
MA039–002–00–00
Doc. ver.: 1.24

DSP56xxx v3.6

C CROSS–COMPILER
USER’S GUIDE

A publication of

Altium BV

Documentation Department

Copyright 2008 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

SOFTWARE INSTALLATION 1-1

1.1 Introduction 1-3.

1.2 Installation for Windows 1-3.

1.2.1 Setting the Environment 1-3.

1.3 Installation for Linux 1-5.

1.3.1 RPM Installation 1-5.

1.3.2 Debian Installation 1-6.

1.3.3 Tar.gz Installation 1-7.

1.3.4 Setting the Environment 1-7.

1.4 Installation for UNIX Hosts 1-8.

1.4.1 Setting the Environment 1-9.

1.5 Licensing TASKING Products 1-10.

1.5.1 Obtaining License Information 1-10.

1.5.2 Installing Node-Locked Licenses 1-11.

1.5.3 Installing Floating Licenses 1-12.

1.5.4 Starting the License Daemon 1-14.

1.5.5 Setting Up the License Daemon to Run Automatically 1-15.

1.5.6 Modifying the License File Location 1-16.

1.5.7 How to Determine the Hostid 1-17.

1.5.8 How to Determine the Hostname 1-18.

OVERVIEW 2-1

2.1 Introduction to DSP56xxx Family C Cross-Compiler 2-3. .

2.2 General Implementation 2-5.

2.2.1 Compiler Phases 2-5.

2.2.2 Frontend Optimizations 2-6.

2.2.3 Backend Optimizations 2-8.

2.2.4 Specific Optimizations 2-9.

2.2.4.1 Replacing NOPs 2-10.

2.2.4.2 Instruction Parallelization (parallel moves) 2-10.

2.2.4.3 Hardware DO and REP Loops 2-10.

2.2.4.4 Bitfields 2-14.

2.2.4.5 MAC Instruction Generation 2-14.

2.2.4.6 Absolute Addressing Mode Usage 2-14.

Table of ContentsVI
C
O
N
T
E
N
T
S

2.3 Compiler Structure 2-15.

2.4 Environment Variables 2-19.

2.5 Sample Session 2-21.

2.5.1 Using EDE 2-21.

2.5.2 Using the Control Program 2-29.

2.5.3 Using the Makefile 2-31.

LANGUAGE IMPLEMENTATION 3-1

3.1 Introduction 3-3.

3.2 Accessing Memory 3-4.

3.2.1 Storage Specifiers 3-5.

3.2.2 Memory Models 3-8.

3.2.2.1 16 and 24-bit Models for DSP563xx 3-9.

3.2.2.2 DSP566xx Memory Model 3-9.

3.2.2.3 Static Model for DSP5600x 3-9.

3.2.2.4 Mixed Model for DSP5600x 3-11.

3.2.2.5 DSP5600x Static and Mixed Model Limitations 3-11.

3.2.2.6 Reentrant Model 3-12.

3.2.2.7 _MODEL, _DSP, _DEFMEM and _STKMEM 3-13.

3.2.3 The _at() Attribute 3-14.

3.3 Data Types 3-15.

3.3.1 The Fractional Data Type 3-17.

3.3.2 The Complex Data Type 3-18.

3.3.3 Unsigned Characters 3-19.

3.3.4 ANSI C Type Conversions 3-19.

3.3.5 Memory Mapped Registers 3-21.

3.4 Automatic Variables 3-23.

3.5 Register Variables 3-24.

3.6 Initialized Variables 3-25.

3.7 Type Qualifier volatile 3-25.

3.8 Strings 3-26.

3.9 Pointers 3-27.

3.10 Integer Division and Modulo 3-27.

3.11 Inline C Functions 3-29.

Table of Contents VII

• • • • • • • •

3.12 Inline Assembly 3-31.

3.12.1 Using the _asm Intrinsic Function 3-31.

3.12.2 Using the __asm Intrinsic Function 3-32.

3.12.3 Using Inline Assembly Pragmas 3-40.

3.12.4 Linking with Separate Assembly Routines 3-41.

3.13 Intrinsic Functions 3-42.

3.14 Interrupts 3-68.

3.15 Circular Buffers 3-70.

3.16 DSP563xx Cache Support 3-72.

3.16.1 Cache Alignment 3-72.

3.16.2 Cache Regions 3-73.

3.16.3 Cache Intrinsic Functions 3-73.

3.16.4 Examples 3-74.

3.17 Patriot Bank Switching Support 3-75.

3.18 Packed Strings 3-77.

3.18.1 Library Functions 3-77.

3.18.2 Pragmas 3-78.

3.18.3 Examples 3-78.

3.19 Structure Tags 3-80.

3.20 Typedef 3-80.

3.21 Switch Statement 3-81.

3.22 Portable C Code 3-82.

3.23 Efficient Use of the DSP56xxx Tool Set 3-83.

3.23.1 Char and Short Types 3-83.

3.23.2 Unsigned 3-83.

3.23.3 Hardware Loops 3-83.

3.23.4 Speed vs. Size 3-86.

3.23.5 Assembly Interfacing 3-86.

3.23.6 Selecting the Most Efficient Model 3-87.

3.23.7 Memory Mapped I/O from C 3-87.

3.23.8 Parallel Moves 3-88.

3.23.9 Shifting Fractional Data 3-88.

3.23.10 Dynamic Scaling 3-89.

3.23.11 Reviewing the Optimized Code 3-89.

3.23.12 Integer and Fractional Types 3-90.

Table of ContentsVIII
C
O
N
T
E
N
T
S

3.23.13 Interrupt Routines 3-93.

COMPILER USE 4-1

4.1 Control Program 4-3.

4.2 Compilers 4-6.

4.2.1 Detailed Description of the Compiler Options 4-10.

4.3 Include Files 4-83.

4.4 Pragmas 4-86.

4.5 Alias Checking 4-91.

4.6 Compiler Limits 4-93.

COMPILER DIAGNOSTICS 5-1

5.1 Introduction 5-3.

5.2 Return Values 5-4.

5.3 Errors and Warnings 5-5.

LIBRARIES 6-1

6.1 Introduction 6-3.

6.2 Rebuilding Libraries 6-4.

6.3 Libraries Overview 6-5.

6.4 Input/Output Functions 6-6.

6.5 Header Files 6-7.

6.6 C Libraries 6-8.

6.6.1 C Library Implementation Details 6-8.

6.6.2 C Library Interface Description 6-14.

6.6.3 Printf and Scanf Formatting Routines 6-67.

6.7 Run-time Library 6-68.

6.8 Floating Point Library 6-69.

Table of Contents IX

• • • • • • • •

RUN-TIME ENVIRONMENT 7-1

7.1 Startup Code 7-3.

7.2 Register Usage 7-6.

7.3 Calling Conventions 7-7.

7.4 Section Usage 7-10.

7.5 Compiler Hardware Environment 7-12.

7.5.1 Operating Mode Register 7-12.

7.5.2 Status Register 7-12.

7.5.3 Other Registers 7-14.

7.6 Stack 7-15.

7.6.1 Stack Extension 7-17.

7.7 Heap 7-19.

7.8 Floating Point 7-20.

7.8.1 Software Floating Point Implementation 7-20.

7.8.1.1 Characteristics of Floating Types 7-20.

7.8.1.2 Floating Point Constants 7-20.

7.8.1.3 Usual Arithmetic Conversions 7-20.

7.8.1.4 Single Precision Floating Point Format 7-21.

7.8.1.5 Single Precision Floating Point Number Range 7-23.

7.8.1.6 Comparison to IEEE-754 Standard for

Binary Floating Point Arithmetic 7-24.

7.8.1.7 Single Precision Floating Point Memory Usage 7-26.

7.8.2 Software Floating Point Interfacing 7-26.

7.8.2.1 The Basic Floating Point Operations 7-26.

7.8.2.2 The Floating Point Accumulators 7-28.

7.8.2.3 Storage 2-Complement Format Values 7-29.

7.8.2.4 Internal Register Usage 7-29.

7.8.3 Floating Point Code Generation 7-31.

SUPPORT FOR USER-DESIGNED TARGET BOARDS 8-1

Table of ContentsX
C
O
N
T
E
N
T
S

FLEXIBLE LICENSE MANAGER (FLEXlm) A-1

1 Introduction A-3.

2 License Administration A-3.

2.1 Overview A-3.

2.2 Providing For Uninterrupted FLEXlm Operation A-5.

2.3 Daemon Options File A-7.

3 License Administration Tools A-8.

3.1 lmcksum A-10.

3.2 lmdiag (Windows only) A-11.

3.3 lmdown A-12.

3.4 lmgrd A-13.

3.5 lmhostid A-15.

3.6 lmremove A-16.

3.7 lmreread A-17.

3.8 lmstat A-18.

3.9 lmswitchr (Windows only) A-20.

3.10 lmver A-21.

3.11 License Administration Tools for Windows A-22.

3.11.1 LMTOOLS for Windows A-22.

3.11.2 FLEXlm License Manager for Windows A-23.

4 The Daemon Log File A-25.

4.1 Informational Messages A-26.

4.2 Configuration Problem Messages A-29.

4.3 Daemon Software Error Messages A-31.

5 FLEXlm License Errors A-33.

6 Frequently Asked Questions (FAQs) A-37.

6.1 License File Questions A-37.

6.2 FLEXlm Version A-37.

6.3 Windows Questions A-38.

6.4 TASKING Questions A-39.

6.5 Using FLEXlm for Floating Licenses A-41.

Table of Contents XI

• • • • • • • •

MOTOROLA COMPATABILITY B-1

1 Introduction B-3.

2 Creating a Motorola COFF Object File B-3.

3 Using Library Functions B-6.

4 Linking Motorola CLAS/COFF B-7.

5 Running Examples from EDE B-8.

INDEX

Table of ContentsXII
C
O
N
T
E
N
T
S

Manual Purpose and Structure XIII

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the TASKING DSP5600x, DSP563xx and

DSP566xx Family C Cross-Compiler. It assumes that you are familiar with

the C language.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Software Installation

Describes the installation of the C Cross-Compiler for the DSP56xxx

family of processors.

2. Overview

Provides an overview of the TASKING DSP56xxx Family toolchain and

gives you some familiarity with the different parts of it and their

relationship. A sample session explains how to build a DSP56xxx

application from your C file.

3. Language Implementation

Concentrates on the approach of the DSP56xxx architecture and

describes the language implementation. The C language itself is not

described in this document. We recommend: "The C Programming

Language" (second edition) by B. Kernighan and D. Ritchie (1988,

Prentice Hall).

4. Compiler Use

Deals with control program and C compiler invocation, command line

options and pragmas.

5. Compiler Diagnostics

Describes the exit status and error/warning messages of the compilers.

6. Libraries

Contains the library functions supported by the compilers and

describes their interface and 'header' files.

Manual Purpose and StructureXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

7. Run-time Environment

Describes the run-time environment for a DSP56xxx C application. It

deals with items like assembly language interfacing, C startup code and

stack/heap size.

8. Support for User-designed Target Boards

Contains the steps you have to take to support user-designed target

boards.

APPENDICES

A. Flexible License Manager (FLEXlm)

Contains a description of the Flexible License Manager.

B. Motorola Compatibility

Describes the interoperability between the TASKING and Motorola tool sets.
It describes how to create a Motorola CLAS COFF object file and how to
link CLAS/COFF object files and libraries.

INDEX

Manual Purpose and Structure XV

• • • • • • • •

RELATED PUBLICATIONS

C Standards

• The C Programming Language (second edition) by B. Kernighan and D.

Ritchie (1988, Prentice Hall)

• ANSI X3.159-1989 standard [ANSI]

TASKING Tools

• DSP56xxx Cross-Assembler, Linker/Locator, Utilities User's Guide

[TASKING, MA039-000-00-00]

• DSP56xxx CrossView Pro Debugger User's Guide

[TASKING, MA039-049-00-00]

Core Reference Manuals

• DSP56000 Digital Signal Processor Family Manual [Motorola, Inc.]

• DSP560xx Digital Signal Processor User's Manual [Motorola, Inc.]

• DSP56300 24-Bit Digital Signal Processor Family Manual

[Motorola, Inc.]

• DSP563xx 24-Bit Digital Signal Processor User's Manual

[Motorola, Inc.]

• DSP56L307 24-Bit Digital Signal Processor User's Manual

[Motorola, Inc.]

• DSP56600 Digital Signal Processor Family Manual [Motorola, Inc.]

• DSP5660x Digital Signal Processor User's Manual [Motorola, Inc.]

• DSP56652 Baseband Digital Signal Processor User's Manual

[Motorola, Inc.]

• DSP56654 Baseband Digital Signal Processor User's Manual

[Motorola, Inc.]

Manual Purpose and StructureXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{ } Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

screen font Represents input examples and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

This is a warning. Read the information carefully.

Manual Purpose and Structure XVII

• • • • • • • •

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

Manual Purpose and StructureXVIII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

1

SOFTWARE
INSTALLATION

C
H

A
P

T
E

R

Chapter 11–2
IN
S
T
A
L
L
A
T
IO
N

1

C
H

A
P

T
E

R

Software Installation 1–3

• • • • • • • •

1.1 INTRODUCTION

This chapter describes how you can install the TASKING C Cross-Compiler

for the DSP56xxx Family (DSP563xx/DSP566xx, DSP5600x) on Windows

95/98/XP/NT/2000 and several UNIX hosts.

1.2 INSTALLATION FOR WINDOWS

1. Start Windows 95/98/XP/NT/2000, if you have not already done so.

2. Insert the CD-ROM into the CD-ROM drive.

If the TASKING Showroom dialog box appears, proceed with Step 5.

3. Click the Start button and select Run...

4. In the dialog box type d:\setup (substitute the correct drive letter for

your CD-ROM drive) and click on the OK button.

The TASKING Showroom dialog box appears.

5. Select a product and click on the Install button.

6. Follow the instructions that appear on your screen.

You can find your serial number on the Start-up kit envelope, delivered

with the product.

7. License the software product as explained in section 1.5, Licensing
TASKING Products.

1.2.1 SETTING THE ENVIRONMENT

After you have installed the software, you can set some environment

variables to make invocation of the tools easier. When you are using EDE

all settings are configurable from within EDE. A list of all environment

variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have

just installed, when you invoke the tools from a command prompt. If you

installed the software under c:\c56 , you can include the executable

directory c:\c56\bin in your search path.

Chapter 11–4
IN
S
T
A
L
L
A
T
IO
N

For the DSP563xx/DSP566xx family the default installation path is \c563 .

In EDE, select the Project | Directories... menu item. Add one or

more executable directory paths to the Executable Files Path field.

The environment variable TMPDIR can be used to specify a directory

where programs can place temporary files. The DSP5600x compiler uses

the environment variable C56INC to search for include files. Use C563INC

for the DSP563xx/DSP566xx family. An example of setting this variable is

given below.

See also the section Include Files in the chapter Compiler Use.

Example Windows 95/98

Add the following line to your autoexec.bat file.

set C563INC=c:\c563\include

You can also type this line in a Command Prompt window but you will

loose this setting after you close the window.

Example Windows NT

1. Rright-click on the My Computer icon on your desktop and select

Properties .

The System Properties dialog appears.

2. Select the Environment tab.

3. In the Variable edit field enter:

C563INC

4. In the Value edit field enter:

c:\c563\include

5. Click on the Set button, then click OK.

Example Windows XP/2000

1. Rright-click on the My Computer icon on your desktop and select

Properties .

The System Properties dialog appears.

Software Installation 1–5

• • • • • • • •

2. Select the Advanced tab.

3. Click on the Environment Variables button.

The Environment Variables dialog appears.

4. In the System variables field, click on the New button.

The New System Variable dialog appears.

5. In the Variable name field enter:

C563INC

6. In the Variable value field enter:

c:\c563\include

7. Click on the OK button to accept the changes and close the dialogs.

1.3 INSTALLATION FOR LINUX

Each product on the CD-ROM is available as an RPM package, Debian

package and as a gzipped tar file. For each product the following files are

present:

SWproduct –version –RPMrelease .i386.rpm
swproduct _version –release _i386.deb
SWproduct –version .tar.gz

These three files contain exactly the same information, so you only have

to install one of them. When your Linux distribution supports RPM

packages, you can install the .rpm file. For a Debian based distribution,

you can use the .deb file. Otherwise, you can install the product from the

.tar.gz file.

1.3.1 RPM INSTALLATION

1. In most situations you have to be "root" to install RPM packages, so either

login as "root", or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom . See the Linux manual pages about mount

for details.

Chapter 11–6
IN
S
T
A
L
L
A
T
IO
N

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install or upgrade all products at once, issue the following command:

rpm –U SW*.rpm

This will install or upgrade all products in the default installation directory

/usr/local . Every RPM package will create a single directory in the

installation directory.

The RPM packages are 'relocatable', so it is possible to select a different

installation directory with the ––prefix option. For instance when you

want to install the products in /opt , use the following command:

rpm –U ––prefix /opt SW*.rpm

For Red Hat 6.0 users: The ––prefix option does not work with RPM

version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to

RPM verion 3.0.3 or higher, or use the .tar.gz file installation described

in the next section if you want to install in a non-standard directory.

1.3.2 DEBIAN INSTALLATION

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom . See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install or upgrade all products at once, issue the following command:

dpkg –i sw*.deb

This will install or upgrade all products in a subdirectory of the default

installation directory /usr/local .

Software Installation 1–7

• • • • • • • •

1.3.3 TAR.GZ INSTALLATION

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom . See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install the products from the .tar.gz files in the directory

/usr/local , issue the following command for each product:

tar xzf SW product –version .tar.gz –C /usr/local

Every .tar.gz file creates a single directory in the directory where it is

extracted.

1.3.4 SETTING THE ENVIRONMENT

After you have installed the software, you can set some environment

variables to make invocation of the tools easier. A list of all environment

variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have

just installed.

The environment variable TMPDIR can be used to specify a directory

where programs can place temporary files.

Chapter 11–8
IN
S
T
A
L
L
A
T
IO
N

1.4 INSTALLATION FOR UNIX HOSTS

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

If you are a first time user, decide where you want to install the product.

By default it will be installed in /usr/local .

2. Insert the CD-ROM into the CD-ROM drive and mount the CD-ROM on a

directory, for example /cdrom .

Be sure to use an ISO 9660 file system with Rock Ridge extensions

enabled. See the UNIX manual pages about mount for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. Run the installation script:

sh install

Follow the instructions appearing on your screen.

First a question appears about where to install the software. The default

answer is / usr/local . On certain sites you may want to select another

location.

On some hosts the installation script asks if you want to install SW000098,

the Flexible License Manager (FLEXlm). If you do not already have FLEXlm

on your system, you must install it; otherwise the product will not work on

those hosts. See section 1.5, Licensing TASKING Products.

If the script detects that the software has been installed before, the

following messages appear on the screen:

 *** WARNING ***
SWxxxxxx xxxx . xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the

following message being displayed:

=> Installation stopped on user request <=

Software Installation 1–9

• • • • • • • •

Answering y (yes) to this question causes installation to continue. And the

final message will be:

Installation of SW xxxxxx xxxx . xxxx completed.

For the DSP563xx/DSP566xx the directory c563 will be created. For the

DSP5600x this directory will be c56 .

5. If you purchased a protected TASKING product, license the software

product as explained in section 1.5, Licensing TASKING Products.

1.4.1 SETTING THE ENVIRONMENT

After you have installed the software, you can set some environment

variables to make invocation of the tools easier. A list of all environment

variables used by the toolchain is present in the section Environment
Variables in the chapter Overview.

Make sure that your path is set to include all of the executables you have

just installed.

The environment variable TMPDIR can be used to specify a directory

where programs can place temporary files.

Chapter 11–10
IN
S
T
A
L
L
A
T
IO
N

1.5 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software

(FLEXlm). To use a TASKING product, you must install the licensing

information provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a

floating license. When you order a TASKING product determine which

type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the

product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among

users at one site. This license type does not lock the software to one

specific PC or workstation but it requires a network. The software can then

be used on any computer in the network. The license specifies the

number of users who can use the software simultaneously. A system

allocating floating licenses is called a license server. A license manager

running on the license server keeps track of the number of users.

See the Flexible License Manager (FLEXlm) appendix for detailed

information on FLEXlm.

1.5.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License

Information Form" containing the license information for your software

product. If you have not received such a form follow the steps below to

obtain one. Otherwise, you can install the license.

Node-locked license (PC only)

1. If you need a node-locked license, you must determine the hostid of the

computer where you will be using the product. See section 1.5.7, How to
Determine the Hostid.

Software Installation 1–11

• • • • • • • •

2. When you order a TASKING product, provide the hostid to your local

TASKING sales representative. The License Information Form which

contains your license key information will be sent to you with the software

product.

Floating license

1. If you need a floating license, you must determine the hostid and

hostname of the computer where you want to use the license manager.

Also decide how many users will be using the product. See section 1.5.7,

How to Determine the Hostid and section 1.5.8, How to Determine the
Hostname.

2. When you order a TASKING product, provide the hostid, hostname and

number of users to your local TASKING sales representative. The License

Information Form which contains your license key information will be sent

to you with the software product.

1.5.2 INSTALLING NODE-LOCKED LICENSES

Keep your "License Information Form" ready. If you do not have such a

form read section 1.5.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure

described in section 1.2, Installation for Windows.

Step 2

Create a file called "license.dat " in the c:\flexlm directory, using an

ASCII editor and insert the license information contained in the "License

Information Form" in this file. This file is called the "license file". If the

directory c:\flexlm does not exist, create the directory.

If you wish to install the license file in a different directory, see section

1.5.6, Modifying the License File Location.

If you already have a license file, add the license information to the

existing license file. If the license file already contains any SERVER lines,

you must use another license file. See section 1.5.6, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

Chapter 11–12
IN
S
T
A
L
L
A
T
IO
N

See the Flexible License Manager (FLEXlm) appendix for more information

on FLEXlm.

1.5.3 INSTALLING FLOATING LICENSES

Keep your "License Information Form" ready. If you do not have such a

form read section 1.5.1, Obtaining License Information, before continuing.

Step 1

Install the TASKING software product following the installation procedure

described earlier in this chapter on the computer or workstation where

you will use the software product.

As a result of this installation two additional files for FLEXlm will be

present in the flexlm subdirectory of the toolchain:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

Step 2

If you already have installed FLEXlm v6.1 or higher for Windows or v2.4

or higher for UNIX (for example as part of another product) you can skip

this step and continue with step 3. Otherwise, install SW000098, the

Flexible License Manager (FLEXlm), on the license server where you want

to use the license manager.

The installation of the license manager on Windows also sets up the

license daemon to run automatically whenever a license server reboots.

On UNIX you have to perform the steps as described in section 1.5.5,

Setting Up the License Deaemon to Run Automatically.

It is not recommended to run a license manager on a Windows 95 or

Windows 98 machine. Use Windows NT instead (or UNIX).

Step 3

If FLEXlm has already been installed as part of a non-TASKING product

you have to make sure that the bin directory of the FLEXlm product

contains a copy of the Tasking daemon (see step 1).

Software Installation 1–13

• • • • • • • •

Step 4

Insert the license information contained in the "License Information Form"

in the license file, which is being used by the license server. This file is

usually called license.dat . The default location of the license file is in

directory c:\flexlm for Windows and in

/usr/local/flexlm/licenses for UNIX.

If you wish to install the license file in a different directory, see section

1.5.6, Modifying the License File Location.

If the license file does not exist, you have to create it using an ASCII

editor. You can use the license file license.dat from the toolchain's

flexlm subdirectory as a template.

If you already have a license file, add the license information to the

existing license file. If the SERVER lines in the license file are the same as

the SERVER lines in the License Information Form, you do not need to add

this same information again. If the SERVER lines are not the same, you

must use another license file. See section 1.5.6, Modifying the License File
Location, for additional information.

Step 5

On each PC or workstation where you will use the TASKING software

product the location of the license file must be known. If it differs from

the default location (c:\flexlm\license.dat for Windows,

/usr/local/flexlm/licenses/license.dat for UNIX), then you

must set the environment variable LM_LICENSE_FILE. See section 1.5.6,

Modifying the License File Location, for more information.

Step 6

Now all license infomation is entered, the license manager must be started

(see section section 1.5.4). Or, if it is already running you must notify the

license manager that the license file has changed by entering the

command (located in the flexlm bin directory):

lmreread

On Windows you can also use the graphical FLEXlm Tools (lmtools): Start

lmtools (if you have used the defaults this can be done by selecting

Start | Programs | TASKING FLEXlm | FLEXlm Tools), fill in the

current license file location if this field is empty, click on the Reread
button and then on OK. Another option is to reboot your PC.

Chapter 11–14
IN
S
T
A
L
L
A
T
IO
N

The software product and license file are now properly installed.

Where to go from here?

The license manager (daemon) must always be up and running. Read

section 1.5.4 on how to start the daemon and read section 1.5.5 for

information how to set up the license daemon to run automatically.

If the license manager is running, you can now start using the TASKING

product.

See the Flexible License Manager (FLEXlm) appendix for detailed

information on FLEXlm.

1.5.4 STARTING THE LICENSE DAEMON

The license manager (daemon) must always be up and running. To start

the daemon complete the following steps on each license server:

Windows

1. Start the license manager tool by (Start | Programs | TASKING
FLEXlm | FLEXlm License Manager).

2. In the Control tab, click on the Start button.

3. Close the program by clicking on the OK button.

UNIX

1. Log in as the operating system administrator (usually root).

2. Change to the FLEXlm installation directory (default

/usr/local/flexlm):

cd /usr/local/flexlm

3. For C shell users, start the license daemon by typing the following:

bin/lmgrd –2 –p –c licenses/license.dat >>& \
 /var/tmp/license.log &

Software Installation 1–15

• • • • • • • •

Or, for Bourne shell users, start the license daemon by typing the

following:

bin/lmgrd –2 –p –c licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

In these two commands, the -2 and -p options restrict the use of the

lmdown and lmremove license administration tools to the license

administrator. You omit these options if you want. Refer to the usage of

lmgrd in the Flexible License Manager (FLEXlm) appendix for more

information.

1.5.5 SETTING UP THE LICENSE DAEMON TO RUN

AUTOMATICALLY

To set up the license daemon so that it runs automatically whenever a

license server reboots, follow the instructions below that are approrpiate

for your platform. steps on each license server:

Windows

1. Start the license manager tool by (Start | Programs | TASKING
FLEXlm | FLEXlm License Manager).

2. In the Setup tab, enable the Start Server at Power–Up check box.

3. Close the program by clicking on the OK button. If a question appears,

answer Yes to save your settings.

UNIX

In performing any of the procedures below, keep in mind the following:

• Before you edit any system file, make a backup copy.

SunOS4

1. Log in as the operating system administrator (usually root).

2. Append the following lines to the file /etc/rc.local . Replace

FLEXLMDIR by the FLEXlm installation directory (default

/usr/local/flexlm):

FLEXLMDIR/ bin/lmgrd –2 –p –c FLEXLMDIR/licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

Chapter 11–16
IN
S
T
A
L
L
A
T
IO
N

SunOS5 (Solaris 2)

1. Log in as the operating system administrator (usually root).

2. In the directory /etc/init.d create a file named rc.lmgrd with the

following contents. Replace FLEXLMDIR by the FLEXlm installation

directory (default /usr/local/flexlm):

#!/bin/sh
FLEXLMDIR/ bin/lmgrd –2 –p –c FLEXLMDIR/licenses/license.dat >> \
 /var/tmp/license.log 2>&1 &

3. Make it exacutable:

chmod u+x rc.lmgrd

4. Create an 'S' link in the /etc/rc3.d directory to this file and create 'K'

links in the other /etc/rc?.d directories:

ln /etc/init.d/rc.lmgrd /etc/rc3.d/S numrc.lmgrd
ln /etc/init.d/rc.lmgrd /etc/rc?.d/K numrc.lmgrd

num must be an approriate sequence number. Refer to you operating

system documentation for more information.

1.5.6 MODIFYING THE LICENSE FILE LOCATION

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If you want to use another name or directory for the license file, each user

must define the environment variable LM_LICENSE_FILE. Do this in

autoexec.bat (Windows 95/98), from the Control Panel –> System
| Environment (Windows NT) or in a UNIX login script.

If you have more than one product using the FLEXlm license manager you

can specify multiple license files to the LM_LICENSE_FILE environment

variable by separating each pathname (lfpath) with a ';' (on UNIX also ':'):

Example Windows:

set LM_LICENSE_FILE=c:\flexlm\license.dat;c:\license.txt

Software Installation 1–17

• • • • • • • •

Example UNIX:

setenv LM_LICENSE_FILE
/usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set

LM_LICENSE_FILE to port@host; where host is the host name of the

system which runs the FLEXlm license manager and port is the TCP/IP port

number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting

with "SERVER". The fourth field on this line specifies the TCP/IP port

number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See the Flexible License Manager (FLEXlm) appendix for detailed

information.

1.5.7 HOW TO DETERMINE THE HOSTID

The hostid depends on the platform of the machine. Please use one of the

methods listed below to determine the hostid.

Platform Tool to retrieve hostid Example hostid

SunOS/Solaris hostid 170a3472

Windows tkhostid

(or use lmhostid)

0800200055327

Table 1-1: Determine the hostid

If you do not have the program tkhostid you can download it from our

Web site at: http://www.tasking.com/support/flexlm/tkhostid.zip . It is also

on every product CD that includes FLEXlm.

Chapter 11–18
IN
S
T
A
L
L
A
T
IO
N

1.5.8 HOW TO DETERMINE THE HOSTNAME

To retrieve the hostname of a machine, use one of the following methods.

Platform Method

SunOS/Solaris hostname

Windows 95/98 Go to the Control Panel, open ”Network”, click on
”Identification”. Look for ”Computer name”.

Windows NT Go to the Control Panel, open ”Network”. In the
”Identification” tab look for ”Computer Name”.

Table 1-2: Determine the hostname

2

OVERVIEW
C

H
A

P
T

E
R

Chapter 22–2
O
V
E
R
V
IE
W

2

C
H

A
P

T
E

R

Overview 2–3

• • • • • • • •

2.1 INTRODUCTION TO DSP56XXX FAMILY C

CROSS-COMPILER

This manual provides a functional description of the TASKING DSP56xxx

Family C Cross-Compiler. This manual uses c563 (the name of the binary)

as a shorthand notation for "TASKING DSP563xx/DSP566xx C Compiler",

and uses c56 as a shorthand notation for "TASKING DSP5600x C

Compiler".

TASKING offers a complete toolchain for the Motorola DSP56xxx Family of

Digital Signal Processors (DSPs) and their derivatives. The DSP563xx

(24-bit), the DSP566xx (16-bit), the DSP5600x (24-bit) family are

supported. This manual uses 'DSP5600x' to indicate the derivatives that

have a '0' in the third position (e.g. DSP56002), 'DSP563xx' for those that

have a '3' in the third position (e.g. DSP56366) and 'DSP566xx' along the

same lines. In this manual all core versions are treated identical unless

implementation differences require otherwise. 'DSP56xxx' is used as a

shorthand notation for the Motorola DSP56xxx Family of Digital Signal

Processors (DSPs) and their derivatives. The toolchain contains a C++

compiler, a C compiler, an assembler, a linker, a locator, a control

program, a make utility, a library maintainer, an object reader utility and a

debugger.

The C compilers are dedicated to the DSP architecture of the DSP56xxx.

This means that you can access all special features of the DSP56xxx in C.

And yet the C compiler conforms to the ANSI standard. It is a single pass,

optimizing compiler that generates fast and compact code.

c563 generates assembly source code using the DSP563xx or DSP566xx

assembly language specification. You must assemble this code with the

TASKING DSP563xx Cross-Assembler. This manual uses as563 as a

shorthand notation for "TASKING DSP563xx/DSP566xx Cross-Assembler".

c56 generates assembly source code using the DSP5600x assembly

language specification. You must assemble this code with the TASKING

DSP5600x Cross-Assembler. This manual uses as56 as a shorthand

notation for "TASKING DSP5600x Cross-Assembler".

Chapter 22–4
O
V
E
R
V
IE
W

You can link the generated object with other objects and libraries using

the TASKING DSP563xx/DSP566xx linker. In this manual we use lk563 as

a shorthand notation for "TASKING DSP563xx/DSP566xx linker". You can

also link Motorola COFF objects and libraries with lk563. You can locate

the linked object to a complete application using the TASKING

DSP563xx/DSP566xx locator. In this manual we use lc563 as a shorthand

notation for "TASKING DSP563xx/DSP566xx locator". Use lk56 and lc56

for the DSP5600x linker and locator.

The DSP56xxx toolchain also accepts C++ source files. C++ source files or

sources using C++ language features need to be preprocessed by cp563

(DSP563xx/DSP566xx), cp56 (DSP5600x). The output generated by cp563

is DSP563xx or DSP566xx C, which can be translated with the C compiler

c563. The output generated by cp56 is DSP5600x C, which can be

translated with the C compiler c56.

Note that the C++ compilers are not part of the C compiler package. They

can be ordered separately from TASKING.

The programs cc56, and cc563 are control programs for the DPS5600x,

and DSP563xx/DSP566xx respectively. The control program facilitates the

invocation of various components of the DSP56xxx toolchain. cc563

recognizes several filename extensions. C++ source files (.cc , .cxx or

.cpp) are passed to the C++ compiler. C source files (.c) are passed to

the compiler. Assembly sources (.asm or .src) are passed to the

assembler. Relocatable object files (.obj) and libraries (.a) are recognized

as linker input files. Files with extension .out and .dsc are treated as

locator input files. The control program supports options to stop at any

stage in the compilation process and has options to produce and retain

intermediate files.

You can debug the software written in C with the TASKING CrossView Pro

high-level language debugger. A list of supported platforms and emulators

is available from TASKING.

In this manual c563, as563, lk563, lc563, cc563, mk563, ar563 and

pr563 are used to indicate the executables of both DSP56xxx toolchains,

unless explicitly stated otherwise.

Overview 2–5

• • • • • • • •

2.2 GENERAL IMPLEMENTATION

This section describes the different phases of the compiler and the target

independent optimizations.

2.2.1 COMPILER PHASES

During the compilation of a C program, a number of phases can be

identified. These phases are divided into two groups, referred to as

frontend and backend.

frontend:

The preprocessor phase:

File inclusion and macro substitution are done by the preprocessor

before parsing of the C program starts. The syntax of the macro

preprocessor is independent of the C syntax, but also described in the

ANSI X3.159-1989 standard.

The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs

a syntactic and semantic analysis of the program, and generates an

intermediate representation of the program.

The frontend optimization phase:

Target processor independent optimization is performed by

transforming the intermediate code. The next section discusses the

frontend optimizations.

backend:

The backend optimization phase:

Performs target processor specific optimizations. Very often this means

another transformation of the intermediate code and actions like

register allocation techniques for variables, expression evaluation and

the best usage of the addressing modes. The chapter Language
Implementation discusses this item in more detail.

Chapter 22–6
O
V
E
R
V
IE
W

The code generator phase:

This phase converts the intermediate code to an internal instruction

code, representing the DSP56xxx assembly instructions.

The peephole optimizer / pipeline scheduler phase:

This phase uses pattern matching techniques to perform peephole

optimizations on the internal code (e.g. deleting obsolete moves). The

pipeline scheduler reorders and combines instructions to minimize the

number of instructions. Finally the peephole optimizer translates the

internal instruction code into assembly code for as563. The generated

assembly does not contain any macros. The assembler is also equiped

with an optimizer. This optimizer takes care of move parallelization,

NOP removal and DO/REP optimization.

All phases (of both frontend and backend) of the compiler are combined

into one program. The compiler does not use intermediate files for

communication between the different phases of compilation. The backend

part is not called for each C statement, but starts after a complete C

function has been processed by the frontend (in memory), thus allowing

more optimization. The compiler only requires one pass over the input

file, resulting in relatively fast compilation.

2.2.2 FRONTEND OPTIMIZATIONS

The command line option -O controls the amount of optimization applied

on the C source. Within a source file, the pragma #pragma optimize
sets the optimization level of the compiler. Using the pragma, certain

optimizations can be switched on or off for a particular part of the

program. Several optimizations cannot be controlled individually, for

example, constant folding will always be done.

The compiler performs the following optimizations on the intermediate

code. They are independent of the target processor and the code

generation strategy:

Constant folding

Expressions only involving constants are replaced by their result.

Expression rearrangement

Expressions are rearranged to allow more constant folding. E.g. 1+ (x–3)
is transformed into x + (1–3) , which can be folded.

Overview 2–7

• • • • • • • •

Expression simplification

Multiplication by 0 or 1 and additions or subtractions of 0 are removed.

Such useless expressions may be introduced by macros, or by the

compiler itself (e.g., array subscription).

Logical expression optimization

Expressions involving '&&', '||' and '!' are interpreted and translated into a

series of conditional jumps.

Loop rotation

With for and while loops, the expression is evaluated once at the 'top'

and then at the 'bottom' of the loop. This optimization does not save code,

but speeds up execution.

Switch optimization

A number of optimizations of a switch statement are performed, such as

the deletion of redundant case labels or even the deletion of the switch.

Control flow optimization

By reversing jump conditions and moving code, the number of jump

instructions is minimized. This reduces both the code size and the

execution time.

Jump chaining

A conditional or unconditional jump to a label which is immediately

followed by an unconditional jump may be replaced by a jump to the

destination label of the second jump. This optimization does not save

code, but speeds up execution.

Remove useless jumps

An unconditional jump to a label directly following the jump is removed.

A conditional jump to such a label is replaced by an evaluation of the

jump condition. The evaluation is necessary because it may have side

effects.

Conditional jump reversal

A conditional jump over an unconditional jump is transformed into one

conditional jump with the jump condition reversed. This reduces both the

code size and the execution time.

Chapter 22–8
O
V
E
R
V
IE
W

Cross jumping and branch tail merging

Identical code sequences in two different execution paths are merged

when this is possible without adding extra instructions. This transformation

decreases code size rather than execution time, but under certain

circumstances it avoids the execution of one jump.

Constant/copy propagation

A reference to a variable with known contents is replaced by those

contents.

Common subexpression elimination

The compiler has the ability to detect repeated uses of the same (sub-)

expression. Such a "common" expression may be temporarily saved to

avoid recomputation. This method is called common subexpression
elimination, abbreviated CSE.

Dead code elimination

Unreachable code can be removed from the intermediate code without

affecting the program. However, the compiler generates a warning

message, because the unreachable code may be the result of a coding

error.

Loop optimization

Invariant expressions may be moved out of a loop and expressions

involving an index variable may be reduced in strength.

2.2.3 BACKEND OPTIMIZATIONS

The following optimizations are target dependent and are therefore

performed by the backend.

Allocation graph

Variables, parameters, intermediate results and common subexpressions

are represented in allocation units. Per function, the compiler builds a

graph of allocation units which indicates which units are needed and

when. This allows the register allocator to get the most efficient

occupation of the available registers. The compiler uses the allocation

graph to generate the assembly code.

Overview 2–9

• • • • • • • •

Peephole optimizations

The generated assembly code is improved by replacing instruction

sequences by equivalent but faster and/or shorter sequences, or by

deleting unnecessary instructions.

Leaf function handling

Leaf functions (function not calling other functions), are handled specially

with respect to stack frame building.

Loop unrolling

Try to duplicate a loop body 2, 4 or 8 times to reduce the number of

branches and to create a longer linear code part. This optimization is only

performed when hardware loops are not possible.

Dead store elimination

Expressions from which the result is never used are eliminated.

Hardware loop generation

Where possible replace loops in the program by the zero-overhead

hardware loop supported by the DSP.

Register contents tracking

Improving generated assembly code by replacing operands, e.g. replace an

immediate value with a register that contains that value already.

2.2.4 SPECIFIC OPTIMIZATIONS

Besides the common optimizations, some special optimizations are

performed. These optimizations are specific for each DSP56xxx family. The

compiler supports an optimization method that allows instruction

re-ordering and parallelization of instructions.

Chapter 22–10
O
V
E
R
V
IE
W

2.2.4.1 REPLACING NOPS

In some cases the contents of an address register are not available in the

next instruction due to pipeline effects. In such cases, the compiler

generates a NOP instruction. The assembler tries to replace these NOPs

with other instructions when possible. The compiler enables the NOP

optimization of the assembler by generating an OPT directive in the

assembly source.

2.2.4.2 INSTRUCTION PARALLELIZATION (PARALLEL

MOVES)

In general, one or two moves can be performed together with an

arithmetic instruction, which are called 'parallel moves'. The parallel

moves are restricted by the addressing mode used, and not all arithmetic

instructions can have all possible parallel moves. In this manual a place

where a parallel move can be performed is called a 'move slot'. If there is

an arithmetic instruction without a parallel move, you can see this as an

'empty move slot'.

The compiler does not generate parallel moves. So, all move slots are

empty. The assembler tries to fill up the move slots as efficiently as

possible. The compiler enables the parallel move optimization of the

assembler by generating an OPT directive in the assembly source.

2.2.4.3 HARDWARE DO AND REP LOOPS

Typical DSP applications often processes data in loops. The available

hardware loop instruction supports fast loops. It is important to have a

compiler that generates loops as fast as possible, by making use of the

hardware loop instructions and by making use of the parallel move

capability of the DSP. The actual hardware DO to REP optimization is

performed by the assembler. See also the section Optimizations of the

chapter Assembler in the DSP56xxx Cross-Assembler User's Guide.

