symbol has the type of the equate

expression;

3. the type of an untyped symbol can be an address or a number, depending

on the context; the result of the operation can be determined using the

tables;

4. the binary logical and relational operators (||, &&, ==, !=, <, <=, >, >=)

accept any combination of operands, the result is always the integral

number 0 or 1;

5. the binary shift and bitwise operators <<, >>, |, & and ^ only accept

integral operands.

Operands and Expressions 5–9

• • • • • • • •

The following table shows the result type of expressions with unary

operators.

Operator num addr

~ num *

! num *

– num *

+ num num

Table 5-1: Expression type, unary operators

The following table shows the result type of expressions with binary

numerical operators.

Operator num, num addr, num num, addr addr,addr

– num addr * num

+ num addr addr *

* num * * *

/ num * * *

% num * * *

Table 5-2: Expression type, binary numerical operators

"num <op> float" and "float <op> num" evaluates to float

any combination of an address with a float is illegal

a string operand will be converted to an integral number

"addr - addr" is only valid when both addresses are in the same address

space, or in compatible address spaces (see Table 5-4)

Chapter 55–10
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

The following table shows the result type of functions. num can be float

and integer. A '-' in the column Operands means that the function has no

operands.

Function Operands Result

@ABS() num float

@ACS() num float

@ARG() symbol
integer

integer
integer

@AS56() – string

@ASN() num float

@AT2() num,num float

@ATN() num float

@CEL() num float

@CNT() – float

@COH() num float

@COS() num float

@CVF() num float

@CVI() num integer

@CVS() mem,expr mem:expr

@DEF() symbol integer

@DEFMEM() – string

@DSP() – integer

@FLD() num,num,num
num,num,num,num

integer
integer

@FLR() num float

@FRC() num integer

@L10() num float

@LEN() string integer

@LFR() num integer

@LNG() num,num integer

@LOG() num float

@LST() – integer

@LUN() num float

Operands and Expressions 5–11

• • • • • • • •

ResultOperandsFunction

@MAC() symbol integer

@MAX() num,num,...,float,...
integer,integer,...

float
integer

@MIN() num,num,...,float,...
integer,integer,...

float
integer

@MODEL() – string

@MSP() num integer

@MXP() – integer

@POS() string,string
string,string,num

integer
integer

@POW() num,num float

@RND() – float

@RVB() num
num,num

integer
integer

@SCP() string,string integer

@SGN() num integer

@SIN() num float

@SNH() num float

@SQT() num float

@STKMEM() – string

@TAN() num float

@TNH() num float

@UNF() num float

@XPN() num float

Table 5-3: Expression type, functions

Chapter 55–12
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

5.2.5 MEMORY SPACES

All addresses have a memory space attribute of either X, Y, L, Program,

EMI, or Unknown, to distinguish between different address spaces. A

number always has the memory attribute None. When subtracting an

address from another address the address spaces are combined to form the

resulting type. See the table below for legal combinations and their

resulting address space. The type N stands for a number. The function

@CVS() can be used to change the address space of an address or to make

an address of any number. The @MSP() function can be used to extract the

address space from any expression. An external symbol which is declared

without a memory space can be used as an address in any memory space.

 Left Operand Memory Space Attribute

 N X Y L P E

Right Operand N N X Y L P E
Memory Space X * N * N * *
Attribute Y * * N N * *
 L * N N N * *
 P * * * * N *
 E * * * * * N

* = Represents an illegal operation that will result in an error.

Table 5-4: Compatible memory types for binary '-' operator

Memory space attributes become important when an expression is used as

an address. Errors will occur when the memory space attribute of the

expression result does not match the explicit or implicit memory space

specified in the source code. Memory spaces are explicit when the address

has any of the following forms:

Attribute Explicit Address

X X:address_expression

Y Y:address_expression

L L:address_expression

P P:address_expression

E E:address_expression

Table 5-5: Memory space attributes

Operands and Expressions 5–13

• • • • • • • •

The memory space is implicitly P when an address is used as the operand

of a DO, branch, or jump-type instruction.

Expressions used for immediate addressing can have any memory space

attribute.

5.2.6 EXAMPLE

/usr/src/dsp56/op_types.asm
M:LOC CODE CYCLES LINE SOURCELINE
P:0200 1 org p:$200
 2 plab:
X:0100 3 org x:$100
 4 xlab:
 5 xlab2:
X:0100 000100 6 dc plab–xlab
as56 W123: /usr/src/dsp56/op_types.asm line 6 :
 expression: illegal combination of memory spaces
X:0101 000200 7 dc xlab+xlab2
as56 W123: /usr/src/dsp56/op_types.asm line 7 :
 expression: arithmetic on an address with an address
 8
X:0102 000200 9 dc xlab*2
as56 W123: /usr/src/dsp56/op_types.asm line 9 :
 expression: undefined arithmetic on an address
X:0103 000200 10 dc @cvs(n,xlab)*2
 ; use @CVS() so we can multiply
 11 end

Chapter 55–14
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

5.3 OPERATORS

There are two types of operators:

- unary operators

- binary operators

Operators can be arithmetic operators, shift operators, relational operators,

bitwise operators, or logical operators. All operators are described in the

following sections.

If the grouping of the operators is not specified with parentheses, the

operator precedence is used to determine evaluation order. Every operator

has a precedence level associated with it. The following table lists the

operators and their order of precedence (in descending order).

Operators Type

+, –, ~, ! unary

*, /, % binary

+, – binary

<<, >> binary

<, <=, >, >= unary

==, != binary

&, |, ^ binary

&&, || binary

Table 5-6: Operators Precedence List

Except for the unary operators, the assembler evaluates expressions with

operators of the same precedence level left-to-right. The unary operators

are evaluated right-to-left . So, –4+3*2 evaluates to (–4)+(3*2) .

Operands and Expressions 5–15

• • • • • • • •

5.3.1 ADDITION AND SUBTRACTION

Synopsis:

Addition: operand + operand

Subtraction: operand - operand

The + operator adds its two operands and the - operator subtracts them.

The operands can be any expression evaluating to an absolute number or

a relocatable operand, with the restrictions of Table 5-2.

Examples:

$a342+$23 ; addition of absolute numbers
$ff1a–AVAR ; subtraction with the value of
 ; symbol AVAR

5.3.2 SIGN OPERATORS

Synopsis:

Plus: +operand
Minus: -operand

The + operator does not modify its operand. The - operator subtracts its

operand from zero. See also the restrictions in Table 5-1.

Example:

5+–3 ; result is 2

Chapter 55–16
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

5.3.3 MULTIPLICATION AND DIVISION

Synopsis:

Multiplication: operand * operand
Division: operand / operand
Modulo: operand % operand

The * operator multiplies its two operands, the / operator performs an

integer division, discarding any remainder. The % operator also performs

an integer division, but discards the quotient and returns the remainder.

The operands can be any expression evaluating to an absolute number or

a relocatable operand, with the restrictions of Table 5-2. Note that the

right operands of the / and % operator may not be zero.

Examples:

AVAR*2 ; multiplication
$ff3c/COUNT ; division
23%4 ; modulo, result is 3

5.3.4 SHIFT OPERATORS

Synopsis:

Shift left: operand << count
Shift right: operand >> count

These operators shift their left operand (operand) either left (<<) or right

(>>) by the number of bits (absolute number) specified with the right

operand (count). The operands can be any expression evaluating to an

(integer) number.

Examples:

AVAR>>4 ; shift right variable AVAR, 4 times

Operands and Expressions 5–17

• • • • • • • •

5.3.5 RELATIONAL OPERATORS

Synopsis:

Equal: operand == operand
Not equal: operand != operand
Less than: operand < operand
Less than or equal: operand <= operand
Greater than: operand > operand
Greater than or equal: operand >= operand

These operators compare their operands and return an absolute number

(an integer) of 1 for `true' and 0 for `false'. The operands can be any

expression evaluating to an absolute number or a relocatable operand.

Examples:

3>=4 ; result is 0 (false)
4==COUNT ; 1 (true), if COUNT is 4.
 ; 0 otherwise.
9<$0A ; result is 1 (true)

5.3.6 BITWISE OPERATORS

Synopsis:

Bitwise AND: operand & operand
Bitwise OR: operand | operand
Bitwise XOR: operand ^ operand
One's complement ~ operand

The AND, OR and XOR operators take the bitwise AND, OR respectively

XOR of the left and right operand. The one's complement (bitwise NOT)

operator performs a bitwise complement on its operand. The operands

can be any expression evaluating to an (integer) number.

Examples:

$B&3 ; result is 3
 %1011
 %0011 &
 %0011

Chapter 55–18
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

~$A ; result is $fffff5
 ~ %00000000 00000000 00001010
 = %11111111 11111111 11110101

5.3.7 LOGICAL OPERATORS

Synopsis:

Logical AND: operand && operand
Logical OR: operand || operand
Logical NOT: ! operand

The logical AND operator returns an integer 1 if both operands are

non-zero; otherwise it returns an integer 0. The logical OR operator

returns an integer 1 if either of its operands is non-zero; otherwise it

returns an integer 0. The ! operator performs a logical not on its operand. !

returns an integer 1 (`true) if the operand is 0; otherwise, ! returns 0

(`false'). The operands can be can be any expression evaluating to an

integer or floating point.

Examples:

$B&&3 ; result is 1 (true)

!$A ; result is 0 (false)
!(4<3) ; result is 1 (true)
 ; 4 < 3 result is 0 (false)

Operands and Expressions 5–19

• • • • • • • •

5.4 FUNCTIONS

The assembler has several built-in functions to support data conversion,

string comparison, and math computations. Functions can be used as

terms in any arbitrary expression. Functions have the following syntax:

@function_name(argument[,argument]...)

Functions start with the '@' sign and have zero or more arguments, and are

always followed by opening and closing parentheses. There must be no

intervening spaces between the function name and the opening

parenthesis and between the (comma-separated) arguments.

Assembler functions can be grouped into five types:

1. Mathematical functions

2. Conversion functions

3. String functions

4. Macro functions

5. Assembler mode functions

5.4.1 MATHEMATICAL FUNCTIONS

The mathematical functions comprise transcendental, random value, and

min/max functions, among others:

ABS - Absolute value

ACS - Arc cosine

ASN - Arc sine

AT2 - Arc tangent

ATN - Arc tangent

CEL - Ceiling function

COH - Hyperbolic cosine

COS - Cosine

FLR - Floor function

L10 - Log base 10

Chapter 55–20
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

LOG - Natural logarithm

MAX - Maximum value

MIN - Minimum value

POW - Raise to a power

RND - Random value

SGN - Return sign

SIN - Sine

SNH - Hyperbolic sine

SQT - Square root

TAN - Tangent

TNH - Hyperbolic tangent

XPN - Exponential function

5.4.2 CONVERSION FUNCTIONS

The conversion functions provide conversion between integer, floating

point, and fixed point fractional values:

CVF - Convert integer to floating point

CVI - Convert floating point to integer

CVS - Convert memory space

FLD - Shift and mask operation

FRC - Convert floating point to fractional

LFR - Convert floating point to long fractional

LNG - Concatenate to double word

LUN - Convert long fractional to floating point

RVB - Reverse bits in field

UNF - Convert fractional to floating point

Operands and Expressions 5–21

• • • • • • • •

5.4.3 STRING FUNCTIONS

String functions compare strings, return the length of a string, and return

the position of a substring within a string:

LEN - Length of string

POS - Position of substring in string

SCP - Compare strings

5.4.4 MACRO FUNCTIONS

Macro functions return information about macros:

ARG - Macro argument function

CNT - Macro argument count

MAC - Macro definition function

MXP - Macro expansion function

5.4.5 ASSEMBLER MODE FUNCTIONS

Miscellaneous functions having to do with assembler operation:

AS56 - Assembler executable name

DEF - Symbol definition function

DEFMEM - Default memory function

DSP - DSP processor type number

LST - LIST directive flag value

MODEL - Returns memory model

MSP - Memory space

STKMEM - Stack memory function

Chapter 55–22
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

5.4.6 DETAILED DESCRIPTION

Individual descriptions of each of the assembler functions follow. They

include usage guidelines, functional descriptions, and examples.

@ABS(expression)

Returns the absolute value of expression as a floating point value. The

memory space attribute of the result will be None.

Example:

MOVE #@ABS(VAL) ,A ;load absolute value

@ACS(expression)

Returns the arc cosine of expression as a floating point value in the range

zero to pi. The result of expression must be between -1 and 1. The

memory space attribute of the result will be None.

Example:

ACOS = @ACS(–1.0) ;ACOS = 3.141593

@ARG(symbol | expression)

Returns integer 1 if the macro argument represented by symbol or

expression is present, 0 otherwise. If the argument is a symbol it must be

single-quoted and refer to a dummy argument name. If the argument is an

expression it refers to the ordinal position of the argument in the macro

dummy argument list. A warning will be issued if this function is used

when no macro expansion is active. The memory space attribute of the

result will be None.

Example:

IF @ ARG(TWIDDLE) ;twiddle factor provided?

@AS56()

Returns the name of the assembler executable. This is as56 for the

DSP5600x or as563 for the DSP563xx family.

Example:

ANAME DC @AS56() ;ANAME = as563 for DSP563xx

Operands and Expressions 5–23

• • • • • • • •

@ASN(expression)

Returns the arc sine of expression as a floating point value in the range

-pi/2 to pi/2. The result of expression must be between -1 and 1. The

memory space attribute of the result will be None.

Example:

ARCSINE SET @ ASN(–1.0) ;ARCSINE = –1.570796

@AT2(expr1,expr2)

Returns the arc tangent of expr1/expr2 as a floating point value in the

range -pi to pi. Expr1 and expr2 must be separated by a comma. The

memory space attribute of the result will be None.

Example:

ATAN EQU @ AT2(–1.0,1.0) ;ATAN = –0.7853982

@ATN(expression)

Returns the arc tangent of expression as a floating point value in the range

-pi/2 to pi/2. The memory space attribute of the result will be None.

Example:

MOVE #@FRC(@ATN(1.0)),A ;load arc tangent

@CEL(expression)

Returns a floating point value which represents the smallest integer greater

than or equal to expression. The memory space attribute of the result will

be None.

Example:

CEIL SET @ CEL(–1.05) ;CEIL = –1.0

@CNT()

Returns the count of the current macro expansion arguments as an integer.

A warning will be issued if this function is used when no macro expansion

is active. The memory space attribute of the result will be None.

Example:

ARGCNT SET @CNT() ;squirrel away arg count

Chapter 55–24
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

@COH(expression)

Returns the hyperbolic cosine of expression as a floating point value. The

memory space attribute of the result will be None.

Example:

HYCOS EQU @COH(VAL) ;compute hyperbolic cosine

@COS(expression)

Returns the cosine of expression as a floating point value. The memory

space attribute of the result will be None.

Example:

DC –@COS(@CVF(COUNT)*FREQ) ;compute cosine value

@CVF(expression)

Converts the result of expression to a floating point value. The memory

space attribute of the result will be None.

Example:

FLOAT SET@CVF(5) ;FLOAT = 5.0

@CVI(expression)

Converts the result of expression to an integer value. This function should

be used with caution since the conversions can be inexact (e.g., floating

point values are truncated). The memory space attribute of the result will

be None.

Example:

INT SET @ CVI(–1.05) ;INT = –1

@CVS({X | Y | L | P | E | N},expression)

Converts the memory space attribute of expression to that specified by the

first argument; returns expression. See section Memory Spaces for more

information on memory space attributes. The expression may be relative or

absolute.

Example:

LOADDR EQU @CVS(X,TARGET) ;set LOADDR to X:TARGET

Operands and Expressions 5–25

• • • • • • • •

@DEF(symbol)

Returns an integer 1 (memory space attribute N) if symbol has been

defined, 0 otherwise. symbol may be any label not associated with a

MACRO or SECTION directive. If symbol is quoted it is looked up as a

DEFINE symbol; if it is not quoted it is looked up as an ordinary label.

Example:

IF @ DEF(ANGLE) ;assemble if ANGLE defined

@DEFMEM()

You can use the @DEFMEM() function just as the _DEFMEM function in

the compiler to retrieve the selected default memory.

Example:

IF @DEFMEM()==’x’
msg ’default memory x’
ENDIF
IF @DEFMEM()==’y’
msg ’default memory y’
ENDIF
IF @DEFMEM()==’p’
msg ’default memory p’
ENDIF
IF @DEFMEM()==’l’
msg ’default memory l’
ENDIF

@DSP()

Returns an integer indicating the type of DSP56xxx processor family. This

value is 0 for the DSP5600x, 3 for the DSP563xx family or 6 for the

DSP566xx family.

Example:

DTYPE SET @ DSP() ;DTYPE = 3 for DSP563xx

Chapter 55–26
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

@FLD(base,value,width[,start])

Shift and mask value into base for width bits beginning at bit start. If start
is omitted, zero (least significant bit) is assumed. All arguments must be

positive integers and none may be greater than the target word size.

Returns the shifted and masked value with a memory space attribute of

None.

Example:

SWITCH EQU @ FLD(TOG,1,1,7) ;turn eighth bit on

@FLR(expression)

Returns a floating point value which represents the largest integer less than

or equal to expression. The memory space attribute of the result will be

None.

Example:

FLOOR SET @ FLR(2.5) ;FLOOR = 2.0

@FRC(expression)

This function performs scaling and convergent rounding to obtain the

fractional representation of the floating point expression as an integer. The

memory space attribute of the result will be None.

Example:

FRAC EQU @ FRC(FLT) +1 ;compute saturation

@L10(expression)

Returns the base 10 logarithm of expression as a floating point value.

expression must be greater than zero. The memory space attribute of the

result will be None.

Example:

LOG EQU @ L10(100.0) ;LOG = 2

Operands and Expressions 5–27

• • • • • • • •

@LEN(string)

Returns the length of string as an integer. The memory space attribute of

the result will be None.

Example:

SLEN SET @ LEN(’string’) ;SLEN = 6

@LFR(expression)

This function performs scaling and convergent rounding to obtain the

fractional representation of the floating point expression as a long integer.

The memory space attribute of the result will be None.

Example:

LFRAC EQU @ LFR(LFLT) ;store binary form

@LNG(expr1,expr2)

Concatenates the single word expr1 and expr2 into a double word value

such that expr1 is the high word and expr2 is the low word. The memory

space attribute of the result will be None.

Example:

LWORD DC @ LNG(HI,LO) ;build long word

@LOG(expression)

Returns the natural logarithm of expression as a floating point value.

expression must be greater than zero. The memory space attribute of the

result will be None.

Example:

LOG EQU @ LOG(100.0) ;LOG = 4.605170

@LST()

Returns the value of the LIST directive flag as an integer, with a memory

space attribute of None. Whenever a LIST directive is encountered in the

assembler source, the flag is incremented; when a NOLIST directive is

encountered, the flag is decremented.

Example:

DUP @CVI(@ABS(@ LST())) ;list unconditionally

Chapter 55–28
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

@LUN(expression)

Converts the double-word expression to a floating point value. expression
should represent a binary fraction. The memory space attribute of the

result will be None.

Example:

DBLFRC EQU @LUN($3FE0000000000000) ;DBLFRC = 0.5

@MAC(symbol)

Returns an integer 1 (memory space attribute N if symbol has been defined

as a macro name, 0 otherwise.

Example:

IF @ MAC(DOMUL) ;expand macro

@MAX(expr1[,exprN]...)

Returns the greatest of expr1,...,exprN as a floating point value. The

memory space attribute of the result will be None.

Example:

MAX DC @ MAX(1.0,5.5,–3.25) ;MAX = 5.5

@MIN(expr1[,exprN]...)

Returns the least of expr1,...,exprN as a floating point value. The memory

space attribute of the result will be None.

Example:

MIN DC @ MIN(1.0,5.5,–3.25) ;Min = –3.25

@MODEL()

The @MODEL() function returns the memory model just as the_MODEL

function in the compiler. The possible values are derived from the -M

option.

Example:

IF @MODEL()==24
msg ’24–bit model’
ENDIF

Operands and Expressions 5–29

• • • • • • • •

IF @MODEL()==16
msg ’16–bit model’
ENDIF

IF @MODEL()==1624
msg ’16/24–bit model’
ENDIF

IF @MODEL()==6
msg ’DSP566xx model’
ENDIF

@MSP(expression)

Returns the memory space attribute of expression as an integer value.

None = 0

X space = 1

Y space = 2

L space = 3

P space = 4

E space = 5

The expression may be relative or absolute.

Example:

MEM SET @ MSP(ORIGIN) ;save memory space

@MXP()

Returns an integer 1 (memory space attribute N) if the assembler is

expanding a macro, 0 otherwise.

Example:

IF @ MXP() ;macro expansion active?

Chapter 55–30
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

@POS(str1,str2[,start])

Returns the position str2 in str1 as an integer, starting at position start. If
start is not given the search begins at the beginning of str1. If the start
argument is specified it must be a positive integer and cannot exceed the

length of the source string. The memory space attribute of the result will

be None.

Example:

ID EQU @ POS(’DSP56000’,’56’) ;ID = 3

@POW(expr1,expr2)

Returns expr1 raised to the power expr2 as a floating point value. expr1
and expr2 must be separated by a comma. The memory space attribute of

the result will be None.

Example:

BUF EQU @CVI(@ POW(2.0,3.0)) ;BUF = 8

@RND()

Returns a random value in the range 0.0 to 1.0. The memory space

attribute of the result will be None.

Example:

SEED DC @ RND() ;save initial SEED value

@RVB(expr1,expr2)

Reverse the bits in expr1 delimited by the number of bits in expr2. If expr2
is omitted the field is bounded by the target word size. Both expressions

must be single word integer values.

Example:

REV EQU @ RVB(VAL) ;reverse all bits in value

@SCP(str1,str2)

Returns an integer 1 (memory space attribute N) if the two strings

compare, 0 otherwise. The two strings must be separated by a comma.

Example:

IF @ SCP(STR,’MAIN’) ;does STR equal MAIN?

Operands and Expressions 5–31

• • • • • • • •

@SGN(expression)

Returns the sign of expression as an integer: -1 if the argument is negative,

0 if zero, 1 if positive. The memory space attribute of the result will be

None. The expression may be relative or absolute.

Example:

IF @ SGN(INPUT) ;is sign positive?

@SIN(expression)

Returns the sine of expression as a floating point value. The memory space

attribute of the result will be None.

Example:

DC @ SIN(@CVF(COUNT)*FREQ) ;compute sine value

@SNH(expression)

Returns the hyperbolic sine of expression as a floating point value. The

memory space attribute of the result will be None.

Example:

HSINE EQU @SNH(VAL) ;hyperbolic sine

@SQT(expression)

Returns the square root of expression as a floating point value. expression
must be positive. The memory space attribute of the result will be None.

Example:

SQRT EQU @SQT(3.5) ;SQRT = 1.870829

Chapter 55–32
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

@STKMEM()

You can use the @STKMEM() function just as the _STKMEM function in

the compiler to retrieve the selected stack memory. @STKMEM only differs

from @DEFMEM if the stack is placed in L memory for X or Y default

memory.

Example:

IF @STKMEM()==’x’
msg ’stack memory x’
ENDIF
IF @STKMEM()==’y’
msg ’stack memory y’
ENDIF
IF @STKMEM()==’p’
msg ’stack memory p’
ENDIF
IF @STKMEM()==’l’
msg ’stack memory l’
ENDIF

@TAN(expression)

Returns the tangent of expression as a floating point value. The memory

space attribute of the result will be None.

Example:

MOVE #@TAN(1.0) ,A ;load tangent

@TNH(expression)

Returns the hyperbolic tangent of expression as a floating point value. The

memory space attribute of the result will be None.

Example:

HTAN = @ TNH(VAL) ;hyperbolic tangent

@UNF(expression)

Converts expression to a floating point value. expression should represent

a binary fraction. The memory space attribute of the result will be None.

Example:

FRC EQU @ UNF($400000) ;FRC = 0.5

Operands and Expressions 5–33

• • • • • • • •

@XPN(expression)

Returns the exponential function (base e raised to the power of

expression) as a floating point value. The memory space attribute of the

result will be None.

Example:

EXP EQU @ XPN(1.0) ;EXP = 2.718282

Chapter 55–34
O

P
E

R
A

N
D

S
 &

 E
X

P
R

E
S

S
IO

N
S

6

MACRO
OPERATIONS

C
H

A
P

T
E

R

Chapter 66–2
M
A
C
R
O
S

6

C
H

A
P

T
E

R

Macro Operations 6–3

• • • • • • • •

6.1 INTRODUCTION

This chapter describes the macro operations and conditional assembly.

The macro preprocessor is implemented in the assembler.

6.2 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated

pattern or group of instructions. Some patterns contain variable entries

which change for each repetition of the pattern. Others are subject to

conditional assembly for a given occurrence of the instruction group. In

either case, macros provide a shorthand notation for handling these

instruction patterns. Having determined the iterated pattern, the

programmer can, within the macro, designate selected fields of any

statement as variable. Thereafter by invoking a macro the programmer can

use the entire pattern as many times as needed, substituting different

parameters for the designated variable portions of the statements.

When the pattern is defined it is given a name. This name becomes the

mnemonic by which the macro is subsequently invoked (called). If the

name of the macro is the same as an existing assembler directive or

mnemonic opcode, the macro will replace the directive or mnemonic

opcode, and a warning will be issued.

The macro call causes source statements to be generated. The generated

statements may contain substitutable arguments. The statements produced

by a macro call are relatively unrestricted as to type. They can be any

processor instruction, almost any assembler directive, or any

previously-defined macro. Source statements resulting from a macro call

are subject to the same conditions and restrictions that are applied to

statements written by the programmer.

To invoke a macro, the macro name must appear in the operation code

field of a source statement. Any arguments are placed in the operand field.

By suitably selecting the arguments in relation to their use as indicated by

the macro definition, the programmer causes the assembler to produce

in-line coding variations of the macro definition.

The effect of a macro call is to produce in-line code to perform a

predefined function. The code is inserted in the normal flow of the

program so that the generated instructions are executed with the rest of

the program each time the macro is called.

Chapter 66–4
M
A
C
R
O
S

An important feature in defining a macro is the use of macro calls within

the macro definition. The assembler processes such nested macro calls at

expansion time only. The nesting of one macro definition within another

definition is permitted. However, the nested macro definition will not be

processed until the primary macro is expanded. The macro must be

defined before its appearance in a source statement operation field.

6.3 MACRO DEFINITION

The definition of a macro consists of three parts: the header, which assigns

a name to the macro and defines the dummy arguments; the body, which

consists of prototype or skeleton source statements; and the terminator.

The header is the MACRO directive, its name, and the dummy argument

list. The body contains the pattern of standard source statements. The

terminator is the ENDM directive.

The header of a macro definition has the form:

macro_name MACRO [dummy argument list] [comment]

The required name is the symbol by which the macro will be called. The

dummy argument list has the form:

[dumarg[,dumarg]...]

The dummy arguments are symbolic names that the macro processor will

replace with arguments when the macro is expanded (called). Each

dummy argument must obey the same rules as global symbol names.

Dummy argument names that are preceded by an underscore are not

allowed. Dummy arguments are separated by commas.

When a macro call is executed, the dummy arguments within the macro

definition (NMUL,AVEC,BVEC,OFFSET,RESULT in the example below)

are replaced with the corresponding argument as defined by the macro

call.

All local label definitions within a macro are made unique for this macro

call (unless the macro label override operator is used, see below). This is

done by appending a unique postfix to every local label and removing the

leading '_', making the scope of the label local to the module. This

mechanism allows the programmer to freely use local labels within a

macro definition without regard to the number of times that the macro is

expanded.

Macro Operations 6–5

• • • • • • • •

Non-local labels are considered to be normal labels and thus cannot occur

more than once unless used with the SET directive (see Chapter 7,

Assembler Directives).

It is sometimes desirable to pass local labels as macro arguments to be

used within the macro as address references (e.g. MOVE #_LABEL,R0).

The assembler effectively disallows this, however, since underscore label

references within a macro invocation are regarded as labels local to that

expansion of the macro. If the macro label override operator (^) precedes

an underscore label the label will not be made unique by appending the

unique postfix and removing the leading '_'.

Example

The macro:

N_R_MUL MACRO NMUL,AVEC,BVEC,OFFSET,RESULT ;header
 MOVE #AVEC,R0 ;body
 MOVE #BVEC,R4
 MOVE #OFFSET+^RESULT,R1
 MOVE X:(R0)+,X0 Y:(R4)+,Y0
 DO #NMUL,_ENDLOOP
 MPY Y0,X0,A X:(R0)+,X0 Y:(R4)+,Y0
 MOVE A,X:(R1)+
_ENDLOOP
 ENDM ;terminator

Invoking this macro with:

 N_R_MUL $10,$100,$100,$10,_RESULT

expands to: (note the different handling of _ENDLOOP and _RESULT)

 MOVE #$100,R0
 MOVE #$100,R4
 MOVE #$10+_RESULT,R1
 MOVE X:(R0)+,X0 Y:(R4)+,Y0
 DO #$10,ENDLOOP_M_Z000001
 MPY Y0,X0,A X:(R0)+,X0 Y:(R4)+,Y0
 MOVE A,X:(R1)+
ENDLOOP_M_Z000001

Chapter 66–6
M
A
C
R
O
S

6.4 MACRO CALLS

When a macro is invoked the statement causing the action is termed a

macro call. The syntax of a macro call consists of the following fields:

[label] macro_name [arguments] [comment]

The argument field can have the form:

[arg[,arg]...]

The macro call statement is made up of three fields besides the comment

field: the label, if any, will correspond to the value of the location counter

at the start of the macro expansion; the operation field which contains the

macro name; and the operand field which contains substitutable

arguments. Within the operand field each calling argument of a macro call

corresponds one-to-one with a dummy argument of the macro definition.

For example, the N_R_MUL macro defined earlier could be invoked for

expansion (called) by the statement:

N_R_MUL CNT+1,VEC1,VEC2,BASE,OUT

where the operand field arguments, separated by commas and taken left to

right, correspond to the dummy arguments "NMUL" through "RESULT",

respectively. These arguments are then substituted in their corresponding

positions of the definition to produce a sequence of instructions.

Macro arguments consist of sequences of characters separated by commas.

Although these can be specified as quoted strings, to simplify coding the

assembler does not require single quotes around macro argument strings.

However, if an argument has an embedded comma or space, that

argument must be surrounded by single quotes ('). An argument can be

declared null when calling a macro. However, it must be declared

explicitly null. Null arguments can be specified in four ways:

- by writing the delimiting commas in succession with no intervening

spaces;

- by terminating the argument list with a comma and omitting the rest

of the argument list;

- by declaring the argument as a null string;

- by simply omitting some or all of the arguments.

Macro Operations 6–7

• • • • • • • •

A null argument will cause no character to be substituted in the generated

statements that reference the argument. If more arguments are supplied in

the macro call than appear in the macro definition, a warning will be

issued by the assembler.

6.5 DUMMY ARGUMENT OPERATORS

The assembler macro processor provides for text substitution of arguments

during macro expansion. In order to make the argument substitution

facility more flexible, the assembler also recognizes certain text operators

within macro definitions which allow for transformations of the argument

text. These operators can be used for text concatenation, numeric

conversion, and string handling.

6.5.1 DUMMY ARGUMENT CONCATENATION

OPERATOR - \

Dummy arguments that are intended to be concatenated with other

characters must be preceded by the concatenation operator, '\' to separate

them from the rest of the characters. The argument may precede or follow

the adjoining text, but there must be no intervening blanks between the

concatenation operator and the rest of the characters. To position an

argument between two alphanumeric characters, place a backslash both

before and after the argument name. For example, consider the following

macro definition:

SWAP_REG MACRO REG1,REG2 ;swap REG1,REG2
 MOVE R\REG1,X0 ;using X0 as temp
 MOVE R\REG2,R\REG1
 MOVE X0,R\REG2
 ENDM

If this macro were called with the following statement,

 SWAP_REG 0,1

Chapter 66–8
M
A
C
R
O
S

then for the macro expansion, the macro processor would substitute the

character 0 for the dummy argument REG1, and the character 1 for the

dummy argument REG2. The concatenation operator (\) indicates to the

macro processor that the substitution characters for the dummy arguments

are to be concatenated in both cases with the character R. The resulting

expansion of this macro call would be:

MOVE R0,X0
MOVE R1,R0
MOVE X0,R1

6.5.2 RETURN VALUE OPERATOR - ?

Another macro definition operator is the question mark (?) that returns the

value of a symbol. When the macro processor encounters this operator,

the ?symbol sequence is converted to a character string representing the

decimal value of the symbol. For example, consider the following

modification of the SWAP_REG macro described above:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2
 MOVE R\ ?REG1,X0 ;using X0 as temp
 MOVE R\ ?REG2,R\ ?REG1
 MOVE X0,R\ ?REG2
 ENDM

If the source file contained the following SET statements and macro call,

AREG SET 0
BREG SET 1
 SWAP_SYM AREG,BREG

then the sequence of events would be as follows: the macro processor

would first substitute the characters AREG for each occurrence of REG1

and BREG for each occurrence of REG2. For discussion purposes (this

would never appear on the source listing), the intermediate macro

expansion would be:

MOVE R\ ?AREG,X0
MOVE R\ ?BREG,R\?AREG
MOVE X0,R\ ?BREG

Macro Operations 6–9

• • • • • • • •

The macro processor would then replace ?AREG with the character 0 and

?BREG with the character 1, since 0 is the value of the symbol AREG and

1 is the value of BREG. The resulting intermediate expansion would be:

MOVE R\0,X0
MOVE R\1,R\0
MOVE X0,R\1

Next, the macro processor would apply the concatenation operator (\),

and the resulting expansion as it would appear on the source listing would

be:

MOVE R0,X0
MOVE R1,R0
MOVE X0,R1

6.5.3 RETURN HEX VALUE OPERATOR - %

The percent sign (%) is similar to the standard return value operator

except that it returns the hexadecimal value of a symbol. When the macro

processor encounters this operator, the %symbol sequence is converted to

a character string representing the hexadecimal value of the symbol.
Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\ %VAL STMT
 ENDM

This macro generates a label consisting of the concatenation of the label

prefix argument and a value that is interpreted as hexadecimal. If this

macro were called as follows,

NUM SET 10
 GEN_LAB HEX,NUM,’NOP’

the macro processor would first substitute the characters HEX for LAB,

then it would replace %VAL with the character A, since A is the

hexadecimal representation for the decimal integer 10. Next, the macro

processor would apply the concatenation operator (\). Finally, the string

'NOP' would be substituted for the STMT argument. The resulting

expansion as it would appear in the listing file would be:

HEXA NOP

Chapter 66–10
M
A
C
R
O
S

The percent sign is also the character used to indicate a binary constant. If

a binary constant is required inside a macro it may be necessary to enclose

the constant in parentheses or escape the constant by following the

percent sign by a backslash (\).

6.5.4 DUMMY ARGUMENT STRING OPERATOR - "

Another dummy argument operator is the double quote ("). This character

is replaced with a single quote by the macro processor, but following

characters are still examined for dummy argument names. The effect in the

macro call is to transform any enclosed dummy arguments into literal

strings. For example, consider the following macro definition:

STR_MAC MACRO STRING
 DC ” STRING”
 ENDM

If this macro were called with the following macro expansion line,

 STR_MAC ABCD

then the resulting macro expansion would be:

 DC ’ABCD’

Double quotes also make possible DEFINE directive expansion within

quoted strings. Because of this overloading of the double quotes, care

must be taken to insure against inappropriate expansions in macro

definitions. Since DEFINE expansion occurs before macro substitution,

any DEFINE symbols are replaced first within a macro dummy argument

string:

 DEFINE LONG ’short’
STR_MAC MACRO STRING
 MSG ’This is a LONG STRING’
 MSG ” This is a LONG STRING ”
 ENDM

If this macro were invoked as follows,

 STR_MAC sentence

Macro Operations 6–11

• • • • • • • •

then the resulting expansion would be:

MSG ’This is a LONG STRING’
MSG ’This is a short sentence’

6.5.5 MACRO LOCAL LABEL OVERRIDE OPERATOR - ^

It may be desirable to pass a local label as a macro argument to be used as

an address reference within the macro body. If a circumflex (^) precedes

an underscore operator than the macro preprocessor will not perform any

name mangling on that label so the label is used literally in the resulting

macro expansion. Here is an example:

LOAD MACRO ADDR
 MOVE P: ^ADDR,R0
 ENDM

The macro ^-operator prevents name mangling on the ADDR argument if

the argument has a leading underscore. If there is no leading underscore

on the actual argument the the ^-operator has no effct. Consider the

following macro call:

_LOCAL LOAD _LOCAL

Without the local label override in the macro definition the macro LOAD

would expand to the something like this:

_LOCAL
 MOVE P:LOCAL_M_Z000001,R0

This would result in an assembly error as the label LOCAL_M_Z000001 is
nowhere defined. With the local label override in the macro definition (as

shown above) the macro LOAD would expand, as expected, to this:

_LOCAL
 MOVE P:_LOCAL,R0

This will assemble correctly.

After macro expansion the normal scoping rules on local labels still apply.

So, when the following macro is defined:

Chapter 66–12
M
A
C
R
O
S

ERROR MACRO ADDR
_LABEL
 MOVE P:^ADDR,R0
 ENDM

And that macro is used in the following way:

_LABEL
 MOVE R0,A
 ERROR _LOCAL

The resulting program, after macro expansion, would be something like

this:

_LOCAL
 MOVE R0,A
LABEL_M_Z000002:
 MOVE P:_LOCAL,R0

Which is an incorrect program as the name mangled macro label hides the

definition of _LOCAL to the second MOVE statement. This results in an

assembly error.

6.6 DUP, DUPA, DUPC, DUPF DIRECTIVES

The DUP, DUPA, DUPC, and DUPF directives are specialized macro

forms. They can be thought of as a simultaneous definition and call of an

unnamed macro. The source statements between the DUP, DUPA, DUPC,

and DUPF directives and the ENDM directive follow the same rules as

macro definitions, including (int the case of DUPA, DUPC, and DUPF) the

dummy operator characters described previously.

For a detailed description of these directives, refer to Chapter 7, Assembler
Directives.

Macro Operations 6–13

• • • • • • • •

6.7 CONDITIONAL ASSEMBLY

Conditional assembly facilitates the writing of comprehensive source

programs that can cover many conditions. Assembly conditions may be

specified through the use of arguments in the case of macros, and through

definition of symbols via the DEFINE, SET, and EQU directives. Variations

of parameters can then cause assembly of only those parts necessary for

the given conditions. The built-in functions of the assembler provide a

versatile means of testing many conditions of the assembly environment

See section 5.4 for more information on the assembler built-in functions.

Conditional directives can also be used within a macro definition to ensure

at expansion time that arguments fall within a range of allowable values.

In this way macros become self-checking and can generate error messages

to any desired level of detail.

The conditional assembly directive IF has the following form:

IF expression
 .
 .
[ELSE] ;(the ELSE directive is optional)
 .
 .
ENDIF

A section of a program that is to be conditionally assembled must be

bounded by an IF-ENDIF directive pair. If the optional ELSE directive is

not present, then the source statements following the IF directive and up

to the next ENDIF directive will be included as part of the source file

being assembled only if the expression had a nonzero result. If the

expression has a value of zero, the source file will be assembled as if those

statements between the IF and the ENDIF directives were never

encountered. If the ELSE directive is present and expression has a nonzero

result, then the statements between the IF and ELSE directives will be

assembled, and the statement between the ELSE and ENDIF directives will

be skipped. Alternatively, if expression has a value of zero, then the

statements between the IF and ELSE directives will be skipped, and the

statements between the ELSE and ENDIF directives will be assembled.

Chapter 66–14
M
A
C
R
O
S

7

ASSEMBLER
DIRECTIVES

C
H

A
P

T
E

R

Chapter 77–2
D
IR
E
C
T
IV
E
S

7

C
H

A
P

T
E

R

Assembler Directives 7–3

• • • • • • • •

7.1 OVERVIEW

Assembler directives, or pseudo instructions, are used to control the

assembly process. Rather than being translated into a DSP56xxx machine

instruction, assembler directives are interpreted by the assembler. The

directives perform actions such as assembly control, listing control,

defining symbols or changing the location counter. Upper and lower case

letters are considered equivalent for assembler directives.

There are some implementation differences between the TASKING

DSP56xxx assembler and the Motorola CLAS assembler as described in the

Appendix Migration from Motorola CLAS. The following directives are

new:

ALIGN - Specify alignment

EXTERN - Declare extern symbols

SYMB - Pass high-level language debug information to the object

file

CALLS - Pass call information to object file. Used to build a call

tree at link time for overlaying overlay sections.

VOID - Control DO loop optimization.

Assembler directives can be grouped by function into eight types:

1. Debugging

2. Assembly control

3. Symbol definition

4. Data definition/storage allocation

5. Listing control and options

6. Object file control

7. Macros and conditional assembly

8. Structured programming

Chapter 77–4
D
IR
E
C
T
IV
E
S

7.1.1 DEBUGGING

The compiler generates the following directives to pass high level

language symbolic debug information via the assembler into the object

file:

CALLS - Pass call information to object file. Used to build a call

tree at link time for overlaying overlay sections.

SYMB - Pass symbolic debug information

7.1.2 ASSEMBLY CONTROL

The directives used for assembly control are:

ALIGN - Specify alignment

COMMENT - Start comment lines. This directive is not permitted in

IF/ELSE/ENDIF constructs and MACRO/DUP definitions.

DEFINE - Define substitution string

END - End of source program

FAIL - Programmer generated error message

FORCE - Set operand forcing mode

HIMEM - Accepted for compatibility and ignored

INCLUDE - Include secondary file

LOMEM - Accepted for compatibility and ignored

MODE - Accepted for compatibility. A warning is issued when

it is used.

MSG - Programmer generated message

ORG - Initialize memory space and location counters. The

syntax of the ORG directive is extended for type

checking. The overlay specification part of the ORG

directive is accepted for compatibility. When it is

supplied the assembler issues a warning.

RADIX - Change input radix for constants

RDIRECT - Accepted for compatibility and ignored

SCSJMP - Set structured control branching mode

Assembler Directives 7–5

• • • • • • • •

SCSREG - Reassign structured control statement register

UNDEF - Undefine DEFINE symbol

VOID - Control DO loop optimization

WARN - Programmer generated warning

7.1.3 SYMBOL DEFINITION

The directives used to control symbol definition are:

ENDSEC - End section

EQU - Equate symbol to a value; accepts forward references

EXTERN - External symbol declaration; also permitted in module

body

GLOBAL - Global symbol declaration; also permitted in module

body

GSET - Set global symbol to a value; accepts forward references

LOCAL - Local symbol declaration

SECTION - Start section. Section scoping is resolved on module basis

by the assembler and not on program basis by the linker.

The results may differ from those with the Motorola CLAS

assembler.

SET - Set symbol to a value; accepts forward references

XDEF - The assembler treats this directive as GLOBAL directive.

A warning is issued when the XDEF directive is used.

XREF - The assembler treats this directive as EXTERN directive.

A warning is issued when the XREF directive is used.

7.1.4 DATA DEFINITION/STORAGE ALLOCATION

The directives used to control constant data definition and storage

allocation are:

BADDR - Set buffer address

BSB - Block storage bit-reverse

BSC - Block storage of constant

Chapter 77–6
D
IR
E
C
T
IV
E
S

BSM - Block storage modulo

BUFFER - Start buffer

DC - Define constant

DCB - Define constant byte

DS - Define storage

DSM - Define modulo storage

DSR - Define reverse carry storage

ENDBUF - End buffer

7.1.5 LISTING CONTROL AND OPTIONS

The directives used to control the output listing are:

LIST - List the assembly

LSTCOL - Accepted for compatibility and ignored

NOLIST - Stop assembly listing

OPT - Assembler options. Not all options of the OPT directive

are supported due to the different architecture of the

TASKING assembler. Options that are not recognized are

ignored.

PAGE - Top of page/size page

PRCTL - Send control string to printer

STITLE - Initialize program subtitle

TABS - Set listing tab stops

TITLE - Initialize program title

7.1.6 OBJECT FILE CONTROL

The following object file control directives are not supported. A warning is

issued when the assembler encounters them in the input file.

COBJ - Accepted for compatibility

IDENT - Accepted for compatibility

Assembler Directives 7–7

• • • • • • • •

SYMOBJ - Accepted for compatibility

7.1.7 MACROS AND CONDITIONAL ASSEMBLY

The directives used for macros and conditional assembly are:

DUP - Duplicate sequence of source lines

DUPA - Duplicate sequence with arguments

DUPC - Duplicate sequence with characters

DUPF - Duplicate sequence in loop

ENDIF - End of conditional assembly

ENDM - End of macro definition

EXITM - Exit macro

IF - Conditional assembly directive

MACLIB - Accepted for compatibility and ignored

MACRO - Macro definition

PMACRO - Purge macro definition

7.1.8 STRUCTURED PROGRAMMING

The directives used for structured programming are:

.BREAK - Exit from structured loop construct

.CONTINUE - Continue next iteration of structured loop

.ELSE - Perform following statements when .IF false

.ENDF - End of .FOR loop

.ENDI - End of .IF condition

.ENDL - End of hardware loop

.ENDW - End of .WHILE loop

.FOR - Begin .FOR loop

.IF - Begin .IF condition

.LOOP - Begin hardware loop

Chapter 77–8
D
IR
E
C
T
IV
E
S

.REPEAT - Begin .REPEAT loop

.UNTIL - End of .REPEAT loop

.WHILE - Begin .WHILE loop

7.2 DIRECTIVES

The rest of this chapter contains individual descriptions of each of the

assembler directives, listed alphabetically. They include usage guidelines,

functional descriptions, and examples. Some directives require a label

field, while in many cases a label is optional. If the description of an

assembler directive does not indicate a mandatory or optional label field,

then a label is not allowed on the same line as the directive.

Structured programming directives are discussed separately in Chapter 8,

Structured Control Statements.

Assembler Directives 7–9

• • • • • • • •

ALIGN

Syntax:

ALIGN expression

ALIGN CACHE (as563 only)

Description:

Align the location counter. The expression must be represented by a value

of 2k. The default alignment is on a multiple of 1 word. expression must

be greater than 0. If expression is not a value of 2k, a warning is issued

and the alignment will be set to the next 2k value. Alignment will be

performed once at the place where you write the align pseudo. The start

of a section is aligned automatically to the largest alignment value

occurring in that section.

With ALIGN CACHE the as563 assembler aligns the current location on a

code cache boundary. The assembler inserts a gap at the start of the

section so that the current location is aligned on a cache boundary. This

alignment can only be done once per section.

Modulo- and reverse-carry buffers must be aligned on an address that

equals to the first power of 2 greater than or equal to the given buffer

expression. For example:

Directive Aligns on

dsm $20 $20 (2^5)
dsr $102 $200 (2^9)

Depending on the section type the assembler has two cases for these

directives:

- Relocatable sections

The section will be aligned on the calculated alignment boundary. A

gap is generated depending on the current relative location counter

for this section.

- Absolute sections

The section location is not changed.

A gap is generated according to the current absolute address.

Chapter 77–10
D
IR
E
C
T
IV
E
S

Examples:

ALIGN 4 ;align at 4 words
lab1: ALIGN 6 ;not a 2 k value.
 ;a warning is issued
 ;lab1 is aligned on 8 words

DSP563xx only:

ALIGN CACHE ;align on code cache boundary

Assembler Directives 7–11

• • • • • • • •

BADDR

Syntax:

BADDR {M | R},expression

Description:

Set buffer address. The BADDR directive sets the run-time location

counter to the address of a buffer of the give type, the length of which in

words is equal to the value of expression. The buffer type may be either

Modulo or Reverse-carry. If the run-time location counter is not zero, this

directive first advances the run-time location counter to a base address

that is a multiple of 2k, where 2k>=expression. An error will be issued if

there is insufficient memory remaining to establish a valid base address.

Unlike other buffer allocation directives, the run-time location counter is

not advanced by the value of the integer expression in the operand field;

the location counter remains at the buffer base address. The block of

memory intended for the buffer is not initialized to any value.

The result of expression may have any memory space attribute but must be

an absolute integer greater than zero and cannot contain any forward

references to address labels (labels that have not yet been defined). If a

Modulo buffer is specified, the expression must fall within the range 2 <=

expression <= m, where m is the maximum address of the target DSP. If a

Reverse-carry buffer is designated and expression is not a power of two a

warning will be issued.

A label is not allowed with this directive.

Examples:

 ORG X:$100
 BADDR M,24 ;Circular buffer MOD 24
M_BUF DS 24

BSM, BSB, BUFFER, DSM, DSR

Chapter 77–12
D
IR
E
C
T
IV
E
S

BSB

Syntax:

[label] BSB expression[,expression]

Description:

Block Storage Bit-Reverse. The BSB directive causes the assembler to

allocate and initialize a block of words for a reverse-carry buffer. The

number of words in the block is given by the first expression, which must

evaluate to an absolute integer. Each word is assigned the initial value of

the second expression. If there is no second expression, an initial value of

zero is assumed. If the run-time location counter is not zero, this directive

first advances the run-time location counter to a base address that is a

multiple of 2k, where 2k is greater than or equal to the value of the first

expression. An error will occur if the first expression contains address

labels that are not yet defined (forward references) or if the expression has

a value of less than or equal to zero. Also, if the first expression is not a

power of two a warning will be generated. Both expressions can have any

memory space attribute.

label, if present, will be assigned the value of the run-time location

counter after a valid base address has been established.

Only one word of object code will be shown on the listing, regardless of

how large the first expression is. However, the run-time location counter

will be advanced by the number of words generated.

Examples:

BUFFER BSB BUFSIZ ;Initialize buffer to zeros

BSC, BSM, DC

Assembler Directives 7–13

• • • • • • • •

BSC

Syntax:

[label] BSC expression[,expression]

Description:

Block Storage of Constant. The BSC directive causes the assembler to

allocate and initialize a block of words. The number of words in the block

is given by the first expression, which must evaluate to an absolute

integer. Each word is assigned the initial value of the second expression. If

there is no second expression, an initial value of zero is assumed. If the

first expression contains address labels that are not yet defined (forward

references) or if the expression has a value of less than or equal to zero,

an error will be generated. Both expressions can have any memory space

attribute.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Only one word of object code will be shown on the listing, regardless of

how large the first expression is. However, the run-time location counter

will be advanced by the number of words generated.

Examples:

TOP equ $0F
BOTTOM equ $0A
aLabel BSC TOP–BOTTOM,$055

BSB, BSM, DC

Chapter 77–14
D
IR
E
C
T
IV
E
S

BSM

Syntax:

[label] BSM expression[,expression]

Description:

Block Storage Modulo. The BSM directive causes the assembler to allocate

and initialize a block of words for a modulo buffer. The number of words

in the block is given by the first expression, which must evaluate to an

absolute integer. Each word is assigned the initial value of the second

expression. If there is no second expression, an initial value of zero is

assumed. If the run-time location counter is not zero, this directive first

advances the run-time location counter to a base address that is a multiple

of 2k, where 2k is greater than or equal to the value of the first expression.

An error will occur if the first expression contains address labels that are

not yet defined (forward references), has a value of less than or equal to

zero, or falls outside the range 2 <= expression <= m, where m is the

maximum address of the target DSP. Both expressions can have any

memory space attribute.

label, if present, will be assigned the value of the run-time location

counter after a valid base address has been established.

Only one word of object code will be shown on the listing, regardless of

how large the first expression is. However, the run-time location counter

will be advanced by the number of words generated.

Examples:

BUFFER BSM BUFSIZ,$FFFFFFFF
 ;Initialize buffer to all ones

BSB, BSC, DC

Assembler Directives 7–15

• • • • • • • •

BUFFER

Syntax:

BUFFER {M | R},expression

Description:

Start Buffer. The BUFFER directive indicates the start of a buffer of the

given type. Data is allocated for the buffer until an ENDBUF directive is

encountered. Instructions and most data definition directives may appear

between the BUFFER and ENDBUF pair, although BUFFER directives may

not be nested and certain types of directives such as ORG, SECTION, and

other buffer allocation directives may not be used. The expression
represents the buffer size. If less data is allocated than the size of the

buffer, the remaining buffer locations will be uninitialized. If more data is

allocated than the specified size of the buffer, an error is issued.

The BUFFER directive sets the run-time location counter to the address of

a buffer of the given type, the length of which in words is equal to the

value of expression. The buffer type may be either Modulo or

Reverse-carry. If the run-time location counter is not zero, this directive

first advances the run-time location counter to a base address that is a

multiple of 2k, where 2k >= expression. An error will be issued if there is

insufficient memory remaining to establish a valid base address. Unlike

other buffer allocation directives, the run-time location counter is not

advanced by the value of the integer expression in the operand field; the

location counter remains at the buffer base address.

The result of expression may have any memory space attribute but must be

an absolute integer greater than zero and cannot contain any forward

references to address labels (labels that have not yet been defined). If a

Modulo buffer is specified, the expression must fall within the range 2 <=

expression <= m, where m is the maximum address of the target DSP. If a

Reverse-carry buffer is designated and expression is not a power of two a

warning will be issued.

For example:

Directive Aligns on

dsm $20 $20 (2^5)
dsr $102 $200 (2^9)

Chapter 77–16
D
IR
E
C
T
IV
E
S

Depending on the section type the assembler has two cases for these

directives.

- Relocatable sections

The section will be aligned on the calculated alignment boundary. A

gap is generated depending on the current relative location counter

for this section.

- Absolute sections

The section location is not changed.

A gap is generated according to the current absolute address.

A label is not allowed with this directive.

Examples:

 ORG X:$100
 BUFFER M,24 ;Circular buffer MOD 24
M_BUF DC 0.5,0.5,0.5,0.5
 DS 20 ;Remainder uninitialized
 ENDBUF

BADDR, BSM, BSB, DSM, DSR, ENDBUF

Assembler Directives 7–17

• • • • • • • •

CALLS

Syntax:

CALLS 'caller', 'callee' [, 'callee']...

Description:

Create a flow graph reference between caller and callees. The linker needs

this information to build a flow graph, which steers the overlay algorithm.

caller and callee are names of functions.

The CALLS directive should be used in hand coded assembly when the

assembly code calls a C function. Make sure that the hand coded CALLS

directive connects to the compiler generated call graph, i.e. the name of

the caller must also be named as a callee in another CALLS directive.

Examples:

CALLS ’main’, ’nfunc’

Chapter 77–18
D
IR
E
C
T
IV
E
S

COMMENT

Syntax:

COMMENT delimiter
.

.

delimiter

Description:

Start Comment Lines. The COMMENT directive is used to define one or

more lines as comments. The first non-blank character after the

COMMENT directive is the comment delimiter. The two delimiters are

used to define the comment text. The line containing the second comment

delimiter will be considered the last line of the comment. The comment

text can include any printable characters and the comment text will be

produced in the source listing as it appears in the source file.

A label is not allowed with this directive.

This directive is not permitted in IF/ELSE/ENDIF constructs and

MACRO/DUP definitions.

Examples:

COMMENT + This is a one line comment +
COMMENT * This is a multiple line
 comment. Any number of lines
 can be placed between the two
 delimiters.
 *

Assembler Directives 7–19

• • • • • • • •

DC

Syntax:

[label] DC arg[,arg]...

Description:

Define Constant. The DC directive allocates and initializes a word of

memory for each arg argument. arg may be a numeric constant, a single

or multiple character string constant, a symbol, or an expression. The DC

directive may have one or more arguments separated by commas. Multiple

arguments are stored in successive address locations. If multiple arguments

are present, one or more of them can be null (two adjacent commas), in

which case the corresponding address location will be filled with zeros. If

the DC directive is used in L memory, the arguments will be evaluated and

stored as long word quantities. Otherwise, an error will occur if the

evaluated argument value is too large to represent in a single DSP word.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Integer arguments are stored as is; floating point numbers are converted to

binary values. Single and multiple character strings are handled in the

following manner:

1. Single character strings are stored in a word whose lower seven bits

represent the ASCII value of the character.

Example: ’R’ = $000052

2. Multiple character strings represent words whose bytes are composed of

concatenated sequences of the ASCII representation of the characters in

the string (unless the NOPS option is specified; see the OPT directive). If

the number of characters is not an even multiple of the number of bytes

per DSP word, then the last word will have the remaining characters left

aligned and the rest of the word will be zero-filled. If the NOPS option is

given, each character in the string is stored in a word whose lower seven

bits represent the ASCII value of the character.

Example:

’ABCD’ = $414243
 $440000

Chapter 77–20
D
IR
E
C
T
IV
E
S

Examples:

TABLE DC 1426,253,$2662,’ABCD’
CHARS DC ’A’,’B’,’C’,’D’

BSC, DCB

Assembler Directives 7–21

• • • • • • • •

DCB

Syntax:

[label] DCB arg[,arg]...

Description:

Define Constant Byte. The DCB directive allocates and initializes a byte of

memory for each arg argument. arg may be a byte integer constant, a

single or multiple character string constant, a symbol, or a byte expression.

The DCB directive may have one or more arguments separated by

commas. Multiple arguments are stored in successive byte locations. If

multiple arguments are present, one or more of them can be null (two

adjacent commas), in which case the corresponding byte location will be

filled with zeros.

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Integer arguments are stored as is, but must be byte values (e.g. within the

range 0-255); floating point numbers are not allowed. Single and multiple

character strings are handled in the following manner:

1. Single character strings are stored in a word whose lower seven bits

represent the ASCII value of the character.

Example: ’R’ = $000052

2. Multiple character strings represent words whose bytes are composed of

concatenated sequences of the ASCII representation of the characters in

the string (unless the NOPS option is specified; see the OPT directive). If

the number of characters is not an even multiple of the number of bytes

per DSP word, then the last word will have the remaining characters left

aligned and the rest of the word will be zero-filled. If the NOPS option is

given, each character in the string is stored in a word whose lower seven

bits represent the ASCII value of the character.

Example:

’AB’,,’CD’ = $414200
 $434400

Chapter 77–22
D
IR
E
C
T
IV
E
S

Examples:

TABLE DCB ’two’,0,’strings’,0
CHARS DCB ’A’,’B’,’C’,’D’

BSC, DC

Assembler Directives 7–23

• • • • • • • •

DEFINE

Syntax:

DEFINE symbol string

Description:

Define Substitution String. The DEFINE directive is used to define

substitution strings that will be used on all following source lines. All

succeeding lines will be searched for an occurrence of symbol, which will

be replaced by string. This directive is useful for providing better

documentation in the source program. symbol must adhere to the

restrictions for non-local labels. That is, the first of which must be

alphabetic, and the remainder of which must be either alphanumeric or

the underscore (_). A warning will result if a new definition of a

previously defined symbol is attempted.

Macros represent a special case. DEFINE directive translations will be

applied to the macro definition as it is encountered. When the macro is

expanded any active DEFINE directive translations will again be applied.

DEFINE directive symbols that are defined within a section will only apply

to that section. See the SECTION directive.

A label is not allowed with this directive.

Examples:

If the following DEFINE directive occurred in the first part of the source

program:

DEFINE ARRAYSIZ ’10 * SAMPLSIZ’

then the source line below:

DS ARRAYSIZ

would be transformed by the assembler to the following:

DS 10 * SAMPLSIZ

UNDEF

Chapter 77–24
D
IR
E
C
T
IV
E
S

DS

Syntax:

[label] DS expression

Description:

Define Storage. The DS directive reserves a block of memory the length of

which in words is equal to the value of expression. This directive causes

the run-time location counter to be advanced by the value of the absolute

integer expression in the operand field. expression can have any memory

space attribute. The block of memory reserved is not initialized to any

value. The expression must be an integer greater than zero and cannot

contain any forward references to address labels (labels that have not yet

been defined).

label, if present, will be assigned the value of the run-time location

counter at the start of the directive processing.

Examples:

S_BUF DS 12 ; Sample buffer

DSM, DSR

Assembler Directives 7–25

• • • • • • • •

DSM

Syntax:

[label] DSM expression

Description:

Define Modulo Storage. The DSM directive reserves a block of memory

the length of which in words is equal to the value of expression. If the

run-time location counter is not zero, this directive first advances the

run-time location counter to a base address that is a multiple of 2k, where

2k >= expression. An error will be issued if there is insufficient memory

remaining to establish a valid base address. Next the run-time location

counter is advanced by the value of the integer expression in the operand

field. expression can have any memory space attribute. The block of

memory reserved is not initialized to any given value. The result of

expression must be an absolute integer greater than zero and cannot

contain any forward references to address labels (labels that have not yet

been defined). The expression also must fall within the range 2 <=

expression <= m, where m is the maximum address of the target DSP.

For example:

dsm $20 ; aligns on $20 (2^5)

Depending on the section type the assembler has two cases for this

directive.

- Relocatable sections

The section will be aligned on the calculated alignment boundary. A

gap is generated depending on the current relative location counter

for this section.

- Absolute sections

The section location is not changed.

A gap is generated according to the current absolute address.

label, if present, will be assigned the value of the run-time location

counter after a valid base address has been established.

Chapter 77–26
D
IR
E
C
T
IV
E
S

Examples:

 ORG X:$100
M_BUF DSM 24 ; Circular buffer MOD 24

DS, DSR

Assembler Directives 7–27

• • • • • • • •

DSR

Syntax:

[label] DSR expression

Description:

Define Reverse Carry Storage. The DSR directive reserves a block of

memory the length of which in words is equal to the value of expression.

If the run-time location counter is not zero, this directive first advances the

run-time location counter to a base address that is a multiple of 2k, where

2k >= expression. An error will be issued if there is insufficient memory

remaining to establish a valid base address. Next the run-time location

counter is advanced by the value of the integer expression in the operand

field. expression can have any memory space attribute. The block of

memory reserved is not initialized to any given value. The result of

expression must be an absolute integer greater than zero and cannot

contain any forward references to address labels (labels that have not yet

been defined). Since the DSR directive is useful mainly for generating FFT

buffers, if expression is not a power of two a warning will be generated.

For example:

dsr $102 ; aligns on $200 (2^9)

Depending on the section type the assembler has two cases for this

directive.

- Relocatable sections

The section will be aligned on the calculated alignment boundary. A

gap is generated depending on the current relative location counter

for this section.

- Absolute sections

The section location is not changed.

A gap is generated according to the current absolute address.

label, if present, will be assigned the value of the run-time location

counter after a valid base address has been established.

Chapter 77–28
D
IR
E
C
T
IV
E
S

Examples:

 ORG X:$100
R_BUF DSR 8 ; Reverse carry buffer for
 ; 16 point FFT

DS, DSM

Assembler Directives 7–29

• • • • • • • •

DUP

Syntax:

[label] DUP expression
.

.

ENDM

Description:

Duplicate Sequence of Source Lines. The sequence of source lines

between the DUP and ENDM directives will be duplicated by the number

specified by the integer expression. expression can have any memory

space attribute. If the expression evaluates to a number less than or equal

to 0, the sequence of lines will not be included in the assembler output.

The expression result must be an absolute integer and cannot contain any

forward references to address labels (labels that have not already been

defined). The DUP directive may be nested to any level.

label, if present, will be assigned the value of the run-time location

counter at the start of the DUP directive processing.

Examples:

The sequence of source input statements,

COUNT SET 3
 DUP COUNT ; ASR BY COUNT
 ASR D0
 ENDM

would generate the following in the source listing:

COUNT SET 3
 DUP COUNT ; ASR BY COUNT
 ASR D0
 ASR D0
 ASR D0
 ENDM

Note that the lines

DUP COUNT ;ASR BY COUNT
ENDM

Chapter 77–30
D
IR
E
C
T
IV
E
S

will only be shown on the source listing if the MD option is enabled. The

lines

ASR D0
ASR D0
ASR D0

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and

MEX options.

DUPA, DUPC, DUPF, ENDM, MACRO

Assembler Directives 7–31

• • • • • • • •

DUPA

Syntax:

[label] DUPA dummy,arg[,arg]...

.

.

ENDM

Description:

Duplicate Sequence With Arguments. The block of source statements

defined by the DUPA and ENDM directives will be repeated for each

argument. For each repetition, every occurrence of the dummy parameter

within the block is replaced with each succeeding argument string. If the

argument string is a null, then the block is repeated with each occurrence

of the dummy parameter removed. If an argument includes an embedded

blank or other assembler-significant character, it must be enclosed with

single quotes.

label, if present, will be assigned the value of the run-time location

counter at the start of the DUPA directive processing.

Examples:

If the input source file contained the following statements,

DUPA VALUE,12,32,34
DC VALUE
ENDM

then the assembler source listing would show

DUPA VALUE,12,32,34
DC 12
DC 32
DC 34
ENDM

Note that the lines

DUPA VALUE,12,32,34
ENDM

will only be shown on the source listing if the MD option is enabled.

Chapter 77–32
D
IR
E
C
T
IV
E
S

The lines

DC 12
DC 32
DC 34

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and

MEX options.

DUP, DUPC, DUPF, ENDM, MACRO

Assembler Directives 7–33

• • • • • • • •

DUPC

Syntax:

[label] DUPC dummy,string

.

.

ENDM

Description:

Duplicate Sequence With Characters. The block of source statements

defined by the DUPC and ENDM directives will be repeated for each

character of string. For each repetition, every occurrence of the dummy

parameter within the block is replaced with each succeeding character in

the string. If the string is null, then the block is skipped.

label, if present, will be assigned the value of the run-time location

counter at the start of the DUPC directive processing.

Examples:

If the input source file contained the following statements,

DUPC VALUE,’123’
DC VALUE
ENDM

then the assembler source listing would show

DUPC VALUE,’123’
DC 1
DC 2
DC 3
ENDM

Note that the lines

DUPC VALUE,’123’
ENDM

will only be shown on the source listing if the MD option is enabled.

Chapter 77–34
D
IR
E
C
T
IV
E
S

The lines

DC 1
DC 2
DC 3

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and

MEX options.

DUP, DUPA, DUPF, ENDM, MACRO

Assembler Directives 7–35

• • • • • • • •

DUPF

Syntax:

[label] DUPF dummy,[start],end[,increment]
.

.

ENDM

Description:

Duplicate Sequence In Loop. The block of source statements defined by

the DUPF and ENDM directives will be repeated in general (end - start) +
1 ties when increment is 1. start is the starting value for the loop index;

end represents the final value. increment is the increment for the loop

index; it defaults to 1 if omitted (as does the start value). The dummy
parameter holds the loop index value and may be used within the body of

instructions.

label, if present, will be assigned the value of the run-time location

counter at the start of the DUPF directive processing.

Examples:

If the input source file contained the following statements,

DUPF NUM,0,7
MOVE #0,R\NUM
ENDM

then the assembler source listing would show

DUPF NUM,0,7
MOVE #0,R0
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7
ENDM

Chapter 77–36
D
IR
E
C
T
IV
E
S

Note that the lines

DUPF NUM,0,7
ENDM

will only be shown on the source listing if the MD option is enabled. The

lines

MOVE #0,R0
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and

MEX options.

DUP, DUPA, DUPC, ENDM, MACRO

Assembler Directives 7–37

• • • • • • • •

END

Syntax:

END [expression]

Description:

End of Source Program. The optional END directive indicates that the

logical end of the source program has been encountered. The expression
is only permitted here for compatibility reasons. It is ignored during

assembly. The END directive cannot be used in a macro expansion.

A label is not allowed with this directive.

Examples:

END ;End of source program

Chapter 77–38
D
IR
E
C
T
IV
E
S

ENDBUF

Syntax:

ENDBUF

Description:

End Buffer. The ENDBUF directive is used to signify the end of a buffer

block. The run-time location counter will remain just beyond the end of

the buffer when the ENDBUF directive is encountered.

A label is not allowed with this directive.

Examples:

 ORG :$100
BUF BUFFER R,64 ;uninitialized
 ;reverse–carry buffer
 ENDBUF

BUFFER

Assembler Directives 7–39

• • • • • • • •

ENDIF

Syntax:

ENDIF

Description:

End Of Conditional Assembly. The ENDIF directive is used to signify the

end of the current level of conditional assembly. Conditional assembly

directives can be nested to any level, but the ENDIF directive always

refers to the most previous IF directive.

A label is not allowed with this directive.

Examples:

IF DEB
DEBUG ;Enter debug mode
ENDIF

IF

Chapter 77–40
D
IR
E
C
T
IV
E
S

ENDM

Syntax:

ENDM

Description:

End of Macro Definition. Every MACRO, DUP, DUPA, and DUPC directive

must be terminated by an ENDM directive.

A label is not allowed with this directive.

Examples:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2
 MOVE R\?REG1,X0 ;using X0 as temp
 MOVE R\?REG2,R\?REG1
 MOVE X0,R\?REG2
 ENDM

DUP, DUPA, DUPC, MACRO

Assembler Directives 7–41

• • • • • • • •

ENDSEC

Syntax:

ENDSEC

Description:

End Section. Every SECTION directive must be terminated by an ENDSEC

directive.

A label is not allowed with this directive.

Examples:

 SECTION COEFF
 ORG Y:
VALUES BSC $100 ;Initialize to zero
 ENDSEC

SECTION

Chapter 77–42
D
IR
E
C
T
IV
E
S

EQU

Syntax:

label EQU [{X: | Y: | L: | P: | E:}]expression

Description:

Equate Symbol to a Value. The EQU directive assigns the value and

memory space attribute of expression to the symbol label. If expression has

a memory space attribute of None, then it can optionally be preceded by

any of the indicated memory space qualifiers to force a memory space

attribute. An error will occur if the expression has a memory space

attribute other than None and it is different than the forcing memory space

attribute. The optional forcing memory space attribute is useful to assign a

memory space attribute to an expression that consists only of constants but

is intended to refer to a fixed address in a memory space.

The EQU directive is one of the directives that assigns a value other than

the program counter to the label. The label cannot be redefined anywhere

else in the program (or section, if SECTION directives are being used).

The expression may be relative or absolute, and forward references are

allowed.

Examples:

A_D_PORT EQU X: $4000

This would assign the value $4000 with a memory space attribute of X to

the symbol A_D_PORT.

SET

Assembler Directives 7–43

• • • • • • • •

EXITM

Syntax:

EXITM

Description:

Exit Macro. The EXITM directive will cause immediate termination of a

macro expansion. It is useful when used with the conditional assembly

directive IF to terminate macro expansion when error conditions are

detected.

A label is not allowed with this directive.

Examples:

CALC MACRO XVAL,YVAL
 IF XVAL<0
 FAIL ’Macro parameter value out of range’
 EXITM ;Exit macro
 ENDIF
 .
 .
 .
 ENDM

DUP, DUPA, DUPC, MACRO

Chapter 77–44
D
IR
E
C
T
IV
E
S

EXTERN

Syntax:

EXTERN [(attrib[,attrib]...)] [mem:]symbol[,[mem:]symbol]...

Description:

External Symbol Declaration. The EXTERN directive is used to specify that

the list of symbols is referenced in the current module, but is not defined

within the current module. These symbols must either have been defined

outside of any module or declared as globally accessible within another

module using the GLOBAL directive.

The optional argument attrib can be one of the following symbol

attributes:

FAR symbol is long addressable (default)

NEAR symbol is short addressable

INTERN use internal busses (X, Y and program address

bus) to access extern memory (default)

EXTERN use external busses to access extern memory.

intern and extern only affect the cycle count

mem corresponds to one of the DSP memory spaces (X, Y, L, P, E).

If the EXTERN directive is not used to specify that a symbol is defined

externally and the symbol is not defined within the current module, a

warning is generated, and an EXTERN symbol is inserted.

A label is not allowed with this directive.

Examples:

SECTION FILER
EXTERN AA,CC,DD ;defined elsewhere
EXTERN (near) Y:EE ;short addressable external
 ;symbol in Y memory
 .
 .
 .
ENDSEC

GLOBAL, SECTION

Assembler Directives 7–45

• • • • • • • •

FAIL

Syntax:

FAIL [{str | exp}[,{str | exp}]...]

Description:

Programmer Generated Error. The FAIL directive will cause an error

message to be output by the assembler. The total error count will be

incremented as with any other error. The FAIL directive is normally used

in conjunction with conditional assembly directives for exceptional

condition checking. The assembly proceeds normally after the error has

been printed. An arbitrary number or strings and expressions, in any order

but separated by commas with no intervening white space, can be

specified optionally to describe the nature of the generated error.

A label is not allowed with this directive.

Examples:

FAIL ’Parameter out of range’

MSG, WARN

Chapter 77–46
D
IR
E
C
T
IV
E
S

FORCE

Syntax:

FORCE {NEAR | FAR | NONE}

Description:

Set Operand Forcing Mode. The FORCE directive causes the assembler to

force all immediate, memory, and address operands to the specified mode

as if an explicit forcing operator were used. Note that if a relocatable

operand value forced short is determined to be too large for the

instruction word, an error will occur at link time, not during assembly.

Explicit forcing operators override the effect of this directive.

For compatibility reasons the FORCE directive also accepts the arguments

SHORT instead of NEAR and LONG instead of FAR.

A label is not allowed with this directive.

Examples:

FORCE NEAR ;force operands short

<, >, #<, #>

Assembler Directives 7–47

• • • • • • • •

GLOBAL

Syntax:

GLOBAL symbol[,symbol]...

Description:

Global Section Symbol Declaration. The GLOBAL directive is used to

specify that the list of symbols is defined within the current section or

module, and that those definitions should be accessible by all sections.

This directive is not only valid if used within a program block bounded by

the SECTION and ENDSEC directives, but also valid within the module

body. If the symbols that appear in the operand field are not defined in

the section, an error will be generated. Symbols that are defined "global"

are accessible from other modules using the EXTERN directive.

A label is not allowed with this directive.

Examples:

SECTION IO
GLOBAL LOOPA ;LOOPA will be globally
. ;accessible by other sections
.
.
ENDSEC

EXTERN, LOCAL, SECTION

Chapter 77–48
D
IR
E
C
T
IV
E
S

GSET

Syntax:

label GSET expression

GSET label expression

Description:

Set Global Symbol to a Value. The GSET directive is used to assign the

value of the expression in the operand field to the label. The GSET

directive functions somewhat like the EQU directive. However, labels

defined via the GSET directive can have their values redefined in another

part of the program (but only through the use of another GSET or SET

directive). The GSET directive is useful for resetting a global GSET symbol

within a scope, where the SET symbol would otherwise be considered

local. The expression in the operand field of a GSET may have forward

references.

Examples:

COUNT GSET 0 ; Initialize COUNT

EQU, SET

Assembler Directives 7–49

• • • • • • • •

IF

Syntax:

IF expression
 ...

[ELSE] (the ELSE directive is optional)

 ...

ENDIF

Description:

Conditional Assembly. Part of a program that is to be conditionally

assembled must be bounded by an IF-ENDIF directive pair. If the optional

ELSE directive is not present, then the source statements following the IF

directive and up to the next ENDIF directive will be included as part of

the source file being assembled only if the expression has a nonzero result.

If the expression has a value of zero, the source file will be assembled as if

those statements between the IF and the ENDIF directives were never

encountered. If the ELSE directive is present and expression has a nonzero

result, then the statements between the IF and ELSE directives will be

assembled, and the statements between the ELSE and ENDIF directives

will be skipped. Alternatively, if expression has a value of zero, then the

statements between the IF and ELSE directives will be skipped, and the

statements between the ELSE and ENDIF directives will be assembled.

The expression must have an absolute integer result and is considered true

if it has a nonzero result. The expression is false only if it has a result of 0.

Because of the nature of the directive, expression must be known on pass

one (no forward references allowed). IF directives can be nested to any

level. The ELSE directive will always refer to the nearest previous IF

directive as will the ENDIF directive.

A label is not allowed with this directive.

Examples:

IF @LST>0
DUP @LST ; Unwind LIST directive stack
NOLIST
ENDM
ENDIF

ENDIF

Chapter 77–50
D
IR
E
C
T
IV
E
S

INCLUDE

Syntax:

INCLUDE string | <string>

Description:

Include Secondary File. This directive is inserted into the source program

at any point where a secondary file is to be included in the source input

stream. The string specifies the filename of the secondary file. The

filename must be compatible with the operating system and can include a

directory specification.

The file is searched for first in the current directory, unless the <string>

syntax is used, or in the directory specified in string. If the file is not

found, and the -I option was used on the command line that invoked the

assembler, then the string specified with the -I option is prefixed to string
and that directory is searched. If the <string> syntax is given, the file is

searched for only in the directories specified with the -I option.

A label is not allowed with this directive.

Examples:

INCLUDE ’headers/io.asm’ ; Unix example
INCLUDE ’storage\mem.asm’ ; PC example
INCLUDE <data.asm> ; Do not look in
 ; current directory

Assembler Directives 7–51

• • • • • • • •

LIST

Syntax:

LIST

Description:

List the Assembly. Print the listing from this point on. The LIST directive

will not be printed, but the subsequent source lines will be output to the

source listing. When the -l command line option has not been given, the

LIST directive has no effect.

The LIST directive actually increments a counter that is checked for a

positive value and is symmetrical with respect to the NOLIST directive.

Note the following sequence:

; Counter value currently 1
LIST ; Counter value = 2
LIST ; Counter value = 3
NOLIST ; Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was

issued.

A label is not allowed with this directive.

Examples:

IF LISTON
LIST ; Turn the listing back on
ENDIF

NOLIST

Chapter 77–52
D
IR
E
C
T
IV
E
S

LOCAL

Syntax:

LOCAL symbol[,symbol]...

Description:

Local Section Symbol Declaration. The LOCAL directive is used to specify

that the list of symbols is defined within the current section, and that those

definitions are explicitly local to that section or module. It is useful in

cases where a symbol may not be exported outside of the module (as

labels on module level are defined "global" by default). This directive is

not only valid if used within a program block bounded by the SECTION

and ENDSEC directives, but also valid within the module body. The

LOCAL directive must appear in the same scope as where symbol is
defined in the section. If the symbols that appear in the operand field are

not defined in the section, an error will be generated.

A label is not allowed with this directive.

Examples:

SECTION IO
LOCAL LOOPA ;LOOPA local to this section
.
.
ENDSEC

SECTION, GLOBAL

Assembler Directives 7–53

• • • • • • • •

MACRO

Syntax:

name MACRO [dummy_argument_list]
.

macro_definition_statements
.

.

ENDM

Description:

Macro Definition. The dummy argument list has the form:

[dumarg[,dumarg]...]

The required name is the symbol by which the macro will be called.

The definition of a macro consists of three parts: the header, which assigns

a name to the macro and defines the dummy arguments; the body, which

consists of prototype or skeleton source statements; and the terminator.

The header is the MACRO directive, its name, and the dummy argument

list. The body contains the pattern of standard source statements. The

terminator is the ENDM directive.

The dummy arguments are symbolic names that the macro processor will

replace with arguments when the macro is expanded (called). Each

dummy argument must obey the same rules as symbol names. Dummy

argument names that are preceded by an underscore are not allowed. In

the dummy argument list, the dummy arguments are separated by

commas. The dummy argument list is separated from the MACRO directive

by one or more blanks.

Macro definitions may be nested but the nested macro will not be defined

until the primary macro is expanded.

Chapter 6, Macro Operations, contains a complete description of macros.

Chapter 77–54
D
IR
E
C
T
IV
E
S

Examples:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2
 MOVE R\?REG1,X0 ;using X0 as temp
 MOVE R\?REG2,R\?REG1
 MOVE X0,R\?REG2
 ENDM

DUP, DUPA, DUPC, DUPF, ENDM

Assembler Directives 7–55

• • • • • • • •

MSG

Syntax:

MSG [{str | exp}[,{str | exp}]...]

Description:

Programmer Generated Message. The MSG directive will cause a message

to be output by the assembler. The error and warning counts will not be

affected. The MSG directive is normally used in conjunction with

conditional assembly directives for informational purposes. The assembly

proceeds normally after the message has been printed. An arbitrary

number of strings and expressions, in any order but separated by commas

with no intervening white space, can be specified optionally to describe

the nature of the message.

A label is not allowed with this directive.

Examples:

MSG ’Generating sine tables’

FAIL, WARN

Chapter 77–56
D
IR
E
C
T
IV
E
S

NOLIST

Syntax:

NOLIST

Description:

Stop Assembly Listing. Do not print the listing from this point on

(including the NOLIST directive). Subsequent source lines will not be

printed.

The NOLIST directive actually decrements a counter that is checked for a

positive value and is symmetrical with respect to the LIST directive. Note

the following sequence:

; Counter value currently 1
LIST ; Counter value = 2
LIST ; Counter value = 3
NOLIST ; Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was

issued.

A label is not allowed with this directive.

Examples:

IF LISTOFF
NOLIST ; Turn the listing off
ENDIF

LIST, OPT

Assembler Directives 7–57

• • • • • • • •

OPT

Syntax:

OPT option[,option]... [comment]

Description:

Assembler Options. The OPT directive is used to designate the assembler

options. Assembler options are given in the operand field of the source

input file and are separated by commas. For most options there is an

equivalent command line option (see Chapter 2). All options have a

default condition. Some options are reset to their default condition at the

end of pass one. All options can have the prefix NO attached to them,

which then reverses their meaning.

Options are read left-to-right, i.e. the rightmost takes precedence.

Options can be grouped by function into five different types:

1. Listing options

2. Parsing options

3. Code generation

4. Restriction handling

5. Optimizations

(module) means: last OPT directive counts

(flow) means: switchable on the fly, during parsing.

A label is not allowed with this directive.

Listing Options (module)

These options control what is reported in the listing file:

CC - Show cycle count

CPP - List cpp line information

CTRL - List controls

EMPTY - List empty lines

EQU - List equates

Chapter 77–58
D
IR
E
C
T
IV
E
S

HLL - List high level language debug information

MD - List macro/dup definitions

MEX - List macro/dup expansions

MU - List section summary

SDEF - List symbol definitions

SECT - List section directives

WRAP - List wrapped part of source line

Parsing Options (flow)

These options control the parsing of the assembler:

AE - Check address expressions (W123)

IC - Ignore case in symbol names (before any symbol

definition)

MSW - Warn on memory space incompatibilities (W124)

SVO - Preserve object file on errors (module)

UR - Flag unresolved references (W118)

W - Display warning messages

Wnum - Display warning message number num

Code Generation (module)

These options deal with code generation:

CACHE128 - Select code page size of 128 (as563 only)

CACHE256 - Select code page size of 256 (as563 only)

JMPABS - Select the absolute branch mode. (flow)

(as563 only)

JMPREL - Select the relative branch mode. (flow)

(as563 only)

PS - Pack strings

SBM - Create constant values for 16-bit mode

(as563 only)

XLL - Generate assembly level debug information

Assembler Directives 7–59

• • • • • • • •

Restriction Handling (module)

These options deal with pipeline restrictions:

RP - Remove all pipeline restrictions

RPDO - Remove DO/ENDDO pipeline restrictions

RPRN - Remove Rn, Nn and Mn pipeline restrictions

RPSP - Remove stack restrictions

Optimizations (module)

These options deal with assembler optimizations:

OP - Perform all optimizations

OPHLL - Move symbolic debug locations

OPJMP - Perform branch optimization

OPNOP - Remove NOP instructions (flow)

OPPM - Move parallelization

OPREP - Single instruction DO to REP (flow)

OPSP - Split parallel instruction before optimization

OPSPEED - Optimize for speed at the cost of code size

ORDER - Keep instructions in the same order (flow)

Detailed description of assembler options

Following are descriptions of the individual options. An option is specified

default if it is the behaviour of the assembler when you specify neither

the OPT option nor its corresponding command line option.

AE Check address expressions for appropriate arithmetic

operations. For example, this will check that only valid add

or subtract operations are performed on address terms. This

option is equivalent to W123.

CACHE128 Select code page size of 128 (as563 only).

CACHE256 Select code page size of 256 (as563 only).

CC Show cycle count (-LY).

CPP List source lines containing C preprocessor line information

(#line directives) (-LI).

Chapter 77–60
D
IR
E
C
T
IV
E
S

CTRL List source lines containing assembler controls (-LC, default).

EMPTY List empty source lines (-LN).

EQU List source lines containing assembler equates (lines with

EQU or '=') (-LQ, default).

HLL List high level language symbolic debug information (lines

with SYMB directive) (-LS).

IC Ignore case in symbol, section, and macro names. This

directive must be issued before any symbols, sections, or

macros are defined. (same as -c)

JMPABS Select the absolute branch mode (as563 only) (-Ja).

JMPREL Select the relative branch mode as563 only) (-Jr).

MD List macro/dup definitions (-LM, default).

MEX List macro/dup expansions (-LX, default).

MSW Issue warning on memory space incompatibilities. This

option is equivalent to W124.

MU List section summary. The size of each section is listed (-t).

NOAE Do not check address expressions. This option is equivalent

to NOW123 (-w123).

NOCC Hide cycle count (-Ly).

NOCPP Do not list source lines containing C preprocessor line

information (-Li, default).

NOCTRL Do not list source lines containing assembler controls (-Lc).

NOEMPTY Do not list empty source lines (-Ln, default).

NOEQU Do not list source lines containing assembler equates (-Lq).

NOHLL Do not list high level language symbolic debug information

(-Ls, default).

NOIC (default) Operate case sensitive in symbol, section, and

macro names. This directive must be issued before any

symbols, sections, or macros are defined.

Assembler Directives 7–61

• • • • • • • •

NOJMPABS (default) Default branch mode (as563 only).

NOJMPREL (default) Default branch mode (as563 only).

NOMD Do not list macro/dup definitions (-Lm).

NOMEX Do not list macro/dup expansions (-Lx).

NOMSW Do not issue warning on memory space incompatibilities.

This option is equivalent to NOW124 (-w124).

NOMU (default) Do not list section size summary.

NOOP Do not perform any optimizations (-OGJMNPRS). This is the

same as specifying NOOPHLL, NOOPJMP, NOOPNOP,

NOOPPM, NOOPSPEED, NOOPREP and NOOPSP.

NOOPHLL Retain symbolic debug locations (-OG, default).

NOOPJMP Do not perform branch optimization (-OJ, default).

NOOPNOP Do not perform NOP removal (-ON, default).

NOOPPM Do not perform parallel move optimization (-OM, default).

NOOPREP Do not perform single instruction DO to REP optimization

(-OR, default).

NOOPSP Do not split parallel move instructions before performing

optimizations (-OS, default).

NOOPSPEED

Do not perform speed optimization (-OP).

NOORDER End an instruction sequence started by ORDER.

NOPS Do not pack strings in DC and DCB directive. Individual

bytes in strings will be stored one byte per word.

NORP Do not generate instructions to accommodate pipeline delay

(-RDRS, default).

NORPDO Do not remove DO/ENDDO restrictions (-RD, default).

NORPRN Do not remove Rn, Nn, and Mn register restrictions (-RR,

default).

NORPSP Do not remove stack restrictions (-RS, default).

Chapter 77–62
D
IR
E
C
T
IV
E
S

NOSDEF Do not list source lines containing symbol definition

directives (-Le).

NOSECT Do not list source lines containing section directives (-Ld).

NOSVO Remove object file on errors. Normally any object file

produced by the assembler is preserved if errors occur during

assembly. This option must be given before any code or data

is generated (-e).

NOUR Do not flag unresolved external references. This option is

equivalent to NOW118 (-w118).

NOW Do not print warning messages (-w).

NOWnum Do not print warning message with number num (-wnum).

NOWRAP Do not list wrapped part of source lines (-Lw).

NOXLL (default) Do not generate assembly level debug information.

OP Perform all optimizations (-O). This is the same as specifying

OPHLL, OPJMP, OPNOP, OPPM, OPSPEED, OPREP and

NOOPSP.

OPHLL Move symbolic debug locations to perform better parallel

move optimization (-Og).

OPJMP Perform branch optimization (-Oj). The assembler tries to

replace branches with shorter or faster functionally equivalent

branches.

OPNOP Remove existing NOP instructions (-On).

OPPM Perform parallel move optimization (-Om).

OPREP Replace a single instruction DO loop with a REP instruction

(-Or).

OPSP Split parallel move instructions before performing

optimizations (-Os).

OPSPEED Optimize for speed at the cost of code size (-Op, default).

ORDER Mark the begin of an instruction sequence in which the

instructions must be kept in the same order. The instruction

sequence must end with an OPT NOORDER directive.

Assembler Directives 7–63

• • • • • • • •

PS (default) Pack strings in DC and DCB directive. Individual

bytes in strings will be packed into consecutive target words

for the length of the string.

RP Remove all pipeline restrictions. Generate NOP instructions

to accommodate pipeline delay. The assembler will output a

NOP instruction into the output stream and the issues a

warning that it has done so (-R).

RPDO Remove DO/ENDDO restrictions (-Rd).

RPRN Remove Rn, Nn, and Mn register restrictions. If an address

register is loaded in one instruction then the contents of the

register is not available for use as a pointer until after the

next instruction. Ordinarily when the assembler detects this

condition it issues a warning message. The RPRN option will

cause the assembler to output a NOP instruction into the

output stream and the assembler issues a warning that it has

done so (-Rr).

RPSP Remove stack restrictions (-Rs).

SDEF List source lines containing symbol definition directives (-LE,

default).

SECT List source lines containing section directives (-LD, default).

SVO (default) Preserve object file on errors. This option must be

given before any code or data is generated.

UR Generate a warning at assembly time for each unresolved

external reference. This option is equivalent to W118.

W Print all warning messages.

Wnum Print warning message with number num.

WRAP List wrapped part of source line (-LW, default).

XLL Generate assembly level debug information (-g).

Examples:

OPT OPNOP,XLL ;NOP removal and assembly debug
OPT RP,MU ;Remove restrictions,
 ;list section summary

Chapter 77–64
D
IR
E
C
T
IV
E
S

ORG

Syntax:

ORG mem[mapcnt]:[abs-loc][,overlay]

ORG mem[[,name][,attrib]...]:[abs-loc][,overlay]

where,

 mapcnt is defined as:

 [rlc][map]

or: [map][(rce)]

Description:

Initialize Memory Space and Location Counters. The ORG directive is used

to determine in which section the code following the directive, up to the

next ORG directive, will be located. The absolute location of the section in

memory can be set using this directive.

To uniquely identify a section between different object files sections can

be given names. This name can be any character string, as long as it does

not start with a space. When a section does not have a name, it is called a

nameless section.

The ORG directive has two possibilities. The first is Motorola compatible,

the second introduces named sections. The Motorola compatible variant

defines a nameless section. The section attributes are as defined by the

mapping attribute. There is no possibility to state that this entire section is

located in short addressable memory, other than to give an absolute

location in short memory. As these sections do not have a name, the linker

cannot concatenate these sections with equivalent section definitions

between different object files.

The second variant defines a named section. The name gives the linker the

possibility to concatenate these sections from different object files. Every

definition of a named section should use the same section attributes.

A label is not allowed with this directive.

mem This defines in which memory space (X, Y, L, P or E) the

section is located. Currently the E memory space is not

supported.

Assembler Directives 7–65

• • • • • • • •

rlc Which run-time counter H, L. or default (if neither H or L is

specified), that is associated with mem, will be used as the

run-time location counter:

1. not giving a location counter equals to using the location

counter '0',

2. the 'L' location counter equals to the location counter '1',

and

3. the 'H' location counter equals to the location counter '2'.

By using the location counter different sections in the same

memory space can be defined, without making them absolute

by specifying an absolute location address.

map Indicates the run-time physical mapping to DSP memory: I -

internal, E - external, R - ROM, A - port A, B - port B. If not

present, no explicit mapping is done.

rce Non-negative absolute integer expression representing the

counter number to be used as the run-time location counter.

Must be enclosed in parentheses. Should not exceed the

value 65535.

name The name defines the section name. This is a string of

printable characters. The only exception is that it may not

start with a space. In the latter case the name will not be

written into the object file.

attrib The attributes conform to the possibilities given by the

Motorola type ORG, but are written with entire words instead

of letters. Possibilities are:

FAR long addressable

NEAR short addressable

INTERNAL internal memory, same as mapping 'I'

EXTERNAL external memory, same as mapping 'E'

OVERLAY section is an overlay, either data or code

ABSOLUTE obsolete, the absolute-location must

be an absolute expression

BSS clear section during startup

CONST initialize during download, do not generate

copy table entry

Chapter 77–66
D
IR
E
C
T
IV
E
S

INIT initialize section during startup (this attribute

is required for P data sections

MAX common, overlay with other parts with

the same name, is implicit a type of

'scratch' and 'overlay'

SCRATCH not filled, not cleared on startup.

Section can only contain 'ds', no 'dc'

or the like

The OVERLAY attribute is used by the C compiler to generate

overlaid data sections in the static model. It can also be used

to generate code overlays. For a code overlay, the attributes

BSS, CONST, INIT, MAX and SCRATCH are not allowed and

the section must be named and must have an absolute

address. Furthermore, another section with the same size

must be created where the code will be stored at load time.

The name of this section must be the same but with "_copy"

appended. Multiple sections with different names can be

created this way and with run-time copying they can be used

to create a code overlay. This can be advantageous for

time-critical routines that can be exchanged in internal

program memory. A small example of code overlaying can

be found in the examples directory.

abs-loc Initial value to assign to the run-time counter used as the rlc.
abs-loc must be an absolute expression.

overlay The overlay part is not supported. When encountered it is

skipped and a warning is issued. Overlay descriptions can be

described to the locator using the locator description file.

A previously defined section can be continued by giving its name or, for

the Motorola ORG-variant, by giving its memory space and location

counter.

A named section cannot be continued by only giving its memory space.

This will continue the named section with location counter zero!

Examples:

ORG P:$1000

Sets the run-time memory space to P. Selects the default run-time

counter (counter 0) associated with P space to use as the run-time

location counter and initializes it to $1000.

Assembler Directives 7–67

• • • • • • • •

ORG PHE:

Sets the run-time memory space to P. Selects the H load counter

(counter 2) associated with P space to use as the run-time location

counter. The H counter will not be initialized, and its last value will be

used. Code generated hereafter will be mapped to external (E)

memory.

Definitions Continuation

org p,”.text”,near:$0 org p,”.text”:
org x,”.data”,external: org x,”.data”:
org pla:$300 org pl:
org xa(10): org x(10):
org lb(1): org ll:
org y(0): org y:

Chapter Software Concept and Appendix Migration from Motorola CLAS.

Chapter 77–68
D
IR
E
C
T
IV
E
S

PAGE

Syntax:

PAGE [exp1[,exp2,...,exp5]]

Description:

Top of Page/Size Page. The PAGE directive has two forms:

1. If no arguments are supplied, then the assembler will advance the listing

to the top of the next page. In this case, the PAGE directive will not be

output.

2. The PAGE directive with arguments can be used to specify the printed

format of the output listing. Arguments may be any positive absolute

integer expression. The arguments in the operand field (as explained

below) are separated by commas. Any argument can be left as the default

or last set value by omitting the argument and using two adjacent commas.

The PAGE directive with arguments will not cause a page eject and will be

printed in the source listing.

A label is not allowed with this directive.

The arguments in order are:

PAGE_WIDTH exp1

Page width in terms of number of output columns per line (default 80,

min 1, max 255).

PAGE_LENGTH exp2

Page length in terms of total number of lines per page (default 66, min

10, max 255). As a special case a page length of 0 (zero) turns off all

headers, titles, subtitles, and page breaks.

BLANK_TOP exp3

Blank lines at top of page. (default 0, min 0, max see below).

BLANK_BOTTOM exp4

Blank lines at bottom of page. (default 0, min 0, max see below).

Assembler Directives 7–69

• • • • • • • •

BLANK_LEFT exp5

Blank left margin. Number of blank columns at the left of the page.

(default 0, min 0, max see below).

The following relationship must be maintained:

BLANK_TOP + BLANK_BOTTOM <= PAGE_LENGTH - 10

BLANK_LEFT < PAGE_WIDTH

Examples:

PAGE 132,,3,3 ;Set width to 132,
 ;3 line top/bottom margins
PAGE ;Page eject

Chapter 77–70
D
IR
E
C
T
IV
E
S

PMACRO

Syntax:

PMACRO symbol[,symbol]...

Description:

Purge Macro Definition. The specified macro definition will be purged

from the macro table, allowing the macro table space to be reclaimed.

A label is not allowed with this directive.

Examples:

PMACRO MAC1,MAC2

This statement would cause the macros named MAC1 and MAC2 to be

purged.

MACRO

Assembler Directives 7–71

• • • • • • • •

PRCTL

Syntax:

PRCTL exp|string[,exp|string]...

Description:

Send Control String to Printer. PRCTL simply concatenates its arguments

and ships them to the listing file (the directive line itself is not printed

unless there is an error). exp is a byte expression and string is an

assembler string. A byte expression would be used to encode non-printing

control characters, such as ESC. The string may be of arbitrary length, up

to the maximum assembler-defined limits.

PRCTL may appear anywhere in the source file and the control string will

be output at the corresponding place in the listing file. However, if a

PRCTL directive is the last line in the last input file to be processed, the

assembler insures that all error summaries, symbol tables, and

cross-references have been printed before sending out the control string.

This is so a PRCTL directive can be used to restore a printer to a previous

mode after printing is done. Similarly, if the PRCTL directive appears as

the first line in the first input file, the control string will be output before

page headings or titles.

The PRCTL directive only works if the -l command line option is given;

otherwise it is ignored.

A label is not allowed with this directive.

Examples:

PRCTL $1B,’E’ ;Reset HP LaserJet printer

Chapter 77–72
D
IR
E
C
T
IV
E
S

RADIX

Syntax:

RADIX expression

Description:

Change Input Radix for Constants. Changes the input base of constants to

the result of expression. The absolute integer expression must evaluate to

one of the legal constant bases (2, 10, or 16). The default radix is 10. The

RADIX directive allows the programmer to specify constants in a preferred

radix without a leading radix indicator. The radix prefix for base 10

numbers is the grave accent (‘). Note that if a constant us used to alter the

radix, it must be in the appropriate input base at the time the RADIX

directive is encountered.

A label is not allowed with this directive.

Examples:

_RAD10 DC 10 ; Evaluates to hex A
 RADIX 2
_RAD2 DC 10 ; Evaluates to hex 2
 RADIX ‘16
_RAD16 DC 10 ; Evaluates to hex 10
 RADIX 3 ; Bad radix expression

Assembler Directives 7–73

• • • • • • • •

SCSJMP

Syntax:

SCSJMP {NEAR | FAR | NONE}

Description:

Set Structured Control Statement Branching Mode. The SCSJMP directive

analogous to the FORCE directive, but it only applies to branches

generated automatically by structured control statements (see Chapter 8).

There is no explicit way, as with a forcing operator, to force a branch short

or long when it is produced by a structured control statement. This

directive will cause all branches resulting from subsequent structured

control statements to be forced to the specified mode.

Just like the FORCE pseudo-op, errors can result if a value is too large to

be forced short. For relocatable code, the error may not occur until the

linking phase.

For compatibility reasons the SCSJMP directive also accepts the arguments

SHORT instead of NEAR and LONG instead of FAR.

A label is not allowed with this directive.

Examples:

SCSJMP NEAR ;force all subsequent SCS
 ;jumps short

FORCE, SCSREG

Chapter 77–74
D
IR
E
C
T
IV
E
S

SCSREG

Syntax:

SCSREG [srcreg[,dstreg[,tmpreg[,extreg]]]]

Description:

Reassign Structured Control Statement Registers. The SCSREG directive

reassigns the registers used by structured control statement (SCS) directives

(see Chapter 8). It is convenient for reclaiming default SCS registers when

they are needed as application operands within a structured control

construct. srcreg is ordinarily the source register for SCS data moves. dstreg
is the destination register. tmpreg is a temporary register for swapping SCS

operands. extreg is an extra register for complex SCS operations. With no

arguments SCSREG resets the SCS registers to their default assignments.

The SCSREG directive should be used judiciously to avoid register context

errors during SCS expansion. Source and destination registers may not

necessarily be used strictly as source and destination operands. The

assembler does no checking of reassigned registers beyond validity for the

target processor. Errors can result when a structured control statement is

expanded and an improper register reassignment has occurred. It is

recommended that the MEX option (see the OPT directive) be used to

examine structured control statement expansion for relevant constructs to

determine default register usage and applicable reassignment strategies.

A label is not allowed with this directive.

Examples:

SCSREG Y0,B ;Reassign SCS source and
 ;dest. registers

OPT (MEX), SCSJMP

Assembler Directives 7–75

• • • • • • • •

SECTION

Syntax:

SECTION scope_name
.

.

section source statements
.

.

ENDSEC

Description:

Start Scope. The SECTION directive defines the start of a scope. All

symbols that are defined within a scope have the scope_name associated

with them as their scope name. This serves to protect them from

like-named symbols elsewhere in the program. A symbol defined inside

any given scope is private to that scope.

Symbols within a scope are generally distinct from other symbols used

elsewhere in the source program, even if the symbol name is the same.

This is true as long as the scope name associated with each symbol is

unique and the symbol is not declared public (GLOBAL). Symbols that are

defined outside of a scope are considered global symbols and have no

explicit scope name associated with them. Global symbols may be

referenced freely from inside or outside of any scope, as long as the global

symbol name does not conflict with another symbol by the same name in

a given scope.

The division of a program into scopes controls not only labels and

symbols, but also macros and DEFINE directive symbols. Macros defined

within a scope are private to that scope and are distinct from macros

defined in other scopes even if they have the same macro name. Macros

defined outside of scopes are considered global and may be used within

any scope. Similarly, DEFINE directive symbols defined within a scope are

private to that scope and DEFINE directive symbols defined outside of any

scope are globally applied. There are no directives that correspond to

GLOBAL for macros or DEFINE symbols, and therefore, macros and

DEFINE symbols defined in a scope can never be accessed globally. If

global accessibility is desired, the macros and DEFINE symbols should be

defined outside of any scope.

Chapter 77–76
D
IR
E
C
T
IV
E
S

Section scopes can be nested to any level. When the assembler encounters

a nested scope, the current scope is stacked and the new scope is used.

When the ENDSEC directive of the nested scope is encountered, the

assembler restores the old scope and uses it. The ENDSEC directive

always applies to the most previous SECTION directive. Nesting scopes

provides a measure of scoping for symbol names, in that symbols defined

within a given scope are visible to other scopes nested within it. For

example, if scope B is nested inside scope A, then a symbol defined in

scope A can be used in scope B without GLOBALing in scope A or

EXTERNing in scope B.

Scopes may also be split into separate parts. That is, scope_name can be

used multiple times with SECTION and ENDSEC directive pairs. If this

occurs, then these separate (but identically named) scopes can access each

others symbols freely without the use of the GLOBAL and EXTERN

directives. If the GLOBAL and EXTERN directives are used within one

scope, they apply to all scopes with the same scope name. The reuse of

the scope name is allowed to permit the program source to be arranged in

an arbitrary manner (for example, all statements that reserve X space

storage locations grouped together), but retain the privacy of the symbols

for each scope.

A label is not allowed with this directive.

Examples:

SECTION TABLES ;TABLES will be the scope name

ORG, GLOBAL, LOCAL, EXTERN

Assembler Directives 7–77

• • • • • • • •

SET

Syntax:

label SET expression

 SET label expression

Description:

Set Symbol to a Value. The SET directive is used to assign the value of the

expression in the operand field to the label. The SET directive functions

somewhat like the EQU directive. However, labels defined via the SET

directive can have their values redefined in another part of the program

(but only through the use of another SET directive). The SET directive is

useful in establishing temporary or reusable counters within macros. The

expression in the operand field of a SET may have forward references.

Examples:

COUNT SET 0 ; Initialize COUNT

EQU, GSET

Chapter 77–78
D
IR
E
C
T
IV
E
S

STITLE

Syntax:

STITLE [string]

Description:

Initialize Program Sub-Title. The STITLE directive initializes the program

subtitle to the string in the operand field. The subtitle will be printed on

the top of all succeeding pages until another STITLE directive is

encountered. The subtitle is initially blank. The STITLE directive will not

be printed in the source listing. An STITLE directive with no string

argument causes the current subtitle to be blank.

If the page width is too small for the title to fit in the header, it will be

truncated.

A label is not allowed with this directive.

Examples:

STITLE ’COLLECT SAMPLES’

TITLE

Assembler Directives 7–79

• • • • • • • •

SYMB

Syntax:

SYMB string, expression [, abs_expr] [, abs_expr]

Description:

The SYMB directive is used for passing high-level language symbolic

debug information via the assembler (and linker/locator) to the debugger.

expression can be any expression. abs_expr can be any expression

resulting in an absolute value.

The SYMB directive is not meant for 'hand coded' assembly files. It is

documented for completeness only and is supposed to be 'internal' to the

tool chain.

Chapter 77–80
D
IR
E
C
T
IV
E
S

TABS

Syntax:

TABS tabstops

Description:

Set Listing Tab Stops. The TABS directive allows resetting the listing file

tab stops from the default value of 8.

A label is not allowed with this directive.

Examples:

TABS 4 ;Set listing file tab stops to 4

Assembler Directives 7–81

• • • • • • • •

TITLE

Syntax:

TITLE [string]

Description:

Initialize Program Title. The TITLE directive initializes the program title to

the string in the operand field. The program title will be printed on the

first page of the list file. The title is initially blank. The TITLE directive will

not be printed in the source listing. A TITLE directive with no string

argument causes the current title to be blank. For titles on succeeding

pages use the STITLE directive.

If the page width is too small for the title to fit in the header, it will be

truncated.

A label is not allowed with this directive.

Examples:

TITLE ’FIR FILTER’

STITLE

Chapter 77–82
D
IR
E
C
T
IV
E
S

UNDEF

Syntax:

UNDEF symbol

Description:

Undefine DEFINE Symbol. The UNDEF directive causes the substitution

string associated with symbol to be released, and symbol will no longer

represent a valid DEFINE substitution. See the DEFINE directive for more

information.

A label is not allowed with this directive.

Examples:

UNDEF DEBUG ;Undefines the DEBUG substitution
 ;string

DEFINE

Assembler Directives 7–83

• • • • • • • •

VOID

Syntax:

label VOID register [, register]...

Description:

The VOID directive defines which registers may contain unknown values

when the label is reached. The assembler may use this information when

optimizing the assembly program.

Examples:

When you use the VOID directive at a DO loop label, the assembler tries

to duplicate instructions from the loop head to the loop tail and prior to

the loop.

The following example,

 DO #10,label
 move x:(r1)+,a
 ; ... some other code
 lsl b
label: void r1,a

can be optimized to:

 move x:(r1)+,a
 DO #10,label
 ; ... some other code
 lsl b x:(r1)+,a
label: void r1,a

Chapter 77–84
D
IR
E
C
T
IV
E
S

WARN

Syntax:

WARN [{str | exp}[,{str | exp}]...]

Description:

Programmer Generated Warning. The WARN directive will cause a

warning message to be output by the assembler. The total warning count

will be incremented as with any other warning. The WARN directive is

normally used in conjunction with conditional assembly directives for

exceptional condition checking. The assembly proceeds normally after the

warning has been printed. An arbitrary number of strings and expressions,

in any order but separated by commas with no intervening white space,

can be specified optionally to describe the nature of the generated

warning.

A label is not allowed with this directive.

Examples:

WARN ’parameter too large’

FAIL, MSG

8

STRUCTURED
CONTROL
STATEMENTS

C
H

A
P

T
E

R

Chapter 88–2
S

T
R

U
C

T
U

R
E

D
 C

O
N

T
R

O
L

8

C
H

A
P

T
E

R

Structured Control Statements 8–3

• • • • • • • •

8.1 INTRODUCTION

An assembly language provides an instruction set for performing certain

rudimentary operations. These operations in turn may be combined into

control structures such as loops (FOR, REPEAT, WHILE) or conditional

branches (IF-THEN, IF-THEN-ELSE). The assembler, however, accepts

formal, high-level directives that specify these control structures,

generating the appropriate assembly language instructions for their

efficient implementation. This use of structured control statement directives

improves the readability of assembly language programs, without

compromising the desirable aspects of programming in an assembly

language.

8.2 STRUCTURED CONTROL DIRECTIVES

The following directives are used for structured control. Note the leading

period, which distinguishes these keywords from other directives and

mnemonics. Structured control directives may be specified in either upper

or lower case, but they must appear in the opcode field of the instruction

line (e.g. they must be preceded either by a label, a space, or a tab).

.BREAK .ENDI .LOOP

.CONTINUE .ENDL .REPEAT

.ELSE .ENDW .UNTIL

.ENDF .FOR .WHILE

.IF

In addition, the following keywords are used in structured control

statements:

AND DOWNTO TO

BY OR

DO THEN

AND, DO, and OR are reserved assembler instruction mnemonics.

Chapter 88–4
S

T
R

U
C

T
U

R
E

D
 C

O
N

T
R

O
L

8.3 SYNTAX

The formats for the .BREAK, .CONTINUE, .FOR, .IF, .LOOP, .REPEAT,

and .WHILE statements are given in the following sub-sections. Syntactic

variables used in the formats are defined as follows:

expression A simple or compound expression (section 8.4).

stmtlist Zero or more assembler directives, structured control

statements, or executable instructions.

Note that an assembler directive (Chapter 7) occurring within a structured

control statement is examined exactly once -- at assembly time. Thus the

presence of a directive within a .FOR, .LOOP, .REPEAT, or .WHILE

statement does not imply repeated occurrence of an assembler directive;

nor does the presence of a directive within an .IF-THEN-.ELSE structured

control statement imply conditional assembly.

op1 A user-defined operand whose register/memory location

holds the .FOR loop counter. The effective address must use

a memory alterable addressing mode (e.g. it cannot be an

immediate value).

op2 The initial value of the .FOR loop counter. The effective

address may be any mode, and may represent an arbitrary

assembler expression (Section 5.2, Expressions).

op3 The terminating value of the .FOR loop counter. The

effective address may be any mode, and may represent an

arbitrary assembler expression (Section 5.2, Expressions).

op4 The step (increment/decrement) of the .FOR loop counter

each time through the loop. If not specified, it defaults to a

value of #1. The effective address may be any mode, and

may represent an arbitrary assembler expression (Section 5.2,

Expressions).

cnt The terminating value in a .LOOP statement. This can be any

arbitrary assembler expression (Section 5.2, Expressions).

All structured control statements may be followed by normal assembler

comments on the same logical line.

Structured Control Statements 8–5

• • • • • • • •

8.3.1 .BREAK STATEMENT

Syntax:

.BREAK

Function:

The .BREAK statement causes an immediate exit from the innermost

enclosing loop construct (.WHILE, .REPEAT, .FOR, .LOOP).

A .BREAK statement does not exit an .IF-THEN-.ELSE construct. If a

.BREAK is encountered with no loop statement active, a warning is issued.

.BREAK should be used with care near .ENDL directives or near the end

of DO loops. It generates a jump instruction which is illegal in those

contexts.

Examples:

.WHILE x:(r1)+ <GT> #0;loop until zero is found
.
.
.

.IF <cs> ;carry set?

.BREAK ;causes exit from WHILE loop

.ENDI
.
. ;any instructions here are skipped
.

.ENDW
;execution resumes here after .BREAK

Chapter 88–6
S

T
R

U
C

T
U

R
E

D
 C

O
N

T
R

O
L

8.3.2 .CONTINUE STATEMENT

Syntax:

.CONTINUE

Function:

The .CONTINUE statement causes the next iteration of a looping construct

(.WHILE, .REPEAT, .FOR, .LOOP) to begin. This means that the loop

expression or operand comparison is performed immediately, bypassing

any subsequent instructions.

If a .CONTINUE is encountered with no loop statement active, a warning

is issued.

.CONTINUE should be used with care near .ENDL directives or near the

end of DO loops. It generates a jump instruction which is illegal in those

contexts.

One or more .CONTINUE directives inside a .LOOP construct will

generate a NOP instruction just before the loop address.

Examples:

.REPEAT
.
.
.

.IF <cs> ;carry set?

.CONTINUE ;causes immediate jump to .UNTIL

.ENDI
.
. ;any instructions here are skipped
.

.UNTIL x:(r1)+ <EQ> #0;evaluation here after
;.CONTINUE

Structured Control Statements 8–7

• • • • • • • •

8.3.3 .FOR STATEMENT

Syntax:

.FOR op1 = op2 {TO | DOWNTO} op3 [BY op4] [DO]

stmtlist

.ENDF

Function:

Initialize op1 to op2 and perform stmtlist until op1 is greater (TO) or less

than (DOWNTO) op3. Makes use of a user-defined operand, op1, to serve

as a loop counter. .FOR-TO allows counting upward, while

.FOR-DOWNTO allows counting downward. The programmer may

specify an increment/decrement step size in op4, or select the default step

size of #1 by omitting the BY clause. A .FOR-TO loop is not executed if

op2 is greater than op3 upon entry to the loop. Similarly, a

.FOR-DOWNTO loop is not executed if op2 is less then op3.

op1 must be a writable register or memory location. It is initialized at the

beginning of the loop, and updated at each pass through the loop. Any

immediate operands must be preceded by a pound sign (#). Memory

references must be preceded by a memory space qualifier (X:, Y:, or P:). L

memory references are not allowed. Operands must be or refer to

single-word values.

The logic generated by the .FOR directive makes use of several DSP data

registers (A, X0, Y0, Y1). In fact, two data registers are used to hold the

step and target values, respectively, throughout the loop; they are never

reloaded by the generated code. It is recommended that these registers not

be used within the body of the loop, or that they be saved and restored

prior to loop evaluation.