Overview 2–11

• • • • • • • •

Take for instance the next C fragment:

_fract fir_filter(_fract data[], _fract _Y coef[])
{
 long _fract result; int i;

 result = 0.0;
 for (i = 0; i < 100; i++)
 {
 result += data[i] * (long _fract) coef[i];
 }
 return _round(result);
}

The loop is recognized as a simple loop and the array references are

interpreted as post increment pointers. The code will be internally

rewritten by the compiler as:

result = 0.0;
tmp1 = data;
tmp2 = coef;
for (i = 0; i < 100; i++)
{
 result += *tmp1++ * *tmp2++;
}

Because of the very powerful addressing modes of the DSP families the

pointer dereference and the auto-increment are easy to implement. The

index i is not used anymore and will be optimized away. The compiler

generates assembly code similar to the following code (the last column

gives the code size in words and the execution time in clock cycles):

 clr a ; Clear result 1,1
 do #100,L5 ; Hardware do loop 2,5
 move x:(r0)+,x0 ; Get an element of ’data’ 1,1*
 move y:(r4)+,y0 ; Get an element of ’coef’ 1,1*
 mac x0,y0,a ; Multiply and accumulate 1,1*
L5: void x0, y0, r0, r4 ; End of loop, indicate registers
 ; unused after loop
 rnd a ; Round result 1,1
 rts ; Return it 1,3

Chapter 22–12
O
V
E
R
V
IE
W

This results in a loop time of only 3 clock cycles! (The instructions within

the loop are marked with an '*' after the size/timing figures.) But, the

empty move slot(s) are not yet used. The problem is that X0 and Y0 must

be known at the start of the mac instruction. It is possible to retrieve these

values after the mac instruction for the next loop incarnation if the first

values are obtained before the loop:

 clr a ; Clear result 1,1
 move x:(r0)+,x0 ; Get first element of ’data’ 1,1
 move y:(r4)+,y0 ; Get first element of ’coef’ 1,1
 do #100,L5 ; Hardware do loop 2,5
 mac x0,y0,a ; Multiply and accumulate 1,1*
 move x:(r0)+,x0 ; Get next element of ’data’ 1,1*
 move y:(r4)+,y0 ; Get next element of ’coef’ 1,1*
L5: void x0, y0, r0, r4 ; End of loop, indicate registers
 ; unused after loop
 rnd a ; Round result 1,1
 rts ; Return it 1,3

At first sight, this code is not better. However, after applying the

optimization of the assembler to put instructions in parallel, the result

becomes:

 clr a x:(r0)+,x0 y:(r4)+,y0 ; Clear result, 1,1
 ; prime loop
 do #100,L5 ; Hardware do loop 2,5
 mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; Multiply and 1,1*
 ; accumulate, and get
 ; next elements of ’data’
L5: ; and ‘coef’
 rnd a ; Round result 1,1
 rts ; Return it 1,3

In this final result, the loop time is one instruction cycle, the absolute

minimum. The hardware loop instruction 'do' can be replaced by a 'rep'

because there is only one instruction left within the loop.

The optimization of DO to REP loops can be controlled with the -OR/-Or

command line option of the compiler. This option can also be used with

the #pragma optimize to turn the optimization on or off for some code

parts.

Example:

#pragma optimize R /* turn DO to REP optim off */
for(...)/* some loop */

#pragma optimize r /* turn DO to REP optim on */

Overview 2–13

• • • • • • • •

The compiler will not use a hardware loop when:

• the loop conditions cannot be evaluated in DO/REP instructions

• a function call is detected inside the loop, unless hardware stack

extension is active

• the allocated hardware stack space is exhausted

When one of these criteria is met the compiler generates loops that consist

of branch and jump instructions, which make it possible to do some

optimizations not possible on hardware DO loops.

The nesting depth of hardware DO loops can be controlled with the -L

command line option as each loop takes two hardware stack loads.

Counting the nesting is restricted to one function level. Unless hardware

stack extension is enabled, loops containing a function call will not be

implemented as hardware loops. The compiler cannot determine the

hardware stack use of the called function and must avoid exhausting it..

When the stack depth is exceeded, the compiler will not generate

hardware DO loops for the highest levels.

Example:

The compiler is called as follows:

c563 –L4 example.c

The code in example.c is:

for(...) /* depth 1 –> no hardware DO loop */
{
 for(...) /* depth 2 –> hardware DO loop */
 { /* stack level 2 */
 for(...) /* depth 3 –> hardware DO loop */
 { /* stack level 4 */
 ...
 }
 }
}

Chapter 22–14
O
V
E
R
V
IE
W

2.2.4.4 BITFIELDS

The DSP56xxx instruction set contains several instructions to do fast

operations on a single bit. The c563 C compiler will use these functions

for operations on bitfields.

Example:

struct {
 unsigned int b :1;
 } a;
a.b = 1;

Generated code:

 .
 .
 bset #0,x:Fa
 .
 .

Where Fa is the start address of the structure.

2.2.4.5 MAC INSTRUCTION GENERATION

The compiler will generate the multiply-accumulate instructions for

multiplications whenever possible and useful. See section 2.2.4.3,

Hardware DO and REP Loops, for an example.

2.2.4.6 ABSOLUTE ADDRESSING MODE USAGE

For accessing static and global objects the compiler will use absolute

addressing modes whenever possible. When the object is defined as

_near (see section Storage Specifiers) the compiler will use short

addressing modes when the used instruction has such an addressing

mode.

Overview 2–15

• • • • • • • •

2.3 COMPILER STRUCTURE

If you want to build a DSP56xxx application you need to invoke the

following programs directly, or via the control program:

• One of the C compilers (c56 or c563), will generate an assembly

source file from the file with suffix .c . The suffix of the compiler

output file is .src . However, you can direct the output to stdout
with the -n option, or to another file with the -o option. C source

lines can be intermixed with the generated assembly statements

with the -s option. High level language debugging information can

be generated with the -g option. You are advised not to use the -g

option when inspecting the generated assembly source code,

because it contains a lot of 'unreadable' high level language debug

directives. The C compilers make only one pass on every file. This

pass checks the syntax, generates the code and performs code

optimization.

• One of the corresponding cross-assemblers (as563, as56), which

process the generated assembly source file into a relocatable object

file with suffix .obj .

• The lk563 linker (lk56 for DSP5600x), which links the generated

relocatable object files and C libraries. The result is a relocatable

object file with suffix .out . A linker map file with suffix .lnl is

available after this stage.

• The lc563 locator (lc56 for DSP5600x), which locates the generated

relocatable object files. The result is an absolute loadable file with

suffix .abs . A full application map file with suffix .map is available

after this stage.

You can directly load the output file of the locator with extension .abs
into the CrossView Pro debugger.

The next figure explains the relationship between the different parts of the

TASKING DSP563xx toolchain:

Chapter 22–16
O
V
E
R
V
IE
W

assembly file
.src

assembler
as563

relocatable object

incremental
linker lk563

locator
lc563

.out

High level language

CrossV iew xfw56x

library maintainer
ar563

C++ compiler
cp563

C++ source file
.cc

relocatable object
.a

module .obj

locator description

linker map file

locator map file
.map

.lnl

debugger

library

object reader
pr563

DSP56xxx

control
program

CLAS object file

C compiler
c563

C source file
.c

C preprocessor
&

list file .lst

Motorola S–record
object file

.sre

IEEE–695 absolute
object file

.abs

Execution

cc563

.cln

CLAS absolute
object file

.cld

Environment

.dscfile

CLAS assembly file
.asm

Intel Hex
object file

.hex

.ic

(no debug info)

linker object file

Figure 2-1: DSP563xx development flow

For the DSP5600x toolchain, each executable name ends in '56'.

Overview 2–17

• • • • • • • •

The next figure explains the relationship between the different parts of the

TASKING DSP563xx toolchain and the Motorola toolchain. This path is

active when the -S option of cc563 is used, or when the tool set with

Motorola tools is selected in EDE.

assembly file
.src

assembler
as563

C++ compiler
cp563

C++ source file
.cc

CLAS object file

C compiler
c563

C source file
.c

C preprocessor
&

.cln

CLAS absolute
object file

.cld

.asm

.ic

Motorola
assembler
asm56300

Motorola
linker

dsplnk

ads56300
Execution

Environment

assembly file
Motorola

(with debug info)

Figure 2-2: Motorola toolchain connection

Chapter 22–18
O
V
E
R
V
IE
W

The program cc563 is a so-called control program, which facilitates the

invocation of various components of the DSP56xxx toolchain. C++ source

programs are compiled by the C++ compiler, C source programs are

compiled by the compiler, assembly source files are passed to the

assembler. A C preprocessor program is available as an integrated part of

the C compiler. The control program recognizes the file extensions .a and

.obj as input files for the linker. The control program passes files with

extensions .out and .dsc to the locator. All other files are considered to

be object files and are passed to the linker. The control program has

options to suppress the locating stage (-cl), the linker stage (-c) or the

assembler stage (-cs).

Optionally the locator, lc563 produces output files in Motorola S-record

format, Motorola CLAS compatible object format or Intel Hex format. The

default output format is IEEE-695.

Normally, the control program removes intermediate compilation results,

as soon as the next phase completes successfully. If you want to retain all

intermediate files, the option -tmp prevents removal of these files.

For a description of all utilities available and the possible output formats of

the locator, see the DSP56xxx Cross-Assembler User's Guide.

The name of the DSP56xxx CrossView Pro Debugger is xfw56x.

Overview 2–19

• • • • • • • •

2.4 ENVIRONMENT VARIABLES

This section contains an overview of the environment variables used by

the DSP56xxx toolchain.

Environment
Variable

Description

AS56INC Specifies an alternative path for include files for the
assembler as56.

AS563INC Specifies an alternative path for include files for the
assembler as563.

C56INC Specifies an alternative path for #include files for the
C compiler c56.

C563INC Specifies an alternative path for #include files for the
C compiler c563.

C56LIB Specifies a path to search for library files used by
the linker lk56 .

C563LIB Specifies a path to search for library files used by
the linker lk563 .

CC56BIN When this variable is set, the control program, cc56 ,
prepends the directory specified by this variable to
the names of the tools invoked.

CC563BIN When this variable is set, the control program,
cc563 , prepends the directory specified by this
variable to the names of the tools invoked.

CC56OPT Specifies extra options and/or arguments to each
invocation of cc56 . The control program processes
the arguments from this variable before the
command line arguments.

CC563OPT Specifies extra options and/or arguments to each
invocation of cc563 . The control program processes
the arguments from this variable before the
command line arguments.

LM_LICENSE_FILE Identifies the location of the license data file. Only
needed for hosts that need the FLEXlm license
manager.

Chapter 22–20
O
V
E
R
V
IE
W

DescriptionEnvironment
Variable

PATH Specifies the search path for your executables.

TMPDIR Specifies an alternative directory where programs
can create temporary files. Used by c56, c563,
cc56 , cc563 , as56, as563, lk56 , lk563 , lc56 , lc563 ,
ar56, ar563.

Table 2-1: Environment variables

Overview 2–21

• • • • • • • •

2.5 SAMPLE SESSION

The subdirectory c in the examples subdirectory contains a demo

program for the DSP56xxx toolchain.

In order to debug your programs, you will have to compile, assemble, link

and locate them for debugging using the TASKING DSP56xxx tools. You

can do this with one call to the control program or you can use EDE, the

Embedded Development Environment (which uses a project file and a

makefile) or you can call the makefile from the command line.

2.5.1 USING EDE

EDE stands for "Embedded Development Environment" and is the

MS-Windows oriented Integrated Development Environment you can use

with your TASKING toolchain to design and develop your application.

To use EDE on the calc demo program in the subdirectory c in the

examples subdirectory of the DSP56xxx product tree follow the steps

below. This procedure is outlined as a guide for you to build your own

executables for debugging.

How to Start EDE

You can launch EDE by double-clicking on the EDE shortcut on your

desktop.

This will launch the EDE.

The EDE screen provides you with a menu bar, a toolbar (command

buttons) and one or more windows (for example, for source files), a status

bar and numerous dialog boxes.

Chapter 22–22
O
V
E
R
V
IE
W

Output Window
Contains several tabs to display
and manipulate results of EDE
operations. For example, to view
the results of builds or compiles.

Document W indows
Used to view and edit files.

Project W indow
Contains several
tabs for viewing
information about
projects and other
files.

Compile Build Rebuild Debug On–line Manuals

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the

correct toolchain of the product you purchased is selected and displayed

in the title of the EDE desktop window.

If you have more than one TASKING product installed and you want to

change toolchains, do the following::

1. From the Project menu, select Select Toolchain...

The Select Toolchain dialog appears.

Overview 2–23

• • • • • • • •

2. Select the toolchain you want. You can do this by clicking on a toolchain

in the Toolchains list box and click OK.

If no toolchains are present, use the Browse... or Scan Disk...
button to search for a toolchain directory. Use the Browse... button if

you know the installation directory of another TASKING product. Use the

Scan Disk... button to search for all TASKING products present on a

specific drive. Then return to step 2.

How to Open an Existing Project

Follow these steps to open an existing project:

1. From the Project menu, select Set Current –> .

2. Select the project file to open. For the calc demo program select the file

calc.pjt in the subdirectory c in the examples subdirectory of the

DSP56xxx product tree. If you have used the defaults, the file calc.pjt is

in the directory c:\c563\examples\c for the DSP563xx/DSP566xx (c56
for the DSP5600x).

How to Load/Open Files

The next two steps are not needed for the demo program because the files

calc.c and makefile are already open. To load the file you want to

look at.

1. From the Project menu, select Load Files...

The Choose Project Files to Edit dialog appears.

Chapter 22–24
O
V
E
R
V
IE
W

2. Choose the file(s) you want to open by clicking on it. You can select

multiple files by pressing the <Ctrl> or <Shift> key while you click on

a file. With the <Ctrl> key you can make single selections and with the

<Shift> key you can select everything from the first selected file to the

file you click on. Then click OK.

This launches the file(s) so you can edit it (them).

Check the directory paths

1. From the Project menu, select Directories... .

The Directories dialog appears.

Overview 2–25

• • • • • • • •

2. Check the directory paths for programs, include files and libraries. You can

add your own directories here, separated by semicolons.

3. Click OK.

How to Select a CPU Type

The next step is to compile the file(s) together with its dependent files so

you can debug the application. But first you need to specify for which

CPU type you want to build your application:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Select CPU Selection .

3. In the CPU family/type box, select the CPU or CPU family for which

you want to build your application and click OK.

How to Build the Demo Application

Now you can build your application.

Steps 1 and 2 are optional. Follow these steps if you want to specify

additional build options such as to stop the build process on errors and to

keep temporary files that are generated during a build.

1. From the Build menu, select Options...

The Build Options dialog appears.

Chapter 22–26
O
V
E
R
V
IE
W

2. Make your changes and press the OK button.

3. From the Build menu, select Scan All Dependencies .

4. Click on the Execute ’Make’ command button. The following button is

the execute Make button which is located in the ribbon bar.

If there are any unsaved files, EDE will ask you in a separate dialog if you

want to save them before starting the build.

How to View the Results of a Build

Once the files have been processed you can inspect the generated

messages in the Output window.

You can see which commands (and corresponding output captured) which

have been executed by the build process in the Build tab:

TASKING program builder v x. yr z Build nnn SN 00000000
Compiling ”calc.c”
Assembling ”calc.src”
Linking to ”calc.out”
Creating IEEE–695 absolute file ”calc.abs”

Overview 2–27

• • • • • • • •

How to Start the CrossView Pro Debugger

Once the files have been compiled, assembled, linked, located and

formatted they can be executed by CrossView Pro.

To start CrossView Pro:

1. Click on the Debug application button. The following button is the

Debug application button which is located in the toolbar.

CrossView Pro is launched. CrossView Pro will automatically download the

compiled file for debugging.

How to Load an Application

You must tell CrossView Pro which program you want to debug. To do

this:

1. From the File menu, select Load Symbolic Debug Info...

The Load Symbolic Debug Info dialog box appears.

2. Click Load .

How to View and Execute an Application

To view your source while debugging, the Source Window must be open.

To open this window:

1. From the View menu, select Source | Source lines .

The source window opens.

Before starting execution you have to reset the target system to its initial

state. The program counter, stack pointer and any other registers must be

set to their initial value. The easiest way to do this is:

2. From the Run menu, select Reset Target System .

To run your application step-by-step:

3. From the Run menu, select Animate .

Chapter 22–28
O
V
E
R
V
IE
W

The program calc.abs is now stepping through the high level language

statements. Using the toolbar or the menu bar you can set breakpoints,

monitor data, display registers, simulate I/O and much more. See the

CrossView Pro Debugger User's Guide for more information.

How to Start a New Project

When you first use EDE you need to setup a project space and add a new

project:

1. From the File menu, select New Project Space...

The Create a New Project Space dialog appears.

2. Give your project space a name and then click OK.

The Project Properties dialog box appears.

3. Click on the Add new project to project space button.

The Add New Project to Project Space dialog appears.

4. Give your project a name and then click OK.

The Project Properties dialog box then appears for you to identify

the files to be added.

5. Add all the files you want to be part of your project. Then press the OK
button. To add files, use one of the 3 methods described below.

• If you do not have any source files yet, click on the Add new file
to project button in the Project Properties dialog. Enter a new

filename and click OK.

• To add existing files to a project by specifying a file pattern click on

the Scan existing files into project button in the Project
Properties dialog. Select the directory that contains the files you

want to add to your project. Enter one or more file patterns separated

by semicolons. The button next to the Pattern field contains some

predefined patterns. Next click OK.

Overview 2–29

• • • • • • • •

• To add existing files to a project by selecting individual files click on

the Add existing files to project button in the Project
Properties dialog. Select the directory that contains the files you

want to add to your project. Add the applicable files by

double-clicking on them or by selecting them and pressing the Open
button.

The new project is now open.

6. From the Project menu, select Load Files... to open the files you

want on your EDE desktop.

EDE automatically creates a makefile for the project. EDE updates the

makefile every time you modify your project.

2.5.2 USING THE CONTROL PROGRAM

A detailed description of the process using the sample program calc.c is

described below for the DSP563xx/DSP566xx. For the DSP5600x use cc56

where cc563 is used. This procedure is outlined as a guide for you to

build your own executables for debugging.

1. Make the subdirectory c of the examples directory the current working

directory.

2. Be sure that the directory of the binaries is present in the PATH

environment variable.

3. Compile, assemble, link and locate the modules using one call to the

control program cc563:

cc563 –g –M calc.c –o calc.abs

The -g option specifies to generate symbolic debugging information. This

option must always be specified when debugging with CrossView Pro.

Some optimizations may affect the ability to debug the code in a high level

language debugger. Therefore, the -O2 option is automatically selected

with -g to switch off these optimizations. When the -g option is specified

to the compiler with a higher optimization level, the compiler will issue

warning message W555.

The -M option specifies to generate map files.

The -o option specifies the name of the output file.

Chapter 22–30
O
V
E
R
V
IE
W

The command in step 3 generates the object file calc.obj , the locator

map file calc.map and the absolute output file calc.abs . The file

calc.abs is in the IEEE Std. 695 format, and can directly be used by

CrossView Pro. No separate formatter is needed.

Now you have created all the files necessary for debugging with

CrossView Pro with one call to the control program.

If you want to see how the control program calls the compiler, assembler,

linker and locator, you can use the -v0 option or -v option. The -v0

option only displays the invocations without executing them. The -v

option also executes them.

cc563 –g –M calc.c –o calc.abs –v0

The control program shows the following command invocations without

executing them (UNIX output):

+ c563 –o /tmp/cc7208b.src –g –M24x calc.c
+ as563 –o calc.obj –gs –M24x /tmp/cc7208b.src
+ lk563 –o/tmp/cc7208c.out –ddef_targ.dsc –uR_def_targ calc.obj
–lc24 –lfp24 –lrt24
+ lc563 –ocalc.abs –ddef_targ.dsc –f1 –M /tmp/cc7208c.out

The -M24x option of the compiler selects the 24-bit memory model with

default data space in X memory. The -lc24, -lfp24 and -lrt24 options of

the linker specify to link the appropriate C library, floating point library

and run-time library.

As you can see, the tools use temporary files for intermediate results. If

you want to keep the intermediate files you can use the -tmp option. The

following command makes this clear.

cc563 –g –M calc.c –o calc.abs –v0 –tmp

This command produces the following output:

+ c563 –o calc.src –g –M24x calc.c
+ as563 –o calc.obj –gs –M24x calc.src
+ lk563 –ocalc.out –ddef_targ.dsc –uR_def_targ calc.obj
–lc24 –lfp24 –lrt24
+ lc563 –ocalc.abs –ddef_targ.dsc –f1 –M calc.out

As you can see, if you use the -tmp option, the assembly source files and

linker output file will be created in your current directory also.

Of course, you will get the same result if you invoke the tools separately

using the same calling scheme as the control program.

Overview 2–31

• • • • • • • •

As you can see, the control program automatically calls each tool with the

correct options and controls.

2.5.3 USING THE MAKEFILE

The subdirectories in the examples directory each contain a makefile
which can be processed by mk563. Also each subdirectory contains a

readme.txt file with a description of how to build the example.

To build the calc demo example follow the steps below. This procedure

is outlined as a guide for you to build your own executables for

debugging.

1. Make the subdirectory c of the examples directory the current working

directory.

This directory contains a makefile for building the calc demo example. It

uses the default mk563 rules.

2. Be sure that the directory of the binaries is present in the PATH

environment variable.

3. Compile, assemble, link and locate the modules using one call to the

program builder mk563:

mk563

This command will build the example using the file makefile .

To see which commands are invoked by mk563 without actually

executing them, type:

mk563 –n –a

The option -a causes all files to be rebuild, regardless wether they are out

of date or not.

This command produces the following output:

TASKING DSP563xx/6xx program builder v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000
cc563 –g calc.c –o calc.abs
cc563 –cs –gn –s intrnsic.c
cc563 –cs –gn –s intrpt.c

Chapter 22–32
O
V
E
R
V
IE
W

The -g option in the makefile is used to instruct the C compiler to

generate symbolic debug information. This information makes debugging

an application written in C much easier to debug.

The -o option specifies the name of the output file.

To remove all generated files type:

mk563 clean

3

LANGUAGE
IMPLEMENTATION

C
H

A
P

T
E

R

Chapter 33–2
L
A
N
G
U
A
G
E

3

C
H

A
P

T
E

R

Language Implementation 3–3

• • • • • • • •

3.1 INTRODUCTION

The TASKING DSP563xxx/DSP566xx Family C cross-compiler (c563)

offers a new approach to high-level language programming for the

DSP563xx/DSP566xx family. c56 is the DSP5600x Family C cross-compiler.

They conform to the ANSI standard, but allow you to control the special

functions of the DSP5600x, DSP563xx and DSP566xx in C.

The extensions to the C language in the C compiler are:

additional data types

In addition to the standard data types, c563 supports the fractional type

(_fract), long fractional type (long _fract) and complex data type

(_complex).

_at

You can specify a variable to be at an absolute address.

_nosat

You can specify a fractional variable to wrap around instead of going into

saturation during calculations.

storage specifiers

Apart from a memory category (extern, static, ...) you can specify a storage

specifier in each declaration. This way you obtain a memory

model-independent addressing of variables in several address ranges (_X,

_Y, _L , _P, _near , _internal , _external). The _near , _internal
and _external modifiers can also be used on functions to force them in

a specific memory region.

reentrant functions

In the mixed model (DSP5600x only) you can selectively define functions

as reentrant (_reentrant keyword). Reentrant functions can be invoked

recursively. Interrupt programs can also call reentrant functions.

interrupt functions

You can specify interrupt functions directly through interrupt vectors in the

C language (_fast_interrupt , _long_interrupt keyword).

Chapter 33–4
L
A
N
G
U
A
G
E

inline C functions

You can specify to inline a function body instead of calling the function by

using the _inline keyword.

special calling conventions

With the _compatible keyword you can specify that a function must

have the same calling convention as the Motorola C compiler. The

_callee_save keyword can be used to indicate that a function must save

all registers, instead of leaving this to the caller.

intrinsic functions

A number of pre-declared functions can be used to generate inline

assembly code at the location of the intrinsic (built-in) function call. This

avoids the overhead which is normally used to do parameter passing and

context saving before executing the called function.

circular buffers

c563 supports the type modifier _circ for circular data structures and

pointers.

bank switching

You can specify a function to be located in a particular bank with the

keyword _bank() . A bank is a combination of an address range and a

page number.

3.2 ACCESSING MEMORY

Members of the DSP56xxx family have separate program memory and data

memory, and the data memory of the DSP5600x, DSP563xx and DSP566xx

is, in turn, divided into two separate memory spaces, X and Y. The

combination of X and Y memory space is called L memory space. Each

address range is accessible through 16-bit or 24-bit addresses. Also, the

entire address range is bit-addressable.

c563 offers language extensions to deal with the separate memory spaces.

You can specify a storage type (and in case of a pointer the storage type

of the object it points to) with the declaration of a C variable.

Language Implementation 3–5

• • • • • • • •

In practice the majority of the C code of a complete application is standard

C (without using any language extension). You can compile this part of

the application without any modification, using the memory model which

fits best to the requirements of the system (code density, amount of

external RAM etc.).

Only a small part of the application may in fact require language

extensions. These parts often have some of the following properties. They

- access I/O, using the special function registers

- need high execution speed

- need high code density

- access non-default memory

- are used to service interrupts

3.2.1 STORAGE SPECIFIERS

Static storage specifiers can be used to allocate static objects in a

particular memory area of the addressing space of the processor. All

objects taking static storage may be declared with an explicit storage

specifier. By default static variables will be allocated in X memory.

c56 and c563 recognize the following storage type specifiers:

Storage
Specifier

Description

_X X memory specifier (default)

_Y Y memory specifier

_L L memory specifier

_P program memory

_near lowest 64 addresses of data memory.
For functions: short addressable memory

_internal internal memory

_external external memory

Table 3-1: Storage type specifiers

Chapter 33–6
L
A
N
G
U
A
G
E

Example (mixed DSP56xxx lines):

int _X Var_in_X; /* allocate integer variable
 in X memory */
int _near _X Var_in_low_X; /* fast accessible integer
 in low 64 addresses
 of X memory */
int _X * _Y Ptr_in_Y_to_X; /* allocate
 pointer in Y memory,
 used to point to integers
 in X */
char _P string[] = ”DSP56xxx”; /* string in program memory*/
long _L Long_in_L; /* allocate long variable in
 L memory */
_internal int _X Intern_in_X; /* allocate integer variable
 in internal X memory */

The c56 and c563 compilers use the advantage of the fact that two objects

allocated in X and Y memory, can be accessed simultaneously in the same

instruction.

Using the _near storage qualifier, allows the compiler to generate faster

access code for frequently used variables and functions. The 'near' range

depends on the core for which the program is compiled.

Using the _L storage qualifier only makes sense for the types of a double

word size, which are unsigned long , signed long , float and long
_fract . The most significant word is allocated in X memory and the least

significant word is allocated in Y memory at the same address (X:Y). When

_L is used the compiler can generate faster code for accessing these types.

The compiler does not apply _L to any other data type.

For the _internal and _external storage qualifier there is no

difference in code generation. The information is passed to the locator

which knows which part of the memory is internal and which part is

external from the description file. By default, internal memory is filled first,

then external memory. With the _internal storage qualifier (high

priority) you force an object in internal memory. If there is not enough

internal memory the locator will give an error. With the _external
storage qualifier (low priority) you give a preference for external memory,

but sections declared with _external will still be located in internal

memory if it is available. Using internal memory means a higher

performance and lower power consumption than using external memory.

Sections with none of the two modifiers (medium priority) will be located

before sections created with the _external memory modifier. Except for

_internal declared sections, sections may cross the border between

internal and external memory if there is no gap between them.

Language Implementation 3–7

• • • • • • • •

Functions are allocated in program memory by default; the storage

specifier may be omitted in that case. Also, function return values cannot

be assigned to a storage area. The _near, _internal and _external
storage qualifiers can be used to express storage preferences.

In addition to static storage specifiers, a static object can be assigned to a

fixed memory address using the _at keyword:

int _X myvar _at(0x100);

This is useful to interface to object programs using fixed memory schemes.

It allows two objects, when declared in two different memory areas, to

have the same starting address, for which the compiler can attempt to

generate more efficient code when both objects are used as operands of

one operation.

Examples using storage specifiers:

Some examples of using storage specifiers:

int _X *p; // pointer to int in X memory
int _Y *g; // pointer to int in Y memory

g = p; // the compiler issues a warning

If a library function declares:

extern int _X foo; //extern int in X memory

and a data object is declared as:

int _Y foo; //int in Y memory

the linker will flag this as an error. The usage of the variables is always

without a storage specifier:

int _Y example; /* define an int in Y memory */
example = 2; /* assign example */

The generated assembly would be:

move #2,X0
move X0,Y:example

Chapter 33–8
L
A
N
G
U
A
G
E

All allocations with the same storage specifiers are collected in units called

'sections'. The section with the _near attribute will be located from

address 0. An error will be generated if this section exceeds 64 words.

Next, the sections with the _internal attribute will be located. The size

of the internal memory is known by the locator (it reads the DELFEE

description file). If the total size of _near and _internal memory

exceeds the internal memory size, an error will be generated. It is always

possible to control the location of sections manually.

3.2.2 MEMORY MODELS

c563 supports the 24-bit and 16-bit modes of the DSP563xx by three

models: the 24-bit model, the 16/24-bit model and the 16-bit model.

Furthermore it can generate code for DSP566xx targets (16-bit). By default,

the c563 compiles for the 24-bit model.

c56 supports three memory models for the DSP5600x: static, mixed and

reentrant. By default, the c56 compiles for the mixed model.

You can select one of these models with the -M option. Programs for the

DSP563xx and DSP566xx are always compiled using a reentrant model,

since a static model would not improve code performance.

The compiler also enables you to select a different default memory space.

The default memory space is where all data without memory space

modifiers is placed. This can be important for backward compatibility and

special hardware layouts. On the DSP5600x and DSP563xx X, Y, L and P

can be selected.

Moreover, if you select X or Y memory as default memory the stack will

be placed in L memory by default. This improves the execution speed

because on L memory double-word moves are possible.

Separate versions of the C and run-time libraries are supplied for all

supported models, avoiding the need for you to re-compile or re-build

these when using a particular model.

Language Implementation 3–9

• • • • • • • •

3.2.2.1 16 AND 24-BIT MODELS FOR DSP563XX

The DSP563xx supports 24 and 16-bit arithmetic modes and 24 and 16-bit

addressing modes. The c563 C compiler supports the following models for

these modes:

24-bit arithmetic and 24-bit addresses 24-bit model

16-bit arithmetic and 24-bit addresses 16/24-bit model

16-bit arithmetic and 16-bit addresses 16-bit model

The 24-bit model is the default for c563. c563 can also generate code for

the DSP566xx, which is always 16-bit arithmetic with 16-bit addresses.

All DSP563xx models are reentrant.

3.2.2.2 DSP566XX MEMORY MODEL

The DSP566xx is supported with a special compiler model for c563. This

model creates 16-bit code for the 16-bit address space of the DSP566xx,

and takes into account the specific properties of the DSP566xx. The

DSP566xx model is reentrant.

3.2.2.3 STATIC MODEL FOR DSP5600X

In the static model, C function parameters and automatics are passed via a

static, overlayable area in memory. The linker uses a function call graph of

the entire application for this purpose. Data areas of functions which do

not call each other can be overlayed, since these functions will never be

active simultaneously. However, this cannot be accomplished for functions

called through pointers.

The static model approach for the DSP5600x version implies that function

parameters and local variables are allocated statically instead of using a

stack. The reason for this is that there is no efficient way of addressing

objects on a stack. When it is assumed that register R7 is used as the stack

pointer, three instructions would be needed to access an arbitrary object

on the stack:

move # offset ,n7
NOP
move x:(r7+n7),a

Chapter 33–10
L
A
N
G
U
A
G
E

Absolute addressing only requires a single instruction:

move x:Fvar,a

When the NOP instruction cannot be replaced by something useful, the

first sequence requires 3 or 4 instruction words and 7 or 8 cycles,

depending on the size of the offset. Using absolute addressing, accessing

an object requires only 1 or 2 instruction words and 2 or 7 cycles,

depending on the size of the address.

For each function, the compiler creates a separate section for parameters,

locals and temporary storage. To minimize the memory requirements of an

application, the linker overlays the sections of functions that are not

simultaneously active. The compiler generates information about function

calls, so that the linker is able to construct a function call graph for the

application.

As an example, consider a function main which calls the two functions a
and b. The functions a and b are not simultaneously active, so they may

use the same memory for local storage. This situation is similar to a stack

based approach, where two functions also use the same memory for local

storage, but where the memory is allocated on the stack.

void a(int x)
{
 printf(”a has %d\n”, x);
}

void b(int x)
{
 printf(”b has %d\n”, x);
}

void main(void)
{
 a(1); //call function a()
 b(2); //a() and b() are not
 //simultaneously active
}

Using a static memory model implies that the functions are not reentrant,

and recursion is therefore not possible. Because of the limited depth, the

hardware stack is only used for function return addresses and for

hardware loops. To further limit the hardware stack requirements, a loop

is not implemented by a hardware loop instruction when the loop body

contains function calls.

Language Implementation 3–11

• • • • • • • •

To limit the hardware stack usage the return address of non-leaf functions

is saved in the separate section for parameters, locals and temporary

storage.

Whenever possible, variables and common subexpressions (CSE) are

allocated in a register. Using registers increases performance and reduces

power consumption.

Local variables that are allocated in a register during the entire function do

not need to be allocated in memory.

3.2.2.4 MIXED MODEL FOR DSP5600X

Using a mixed memory model implies that the functions are not reentrant,

and recursion is therefore not possible, except for functions explicitly

declared _reentrant . This is the default memory model for the

DSP5600x. The difference with the static model is that in the static model

no register is reserved as stack pointer, while in the mixed model register

R7 is always reserved as stack pointer. This implies that the compiler

cannot use this register for storing automatics or temporary results in the

mixed model.

3.2.2.5 DSP5600X STATIC AND MIXED MODEL

LIMITATIONS

Function Pointers

When using the static memory model (DSP5600x only), the parameter

space and local variable space is allocated in a fixed area in memory.

When programming with function pointers, the compiler is not able to find

out where to place arguments. Normally the compiler places arguments

specified in the function call directly in the variable/argument space of the

called function. Doing so, the caller passes the arguments implicitly to the

callee. Thus, functions requiring stacked pointers may not be called via

function pointers in the static memory model, since the run-time contents

of the function pointer is unknown. Consequently, it is unknown which

static memory area must be used.

Chapter 33–12
L
A
N
G
U
A
G
E

Individual functions may be declared reentrant when compiling for the

mixed model:

int _reentrant
multiply(int first, int second)
{
 return(first * second);
}

Reentrant functions use the stack for passing parameters and automatic

variable allocation. If the function does not use any static data, does not

call any direct or extended function, then the function is both recursive

and reentrant. When using the reentrant memory model, all functions are

in fact implicitly reentrant.

So, function pointers are only allowed to point to functions compiled

using the reentrant model. Parameters are passed to these functions via the

stack. In the reentrant memory model a function pointer may point to any

function in the application.

Variable Argument Lists

When compiling functions using a static model (DSP5600x only), the

compiler allocates a fixed amount of static memory space for all necessary

arguments and local variables. When a function has a variable argument

list, the required amount of space is defined by the calling function. The

actual space needed may vary from call to call. As a result, the compiler

does not know how much space should be allocated for passing

parameters to the function with a variable argument list.

For non-reentrant functions with variable argument lists the compiler

generates eleven words. For long argument lists this may not be enough.

To overcome this problem, functions with variable argument lists are

implicitly _reentrant in the mixed memory model.

3.2.2.6 REENTRANT MODEL

If recursion or reentrancy is required, the application must be compiled

using the reentrant scheme. It implies that all functions are declared

_reentrant . The code generator then uses a software stack to pass

parameters and for allocation of automatics. Register R7 is used as stack

pointer by default.

Language Implementation 3–13

• • • • • • • •

3.2.2.7 _MODEL, _DSP, _DEFMEM AND _STKMEM

c563 introduces the predefined preprocessor symbols _MODEL, _DSP and

_DEFMEM. The value of _MODEL represents the memory model selected

(-Mmodel option). The value of _DSP represents the processor family (0,

1, 3 or 6 for the different families). The value of _DEFMEM represents the

default memory space selected (-Mmem option). This can be very helpful

in making conditional C code in one source module, used for different

applications in different memory models. See also the section Portable C
Code, explaining the include file c56.h .

The _STKMEM symbol represents the memory space used for the stack, in

the same way as the _DEFMEM symbol. The stack may be in a different

memory if default memory is X or Y. In this case it is placed in L memory

by default, which can be changed with the option -ML.

For c563 the value of _MODEL is:

16-bit model 16 (16-bit arithmetic/addresses)

16/24-bit model 1624 (16-bit arithmetic, 24-bit addresses)

24-bit model 24 (24-bit arithmetic/addresses)

DSP566xx model 16 (16-bit arithmetic/addresses)

For c56 the value of _MODEL is:

static model 's'

mixed model 'm'

reentrant model 'r'

The value of _DEFMEM and _STKMEM can be x, y, l or p.

Example:

#if _MODEL == ’s’ /* static model */
...

#endif

Chapter 33–14
L
A
N
G
U
A
G
E

3.2.3 THE _AT() ATTRIBUTE

In DSP56xxx C it is possible to place certain variables at absolute

addresses. Instead of writing a piece of assembly code, a variable can be

placed on an absolute address using the _at() attribute.

Example:

_external unsigned char Display _at(0x2000);

The example above creates a variable with the name Display at address

0x2000 in external memory. In the generated assembly code an absolute

section will appear. On this position space is reserved for the variable

Display .

A number of restrictions are in effect when placing variables on an

absolute address:

• Only global variables can be placed on absolute addresses.

Parameters of functions, or automatics within functions cannot be

placed on an absolute address.

• When declared 'extern', the variable is not allocated by the

compiler. When the same variable is allocated within another

module but on a different address, the compiler, assembler or linker

will not notice.

• When the variable is declared 'static', no public symbol will be

generated (normal C behavior).

• Absolute variables cannot be initialized, except for absolute

variables declared in rom.

• Functions cannot be declared absolute.

• Absolute variables cannot overlap each other, declaring two

absolute variables on the same address will cause an error

generated by the assembler or by the linker. The compiler does not

check this.

• Declaring the same absolute variable within two modules will also

produce conflicts during link time (except when one of the modules

declares the variable 'extern').

Language Implementation 3–15

• • • • • • • •

3.3 DATA TYPES

All ANSI C data types are supported, except double and long double ,

which both are evaluated as floats. In addition to these types, the _fract ,

long _fract , enum and _complex types are added. Object size and

ranges for all DSP56xxx families are given in tables 3-2 and 3-3:

DSP563xx/6xx 16–bit DSP563xx 24–bit DSP563xx 16/24–bit

Data Type Size
(bit)

Range Size
(bit)

Range Size
(bit)

Range

signed char 8 –128 to +127 8 –128 to +127 8 –128 to +127

unsigned char 8 0 to 255U 8 0 to 255U 8 0 to 255U

signed short 16 –32768 to +32767 16 –32768 to +32767 16 –32768 to +32767

unsigned short 16 0 to 65535U 16 0 to 65535U 16 0 to 65535U

signed int 16 –32768 to +32767 24 –8388608 to +8388607 16 –32768 to +32767

unsigned int 16 0 to 65535U 24 0 to 16777215U 16 0 to 65535U

signed long 32 –2147483648 to
+2147483647

48 –140737488355328 to
+140737488355327

32 –2147483648 to
+2147483647

unsigned long 32 0 to 4294967295UL 48 0 to 281474976710655 32 0 to 4294967295UL

_fract 16 [–1, 1] 24 [–1, 1] 16 [–1, 1]

long _fract 32 [–1, 1] 48 [–1, 1] 32 [–1, 1]

pointer 16 0 to 65535U 24 0 to 16777215U 24 0 to 16777215U

_circ pointer 16+16 0 to 65535U 24+24 0 to 16777215U 24+24 0 to 16777215U

float/double 16+8 +/– 1.1750E–38
+/– 3.4028E+38

24+8 +/– 1.1754940E–38
+/– 3.4028235E+38

16+8 +/– 1.1750E–38
+/– 3.4028E+38

enum 16 –32768 to +32767 24 –8388608 to +8388607 16 –32768 to +32767

_complex 2*16 [–1, 1] for both fields 2*24 [–1, 1] for both fields 2*16 [–1, 1] for both fields

Table 3-2: Data types DSP563xx/6xx

Chapter 33–16
L
A
N
G
U
A
G
E

DSP5600x

Data Type Size
(bit)

Range

signed char 8 –128 to +127

unsigned char 8 0 to 255U

signed short 16 –32768 to +32767

unsigned short 16 0 to 65535U

signed int 24 –8388608 to +8388607

unsigned int 24 0 to 16777215U

signed long 48 –140737488355328 to
+140737488355327

unsigned long 48 0 to 281474976710655

_fract 24 [–1, 1]

long _fract 48 [–1, 1]

pointer 24 0 to 16777215U

_circ pointer 24+24 0 to 16777215U

float/double 24+8 +/– 1.1754940E–38
+/– 3.4028235E+38

enum 24 –8388608 to +8388607

_complex 2*24 [–1, 1] for both fields

Table 3-3: Data types DSP5600x

- char , short , int and long are all integral types, supporting all

implicit (automatic) conversions.

- although the char type is 8 bit, each char occupies one memory

word, because the DSP56xxx has no instructions to access one byte

efficiently.

- char and short are treated as 8-bit and 16-bit int respectively.

- the DSP56xxx convention is used, storing variables with the most

significant part at the higher memory address (Little Endian).

- Double is equal to float .

Language Implementation 3–17

• • • • • • • •

3.3.1 THE FRACTIONAL DATA TYPE

The compiler supports the additional data type _fract to do fixed point

arithmetic without the use of (expensive) special libraries. The

implementation of this data type depends on the selected family member.

Fractions can have values between -1 and +1 and can be used like

integers and floating points, and combine little code overhead with a high

dynamic range.

/* constant with value 0.3333... */

const _fract one_third = 1.0/3;

Fixed point arithmetic follows the rules for floating point calculations.

Floating point constants in [–1,1] are interpreted as a fractional type

which allows fixed point arithmetic with fractional constants without

suffixes or casting. Floating point value +1.0 will be interpreted as the

closest fractional value to 1 possible.

Long Fractional Type

The long keyword can be used in combination with the _fract data

type. The result is a fractional type with double precision, 32-bit or 48-bit

depending on the selected family member.

Example:

long _fract Lfval;

Rounding

Rounding can be controlled by the intrinsic function _round() (see

section Intrinsic Functions).