The DO keyword is optional.

Examples:

.FOR X:CNT = #0 TO Y:(targ*2)+114 ;loop on X:CNT
.
.
.

.ENDF

Chapter 88–8
S

T
R

U
C

T
U

R
E

D
 C

O
N

T
R

O
L

8.3.4 .IF STATEMENT

Syntax:

.IF expression [THEN]

stmtlist
[.ELSE

stmtlist]
.ENDI

Function:

If expression is true, execute stmtlist following THEN (the keyword THEN

is optional); if expression is false, execute stmtlist following .ELSE, if

present; otherwise, advance to the instruction following .ENDI.

In the case of nested .IF-THEN-.ELSE statements, each .ELSE refers to the

most recent .IF-THEN sequence.

Examples:

.IF <EQ> ; zero bit set?
.
.
.

.ENDI

Structured Control Statements 8–9

• • • • • • • •

8.3.5 .LOOP STATEMENT

Syntax:

.LOOP cnt
stmtlist
.ENDL

Function:

Execute stmtlist cnt times. this is similar to the .FOR loop construct,

except that the initial counter and step value are implied to be #1. It is

actually a shorthand method for setting up a hardware DO loop on the

DSP, without having to worry about addressing modes or label placement.

Since the .LOOP statement generates instructions for a hardware DO loop,

the same restrictions apply as to the use of certain instructions near the

end of the loop, nesting restrictions, etc.

One or more .CONTINUE directives inside a .LOOP construct will

generate a NOP instruction just before the loop address.

Examples:

.LOOP LPCNT ;hardware loop LPCNT times
.
.
.

.ENDL

Chapter 88–10
S

T
R

U
C

T
U

R
E

D
 C

O
N

T
R

O
L

8.3.6 .REPEAT STATEMENT

Syntax:

.REPEAT

stmtlist
.UNTIL expression

Function:

stmtlist is executed repeatedly until expression is true. When expression

becomes true, advance to the next instruction following .UNTIL.

The stmtlist is executed at least once, even if expression is true upon entry

to the .REPEAT loop.

Examples:

.REPEAT
.
.
.

.UNTIL x:(r1)+ <EQ> #0;loop until zero is found

Structured Control Statements 8–11

• • • • • • • •

8.3.7 .WHILE STATEMENT

Syntax:

.WHILE expression [DO]

stmtlist

.ENDW

Function:

The expression is tested before execution of stmtlist. While expression
remains true, stmtlist is executed repeatedly. When expression evaluates

false, advance to the instruction following the .ENDW statement.

If expression is false upon entry to the .WHILE loop, stmtlist is not

executed; execution continues after the .ENDW directive.

The DO keyword is optional.

Examples:

.WHILE x:(r1)+ <GT> #0 ;loop until zero is found
.
.
.

.ENDW

Chapter 88–12
S

T
R

U
C

T
U

R
E

D
 C

O
N

T
R

O
L

8.4 SIMPLE AND COMPOUND EXPRESSIONS

Expressions are an integral part of .IF, .REPEAT, and .WHILE statements.

Structured control statement expressions should not be confused with the

assembler expressions discussed in section 5.2, Expressions. The latter are

evaluated at assembly time and will be referred to here as "assembler

expressions"; they can serve as operands in structured control statement

expressions. The structured control statement expressions described below

are evaluated at run-time and will be referred to in the following

discussion simply as "expressions".

A structured control statement expression may be simple or compound. A

compound expression consists of two or more simple expressions joined

by either AND or OR (but not both in a single compound expression).

8.4.1 SIMPLE EXPRESSIONS

Simple expressions are concerned with the bits of the Condition Code

Register (CCR). These expressions are of two types. The first type merely

tests conditions currently specified by the contents of the CCR (section

8.4.1.1). The second type sets up a comparison of two operands to set the

condition codes, and afterwards tests the codes (section 8.4.1.2).

8.4.1.1 CONDITION CODE EXPRESSIONS

A variety of tests (identical to those in the Jcc instruction) may be

performed, based on the CCR condition codes. The condition codes, in

this case, are preset by either a user-generated instruction or a structured

operand-comparison expression (section 8.4.1.2). Each test is expressed in

the structured control statement by a mnemonic enclosed in angle

brackets.

Structured Control Statements 8–13

• • • • • • • •

The following condition code mnemonics can be used:

<CC> - carry clear

<CS> - carry set

<EC> - extension clear

<EQ> - equal

<ES> - extension set

<GE> - greater or equal

<GT> - greater than

<HS> - higher or same

<LC> - limit clear

<LE> - less equal

<LO> - lower

<LS> - lmit set

<LT> - less than

<MI> - minus

<NE> - not equal

<NN> - not normalized

<NR> - normalized

<PL> - plus

When processed by the assembler, the expression generates an inverse

conditional jump to beyond the matching .ENDx/.UNTIL directive. For

example:

.IF <EQ> ;zero bit set?
+ bne Z_L00002 ;code generated by assembler

CLR D1 ;user code
.ENDI

+ Z_L00002 ;assembler–generated label
.REPEAT ;subtract until D0 < D7

+ Z_L00034 ;assembler–generated label
SUB D7,D0;user code
.UNTIL <LT>

+ bge Z_L00034 ;code generated by assembler

Chapter 88–14
S

T
R

U
C

T
U

R
E

D
 C

O
N

T
R

O
L

8.4.1.2 OPERAND COMPARISON EXPRESSIONS

Two operands may be compared in a simple expression, with subsequent

transfer of control based on that comparison. Such a comparison takes the

form:

op1 cc op2

where cc is a condition mnemonic enclosed in angle brackets (as

described in section 8.4.1.1), and op1 and op2 are register or memory

references, symbols, or assembler expressions. When processed by the

assembler, the operands are arranged such that a compare/jump sequence

of the following form always results:

CMP reg1,reg2
(J|B)cc label

where the jump conditional is the inverse of cc. Ordinarily op1 is moved

to the reg1 data register and op2 is moved to the reg2 data register prior to

the compare. This is not always the case, however: if op1 happens to be

reg2 and op2 is reg1, an intermediate register is used as a scratch register.

In any event, worst case code generation for a given operand comparison

expression is generally two moves, a compare, and a conditional jump.

Jumps or branches generated by structured control statements are forced

long because the number and address of intervening instructions between

a control statement and its termination are not known by the assembler.

The programmer may circumvent this behavior by use of the SCSJMP

directive (see Chapter 7).

Any immediate operands must be preceded by a pound sign (#). Memory

references must be preceded by a memory space qualifier (X:, Y:, or P:). L

memory references are not allowed. Operands must be or refer to

single-word values.

Note that values in the reg1 and reg2 data registers are not saved before

expression evaluation. This means that any user data in those registers will

be overwritten each time the expression is evaluated at runtime. The

programmer should take care either to save needed contents of the

registers, reassign data registers using the SCSREG directive, or not use

them at all in the body of the particular structured construct being

executed. The data registers used by the structured control statements are

A, X0, Y0 and Y1.

Structured Control Statements 8–15

• • • • • • • •

8.4.2 COMPOUND EXPRESSIONS

A compound expression consists of two or more simple expressions

(section 8.4.1) joined by a logical operator (AND or OR). The boolean

value of the compound expression is determined by the boolean values of

the simple expressions and the nature of the logical operator. Note that the

result of mixing logical operators in a compound expression is undefined:

.IF X1 <GT> B AND <LS> AND R1 <NE> R2 ;this is OK

.IF X1 <LE> B AND <LC> OR R5 <GT> R6 ;undefined

The simple expressions are evaluated left to right. Note that this means the

result of one simple expression could have an impact on the result of

subsequent simple expression, because of the condition code settings

stemming from the assembler-generated compare.

If the compound expression is an AND expression and one of the simple

expressions is found to be false, any further simple expressions are not

evaluated. Likewise, if the compound expression is an OR expression and

one of the simple expressions is found to be true, any further simple

expressions are not evaluated. In these cases, the compound expression is

either false or true, respectively, and the condition codes reflects the result

of the last simple expression evaluated.

Chapter 88–16
S

T
R

U
C

T
U

R
E

D
 C

O
N

T
R

O
L

8.5 STATEMENT FORMATTING

The format of structured control statements differs somewhat from normal

assembler usage. Whereas a standard assembler line is split into fields

separated by blanks or tabs, with no white space inside the fields,

structured control statement formats vary depending on the statement

being analyzed. In general, all structured control directives are placed in

the opcode field (with an optional label in the label field) and white space

separates all distinct fields in the statement. Any structured control

statement may be followed by a comment on the same logical line.

8.5.1 EXPRESSION FORMATTING

Given an expression of the form:

op1 <LT> op2 OR op3 <GE> op4

there must be white space (blank, tab) between all operands and their

associated operators, including boolean operators in compound

expressions. Moreover, there must be white space between the structured

control directive and the expression, and between the expression and any

optional directive modifier (THEN, DO). An assembler expression (section

5.2, Expressions) used as an operand in a structured control statement

expression must not have white space in it, since it is parsed by the

standard assembler evaluation routines:

.IF #@CVI @SQT(4.0)) <GT> #2 ;no white space in
 ;first operand

8.5.2 .FOR/.LOOP FORMATTING

The .FOR and .LOOP directives represent special cases. The .FOR

structured control statement consists of several fields:

.FOR op1 = op2 TO op3 BY op4 DO

There must be white space between all operands and other syntactic

entities such as =, TO, BY, and DO. As with expression formatting, an

assembler expression used as an operand must not have white space in it:

.FOR X:CNT = #0 TO Y:(targ*2)+1 BY
#@CVI @POW(2.0, @CVF(R)))

Structured Control Statements 8–17

• • • • • • • •

In the example above, the .FOR loop operands represented as assembler

expressions (symbol, function) do not have embedded white space,

whereas the loop operands are always separated from structured control

statement keywords by white space.

The count field of a .LOOP statement must be separated from the .LOOP

directive by white space. The count itself may be any arbitrary assembler

expression, and therefore must not contain embedded blanks.

8.5.3 ASSEMBLY LISTING FORMAT

Structured control statements begin with the directive in the opcode field;

any optional label is output in the label field. The rest of the statement is

left as is in the operand field, except for any trailing comment; the X and

Y data movement fields are ignored. Comments following the statement

are output in the comment field (see Chapter 4).

Statements are expanded using the macro facilities of the assembler. Thus

the generated code can be sent to the listing by specifying the MEX

assembler option, via the OPT directive (Chapter 7).

8.6 EFFECTS ON THE PROGRAMMER'S ENVIRONMENT

During assembly, global labels beginning with "Z_L" are generated. They

are stored in the symbol table and should not be duplicated in

user-defined labels. These non-local labels ordinarily are not visible to the

programmer, but there can be problems when local (underscore) labels

are interspersed among structured control statements. The SCL option (see

the OPT directive, Chapter 7) causes the assembler to maintain the current

local label scope when a structured control statement label is encountered.

In the .FOR loop, op1 is a user-defined symbol. When exiting the loop,

the memory/register assigned to this symbol contains the value which

caused the exit from the loop.

A compare instruction is produced by the assembler whenever two

operands are tested in a structured statement. At runtime, these

assembler-generated instructions set the condition codes of the CCR (in

the case of a loop, the condition codes are set repeatedly). Any

user-written code either within or following a structured statement that

references CCR directly (move) or indirectly (conditional) jump/transfer)

should be attentive to the effect of these instructions.

Chapter 88–18
S

T
R

U
C

T
U

R
E

D
 C

O
N

T
R

O
L

Jumps or branches generated by structured control statements are forced

long because the number and address of intervening instructions between

a control statement and its termination are not known by the assembler.

The programmer may circumvent this behavior by use of the SCSJMP

directive (see Chapter 7).

In all structured control statements except those using only a single

condition code expression, registers are used to set up the required

counters and comparands. In some cases, these registers are effectively

reserved; the .FOR loop uses two data registers to hold the step and target

values, respectively, and performs no save/restore operations on these

registers. The assembler, in fact, does no save/restore processing in any

structured control operation; it simply moves the operands into

appropriate registers to execute the compare. The following registers are

used by the assembler in support of structured control statements:

A, X0, Y0, Y1

The SCSREG directive (Chapter 7) may be used to reassign structured

control statement registers. The MEX assembler option (see the OPT

directive, Chapter 7) may be used to send the assembler-generated code

to the listing file for examination of possible register use conflicts.

9

INSTRUCTION SET
C

H
A

P
T

E
R

Chapter 99–2
IN

S
T

R
U

C
T

IO
N

 S
E

T 9

C
H

A
P

T
E

R

Instruction Set 9–3

• • • • • • • •

9.1 INTRODUCTION

The as56 DSP5600x assembler accepts all the assembly language

instruction mnemonics defined for the DSP5600x. The mnemonics are

listed in the tables below.

For a complete list of all DSP5600x instructions with mnemonics,

operands, opcode format and states refer to Motorola's DSP56000 Digital
Signal Processor Family Manual. For the DSP563xx refer to Motorola's

DSP56300 24-Bit Digital Signal Processor Family Manual. For the

DSP566xx refer to Motorola's DSP56600 Digital Signal Processor Family
Manual. The addressing modes used with the instructions and the meaning

and use of the Condition Codes are identical to the corresponding

Motorola features.

Some instructions in the tables below are only available in one of the

DSP56xxx families. The other instructions are available in both the

DSP5600x, DSP563xx and the DSP566xx. However, some instructions may

have a different implementation. Refer to the corresponding Digital Signal

Processor Family Manual for details.

9.2 THE INSTRUCTION SET

This section contains a summary of the DSP56xxx instruction set. The

instruction set can be subdivided in instruction classes as follows.

9.2.1 ARITHMETIC INSTRUCTIONS

Mnemonic Operation

abs Absolute Value

adc Add Long with Carry

add Add

addl Shift Left and Add

addr Shift Right and Add

asl Arithmetic Shift Left

asr Arithmetic Shift Right

clr Clear an Operand

cmp Compare

Chapter 99–4
IN

S
T

R
U

C
T

IO
N

 S
E

T

OperationMnemonic

cmpm Compare Magnitude

cmpu Compare Unsigned (DSP563xx, DSP566xx only)

dec Decrement

div Divide Iteration

dmacss Double (Multi) precision oriented MAC (signed x signed)
(DSP563xx, DSP566xx only)

dmacsu Double (Multi) precision oriented MAC (signed x unsigned)
(DSP563xx, DSP566xx only)

dmacuu Double (Multi) precision oriented MAC (unsigned x
unsigned) (DSP563xx, DSP566xx only)

inc Increment by One

mac Signed Multiply–Accumulate

maci Signed Multiply–Accumulate (immediate operand)
(DSP563xx, DSP566xx only)

macr Signed Multiply–Accumulate and Round

macri Signed Multiply–Accumulate and Round (immediate
operand) (DSP563xx, DSP566xx only)

macsu Mixed mode Multiply–Accumulate (signed x unsigned)
(DSP563xx, DSP566xx only)

macuu Mixed mode Multiply–Accumulate (unsigned x unsigned)
(DSP563xx, DSP566xx only)

max Transfer By Signed Value (DSP563xx, DSP566xx only)

maxm Transfer By Magnitude (DSP563xx, DSP566xx only)

mpy Signed Multiply

mpyi Signed Multiply (immediate operand)
(DSP563xx, DSP566xx only)

mpyr Signed Multiply and Round

mpyri Signed Multiply and Round (immediate operand)
(DSP563xx, DSP566xx only)

mpysu Mixed mode Multiply (DSP563xx, DSP566xx only)

neg Negate Accumulator

norm Normalize (DSP563xx, DSP566xx only)

normf Fast Accumulator Normalize (DSP563xx, DSP566xx only)

rnd Round

sbc Subtract Long with Carry

Instruction Set 9–5

• • • • • • • •

OperationMnemonic

sub Subtract

subl Shift Left and Subtract

subr Shift Right and Subtract

tcc Transfer Conditionally

tfr Transfer Data ALU Register

tst Test an Operand

Table 9-1: Arithmetic instructions

9.2.2 LOGICAL INSTRUCTIONS

Mnemonic Operation

and Logical ANDf

andi AND Immediate to Control Register

clb Count Leading Bits (DSP563xx, DSP566xx only)

eor Logical Exclusive OR

extract Extract Bit Field (DSP563xx, DSP566xx only)

extractu Extract Unsigned Bit Field (DSP563xx, DSP566xx only)

insert Insert Bit Field (DSP563xx, DSP566xx only)

lsl Logical Shift Left

lsr Logical Shift Right

merge Merge Two Half Words (DSP563xx, DSP566xx only)

not Logical Complement

or Logical Inclusive OR

ori OR Immediate to Control Register

rol Rotate Left

ror Rotate Right

Table 9-2: Logical instructions

Chapter 99–6
IN

S
T

R
U

C
T

IO
N

 S
E

T

9.2.3 BIT MANIPULATION INSTRUCTIONS

Mnemonic Operation

bchg Bit Test and Change

bclr Bit Test and Clear

bset Bit Test and Set

btst Bit Test on Memory and Registers

Table 9-3: Bit manipulation instructions

9.2.4 LOOP INSTRUCTIONS

Mnemonic Operation

brk cc Conditionally Exit from Hardware Loop (DSP563xx,
DSP566xx only)

do Start Hardware Loop

dor Start Hardware Loop to PC–Related End–Of–Loop Location
(DSP563xx only)

do forever Start Forever Hardware Loop (DSP563xx, DSP566xx only)

dor forever Start Forever Hardware Loop to PC–Related End–Of–Loop
Location (DSP563xx only)

enddo Exit from Hardware Loop

Table 9-4: Loop instructions

9.2.5 MOVE INSTRUCTIONS

Mnemonic Operation

lea Load Effective Address (DSP563xx only)

lra Load PC–Relative Address (DSP563xx, DSP566xx only)

lua Load Updated Address

move Move Data Register

movec Move Control Register

movem Move Program Memory

Instruction Set 9–7

• • • • • • • •

OperationMnemonic

movep Move Peripheral Data

vsl Viterbi Shift Left (DSP563xx, DSP566xx only)

Table 9-5: Move instructions

9.2.6 PROGRAM CONTROL INSTRUCTIONS

Mnemonic Operation

bcc Branch Conditionally (DSP563xx, DSP566xx only)

bra Branch (DSP563xx, DSP566xx only)

brclr Branch if Bit Clear (DSP563xx only)

brset Branch if Bit Set (DSP563xx only)

bscc Branch to Subroutine Conditionally
(DSP563xx, DSP566xx only)

bsr Branch to Subroutine (PC relative)
(DSP563xx, DSP566xx only)

bsclr Branch to Subroutine if Bit Clear (DSP563xx only)

bsset Branch to Subroutine if Bit Set (DSP563xx only)

debug Enter Debug Mode

debug cc Enter Debug Mode Conditionally

ifcc Execute Conditionally (DSP563xx, DSP566xx only)

ifcc.U Execute Conditionally and Update CCR (DSP563xx,
DSP566xx only)

illegal Illegal Instruction

jcc Jump Conditionally

jmp Jump

jclr Jump if Bit Clear (DSP563xx, DSP566xx only)

jset Jump if Bit Set (DSP563xx, DSP566xx only)

jscc Jump to Subroutine Conditionally

jsr Jump to Subroutine

jsclr Jump to Subroutine if Bit Clear

jsset Jump to Subroutine if Bit Set

nop No Operation

Chapter 99–8
IN

S
T

R
U

C
T

IO
N

 S
E

T

OperationMnemonic

plock Lock Program Cache Sector (DSP563xx only)

punlock Unlock Program Cache Sector (DSP563xx only)

punlockr Unlock PC–Related Program Cache Sector
(DSP563xx only)

pfree Unlock all Program Cache Locked Sectors
(DSP563xx only)

pflush Reset Program Cache State (DSP563xx only)

pflushun Reset Program Cache State to all Unlocked Sectors
(DSP563xx only)

rep Repeat Next Instruction

reset Reset On–Chip Peripheral Devices

rti Return from Interrupt

rts Return from Subroutine

stop Stop Processing (Low–Power Standby)

swi Software Interrupt (DSP5600x only)

trap cc Trap Conditionally (DSP563xx, DSP566xx only)

trap Trap Always (DSP563xx, DSP566xx only)

wait Wait for Interrupt (Low–Power Standby)

Table 9-6: Program control instructions

10

LINKER
C

H
A

P
T

E
R

Chapter 1010–2
L
IN
K
E
R

10

C
H

A
P

T
E

R

Linker 10–3

• • • • • • • •

10.1 OVERVIEW

This section gives a global overview of the process of linking programs for

the DSP56xxx and its derivatives. The linker executable name for the

DSP5600x is lk56, the linker executable name for the DSP563xx/DSP566xx

is lk563. The invocations and examples are given for the DSP563xx.

Unless explicitly stated otherwise, all invocations and examples are also

valid for the other executables. Just replace lk563 with the appropriate

executable name.

The linker combines relocatable object files, generated by the assembler,

or object modules in CLAS COFF object file format into one new

relocatable object file (preferred extension .out). This file may be used as

input in subsequent linker calls: the linkage process may be incremental.

Normally the linker complains about unresolved external references. With

incremental linking it is normal to have unresolved references in the

output file. Incremental linking must be selected separately.

The linker can read normal object files and libraries of object modules and

also Motorola CLAS COFF formatted object files. Modules in a library are

included only when they are referenced. At the end of the linkage process

the generated object, without unresolved references, will be called: a load

module.

For linking Motorola CLAS objects, see the section Linking CLAS COFF
Objects

The DSP56xxx linker is an overlaying linker. The compiler generates

overlayable sections. An overlayable section contains space reservations

for variables which, at C level, are local to a function. If functions do not

call each other, their local variables can be overlayed in memory. It is a

task of the linker to combine function call information into a call graph

and to determine upon the structure of this call graph how sections can be

overlayed, using the smallest amount of RAM.

Incremental linkage disables overlaying, so the last link phase should not

be incremental, even if the incremental phase resolves all externals.

The following diagram shows the input files and output files of the linker:

Chapter 1010–4
L
IN
K
E
R

object library .a
.obj

.lnl

.out

map file

object files

load module

linker

lk563

CLAS object files .cln
CLAS object library .clb

.calcall graph file

Figure 10-1: DSP563xx/DSP566xx Linker

10.2 LINKER INVOCATION

The invocation of the DSP563xx/DSP566xx linker is (use lk56 for the

DSP5600x family):

lk563 [option]... file�...

When you use a UNIX shell (C-shell, Bourne shell), options containing

special characters (such as '()') must be enclosed with ” ” . The

invocations for UNIX and PC are the same, except for the -? option in the

C-shell:

lk563 ”–?” or lk563 –\?

Options may appear in any order. Options start with a '-'. Only the -lx
option is position dependent. Option may be combined: -rM is equal to

-r -M. Options that require a filename or a string may be separated by a

space or not: -oname is equal to -o name.

file can be any object file (.obj), CLAS object file, object libraries (.a) or

incrementally linker (.out) files. The files are linked in the same order as

they appear on the command line.

The linker recognizes the following options:

Linker 10–5

• • • • • • • •

Option Description

–C Link case insensitive (default case sensitive)

–H or –? Display invocation syntax

–L directory Additional search path for system libraries

–L Skip system library search

–M Produce a linker map (.lnl)

–N Turn off overlaying (lk56 only)

–O name Specify basename of the resulting map files

–V Display version header only

–c Produce a separate call graph file (.cal)

–d file Read description file information from file,
’–’ means stdin

–e Clean up if erroneous result

–err Redirect error messages to error file (.elk)

–f file Read command line information from file,
’–’ means stdin

–l x Search also in system library lib x.a

–m Merge option for different object formats

–o filename Specify name of output file

–r Suppress undefined symbol diagnostics

–u symbol Enter symbol as undefined in the symbol table

–v or –t Verbose option. Print name of each file as it is processed

–w n Suppress messages above warning level n.

Table 10-1: Options summary

10.2.1 DETAILED DESCRIPTION OF LINKER OPTIONS

With options that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

Chapter 1010–6
L
IN
K
E
R

-?/-H

Option:

-?

-H

Description:

Display an explanation of the invocation syntax at stdout .

Example:

lk563 –H

Linker 10–7

• • • • • • • •

-C

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Disable the Link case sensitive check box.

-C

Default:

Case sensitive

Description:

With this option the linker links case insensitive. The default is case

sensitive linking.

Example:

To switch to case insensitive mode, enter:

lk563 –C test.obj

Using the control program:

cc563 –Wlk–C test.obj

Chapter 1010–8
L
IN
K
E
R

-c

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Enable the Generate a separate function call graph file
(.cal) check box.

-c

Description:

Generate separate call graph file (.cal).

Example:

To create a call graph file (test.cal), enter:

lk563 –c test.obj

Using the control program:

cc563 –Wlk–c test.obj

Section Linker Output.

Linker 10–9

• • • • • • • •

-d

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Control File .

From the Target list, select a predefined target or select User supplied
target definition and specify a target name, select the Use project
specific linker/locator control file (.dsc) radio button and

enter the name of the description file in the field below.

-d file

Arguments:

A filename to read description file information from. If file is a '-', the

information is read from standard input.

Description:

Read description file information from file instead of a .dsc file.

Example:

To read description file information from file 56302evm.dsc , enter:

lk563 –d56302evm.dsc test.obj

Using the control program:

cc56 56302evm.dsc test.obj

Chapter 1010–10
L
IN
K
E
R

-err

Option:

In EDE this option is not useful.

-err

Description:

The linker redirects error messages to a file with the same basename as the

output file and the extension .elk . The default filename is a.elk .

Example:

To write errors to the file a.elk instead of stderr , enter:

lk563 –err test.obj

To write errors to the file test.elk instead of stderr , enter:

lk563 –err test.obj –otest.out

Linker 10–11

• • • • • • • •

-e

Option:

EDE always removes the output files when errors occur.

-e

Description:

Remove all link products such as temporary files, the resulting output file

and the map file, in case an error occurred.

Example:

lk563 –e test.obj

Chapter 1010–12
L
IN
K
E
R

-f

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Add the option to the Additional options field.

-f file

Arguments:

A filename for command line processing. The filename "-" may be used to

denote standard input.

Description:

Use file for command line processing. To get around the limits on the size

of the command line, it is possible to use command files. These command

files contain the options that could not be part of the real command line.

Command files can also be generated on the fly, for example by the make

utility.

More than one -f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command

file.

2. To include whitespace in the argument, surround the argument with either

single or double quotes.

3. If single or double quotes are to be used inside a quoted argument, we

have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the

opposite quote around the argument. Thus, if a argument should

contain a double quote, surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such

a way that each embedded quote is surrounded by the opposite type

of quote.

Linker 10–13

• • • • • • • •

Example:

”This has a single quote ’ embedded”

or

’This has a double quote ” embedded’

or

’This has a double quote ” and \
a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of lines within a text

file. To circumvent this limitation it is possible to use continuation lines.

These lines end with a backslash and newline. In a quoted argument,

continuation lines will be appended without stripping any whitespace on

the next line. For non-quoted arguments, all whitespace on the next line

will be stripped.

Example:

”This is a continuation \
line”

–> ”This is a continuation line”

control(file1(mode,type),\
file2(type))
–>

control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file mycmds contains the following line:

–err
test.obj

The command line can now be:

lk563 –f mycmds

Chapter 1010–14
L
IN
K
E
R

-L

Option:

Select the Project | Directories... menu item. Add one or more

directory paths to the Library Files Path field.

-L�[directory]

Arguments:

The name of the directory to search for system libraries.

Description:

Add directory to the list of directories that are searched for system

libraries. Directories specified with -L are searched before the standard

directories specified by the environment variable C563LIB (for the

DSP563xx/DSP566xx, C56LIB for the DSP5600x). If you specify -L without

a directory, the environment variable C563LIB (or C56LIB) is not searched

for system libraries. You can use the -L option more than once to add

several directories to the search path for system libraries. The search path

is created in the same order as in which the directories are specified on

the command line.

Example:

lk563 –Lc:\c563\lib\563xx test.obj

Linker 10–15

• • • • • • • •

-l

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Add the option to the Additional options field.

-l�x

Arguments:

A string to form the name of the system library lib x.a .

Description:

Search also in system library lib x.a , where x is a string. The linker first

searches for system libraries in any directories specified with -Ldirectory,

then in the standard directories specified with the environment variable

C563LIB (or C56LIB), unless the -L option is used without a directory

specified.

This option is position dependent (see section Linking with Libraries).

Example:

To search in the system library libc16.a after the user object and library

are linked, enter:

lk563 myobj.obj mylib.a –lc16

Chapter 1010–16
L
IN
K
E
R

-M

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Enable the Generate a linker listing file (.lnl) check box.

-M

Description:

Produce a linker map file (.lnl). If no output filename is specified the

default name is a.lnl .

Example:

To create the map file a.lnl , enter:

lk563 –M test.obj

Section Linker Output,
-O.

Linker 10–17

• • • • • • • •

-m

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Add the option to the Additional options field.

-m

Description:

Merge option to solve incompatibilities between different object formats.

Chapter 1010–18
L
IN
K
E
R

-N (lk56 only)

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Add the option to the Additional options field.

-N

Description:

Turn off overlaying. This can be useful for debugging.

Linker 10–19

• • • • • • • •

-O

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Add the option to the Additional options field.

-O�name

Arguments:

The basename to be used for map files.

Description:

Use name as the default basename for the resulting map files.

Example:

To create the map file test.lnl using the linker, enter:

lk563 –M –Otest test.obj

Using the control program:

cc563 –Wlk–M –Wlk–Otest test.obj

Section Linker Output,
-M.

Chapter 1010–20
L
IN
K
E
R

-o

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Add the option to the Additional options field.

-o�filename

Arguments:

An output filename.

Default:

a.out

Description:

Use filename as output filename of the linker. If this option is omitted, the

default filename is a.out .

Example:

To create the output file test.out instead of a.out , enter:

lk563 test.obj –otest.out

Linker 10–21

• • • • • • • •

-r

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Add the option to the Additional options field.

-r

Description:

Specify incremental linking. No report is made for unresolved symbols,

and the function overlaying is disabled.

Section Linker Output.

Chapter 1010–22
L
IN
K
E
R

-u

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Add the option to the Additional options field.

-u�symbol

Arguments:

The name of a symbol to undefine.

Description:

Enter symbol as undefined in the symbol table. This is useful for linking

from a library.

Example:

To force symbol main as undefined, enter:

lk563 –u main mylib.a

Section Linking with Libraries.

Linker 10–23

• • • • • • • •

-V

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Add the option to the Additional options field.

-V

Description:

With this option you can display the version header of the linker. This

option must be the only argument of lk563. Other options are ignored.

The linker exits after displaying the version header.

Example:

lk56 –V

TASKING DSP5600x C linker v x. yr z Build nnn
Copyright 1995– year Altium BV Serial# 00000000

lk563 –V

TASKING DSP563xx/6xx linker v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000

Chapter 1010–24
L
IN
K
E
R

-v

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Enable the Print the name of each file as it is processed
check box.

-v

-t

Description:

Verbose option. Print the name of each file as it is processed. Also shows

which objects are extracted from libraries.

Example:

lk563 –v test.obj

lk563 V008 (1): Embedded environment \c563\etc\def_targ.dsc
 read, relaxed addressing mode check enabled
lk563 V003 (1): Starting pass 1
lk563 V002 (1): File currently in progress:
 test.obj
lk563 E208 (0): Found unresolved external(s):
 _printf – (test.obj)
 __START – (test.obj)
lk563 V003 (1): Starting pass 2
lk563 V002 (1): File currently in progress:
 test.obj
lk563 V005 (1): Removing file .\CD5668a.tld

Using the control program:

cc563 –Wlk–v test.obj

Linker 10–25

• • • • • • • •

-w

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Linker Miscellaneous .

Select a warning level from the Suppress warning messages above
list box.

-w level

Arguments:

A warning level between 0 and 9 (inclusive).

Default:

-w8

Description:

Give a warning level between 0 and 9 (inclusive). All warnings with a

level above level are suppressed. The level of a message is printed

between parentheses after the warning number. If you do not use the -w

option, the default warning level is 8.

Example:

To suppresses warnings above level 5, enter:

lk563 –w5 test.obj

Using the control program:

cc563 –Wlk–w5 test.obj

Section Type Checking.

Chapter 1010–26
L
IN
K
E
R

10.3 LIBRARIES

There are two kinds of libraries. One of them is the user library. If you

make your own library of object modules, this library must be specified as

an ordinary filename. The linker will not use any search path to find such

a library. The file must have the extension .a or .clb . Example:

lk563 start.obj –fobj.lnk mylib.a

or, if the library resides in a sub directory:

lk563 start.obj –fobj.lnk libs\mylib.a (PC)
lk563 start.obj –fobj.lnk libs/mylib.a (UNIX)

The other kind of library is the system library. You must define system

libraries with the -l option. With the option -lcm you specify the system

library libcm.a .

10.3.1 LIBRARY SEARCH PATH

The linker searches for system library files according to the following

algorithm:

1. Use the directories specified with the -Ldirectory options, in a left-to-right

order. For example:

PC:

lk563 –L..\lib\563xx –L\usr\local\lib start.obj
–fobj.lnk –lc24

UNIX:

lk563 –L../lib/563xx –L/usr/local/lib start.obj
–fobj.lnk –lc24

2. If the -L option is not specified without a directory, check if the

environment variable C563LIB exists. If it does, use the contents as a

directory specifier for library files. It is possible to specify more than one

directory in the environment variable C563LIB by separating the directories

with a directory separator. Valid directory separators are:

PC:

; , space

Linker 10–27

• • • • • • • •

UNIX:

: ; , space

Instead of using -L as in the example above, the same directory can be

specified using C563LIB:

PC:

set C563LIB=..\lib\563xx;\usr\local\lib
lk563 start.obj –fobj.lnk –lc24

UNIX:

if using the Bourne shell (sh), or korn shell (ksh)

C563LIB=../lib/563xx:/usr/local/lib
export C563LIB
lk563 start.obj –fobj.lnk –lc24

or if using the C-shell (csh)

setenv C563LIB ../lib/563xx:/usr/local/lib
lk563 start.obj –fobj.lnk –lc24

3. Search in the lib directory relative to the installation directory of lk563

for library files.

PC:

lk563.exe is installed in the directory C:\C563\BIN
The directory searched for the library file is C:\C563\LIB

UNIX:

lk563 is installed in the directory /usr/local/c563/bin
The directory searched for the library file is /usr/local/c563/lib

The linker determines run-time which directory the binary is executed

from to find this lib directory.

4. If the library is still not found, search in the processor specific subdirectory

of the lib directory relative to the installation directory of lk563 for

library files. For example:

PC:

C:\C563\LIB\563xx

Chapter 1010–28
L
IN
K
E
R

UNIX:

/usr/local/c563/lib/563xx

A directory name specified with the -Ldirectory option or in C563LIB (or

C56LIB for the DSP5600x) may or may not be terminated with a directory

separator, because lk563 inserts this separator, if omitted.

10.3.2 LINKING WITH LIBRARIES

If you are linking from libraries, only those objects you need are extracted

from the library. This implies that if you invoke the linker like:

lk563 mylib.a

nothing is linked and no output file will be produced, because there are

no unresolved symbols when the linker searches through mylib.a .

It is possible to force a symbol as undefined with the option -u:

lk563 –u main mylib.a (space between -u and main is

 optional)

In this case the symbol main will be searched for in the library and (if

found) the object containing main will be extracted. If this module

contains new unresolved symbols, the linker looks again in mylib.a . This

process repeats until no new unresolved symbols are found. See also the

library member search algorithm in the next section.

The position of the library is important, if you specify:

lk563 –lc24 myobj.obj mylib.a

the linker starts with searching the system library libc24.a without

unresolved symbols, thus no module will be extracted. After that, the user

object and library are linked. When finished, all symbols from the C library

remain unresolved. So, the correct invocation is:

lk563 myobj.obj mylib.a –lc24

All symbols which remain unresolved after linking myobj.obj and

mylib.a will be searched for in the system library libc24.a .

Linker 10–29

• • • • • • • •

The link order for objects, user libraries and system libraries is the order in

which they appear at the command line. Objects are always linked, object

modules in libraries are only linked if they are needed.

10.3.3 LIBRARY MEMBER SEARCH ALGORITHM

A library built with ar563 always contains an index part at the beginning

of the library. The linker scans this index while searching for unresolved

externals. However, to keep the index as small as possible, only the

defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the

corresponding object file is extracted from the library and is processed.

After processing the object file, the remaining library index is searched. If

after a complete search unresolved externals are introduced, the library

will be scanned again.

The -v option shows how libraries have been searched and which objects

have been extracted.

10.4 LINKING CLAS COFF OBJECTS

The linker lk563 reads object files (and object libraries) in the Motorola

CLAS COFF format used by the Motorola assembler. The output file of

lk563 is always in the IEEE-695 based TIOF format. Output in Motorola

CLAS format is not supported.

High level language debug information represented in the CLAS object

module will not be placed in the output file of the linker lk563. High level

source debugging can only be done on modules compiled with the

TASKING c56 or c563 compiler.

The main reason of linking Motorola CLAS object files using lk563 is to be

able to link existing object modules which are not available in source

(otherwise these sources could be compiled/assembled by the TASKING

compilers/assemblers).

Because of the differences in the handling of section scoping in the

Motorola assembler and the TASKING assemblers, only public labels at the

GLOBAL level can be matched.

Symbols in object files of the same type must match exactly.

Chapter 1010–30
L
IN
K
E
R

As a result of this, it is possible that one external symbol definition

matches one or more public symbols.

Overlaying is not supported for sections defined in the Motorola CLAS

object format.

The Motorola section names of linked-in CLAS COFF files are converted

into TASKING section names according to the following rules:

Absolute sections: motorola_name+'_'+address
Relocatable sections: motorola_name+'_'+section_attributes

Section attributes have the following syntax:

accessYninitC[N|P]

The access and init parts can be:

access init

Text sections: X

Data sections: W I

BSS sections: W B

Overlay sections: W B

Pad sections: W F

Block sections: W I

Table 10-2: Section attributes

All section type letters are explained in section ST Command of Appendix

I, IEEE-695 Object Format.

An example Motorola (relocatable) section name is:

motsec_WY5BCN

10.5 LINKER OUTPUT

The linker produces an IEEE-695 object output file and, if requested, a

linker map file, and/or a call graph file.

The linker output object is still relocatable. It is the task of the locator to

determine the absolute addresses of the sections. The linker combines

sections with the same name to one (bigger) output section.

Linker 10–31

• • • • • • • •

The linker produces a map file if the option -M is specified. The name of

the map file is the same as the name of the output file. The extension is

.lnl . If no output filename is specified the default name is a.lnl . The

map file is organized per linked object. Each object is divided in sections

and symbols per section. The map file shows the relative position of each

linked object from the start of the section.

The generated call graph will also be printed in the map file. The

command line option -c forces the linker to generate a separate call graph

file with a compressed call graph. The filename extension of this file is

.cal .

If the linker is used for incremental linking, the -r option must be used.

The effect is, that unresolved symbol diagnostics will not be generated,

and overlaying is not done (see 10.6). In this case, the output of the linker

can be used again as input object. A call graph will always be generated.

A (part of) sample map file:

Call graph(s)
=============

Call graph 1:

main()
 |
 +––puts()
 |
 +––fputc()
 |
 +––_flsbuf()
 |
 +––_write()
 | |
 | +––_iowrite()
 | |
 | +––_simo()
 |
 +––_iowrite()
 |
 +––_simo()

Chapter 1010–32
L
IN
K
E
R

Pool offsets
============

Pool #1: .xovl (Total of 103 bytes)

 Pool: .xovl
 off siz
 puts() 0 5
 fputc() 5 1
 _flsbuf() 6 85
 _write() 91 9
_iowrite() 100 3

Object: hello.obj
=================

Section:.ptext (Start = 0x0)
0x00000000 E Fmain

Section:.xstring (Start = 0x0)

Object: puts.obj
================

Section:.ptext (Start = 0x4)
0x00000004 E Fputs

Object: cstart.obj
==================

Section:.ptext (Start = 0x3b)
0x0000003b E F_START
0x0000003b E F_copytable
0x0000004d E F_exit
0x00000069 E cptable_clr
0x0000004e E cptable_copy

Section: generated0 (Start = 0x0)

Section: generated1 (Start = 0x0)
......

Linker 10–33

• • • • • • • •

The addresses in the map file are offsets relative to the start of the section

in the output file. For instance, symbol F_START in the object module

cstart.obj is at offset 0x3b from the output .ptext section. Function

F_START also starts at offset 0x3b from the start of the resulting .ptext
section. The E after the address indicates the label is external.

10.6 OVERLAY SECTIONS

In order to make memory use in the static memory model more efficient,

the compiler generates special sections, with the overlay attribute, which

must be overlayed by the linker. Each C function has its own section with

local variables, temporaries etc. The linker builds a call graph to determine

a valid overlay of the sections of functions which do not call each other.

For example:

main()
{

int j;
printf(”hello\n”);
j = 2;
foo(j);

}
foo(int j)
{

int i;
i = j;

}

The linker detects that foo does not call printf , and printf does not

call foo . The compiler generates an overlayable data section for the local,

direct addressable, variable i . printf , which also has local variables, gets

its own overlayable data section. The linker puts the overlay sections of

these two functions at the same (direct addressable) memory area. The

advantage is that the target memory is used more efficiently.

Chapter 1010–34
L
IN
K
E
R

10.7 TYPE CHECKING

10.7.1 INTRODUCTION

By default the compiler and the assembler generate high-level type

information. Unless you disable generation of type information (-g0), each

object contains type information of high-level types. The linker compares

this type information and warns you if there are conflicts. The linker

distinguishes four types of conflicts:

1. Type not completely specified (W109). Occurs if you do not specify the

depth of an array, or if you do not specify arguments in one of the

function prototypes. The linker does not report this type of conflict unless

you specify a warning level 9 (-w9), default is warning level 8.

2. Compatible types, different definitions (W110). Occurs if for instance you

link a short with an int. The DSP566xx takes both as 16 bits, so there will

not be a problem. However, the code is not portable. Also structures or

types with different names produce this warning. The warning level for

this message is 8, so you can switch off this kind of message by specifying

warning level 7 or less (-w7).

3. Signed/unsigned conflict (W111). If you link a signed int with an unsigned

int, you get this message. In many cases there will be no problem, but the

unsigned version can hold a bigger integer. The warning level of this

warning is 6 and can be suppressed by specifying a warning level of 5 or

less (-w5).

4. All other type conflicts (W112). If you get warning 112, there is probably a

more serious type conflict. This can be a conflict in a function return type,

a conflict in length between two built in types (short/long) or a completely

different type. This warning has a level of 4, and can be switched off with

warning level 3 or less (-w3).

Linker 10–35

• • • • • • • •

10.7.2 RECURSIVE TYPE CHECKING

The linker compares types recursively. For instance, the type of foo :

struct s1 {
 struct s2 *s2_ptr;
};

struct s2 {
 int count;
} sample;

struct s1 foo = { &sample };

If you compile this source and link it with another compiled source with

only struct s2 different:

struct s1 {
 struct s2 *s2_ptr;
};

struct s2 {
 short count;
};

extern struct s1 foo;

message W112 (type conflict) will be generated. Although struct s1 is

the same in both cases, this is a real type conflict: For instance, the code

”foo.s2_ptr–>count++” produces different code in both objects.

If you have several conflicts in one symbol, the linker reports only the one

with the lowest warning level. (The most serious one.)

10.7.3 TYPE CHECKING BETWEEN FUNCTIONS

If you use K&R style functions, it is not possible to check the type of the

arguments and the number of arguments. Return types are 'int' if not

specified. Prototypes are only needed if a function has a non-integer

return type:

Chapter 1010–36
L
IN
K
E
R

test2(par)
int par;
{

test1(par);
return test3(1, 2);

}

In this case, test1 (defined in another source) has a return type void ,

and test3 has a return type int , which is the default. At the default

warning level, the linker does not report any conflict. If you should specify

warning level 9 (-w9), the linker reports a 'not completely specified' type,

because the linker is not able to check the arguments. Conflicts in return

types cause real type conflicts at warning level 4.

If the source is ANSI style (which is recommended), the linker checks the

types of all parameters, and the number of parameters. In this case the

source of the example above looks like:

void test1(int); /* ANSI style prototypes */
int test3(int, int);

test2(int par) /* ANSI style function definition*/
{

test1(par);
return test3(1, 2);

}

Another source, containing the definition of test1 and test3 may look

like:

void test1(int one)
{

/*
** code for function test1
*/
.
.
.

}

Linker 10–37

• • • • • • • •

int test3(int one, int two)
{

/*
** Code for function test3
*/
.
.
.

}

Prototypes are only needed for functions which are referenced before they

are defined within one source. However, it is a good practice to include a

prototype file with prototypes of all the functions in a file. If you do so,

type checking for functions is done by the compiler. Nevertheless, if you

do not compile all sources after you have changed the prototype file, the

linker will report the type conflict.

It is possible to add ANSI style prototypes to K&R style C-code. In this

case full type checking for functions becomes available. To accomplish

this, make a new header file with all prototypes for all functions in your

application. Include this file in each source, or tell the compiler to include

it for you by means of the option -H:

cc563 –c –Hproto.h *.c

10.7.4 MISSING TYPES

In C you are allowed to define pointers to unspecified objects. The linker

is not able to check such types. For instance:

struct s1 {
struct s2 *s2_ptr;

};

struct s1 foo;

The structure s2 is not specified. Because the linker is not able to check

whether struct s2 is the same in all sources, a warning at level 9 will be

generated:

lk563 W102 (9) <name>: Incomplete type specification, type index = T101

Chapter 1010–38
L
IN
K
E
R

It is possible that the struct s2 is known in an other source. If this source

uses variable foo , a second message is generated, reporting a level 9 type

conflict:

lk563 W109 (9) <f1>: Type not completely specified for symbol <foo> in <f2>

Because the type definition is not complete, the first warning reports that

the linker cannot check the type, although this is allowed in C. This

message is given once for each object for each incomplete type. The

second warning reports a difference in types, an incomplete type versus a

complete type.

All these warnings are only generated if you specify warning level 9

(-w9).

10.8 LINKER MESSAGES

There are four kinds of messages: fatal messages, error messages, warning

messages and verbose messages. Fatal messages are generated if the linker

is not able to perform its task due to the severity of the error. In those

situations, the exit code will be 2. Error messages will be reported if an

error occurred which is not fatal for the linker. However, the output of the

linker is not usable. The exit code in case of one or more error messages

will be 1. Warning messages are generated if the linker detects potential

errors, but the linker is unable to judge those errors. The exit code will be

0 in this case, indicating a usable .out file. Of course, if the linker reports

no messages at all, the exit code is 0 also.

Each linker message has a built-in warning level. With option -wx it is

possible to suppress messages with a warning level above x.

Verbose messages are generated only if the verbose option (-v) is on.

They report the progress of the link process.

Linker messages have the following layout:

 DSP563xx/6xx object linker v x. y r z SN00000000–000 (c) year TASKING, Inc.

 lk563 W112 (4) a.o: Type conflict for symbol <f> in b.o

The first line shows the banner of the DSP56xxx linker. The second line

reports a type conflict in the file a.obj . Apparently there is a conflicting

type definition of the function f in module b.obj . The number between

parentheses after the warning number, '(4)', shows the warning level.

Linker 10–39

• • • • • • • •

There are four message groups:

1. Fatal (always level 0):

- Write error

- Out of memory

- Illegal input object

2. Error (always level 0):

- Unresolved symbols (and no incremental linking)

- Can't open input file

- Illegal recursive use of an non reentrant function

3. Warning (levels from 1 to 9):

- Type conflict between two symbols

- Illegal option (Ignored)

- No system library search path, and system library requested

4. Verbose (level not relevant, only given with option -v):

- Extracting files from a library

- Current file/library name

- Pass one or pass two

- Rescanning library for new unresolved symbols

- Cleaning up temp files

- warning level

Chapter 1010–40
L
IN
K
E
R

11

LOCATOR
C

H
A

P
T

E
R

Chapter 1111–2
L
O
C
A
T
O
R

11

C
H

A
P

T
E

R

Locator 11–3

• • • • • • • •

11.1 OVERVIEW

This chapter describes the locator and its control language for the

DSP5600x (lc56) and DSP563xx/DSP566xx (lc563). lc563 is used to

describe all three locators, unless explicitly stated otherwise.

The task of the locator is to locate a .out file, made by lk563, to absolute

addresses. In an embedded environment an accurate description of

available memory and information about controlling the behavior of the

locator is crucial for a successful application. For example, it may be

necessary to port applications to processors with different memory

configurations, or it may be necessary to tune the location of sections to

take full advantage of fast memory chips. To perform its task the locator

needs a description of the derivative of the DSP56xxx used. The locator

uses a special language for this description: DELFEE, which stands for

DEscriptive Language For Embedded Environments. This control language

is used in a special file, which is called the description file. See Appendix

G DEscriptive Language For Embedded Environments for detailed

information.

The description file is an optional parameter in the locator invocation.

Without a description file name on the command line, or without the -d

option, the locator searches the file def_targ.dsc in the current

directory or in directory etc in the product tree.

.out

.map
locator map file

linker object files

IEEE–695 absolute

locator
lc563

locator description file
.dsc

Intel Hex

object file

Motorola S–record Motorola CLAS

.cld

.abs

.sre

.hex

absolute object file

object file

object file

Figure 11-1: Locator

Chapter 1111–4
L
O
C
A
T
O
R

11.2 INVOCATION

The invocation of the locator is:

lc563 [option]... [file]...

When you use a UNIX shell (C-shell, Bourne shell), options containing

special characters (such as '()') must be enclosed with ” ” . The

invocations for UNIX and PC are the same, except for the -? option in the

C-shell:

lc563 ” -?” or lc563 -\?

Options may appear in any order. Options start with a '-'. They may be

combined: -eM is equal to -e -M. Options that require a filename or a

string may be separated by a space or not: -oname is equal to -o name.
file may be any file with a .out or .dsc extension.

The locator recognizes the following options:

Option Description

–H or –? Display invocation syntax

–M[n] Produce a locate map file (.map) with maximum width n
(n > 132)

–S space Generate specific space

–V Display version header only

–c Don’t generate ROM copy for re–initializing data memory

–d file Read description file information from file, ’–’ means
stdin

–e Clean up if erroneous result

–emmacro[=def] Define preprocessor macro

–err Redirect error messages (.elc)

–f file Read command line information from file,
’–’ means stdin

–f format Specify output format

–o filename Specify name of output file

–p Make a proposal for a software part on stdout

–r Romable application

–s Strip debug info from the input

Locator 11–5

• • • • • • • •

DescriptionOption

–v Verbose option. Print name of each file as it is processed

–w n Suppress messages above warning level n.

Table 11-1: Options summary

11.2.1 DETAILED DESCRIPTION OF LOCATOR OPTIONS

With options that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

-?/-H

Option:

-?

-H

Description:

Display an explanation of options at stdout.

Example:

lc563 –?

Chapter 1111–6
L
O
C
A
T
O
R

-c

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Disable the Generate copy table for re–initializing data
memory check box.

-c

Description:

Do not generate ROM-copy for re-initializing data memory. In some

special situations target memory usage can be minimized by not

generating a ROM copy of the initialized data variables in program

memory. The drawback of using this option is that program initialization is

done during object image loading. So, restarting the program requires

downloading the whole program again. Also, when the program runs from

an EPROM, no attempt is made to clear or fill data sections, so a program

depending on cleared or initialized RAM variables will fail then.

Here is a C example to demonstrate this:

/* NOTE: the copy table is handled by the startup code
 just before calling main() */

int flag = 1;

void main(void)
{
 flag = 0;
}

The flag global variable will read 1 on the first run and 0 on all

subsequent runs, because it has been reset in main() and is never

restored unless the program is downloaded again.

Normally, when running from an EPROM, the startup code will take care

of clearing and initializing RAM data memory by using a ROM-copy of the

initialized data variables. During program startup this ROM-copy is copied

from program memory to data memory, thus assuring the program will

have the same initial values on every program restart. The used bootstrap

loader only needs to be able to fill program memory.

Locator 11–7

• • • • • • • •

Using the -c option will initialize the object image with all required data

values directly. So, when loading the object image, no additional copy

action is required. This will save the memory space for the ROM copy at

the cost of not being able to restart the program with the same initial

values. Every program restart requires downloading the object image first.

The -c option is of great use when loading the object image from a host

processor, because the program code and data can be loaded into a target

system with the exact required memory space to run correctly (no extra

space for additional variable images in ROM is required). To allow this, the

bootstrap loader must be capable of handling data for different memory

spaces.

To get a maximum decrease in memory usage, make sure to compile your

C startup code without the code for initializing the data memory.

Otherwise the locator will generate a copy table with zero entries to

prevent unresolved references. For the Motorola DSP56xxx toolchain this

means compiling the startup code with the define NOCOPY set.

Chapter 1111–8
L
O
C
A
T
O
R

-d

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Control File .

From the Target list, select a predefined target or select User supplied
target definition and specify a target name, select the Use project
specific linker/locator control file (.dsc) radio button and

enter the name of the description file in the field below.

-d file

Arguments:

A filename to read description file information from. If file is a '-', the

information is read from standard input.

Description:

Read description file information from file instead of a .dsc file.

Example:

To read description file information from file 56302evm.dsc), enter:

lc563 –d56302evm.dsc test.out

Locator 11–9

• • • • • • • •

-e

Option:

EDE always removes the output files on errors.

-e

Description:

Remove all locate products such as temporary files, the resulting output

file and the map file, in case an error occurred.

Example:

lc563 –e test.out

Chapter 1111–10
L
O
C
A
T
O
R

-em

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Add the option to the Additional options field.

-emmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro to the preprocessor, as in #define. If def is not given ('=' is

absent), '1' is assumed. Any number of symbols can be defined. The

definition can be tested by the preprocessor with #if, #ifdef and #ifndef,

for conditional locating. If the command line is getting longer than the

limit of the operating system used, the -f option is needed.

Example:
lc563 myproject.out –o myproject.abs –emEDE=\”myproject.i\” –M

Locator 11–11

• • • • • • • •

-err

Option:

In EDE this option is not useful.

-err

Description:

The locator redirects error messages to a file with the same basename as

the output file and the extension .elc . The default filename is a.elc .

Example:

To write errors to the file a.elc instead of stderr , enter:

lc563 –err test.out

To write errors to the file test.elc instead of stderr , enter:

lc563 –err test.out –otest.abs

Chapter 1111–12
L
O
C
A
T
O
R

-f

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Add the option to the Additional options field.

-f file

Arguments:

A filename for command line processing. The filename "-" may be used to

denote standard input.

file may not be a number in the range 0-4, because these numbers are

used to specify an output format.

Description:

Use file for command line processing. To get around the limits on the size

of the command line, it is possible to use command files. These command

files contain the options that could not be part of the real command line.

Command files can also be generated on the fly, for example by the make

utility.

More than one -f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command

file.

2. To include whitespace in the argument, surround the argument with either

single or double quotes.

3. If single or double quotes are to be used inside a quoted argument, we

have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the

opposite quote around the argument. Thus, if a argument should

contain a double quote, surround the argument with single quotes.

Locator 11–13

• • • • • • • •

b. If both types of quotes are used, we have to split the argument in such

a way that each embedded quote is surrounded by the opposite type

of quote.

Example:

”This has a single quote ’ embedded”

or

’This has a double quote ” embedded’

or

’This has a double quote ” and \
a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of lines within a text

file. To circumvent this limitation it is possible to use continuation lines.

These lines end with a backslash and newline. In a quoted argument,

continuation lines will be appended without stripping any whitespace on

the next line. For non-quoted arguments, all whitespace on the next line

will be stripped.

Example:

”This is a continuation \
line”
 –> ”This is a continuation line”

control(file1(mode,type),\
 file2(type))
 –> control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file mycmds contains the following line:

–err
test.out

The command line can now be:

lc563 –f mycmds

Chapter 1111–14
L
O
C
A
T
O
R

-f format

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Output Format .

Select one of the output formats.

-f�format

Arguments:

format can be one of the following output formats:

0 = TIOF 695

1 = IEEE Std. 695 (Default)

2 = Motorola S-record

3 = Intel Hex

4 = Motorola CLAS

Description:

Specify an output format. The default output format is IEEE Std. 695 (-f1),

which can directly be used by the CrossView Pro debugger. The other

output formats can be used for loading into a PROM-programmer.

Section Format Suboptions,
Appendix I, IEEE-695 Object Format,
Appendix J, Motorola S-Records,
Appendix K, Intel Hex Records.

Locator 11–15

• • • • • • • •

-M

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Enable the Produce a memory map file (.map) check box.