Operations

You can use all operations on fractional data which are also allowed on

floating point numbers. As an example, you can add two fractional

numbers, but you cannot exclusive-or them. In addition, you can use the

shift operators on a fractional number; the right side of the shift operator

must be an integral type.

Chapter 33–18
L
A
N
G
U
A
G
E

Example:

_fract f;
void main()
{
 f <<= 2; // multiply f by 4.
}

Wrapping and Saturation

The default behavior of C fractional variables for an overflow is going into

saturation. (Integer calculations will always truncate on overflows). For

some calculations (such as those related to the maintenance of phase

angle), it is useful to let an overflow wrap around (e.g., .75 + .5 => 1.25 ,

wraps to -.75). In the Motorola DSP, it can be done efficiently by storing

A1 directly, which bypasses the saturation.

The _nosat keyword allows to define variables which will wrap around

instead of going into saturation during calculations.

Example:

_fract _nosat Angle;

The variable Angle in this example will wrap around instead of going into

saturation during calculations.

3.3.2 THE COMPLEX DATA TYPE

The compiler supports a pre-declared type definition of type complex,

which is equivalent to:

typedef struct
{
 _fract re;
 _fract im;
} _complex;

This type is supported by means of intrinsic functions. Four standard

operations are provided by intrinsic services:

_complex _cadd(_complex,_complex); /* complex addition */
_complex _csub(_complex,_complex); /* complex subtraction */
_complex _cmul(_complex,_complex); /* complex multiplication */
_complex _cdiv(_complex,_complex); /* complex division */
_complex _cmac(_complex,_complex,_complex); /* complex mac */

Language Implementation 3–19

• • • • • • • •

This offers a simple but effective way to use complex arithmetic in C

applications, without sacrificing portability or efficiency.

3.3.3 UNSIGNED CHARACTERS

The character type is treated as unsigned char by default. Arithmetic on

unsigned characters can be done more efficiently than on signed

characters. You can overrule this default with the -u command line option,

which sets the default to signed char.

Examples:

The following declarations are identical when -u is not used.

char c;
unsigned char c;

The following declarations are identical when -u is used.

char c;
signed char c;

3.3.4 ANSI C TYPE CONVERSIONS

According to the ANSI C X3.159-1989 standard, a character, a short integer,

an integer bitfield (either signed or unsigned), or an object of enumeration

type, may be used in an expression wherever an integer may be used. If a

signed int can represent all the values of the original type, then the

value is converted to signed int ; otherwise the value will be converted

to unsigned int . This process is called integral promotion.

Integral promotion is also performed on function pointers and function

parameters of integral types using the old-style declaration. To avoid

problems with implicit type conversions, you are advised to use function

prototypes.

Many operators cause conversions and yield result types in a similar way.

The effect is to bring operands into a common type, which is also the type

of the result. This pattern is called the usual arithmetic conversions.

Chapter 33–20
L
A
N
G
U
A
G
E

Integral promotions are performed on both operands; then, if either

operand is unsigned long , the other is converted to unsigned
long .

Otherwise, if one operand is long and the other is unsigned int ,

the effect depends on whether a long can represent all values of an

unsigned int ; if so, the unsigned int operand is converted to

long ; if not, both are converted to unsigned long .

Otherwise, if one operand is long , the other is converted to long .

Otherwise, if either operand is unsigned int , the other is converted

to unsigned int .

Otherwise, both operands have type int .

Sometimes surprising results may occur, for example when unsigned
char is promoted to int . You can always use explicit casting to obtain

the type required.

Keep in mind that the arithmetic conversions apply to multiplications also:

static int h, i, j;
static long k, l, m;

/* In C the following rules apply:
 * int * int result: int
 * long * long result: long
 *
 * and NOT int * int result: long
 */

void f()
{
 h = i * j; /* int * int = int */
 k = l * m; /* long * long = long */

 l = i * j; /* int * int = int,
 * afterwards promoted (sign
 * or zero extended) to long
 */
 l = (long) i * j; /* long * long = long */
 l = (long)(i * j); /* int * int = int,
 * afterwards casted to long
 */
}

Language Implementation 3–21

• • • • • • • •

3.3.5 MEMORY MAPPED REGISTERS

Each derivative of the DSP56xxx core can have its own features like

timers, ADCs and I/O ports, etc. These features are implemented using

memory mapped hardware registers. Most of these registers consist of

bitfields. A register and its bitfields can be accessed with a structure

defined at the fixed address of the register with all fields defined. The

compiler will generate efficient code for accessing structures at absolute

addresses and bitfields in these structures. This makes special keywords

for defining registers, which is used in other compilers, superfluous.

Example:

typedef union /* PLL Control Register */
{
 struct
 {
 unsigned MF : 12; /* 0: Multiplication Factor */
 unsigned DF : 4; /* 12: Division Factor */
 int XTLD : 1; /* 16: XTAL Disable */
 int PSTP : 1; /* 17: STOP processing State */
 int PEN : 1; /* 18: PLL Enable */
 unsigned COD : 2; /* 19: Clock Output Disable */
 int CSRC : 1; /* 21: Chip Clcok Source */
 int CKOS : 1; /* 22: CKOUT Clock Source */
 int rsvd : 1; /* 23: Reserved */
 } B;

 int I;

} pctl_type;

#define PCTL (*(pctl_type*) 0xFFFD) /* PLL Control Register */

void
main(void)
{
 PCTL.B.PEN = 1;
 PCTL.I = 0x0010;
}

Generated code:

 bset #18,x:<<$FFFD
 movep #>$000010,x:<<$FFFD

To simplify programming for the various different DSP56xxx derivatives,

special files are supplied containing the declarations of all memory

mapped register names for a specific derivative. For example,

reg56002.h for the DSP56002 derivative.

Chapter 33–22
L
A
N
G
U
A
G
E

You can also add your own memory mapped register definitions within

the C-source. All bits without a special meaning to the chip can be given a

unique name with a unique purpose.

Language Implementation 3–23

• • • • • • • •

3.4 AUTOMATIC VARIABLES

The implementation of automatic variables in the static and mixed models

of the DSP5600x has some limitations. In non-reentrant functions

recursion is not possible. In these functions automatic variables are not

allocated on a stack, but in a static area. In a reentrant function automatic

variables are treated the conventional way: coming and going with a

function on the stack. In static functions automatics are still overlayable

with automatics of other functions. Allocation of automatics is subject to

the memory model selected. In a static model this means static allocation

in one of the RAM memory spaces. In the reentrant model this means

dynamic allocation on the stack.

Although automatic variables are allocated in a static area with

non-reentrant functions, they are not the same as local variables (within a

function) which are declared to be static by means of the static
keyword. The difference is:

- it is not guaranteed that an automatic variable still has the same

value as the last time the function returned, because it may have

been overlaid with another automatic variable of another module.

- it is guaranteed that the value of a static variable is the same as the

last time the function returned. Static variables are never overlaid.

Chapter 33–24
L
A
N
G
U
A
G
E

3.5 REGISTER VARIABLES

In C the register type qualifier tells the compiler that the variable will

be used very often. So the code generator must try to reserve a register for

this variable and use this register instead of the stack location of this

automatic variable. Whenever possible, the compiler allocates automatic

objects and parameter objects within registers. c563 therefore ignores the

register keyword.

For every object not placed in registers, the next rules apply.

static: (DSP5600x only) In this model automatic variables are

allocated on fixed positions in X or Y memory, which is

directly addressable RAM. The code using this memory has a

very high execution speed, so in this model there is no need

to treat a register variable in a special way, because all

automatic variables are accessed with a speed comparable to

a real register.

reentrant: In this model automatic variables are allocated on the user

stack and are addressed using the indexed addressing mode.

The code generator of c563 uses a 'save by caller' strategy.

This means that a function which needs the contents of one

or more registers over a function call, must save the contents

of these 'registers' and restore them after the call. The major

advantage of this approach is, that only registers which are

really used after the call are saved.

Conclusion: the usage of the register keyword is not necessary for

improving code density or speed.

Language Implementation 3–25

• • • • • • • •

3.6 INITIALIZED VARIABLES

Non automatic initialized variables use the same amount of space in both

ROM and RAM (for all possible RAM memory spaces). This is because the

initializers are stored in ROM and copied to RAM at start-up. This is

completely transparent to the user. The only exception are initialized

variables declared with the const specifier.

Examples (static memory model) :

int i = 100; /* 1 word in P memory and
 1 word in X memory */
_P int j = 3; /* 2 words in P memory */
char *t = ”TEXT”; /* 6 words in P memory and
 6 words in X memory:
 1 word for p,
 5 words for ”TEXT” */
_P char t[] = ”HELP”; /* 10 words in P memory */
_X char c = ’a’; /* 1 word in P memory and
 1 word in X memory */
const int k = 400; /* 1 word in X memory */

3.7 TYPE QUALIFIER VOLATILE

You can use the volatile type qualifier when modifications on the

object have undesired side effects when they are performed in the regular

way. It may be undesired that the compiler attempts to optimize a memory

update by keeping the value in a register (e.g., a hardware register). When

a variable is declared with the volatile qualifier, the compiler disables

such optimizations. The ANSI standard describes that the updates of

volatile objects follow the rules of the abstract machine (the target

processor) and thus access to a volatile object becomes implementation

defined.

Example:

const volatile _X int real_time_clock _at(0x1200);

/* define a memory mapped real time clock
 register;
 it is read–only (const);
 read operations must access the real memory
 location (volatile)
*/

Chapter 33–26
L
A
N
G
U
A
G
E

3.8 STRINGS

In this section the word 'strings' means the separate occurrence of a string

in a C program. So, array variables initialized with strings are just

initialized character arrays, which can be allocated in any memory type,

and are not considered as 'strings'. See section Initialized Variables for

more information on this topic.

Strings have static storage. The ANSI X3.159-1989 standard permits string

literals to be put in ROM. c563 offers the possibility to allocate a static

initialized variable in ROM only, when you declare it with the const
qualifier. This enables the initialization of a (const) character array in ROM

(if not enough ROM is available, the string may be located in RAM as

well):

const char romhelp[] = ”help”;
/* allocation of 5 words in ROM only */

Or a pointer array in ROM only, initialized with the addresses of strings,

also ROM only:

char * const message[] = {”hello”,”alarm”,”exit”};

ANSI string concatenation is supported: adjacent strings are concatenated -

only when they appear as primary expressions - to a single new one. The

result may not be longer than the maximum string length (ANSI limit 509

characters, actual compiler limit 1500 characters).

The ANSI Standard states that identical string literals need not be distinct,

i.e. may share the same memory. Because memory can be very scarce with

DSP applications, c563 overlays identical strings within the same module.

In section 3.1.4 the Standard states that behavior is undefined if a program

attempts to modify a string literal. Because it is a common extension to

ANSI (A.6.5.5) that string literals are modifiable, there may be existing C

source modifying strings at run-time. This can be done either with

pointers, or even worse:

”st ing”[2] = ’r’;

c563 accepts this statement when strings are in both ROM and RAM.

Language Implementation 3–27

• • • • • • • •

3.9 POINTERS

Some objects have two types: a 'logical' type and a storage type. For

example, a function is residing in ROM (storage type), but the logical type

is the return type of this function. The most obvious C type having

different storage and logical type is a pointer. For example:

_P char *_X p; /* pointer residing in X,
 pointing to P */

means p has storage type _X (allocated in RAM), but has logical type

'character in target memory space P'. The memory type specifier used left

to the '*', specifies the target memory of the pointer, the memory specifier

used right to the '*', specifies the storage memory of the pointer.

The memory type specifiers are treated like any other type specifier (like

unsigned). This means the pointer above can also be declared (exactly the

same) using:

char _P *_X p; /* pointer residing in X,
 pointing to ROM (P) */

If the target memory and storage memory of a pointer are not explicitly

declared, c563 uses the default _X storage specifier. You can overrule the

default memory with the -M command line option.

In pointer arithmetic c563 checks, besides the type of each pointer, also

the target memory of the pointers, which must be the same. For example,

it is invalid (and has no use) to assign a pointer to _X to a pointer to _L .

Of course, an appropriate cast corrects the error.

3.10 INTEGER DIVISION AND MODULO

If you divide a negative number by a positive one, there are two possible

outputs, one smaller than the actual (float) value, one larger than it, and

they have different modulo values too. For example, –5 / +3 equals

–1.666 , so converted to integers we can get:

–5 / +3 = –2, –5 % +3 = +1 ==> (–5 / +3) * +3 + (–5 % +3) = –5

OR:

–5 / +3 = –1, –5 % +3 = –2 ==> (–5 / +3) * +3 + (–5 % +3) = –5

Chapter 33–28
L
A
N
G
U
A
G
E

The ANSI C standard (section 3.3.5) allows both sets of outcomes, it only

requires that the calculation sums up correctly as shown after the arrow. In

the TASKING C compiler we have chosen to implement the first form, as

this gives the most compact code: we can do divisions with shifts, and

modulo operations with bitwise-and, if the second operand is a power of

two.

Language Implementation 3–29

• • • • • • • •

3.11 INLINE C FUNCTIONS

The _inline keyword is used to signal the compiler to inline the function

body instead of calling the function. An inline function must be defined in

the same source file before it is 'called'. When an inline function has to be

called in several source files, each file must include the definition of the

inline function. Usually this is done by defining the inline function in a

header file.

Not using a function which is defined as an _inline function does not

produce any code.

Example (t.c):

int w,x,y,z;

_inline int
add(int a, int b)
{
 return(a + b);
}

void
main(void)
{
 w = add(1, 2);
 z = add(x, y);
}

No specific debug information is generated for inline functions. The

debugger cannot step-into an inline function, it considers the inline

function as one HLL source line.

The pragmas asm and endasm are allowed in inline functions. This makes

it possible to define inline assembly functions. See also the section Inline
Assembly in this chapter.

Chapter 33–30
L
A
N
G
U
A
G
E

The generated code is:

; t.c 12 w = add(1, 2);
 move #3,r5
 move r5,x:Fw
; t.c 13 z = add(x, y);
 move x:Fy,y1
 move x:Fx,b
 add y1,b
 move b1,x:Fz

Language Implementation 3–31

• • • • • • • •

3.12 INLINE ASSEMBLY

c563 supports using assembly in the following ways:

1. by using the _asm() intrinsic function;

2. by using the __asm() intrinsic function, which allows passing and

returning values to the assembly code;

3. by using pragmas;

4. by linking with separate assembly modules.

C modules that contain inline assembly are not portable and harder to

prototype in other environments.

3.12.1 USING THE _ASM INTRINSIC FUNCTION

c563 supports the intrinsic function _asm() for inline assembly. The

argument of this function is a string that contains the assembly code to be

inlined.

For example:

_asm(”ori #$03,MR”); // disable interrupts

This is equal to:

#pragma asm
 ori #$03,MR
#pragma endasm

The advantage is that the _asm() intrinsic can be used in pre-processor

defines:

#define _disable_interrupts() _asm(”ori #$03,MR”)

Chapter 33–32
L
A
N
G
U
A
G
E

3.12.2 USING THE __ASM INTRINSIC FUNCTION

To allow access to local variables from inline assembly, the compiler

provides the __asm() (two leading underscores) intrinsic function. This

function is highly compatibly with the Motorola C compiler function,

although differences may exist in compiler-structure dependent areas.

Note that other uses of the __asm keyword in the Motorola C compiler

(e.g. forcing variables in specific registers) are not supported. With the

__asm keyword C expressions can be assigned to a register from a group

(e.g. an address register), and result values can be written to local or

global C variables.

The general syntax of the __asm statement is:

__asm [volatile] (instruction_template
 [: output_param_list
 [: input_param_list
 [: regsave]]]);

where,

instruction_template is a string that may contain

%[mod_char]parm_nr parameters from the in-

or output list.

mod_char is an operand modifier character (see table 3-5)

parm_nr is a parameter number in the range 0..31.

output_param_list [["=constraint_char"(c_expression)],...]

input_param_list [["constraint_char"(c_expression)],...]

constraint _char is an operand constraint character

(see table 3-4)

regsave [["register_name"],...]

register _name is one of the work register names (see below)

Language Implementation 3–33

• • • • • • • •

The constraint characters specify a group of registers for the parameter.

The modifier characters select a specific part of the register selected for the

parameter. For output parameters, the c_expression must be something that

can be assigned to (an lvalue). Registers that are used in the assembly

instructions must be reserved, either in the parameter lists or in the

reserved register list (regsave, above). The compiler takes account of these

lists (but does not interpret the instruction template!), and no unnecessary

register saves and restores are placed around the inline assembly

instructions.

Except for the instruction template, all parts within the braces are optional.

The TASKING C compiler accepts but ignores the volatile keyword

after the __asm keyword. Also the superfluous '=' equals signs in the

output parameter list are accepted but ignored.

Available input/output operand constraints

Char Type Operand Remark

A address register r0..r7 The compiler excludes the
user stack pointer and
reserved address registers

N offset register n0..n7 The compiler excludes the
user stack pointer offset
and reserved offset
registers

C address +
modulo register

r0/m0..r7/m7 For circular pointers

D accumulator a, b The complete 56–bit
accumulator registers

R input register x0, y0, x, y Selection depends on
operand size

r GP register a, b, x0, y0, x1, y1,
r0..r7, n0..n7

All general–purpose
int–sized registers except
user stack pointer and
offset

S source register x0, x1, y0, y1, x, y Selection depends on
operand size

i immediate value #value

Chapter 33–34
L
A
N
G
U
A
G
E

RemarkOperandTypeChar

m memory x:Fvar, x:(r7–i) Stack or memory operand

number other operand same as number Used when in– and output
operands must be the
same

Table 3-4: Available input/output operand constraints

Available operand modifiers

Char Constraint Operand Remark

j A, C n0..n7 Offset register matching
with address register. You
must save and restore
these registers.

v A, C m0..m7 Modulo register matching
with address register (this
modifier is not supported
in Motorola C).

e D a1, b1 High part of accumulator.

h D a0, b0 Low part of accumulator.

k D a2, b2 Extension word of
accumulator.

g R, S x1, x0, y1, y0 Other part of input register

i R, S x, y Long input register
matching with integer–sized
input register.

f m x:,y:,p:,l: Insert memory space for
the operand.

p i $0000..$FFFF Force 16–bit sized constant

q i $000000..$FFFFFF Force 24–bit sized constant

Table 3-5: Available operand modifiers

Possible work registers

a, a0, a1, a2, b, b0, b1, b2, x, x0, x1, y, y0, y1,
r0..r7, n0..n7 (except user stack pointer r and n
register)

Language Implementation 3–35

• • • • • • • •

m0..m7 cannot be reserved, they must be restored in the template to -1

after use. Of course the associated r-register must be set free, either by

making it an output parameter, or by placing it in the reserved register list.

Most of the examples below are very trivial, and could be coded in C just

as well with similar results. They are provided just to demonstrate the use

of the __asm keyword. Situations where the __asm keyword is used

should give a definite improvement of the generated code, to justify the

complexity and lack of portability of the __asm statement. Assembly

functions larger than ten statements should preferably be written in a

separate assembly module, not inline, to improve readability and

portability.

It is not allowed to create loops with multiple __asm statements, or

generate (conditional) jumps across __asm statements. The compiler

cannot detect these and will generate incorrect code for the registers

involved. If you want to create a loop with __asm, the whole loop must

be contained in a single __asm statement, independent of it being a

hardware loop or a backward jump. The same restriction applies to

(conditional) jumps. As a rule of thumb, all references to a label in an

__asm statement must be contained in the same statement.

Example 1

A simple example without input or output parameters. The mr register is

not a register used by the compiler and therefore can be used without

reserving it.

__asm(”andi #$FC,mr”);

Generated code:

andi $FC,mr

Example 2

The simplest example, it only generates a label. Because the compiler

inserts a tab character before emitting the first character of the template,

we must provide a newline first (or follow the label with a semicolon).

__asm(”\nmylabel”);

Generated code (note that the first line is empty):

mylabel

Chapter 33–36
L
A
N
G
U
A
G
E

Example 3

Assign the result of inline assembly to a variable. An accumulator-type

register is chosen for the parameter due to the constraint D; the compiler

decides which accumulator is best to use. The string %0 in the template is

replaced with the name of this accumulator. Finally, the compiler

generates code to assign the result to the output variable.

int var1;

void main(void)
{
 __asm(”move #<$FF,%0” : ”=D”(var1));
}

Generated code:

move #<$FF,a
move a1,x:Fvar1

Example 4

Multiply two expressions and assign the result to a variable. Two

expressions are multiplied and the result is placed in a variable. An

accumulator-type register is necessary for the output parameter (constraint

D, %0 in the template); alu registers (X0, Y0, X1 or Y1) must be used for

the input registers (constraint S, %1 and %2 in the template). The compiler

generates code to move the input expressions into the input registers and

to assign the result to the output variable.

int var1, var2; long result;

void main(void)
{
 __asm(”mpy %1,%2,%0” : ”=D”(result) : ”S”(var1),
 ”S”(var2));
}

Generated code:

move x:Fvar1,x0
move x:Fvar2,x1
mpy x0,x1,a
move a0,x:Fresult
move a1,x:Fresult+1

Language Implementation 3–37

• • • • • • • •

Example 5

Execute a block move in Y memory. Two pointer expressions are given

and the contents of a memory block in Y memory is copied. This example

has no output, and uses a scratch register for the copying action; it also

demonstrates the use of C expressions in the parameters. Notice that the

address registers have been declared as output registers because they are

destroyed in the routine. To get the same registers in the input parameter

list, the number of the output parameter is used instead of the constraint

character. The instruction template has been split up over several shorter

source lines for better readability. The lines can be written on a single line

as well (with '\n' sequences!).

int _Y array[100];

void main(void)
{
 __asm(”do #20,_copy \n”
 ” move y:(%0)+,y0 \n”
 ” move y0,y:(%1)+ \n”
 ”_copy: \n”
 : ”=A”, ”=A”
 : ”0”(&array[20]), ”1”(&array[40]) : ”y0”);
}

Generated code:

 move #Farray+20,r0
 move #Farray+40,r1
 do #20,_copy
 move y:(r0)+,y0
 move y0,y:(r1)+
_copy:

Chapter 33–38
L
A
N
G
U
A
G
E

Example 6

The previous example can be improved in two ways: the loop count can

be made a parameter as well, and we can leave it to the compiler to

decide which scratch integer register to use. It is better to reserve a work

register through an unassigned output parameter than through the

reserved list, because specifying a group gives the compiler more

optimization opportunities than handpicking a register.

#define BLOCKSIZE 10
int _Y array[10][BLOCKSIZE];

void main(void)
{
 __asm(”do #%5,_copy \n”
 ” move y:(%0)+,%2 \n”
 ” move %2,y:(%1)+ \n”
 ”_copy: \n”
 : ”=A”, ”=A”, ”=r”
 : ”0”(&array[2]), ”1”(&array[4]), ”i”(2*BLOCKSIZE)
);
}

Generated code:

 move #Farray+20,r0
 move #Farray+40,r1
 do #20,_copy
 move y:(r0)+,n6
 move n6,y:(r1)+
_copy:

Language Implementation 3–39

• • • • • • • •

Example 7

The register used in the assembly template can be changed with a

modifier, which is placed between the '%' and the number of the

parameter. This way you can use partial registers and tell the compiler to

reserve the complete register. The following example swaps the two

halves of a long. An accumulator is used as the input to the function,

because the function parameter will be passed in A. A work register is

chosen from the alu register set.

void swap_halves(long li)
{
 __asm (”move %e0,%1 \n”
 ” move %h0,%0 \n”
 ” move %1,%h0 \n”
 : ”=D”(li), ”S” : ”0”(li));
 return li;
}

Generated code:

Fswap_halves:
 move a1,x0
 move a0,a
 move x0,a0
 rts

Example 8

When a modulo register is used in the template, it must be restored to the

default value -1 (linear addressing mode) after use. The modifier 'v' can

be used to select the modifier register associated with an address register.

void circ_get(int *p)
{
 int result;

 __asm (”move #24–1,%v1 \n”
 ” move x:(%1),%0 \n”
 ” move #–1,%v1 \n”
 : ”=D”(result) : ”A”(p));
 return result;
}

Chapter 33–40
L
A
N
G
U
A
G
E

Generated code:

Fcirc_get:
 move #24–1,m0
 move x:(r0),a
 move #–1,m0
 rts

3.12.3 USING INLINE ASSEMBLY PRAGMAS

c563 supports inline assembly using the following pragmas:

#pragma asm Insert assembly text following this pragma.

#pragma asm_noflush Same as #pragma asm but the peephole

optimizer will not flush the code buffer.

#pragma endasm Switch back to the C language.

The peephole optimizer in the compiler maintains a code buffer for

optimizing sequences of assembly instructions before they are written in

the output file. The compiler does not interpret the text of inline assembly.

It passes inline assembly lines directly to the output file.

Example:

#pragma asm
 ori #$03,MR
#pragma endasm

The compiler will not save any registers prior to the pragma asm and also

does not restore the original contents of the registers after the pragma

endasm. This implies that when registers must be used within the pragma

asm/endasm you have to save the contents of these registers first.

For using registers within the inline assembly you cannot rely on the

registers the compiler allocated for C variables. Changing the C code may

change the register allocation. Also the register allocation may change in

future versions of the C compiler. You should use the __asm() intrinsic

function if your code requires parameter passing.

Language Implementation 3–41

• • • • • • • •

These pragmas can also be used outside the scope of a function, for

instance to create temporary storage for an assembly routine or to specify

a vector. Using NOP instructions to place code at specific positions must

be avoided, as the assembler will remove these when in optimizing mode.

This is a common method in the vector table in combination with short

jumps, but it can easily be avoided with multiple ORG statements.

3.12.4 LINKING WITH SEPARATE ASSEMBLY ROUTINES

For a fixed register-based interface between C and assembly functions the

function qualifier _asmfunc is available. This function qualifier can be

used for a prototype of an assembly function to be called from C or for a

function definition of a C function to be called from assembly.

Example:

 /* prototype of assembly function */
extern _asmfunc int
special_out(int port, long config, int value);

void main(void)
{
 long cfg;
 int y;
 ...
 if(special_out(1, cfg, y)) /* call assembly
 function */
 {
 ...
 }
 ...
}

With the _asmfunc function qualifier the parameter interface is identical

to the standard calling convention (see section 7.3 Calling Conventions),

but the stack is not used for passing arguments to functions. When there

are more arguments to be passed than fit in the registers the compiler will

issue an error message.

All registers can be used in the assembly function. On return, the

M-registers must be reset to -1 (except M0 if the function returns a circular

pointer).

Chapter 33–42
L
A
N
G
U
A
G
E

3.13 INTRINSIC FUNCTIONS

When you want to use some specific DSP56xxx instructions, that have no

equivalence in C, you would be forced to write assembly routines to

perform these tasks. However, c563 offers a way of handling this in C

with a number of built-in functions, which are implemented as intrinsic

functions.

Intrinsic functions appear to the programmer as normal C functions, but

the difference is that they are interpreted by the code generator, and as a

result more efficient code may be generated. The names of the intrinsic

functions all have a leading underscore, because the ANSI specification

states that public C names starting with an underscore are implementation

defined.

The advantages of using intrinsic functions, compared with inline assembly

(pragma asm/endasm) are:

• the possibility to use simulation routines or stub functions by a host

compiler, to replace the inline assembly code generated by c563

• C level variables can be accessed

• the compiler chooses to generate the most efficient code to access C

variables

• intrinsic code is optimized, except for _nop()

The following intrinsic functions are implemented:

Function Description

_abs() Absolute value of int argument

_asm() Generate inline assembly

__asm() Generate inline assembly with parameter passing

_cache_get_start() Get first address of cache region

_cache_get_end() Get last address of cache region

_cadd() complex addition

_cdiv() complex division

_cmac() complex multiply–accumulate

_cmul() complex multiplication

_csub() complex division

_ext() Extend high order part of accumulator for (unsigned)
chars and shorts

Language Implementation 3–43

• • • • • • • •

DescriptionFunction

_fabs() Absolute value of _fract argument

_fract2int() Convert _fract to int

_fsqrt() Generate a JSR to the run–time library function Rfsqrt()

_int2fract() Convert int to _fract

_labs() Absolute value of long argument

_lfabs() Absolute value of long _fract argument

_lfract2long() Convert long _fract to long

_long2lfract() Convert long to long _fract

_memcpy() Copy block of memory. Compact memcpy replacement

_memset() Fill block of memory. Compact memset replacement

_nop() NOP instruction, not optimized away

_pdiv() Calculates a/b inline, when it is known that a and b are
both positive

_pflush() Flush cache

_pflushun() Flush unlocked sectors

_pfree() Global unlock

_plock() Lock 1 sector in cache

_punlock() Unock 1 sector in cache

_rol() Rotate left

_ror() Rotate right

_round() Specifies rounding (fractional arithmetic operations)

_sema_clr() Clear semaphore

_sema_set() Set semaphore

_sema_tst() Test semaphore

_stop() STOP, stop mode saves power consumption

_strcmp() String compare. Compact strcmp replacement

_strcpy() String copy. Compact strcpy replacement

_strlen() String length. Compact strlen replacement

_swi() SWI (c56) or TRAP (c563), software interrupt

Chapter 33–44
L
A
N
G
U
A
G
E

DescriptionFunction

_vsl() Viterbi shift left (c563 only)

_wait() WAIT, wait mode saves power consumption

Table 3-6: Intrinsic functions

Prototypes for the intrinsic functions are present in c56.hc . Below are the

details of the implemented intrinsic functions in alphabetical order (sample

C source with generated assembly are given below):

_abs

int _abs(int operand);

Absolute integer value. Generate ABS instruction.

Returns the result.

Example:

volatile int ia, ib;
ia = _abs(ib);

... Code ...
 move x:ss_main+23,b ; ib
 abs b ; _abs(ib)
 move b1,x:ss_main+24 ; ia

_asm

void _asm(const char * asm);

This function can be used to generate inline assembly. The asm argument

must be a string constant with valid assembly code. The compiler will

prefix the string with a tab. For more information, see section 3.12.1, Using
the _asm Intrinsic Function.

Returns nothing.

Language Implementation 3–45

• • • • • • • •

Example:

#define SAVEINTSTAT _asm(”move SR,X:(r2)+”); \
 _asm(”ori #$03,MR”)

 SAVEINTSTAT;

... Code ...
 move SR,X:(r2)+
 ori #$03,MR

__asm

void __asm(const char * instruction_template
 [: output_param_list
 [: input_param_list
 [: regsave]]]);

This function can be used to generate inline assembly with parameter

passing. The instruction_template argument must be a string constant with

valid assembly code and optional register placeholders. The compiler will

prefix the string with a tab. For more information, see section 3.12.2, Using
the __asm Intrinsic Function.

Returns nothing.

_cache_get_start

int _P * _cache_get_start
 (void _cache_region (* fptr)());

This function gets the start address of the cache region belonging to fptr.

Returns the start address of the cache region belonging to fptr.

Example:

See example with _plock function.

This function is only available for the DSP563xx. For more information

about instruction cache support, see section 3.16 DSP563xx Cache Support.

Chapter 33–46
L
A
N
G
U
A
G
E

_cache_get_end

int _P * _cache_get_end
 (void _cache_region (* fptr)());

This function gets the end address of the cache region belonging to fptr.

Returns the end address of the cache region belonging to fptr.

Example:

See example in section 3.16.4 Examples.

This function is only available for the DSP563xx. For more information

about instruction cache support, see section 3.16 DSP563xx Cache Support.

_cadd

_complex _cadd(_complex op1 , _complex op2);

Complex addition.

Returns the result.

Example:

_complex ca, cb, cc;
cc = _cadd(ca, cb);

... Code ...
 move x:Fca,b
 move x:Fca+1,a
 move x:Fcb,x0
 move x:Fcb+1,x1
 add x0,b
 add x1,a
 move a,x:Fcc+1 ; cc
 move b,x:Fcc ; cc

Language Implementation 3–47

• • • • • • • •

_cdiv

_complex _cdiv(_complex op1 , _complex op2);

Complex division. Calculate op1 / op2.

Returns the result.

Example:

_complex ca, cb, cc;
cc = _cdiv(ca, cb);

... Code ...
 move x:Fca,b
 move x:Fca+1,a
 move x:Fcb,x0
 move x:Fcb+1,x1
 jsr F_cdiv ; _cdiv(ca, cb)
 move a,x:Fcc+1 ; cc
 move b,x:Fcc ; cc

_cmac

_complex _cmac(_complex op1 , _complex op2 ,
 _complex op3);

Complex multiply and accumulate. Calculate op1 + op2 * op3 generating

MAC instructions.

Returns the result.

Example:

_complex ca, cb, cc, cd;
cd = _cmac(ca, cb, cc);

Chapter 33–48
L
A
N
G
U
A
G
E

... Code ...
 move x:Fca,b
 move x:Fca+1,a
 move x:Fcb,x0
 move x:Fcb+1,x1
 move x:Fcc,y0
 move x:Fcc+1,y1
 mac x0,y0,b
 macr –x1,y1,b
 mac x0,y1,a
 macr x1,y0,a
 move a,x:Fcc+1 ; cc
 move b,x:Fcc ; cc

_cmul

_complex _cmul(_complex op1 , _complex op2);

Complex multiplication.

Returns the result.

Example:

_complex ca, cb, cc;
cc = _cmul(ca, cb);

... Code ...
 move x:Fca,x0
 move x:Fca+1,x1
 move x:Fcb,y0
 move x:Fcb+1,y1
 mpy x0,y0,b
 macr –x1,y1,b
 mpy x0,y1,a
 macr x1,y0,a
 move a,x:Fcc+1 ; cc
 move b,x:Fcc ; cc

Language Implementation 3–49

• • • • • • • •

_csub

_complex _csub(_complex op1 , _complex op2);

Complex subtraction. Subtract operand op2 from op1.

Returns the result.

Example:

_complex ca, cb, cc;
cc = _csub(ca, cb);

... Code ...
 move x:Fca,b
 move x:Fca+1,a
 move x:Fcb,x0
 move x:Fcb+1,x1
 sub x0,b
 sub x1,a
 move a,x:Fcc+1 ; cc
 move b,x:Fcc ; cc

_ext

unsigned long _ext(unsigned long operand);

Generate instructions to extend high order part of accumulator for

(unsigned) chars and shorts. Generate MOVE instructions.

Returns the result.

Example:

volatile unsigned long ula, ulb;
ula = _ext(ulb);

... Code ...
 move x:ss_main+14,b
 move x:ss_main+13,b0
 move #0,b2
 move b1,x:ss_main+16 ; ula
 move b0,x:ss_main+15 ; ula

Chapter 33–50
L
A
N
G
U
A
G
E

_fabs

_fract _fabs(_fract operand);

Absolute _fract value. Generate ABS instruction.

Returns the result.

Example:

volatile _fract fa, fb;
fb = _fabs(fa);

... Code ...
 move x:ss_main+11,b ; fb
 abs b ; _fabs(fb)
 move b,x:ss_main+12 ; fa

_fract2int

int _fract2int(_fract operand);

This intrinsic function changes a fractional value into an integer value

without generating any conversion code.

Returns the result.

Example:

int i;
_fract f = 0.5;
i = _fract2int(f);

... Code ...
 move #<$40,y0
 move y0,x:Ff
 move y0,x:Fi

Language Implementation 3–51

• • • • • • • •

_fsqrt

_fract _fsqrt(_fract operand);

Calculate the square root of the fractional operand. Calls the run-time

library function Rfsqrt .

Returns the result.

Example:

volatile _fract fa, fb;
fa = _fsqrt(fb);

... Code ...
 move x:ss_main+11,b ; fb
 jsr Rfsqrt ; _fsqrt(fb)
 move b,x:ss_main+12 ; fa

_int2fract

_fract _int2fract(int operand);

This intrinsic function changes an integer value into a fractional value

without generating any conversion code.

Returns the result.

Example:

int i = 0x400000;
_fract f;
f = _int2fract(i);

... Code ...
 move #<$40,y0
 move y0,x:Fi
 move y0,x:Ff

Chapter 33–52
L
A
N
G
U
A
G
E

_labs

long _labs(long operand);

Absolute long value. Generate ABS instruction.

Returns the result.

Example:

volatile long la, lb;
la = _labs(lb);

... Code ...
 move x:ss_main+18,b
 move x:ss_main+17,b0
 abs b ; _labs(lb)
 move b1,x:ss_main+20 ; la
 move b0,x:ss_main+19 ; la

_lfabs

long _fract _lfabs(long _fract operand);

Absolute long _fract value. Generate ABS instruction.

Returns the result.

Example:

long _fract lfa, lfb;
lfb = _lfabs(lfa);

... Code ...
 move x:ss_main+8,b
 move x:ss_main+7,b0
 abs b ; _lfabs(lfb)
 move b,x:ss_main+10 ; lfa
 move b0,x:ss_main+9 ; lfa

Language Implementation 3–53

• • • • • • • •

_lfract2long

long _lfract2long(_lfract operand);

This intrinsic function changes a long fractional value into a long value

without generating any conversion code.

Returns the result.

Example:

long l;
long _fract lf = 0.5;
l = _lfract2long(lf);

... Code ...
 move #<$40,x1
 move #0,x0
 move x1,x:Flf+1
 move x0,x:Flf
 move x1,x:Fl+1
 move x0,x:Fl

_long2lfract

_lfract _long2lfract(long operand);

This intrinsic function changes a long value into a long fractional value

without generating any conversion code.

Returns the result.

Example:

long l = 0x4000000000L;
long _fract lf;
lf = _long2lfract(l);

... Code ...
 move #$4000,b
 move b1,x:Fl+1
 move b0,x:Fl
 move b,x:Flf+1
 move b0,x:Flf

Chapter 33–54
L
A
N
G
U
A
G
E

_memcpy

void * _memcpy(void * dest , const void * src ,
 unsigned int size);

Copy a block of memory. An optimized inlined version of the library

function memcpy, that works on all memory spaces.

The size parameter type is unsigned int , not size_t . This is a small

difference on the 16/24-bit model of the DSP563xx between _memcpy and

memcpy.

Returns the copy destination

Example:

/* _memcpy for all memory spaces */

_X int a[10];
_Y int b[10];

void main(void)
{
 _memset(a,1,sizeof(a));
 _memcpy(b,a,sizeof(a));
}

_memset

void * _memset(void * dest , int src ,
 unsigned int size);

Fill a block of memory. An optimized inlined version of the library

function memset, that works on all memory spaces.

The size parameter type is unsigned int , not size_t . This is a small

difference on the 16/24-bit model of the DSP563xx between _memset and

memset.

Returns the destination

Language Implementation 3–55

• • • • • • • •

Example:

/* _memset for all memory spaces */

_X int a[10];
_Y int b[10];

_X void * const p = a+5;
_Y void * const q = b+5;

void main(void)
{ /* space derived from */
 /* –––––––––––––––––––––– */
 _memset(a,1,sizeof(a)); /* space ’a’ resides in */
 _memset(b,2,sizeof(b)); /* space ’b’ resides in */
 _memset(p,3,5); /* space ’p’ points to */
 _memset(q,4,5); /* space ’q’ points to */
}

_nop

void _nop(void);

Generate NOP instructions.

Returns nothing.

Example:

_nop();
... Code ...
 opt noopnop
 nop
 opt opnop

_pdiv

_fract _pdiv(_fract op1 , _fract op2);

Calculate the division of op1/op2 for positive fractional operands. Generate

DIV instruction.

Returns the result.

Chapter 33–56
L
A
N
G
U
A
G
E

Example:

volatile _fract fa, fb;
fa = _pdiv(fa, fb);

... Code ...
 move x:ss_main+12,b ; fa
 move x:ss_main+11,x0 ; fb
 andi #$FE,ccr
 rep #24
 div x0,b ; _pdiv(fa, fb)
 move b,x:ss_main+12 ; fa

_pflush

void _pflush(void);

Use the PFLUSH instruction to flush the instruction cache.

Returns nothing.

Example:

_pflush();

... Code ...
 pflush

This function only generates code for the DSP563xx. For more information

about instruction cache support, see section 3.16 DSP563xx Cache Support.

_pflushun

void _pflushun(void);

Use the PFLUSHUN instruction to flush unlocked instruction cache sectors.

Returns nothing.

Example:

_pflushun();

... Code ...
 pflushun

Language Implementation 3–57

• • • • • • • •

This function only generates code for the DSP563xx. For more information

about instruction cache support, see section 3.16 DSP563xx Cache Support.

_pfree

void _pfree(void);

Use the PFREE instruction to unlock all the locked cache sectors in the

instruction cache.

Returns nothing.

Example:

_pfree();

... Code ...
 pfree

This function only generates code for the DSP563xx. For more information

about instruction cache support, see section 3.16 DSP563xx Cache Support.

_plock

void _plock(int _P * addr);

This function uses the PLOCK instruction to lock one sector in the

instruction cache. The argument of this function is the sector address to be

locked.

Returns nothing.

Chapter 33–58
L
A
N
G
U
A
G
E

Example:

void foo(void)
{
 void _cache_region creg(void);

 _plock(_cache_get_start(creg));
 /* loop fits in one sector */
#pragma cache_align_now
#pragma cache_region_start creg
 for (...)
 {
 ...
 }
#pragma cache_region_end creg
 _punlock(_cache_get_start(creg))

... Code ...
 move #Fcreg,r6
 nop
 plock (r6)
 align cache
 ...
 move #Fcreg,r6
 nop
 punlock (r6)

This function only generates code for the DSP563xx. For more information

about instruction cache support, see section 3.16 DSP563xx Cache Support.

_punlock

void _punlock(int _P * addr);

This function uses the PUNLOCK instruction to unlock one sector in cache.

The argument of this function is the sector address to be unlocked.

Returns nothing.

Example:

See example with _plock function.

This function only generates code for the DSP563xx. For more information

about instruction cache support, see section 3.16 DSP563xx Cache Support.

Language Implementation 3–59

• • • • • • • •

_rol

unsigned int _rol(unsigned int operand ,
 unsigned int count);

Use the ROL instruction to rotate (left) operand count times. The carry bit

is reset before rotation.

Returns the result.

Example:

volatile unsigned int uia, uib;
/* rotate left, using int variable */
uia = _rol(uia, uib);

... Code ...

 move x:ss_main+22,b ; uia
 move x:ss_main+21,a ; uib
 tst a ; uib
 jeq L3
 rep a1
 rol b ; _rol(uia, uib)
L3: move b1,x:ss_main+22 ; uia

_ror

unsigned int _ror(unsigned int operand ,
 unsigned int count);

Use the ROR instruction to rotate (right) operand count times. The carry bit

is reset before rotation.

Returns the result.

Example:

volatile unsigned int uia, uib;
/* rotate right, using constant */
uia = _ror(uib, 2)
uia = _ror(uia, 3);

Chapter 33–60
L
A
N
G
U
A
G
E

... Code ...

 move x:ss_main+21,b ; uib
 ror b ; _ror(uib, 2)
 ror b
 move b1,x:ss_main+22 ; uia

 move x:ss_main+22,b ; uia
 rep #3
 ror b ; _ror(uia, 3)
 move b1,x:ss_main+22 ; uia

_round

_fract _round(long _fract operand);

Round the fractional operand. Generate RND instruction.

Returns the result.

Example:

volatile _fract fa, fb;
volatile long _fract lfa, lfb;

void main(void)
{
 fa = _round(fa);
 fb = _round(lfa);
 lfb = _round(lfa);
}

... Code ...
 move x:ss_main+12,b ; fa
 rnd b ; _round(fa)
 move b,x:ss_main+12 ; fa
;
 move x:ss_main+10,b
 move x:ss_main+9,b0
 rnd b ; _round(lfa)
 move b,x:ss_main+11 ; fb
;
 move x:ss_main+10,b
 move x:ss_main+9,b0
 rnd b ; _round(lfa)
 move b,x:ss_main+8 ; lfb

Language Implementation 3–61

• • • • • • • •

Semaphore intrinsics

Semaphores are program flags that are used to synchronize processes and

to force exclusive access to a resource. Examples are an interrupt function

that sets a semaphore when data is read, and a processing loop that clears

it when done; or a serial port that is used by several parallel processes and

must be line-blocked. To guarantee correctness, semaphore actions must

be atomic (non-interruptable). The semaphore intrinsic functions

guarantee this without the overhead of blocking and re- enabling

interrupts. To do this, the generated code contains a bit clear, bit set or bit

test assembly instruction to access the semaphore.

_sema_clr

int _sema_clr(volatile int *p, int bitnumber);

This function clears a semaphore (a bit in a volatile int field pointed

to by p). 'bitnumber' must be an integral constant expression and should

not exceed the width of an int in the DSP program. It can either be used

to clear a semaphore (ignoring the result), or to test and clear a semaphore

(result contains previous state).

Returns the previous state of the semaphore.

Example:

typedef volatile int semaphore_t;

void f(void)
{
 static semaphore_t flag = 1;

 while(!_sema_clr(&flag, 0))
 ; /* wait until we reset flag ourselves */
 /* code to handle device */
 _sema_set(&flag, 0);
 /* free device for other processes */
}

Chapter 33–62
L
A
N
G
U
A
G
E

... Code ...
L3: dc $000001
 org p,”.ptext”:
L4: bclr #0,x:L3 ; _sema_clr
 jcc L4
 bset #0,x:L3 ; _sema_set
 rts

_sema_set

int _sema_set(volatile int *p, int bitnumber);

This function sets a semaphore (a bit in a volatile int field pointed to

by p). 'bitnumber' must be an integral constant expression and should not

exceed the width of an int in the DSP program. It can either be used to

set a semaphore (ignoring the result), or to test and set a semaphore

(result contains previous state).

Returns the previous state of the semaphore.

Example:

typedef volatile int semaphore_t;

void f(void)
{
 static semaphore_t flag = 0;

 while(_sema_set(&flag, 0))
 ; /* wait until we set flag ourselves */
 /* code to handle device */
 _sema_clr(&flag, 0);
 /* free device for other processes */
}

... Code ...
L3: dc $000001
 org p,”.ptext”:
L4: bset #0,x:L3 ; _sema_set
 jcs L4
 bclr #0,x:L3 ; _sema_clr
 rts

Language Implementation 3–63

• • • • • • • •

_sema_tst

int _sema_tst(volatile int *p, int bitnumber);

This function tests a semaphore (a bit in a volatile int field pointed to

by p). It does not change the state of the semaphore. 'bitnumber' must be

an integral constant expression and should not exceed the width of an

int in the DSP program.

Returns the current state of the semaphore.

Example:

typedef volatile int semaphore_t;
semaphore_t dev_started; /* set by other routines */

void f(void)
{
 while(! _sema_tst(&dev_started, 15))
 ; /* wait until device is operational */
 /* code using device */
}

... Code ...
 org p,”.ptext”:
L3: btst #15,x:Fdev_started ; _sema_tst
 jcc L3
 rts

_stop

void _stop(void);

Generate STOP instruction.

Returns nothing.

Example:

_stop();

... Code ...
 stop

Chapter 33–64
L
A
N
G
U
A
G
E

_strcmp

int _strcmp(const char * op1 , const char * op2);

Perform a string compare. An optimized inlined version of the library

function strcmp , that works on all memory spaces.

Returns <0 if op1 < op2
 0 if op1 == op2
>0 if op1 > op2

Example:

char * sa=”strna”;
char * sb=”strnb”;

main()
{
 int result;
 result = _strcmp(sa, sb);
}

... Code ...
 move x:Fsa,r6
 move x:Fsb,r5
 move x:(r5)+,y0
L5: move x:(r6)+,a
 sub y0,a
 jne L6
 add y0,a x:(r5)+,y0
 jne L5
L6:

_strcpy

char * _strcpy(char * op1 , const char * op2);

Perform a string copy. An optimized inlined version of the library function

strcpy , that works on all memory spaces.

Returns op1

Language Implementation 3–65

• • • • • • • •

Example:

char * sa=”strna”;
char * sb=”strnb”;

main()
{
 _strcpy(sa, sb);
}

... Code ...
 move x:Fsa,r6
 move x:Fsb,r5
L5: move x:(r5)+,a
 tst a a,x:(r6)+
 jne L5

_strlen

unsigned int _strlen(const char * op1);

Calculate the length of a string. An optimized inlined version of the library

function strlen , that works on all memory spaces.

Returns the length of the string.

The result type is unsigned int , not size_t . This is a small difference

on the 16/24-bit model of the DSP563xx between _strlen and strlen .

Example:

char * sa=”strna”;

main()
{
 int length;
 length = _strlen(sa);
}

... Code ...
 move x:Fsa,r5
 move x:(r5)+,b
 lua (r5)+,n5
L4: tst b x:(r5)+,b
 jne L4
 lua (r5)–n5,b

Chapter 33–66
L
A
N
G
U
A
G
E

_swi

void _swi(void);

Software interrupt. Generate SWI (c56) or TRAP (c563) instruction.

Returns nothing.

Example:

_swi();

... Code ...
 swi

_vsl

void _vsl(long op1 , int op2 ,
 long _L * op3);

Perform a Viterbi shift left operation. Generates a VSL assembler

instruction.

Returns Nothing. The high part of op1 is stored in _X:op3, the low

part of op1 is shifted left one bit and the value of op2 (0 or

1) is added to it. and stored in _Y:op3.

Example:

long _L result;
long input = 0x12345678;

main()
{
 _vsl(input, 0, &result);
 _vsl(input, 1, &result);
}

... Code ...
 vsl b,#0,l:Fresult
 vsl b,#1,l:Fresult

This function only generates code for the DSP563xx and DSP566xx. On

the DSP563xx a warning is generated because the opcode is not supported

on all silicon revisions.

Language Implementation 3–67

• • • • • • • •

_wait

void _wait(void);

Generate WAIT instruction.

Returns nothing.

Example:

_wait();

... Code ...
 wait

Chapter 33–68
L
A
N
G
U
A
G
E

3.14 INTERRUPTS

DSP56xxx C introduces two new reserved words: _long_interrupt and

_fast_interrupt , which can be seen as special type qualifiers, only

allowed with function declarations. A function can be declared to serve as

an interrupt service routine. Interrupt functions cannot return anything and

must have a void argument type list. For example, in:

void _long_interrupt(vector)
l_isr(void)
{ ... }

void _fast_interrupt(vector)
f_isr(void)
{ ... }

The compiler will generate an interrupt service frame for long interrupts

and no frame in case of fast interrupts. The vector specifies the interrupt

number of a two word interrupt vector area. Some interrupts are reserved

and handled or used by the compiler (run-time) library, like:

• Hardware RESET (used for C main())

• Stack Error a default handling

The interrupt vector -1 is reserved for a so-called symbolic interrupt. This

means that c563 does not assign an interrupt number to this C function.

Symbolic interrupts can only be used with _long_interrupt .

When the _fast_interrupt modifier is used:

• The compiler will not use instructions that modify the status register

• The compiler will not use any register

• The compiler may generate at most 2 words coding; this is checked

after optimization in the assembler.

• If the compiler detects that it is impossible to generate a fast

interrupt function, it generates a long interrupt function. In this case

the compiler gives a warning message. All other errors will only be

detected in the assembly phase.

Language Implementation 3–69

• • • • • • • •

Example of _fast_interrupt:

Suppose, you want an interrupt function for a peripheral, and the vector

number is 17:

#include <reg56302.h>

int c;

void
_fast_interrupt(17)
host_transmit(void)
{
 HTX = c;
}

This will result in assembly:

 org p,”.irq17”:$22+R_VBAVALUE
irq17:
Fhost_transmit:
 movep x:Fc,x:<<$FFFFC7
 align 2

Chapter 33–70
L
A
N
G
U
A
G
E

3.15 CIRCULAR BUFFERS

The DSP56xxx family supports circular buffers, for which no

representation in C exists. A circular buffer is a linear array that can be

accessed using modulo address arithmetic, i.e., a pointer that

wraps-around automatically, thus creating a virtual circular buffer. To

allow you to use circular buffers in C, c563 supports the data type _circ
as an extended data type.

Example:

int _circ Circ_Buf[5];
int _circ *Ptr_to_Circ_Buf = Circ_Buf;

Here, Circ_Buf is declared as a circular buffer. The compiler will emit

alignment directives to ensure circular buffers will start at addresses that

are a multiple of the smallest power of two that is equal to or larger than

the buffer size. The buffer size is kept by the compiler and will be used to

control pointer arithmetic of pointers that are assigned to the buffer later.

In the above example, the circular pointer Ptr_to_circ_Buf will be

stored in an R-type register and the proper modulo value will be stored in

its corresponding M-type register. Operations on the circular pointers can

be done using the usual C pointer arithmetic with the difference that the

pointer will wrap.

When the circular buffer is accessed using a circular pointer, it will wrap at

the buffer limits.

Example:

while(*Ptr_to_Circ_Buf++);

Indexing in the circular buffer, using an integer index, is treated equally to

indexing in a non-circular array.

Example:

int i = Circ_Buf[3];

The index is not calculated modulo; indexing outside the array boundaries

yields undefined results.

Language Implementation 3–71

• • • • • • • •

Example:

_fract SomeVariable;
_fract _circ input_buf[100];

void func(void)
{
_fract _circ *inPtr = input_buf;

 .
 .
 .
 *inPtr++ = SomeVariable;
 .
 .
 .
}

the following code will be used:

Ffunc:
 .
 .
 .
 move #Finput_buf,r3 ; load buffer address
 ; in pointer
 move #100–1,m3 ; load modulo value
 move x:FSomeVariable,x0 ; get value of
 ; SomeVariable
 move x0,x:(r3)+ ; store value at
 ; buffer location and
 ; increment pointer
 . ; more actions with
 . ; inPtr
 move m7,m3 ; disable modulo of m3
 ; (m7 always contains
 ; –1 in the mixed or
 ; reentrant model)
 .
 .

The moves to and from input_buf will be optimized away mostly. Also

setting the modulo register will be done only once, unless register R3 is

used for another purpose that requires other or no modulo arithmetic.

Chapter 33–72
L
A
N
G
U
A
G
E

3.16 DSP563XX CACHE SUPPORT

The DSP563xx is equipped with an instruction cache. The compiler

supports this cache with the features described in the following sections.

The c56 compiler and the c563 compiler in DSP566xx memory model

ignore the cache features, which makes it possible to write portable code.

3.16.1 CACHE ALIGNMENT

Instructions are cached in sectors of 128 or 256 words, depending on the

cache size. The size of the cache varies by DSP563xx derivative.

The following pragma is supported for forcing alignment on a 128 or

256-word boundary:

#pragma cache_align_now

Aligns current address at a cache boundary. This can be done

only once per function. The alignment may introduce an

unused memory alignment gap at the beginning of the

section.

Whether the cache alignment is on a 128 or 256-word boundary depends

on the compiler command line option -csize or the #pragma
cache_sector_size size. The size is either 128 or 256 words. The

compiler has a predefined macro for the cache sector size

_CACHE_SECTOR_SIZE that expands to size value.

Language Implementation 3–73

• • • • • • • •

3.16.2 CACHE REGIONS

Cache regions are a start and end address of memory to be locked in the

cache. Such a region can be bound to a function or function pointer. The

user can lock and unlock the cache sectors in a region using intrinsic

functions. The function or function pointer must have the function

qualifier _cache_region . For a function with this function qualifier the

compiler will generate a start and an end label. Functions having this

qualifier are always aligned on the cache sector size. A cache function

definition will look as follows:

void _cache_region sample(void)
{
 ...
}

When a function pointer with the _cache_region qualifier is defined, the

begin and end labels can be set manually. For this purpose two pragmas

are available:

#pragma cache_region_start fptr
Mark start position of a cache region.

#pragma cache_region_end fptr
Mark end position of a cache region.

The fptr can be defined as follows:

void _cache_region fptr (void);

See section 3.16.4 for examples.

3.16.3 CACHE INTRINSIC FUNCTIONS

The following intrinsic functions are available for cache locking:

void _pflush(void); flush cache

void _pflushun(void); flush unlocked sectors

void _pfree(void); global unlock

void _plock(int _P *addr);
lock 1 sector in cache with address addr

Chapter 33–74
L
A
N
G
U
A
G
E

void _punlock(int _P *addr);
unlock 1 cache sector with the address addr

int _P * _cache_get_start(void _cache_region * fptr) ());
get first address of cache region belonging to

fptr

int _P * _cache_get_end(void _cache_region * fptr) ());
get last address of cache region belonging to

fptr

3.16.4 EXAMPLES

Example 1:

Locking a loop in the cache:

void foo(void)
{
 void _cache_region creg(void);

 _plock(_cache_get_start(creg));
 /* loop fits in one sector */
#pragma cache_align_now
#pragma cache_region_start creg
 for (...)
 {
 ...
 }
#pragma cache_region_end creg
 _punlock(_cache_get_start(creg));
}

This example assumes that the loop fits in one cache sector. Therefore,

only the start address is locked in the cache.

Language Implementation 3–75

• • • • • • • •

Example 2:

This example shows how to lock a function from another module. This

example does not assume that the whole function fits in one cache sector.

Module A:

void _cache_region sample(void)
{
 ...
}

Module B:

extern void _cache_region sample(void);

void main(void)
{
 void _P *p;

 for (p = _cache_get_start(sample);
 p < _cache_get_end(sample);
 p += _CACHE_SECTOR_SIZE)
 {
 _plock(p);
 }
 . . .
 for (p = _cache_get_start(sample);
 p < _cache_get_end(sample);
 p += _CACHE_SECTOR_SIZE)
 {
 _punlock(p);
 }
}

3.17 PATRIOT BANK SWITCHING SUPPORT

The banked program memory feature of the Patriot chips (DSP56622 /

DSP56671 / DSP56679 / DSP56690 / DSP56691 / DSP56694) is supported

with the _bank() keyword. A bank is combination of a particular address

range and a page number.

_bank(range, page)

range a number from 0 to 3, corresponding to the following

available address ranges:

Chapter 33–76
L
A
N
G
U
A
G
E

range# address range

0 0X8000–0X9FFF

1 0XA000–0XBFFF

2 0XC000–0XDFFF

3 0XE000–0XEFFF

Table 3-7: Address ranges

page a number of 0 or 7, corresponding to the page a function

should be located in.

Use the command line option -ppage to specify the total number of pages

(page is 1..8). Default is two pages.

A function cannot call functions in the same range but within a different

page number. For function calls to functions in the same range and page

or in main memory (address 0x000 - 0x7FFF) no extra instructions for

switching pages are generated. When the called function is in a different

range, switch instructions will be generated. When a function switches

pages it saves the value of the DDM Page Configuration Register (DPCR) at

the start of the calling function and restores it at the function end.

When you define a function with the _bank keyword, the compiler

generates an special section name. The section name begins with ".ptext_",

followed by a letter indicating the range (where A is range 0, B is range 1,

etc.) and followed by a number indicating the page.

For the S-record format the banks are coded in the section information.

For the other formats the locator places the sections at the appropriate

addresses. For page 0 this is as indicated in the table above. Ranges within

page 1 will be located at the address plus 0x10000. The CrossView Pro

debugger/loader will interpret these addresses and switch to the correct

bank when memory in those ranges is accessed. The user can use the

same addresses to look at the program memory. Furthermore the PC

register the user sees will also reflect the current state of the DPCR register

for and if it points to the paged memory.

Restrictions:

• A function can not call functions in the same range but with a

different page number.

• Function pointers pointing to banked functions need to be declared

within the same bank as the function they point to.

Language Implementation 3–77

• • • • • • • •

Example

The following code calls function foo() from function bar().

Function foo() is located in range 1, page 0 and function bar() is located in

range 3, page 1.

void _bank(1,0) foo(void);
void _bank(3,1) bar(void);

void _bank(3,1) bar(void)
{
 foo();
}

3.18 PACKED STRINGS

The c56 and c563 compilers support packed characters and packed

strings. The _packed type modifier will be used to define a packed string.

The _packed modifier can only be applied to characters, character arrays

or pointers to character. Incrementing a packed character pointer means

incrementing to the next word. Thus, two (c563 in 16-bit model) or three

(c56, c563 in 24-bit model) characters are skipped.

3.18.1 LIBRARY FUNCTIONS

To be able to access packed strings, the C library has been extended with

functions to deal with packed strings:

char *_unpackstr(char * unp, const _packed char * p);

Unpack string pointed to by p in the buffer

pointed to by unp. Return a pointer to the

unpacked string.

_packed char *_packstr(_packed char * p, const char * unp);

Pack string pointed to by unp in the buffer

pointed to by p. Return a pointer to the packed

string.

size_t _unpstrlen(const _packed char *p);

Return the length in number of characters of the

packed string pointed to by p. This is the

number of characters when the string would be

unpacked.

Chapter 33–78
L
A
N
G
U
A
G
E

size_t _packsize(const char * p);

Calculate the size of a string when it is packed.

char _pstr_get(const _packed char *p, size_t idx);

Return character at index idx in packed string p.

void _pstr_put(_packed char *p, size_t idx, char c);
Put character c on index idx in packed string p.

Printf and scanf formatters support the packed string conversion

specification %S, which otherwise behaves like the normal string

conversion specification %s.

3.18.2 PRAGMAS

Two pragmas for packed string support are available:

#pragma pack_strings After this pragma all string constants will be

packed string constants. Using such a string as a

not packed string (e.g., passing to a function

with a not packed string argument type) will

yield a type conflict error.

#pragma nopack_strings

After this pragma string constants will no longer

be packed string constants.

3.18.3 EXAMPLES

Example 1:

_packed char somestring[] = ”Some String”;

void example(void)
{
 // allocate space for unpacking
 char *p = (char *)malloc(_unpstrlen(somestring) + 1));
 _unpackstr(p, somestring);
 printf(”unpacked %s, packed %S\n”, p, somestring);
 free(p);
}

Language Implementation 3–79

• • • • • • • •

Example 2:

int printpstring(_packed char *p)
{
 int idx = 0;
 char c;
 while(c = _pstr_get(p, idx++))
 putchar(c);
 return(idx);
}

void main(void)
{
 int parm;
#pragma pack_strings // make packed strings
 // of all string constants
 printpstring(”Continue? (Y/N): ”);
 parm = getchar();
 printpstring(”Action: ”);
 printpstring(parm == ’Y’ ? ”Continuing” :
”Stopping”);
#pragma nopack_strings
}

The sizeof(_packed char) is one, just like sizeof(char) . This

implies that pointer arithmetic on pointers to packed strings goes per three

characters.

Example 3:

_packed char *p = ”123456789”;
char *n = ”123456789”;
 . . .
char c;
c = _pstr_get(p, 1); // c will be ’1’
p++;
c = _pstr_get(p, 1); // c will be ’4’
c = *n; // c will be ’1’
n++;
c = *n; // c will be ’2’

Chapter 33–80
L
A
N
G
U
A
G
E

3.19 STRUCTURE TAGS

A tag declaration is intended to specify the lay-out of a structure or union.

If a memory type is specified, it is considered to be part of the declarator.

A tag name itself, nor its members can be bound to any storage area,

although members having type "... pointer to" do require one. A tag may

then be used to declare objects of that type, and may allocate them in

different memories (if that declaration is in the same scope). The following

example illustrates this constraint.

struct S {
 _X int i; /* referring to storage: not correct */
 _P char *p; /* used to specify target memory: correct */
};

In the example above c56 ignores the erroneous _X storage specifier

(without displaying a warning message).

3.20 TYPEDEF

Typedef declarations follow the same scope rules as any declared object.

Typedef names may be (re-)declared in inner blocks but not at the

parameter level. However, in typedef declarations, memory specifiers are

allowed. A typedef declaration should at least contain one type specifier.

Examples:

typedef _P int PINT; /* storage type _P: OK */
typedef int _X *DATAPTR; /* logical type _X
 storage type ’default’ */

Language Implementation 3–81

• • • • • • • •

3.21 SWITCH STATEMENT

c563 supports two ways of code generation for a switch statement: a jump

chain (linear switch) or a jump table.

A jump chain is comparable with an if/else-if/else-if/else construction. A

jump table is a table filled with JMP instructions for each possible switch

value. The switch argument is used as an index to jump within this table.

By default, the compiler will try to use the switch method which uses the

least space in ROM.

It is obvious that, especially for large switch statements, the jump table

approach executes faster than the jump chain approach. Also the jump

table has a predictable behavior in execution speed. No matter the switch

argument, every case is reached in the same execution time.

With a small number of cases, the jump chain method can be faster in

execution and shorter in size.

The compiler chosen switch method can be overruled by using one of the

following option combinations:

–OT –OW /* force jump chain code */
–Ot /* force jump table code */
–OT –Ow /* let the compiler decide
 the switch method used */

The last one is also the default of the compiler. Using an option (or a

pragma) cannot overrule the restrictions as described earlier.

See #pragma jumptable_memory in section 4.4, Pragmas.

Chapter 33–82
L
A
N
G
U
A
G
E

3.22 PORTABLE C CODE

If you are developing C code for the DSP56xxx family using c563(or c56),

you might want to test some code on the host you are working on, using a

C compiler for that host. Therefore, we deliver the include file c56.h . This

header file checks if _C56 is defined, and redefines the storage type

specifiers if it is not defined.

When using this include file, you are able to use the storage type specifiers

(when needed) and yet write 'portable C code'.

Furthermore an adapted prototype of each DSP56xxx C intrinsic function

is present, because these functions are not known by another ANSI

compiler. If you use these functions, you should write them in C,

performing the same job as the DSP56xxx and link these functions with

your application for simulation purposes.

Language Implementation 3–83

• • • • • • • •

3.23 EFFICIENT USE OF THE DSP56XXX TOOL SET

The following sections give you some guidelines and hints to get the best

results from the DSP56xxx tool set.

3.23.1 CHAR AND SHORT TYPES

Avoid types smaller than int whenever possible, as they need more

instructions for conversions and do not save data space. Types smaller

than int are (see table 3-2):

DSP5600x signed and unsigned char and short

DSP563xx in 24-bit arithmetic mode: signed and unsigned char and

short

in 16-bit arithmetic modes: signed and unsigned char

DSP566xx signed and unsigned char

3.23.2 UNSIGNED

Try to use the unsigned qualifier as little as possible, because unsigned

comparisons require more code than signed comparisons. When retrieving

unsigned values from memory the accumulator extension word can be set

incorrectly. Therefore, the extension word has to be cleared before any

comparison.

3.23.3 HARDWARE LOOPS

For the DSP5600x the loop counter register LC (16 bits) is smaller than an

(unsigned) int (24 bits). The compiler only optimizes to a hardware DO

loop when it is absolutely sure that the loop counter fits in the loop

counter register. When the start and end value of the loop iteration

counter in the C code is fixed and fits within a 16-bit value this is the case.

Also when an (unsigned) short is used for loop iteration counter or

loop conditions, the compiler is sure the loop counter register will not

overflow. Therefore, it is recommended to use (unsigned) short for

loops and for loop conditions on the DSP5600x.

Chapter 33–84
L
A
N
G
U
A
G
E

When using global variables inside the loop the compiler may not be able

to produce a hardware DO loop that can be optimized to a REP loop. For

example:

_fract output=0.0;
_fract _X x[10];
_fract _Y c[10];
main()
{
 int i;
 for(i=0; i < 10; i++)
 output += x[i]*c[i];
}

In this example the loop cannot be optimized to a REP loop because the

variable output is written in each iteration. You can use an automatic

temporary variable to make it possible to optimize the hardware loop to a

REP loop:

_fract output=0.0;
_fract _X x[10];
_fract _Y c[10];
main()
{
 int i;
 _fract tmp = output; // copy to temporary variable
 for(i=0; i < 10; i++)
 tmp += x[i]*c[i]; // use temporary variable
 output = tmp; // get value from temporary variable
}

To generate a hardware DO loop the compiler must recognize the variable

used as loop counter in the C code. Incrementing the loop counter as a

separate statement is easier to recognize by the compiler than when it is

used in some expression or as an index of an array.

Language Implementation 3–85

• • • • • • • •

For example, in the following code the compiler does not recognize the

loop counter i :

_fract output=0.0;
_fract _X x[10];
_fract _Y c[10];
main()
{
 int i=0;
 _fract tmp = output;
 do
 {
 tmp += x[0]*c[i++]; // i++ in expression
 } while(i<10);
 output = tmp;
}

When rewriting the do-while loop code to:

 do
 {
 tmp += x[0]*c[i];
 i++; // i++ as separate statement
 } while(i<10);

the compiler recognizes i as the loop counter and generates a hardware

loop.

In for statements containing multiple update statements, the loop count

variable must be the last updated variable to allow the compiler to create a

hardware loop. Example:

void f(unsigned short max)
{
 unsigned short i, j;
 for(i = 0, j = 0; i < max; i++, j++)
 {
 a[i] = b[j];
 } /* no hardware loop created */
 for(i = 0, j = 0; i < max; j++, i++)
 {
 a[i] = b[j];
 } /* hardware loop created */
}

Chapter 33–86
L
A
N
G
U
A
G
E

3.23.4 SPEED VS. SIZE

The C compiler optimizations are by default tuned for code size. When

execution speed is more important than code size you can use the -O3 or

-O4 command line option to let the compiler optimize for speed. The

optimization options can also be changed using the #pragma optimize.

For example:

#pragma optimize 4 // optimize for speed
 . . . // some C code to be
 . . . // optimized for speed
#pragma endoptimize // back to optimization set
 // before the pragma optimize

3.23.5 ASSEMBLY INTERFACING

The #pragma asm can be used to get access to specific DSP56xxx

instructions or to write code that cannot be achieved using the C language.

For interfacing the C language to assembly it is recommended to use a

function call interface with the _asmfunc function qualifier. With

#pragma asm it is unsafe to rely on the registers the compiler allocates

for the variables. See section 3.12 Inline Assembly and section 3.12.4

Linking with Separate Assembly Routines for more information.

The compiler also features intrinsic functions that can be used to get

access to some special DSP56xxx instructions. These functions have the

advantage of being portable and they have a neat C interface. See also

section 3.13 Intrinsic Functions.

When calling an assembly routine from C in the mixed or reentrant model,

R7 must not be used in this function because this register is used as user

stack pointer. When no more address registers are available in your

assembly routine you can save the contents of R7 to some memory

location on entry of the routine and restore it before returning to C. Note

that interrupt functions in the reentrant model or interrupt functions

declared _reentrant in the mixed model cannot be entered when R7 is

not available as user stack pointer because these interrupt functions may

want to save registers on the stack.

Language Implementation 3–87

• • • • • • • •

3.23.6 SELECTING THE MOST EFFICIENT MODEL

The DSP563xx compiler can generate code for 16-bit precision arithmetic

in two models: the 16-bit model and the 16/24-bit model. Use the

16/24-bit model only if the code and/or data require more than 64k words

of memory, because pointer arithmetic is much more efficient in the 16-bit

model.

The DSP5600x compiler supports three models: Static, Mixed and

Reentrant. Select the most efficient model for your application. The

compiler generates the best code for the static model. The code density

generated for the mixed model is close to the static model because it only

cannot use R7 which is reserved for user stack pointer. The code density

for the reentrant model is less than the static and mixed model. Use the

static model for any function that does not need to be reentrant (i.e., not

recursive and not called from (an) interrupt routine(s) and the main

program simultaneously).

If you place the stack in L-memory, code becomes faster, but data memory

use may slightly increase. If you select default memory to be P, the code

will become very inefficient and slow; use this selection only as a last

resort.

See also section 3.2.2 Memory Models.

3.23.7 MEMORY MAPPED I/O FROM C

Use the unions in the supplied header file for memory mapped I/O;

optimal bit field operations are generated this way. A C header file is

supplied for each DSP56xxx family derivative in the include subdirectory

of the installed product.

The registers defined in the header file are created by a union of a

structure (field .B) and an integer (field .I). The structure defines all bit

fields in the register. The integer can be used to access the register as one

word. When copying the full register contents it is recommended to use

this one word .I field instead of copying the whole structure. Copying

one field yields more efficient code than copying it as a structure.

Chapter 33–88
L
A
N
G
U
A
G
E

Example:

#include <reg56002.h> // include register
 // header file
void main(void)
{
 sr_type a;
 a = SSISR; // copy whole structure
 a.I = SSISR.I; // preferred: copy .I field
}

The best place to add your own I/O devices in the DSP56xxx memory

map is in the high addresses of Y memory. You can then access these I/O

devices with the same efficient instructions as the built-in I/O devices. To

access them from C code you can create a header file for your I/O system

that is similar to the ones provided for the DSP device.

3.23.8 PARALLEL MOVES

For the DSP5600x and DSP563xx it is recommended to allocate data

structures in Y memory whenever possible, to take advantage of parallel

X/Y moves. Automatics are stored in X memory, so, this gives you a better

balance.

3.23.9 SHIFTING FRACTIONAL DATA

The DSP56xxx compilers support shifting of fractional data values. You

may want to use the method below, however, because this feature is not

portable to floating point calculations. You can use multiplication/division

with fractional powers of 2 to implement shifting of fractional data. For

example:

_fract scale_down(_fract f)
{
 return (f*0.25) /* f >>= 2 */
}

... Code ...

asr a
asr a
rts

Language Implementation 3–89

• • • • • • • •

_fract scale_up(_fract f)
{
 return (f/0.125) /* f <<= 3 */
}

... Code ...

rep #3
asl a
rts

3.23.10 DYNAMIC SCALING

To scale dynamically, you can use a negative _fract scaling factor to

avoid rounding errors at gain 1:

output = – (input*gain); /* –1.0 <= gain <= 0 */

... Code ...

move x:Finput,x1
move x:Fgain,y0
mpyr –x1,y0,a
move a,x:Foutput

3.23.11 REVIEWING THE OPTIMIZED CODE

The optimizations for a C program are partially done in the C compiler

and partially in the assembler. This implies that the fully optimized result is

only available after assembly. The assembler will produce a list file that

shows how it rearranged the compiler generated source. The final result

can also be reviewed using the disassembler option of the object reader

pr563 (pr56 for DSP5600x). For example:

cc563 –c file.c compile into object 'file.obj'

pr563 –iv4 file.obj disassemble the object 'file.obj'

or

cc563 –c –l –s file.c compile and produce an assembler

 listing with source merging

Chapter 33–90
L
A
N
G
U
A
G
E

3.23.12 INTEGER AND FRACTIONAL TYPES

Converting integer to fractional types follows the rules for integer to float

conversion. Due to the limited overlap between integer and fractional

types there are only a few possibilities, listed in the following table. As

these conversions are almost always inadvertent, a warning message is

issued for them.

In combined integer and fractional operations the fractional value is

converted to integer, as the integer type has the largest range.

From Value To Result
signed char, short, int,
long

<= –1 _fract, long _fract –1.0

> –1 0.0
unsigned char, short,
int, long

>= 0 _fract, long _fract 0.0

_fract, long _fract <= –1.0 signed char, short, int, long –1
> –1.0 0

_fract, long _fract < = –1.0 unsigned char, short, int, long max. value
 (all ones)

>= –1.0 0

Table 3-8: Type conversions

The fractional value is truncated and not rounded.

Example:

int i;
_fract f;

i = 3; f = i; // f will be 0.0
. . .
i = –5; f = i; // f will be –1.0
. . .
f = 0.5; i = f; // i will be 0
. . .
f = –0.1; i = f; // i will be 0
. . .
f = –1.0; i = f; // i will be –1

Language Implementation 3–91

• • • • • • • •

The following code shows the result of a conversion from _fract to int
and vice versa:

; 1 |extern int i;
; 2 |extern _fract f;

 . . .

; 6 | i = f; // _fract to int

 move x:Ff,a ; get f into accu a
 neg a ; negate to set flags
 move #0,a ; result in i is 0
 jle L3 ; if value was >= 0 result in i is 0
 jes L3 ; or if value was > –1.0 if extension
 ; not in use result in i is 0
 move #>–1,a ; else result in i is –1
L3: move a,x:Fi ; store i

; 8 | f = i; // int to _fract

 move x:Fi,b ; get i into accu b
 tst b ; check value of i
 move #0,b ; result in f is 0.0
 jge L4 ; if i >= 0 result in f is 0.0
 move #<$80,b ; else result in f is –1.0
L4: move b,x:Ff ; store f

It is obvious that when integer and fractional types are mixed frequently,

the above conversions also occur frequently. Therefore, it is more efficient

to use only fractional types or only integer types in expressions. The

above of course also applies to the types char , short , long and long
_fract .

When you do not want the conversion as described above there are three

ways to achieve this:

1. Use the _int2fract and _fract2int intrinsic functions. See section

3.13 Intrinsic Functions.

2. Use a union of the fractional and integer type. Initialization with

hexadecimal constants is also possible, depending on which member is

mentioned first.

Chapter 33–92
L
A
N
G
U
A
G
E

For example:

typedef union
{
 _fract f;
 int i;
} fract_int;

fract_int val = 0x123456; // hex initialization

int f(void)
{
 val.f = 0.1; // put fractional value 0.1
 // in val.f
 return(val.i); // return 0xCCCCC as integer
}

3. Use a pointer cast.

For example:

int f(void)
{
 _fract f = 0.1; // put fractional value 0.1
 // in f
 return(*(int*)&f); // return 0xCCCCC as integer
}

It is recommended to use fractional types whenever possible. The

compiler can generate the most efficient code for these types because this

is the type which suites the DSP56xxx family the best.

For example the compiler will use the MAC instruction whenever possible,

also for integer multiplication. To be able to do this the integer must be

scaled first.

Language Implementation 3–93

• • • • • • • •

; 1 |extern int i, j, k;

 . . .

; 10 | k += i * j;

 move x:Fk,a0 ; get k into a0, this must
 ; be a0 to do the MAC
 move x:Fi,x0 ; get i into x0
 move x:Fj,y0 ; get j into y0
 asl a ; prepare for mac on integer:
 ; scaling
 mac x0,y0,a ; mac!
 asr a ; get result of mac: scaling
 move a0,x:Fk ; store k

When this was done using the fractional type the code would be more

efficient:

; 1 |extern _fract i,j,k;

 . . .

; 10 | k += i * j;

 move x:Fk,a ; get k into accu a
 move x:Fi,x0 ; get i into x0
 move x:Fj,y0 ; get j into y0
 macr x0,y0,a ; mac!
 move a,x:Fk ; store k

3.23.13 INTERRUPT ROUTINES

Avoid using function calls in interrupt routines, as this will force the

compiler to stack all registers. All registers are free to use in a function, so

there is no way that the compiler can limit this. Instead, an _inline
function or a macro can be used for repeated code if necessary. This will

cause your code to become larger, but it will also avoid call/return

overhead in the interrupt function.

Chapter 33–94
L
A
N
G
U
A
G
E

4

COMPILER USE
C

H
A

P
T

E
R

Chapter 44–2
U
S
A
G
E

4

C
H

A
P

T
E

R

Compiler Use 4–3

• • • • • • • •

4.1 CONTROL PROGRAM

The control program cc563 facilitates the invocation of the various

components of the DSP563xx/DSP566xx family toolchain, from a single

command line. cc56 is the control program for the DSP5600x. The control

program accepts source files and options on the command line in random

order.

The invocation syntax of the control program is:

cc563 [[option] ... [control] ... [file] ...] ...

Options are preceded by a '-' (minus sign). The input file can have one of

the extensions explained below.

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as '()' and '?') must be enclosed with ” ” or

escaped. The -? option (in the C-shell) becomes: ” -?” or -\?.

The control program recognizes the following argument types:

• Arguments starting with a '-' character are options. Some options

are interpreted by the control program itself; the remaining options

are passed to those programs in the toolchain that accept the

option.

• Arguments with a .cc , .cxx or .cpp suffix are interpreted as C++

source programs and are passed to the C++ compiler.

• Arguments with a .c suffix are interpreted as C source programs

and are passed to the compiler.

• Arguments with a .asm suffix are interpreted as hand-written

assembly source files which have to be passed to the assembler.

• Arguments with a .src suffix are interpreted as compiled assembly

source files. They are directly passed to the assembler.

• Arguments with a .a suffix are interpreted as library files and are

passed to the linker.

• Arguments with a .obj suffix are interpreted as object files and are

passed to the linker.

• Arguments with a .cln suffix are interpreted as COFF object files

and are passed to the linker.

• Arguments with a .clb suffix are interpreted as COFF library files

and are passed to the linker.

Chapter 44–4
U
S
A
G
E

• Arguments with a .out suffix are interpreted as linked object files

and are passed to the locator. The locator accepts only one .out
file in the invocation.

• An argument with a .dsc suffix is interpreted as a locator

description file and is passed to the linker and the locator.

Normally, a control program tries to compile and assemble all source files

to object files, followed by a link and locate phase which produces an

absolute output file. There are however, options to suppress the assembler,

linker or locator stage. The control program produces unique filenames for

intermediate steps in the compilation process, which are removed

afterwards. If the compiler and assembler are called subsequently, the

control program prevents preprocessing of the compiler generated

assembly file. Normally, assembly input files are preprocessed first.

The following options are interpreted by the control programs:

Option Description

–? or none Display invocation syntax

–Mm Mixed memory model (only allowed for cc56)

–Mr Reentrant memory model (only allowed for cc56)

–Ms Static memory model (only allowed for cc56)

–M24 24–bit memory model (only allowed for cc563)

–M1624 16/24–bit memory model (only allowed for cc563)

–M16 16–bit memory model (only allowed for cc563)

–M6 DSP566xx memory model (only allowed for cc563)

–S Generate Motorola compatible assembly file with COFF
debug, stops at .asm

–Tname target hardware

–V Display version header only

–Waarg Pass argument directly to the assembler

–Wcarg Pass argument directly to the C compiler

–Wcparg Pass argument directly to the C++ compiler

–Wlcarg Pass argument directly to the locator

–Wlkarg Pass argument directly to the linker

–Wplarg Pass argument directly to the C++ pre–linker

–c++ Force .c files to C++ mode

–c Do not link: stop at .obj

–cc Compile C++ files to .c and stop

Compiler Use 4–5

• • • • • • • •

DescriptionOption

–cl Do not locate: stop at .out

–clas Set locator output file format to CLAS compatible

–cs Do not assemble: compile C and C++ files to .src and stop

–f file Read arguments from file (”–” denotes standard input)

–ieee Set locator output file format to IEEE–695 (default)

–ihex Set locator output file format to Intel Hex

–nolib Do not link with the standard libraries

–o file Specify the output file

–srec Set locator output file format to Motorola S–records

–tiof Set locator output file format to TIOF–695

–tmp Keep intermediate files

–v Show command invocations

–v0 Show command invocations, but do not start them

–wc++ Enable C and assembler warnings for C++ files

Table 4-1: Control program options

Chapter 44–6
U
S
A
G
E

4.2 COMPILERS

The invocation syntax of the C compilers is:

c563 [[option] ... [file] ...] ...

When you use a UNIX shell (Bourne shell, C-shell), arguments containing

special characters (such as '()' and '?') must be enclosed with ” ” or

escaped. The -? option (in the C-shell) becomes: ” -?” or -\?.

The C compilers accept C source file names and command line options in

random order. Source files are processed in the same order as they appear

on the command line (left-to-right). Options are indicated by a leading '-'

character. Each C source file is compiled separately and the compilers

generate an output file with suffix .src per C source module, containing

assembly source code.

The priority of the options is left-to-right: when two options conflict, the

first (most left) one takes effect. The -D and -U options are not

considered conflicting options, so they are processed left-to-right for each

source file. You can overrule the default output file name with the -o

option. The compiler uses each -o option only once, so it is possible to

specify multiple -o options for multiple source files.

When you invoke c563 without any argument, the invocation syntax is

displayed (same as -? option).

A summary of the options is given below. The next section describes the

options in more detail.

Option Description

–? Display invocation syntax

–A[flag...] Control language extensions

–Cflag... Control compatibility options

–Dmacro[=def] Define preprocessor macro

–E[m|l|c|i|p|x] Preprocess options or emit dependencies

–Hfile Include file before starting compilation

–Idirectory Look in directory for include files

–Lnumber Specify depth of hardware stack use

–M[m|s|r][x|y|l|p][L] Select memory model: mixed, static or reentrant.
Select default memory space: X, Y, L or P. Specify
stack not in L memory (only for c56)

Compiler Use 4–7

• • • • • • • •

DescriptionOption

–M[24|1624|16|6]
 [n][x|y|l|p][L]

Select memory model: 24–bit, 16/24–bit, 16–bit or
DSP566xx. Do not use hardware stack extension.
Select default memory space: X, Y, L or P. Specify
stack not in L memory (only for c563).