-M[n]

Arguments:

Optionally the maximum line width (n > 132). If you omit the width, the

default is 132 characters.

Description:

Produce a locate map (.map). If no output filename is specified the default

name is a.map . The map file shows the absolute position of each section.

External symbols are listed with their absolute address, both sorted on

address and sorted on symbol.

Example:

To create the map file a.map , enter:

lc563 –M test.out

Chapter 1111–16
L
O
C
A
T
O
R

-o

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Add the option to the Additional options field.

-o�filename

Arguments:

An output filename.

Default:

The default filename depends on the output format specified:

Format Default output name

0 a.abs
1 a.abs
2 a.sre
3 a.hex
4 a.cld

Description:

Use filename as output filename of the locator.

Example:

To create the output file test.abs instead of a.abs , enter:

lc563 test.out –otest.abs

Locator 11–17

• • • • • • • •

-p

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Add the option to the Additional options field.

-p

Description:

Make a proposal for a software part in a description file on standard

output.

Chapter 1111–18
L
O
C
A
T
O
R

-r

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Add the option to the Additional options field.

-r

Description:

By default locator generated sections, like the copy table, are writable, so

they can be placed in RAM. Setting the -r option makes them read-only,

which is reuired for a romable application.

Locator 11–19

• • • • • • • •

-S

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Select a code space from the Generate code for space list box.

-S�space

Arguments:

The name of a space from a .dsc file.

Default:

For the IEEE-695 format, by default code is generated for all spaces.

Description:

With this option you can generate a specific output file for a specified

space instead of generating an output file containing all spaces.

For the Motorola S-record and Intel Hex format, the locator can only

generate records for one space at a time, because the formats do not make

a distinction between memory spaces.

Example:

To generate code for space P instead of all spaces, enter:

lc563 test.out –S P

Chapter 1111–20
L
O
C
A
T
O
R

-s

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Disable the Include symbolic debug information check box.

-s

Description:

Strip debug information from the input file.

Locator 11–21

• • • • • • • •

-V

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Add the option to the Additional options field.

-V

Description:

With this option you can display the version header of the locator. This

option must be the only argument of lc563. Other options are ignored.

The locator exits after displaying the version header.

Example:

lc56 –V

TASKING DSP5600x C linker v x. yr z Build nnn
Copyright 1995– year Altium BV Serial# 00000000

lc563 –V

TASKING DSP563xx/6xx linker v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000

Chapter 1111–22
L
O
C
A
T
O
R

-v

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Enable the Print the name of each file as it is processed
check box.

-v

Description:

Verbose option. Print the name of each file as it is processed.

Example:

lc563 –v test.out

lc563 V001 (1): Output format: IEEE 695
lc563 V004 (1): Warning level 8
lc563 V007 (1): Found file <def_targ.dsc> via path
 \c563\etc\def_targ.dsc
lc563 V002 (1): Starting pass 1
lc563 V000 (1): File currently in progress:
 test.out

Locator 11–23

• • • • • • • •

-w

Option:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Locator Miscellaneous .

Select a warning level from the Suppress warning messages above
list box.

-w level

Arguments:

A warning level between 0 and 9 (inclusive).

Default:

-w8

Description:

Give a warning level between 0 and 9 (inclusive). All warnings with a

level above level are suppressed. The level of a message is printed

between parentheses after the warning number. If you do not use the -w

option, the default warning level is 8.

Example:

To suppresses warnings above level 5, enter:

lc563 –w5 test.out

Using the control program:

cc563 –Wlc–w5 test.out

Chapter 1111–24
L
O
C
A
T
O
R

11.2.2 FORMAT SUBOPTIONS

The layout of the -fformat switch as shown in the previous section has

some extra capabilities. The general form of format is:

format_number[format_option]...

The first character is a single digit known as the format specifier. This

format specifier can be followed by one or more format_options. These

format_options are in principle output format dependent. Currently the

following format_options are known:

Suboption Description Valid Formats

a Sort addresses in ascending order 2

bsize Specify the output buffer size 1, 2, 3

c Generate Intel Hex file for each chip 2, 3

s Emit start address record 3

S1, S2, S3 Force Motorola S1, S2 or S3 records 2

u Unsorted addresses (default) 2

Table 11-2: Format suboptions

For format 2 and 3 the buffer size sets the length of an output record

exclusive record code, address and checksum. The following Intel Hex

record has a buffer size of 32 bytes:

:20004000 (Record code and address)
000028A101002925FBFF6015FFFF6B25DDFF001000000000000020A101002925
 (32 data bytes)
8F (Checksum)

For format 1, size is the maximum number of bytes in one LD command.

Examples:

Format 2 with buffer size 64: -f2b64

Format 1 with buffer size 128: -f1b128

Format 2 with ascending addresses: -f2a

Format 2 with unsorted addresses: -f2u

Format 3 with separate hex files for each chip: -f3c

Format 3 including start address record: -f3s

Format 2 with S2 records: -f2S2

Locator 11–25

• • • • • • • •

11.3 GETTING STARTED

The locator invocation is normally done via EDE or the control program.

In this section you will invoke the locator as a separate tool in order to get

a better understanding of the use of options and the description file.

You can find a more detailed description of the descriptive language for

embedded environments (DELFEE) in Appendix G DEscriptive Language
For Embedded Environments.

If you want to locate the calc demo, you need the relocatable demo file

calc.out as input for the locator. You can generate this file by copying

the contents of the directory examples\asm (examples/asm for UNIX)

to your working directory, and invoke the control program:

cc563 –cl startup.asm calc.asm –o calc.out

Be sure that the bin directory of the DSP56xxx tools is in the search path.

The option -cl tells the control program to stop after linking and to

suppress the locating phase. The file you made by this command is the

complete demo, but still in a relocatable form. Now, you can locate this

relocatable file calc.out to absolute addresses by typing:

lc563 –M calc.out

The -M option causes lc563 to make a map file. The default output file

format is IEEE-695 (-f1 option). Since you did not specify an output

name, the default output name a.abs will be generated. (For -f0 and -f1

the default is a.abs , for -f2 the default is a.sre , for -f3 the default is

a.hex and for -f4 the default is a.cld .) After the invocation, the locator

has generated two files:

- a.abs , The IEEE 695 output file

- a.map , The locate map file

If you want to give the output file a specific name, you must use the -ofile
option:

lc563 –M calc.out –o calc.abs

You may need to adjust the description file. In a description file you can

change the locating algorithm of the locator. If you do not specify a

description file, the locator uses the file def_targ.dsc from the etc sub

directory (in the DSP56xxx product tree). If you do not want to change

this original description file (which is advisable), make a copy of file

def_targ.dsc to your working directory.

Chapter 1111–26
L
O
C
A
T
O
R

You can change the copy of the description file. Everything after a

comment (//) until the end of the line is ignored. As an example, change

the lines:

amode P_far {
section selection=x;
section selection=r;
table;
copy;

}

into:

amode P_far {
section .text;
section .ptext;
table;
copy;

}

The effect will be that the location order of the sections .text and

.ptext is now forced to be fixed.

Locate again to see the effect. The modified description file

def_targ.dsc in your working directory will be found before the

original version in the etc directory. Because you want to compare the

map files, choose another output name:

lc563 –M calc.out –ocalc_o.abs

Now you can compare calc.map and calc_o.map .

If you want to choose between a description file with and without the

changes you made, you must rename the def_targ.dsc in your working

directory to, for example, order.dsc . If you want the changed version of

the description, you can invoke the locator as follows:

lc563 –M –d order calc.out –ocalc_o.abs

The space between -d and order is optional. If you do install order.dsc
in the etc subdirectory, you can use the option -dorder from any

working directory.

If you want to know more about the locate language DELFEE, read

Appendix G.

Locator 11–27

• • • • • • • •

11.4 LOCATOR TARGET BOARD SUPPORT

The locator description files that are supplied with the tool set contain

conditional parts to place the stack in the desired memory space. The

control variables for this selection are automatically generated when

compiling with the control program cc563 or from EDE, and are set to the

normal defaults when no memory space options are supplied.

To set the stack size and the heap size, all description files contain

STACKSIZE and HEAPSIZE defines that can be set from the locator

command line (with -em) or from EDE. Default values that are supplied

are 0.75k (or 1k for non-L-stack models) stack and 4k heap; some smaller

targets have other appropriate values. See the description file that is

concerned.

A problem that arises with the stack in L-memory is that L-memory is

allocated first, and only after that X- and Y-memory. Therefore L-memory

takes precedence, and the stack area will normally block the allocation of

near X- and Y-variables. A define NEARXYSIZE is provided in the

description files to reserve space for such variables; it is set to zero if not

defined externally.

The .cpu files have defines for the memory switch and the cache size

(SWITCH_SELECT and CACHE_SELECT) that can be set from the locator

command line. These defines are set to default values if they are not

specified on the command line.

An overview of the defines is given in the following table.

Locator control Default Description

STACKSIZE 768 or 1K Stack size (bytes)

HEAPSIZE 4K Heap size (bytes)

NEARXYSIZE 0 Area size for near X/Y variables

CACHE_SELECT 0 or 1 Enable/disable cache

SWITCH_SELECT 0 or 1 Enable/disable memory switch

Table 11-3: Locator controls

Chapter 1111–28
L
O
C
A
T
O
R

11.5 FORCE CONST SECTIONS

Previous toolchain versions handled initialized P memory data sections

incorrectly, and wasted a lot of P memory on intializers for constant data

sections. Two modifiers have been added to the org statement, to define

constant (const) and initialized (int) data sections. The const data

sections that were previously generated (for string literals only) were

named ".xstring" (or any other memory), but these were still copied from

the copy table. The new const data sections are named ".xconst" etc.,

and they are not copied anymore; instead, the debugger places them in

the appropriate memory directly. This saves a lot of memory in

applications that use large tables or a lot of strings. Applications that were

previously contained in P memory only at startup, are now spread over

several memory spaces.

There are two ways to attack this problem:

1. Force the ".xconst" etcetera sections back to the copytable. This brings

back the waste of P memory, but if that is not a problem it is possible you

can do this by using the locator description file. You have to specify the

read-only sections in the description file and change their attributes:

section selection=–w attr=i;

These lines must be placed right under every position in X and Y memory

spaces where,

section selection=–w

is written in the .dsc file.

2. Use a bootstrap loader that can handle the different memory spaces. The

bootrom example contains such a loader and tools to generate a file for it,

that you have to extend to match your application. This is the more

elegant solution that we especially recommend if you are low on memory.

Locator 11–29

• • • • • • • •

11.6 CALLING THE LOCATOR VIA THE CONTROL

PROGRAM

It is recommended to call the locator via the control program cc563. The

control program translates certain options for the locator (e.g., -clas to

-f4). Other options (such as -M) are passed directly to the locator.

Typical, you can use the control program to get an .abs file directly from

.c , .src , .asm or .obj files. The invocation:

cc563 –M –g startup.asm calc.asm –o calc.abs

builds an absolute demo file called calc.abs ready for running via the

CrossView debugger.

11.7 LOCATOR OUTPUT

The locator produces an absolute file and, if requested, a map file and/or

an error file. The output file is absolute and in Intel Hex format, Motorola

S-record format, Motorola CLAS object format or in IEEE-695 format,

depending on the usage of the -f option. The default output name is

a.hex , a.sre , a.cld or a.abs , respectively. Note that the debug

information is not supported in the Motorola CLAS object format.

The map file (-M option) always has the same basename as the output

object file, with an extension .map . The map file shows the absolute

position of each section. External symbols are listed per space with their

absolute address, both sorted on address and sorted on symbol.

The map file also contains a part showing the sections defined in each

source file (with their address and size).

The error output file (-err option) has the same name as the object output

file, but with extension .elc . Errors occurred before the -err option is

evaluated are printed on stderr.

Chapter 1111–30
L
O
C
A
T
O
R

11.8 LOCATOR MESSAGES

There are four kinds of messages: fatal messages, error messages, warning

messages and verbose messages. Fatal messages are generated if the

locator is not able to continue with its task due to the severity of the error.

In those situations, the exit code will be 2. Error messages will be reported

if an error occurred, not fatal for the locator. However, the output of the

locator is not usable. The exit code in case of one or more error messages

will be 1. Warning messages are generated if the locator detects potential

errors, but the locator is unable to judge those errors. The exit code will

be 0 in this case, indicating a usable .abs file. Of course, if the locator

reports no messages, the exit code is also 0.

Each locator message has a built-in warning level. With option -wx it is

possible to suppress messages with a warning level above x.

Verbose messages are generated only if the verbose option (-v) is on.

They report the progress of the locate process.

Locator messages have the following layout:

 DSP563xx/6xx locator v x. y r z SN00000000–127 (c) year TASKING, Inc.

 lc563 W112 (3) calc.out: Copy table not referenced, initial data is not copied

11.9 ADDRESS SPACE

Figures 11-2 and 11-3 show the different address space mappings of the

DSP5600x.

Locator 11–31

• • • • • • • •

0xffff

YAB bus

Space Y

0x0000

0xffff

XAB bus

Space X

0x0000

0xffff

Space L

0x0000

0xffff

PAB bus

Space P

0x0000

XAB bus

YAB bus

Figure 11-2: DSP5600x physical address space mapping

Chapter 1111–32
L
O
C
A
T
O
R

X_far

0xffff

Space X

0x0000

0xffff

L_far

0x0000

0x0000

0x003f

0xffff

0xffc0

X_near

X_io

P_far

0xffff

Space P

0x0000

0xffff

0xffc0

P_near

Y_io

Y_farSpace Y

0x0fff

P_sjmp

0x0000

0x003f

0x0000

0x003f

Y_near

0x0000

0x003f

L_nearSpace L

Figure 11-3: DSP5600x virtual address space mapping

Locator 11–33

• • • • • • • •

11.10 LOCATOR LABELS

The locator assigns addresses to the following labels when they are

referenced:

F_lc_cp : Start of copy table The copy table gives the

source and destination addresses of sections to

be copied. This table will be generated by the

locator only if this label is used.

F_lc_bs : Begin of stack space (using keyword stack).

F_lc_es : End of stack space.

F_lc_bh : Begin of heap space (using keyword heap).

F_lc_eh : End of heap space.

F_lc_b_ name : Begin of section name.

F_lc_e_ name : End of section name.

F_lc_cb_ name : Begin of copy of section name.

F_lc_ce_ name : End of copy of section name.

F_lc_u_ name : User defined label. The label must be defined in

the description file. For example:

label mylab;

F_lc_ub_ name : Begin of user defined label. The label must be

defined in the description file. For example:

label = mybuffer length=100;

F_lc_ue_ name : End of user defined label.

At C level, all locator labels start with one underscore (the compiler adds

an 'F').

Chapter 1111–34
L
O
C
A
T
O
R

11.10.1 LOCATOR LABELS REFERENCE

This section contains a description of all locator labels. Locator labels are

labels starting with F_lc_. They are ignored by the linker and resolved at

locate time. Some of these labels are real labels at the beginning or the

end of a section. Other labels have a second function, these labels are

used to address locator generated data. The data is only generated if the

label is used.

At C level, all locator labels start with one leading underscore (the

compiler adds an 'F').

Locator 11–35

• • • • • • • •

F_lc_b_section,

F_lc_e_section

Syntax:

extern _X unsigned char _lc_b_section[];

extern _X unsigned char _lc_e_section[];

Description:

You can use the general locator labels F_lc_b_section and F_lc_e_section
to obtain the addresses of section section in a program. The b version

points to the start of the section, while the e version points to its end.

You can replace the dot before a section name by an underscore (_),

making it possible to access these labels from 'C'. This convention

introduces a possible name conflict. If, for example, both sections .text
and _text exist, the general label F_lc_b__text is set to the start of

_text . The label for section .text is only usable at assembly level with its

real name. Of course, you should avoid such a conflict by not using

section names with a leading underscore.

Example:

printf(”Text size is 0x%x\n”,
_lc_e__text – _lc_b__text);

Chapter 1111–36
L
O
C
A
T
O
R

F_lc_bh, F_lc_eh

Syntax:

extern _X unsigned char _lc_bh[];

extern _X unsigned char _lc_eh[];

Description:

All locator h labels are related to the heap. You can allocate a heap by

defining it in a cluster description. See also the Delfee keyword heap.

F_lc_bh is a label at the begin of the heap. At 'C' level _lc_bh represent

the heap. The label is defined as a char array, but an array of any basic

type will do. F_lc_eh represents the end of the heap.

Example:

Heap definition:

block X_block {
.
.
cluster X_clstr {
 amode X_far {

heap length = 200;
.

 }
}
.

}

Sbrk code:

extern _X unsigned char _lc_bh[];
extern _X unsigned char _lc_eh[];

static char *
sbrk(long length) {

.

.

if ((lastmem + length) > _lc_eh) {
return (char *) –1; /* overflow */

}

Locator 11–37

• • • • • • • •

F_lc_bs, F_lc_es

Syntax:

extern _X unsigned char _lc_bs[];

extern _X unsigned char _lc_es[];

Description:

All locator s labels are related to the stack. You can allocate a stack by

defining it in a cluster description. See also the Delfee keyword stack.

F_lc_bs is a label at the begin of the stack. At 'C' level _lc_bs represent

the stack. The label is defined as a char array, but an array of any basic

type will do. F_lc_es represents the end of the stack.

Example:

Stack definition:

block X_block {
cluster X_clstr {
 amode X_far {

stack length = 100;
.

 }
}

}

Stack initialization:

F_START:
move #F_lc_bs, R7 ; set stack pointer to

; begin of stack space

Chapter 1111–38
L
O
C
A
T
O
R

F_lc_cb_section,

F_lc_ce_section

Syntax:

extern _X unsigned char _lc_cb_section[];

extern _X unsigned char _lc_ce_section[];

Description:

You can use the general locator labels F_lc_cb_section and

F_lc_ce_section to obtain the addresses of the copy of section section in a

program. The b version points to the start of the copy of the section, while

the e version points to its end.

You can replace the dot before a section name by an underscore (_),

making it possible to access these labels from 'C'. This convention

introduces a possible name conflict. If, for example, both sections

.text_copy and _text_copy exist, the general label F_lc_cb__text is

set to the start of of _text_copy . The label for section .text_copy is

only usable at assembly level with its real name. Of course, you should

avoid such a conflict by not using section names with a leading

underscore.

Example:

printf(”Text size is 0x%x\n”,
_lc_ce__text – _lc_cb__text);

Locator 11–39

• • • • • • • •

F_lc_cp

Syntax:

extern char _X *_lc_cp;

Description:

The copy table is generated per process. Each entry in this table represents

a copy or clearing action. Entries for the table are automatically generated

by the locator for:

- All sections with attribute b, which must be cleared at startup time :

a clearing action.

- All sections with attribute i, which must be copied from rom to ram

at program startup: a copy action

Chapter 1111–40
L
O
C
A
T
O
R

F_lc_u_identifier

Syntax:

extern _X int _lc_u_identifier[];

Description:

This locator label can be defined by the user by means of the Delfee

keyword label. This label must be defined in the Delfee file without the

prefix F_lc_u_. From assembly the label can be referenced with the prefix

F_lc_u_, from C with the prefix _lc_u_ (only the leading underscore).

Example:

In description file:

block X_block {
cluster X_clstr {
 amode X_far {

label = bstart;
section text;
label = bend;

 }
}
.
.
.

}

From C:

#include <stdio.h>
extern _X int _lc_u_bstart[];
extern _X int _lc_u_bend[];
int main()
{
 printf(”Size of cluster X_clstr is %d\n”,

(long)_lc_u_bend –
(long)_lc_u_bstart);

}

Locator 11–41

• • • • • • • •

From assembler:

extern F_lc_u_bstart
extern F_lc_u_bend
move #F_lc_u_bstart,r0
clra #F_lc_u_bend–#F_lc_u_bstart,b
rep b
move a,x:(r0)+

Chapter 1111–42
L
O
C
A
T
O
R

F_lc_ub_identifier,

F_lc_ue_identifier

Syntax:

extern _X int _lc_ub_identifier[];
extern _X int _lc_ue_identifier[];

Description:

These locator labels can be defined by the user by means of the Delfee

keywords reserved label=. The locator labels specify the begin and end

of a reserved area. The identifier is the name for the reserved area and

must be defined in the Delfee file without the prefix F_lc_ub_ or

F_lc_ue_. From assembly the labels can be referenced with the prefix

F_lc_ub_ and F_lc_ue_, from C with the prefix _lc_ub_ and _lc_ue_

(only the leading underscore).

Example:

In description file:

block Y_block {
cluster Y_clstr {

attribute w;
amode Y_far {

section selection=w;
reserved label= xvwbuffer length=0x10;
// Start address of reserved area is
// label F_lc_ub_xvwbuffer
// End address of reserved area is
// label F_lc_ue_xvwbuffer

}
}

}

Locator 11–43

• • • • • • • •

From C:

#include <stdio.h>
extern _X int _lc_ub_xvwbuffer[];
extern _X int _lc_ue_xvwbuffer[];
int main()
{
 printf(”Size of reserved area xvwbuffer is %d\n”,

(long)_lc_ue_xvwbuffer –
(long)_lc_ub_xvwbuffer);

}

From assembler:

extern F_lc_ub_xvwbuffer
extern F_lc_ue_xvwbuffer
move #F_lc_ub_xvwbuffer,r0
clra #F_lc_ue_xvwbuffer–#F_lc_ub_xvwbuffer,b
rep b
move a,x:(r0)+

Chapter 1111–44
L
O
C
A
T
O
R

12

UTILITIES
C

H
A

P
T

E
R

Chapter 1212–2
U
T
IL
IT
IE
S

12

C
H

A
P

T
E

R

Utilities 12–3

• • • • • • • •

12.1 OVERVIEW

The following utilities are supplied with the Cross-Assembler for the

DSP56xxx processor family which can be useful at various stages during

program development.

ar563 An IEEE archiver. This is a librarian facility, which can be

used to create and maintain object libraries.

cc563 A control program for the DSP563xx/DSP566xx toolchain.

mk563 A utility program to maintain, update, and reconstruct groups

of programs.

pr563 An IEEE object reader that views the contents of files which

have been created by a tool from the TASKING

DSP563xx/DSP566xx toolchain.

byte_sel

order You can use these two special tools to create a bootable

ROM image with the TASKING tools, in Intel-hex or Motorola

S-record format. These tools extract the necessary data

directly from the IEEE-695 (.abs) file, to make sure that the

image in ROM exactly matches the program that was

debugged.

For the DSP563xx/DSP566xx derivatives the executable names of the

utilities are as mentioned above. For the DSP5600x derivatives the

following executable names are used:

ar56 DSP5600x specific version of IEEE archiver.

cc56 DSP5600x specific version of control program.

mk56 DSP5600x specific version of make utility.

pr56 DSP5600x specific version of IEEE object reader.

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as '()' and '?') must be enclosed with ” ” or

escaped. The -? option (in the C-shell) becomes: ” -?” or -\?.

The utilities are explained on the following pages.

Chapter 1212–4
U
T
IL
IT
IE
S

12.2 AR563

Name

ar563 IEEE archiver and library maintainer (DSP563xx/6xx)

ar56 (DSP5600x)

Syntax

ar563 key_option [option]... library [object_file]...
ar563 -V

ar563 -? (UNIX C-shell : "-?" or -\?)

Description

With ar563 you can combine separate object modules in a library file. The

linker optionally includes modules from a library when a specific module

resolves an external symbol definition in one of the modules that has been

read before. The library maintainer ar563 is a program to build library

files and it offers the possibility to replace, extract or remove modules

from an existing library.

key_option one of the main options indicating the action ar563 has to

take. Key options may appear in any order, at any place.

option optional sub-options as explained on the next pages.

library is the library file.

object_file is an object module to be added, extracted, replaced or

removed from the library.

Options

You may specify options with or without a leading '-'. Options may occur

in random order. You may also combine options. So -xv is allowed. -V

and -? however, must be the only option on the command line.

Key options:

-d Delete the named object modules from the library.

-m Move the named object modules to the end of the library, or

to another position as specified by one of the positioning

options.

Utilities 12–5

• • • • • • • •

-p Print the named object modules in the library on standard

output.

-r Replace the named object modules in the library if they exist.

If they are not in the library, add them. If no names are

given, only those object modules are replaced for which a

file with the same name is found in the current directory.

New modules are placed at the end.

-t Print a table of contents of the library. If no names are given,

all object modules in the library are printed. If names are

given, only those object modules are tabled.

-x Extract the named object modules from the library. If no

names are given, all modules are extracted from the library.

In neither case does x alter the library.

Other options:

-? Display an explanation of options at stdout .

-V Display version information at stderr .

-a posname
Append or move new object modules after existing module

posname. This option can only be used in combination with

the m or r option.

-b posname
Insert or move new object modules before existing module

posname. This option can only be used in combination with

the m or r option.

-c Create the library file without notification if the library does

not exist.

-f file Read options from file file. '-' means stdin .

-o Reset the last-modified date to the date recorded in the

library. It can only be used in combination with the x option.

-s Print a list of symbols. This option must be combined with

-t.

-s1 Print a list of symbols. Each symbol is preceded by the library

name and the name of the object file. This option must be

combined with -t.

Chapter 1212–6
U
T
IL
IT
IE
S

-u Replace only those object modules with the last-modified

date later than the library file. It can only be used in

combination with the r option.

-v Verbose. Under the verbose option, ar563 gives a

module-by-module description of the making of a new

library file from the old library and the constituent modules.

It can only be used in combination with the d, m, r, or x

option.

-wn Set warning level n.

Examples

1. Create library clib.a consisting of the modules startup.obj, and calc.obj :

ar563 cr clib.a startup.obj calc.obj

2. Extract all modules form library clib.a :

ar563 x clib.a

3. Print a list of symbols from library clib.a :

ar563 ts clib.a

startup.obj
 symbols:
 F_START
 F_copytable
 cptable_copy
 cptable_clr
calc.obj
 symbols:
 entry

4. Print a list of symbols from library clib.a in a different form:

ar563 ts1 clib.a

clib.a:startup.obj:F_START
clib.a:startup.obj:F_copytable
clib.a:startup.obj:cptable_copy
clib.a:startup.obj:cptable_clr
clib.a:calc.obj:entry

Utilities 12–7

• • • • • • • •

5. Delete module calc.obj from library clib.lib :

ar563 d clib.a calc.obj

Chapter 1212–8
U
T
IL
IT
IE
S

12.3 BYTE_SEL

Name

byte_sel Create bootable ROM image in Intel Hex or Motorola

S-record format.

Syntax

byte_sel [option]... input_file
byte_sel -h

Description

byte_sel processes the sequence of words produced by (a concatenation

of the output of) the order utility and generates a Motorola S-record or an

Intel-hex file.

Options

-ahex_address
Start address of output stream, default 0.

-bN Select byte to be output, default 1 (is least significant). This

selects the N-th byte of the stream generated by order. For

wordsize = 3 bytes, -b3 gets the most significant byte and

-b1 gets the least significant byte.

-dN Drop the first N input lines, default 0.

-h Print usage and exit.

-i Output in Intel hex format.

-m Output in Motorola S-records (default).

Example

Create an absolute load file in Mototola S-record format:

order calc.abs > calc.tmp
byte_sel calc.tmp > calc.sre

Utilities 12–9

• • • • • • • •

12.4 CC563

Name

cc563 control program for the DSP563xx/DSP6xx toolchain

Syntax

cc563 [[option]... [control] ... [file]...]...
cc563 -V

cc563 -? (UNIX C-shell : "-?" or -\?)

Description

The control program cc563 facilitates the invocation of the various

components of the DSP563xx/6xx family toolchain from a single command

line. cc56 is the control program for the DSP5600x. The control program

accepts source files and options on the command line in random order.

Options are preceded by a '-' (minus sign). The input file can have one of

the extensions explained below.

The control program recognizes the following argument types:

• Arguments starting with a '-' character are options. Some options

are interpreted by the control program itself; the remaining options

are passed to those programs in the toolchain that accept the

option.

• Arguments with a .cc , .cxx or .cpp suffix are interpreted as C++

source programs and are passed to the C++ compiler.

• Arguments with a .c suffix are interpreted as C source programs

and are passed to the compiler.

• Arguments with a .asm suffix are interpreted as hand-written

assembly source files which have to be passed to the assembler.

• Arguments with a .src suffix are interpreted as compiled assembly

source files. They are directly passed to the assembler.

• Arguments with a .a suffix are interpreted as library files and are

passed to the linker.

• Arguments with a .obj suffix are interpreted as object files and are

passed to the linker.

• Arguments with a .cln suffix are interpreted as COFF object files

and are passed to the linker.

• Arguments with a .clb suffix are interpreted as COFF library files

and are passed to the linker.

Chapter 1212–10
U
T
IL
IT
IE
S

• Arguments with a .out suffix are interpreted as linked object files

and are passed to the locator. The locator accepts only one .out
file in the invocation.

• An argument with a .dsc suffix is interpreted as a locator

description file and is passed to the linker and the locator.

Normally, a control program tries to compile and assemble all source files

to object files, followed by a link and locate phase which produces an

absolute output file. There are however, options to suppress the assembler,

linker or locator stage. The control program produces unique filenames for

intermediate steps in the compilation process, which are removed

afterwards. If the compiler and assembler are called subsequently, the

control program prevents preprocessing of the compiler generated

assembly file. Normally, assembly input files are preprocessed first.

Options

-? Display a short explanation of options at stdout .

-Mmodel Specify the memory model to be used:

mixed (m) cc56 only

reentrant (r) cc56 only

static (s) cc56 only

16-bit (16) cc563 only

16/24-bit (1624) cc563 only

24-bit (24) cc563 only

DSP566xx (6) cc563 only

This option is not supported for the cc56 and cc563, they

pass this option to the compiler and/or assembler and use it

to select the C library of the selected model for the linker.

-S With this option the control program generates a Motorola

compatible assembly file with COFF debug information.

-T name With this option the control program selects the target

hardware name for the program. Name is the basename for

both the startup file in the C library (name.asm), and the

locator description file (name.dsc). Descriptive names are

used for the preinstalled locator description files that can be

found in the product etc directory.

-V The copyright header containing the version number is

displayed, after which the control program terminates.

Utilities 12–11

• • • • • • • •

-Wa�arg
-Wc�arg
-Wcp�arg
-Wlk�arg
-Wlc�arg
-Wpl�arg With these options you can pass a command line argument

directly to the assembler (-Wa), C compiler (-Wc), C++

compiler (-Wcp), C++ pre-linker (-Wpl), linker (-Wlk) or

locator (-Wlc). These options may be used to pass some

options that are not recognized by the control program, to

the appropriate program. The argument may be either

directly appended to the option, or follow the option as a

separate argument of the control program.

-c++ Specify that files with the extension .c are considered to be

C++ files instead of C files. So, the C++ compiler is called

prior to the C compiler. This option also forces the linker to

link C++ libraries.

-c

-cc

-cl

-cs Normally, the control program invokes all stages to build an

absolute file from the given input files. With these options it

is possible to skip the C compiler, assembler, linker or locator

stage. With the -cc option the control program stops after

compilation of the C++ files and retains the resulting .c files.

With the -cs option the control program stops after the

compilation of the C source files (.c) and after preprocessing

the assembly source files (.asm), and retains the resulting

.src files. With the -c option the control program stops after

the assembler, with as output one or more object files

(.obj). With the -cl option the control program stops after

the link stage, with as output a linker object file (.out).

-f file Read command line arguments from file. The filename "-"

may be used to denote standard input. To get around the

limits on the size of the command line, it is possible to use

command files. These command files contain the options that

could not be part of the real command line. Command files

can also be generated on the fly, for example by the make

utility.

Some simple rules apply to the format of the command file:

Chapter 1212–12
U
T
IL
IT
IE
S

1. It is possible to have multiple arguments on the same line

in the command file.

2. To include whitespace in the argument, surround the

argument with either single or double quotes.

3. If single or double quotes are to be used inside a quoted

argument, we have to go by the following rules:

a. If the embedded quotes are only single or double

quotes, use the opposite quote around the

argument. Thus, if a argument should contain a

double quote, surround the argument with single

quotes.

b. If both types of quotes are used, we have to split

the argument in such a way that each embedded

quote is surrounded by the opposite type of quote.

Example:

”This has a single quote ’ embedded”

or

’This has a double quote ” embedded’

or

’This has a double quote ” and \
a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of

lines within a text file. To circumvent this limitation it is

possible to use continuation lines. These lines end with a

backslash and newline. In a quoted argument,

continuation lines will be appended without stripping any

whitespace on the next line. For non-quoted arguments,

all whitespace on the next line will be stripped.

Example:

”This is a continuation \
line”

–> ”This is a continuation line”

Utilities 12–13

• • • • • • • •

control(file1(mode,type),\
file2(type))
–>

control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

-clas

-ieee

-ihex

-srec

-tiof With these options you can specify the locator output format

of the absolute file. The output file can be a CLAS compatible

file (.cld), IEEE-695 file (.abs), Intel Hex file (.hex),

Motorola S-record file (.sre) or TIOF-695 file (.abs). The

default output is IEEE-695 (.abs).

-nolib With this option the control program does not supply the

standard libraries to the linker. Normally the control program

supplies the C, floating point and run-time libraries to the

linker. Which libraries are needed is derived from the

compiler options.

-o file Normally, this option is passed to the locator to specify the

output file name. When you use the -cl option to suppress

the locating phase, the -o option is passed to the linker.

When you use the -c option to suppress the linking phase,

the -o option is passed to the assembler, provided that only

one source file is specified. When you use the -cs option to

suppress the assembly phase, the -o option is passed to the

compiler. The argument may be either directly appended to

the option, or follow the option as a separate argument of

the control program.

-tmp With this option the control program creates intermediate

files in the current directory. They are not removed

automatically. Normally, the control program generates

temporary files for intermediate translation results, such as

compiler generated assembly files, object files and the linker

output file. If the next phase in the translation process

completes successfully, these intermediate files will be

removed.

Chapter 1212–14
U
T
IL
IT
IE
S

-v When you use the -v option, the invocations of the

individual programs are displayed on standard output,

preceded by a '+' character.

-v0 This option has the same effect as the -v option, with the

exception that only the invocations are displayed, but the

programs are not started.

-wc++ Enable C and assembler warnings for C++ files. The

assembler and C compiler may generate warnings on C

output of the C++ compiler. By default these warnings are

suppressed.

Environment Variables used by cc56 / cc563

The control program uses the following environment variables:

TMPDIR This variable may be used to specify a directory, which the

control programs should use to create temporary files. When

this environment variable is not set, temporary files are

created in the directory "/tmp" on UNIX systems, and in the

current directory on other operating systems.

CC56OPT This environment variable may be used to pass extra options

and/or arguments to each invocation of the control programs.

The control programs process the arguments from this

variable before the command line arguments.

CC563OPT Same as CC56OPT, but now for cc563.

CC56BIN When this variable is set, the control programs prepend the

directory specified by this variable to the names of the tools

invoked.

CC563BIN Same as CC56BIN, but now for cc563.

Utilities 12–15

• • • • • • • •

12.5 MK563

Name

mk563 maintain, update, and reconstruct groups of programs

Syntax

mk563 [option]... [target]... [macro=value]...
mk563 -V

mk563 -? (UNIX C-shell: "-?" or -\?)

Description

mk563 takes a file of dependencies (a 'makefile') and decides what

commands have to be executed to bring the files up-to-date. These

commands are either executed directly from mk563 or written to the

standard output without executing them.

If no target is specified on the command line, mk563 uses the first target

defined in the first makefile.

Long filenames are supported when they are surrounded by double quotes

("). It is also allowed to use spaces in directory names and file names.

Options

-? Show invocation syntax.

-D Display the text of the makefiles as read in.

-DD Display the text of the makefiles and 'mk563.mk'.

-G dirname
Change to the directory specified with dirname before

reading a makefile. This makes it possible to build an

application in another directory than the current working

directory.

-K Do not remove temporary files.

-S Undo the effect of the -k option. Stop processing when a

non-zero exit status is returned by a command.

-V Display version information at stderr.

Chapter 1212–16
U
T
IL
IT
IE
S

-W target
Execute as if this target has a modification time of "right

now". This is the "What If" option.

-a Always rebuild a target without checking if it is out of date.

-d Display the reasons why mk563 chooses to rebuild a target.

All dependencies which are newer are displayed.

-dd Display the dependency checks in more detail. Dependencies

which are older are displayed as well as newer.

-e Let environment variables override macro definitions from

makefiles. Normally, makefile macros override environment

variables. Command line macro definitions always override

both environment variables and makefile macros definitions.

-f file Use the specified file instead of 'makefile'. A - as the

makefile argument denotes the standard input.

-i Ignore error codes returned by commands. This is equivalent

to the special target .IGNORE:.

-k When a nonzero error status is returned by a command,

abandon work on the current target, but continue with other

branches that do not depend on this target.

-m file Read command line information from file. If file is a '-', the

information is read from standard input.

-n Perform a dry run. Print commands, but do not execute

them. Even lines beginning with an @ are printed. However,

if a command line is an invocation of mk563, that line is

always executed.

-q Question mode. mk563 returns a zero or non-zero status

code, depending on whether or not the target file is up to

date.

-r Do not read in the default file 'mk563.mk'.

-s Silent mode. Do not print command lines before executing

them. This is equivalent to the special target .SILENT:.

-t Touch the target files, bringing them up to date, rather than

performing the rules to reconstruct them.

Utilities 12–17

• • • • • • • •

-w Redirect warnings and errors to standard output. Without,

mk563 and the commands it executes use standard error for

this purpose.

macro=value
Macro definition. This definition remains fixed for the mk563

invocation. It overrides any regular definitions for the

specified macro within the makefiles and from the

environment. It is inherited by subordinate mk563's but act

as an environment variable for these. That is, depending on

the -e setting, it may be overridden by a makefile definition.

Usage

Makefiles

The first makefile read is 'mk563.mk', which is looked for at the following

places (in this order):

- in the current working directory

- in the directory pointed to by the HOME environment variable

- in the etc directory relative to the directory where mk563 is

located

Example (PC):

when mk563 is installed in \C563\BIN the directory \C563\ETC is

searched for makefiles.

Example (UNIX):

when mk563 is installed in /usr/local/c563/bin the directory

/usr/local/c563/etc is searched for makefiles.

It typically contains predefined macros and implicit rules.

The default name of the makefile is 'makefile' in the current directory. If

this file is not found on a UNIX system, the file 'Makefile' is then used as

the default. Alternate makefiles can be specified using one or more -f

options on the command line. Multiple -f options act as if all the makefiles

were concatenated in a left-to-right order.

Chapter 1212–18
U
T
IL
IT
IE
S

The makefile(s) may contain a mixture of comment lines, macro

definitions, include lines, and target lines. Lines may be continued across

input lines by escaping the NEWLINE with a backslash (\). If a line must

end with a backslash then an empty macro should be appended. Anything

after a "#" is considered to be a comment, and is stripped from the line,

including spaces immediately before the "#". If the "#" is inside a quoted

string, it is not treated as a comment. Completely blank lines are ignored.

An include line is used to include the text of another makefile. It consists

of the word "include" left justified, followed by spaces, and followed by

the name of the file that is to be included at this line. Macros in the name

of the included file are expanded before the file is included. Include files

may be nested.

An export line is used for exporting a macro definition to the environment

of any command executed by mk563. Such a line starts with the word

"export", followed by one or more spaces and the name of the macro to

be exported. Macros are exported at the moment an export line is read.

This implies that references to forward macro definitions are equivalent to

undefined macros.

Conditional Processing

Lines containing ifdef , ifndef , else or endif are used for conditional

processing of the makefile. They are used in the following way:

ifdef macroname
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any

kind, even other ifdef , ifndef , else and endif lines, or no lines at all.

The else line may be omitted, along with the else-lines following it.

First the macroname after the if command is checked for definition. If

the macro is defined then the if-lines are interpreted and the else-lines are

discarded (if present). Otherwise the if-lines are discarded; and if there is

an else line, the else-lines are interpreted; but if there is no else line,

then no lines are interpreted.

When using the ifndef line instead of ifdef , the macro is tested for not

being defined. These conditional lines can be nested up to 6 levels deep.

Utilities 12–19

• • • • • • • •

Macros

Macros have the form `WORD = text and more text'. The WORD need not

be uppercase, but this is an accepted standard. Spaces around the equal

sign are not significant. Later lines which contain $(WORD) or ${WORD}

will have this replaced by `text and more text'. If the macro name is a

single character, the parentheses are optional. Note that the expansion is

done recursively, so the body of a macro may contain other macro

invocations. The right side of a macro definition is expanded when the

macro is actually used, not at the point of definition.

Example:

FOOD = $(EAT) and $(DRINK)
EAT = meat and/or vegetables
DRINK = water
export FOOD

`$(FOOD)' becomes `meat and/or vegetables and water' and the

environment variable FOOD is set accordingly by the export line.

However, when a macro definition contains a direct reference to the

macro being defined then those instances are expanded at the point of

definition. This is the only case when the right side of a macro definition is

(partially) expanded. For example, the line

DRINK = $(DRINK) or beer

after the export line affects `$(FOOD)' just as the line

DRINK = water or beer

would do. However, the environment variable FOOD will only be updated

when it is exported again.

You are advised not to use the double quotes (") for long filename support

in macros, otherwise this might result in a concatination of two macros

with double quotes (") in between.

Special Macros

MAKE This normally has the value mk563. Any line which invokes

MAKE temporarily overrides the -n option, just for the

duration of the one line. This allows nested invocations of

MAKE to be tested with the -n option.

Chapter 1212–20
U
T
IL
IT
IE
S

MAKEFLAGS

This macro has the set of options provided to mk563 as its

value. If this is set as an environment variable, the set of

options is processed before any command line options. This

macro may be explicitly passed to nested mk563's, but it is

also available to these invocations as an environment

variable. The -f and -d flags are not recorded in this macro.

PRODDIR

This macro expands the name of the directory where mk563

is installed without the last path component. The resulting

directory name will be the root directory of the installed

DSP56xxx package, unless mk563 is installed somewhere

else. This macro can be used to refer to files belonging to the

product, for example a library source file.

Example:

DOPRINT = $(PRODDIR)/lib/src/_doprint.c

When mk563 is installed in the directory /c563/bin this line expands to:

DOPRINT = /c563/lib/src/_doprint.c

SHELLCMD

This contains the default list of commands which are local to

the SHELL. If a rule is an invocation of one of these

commands, a SHELL is automatically spawned to handle it.

TMP_CCPROG

This macro contains the name of the control program. If this

macro and the TMP_CCOPT macro are set and the command

line argument list for the control program exceeds 127

characters then mk563 will create a temporary file filled with

the command line arguments. mk563 will call the control

program with the temporary file as command input file. This

macro is only known by the DOS version of mk563.

TMP_CCOPT

This macro contains the option for the control program

which tells the control program to read a file as command

arguments. This macro is only known by the DOS version of

mk563.

Utilities 12–21

• • • • • • • •

Example:

TMP_CCPROG= cc563
TMP_CCOPT = –f

$ This macro translates to a dollar sign. Thus you can use "$$"

in the makefile to represent a single "$".

There are several dynamically maintained macros that are useful as

abbreviations within rules. It is best not to define them explicitly.

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.

$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be

unreliable when used within explicit target command lines. All macros

may be suffixed with F to specify the Filename components (e.g. ${*F},

${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to

specify the directory component.

The result of the $* macro is always without double quotes ("), regardless

of the original target having double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory

component) is also always without double quotes ("), regardless of the

original contents having double quotes (") around it or not.

Functions

A function not only expands but also performs a certain operation.

Functions syntactically look like macros but have embedded spaces in the

macro name, e.g. '$(match arg1 arg2 arg3)'. All functions are built-in and

currently there are five of them: match , separate , protect , exist and

nexist .

match The match function yields all arguments which match a

certain suffix:

$(match .obj prog.obj sub.obj mylib.a)

Chapter 1212–22
U
T
IL
IT
IE
S

will yield

prog.obj sub.obj

separate The separate function concatenates its arguments using the

first argument as the separator. If the first argument is

enclosed in double quotes then '\n' is interpreted as a

newline character, '\t' is interpreted as a tab, '\ooo' is

interpreted as an octal value (where, ooo is one to three octal

digits), and spaces are taken literally. For example:

$(separate ”\n” prog.obj sub.obj)

will result in

prog.obj
sub.obj

Function arguments may be macros or functions themselves.

So,

$(separate ”\n” $(match .obj $!))

will yield all object files the current target depends on,

separated by a newline string.

protect The protect function adds one level of quoting. This

function has one argument which can contain white space. If

the argument contains any white space, single quotes, double

quotes, or backslashes, it is enclosed in double quotes. In

addition, any double quote or backslash is escaped with a

backslash.

Example:

echo $(protect I’ll show you the ”protect”
function)

will yield

echo ”I’ll show you the \”protect\”
function”

exist The exist function expands to its second argument if the

first argument is an existing file or directory.

Utilities 12–23

• • • • • • • •

Example:

$(exist test.c cc563 test.c)

When the file test.c exists it will yield:

cc563 test.c

When the file test.c does not exist nothing is expanded.

nexist The nexist function is the opposite of the exist function. It

expands to its second argument if the first argument is not an

existing file or directory.

Example:

$(nexist test.src cc563 test.c)

Targets

A target entry in the makefile has the following format:

target ... : [dependency ...] [; rule]
[rule]
...

Any line which does not have leading white space (other than macro

definitions) is a 'target' line. Target lines consist of one or more filenames

(or macros which expand into same) called targets, followed by a colon

(:). The ':' is followed by a list of dependent files. The dependency list

may be terminated with a semicolon (;) which may be followed by a rule

or shell command.

Special allowance is made on MS-DOS for the colons which are needed to

specify files on other drives, so for example, the following will work as

intended:

c:foo.obj : a:foo.c

If a target is named in more than one target line, the dependencies are

added to form the target's complete dependency list.

The dependents are the ones from which a target is constructed. They in

turn may be targets of other dependents. In general, for a particular target

file, each of its dependent files is 'made', to make sure that each is up to

date with respect to it's dependents.

Chapter 1212–24
U
T
IL
IT
IE
S

The modification time of the target is compared to the modification times

of each dependent file. If the target is older, one or more of the

dependents have changed, so the target must be constructed. Of course,

this checking is done recursively, so that all dependents of dependents of

dependents of ... are up-to-date.

To reconstruct a target, mk563 expands macros and functions, strips off

initial white space, and either executes the rules directly, or passes each to

a shell or COMMAND.COM for execution.

For target lines, macros and functions are expanded on input. All other

lines have expansion delayed until absolutely required (i.e. macros and

functions in rules are dynamic).

Special Targets

.DEFAULT:

The rule for this target is used to process a target when there

is no other entry for it, and no implicit rule for building it.

mk563 ignores all dependencies for this target.

.DONE: This target and its dependencies are processed after all other

targets are built.

.IGNORE: Non-zero error codes returned from commands are ignored.

Encountering this in a makefile is the same as specifying -i

on the command line.

.INIT: This target and its dependencies are processed before any

other targets are processed.

.SILENT: Commands are not echoed before executing them.

Encountering this in a makefile is the same as specifying -s

on the command line.

.SUFFIXES:

The suffixes list for selecting implicit rules. Specifying this

target with dependents adds these to the end of the suffixes

list. Specifying it with no dependents clears the list.

.PRECIOUS:

Dependency files mentioned for this target are not removed.

Normally, mk563 removes a target file if a command in its

construction rule returned an error or when target

construction is interrupted.

Utilities 12–25

• • • • • • • •

Rules

A line in a makefile that starts with a TAB or SPACE is a shell line or rule.

This line is associated with the most recently preceding dependency line.

A sequence of these may be associated with a single dependency line.

When a target is out of date with respect to a dependent, the sequence of

commands is executed. Shell lines may have any combination of the

following characters to the left of the command:

@ will not echo the command line, except if -n is used.

- mk563 will ignore the exit code of the command, i.e. the

ERRORLEVEL of MS-DOS. Without this, mk563 terminates when a

non-zero exit code is returned.

+ mk563 will use a shell or COMMAND.COM to execute the command.

If the '+' is not attached to a shell line, but the command is a DOS

command or if redirection is used (<, |, >), the shell line is passed to

COMMAND.COM anyway. For UNIX, redirection, backquote (`)

parentheses and variables force the use of a shell.

You can force mk563 to execute multiple command lines in one shell

environment. This is accomplished with the token combination ';\'.

Example:

cd c:\c563\bin ;\
cc563 –V

The ';' must always directly be followed by the '\' token. Whitespace is not

removed when it is at the end of the previous command line or when it is

in front of the next command line. The use of the ';' as an operator for a

command (like a semicolon ';' separated list with each item on one line)

and the '\' as a layout tool is not supported, unless they are separated with

whitespace.

mk563 can generate inline temporary files. If a line contains '<<WORD'

then all subsequent lines up to a line starting with WORD, are placed in a

temporary file. Next, '<<WORD' is replaced by the name of the temporary

file.

No whitespace is allowed between '<<' and 'WORD'.

Chapter 1212–26
U
T
IL
IT
IE
S

Example:

lk563 –o $@ –f <<EOF
$(separate ”\n” $(match .obj $!))
$(separate ”\n” $(match .a $!))
$(LDFLAGS)

EOF

The three lines between the tags (EOF) are written to a temporary file (e.g.

"\tmp\mk2"), and the command line is rewritten as "lk563 -o $@ -f

\tmp\mk2".

Implicit Rules

Implicit rules are intimately tied to the .SUFFIXES: special target. Each

entry in the .SUFFIXES: list defines an extension to a filename which may

be used to build another file. The implicit rules then define how to

actually build one file from another. These files are related, in that they

must share a common basename, but have different extensions.

If a file that is being made does not have an explicit target line, an implicit

rule is looked for. Each entry in the .SUFFIXES: list is combined with the

extension of the target, to get the name of an implicit target. If this target

exists, it gives the rules used to transform a file with the dependent

extension to the target file. Any dependents of the implicit target are

ignored.

If a file that is being made has an explicit target, but no rules, a similar

search is made for implicit rules. Each entry in the .SUFFIXES: list is

combined with the extension of the target, to get the name of an implicit

target. If such a target exists, then the list of dependents is searched for a

file with the correct extension, and the implicit rules are invoked to create

the target.

Utilities 12–27

• • • • • • • •

Examples

This makefile says that prog.out depends on two files prog.obj and

sub.obj , and that they in turn depend on their corresponding source files

(prog.c and sub.c) along with the common file inc.h .

LIB = –lc24

prog.out: prog.obj sub.obj
 lk563 prog.obj sub.obj $(LIB) –o prog.out

prog.obj: prog.c inc.h
 c563 prog.c
 as563 prog.src

sub.obj: sub.c inc.h
 c563 sub.c
 as563 sub.src

The following makefile uses implicit rules (from

mk563.mk) to perform the same job.

LDFLAGS = –ls
prog.out: prog.obj sub.obj
prog.obj: prog.c inc.h
sub.obj: sub.c inc.h

Files

makefile Description of dependencies and rules.

Makefile Alternative to makefile, for UNIX.

mk563.mk Default dependencies and rules.

Diagnostics

mk563 returns an exit status of 1 when it halts as a result of an error.

Otherwise it returns an exit status of 0.

Chapter 1212–28
U
T
IL
IT
IE
S

12.6 ORDER

Name

order Order the contents of a TASKING IEEE-695 file.

Syntax

order [option]... input_file
order -h

Description

order reads a TASKING IEEE-695 file, orders its contents by address and

generates a sequence (consisting of a size word, the range start address

and the range contents) for each contiguous range found in the input.

The output of the order command can be processed by byte_sel.

Options

-B Byte wide (big endian order), default MAU wide.

-b Byte wide (little endian order), default MAU wide. The input

words will be put out as the least significant bytes in the

output stream, in little-endian order.

-h Print usage and exit.

-mN N bytes per MAU in output, default 3. This option sets the

word size (in bytes). The current limit is 4 bytes. All calls to

order must currently be presented the same number of

bytes.

-s Add an extra record containing the start address, preceded by

a length record with value 0.

-tcpu Select the target CPU, default 563xx. Possible values are

5600x, 563xx or 566xx.

-v Verbose. Show the address ranges that are being put out.

-ymem Select the memory space to be output, default all. Possible

values are P, X or Y. The memory space is encoded in the

highest one or two bits of the size word: 0 for P memory, 10

for X memory and 11 for Y memory.

Utilities 12–29

• • • • • • • •

-z Fill gaps with zeroes, default: don't. Only one range will be

generated. This can be expensive!

Output
{
 memory space | size of code/data range
 start address of code/data range
 image of code/data range (’size’ words)
} *
[0
start address of application]

Chapter 1212–30
U
T
IL
IT
IE
S

12.7 PR563

Name

pr563 IEEE object reader (DSP563xx/DSP566xx)

Displays the contents of a relocatable object file or an

absolute file

pr56 IEEE object reader (DSP5600x)

Syntax

pr563 [option]... file
pr563 -V

pr563 -? (UNIX C-shell: "-?" or -\?)

Description

pr563 gives you a high level view of an object file which has been

created by a tool from the TASKING DSP563xx/6xx toolchain. Note that

pr563 is not a disassembler. Use pr56 with the DSP5600x toolchain.

Options

Options start with a '-' sign and can be combined after a single '-'. There

are options to print a specific part of an object file. For example, with

option -h you can display the header part, the environment part and the

AD/extension part as a whole. These parts are small, and you cannot

display these parts separately. If you do not specify a part, the default is

-hscegd0i0 (all parts, the debug part and the image part displayed as a

table of contents).

Furthermore, there are some additional options by which you can control

the output.

Input Control Option

-f�file Read command line information from file. If file is a '-', the

information is read from standard input.

Use file for command line processing. To get around the

limits on the size of the command line, it is possible to use

command files. These command files contain the options that

could not be part of the real command line. Command files

can also be generated on the fly, for example by the make

utility.

Utilities 12–31

• • • • • • • •

More than one -f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line

in the command file.

2. To include whitespace in the argument, surround the

argument with either single or double quotes.

3. If single or double quotes are to be used inside a quoted

argument, we have to go by the following rules:

a. If the embedded quotes are only single or double

quotes, use the opposite quote around the

argument. Thus, if a argument should contain a

double quote, surround the argument with single

quotes.

b. If both types of quotes are used, we have to split

the argument in such a way that each embedded

quote is surrounded by the opposite type of quote.

Example:

”This has a single quote ’ embedded”

or

’This has a double quote ” embedded’

or

’This has a double quote ” and \
a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of

lines within a text file. To circumvent this limitation it is

possible to use continuation lines. These lines end with a

backslash and newline. In a quoted argument,

continuation lines will be appended without stripping any

whitespace on the next line. For non-quoted arguments,

all whitespace on the next line will be stripped.

Chapter 1212–32
U
T
IL
IT
IE
S

Example:

”This is a continuation \
line”

–> ”This is a continuation line”

control(file1(mode,type),\
file2(type))
–>

control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Output Control Options

-H or -? Display an explanation of options at stdout .

-V Display version information at stderr .

-Wn Set output width to n columns. Default 128, minimum 78.

-ln Level control, see paragraph 12.7.3.

-ofile Name of the output file, default stdout .

-v Print the selected parts in a verbose form.

-vn Print level n verbose, see paragraph 12.7.3.

-wn Suppress messages above warning level n.

Display Options

-c Print call graphs.

-d Print all debug info except for the global types.

-d0 Print table of contents for the debug part.

-dn Print debug info from file number n.

-e Print variables with external scope.

-e1 Print variables with external scope and precede symbol name

with name of the object file.

-g Print global types.

-h Print general file info.

Utilities 12–33

• • • • • • • •

-i Print all section images.

-i0 Print table of contents for the image part.

-in Print image of section n.

-s Print section info.

12.7.1 PREPARING THE DEMO FILES

There are three files which are used in this chapter to show how you can

use pr563. These files are:

calc.obj

calc.out

calc.abs

If you want to try the examples yourself, prepare these files by copying

the calc example files to a working directory. Be sure that the DSP56xxx

tools can be found via a search path. Make the files with the following

command:

cc563 –M –g –tiof –nolib startup.asm calc.asm –o calc.abs
–tmp

12.7.2 DISPLAYING PARTS OF AN OBJECT FILE

12.7.2.1 OPTION -h, DISPLAY GENERAL FILE INFO

The -h option gives you general information of the file. The invocation:

pr56 –h calc.out

Gives the following information:

File name = calc.out:
Format = Relocatable
Produced by = DSP5600x object linker
Date = apr 11, 1999 12:12:54h

Chapter 1212–34
U
T
IL
IT
IE
S

This output speaks for itself. You may combine the -h switch with the

verbose option:

pr56 –hv calc.out

The output is extended with more general information of less importance:

File name = calc.out:
Format = Relocatable
Produced by = DSP5600x object linker
Date = apr 11, 1999 12:12:54h
Obj version = 1.1
Processor = 5600x
Address size = 24 bits
Byte order = Least significant byte at lowest address
Host = Sun

Part File offset Length
––
Header part 0x00000000 0x00000054
AD Extension part 0x00000054 0x00000033
Environment part 0x00000087 0x0000002e
Section part 0x000000b5 0x00000057
External part 0x0000010c 0x000000d1
Debug/type part 0x000001d2 0x000000a2
Data part 0x00000274 0x00000427
Module end 0x0000069b

The table gives you the file offsets and the length of the main object parts.