–Oflag... Control optimization

–R[dname[=sname]] Change default section name

–Umacro Remove preprocessor macro

–V Display version header only

–csize Specify size of cache sectors for the DSP563xx

–e Remove output file if compiler errors occur

–err Send diagnostics to error list file (.err)

–f file Read options from file

–g[f|l|n|c]... Enable symbolic debug information (unless –gn is
used)

–mmask Compile for silicon mask (c563 only)

–n Send output to standard output

–o file Specify name of output file

–ppage Specify number of Patriot memory pages

–rregister Reserve a register for external use

–s Merge C source code with assembly output

–si Merge C source code and included files with
assembly output

–t Display lines/min

–u Treat all ’char’ variables as signed

–w[num] Suppress one or all warning messages

–wstrict Suppress warning messages 196, 303

–zpragma Identical to ’#pragma pragma’ in the C source

Table 4-2: Compiler options (alphabetical)

Chapter 44–8
U
S
A
G
E

Description Option

Include options

Read options from file –f file

Include file before starting compilation –Hfile

Look in directory for include files –Idirectory

Preprocess options

Preprocess options or emit dependencies –E[m|l|c|i|p|x]

Define preprocessor macro –Dmacro[=def]

Remove preprocessor macro –Umacro

Allocation control options

Specify depth of hardware stack use –Lnumber

Change default section name –R[dname[=sname]]

Specify size of cache sectors for the DSP563xx –csize

Reserve a register for external use –rregister

Code generation options

Select memory model: mixed, static or reentrant.
Select default memory space: X, Y or P. Specify stack
not in L memory (only for c56)

–M[m|s|r][x|y|l|p][L]

Select memory model: 24–bit, 16/24–bit, 16–bit or
DSP566xx. Do not use hardware stack extension.
Select default memory space: X, Y, L or P. Specify
stack not in L memory (only for c563).

–M[24|1624|16|6]
 [n][x|y|l|p][L]

Control optimization –Oflag...

Compile for silicon mask –mmask

Specify number of Patriot memory pages –ppage

Identical to ’#pragma pragma’ in the C source –zpragma

Language control options

Control language extensions –A[flag...]

Control compatibility options –Cflag...

Treat all ’char’ variables as signed –u

Output file options

Remove output file if compiler errors occur –e

Send output to standard output –n

Compiler Use 4–9

• • • • • • • •

OptionDescription

Specify name of output file –o file

Merge C source code with assembly output –s

Merge C source code and included files with
assembly output

–si

Diagnostic options

Display invocation syntax –?

Display version header only –V

Send diagnostics to error list file (.err) –err

Enable symbolic debug information (unless –gn is
used)

–g[f|l|n|c]...

Display lines/min –t

Suppress one or all warning messages –w[num]

Suppress warning messages 196, 303 –wstrict

Table 4-3: Compiler options (functional)

Chapter 44–10
U
S
A
G
E

4.2.1 DETAILED DESCRIPTION OF THE COMPILER

OPTIONS

Option letters are listed below. Each option (except -o; see description of

the -o option) is applied to every source file. If the same option is used

more than once, the first (most left) occurrence is used. The placement of

command line options is of no importance except for the -I and -o

options. For the -o option, the filename may not start immediately after

the option. There must be a tab or space in between. All other option

arguments must start immediately after the option. Source files are

processed in the same order as they appear on the command line

(left-to-right).

Some options have an equivalent pragma.

With options that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

Compiler Use 4–11

• • • • • • • •

-?

Option:

-?

Description:

Display an explanation of options at stdout.

Example:

c563 –?

Chapter 44–12
U
S
A
G
E

-A

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Language Extensions . Select the

Advanced language extensions radio button and enable one or more

language exentensions.

-A[flags]

Arguments:

Optionally one or more language extension flags.

Default:

-A1

Description:

Control language extensions. -A without any flags, specifies strict ANSI

mode; all language extensions are disabled. This is equivalent to

-ACDEFKLOPRSTV and -A0.

Flags which are controlled by a letter, can be switched on with the lower

case letter and switched off with the uppercase letter. Note that the usage

of these options might have effect on code density and code execution

performance. The following flags are allowed:

c Default. Do not check for assignments of a constant string to a non

constant string pointer. With this option the following example

produces no warning:

char *p;
void main(void) { p = ”hello”; }

C Conform to ANSI-C by checking for assignments of a constant string to

a non constant string pointer. The example above produces warning

W130: "operands of '=' are pointers to different types".

d Default. Define storage for uninitialized constant rom data, instead of

implicit zero initialization. The compiler generates a 'DS 1 ' for 'const
char i[1]; '.

Compiler Use 4–13

• • • • • • • •

D Uninitialized constant rom data is implicitly zero. The compiler

generates a 'BSC 1 ' for 'const char i[1]; '.

e Default. Relaxed char /short arithmetic overflow masking. Do not

force conversions on small types to prevent overflows.

E Select forced conversions on small types. Normally, the excess bits are

not cleared or extended on a cast from a char or a short to an int
or a long . For signed values, the ANSI specification does not

prescribe such behavior, for unsigned values it requires overflow

masking. By default the compiler avoids the overhead involved by

code to prevent overflows, but this flag forces it to insert this code.

Example:

short a_short;
long a_long;

void f(void)
{
 a_long = 0x123456;
 a_short = a_long;
}

Generated code with -Ae (default):

move l:Fa_long,b
move b0,x:Fa_short

Generated code with -AE:

move l:Fa_long,b
move b0,b
extract #$10018,b,b
move b0,b
move b0,x:Fa_short

f Default. A constant in the range [–1.0,1.0> has type _fract .

F A constant in the range [–1.0,1.0> has type float .

k Default. Allow keyword language extensions such as _fract , _X and

_near .

K Keyword extensions are not allowed.

Chapter 44–14
U
S
A
G
E

l Default. 500 significant characters are allowed in an identifier instead of

the minimum ANSI-C translation limit of 31 significant characters. Note:

more significant characters are truncated without any notice.

L Conform to the minimum ANSI-C translation limit of 31 significant

characters. This makes it possible to translate your code with any

ANSI-C conforming C compiler. Note: more significant characters are

truncated without any notice.

o Default. Allow language extension keyword _circ .

O Disable language extension keyword _circ . This removes the

handling of m-registers from the scope of the compiler. When the

_circ keyword is not allowed, the compiler does not need to save the

modifier registers in an interrupt routine, and set them to the linear

mode. In applications that do not need circular pointers this will

decrease the interrupt latency. Of course, the application may not use

the modifier registers on the assembly level either, or the interrupt

handling will fail. Example:

int a, *p;

void _long_interrupt(28) irq28(void)
{
 a = *p++;
}

/* code contains moves for m–register without –AO*/

p Default. Allow C++ style comments in C source code. For example:

// e.g this is a C++ comment line.

P Do not allow C++ style comments in C source code, to conform to

strict ANSI-C.

r Default. Enable the restrict keyword.

R Disable the restrict keyword.

s Default. __STDC__ is defined as '0'. The decimal constant '0', intended

to indicate a non-conforming implementation. When one of the

language extensions are enabled __STDC__ should be defined as '0'.

S __STDC__ is defined as '1'. In strict ANSI-C mode (-A) __STDC__ is

defined as '1'.

Compiler Use 4–15

• • • • • • • •

t Default. Do not promote old-style function parameters when prototype

checking.

T Perform default argument promotions on old-style function parameters

for a strict ANSI-C implementation. char type arguments are promoted

to int type and float type arguments are then promoted to double
type.

v Default. Allow type cast of an lvalue object with incomplete type void
and lvalue cast which does not change the type and memory of an

lvalue object.

Example:

void *p; ((int*)p)++; /* allowed */
int i; (char)i=2; /* NOT allowed */

V A cast may not yield an lvalue, to conform strict ANSI-C mode.

0 - same as -ACDEFKLOPRSTV (disable all, strict ANSI-C)

1 - same as -Acdefkloprstv (default, enable all)

Example:

To disable C++ comments enter:

c563 –AP test.c

Chapter 44–16
U
S
A
G
E

-C

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Output . Enable or disable the Generate
Motorola compatible assembly check box.

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Code Generation . Enable or disable the

following check boxes:

• User stack pointer points to first free location

• All functions with _compatible calling convention

• Use R6 as user stack pointer

-C[flags]

Arguments:

One or more compatibility option flags.

Default:

-CACGRS

Description:

You can use the -C command line option to switch global compatibility

options. -C without any flags specified enables all compatibility options.

This is the same as specifying -Cacgrs or -C1.

Flags which are controlled by a letter, can be switched on with the lower

case letter and switched off with the uppercase letter. The following flags

are allowed:

a Motorola assembler compatible output. The compiler will use

conditional assembly to generate assembly sources that are compatible

with the Motorola assembler while retaining all features of the

TASKING toolchain. The output will be a little longer and somewhat

harder to read. Use this option and the -S option of the TASKING

assembler together with assembler optimization options to produce an

optimized Motorola compatible assembler file.

A Default. TASKING assembler output.

Compiler Use 4–17

• • • • • • • •

c All functions are generated and called with Motorola compatible calling

convention, including external functions. This also means that any

libraries linked in (including the C library) must have been translated

with this option, otherwise conflicts in the passing of parameters will

result. In most cases using the _compatible qualifier for only those

functions requiring it will be more convenient and gives more efficient

compilation results.

C Default. TASKING calling convention.

g Create COFF style debug information.

G Default. IEEE-695 style debug information.

r User stack pointer register is R6 instead of R7. This option is required

to link objects created by the Motorola C compiler.

R Default. Register R7 is used as the user stack pointer.

s Stack pointer points to the next item above the top-of-stack item (first

unused location), as used by Motorola and by TASKING compilers

prior to version 2.2r1.

S Default. Stack pointer points to the top-of-stack item (last used

location).

0 - same as -CACGRS (disable all, default)

1 - same as -Cacgrs (all compatibility options)

Example:

To enable all compatibility options, enter:

c563 –C1 test.c

Chapter 44–18
U
S
A
G
E

-c (c563 only)

Option:

-csize

Pragma:

cache_sector_size

Arguments:

The cache sector size of the used DSP563xx derivative. Only the values

128 and 256 are allowed.

Default:

-c128

Description:

Specify the size of the cache sectors for the used DSP563xx derivative.

This size is used for the alignments generated for the pragma

cache_align_now and for the _cache_region qualifier. The default

cache size is 128.

Example:

To set the cache size to 256 enter:

c563 –c256 test.c

Section 3.16 DSP563xx Cache Support.

Compiler Use 4–19

• • • • • • • •

-D

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Preprocessing . Define a macro (syntax:

macro[=def]) in the Define user macros field. You can define more

macros by separating them with commas.

-Dmacro[=def]

Arguments:

The macro you want to define and optionally its definition.

Description:

Define macro to the preprocessor, as in #define. If def is not given ('=' is

absent), '1' is assumed. Any number of symbols can be defined. The

definition can be tested by the preprocessor with #if, #ifdef and #ifndef,

for conditional compilations. If the command line is getting longer than

the limit of the operating system used, the -f option is needed.

Example:

The following command defines the symbol NORAM as 1 and defines the

symbol PI as 3.1416 .

c563 –DNORAM –DPI=3.1416 test.c

-U

Chapter 44–20
U
S
A
G
E

-E

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Preprocessing .

Enable the Preprocess only and capture output check box.

-E[m|l|c|i|p|x]

Description:

Run the preprocessor of the compiler only and send the output to stdout.

When you use the -E option, use the -o option to separate the output

from the header produced by the compiler.

With the -Em option, the compiler generates dependency rules which can

be used by a 'make' utility.

With the -El option, you can use multi-line macros. A backslash used to

continue a macro on the next source line will be expanded as a new line

instead of a concatenation of the lines.

With the -Ec option, comments in the c file are preserved.

With the -Ei option, include libraries are not included in the c file while

the #include statement remains present.

With the -Ep option, no #line numbers are added to the c file.

With the -Ex option, macros are not expanded while the macro definition

and calls to macros remain present in the c file.

Examples:

The following command preprocesses the file test.c and sends the

output to the file preout .

c563 –E –o preout test.c

The following command preprocesses the file test.c which may contain

multi-line macros, and sends the output to the file multi .

c563 –El test.c –o multi

Compiler Use 4–21

• • • • • • • •

The following command generates dependency rules for the file test.c
which can be used by mk563 (the 'make' utility).

c563 –Em test.c

test.src : test.c

Chapter 44–22
U
S
A
G
E

-e

Option:

EDE always removes the output file on errors.

-e

Description:

Remove the output file when an error has occurred. With this option the

'make' utility always does the proper productions.

Example:

c563 –e test.c

Compiler Use 4–23

• • • • • • • •

-err

Option:

In EDE this option is not useful.

-err

Description:

Write errors to the file source.err instead of stderr.

Example:

To write errors to the test.err instead of stderr, enter:

c563 –err test.c

Chapter 44–24
U
S
A
G
E

-f

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Miscellaneous .

Add the option to the Additional options field.

-f file

Arguments:

A filename for command line processing. The filename "-" may be used to

denote standard input.

Description:

Use file for command line processing. To get around the limits on the size

of the command line, it is possible to use command files. These command

files contain the options that could not be part of the real command line.

Command files can also be generated on the fly, for example by the make

utility.

More than one -f option is allowed.

Some simple rules apply to the format of the command file:

1. It is possible to have multiple arguments on the same line in the command

file.

2. To include whitespace in the argument, surround the argument with either

single or double quotes.

3. If single or double quotes are to be used inside a quoted argument, we

have to go by the following rules:

a. If the embedded quotes are only single or double quotes, use the

opposite quote around the argument. Thus, if a argument should

contain a double quote, surround the argument with single quotes.

b. If both types of quotes are used, we have to split the argument in such

a way that each embedded quote is surrounded by the opposite type

of quote.

Compiler Use 4–25

• • • • • • • •

Example:

 ”This has a single quote ’ embedded”

or

 ’This has a double quote ” embedded’

or

 ’This has a double quote ” and \
 a single quote ’”’ embedded”

4. Some operating systems impose limits on the length of lines within a

text file. To circumvent this limitation it is possible to use continuation

lines. These lines end with a backslash and newline. In a quoted

argument, continuation lines will be appended without stripping any

whitespace on the next line. For non-quoted arguments, all whitespace

on the next line will be stripped.

Example:

 ”This is a continuation \
 line”
 –> ”This is a continuation line”

 control(file1(mode,type),\
 file2(type))
 –>
 control(file1(mode,type),file2(type))

5. It is possible to nest command line files up to 25 levels.

Example:

Suppose the file mycmds containts the following line:

–err
test.c

The command line can now be:

c563 –f mycmds

Chapter 44–26
U
S
A
G
E

-g

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Debug. Enable Generate symbolic
debug information . Optionally enable the Include debug
information for non referenced types check box and/or disable

the Include lifetime info for all types check box.

-g[f|l|n|c]...

Default:

Generate type checking information only.

Description:

Add directives to the output files for incorporating symbolic information.

This facilitates high level debugging.

With -gn you disable all debug, including type checking.

With -gl you disable the lifetime information for all types.

If you use -gf, high level language type information is also emitted for

types which are not referenced by variables. Therefore, this sub-option is

not recommended.

If you use -gc, code to the application is added that performs a run-time

check on stack overflows. When calling a function, the stack usage of this

function and the maximum number of parameters that will be passed on

stack is checked. If too little reserved memory for the stack is left, a stack

overflow occurs. The application halts and stays on the label _stack_error.

When the compiler is set to a high optimization level the debug comfort

may decrease. Therefore, the following rules are applied:

• When -g is supplied and -O is not supplied the compiler switches

-O2 on, which enables higher debug comfort.

• When -g is supplied and -O with one or more flags is supplied, the

compiler issues warning W555 when the debug comfort would be

decreased.

Compiler Use 4–27

• • • • • • • •

Examples:

To add symbolic debug information to the output files, enter:

c563 –g test.c

To add symbolic debug information to the output files and disable lifetime

information for all types, enter:

c563 –gl test.c

To disable all symbolic debug information including type checking, enter:

c563 –gn test.c

-O

Chapter 44–28
U
S
A
G
E

-H

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Preprocessing . Enter a filename in the

Include this file before source field.

-Hfile

Arguments:

The name of an include file.

Description:

Include file before compiling the C source. This is the same as specifying

#include "file" at the first line of your C source.

Example:

c563 –Hstdio.h test.c

-I

Compiler Use 4–29

• • • • • • • •

-I

Option:

Select the Project | Directories... menu item. Add one or more

directory paths to the Include Files Path field.

-Idirectory

Arguments:

The name of the directory to search for include file(s).

Description:

Change the algorithm for searching #include files whose names do not

have an absolute pathname to look in directory. Thus, #include files

whose names are enclosed in "" are searched for first in the directory of

the file containing the #include line, then in directories named in -I

options in left-to-right order. If the include file is still not found, the

compiler searches in a directory specified with the environment variable

C56INC (for DSP5600x), C563INC (for DSP563xx). C56INC and C563INC

may contain more than one directory. Finally, the directory ../include
relative to the directory where the compiler binary is located is searched.

This is the standard include directory supplied with the compiler package.

For #include files whose names are in <>, the directory of the file

containing the #include line is not searched. However, the directories

named in -I options (and the one in C56INC (C563INC for DSP563xx), and

the relative path) are still searched.

Example:

c563 –I/proj/include test.c

Section Include Files.

Chapter 44–30
U
S
A
G
E

-L

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Code Generation . For c563 only, first

disable the Use hardware stack extension check box. Enter a stack

level in the Max. hardware stack use outside interrupt
functions field.

-Lnumber

Arguments:

The amount of hardware stack space available in a function (1..15)

Default:

-L7

Description:

Control the amount of hardware stack space available in a function. The

compiler generates hardware DO loops for the innermost loops only. If a

(nested) loop contains a function call, no hardware loop is generated.

Example:

c563 –L4 example.c

The code in example.c is:

for(...) /* depth 1 –> no hardware DO loop */
{
 for(...) /* depth 2 –> hardware DO loop */
 { /* stack level 2 */
 for(...) /* depth 3 –> hardware DO loop */
 { /* stack level 4 */
 ...
 }
 }
}

Section Hardware DO and REP Loops in chapter Overview.

Compiler Use 4–31

• • • • • • • •

-M

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Code Generation . Select a Memory
Model and a Default Data Memory .

-M[model][n][mem][L] (at least one argument must be specified)

Arguments:

The memory model to be used, where model is one of:

s static (c56 only)

m mixed (c56 only)

r reentrant (c56 only)

24 24-bit (c563 only)

1624 16/24-bit (c563 only)

16 16-bit (c563 only)

6 DSP566xx (c563 only)

and mem is one of:

x X memory

y Y memory

l L memory

p P memory

other arguments:

n do not use hardware stack extension (c563 only)

L stack not in L memory (default X or Y only)

Default:

-Mmx for c56

-M24x for c563

Chapter 44–32
U
S
A
G
E

Description:

Select memory model and default memory space to be used. With -Mn

(c563 only) the compiler selects pushing and popping the return address

on the user stack (DSP563xx only). To circumvent hardware stack

extension silicon problems on the DSP563xx, the compiler can avoid using

the hardware stack for function calls by saving the return address on the

user stack.

The use of default P data memory (-Mp) is not recommended because it

leads to much more object code. It is meant for applications with special

hardware layouts only.

Example:

c56 –Mr test.c
c563 –M16 test.c

Section Memory Models.

Compiler Use 4–33

• • • • • • • •

-m (c563 only)

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Miscellaneous . Select a chip mask .

-mmask

Arguments:

A number indicating the silicon mask for a DSP563xx/DSP566xx processor:

Number Mask

 0 0F92R and 1F92R

 1 3F48S

Description:

Specify the silicon mask to compile for.

Example:

c563 –m1 example.c

Chapter 44–34
U
S
A
G
E

-n

Option:

-n

Description:

Do not create output files; instead, the output is sent to stdout.

Example:

c563 –n test.c

Compiler Use 4–35

• • • • • • • •

-O

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization . Select an optimization level

in the Optimization box.

If you select Custom optimization in the Optimization box, you can

enable or disable individual optimizations in the Custom optimization
list.

-Oflags

Pragma:

optimize flags

Arguments:

One or more optimization flags.

Default:

-O1

Description:

Control optimization. If you do not use this option, the default

optimization of c563 is -O1, which is an optimization level to let c563

generate the smallest code.

Flags which are controlled by a letter, can be switched on with the lower

case letter and switched off with the uppercase letter. These options are

described together.

All optimization flags can also be given in the source file after a #pragma
optimize . However, depending on the optimization some optimize
pragmas can be used on a function scope only (function level), whereas

other optimize pragmas can be used on each source line (flow level).

'On function level' means that if a pragma optimize is found within a

function, it is interpreted as if it was found just before the function. A

#pragma optimize number must be specified outside a function body.

The optimization level of each optimize pragma is described for each -O

option.

Chapter 44–36
U
S
A
G
E

An overview of the flags is given below.

a - relax alias checking (needs -Oc) (function)

c - common subexpression elimination (function)

e - expression propagation (needs -Oc) (function)

f - code flow, order rearranging (function)

g - register allocation graph optimization (function)

h - hardware loops (function)

i - move invariant code outside loop (needs -Oc) (function)

j - cache global variables in functions (function)

l - fast loops (increases code size) (function)

n - nop insertion (flow)

o - move parallelization, nop reduction (flow)

 (assembler)

p - data flow, constant/copy propagation (function)

r - single instruction DO to REP (flow)

s - small code size (flow)

t - force jump table for switch statement (flow)

u - loop unrolling (function)

v - subscript strength reduction (function)

w - smart switch statement, table or chain (flow)

x - register contents tracking (flow)

y - peephole optimization (flow)

z - non sequential register allocation (flow)

0 - same as -OACEFGHIJLNOPRSTUVWXYZ (no optim)

1 - same as -OacefghijLnoprsTUvwxyz (default, size)

2 - same as -OacefghijLnOprsTUvwxyz (debug, size)

 all optimizations which can be debugged,

 optimized for code size

3 - same as -OacefghijLnoprSTuvwxyz (speed)

4 - same as -OacefghijLnOprSTuvwxyz (debug, speed)

 all optimizations which can be debugged,

 optimized for speed

Example:

c563 –OacefghijLnOprsTUvwxyz test.c

Pragma optimize in section Pragmas.

Compiler Use 4–37

• • • • • • • •

-Onumber

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization . Select an optimization level

in the Optimization box. Optionally enable the Reduce
optimization for debugging check box.

-Onumber

Arguments:

A number in the range 0 - 4.

Default:

-O1

Description:

Control optimization. You can specify a single number in the range 0 - 4,

to enable or disable optimization. The options are a combination of the

other optimization flags:

-O0 - same as -OACEFGHIJLNOPRSTUVWXYZ

Switchable optimizations switched off

-O1 - same as -OacefghijLnoprsTUvwxyz

Default. Set optimization to let c563 generate the smallest

code.

-O2 - same as -OacefghijLnOprsTUvwxyz

Set optimization flags to let c563 generate the smallest code,

but switch off optimizations that affect the ability to debug.

-O3 - same as -OacefghijLnoprSTuvwxyz

Set optimization flags to let c563 generate the fastest code.

-O4 - same as -OacefghijLnOprSTuvwxyz

Set optimization flags to let c563 generate the fastest code,

but switch off optimizations that affect the ability to debug.

The flags 0 to 4 cannot be concatenated with other flags. For example,

-Oa3c is not allowd, -OacE is allowed.

Chapter 44–38
U
S
A
G
E

Example:

To optimize for code size and debug information, enter:

c563 –O2 test.c

-g

Compiler Use 4–39

• • • • • • • •

-Oa / -OA

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Relaxed alias checking (requires CSE) .

-Oa / -OA

Pragma:

optimize a / optimize A (on function level)

Default:

-Oa

Description:

With -Oa you relax alias checking. If you specify this option, c563 will

not erase remembered register contents of user variables if a write

operation is done via an indirect (calculated) address. You must be sure

this is not done in your C code (check pointers!) before turning on this

option.

The option -Oc must be on to use this option.

With -OA you specify strict alias checking. If you specify this option, the

compiler erases all register contents of user variables when a write

operation is done via an indirect (calculated) address.

Example:

An example is given in section Alias in this chapter.

-Oc

Pragma optimize in section Pragmas.

Chapter 44–40
U
S
A
G
E

-Oc / -OC

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Common subexpression elimination (CSE) .

-Oc / -OC

Pragma:

optimize c / optimize C (on function level)

Default:

-Oc

Description:

With -Oc you enable CSE (common subexpression elimination). With this

option specified, the compiler tries to detect common subexpressions

within the C code. The common expressions are evaluated only once, and

their result is temporarily held in registers.

The -Oc option must be on to enable the relax alias checking (-Oa),

expression propagation (-Oe) and moving invariant code outside a loop

(-Oi).

With -OC you disable CSE (common subexpression elimination). With this

option specified, the compiler will not try to search for common

expressions. Also relax alias checking, expression propagation and moving

invariant code outside a loop will be disabled.

Compiler Use 4–41

• • • • • • • •

Example:

/*

 * Compile with –OC –O0,

 * Compile with –Oc –O0, common subexpressions are found

 * and temporarily saved.

 */

char x, y, a, b, c, d;

void

main(void)

{

 x = (a * b) – (c * d);

 y = (a * b) + (c * d);

}

Pragma optimize in section Pragmas.

Chapter 44–42
U
S
A
G
E

-Oe / -OE

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Expression propagation (requires CSE) .

-Oe / -OE

Pragma:

optimize e / optimize E (on function level)

Default:

-Oe

Description:

With -Oe you enable expression propagation. With this option, the

compiler tries to find assignments of expressions to a variable, a

subsequent assignment of the variable to another variable can be replaced

by the expression itself. Note that the option -Oc must be on to use this

option.

With -OE you disable expression propagation.

Example:
/*
 * Compile with –OE –Oc –O0, normal cse is done
 * Compile with –Oe –Oc –O0, ’i+j’ is propagated.
 */
unsigned i, j;

int
main(void)
{
 static int a;
 a = i + j;
 return (a);
}

-Oc

Pragma optimize in section Pragmas.

Compiler Use 4–43

• • • • • • • •

-Of / -OF

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Code flow optimization and order
rearranging .

-Of / -OF

Pragma:

optimize f / optimize F (on function level)

Default:

-Of

Description:

With -Of you enable control flow optimizations and code order

rearranging on the intermediate code representation, such as jump

chaining and conditional jump reversal.

With -OF you disable control flow optimizations.

Chapter 44–44
U
S
A
G
E

Examples:

The following example shows a control optimization:

/*
 * Compile with –OF –O0
 * Compile with –Of –O0, compiler finds first time ’i’
 * is always < 10, the unconditional jump is removed.
 */
int i;

void
main(void)
{
 for(i=0; i<10; i++)
 {
 do_something();
 }
}

Compiler Use 4–45

• • • • • • • •

The following example shows a conditional jump reversal:

/*
 * Compile with –OF –O0, code as written sequential
 * Compile with –Of –O0, code is rearranged
 *
 * Code rearranging enables other optimizations to
 * optimize better, e.g. CSE
 */

int i;
extern void dummy(void);

void main ()
{
 do
 {
 if (i)
 {
 i––;
 }
 else
 {
 i++;
 break;
 }
 dummy();
 } while (i);
}

Pragma optimize in section Pragmas.

Chapter 44–46
U
S
A
G
E

-Og / -OG

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Register allocation graph optimization .

-Og / -OG

Pragma:

optimize g / optimize G (on function level)

Default:

-Og

Description:

With -Og you switch on optimizations in the register allocation graph.

This will for one thing create instructions with the indexed addressing

mode.

With -OG no optimizations on the register allocation graph are performed.

Example:

/*
 * Compile with –OG –O0
 * Compile with –Og –O0, register allocation
 * graph optimization
 */
typedef struct
{
 long l;
 int i;
} STRUCT;

int f(STRUCT *s_p)
{
 return s_p–>i;
}

Compiler Use 4–47

• • • • • • • •

-Oh / -OH

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Hardware loop generation .

-Oh / -OH

Pragma:

optimize h / optimize H (on function level)

Default:

-Oh

Description:

With -Oh you enable the use of hardware loops. Note that this option

must be on to use the -Or option.

With -OH c563 will not use hardware DO/REP loops.

Example:
/*
 * Compile with –OH –O0, software loop is used
 * Compile with –Oh –O0, hardware DO loop is used
 */
int cumu;

void
main(void)
{
 int i;
 for (i = 0; i<1000; i++)
 {
 cumu = cumu + i;
 }
}

Section Hardware DO and REP Loops.
Pragma optimize in section Pragmas.

Chapter 44–48
U
S
A
G
E

-Oi / -OI

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Move invariant code outside loop
(requires CSE) .

-Oi / -OI

Pragma:

optimize i / optimize I (on function level)

Default:

-Oi

Description:

With -Oi you move invariant code outside a loop. With -OI you disable

moving invariant code outside a loop.

The option -Oc must be on to use the -Oi option.

Example:
/*
 * Compile with –OI –Oc –O0, normal cse is done
 * Compile with –Oi –Oc –O0, invariant code is found in
 * the loop, code is moved outside the loop.
 */
void
main(void)
{
 char x, y, a, b;
 int i;

 for(i=0; i<20; i++)
 {
 x = a + b;
 y = a + b;
 }
}

Compiler Use 4–49

• • • • • • • •

-Oc

Pragma optimize in section Pragmas.

Chapter 44–50
U
S
A
G
E

-Oj / -OJ

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Cache global variables in functions .

-Oj / -OJ

Pragma:

optimize j / optimize J (on function level)

Default:

-Oj

Description:

With -Oj the compiler will cache a global variable in a register in some

situations. The compiler detects when a global variable is accessed

multiple times without being changed by other routines, and creates a

local variable to temporarily contain the global. Afterwards, the local

variable is written back to the global. This speeds up access to global

variables.

With -OJ all updates of a global variable are directly written to memory.

Examples:
/*
 * Compile with –OJ –O0, ’sum’ is updated twice
 * Compile with –Oj –O0, ’sum’ is updated only once
 */
int sum;

void
add(int a, int b)
{
 sum += a;
 sum += b;
}

Pragma optimize in section Pragmas.

Compiler Use 4–51

• • • • • • • •

-Ol / -OL

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Generate fast loops (increases code size) .

The fast loop optimization is disabled when Hardware loop
generation is enabled.

-Ol / -OL

Pragma:

optimize l / optimize L (on function level)

Default:

-OL

Description:

With -Ol you enable fast loops. Duplicate the loop condition. Evaluate the

loop condition one time outside the loop, just before entering the loop,

and at the bottom of the loop. This saves one unconditional jump and

gives less code inside a loop.

With -OL you disable fast loops.

The fast loop optimization is switched off when hardware loop generation

is enabled (-Oh).

Chapter 44–52
U
S
A
G
E

Example:

/*
 * Compile with –OL –O0
 * Compile with –Ol –O0, compiler duplicates the loop
 * condition, the unconditional jump is removed.
 */
int i;

void
main(void)
{
 for(; i<10; i++)
 {
 do_something();
 }
}

Pragma optimize in section Pragmas.

Compiler Use 4–53

• • • • • • • •

-On / -ON

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable NOP insertion .

-On / -ON

Pragma:

optimize n / optimize N (on flow level)

Default:

-On

Description:

With -On you enable NOP insertion. This ensures the generation of

correct code. For some instructions, for example moves to and from

address-type registers, a nop instruction must be inserted before the

pending instruction to take care of the delay slot.

With -ON you disable NOP insertion. The assembler is instructed to insert

nops instead.

Chapter 44–54
U
S
A
G
E

Example:

/*
 * Compile with –ON, NOP is not inserted.
 * Compile with –On, NOP is inserted.
 */
int i;

void
main(void)
{
 int a;

 f(); /* call a function */

 for (i = 0; i < 1; i++)
 a = i;
}

Section Replacing NOPs.
Pragma optimize in section Pragmas.

Compiler Use 4–55

• • • • • • • •

-Oo / -OO

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Generate parallel moves .

-Oo / -OO

Pragma:

optimize o / optimize O (on flow level)

Default:

-Oo

Description:

With -Oo the compiler generates the opt op option for the assembler to

enable move parallelization and nop reduction.

With -OO you disable the assembler optimization.

Example:

To disable the assembler optimization, enter:

c563 –OO test.c

Section Replacing NOPs and section Instruction Parallelization (parallel
moves) in chapter Overview.

Pragma optimize in section Pragmas.

Chapter 44–56
U
S
A
G
E

-Op / -OP

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Constant and copy propagation (data flow) .

-Op / -OP

Pragma:

optimize p / optimize P (on function level)

Default:

-Op

Description:

With -Op you enable constant and copy propagation. With this option, the

compiler tries to find assignments of constant values to a variable, a

subsequent assignment of the variable to another variable can be replaced

by the constant value.

With -OP you disable constant and copy propagation.

Example:
/*
 * Compile with –OP –O0, ’i’ is actually assigned to ’j’
 * Compile with –Op –O0, 15 is assigned to ’j’, ’i’ was
 * propagated
 */

int i;
int j;

void
main(void)
{
 i = 10;
 j = i + 5;
}

Pragma optimize in section Pragmas.

Compiler Use 4–57

• • • • • • • •

-Or / -OR

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Optimize single instruction hardware DO to
REP loops .

-Or / -OR

Pragma:

optimize r / optimize R (on flow level)

Default:

-Or

Description:

With -Or you specify to optimize single instruction DO loops to REP

loops. Note that the option -Oh (enable hardware loops) must be on to

use this option.

With -OR c563 will not optimize to REP loops. This is advantageous for

the interrupt latency as REP loops are not interruptible.

Example:
/*
 * Compile with –OR –Oh, a DO loop is used
 * Compile with –Or –Oh, optimize to REP loops
 */
void
f(void)
{
 int i, a;
 for (i = 0; i<1000; i++)
 {
 a = i;
 }
 return(a+i);
}

Section Hardware DO and REP Loops.
Pragma optimize in section Pragmas.

Chapter 44–58
U
S
A
G
E

-Os / -OS

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Favor code size above execution speed .

-Os / -OS

Pragma:

optimize s / optimize S (on flow level)

Default:

-Os

Description:

With -Os you tell the compiler to generate smaller code. Whenever

possible fewer instructions are used. Note that this may result in more

instruction cycles.

With -OS you disable the smaller code optimization.

Example:

 int a, b;

 void
 main(void)
 {
 a = (b != 0);
 }

Compiling once with -Os and once -OS results in the following difference

in code (-Os generates smaller code):

 bset #0,b ; –Os: 1 word, 4 cycles
 move #>1,b ; –OS: 2 words, 3 cycles

Compiler Use 4–59

• • • • • • • •

The number of cycles is calculated for zero wait state memory. the cycle

count for the -OS option increases rapidly for non-zero wait states, so that

small code will execute faster here.

-Os -OS

1 wait: 5 5 cycles

2 wait: 6 7 cycles

Pragma optimize in section Pragmas.

Chapter 44–60
U
S
A
G
E

-Ot / -OT

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Select an entry from the Code generation for switch statement
box.

-Ot / -OT

Pragma:

optimize t / optimize T (on flow level)

Default:

-OT

Description:

With -Ot you force the compiler to generate jump tables for switch

statements.

With -OT it depends on the -Ow/-OW option which switch method is

used. With -OT and -OW the compiler generates a jump chain for switch

statements. With -OT and -Ow the compiler chooses the best switch

method possible, jump chain or jump table. So, with -OT a jump table can

still be generated.

Overview:

-Ot -Ow jump table

-OT -Ow smart

-Ot -OW jump table

-OT -OW jump chain

Example:

/*

 * Compile with –OT –OW –O0, generate jump chain.

 * Compile with –Ot –OW –O0, generate jump table.

 */

int i;

Compiler Use 4–61

• • • • • • • •

void

main(void)

{

 switch (i)

 {

 case 1: i = 0;

 case 2: i = 1;

 case 3: i = 2;

 default: i = 3;

 }

}

Section Switch Statement.
Pragma optimize in section Pragmas.

Chapter 44–62
U
S
A
G
E

-Ou / -OU

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Loop unrolling .

-Ou / -OU

Pragma:

optimize u / optimize U (on function level)

Default:

-OU

Description:

With -Ou you enable loop unrolling. With this option specified, the

compiler tries to eliminate short loops by duplicating a loop body 2, 4 or 8

times. This reduces the number of branches and creates a longer linear

code part.

With -OU you disable loop unrolling.

Example:
/*
 * Compile with –OU, normal loop handling
 * Compile with –Ou, loop is eliminated, body is duplicated
 */
int i, j;

void
main(void)
{
 for(i=0; i<2; i++) /* short loop */
 {
 j = 2 * i;
 }
}

Pragma optimize in section Pragmas.

Compiler Use 4–63

• • • • • • • •

-Ov / -OV

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Subscript strength reduction .

-Ov / -OV

Pragma:

optimize v / optimize V (on function level)

Default:

-Ov

Description:

With -Ov you enable subscript strength reduction. With this option

specified, the compiler tries to reduce expressions involving an index

variable in strength.

With -OV you disable subscript strength reduction.

Example:
 * Compile with –OV –O0, disable subscript strength reduction
 * Compile with –Ov –O0, begin and end address of ’a’
 * are determined before the loop and temporarily put in
 * registers instead of determining the address each
 * time inside the loop
 */
int i;
int a[4];

void
main(void)
{
 for(i=0; i<4; i++)
 {
 a[i] = i;
 }
}

Pragma optimize in section Pragmas.

Chapter 44–64
U
S
A
G
E

-Ow / -OW

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Select an entry from the Code generation for switch statement
box.

-Ow / -OW

Pragma:

optimize w / optimize W (on flow level)

Default:

-Ow

Description:

With -Ow the compiler chooses the best switch method possible, jump

chain or jump table, unless -Ot is used. -Ot forces the generation of a

jump table.

With -OW the compiler generates a jump chain for switch statements,

unless -Ot is used. -Ot forces the generation of a jump table.

Overview:

-Ot -Ow jump table

-OT -Ow smart

-Ot -OW jump table

-OT -OW jump chain

Compiler Use 4–65

• • • • • • • •

Example:
/*
 * Compile with –OW –OT –O0, always generate jump chain.
 * Compile with –Ow –OT –O0, choose best switch method, in this
 * case this is also a jump chain.
 */
int i;

void
main(void)
{
 switch (i)
 {
 case 1: i = 0;
 case 2: i = 1;
 case 3: i = 2;
 default: i = 3;
 }
}

Section Switch Statement.
Pragma optimize in section Pragmas.
-Ot / -OT

Chapter 44–66
U
S
A
G
E

-Ox / -OX

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Register contents tracking .

-Ox / -OX

Pragma:

optimize x / optimize X (on function level)

Default:

-Ox

Description:

With -Ox you switch on register contents tracking.

With -OX you disable register contents tracking.

Example:
/*
 * Compile with –OX –O0
 * Compile with –Ox –O0, register contents tracking,
 * the overlay scratch section is removed
 */
int a, b, c;

void main(void)
{
 a = 2;
 switch(b)
 {
 case 1:
 c = 3;
 break;
 case 2:
 case 3:
 c = 0;
 break;
 }
}

Compiler Use 4–67

• • • • • • • •

-Oy / -OY

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Peephole optimization .

-Oy / -OY

Pragma:

optimize y / optimize Y (on flow level)

Default:

-Oy

Description:

With -Oy you enable peephole optimization. Remove redundant code.

The peephole optimizer searches for redundent instructions or for

instruction sequences which can be combined to minimize the number of

instructions.

With -OY you disable peephole optimization.

Chapter 44–68
U
S
A
G
E

Example:
/*
 * Compile with –OY –O0, unnecessary instructions found
 * Compile with –Oy –O0, peephole optimizer searches
 * for patterns in the generated code which can be
 * removed/combined. E.g.
 * asl b
 * add a,b
 * can be combined to: addl a,b
 */

long a;
long f(void);

void
main(void)
{
 long b;
 b = f();
 a = (a << 1) + b;
}

Pragma optimize in section Pragmas.

Compiler Use 4–69

• • • • • • • •

-Oz / -OZ

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Optimization .

Select Custom optimization in the Optimization box.

Enable or disable Non–sequential register allocation .

-Oz / -OZ

Pragma:

optimize z / optimize Z (on flow level)

Default:

-Oz

Description:

With -Oz the compiler tries to use a non sequential register allocation

scheme. The compiler chooses one of the available registers in an arbitrary

order. With this compiler optimization the assembler can perform a better

optimization.

With -OZ the compiler uses a sequential register allocation scheme. The

next available register is used. This can also be a previously allocated

register that is no longer used.

Chapter 44–70
U
S
A
G
E

Example:
/*
 * Compile with –OZ –O0, sequential register allocation, the
 * same register is used for each allocation.
 * Compile with –Oz –O0, non sequential register allocation.
 * Three different registers are used for the allocations.
 */
int a[3];

void
main(void)
{
 a[0] = 0;
 a[1] = 1;
 a[2] = 2;
}

Pragma optimize in section Pragmas.

Compiler Use 4–71

• • • • • • • •

-o

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Miscellaneous .

Add the option to the Additional options field.

-o file

Arguments:

An output filename. The filename may not start immediately after the

option. There must be a tab or space in between.

Default:

Module name with .src suffix.

Description:

Use file as output filename, instead of the module name with .src suffix.

Special care must be taken when using this option, the first -o option

found acts on the first file to compile, the second -o option acts on the

second file to compile, etc.

Example:

When specified:

c563 file1.c file2.c –o file3.src –o file2.src

two files will be created, file3.src for the compiled file file1.c and

file2.src for the compiled file file2.c.

Chapter 44–72
U
S
A
G
E

-p

Option:

-ppage

Arguments:

The number of Patriot memory pages (1..8).

Default:

-p2

Description:

Use this option to specify the number of Patriot memory pages. Page

switch instructions depend on the specified number of memory pages.

Section 3.17, Patriot Bank Switching Support, in chapter Language
Implementation.