12.7.2.2 OPTION -s, DISPLAY SECTION INFO

With the -s option, you can obtain the section information from an object

module. The section contents can be obtained with the -i option, see

12.7.2.7.

pr563 –s calc.out

Section Size
––––––––––––––––––––––
Nameless 0x02
.text 0x40
.xbss 0x01
.ptext 0x29
.xdata 0x02

Utilities 12–35

• • • • • • • •

Note that the section information is not available any more in a located

file. Once located, the separate sections are combined to new clusters. For

an absolute file 'pr563 -s'.will give the cluster information:

pr563 –s calc.abs

Section Size
––––––––––––––––––
P_clstr 0x76
X_clstr 0x1003

The locate map shows you which section is located in which cluster. Of

course, you can also use the verbose option to see all section information

available:

pr563 –sv calc.out

Section Size Addr Algn Page Mau Attributes
–––
Nameless 0x02 0x00 0x1 – – Execute ZeroPage Space 1 Abs Separate
.text 0x40 – 0x1 – – Execute ZeroPage Space 1 Cumulate
.xbss 0x01 – 0x1 – – Write Space 2 Cleared Cumulate
.ptext 0x29 – 0x1 – – Execute ZeroPage Space 1 Cumulate
.xdata 0x02 – 0x1 – – Write Space 2 Initialized Cumulate

The first two columns give you the section name and the section size. The

column 'Address' gives you the section address, or a '-' if the section is

still relocatable. The section alignment is always 1 for the DSP56xxx. The

page size is valid only for the short sections. MAU is the minimum

addressable unit of an address space (in bits). There are two main groups

of section attributes, the allocation attributes, used by the locator and the

overlap attributes, used by the linker:

Chapter 1212–36
U
T
IL
IT
IE
S

Allocation attributes

Write Must be located in ram

ReadOnly May be located in rom

Execute May be located in rom

Space num Must be located in addressing mode num

Abs Already located by the assembler

Cleared Section must be initialized to ’0’

Initialized Section must be copied from ram to rom

Scratch Section is not filled or cleared

Table 12-1: Allocation attributes

Overlap attributes

MaxSize Use largest length encountered

Unique Only one section with this name allowed

Cumulate Concatenate sections with the same name to
one bigger section

Overlay Sections with the name name@func must be
combined to one section name, according to
the rules for func obtained from the call graph.

Separate Sections are not linked.

Table 12-2: Overlap attributes

12.7.2.3 OPTION -c, DISPLAY CALL GRAPHS

The call graph is used by the linker overlaying algorithm. Once a file is

linked and overlaying is done, the call graph information is removed from

the object file. If you try to see the call graph in calc.out you will get

the message 'No call graph found'.

The file calc.obj is not yet linked. You can use this file to see what a

call graph looks like:

pr563 –c calc.obj

Utilities 12–37

• • • • • • • •

Because the calc example does not contain any sections which need to

be overlaid you will again get the message 'No call graph found'. The

following is just an example of what a call graph could look like:

Call graph(s)
=============

Call graph 0:

main()
 –>See call graph 1
 –>See call graph 4
 –>See call graph 2
 _exit()
 print_str()
 clear_screen()

Call graph 1:

queens?find_legal_row()
 –>See call graph 1
 –>See call graph 2
 abs()
 –>See call graph 3

Each call graph consists of a function (main in graph 0), followed by a list

of functions and/or other graphs, which are called by the first function.

The functions and call graphs called by this function are indented by two

spaces. If a function calls other functions, those functions are listed again

with another indentation of two spaces.

As you can see, there are references from one call graph to another. Call

graph 1 even calls itself!! This means that function find_legal_row() is

a recursive function. If you use the verbose switch the output is somewhat

nicer:

Chapter 1212–38
U
T
IL
IT
IE
S

main()
 |
 +–––>See call graph 1
 |
 +–––>See call graph 4
 |
 +–––>See call graph 2
 |
 +––exit()
 |
 +––print_str()
 |
 +––clear_screen()

The function find_legal_row from call graph 1 is a static function. In

order to avoid name conflicts, the source name is added to this function

name.

If you want a call graph with resolved call graph references, you can use

the linker to generate one:

lk563 –o call.out –Mcr calc.obj

Option -M tells the linker to generate a .lnl file. This file contains the

call graph in the verbose layout. Option -c causes the linker to generate a

.cal file. This file contains also the (same) call graph, but in the compact

(non verbose) layout. Option -r tells the linker that this is an incremental

link.

12.7.2.4 OPTION -e, DISPLAY EXTERNAL PART

In the external part of an object file, you can find all symbols used at link

time. These symbols have an external scope. With the -e option (or -e0)

pr563 displays the external symbols:

pr563 –e calc.out

Utilities 12–39

• • • • • • • •

Variable S Address/Size
–––––––––––––––––––––––––––––
F_START I .text + 0x00
F_copytable I .text + 0x0c
cptable_copy I .text + 0x1d
cptable_clr I .text + 0x33
entry I .ptext + 0x1f
F_lc_bs X –
F_lc_b__xbss X –
F_lc_e__xbss X –
F_lc_cp X –

With option -e1 also the name of the output object file is displayed.

pr563 –e1 calc.out

Variable S Address/Size
––––––––––––––––––––––––––––––––––––––
calc.out:F_START I .text + 0x00
calc.out:F_copytable I .text + 0x0c
calc.out:cptable_copy I .text + 0x1d
calc.out:cptable_clr I .text + 0x33
calc.out:entry I .ptext + 0x1f
calc.out:F_lc_bs X –
calc.out:F_lc_b__xbss X –
calc.out:F_lc_e__xbss X –
calc.out:F_lc_cp X –

The first column contains the name of the symbol. In general, this symbol

is a high level symbol with an 'F' added at the front. The next column

gives you the symbol status. This can be I for a defined symbol, and X for

a symbol which is referred to, but which is not yet defined. In the last

column you can find the symbols address. If this address is still

relocatable, the section offsets are printed in the form 'section + offset'. If a

symbol has already received an absolute address, this address is printed.

Symbols that are not yet defined (marked with a X) have a dash printed as

address, indicating unknown.

You can add the verbose option as usual. With verbose on more

information is printed:

pr563 –ev calc.out

Chapter 1212–40
U
T
IL
IT
IE
S

Variable S Type Attrib MAU Amod Address/Size
––
F_START I – – 24 1 .text + 0x00
F_copytable I – – 24 1 .text + 0x0c
cptable_copy I – – 24 1 .text + 0x1d
cptable_clr I – – 24 1 .text + 0x33
entry I – – 24 1 .ptext + 0x1f
F_lc_bs X – – 24 2 –
F_lc_b__xbss X – – 24 0 –
F_lc_e__xbss X – – 24 0 –
F_lc_cp X – – 24 0 –

Four additional columns appear. The Type column gives you the symbol

type, if available. You can find the meaning of the types in the global type

part, section 12.7.2.5. The global types are used to type check the symbols

during linking. The Attribute column specifies the attribute of the symbol,

if available. For example, the attribute value 0x0020 indicates that the

symbol is generated by the assembler. The MAU colomn indicates the

minimum addressable unit in bits. So, MAU 24 means the symbol is 24-bit

addressable. The Amod column lists the addressing mode of the symbol.

12.7.2.5 OPTION -g, DISPLAY GLOBAL TYPE

INFORMATION

The linker uses the global type information to check on type mismatches

of the symbols in the external part. This information is always available,

unless you explicitly suppress the generation of these types with option

-gn at compile time. Of course, type checking can only be done if the

types are available. The global types in calc.out :

pr563 –g calc.out

In this example you will get the message 'No global types available'. The

following is just an example of what the global type information could

look like:

Utilities 12–41

• • • • • • • •

Tp# Mnem Name Entry
–––––––––––––––––––––––––––
101 X – 0, T10, 0, 0
102 X – 0, T1, 0, 0
103 X – 0, T1, 0, 1, T104
104 P – T105
105 n – T2, 1
106 X – 0, T1, 0, 1, T10
107 X – 0, T10, 0, 1, T10
108 X – 0, T1, 0, 2, T109, T109
109 T Byte T3
10a X – 0, T1, 0, 1, T109
...
10f X – 0, T1, 0, 3, T12, T110, T12
110 O – T111
111 n – T2, 0
112 Z – T2, 13
113 Z – T2, 7

In the first column you find the type index. This is the number by which

the type is referred to. This number is always a hexadecimal number.

Numbering starts at 0x101, because the indices less than 0x100 are

reserved for, so-called, 'basic types'. The second column contains the type

mnemonic. This mnemonic defines the new 'high level' type. In the Name

column you will find the name for the type, if any.

The last column contains type parameters. They tell you which (basic)

types a high level type is based on and give other parameters such as

modes and sizes. Types are preceded by a T. So, in the example above,

type 105 is based upon type 2 (T2 in the parameter list) and type 103 is

based upon type 1 and type 104.

In the next table you can find an overview of the basic types:

Type index Type Meaning

1 void –

2 char 8 bits signed

3 unsigned char 8 bits unsigned

4 short 16 bits signed

5 unsigned short 16 bits unsigned

6 long 32 bits signed

7 unsigned long 32 bits unsigned

Chapter 1212–42
U
T
IL
IT
IE
S

MeaningTypeType index

10 float 32 bit floating point

11 double 64 bit floating point

16 int 16 bits signed

17 unsigned int 16 bits unsigned

Table 12-3: Basic types

Mnemonic Description Parameters

G generalized
structure

size, [member, Tindex, offset, size]...

N enumerated type [name, value]...

n pointer qualifier Tindex, memspace

O small pointer Tindex

P large pointer Tindex

Q type qualifier q–bits, Tindex

S structure size, [member, Tindex, offset]...

T typedef Tindex

t compiler generated
type

Tindex

U union size, [member, Tindex, offset]...

X function x–bits, Tindex, 0, nbr–arg, [Tindex]...

Z array Tindex, upper–bound

g bit type sign, nbr–of–bits

Table 12-4: Type mnemonics

Utilities 12–43

• • • • • • • •

The type mnemonics define the class of the newly created type. The next

table shows the type mnemonics with a short description:

The Tindex for mnemonic n, O, P, Q, T, t and Z are the types upon which

the new type is built. The Tindex for the union and the structures are the

type indices for the members. For the function type, the first Tindex is the

return type of the function. The second Tindex is repeated for each

parameter, and gives the type of each parameter. The value -1 (0xffffffff)

always means 'unknown'. This can occur with a function type if the

number of parameters is unknown, or with an array if the upper bound in

unknown. The sizes and offset for the generalized structure are in bits.

The first size is the size of the structure, the second size is the size for the

member.

The type information obtained with the -g switch has no verbose

equivalent.

12.7.2.6 OPTION -d, DISPLAY DEBUG INFORMATION

The -d switch has two variants. With -d0 you get a table of contents:

pr563 –d0 calc.out

Choose option –d with the number of the file:
 1 – startup.obj
 2 – calc.obj

Now, you can use -dn to examine a single (linked) file. For instance, -d2

shows you only the debug info of calc.obj . It is also possible to see all

debug info, by using option -d without a value.

The -d switch without the verbose option -v shows you only local

variables and procedure information. If you combine the -d switch with

the verbose switch -v, also local type info, line numbers, stack update

information and more procedure information is displayed.

In the example you are using the verbose switch. Where required, the

remark 'Only with verbose on' will be given.

pr563 –d2v calc.out

The object reader starts with a header, followed by the local type

information:

Chapter 1212–44
U
T
IL
IT
IE
S

* O b j e c t c a l c . o b j *

M o d u l e i n f o
=====================

Type info calc.obj:
===================

No local types available

This type info is only printed if you use the verbose option -v. The

information found in this table is exactly the same as the information

explained for the global type information, see 12.7.2.5.

After the local types, you will find the local symbols.

Symbols calc.obj:
=================

Variable S Type Attrib MAU Amod Address/Size
––
factorial N – 0x0020 24 1 –
compute N – 0x0020 24 1 –
endfunc N – 0x0020 24 1 –
val N – 0x0020 24 2 –
cll N – 0x0020 24 2 –
zero N – 0x0020 24 2 –

The value for the symbol status in the external part was an I or an X.

Here, you can see a new letter. The N stands for a local symbol. Other

possible entires can have the letter G or S. They are no symbols, but

procedures. These procedures are printed at this place in order to define

their relative position. The actual procedure information is given in the

next block of information. Here you can find the additional procedure

information. The procedure block is printed only if you use the verbose

switch:

Procedures calc.obj:
====================

No procedures

The following is an example of some procedures:

Utilities 12–45

• • • • • • • •

Name S Additional information
–––
main G 0x00, 0x00, T101, QUEENS_PR + 0x00,

(QUEENS_PR + 0x49) – 0x01
find_legal_row S 0x00, 0x00, T120, QUEENS_PR + 0x49,

(QUEENS_PR + 0x156) – 0x01
display_board S 0x00, 0x00, T10a, QUEENS_PR + 0x156,

(QUEENS_PR + 0x2a4) – 0x01
display_field S 0x00, 0x00, T121, QUEENS_PR + 0x2a4,

(QUEENS_PR + 0x302) – 0x01
display_status S 0x00, 0x00, T103, QUEENS_PR + 0x302,

(QUEENS_PR + 0x31d) – 0x01

The first two columns are the same as those in the local variable table. The

G stands for an external (global) function, the S for a static (local)

function.

Each function has 5 parameters with the following meaning:

param #1 Frame type, not used

param #2 Frame size, the distance from the stack pointer before the

function call to the stack position just after the local variables.

param #3 The type of the function

param #4 The start address of the function. In a relocatable object the

syntax 'section + offset' is used.

param #5 The last function address. See also param #4.

Next in the debug info is the line number information and the stack

information. Both items are only printed if you had turned the verbose

switch on:

Lines include/stdarg.h:
=======================
No line info available

Lines include/stdio.h:
======================
No line info available

Chapter 1212–46
U
T
IL
IT
IE
S

Lines queens.c:
===============

Address | Line Address | Line Address ...
––––––––––––––––––––––––––– ––––––––––––––––––––––––––– –––––––––––––––
QUEENS_PR + 0x000000 | 52 QUEENS_PR + 0x0000c2 | 90 QUEENS_PR + ...
QUEENS_PR + 0x000000 | 53 QUEENS_PR + 0x0000d9 | 101 QUEENS_PR + ...
QUEENS_PR + 0x000006 | 55 QUEENS_PR + 0x0000d9 | 103 QUEENS_PR + ...

. . .

. . .

. . .
QUEENS_PR + 0x0000bd | 98 QUEENS_PR + 0x00018e | 133 QUEENS_PR + ...
QUEENS_PR + 0x0000c0 | 99 QUEENS_PR + 0x000190 | 136 QUEENS_PR + ...
QUEENS_PR + 0x0000c2 | 100 QUEENS_PR + 0x00019f | 137

Stack info include/stdarg.h:
============================
No stack info available

Stack info include/stdio.h:
===========================
No stack info available

Stack info queens.c:
====================
No stack info available

The stack info gives the actual stack position for each executable address.

This value is measured from the start position, just after the functions local

variables to the actual stack position. If you push one byte on stack, the

delta will be increased by one.

Utilities 12–47

• • • • • • • •

The debug info per module ends with a block for each function. Within

this block the local variables per function are displayed:

P r o c e d u r e i n f o
===========================

Procedure find_legal_row:
=========================

Symbols find_legal_row:
=======================

Variable S Type Attrib Mau Amod Address/Size
–––
accepted N 0x0109 0x0004 0 0 QUEENS_DA +
0x09
row N 0x0109 0x0805 0 0 0x02
col N 0x0109 0x0805 0 0 0x03
chk_row N 0x0109 0x0005 0 0 0x01
chk_col N 0x0109 0x0005 0 0 0x00

E n d o f p r o c e d u r e i n f o
===

12.7.2.7 OPTION -i, DISPLAY THE SECTION IMAGES

As with the -d option, you can ask a table with available section images

by specifying option -i0:

pr563 –i0 calc.out

Choose option –i with the number of the section:
 1 – Nameless
 2 – .text
 3 – .xbss
 4 – .ptext
 5 – .xdata

You can select the image to display by specifying the image number:

pr563 –i4 calc.out

Chapter 1212–48
U
T
IL
IT
IE
S

Section .ptext:
===============

05 5f 3c 20 5f 1b 57 f4 00 00 00 02 20 00 0d 0a
f0 af rr rr rr 56 f4 00 00 00 01 0a f0 80 rr rr
rr 77 f4 00 ff ff ff 46 f4

It is also possible to get the section offsets or absolute addresses by

specifying the verbose flag:

pr563 –i4v calc.out

Section .ptext:
===============

00 05 5f 3c 20 5f 1b 57 f4 00 00 00 02 20 00 0d 0a ._< _.W..... ...
10 f0 af rr rr rr 56 f4 00 00 00 01 0a f0 80 rr rrV..........
20 rr 77 f4 00 ff ff ff 46 f4 .w.....F.

The dump always shows the hexadecimal byte value per address.

Sometimes however, this is not possible. First of all, it is possible that a

certain byte cannot be determined because it is not yet relocated. In this

case the byte is represented as rr.

Secondly, it is possible that there is no section image allowed. This is for

instance the case for sections that are cleared during startup. The section

with index 5 (.xbss) is such a section. After the invocation (verbose on)

the reader prints:

pr563 –i3v calc.out

Section .xbss:
==============

No image allowed, cleared during startup

It is possible that you read an absolute file. In the absolute file it is

possible to combine different sections to new clusters. These clusters do

not have the same attributes as the sections and the reader does no longer

know where the overlay area is positioned:

pr563 –v –i2 calc.abs

Section X_clstr:
================

00 ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss
10 ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss
20 ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss

Utilities 12–49

• • • • • • • •

As you see, the reader only prints bytes that it actually can read from the

object file. The ss in the dump means scratch memory. It may or may not

be initialized by the start-up code. This information is not available

anymore to the reader. The start-up code can use a locator generated table

to get the information. See the Locator chapter.

12.7.3 VIEWING AN OBJECT AT LOWER LEVEL

12.7.3.1 OBJECT LAYERS

As with the well known OSI layer model for communication, you can also

distinguish layers in an object file. The object file is a medium for the

compiler which lets the compiler communicate with the debugger or the

target board. The lowest level can be classified as mass storage, mostly the

disc. The lowest viewable level for the readers concern are the raw bytes.

pr563 knows this layer as level 0.

Of course, the bytes in level 0 have a meaning. Because the object format

is an format according to IEEE 695, the object file is a collection of

MUFOM commands. The general idea is, that an object producing tool

sends commands to a object consuming tool. These commands are

described in detail by the official IEEE standard1. The raw bytes from level

0 appear to be encoded MUFOM commands. The MUFOM commands are

interpreted in a layer just above the raw bytes layer.

pr563 knows this layer as level 1.

The next layer is the MUFOM environment, the type and section tables are

built, values are assigned, attributes are set just by performing the MUFOM

commands. The IEEE document describes also some predefined meanings

about scope, section attributes naming conventions for MUFOM variables.

This knowledge is available in the highest MUFOM layer.

pr563 knows this layer as level 2.

1 IEEE Trial Use Standard for Microprocessor Universal Format for Object Modules (IEEE std. 695),
IEEE Technical Committee on Microcomputers and Microprocessors of the IEEE Computer Society,
1990.

Chapter 1212–50
U
T
IL
IT
IE
S

With these first layers, the compiler and debugger/target board have a

perfect communication channel. The next layers (not supported by the

reader at this moment) define a protocol between compiler and debugger

about target and language specific information.

In the next sections you can find some examples about the use of the

reader at lower levels. Until now, you used the default level of the reader,

level 2.

12.7.3.2 THE LEVEL OPTION -ln

Level 1

Switching to another level is simple. You can use the -l option with the

level you want to see. As an example, the section part of calc.out at

level 1:

pr563 –l1 –s calc.out

ST: 1, XAZSN,
AS: L1, 0x0
AS: S1, 0x2
ST: 2, XZCN, .text
AS: S2, 0x40
ST: 3, WBY2CN, .xbss
AS: S3, 0x1
ST: 4, XZCN, .ptext
AS: S4, 0x29
ST: 5, WIY2CN, .xdata
AS: S5, 0x2

If you are not familiar with the MUFOM commands, you can use the

verbose switch. The abbreviated commands such as AS, SA or ST are

expanded to Assignment, Section alignment and Section type:

pr563 –v –l1 –s calc.out

Utilities 12–51

• • • • • • • •

ST: Section type:
Nbr = 1, type = XAZSN, name =

AS: Assignment:
Variable = L1, expression = 0x0

AS: Assignment:
Variable = S1, expression = 0x2

ST: Section type:
Nbr = 2, type = XZCN, name = .text

AS: Assignment:
Variable = S2, expression = 0x3c

.

.
ST: Section type:

Nbr = 5, type = WIY2CN, name = .xdata
AS: Assignment:

Variable = S5, expression = 0x2

The Ln and Sn MUFOM variables are defined as the address and the size

of section n. At level 2 you saw (refer to section 12.7.2.2) that the level 2

view did not mention the L and S variables, because at level 2 the meaning

of the L and S variables are known!

Level 0

Switching to level 0 is accomplished by using -l0 (as you expected):

pr563 –l0s calc.out

e6 01 d8 c1 da d3 ce 00
e2 cc 01 81 00
e2 d3 01 02
e6 02 d8 da c3 ce 05 2e 74 65 78 74
e2 d3 02 40
e6 03 d7 c2 d9 02 c3 ce 05 2e 78 62 73 73
e2 d3 03 01
e6 04 d8 da c3 ce 06 2e 70 74 65 78 74
e2 d3 04 29
e6 05 d7 c9 d9 02 c3 ce 06 2e 78 64 61 74 61
e2 d3 05 02

The bytes are printed in the MUFOM command structure. It should be easy

to find the encoding for the used MUFOM commands. You can use the

verbose switch if you want to see file offsets:

pr563 –l0vs calc.out

Chapter 1212–52
U
T
IL
IT
IE
S

0000b5 e6 01 d8 c1 da d3 ce 00
0000bd e2 cc 01 81 00
0000c2 e2 d3 01 02
0000c6 e6 02 d8 da c3 ce 05 2e 74 65 78 74text
0000d2 e2 d3 02 40 ...@
0000d6 e6 03 d7 c2 d9 02 c3 ce 05 2e 78 62 73 73xbss
0000e4 e2 d3 03 01
0000e8 e6 04 d8 da c3 ce 06 2e 70 74 65 78 74ptext
0000f5 e2 d3 04 29 ...)
0000f9 e6 05 d7 c9 d9 02 c3 ce 06 2e 78 64 61 74 61xdata
000108 e2 d3 05 02

Viewing Mixed Levels

You can also mix the levels. It is for instance possible to see level 0 and 1

together by specifying option -l01 (equivalent to -l10 or -l0 -l1):

pr563 –sl01 calc.out

ST: 1, XAZSN,
e6 01 d8 c1 da d3 ce 00

AS: L1, 0x0
e2 cc 01 81 00

AS: S1, 0x2
e2 d3 01 02
.
.

ST: 5, WIY2CN, .xdata
e6 05 d7 c9 d9 02 c3 ce 06 2e 78 64 61 74 61

AS: S5, 0x2
e2 d3 05 02

And of course, you can turn on the verbose switch. The switch between

level 0 and level 1 is done per MUFOM command. This is because a

MUFOM command is the smallest unit at level 1.

If you should display level 1 and 2, the switch is made per object part,

because the object parts are the smallest units at level 2. It is not possible

to show the results of all section related commands before all these

commands are executed:

pr563 –s –l1 –l2 calc.out

ST: 1, XAZSN,
AS: L1, 0x0
AS: S1, 0x2
.
.
ST: 5, WIY2CN, .xdata
AS: S5, 0x2

Utilities 12–53

• • • • • • • •

Section Size
––––––––––––––––––
Nameless 0x02
.text 0x40
.xbss 0x01
.ptext 0x29
.xdata 0x02

12.7.3.3 THE VERBOSE OPTION -vn

As you have read in section 12.7.3.2, you can switch to a lower level with

the level switch -ln. If you want a verbose printout, you can use the -v

option.

It is also possible to specify -v0 to see a verbose output of level 0, option

-vn is a shorthand for options -v -ln (or -vln). The new notation has the

advantage that if you want a mixed level output, you are able to choose

the verbose option per level. You may specify -l0 -v1, and you get a non

verbose level 0 and a verbose level 1:

pr563 –sl0v1 calc.out

ST: Section type:
Nbr = 1, type = XAZSN, name =
e6 01 d8 c1 da d3 ce 00

AS: Assignment:
Variable = L1, expression = 0x0
e2 cc 01 81 00

AS: Assignment:
Variable = S1, expression = 0x2
e2 d3 01 02

.

.
ST: Section type:

Nbr = 5, type = WIY2CN, name = .xdata
e6 05 d7 c9 d9 02 c3 ce 06 2e 78 64 61 74 61

AS: Assignment:
Variable = S5, expression = 0x2
e2 d3 05 02

The general verbose switch -v (without a number) makes all selected

levels verbose. The verbose switch -vn selects level n and makes only

level n verbose.

Chapter 1212–54
U
T
IL
IT
IE
S

A

ASSEMBLER ERROR
MESSAGES

A
P

P
E

N
D

I
X

Appendix AA–2
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

A

A
P

P
E

N
D

I
X

Assembler Error Messages A–3

• • • • • • • •

1 INTRODUCTION

The assembler produces error messages on standard error output. If the list

option of the assembler is effective, error messages will be included in the

list file as well, when the assembler has started list file generation. Error

messages have the following layout:

[E|F|W] error_number: filename line number : error_message

Example:

as56 E217: /tmp/tst.src line 17 : invalid parallel move

The example reports the error, starting with the severity (E: error, F: fatal

error, W: warning) and the error number followed by the source filename

and the line number. The last part of the line shows the error message

text.

All warnings (W), errors (E), and fatal errors (F) are described below.

Appendix AA–4
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

2 WARNINGS (W)

The assembler may generate the following warnings:

W 101: ignored "MODE" directive

The MODE directive is not supported by the DSP56xxx assembler. The

assembler always produces relocatable code, except when in an

absolute section. See the section Software Concept for more

information.

W 102: duplicate attribute "attribute" found

An attribute of an EXTERN or an ORG directive is used twice or more.

Remove one of the duplicate attributes.

W 103: overlay part of "ORG" directive not supported

The TASKING DSP56xxx assembler does not support the overlay part

of the ORG directive. You can use the locator lc56 to overlay sections.

Remove the overlay definition.

W 104: "SECTION" attributes ignored

The TASKING DSP56xxx assembler does not support scope-section

attributes. All labels defined inside any scope-section are handled as if

they were defined using the LOCAL directive, unless they are defined

using the EXTERN or GLOBAL directive. Sections are not located

according to their scope, but according the ORG directives. See the

section Software Concept for more information. Remove the SECTION

attributes.

W 105: no "ORG" found yet

Data and program code can only be defined after an ORG directive is

used. When a definition is found before an ORG directive is found it

will be inserted in a nameless, relocatable P: section. Insert an ORG

directive before the offending line.

W 106: conflicting attributes specified "attributes"

You used two conflicting attributes in an EXTERN or an ORG statement

directive. For example EXTERN and INTERN. Choose which one you

want to use and remove the other.

Assembler Error Messages A–5

• • • • • • • •

W 107: memory conflict on object "name"

A label or other object is explicit or implicit defined using incompatible

memory types. For example P: and X: memory. Check all usages and

definitions of the object name to remove this conflict.

W 108: object attributes redefinition "attributes"

A label or other object is explicit or implicit defined using incompatible

attributes. For example INTERN and EXTERN. Check all usages and

definitions of the object to remove the conflict.

W 109: label "label" not used

The label label is defined with the GLOBAL directive and neither

defined nor referred, or the label is defined with the LOCAL directive

and not referenced. You can remove this label and its definitions (in

the case of a LOCAL label).

W 110: extern label "label" defined in module, made global

The label label is defined with an EXTERN directive and defined as a

label in the source. The label will be handled as a global label. Change

the EXTERN definition into GLOBAL or one of the identifiers.

W 111: named section overrules location counter

A named section may not have a location counter. The location counter

is ignored. For example:

ORG P1,”.text”:

is illegal. Remove the location counter number.

W 112: text found after END, ignored

An END directive designates the end of the source file. All text after the

END directive will be ignored. Remove the text.

W 113: named section overrules map attribute

Named sections may not have a mapping ('I', 'E', 'R', 'A' and 'B')

definition. Use the attribute-names (INTERN and EXTERN) instead. For

example:

ORG PI,”.text”:

has to be changed into:

ORG P,”.text”,INTERN:

Appendix AA–6
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

W 114: immediate io-short operand not allowed, forced to long

An io-short operator cannot be used in combination with immediate

values. The illegal '#<<' operator is changed into a '#>' operator.

W 116: invalid force argument, only NEAR, FAR or NONE allowed

The FORCE and SCSJMP directive only accept NEAR, FAR and NONE as

their arguments. Check the supplied argument and change it into one

of these.

W 117: reverse-carry buffer and ALIGN directive size expected to be a

power of 2

The DSR, BUFFER, BADDR and ALIGN directives only accept sizes

which are a power of two. For example: 32 and 128 are valid

parameters while 250 is invalid. Check the argument you supplied to

the directive and change it in a usable power of two.

W 118: inserted "extern name"

The symbol name is used inside an expression, but not defined with

an EXTERN directive or defined in the current scope. The assembler

inserts an EXTERN definition of the offending symbol. Check your label

scoping or add an EXTERN definition. You can suppress this message

with the 'OPT UR' directive.

W 120: assembler debug information: cannot emit non-tiof expression

for label

The SYMB record contains an expression with operations that are not

supported by the IEEE-695 object format. When the SYMB record is

generated by the TASKING C compiler, please fill out the error report

and send it to TASKING.

W 121: XDEF interpreted as GLOBAL

The TASKING DSP56xxx assembler changes all XDEF directives into

GLOBAL directives. As the semantics of both directives are slightly

different the assembler will emit this warning when an XDEF directive

is found. Change all XDEF directives to GLOBAL.

W 122: XREF interpreted as EXTERN

The TASKING DSP56xxx assembler changes all XREF directives into

EXTERN directives. As the semantics of both directives are slightly

different the assembler will emit this warning when an XREF directive

is found. Change all XREF directives to EXTERN.

Assembler Error Messages A–7

• • • • • • • •

W 123: expression: type-error

The expression performs an illegal operation on an address or

combines incompatible memory spaces. Check the expression, and

change it. Use the @CVS() function to change memory types. You can

suppress this message with the 'OPT NOAE' directive.

W 124: memory space modifier unequal to memory space of expression

The memory space modifier used in combination with the expression is

not equal to the memory space of the expression result. For example:

jmp p:x_label

Check the memory types of the operands, or use the @CVS() function

to change the resulting memory space.

W 125: "symbol" is not a DEFINE symbol

You tried to UNDEF a symbol that was not previously DEFINEd or was

already undefined. Check all DEFINE/UNDEF combinations of the

offending symbol.

W 126: redefinition of "define-symbol"

The symbol is already DEFINEd in the current scope. The symbol is

redefined according to this DEFINE. UNDEF any symbol before

redefining it.

W 127: redefinition of macro "macro"

The macro is already defined. The macro is redefined according to this

macro definition. Purge any macro using PMACRO before redefining it.

W 128: number of macro arguments is less than definition

You supplied less arguments to the macro than when defining it. Check

your macro definition with this macro call. The undefined macro

arguments are left empty (as in DEFINE def ’’).

W 129: number of macro arguments is greater than definition

You supplied more arguments to the macro than when defining it.

Check your macro definition with this macro call. The superfluous

macro arguments are ignored.

W 130: DUPA needs at least one value argument

The DUPA directive needs at least two arguments, the dummy

parameter and a value parameter. Add one or more value-parameters.

Appendix AA–8
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

W 131: DUPF increment value gives empty macro

The step value supplied with the DUPF macro will skip the DUPF

macro body. Check the step value.

W 132: IF started in previous file "file", line line

The ENDIF or ELSE pre-processor directive matches with an IF

directive in another file. Check on any missing ENDIF or ELSE

directives in that file.

W 133: currently no macro expansion active

The @CNT() and @ARG() functions can only be used inside a macro

expansion. Check your macro definitions or expression.

W 134: "directive" is not supported, skipped

The directives COBJ, HIMEM, IDENT, LOMEM, LSTCOL, MACLIB,

MODE, RDIRECT and SYMOBJ are not supported by the TASKING

DSP56xxx assembler. Remove all uses of these directives.

W 135: define symbol of "define-symbol" is not an identifier; skipped

definition

You supplied an illegal identifier with the -D option on the command

line. An identifier should start with a letter, followed by any number of

letters, digits or underscores.

W 136: expression value outside of fractional domain

The expression resulted in a floating point number less than -1 or

greater or equal to 1. The resulting number is saturated.

W 137: label "label" defined attribute and attribute

The label is defined with an EXTERN and a GLOBAL directive. The

EXTERN directive is removed, leaving the label global.

W 138: warning: WARN-directive-arguments

Output from the WARN directive.

W 139: inserted NOP instruction(s) to remove restriction

The assembler inserted a NOP instruction to accomodate for a pipeline

delay. For example:

move a,ssh
rts

Assembler Error Messages A–9

• • • • • • • •

is changed into:

move a,ssh
NOP
rts

You can toggle the automatic NOP insertion with the OPT directive and

on the command line.

W 140: previous instruction sequence may have a pipeline effect

The previous instruction may need to have a NOP instruction between

them or, in the case of end of DO loop restrictions, after them.

W 141: gobal/local label "name" not defined in this module; made

extern

The label is declared and used but not defined in the source file. Check

the current scope of the label and its usage, change the declaration to

EXTERN or add a label definition.

W 142: DO loop target is not a label, cannot check nesting and range

The assembler checks the nesting and range of DO-loops. This cannot

be done when the target expression of a DO instruction is not a label.

Change the source to use labels instead of address expressions.

W 143: conditional branches to LA are illegal when loop flag is set

This warning is given with Bcc and Jcc branches to LA when the option

-m0 (mask 0F92R and 1F92R) for the DSP563xx assembler (as563) is

specified.

W 144: missing label for VOID directive; skipped directive

The VOID directive must be preceded by a label.

W 145: more than one cache alignment for this section; changed into

"align number"

Only one "align cache" may be given per section. When more

alignments are needed they can be forced with an align directive,

specifying the cache page size as alignment. In code sections the align

directive generates NOP instructions to pad the created gap.

Appendix AA–10
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

W 146: cache alignment may change absolute section origin

The "align cache" creates a gap at the start of the section to force the

next instruction on a cache boundary. This gap is placed before any

other part of the section. Therefore, the real section start is at another

address than specified with the ORG directive.

W 147: external symbol "name" is used with different memory spaces;

assuming equate symbol

This is an external which is used with different memory spaces.

Assume that it is an equate symbol and tell the user about it. This will

not generate a linker warning.

W 148: unrecognized OPT directive "option" ignored

Something behind an opt. Whatever is typed there is not recognized.

3 ERRORS (E)

The assembler generates the following error messages when a user error

situation occurs. These errors do not terminate assembly immediate. If one

or more of these errors occur, assembly stops at the end of the active pass.

E 200: message; halting assembly

The assembler stops the further processing of your source file. This is

only an informative message. Remove all errors reported earlier and try

again.

E 201: unexpected newline or line delimiter

E 202: unexpected character ('character')

The syntax checker found a character that does not confirm to the

assembler grammar. Check the line for syntax errors or remove the

offending character.

E 203: illegal escape character in string constant

E 205: syntax error: missing token before token

The syntax checker expected to find a token but found another token.

The missing token is inserted before the found token. Check the line

for syntax errors.

Assembler Error Messages A–11

• • • • • • • •

E 206: syntax error: token unexpected

The syntax checker found an unexpected token. The offending token

is removed from the input and assembling continues. Check the line

for syntax errors.

E 207: syntax error: missing ':'

The syntax checker found a label definition or memory space modifier

but missed the appended semi-colon. Check the line for syntax errors,

for example misspelled mnemonics.

E 208: syntax error: missing ')'

The syntax checker expected to find a closing parentheses. Check the

expression syntax for missing operators and nesting of parentheses.

E 209: invalid radix value, should be `2, `10 or `16

The RADIX directive accepts only 2, 10 or 16.

E 210: syntax error

The syntax checker found an error. Check the line for syntax errors.

E 211: cannot open scope

The given scope-section could not be started. Check the name you

supplied with the SECTION directive.

E 212: cannot close scope

The ENDSEC directive could not match with a corresponding SECTION

directive. Check your scope nesting.

E 213: label "label" defined attribute and attribute

The label is defined with a LOCAL and a GLOBAL or EXTERN directive.

Check your label scoping or change the label declarations.

E 214: illegal addressing mode

The mnemonic used an illegal addressing mode. Check the register

usage of address constructs.

E 215: not enough operands

The mnemonic needs more operands. Check the source line and

change the instruction.

Appendix AA–12
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

E 216: too many operands

The mnemonic needs less operands. Check the source line and change

the instruction.

E 217: description

There was an error found during assembly of the mnemonic. Check the

instruction.

E 218: register must be an Rn register

You supplied a register that is not one of R0-R7. Check the instruction.

E 219: register Nn must have same number as Rn

When using (Rn)+Nn, (Rn+Nn) or (Rn)-Nn constructs, the R and the N

register must have the same number.

E 220: must be an Rn/Nn register pair

When using (reg1)+reg2, (reg1+reg2) or (reg1)-reg2 constructs, reg1
must be one of R0-R7 and reg2 must be the corresponding N register.

E 221: multiple scopes with same name

You nested two scope-sections with the same name. Check to see if

you didn't forget to close a scope.

E 222: scope not closed

After assembling your entire source the assembler missed some

ENDSEC directives. Check all SECTION directives if they have a

corresponding ENDSEC directive.

E 224: unknown label "label"

The underscore label was used but not defined within the scope of its

usage. Check the usage and scope. Try changing the label to a

non-underscore label.

E 225: invalid memory type

You supplied an invalid memory modifier with an ORG directive.

Check the first character of the offending ORG.

E 226: "E"-memory not supported

The TASKING DSP5600x assembler currently does not support

E-memory.

Assembler Error Messages A–13

• • • • • • • •

E 227: invalid memory attribute

The assembler found an unknown location counter or memory

mapping attribute in an ORG directive.

E 228: more than one location counter

You may only specify one location counter with an ORG directive.

Check to see if you specified both 'L' or 'H' and a numbered counter.

E 229: location counter must be between 0 and 255

Only 256 different location counters are supported. Change the

counter.

E 230: invalid section attribute

The assembler found an unknown ORG attribute. Valid attributes are

EXTERN, INTERN, NEAR, FAR, BSS, SCRATCH, OVERLAY, ABSOLUTE,

SCRATCH and MAX.

E 231: absolute section, expected expression

When defining an absolute section, you must supply an

address-expression after the colon.

E 232: MAX/OVERLAY sections need to be named sections

Sections with the MAX or OVERLAY attribute must have a name.

E 233: code section cannot have attribute attribute

Code sections may not have the OVERLAY attribute.

E 234: section attributes do not match earlier declaration

In an previous definition of the same section other attributes were

used. Check all section definitions with the same name, try to give only

the first ORG of a section all attributes, the later usages only the

memory modifier and the name.

E 235: redefinition of absolute section

An absolute section of the same name can only be located once.

E 236: cannot evaluate expression of descriptor

Some functions and directives must evaluate their arguments during

assembly. Change the expression so that it can be evaluated.

Appendix AA–14
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

E 237: descriptor directive must have positive value

Some directives need to have a positive argument. Check the

expression so that is evaluates to a positive number.

E 238: Floating point numbers not allowed with DCB directive

The DCB directive does not accept floating point numbers. Convert the

expressions or use the DC directive instead.

E 239: DCB byte constant out of range

The DCB directive stores expressions in bytes. A byte can only hold

numbers between 0 and 255.

E 240: DC word constant out of range

The DC directive stores expressions in words. A word can hold 24 bit

numbers in X, Y and P space. And 48 bits in L space. Check the range

of the expression.

E 241: Cannot emit non tiof functions, replaced with integral value '0'

Floating point expressions and some functions can not be represented

in the IEEE-695 object format. When an expression contains unknown

symbols it cannot be evaluated and not emitted to the object file.

Change these expressions to integral expressions, or make sure they

can be evaluated during assembly.

E 242: directive directive type must be M(odulo) or R(everse-carry)

The BADDR and BUFFER directives define modulo and reverse carry

buffers. Check the arguments you supplied to these directives.

E 243: Nested buffers not permitted

BUFFER directives may not be nested. Check to see if you didn't forget

an ENDBUF directive.

E 244: ENDBUF without an BUFFER directive

The assembler found an ENDBUF directive without a corresponding

BUFFER directive.

E 245: BUFFER size exceeded

There allocated space between the BUFFER and the ENDBUF

command exceeds the defined size of the BUFFER.

Assembler Error Messages A–15

• • • • • • • •

E 246: Missing ENDBUF, did you forget to end a buffer?

At the end of the source file a BUFFER directive is still not closed.

Check all BUFFER directives.

E 247: illegal condition code

The assembler encountered an illegal condition code within an

instruction. Check your input line.

E 248: cannot evaluate origin expression of org "name: address"

All origins of absolute sections must be evaluated before creation of the

object file. Check the address expression on the usage of undefined or

location dependant symbols.

E 249: incorrect argument types for function "function"

The supplied argument(s) evaluated to a different type than expected.

Change the argument expressions to the correct type.

E 251: @POS(,,start) start argument past end of string

The start argument is larger than the length of the string in the first

parameter. Change start to the correct range.

E 252: second definition of label "label"

The label is defined twice in the same scope. Check the label

definitions and rename of remove duplicate definitions.

E 253: recursive definition of symbol "symbol"

The evaluation of the symbol depends on its own value. Change the

symbol value exclude this cyclic definition.

E 254: missing closing '>' in include directive

The syntax checker missed the closing '>' bracket in the include

directive. Add a closing '>'.

E 255: could not open include file include-file

The assembler could not open the given include-file. Check the current

search path for the presence of the include file and if it may be read.

E 256: integral divide by zero

The expression contains an divide by zero. This is not defined. Change

the expression to exclude a division by zero.

Appendix AA–16
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

E 257: unterminated string

All strings must end on the same line as they are started. Check for a

missing ending quot.

E 258: unexpected characters after macro parameters, possible illegal

white space

Spaces are not permitted between macro parameters. Check the syntax

of the macro call.

E 259: COMMENT directive not permitted within a macro definition and

conditional assembly

The TASKING DSP56xxx assembler does not permit the usage of the

COMMENT directive within MACRO/DUP definitions or IF/ELSE/ENDIF

constructs. Replace the offending COMMENTs with comments starting

with a semicolon.

E 260: definition of "macro" unterminated, missing "endm"

The macro definition is not terminated with an ENDM directive. Check

the macro definition.

E 261: macro argument name may not start with an '_'

MACRO and DUP arguments may not start with an underscore. Replace

the offending parameter names with non-underscore names.

E 262: cannot find "symbol" in current scope nesting

Could not find a definition of the argument of a '%' or '?' operator

within a macro expansion. Check for a definition of the offending

symbol.

E 263: cannot evaluate: "symbol", value is unknown at this point

The symbol used with a '%' or '?' operator within a macro expansion

has not been defined. Insert a definition of the offending identifier.

E 264: cannot evaluate: "symbol", value depends on an unknown

symbol

Could not evaluate the argument of a '%' or '?' operator within a macro

expansion. Check the definition of the offending symbol.

E 265: cannot evaluate argument of dup (unknown or location

dependant symbols)

The arguments of the DUP directive could not be evaluated. Check the

argument expressions on forward references or unknown symbols.

Assembler Error Messages A–17

• • • • • • • •

E 266: dup argument must be integral

The argument of the DUP directive must be integral. Change the

expression so that it evaluates to an integral number.

E 267: dup needs a parameter

Check the syntax of the DUP directive.

E 268: ENDM without a corresponding MACRO or DUP definition

The assembler found an ENDM directive without an corresponding

MACRO or DUP definition. Check the macro and dup definitions or

remove this directive.

E 269: ELSE without a corresponding IF

The assembler found an ELSE directive without an corresponding IF

directive. Check the IF/ELSE/ENDIF nesting or remove this directive.

E 270: ENDIF without a corresponding IF

The assembler found an ENDIF directive without an corresponding IF

directive. Check the IF/ELSE/ENDIF nesting or remove this directive.

E 271: missing corresponding ENDIF

The assembler found an IF or ELSE directive without an corresponding

ENDIF directive. Check the IF/ELSE/ENDIF nesting or remove this

directive.

E 272: label not permitted with this directive

Some directives do not accept labels. Move the label to a line before or

after this line.

E 273: wrong number of arguments for function

The function needs more or less arguments. Check the function

definition and add or remove arguments.

E 274: illegal argument for function

An argument has the wrong type. Check the function definition and

change the arguments accordingly.

E 275: parallel moves are not permitted with this instruction

The instruction does not accept parallel moves. You can use the

optimizer to parallelize moves.

Appendix AA–18
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

E 276: immediate value must be between value and value

The immediate operand of the instruction does only accept values in

the given range. Use the '&' operator to force a value within the

needed range or use '#>' to force a long immediate operand.

E 277: address must be between $address and $address

The address operand is not in the range mentioned. Use the '>' prefix

operator to force long addressing or change the address expression.

E 278: operand must be an address

The operand must be an address but has no address attributes. Use an

address modifier (e.g. 'X:') or change the address expression.

E 279: address must be short

The operand must be an address in the short range. The expression

evaluated to a long address or an address in an unknown range. For

the DSP56xxx the addresses between and including P:$0000 and

P:$0FFF and for X, Y and L memory $0000 and $003F are in the short

range. Use the '<' prefix operator to force the address to a short

address or change the address expression.

E 280: address must be short or I/O short

The operand must be an address in the I/O short range. For the

DSP5600x the addresses between and including X:$FFC0 and X:$FFFF

are legal I/O short addresses. For the DSP563xx the addresses between

and including X:$FFFF80 and X:$FFFFFF are legal i/o short addresses.

Change the address expression or use the '<<' prefix operator to force

the address to the correct I/O short range.

E 281: illegal option "option"

The assembler found an unknown or misspelled command line option.

The option will be ignored. Use the -? option to see a list of all

possible options.

E 282: operand must be a Rn or Nn register

An operand of the instruction must be one of the register R0-R7 or

N0-N7. Check the instruction and change the operand.

E 283: operand number must be register register

The referred instruction operand must be one of the mentioned

registers. Check the instruction and change its register usage

accordingly.

Assembler Error Messages A–19

• • • • • • • •

E 284: source and destination must be different

The ADD, SUB, CMP, CMPM, TFR, SUBL, ADDL, SUBR and ADDR

instructions must have different source and destination operands.

Check the instruction and change one of the operands.

E 285: file-kind file will overwrite file-kind file

The assembler warns when one of its output files will overwrite the

source file you gave on the command line or another output file.

Change the name of the source file, use the -o option to change the

name of the output file or remove the -err option to suppress the

generation of the error file.

E 286: IC and NOIC options must be given before any symbol

definition

The ignore case parameters of the OPT directive may only be given

before any symbol is defined. Move the options to the start of the first

source file.

E 287: SYMB error: message

The assembler found an error in a symbolic debug (SYMB) instruction.

When the SYMB instruction is generated by the TASKING C compiler,

please fill out the error report form and send it to TASKING. As a work

around you could disable the symbolic debug information of this

module (remove the -g option).

E 288: error in PAGE directive: message

The arguments supplied to the PAGE directive do not conform to the

restrictions. Check the PAGE directive restrictions in the manual and

change the arguments accordingly.

E 289: error in ORG directive

This is an illegal ORG directive or the section name has been used for

another, incompatible, section. Check the ORG arguments and the

section name.

E 290: fail: message

Output of the FAIL directive. This is an user generated error. Check the

source code to see why this FAIL directive is executed.

Appendix AA–20
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

E 291: generated check: message

Integrity check for the coupling between the TASKING C compiler and

TASKING DSP56xxx assembler. You should not see this error message,

unless there are error in user inserted assembly (using the "#pragma

asm" construct).

E 292: no "ORG" found yet

This error is only generated as part of the integrity checks for the

output of the TASKING C compiler. You should not see this error

message, unless there are error in user inserted assembly (using the

"#pragma asm" construct).

E 293: expression not in short or I/O short range

An instruction operand must be in the short ($000 through $003F) or

I/O short ($FFC0 through $FFFF) address range (for the DSP563xx

address range $FFF80 through $FFFFFF). Check the address expression,

change it or use the '<' or '<<' operators to force the operand to the

expected type.

E 294: illegal instruction sequence

The previous two instructions may not be executed directly after each

other. Insert another instruction or a NOP instruction between them.

E 295: optimizer error: message

The optimizer found an error. Try to change the instruction or turn off

the the optimizer.

E 296: duplicate destinations are not allowed

An instruction may not have a double write to the same destination

register. Change the destination registers or split the instruction in

separate moves.

E 297: negative or empty DO loops are not allowed

A DO loop must contain instructions and have an loop address that is

after the DO instruction. Insert a NOP in the DO loop body, or change

the loop label.

E 298: improper nesting of do loop

When DO loops are nested they must be completely contained inside

the outer DO loop.

Assembler Error Messages A–21

• • • • • • • •

E 299: jump address must be P in memory

Jumps, jump-subroutines and DO-loops must have a target address in

program memory. Check the address expression or use the 'P:' memory

modifier to force the expression into program memory.

E 300: cannot SCS-action, no enclosing loop

The structured control statements (SCS) '.BREAK' and '.CONTINUE' are

only allowed inside a loop. Check the loop nesting of your structured

control statements.

E 301: missing corresponding "SCS-instruction"

Structured control statements must have proper nesting. Check if all

previously started controls have been properly ended.

E 303: unknown condition code '<SCS-condition-code>'

The assembler did not recognize the condition code as a legal

DSP56xxx condition code. Legal condition codes are: CC, CS, EC, EQ,

ES, GE, GT, HS, LC, LE, LO, LS, LT, MI, NE, NN, NR and PL. Change the

condition code to one of these.

E 304: use "OR" or "AND" for multiple conditions

The operators 'OR' and 'AND' give the relationship between multiple

conditions in an structured control expression. Check the syntax of the

expression.

E 305: error in structured control expression

The syntax checker found an error in the structured control expression.

Check the expression with the syntax description. Common errors are

to forget spaces between operands and the '<' and '>' brackets around

condition codes.

E 306: expected conditional operator

The syntax checker found some operands but no logical relation

between them add a logical operator, or check if you enclosed the

conditional operator between '<' and '>' brackets.

E 307: expected operand

Conditional structured control operators must have none or two

operands. Check the expression.

Appendix AA–22
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

E 308: use either "OR" or "AND", not both

A structured control expression may only contain either 'OR' or 'AND'

operations, not both. Change the expression to contain only one of

these logical operators.

E 309: cannot combine operands of statement, use others or change

SCS registers

The assembler must move the operands into the SCS registers to

perform assignments and comparisons. As the assembler uses only two

scratch registers some combinations of operands can not be

transformed into semantically correct assembly. Source operands could

be overwritten before before they can be used. Look in the list file for

the assembly that is generated and change either the SCS registers with

the SCSREG directive or change the operands of the structured control

statement.

E 310: illegal combination of operand 1 and 2.

E 311: one of the MOVEP operands must be I/O short

I/O short required for the movep instruction.

E 312: size depends on location, cannot evaluate; probably due to

cache alignment

The size of some constructions (notably the align directives) depend on

the memory address. The gap for cache alignment can only be

calculated when the size of the section is given before the cache

alignment directive. When a construction which size depends on the

location is placed before the align directive the gap cannot be

calculated. Remove the cache alignment directive or change the

offending construction.

E 313: cache alignment only valid on P sections

Cache alignment is only sensible on code sections. Remove the align

directive.

E 314: ENDM within IF/ENDIF

The assembler found an ENDM directive within an IF/ENDIF pair.

Check the MACRO and DUP definitions or remove this directive.

E 315: interrupt section "name" too large for fast interrupts

Name of interrupt section. Fast interrupt has limited size.

Assembler Error Messages A–23

• • • • • • • •

E 316: "Symbols:" part not found in map file "filename"

E 317: "Sections:" part not found in map file "filename"

E 318: module "name" not found in map file "filename"

Name of map file and module. Can occur if is assembler called with

map file to generate absolute list file.

E 319: "Looplabel" used as end label for multiple do loops

You used the same loop label for nested loops. Use a different loop

label for each nested loop.

E 350: operand number; this kind of operand is not permitted here

The referred operand can not be used at that position. Common errors

are to forget the '#' operator or an address modifier.

E 351: operand number must be in P memory

The referred operand must be an address in program memory. Check

the address expression or prefix the operand with 'P:' to force it to

program memory.

E 352: operand number must be in X or Y memory

The referred operand must be an address in X or Y memory. Check the

address expression or prefix the operand with 'X:' or 'Y:' to force it to

the wanted memory type.

E 353: illegal operand number in parallel Immediate Short Data Move

The referred operand may not be used as a operand of an immediate

short data move (move type U). Check the instruction syntax and

change the operand or the instruction.

E 354: illegal operand number in parallel Long Memory Data Move

The referred operand may not be used as a operand of a long memory

data move (move type L). Check the instruction syntax and change the

operand.

E 355: illegal number operand in X-or-Y move field of parallel Register

and Y Memory Data Move

The referred operand may not be used as a operand of a register and Y

memory data move (move type RY). When the error message refers to

the X move field, check the R move, otherwise check the Y move.

Change the operand or split the instruction into two separate move

instructions.

Appendix AA–24
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

E 356: illegal operand number in parallel Register to Register Data

Move

The referred operand may not be used as a operand of a register to

register move (move type R). Check the instruction syntax and change

the operand or the instruction or change the parallel move to a

separate MOVEC instruction.

E 357: illegal operand number in parallel Address Register Update

Move

The referred operand may not be used as a operand of a register

update move (move type U). Only (Rn)-Nn, (Rn)+Nn, (Rn)- and (Rn)+

operands are allowed. Check the instruction syntax and change the

operand.

E 358: illegal number operand in X-or-Y move field of parallel X

Memory and Register Data Move

The referred operand may not be used as a operand of a X memory

and register data move (move type XR). When the error message refers

to the Y move field, check the R move, otherwise check the X move.

Change the operand or split the instruction into two separate move

instructions.

E 359: illegal number operand in X-or-Y move field of parallel XY

Memory Data Move

The referred operand may not be used as a operand of a X and Y

memory data move (move type XY). Check the move field referred to

by the error message. Change the operand or split the instruction into

two separate move instructions.

E 360: illegal operand number in parallel X or Y Memory Data Move

The referred operand may not be used as a operand of a X or Y

memory data move (move type X or Y). Change the operand or change

the move to a MOVEC instruction.

E 361: no X or Y memory specified on operand number in parallel X or

Y Memory Data Move

The assembler will try to defer the correct address bus from the

expression. When this is not possible you must supply the bus using

the 'X:' or 'Y:' memory modifier.

Assembler Error Messages A–25

• • • • • • • •

E 362: only (Rn)-Nn, (Rn)+Nn, (Rn)- or (Rn)+ permitted here

Only one of the mentioned operands is permitted. Check the

instruction and change the operand accordingly.

E 363: operand must be one of Xn, Yn, An, Bn, A, B, Rn or Nn

Only one of the mentioned registers is permitted. Check the instruction

and change the operand accordingly.

E 364: X and Y parallel moves must use different register banks

In a XY memory type move one of the moves must use register R0-R3

and one register R4-R7. Change the registers or split the instruction

into two separate moves.

E 365: Bitfield field-name out of range

The bit field width is specified by bits 17-12 in S1 register or in

immediate control word #CO. The offset from the least significant bit is

specified by bits 5-0 in S1 register or in immediate control word #CO.

If the offset+width exceeds the value of 56, the result will be

undefined.

E 366: operand number must be in L memory

Number is 1, 2 or 3. Instruction is VSL instruction, which requires

operand in L.

E 368: instruction name not supported by DSP56xxx

A couple of instructions are not supported, for instance: norm

Appendix AA–26
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

4 FATAL ERRORS (F)

The following errors cause the assembler to terminate immediately. Fatal

errors are usually due to user errors.

F 401: memory allocation error

A request for free memory is denied by the system. All memory has

been used. You may have to break your program down into smaller

pieces.

F 402: duplicate input filename "file" and "file"

The assembler requires one input filename on the command line. Two

or more filenames is erroneous.

F 403: error opening file-kind file : "file-name"

The assembler could not open the given file. When this is a source file,

check if the file you specified at the command line exists and if it is

readable. When the file is a temporary file, check if the environment

symbol TMPDIR has been set correctly.

F 404: protection error : message

No protection key or not a IBM compatible PC.

F 405: I/O error

The assembler cannot write its output to a file. Check if you have

enough free disk space.

F 407: symbolic debug output error

The symbolic debug information is incorrectly written in the object file.

Please fill out the error report form and send it to TASKING.

F 408: illegal operator precedence

The operator priority table is corrupt. Please fill out the error report

form and send it to TASKING.

F 409: Assembler internal error

The assembler encountered internal inconsistencies. Please fill out the

error report form and send it to TASKING.

Assembler Error Messages A–27

• • • • • • • •

F 410: Assembler internal error: duplicate mufom "symbol" during

rename

The assembler renames all symbols local to a scope to unique symbols.

In this case the assembler did not succeed into making an unique

name. Please fill out the error report form and send it to TASKING.

F 411: SYMB error: "message"

An error occurred during the parsing of the SYMB directive. When this

SYMB directive is generated by the TASKING C compiler, please fill out

the error report form and send it to TASKING.

F 412: MACRO calls nested too deep (possible endless recursive call)

There is a limit to the number of nested macro expansions. Currently

this limit is set to 1000. Check for recursive definitions or try to simplify

your source when you encounter this restriction.

F 413: cannot evaluate "function"

A function call is encountered although it should have been processed.

As a work-around, try to locate the offending function call and remove

it from your source. Please fill out the error report form and send it to

TASKING.

F 414: cannot recover from previous errors, stopped

Due to earlier errors the assembler internal state got corrupted and

stops assembling your program. Remove the errors reported earlier and

retry.

F 415: error opening temporary file

The assembler uses temporary files for the debug information and list

file generation. It could not open or create one of those temporary

files. Check if the environment symbol TMPDIR has been set correctly.

F 416: internal error in optimizer

The optimizer found a deadlock situation. Try to assemble without any

optimization options. Please fill out the error report form and send it to

TASKING.

F 417: too many errors, stopped

The assembler found too many errors to continue. One error could

cause many other errors. Try to solve the first error and assemble again.

Appendix AA–28
A

S
S

E
M

B
L

E
R

 E
R

R
O

R
S

F 418: absolute listing file not allowed in combination with -S

Absolute list file generation is not allowed when generating Motorola

compatible assembly.

B

LINKER ERROR
MESSAGES

A
P

P
E

N
D

I
X

Appendix BB–2
L

IN
K

E
R

 E
R

R
O

R
S B

A
P

P
E

N
D

I
X

Linker Error Messages B–3

• • • • • • • •

1 INTRODUCTION

Error and warning messages of the linker start with a letter followed by a

number and an informational text. The error letter indicates the error type:

W warning

E error

F fatal error

V verbose message

2 WARNINGS (W)

W 100: Cannot create map file filename, turned off -M option

The given file could not be created.

W 101: Illegal filename (filename) detected

A filename with an illegal extension was detected.

W 102: Incomplete type specification, type index = Thexnumber

An unknown type reference. Arises if a pointer to an unspecified

structure is defined.

W 103: Object name (name) differs from filename

Internal name of object file not the same as the filename. The file was

probably renamed.

W 104: '-o filename' option overwrites previous '-o filename'

Second -o option encountered, previous name is lost.

W 105: No object files found

No files where specified at the invocation.

W 106: No search path for system libraries. Use -L or env "variable"

System library files (those given with the -l option) must have a search

path, either supplied by means of the environment, or by means of the

option -L.

W 108: Illegal option: option (-H or -\? for help)

An illegal option was detected.

Appendix BB–4
L

IN
K

E
R

 E
R

R
O

R
S

W 109: Type not completely specified for symbol <symbol> in file

Not a complete type specification in either the current file or the

mentioned file. This could be an array with unknown depth, or a

function with unknown parameters.

W 110: Compatible types, different definitions for symbol <symbol> in

file

Name conflict between compatible types. This could be a member

name, tag name for a struct, or a different type name for equal sized

basic types (int, long). Note that a basic type conflict is a non portable

construct.

W 111: Signed/unsigned conflict for symbol <symbol> in file

Size of both types is correct, but one of the types contains an unsigned

where the other uses a signed type.

W 112: Type conflict for symbol <symbol> in file

A real type conflict.

W 113: Table of contents of file out of date, not searched. (Use ar ts

<name>)

The ar library has a symbol table which is not up to date. Generate a

new one with 'ar ts'.

W 114: No table of contents in file, not searched. (Use ar ts <name>)

The ar library has no symbol table. Generate one with 'ar ts'.

W 115: Library library contains ucode which is not supported

Ucode is not supported by the linker.

W 116: Not all modules are translated with the same threshold (-G

value)

The library file has an unknown format, or is corrupted.

W 117: No type found for <symbol>. No type check performed

No type has been generated for the symbol

W 118: Variable <name>, has incompatible external addressing modes

with file <filename>

A variable is not yet allocated but two external references are made by

non overlapping addressing modes. This is always an error.

Linker Error Messages B–5

• • • • • • • •

W 119: error from the Embedded Environment: message, switched off

relaxed addressing mode check

Probably a DELFEE file could not be found. If the embedded

environment is readable for the linker, the addressing mode check is

relaxed. For an overview of the embedded environment error

messages, see appendix E, Embedded Environment Error Messages.

W 120: Cannot find target description file name, relaxed addressing

mode check disabled

The linker cannot find the description file (.dsc), this means that the

linker cannot verify whether addressing modes are compatible.

W 121: Found unresolved external name. Setting value to 0.

A symbol was not found. It is filled in the value zero.

Appendix BB–6
L

IN
K

E
R

 E
R

R
O

R
S

3 ERRORS (E)

E 200: Illegal object, assignment of non existing var var

The MUFOM variable did not exist. Corrupted object file.

E 201: Bad magic number

The magic number of a supplied library file was not ok.

E 202: Section name does not have the same attributes as already

linked files

Named section with different attributes encountered. Use -t flag to see

which files are already linked. It is possible that a previously linked

file started a .out section with wrong attributes.

E 203: Cannot open filename

A given file was not found.

E 204: Illegal reference in address of name

Illegal MUFOM variable used in value expression of a variable.

Corrupted object file.

E 205: Symbol 'name' already defined in <name>

A symbol was defined twice. The message gives the files involved.

E 206: Illegal object, multi assignment on var

The MUFOM variable was assigned more than once probably due to a

previous error 'already defined', E205.

E 207: Object for different processor characteristics

Bits per MAU, MAU per address or endian for this object differs with

the first linked object.

E 208: Found unresolved external(s):

There were some symbols not found. If -r is not set, this is an error.

E 209: Object format in file not supported

The object file has an unknown format, or is corrupted.

E 210: Library format in file not supported

The library file has an unknown format, or is corrupted.

Linker Error Messages B–7

• • • • • • • •

E 211: Function <function> cannot be added to the already built

overlay pool <name>

The overlay pool has already been built in a previous linker action. Use

option -r to prevent this.

E 212: Duplicate absolute section name <name>

Absolute sections begin on a fixed address. They cannot be linked.

E 213: Section <name> does not have the same size as the already

linked one

A section with the EQUAL attribute does not have the same size as

other, already linked, sections.

E 214: Missing section address for absolute section <name>

Each absolute section must have a section address command in the

object. Corrupted object file.

E 215: Section <name> has a different address from the already linked

one

Two absolute sections may be linked (overlaid) on some conditions.

They must have the same address.

E 216: Variable <name>, name <name> has incompatible external

addressing modes

A variable is allocated outside a referencing addressing space. For

instance, the variable was not allocated in the zero page and this

variable was referenced with the zero page addressing mode. This is

always an error.

E 217: Variable <name>, has incompatible external addressing modes

with file <filename>

A variable is not yet allocated but two external references are made by

non overlapping addressing modes. This is always an error.

E 218: Variable <name>, also referenced in <name> has an

incompatible address format

Addresses are often expressed in bytes. In some special cases, the

address is expressed in bits. This is necessary for bit variables. An

attempt was made to link different address formats between the current

file and the mentioned file.

Appendix BB–8
L

IN
K

E
R

 E
R

R
O

R
S

E 219: Not supported/illegal feature in object format format

An option/feature is not supported or illegal in given object format.

E 220: page size (0xhexvalue) overflow for section <name> with size

0xhexvalue

Section is too big to fit into the page.

E 221: message

Error generated by the object. These errors are in fact generated by the

assembler. It has been caused by a jump instruction which is out of

range.

E 222: Address of <name> not defined

No address was assigned to the variable. Corrupted object file.

E 223: Illegal object, empty name assignment on variable name

An empty name assignment of a MUFOM variable (type N, X or I).

E 224: Recursive assignment on name

A recursion occurred in the assignment of the symbol.

Linker Error Messages B–9

• • • • • • • •

4 FATAL ERRORS (F)

F 400: Cannot create file filename

The given file could not be created.

F 401: Illegal object: Unknown command at offset offset

An unknown command was detected in the object file. Corrupted

object file.

F 402: Illegal object: Corrupted hex number at offset offset

Wrong byte count in hex number. Corrupted object file.

F 403: Illegal section index

A section index out of range was detected. Corrupted object file.

F 404: Illegal object: Unknown hex value at offset offset

An unknown variable was detected in the object file. Corrupted object

file.

F 405: Internal error number

Internal fatal error. Passed number will give more information!

F 406: message

No key no IBM compatible PC

F 407: Missing section size for section <name>

Each section must have a section size command in the object.

Corrupted object file.

F 408: Out of memory.

An attempt to allocate more memory failed.

F 409: Illegal object, offset offset

Inconsistency found in the object module

F 410: Illegal object

Inconsistency found in the object module at unknown offset.

F 413: Only name object can be linked

It is not possible to link object for other processors

Appendix BB–10
L

IN
K

E
R

 E
R

R
O

R
S

F 414: Input file file same as output file

Input file and output file cannot be the same.

F 415: Demonstration package limits exceeded

One of the limits in this demo version was exceeded.

F 416: Only one description file allowed

The linker accepts only one description file.

Linker Error Messages B–11

• • • • • • • •

5 VERBOSE (V)

V 000: Abort !

The program was aborted by the user.

V 001: Extracting files

Verbose message extracting file from library.

V 002: File currently in progress:

Verbose message file currently processed.

V 003: Starting pass number

Verbose message, start of given pass.

V 004: Rescanning....

Verbose message rescanning library. Rescanning is done if there were

new unsatisfied externals during the last scan.

V 005: Removing file file

Verbose message cleaning up. Temp files are always removed, map file

and .out file are removed if switch -e is on and the exit code is

unequal to zero.

V 006: Object file file format format

Named object file does not have the standard tool chain object format

TIOF-695.

V 007: Library file format format

Named library file does not have the standard tool chain ar56 format

V 8: Embedded environment name read, relaxed addressing mode

check enabled

Embedded environment successfully read.

Appendix BB–12
L

IN
K

E
R

 E
R

R
O

R
S

C

LOCATOR ERROR
MESSAGES

A
P

P
E

N
D

I
X

Appendix CC–2
L

O
C

A
T

O
R

 E
R

R
O

R
S

C

A
P

P
E

N
D

I
X

Locator Error Messages C–3

• • • • • • • •

1 INTROCUCTION

Error and warning messages of the locator start with a letter followed by a

number and an informational text. The error letter indicates the error type:

W warning

E error

F fatal error

V verbose message

2 WARNINGS (W)

W 100: Maximum buffer size for name is size (Adjusted)

For the given format, a maximum buffer size is defined.

W 101: Cannot create map file filename, turned off -M option

The given file could not be created.

W 102: Only one -g switch allowed, ignored -g before name

Only one .out file can be debugged.

W 104: Found a negative length for section name, made it positive

Only stack sections can have a negative length.

W 107: Inserted 'name' keyword at line line

A missing keyword in the description file was inserted.

W 108: Object name (name) differs from filename

Internal name of object file not the same as the filename. Maybe

renamed?

W 110: Redefinition of system start point

Usually only one load module will access the system table (__lc_pm).

W 111: Two -o options, output name will be name

Second -o option, the message gives the effective name.

W 112: Copy table not referenced, initial data is not copied

If you use a copy statement in the layout part, the initial data is located

in rom. Your start-up code should copy this data to their ram location.

Appendix CC–4
L

O
C

A
T

O
R

 E
R

R
O

R
S

W 113: No .out files found to locate

No files where specified at the invocation.

W 114: Cannot find start label label

No start point found.

W 116: Redefinition of name at line line

Identifier was defined twice.

W 119: File filename not found in the argument list

All files to be located must be given as an argument.

W 120: unrecognized name option <name> at line line (inserted 'name')

Wrong option assignment. Check the manual for possibilities.

W 121: Ignored illegal sub-option 'name' for name

An illegal format sub option was detected. See the format description

for this format in the manual.

W 122: Illegal option: option (-H or -\? for help)

An illegal option was detected.

W 123: Inserted character at line line

The given character was missing in the description file.

W 124: Attribute attribute at line line unknown

An unknown attribute was specified in the description file.

W 125: Copy table not referenced, blank sections are not cleared

Sections with attribute blank are detected, but the copy table is not

referenced. The locator generates info for the startup module in the

copy table for clearing blank sections at startup. See __lc_cp in the

manual.

W 127: Layout name not found

The used layout in the named file must be defined in the layout part.

W 130: Physical block name assigned for the second time to a layout

It is not possible to assign a block more than once to a layout block.

Locator Error Messages C–5

• • • • • • • •

W 136: Removed character at line line

The character is not needed here.

W 137: Cluster name declared twice (layout part)

The named cluster is declared twice. Duplicate cluster names are

allowed in the layout part under conditions, because the clusters are

referred only. In the layout part the cluster is declared, which may be

done only once.

W 138: Absolute section name at non-existing memory address

0xhexnumber

Absolute section with an address outside physical memory. Either the

address is not correct, or the memory description for your target is not

consistent.

W 139: message

Warning message from the embedded environment. For an overview of

the embedded environment error messages, see appendix E, Embedded
Environment Error Messages.

W 140: File filename not found as a parameter

All processes defined in the locator description file (software part) must

be specified on the invocation line.

W 141: Unknown space <name> in -S option

An unknown space name was specified with a -S option.

W 142: No room for section name in read-only memory, trying writable

memory ...

A section with atribute read-only could not be placed in read-only

memory, the section will be placed in writable memory.

W 143: Section names has different page size than previous group

members

Section has a different page size then other sections in the same group.

W 144: Filename name is too long, truncated to name

Filename is too long and is truncated.

Appendix CC–6
L

O
C

A
T

O
R

 E
R

R
O

R
S

W 145: Conflicting output options c (chip level) and s (start record), s

ignored

Output sub-options 's' and 'c' are conflicting sub-options. The s option

is ignored.

W 146: Address width in output format (number bytes) is too small for

address address(hex). Only first occurrence reported.

The width of the address format is too small to contain the complete

address.

W 147: Conflict between absolute section address 0xhexaddress and

alignment number specified in the description file (alignment

ignored)

In the description file an alignment is specified for a section, which

conflicts with the absolute address of the section. The alignment is

ignored.

W 148: Conflict between section alignment number, and address

0xhexaddress specified in the description file (alignment will be

applied to address)

In the description file an absolute address is added to a section, this

address conflicts with the alignment of the section. The alignment will

be applied to the address before locating.

Locator Error Messages C–7

• • • • • • • •

3 ERRORS (E)

E 200: Absolute address 0xhexnumber occupied

An absolute address was requested, but the address was already

occupied by another section.

E 201: No physical memory available for section name

An absolute address was requested, but there is no physical memory at

this address.

E 202: Section name with mau size size cannot be located in an

addressing mode with mau size size

A bit section cannot be located in a byte oriented addressing mode.

E 203: Illegal object, assignment of non existing var var

The MUFOM variable did not exist. For some variables this is an error.

E 204: Cannot duplicate section 'name' due to hardware limitations

The process must be located more than once, but the section is

mapped to a virtual space without memory management possibilities.

E 205: Cannot find section for name

Found a variable without a section, should not be possible.

E 206: Size limit for the section group containing section name
exceeded by 0xhexnumber bytes

Small sections do not fit in a page any more.

E 207: Cannot open filename

A given file was not found.

E 208: Cannot find a cluster for section name

No writable memory available, or unknown addressing mode. Often

this error occurs due to an error in the description file.

E 210: Unrecognized keyword <name> at line line

An unknown keyword was used in the description file.

E 211: Cannot find 0xhexnumber bytes for section name (fixed

mapping)

One of virtual or physical memory was occupied, or there was no

physical memory at all!

Appendix CC–8
L

O
C

A
T

O
R

 E
R

R
O

R
S

E 213: The physical memory of name cannot be addressed in space

name

A mapping failed. There was no virtual address space left.

E 214: Cannot map section name, virtual memory address occupied

An absolute mapping failed. The memory on the virtual target address

was already occupied.

E 215: Available space within name exceeded by number bytes for

section name

The available addressing space for an addressing mode has been

exceeded.

E 217: No room for section name in cluster name

The size of the cluster as defined in the .dsc file is too small.

E 218: Missing identifier at line line

This identifier must be specified.

E 219: Missing ')' at line line

Matching bracket missing.

E 220: Symbol 'symbol' already defined in <name>

A symbol was defined twice.

E 221: Illegal object, multi assignment on var

The MUFOM variable was assigned more than once, probably due to

an error of the object producer.

E 223: No software description found

Each input file must be described in the software description in the

.dsc file.

E 224: Missing <length> keyword in block 'name' at line line

No length definition found in hardware description.

E 225: Missing <keyword> keyword in space 'name' at line line

For the given mapping, the keyword must be specified.

E 227: Missing <start> keyword in block 'name' at line line

No start definition found in hardware description.

Locator Error Messages C–9

• • • • • • • •

E 230: Cannot locate section name, requested address occupied

An absolute address was requested, but the address was already

occupied by another process or section.

E 232: Found file filename not defined in the description file

All files to be located need a definition record in the description file.

E 233: Environment variable too long in line line

Found environment variable in the dsc file contains too many

characters.

E 235: Unknown section size for section name

No section size found in this .out file. In fact a corrupted .out file.

E 236: Unrecoverable specification at line line

An unrecoverable error was made in the description file.

E 238: Found unresolved external(s):

At locate time all externals should be satisfied.

E 239: Absolute address addr.addr not found

In the given space the absolute address was not found.

E 240: Virtual memory space name not found

In the description files software part for the given file, a non existing

memory space was mentioned.

E 241: Object for different processor characteristics

Bits per MAU, MAU per address or endian for this object differs with

the first linked object.

E 242: message

Error generated by the object. These errors are in fact generated by the

assembler. It has been caused by a jump instruction which is out of

range.

E 244: Missing name part

The given part was not found in the description file, possibly due to a

previous error.

Appendix CC–10
L

O
C

A
T

O
R

 E
R

R
O

R
S

E 245: Illegal namevalue at line line

A non valid value was found in the description file

E 246: Identifier cannot be a number at line line

A non valid identifier was found in the description file

E 247: Incomplete type specification, type index = Thexnumber

An unknown type was referenced by the given file. Corrupted object

file.

E 250: Address conflict between block block1 and block2 (memory

part)

Overlapping addresses in the memory part of the description file.

E 251: Cannot find 0xhexnumber bytes for section section in block

block

No room in the physical block in which the section must be located.

E 255: Section 'name' defined more than once at line line

Sections cannot be declared more than once in one layout/loadmod

part.

E 258: Cannot allocate reserved space for process number

The memory for a reserved piece of space was occupied.

E 261: User assert: message

User-programmed assertion failed. These assertions can be

programmed in the layout part of the description file.

E 262: Label 'name' defined more than once in the software part

Labels defined in the description file must be unique.

E 264: message

Error from the embedded environment. For an overview of the

embedded environment error messages, see appendix E, Embedded
Environment Error Messages.

E 265: Unknown section address for absolute section name

No section address found in this .out file. In fact a corrupted .out file.

Locator Error Messages C–11

• • • • • • • •

E 266: funcionality not (yet) supported

The requested functionallity is not (yet) supported in this release.

E 267: Absolute section at address 0xhexaddress does not fit in page.

The absolute section crosses the specified page boundary.

4 FATAL ERRORS (F)

F 400: Cannot create file filename

The given file could not be created.

F 401: Cannot open filename

A given file was not found.

F 402: Illegal object: Unknown command at offset offset

An unknown command was detected in the object file. Corrupted

object file.

F 403: Illegal filename (name) detected

A filename with an illegal extension was detected on the command

line.

F 404: Illegal object: Corrupted hex number at offset offset

Wrong byte count in hex number. Corrupted object file.

F 405: Illegal section index

A section index out of range was detected. This could be a corrupted

object file, but also a previous error like E231 (Missing section) is

responsible for this message.

F 406: Illegal object: Unknown hex value at offset offset

An unknown variable was detected in the object file. Corrupted object

file.

F 407: No description file found

The locator must have a description file with the description of the

hardware and the software of your system.

F 408: message

No protection key or not an IBM compatible PC.

Appendix CC–12
L

O
C

A
T

O
R

 E
R

R
O

R
S

F 410: Only one description file allowed

The locator accepts only one description file.

F 411: Out of memory.

An attempt to allocate more memory failed.

F 412: Illegal object, offset offset

Inconsistency found in the object module.

F 413: Illegal object

Inconsistency found in the object module at unknown offset.

F 415: Only name .out files can be located

It is not possible to locate object for other processors.

F 416: Unrecoverable error at line line, name

An unrecoverable error was made in the description file in the given

part.

F 417: Overlaying not yet done

Overlaying is not yet done for this .out file, link it first without -r flag!

F 418: No layout found, or layout not consistent

If there are syntax errors in the layout, it may occur that the layout is

not usable for the locator. Syntax errors in the description file must be

resolved!

F 419: message

Fatal from the embedded environment. For an overview of the

embedded environment error messages, see appendix E, Embedded
Environment Error Messages.

F 420: Demonstration package limits exceeded

One of the limits in this demo version was exceeded.

F 421: Error writing file name

An error occurred when writing to the file.

F 422: Input file name same as output file

Input file and output file cannot be the same.

Locator Error Messages C–13

• • • • • • • •

5 VERBOSE (V)

V 000: File currently in progress:

Verbose message. On the next lines single filenames are printed as they

are processed.

V 001: Output format: name

Verbose message for the generated output format.

V 002: Starting pass number

Verbose message, start of given pass.

V 003: Abort !

The program was aborted by the user.

V 004: Warning level number

Verbose message, report the used warning level.

V 005: Removing file file

Verbose message cleaning up. Temporary files are always removed,

map file and .out file are removed if switch -e is on and the exit code

is unequal zero.

V 006: Found file <filename> via path pathname

The description (include) file was not found in the standard directory.

The locator searches also in the install directory etc , in which the file

was found.

V 007: message

Verbose message from the embedded environment. For an overview of

the embedded environment error messages, see appendix E, Embedded
Environment Error Messages.

Appendix CC–14
L

O
C

A
T

O
R

 E
R

R
O

R
S

D

ARCHIVER ERROR
MESSAGES

A
P

P
E

N
D

I
X

Appendix DD–2
A

R
C

H
IV

E
R

 E
R

R
O

R
S

D

A
P

P
E

N
D

I
X

Archiver Error Messages D–3

• • • • • • • •

1 INTRODUCTION

This appendix contains all warnings (W), errors (E) and fatal errors (F) of

the archiver ar56.

2 WARNINGS (W)

W 100: Illegal warning level: level

Warning level is a single digit.

W 101: Member name not found

Library member not found, warning only.

W 102: Can't modify modification time for name

The archiver cannot access the file name to change the modification

time.

W 103: creating archive name

The q option was used while archive file did not exist (r option would

be more appropriate).

W 104: Option -a or -b only allowed with key option 'r' or 'm'. Ignored!

Option a or b, which specifies a position in the archive can only be

applied with replace or move actions.

W 105: Only one position specification allowed, ignored '-a or -b�
file_offset'

It is not possible to specify more than one position in the archive. The

options -a and -b are both used to specify a position.

W 106: Option -o only allowed with key option 'x'. Ignored!

Library date can only be preserved with extraction of a library member.

W 107: Option -u only allowed with key option 'r'. Ignored!

Objects newer than the archive are only replaced with key option r.

W 108: Option -z only allowed with key option 'r'. Ignored!

Only objects which are moved to the archive can be checked.

W 109: Option -v has no meaning with key option 'p' or 't'. Ignored!

For options p and t the verbose switch is meaningless.

Appendix DD–4
A

R
C

H
IV

E
R

 E
R

R
O

R
S

W 110: Option -s may be used only with option -t.

W 111: Illegal symbol level: level

Symbol level is a single digit.

W 112: Name name is too long, truncated to name

The name exceeded the limit, and is truncated.

3 ERRORS (E)

E 200: filename too long

The filename was too long to fit into the internal buffer.

E 201: Member name not found

Library member not found.

E 204: Can't obtain file-status information filename

Cannot access filename to obtain file status information.

E 207: illegal option: option

An illegal option was detected.

E 209: Can't rename file: name to: name

Renaming the library file to a tempfile failed.

4 FATAL ERRORS (F)

F 300: user abort

The library manager is aborted by the user.

F 301: too much errors

The maximum number of errors is exceeded.

F 302: protection error: error

error message received from ky_init.

F 303: can't create "filename"

Cannot create the file with the mentioned name.

Archiver Error Messages D–5

• • • • • • • •

F 304: can't open "filename"

Cannot open the file with the mentioned name.

F 305: can't reopen 'filename'

The file filename could not be reopened.

F 306: read error while reading "filename"

A read error occurred while reading named file.

F 307: write error

A write error occurred while writing to the output file.

F 308: out of memory

An attempt to allocate memory failed.

F 309: illegal character

A character which is not allowed was found.

F 310: filename not in archive format

the archive file given is not in the proper format.

F 311: specification of more than one key {rxdmpt} is not permitted

More than one key was given.

F 312: no one of the keys {rxdmpt} was specified

No key was given.

F 313: error in the invocation. Use option -? or -H to get help.

Show usage. For more help, use option -?.

F 314: name does not exist

Library will only be created in case the r key-option is specified.

F 315: IEEE violation for object module name at address address

IEEE violation detected (z option enabled).

F 316: corrupted object module name

The object module name does not conform to the IEEE object

specification.

Appendix DD–6
A

R
C

H
IV

E
R

 E
R

R
O

R
S

F 317: name: illegal byte count in hex number, offset = offset

Illegal byte count in hex number (IEEE violation).

F 318: evaluation date expired !!

E

EMBEDDED
ENVIRONMENT
ERROR MESSAGES

A
P

P
E

N
D

I
X

Appendix EE–2
E

E
L

 E
R

R
O

R
S

E

A
P

P
E

N
D

I
X

Embedded Environment Error Messages E–3

• • • • • • • •

1 INTRODUCTION

Error and warning messages from the embedded environment are part of

the linker and/or locator error messages. The error numbers mentioned

below are not part of the message.

E error

W warning

2 ERRORS (E)

E 1: Conflicting attributes attributes at line number

Conflicting attributes.

E 2: Unknown attribute 'character' at line number

Unknown attribute.

E 3: Unknown keyword 'name' at line number

Unknown keyword.

E 4: Illegal character 'character' at line number

Illegal character.

E 5: Page size only allowed in a space definition at line number

Page size only allowed in space definition.

E 6: Page size must be a power of 2 at line number

Page size must be a power of 2.

E 7: Mau size must be a power of 2 at line name

Mau size must be a power of 2.

E 8: Cannot synchronize any more line number

Cannot synchronize any more.

E 9: Illegal value 'value' at line number

Illegal value.

E 10: Illegal hex value 'value' at line number

Illegal hex value.

Appendix EE–4
E

E
L

 E
R

R
O

R
S

E 11: Illegal octal value 'value' at line number

Illegal octal value.

E 12: Missing value at line number

Missing value.

E 13: Illegal identifier at line number

Illegal identifier.

E 14: Wrong attribute 'attribute' at line number

Attribute not allowed.

E 15: Unknown identifier 'name' at line number

Unknown identifier.

E 16: Inserted 'character' at line number

Inserted character.

E 17: Cannot find bus/space 'name' in definition for space 'name'

Error in the destination of mapping from space.

E 18: Cannot find space/amode 'name' in definition for amode 'name'

Map error.

E 19: Cannot find chip 'name' in definition for bus 'name'

Map error.

E 20: Cannot find space/amode 'name' in layout definition for

segment 'name'

Map error.

E 21: Cannot find bus 'name' in definition for mapping 'name'

Map error.

Embedded Environment Error Messages E–5

• • • • • • • •

3 WARNINGS (W)

W 100: Cannot find mapping 'name' in segment definition for space

'name'

Warning in segment mapping.

W 101: Section 'name' should be defined in amode 'name', not amode

'name'

The section was specified in the wrong addressing mode

Appendix EE–6
E

E
L

 E
R

R
O

R
S

F

MIGRATION FROM
MOTOROLA CLAS

A
P

P
E

N
D

I
X

Appendix FF–2
C

L
A

S
 M

IG
R

A
T

IO
N F

A
P

P
E

N
D

I
X

Migration from Motorola CLAS F–3

• • • • • • • •

1 INTRODUCTION

This appendix explains how you can migrate your assembly program from

the Motorola CLAS assembler to the TASKING DSP56xxx assemblers (as56,

and as563). It also describe the implementation differences between the

TASKING DSP56xxx assembler, linker and locator and the Motorola CLAS

assembler and linker/locator.

The TASKING assemblers are source compatible with the Motorola CLAS

assembler. However, there are some exceptions to this rule. Most notable

are the differences in the overlay and scoping (SECTION directive)

support. These and other exceptions are discussed below. The TASKING

assemblers also introduce some new features that are not supported by the

CLAS assembler. Most notable are new keywords and the acceptance of

forward references in almost all expressions. The TASKING assemblers are

capable of performing optimizations like move parallelization and

instruction reordering to adjust for pipelining restrictions.

2 ABSOLUTE AND RELATIVE MODE

The TASKING assembler always produces relocatable code. The behavior

of the sections (SECTION directive) is the same as with the Motorola CLAS

assembler in absolute mode.

3 OBJECT FORMAT

The TASKING assemblers generate object files that conform to the

IEEE-695 object format. This format has no support for floating point

numbers and name scopes. Therefore, relocatable expressions may not

contain floating point expressions, and these expressions (when defined

with equate directives) cannot be exported to other modules using the

GLOBAL directive. The assembler will emit an error message on emitting

floating point expressions. When it is necessary to share floating point

expressions between different modules it is possible to define these

expressions using an equate directive in a file, and include that file in all

necessary modules. As the object format does not support name scopes, as

introduced by the SECTION directive, non-global symbols defined within

scopes (i.e. enclosed in a SECTION/ENDSEC pair) must be renamed to

symbols on the global module level. How this is done, and when you can

use these symbols from other modules, is documented in section 3.4

Scopes.

Appendix FF–4
C

L
A

S
 M

IG
R

A
T

IO
N

4 ASSEMBLER DIRECTIVES

4.1 UNSUPPORTED DIRECTIVES

The following directives are not supported by the TASKING assemblers

(as56 and as563). The assemblers issue a warning when an unsupported

directive is found in the input file and the directive is ignored.

Unsupported CLAS-specific directives (because IEEE-695 object format

does not support them):

COBJ

IDENT

SYMOBJ

Other unsupported assembler directives:

HIMEM and LOMEM directives

The memory bounds are defined in the locator description file. The

scheme offered by the locator is much more flexible.

RDIRECT directive

It is not possible to remove mnemonic or directive names from the

symbol table of the assembler. However, it is possible to define

preprocessor symbols (with DEFINE or MACRO) that have the same

name as mnemonic or directive names.

MACLIB directive

Macro libraries are not supported.

MODE directive

The assembler always operates in relocatable mode.

XDEF directive

This directive is obsolete, the assemblers treat this directive as a

GLOBAL directive.

Migration from Motorola CLAS F–5

• • • • • • • •

XREF directive

This directive is obsolete, the assemblers treat this directive as an

EXTERN directive.

4.2 CHANGED DIRECTIVES

The following Motorola CLAS directives have a slightly different behavior

in the TASKING assemblers:

COMMENT directive

This directive is not permitted in IF/ELSE/ENDIF constructs and

MACRO/DUP definitions.

INCLUDE directive

This directive does not assume a default extension of ".asm". You

should supply it yourself. The default extension behavior gives rise to

unclearness which file is included.

EQU/SET/GSET directives

These directives accept forward references.

FORCE/SCSJMP directives

These directives accept the modes SHORT and LONG for CLAS

compatibility only. The preferred modes are now NEAR and FAR, as

they are used by the directives ORG and EXTERN. These are the same

attributes as used in the C compiler.

LOCAL and GLOBAL directive

These directives are also permitted in the module body.

OPT directive

Not all options of the OPT directive are supported due to the different

architecture of the TASKING assemblers. Options that are not

recognized are ignored.

Appendix FF–6
C

L
A

S
 M

IG
R

A
T

IO
N

The following options are not supported:

FC FF FM PP RC

CEX CL CRE DXL HDR

IL LOC MC NL S U

DEX NS SCL SCO SO XR

CK CM CONST CONTCHCK

DLD GL GS INTR LB LDB

MI PSM RSV SI

ORG directive

The syntax of the ORG directive is extended for type checking. The

overlay specification part of the ORG directive is not supported. When

it is supplied the assembler issues a warning. Specification of the

overlaying must be done at locate time.

SECTION directive

Section are only used for scoping of symbols. They are not the basis

for code ordering and relocation. We strongly encourage the use of the

module concept as explained in chapter 3 Software Concept. The

GLOBAL, STATIC and LOCAL attributes are not accepted. Use the

GLOBAL and LOCAL directives to define the scope attributes for

individual symbols.

4.3 NEW DIRECTIVES

The following directives are new with respect to the Motorola CLAS

assembler:

ALIGN - specify alignment

EXTERN - declare extern symbols

SYMB - pass high level language debug information to the object

file

CALLS - pass call information to object file. Used to build a call

tree at link time for overlaying overlay sections.

VOID - Control DO loop optimization.

Migration from Motorola CLAS F–7

• • • • • • • •

5 STRUCTURED CONTROL STATEMENTS

The assemblers do an extensive job for producing semantically legal data

move code when the SCS statements are used. As the CLAS assembler does

not do this, the TASKING assemblers will produce different code. It will be

necessary to check the code generated by the SCS statements on register

usage.

6 SECTIONS AND OVERLAYING

The CLAS assembler overlays sections by defining attributes to the ORG

directive (using runtime and load location counters). The TASKING

assemblers overlay sections using a different, more flexible, strategy. In the

paragraph 3.3 Sections the overlay mechanism is explained in detail.

7 ASSEMBLER FUNCTIONS

The following assembler mode functions are not supported:

@CCC(), @CHK(), @CTR(), @EXP(), @LCV(), @REL(), @NSR(), @INT()

8 EXPRESSIONS

Expressions are typed with respect to the semantics of the different

operators. Possible types are: address (with attributes to denote the

memory space and address range), floating-point, integer and string.

Therefore, the TASKING assemblers may type complex expressions

differently than the CLAS assembler. Use the conversion functions to

resolve possible typing conflicts.

9 FORWARD REFERENCES

The CLAS assembler does not accept forward references in expressions.

The TASKING assemblers do accept forward references in almost every

expression. Exceptions are expressions that are used to reserve memory

space, like DS and BSM, and expressions that are used as parameters to

preprocessor directives, like IF and DUP. The expressions supplied with

these kind of directives must be evaluated before the assembler can

proceed. Therefore, they may not contain forward references.

Appendix FF–8
C

L
A

S
 M

IG
R

A
T

IO
N

10 OPTIMIZATIONS

The TASKING assemblers can perform optimizations to the supplied

assembly program. When this is requested (using the -O command line

parameter, or the OPT OP directive) the supplied source is changed. The

new instruction combinations and ordering can be examined in the list

file, and by using the pr56 utility. The list file is annotated which source

line is moved to which place and which source line is combined with

another instruction. This can be very complex.

G

DESCRIPTIVE
LANGUAGE FOR
EMBEDDED
ENVIRONMENTS

A
P

P
E

N
D

I
X

Appendix GG–2
D
E
L
F
E
E

G

A
P

P
E

N
D

I
X

DEscriptive Language For Embedded Environments G–3

• • • • • • • •

1 INTRODUCTION

In an embedded environment an accurate description of available memory

and control over the behavior of the locator is crucial for a successful

application. For example, it may be necessary to port applications to

processors with different memory configurations, or it may be necessary to

tune the location of sections to take full advantage of fast memory chips.

For this purpose the DELFEE language, which stands for DEscriptive

Language For Embedded Environments, was designed.

2 GETTING STARTED

2.1 INTRODUCTION

This section gives a general introduction about the DELFEE description

language. The goal is to give you an overview and some basic knowledge

what the DELFEE description language is about, and how a basic

description file looks. A more detailed description and examples are given

in the following sections.

2.2 BASIC STRUCTURE

The DELFEE language describes where code or data sections should be

placed on the actual memory chips. This language has to define the

interface between a virtual world (the software) and a physical world (the

hardware configuration).

On the one side, in the virtual world, there are the code and data sections

which are described by the assembly language. Sections can have names,

attributes like writable or read-only and can have an address in the

addressing space or an addressing mode describing the range of the

address space in which they may be located.

Appendix GG–4
D
E
L
F
E
E

On the other side, the physical world, the actual processor is present

which reads instructions from memory chips and interprets these

instructions. With the DELFEE language you can instruct the locator to

place the code and data sections at the correct addresses, taking into

account things like the type of memory chip (rom/ram, fast/slow),

availability of memory, etc. The DELFEE language gives the possibility to

tune the same application for different hardware configurations.

In the DELFEE language the interface between virtual and physical world

is described in three parts:

1. software part (*.dsc)

The software part belongs to the virtual world and describes the order in

which data and code sections should be located. The software part may

vary for different applications and can even be empty.

2. cpu part (*.cpu)

The cpu part is the interface between the virtual world and the real world.

It contains the application independent part of the virtual world (the

address translation of addressing modes to the addressing space), and the

configuration independent part of the physical world (on-chip memory,

address busses). The cpu part is independent of application and

configuration.

3. memory part (*.mem)

The memory belongs to the physical world. It contains the description of

the external memory. The memory part may vary for different

configurations and can even be empty (if there is no external memory).

The software part and the memory part can be empty, but the cpu part

must always be defined.

DEscriptive Language For Embedded Environments G–5

• • • • • • • •

The DELFEE language is used in a special file, which is called the

description file. In the DELFEE description language the different parts are

defined with the following syntax:

software {
layout {

// ordering of sections
}

}

cpu {
// mapping of addressing modes to address space
// defining address space
// mapping of address space to actual busses
// defining on–chip memory

}

memory {
// description of external memory

}

You can use C++ style comments. Everything after '//' until the end of line

is ignored.

For convenience the cpu part and the memory part can be placed in

different files, which makes it possible to have different layout parts for

different applications and different memory parts for different

configurations. The files can be included using the syntax:

 cpu filename // include cpu part defined in file filename
 mem filename // include memory part defined in file filename

Appendix GG–6
D
E
L
F
E
E

3 CPU PART

3.1 INTRODUCTION

The cpu part contains the application and configuration independent part

of the description file. This part defines the translations of the addresses

from the assembler language (virtual addresses) all the way down to the

chips (physical addresses). To describe the translations, DELFEE recognizes

four main levels:

1. addressing mode(s) definitions. Addressing modes are subsets of an

address space. They define address ranges within an address space.

2. address space(s) definitions. The address space is the total range of

addresses available.

3. bus(ses) definitions.

4. (on-chip) memory chips definitions.

The address translation is defined from addressing mode via space and

bus to the chip. The addressing modes and the busses can be nested, the

space and the chip cannot.

internal chip
space

addressing

addressing

mode 1

addressing
mode 4

mode 3 bus

external chip
external bus

internal bus

addressing
mode 2 mapmap

map

map

map

map

mem

mem

Figure G-1: Address translation

The addressing modes and addressing spaces belong to the virtual part,

the busses and chips belong to the physical part. The following sections

describe the address space and the addressing modes which are subsets of

the address space. Then a description of the physical side (hardware

configuration) follows, describing the busses and chips that are available.

DEscriptive Language For Embedded Environments G–7

• • • • • • • •

The following example illustrates what a cpu part could look like. It is a

fictitious example, mainly used to illustrate the definitions. You should be

able to recognize the addressing mode definitions, address space

definition, bus definitions and on-chip memory definition. Each definition

is explained in the following sub-sections.

cpu {
//
// addressing mode definitions
//
amode near_code {

attribute Y1;
mau 8;
map src=0 size=1k dst=0 amode = far_code;

}
amode far_code {

attribute Y2;
mau 8;
map src=0 size=32k dst=0 space = address_space;

}
amode near_data {

attribute Y3;
mau 8;
map src=0 size=1k dst=0 amode = far_data;

}
amode far_data {

attribute Y4;
mau 8;
map src=0 size=32k dst=32k space = address_space;

}

//
// space definitions
//
space address_space {

mau 8;
map src=0 size=32k dst=0 bus = address_bus label = rom;
map src=32k size=32k dst=32k bus = address_bus label = ram;

}

//
// bus definitions
//
bus address_bus {

mau 8;
mem addr=0 chips=rom_chip;
map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
mem addr=32k chips=ram_chip;
map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;

}
//
// internal memory definitions
//

Appendix GG–8
D
E
L
F
E
E

chips rom_chip attr=r mau=8 size=0x100; // internal rom
chips ram_chip attr=w mau=8 size=0x100; // internal ram

}

3.2 ADDRESS TRANSLATION: MAP AND MEM

In DELFEE there are two ways to describe a memory translation between

two levels (the source level and the destination level):

1. map keyword. This is for address translations between amodes, spaces,

busses (not chips).

2. mem keyword. This describes the address translation between bus and

chip. mem is a simplified case of map.

addresses (mau=8) addresses (mau=16)

map src=0 size=200 dst=0

dstsrc

size

source level destination level

0 0

100

100200

300

Figure G-2: Map address translation

The generalized syntax for the map definition is (see figure G-2):

map src=number size=number dst=number
destination_type=destination_name optional_specifiers;

where,

src start address of the source level. In case of an address

translation between amodes and spaces, the source

level is the amode and the destination level is the

space.

size length of the source level.

dst start address at the destination level.

DEscriptive Language For Embedded Environments G–9

• • • • • • • •

destination_type the destination type depends on the context the

mapping is used in and can have three different types:

1. amode allowed in context: amode.

2. space allowed in context: amode.

3. bus allowed in context: space, bus.

optional_specifiers The optional identifiers are also dependent of the

context they are used in:

1. label Only allowed in space context and

needed as a reference for the block

definition in the software part (see

section 4.5).

label = name ;

2. align This indicates that every section will be

aligned at the specified value.

align = number ;

3. page This indicates that every section should

be within a given page size.

page = number ;

Both the source level and the destination level have an address range that

is expressed in a number of Minimum Addressable Units (MAU, the

minimal amount of storage, in bits, that is accessed using an address). The

mapping only describes the range and the destination of the address

mapping, the actual transformation also depends on the memory unit that

an address can access. If a source level with a minimum addressable unit

of 8 bits (mau=8) maps to a destination level with a minimum addressable

unit of 16 bits (mau=16), the size of the destination level, expressed in

address range, is half the original size. So, according to figure G-2, the

size of the destination level is 100.

If a map is present from level1 down to level2, the map definition works as

follows:

end_address of level2 = dst + (size * mau of level1 / mau of level2)

Appendix GG–10
D
E
L
F
E
E

The mem description is actually a simplified case of the map description.

The length of the address translation is taken from the chip size, the

destination address is always zero. It is used to map a bus to a chip.

The syntax is:

mem addr=number chips=name;

where,

addr start address location of a chip.

chips the name of the chip that is located at address number.

3.3 ADDRESS SPACES

The link between the virtual and the physical world is the description of

the address space and the way it maps onto the internal address busses.

The address space is defined by the complete range of addresses that the

instruction set can access. Some instruction sets support multiple address

spaces (for example a data space and a code space).

An address space is described by the syntax:

space name {

mau number;

map src=number size=number dst=number bus=bus_name label=name;

// :

// more maps

}

where,

space defines the name by which the space can be referenced in

the description file.

mau the Minimum Addressable Unit, meaning the minimum

amount of storage (in bits) that is accessed using an address.

DEscriptive Language For Embedded Environments G–11

• • • • • • • •

map this specifies the mapping of a range of addresses in the

address space to a bus defined by bus_name. The range of

addresses is defined by src and size, the offset on the bus is

defined by dst. (The bus you map the address space on,

may have a different MAU, which will lead to another length

of the range of the bus). An address space can only map

onto a bus.

Usually an address in the address space corresponds to the same address

on the bus. In that case src and dst have the same value.

In the previous example there is one space definition:

space address_space {
mau 8;
map src=0 size=32k dst=0 bus = address_bus label = rom;
map src=32k size=32k dst=32k bus = address_bus label = ram;

}

In this example the space is named address_space . Note that the

amode definitions use this name as destination for their mappings. The

minimum addressable unit (MAU) is set to 8 bits. The labels rom and ram
are used by block definitions in the software part which are discussed in

section 4.5.

3.4 ADDRESSING MODES

Addressing modes define address ranges in the addressing space.

Addressing modes usually have a special characteristic, like bitaddressable

part of memory, parts especially for code sections, zero pages, etc. The

addressing modes are defined by the instruction set. The syntax of

defining an addressing mode in the DELFEE language is:

An address space is described by the syntax:

amode name {

mau number;

attr Ynumber;

map src=number size=number dst=number amode|space=name;

}

Appendix GG–12
D
E
L
F
E
E

where,

amode The name by which the addressing mode can be referenced.

In the object file the addressing mode of a section is encoded

with an Ynumber. This means that the name given to the

addressing mode has only meaning within the description

file, not to the sections!

mau the Minimum Addressable Unit, meaning the minimum

amount of storage (in bits) that is accessed using an address.

attr Y the addressing mode number. Code or data sections

(generated by the assembler) all have a number specifying

the addressing mode they belong to. In the DELFEE

description file this number is used to identify the addressing

mode. This number must never be changed, because the

interpretation of the sections will get mixed up.

map defines the mapping of the addressing mode to another

addressing mode (amode) or an address space (space).

Below is an example of two addressing mode definitions:

amode near_data {
attribute Y3;
mau 8;
map src=0 size=1k dst=0 amode = far_data;

}
amode far_data {

attribute Y4;
mau 8;
map src=0 size=32k dst=32k space = address_space;

}

DEscriptive Language For Embedded Environments G–13

• • • • • • • •

near_data

0x0000

0x7fff

Space

far_data

0xffff

0x7fff

0x0000

0x03ff

address_space

Figure G-3: Addressing mode mapping

In this example the addressing modes are named near_data and

far_data . They are identified by the addressing mode numbers Y3 and

Y4 respectively. The minimum addressable unit (MAU) is set to 8 bits.

Addressing mode near_data maps on addressing mode far_data , and

far_data , in its turn, maps on address space address_space .

address_space is the space as discussed in the previous section.

3.5 BUSSES

The bus keyword describes the bus configuration of a cpu. In essence it

describes the address translation from the address space to the chip. The

syntax is:

bus name {
mau number;
map src=number size=number dst=number bus=name;
mem addr=number chips=name;

}

where,

bus the name by which the bus can be referenced.

mau the Minimum Addressable Unit, meaning the minimum

amount of storage (in bits) that is accessed using an address.

Appendix GG–14
D
E
L
F
E
E

map mapping to another bus.

mem mapping to a memory chip.

Below is an example of a bus definition:

bus address_bus {
mau 8;
mem addr=0 chips=rom_chip;
map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
mem addr=32k chips=ram_chip;
map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;

}

external_rom_bus

0x0000
0x0100

0xffff

0x7fff

Bus
address_bus

0x7fff

0x0000

0x00ff

0x7fff

0x0000

0x00ff

0x8100

external_ram_bus

ram_chip

rom_chip

Figure G-4: Bus mapping

In this example the address bus is named address_bus . The minimum

addressable unit (MAU) is set to 8 bits. The internal memory chip

rom_chip is located at address 0 of the bus, and the chip ram_chip is

located at address 32k .

Two address mappings to other busses are present: one to

external_rom_bus and one to external_ram_bus .

The first mapping translates addresses 0x100–0x7ff of address_bus
(src=0x100 size=0x7f00) onto addresses of external_rom_bus
starting at address 0x100 (dst=0x100).

DEscriptive Language For Embedded Environments G–15

• • • • • • • •

The second mapping translates addresses 0x8100–0xffff of

address_bus (src=0x8100 size=0x7f00) onto addresses of

external_ram_bus starting at address 0x100 (dst=0x100).

The second mapping maps to RAM, not ROM. That is why both

destination addresses are the same.

3.6 CHIPS

The chips keyword describes the memory chip. The syntax is:

chips name attr=letter_code mau=number size=number;

where,

chips the name by which the chip can be referenced.

attr defines the attributes of the chip with a letter code

letter_code one of the following attributes:

r read-only memory.

w writable memory.

s special memory (it must not be

located).

mau the Minimum Addressable Unit, meaning the minimum

amount of storage (in bits) that is accessed using an

address.

size the size of the chip (address range from 0-size).

Below is an example of two chip definitions:

chips rom_chip attr=r mau=8 size=0x100; // internal rom
chips ram_chip attr=w mau=8 size=0x100; // internal ram

In this example the chips are named rom_chip and ram_chip . The

minimum addressable unit (MAU) is set to 8 bits. The size of both chips is

0x100 MAUs (= 256 bytes). Chip rom_chip is read-only and chip

ram_chip writable, as you would expect with ROM and RAM.

Appendix GG–16
D
E
L
F
E
E

3.7 EXTERNAL MEMORY

With the syntax described in the previous sections it would be possible to

define mappings from an address space to external memory chips

(DELFEE does not actually know, or care, if memory is on-chip).

However, this is not advisory. For maintenance and flexibility reasons it is

better to keep the internal (static) memory part apart from the external

(variable) memory part. The chapter Memory Part describes how to deal

with external memory.

In the cpu part you only have to define a mapping to an external bus,

which can later be defined in the memory part. The following example

contains references to two external busses: external_ram_bus and

external_rom_bus .

bus address_bus {
mau 8;
mem addr=0 chips=rom_chip;
map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
mem addr=32k chips=ram_chip;
map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;

}

DEscriptive Language For Embedded Environments G–17

• • • • • • • •

4 SOFTWARE PART

4.1 INTRODUCTION

The software part has two main parts:

1. load_mod

2. layout description

software {
load_mod start = start_label ;

layout {
// ordering of sections

}
}

4.2 LOAD MODULE

The keyword load_mod defines the program start label. The program start

label is the start of the code and the reset vector should point to this label.

The locator generates a warning if this label is not referenced.

load_mod start = start_label ;

4.3 LAYOUT DESCRIPTION

First of all, the layout definition can be omitted. If you omit the layout

definition, the locator will generate a layout definition based on the

DELFEE description of the amodes (addressing modes) in the cpu part

(See section 3). However this does not allow you to control the order in

which sections (like stack and heap) are located. If you define the layout

part, the locator uses this description.

The layout part is probably the most difficult part of the DELFEE language.

It is designed to give the locate algorithm the information it needs to

locate the sections correctly. Through some examples you will be shown

how to control the locating process using the DELFEE language.

Appendix GG–18
D
E
L
F
E
E

To give you an idea of where all this will lead to, an example of a layout

part is given:

layout {
space address_space {

block rom {
cluster first_code_clstr {

attribute i;
amode near_code;
amode far_code;

}
cluster code_clstr {

attribute r;
amode near_code {

section selection=x;
section selection=r;

}
amode far_code {

table;
section selection=x;
section selection=r;
copy; // locate rom copies here

}
}

}
block ram {

cluster data_clstr {
attribute w;
amode near_data {

section selection=w;
}
amode far_data {

section selection=w;
heap;
stack;

}
}

}
}

}

The layout definition is defined with the syntax:

layout {

// space definitions

}

The first thing to notice is the different levels inside the layout definition:

space This level can only occur inside a layout level. There are as

many space levels as there are space definitions in the cpu

part.

DEscriptive Language For Embedded Environments G–19

• • • • • • • •

block This level can only occur inside a space level. There are as

many block levels as there are mappings defined in the space

definition in the cpu part.

cluster This level can only occur inside a block level. There can be

multiple clusters inside a block. Their main purpose is to

group (code/data) sections. The locator locates each cluster

in the specified order.

amode This level can only occur inside a cluster level. An amode

corresponds to an amode definition in the cpu part. Within

an amode you can specify the order in which data/code

sections are located.

The four levels can roughly be divided in two groups. The space and

block definition correspond to address ranges and the cluster and

amode definition correspond to (groups of) sections.

The following paragraphs first introduce the space and block definition.

Then separate paragraphs show how to select certain groups of sections

and how this is used in the cluster and amode definition.

4.4 SPACE DEFINITION

Section 3.3 already defined the address translation of a space in the cpu

part. In the example in that section, the following space was defined:

space address_space {
mau 8;
map src=0 size=32k dst=0 bus = address_bus label = rom;
map src=32k size=32k dst=32k bus = address_bus label = ram;

}

For every space defined in the cpu part you have to provide a description

in the layout definition.

The space level should be inside the layout definition and can only

contain one or more block levels.

The name of the space must correspond to a space definition in the cpu

part.

Appendix GG–20
D
E
L
F
E
E

The syntax is:

space name {
// block definitions

}

Below is an example of a space definition from the software part:

space address_space {
block rom {

....
}
block ram {

...
}

}

In this example space address_space defines two blocks: block rom and

block ram .

4.5 BLOCK DEFINITION

With the block description you can set boundaries to the sections based

on chip sizes.

A block references a physical area of memory. Selected sections are only

allowed within the range of the block description. In effect a block limits

the range in which a section can be located.

The physical address range of a block is actually defined in the cpu part

by a labeled mapping:

space address_space {

mau 8;

map src=0 size=32k dst=0 bus = address_bus label = rom; //<––

// ––> block name: rom

map src=32k size=32k dst=32k bus = address_bus label = ram; //<––

// ––> block name: ram

}

The name of the block description must correspond to a label in the map

definition of a space definition in the cpu part. The block definition must

be inside the space definition and can only contain one or more cluster

levels.

DEscriptive Language For Embedded Environments G–21

• • • • • • • •

The syntax is:

block name {
// cluster definitions

}

Below is an example of a bus definition from the software part:

block rom {
cluster first_code_clstr {

...
}
cluster code_clstr {

...
}

}

In this example block rom defines two clusters: cluster

first_code_clstr and cluster code_clstr .

4.6 SELECTING SECTIONS

The previous paragraphs explained how the address ranges are defined by

block definitions, now it is time to select the sections that should be

placed in these blocks. In DELFEE there are two levels in which you can

define the order of locating:

1. cluster

2. amode

To define the locating order you need to have some kind of handle to

specify a section or a group of sections. DELFEE recognizes the following

characteristics of a section:

name of the sectionThis is unique to a specific section.

attribute(s) of a section

The attributes of a section are specified by the

assembler or compiler. Possible attributes are defined

in table G-1. By selecting an attribute you select a

group of sections. The attributes can be grouped to an

attribute string, for example: by1w.

Appendix GG–22
D
E
L
F
E
E

addressing mode All sections have an addressing mode (as defined in

the cpu part).

attr Meaning Description

W Writable Must be located in ram

R Read only Can be located in rom

X Execute only Can be located in rom

Ynum Addressing mode Must be located in addressing mode num

A Absolute Already located by the assembler

B Blank Section must be initialized to ’0’ (cleared)

F Not filled Section is not filled or cleared (scratch)

I Initialize Section must be initialized in rom

N Now Section is located before normal sections
(without N or P)

P Postponed Section is located after normal sections
(without N or P)

Table G-1: Section Attributes

To specify a (group) of sections, DELFEE has the following syntax:

1. select a group on section attribute:

section selection = attr;

2. select a section by name:

section name;

3. select a special section:

heap; //locate heap here

stack; //locate stack here

table; //locate copy table here

copy; //locate all initial data here

copy name;//locate initial data of the named section here

4. create a section:

reserved label=name length=number;

DEscriptive Language For Embedded Environments G–23

• • • • • • • •

Instead of selecting a section by an attribute, DELFEE also allows

excluding a section by its attribute.