Example:

To set the number of Patriot memory pages to five:

c563 –p5 test.c

Compiler Use 4–73

• • • • • • • •

-R

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Output . Add a section name replacement to

the Replace default section names field.

-R[dname[=sname]]

Arguments:

Optionally the default section name and the new section name.

Description:

You can use the -R option to replace the default section names generated

by the compiler. If you use the -R option alone, the compiler replaces all

section names by a name that is related to the filename of the source

module. If you want to replace some of the default section names, you can

specify these default names with -R. The new names are related to the

module name unless the new name is specified in an optional second part.

The -R option may appear more than once.

dname is the default name of the section, normally used by the compiler.

sname is the new section name the compiler must generate instead.

Example:

To generate the section name mystring instead of the default section

name .xstring , enter:

c563 –R.xstring=mystring test.c

By specifying:

c563 –R.xstring test.c

the section name .xstring has been renamed to .xstringtest .

Chapter 44–74
U
S
A
G
E

-r

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Code Generation . Add one or more

registers to the Reserve address or offset register field.

-rregister

Arguments:

A register name. The register argument must be one of the following:

For the DSP5600x and DSP563xx/DSP566xx:

R0, R1, R2, R3, R4, R5, R6,

M0, M1, M2, M3, M4, M5, M6,

N0, N1, N2, N3, N4, N5, N6

In the static model (DSP5600x only) R7, M7 and N7 can also be used; in

the other models these registers are used for the user stack pointer.

Description:

Reserve a register. The compiler avoids the use of the register while

allocating registers. When you want to reserve a register that is to be used

in, for example, an interrupt routine, it is recommended to do this

application wide. This implies that you will have to specify the -r option

for each module translated. If the register is not reserved in all modules,

the compiler may allocate it and overwrite its contents.

Because an R and an M register are very close related, the compiler also

reserves the M register when an R register is reserved. E.g., reserving R1

implies also reserving M1. You can reserve a list of registers by supplying a

-r option to the compiler for each register to be reserved. Besides the user

stack pointer registers, at least one combination of R and N registers must

be kept free for compiler use.

Example:

The following example reserves r5, m5 and n5 while translating

example.c .

c563 –rr5 –rn5 example.c

Compiler Use 4–75

• • • • • • • •

-s

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Output . Enable the Merge C source
file with assembly output check box.

-s[i]

Pragma:

source

Description:

Merge C source code with generated assembly code in output file.

With the optional 'i' sub-option you can specify to merge the lines of

included files as well. This is useful when included files generate program

code. In general it will only create longer source files due to expansion of

all header files.

Example:

c563 –s test.c

; test.c:
; 1 |int i;
; 2 |
; 3 |int
; 4 |main(void)
; 5 |{

 extern F_START
 global Fmain

Pragmas source and nosource in section Pragmas.

Chapter 44–76
U
S
A
G
E

-t

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Output .

Enable the Display lines/min check box.

-t

Description:

Display the number of lines processed and the compilation speed in lines

per minute.

Example:

c563 –t test.c

processed 180 lines at 8102 lines/min

Compiler Use 4–77

• • • • • • • •

-U

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Preprocessing . Undefine one or more

predefined macros by disabling the corresponding check box.

-Uname

Arguments:

The name macro you want to undefine.

Description:

Remove any initial definition of identifier name as in #undef, unless it is a

predefined ANSI standard macro. ANSI specifies the following predefined

symbols to exist, which cannot be removed:

__FILE__ "current source filename"

__LINE__ current source line number (int type)

__TIME__ "hh:mm:ss"

__DATE__ "Mmm dd yyyy"

__STDC__ level of ANSI standard. This macro is set to 1 when the

option to disable language extensions (-A) is effective.

Whenever language extensions are excepted, __STDC__ is set

to 0 (zero).

When c563 is invoked, also the following predefined symbols exist:

_C56 predefined symbol to identify the compiler. This symbol can

be used to flag parts of the source which must be recognized

by the TASKING c56 or c563 compiler only. It expands to

the version number of the compiler.

_MODEL identifies for which memory model the module is compiled.

It expands to a single character ('r' for reentrant, 'm' for

mixed, 's' for static, 16 for 16-bit 1624 for 16/24-bit or 24 for

24-bit) that can be tested by the preprocessor. See section

Memory Models for details.

Chapter 44–78
U
S
A
G
E

_DEFMEM identifies the default data memory. See section Memory
Models for details.

_DSP identifies for which DSP processor type the module is

compiled. It expands to a number. For example, '0' for the

DSP5600x processor type, '3' for the DSP563xx and '6' for the

DSP566xx processor types.

_STKMEM identifies the data memory used for the stack; this is either

default data memory, or L memory. See section Memory
Models for details.

_USP identifies the user stack pointer register from the -Cr/-CR

option (r6 or r7). For r6 its value is '6', for r7 it is '7'.

_CACHE_SECTOR_SIZE

Expands to the value set with the option -csize or with the

pragma cache_sector_size (c563 only).

These symbols can be turned off with the -U option.

Example:

c563 –U_MODEL test.c

-D

Compiler Use 4–79

• • • • • • • •

-u

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Code Generation .

Enable the Treat ’char’ variables as unsigned check box.

-u

Description:

Treat 'character' type variables as 'signed character' variables. By default

char is the same as specifying unsigned char . With -u char is the

same as signed char .

Example:

With the following command char is treated as signed char :

c563 –u test.c

Chapter 44–80
U
S
A
G
E

-V

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Miscellaneous .

Add the option to the Additional options field.

-V

Description:

Display version information.

Example:

c56 –V

TASKING DSP5600x C compiler v x. yr z Build nnn
Copyright 1995– year Altium BV Serial# 00000000

c563 –V

TASKING DSP563xx/6xx compiler v x. yr z Build nnn
Copyright 1996– year Altium BV Serial# 00000000

Compiler Use 4–81

• • • • • • • •

-w

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Diagnostics . Select Display all
warnings , Suppress all warnings or Suppress only certain
warnings .

If you select Suppress only certain warnings , type the numbers of

the warnings you want to suppress in the corresponding field.

-w[num]

-wstrict

Arguments:

Optionally the warning number to suppress.

Description:

-w suppresses all warning messages. -wnum only suppresses the given

warning. -wstrict suppresses all "strict" warning messages (196, 303).

Example:

To suppress warning 135, enter:

c563 file1.c –w135

Chapter 44–82
U
S
A
G
E

-z

Option:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Miscellaneous .

Add the option to the Additional options field.

-zpragma

Arguments:

A pragma as listed in section Pragmas.

Description:

With this option you can give a pragma on the command line. This is the

same as specifying '#pragma pragma' in the C source. Dashes ('-') on the

command line in the pragma are converted to spaces. A dash prefixed by

another dash or space is never translated, so it is still possible to specify a

dash for negative numbers as pragma argument.

Example:

The following options

–zcache_sector_size–256
–zjumptable_memory–x

are equivalent with:

#pragma cache_sector_size 256
#pragma jumptable_memory x

Section Pragmas.

Compiler Use 4–83

• • • • • • • •

4.3 INCLUDE FILES

You may specify include files in two ways: enclosed in <> or enclosed in

"". When an #include directive is seen, c563 used the following algorithm

trying to open the include file:

1. If the filename is enclosed in "", and it is not an absolute pathname (does

not begin with a '\' for PC, or a '/' for UNIX), the include file is searched

for in the directory of the file containing the #include line. For example,

in:

PC:

c563 ..\..\source\test.c

UNIX:

c563 ../../source/test.c

c563 first searches in the directory ..\..\source (../../source for

UNIX) for include files.

If you compile a source file in the directory where the file is located (c563

test.c), the compiler searches for include files in the current directory.

This first step is not done for include files enclosed in <>.

2. Use the directories specified with the -I options, in a left-to-right order.

For example:

Select the Project | Directories... menu item. Add one or more

directory paths to the Include Files Path field.

PC:

c563 –I..\..\include demo.c

UNIX:

c563 –I../../include demo.c

3. Check if the environment variable C563INC exists (for the DSP563xx; use

C56INC for the DSP5600x). If it does exist, use the contents as a directory

specifier for include files. You can specify more than one directory in the

environment variable C563INC by using a separator character. Instead of

using -I as in the example above, you can specify the same directory

using C563INC:

Chapter 44–84
U
S
A
G
E

PC (Command Prompt window):

set C563INC=..\..\include
c563 demo.c

UNIX:

if using the Bourne shell (sh)

 C563INC=../../include
 export C563INC
 c563 demo.c

or if using the C-shell (csh)

 setenv C563INC ../../include
 c563 demo.c

4. When an include file is not found with the rules mentioned above, the

compiler tries the subdirectory include in the directory that contains the

subdirectory with the c563 binary. For example:

PC:

c563.exe is installed in the directory C:\C563\BIN
The directory searched for the include file is C:\C563\INCLUDE

UNIX:

c563 is installed in the directory /usr/local/c563/bin
The directory searched for the include file is

/usr/local/c563/include

The compiler determines run-time which directory the binary is executed

from to find this include directory.

The DSP5600x installation directory is c56 .

A directory name specified with the -I option or in C563INC (C563INC for

the DSP5600x) may or may not be terminated with a directory separator,

because c563 (or c56 respectively) inserts this separator, if omitted.

When you specify more than one directory to the environment variable

C563INC, you have to use one of the following separator characters:

PC:

; , space

Compiler Use 4–85

• • • • • • • •

e.g. set C563INC=..\..\include;\proj\include

UNIX:

: ; , space

e.g. setenv C563INC ../../include:/proj/include

Chapter 44–86
U
S
A
G
E

4.4 PRAGMAS

According to ANSI (3.8.6) a preprocessing directive of the form:

#pragma pragma–token–list new–line

causes the compiler to behave in an implementation-defined manner. The

compiler ignores pragmas which are not mentioned in the list below.

Pragmas give directions to the code generator of the compiler. Besides the

pragmas there are two other possibilities to steer the code generator:

command line options and keywords. The compiler acknowledges these

three groups using the following rule:

Command line options can be overruled by keywords and pragmas.

Keywords can be overruled by pragmas. So the pragma has the highest

priority.

This approach makes it possible to set a default optimization level for a

source module, which can be overridden temporarily within the source by

a pragma.

c563 supports the following pragmas:

asm

Insert the following (non preprocessor lines) as assembly language source

code into the output file. The inserted lines are not checked for their

syntax. The code buffer of the peephole optimizer is flushed. Thus the

compiler will stop optimizations such as NOPs removal, parallel moves

and peephole pattern replacement and resumes these optimizations after

the endasm pragma as if it starts at the beginning of a function.

For advanced assembly in-lining, intrinsic functions can be used. The

defined set of intrinsic functions cover most of the specific DSP56xxx

features which could otherwise not be accessed by the C language.

For more information on intrinsic functions see section 3.13 Intrinsic
Functions.

asm_noflush

Same as asm, except that the peephole optimizer does not flush the code

buffer and assumes register contents remain valid.

Compiler Use 4–87

• • • • • • • •

endasm

Switch back to the C language.

The section Inline Assembly in the chapter Language Implementation
contains more information.

cache_align_now

Aligns current address at a cache boundary. This can be done only once

per function. The alignment may introduce an unusable memory

alignment gap at the beginning of the section.

cache_sector_size

Specify the size of the cache sectors for the used DSP563xx derivative.

This size is used for the alignments generated for the pragma

cache_align_now and for the _cache_region qualifier. The size is

either 128 or 256 words. The default cache size is 128. This pragma is

equivalent to the command line option -c and it is given in the form:

#pragma cache_sector_size size

cache_region_start

Mark start position of a cache region. The argument of the pragma must

be a function pointer defined with the _cache_region qualifier.

cache_region_end

Mark end position of a cache region. The argument of the pragma must be

a function pointer defined with the _cache_region qualifier.

The section 3.16 DSP563xx Cache Support contains more infomation about

these pragmas.

Chapter 44–88
U
S
A
G
E

iterate_at_least_once

no_iterate_at_least_once (default)

For the compiler it is not always possible to determine whether a loop

condition is valid for the first iteration. In these cases the compiler will

generate code to check the loop end condition for this first iteration. If it

is certain that the loop will be executed at least once, this code is

superfluous. The iterate_at_least_once pragma tells the compiler that

the following loop(s) are iterated at least once and that it does not have to

generate the code for checking the end condition for the first iteration.

This pragma remains valid until the no_iterate_at_least_once pragma is

specified.

If the iterate_at_least_once pragma is specified for a loop which is not

iterated at least once, the results of the loop will not be as expected.

Example:

void foo(int i)
{
 while (i > 0)
 {
 printf(”%d\n”, i);
 i––;
 }
}

...Code...

Ffoo: move (r7)+
 do a1,L11
 move a1,n5
 move a1,x:(r7–1)
 move n5,a
 move #L8,r0
 jsr Fprintf
 move x:(r7–1),a
 sub #1,a
L11: void a, r0, n5
 move (r7)–
 rts

The compiler does not know the start value of i , and therefore cannot

predict whether the end condition is true for the first loop. The

iterate_at_least_once pragma tells the compiler that the condition is valid

for the first iteration and the compiler will not generate code to test the

condition for the first iteration.

Compiler Use 4–89

• • • • • • • •

For do-while loops (which are always iterated at least once) the

iterate_at_least_once pragma indicates that the do-while loop end

condition is false for the first iteration.

Example:

void foo(int i)
{
 do
 {
 printf(”%d\n”, i);
 i––;
 } while (i > 0)
}

...Code...

Ffoo: move (r7)+
 do a1,L5
 move a1,r5
 move a1,x:(r7–1)
 move r5,a
 move #L3,r0
 jsr Fprintf
 move x:(r7–1),a
 sub #1,a
L5: void a, r0, r5
 move (r7)–
 rts

jumptable_memory

Specifies in which memory the switch jump table is generated. The

default is P memory. Please note that changing the default into X or Y

memory will result in a (possibly large) entry in the copy table! This

pragma is given in the form:

#pragma jumptable_memory mem

where, mem can be either P, X or Y.

Chapter 44–90
U
S
A
G
E

optimize

Controls the amount of optimization. The remainder of the source line is

scanned for option characters, which are processed like the flags of the -O

command line option. Please refer to the -O option for the list of available

flags. This pragma is given in the form:

#pragma optimize flags

Depending on the optimization some optimize pragmas can be used on a

function scope only (function level), whereas other optimize pragmas can

be used on each source line (flow level). 'On function level' means that if

a pragma optimize is found within a function, it is interpreted as if it was

found just before the function. A #pragma optimize number must be

specified outside a function body. The optimization level of each

optimize pragma is described for each flag of the -O option.

endoptimize

End a region that was optimized with a #pragma optimize. The pragma

endoptimize restores the situation as it was before the corresponding

pragma optimize. #pragma optimize/endoptimize pairs can be nested.

pack_strings

After this pragma all string constants will be packed string constants. Using

such a string as a not packed string (e.g., passing to a function with a not

packed string argument type) will yield a type conflict error.

nopack_strings

After this pragma string constants will no longer be packed string

constants.

The section 3.18 Packed Strings contains more information about packed

strings.

source

Same as -s option. Enable mixing C source with assembly code.

nosource

Default. Disable generation of C source within assembly code.

Compiler Use 4–91

• • • • • • • •

4.5 ALIAS CHECKING

When alias checking is turned on (-OA option) the compiler assumes that

each pointer may point to any object created in the program, so when any

pointer is dereferenced, all register contents are assumed to be invalid

afterwards.

When it is known that aliasing problems do not occur in the written C

source, alias checking may be relaxed (-Oa option or #pragma optimize

a). This is the default. Note that the option -Oc (or #pragma optimize c)

must be on to use this option. Relaxing alias checking may reduce code

size.

Example 1:

int i;

void
func()
{
 char * p;
 char c;
 char d;

 if(i)
 p = &c;
 else
 p = &d;

 c = 2;
 d = 3;

 p = 4; / may write to ’c’ or ’d’ */
 /* ––> aliasing object ’c’ or ’d’ */

 i = c; /* ’*p’ might have changed the value of ’c’, */
 /* so ’c’ may not be used from register */
 /* contents, but MUST be read from memory */
 /* ––> alias checking MUST be ON in this case */
}

Chapter 44–92
U
S
A
G
E

Example 2:

int i;

void
func(char *p)
{
 char c;
 char d;

 c = 2;
 d = 3;

 p = 4; / cannot write to ’c’ or ’d’, but to some other
 object */

 i = c; /* ’*p’ cannot have changed the value of ’c’, */
 /* so ’c’ may be used from register contents */
 /* ––> alias checking may be OFF in this case */
}

Example 3:

typedef union
{
 struct
 {
 unsigned int exponent;
 _fract fraction;
 } binary;
 double value;
} _FDEF;

#define _FBIAS 127

double
frexp_excerpt(double value, int *exp)
{
 double loc_value = value; /* prevent taking address of
 argument ’value’ */

 *exp = ((_FDEF *)&loc_value)–>binary.exponent – _FBIAS;
 ((_FDEF *)&loc_value)–>binary.exponent = _FBIAS;

 if (loc_value == –1.0)
 {
 *exp += 1;
 return(–0.5);
 }
 return(loc_value);
}

The compiler will make a CSE on loc_value , ignoring the write through

the type casted pointer because it is of a different type.

Compiler Use 4–93

• • • • • • • •

4.6 COMPILER LIMITS

The ANSI C standard [1-2.2.4] defines a number of translation limits, which

a C compiler must support to conform to the standard. The standard states

that a compiler implementation should be able to translate and execute a

program that contains at least one instance of every one of the limits listed

below. c563's actual limits are given within parentheses.

Most of the actual compiler limits are determined by the amount of free

memory in the host system. In this case a 'D' (Dynamic) is given between

parentheses. Some limits are determined by the size of the internal

compiler parser stack. These limits are marked with a 'P'. Although the size

of this stack is 200, the actual limit can be lower and depends on the

structure of the translated program.

• 15 nesting levels of compound statements, iteration control

structures and selection control structures (P > 15)

• 8 nesting levels of conditional inclusion (50)

• 12 pointer, array, and function declarators (in any combinations)

modifying an arithmetic, a structure, a union, or an incomplete type

in a declaration (15)

• 31 nesting levels of parenthesized declarators within a full

declarator (P > 31)

• 32 nesting levels of parenthesized expressions within a full

expression (P > 32)

• 31 significant characters in an external identifier (full ANSI-C

mode),

500 significant characters in an external identifier (non ANSI-C

mode)

• 511 external identifiers in one translation unit (D)

• 127 identifiers with block scope declared in one block (D)

• 1024 macro identifiers simultaneously defined in one translation unit

(D)

• 31 parameters in one function declaration (D)

• 31 arguments in one function call (D)

• 31 parameters in one macro definition (D)

• 31 arguments in one macro call (D)

• 509 characters in a logical source line (1500)

• 509 characters in a character string literal or wide string literal (after

concatenation) (1500)

Chapter 44–94
U
S
A
G
E

• 8 nesting levels for #included files (50)

• 257 case labels for a switch statement, excluding those for any

nested switch statements (D)

• 127 members in a single structure or union (D)

• 127 enumeration constants in a single enumeration (D)

• 15 levels of nested structure or union definitions in a single

struct-declaration-list (D)

5

COMPILER
DIAGNOSTICS

C
H

A
P

T
E

R

Chapter 55–2
D
IA
G
N
O
S
T
IC
S

5

C
H

A
P

T
E

R

Compiler Diagnostics 5–3

• • • • • • • •

5.1 INTRODUCTION

c563 has three classes of messages: user errors, warnings and internal

compiler errors.

Some user error messages carry extra information, which is displayed by

the compiler after the normal message. The messages with extra

information are marked with 'I' in the list below. They never appear

without a previous error message and error number. The number of the

information message is not important, and therefore, this number is not

displayed. A user error can also be fatal (marked as 'F' in the list below),

which means that the compiler aborts compilation immediately after

displaying the error message and may generate a 'not complete' output

file.

The error numbers and warning numbers are divided in two groups. The

frontend part of the compiler uses numbers in the range 0 to 499, whereas

the backend (code generator) part of the compiler uses numbers in the

range 500 and higher. Note that most error messages and warning

messages are produced by the frontend.

If you program a non fatal error, c563 displays the C source line that

contains the error, the error number and the error message on the screen.

If the error is generated by the code generator, the C source line displayed

always is the last line of the current C function, because code generation is

started when the end of the function is reached by the frontend. However,

in this case, c563 displays the line number causing the error before the

error message. c563 always generates the error number in the assembly

output file, exactly matching the place where the error occurred.

So, when a compilation is not successful, the generated output file is not

accepted by the assembler, thus preventing a corrupt application to be

made (see also the -e option).

Warning messages do not result into an erroneous assembly output file.

They are meant to draw your attention to assumptions of the compiler, for

a situation which may not be correct. Warning messages can be controlled

with the -w[num] option.

The last class of messages are the internal compiler errors. The following

format is used:

S number : internal error – please report

Chapter 55–4
D
IA
G
N
O
S
T
IC
S

These errors are caused by failed internal consistency checks and should

never occur. However, if such a 'SYSTEM' error appears, please report the

occurrence to TASKING, using a Problem Report form. Please include a

diskette or tape, containing a small C program causing the error.

5.2 RETURN VALUES

c563 returns an exit status to the operating system environment for testing.

For example,

in a BATCH-file you can examine the exit status of the program executed

with ERRORLEVEL:

c563 –s %1.c
IF ERRORLEVEL 1 GOTO STOP_BATCH

In a bourne shell script, the exit status can be found in the $? variable, for

example:

c563 $*
case $? in
0) echo ok ;;
1|2|3) echo error ;;
esac

The exit status of c563 is one of the numbers of the following list:

0 Compilation successful, no errors

1 There were user errors, but terminated normally

2 A fatal error, or System error occurred, premature ending

3 Stopped due to user abort

Compiler Diagnostics 5–5

• • • • • • • •

5.3 ERRORS AND WARNINGS

Errors start with an error type, followed by a number and a message. The

error type is indicated by a letter:

I information

E error

F fatal error

S internal compiler error

W warning

Frontend

F 1 evaluation expired

Your product evaluation period has expired. Contact your local

TASKING office for the official product.

W 2 unrecognized option: 'option'

The option you specified does not exist. Check the invocation syntax

for the correct option.

E 4 expected number more '#endif'

The preprocessor part of the compiler found the'#if', '#ifdef' or '#ifndef'

dirctive but did not find a corresponding '#endif' in the same source

file. Check your source file that each '#if', '#ifdef' or '#ifndef' has a

corresponding '#endif'.

E 5 no source modules

You must specify at least one source file to compile.

F 6 cannot create "file"

The output file or temporary file could not be created. Check if you

have sufficient disk space and if you have write permissions in the

specified directory.

F 7 cannot open "file"

Check if the file you specified really exists. Maybe you misspelled the

name, or the file is in another directory.

F 8 attempt to overwrite input file "file"

The output file must have a different name than the input file.

Chapter 55–6
D
IA
G
N
O
S
T
IC
S

E 9 unterminated constant character or string

This error can occur when you specify a string without a closing

double-quote (”) or when you specify a character constant without a

closing single-quote (’). This error message is often preceded by one

or more E 19 error messages.

F 11 file stack overflow

This error occurs if the maximum nesting depth (50) of file inclusion is

reached. Check for #include files that contain other #include files. Try

to split the nested files into simpler files.

F 12 memory allocation error

All free space has been used. Free up some memory by removing any

resident programs, divide the file into several smaller source files,

break expressions into smaller subexpressions or put in more memory.

W 13 prototype after forward call or old style declaration - ignored

Check that a prototype for each function is present before the actual

call.

E 14 ';' inserted

An expression statement needs a semicolon. For example, after ++i in

{ int i; ++i } .

E 15 missing filename after -o option

The -o option must be followed by an output filename.

E 16 bad numerical constant

A constant must conform to its syntax. For example, 08 violates the

octal digit syntax. Also, a constant may not be too large to be

represented in the type to which it was assigned. For example,

int i = 0x1234567890; is too large to fit in an integer.

E 17 string too long

This error occurs if the maximum string size (1500) is reached. Reduce

the size of the string.

E 18 illegal character (0xhexnumber)

The character with the hexadecimal ASCII value 0xhexnumber is not

allowed here. For example, the '#' character, with hexadecimal value

0x23, to be used as a preprocessor command, may not be preceded by

non-white space characters. The following is an example of this error:

Compiler Diagnostics 5–7

• • • • • • • •

char *s = #S ; // error

E 19 newline character in constant

The newline character can appear in a character constant or string

constant only when it is preceded by a backslash (\). To break a string

that is on two lines in the source file, do one of the following:

• End the first line with the line-continuation character, a backslash

(\).

• Close the string on the first line with a double quotation mark, and

open the string on the next line with another quotation mark.

E 20 empty character constant

A character contant must contain exactly one character. Empty

character contants (’’) are not allowed.

E 21 character constant overflow

A character contant must contain exactly one character. Note that an

escape sequence (for example, \t for tab) is converted to a single

character.

E 22 '#define' without valid identifier

You have to supply an identifier after a '#define'.

E 23 '#else' without '#if'

'#else' can only be used within a corresponding '#if', '#ifdef' or '#ifndef'

construct. Make sure that there is a '#if', '#ifdef' or '#ifndef' statement in

effect before this statement.

E 24 '#endif' without matching '#if'

'#endif' appeared without a matching '#if', '#ifdef' or '#ifndef'

preprocessor directive. Make sure that there is a matching '#endif' for

each '#if', '#ifdef' and '#ifndef' statement.

E 25 missing or zero line number

'#line' requires a non-zero line number specification.

E 26 undefined control

A control line (line with a '#identifier') must contain one of the known

preprocessor directives.

Chapter 55–8
D
IA
G
N
O
S
T
IC
S

W 27 unexpected text after control

'#ifdef' and '#ifndef' require only one identifier. Also, '#else' and

'#endif' only have a newline. '#undef' requires exactly one identifier.

W 28 empty program

The source file must contain at least one external definition. A source

file with nothing but comments is considered an empty program.

E 29 bad '#include' syntax

A '#include' must be followed by a valid header name syntax. For

example, #include <stdio.h misses the closing '>'.

E 30 include file "file" not found

Be sure you have specified an existing include file after a '#include'

directive. Make sure you have specified the correct path for the file.

E 31 end-of-file encountered inside comment

The compiler found the end of a file while scanning a comment.

Probably a comment was not terminated. Do not forget a closing

comment '*/' when using ANSI-C style comments.

E 32 argument mismatch for macro "name"

The number of arguments in invocation of a function-like macro must

agree with the number of parameters in the definition. Also, invocation

of a function-like macro requires a terminating ")" token. The

following are examples of this error:

#define A(a) 1
int i = A(1,2);/* error */

#define B(b) 1
int j = B(1; /* error */

E 33 "name" redefined

The given identifier was defined more than once, or a subsequent

declaration differed from a previous one. The following examples

generate this error:

int i;
char i; /* error */
main()
{
}

Compiler Diagnostics 5–9

• • • • • • • •

main()
{

int j;
int j; /* error */

}

W 34 illegal redefinition of macro "name"

A macro can be redefined only if the body of the redefined macro is

exactly the same as the body of the originally defined macro.

This warning can be caused by defining a macro on the command line

and in the source with a '#define' directive. It also can be caused by

macros imported from include files. To eliminate the warning, either

remove one of the definitions or use an '#undef' directive before the

second definition.

E 35 bad filename in '#line'

The string literal of a #line (if present) may not be a "wide-char" string.

So, #line 9999 L”t45.c” is not allowed.

W 36 'debug' facility not installed

'#pragma debug' is only allowed in the debug version of the compiler.

W 37 attempt to divide by zero

A divide or modulo by zero was found. Adjust the expression or test if

the second operand of a divide or modulo is zero.

E 38 non integral switch expression

A switch condition expression must evaluate to an integral value. So,

char *p = 0; switch (p) is not allowed.

F 39 unknown error number: number

This error may not occur. If it does, contact your local TASKING office

and provide them with the exact error message.

W 40 non-standard escape sequence

Check the spelling of your escape sequence (a backslash, \, followed

by a number or letter), it contains an illegal escape character. For

example, \c causes this warning.

Chapter 55–10
D
IA
G
N
O
S
T
IC
S

E 41 '#elif' without '#if'

The '#elif' directive did not appear within an '#if', '#ifdef or '#ifndef'

construct. Make sure that there is a corresponding '#if', '#ifdef' or

'#ifndef' statement in effect before this statement.

E 42 syntax error, expecting parameter type/declaration/statement

A syntax error occurred in a parameter list a declaration or a statement.

This can have many causes, such as, errors in syntax of numbers, usage

of reserved words, operator errors, missing parameter types, missing

tokens.

E 43 unrecoverable syntax error, skipping to end of file

The compiler found an error from which it could not recover. This

error is in most cases preceded by another error. Usually, error E 42.

I 44 in initializer "name"

Informational message when checking for a proper constant initializer.

E 46 cannot hold that many operands

The value stack may not exceed 20 operands.

E 47 missing operator

An operator was expected in the expression.

E 48 missing right parenthesis

')' was expected.

W 49 attempt to divide by zero - potential run-time error

An expression with a divide or modulo by zero was found. Adjust the

expression or test if the second operand of a divide or modulo is zero.

E 50 missing left parenthesis

'(' was expected.

E 51 cannot hold that many operators

The state stack may not exceed 20 operators.

E 52 missing operand

An operand was expected.

Compiler Diagnostics 5–11

• • • • • • • •

E 53 missing identifier after 'defined' operator

An identifier is required in a #if defined(identifier) .

E 54 non scalar controlling expression

Iteration conditions and 'if' conditions must have a scalar type (not a

struct, union or a pointer). For example, after static struct {int
i;} si = {0}; it is not allowed to specify while (si) ++si.i; .

E 55 operand has not integer type

The operand of a '#if' directive must evaluate to an integral constant.

So, #if 1. is not allowed.

W 56 '<debugoption><level>' no associated action

This warning can only appear in the debug version of the compiler.

There is no associated debug action with the specified debug option

and level.

W 58 invalid warning number: number

The warning number you supplied to the -w option does not exist.

Replace it with the correct number.

F 59 sorry, more than number errors

Compilation stops if there are more than 40 errors.

E 60 label "label" multiple defined

A label can be defined only once in the same function. The following

is an example of this error:

f()
{
lab1:
lab1: /* error */
}

E 61 type clash

The compiler found conflicting types. For example, a long is only

allowed on int or double , no specifiers are allowed with struct ,

union or enum. The following is an example of this error:

unsigned signed int i; /* error */

Chapter 55–12
D
IA
G
N
O
S
T
IC
S

E 62 bad storage class for "name"

The storage-class specifiers auto and register may not appear in

declaration specifiers of external definitions. Also, the only storage class

specifier allowed in a parameter declaration is register .

E 63 "name" redeclared

The specified identifier was already declared. The compiler uses the

second declaration. The following is an example of this error:

struct T { int i; };
struct T { long j; }; /* error */

E 64 incompatible redeclaration of "name"

The specified identifier was already declared. All declarations in the

same function or module that refer to the same object or function must

specify compatible types. The following is an example of this error:

f()
{

int i;
char i; /* error */

}

W 66 function "name": variable "name" not used

A variable is declared which is never used. You can remove this

unused variable or you can use the -w66 option to suppress this

warning.

W 67 illegal suboption: option

The suboption is not valid for this option. Check the invocation syntax

for a list of all available suboptions.

W 68 function "name": parameter "name" not used

A function parameter is declared which is never used. You can remove

this unused parameter or you can use the -w68 option to suppress this

warning.

E 69 declaration contains more than one basic type specifier

Type specifiers may not be repeated. The following is an example of

this error:

int char i; /* error */

Compiler Diagnostics 5–13

• • • • • • • •

E 70 'break' outside loop or switch

A break statement may only appear in a switch or a loop (do , for
or while). So, if (0) break; is not allowed.

E 71 illegal type specified

The type you specified is not allowed in this context. For example, you

cannot use the type void to declare a variable. The following is an

example of this error:

void i; /* error */

W 72 duplicate type modifier

Type qualifiers may not be repeated in a specifier list or qualifier list.

The following is an example of this warning:

{ long long i; } /* error */

E 73 object cannot be bound to multiple memories

Use only one memory attribute per object. For example, specifying

both rom and ram to the same object is not allowed.

E 74 declaration contains more than one class specifier

A declaration may contain at most one storage-class specifier. So,

register auto i; is not allowed.

E 75 'continue' outside a loop

continue may only appear in a loop body (do , for or while). So,

switch (i) {default: continue;} is not allowed.

E 76 duplicate macro parameter "name"

The given identifier was used more than one in the formatl parameter

list of a macro definition. Each macro parameter must be uniquely

declared.

E 77 parameter list should be empty

An identifier list, not part of a function definition, must be empty. For

example, int f (i, j, k); is not allowed on declaration level.

E 78 'void' should be the only parameter

Within a function protoype of a function that does not except any

arguments, void may be the only parameter. So, int f(void,
int); is not allowed.

Chapter 55–14
D
IA
G
N
O
S
T
IC
S

E 79 constant expression expected

A constant expression may not contain a comma. Also, the bit field

width, an expression that defines an enum, array-bound constants and

switch case expressions must all be integral contstant expressions.

E 80 '#' operator shall be followed by macro parameter

The '#' operator must be followed by a macro argument.

E 81 '##' operator shall not occur at beginning or end of a macro

The '##' (token concatenation) operator is used to paste together

adjacent preprocessor tokens, so it cannot be used at the beginning or

end of a macro body.

W 86 escape character truncated to 8 bit value

The value of a hexadicimal escape sequence (a backslash, \, followed

by a 'x' and a number) must fit in 8 bits storage. The number of bits

per character may not be greater than 8. The following is an example

of this warning:

char c = ’\xabc’; /* error */

E 87 concatenated string too long

The resulting string was longer than the limit of 1500 characters.

W 88 "name" redeclared with different linkage

The specified identifier was already declared. This warning is issued

when you try to redeclare an object with a different basic storage class,

and both objects are not declared extern or static. The following is an

example of this warning:

int i;
int i(); /* error E 64 and warning */

E 89 illegal bitfield declarator

A bit field may only be declared as an integer, not as a pointer or a

function for example. So, struct {int *a:1;} s; is not allowed.

E 90 #error message

The message is the descriptive text supplied in a '#error' preprocessor

directive.

Compiler Diagnostics 5–15

• • • • • • • •

W 91 no prototype for function "name"

Each function should have a valid function prototype.

W 92 no prototype for indirect function call

Each function should have a valid function prototype.

I 94 hiding earlier one

Additional message which is preceded by error E 63. The second

declaration will be used.

F 95 protection error: message

Something went wrong with the protection key initialization. The

message could be: "Key is not present or printer is not correct.", "Can't

read key.", "Can't initialize key.", or "Can't set key-model".

E 96 syntax error in #define

#define id(requires a right-parenthesis ')'.

E 97 "..." incompatible with old-style prototype

If one function has a parameter type list and another function, with the

same name, is an old-style declaration, the parameter list may not have

ellipsis. The following is an example of this error:

int f(int, ...);
int f(); /* error, old–style */

E 98 function type cannot be inherited from a typedef

A typedef cannot be used for a function definition. The following is

an example of this error:

typedef int INTFN();
INTFN f {return (0);} /* error */

F 99 conditional directives nested too deep

'#if', '#ifdef' or '#ifndef' directives may not be nested deeper than 50

levels.

E 100 case or default label not inside switch

The case: or default: label may only appear inside a switch .

Chapter 55–16
D
IA
G
N
O
S
T
IC
S

E 101 vacuous declaration

Something is missing in the declaration. The declaration could be

empty or an incomplete statement was found. You must declare array

declarators and struct , union , or enum members. The following are

examples of this error:

int ;/* error */

static int a[2] = { }; /* error */

E 102 duplicate case or default label

Switch case values must be distinct after evaluation and there may be

at most one default: label inside a switch .

E 103 may not subtract pointer from scalar

The only operands allowed on subtraction of pointers is pointer -

pointer, or pointer - scalar. So, scalar - pointer is not allowed. The

following is an example of this error:

int i;
int *pi = &i;
ff(1 – pi); /* error */

E 104 left operand of operator has not struct/union type

The first operand of a '.' or '->' must have a struct or union type.

E 105 zero or negative array size - ignored

Array bound constants must be greater than zero. So, char a[0]; is

not allowed.

E 106 different constructors

Compatible function types with parameter type lists must agree in

number of parameters and in use of ellipsis. Also, the corresponding

parameters must have compatible types. This error is usually followed

by informational message I 111. The following is an example of this

error:

int f(int);
int f(int, int); /* error different

 parameter list */

Compiler Diagnostics 5–17

• • • • • • • •

E 107 different array sizes

Corresponding array parameters of compatible function types must

have the same size.This error is usually followed by informational

message I 111. The following is an example of this error:

int f(int [][2]);
int f(int [][3]); /* error */

E 108 different types

Corresponding parameters must have compatible types and the type of

each prototype parameter must be compatible with the widened

definition parameter. This error is usually followed by informational

message I 111. The following is an example of this error:

int f(int);
int f(long); /* error different type

 in parameter list */

E 109 floating point constant out of valid range

A floating point constant must have a value that fits in the type to

which it was assigned. See section Data Types for the valid range of a

floating point constant. The following is an example of this error:

float d = 10E9999; /* error, too big */

E 110 function cannot return arrays or functions

A function may not have a return type that is of type array or function.

A pointer to a function is allowed. The following are examples of this

error:

typedef int F(); F f(); /* error */

typedef int A[2]; A g(); /* error */

I 111 parameter list does not match earlier prototype

Check the parameter list or adjust the prototype. The number and type

of parameters must match. This message is preceded by error E 106, E

107 or E 108.

E 112 parameter declaration must include identifier

If the declarator is a prototype, the declaration of each parameter must

include an identifier. Also, an identifier declared as a typedef name

cannot be a parameter name. The following are examples of this error:

Chapter 55–18
D
IA
G
N
O
S
T
IC
S

int f(int g, int) {return (g);} /* error */

typedef int int_type;
int h(int_type) {return (0);} /* error */

E 114 incomplete struct/union type

The struct or union type must be known before you can use it. The

following is an example of this error:

extern struct unknown sa, sb;
sa = sb; /* ’unknown’ does not have a

 defined type */

The left side of an assignment (the lvalue) must be modifiable.

E 115 label "name" undefined

A goto statement was found, but the specified label did not exist in

the same function or module. The following is an example of this error:

f1() { a: ; } /* W 116 */
f2() { goto a; } /* error, label ’a:’ is

 not defined in f2() */

W 116 label "name" not referenced

The given label was defined but never referenced. The reference of the

label must be within the same function or module. The following is an

example of this warning:

f() { a: ; } /* ’a’ is not referenced */

E 117 "name" undefined

The specified identifier was not defined. A variable's type must be

specified in a declaration before it can be used. This error can also be

the result of a previous error. The following is an example of this

error:

unknown i;/* error, ’unknown’ undefined */
i = 1; /* as a result, ’i’ is also

 undefined */

W 118 constant expression out of valid range

A constant expression used in a case label may not be too large. Also

when converting a floating point value to an integer, the floating point

constant may not be too large. This warning is usually preceded by

error E 16 or E 109. The following is an example of this warning:

Compiler Diagnostics 5–19

• • • • • • • •

int i = 10E88; /* error and warning */

E 119 cannot take 'sizeof' bitfield or void type

The size of a bit field or void type is not known. So, the size of it

cannot be taken.

E 120 cannot take 'sizeof' function

The size of a function is not known. So, the size of it cannot be taken.

E 121 not a function declarator

This is not a valid function. This may be due to a previous error. The

following is an example of this error:

int f() return 0; /* missing ’{ }’ */
int g() { } /* error, ’g’ is not a

 formal parameter and
 therefore, this is not a
 valid function declaration */

E 122 unnamed formal parameter

The parameter must have a valid name.

W 123 function should return something

A return in a non-void function must have an expression.

E 124 array cannot hold functions

An array of functions is not allowed.

E 125 function cannot return anything

A return with an expression may not appear in a void function.

W 126 missing return (function "name")

A non-void function with a non-empty function body must have a

return statement.

E 129 cannot initialize "name"

Declarators in the declarator list may not contain initializations. Also, an

extern declaration may have no initializer. The following are

examples of this error:

{ extern int i = 0; } /* error */
int f(i) int i=0; /* error */

Chapter 55–20
D
IA
G
N
O
S
T
IC
S

W 130 operands of operator are pointers to different types

Pointer operands of an operator or assignment ('='), must have the

same type. For example, the following code generates this warning:

long *pl;
int *pi = 0;
pl = pi; /* warning */

E 131 bad operand type(s) of operator

The operator needs an operand of another type. The following is an

example of this error:

int *pi;
pi += 1.; /* error, pointer on left; needs

 integral value on right */

W 132 value of variable "name" is undefined

This warning occurs if a variable is used before it is defined. For

example, the following code generates this warning:

int a,b;
a = b; /* warning, value of b unknown */

E 133 illegal struct/union member type

A function cannot be a member of a struct or union . Also, bit fields

may only have type int or unsigned .

E 134 bitfield size out of range - set to 1

The bit field width may not be greater than the number of bits in the

type and may not be negative. The following example generates this

error:

struct i { unsigned i : 999; }; /* error */

W 135 statement not reached

The specified statement will never be executed. This is for example the

case when statements are present after a return .

E 138 illegal function call

You cannot perform a function call on an object that is not a function.

The following example generates this error:

int i, j;
j = i(); /* error, i is not a function */

Compiler Diagnostics 5–21

• • • • • • • •

E 139 operator cannot have aggregate type

The type name in a (cast) must be a scalar (not a struct , union or a

pointer) and also the operand of a (cast) must be a scalar. The

following are examples of this error:

static union ui {int a;} ui ;
ui = (union ui)9; /* cannot cast to union */
ff((int)ui); /* cannot cast a union

 to something else */

E 140 type cannot be applied to a register/bit/bitfield object or

builtin/inline function

For example, the '&' operator (address) cannot be used on registers

and bit fields. So, func(&r6); and func(&bitf.a); are invalid.