Excluding an attribute is done by placing a '-' (minus sign) in front of attr.

So, the example:

section selection= attr1 –attr2

selects a group of sections with attribute attr1 and without attribute attr2.

4.7 CLUSTER DEFINITION

Clusters are used to place specified sections in a group. The locator will

handle the clusters in the order that they are specified. This gives you the

possibility to create a group of selected sections and give it a higher locate

priority.

There are several possibilities to specify that a section is part of a cluster.

The exact rules and their priorities are given in the paragraph Section
Placing Algorithm. The three main possibilities are:

1. attribute

2. section selection=

3. amode definition

Examine the following example:

layout {
space address_space {

block rom {
cluster first_code_clstr {

attribute i ;
amode near_code;
amode far_code;

}
cluster code_clstr {

attribute r;
amode near_code {

section selection=x;
section selection=r;

}
amode far_code {

table;
section selection=x;
section selection=r;

Appendix GG–24
D
E
L
F
E
E

copy; // locate rom copies here
}

}
}

}
}

In this example an extra cluster first_code_cluster was created.

Using the placing algorithm (paragraph 4.10) you can see that sections

with attribute 'i' will be placed in cluster first_code_clstr and

therefore will get a higher priority than sections in cluster code_clstr .

The syntax is:

cluster name {
// section selections

}

Within a cluster the sections with the least freedom are located first.

Freedom is defined by the possible addresses a section can be located at.

4.8 AMODE DEFINITION

Within a cluster you can specify an addressing mode or amode. Although

in the cpu part (paragraph 3.4) an address range was assigned to every

amode, in the layout part the addressing mode is used to identify groups

of sections.

The syntax is:

:

amode name {
section selection = attr;

:

}

:

The order of locating is now determined by the order of specification.

DEscriptive Language For Embedded Environments G–25

• • • • • • • •

For example, suppose you want to locate all writable sections first, then

the heap, followed by the stack. In the DELFEE language this is specified

by:

 :
section selection = w; // ’w’ means writable sections
heap;
stack;
 :

4.9 MANIPULATING SECTIONS IN AMODES

The previous paragraphs explained how to set the order of the sections

within an amode definition. DELFEE recognizes an extra set of keywords

to further tune the locating of code and data sections.

An amode definition can contain the following keywords:

Keyword Description

section Selects a section, or group of sections

selection Specifies attributes for grouping sections

attribute Assigns attributes (are past to the cluster

copy Selects a rom copy of a section by name, or all rom copies in
general

fixed Forces a section to be located around a fixed address

gap Creates a gap in the address range where sections will not be
located

reserved Reserves a memory area, which can be referenced using locator
labels

heap Defines the place and attributes of the heap

stack Defines the place and attributes of the stack

table Defines the place and attributes of the copy table

assert A user defined assertion

length Specifies the length of stack, heap, physical block or reserved
space

Table G-2: amode keywords

All keywords are described in section 7, Delfee Keyword Reference.

Appendix GG–26
D
E
L
F
E
E

4.10 SECTION PLACING ALGORITHM

There are different ways to reference a section. Sections can be referenced

as a group based on a certain attribute, or they can be referenced very

specific by name. To find out where sections are placed in the layout part,

DELFEE uses the following algorithm:

1. First, try to find a selection by section name.

2. If not found, search for a 'section selection=' within a matching amode

block.

3. If not found, search for a 'section selection=' not within an amode block.

4. If not found, search for a cluster with a correct 'amode= ..,..,.. ;' and

correct attributes.

5. If not found, search for a cluster with correct attributes.

6. If not found, relax attribute checking, and start over again.

Relax attributes using the following rules:

1. If stack, heap or reserved, switch indication off and try again.

2. If attribute 'f' (not filled), switch 'f' off and try again.

3. If attribute 'b' (clear), switch 'b' off and try again.

4. If attribute 'i' (initialize), switch 'i' off and try again.

5. If attribute 'x' (executable code), switch 'x' off and 'r' (read-only) on and

try again. (Try to place executable sections in read-only memory).

6. If attribute 'r' (read-only), switch 'r' off 'w' (writable) on and try again.

(Try to place read-only sections in writable memory).

DEscriptive Language For Embedded Environments G–27

• • • • • • • •

5 MEMORY PART

5.1 INTRODUCTION

The memory part defines the variable part of the memory configuration. It

can be placed in a different file, which allows to easily switch between

different memory configurations. The syntax used for the mappings is the

same as used in the cpu part.

As you have seen in the example of the cpu part in section 3, there were

two references to external busses:

bus address_bus {
mau 8;
mem addr=0 chips=rom_chip;
map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
mem addr=32k chips=ram_chip;
map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;

}

In the memory part you have to define the description for the busses

external_rom_bus and external_ram_bus . Using the description in

sections 3.5 and 3.6 for specifying busses and chips, the memory part

could look like:

memory {
bus external_rom_bus {

mau 8;
mem addr=0 chips=xrom;

}

chips xrom attr=r mau =8 size=0x8000;

bus external_ram_bus {
mau 8;
mem addr=0 chips=xram;

}

chips xram attr=w mau=8 size=0x8000;
}

Appendix GG–28
D
E
L
F
E
E

6 DELFEE PREPROCESSING

6.1 INTRODUCTION

You can preprocess a DELFEE description file using exactly the same

syntax as used by the C preprocessor. This means that all preprocessor

directives start with a '#'-sign.

The preprocessor scans the input (description) file looking for macro calls.

A macro-call is a request to the preprocessor to replace the call pattern of

a built-in or user-defined macro with its definition.

There are two types of macro definitions: 'plain' macros and 'function-like'

macros. A plain macro is expanded to a fixed string of characters. A

function-like macro looks like a function call. The macro is expanded to

its definition, in which the macro parameters are replaced by their co

corresponding macro arguments.

6.2 USER DEFINED MACROS

You can create macros with the #define preprocessor directive.

Syntax:

#define macro-name[(formal-parameter-list)] macro-body

When you create a parameterless macro, there are two parts to a #define

call: the macro-name and the macro-body. The macro-name defines the

name used when the macro is called; the macro-body defines the return

value of the call.

The macro-body is usually the return value of the macro call. However,

the macro-body may contain calls to other macros. If so, the return value

is actually the fully expanded macro-body, including the return values of

the call to other macros.

Example:

#define ASIZE 10

Every occurrence of ASIZE is expanded to '10'.

DEscriptive Language For Embedded Environments G–29

• • • • • • • •

If the only function of the macro processor was to perform simple string

replacement, then it would not be very useful for the most programming

tasks. Each time you want to change even the simplest part of the macro's

return value you would have to redefine the macro. Parameters in macro

calls allow more general-purpose macros. Parameters leave holes in a

macro-body that are filled in when you call the macro. This permits you

to design a single macro that produces code for typical operations. The

term 'parameters' refers to both the formal parameters that are specified

when the macro is defined (the holes), and the actual parameters or

argument that are specified when the macro is called (the fill-ins). To

define macros with parameters you have to add a formal-parameter-list.
The formal-parameter-list is a list of macro identifiers separated by ','.

These identifiers comprise the formal parameters used in the macro. The

macro identifier for each parameter in the list must be unique.

Example:

After

#define ADD(a, b) a + b

the call ADD(4, 5) is expanded to 4 + 5 .

You can undefine a preprocessor macro with the #undef preprocessor

directive:

#undef macro-name

6.3 FILE INCLUSION

With the #include preprocessor directive:

#include <include-file>

you can include text from include-file within the input text of the

description file. At the occurrence of an #include control line, the

preprocessor reads the text from include-file until end-of-file is reached.

#include files may be nested. include-file is any file that contains

description file information. include-file is searched for in the directory

etc directory relative to the installation path of your product.

Appendix GG–30
D
E
L
F
E
E

The ANSI standard defines the following terms for the include directive:

#include "include-file"

#include <include-file>

#include token-sequence

The preprocessor uses the following search rules for include files between

" ":

1. search in the directory of the description file

2. search in the directory etc relative to the installation path of your product

Note that if you nest include files, the preprocessor applies the first rule

for each level.

Example:

product.dsc:
#include ”../inc/product.cpu”

product.cpu:
#include ”prod2.cpu”

According to rule 1 the preprocessor searches prod2.cpu in the same

directory as product.cpu since prod2.cpu is included by product.cpu

and not by product.dsc .

The preprocessor searches for include files between < > in the same way

as for include files between "�". The difference is that rule 1 does not

apply (the directory of the source description file is not searched).

The third form of include directives:

#include token-sequence

means that the included file name may be a token sequence that has been

defined before. After expansion by the preprocessor this should produce a

valid include directive as described by the first two forms:

DEscriptive Language For Embedded Environments G–31

• • • • • • • •

Example:

#ifdef STD
#define cpu_incl <product.cpu>
#else
#define cpu_incl ”my_cpu.cpu”
#endif

#include cpu_incl

6.4 CONDITIONAL STATEMENTS

Some preprocessor directives expect logical expressions in their arguments.

Logical expressions follow the same rules as numeric expressions. The

difference is in how preprocessor interprets the value that the expression
represents. Once the expression has been evaluated to a value, the

preprocessor uses the '= 0' comparison to determine whether the

expression is TRUE or FALSE (if the value is equal 0 the expression is

FALSE else TRUE).

The #if and #elif preprocessor directives evaluate a logical expression, and

based on that expression, expand or withhold their statements. The #ifdef

and #ifndef preprocessor directives evaluates the existence of a

user-defined macro, and based on the result, expand or withhold their

statements.

Syntax:

if-line
statements

[#elif expression
statements]...

[#else

statements]
#endif

where if-line is one of:

#if expression
#ifdef macro-name
#ifndef macro-name

Appendix GG–32
D
E
L
F
E
E

The expression in the #if directive and subsequent #elif directives are

evaluated in order until a TRUE value is encountered. If the value is TRUE,

then the preprocessor expands the succeeding statements; if the value is

FALSE and the optional #else directive is included in the call, then the

statements succeeding #else are expanded. If the expression results to

FALSE and the #else is not included, the #if call returns the null string.

The #ifdef tests if the macro-name is a previously defined macro. The

#ifndef evaluates its statements if the macro-name is not currently

defined.

Each #if, #ifdef and #ifndef directive must have a corresponding #endif.

Example:

#define _STCK 100
#if _STCK == 100

stack length=100;
#else

stack length=200;
#endif

This example always expands to: stack length=100; . In this case the

#if control line could also be written as:

#ifdef _STCK

7 DELFEE KEYWORD REFERENCE

This section contains an alphabetical description of all keywords that can

be used in a description file. Some keywords can be abbreviated to a

minimum of four characters. Everything after '//' until the end of line is

considered a comment.

DEscriptive Language For Embedded Environments G–33

• • • • • • • •

.addr

Syntax:

.addr (Software part)

Description:

The predefined label .addr contains the current address.

Example:

block ram {
 cluster data_clstr {
 attribute w;
 amode near_data {
 section selection=w;
 assert (.addr < 256, ”page overflow”);

// if the condition is false,
// the locator generates an error with
// the text as message

 }
 ...
 }
}

Appendix GG–34
D
E
L
F
E
E

address

Syntax:

address = address (all parts)
addr = address (abbreviated form)

Description:

Specify an absolute address in memory.

Example:

Cpu or memory part:

bus address_bus {
mau 8;
mem addr =0 chips=rom_chip;
...
mem addr =32k chips=ram_chip;
...

}

Software part:

block rom {
...
cluster code_clstr {

attribute r;
amode near_code {

section selection=x;
section selection=r;
section .string address = 0x0100;

}
...

}
}

The locate order in the amode definition in the example above is fixed.

Sections with attribute selection 'x' and/or 'r' are forced to be located

before section .string . If this fixed order is not desired, the absolute

address specification can be done in a separate amode definition.

DEscriptive Language For Embedded Environments G–35

• • • • • • • •

Example:

amode near_code {
section .string address = 0x0100;

}

amode near_code {
section selection=x;
section selection=r;

}

Appendix GG–36
D
E
L
F
E
E

align

Syntax:

align = power_of_2 (Software part)

Description:

Specify the alignment of a section. The alignment should be a power of 2

(even addresses).

Example:

In the following example section DATA will be aligned on 2 MAUs:

...
amode near_data {

section DATA align = 2;
}
...

DEscriptive Language For Embedded Environments G–37

• • • • • • • •

amode

Syntax:

(Cpu or memory part)
amode identifier[, identifier]... { amod_description } (def)
amode = identifier (ref)

amode identifier[, identifier]... ; (Software part)
amode identifier[, identifier]... { section_blocks }

Description:

The keyword amode can appear in all parts. In the cpu or memory part

you can use amode to map an addressing mode or register bank on a

particular address space (definition). When you specify amode=, you map

a specific addressing mode on a previously defined addressing mode

(reference). The only keywords allowed in an amod_description (cpu part)

are attribute, map and mau. The keyword attribute Ynum uniquely

identifies the addressing mode.

In the software part you can use amode as part of a cluster definition to

change the locating order of sections. See also 4.10, Section Placing
Algorithm.

Example:

From cpu or memory part:

cpu {
 amode near_data {

attribute Y3;
mau 8;
map src=0 size=1k dst=0 amode = far_data;

// reference
 }
 amode far_data { // definition

attribute Y4;
mau 8;
map src=0 size=32k dst=32k space = address_space;

 }

Appendix GG–38
D
E
L
F
E
E

From software part:

block ram {
 cluster data_clstr {

attribute w;
amode near_data {
 // Sections with addressing mode
 // near_data are located here
 section selection=w;
}
amode far_data {
 // Sections with addressing mode
 // far_data and the stack and heap
 // are located here
 section selection=w;
 heap;
 stack;
}

 }
}

DEscriptive Language For Embedded Environments G–39

• • • • • • • •

assert

Syntax:

assert (condition , text) ; (Software part)
asse (condition , text) ; (abbreviated form)

Description:

Test condition of virtual address in memory. Generate an error if the

assertion fails and give a message with 'text'. condition is specified as one

of:

expr1 > expr2
expr1 < expr2
expr1 == expr2
expr1 != expr2

expr1 and expr2 can be any expression or label. The predefined label

.addr contains the current address.

Example:

block ram {
 cluster data_clstr {
 attribute w;
 amode near_data {
 section selection=w;
 assert (.addr < 256, ”page overflow”);

// if the condition is false,
// the locator generates an error with
// the text as message

 }
 ...
 }
}

Appendix GG–40
D
E
L
F
E
E

attribute

Syntax:

attribute attribute_string ; (Software part)
attr attribute_string ; (abbreviated form)
attribute = attribute_string (Software part)
attr = attribute_string (abbreviated form)

Description:

With attribute you can assign attributes to sections, clusters or memory

blocks. See also the keyword selection.

For sections these attributes are pure supplementary to the standard

section attributes. The standard section attributes such as zero page (Y1),

blank (B) and executable (X) are set by the compiler (or by the assembler

in the case of an assembler program).

With an action attribute after a section (attr=), you can set section

attributes or you can disable section attributes with the - (minus) sign.

The attributes have the following meaning:

 num (Section only) Align the section at 2num MAUs.

 Ynum (amode and sections only) Identify addressing mode. Indicate

that sections with this attribute should be allocated in this

cluster.

 r (Memory and clusters) Indicate this is a read-only cluster or

read-only memory.

 w (Memory and clusters) Indicate this is a writable cluster or

writable memory.

 s (Memory only) Indicate this is special memory, it must not be

located.

 x (Clusters/sections only) Indicate that the cluster/section is

executable.

 b (Clusters/sections only) Indicate that clusters/sections should

be cleared before locating.

DEscriptive Language For Embedded Environments G–41

• • • • • • • •

 i (Sections only) Indicate that clusters/sections should be

copied from ROM to RAM.

 f (Clusters/sections only) Indicate that clusters/sections should

not be filled and not cleared. This is called a scratch

cluster/section.

Default attributes if the attribute keyword is omitted:

sections: The attributes as generated from the assembler/compiler.

clusters: The attributes as indicated by the underlaying memory, thus

r for rom and w for ram.

memory: If no attributes defined, the default is writable (w).

Example:

From software part:

layout {
 space address_space {

block rom {
 cluster first_code_clstr {

attribute i; // set cluster attribute
amode near_code;
amode far_code;

 }
}

Appendix GG–42
D
E
L
F
E
E

block ram
 cluster ram {

amode near_data {
 // Default attribute of cluster
 // data is ’w’, because the
 // memory is RAM.

 section selection=w;
 section selection=b attr =–b;
 // Sections with attribute b are
 // are located here, and
 // attribute ’b’ is switched off
}
.

 }
 .
}

 }
}

From cpu part:

 amode near_data {
attribute Y3; //identify code with Y3
mau 8;
map src=0 size=1k dst=0 amode = far_data;

 }
 ...

 chips rom_chip attr =r mau=8 size=0x100;
 chips ram_chip attr =w mau=8 size=0x100;

...
// memory attributes

DEscriptive Language For Embedded Environments G–43

• • • • • • • •

block

Syntax:

block identifier { block_description } (Software part)

Description:

With block you define the contents of a physical area of memory. You can

make a block description for each chip you use. Each block has a

symbolic name as previously defined by the keyword chips. It is allowed

to combine two or more memory chips in one block as long as their total

address range is linear, without gaps. The identifier indicates that a

memory block starts at the specified chip, no matter how many chips are

combined.

Example:

layout {
 space address_space {

block ram
 // Memory block starting at chip ram_chip
 cluster ram {

...
 }
}

 }
}

Appendix GG–44
D
E
L
F
E
E

bus

Syntax:

(Cpu or memory part)
bus identifier[, identifier]... { bus_description } (def)
bus = identifier[| identifier]... (ref)

Description:

With bus you define the physical memory addresses for the chips that are

located on the cpu (definition). When you specify bus=, you map a

specific address range on a previously defined address bus (reference).

You can provide parallel busses by separating each bus with a vertical bar

'|'. The only keywords allowed in an bus description are mem, map and

mau.

Example:
cpu {

space address_space {
// Specify space ’address_space’ for the address_bus
// address bus.
mau 8;
map src=0 size=32k dst=0 bus = address_bus label = rom;
map src=32k size=32k dst=32k bus = address_bus label = ram;

// ref
}

bus address_bus { // definition
mau 8;
mem addr=0 chips=rom_chip;
map src=0x100 size=0x7f00 dst=0x100 bus = external_rom_bus;
mem addr=32k chips=ram_chip;
map src=0x8100 size=0x7f00 dst=0x100 bus = external_ram_bus;

}
...

}

DEscriptive Language For Embedded Environments G–45

• • • • • • • •

chips

Syntax:

(Cpu or memory part)
chips identifier[, identifier]... chips_description (def)
chips = identifier[| identifier]... [, identifier[| identifier]...]...

(ref)

Description:

With chips you describe the chips on the cpu or on your target board

(definition). For each chip its size and minimum addressable unit (mau) is

specified. With the keyword attr you can define if the memory is

read-only. The only three attributes allowed are r for read-only, w for

writable, or s for special. If omitted, w is default.

You can use chips= after the keyword mem to specify where a chip is

located (reference). You can create chip pairs by separating each chip with

a vertical bar '|'.

Example:

cpu {
bus address_bus {

mau 8;
mem addr=0 chips =rom_chip; // ref
...

}
chips rom_chip attr=r mau=8 size=0x100; // def
chips ram_chip attr=w mau=8 size=0x100;
...

}

Appendix GG–46
D
E
L
F
E
E

cluster

Syntax:

(Software part)
cluster cluster_name { cluster_description }
cluster cluster_name[, cluster_name]... ;

Description:

In the software layout part you can define the cluster name and cluster

location order. The attributes as valid for clusters (see attribute) can be

specified in the first syntax. If you do not specify any attribute, the default

attribute r or w is automatically set.

In a cluster description you can not only determine the locate order of

sections within the named cluster, but you can also specify stack and heap

size, extra process memory, define labels for the process, etc.

Example:
space address_space {

block rom {
cluster first_code_clstr {
 // The default attribute ’r’ of cluster
 // text is overruled to ’i’. All
 // sections with attribute ’i’ are
 // located here by default.

attribute i;
amode near_code;
amode far_code;
 // Sections with addressing mode
 // near_code or far_cdoe are
 // located here

}

block ram {
cluster data_clstr {
 // default attribute ’w’ because the
 // memory is RAM. All writable
 // sections are located here by default.

attribute w; // can be omitted
amode near_data {

section selection=w;
}

}
}

DEscriptive Language For Embedded Environments G–47

• • • • • • • •

contiguous

Syntax:

contiguous { section_blocks } (Software part)
contiguous addr = address { section_blocks }

Description:

A contiguous block specifies that all sections named in the block should

be located contiguously and in the specified order. The sections will be

located back-to-back, only allowing alignment constraint to cause gaps

between two consecutive sections.

Alignment constraints of sections are propagated to the contiguous block.

This means, for instance, that if the first section should be aligned at even

addresses, the contiguous block will start at an even address.

Page constraints will also be propagated to the contiguous block. This

means that if a section in the contiguous block may not be located across

a specific boundary, the whole contiguous block will not be located over

the specified boundaries.

Sections in a contiguous block cannot have conflicting memory

requirements, e.g. writable and read-only.

Contiguous blocks can be nested with overlay blocks. A block can have

an address (addr=). Addresses within a block are considered offsets

relative to the start of the block.

Example:

The following example shows a contiguous block with a nested overlay

block:

cluster data_clstr {
 contiguous {
 section A;
 section B;
 overlay {
 section C;
 section D;
 }
 section E;
 }
 ..
}

Appendix GG–48
D
E
L
F
E
E

The graphical representation is:

ad
dr

es
se

s

A

B

C

E

D

DEscriptive Language For Embedded Environments G–49

• • • • • • • •

copy

Syntax:

copy section_name [attr = attribute] ; (Software part)
copy selection = attribute [attr = attribute] ;
copy ;

Description:

The ROM copy of data sections with the attribute i will be copied from

ROM to RAM at program startup. With copy you define the placement in

memory of these ROM copies. You can specify a specific section by giving

the section's name, or select sections with a specific attribute. If you do

not specify an argument, the locator locates all ROM copies at the

specified location. With attr= you can change the section attributes.

If you do not specify the keyword copy at all, the locator finds a suitable

place for ROM copies.

See also the keywords attribute and selection.

Example:

space address_space {
 block rom {

...
cluster code_clstr {

attribute r; //cluster attribute
amode far_code {
 table;
 section selection=x;
 section selection=r;
 copy; // all ROM copies are located here
}

}
}

Appendix GG–50
D
E
L
F
E
E

cpu

Syntax:

cpu { cpu_description } (Cpu part)
cpu filename

Description:

The keyword cpu appears together with software and memory at the

highest level in a description file. The actual cpu description starts

between the curly braces { }. Normally you do not need to change the cpu

part because it is delivered with the product and describes the derivative

completely.

The second syntax is the so-called include syntax. The locator opens the

file filename and reads the actual cpu description from this file. You must

start the included file with cpu again. The filename can contain a

complete path including a drive letter (Windows). Parts of filename, or the

complete filename can be put in a environment variable. The file is first

searched for in the current directory, and secondly in the etc directory

relative to the installation directory.

Example:

Contents of the description file:

software {
...

}

cpu target .cpu //cpu part in separate file
memory target .mem

See section 3 for a sample contents of a .cpu file.

DEscriptive Language For Embedded Environments G–51

• • • • • • • •

dst

Syntax:

dst = address (Cpu or memory part)

Description:

Specify destination address as part of the keyword map in an amode,

space or bus description. For address you can use any decimal,

hexadecimal or octal number. You can also use the (standard) Delfee

suffix k, for kilo (210) or M, for mega (220). The unit of measure depends

on the MAU (minimum addressable unit) of the destination memory space.

Example:

cpu {
 ...
 amode near_code {

 attribute Y1;
 mau 8; // 8–bit addressable
 map src=0 size=1k dst =0 amode=far_code;

 }
}

Appendix GG–52
D
E
L
F
E
E

fixed

Syntax:

fixed address = address ; (Software part)
fixed addr = address ; (abbreviated form)

Description:

Define a fixed point in the memory map. The locator allocates the

section/cluster preceding the fixed definition and the section/cluster

following it as close as possible to the fixed point.

Example:

block ram {
cluster near_data_clstr {
 amode near_data {

section selection=w;
fixed addr = 0x2000;

 }
}
cluster far_data_clstr;

}

Cluster far_data_clstr will be located with its upper bound at address

0x2000 and cluster near_data_clstr starts at this address. The same

can be applied to sections.

DEscriptive Language For Embedded Environments G–53

• • • • • • • •

gap

Syntax:

gap; (Software part)
gap length = value ;

Description

Reserve a gap with a dynamic size. The locator tries to make the memory

space as big as possible. You can use this keyword in a block description

to create a gap between clusters, or in a cluster description to create a gap

between sections. You can also use the gap keyword in combination with

the fixed keyword.

With the second form you can specify a gap of a fixed length. This form

can only occur in a block description.

Example:

space address_space {
block ram {

cluster data_clstr {
attr w;
amode near_data;

} // low side mapping

gap; // balloon
cluster stck; // high side mapping

}
}

Appendix GG–54
D
E
L
F
E
E

heap

Syntax:

heap heap_description ; (Software part)
heap ;

Description:

Like table and stack, heap is another special section. The section is not

created from the .out file, but generated at locate time. To control the

size of this special section the keyword length is allowed within the heap

description. You can use heap to include dynamic memory for a process.

Heap can only be used if a malloc() function has been implemented.

Two locator labels are used to mark begin and end of the heap, __lc_bh
for the begin of heap, and __lc_eh for the end of heap.

Note that if the heap keyword is specified in the description file this does

not automatically mean that a heap will always be generated. A heap will

only be allocated when its section labels (__lc_bh for begin of heap and

__lc_eh for end of heap) are used in the program.

The heap description can be a length specification and/or an attribute

specification. See the example.

Example:

layout {
space address_space {

block ram {
cluster data_clstr {
 amode far_data {

section selection=w;
heap length=100;
// Heap of 100 MAUs

 }
}

}
}

}

DEscriptive Language For Embedded Environments G–55

• • • • • • • •

label

Syntax:

label identifier ; (Software part)
label = identifier ; (All parts)

Description:

The first form can be used stand-alone to specify a virtual address in

memory by means of a label. The virtual address is label __lc_u_identifier.
Note that at C level, all locator labels start with one underscore (the

compiler adds another underscore '_').

The second form can only be used as part of another keyword. As part of

the keyword reserved you can assign a label to an address range. The

start of the address range is identified by label __lc_ub_identifier. The end

of the address range is identified by label __lc_ue_identifier. The keyword

label is also allowed as part of the map keyword to assign a name to a

block of memory in a space definition.

Example:

From the software part:

block ram {
cluster data_clstr {

attribute w;
amode far_data {

section selection=w;
heap;
stack;
reserved label= xvwbuffer length=0x10;

// Start address of reserved area is
// label __lc_ub_xvwbuffer
// End address of reserved area is
// label __lc_ue_xvwbuffer

}
}

}

Appendix GG–56
D
E
L
F
E
E

From the cpu part:

space address_space {
mau 8;
map src=0 size=32k dst=0 bus = address_bus label= rom;
map src=32k size=32k dst=32k bus = address_bus label= ram;

}

DEscriptive Language For Embedded Environments G–57

• • • • • • • •

layout

Syntax:

layout { layout_description } (Software part)
layout filename

Description:

The layout part describes the layout of sections in memory. The layout

part groups sections into clusters and you can define the name, number

and the order of clusters. The layout part describes how these clusters

must be allocated into physical RAM and ROM block. The space and block

names used in the layout part must be present in the memory part or the

cpu part. The cluster definitions can contain fixed addresses as well as

definitions of gaps between sections.

Example:

software {
 layout {
 space address_space {

block rom {
 cluster first_code_clstr {
 attribute i;
 amode near_code;
 }
....

Appendix GG–58
D
E
L
F
E
E

length

Syntax:

length = length (Cpu, memory and software part)
leng = length (abbreviated form)

Description:

You can use the keyword length to define the length in MAUs (minimum

addressable units) of a certain memory area. length must be a numeric

value and can be given either in hex, octal or decimal. As usual, hex

numbers must start with '0x' and octal numbers must start with '0'. You can

use the suffix k which stands for kilo or M which stands for mega.

You can use length to specify the length of the reserved memory or to

specify the stack, heap or gap length. For details see the keywords

reserved, stack, heap and gap.

Example:

space address_space {
 block ram {

cluster data_clstr {
 amode far_data {

stack leng = 2k;
 }
}

 }
}

DEscriptive Language For Embedded Environments G–59

• • • • • • • •

load_mod

Syntax:

load_mod identifier start = label; (Software part)
load_mod start = label;

Description:

With load_mod you are introducing a load module description. This

keyword is followed by an optional identifier, representing a load module

name with or without the .out extension. The load module itself must be

supplied to the locator as a parameter in the invocation. If the identifier is

omitted, the load module is taken from the command line.

Example:

software {
load_mod start = __START;

}

or:

software {
load_mod hello start = __USER_start;

}

Appendix GG–60
D
E
L
F
E
E

map

Syntax:

map map_description (Cpu or memory part)

Description:

Map a memory part, specified as a source address and a size, to a

destination address of an amode, space or bus. The unit of measure

depends on the MAU of the memory space.

Example:
cpu {
 .
 amode far_data {

 attribute Y4;
 mau 8;
 map src=0 size=32k dst=32k space=address_space;

 }
 space address_space {

 mau 8;
 map src=0 size=32k dst=0 bus = address_bus label=rom;
 map src=32k size=32k dst=32k bus = address_bus label=ram;

 }
 bus address_bus {

 mau 8;
 mem addr=0 chips=rom_chip;
 map src=0x100 size=0x7f00 dst=0x100 bus=external_rom_bus;
 mem addr=32k chips=ram_chip;
 map src=0x8100 size=0x7f00 dst=0x100 bus=external_ram_bus;

 }
 .
}

DEscriptive Language For Embedded Environments G–61

• • • • • • • •

mau

Syntax:

mau number ; (Cpu or memory part)
mau = number

Description:

You can use the keyword mau to specify the minimum addressable unit in

bits of a certain memory area. The first form can only be used in an

amode, space or bus description. The second form can be used to

specify the minimum addressable unit of a chip. Note that mau affects the

unit of measure for other keywords. If no mau is specified, the default

number is 8 (byte addressable).

Example:

cpu {
 amode near_code {
 attribute Y1;
 mau 8 ; // byte addressable
 map src=0 size=1k dst=0 amode=far_code;

// src is at address 0,
// size is 1k byte units
// dst is at address 0

 }
}

Appendix GG–62
D
E
L
F
E
E

mem

Syntax:

mem mem_description ; (Cpu or memory part)

Description:

Define the start address of a chip in memory. The only keywords allowed

in a mem description are address and chips.

Example:

cpu {
 ...
 bus internal_bus {
 mau 8;
 mem addr=0 chips=rom_chip;

// chip ’rom_chip’ is located at memory
// address 0
...

 mem addr=32k chips=ram_chip;
// chip ’ram_chip’ is located at memory
// address 0x8000
...

 }
 chips rom_chip attr=r mau=8 size=0x100;
 chips ram_chip attr=w mau=8 size=0x100;

}

DEscriptive Language For Embedded Environments G–63

• • • • • • • •

memory

Syntax:

memory { memory_description } (Memory part)
memory filename

Description:

Together with software and cpu, memory introduces a main part of the

description file. You can specify the actual memory part between the curly

braces { }.

You can use the memory part to describe any additional memory or

addresses of peripherals not integrated on the cpu.

The second syntax is the include syntax. In this case, the memory part is

defined in a separate file. This included file must start again with

memory. The filename can contain a complete path, including a drive

letter (Windows). You can put parts of filename, or the complete filename
in an environment variable. The file is first searched for in the current

directory, and secondly in the etc directory relative to the installation

directory.

Example:

software {
...

}

cpu target .cpu
memory target .mem //mem part in separate file

See section 5 for a sample contents of a .mem file.

Appendix GG–64
D
E
L
F
E
E

overlay

Syntax:

overlay { section_blocks } (Software part)
overlay addr = address { section_blocks }

Description:

An overlay block specifies that all sections named in the block should

start at the same address.

Page constraints will also be propagated to the overlay block. This means

that if a section in the overlay block may not be located across a specific

boundary, the whole overlay block will not be located over the specified

boundaries.

Sections in an overlay block cannot have conflicting memory

requirements, e.g. writable and read-only.

Overlay blocks can be nested with contiguous blocks. Overlay blocks can

have an absolute address specified (addr=).

Example:

The following example shows an overlay block contiguous block with a

nested overlay block:

cluster data_clstr {
 overlay {
 section A;
 contiguous {
 section B;
 section C;
 }
 contiguous {
 section D;
 section E;
 overlay {
 section F;
 section G;
 }
 section H;
 }
 }
 ..
}

DEscriptive Language For Embedded Environments G–65

• • • • • • • •

The graphical representation is:

ad
dr

es
se

s
A D

C

F

E

G

B

H

Appendix GG–66
D
E
L
F
E
E

regsfr

Syntax:

regsfr filename (Cpu or memory part)

Description:

Specify a register file generated by the register manager for use by the

CrossView debugger.

Example:

cpu {
.
.
.
regsfr regfile.dat
/*
 * Use file regfile.dat generated by
 * register manager for CrossView
 */

}

DEscriptive Language For Embedded Environments G–67

• • • • • • • •

reserved

Syntax:

reserved reserved_description ; (Software part)
reserved;

Description:

Reserve a fixed amount of memory space or reserve as much memory as

possible in the memory space. If no length is specified the size of the

memory allocation depends on the size of the memory space or the size is

limited by a fixed point definition following the reserved allocation.

You can only use the keywords address, attribute, label and length in

the reserved description. You can use the keyword reserved in an amode

description.

Example:

space address_space {
block rom {

cluster code_clstr {
amode near_code {
 // system reserved
 // (exception vector)
 reserved length=0x2 addr=0x24;
}

}
}

Appendix GG–68
D
E
L
F
E
E

section

Syntax:

(Software part)
section identifier [addr = address] [attr = attribute] ;
section selection = attribute [addr = address] [attr = attribute];

Description:

section can be used in the layout part to specify the location order within

a cluster. See also layout.

The identifier is the name of a section.

With addr= you can make a section absolute.

With attr= you can assign new attributes to a section or disable attributes.

See also the keywords address, attribute and selection.

Example:

space address_space {
block ram {

cluster data_clstr {
amode near_data {
 // locate section .data here and set
 // attribute ’w’
 section .data attr=w;
 section selection=b attr=–b;
}

}
}

}

DEscriptive Language For Embedded Environments G–69

• • • • • • • •

selection

Syntax:

selection = attribute

Description:

You can use selection after the keywords section or copy to select all

sections with (a) specified attribute(s).

If more attributes are specified, only sections with all attributes are

selected. If a minus sign '-' precedes the attribute, only sections not

having the attribute are selected.

See also the keywords attribute, copy and section.

Example:

space address_space {
block ram {
 cluster data_clstr {

amode near_data {
 // select sections with w on and not i.
 // (select all writable sections which
 // are not copied from ROM)
 section selection =–iw;
}

 }
}
.

}
...

Appendix GG–70
D
E
L
F
E
E

size

Syntax:

size = size (Cpu or memory part)

Description:

You can use the keyword size to define the size in minimum addressable

units (MAU) of a certain memory area. size must be a numeric value and

can be given either in hex, octal or decimal. As usual, hex numbers must

start with '0x' and octal numbers must start with '0'. You can use the suffix

k which stands for kilo or M which stands for mega.

You can use size to specify the size of a part of memory that must be

mapped on another part of memory or to specify the the size of a chip.

For details see the keywords map and chips.

Example:
cpu {
 amode near_code {

attribute Y1; //identify near_code with Y1
map src=0 size =1k dst=0 amode=far_code;

 }
space address_space {

mau 8;
map src=0 size =32k dst=0 bus=address_bus label=rom;
map src=32k size =32k dst=32k bus=address_bus label=ram;

}
 chips rom_chip attr=r mau=8 size =0x100;
 chips ram_chip attr=w mau=8 size =0x100;

// size of chips
}

DEscriptive Language For Embedded Environments G–71

• • • • • • • •

software

Syntax:

software { software_description } (Software part)
software filename

Description:

The keyword software appears at the highest level in a description file.

The actual software description starts between the curly braces { }.

The second syntax is the so called include syntax. The locator will open

file filename and read the actual software description from this file. The

first keyword in filename must be software again. The filename can

contain a complete path including a drive letter (Windows). You can put

parts of filename, or the complete filename in an environment variable.

The file is first searched for in the current directory, and secondly in the

etc directory relative to the installation directory.

Example:

Contents of the description file:

software $(MY_OWN_DESCRIPTION)

cpu target .cpu
memory target .mem

Environment variable MY_OWN_DESCRIPTION contains the name of a file

with contents like:

software {
load_mod start = __START;
layout {
.
.
.
}

}

Appendix GG–72
D
E
L
F
E
E

space

Syntax:

space identifier { space_description } (Software part)
(Cpu or memory part)

space identifier[, identifier]... { space_description }

space = identifier

Description:

The keyword space can be used in the cpu part, memory part and

software part. In the cpu or memory part you can use space to describe a

physical memory address space. The only keywords allowed in a space

description in the cpu or memory part are mau and map.

In the software part you can use space to describe one or more memory

blocks. Each space has a symbolic name as previously defined by the

keyword space in the cpu or memory part.

Example:

From the cpu part:

cpu {

 amode far_data {

attribute Y4;

mau 8;

map src=0 size=32k dst=32k space =address_space;

 }

...

 space address_space {

// Specify space ’address_space’ for the

// address_bus address bus.

mau 8;

map src=0 size=32k dst=0 bus=address_bus label=rom;

map src=32k size=32k dst=32k bus=address_bus label=ram;

 }

 .

}

DEscriptive Language For Embedded Environments G–73

• • • • • • • •

From the software part:

layout {

// define the preferred locating order of sections

// in the memory space

// (the range is defined in the .cpu file)

space address_space {

...

// define for each sub–area in the space

// the locating order of sections

block rom {

 // Memory block starting at chip rom_chip

 // define a cluster for read–only sections

 cluster code_clstr {

....

 }

}

.

}

}

Appendix GG–74
D
E
L
F
E
E

src

Syntax:

src = address (Cpu or memory part)

Description:

Specify source address as part of the keyword map in an amode, space

or bus description. For address you can use any decimal, hexadecimal or

octal number. You can also use the (standard) Delfee suffix k, for kilo

(210) or M, for mega (220). The address is specified in the addressing

mode's local MAU (minimum addressable unit) size (default 8 bits).

Example:

cpu {
 ...
 amode near_code {

 attribute Y1;
 mau 8; // 8–bit addressable
 map src =0 size=1k dst=0 amode=far_code;

 }
}

DEscriptive Language For Embedded Environments G–75

• • • • • • • •

stack

Syntax:

stack stack_description ; (Software part)
stack ;

Description:

stack is a special form of a section description. The stack is allocated at

locate time. The locator only allocates a stack if one is needed. Two

special locator labels are associated with the stack space located with

keyword stack. The begin of the stack area can be obtained by the locator

label __lc_bs , the end address is accessible by means of label __lc_es .

You can only use the keywords attribute and length in the stack

description. If you specify stack without a description, the locator tries to

make the stack as big as possible. If you do not specify the keyword stack

at all, the locator also tries to make the stack as big as possible but at least

100 (MAUs).

Example:

space address_space {
block ram {

cluster data_clstr {
amode far_data {

section selection=w;
stack leng=150;
// stack of 150 MAUs
...

}
}

}
}

Appendix GG–76
D
E
L
F
E
E

start

Syntax:

start = label ; (Software part)

Description:

Define a start label for a process.

You can use start only within a load module description.

Example:

software {
load_mod start = system_start;

layout {
.
.
}

}

DEscriptive Language For Embedded Environments G–77

• • • • • • • •

table

Syntax:

table attr = attribute ; (Software part)
table ;

Description:

Like stack and heap also table is a special kind of section. Normal

sections are generated at compile time, and passed via the assembler and

linker to the locator. The stack and heap sections are generated at locate

time, with a user requested size.

table is different. The locator is able to generate a copy table. Normally,

this table is put in read-only memory. If you want to steer the table

location, you can use the table keyword. With table only attribute is

allowed. The length is calculated at locate time. table can occur in a

cluster description.

Example:

space address_space {
 block rom {

...
cluster code_clstr {

attribute r; // cluster attribute
amode far_code {
 table ; // locate copy table here
 section selection=x;
 section selection=r;
 copy ; // all ROM copies are located here
}

}
}

Appendix GG–78
D
E
L
F
E
E

7.1 ABBREVIATION OF DELFEE KEYWORDS

The following Delfee keywords can be abbreviated to unique 4 character

words:

Keyword Abbreviation

address addr

assert asse

attribute attr

length leng

Table G-3: Abbreviation of Delfee keywords

7.2 DELFEE KEYWORDS SUMMARY

Keyword Description

address Specify absolute memory address

align Specify section alignment

amode Specify the addressing modes

assert Error if assertion failed

attribute Assign attributes to clusters, sections, stack or heap

block Define physical memory area

bus Specify address bus

chips Specify cpu chips

cluster Specify the order and placement of clusters

contiguous Specify a contiguous block of sections

copy Define placement of ROM–copies of data sections

cpu Define cpu part

dst Destination address

fixed Define fixed point in memory map

gap Reserve dynamic memory gap

heap Define heap

label Define virtual address label

layout Start of the layout description

DEscriptive Language For Embedded Environments G–79

• • • • • • • •

DescriptionKeyword

length Length of stack, heap, physical block or reserved space

load_mod Define load module (process)

map Map a source address on a destination address

mau Define minimum addressable unit (in bits)

mem Define physical start address of a chip

memory Define memory part

overlay Specify a block of sections which must be overlaid

regsfr Specify register file for use by CrossView

reserved Reserve memory

section Define how a section must be located

selection Specify attributes for grouping sections into clusters

size Size of address space or memory

software Define the software part

space Define an addressing space or specify memory blocks

src Source address

stack Define a stack section

start Give an alternative start label

table Define a table section

Table G-4: Overview of Delfee keywords

Appendix GG–80
D
E
L
F
E
E

H

DELFEE SYNTAX
A
P
P
E
N
D
I
X

Appendix HH–2
D

E
L

F
E

E
 S

Y
N

T
A

X H

A
P
P
E
N
D
I
X

Delfee Syntax H–3

• • • • • • • •

This appendix describes the Delfee description language.

GENERAL

description
partition
description partition

partition
memory_partition
cpu_partition
software_partition

ident_list
ident_list , identifier
identifier

identifier
STRING

file_name
STRING

CPU

cpu_partition
cpu { static_specs_list }
cpu { }
cpu file_name

MEMORY

memory_partition
memory { static_specs_list }
memory { }
memory file_name

static_specs_list
static_specs_list static_specs
static_specs

Appendix HH–4
D

E
L

F
E

E
 S

Y
N

T
A

X

static_specs
amod_specs
spce_specs
bus_specs
chips_specs

amod_specs
amode ident_list { amod_list }

spce_specs
space ident_list { spce_list }

bus_specs
bus ident_list { bus_list }

chips_specs
chips ident_list chips_list ;

amod_list
amod_list amod_def
amod_def

spce_list
spce_list spce_def
spce_def

bus_list
bus_list bus_def
bus_def

chips_list
chips_list chips_def
chips_def

amod_def
mau_spec
attribute_spec
map_spec

spce_def
mau_spec
map_spec

Delfee Syntax H–5

• • • • • • • •

bus_def
mau_spec
mem_spec
map_spec

chips_def
mau_equ_spec
attribute_equ_spec
size_spec

mau_spec
mau NUMBER ;

mau_equ_spec
mau = NUMBER

attribute_spec
attribute STRING ;
attribute NUMBER ;
attr STRING ;
attr NUMBER ;

attribute_equ_spec
attribute = STRING
attribute = NUMBER
attr = STRING
attr = NUMBER

map_spec
map map_list ;

map_list
map_list map_def
map_def

map_def
src_spec
size_spec
dst_spec
align_spec
page_spec
amode_spec
space_spec
bus_spec

Appendix HH–6
D

E
L

F
E

E
 S

Y
N

T
A

X

mem_spec
mem mem_list ;

mem_list
mem_list mem_def
mem_def

mem_def
addr_spec
chips_spec

src_spec
src = NUMBER

size_spec
size = NUMBER

dst_spec
dst = NUMBER

align_spec
align = NUMBER

page_spec
page = NUMBER

amode_spec
amode = identifier

space_spec
space = identifier

bus_spec
bus = low_bus_list

addr_spec
address = NUMBER
addr = NUMBER

chips_spec
chips = low_chip_list

low_bus_list
low_bus_list | identifier
identifier

Delfee Syntax H–7

• • • • • • • •

low_chip_list
low_chip_list , low_chip_pair
low_chip_pair

low_chip_pair
low_chip_pair | low_chip
low_chip

low_chip
identifier

SOFTWARE

software_partition
software { layout_blocks }
software { }
software file_name

layout_blocks
layout_blocks layout_block
layout_block

layout_block
layout
loadmod

loadmod
load_mod software_specs ;
load_mod identifier software_specs ;

software_specs
software_specs software_spec
software_spec

software_spec
start
process

start
start = identifier ;

process
process = pids

Appendix HH–8
D

E
L

F
E

E
 S

Y
N

T
A

X

pids
NUMBER
pids , NUMBER

layout
layout { space_blocks }
layout { }

layout file_name

space_blocks
space_blocks space_block
space_block

space_block
space identifier { block_blocks }

block_blocks
block_blocks block_block
block_block

block_block
block identifier { cluster_blocks }

cluster_blocks
cluster_blocks cluster_block
cluster_block

cluster_block
cluster_spec
p_gap_spec
p_fixed_spec
p_pool_spec
p_skip_spec
p_label_spec

cluster_spec
cluster identifier { amod_blocks }
cluster ident_list ;

amode_blocks
amode_blocks amode_block
amode_block

Delfee Syntax H–9

• • • • • • • •

amode_block
amode ident_list { section_blocks }
amode ident_list ;
section_block

p_gap_spec
gap length ;
gap ;

p_fixed_spec
fixed address ;

p_pool_spec
pool length ;
pool ;

p_label_spec
label identifier ;

p_skip_spec
skip ;

attribute
attribute_equ_spec

length
length = NUMBER
leng = NUMBER

address
address = NUMBER
addr = NUMBER

section_blocks
section_blocks section_block
section_block

Appendix HH–10
D

E
L

F
E

E
 S

Y
N

T
A

X

section_block
section_spec
copy_spec
v_fixed_spec
v_gap_spec
v_reserved_spec
stack_spec
heap_spec
table_spec
others
label_spec
v_assert_spec
attribute_spec
contiguous_block
overlay_block

contiguous_block
contiguous address { virtual_block_entries }
contiguous { virtual_block_entries }

overlay_block
overlay address { virtual_block_entries }
overlay { virtual_block_entries }

virtual_block_entries
virtual_block_entries virtual_block_entry
virtual_block_entry

virtual_block_entry
section_spec
copy_spec
label_spec
contiguous_block
overlay_block

section_spec
section selection modifiers ;
section selection ;

modifiers
modifiers modifier
modifier

Delfee Syntax H–11

• • • • • • • •

modifier
attribute
address

copy_spec
copy selection attribute ;
copy selection ;
copy ;

selection
selection = STRING
identifier

v_fixed_spec
fixed address ;

v_gap_spec
gap ;

v_reserved_spec
reserved reserved_options ;
reserved ;

reserved_options
reserved_options reserved_option
reserved_option

reserved_option
attribute
address
length
label_equ_spec

stack_spec
stack stack_options ;
stack ;

heap_spec
heap stack_options ;
heap ;

stack_options
stack_options stack_option
stack_option

Appendix HH–12
D

E
L

F
E

E
 S

Y
N

T
A

X

stack_option
attribute
length

table_spec
table attribute ;
table ;

others
others ;

label_spec
label identifier ;

label_equ_spec
label = identifier

v_assert_spec
assert (bool_expression , STRING) ;
asse (bool_expression , STRING) ;

bool_expression
termp bool_op termp

termp
term + termp
term - termp
term

term
(term)
identifier
NUMBER

bool_op
<

>

==

!=

A NUMBER is a series of (hex) digits with optional suffixes 'k' 'M' 'G'

which stands for 'kilo', 'mega' and 'giga'. Numbers may be given in hex,

octal or decimal with the usual prefix. Where applicable numbers may be

preceded by a minus sign.

Delfee Syntax H–13

• • • • • • • •

A STRING is a series of characters that is not a number (089 is a STRING

because it is not a valid octal number) and consists of alphanumeric

characters including '_', '.', '-' and the host dependent directory separators.

(For PC '\', '/' and ':')

Any (part of a) token may contain environment variables. If the

environment variable A contains the text 'foo' then the sequence:

$A/proto.dsc

is translated to:

foo/proto.dsc

Multi character variables must be combined with braces:

window = $(MODE);

There are three methods to write comments in a delfee script. The first one

is the 'C' style comment between '/*' and '*/'. The second form is a '#' in

the first column. The second form allows preprocessing by the

C-preprocessor. Any #line or #file directive will be ignored by the locator.

The third form is the 'C++' style comment; a double slash '//' anywhere on

a line introduces comments until the end of line.

Appendix HH–14
D

E
L

F
E

E
 S

Y
N

T
A

X

I

IEEE–695 OBJECT
FORMAT

A
P

P
E

N
D

I
X

Appendix II–2
IE
E
E
-
6
9
5

I

A
P

P
E

N
D

I
X

IEEE–695 Object Format I–3

• • • • • • • •

1 TIOF AND IEEE-695

The IEEE-695 standard describes MUFOM: Microprocessor Universal

Format for Object Modules. It defines a target independent storage

standard for object files. However, this standard does not describe how

symbolic debug information should be encoded according to that

standard. Symbolic debug information can be a part of an object file. A

debugger which reads an object file uses the symbolic debug information

to obtain knowledge about the relation between the executable code and

the origination high-level language source files. Since the IEEE-695

standard does not describe the representation of debug information,

working implementations of this standard show vendor specific and

microprocessor specific solutions for this area.

TIOF, which stands for Target Independent Object Format, is specified as a

MUFOM based standard including the representation of symbolic debug

information for high-level languages, without introducing the

microprocessor dependent solutions. The current version of the TASKING

debugger is not yet prepared to read TIOF, so you will have to select

IEEE-695 as output format of the locator when you want to debug a

program.

Since TIOF and IEEE-695 both use the MUFOM concept as their basis both

formats are very similar.

2 COMMAND LANGUAGE CONCEPT

Most object formats are record oriented: there are one or more section

headers at a fixed position in the file which describe how many sections

are present. A section header contains information like start address, file

offset, etc. The contents of the section is in some data part, which can only

be processed after the header has been read. So the tool that reads such

an object uses implicit assumptions how to process such a file. Seeking

through the file to get those records which are relevant is usual.

MUFOM (IEEE-695) uses a different approach. It is designed as a

command language which steers the linker, locator and object reader in

the debugger.

Appendix II–4
IE
E
E
-
6
9
5

An assembler or compiler may create an object module where most of the

data contained in it is relocatable. The next phase in the translation

process is linking several object modules into one new object module. A

relocatable object uses relocation expressions at places where the absolute

values are not yet known. An expression evaluator in the locator

transforms the relocation expressions into absolute values.

Finally the object is ready for loading into memory. Since an object file is

transformed by several processes, MUFOM implements an object file as a

sequence of commands which steers this transformation process.

These commands are created, executed or copied by one of five processes

which act on a MUFOM object file:

1. Creation process

Creation of the object file by an assembler or compiler. The assembler or

compiler tells other MUFOM processes what to do, by emitting commands

generated from assembly source text or a high-level language.

2. Linkage process

Linking of several object modules into one module resolving external

references by renaming X variables into I variables, and by generating new

commands (assigning of R variables).

3. Relocation process

Relocation, giving all sections an absolute address by assigning their L

variable.

4. Expression evaluation process

Evaluation of loader expressions, generated in one of the three previously

mentioned MUFOM processes.

5. Loader process

Loading the absolute memory image.

The last four processes are in fact command interpreters: the assembler

writes an object file which is basically a large sequence of instructions for

the linker. For example, instead of writing the contents of a section as a

sequence of bytes at a specific position in the file, IEEE-695 defines a load

command, LR, which instructs the linker to load a number of bytes. The LR

command specifies the number of MAUs (minimum addressable unit) that

will be relocated, followed by the actual data. This data can be a number

of absolute bytes, or an expression which must be evaluated by the linker.

IEEE–695 Object Format I–5

• • • • • • • •

Transforming relocation expressions into new expressions or absolute data

and combining sections is the actual linkage process.

It is possible that one or more of the above MUFOM processes are

combined in one tool. For instance, the locator is built from process 3 and

process 4 above.

3 NOTATIONAL CONVENTIONS

The following conventions are used in this appendix:

| select one of the items listed between '|'

" " literal characters are between " "

[]+ optional item repeats one time or more

[]? optional item repeats zero times or one time

[]* optional item repeats zero times or more

::= can be read as "is defined as"

4 EXPRESSIONS

An expression in an IEEE-695 file or a TIOF file is a combination of

variables, operators and absolute data.

The variable name always starts with a non-hexadecimal letter (G...Z),

immediately followed by an optional hexadecimal number. The first

non-hexadecimal letter gives the class of the variable. Reading an object

file you encounter the following variables:

G - Start address of a program. If not assigned this address

defaults to the address of low-level symbol _start.

I - An I variable represents a global symbol in an object module.

The I variable is assigned an expression which is to be made

available to other modules for the purpose of linkage edition.

The name of an I variable is always composed of the letter 'I',

followed by a hexadecimal number. An I variable is created

only by an NI command.

Appendix II–6
IE
E
E
-
6
9
5

L - Start address of a section. This variable is only used for

absolute sections. The 'L' is followed by a section index,

which is an hexadecimal number. L variables are created by

an assignment command, but the section index must have

been been defined by an ST command.

N - Name of internal symbol. This variable is used to assign

values of local symbols, or, to build complex types for use by

a high-level language debugger, or for inter-modular type

checking during linkage. The N variable is created with a NN

command.

P - Program pointer per section. This variable always contains

the current address of the target memory location. The P

variable is followed by a section index, which is a

hexadecimal number. The section index must have been

defined with an ST command (section type command). The

variable is created after its first assignment.

R - The R type variable is a relocation reference for a particular

section. All references to addresses in this section must be

made relative to the R variable. Linking is accomplished by

assigning a new value to R. The R variable consists of the

letter 'R', followed by an section index, which is a

hexadecimal number. The section index must have been

defined with an ST command. The default value of an

(unassigned) R variable is 0.

S - The S type variable is the section size (in MAUs) for a

section. There is one S variable per section. The 'S' is

followed by an section index. An S variable is created by its

first assignment.

W - Work variable. This type of variable can be used to assign

values to, which can be used in following MUFOM

commands. They serve the purpose of maintaining values in

a workspace without any additional meaning. A work

variable consists of the letter 'W' followed by a hexadecimal

number. W variables are created by their first assignment.

X - An X type variable refers to an external reference.

X-variables cannot have a value assigned to it. An X variable

consists of the letter 'X' followed by a hexadecimal number.

IEEE–695 Object Format I–7

• • • • • • • •

The MUFOM language uses the following data types to form expressions:

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" |

"9"

hex_letter ::= "A" | "B" | "C" | "D" | "E" | "F"

hex_digit ::= digit | hex_letter

hex_number ::= [hex_digit]+

nonhex_letter ::= "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" |

"O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" |

"W" | "X" | "Y" | "Z"

letter ::= hex_letter | nonhex_letter

alpha_num ::= letter | digit

identifier ::= letter [alpha_num]*

character ::= 'value valid within chosen character set'

char_string_length::= hex_digit hex_digit

char_string ::= char_string_length [character]*

The numeric value specified in 'char_string_length' should be followed by

an equal number of characters.

Expressions may be formed out of immediate numbers and MUFOM

variables. The MUFOM processes 2 to 4, which form the linker and the

locator, contain expression evaluators which parse and calculate the values

for the expressions. If a MUFOM process cannot calculate the absolute

value of an expression, because the values of the variable are not yet

known, it copies the expression (with modifications) into the output file.