E 141 operator requires modifiable lvalue

The operand of the '++', or '--' operator and the left operand of an

assignment or compound assignment (lvalue) must be modifiable. The

following is an example of this error:

const int i = 1;
i = 3; /* error, const cannot be

 modified */

E 143 too many initializers

There may be no more initializers than there are objects. The

following is an example of this error:

static int a[1] = {1, 2}; /* error,
only one object can be initialized */

W 144 enumerator "name" value out of range

An enum constant exceeded the limit for an int . The following is an

example of this warning:

enum { A = INT_MAX, B }; /* warning,
B does not fit in an int anymore */

E 145 requires enclosing curly braces

A complex initializer needs enclosing curly braces. For example, int
a[] = 2; is not valid, but int a[] = {2}; is.

E 146 argument #number: memory spaces do not match

With prototypes, the memory spaces of arguments must match.

Chapter 55–22
D
IA
G
N
O
S
T
IC
S

W 147 argument #number: different levels of indirection

With prototypes, the types of arguments must be assignment

compatible. The following code generates this warning:

int i; void func(int,int);
func(1, &i); /* warning, argument 2 */

W 148 argument #number: struct/union type does not match

With prototypes, both the prototyped function argument and the actual

argument was a struct or union ., but they have different tags. The

tag types should match. The following is an example of this warning:

f(struct s); /* prototype */
main()
{
 struct { int i; } t;
 f(t); /* t has other type than s */
}

E 149 object "name" has zero size

A struct or union may not have a member with an incomplete type.

The following is an example of this error:

struct { struct unknown m; } s; /* error */

W 150 argument #number: pointers to different types

With prototypes, the pointer types of arguments must be compatible.

The following example generates this warning:

int f(int*);
long *l;
f(l); /* warning */

W 151 ignoring memory specifier

Memory specifiers for a struct , union or enum are ignored.

E 152 operands of operator are not pointing to the same memory

space

Be sure the operands point to the same memory space. This error

occurs, for example, when you try to assign a pointer to a pointer from

a different memory space.

Compiler Diagnostics 5–23

• • • • • • • •

E 153 'sizeof' zero sized object

An implicit or explicit sizeof operation references an object with an

unkown size. This error is usually preceded by error E 119 or E 120,

cannot take 'sizeof'.

E 154 argument #number: struct/union mismatch

With prototypes, only one of the prototyped function argument or the

actual argument was a struct or union . The types should match. The

following is an example of this error:

f(struct s); /* prototype */

main()
{
 int i;
 f(i); /* i is not a struct */
}

E 155 casting lvalue 'type' to 'type' is not allowed

The operand of the '++', or '--' operator or the left operand of an

assignment or compound assignment (lvalue) may not be cast to

another type. The following is an example of this error:

int i = 3;
++(unsigned)i; /* error, cast expression

 is not an lvalue */

E 157 "name" is not a formal parameter

If a declarator has an identifier list, only its identifiers may appear in

the declarator list. The following is an example of this error:

int f(i) int a; /* error */

E 158 right side of operator is not a member of the designated

struct/union

The second operand of '.' or '->' must be a member of the designated

struct or union .

E 160 pointer mismatch at operator

Both operands of operator must be a valid pointer. The following

example generates this error:

int *pi = 44; /* right side not a pointer */

Chapter 55–24
D
IA
G
N
O
S
T
IC
S

E 161 aggregates around operator do not match

The contents of the structs, unions or arrays on both sides of the

operator must be the same. The following example causes this error:

struct {int a; int b;} s;
struct {int c; int d; int e;} t;
s = t; /* error */

E 162 operator requires an lvalue or function designator

The '&' (address) operator requires an lvalue or function designator.

The following is an example of this error:

int i;
i = &(i = 0);

W 163 operands of operator have different level of indirection

The types of pointers or addresses of the operator must be assignment

compatible. The following is an example of this warning:

char **a;
char *b;
a = b; /* warning */

E 164 operands of operator may not have type 'pointer to void'

The operands of operator may not have operand (void *) .

W 165 operands of operator are incompatible: pointer vs. pointer to

array

The types of pointers or addresses of the operator must be assignment

compatible. A pointer cannot be assigned to a pointer to array. The

following is an example of this warning:

main()
{

typedef int array[10];
array a;
array *ap = a; /* warning */

}

E 166 operator cannot make something out of nothing

Casting type void to something else is not allowed. The following

example generates this error:

Compiler Diagnostics 5–25

• • • • • • • •

void f(void);
main()
{

int i;

i = (int)f(); /* error */
}

E 170 recursive expansion of inline function "name"

An _inline function may not be recursive. The following example

generates this error:

_inline int a (int i)
{

a(i);/* recursive call */
return i;

}
main()
{

a(1);/* error */
}

E 171 too much tail-recursion in inline function "name"

If the function level is greater than or equal to 40 this error is given.

The following example generates this error:

_inline void a ()
{

a();
}
main()
{

a();
}

W 172 adjacent strings have different types

When concatenating two strings, they must have the same type. The

following example generates this warning:

char b[] = L”abc””def”; /* strings have
 different types */

E 173 'void' function argument

A function may not have an argument with type void .

Chapter 55–26
D
IA
G
N
O
S
T
IC
S

E 174 not an address constant

A constant address was expected. Unlike a static variable, an automatic

variable does not have a fixed memory location and therefore, the

address of an automatic is not a constant. The following is an example

of this error:

int *a;
static int *b = a; /* error */

E 175 not an arithmetic constant

In a constant expression no assignment operators, no '++' operator, no

'--' operator and no functions are allowed. The following is an

example of this error:

int a;
static int b = a++; /* error */

E 176 address of automatic is not a constant

Unlike a static variable, an automatic variable does not have a fixed

memory location and therefore, the address of an automatic is not a

constant. The following is an example of this error:

int a; /* automatic */
static int *b = &a; /* error */

W 177 static variable "name" not used

A static variable is declared which is never used. To eliminate this

warning remove the unused variable.

W 178 static function "name" not used

A static function is declared which is never called. To eliminate this

warning remove the unused function.

E 179 inline function "name" is not defined

Possibly only the prototype of the inline function was present, but the

actual inline function was not. The following is an example of this

error:

Compiler Diagnostics 5–27

• • • • • • • •

_inline int a(void);/* prototype */

main()
{

int b;
b = a(); /* error */

};

E 180 illegal target memory (memory) for pointer

The pointer may not point to memory. For example, a pointer to

bitaddressable memory is not allowed.

E 181 invalid cast to function

A cast to type function is not allowed. A cast to a function pointer type

is allowed.

W 182 argument #number: different types

With prototypes, the types of arguments must be compatible.

W 183 variable 'name' possibly uninitialized

Possibly an initialization statement is not reached, while a function

should return something. The following is an example of this warning:

int a;

int f(void)
{
 int i;

 if (a)
 {

i = 0; /* statement not reached */
 }
 return i; /* warning */
}

W 184 empty pragma name in -z option - ignored

The -z option requires a pragma name.

I 185 (prototype synthesized at line number in "name")

This is an informational message containing the source file position

where an old-style prototype was synthesized. This message is

preceded by error E 146, W 147, W 148, W 150, E 154, W 182 or E 203.

Chapter 55–28
D
IA
G
N
O
S
T
IC
S

E 186 array of type bit is not allowed

An array cannot contain bit type variables.

E 187 illegal structure definition

A structure can only be defined (initialized) if its members are known.

So, struct unknown s = { 0 }; is not allowed.

E 188 structure containing bit-type fields is forced into bitaddressable

area

This error occurs when you use a bitaddressable storage type for a

structure containing bit-type members.

E 189 pointer is forced to bitaddressable, pointer to bitaddressable is

illegal

A pointer to bitaddressable memory is not allowed.

W 190 "long float" changed to "float"

In ANSI C floating point constants are treated having type double ,

unless the constant has the suffix 'f'. If you have specified an option to

use float constants, a long floating point constant such as 123.12fl is

changed to a float .

E 191 recursive struct/union definition

A struct or union cannot contain itself. The following example

generates this error:

struct s { struct s a; } b; /* error */

E 192 missing filename after -f option

The -f option requires a filename argument.

E 194 cannot initialize typedef

You cannot assign a value to a typedef variable. So, typedef i=2; is

not allowed.

W 195 constant expression out of range -- truncated

The resulting constant expression is too large to fit in the specified data

type. The value is truncated. The following example generates this

warning:

int i = 17000000L; /* warning, value is too large
 to fit in an int */

Compiler Diagnostics 5–29

• • • • • • • •

W 196 constant expression out of range due to signed/unsigned type

mismatch

The resulting constant expression is too large to fit in the specified data

type. The following example generates this warning:

int i = 40000U;/* the unsigned value is too large
 to fit in a signed int */
/* unsigned int i = 40000U; is OK */

W 197 unrecognized -w argument: argument

The -w option only accepts a warning number or the text 'strict' as an

argument. See the description of the -w option for details.

W 198 trigraph sequence replaced

Trigraphs are used in the C language to create special characters on

obsolete terminals with a limited character set. When they are replaced

in your source, e.g. in a string, they may give rise to very obscure

errors.

F 199 demonstration package limits exceeded

The demonstration package has certain limits which are not present in

the full version. Contact TASKING for a full version.

W 200 unknown pragma "name" - ignored

The compiler ignores pragmas that are not known. For example,

#pragma unknown .

W 201 name cannot have storage type - ignored

A register variable or an automatic/parameter cannot have a storage

type. To eliminate this warning, remove the storage type or place the

variable outside a function�.

E 202 'name' is declared with 'void' parameter list

You cannot call a function with an argument when the function does

not accept any (void parameter list). The following is an example of

this error:

Chapter 55–30
D
IA
G
N
O
S
T
IC
S

int f(void); /* void parameter list */

main()
{

int i;
i = f(i); /* error */
i = f(); /* OK */

}

E 203 too many/few actual parameters

With prototyping, the number of arguments of a function must agree

with the protoype of the function. The following is an example of this

error:

int f(int); /* one parameter */

main()
{

int i;
i = f(i,i); /* error, one too many */
i = f(i); /* OK */

}

W 204 U suffix not allowed on floating constant - ignored

A floating point constant cannot have a 'U' or 'u' suffix.

W 205 F suffix not allowed on integer constant - ignored

An integer constant cannot have a 'F' or 'f' suffix.

E 206 'name' named bit-field cannot have 0 width

A bit field must be an integral contstant expression with a value greater

than zero.

E 212 "name": missing static function definition

A function with a static prototype misses its definition.

W 213 invalid string/character constant in non-active part of source

This part of the source is skipped.

E 214 second occurrence of #pragma asm or asm_noflush

#pragma asm /#pragma endasm blocks cannot be nested. Use

#pragma endasm before starting a new #pragma asm /#pragma
endasm block.

Compiler Diagnostics 5–31

• • • • • • • •

E 215 "#pragma endasm" without a "#pragma asm"

A #pragma endasm must always have a corresponding #pragma asm
or #pragma asm_noflush .

W 303 variable 'name' possibly uninitialized

Possibly an initialization statement is not reached, while a function

should return something. The following is an example of this warning:

int a;

int f(void)
{
 int i;

 if (a)
 {

i = 0; /* statement not reached */
 }
 return i; /* warning */
}

E 327 too many arguments to pass in registers for _asmfunc 'name'

An _asmfunc function uses a fixed register-based interface between C

and assembly, but the number of arguments that can be passed is

limited by the number of available registers. With function name this

limit was reached.

F 347 Error in constraints for inline assembly: Wrong register-size or

no memory or immediate possible

The variable does not fit into the register specified, or the variable can

not be referenced in memory (m opererand constraint), or the

expression does not yield an immediate value (i operand constraint).

F 348 Error in constraints for inline assemly: Numeric constraint (opr

nbr number) out of range.

Operand number nbr is not defined in constraint.

F 349 Error in constraints for inline assembly: Second numeric

constraint to the same output

W 358 User stack pointer register can not be reserved

Reserved user stack pointer will be ignored.

Chapter 55–32
D
IA
G
N
O
S
T
IC
S

Backend

W 501 function qualifier used on non-function

A function qualifier can only be used on functions.

W 502 _fract constant saturation occurred

An overflow occurred. The following is an example of this warning:

_fract a;

int f(void)
{
 a = .75 + .5; /* 1.25, overflow */
}

E 503 cache pragma requires function address

The argument of a cache_region_start and cache_region_end
pragma must be a function pointer defined with the _cache_region
qualifier.

W 504 24-bit pointer calculation requires mode switching

A pointer calculation is generated for the 16/24-bit model that requires

switching to the 24-bit model temporarily and therefore gives

inefficient coding.

W 508 function qualifier duplicated

Only one function qualifier is allowed. The duplicate qualifier is

ignored.

F 509 invalid name option

The specified option is not valid. See the invocation syntax for a list of

options and their suboptions.

F 510 illegal number in option name

For the -c option only the values 128 and 256 are allowed. The -L

option only accepts numbers in the range 1..15. The -m option only

accepts the values 0 and 1. See the invocation syntax for more

information.

E 511 interrupt function must have void result and void parameter list

A function declared with _interrupt(n) may not accept any

arguments and may not return anything.

Compiler Diagnostics 5–33

• • • • • • • •

W 512 'number' illegal interrupt number (-1, or 0 to 63) - ignored

The interrupt vector number must be -1 or in the range 0 to 63. Any

other number is illegal.

E 513 calling an interrupt routine, use '_swi()'

An interrupt function cannot be called directly, you must use the

intrinsic function _swi() .

E 514 conflict in 'attribute_type' attribute

The attributes of the current function qualifier declaration and the

previous function qualifier declaration are not the same.

E 515 different '_long_interrupt | _fast_interrupt' number

The interrupt number of the current function qualifier declaration and

the previous function qualifier declaration are not the same.

E 516 'memory_type' is illegal memory for function: program '_P' only

The storage type is not valid for this function.

W 517 conversion of long address to short address

The compiler converts a long address to a short address when you

assign a value to an _near object.

W 518 conversion of fractional to integer type occurred

The compiler converts a fractional type to an integer type when _fracts

are mixed in expressions. This can also occur when constants are

folded. In most cases this is an error that can be avoided with a type

cast.

W 519 conversion of integer to fractional type occurred

The compiler converts an integer type a fractional type in the code.

This can also occur when constants are folded. In most cases this is an

error.

W 520 conversion of _circular pointer does not preserve circular

information.

If a _circular pointer is converted to a long or unsigned long ,

the circular information will be lost.

F 524 illegal memory model

The memory model you specified does not exist. See the -M option for

a list of the available arguments.

Chapter 55–34
D
IA
G
N
O
S
T
IC
S

W 525 function qualifier '_reentrant' ignored for static memory model

_reentrant is only allowed in non-static memory models.

E 526 illegal __asm() constraint string

The character used for a register type in an __asm intrinsic function is

not valid.

E 527 illegal __asm() modifier char for register reg

The character used for a register modifier in an __asm intrinsic

function is not valid.

E 528 _at() requires a numerical address

You can only use an expression that evaluates to a numerical address.

E 529 _at() address out of range for this type of object

The absolute address is not present in the specified memory space.

E 530 _at() only valid for global variables

Only global variables can be placed on absolute addresses.

E 531 _at() only allowed for uninitialized variables

Absolute variables cannot be initialized.

W 532 _at() has no effect on external declaration

When declared extern the variable is not allocated by the compiler.

W 533 c56 language extension keyword used as identifier

A language extension keyword is a reserved word, and reserved words

cannot be used as an identifier.

E 534 hardware stack level must be in range 1..15/16

The -L option only accepts a hardware stack level depth in the range

1..15 (1..16 for 563xx). See the description of the -L option for more

information.

E 536 illegal syntax used for default section name 'name' in -R option

See the description of the -R option for the correct syntax.

E 537 default section name 'name' not allowed

See the description of the -R option for the correct syntax.

Compiler Diagnostics 5–35

• • • • • • • •

W 538 default section name 'name' already renamed to 'new_name'

Only use one -R option for section name or use another name.

W 542 optimization stack underflow, no optimization options are saved

with #pragma optimize

This warning occurs if you use a #pragma endoptimize while there

were no options saved by a previous #pragma optimize .

W 543 fast interrupt code section too large - long interrupt substituted

The section became too large to fit in a fast interrupt code section, so

the compiler placed it in a long interrupt code section.

W 544 fast interrupt routine must be committed to a vector - ignored

A _fast_interrupt function must have a vector in the range 0..63.

W 546 illegal modifier for this type - ignored

For example, short _fract is illegal.

E 547 assignment of a circular object to a non-circular pointer

 assignment of a non-circular object to a circular pointer

Only circular objects can be assigned to circular pointers.

E 549 only _circ pointers and arrays/structs/unions are allowed -

ignored on 'name'

 only _circ pointers and arrays/structs/unions are allowed -

ignored on struct/union member 'name'

_circ is only allowed on structures and unions if its member is of

type _circ .

W 551 recursion in non-reentrant function 'name'

Recursion is only allowed on reentrant functions.

E 552 only 'long' type objects are allowed in _L memory space -

ignored on 'symbol_name'

The specified object is not of type 'long' and therefore is not allowed in

the _L memory space.

E 553 only 'long' type struct/union members are allowed in _L memory

space - ignored on 'symbol_name'

The specified member is not of type 'long' and therefore is not allowed

in the _L memory space.

Chapter 55–36
D
IA
G
N
O
S
T
IC
S

W 555 current optimization level could reduce debugging comfort (-g);

the -O2 or -O4 option may be used to improve this

You could have HLL debug conflicts with these optimization settings.

The -O2 and -O4 option optimize for debug.

W 556 Register name cannot be reserved: invalid register

 Register name cannot be reserved: is a function return register

If the first warning occurs you specified an invalid register name to the

-r option. The second warning occurs if R0 or N0 is used, because

these are function return registers and therefore cannot be reserved.

See the -r option for a list of available register names.

W 557 Register name cannot be reserved: is used for dynamic stack

The specified register is used as a stack pointer register and therefore

cannot be reserved. See the -r option for a list of available register

names.

E 558 Error in reserving registers: not enough address registers left

All address registers have been used.

E 559 Intrinsic function call needs a reserved register

You have to provide a reserved register name as an argument of an

intrinsic function.

E 560 Invalid operand in intrinsic function call

See section Intrinsic Functions for the syntax of the intrinsic function.

E 562 Cache sector size must be 128 or 256

For the -c option only the values 128 and 256 are allowed.

E 563 _circ pointer has modulo size 0

A pointer is used to retrieve a circular pointer, but the modulo part is

undefined and therefore set to 0. This can occur when type casts are

used incorrectly.

E 564 invalid intrinsic function for this DSP type

An intrinsic function for DSP is coded that is not available on the

current DSP because of instruction set limitations.

Compiler Diagnostics 5–37

• • • • • • • •

W 565 intrinsic function is not supported on all silicon revisions

An intrinsic function is encountered that is not implemented on all

DSPs of the current type.

W 566 packed strings not supported when generating Motorola

assembler compatible output, #pragma ignored

Packed strings are not supported when you use the -Ca option

(Motorola compatible assembly). Remove the pragma or generate

TASKING compatible assembly.

E 567 'mem' is illegal memory for jumptable

An illegal memory type was specified for the jumptable_memory

pragma. Please change this memory type into either X, Y or P.

W 568 Depth of hardware stack limited without disabling hardware

stack extension

The -L option is best served in combination with the -Mn option. -Mn

assures maximum hardware stack array capacity when stack extension

is off. If stack extension is on, there is no reason to limit the stack array

because it is automatically extended into data memory when exceeded.

W 569 Motorola compatibility mode selected with stack in L-memory;

use -ML to disable

The Motorola debugger does not support placing the stack in L

memory. So, this combination is of limited use.

E 570 _compatible function definition not allowed with new-style

stackframe; use -Cs to disable

The Motorola compatibility calling convention requires the old-style

stack layout (stack pointer points to first unused location).

F 571 Maximum number of nested loops exceeded

Control structures and compound statements have been nested too

deeply.

F 572 arg of function qualifier '_bank' out of range; check -p option

The indicated argument in the _bank function qualifier is out of range.

Use the command line option -ppage (page is 1..8) to specify the total

number of pages.

Chapter 55–38
D
IA
G
N
O
S
T
IC
S

W 573 Not possible to use different calling conventions on same

function, function qualifier qualifier ignored.

You specified two calling conventions on the same function. The

second function qualifier is ignored. Use either _compatible or

_callee_save .

6

LIBRARIES
C

H
A

P
T

E
R

Chapter 66–2
L
IB
R
A
R
IE
S

6

C
H

A
P

T
E

R

Libraries 6–3

• • • • • • • •

6.1 INTRODUCTION

This chapter describes the library functions delivered with the compiler.

Some functions (e.g. printf() , scanf()) can be edited to match your

needs. c563 comes with libraries in object format per memory model and

with header files containing the appropriate prototype of the library

functions. The library functions are also shipped in source code (C or

assembly).

A number of standard operations within C are too complex to generate

inline code for (e.g. 32 bit signed divide). These operations are

implemented as run-time library functions. The run-time library routines

are added to the C library.

The C libraries supplied with the compiler are suitable for -Mx (the

default data space X memory). In the following cases you must rebuild the

libraries to avoid conflicts:

• if you change the default data space or change the data space of the

user stack (default L memory) (-ML)

• if you change the user stack pointer (-Cr)

• if you select the default calling convention (-Cc, or _compatible)

• if you select the old-style/Motorola compatible stack frame (-Cs)

Use the same options for both rebuilding the libraries as building your

application.

The sources of these libraries and a makefile are included in the compiler

package.

Chapter 66–4
L
IB
R
A
R
IE
S

6.2 REBUILDING LIBRARIES

Use the following procedure to rebuild the libraries for the c563 compiler

(similar steps can be followed for the c56):

1. Check if the bin directory of the installed c563 product is included in

your path environment setting. If it is not there you should add it.

2. In the directory lib\src you will find the library sources. For each type

of library it also contains a subdirectory with a makefile for creating the

specific library. Select the directory, depending on which library you want

to build, and make this directory the working directory.

3. Edit the concerning makefile and add the new options to the line which

defines CFLAGS. For example:

CFLAGS = –I$(SRCDIR) –M24yn –Cacr –AF

4. Type:

mk563

to build libraries for c563.

5. When building is finished you will find the library in the current directory.

You can copy the library to the lib\563xx or lib\566xx directory of

the product. But before you do so, you may want to make a backup copy

of the original library in that directory.

When the hardware stack extension has to be disabled on the DSP, you

also have to retranslate start.asm with the NOESTACK macro defined.

When retranslating the libraries, you can set this option also in the

concerning makefile, by adding -DNOESTACK to the ASFLAGS definition.

Libraries 6–5

• • • • • • • •

6.3 LIBRARIES OVERVIEW

The table below lists the libraries included in the DSP5600x (c56) and

DSP563xx/6xx (c563) toolchains. What libraries are to be linked depends

on the memory model selected. The Control Program and EDE will

automatically select the correct libraries depending on the memory model

specified.

The lib directory contains the subdirectories with the library files for the

DSP5600x, DSP563xx and DSP566xx.

Compiler Processor Model Libraries

C Run–time Floating
point

c56 DSP5600x Static libcs.a librt.a libfp.a

Reentrant libcr.a

Mixed libcm.a

c563 DSP563xx 16 bit libc16.a librt16.a libfp16.a

16/24 bit libc1624.a

24 bit libc24.a librt24.a libfp24.a

DSP566xx – libc6.a librt6.a libfp6.a

Table 6-1: Overview of Libraries

The lk563 linker uses this naming convention when specifying the -l

option. For example, with -lc16 the linker looks for libc16.a in the DSP

type specific subdirectory of the system lib directory. Specifying the

libraries is a job taken care of by the control program.

When you use floating point, the floating point library must always be the

last library linked, it should be placed after the C library. Arithmetic

routines like sin() , cos() , etc. are not present in these libraries, only

basic floating point operations can be done.

Chapter 66–6
L
IB
R
A
R
IE
S

6.4 INPUT/OUTPUT FUNCTIONS

scanf

gets

_doscan** _read**_filbuf**

getchar*fscanf

fgetc

_ioread**

FSS read**

fgets fread

getchar

getc*

getc

Figure 6-1: Calling mechanism of input function in C library

printf

puts

_doprint** _write**_flsbuf**

putchar*fprintf

fputc

_iowrite**

FSS write**

fputs fwrite

putchar

putc*

putc

fflush

Figure 6-2: Calling mechanism of output function in C library

 * = function is implemented as a macro (if stdio.h is included); the C

libraries contain them as well, for example, in cases where a

function pointer needs the address of such a function.

** = internal function.

Libraries 6–7

• • • • • • • •

6.5 HEADER FILES

The following header files are delivered with the C compiler:

<assert.h> assert

<c56.h> Special file with c563 definitions. No C functions. Can be

used for prototyping your application on a host using a

standard C compiler.

<conio.h> _insize, kbhit().

<ctype.h> isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower,

isprint, ispunct, isspace, isupper, isxdigit, toascii, _tolower,

tolower, _toupper, toupper

<errno.h> Error numbers. No C functions.

<fcntl.h> Definition of flags used by open().

<float.h> Constants related to floating point arithmetic.

<limits.h> Limits and sizes of integral types. No C functions.

<locale.h> localeconv, setlocale. Delivered as skeletons.

<math.h> acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,

frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh

<reg56xxx.h>

Include files with all special function register definitions for

the DSP56xxx.

<setjmp.h> longjmp, setjmp

<signal.h> raise, signal. Functions are delivered as skeletons.

<stdarg.h> va_arg, va_end, va_start

<stddef.h> offsetof, definition of special types.

<stdio.h> clearerr, _close, fclose, feof, ferror, fflush, fgetc, fgetpos,

fgets, fopen, _fopen, fprintf, fputc, fputs, fread, freopen,

fscanf, fseek, fsetpos, ftell, fwrite, getc, getchar, gets, _lseek,

_open, perror, printf, putc, putchar, puts, _read, remove,

rename, rewind, scanf, setbuf, setvbuf, sprintf, sscanf, tmpfile,

tmpnam, ungetc, vfprintf, vprintf, vsprintf, _write

Chapter 66–8
L
IB
R
A
R
IE
S

<stdlib.h> abort, abs, atexit, atof, atoi, atol, bsearch, calloc, div, exit,

free, getenv, labs, ldiv, malloc, mblen, mbstowcs, mbtowc,

qsort, rand, realloc, srand, strtod, strtol, strtoul, system,

wcstombs, wctomb

<string.h> memchr, memcmp, memcpy, memmove, memset, _packsize,

_packstr, _pstr_get, _pstr_put, strcat, strchr, strcmp, strcol,

strcpy, strcspn, strerror, strlen, strncat, strncmp, strncpy,

strpbrk, strrchr, strspn, strstr, strtok, strxfrm, _unpackstr,

_unpstrlen

<time.h> asctime, clock, ctime, difftime, gmtime, localtime, mktime,

strftime, time.

6.6 C LIBRARIES

The C library contains C library functions. All C library functions are

described in this chapter. These functions are only called by explicit

function calls in your application program.

6.6.1 C LIBRARY IMPLEMENTATION DETAILS

A detailed description of the delivered C library is shown in the following

list.

Explanation :

Y - Fully implemented

I - Implemented, using file system simulation

L - Delivered as a skeleton

File Imple–
mented

Routine name Description / Reason

assert.h Y ’assert()’ macro Macro definition

conio.h Y _insize
kbhit()

Libraries 6–9

• • • • • • • •

Description / ReasonRoutine nameImple–
mented

File

ctype.h Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
tolower
toupper
_tolower
_toupper
isascii
toascii

Most of the routines are
delivered as macro AND as
function (as prescribed by
ANSI).

Not defined by ANSI
Not defined by ANSI
Not defined by ANSI
Not defined by ANSI

errno.h Y Only Macros

fcntl.h Y
I open

Definitions of flags used by _open

float.h Y

limits.h Y Only Macros

locale.h Y
L
L

localeconv
setlocale

No OS present
No OS present

Chapter 66–10
L
IB
R
A
R
IE
S

Description / ReasonRoutine nameImple–
mented

File

math.h Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

acos
asin
atan
atan2
ceil
cos
cosh
exp
fabs
floor
fmod
frexp
ldexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh

setjmp.h Y
Y
Y

longjmp
setjmp

signal.h Y
L
L

raise
signal

No OS present
No OS present

stdarg.h Y
Y
Y
Y

va_arg
va_end
va_start

stddef.h Y Only Macros

stdio.h Y

Y
I
Y
Y
I
I

clearerr
fclose
feof
ferror
fflush
fgetc

Due to ’stdarg.h/varargs.h’
conflicts, the routines
’vprintf()’, ’vfprintf()’,
’vsprintf()’ are not ANSI yet.

Needs _fclose

Needs _write
Needs _read

Libraries 6–11

• • • • • • • •

Description / ReasonRoutine nameImple–
mented

File

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Y
I
I
I
I
L
L
I
I
Y
Y
Y
Y
L
L

Y
I
I
Y
I
I
I

I
I
I

fgetpos
fgets
fopen
fprintf
fputc
fputs
fread
freopen
fscanf
fseek
fsetpos
ftell
fwrite
getc
getchar
gets
perror
printf
putc
putchar
puts
remove
rename
rewind
scanf
setbuf
setvbuf
sprintf
sscanf
tmpfile
tmpnam

ungetc
vfprintf
vprintf
vsprintf
_close
_fopen
_lseek

_open
_read
_write

Needs _lseek
Needs _read
Needs _fopen
Needs _write
Needs _write
Needs _write
Needs _read
Needs _fclose/_fopen
Needs _read
Needs _lseek
Needs _lseek
Needs _lseek
Needs _write
Needs _read
Needs _read
Needs _read

Needs _write
Needs _write
Needs _write
Needs _write

Needs _lseek
Needs _read

Delivered as a random name
generator, but should use
some process ID.

Needs _write
Needs _write

Low level file close routine
Low level file open routine
Low level file positioning
routine
Low level file open routine
Low level input routine
Low level output routine

Chapter 66–12
L
IB
R
A
R
IE
S

Description / ReasonRoutine nameImple–
mented

File

stdlib.h Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
L
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

L
L
L
L
L
L

abort
abs
atexit
atof
atoi
atol
bsearch
calloc
div
exit
free
getenv
labs
ldiv
malloc
qsort
strtod
strtol
strtoul
rand
realloc
srand

system
mblen
mbstowcs
mbtowc
wcstombs
wctomb

Calls _exit() in cstart

Calls _exit() in cstart

No OS present

No OS present
wide chars not supported
wide chars not supported
wide chars not supported
wide chars not supported
wide chars not supported

Libraries 6–13

• • • • • • • •

Description / ReasonRoutine nameImple–
mented

File

string.h Y
Y
Y
Y
Y
Y
Y
Y
Y
L
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
L

memchr
memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcoll
strcpy
strcspn
strerror
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtok
strxfrm

wide chars not supported

wide chars not supported

time.h Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

asctime
clock
ctime
difftime
gmtime
localtime
mktime
strftime
time

real time clock not supported, but
the DSP timer is used to maintain
relative time

Chapter 66–14
L
IB
R
A
R
IE
S

6.6.2 C LIBRARY INTERFACE DESCRIPTION

_close

#include <stdio.h>
int _close(int fd);

Low level file close function. _close is used by the function fclose. The

given file descriptor should be properly closed, any buffer is already

flushed. The delivered library is targeted at TASKING or Motorola FSS (File

System Simulation). The source file contains versions for TASKING and

Motorola FSS, and an 'empty' function. This function must be customized

to perform I/O on different file systems. See the file _close.c in the

lib\src directory for the example implementations of this low level close

function.

_filbuf

#include <stdio.h>
int _filbuf (FILE *);

Low level file input function. Read a character from a file, buffering when

necessary. Filling the buffer is done through calls to _read.

Returns the character written, or EOF.

_flsbuf

#include <stdio.h>
int _flsbuf (int, FILE *);

Low level file output function. Write a character to a file, flushing the

buffer when necessary. Flushing is done through calls to _write.

Returns the character written, or EOF.

Libraries 6–15

• • • • • • • •

_fopen

#include <stdio.h>
FILE _fopen(const char *filename, const char *mode,
 FILE *iop);

Low level file open function. Opens a file with name filename and

access type mode in iop . _fopen is used by the functions fopen and

freopen, and in turn passes control to _open. Note that for text modes the

file functions will work on character basis, whereas for binary modes they

will work on memory-cell-wide objects (integers in most models). Files

opened in binary mode will read/write full DSP words, whereas files

opened in text mode will read/write the low 8 bits only.

Returns the descriptor of the file opened, or NULL if an error

occurred.

_insize

#include <conio.h>
long _insize(int fd);

Low level function for investigating the size of stdin.

Returns queue size for stdin.

_ioread

int _ioread(FILE *fp);

Low level input function. This function reads a character from a file.

_ioread is used by all input functions (scanf, getc, gets, etc.). The delivered

library is targeted at TASKING or Motorola FSS (File System Simulation).

The source file contains versions for TASKING and Motorola FSS, and an

'empty' function. This function must be customized to perform I/O on

different file systems. See the file _ioread.c in the lib\src directory for

the example implementations of this low level input function.

Returns the character read, or EOF if an error occurred.

Chapter 66–16
L
IB
R
A
R
IE
S

_iowrite

int _iowrite(int c, FILE *fp);

Low level output function. This function writes a character to a file.

_iowrite is used by all output functions (printf, putc, puts, etc.). The

delivered library is targeted at TASKING or Motorola FSS (File System

Simulation). The source file contains versions for TASKING and Motorola

FSS, and an 'empty' function. This function must be customized to perform

I/O on different file systems. See the file _iowrite.c in the lib\src
directory for the example implementations of this low level output

function.

Returns the character written, or EOF if an error occurred.

_lseek

#include <stdio.h>
long
_lseek(int fd, long offset, int origin);

Low level file positioning function. This function sets the file position of a

file. _lseek is used by all file positioning functions (fgetpos, fseek, fsetpos,

ftell, rewind). The delivered library is targeted at TASKING or Motorola FSS

(File System Simulation). The source file contains versions for TASKING

and Motorola FSS, and an 'empty' function. This function must be

customized to perform I/O on different file systems. See the file _lseek.c
in the lib\src directory for the example implementations of this low

level file function.

Returns the new file position, or EOF if an error occurred.

Libraries 6–17

• • • • • • • •

_open

#include <stdio.h>
int _open(const char * filename, int flags);

Low level file open function. This function opens a file with name

filename and access type flags. _open is called from the function _fopen

and from system initialization (for stdin, stdout and stderr). With FSS (File

System Simulation), this function opens a file on the host system. The

source file contains versions for TASKING and Motorola FSS, and an

'empty' function. This function can be adapted to work on different file

systems; the given stream should be properly opened.

Returns the descriptor of the file opened, or -1 if an error occurred.

_packsize

#include <string.h>
size_t _packsize(const char * p);

Returns the size of a string when it is packed.

_packstr

#include <string.h>
_packed char *_packstr(_packed char * p,
 const char * unp);

Pack string pointed to by unp in the buffer pointed to by p.

Returns a pointer to the packed string.

Chapter 66–18
L
IB
R
A
R
IE
S

_pstr_get

char _pstr_get(_packed char * p,
 size_t idx);

This function should be used to obtain one character from a packed string.

The packed string is supplied via the p argument. The index in the string is

supplied via the idx argument. This index is the count in bytes starting at

zero.

Returns the character at the given index in the packed string.

Example:

int printpstring(_packed char *p)
{
 int idx = 0;
 char c;
 while(c = _pstr_get(p, idx++))
 putchar(c);
 return(idx);
}

See also section section 3.18 Packed Strings.

_pstr_put

void _pstr_put(_packed char * p,
 size_t idx , char c);

This function updates one character (one byte) in a packed string pointed

to by p. The character is supplied in the argument c and the index in idx.

This index is the count in bytes starting at zero.

Returns nothing.

Libraries 6–19

• • • • • • • •

Example:

#include <stdio.h>

_packed char p[10];

void main(void)
{
 int idx;
 char c = ’a’;
 for (idx = 0; idx < 10; idx++, c++)
 _pstr_put(p, idx, c);
 // build string ”abcd ...”
 printf(”%S\n”, p); // print packed string
}

See also section section 3.18 Packed Strings.

_read

#include <stdio.h>
size_t
_read(int fd, char *base, size_t size);

Low level block input function. This function reads a block of data from

the given stream. It is used by all input functions. The delivered library is

targeted at TASKING or Motorola FSS (File System Simulation). The source

file contains versions for TASKING and Motorola FSS, and an 'empty'

function. This function must be customized to perform I/O on different file

systems. When not customized it will use _ioread().

Returns the number of characters read.

_tolower

#include <ctype.h>
int _tolower(int c);

Converts c to a lowercase character, does not check if c really is an

uppercase character. This is a non-ANSI function.

Returns the converted character.

Chapter 66–20
L
IB
R
A
R
IE
S

_toupper

#include <ctype.h>
int _toupper(int c);

Converts c to an uppercase character, does not check if c really is a

lowercase character. This is a non-ANSI function.

Returns the converted character.

_unpackstr

#include <string.h>
char *_unpackstr(char * unp ,
 const _packed char * p);

Unpack string pointed to by p in the buffer pointed to by unp.

Returns a pointer to unpacked string.

_unpstrlen

#include <string.h>
size_t _unpstrlen(const _packed char * p);

Returns the length in number of characters of the packed string

pointed to by p. This is the number of characters when the

string would be unpacked.

_write

#include <stdio.h>
size_t
_write(int fd, char *base, size_t size);

Low level block output function. This function writes a block of data to

the given stream. It is used by all output functions. The delivered library is

targeted at TASKING or Motorola FSS (File System Simulation). The source

file contains versions for TASKING and Motorola FSS, and an 'empty'

function. This function must be customized to perform I/O on different file

systems. When not customized it will use _iowrite().

Returns the number of characters correctly written.

Libraries 6–21

• • • • • • • •

abort

#include <stdlib.h>
void abort(void);

Terminates the program abnormally. It calls the function _exit , which is

defined in the start-up module.

Returns nothing.

abs

#include <stdlib.h>
int abs(int n);

Returns the absolute value of the signed int argument.

acos

#include <math.h>
double acos(double x);

Returns the arccosine cos-1(x) of x in the range [0, π],

x ∈ [-1, 1].

asctime

#include <time.h>
char *asctime(const struct tm *tp);

Converts the time in the structure *tp into a string of the form:

Mon Jan 21 16:15:14 1989\n\0

Returns the time in string form.

Chapter 66–22
L
IB
R
A
R
IE
S

asin

#include <math.h>
double asin(double x);

Returns the arcsine sin-1(x) of x in the range [-π/2, π/2],

x ∈ [-1, 1].

assert

#include <assert.h>
void assert(int expr);

When compiled with NDEBUG, this is an empty macro. When compiled

without NDEBUG defined, it checks if expr is true. If it is true, then a line

like:

”Assertion failed: expression , file filename , line
num”

is printed.

Returns nothing.

atan

#include <math.h>
double atan(double x);

Returns the arctangent tan-1(x) of x in the range [-π/2, π/2].

atan2

#include <math.h>
double atan2(double y, double x);

Returns the result of: tan-1(y/x) in the range [-π, π] where y/x are

coordinates. x and y cannot be both zero.

Libraries 6–23

• • • • • • • •

atexit

#include <stdlib.h>
int atexit(void (*fcn)(void));

Registers the function fcn to be called when the program terminates

normally.

Returns zero, if program terminates normally.

non-zero, if the registration cannot be made.

atof

#include <stdlib.h>
double atof(const char *s);

Converts the given string to a double value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the double value.

atoi

#include <stdlib.h>
int atoi(const char *s);

Converts the given string to an integer value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the integer value.

atol

#include <stdlib.h>
long atol(const char *s);

Converts the given string to a long value. White space is skipped,

conversion is terminated at the first unrecognized character.

Returns the long value.

Chapter 66–24
L
IB
R
A
R
IE
S

bsearch

#include <stdlib.h>
_reentrant void *bsearch(const void *key,
 const void *base, size_t n, size_t size, int (* cmp)
 (const void *, const void *));

This function searches in an array of n members, for the object pointed to

by ptr . The initial base of the array is given by base . The size of each

member is specified by size . The given array must be sorted in ascending

order, according to the results of the function pointed to by cmp.

Returns a pointer to the matching member in the array, or NULL

when not found.

calloc

#include <stdlib.h>
void *calloc(size_t nobj,
 size_t size);

The allocated space is filled with zeros. The maximum space that can be

allocated can be changed by customizing the heap size (see the section

Heap). By default no heap is allocated. When "calloc()" is used while no

heap is defined, the locator gives an error.

Returns a pointer to space in external memory for nobj items of

size bytes length.

NULL if there is not enough space left.

See also "free()".

ceil

#include <math.h>
double ceil(double x);

Returns the smallest integer not less than x , as a double.

Libraries 6–25

• • • • • • • •

clearerr

#include <stdio.h>
void clearerr(FILE *stream);

Clears the end of file and error indicators for stream.

Returns nothing.

clock

#include <time.h>
clock_t clock(void);

Determines the processor time used.

Returns number of seconds since the last reset, assuming a 66 MHz

cpu.

cos

#include <math.h>
double cos(double x);

Returns the cosine of x .

cosh

#include <math.h>
double cosh(double x);

Returns the hyperbolic cosine of x .

ctime

#include <time.h>
char *ctime(const time_t *tp);

Converts the calender time *tp into local time, in string form. This

function is the same as:

asctime(localtime(tp));

Chapter 66–26
L
IB
R
A
R
IE
S

Returns the local time in string form.

difftime

#include <time.h>
double
difftime(time_t time2, time_t time1);

Returns the result of time2 – time1 in seconds.

div

#include <stdlib.h>
div_t div(int num, int denom);

Both arguments are integers. The returned quotient and remainder are also

integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

exit

#include <stdlib.h>
void exit(int status);

Terminates the program normally. Acts as if 'main()' returns with status
as the return value.

Returns zero, on successful termination.

exp

#include <math.h>
double exp(double x);

Returns the result of the exponential function ex.

Libraries 6–27

• • • • • • • •

fabs

#include <math.h>
double fabs(double x);

Returns the absolute double value of x . |x|

fclose

#include <stdio.h>
int fclose(FILE *stream)

Flushes any unwritten data for stream, discards any unread buffered input,

frees any automatically allocated buffer, then closes the stream .