Expression are coded in reverse Polish notation. (The operator follows the

operands.)

expression ::= boolean_function |

one_operand_function |

two_operand_function |

three_operand_function |

four_operand_function |

conditional_expr | hex_number | MUFOM_variable

Appendix II–8
IE
E
E
-
6
9
5

4.1 FUNCTIONS WITHOUT OPERANDS

@F : false function

@T: true function

boolean_function ::= "@F" | "@T"

The false and true function produce a boolean result false or true which

may be used in logical expressions. Both functions do not have operands.

4.2 MONADIC FUNCTIONS

Monadic functions have one operand which precedes the function.

one_operand_function ::= operand "," monop

operand ::= expression

monop ::= "@ABS" | "@NEG" | "@NOT" | "@ISDEF"

@ABS: returns the absolute value of an integer operand

@NEG: returns the negative value of an integer operand

@NOT: returns the negation of a boolean operand or the one's

complement value if the operand is an integer

@ISDEF: returns the logical true value if all variable in an expression

are defined, return false otherwise.

4.3 DYADIC FUNCTIONS AND OPERATORS

Dyadic functions and operators have two operands which precede the

operator or function.

two_operand_function ::= operand1 "," operand2 "," dyadop

operand1 ::= expression

operand2 ::= expression

dyadop ::= "@AND" | "@MAX" | "@MIN" | "@MOD" |

"@OR" |"@XOR" |

"+" | "-" | "/" | "*" | "<" | ">" | "=" | "#"

IEEE–695 Object Format I–9

• • • • • • • •

@AND: returns boolean true/false result of logical 'and' operation on

operands, when both operands are logical values. When both

operands are not logical values the bitwise and is performed.

@MAX: compares both operands arithmetically and returns the largest

value.

@MIN: compares both operands arithmetically and returns the

smallest value.

@MOD: returns the modulo result of the division of operand1 by

operand2. The result is undefined if either operand is

negative, or if operand2 is zero.

@OR: returns boolean true/false result of logical 'or' operation on

operands, when both operands are logical values. When both

operands are no logical values the bitwise and is performed.

+, -, *, /: These are the arithmetic operators for addition, subtraction,

multiplication and division. The result is an integer. For

division the result is undefined if operand2 equals zero. The

result of a division rounds toward zero.

<, >, =, #: These are operators for the following logical relations: 'less

than', 'greater than', 'equals', 'is unequal'. The result is true or

false.

4.4 MUFOM VARIABLES

The meaning of the MUFOM variable is explained in section 4. The

following syntax rules apply for the MUFOM variables:

MUFOM_variable ::= MUFOM_var |

MUFOM_var_num

MUFOM_var_optnum

MUFOM_var ::= "G"

MUFOM_var_num ::= "I" | "N" | "W" | "X"

hex_number

MUFOM_var_optnum ::= "L" | "P" | "R" | "S"

[hex_number]?

Appendix II–10
IE
E
E
-
6
9
5

4.5 @INS AND @EXT OPERATOR

The @INS operator inserts a bit string.

four_operand_function ::= operand1 "," operand2 "," operand3

"," operand4 "," @INS

operand2 is inserted in operand1 starting at position operand3, and ending

at position operand4.

The @EXT operator extracts a bit string.

three_operand_function ::= operand1 "," operand2 "," operand3

"," @EXT

A bit string is extracted from operand1 starting at position operand2 and

ending at position operand3.

4.6 CONDITIONAL EXPRESSIONS

conditional_expr ::= err_expr | if_else_expr

err_expr ::= value "," condition "," err_num "," "@ERR"

value ::= expression

condition ::= expression

err_num ::= expression

if_else_expr ::= condition "," "@IF" "," expression ","

"@ELSE" "," expression "," "@END"

IEEE–695 Object Format I–11

• • • • • • • •

5 MUFOM COMMANDS

5.1 MODULE LEVEL COMMANDS

At module level there are four commands: one command to start and one

to end a module, one command to set the date and time of creation of the

module, and one command to specify address formats.

5.1.1 MB COMMAND

The MB command is the first command in a module. It specifies the target

machine configuration and an optional command with the module name.

MB_command ::= "MB" machine_identifier ["," module_name]? "."

Example: MB 5600x.

5.1.2 ME COMMAND

The module end command is the last command in an object file. It defines

the end of the object module.

ME_command ::= "ME."

5.1.3 DT COMMAND

The DT command sets the date and time of creation of an object module.

DT_command ::= "DT" [digit]* "."

Example: DT19930120120432.

The format of display of the date and time is "YYYYMMDDHHMMSS":

4 digits for the year, 2 digits for the month, 2 digits for the day, 2 digits for

the hour, 2 digits for the minutes and 2 digits for the seconds.

Appendix II–12
IE
E
E
-
6
9
5

5.1.4 AD COMMAND

The AD command specifies the address format of the target execution

environment.

AD_command ::= "AD" bits_per_MAU ["," MAU_per_address

 ["," order]?]?

MAU_per_address ::= hex_number

bits_per_MAU ::= hex_number

order ::= "L" | "M"

MAU stands for minimum addressable unit. This is target processor

dependant.

L means least significant byte at lowest address (little endian)

M means most significant byte at lowest address (big endian)

Example:

AD24,1,L.

Specifies a 1-word addressable 24-bit processor running in little endian

mode.

5.2 COMMENT AND CHECKSUM COMMAND

The comment command offers the possibility to store information in an

object module about the object module and the translators that created it.

The comment may be used to record the file name of the source file of the

object module or the version number of the translator that created it.

Because the standard supports several layers each of which has its own

revision number an object module may contain several comment

commands which specify which revision of the standard has been used to

create the module. The contents of a comment is not prescribed by the

standard and thus it is implementation defined how a MUFOM process

handles a comment command.

CO_command ::= "CO" [comment_level]? "," comment_text "."

comment_level ::= hex_number

comment_text ::= char_string

IEEE–695 Object Format I–13

• • • • • • • •

The comment levels 0 - 6 are reserved to pass information about the

revision number of the layers in this standard.

The checksum command starts and checks the checksum calculation of an

object module.

5.3 SECTIONS

A section is the smallest unit of code or data that can be controlled

separately. Each section has a unique number which is introduced at the

first section begin (SB) command. The contents of a section may follow its

introduction. A section ends at the next SB command with a number

different from the current number. A section resumes at an SB command

with a number that has been introduced before.

5.3.1 SB COMMAND

SB_command ::= "SB" hex_number "."

The maximum number of sections in an object module is implementation

defined.

5.3.2 ST COMMAND

The ST command specifies the type of a section.

ST_command ::= "ST" section_number ["," section_type]*

["," section_name]? "."

section_type ::= letter

section_name ::= char_string

A section can be named or unnamed. If section_name is omitted a section

is unnamed. A section can be relocatable or absolute. If the section start

address is an absolute number the section is called absolute. If the section

start address is not yet known, the section is called relocatable. In

relocatable sections all addresses are specified relative to the relocation

base of that section. The relocation phase of the linker or locator may map

the relocation base of a section onto a fixed address.

Appendix II–14
IE
E
E
-
6
9
5

During linkage edition the section name and the section attributes identify

a section and thus the actions to be taken. If a section is defined in several

modules, the linkage editor must determine how to act on sections with

the same name. This can be either one of the following strategies:

• several sections are to be joined into a single one

• several sections are to be overlapped

• sections are not to coexist

A section type gives additional information to the linkage editor about the

section, which may be used to layout a section in memory. Section type

information is encoded with letters, which may be combined in one ST

command. Some combinations of letters are invalid or may be

meaningless.

letter meaning class explanation

A absolute access section has absolute address
assigned to corresponding L–variable

R read only access no write access to this section

W writable access section may be read and written

X executable access section contains executable code

Z zero page access if target has zero page or short
addressable page Z–section map into
it

Ynum addressing
mode

access section must be located in addressing
mode num

B blank access section must be initialized to ’0’
(cleared)

F not filled access section is not filled or cleared (scratch)

I initialize access section must be initialized in rom

E equal overlap if sections in two modules have
different length an error must be raised

M max overlap Use largest value as section size

U unique overlap The section name must be unique

C cumulative overlap Concatenate sections if they appear in
several modules. The section
alignment for partial section must be
preserved

IEEE–695 Object Format I–15

• • • • • • • •

explanation class meaningletter

O overlay overlap sections with the name name@func
must be combined to one section
name, according to the rules for func
obtained from the call graph

S separate overlap multiple sections can have the same
name and they may relocated at
unrelated addresses

N now when section is located before normal
sections (without N or P)

P postpone when section is located after normal
sections (without N or P)

Table I-1: Section types

5.3.3 SA COMMAND

SA_command ::= "SA" section_number "," [MAU_boundary]?

["," page_size]? ".'

MAU_boundary ::= expression

page_size ::= expression

The MAU boundary value forces the relocator to align a section on the

number of MAUs specified. If page_size is present the relocator checks

that the section does not exceed a page boundary limit when it is

relocated.

5.4 SYMBOLIC NAME DECLARATION AND TYPE

DEFINITION

5.4.1 NI COMMAND

The NI command defines an internal symbol. An internal symbol is visible

outside the module. Thus it may resolve an undefined external in another

module.

NI_command ::= "N" I_variable "," char_string "."

Appendix II–16
IE
E
E
-
6
9
5

The NI_command must precede any reference to the I_variable in a

module. There may not be more than one I_variable with the same name

or number.

5.4.2 NX COMMAND

The NX command defines an external symbol which is undefined in the

current module. The NX command must precede all occurrences of the

corresponding X variable.

NX_command ::= "N" X_variable "," char_string "."

The unresolved reference corresponding to an NX-command can be

resolved by an internal symbol definition (NI_command) in another

module.

5.4.3 NN COMMAND

The NN command defines a local name which may be used for defining a

name of a local symbol in a module or a name in a type definition.

A name defined with an NN command is not visible outside the scope of

the module. The NN command must precede all occurrences of the

corresponding N variable.

NN_command ::= "N" N_variable "," char_string "."

5.4.4 AT COMMAND

The attribute command may be used to define debugging related

information of a symbol, such as the symbol type number. Level 2 of the

standard does not prescribe the contents of the optional fields of the AT

command. The language dependent layer (level 3) describes how these

fields can be used to pass high-level symbol information with the AT

command.

AT_command ::= "AT" variable "," type_table_entry ["," lex_level

["," hex_number]*]? "."

variable ::= I_variable | N_variable | X_variable

IEEE–695 Object Format I–17

• • • • • • • •

type_table_entry ::= hex_number

lex_level ::= hex_number

The type_table entry is a type number introduced with a type command

(TY). References to type numbers in the AT command may precede the

definition of the type in the TY command.

The meaning of the lex_level field is defined at layer 3 or higher. The

same applies to the optional hex_number fields.

5.4.5 TY COMMAND

The TY-command defines a new type table entry. The type number

introduced by the type command can be seen as a reference index to this

type. The TY-command defines the relation between the newly

introduced type and other types that are defined in other places in the

object module. It also establishes a relation between a new type index and

symbols (N_variable).

TY_command ::= "TY" type_table_entry ["," parameter]+ "."

type_table_entry ::= hex_number

parameter ::= hex_number | N_variable | "T" type_table_entry

Level 2 does not define the semantics of the parameters. These are defined

at level 3, the language layer. A linkage editor which does not have

knowledge of the semantics of the parameter in a type command can still

perform type comparison: Two types are considered to compare equal

when the following conditions hold:

• both types have an equal number of parameters.

• the numeric values in the types are equal

• N_variables in both types have the same name

• the type entries referenced from both types compare equal

Variable N0 is supposed to compare equal to any other name.

Type table entry T0 is supposed to compare equal to any other type.

Appendix II–18
IE
E
E
-
6
9
5

5.5 VALUE ASSIGNMENT

5.5.1 AS COMMAND

The assignment command assigns a value to a variable.

AS_command ::= "AS" MUFOM_variable "," expression "."

5.6 LOADING COMMANDS

The contents of a section is either absolute data (code) or relocatable data

(code). Absolute data can be loaded with the LD command. The address

where loading takes place depends on the value of the P-variable

belonging to the section. Data which is contiguous in a LD command is

supposed to be loaded contiguously in memory.

If data is not absolute it contains expressions which must be evaluated by

the expression evaluator. The LR command allows a relocation expression

to be part of the loading command.

5.6.1 LD COMMAND

LD_command ::= "LD" [hex_digit]+ "."

The constants loaded with the LD command are loaded with the most

significant part first.

5.6.2 IR COMMAND

A relocation base is an expression which can be associated with a

relocation letter. This relocation letter can be used in subsequent load

relocate commands.

IR_command ::= "IR" relocation_letter "," relocation_base

["," number_of_bits]? "."

relocation_letter ::= nonhex_letter

relocation_base ::= expression

IEEE–695 Object Format I–19

• • • • • • • •

number_of_bits ::= expression

Example:

IRV,X20,16.
ITM,R2,40,+,8.

The number_of_bits must be less than or equal to the number of bits per

address, which is the product of the number of MAUs per address and the

number of bits per MAU, both of which are specified in the AD command.

If the number_of_bits is not specified it equals the number of bits per

address.

5.6.3 LR COMMAND

LR_command ::= "LR" [load_item]+ "."

load_item ::= relocation_letter offset "," | load_constant |

"(" expression ["," number_of_MAUs]? ")"

load_constant ::= [hex_digit]+

number_of_MAUs ::= expression

Examples:

LR002000400060.
LRT80,0020.
LR(R2,100,+,4).

The first example shows immediate constants which may be loaded as a

part of an LR command.

The second example shows the use of the relocation base defined in the

previous paragraph, followed by a constant.

The third example shows how the value of the expression R2 + 100 is

used to load 4 MAUs.

The three commands in this example may be combined into one LR

command:

LR002000400060T80,0020(R2,100,+,4).

Appendix II–20
IE
E
E
-
6
9
5

5.6.4 RE COMMAND

The replicate command defines the number of times a LR command must

be replicated:

RE_command ::= "RE" expression "."

The LR command must immediately follow the RE command.

Example:

RE04.
LR(R2,200,+,4).

The commands above load 16 MAUs: 4 times the 4 MAU value of R2 + 200

5.7 LINKAGE COMMANDS

5.7.1 RI COMMAND

The retain internal symbol command indicates that the symbolic

information of an NI command must be retained in the output file.

RI_command::= "R" I_variable ["," level_number]? "."

level_number ::= hex_number

5.7.2 WX COMMAND

The weak external command flags a previously defined external

(NX_command) as weak. This means that if the external remains

unresolved, the value of the expression in the WX command is assigned to

the X variable.

WX_command ::= "W" X_variable ["," default_value]? "."

default_value::= expression

IEEE–695 Object Format I–21

• • • • • • • •

5.7.3 LI COMMAND

The LI command specifies a default library search list. The library names

specified in the LI_command are searched for unresolved references.

LI_command ::= "LI" char_string ["," char_string]* "."

5.7.4 LX COMMAND

The LX command specifies a library to search for a named unresolved

variable.

LX_command ::= "L" X_variable ["," char_string]+ "."

The paragraphs above showed the commands and operators as ASCII

strings. In an object file they are binary encoded. The following tables

show the binary representation.

Appendix II–22
IE
E
E
-
6
9
5

6 MUFOM FUNCTIONS

The following table lists the first byte of MUFOM elements. Each value

between 0 and 255 classifies the MUFOM language element that follows,

or it is a language element itself. E.g. numbers outside the range 0-127 are

preceded by a length field: 0x82 specifies that a 2 byte integer follows.

0xE4 is the function code for the LR command.

Overview of first byte of MUFOM language elements

Value Description

0x00 – 0x7F Start of regular string, or one byte numbers ranging from 0 –
127

0x80 Code for omitted optional number field

0x81 – 0x88 Numbers outside the range 0 – 127

0x89 – 0x8F Unused

0x90 – 0xA0 User defined function codes

0xA0 – 0xBF MUFOM function codes

0xC0 Unused

0xC1 – 0xDA MUFOM letters

0xDB – 0xDF Unused

0xE0 – 0xF9 MUFOM commands

0xFA – 0xFF Unused

Table I-2: Overview of first byte of MUFOM language elements

Binary encoding of MUFOM letters and function codes

Function code Identifiers

Function code Letter code

@F 0xA0

@T 0xA1 A 0xC1

@ABS 0xA2 B 0xC2

@NEG 0xA3 C 0xC3

@NOT 0xA4 D 0xC4

+ 0xA5 E 0xC5

IEEE–695 Object Format I–23

• • • • • • • •

IdentifiersFunction code

codeLettercodeFunction

– 0xA6 F 0xC6

/ 0xA7 G 0xC7

* 0xA8 H 0xC8

@MAX 0xA9 I 0xC9

@MIN 0xAA J 0xCA

@MOD 0xAB K 0xCB

< 0xAC L 0xCC

> 0xAD M 0xCD

= 0xAE N 0xCE

!= <> 0xAF O 0xCF

@AND 0xB0 P 0xD0

@OR 0xB1 Q 0xD1

@XOR 0xB2 R 0xD2

@EXT 0xB3 S 0xD3

@INS 0xB4 T OxD4

@ERR 0xB5 U 0xD5

@IF 0xB6 V 0xD6

@ELSE 0xB7 W 0xD7

@END 0xB8 X 0xD8

@ISDEF 0xB9 Y 0xD9

Z 0xDA

Table I-3: Binary encoding of MUFOM letters and function codes

MUFOM Command codes

Command Code Description

MB 0xE0 Module begin

ME 0xE1 Module end

AS 0xE2 Assign

IR 0xE3 Inititialize relocation base

Appendix II–24
IE
E
E
-
6
9
5

DescriptionCodeCommand

LR 0xE4 Load with relocation

SB 0xE5 Section begin

ST 0xE6 Section type

SA 0xE7 Section alignment

NI 0xE8 Internal name

NX 0xE9 External name

CO 0xEA Comment

DT 0xEB Date and time

AD 0xEC Address description

LD 0xED Load

CS (with sum) 0xEE Checksum followed by sum value

CS 0xEF Checksum (reset sum to 0)

NN 0xF0 Name

AT 0xF1 Attribute

TY 0xF2 Type

RI 0xF3 Retain internal symbol

WX 0xF4 Weak external

LI 0xF5 Library search list

LX 0xF6 Library external

RE 0xF7 Replicate

SC 0xF8 Scope definition

LN 0xF9 Line number

0xFA Undefined

0xFB Undefined

0xFC Undefined

0xFD Undefined

0xFE Undefined

0xFF Undefined

Table I-4: MUFOM Command codes

J

MOTOROLA
S–RECORDS

A
P
P
E
N
D
I
X

Appendix JJ–2
M

O
T

O
R

O
L

A
 S

J

A
P
P
E
N
D
I
X

Motorola S–Records J–3

• • • • • • • •

With the -f2 option the locator produces output in Motorola S-record

format with three types of S-records: S0, S2 and S8. With the -f2S1 or

-f2S3 option you can force other types of S-records. They have the

following layout:

S0 - record

'S' '0' <length_byte> <2 bytes 0> <comment> <checksum_byte>

A locator generated S-record file starts with a S0 record with the following

contents:

length_byte : $17

comment : DSP563xx/6xx locator

checksum : $0A

 D S P 5 6 3 x x / 6 x x l o c a t o r
S017000044535035363378782F367878206C6F6361746F720A

The S0 record is a comment record and does not contain relevant

information for program execution.

The length_byte represents the number of bytes in the record, not

including the record type and length byte.

The checksum is calculated by first adding the binary representation of the

bytes following the record type (starting with the length_byte) to just

before the checksum. Then the one's complement is calculated of this

sum. The least significant byte of the result is the checksum. The sum of

all bytes following the record type is 0FFH.

S1 - record

With the -f2S1 option of the locator, the actual program code and data is

supplied with S1 records, with the following layout:

'S' '1' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 2-byte addresses.

Example:

S1130250F03EF04DF0ACE8A408A2A013EDFCDB00E6
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

Appendix JJ–4
M

O
T

O
R

O
L

A
 S

The locator has an option that controls the length of the output buffer for

generating S1 records. The default buffer length is 32 code bytes.

The checksum calculation of S1 records is identical to S0.

S2 - record

With the -f2S2 option of the locator, which is the default, the actual

program code and data is supplied with S2 records, with the following

layout:

'S' '2' <length_byte> <address> <code bytes> <checksum_byte>

For the DSP56xxx the locator generates 3-byte addresses.

Example:

S213FF002000232222754E00754F04AF4FAE4E22BF
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

The locator has an option that controls the length of the output buffer for

generating S2 records. The default buffer length is 32 code bytes.

The checksum calculation of S2 records is identical to S0.

S3 - record

With the -f2S3 option of the locator, the actual program code and data is

supplied with S3 records, with the following layout:

'S' '3' <length_byte> <address> <code bytes> <checksum_byte>

This record is used for 4-byte addresses.

Example:

S3070000FFFE6E6825
 | | | |_ checksum
 | | |_ code
 | |_ address
 |_ length

The locator has an option that controls the length of the output buffer for

generating S3 records.

Motorola S–Records J–5

• • • • • • • •

The checksum calculation of S3 records is identical to S0.

S7 - record

With the -f2S3 option of the locator, at the end of an S-record file, the

locator generates an S7 record, which contains the program start address.

S7 is the corresponding termination record for S3 records.

Layout:

'S' '7' <length_byte> <address> <checksum_byte>

Example:

S70500006E6824
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S7 records is identical to S0.

S8 - record

With the -f2S2 option of the locator, which is the default, at the end of an

S-record file, the locator generates an S8 record, which contains the

program start address.

Layout:

'S' '8' <length_byte> <address> <checksum_byte>

Example:

S804FF0003F9
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S8 records is identical to S0.

S9 - record

With the -f2S1 option of the locator, at the end of an S-record file, the

locator generates an S9 record, which contains the program start address.

S9 is the corresponding termination record for S1 records.

Layout:

'S' '9' <length_byte> <address> <checksum_byte>

Appendix JJ–6
M

O
T

O
R

O
L

A
 S

Example:

S9030210EA
 | | |_checksum
 | |_ address
 |_ length

The checksum calculation of S9 records is identical to S0.

K

INTEL HEX
RECORDS

A
P
P
E
N
D
I
X

Appendix KK–2
IN

T
E

L
 H

E
X

K

A
P
P
E
N
D
I
X

Intel Hex Records K–3

• • • • • • • •

Intel Hex records describe the hexadecimal object file format for 8-bit,

16-bit and 32-bit microprocessors. The hexadecimal object file is an ASCII

representation of an absolute binary object file. There are six different

types of records:

• Data Record (8-, 16, or 32-bit formats)

• End of File Record (8-, 16, or 32-bit formats)

• Extended Segment Address Record (16, or 32-bit formats)

• Start Segment Address Record (16, or 32-bit formats)

• Extended Linear Address Record (32-bit format only)

• Start Linear Address Record (32-bit format only)

For the DSP56xxx the locator generates records in the 32-bit format

(4-byte addresses).

General Record Format

In the output file, the record format is:

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

:

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

type

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

content

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Where:

: is the record header.

length is the record length which specifies the number of bytes of

the content field. This value occupies one byte (two

hexadecimal digits). The locator outputs records of 255 bytes

(32 hexadecimal digits) or less; that is, length is never greater

than FFH.

offset is the starting load offset specifying an absolute address in

memory where the data is to be located when loaded by a

tool. This field is two bytes long. This field is only used for

Data Records. In other records this field is coded as four

ASCII zero characters ('0000').

type is the record type. This value occupies one byte (two

hexadecimal digits). The record types are:

Appendix KK–4
IN

T
E

L
 H

E
X

Byte Type Record type

00 Data

01 End of File

02 Extended segment address (not used)

03 Start segment address (not used)

04 Extended linear address (32–bit)

05 Start linear address (32–bit)

content is the information contained in the record. This depends on

the record type.

checksum is the record checksum. The locator computes the checksum

by first adding the binary representation of the previous

bytes (from length to content). The locator then computes the

result of sum modulo 256 and subtracts the remainder from

256 (two's complement). Therefore, the sum of all bytes

following the header is zero.

Extended Linear Address Record

The Extended Linear Address Record specifies the two most significant

bytes (bits 16-31) of the absolute address of the first data byte in a

subsequent Data Record:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

02
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

upper_address
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

checksum

The 32-bit absolute address of a byte in a Data Record is calculated as:

(address + offset + index) modulo 4G

where:

address is the base address, where the two most significant bytes are

the upper_address and the two least significant bytes are

zero.

offset is the 16-bit offset from the Data Record.

index is the index of the data byte within the Data Record (0 for

the first byte).

Intel Hex Records K–5

• • • • • • • •

Example:

:0200000400FFFB
 | | | | |_ checksum
 | | | |_ upper_address
 | | |_ type
 | |_ offset
 |_ length

Data Record

The Data Record specifies the actual program code and data.

ÁÁÁ
ÁÁÁ
ÁÁÁ

:

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset

ÁÁÁ
ÁÁÁ
ÁÁÁ

00

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

data

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

The length byte specifies the number of data bytes. The locator has an

option that controls the length of the output buffer for generating Data

records. The default buffer length is 32 bytes.

The offset is the 16-bit starting load offset. Together with the address

specified in the Extended Address Record it specifies an absolute address

in memory where the data is to be located when loaded by a tool.

Example:

:0F00200000232222754E00754F04AF4FAE4E22C3
 | | | | |_ checksum
 | | | |_ data
 | | |_ type
 | |_ offset
 |_ length

Appendix KK–6
IN

T
E

L
 H

E
X

Start Linear Address Record

The Start Linear Address Record contains the 32-bit program execution

start address.

Layout:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁ
ÁÁÁ
ÁÁÁ

04
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ
ÁÁÁ

05
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

Example:

:0400000500FF0003F5
 | | | | |_ checksum
 | | | |_ address
 | | |_ type
 | |_ offset
 |_ length

End of File Record

The hexadecimal file always ends with the following end-of-file record:

:00000001FF
 | | | |_ checksum
 | | |_ type
 | |_ offset
 |_ length

INDEX
I
N
D
E
X

IndexIndex–2
IN
D
E
X

I
N
D
E
X

Index Index–3

• • • • • • • •

Symbols
.a extension, 10-26

.addr, G-33

.asm, file extension, 2-4

.break, 8-5

.continue, 8-6

.DEFAULT, 12-24

.DONE, 12-24

.dsc extension, 11-4

.elc extension, 11-29

.ers extension, 2-10

.for, 8-7

formatting, 8-16
.if, 8-8

.IGNORE, 12-24

.INIT, 12-24

.loop, 8-9

formatting, 8-16
.lst, file extension, 2-4

.obj file extension, 2-4

.out extension, 11-4

.PRECIOUS, 12-24

.repeat, 8-10

.SILENT, 12-24

.src, file extension, 2-4

.SUFFIXES, 12-24

.while, 8-11

#define, G-28

#elif, G-31

#endif, G-32

#if, G-31

#ifdef, G-31

#ifndef, G-31

#include, G-29

#undef, G-29

@ character, 3-5

\ character, 4-7

__lc_bh, G-54

__lc_bs, G-75

__lc_eh, G-54

__lc_es, G-75

_AS56, 5-8

A
action attribute, G-40

adding files to a project, 1-14

addition and subtraction, 5-15

addr, G-34

address, G-34

sorted ascending, 11-24
unsorted, 11-24

address mapping, G-8

address space, 11-30

definition, G-10
addressing mode, G-37

definition, G-11
addressing modes, 5-3

absolute, 5-4
address register indirect, 5-4
immediate, 5-4
register direct, 5-3
short jump, 5-4

align, assembler directive, 7-9

align keyword, G-36

align sections, G-36

alignment, G-40

amode, G-37

definition, G-11, G-24
manipulating sections, G-25

ar563, 1-4, 12-4

archiver, 12-4

arithmetic instructions, 9-3

arithmetic operators, 5-15

as563, 1-3

AS563INC, 2-15, 2-37

AS56INC, 2-15, 2-37

asse, G-39

assembler

absolute list file, 2-44
input files and output files, 2-4
invocation, 2-4
list file, 2-44
optimizations, 2-37
options summary, 2-5
page header, 2-45

IndexIndex–4
IN
D
E
X

source listing, 2-46
source listing optimizations, 2-49

assembler directives, F-4

.break, 8-5

.continue, 8-6

.for, 8-7

.if, 8-8

.loop, 8-9

.repeat, 8-10

.while, 8-11
align, 7-9
align cache, 7-9
assembly control, 7-4
baddr, 7-11
bsb, 7-12
bsc, 7-13
bsm, 7-14
buffer, 7-15
calls, 7-17
comment, 7-18
conditional assembly, 7-7
dc, 7-19
dcb, 7-21
debugging, 7-4
define, 7-23
ds, 7-24
dsm, 7-25
dsr, 7-27
dup, 7-29
dupa, 7-31
dupc, 7-33
dupf, 7-35
end, 7-37
endbuf, 7-38
endif, 7-39
endm, 7-40
endsec, 7-41
equ, 7-42
exitm, 7-43
extern, 7-44
fail, 7-45
force, 7-46
global, 7-47

gset, 7-48
ident, 7-6
if, 7-49
include, 7-50
list, 7-51
listing control, 7-6
local, 7-52
macro, 7-53
macros, 7-7
mode, 7-4
msg, 7-55
nolist, 7-56
object file control, 7-6
opt, 7-57
org, 7-64
overview, 7-3
page, 7-68
pmacro, 7-70
prctl, 7-71
radix, 7-72
scsjmp, 7-73
scsreg, 7-74
section, 7-75
set, 7-77
stitle, 7-78
structured programming, 7-7
symb, 7-79
symbol definition, 7-5
tabs, 7-80
title, 7-81
undef, 7-82
void, 7-83
warn, 7-84
xdef, 7-5
xref, 7-5

assembler options, 7-57

-?, 2-6
-c, 2-7
-D, 2-8
-e, 2-9
-err, 2-10
-f, 2-11
-g, 2-13

Index Index–5

• • • • • • • •

-I, 2-15
-Ja, 2-16
-Jr, 2-16
-L, 2-17
-l, 2-20
-M, 2-21
-m, 2-23
-O, 2-24
-o, 2-28
-R, 2-29
-S, 2-32
-t, 2-33
-V, 2-34
-v, 2-35
-w, 2-36

assembly file, Motorola compatible,

2-32

assembly listing, formatting, 8-17

assembly source file, 2-4

assert, G-39

attr, G-40

attribute, G-40

action, G-40
b, G-40
defaults, G-41
f, G-41
i, G-41
r, G-40
s, G-40
w, G-40
x, G-40
y, G-40

B
baddr, 7-11

batch files, 1-22

binary number, 5-6

binary operator, 5-14

bit manipulation instructions, 9-6

bitwise and operator, 5-17

bitwise not operator, 5-17

bitwise operators, 5-17

bitwise or operator, 5-17

bitwise xor operator, 5-17

block, G-43

contiguous, G-47
definition, G-20
overlay, G-64

branch mode, 2-16

absolute, 7-60
relative, 7-60

branch optimization, 2-24, 2-39

bsb, 7-12

bsc, 7-13

bsm, 7-14

buffer, 1-6

assembler directive, 7-15
buffer size, 11-24

bus, G-44

definition, G-13
byte_sel utility, 12-8

C
c563, 1-3

C563LIB, 10-14, 10-26

C56LIB, 10-14

call graph, 3-7, 10-3, 10-8, 10-31,

10-33, 12-36

calls, 7-17

case sensitivity, 10-7

cc563, 1-3, 12-9

CC563BIN, 12-14

CC563OPT, 12-14

CC56BIN, 12-14

CC56OPT, 12-14

character, 4-4

chip, definition, G-15

chips, G-45

CLAS, linking objects, 10-29

cluster

cleared sections, G-40
definition, G-23

IndexIndex–6
IN
D
E
X

executable sections, G-40
read-only, G-40
scratch sections, G-41
writable, G-40

cluster keyword, G-46

COFF, linking objects, 10-29

command file, 2-11, 10-12, 11-12,

12-11

command line processing, 2-11, 10-12,

11-12

comment, 4-6, 11-26

assembler directive, 7-18
condition code mnemonics, 8-13

conditional assembly, 6-13

conditional statements, G-31

const sections, force, 11-28

contiguous, G-47

continuation, 3-4

control program, 11-29, 12-9

control program options

-?, 12-10
-c, 12-11
-c++, 12-11
-cc, 12-11
-cl, 12-11
-clas, 12-13
-cs, 12-11
-f, 12-11
-ieee, 12-13
-ihex, 12-13
-M16, 12-10
-M24, 12-10
-M6, 12-10
-Mm, 12-10
-Mr, 12-10
-Ms, 12-10
-nolib, 12-13
-o, 12-13
-S, 12-10
-srec, 12-13
-T, 12-10
-tiof, 12-13
-tmp, 12-13

-V, 12-10
-v, 12-14
-v0, 12-14
-Wa, 12-11
-Wc, 12-11
-wc++, 12-14
-Wcp, 12-11
-Wlc, 12-11
-Wlk, 12-11
-Wpl, 12-11

copy, G-49

copy table, 11-39

cpu, G-50

creating a makefile, 1-15

cycle count, 2-33, 2-47

D
dc, 7-19

dcb, 7-21

debug, assembly level, 2-13

debug information, 12-43

debugger, starting, 1-13

debugging, 7-4

decimal, 5-6

define, assembler directive, 7-23

Delfee, 11-3, G-1

abbreviation of keywords, G-78
basic structure, G-3
comments, H-13
cpu part, G-6, H-3
description language, H-1
getting started, G-3
keyword reference, G-32
keyword summary, G-78
memory part, G-27, H-3
preprocessing, G-28
software part, G-17, H-7
syntax, H-1

description file, G-5

development flow, 1-5

Index Index–7

• • • • • • • •

directive, 4-4

directory separator, 10-26

division, 5-16

do loop, code duplication, 2-41

DO to REP optimization, 2-40

ds, 7-24

dsm, 7-25

dsr, 7-27

dst keyword, G-51

dummy argument string, 6-10

dup, 7-29

dupa, 7-31

dupc, 7-33

dupf, 7-35

dyadic functions, I-8

E
EDE, 1-7

build an application, 1-11
load files, 1-9
open a project, 1-9
select a CPU, 1-11
select a toolchain, 1-8
start a new project, 1-14
starting, 1-7

else, 12-18

embedded development environment.

See EDE

end, assembler directive, 7-37

endbuf, 7-38

endif, 7-39, 12-18

endm, 7-40

endsec, 7-41

environment variable

AS563INC, 2-15, 2-37
AS56INC, 2-15, 2-37
C563LIB, 10-14, 10-26
C56LIB, 10-14
CC563BIN, 12-14

CC563OPT, 12-14
CC56BIN, 12-14
CC56OPT, 12-14
HOME, 12-17
overview of, 1-18
TMPDIR, 1-19, 2-37, 12-14
used by control program, 12-14
used by tool chain, 1-18

equ, 7-42

equal operator, 5-17

error list file, 2-4

example

starting EDE, 1-7
using EDE, 1-7
using the control program, 1-15
using the makefile, 1-17

exit macro, 7-43

exitm, 7-43

expression evaluator, I-4

expression string, 5-7

expressions, 5-5, F-7

absolute, 5-5
compound, 8-15
condition code, 8-12
formatting, 8-16
operand comparison, 8-14
relocatable, 5-5
simple, 8-12
structured control statement, 8-12
type of, 5-8

extension, 1-21

.a, 1-21, 10-26

.abs, 1-21

.asm, 1-21

.dsc, 1-21

.ers, 2-10

.obj, 1-21, 2-4

.out, 1-21

.src, 1-21
extern, assembler directive, 7-44

external memory, G-16

IndexIndex–8
IN
D
E
X

external part, 12-38

F
F_lc_b_section, 11-35

F_lc_bh, 11-36

F_lc_bs, 11-37

F_lc_cb_section, 11-38

F_lc_ce_section, 11-38

F_lc_cp, 11-39

F_lc_e_section, 11-35

F_lc_eh, 11-36

F_lc_es, 11-37

F_lc_u_identifier, 11-40

F_lc_ub_identifier, 11-42

F_lc_ue_identifier, 11-42

fail, assembler directive, 7-45

file extensions, 1-21

file inclusion, G-29

fixed, G-52

floating point, 5-6

flow graph, 2-3

force, assembler directive, 7-46

format

.for/.loop, 8-16
assembly listing, 8-17
expression, 8-16
specifier, 11-24
statement, 8-16
suboptions, 11-24

forward reference, F-7

function, 5-19, F-3, F-7

abs, 5-22
acs, 5-22
arg, 5-22
as56, 5-22
asn, 5-23
assembler mode, 5-21
at2, 5-23
atn, 5-23
cel, 5-23

cnt, 5-23
coh, 5-24
conversion, 5-20
cos, 5-24
cvf, 5-24
cvi, 5-24
cvs, 5-24
def, 5-25
defmem, 5-25
detailed description, 5-22
dsp, 5-25
fld, 5-26
flr, 5-26
frc, 5-26
l10, 5-26
len, 5-27
lfr, 5-27
lng, 5-27
log, 5-27
lst, 5-27
lun, 5-28
mac, 5-28
macro, 5-21
mathematical, 5-19
max, 5-28
min, 5-28
model, 5-28
msp, 5-29
mxp, 5-29
pos, 5-30
pow, 5-30
result type, 5-10
rnd, 5-30
rvb, 5-30
scp, 5-30
sgn, 5-31
sin, 5-31
snh, 5-31
sqt, 5-31
stkmem, 5-32
string, 5-21
syntax, 5-19

Index Index–9

• • • • • • • •

tan, 5-32
tnh, 5-32
unf, 5-32
xpn, 5-33

function delimiter, 4-14

G
gap, G-53

generic moves, 2-40

global, assembler directive, 7-47

global symbol, 3-3

global type info, 12-40

gmove, 2-40

greater than operator, 5-17

greater than or equal operator, 5-17

gset, 7-48

H
heap, 11-36, G-54

hexadecimal, 5-6

HOME, 12-17

I
I/O short addressing, force operator,

4-18

ident, 7-6

identifier, 4-3

IEEE

archiver, 12-4
byte select, 12-8
command language concept, I-3
conditional expressions, I-10
expressions, I-5
notational conventions, I-5
order, 12-28
variables in object file, I-5

viewer, 12-30
if, assembler directive, 7-49

ifdef, 12-18

ifndef, 12-18

immediate addressing, 4-21

immediate long addressing, force

operator, 4-23

immediate short addressing, force

operator, 4-22

include, assembler directive, 7-50

include file, 2-15

incremental linking, 10-3

input specification, 4-3

instruction, 4-3

instruction set, 9-3

instructions

arithmetic, 9-3
bit manipulation, 9-6
logical, 9-5
loop, 9-6
move, 9-6
program control, 9-7

Intel hex, record type, K-3

invocation

assembler, 2-4
linker, 10-4
locator, 11-4

K
keyword

abbreviation of, G-78
amode, G-24
block, G-20
bus, G-13
chips, G-15
cluster, G-23
heap, 11-33
map, G-8
mem, G-10
selection, G-22

IndexIndex–10
IN
D
E
X

stack, 11-33
summary of, G-78

L
label, 4-3, G-55

local, 3-3
locator, 11-33

layout, G-17, G-57

definition, G-18
example, G-18

lc563, 1-4

leng, G-58

length, G-58

less than operator, 5-17

less than or equal operator, 5-17

level, mixed, 12-52

level 0, 12-51

level 1, 12-50

level option -ln, 12-50

library

linking, 10-28
position, 10-28
system, 10-26
user, 10-26

library maintainer, 12-4

library member, search algorithm,

10-29

library search path, 10-26

line continuation, 4-7

linker

invocation, 10-4
linking with libraries, 10-28
map file, 10-30
messages, 10-38
options summary, 10-5
output, 10-30

linker options

-?, 10-6
-C, 10-7
-c, 10-8

-d, 10-9
-e, 10-11
-err, 10-10
-f, 10-12
-H, 10-6
-L, 10-14
-l, 10-15
-M, 10-16
-m, 10-17
-N, 10-18
-O, 10-19
-o, 10-20
-r, 10-21
-t, 10-24
-u, 10-22
-V, 10-23
-v, 10-24
-w, 10-25

linking, incremental, 10-31

list, assembler directive, 7-51

list file, 2-4, 2-20, 2-44, 10-16

absolute, 2-44
removing lines from, 2-17

lk563, 1-3

load module, G-17

load_mod, G-17, G-59

local, assembler directive, 7-52

local label override, 6-11

local symbol, 3-3

location counter, 2-46, 4-15

locator

calling via control program, 11-29
defines, 11-27
error output file, 11-29
force const sections, 11-28
getting started, 11-25
invocation, 11-4
labels, 11-33
labels reference, 11-34
map file, 11-29
messages, 11-30
options summary, 11-4

Index Index–11

• • • • • • • •

output, 11-29
target board support, 11-27

locator options

-?, 11-5
-c, 11-6
-d, 11-8
-e, 11-9
-em, 11-10
-err, 11-11
-f, 11-12
-f format, 11-14
-H, 11-5
-M, 11-15
-o, 11-16
-p, 11-17
-r, 11-18
-S, 11-19
-s, 11-20
-V, 11-21
-v, 11-22
-w, 11-23

logical and, 5-18

logical instructions, 9-5

logical not, 5-18

logical operators, 5-18

logical or, 5-18

long addressing, force operator, 4-20

loop instructions, 9-6

M
macro, 4-4

argument concatenation, 4-7, 6-7
assembler directive, 7-53
call, 6-6
conditional assembly, 6-13
definition, 6-4
dummy argument operator, 6-7
dummy argument string, 6-10
dup directive, 6-12
local label override, 4-11, 6-11

return hex value operator, 6-9
return value operator, 6-8
string delimiter, 4-12

macro definition, G-28

macros

parameterless, G-28
user defined, G-28
with parameters, G-29

make utility, 1-4, 12-15

.DEFAULT target, 12-24

.DONE target, 12-24

.IGNORE target, 12-24

.INIT target, 12-24

.PRECIOUS target, 12-24

.SILENT target, 12-24

.SUFFIXES target, 12-24
comment lines, 12-18
conditional processing, 12-18
exist function, 12-22
export line, 12-18
functions, 12-21
ifdef, 12-18
implicit rules, 12-26
include line, 12-18
macro definition, 12-17
macro MAKE, 12-19
macro MAKEFLAGS, 12-20
macro PRODDIR, 12-20
macro SHELLCMD, 12-20
macro TMP_CCOPT, 12-20
macro TMP_CCPROG, 12-20
macros, 12-19
makefiles, 12-17
match function, 12-21
nexist function, 12-23
protect function, 12-22
rules in makefile, 12-25
separate function, 12-22
special macros, 12-19
special targets, 12-24
targets, 12-23

IndexIndex–12
IN
D
E
X

makefile, 12-15

automatic creation of, 1-15
updating, 1-15

map, Delfee keyword, G-8

map file, 10-30, 11-15

default basename, 10-19
locator, 11-29

map keyword, G-60

mask, 2-23

MAU, I-4

mau, G-61

mau (minimum addressable unit), G-9,

G-10

max, attribute, 3-6

mem, Delfee keyword, G-10

mem keyword, G-62

memory, G-63

external, G-16
layout, G-57
reserve, G-67
scratch, 12-49

memory space, 2-46, 5-12

memory space attribute, 5-12

messages

linker, 10-38
locator, 11-30

minimum addressable unit, G-61

minus operator, 5-15

mk563. See make utility

mode, 7-4

module, 3-3

symbols, 3-3
modulo, 5-16

modulo buffer, 7-15

monadic functions, I-8

move instructions, 9-6

move parallelization, 2-24, 2-39

backward, 2-25
forward, 2-25

msg, 7-55

MUFOM, I-3

AD command, I-12
AS command, I-18

AT command, I-16
checksum command, I-12
command codes, I-23
comment command, I-12
data types, I-7
DT command, I-11
first byte of language elements, I-22
function codes, I-22
functions, I-22
IR command, I-18
LD command, I-18
letters, I-22
LI command, I-21
loading commands, I-18
LR command, I-19
LX command, I-21
MB command, I-11
ME command, I-11
module level commands, I-11
NI command, I-15
NN command, I-16
NX command, I-16
processes, I-4
RE command, I-20
RI command, I-20
SA command, I-15
SB command, I-13
sections, I-13
ST command, I-13
TY command, I-17
value assignment, I-18
WX command, I-20

multiplication, 5-16

N
nolist, 7-56

nop removal, 2-24, 2-39

not equal operator, 5-17

number, 5-6

binary, 5-6

Index Index–13

• • • • • • • •

decimal, 5-6
floating point, 5-6
hexadecimal, 5-6

O
object file, 2-4

displaying parts of, 12-33
external part, 12-38

object layer, 12-49

object reader, 1-4, 12-30

display options, 12-32
file info, 12-33
global type info, 12-40
input control option, 12-30
options

-c, 12-36
-d, 12-43
-e, 12-38
-f file, 12-30
-g, 12-40
-h, 12-33
-i, 12-47
-ln, 12-50
-s, 12-34
-vn, 12-53

output control options, 12-32
section info, 12-34

one's complement, 5-17

operands, 5-3

operators, 5-14

precedence list, 5-14
opt, 7-57

optimization, 2-24, 2-37, F-8

branch, 2-39
do loop code duplication, 2-41
generic moves, 2-40
move parallelization, 2-39
move symbolic debug, 2-38
nop removal, 2-39
retain instruction order, 2-40
single DO to REP, 2-40

speed, 2-39
split parallel instructions, 2-40

options summary

assembler, 2-5
linker, 10-5
locator, 11-4

order of instructions, 2-40

order utility, 12-28

org, assembler directive, 7-64

output buffer size, 11-24

output file, 2-28, 10-17, 10-20, 11-16

output format, 11-14

overlay, 10-33

attribute, 3-6
overlay keyword, G-64

overlay sections, during locating, G-64

P
page, assembler directive, 7-68

parameterless macros, G-28

parentheses, 5-5

PC, batch files, 1-22

pipeline restrictions, 2-29

pipelining, 2-42

plus operator, 5-15

pmacro, 7-70

pool name, 3-7

pr563. See object reader

prctl, 7-71

predefined symbol, _AS56, 5-8

preprocessing, G-28

preprocessor directives

#define, G-28
#elif, G-31
#endif, G-32
#if, G-31
#ifdef, G-31
#ifndef, G-31
#include, G-29
#undef, G-29

procedures, 12-44

IndexIndex–14
IN
D
E
X

program control instructions, 9-7

program development, 1-4

project files, adding files, 1-14

prototype, 10-37

R
radix, 7-72

read-only sections, 11-18

registers, 4-24

regsfr, G-66

relational operators, 5-17

relocatable object file, 10-3

relocatable object module, 2-4

remove pipeline restrictions, 2-29

reserved, G-67

return hex value operator, 6-9

return value operator, 6-8

reverse-carry buffer, 7-15

S
scope, 3-9, 7-75

example, 3-9
symbol name, 3-11

scratch cluster, G-41

scripts, 1-23

scsjmp, 7-73

scsreg, 7-74

section, 3-4, 11-35, G-68

absolute, 3-7, 3-8
alignment, G-40
assembler directive, 7-75
attribute, 3-5
attributes, G-21
characteristics, G-21
continue, 7-66
declaration, 3-4
examples, 3-8
image, 12-47
manipulation, G-25

memory space, 3-5
name, 3-4
named, 3-8
overlay, 3-6, F-7
placing algorithm, G-26
re-activation, 3-7
scope, 3-9
selection, G-21

by attribute, G-22
by name, G-22
by special section, G-22
excluding, G-23

summary, 2-33
section scope, nesting, 7-76

selection, G-69

separator character, 10-26

set, assembler directive, 7-77

shift left operator, 5-16

shift operators, 5-16

shift right operator, 5-16

short addressing, force operator, 4-19

sign operators, 5-15

silicon mask, 2-23

size, G-70

software, G-71

software pipelining, 2-42

source line, removing from list file,

2-17

space, G-72

definition, G-10, G-19
generate code for, 11-19

speed optimization, 2-39

split parallel instructions, 2-40

src keyword, G-74

stack, 11-37, G-75

start, G-76

statement, 4-3

formatting, 8-16
stitle, 7-78

string, 5-7

concatenation, 4-16, 5-7
DEFINE expansion, 4-12
substring, 4-17, 5-7

Index Index–15

• • • • • • • •

structured control directive, 8-3

.break, 8-5

.continue, 8-6

.for, 8-7

.if, 8-8

.loop, 8-9

.repeat, 8-10

.while, 8-11
syntax, 8-4

structured control statement, F-7

expressions, 8-12
formatting, 8-16
registers, 8-18
syntax, 8-4

structured programming, 7-7

substring, 4-17, 5-7

symb, 7-79

symbol, 3-3, 5-8

global, 3-3
local, 3-3
predefined, 5-8

symbol character

return hex value, 4-10
return value, 4-9

symbolic debug, move, 2-38

symbols, 12-44

syntax, structured control statement,

8-4

syntax of an expression, 5-5

system libraries, 10-14, 10-15

T
table, G-77

tabs, assembler directive, 7-80

temporary files, 1-19, 12-14

TIOF, I-3

title, assembler directive, 7-81

TMPDIR, 1-19, 2-37, 12-14

toolchain, 1-4

type

basic, 12-41
mnemonic, 12-43

type checking, 10-34

between functions, 10-35
missing types, 10-37
recursive, 10-35

U
unary operator, 5-14

undef, assembler directive, 7-82

UNIX, scripts, 1-23

updating makefile, 1-15

user defined macros, G-28

utilities

ar563, 12-4
byte_sel, 12-8
cc563, 12-9
mk563, 12-15
order, 12-28
pr563, 12-30

V
verbose, 2-35, 10-24, 11-22

verbose option, linker, 10-29

verbose option -vn, 12-53

version information, 2-34, 10-23,

11-21

void, assembler directive, 7-83

W
warn, 7-84

IndexIndex–16
IN
D
E
X

warnings (suppress), 2-36, 10-25,

11-23

X
xdef, 7-5

xref, 7-5

	TABLE OF CONTENTS
	OVERVIEW
	Introduction
	DSP56xxx Family Program Development
	Definition of Terms
	Basic Assembly, Linking and Locating of a DSP56xxx Program
	Using EDE
	Using the Control Program
	Using the Makefile

	Environment Variables
	Temporary Files
	Debugging with CrossView Pro
	File Extensions
	Preprocessing
	Assembler Listing
	Errors and Warnings
	Command Line Processing
	Batch Files
	UNIX Scripts

	ASSEMBLER
	Description
	Invocation
	Detailed Description of Assembler Options
	Environment Variables
	Optimizations
	Introduction
	Move Symbolic Debug Information
	Move Parallelization
	Branch Optimization
	NOP Removal
	Optimize for Speed
	Single Instruction DO Loops to REP
	Split Parallel Instructions
	Retain Instruction Order
	Generic Moves
	DO Loop Code Duplication
	Software Pipelining

	List File
	Absolute List File Generation
	Page Header
	Source Listing
	Optimizations in Source Listing

	SOFTWARE CONCEPT
	Introduction
	Modules
	Modules and Symbols

	Sections
	Section Names
	Absolute Sections
	Section Examples

	Scopes
	Scope Example
	Scopes and Symbol Names

	ASSEMBLY LANGUAGE
	Input Specification
	Assembler Significant Characters
	Registers

	OPERANDS AND EXPRESSIONS
	Operands
	Operands and Addressing Modes

	Expressions
	Number
	Expression String
	Symbol
	Expression Type
	Memory Spaces
	Example

	Operators
	Addition and Subtraction
	Sign Operators
	Multiplication and Division
	Shift Operators
	Relational Operators
	Bitwise Operators
	Logical Operators

	Functions
	Mathematical Functions
	Conversion Functions
	String Functions
	Macro Functions
	Assembler Mode Functions
	Detailed Description

	MACRO OPERATIONS
	Introduction
	Macro Operations
	Macro Definition
	Macro Calls
	Dummy Argument Operators
	Dummy Argument Concatenation Operator - \
	Return Value Operator - ?
	Return Hex Value Operator - %
	Dummy Argument String Operator - "
	Macro Local Label Override Operator - ^

	DUP, DUPA, DUPC, DUPF Directives
	Conditional Assembly

	ASSEMBLER DIRECTIVES
	Overview
	Debugging
	Assembly Control
	Symbol Definition
	Data Definition/Storage Allocation
	Listing Control and Options
	Object File Control
	Macros and Conditional Assembly
	Structured Programming

	Directives

	STRUCTURED CONTROL STATEMENTS
	Introduction
	Structured Control Directives
	Syntax
	.BREAK Statement
	.CONTINUE Statement
	.FOR Statement
	.IF Statement
	.LOOP Statement
	.REPEAT Statement
	.WHILE Statement

	Simple and Compound Expressions
	Simple Expressions
	Condition Code Expressions
	Operand Comparison Expressions

	Compound Expressions

	Statement Formatting
	Expression Formatting
	.FOR/.LOOP Formatting
	Assembly Listing Format

	Effects on the Programmer's Environment

	INSTRUCTION SET
	Introduction
	The Instruction Set
	Arithmetic Instructions
	Logical Instructions
	Bit Manipulation Instructions
	Loop Instructions
	Move Instructions
	Program Control Instructions

	LINKER
	Overview
	Linker Invocation
	Detailed Description of Linker Options

	Libraries
	Library Search Path
	Linking with Libraries
	Library Member Search Algorithm

	Linking CLAS COFF Objects
	Linker Output
	Overlay Sections
	Type Checking
	Introduction
	Recursive Type Checking
	Type Checking between Functions
	Missing Types

	Linker Messages

	LOCATOR
	Overview
	Invocation
	Detailed Description of Locator Options
	Format Suboptions

	Getting Started
	Locator Target Board Support
	Force Const Sections
	Calling the Locator via the Control Program
	Locator Output
	Locator Messages
	Address Space
	Locator Labels
	Locator Labels Reference

	UTILITIES
	Overview
	ar563
	byte_sel
	cc563
	mk563
	order
	pr563
	Preparing the Demo Files
	Displaying Parts of an Object File
	Option -h, display general file info
	Option -s, display section info
	Option -c, display call graphs
	Option -e, display external part
	Option -g, display global type information
	Option -d, display debug information
	Option -i, display the section images

	Viewing an Object at Lower Level
	Object Layers
	The Level Option -ln
	The Verbose Option -vn

	ASSEMBLER ERROR MESSAGES
	Introduction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)

	LINKER ERROR MESSAGES
	Introduction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)
	Verbose (V)

	LOCATOR ERROR MESSAGES
	Introcuction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)
	Verbose (V)

	ARCHIVER ERROR MESSAGES
	Introduction
	Warnings (W)
	Errors (E)
	Fatal Errors (F)

	EMBEDDED ENVIRONMENT ERROR MESSAGES
	Introduction
	Errors (E)
	Warnings (W)

	MIGRATION FROM MOTOROLA CLAS
	Introduction
	Absolute and Relative Mode
	Object Format
	Assembler Directives
	Unsupported Directives
	Changed Directives
	New Directives

	Structured Control Statements
	Sections and Overlaying
	Assembler Functions
	Expressions
	Forward References
	Optimizations

	DESCRIPTIVE LANGUAGE FOR EMBEDDED ENVIRONMENTS
	Introduction
	Getting Started
	Introduction
	Basic Structure

	CPU Part
	Introduction
	Address Translation: map and mem
	Address Spaces
	Addressing Modes
	Busses
	Chips
	External Memory

	Software Part
	Introduction
	Load Module
	Layout Description
	Space Definition
	Block Definition
	Selecting Sections
	Cluster Definition
	Amode Definition
	Manipulating Sections in Amodes
	Section Placing Algorithm

	Memory Part
	Introduction

	Delfee Preprocessing
	Introduction
	User Defined Macros
	File Inclusion
	Conditional Statements

	Delfee Keyword Reference
	Abbreviation of Delfee Keywords
	Delfee Keywords Summary

	DELFEE SYNTAX
	IEEE-695 OBJECT FORMAT
	TIOF and IEEE-695
	Command Language Concept
	Notational Conventions
	Expressions
	Functions without Operands
	Monadic Functions
	Dyadic Functions and Operators
	MUFOM Variables
	@INS and @EXT Operator
	Conditional Expressions

	MUFOM Commands
	Module Level Commands
	MB Command
	ME Command
	DT Command
	AD Command

	Comment and Checksum Command
	Sections
	SB Command
	ST Command
	SA Command

	Symbolic Name Declaration and Type Definition
	NI Command
	NX Command
	NN Command
	AT Command
	TY Command

	Value Assignment
	AS Command

	Loading Commands
	LD Command
	IR Command
	LR Command
	RE Command

	Linkage Commands
	RI Command
	WX Command
	LI Command
	LX Command

	MUFOM Functions

	MOTOROLA S-RECORDS
	INTEL HEX RECORDS
	INDEX