Returns zero if the stream is successfully closed, or EOF on error.

feof

#include <stdio.h>
int feof(FILE *stream);

Returns a non-zero value if the end-of-file indicator for stream is

set.

ferror

#include <stdio.h>
int ferror(FILE *stream);

Returns a non-zero value if the error indicator for stream is set.

fflush

#include <stdio.h>
int fflush(FILE *stream);

Writes any buffered but unwritten data, if stream is an output stream. If

stream is an input stream, the effect is undefined.

Returns zero if successful, or EOF on a write error.

Chapter 66–28
L
IB
R
A
R
IE
S

fgetc

#include <stdio.h>
int fgetc(FILE *stream);

Reads one character from the given stream .

Returns the read character, or EOF on error.

fgetpos

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *ptr);

Stores the current value of the file position indicator for the stream pointed

to by stream in the object pointed to by ptr . The type fpos_t is

suitable for recording such values.

Returns zero if successful,

a non-zero value on error.

fgets

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Reads at most the next n-1 characters from the given stream into the

array s until a newline is found.

Returns s , or NULL on EOF or error.

floor

#include <math.h>
double floor(double x);

Returns the largest integer not greater than x , as a double.

Libraries 6–29

• • • • • • • •

fmod

#include <math.h>
double fmod(double x, double y);

Returns the floating-point remainder of x/y , with the same sign as x .

If y is zero, the result is implementation-defined.

fopen

#include <stdio.h>
FILE *fopen(const char *filename,
 const char *mode);

Opens a file for a given mode.

Returns a stream. If the file cannot not be opened, NULL is returned.

You can specify the following values for mode:

 "r" read; open text file for reading

 "w" write; create text file for writing; if the file already exists its

contents is discarded

 "a" append; open existing text file or create new text file for

writing at end of file

 "r+" open text file for update; reading and writing

 "w+" create text file for update; previous contents if any is

discarded

 "a+" append; open or create text file for update, writes at end of

file

The update mode (with a '+') allows reading and writing of the same file.

In this mode the function fflush must be called between a read and a write

or vice versa. By including the letter 'b' after the initial letter, you can

indicate that the file is a binary file. By including a '8' the file will also be

opened in binary mode but the read/write uses only the lower 8 bits as in

text mode. E.g. "rb" means read binary, "w+b" means create binary file for

update. The filename is limited to FILENAME_MAX characters. At most

FOPEN_MAX files may be open at once.

Chapter 66–30
L
IB
R
A
R
IE
S

Files opened in binary mode will read/write full DSP words (except when

you used '8'), whereas files opened in text mode will read/write the low 8

bits only.

fprintf

#include <stdio.h>
int fprintf(FILE *stream,
 const char *format, ...);

Performs a formatted write to the given stream .

See also "printf()", "_write()" and section Printf and Scanf Formatting
Routines.

fputc

#include <stdio.h>
int fputc(int c, FILE *stream);

Puts one character onto the given stream .

See also "_write()".

Returns EOF on error.

fputs

#include <stdio.h>
int fputs(const char *s,
 FILE *stream);

Writes the string to a stream . The terminating NULL character is not

written.

See also "_write()".

Returns NULL if successful, or EOF on error.

Libraries 6–31

• • • • • • • •

fread

#include <stdio.h>
size_t fread(void *ptr,
 size_t size, size_t nobj, FILE *stream);

Reads nobj members of size bytes from the given stream into the array

pointed to by ptr .

See also "_read()".

Returns the number of successfully read objects.

free

#include <stdlib.h>
void free(void *p);

Deallocates the space pointed to by p. p Must point to space earlier

allocated by a call to "calloc()", "malloc()" or "realloc()". Otherwise the

behavior is undefined.

See also "calloc()", "malloc()" and "realloc()".

Returns nothing

freopen

#include <stdio.h>
FILE *
freopen(const char *filename,
 const char *mode, FILE *stream);

Opens a file for a given mode and associates the stream with it. This

function is normally used to change the files associated with stdin, stdout,

or stderr.

See also "fopen()".

Returns stream , or NULL on error.

Chapter 66–32
L
IB
R
A
R
IE
S

frexp

#include <math.h>
double frexp(double x, int *exp);

Splits x into a normalized fraction in the interval [1/2, 1>, which is

returned, and a power of 2, which is stored in *exp . If x is zero, both

parts of the result are zero. For example: frexp(4.0, &var) results in

0.5·2^3. The function returns 0.5, and 3 is stored in var.

See also "ldexp()".

Returns the normalized fraction.

fscanf

#include <stdio.h>
int fscanf(FILE *stream,
 const char *format, ...);

Performs a formatted read from the given stream .

See also "scanf()", "_read()" and section Printf and Scanf Formatting
Routines.

Returns the number of items converted successfully.

fseek

#include <stdio.h>
int
fseek(FILE *stream, long offset, int origin);

Sets the file position indicator for stream . A subsequent read or write will

access data beginning at the new position. For a binary file, the position is

set to offset characters from origin , which may be SEEK_SET for the

beginning of the file, SEEK_CUR for the current position in the file, or

SEEK_END for the end-of-file. For a text stream, offset must be zero, or

a value returned by ftell . In this case origin must be SEEK_SET.

Returns zero if successful,

a non-zero value on error.

Libraries 6–33

• • • • • • • •

fsetpos

#include <stdio.h>
int fsetpos(FILE *stream,
 const fpos_t *ptr);

Positions stream at the position recorded by fgetpos in *ptr .

Returns zero if successful,

a non-zero value on error.

ftell

#include <stdio.h>
long ftell(FILE *stream);

Returns the current file position for stream , or

-1L on error.

fwrite

#include <stdio.h>
size_t fwrite(const void *ptr,
 size_t size, size_t nobj,
 FILE *stream);

Writes nobj members of size bytes to the given stream from the array

pointed to by ptr .

Returns the number of successfully written objects.

getc

#include <stdio.h>
int getc(FILE *stream);

Reads one character out of the given stream . Currently #defined as

getchar(), because FILE I/O is not supported.

See also "_read()".

Returns the character read or EOF on error.

Chapter 66–34
L
IB
R
A
R
IE
S

getchar

#include <stdio.h>
int getchar(void);

Reads one character from standard input.

See also "_read()".

Returns the character read or EOF on error.

getenv

#include <stdlib.h>
char *getenv(const char *name);

Returns the environment string associated with name, or NULL if no

string exists.

gets

#include <stdio.h>
char *gets(char *s);

Reads all characters from standard input until a newline is found. The

newline is replaced by a NULL-character.

See also "_read()".

Returns a pointer to the read string or NULL on error.

gmtime

#include <time.h>

struct tm *gmtime(const time_t *tp);

Converts the calender time *tp into Coordinated Universal Time (UTC).

Returns a structure representing the UTC, or NULL if UTC is not

available.

Libraries 6–35

• • • • • • • •

isalnum

#include <ctype.h>
int isalnum(int c);

Returns a non-zero value when c is an alphabetic character or a

number ([A-Z][a-z][0-9]).

isalpha

#include <ctype.h>
int isalpha(int c);

Returns a non-zero value when c is an alphabetic character

([A-Z][a-z]).

isascii

#include <ctype.h>
int isascii(int c);

Returns a non-zero value when c is in the range of 0 and 127. This is

a non-ANSI function.

iscntrl

#include <ctype.h>
int iscntrl(int c);

Returns a non-zero value when c is a control character.

isdigit

#include <ctype.h>
int isdigit(int c);

Returns a non-zero value when c is a numeric character ([0-9]).

Chapter 66–36
L
IB
R
A
R
IE
S

isgraph

#include <ctype.h>
int isgraph(int c);

Returns a non-zero value when c is printable, but not a space.

islower

#include <ctype.h>
int islower(int c);

Returns a non-zero value when c is a lowercase character ([a-z]).

isprint

#include <ctype.h>
int isprint(int c);

Returns a non-zero value when c is printable, including spaces.

ispunct

#include <ctype.h>
int ispunct(int c);

Returns a non-zero value when c is a punctuation character (such as

'.', ',', '!', etc.).

isspace

#include <ctype.h>
int isspace(int c);

Returns a non-zero value when c is a space type character (space,

tab, vertical tab, formfeed, linefeed, carriage return).

Libraries 6–37

• • • • • • • •

isupper

#include <ctype.h>
int isupper(int c);

Returns a non-zero value when c is an uppercase character ([A-Z]).

isxdigit

#include <ctype.h>
int isxdigit(int c);

Returns a non-zero value when c is a hexadecimal digit

([0-9][A-F][a-f]).

labs

#include <stdlib.h>
long labs(long n);

Returns the absolute value of the signed long argument.

ldexp

#include <math.h>
double ldexp(double x, int n);

See also "frexp()".

Returns the result of: x· 2n.

ldiv

#include <stdlib.h>
ldiv_t ldiv(long num, long denom);

Both arguments are long integers. The returned quotient and remainder

are also long integers.

Returns a structure containing the quotient and remainder of num
divided by denom.

Chapter 66–38
L
IB
R
A
R
IE
S

localeconv

#include <locale.h>
struct lconv *localeconv(void);

Sets the components of an object with type struct lconv with values

appropriate for the formatting of numeric quantities according to the rules

of the current locale.

Returns a pointer to the filled-in object.

localtime

#include <time.h>
struct tm *localtime(const time_t *tp);

Converts the calender time *tp into local time.

Returns a structure representing the local time.

log

#include <math.h>
double log(double x);

Returns the natural logarithm ln(x), x>0 .

log10

#include <math.h>
double log10(double x);

Returns the base 10 logarithm log10(x), x>0 .

longjmp

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Restores the environment previously saved with a call to setjmp(). The

function calling the corresponding call to setjmp() may not be terminated

yet. The value of val may not be zero.

Libraries 6–39

• • • • • • • •

Because of the low-level nature of this routine it will not work correctly

with the -Cc switch (all functions compatible). With minor changes to

adapt it to the compatible calling convention this can be changed, but it

cannot run under both calling conventions. On the DSP563xx, this routine

will also fail when the stack extension is in use and the required stack

level is located in the extension area.

malloc

#include <stdlib.h>
void *malloc(size_t size);

The allocated space is not initialized. The maximum space that can be

allocated can be changed by customizing the heap size (see the section

Heap). By default no heap is allocated. When "malloc()" is used while no

heap is defined, the locator gives an error.

Returns a pointer to space in external memory of size bytes length.

NULL if there is not enough space left.

See also "free()".

mblen

#include <stdlib.h>
int mblen(const char *s, size_t n);

Determines the number of bytes comprising the multi-byte character

pointed to by s , if s is not a null pointer. Except that the shift state is not

affected. At most n characters will be examined, starting at the character

pointed to by s .

Returns the number of bytes, or 0 if s points to the null character, or

-1 if the bytes do not form a valid multi-byte character.

Chapter 66–40
L
IB
R
A
R
IE
S

mbstowcs

#include <stdlib.h>
size_t mbstowcs(wchar_t *pwcs,
 const char *s, size_t n);

Converts a sequence of multi-byte characters that begins in the initial shift

state from the array pointed to by s , into a sequence of corresponding

codes and stores these codes into the array pointed to by pwcs , stopping

after n codes are stored or a code with value zero is stored.

Returns the number of array elements modified (not including a

terminating zero code, if any), or (size_t) -1 if an invalid

multi-byte character is encountered.

mbtowc

#include <stdlib.h>
int mbtowc(wchar_t *pwc,
 const char *s, size_t n);

Determines the number of bytes that comprise the multi-byte character

pointed to by s . It then determines the code for value of type wchar_t
that corresponds to that multi-byte character. If the multi-byte character is

valid and pwc is not a null pointer, the mbtowc function stores the code in

the object pointed to by pwc. At most n characters will be examined,

starting at the character pointed to by s .

Returns the number of bytes, or 0 if s points to the null character, or

-1 if the bytes do not form a valid multi-byte character.

memchr

#include <string.h>
void *memchr(const void *cs, int c,
 size_t n);

Checks the first n bytes of cs on the occurrence of character c .

Returns NULL when not found, otherwise a pointer to the found

character is returned.

Libraries 6–41

• • • • • • • •

memcmp

#include <string.h>
int memcmp(const void *cs,
 const void *ct, size_t n);

Compares the first n bytes of cs with the contents of ct .

Returns a value < 0 if cs < ct ,

0 if cs = = ct ,

or a value > 0 if cs > ct .

memcpy

#include <string.h>
void *memcpy(void *s,
 const void *ct, size_t n);

Copies n characters from ct to s . No care is taken if the two objects

overlap.

Returns s

memmove

#include <string.h>
void *memmove(void *s,
 const void *ct, size_t n);

Copies n characters from ct to s . Overlapping objects will be

handled correctly.

Returns s

memset

#include <string.h>
void *memset(void *s, int c,
 size_t n);

Fills the first n bytes of s with character c .

Returns s

Chapter 66–42
L
IB
R
A
R
IE
S

mktime

#include <time.h>
time_t mktime(struct tm *tp);

Converts the local time in the structure *tp into calendar time.

Returns the calendar time, or -1 if it cannot be represented.

modf

#include <math.h>
double modf(double x, double *ip);

Splits x into integral and fractional parts, each with the same sign as x . It

stores the integral part in *ip.

Returns the fractional part.

offsetof

#include <stddef.h>
int offsetof(type, member);

Returns the offset for the given member in an object of type.

perror

#include <stdio.h>
void perror(const char *s);

Prints s and an implementation-defined error message corresponding to

the integer errno , as if by:

fprintf(stderr, "%s: %s\n", s, "error message");

The contents of the error message are the same as those returned by the

strerror function with the argument errno .

See also the "strerror()" function.

Returns nothing.

Libraries 6–43

• • • • • • • •

pow

#include <math.h>
double pow(double x, double y);

A domain error occurs if x=0 and y<=0 , or if x<0 and y is not an integer.

Returns the result of x raised to the power of y : xy.

printf

#include <stdio.h>
int printf(const char *format,...);

Performs a formatted write to the standard output stream.

See also "_write()" and section Printf and Scanf Formatting Routines.

Returns the number of characters written to the output stream.

The format string may contain plain text mixed with conversion

specifiers. Each conversion specifier should be preceded by a '%'

character. The conversion specifier should be build in order:

- Flags (in any order):

– specifies left adjustment of the converted argument.

+ a number is always preceded with a sign character.
+ has higher precedence as space.

space a negative number is preceded with a sign, positive numbers
with a space.

0 specifies padding to the field width with zeros (only for
numbers).

specifies an alternate output form. For o, the first digit will be
zero. For x or X, "0x" and "0X" will be prefixed to the
number. For e, E, f, g, G, the output always contains a
decimal point, trailing zeros are not removed.

Chapter 66–44
L
IB
R
A
R
IE
S

- A number specifying a minimum field width. The converted

argument is printed in a field with at least the length specified here.

If the converted argument has fewer characters than specified, it will

be padded at the left side (or at the right when the flag '–' was

specified) with spaces. Padding to numeric fields will be done with

zeros when the flag '0' is also specified (only when padding left).

Instead of a numeric value, also '* ' may be specified, the value is

then taken from the next argument, which is assumed to be of type

int.

- A period. This separates the minimum field width from the

precision.

- A number specifying the maximum length of a string to be printed.

Or the number of digits printed after the decimal point (only for

floating point conversions). Or the minimum number of digits to be

printed for an integer conversion. Instead of a numeric value, also

'* ' may be specified, the value is then taken from the next

argument, which is assumed to be of type int.

- A length modifier 'h', 'l' or 'L'. 'h' indicates that the argument is to

be treated as a short or unsigned short number. 'l' should be used if

the argument is a long integer. 'L' indicates that the argument is a

long double.

Flags, length specifier, period, precision and length modifier are optional,

the conversion character is not. The conversion character must be one of

the following, if a character following '%' is not in the list, the behavior is

undefined:

Character Printed as

d, i int, signed decimal

o int, unsigned octal

x, X int, unsigned hexadecimal in lowercase or uppercase
respectively

u int, unsigned decimal

c int, single character (converted to unsigned char)

s, S char * or _packed char * respectively, the characters from the
string or packed string respectively are printed until a NULL
character is found. When the given precision is met before,
printing will also stop

f double

e, E double; [–]m.dddddde±xx or [–]m.ddddddE±xx, where the
number of d’s is specified by the precision.

Libraries 6–45

• • • • • • • •

Printed asCharacter

g, G double; uses %e or %E if the exponent is less than –4 or
greater than or equal to the precision; otherwise uses %f.

n int *, the number of characters written so far is written into the
argument. This should be a pointer to an integer in default
memory. No value is printed.

p pointer (hexadecimal 32–bit value)

% No argument is converted, a ’%’ is printed.

Table 6-2: Printf conversion characters

To print fractional numbers, the value can be cast to a float and printed

as a float . For single-precision fractional numbers the printed value is

exact, for long _fract it is rounded. If you need more precision when

printing long _fract values you can print them in hexadecimal form:

#include <stdio.h>

_fract fvalue = 0.987654321;
long _fract lfvalue = (float)1.0/3;

void main(void)
{
 printf(”fvalue is: %8.6f\n”, (float) fvalue);
 printf(”lfvalue is: %8.6f\n”, (float) lfvalue);
 printf(”lfvalue in hex is: %12lx\n”, _lfract2long(lfvalue));
}

putc

#include <stdio.h>
int putc(int c, FILE *stream);

Puts one character onto the given stream .

See also "_write()".

Returns EOF on error.

Chapter 66–46
L
IB
R
A
R
IE
S

putchar

#include <stdio.h>
int putchar(int c);

Puts one character onto standard output.

See also "_write()".

Returns the character written or EOF on error.

puts

#include <stdio.h>
int puts(const char *s);

Writes the string to stdout, the string is terminated by a newline.

See also "_write()".

Returns NULL if successful, or EOF on error.

qsort

#include <stdlib.h>
_reentrant void qsort(
 const void *base, size_t n, size_t size,
 int (* cmp)(const void *, const void *));

This function sorts an array of n members. The initial base of the array is

given by base . The size of each member is specified by size . The given

array is sorted in ascending order, according to the results of the function

pointed to by cmp.

Libraries 6–47

• • • • • • • •

raise

#include <signal.h>
int raise(int sig);

Sends the signal sig to the program.

See also "signal()".

Returns zero if successful, or a non-zero value if unsuccessful.

rand

#include <stdlib.h>
int rand(void);

Returns a sequence of pseudo-random integers, in the range 0 to

RAND_MAX.

See also "srand()".

realloc

#include <stdlib.h>
void *realloc(void *p,
 size_t size);

Reallocates the space for the object pointed to by p. The contents of the

object will be the same as before calling realloc(). The maximum space

that can be allocated can be changed by customizing the heap size (see

the section Heap). By default no heap is allocated. When "realloc()" is

used while no heap is defined, the linker gives an error. See also

"malloc()".

In this implementation the returned address will be the same as the

original address if realloc() is successfully used to decrease the size of a

buffer. The minimal amount of extra memory is allocated when a buffer

size is increased.

Returns NULL and *p is not changed, if there is not enough space for

the new allocation. Otherwise a pointer to the newly

allocated space for the object is returned.

Chapter 66–48
L
IB
R
A
R
IE
S

See also "free()".

remove

#include <stdio.h>
int remove(const char *filename);

Removes the named file, so that a subsequent attempt to open it fails.

Returns zero if file is successfully removed, or

a non-zero value, if the attempt fails.

rename

#include <stdio.h>
int rename(const char *oldname,
 const char *newname);

Changes the name of the file.

Returns zero if file is successfully renamed, or

a non-zero value, if the attempt fails.

rewind

#include <stdio.h>
void rewind(FILE *stream);

Sets the file position indicator for the stream pointed to by stream to the

beginning of the file. This function is equivalent to:

(void) fseek(stream, 0L, SEEK_SET);

clearerr(stream);

Returns nothing.

Libraries 6–49

• • • • • • • •

scanf

#include <stdio.h>
int scanf(const char *format, ...);

Performs a formatted read from the standard input stream.

See also "_read()" and section Printf and Scanf Formatting Routines.

Returns the number of items converted successfully.

All arguments to this function should be pointers to variables (in default

memory) of the type which is specified in the format string.

The format string may contain :

- Blanks or tabs, which are skipped.

- Normal characters (not '%'), which should be matched exactly in the

input stream.

- Conversion specifications, starting with a '%' character.

Conversion specifications should be build as follows (in order) :

- A '*', meaning that no assignment is done for this field.

- A number specifying the maximum field width.

- The conversion characters d, i , n, o, u and x may be precede by 'h'

if the argument is a pointer to short rather than int , or by 'l'

(letter ell) if the argument is a pointer to long . The conversion

characters e, f , and g may be precede by 'l' if a pointer double
rather than float is in the argument list, and by 'L' if a pointer to a

long double .

- A conversion specifier. '*', maximum field width and length modifier

are optional, the conversion character is not. The conversion

character must be one of the following, if a character following '%'

is not in the list, the behavior is undefined.

Chapter 66–50
L
IB
R
A
R
IE
S

Length specifier and length modifier are optional, the conversion character

is not. The conversion character must be one of the following, if a

character following '%' is not in the list, the behavior is undefined.

Character Scanned as

d int, signed decimal.

i int, the integer may be given octal (i.e. a leading 0 is entered)
or hexadecimal (leading ”0x” or ”0X”), or just decimal.

o int, unsigned octal.

u int, unsigned decimal.

x int, unsigned hexadecimal in lowercase or uppercase.

c single character (converted to unsigned char).

s, S char * or _packed char * respectively, a string of non white
space characters. The argument should point to an array of
characters or packed characters respectively, large enough to
hold the string and a terminating NULL character.

f float

e, E float; [–]m.dddddde±xx or [–]m.ddddddE±xx, where the
number of d’s is specified by the precision.

g, G float; uses %e or %E if the exponent is less than –4 or greater
than or equal to the precision; otherwise uses %f.

n int *, the number of characters written so far is written into the
argument. No scanning is done.

p pointer; hexadecimal 32–bit value which must be entered
without 0x– prefix.

[...] Matches a string of input characters from the set between the
brackets. A NULL character is added to terminate the string.
Specifying []...] includes the ’]’ character in the set of scanning
characters.

[^...] Matches a string of input characters not in the set between the
brackets. A NULL character is added to terminate the string.
Specifying [^]...] includes the ’]’ character in the set.

% Literal ’%’, no assignment is done.

Table 6-3: Scanf conversion characters

Libraries 6–51

• • • • • • • •

setbuf

#include <stdio.h>
void
setbuf(FILE *stream, char *buf);

Buffering is turned off for the stream , if buf is NULL.

Otherwise, setbuf is equivalent to:

(void) setvbuf(stream, buf, _IOFBF, BUFSIZ)

See also "setvbuf(�)".

setjmp

#include <setjmp.h>
int setjmp(jmp_buf env);

Saves the current environment for a subsequent call to longjmp.

Returns the value 0 after a direct call to setjmp(). Calling the function

"longjmp()" using the saved env will restore the current

environment and jump to this place with a non-zero return

value.

Because of the low-level nature of this routine it will not work correctly

with the -Cc switch (all functions compatible). With minor changes to

adapt it to the compatible calling convention this can be changed, but it

cannot run under both calling conventions. On the DSP563xx, this routine

will also fail when the stack extension is in use and the required stack

level is located in the extension area.

See also "longjmp()".

Chapter 66–52
L
IB
R
A
R
IE
S

setlocale

#include <locale.h>
char *setlocale(int category,
 const char *locale);

Selects the appropriate portion of the program's locale as specified by the

category and locale arguments.

Returns the string associated with the specified category for the

new locale if the selection can be honored.

null pointer if the selection cannot be honored.

setvbuf

#include <stdio.h>
int
setvbuf(FILE *stream, char *buf,
 int mode, size_t size);

Controls buffering for the stream ; this function must be called before

reading or writing. mode can have the following values:

_IOFBF causes full buffering

_IOLBF causes line buffering of text files

_IONBF causes no buffering

If buf is not NULL, it will be used as a buffer; otherwise a buffer will be

allocated. size determines the buffer size.

Returns zero if successful

a non-zero value for an error.

See also "setbuf(�)".

Libraries 6–53

• • • • • • • •

signal

#include <signal.h>
void (*signal(int sig,
 void (*handler)(int)))(int);

Determines how subsequent signals will be handled. If handler is

SIG_DFL, the default behavior is used; if handler is SIG_IGN, the signal

is ignored; otherwise, the function pointed to by handler will be called,

with the argument of the type of signal. Valid signals are:

SIGABRT abnormal termination, e.g. from abort
SIGFPE arithmetic error, e.g. zero divide or overflow

SIGILLillegal function image, e.g. illegal instruction

SIGINT interactive attention, e.g. interrupt

SIGSEGV illegal storage access, e.g. access outside

memory limits

SIGTERM termination request sent to this program

When a signal sig subsequently occurs, the signal is restored to its default

behavior; then the signal-handler function is called, as if by

(*handler)(sig) . If the handler returns, the execution will resume

where it was when the signal occurred.

Returns the previous value of handler for the specific signal, or

SIG_ERR if an error occurs.

sin

#include <math.h>
double sin(double x);

Returns the sine of x .

sinh

#include <math.h>
double sinh(double x);

Returns the hyperbolic sine of x .

Chapter 66–54
L
IB
R
A
R
IE
S

sprintf

#include <stdio.h>
int sprintf(char *s,
 const char *format, ...);

Performs a formatted write to a string.

See also "printf()" and section Printf and Scanf Formatting Routines.

sqrt

#include <math.h>
double sqrt(double x);

Returns the square root of x . √x , where x ≥ 0.

srand

#include <stdlib.h>
void srand(unsigned int seed);

This function uses seed as the start of a new sequence of pseudo-random

numbers to be returned by subsequent calls to srand(). When srand is

called with the same seed value, the sequence of pseudo-random

numbers generated by rand() will be repeated.

Returns pseudo random numbers.

See also "rand()".

sscanf

#include <stdio.h>
int sscanf(char *s,
 const char *format, ...);

Performs a formatted read from a string.

See also "scanf()" and section Printf and Scanf Formatting Routines.

Libraries 6–55

• • • • • • • •

strcat

#include <string.h>
char *strcat(char *s, const char *ct);

Concatenates string ct to string s , including the trailing NULL character.

Returns s

strchr

#include <string.h>
char *strchr(const char *cs, int c);

Returns a pointer to the first occurrence of character c in the string

cs . If not found, NULL is returned.

strcmp

#include <string.h>
int strcmp(const char *cs,
 const char *ct);

Compares string cs to string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

strcoll

#include <string.h>
int strcoll(const char *cs,
 const char *ct);

Compares string cs to string ct . The comparison is based on strings

interpreted as appropriate to the program's locale.

Returns <0 if cs < ct,
0 if cs = = ct ,

>0 if cs > ct .

Chapter 66–56
L
IB
R
A
R
IE
S

strcpy

#include <string.h>
char *strcpy(char *s,
 const char *ct);

Copies string ct into the string s , including the trailing NULL character.

Returns s

strcspn

#include <string.h>
size_t strcspn(const char *cs,
 const char *ct);

Returns the length of the prefix in string cs , consisting of characters

not in the string ct .

strerror

#include <string.h>
char *strerror(size_t n);

Returns pointer to implementation-defined string corresponding to

error n.

Libraries 6–57

• • • • • • • •

strftime

#include <time.h>
size_t
strftime(char *s, size_t smax,
 const char *fmt,
 const struct tm *tp);

Formats date and time information from the structure *tp into s according

to the specified format fmt . fmt is analogous to a printf format. Each

%c is replaced as described below:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation

%d day of the month (01-31)

%H hour, 24-hour clock (00-23)

%I hour, 12-hour clock (01-12)

%j day of the year (001-366)

%m month (01-12)

%M minute (00-59)

%p local equivalent of AM or PM

%S second (00-59)

%U week number of the year, Sunday as first day of the

week (00-53)

%w weekday (0-6, Sunday is 0)

%W week number of the year, Monday as first day of the

week (00-53)

%x local date representation

%X local time representation

%y year without century (00-99)

%Y year with century

%Z time zone name, if any

%% %

Ordinary characters (including the terminating `\0`) are copied into s . No

more than smax characters are placed into s .

Returns the number of characters ('\0' not included), or

zero if more than smax characters where produced.

Chapter 66–58
L
IB
R
A
R
IE
S

strlen

#include <string.h>
size_t strlen(const char *cs);

Returns the length of the string in cs , not counting the NULL

character.

strncat

#include <string.h>
char *strncat(char *s,
 const char *ct, size_t n);

Concatenates string ct to string s , at most n characters are copied. Add a

trailing NULL character.

Returns s

strncmp

#include <string.h>
int strncmp(const char *cs,
 const char *ct, size_t n);

Compares at most n bytes of string cs to string ct .

Returns <0 if cs < ct,
0 if cs == ct ,

>0 if cs > ct .

strncpy

#include <string.h>
char *strncpy(char *s,
 const char *ct, size_t n);

Copies string ct onto the string s , at most n characters are copied. Add a

trailing NULL character if the string is smaller than n characters.

Returns s

Libraries 6–59

• • • • • • • •

strpbrk

#include <string.h>
char *strpbrk(const char *cs,
 const char *ct);

Returns a pointer to the first occurrence in cs of any character out of

string ct . If none are found, NULL is returned.

strrchr

#include <string.h>
char *strrchr(const char *cs,
 int c);

Returns a pointer to the last occurrence of c in the string cs . If not

found, NULL is returned.

strspn

#include <string.h>
size_t strspn(const char *cs,
 const char *ct);

Returns the length of the prefix in string cs , consisting of characters

in the string ct .

strstr

#include <string.h>
char *strstr(const char *cs,
 const char *ct);

Returns a pointer to the first occurrence of string ct in the string cs .

Returns NULL if not found.

Chapter 66–60
L
IB
R
A
R
IE
S

strtod

#include <stdlib.h>
double strtod(const char *s,
 char **endp);

Converts the initial portion of the string pointed to by s to a double value.

Initial white spaces are skipped. When endp is not a NULL pointer, after

this function is called, *endp will point to the first character not used by

the conversion.

Returns the read value.

strtok

#include <string.h>
char *strtok(char *s,
 const char *ct);

Search the string s for tokens delimited by characters from string ct . It

terminates the token with a NULL character.

Returns a pointer to the token. A subsequent call with

s == NULL will return the next token in the string.

strtol

#include <stdlib.h>
long strtol(const char *s,
 char **endp, int base);

Converts the initial portion of the string pointed to by s to a long integer.

Initial white spaces are skipped. Then a value is read using the given

base . When base is zero, the base is taken as defined for integer

constants. I.e. numbers starting with an '0' are taken octal, numbers

starting with '0x' or '0X' are taken hexadecimal. Other numbers are taken

decimal. When endp is not a NULL pointer, after this function is called,

*endp will point to the first character not used by the conversion.

Returns the read value.

Libraries 6–61

• • • • • • • •

strtoul

#include <stdlib.h>
unsigned long strtoul(
 const char *s, char **endp, int base);

Converts the initial portion of the string pointed to by s to an unsigned

long integer. Initial white spaces are skipped. Then a value is read using

the given base . When base is zero, the base is taken as defined for

integer constants. I.e. numbers starting with an '0' are taken octal, numbers

starting with '0x' or '0X' are taken hexadecimal. Other numbers are taken

decimal. When endp is not a NULL pointer, after this function is called,

*endp will point to the first character not used by the conversion.

Returns the read value.

strxfrm

#include <string.h>
size_t
strncmp(char *ct, const char *cs, size_t n);

Transforms the string pointed to by cs and places the resulting string into

the array pointed to by ct . No more than n characters are placed into the

resulting string pointed to by ct , including the terminating null character.

Returns the length of the transformed string.

system

#include <stdlib.h>
int system(const char *s);

Passes the string s to the environment for execution.

Returns a non-zero value if there is a command processor, if s is

NULL; or an implementation-dependent value, if s is not

NULL.

Chapter 66–62
L
IB
R
A
R
IE
S

tan

#include <math.h>
double tan(double x);

Returns the tangent of x .

tanh

#include <math.h>
double tanh(double x);

Returns the hyperbolic tangent of x .

time

#include <time.h>
time_t time(time_t *tp);

The return value is also assigned to *tp , if tp is not NULL.

Returns the current calendar time, or -1 if the time is not available.

tmpfile

#include <stdio.h>
FILE *tmpfile(void);

Creates a temporary file of the mode "wb+" that will be automatically

removed when closed or when the program terminates normally.

Returns a stream if successful, or NULL if the file could not be

created.

Libraries 6–63

• • • • • • • •

tmpnam

#include <stdio.h>
char *tmpnam(char s[L_tmpnam]);

Creates a temporary name (not a file). Each time tmpnam is called a

different name is created.

tmpnam(NULL) creates a string that is not the name of an existing file,

and returns a pointer to an internal static array. tmpnam(s) creates a

string and stores it in s and also returns it as the function value. s must

have room for at least L_tmpnam characters. At most TMP_MAX different

names are guaranteed during execution of the program.

Returns a pointer to the temporary name, as described above.

toascii

#include <ctype.h>
int toascii(int c);

Converts c to an ascii value (strip highest bit). This is a non-ANSI

function.

Returns the converted value.

tolower

#include <ctype.h>
int tolower(int c);

Returns c converted to a lowercase character if it is an uppercase

character, otherwise c is returned.

toupper

#include <ctype.h>
int toupper(int c);

Returns c converted to an uppercase character if it is a lowercase

character, otherwise c is returned.

Chapter 66–64
L
IB
R
A
R
IE
S

ungetc

#include <stdio.h>
int ungetc(int c, FILE *fin);

Pushes at the most one character back onto the input buffer.

Returns EOF on error.

va_arg

#include <stdarg.h>
va_arg(va_list ap, type);

Returns the value of the next argument in the variable argument list.

Its return type has the type of the given argument type . A

next call to this macro will return the value of the next

argument.

va_end

#include <stdarg.h>
va_end(va_list ap);

This macro must be called after the arguments have been processed. It

should be called before the function using the macro 'va_start' is

terminated (ANSI specification).

va_start

#include <stdarg.h>
va_start(va_list ap, lastarg);

This macro initializes ap . After this call, each call to va_arg() will return

the value of the next argument. In our implementation, va_list cannot

contain any bit type variables. Also the given argument lastarg must be

the last non-bit type argument in the list.

Libraries 6–65

• • • • • • • •

vfprintf

#include <stdio.h>
int vfprintf(FILE *stream,
 const char *format, va_list arg);

Is equivalent to vprintf, but writes to the given stream.

See also "vprintf()", "_write()" and section Printf and Scanf Formatting
Routines.

vprintf

#include <stdio.h>
int vprintf(const char *format,
 va_list arg);

Does a formatted write to standard output. Instead of a variable argument

list as for printf(), this function expects a pointer to the list.

See also "printf()", "_write()" and section Printf and Scanf Formatting
Routines.

vsprintf

#include <stdio.h>
int vsprintf(char *s,
 const char *format, va_list arg);

Does a formatted write a string. Instead of a variable argument list as for

printf(), this function expects a pointer to the list.

See also "printf()", "_write()" and section Printf and Scanf Formatting
Routines.

Chapter 66–66
L
IB
R
A
R
IE
S

wcstombs

#include <stdlib.h>
size_t wcstombs(char *s,
 const wchar_t *pwcs, size_t n);

Converts a sequence of codes that correspond to multi-byte characters

from the array pointed to by pwcs , into a sequence of multi-byte

characters that begins in the initial shift state and stores these multi-byte

characters into the array pointed to by s , stopping if a multi-byte character

would exceed the limit of n total bytes or if a null character is stored.

Returns the number of bytes modified (not including a terminating

null character, if any), or (size_t) -1 if a code is

encountered that does not correspond to a valid multi-byte

character.

wctomb

#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Determines the number of bytes needed to represent the multi-byte

corresponding to the code whose value is wchar (including any change in

the shift state). It stores the multi-byte character representation in the array

pointed to by s (if s is not a null pointer). At most MB_CUR_MAX

characters are stored. If the value of wchar is zero, the wctomb function is

left in the initial shift state.

Returns the number of bytes, or -1 if the value of wchar does not

correspond to a valid multi-byte character.

Libraries 6–67

• • • • • • • •

6.6.3 PRINTF AND SCANF FORMATTING ROUTINES

The functions printf() , fprintf() , vfprintf() , vsprintf() , ... call

one single function that deals with the format string and arguments. This

function is _doprint() . This is a rather big function because the number

of possibilities of the format specifiers in a format string are large. If you

do not use all the possibilities of the format specifiers a smaller

_doprint() function can be used. Three different versions exist:

LARGE the full formatter, no restrictions

MEDIUM floating point printing is not supported

SMALL as MEDIUM, but also the precision

specifier '.' cannot be used

The same applies to all scanf type functions, which all call the function

_doscan() .

The formatters included in the libraries are LARGE. You can select different

formatters by linking separate objects of _doscan() and _doprint()
with your application. The following objects are included:

For the DSP563xx:

lib/563xx/libc16
_doprnts.obj _doprint() , 16-bit model, SMALL formatter

_doprntm.obj _doprint() , 16-bit model, MEDIUM formatter

_doscans.obj _doscan() , 16-bit model, SMALL formatter

lib/563xx/libc16 24

_doprnts.obj _doprint() , 16/24-bit model, SMALL formatter

_doprntm.obj _doprint() , 16/24-bit model, MEDIUM formatter

_doscans.obj _doscan() , 16/24-bit model, SMALL formatter

lib/563xx/libc24
_doprnts.obj _doprint() , 24-bit model, SMALL formatter

_doprntm.obj _doprint() , 24-bit model, MEDIUM formatter

_doscans.obj _doscan() , 24-bit model, SMALL formatter

Chapter 66–68
L
IB
R
A
R
IE
S

For the DSP566xx:

lib/566xx/libc6

_doprnts.obj _doprint() , SMALL formatter

_doprntm.obj _doprint() , MEDIUM formatter

_doscans.obj _doscan() , SMALL formatter

For the DSP5600x:

lib/5600x/libcm
_doprnts.obj _doprint() , mixed model, SMALL formatter

_doprntm.obj _doprint() , mixed model, MEDIUM formatter

_doscans.obj _doscan() , mixed model, SMALL formatter

lib/5600x/libcr
_doprnts.obj _doprint() , reentrant model, SMALL formatter

_doprntm.obj _doprint() , reentrant model, MEDIUM formatter

_doscans.obj _doscan() , reentrant model, SMALL formatter

lib/5600x/libcs
_doprnts.obj _doprint() , static model, SMALL formatter

_doprntm.obj _doprint() , static model, MEDIUM formatter

_doscans.obj _doscan() , static model, SMALL formatter

Example (PC):

cc563 –M24 hello.obj c:\c563\lib\563xx\libc24_doprntm.obj

6.7 RUN-TIME LIBRARY

Some basic operations take up a lot of memory if generated as inline code.

For example, code to perform a 48-bit integer division. The compiler can

generate code with calls to library functions for these situations. This

depends on the optimization level (optimize for size or speed). These

routines are stored in the run-time library. The run-time library also

contains some default versions of routines required by the C library (e.g.,

exit).

Libraries 6–69

• • • • • • • •

Because c563 generates assembly code (and not object code) it prepends

an 'F' for the names of (public) C variables to distinguish these symbols

from internal symbols. So if you use a function name starting with an

underscore, the assembly label for this function will start with 'F_'.

Run-time library functions have no prepended 'F', they have a prepended

'R'.

The routines from the run-time library are stored in special sections

(.rttext , .petext and .zerotext) to allow precise locating of these

routines.

6.8 FLOATING POINT LIBRARY

The DSP56xxx does not have a hardware floating point unit, so floating

point calculations must be emulated in software. The floating-point

routines are stored in the floating-point library. For a detailed description

of the floating-point format, see chapter 7. The floating point library is

reentrant and independent of the memory model, except for the data

precision (16 or 24-bit). All routines from the floating-point library are

stored in a special section, .fptext , to allow precise locating of these

routines. Floating-point library functions have no prepended 'F', their

names start with 'Rfp'.

Chapter 66–70
L
IB
R
A
R
IE
S

7

RUN–TIME
ENVIRONMENT

C
H

A
P

T
E

R

Chapter 77–2
R
U
N
-
T
IM
E

7

C
H

A
P

T
E

R

Run–time Environment 7–3

• • • • • • • •

7.1 STARTUP CODE

When linking your C modules with the C library, you can automatically

link the object module containing the C startup code. The name of this

module depends on the selected execution environment (target selection

in EDE, or command line option -T of the control program). A large set of

predefined target modules is supplied already. See below for information

how to create support files for a user-designed target board. All of these

modules define a list of values used to initialize the hardware correctly,

and include the file cstart.inc which contains the actual code.

Because these modules specifiy the run-time environment of your

DSP56xxx C application, you might want to edit them to match your

needs. Therefore, these modules and the file cstart.inc are delivered in

assembly source in the src subdirectory of the lib directory. Typically,

you will copy the startup code file start.asm (and rename it to, for

example, mystart.asm) and copy the file cstart.inc to your own

directory and edit it. The file cstart.inc contains macro preprocessor

symbols to tune the code. Include this file in your own startup code. You

can check the predefined target startup code files target_name.asm to see

what information you can put in your own startup code file.

To use the changed file, you must add it to the file list (EDE) or makefile

(command line). You must also select "User supplied, no library startup

code" (EDE) or -T on the command line to avoid linking with a library

startup file. If you would link your own startup file with a library startup

file, you would get conflicts on all symbols in the startup files.

The invocation (using the control program) is:

cc56 –c mystart.asm –DNODSTACK

for the static model (DSP5600x only), or

cc563 –c mystart.asm

for all other models.

Chapter 77–4
R
U
N
-
T
IM
E

In the C startup code an absolute code section is defined for setting up the

power on vector and the DSP56xxx C environment. The power-on vector

contains a jump to the F_START label. This global label must not be

removed, since it is referred to by the C compiler. It is also used as the

default start address of the application (see the start keyword in the

locator description language DELFEE). The code space for all non-used

interrupt vectors may be occupied by small user code sections. When this

is not desirable, you should include default versions of the interrupt

vectors by including the startup code in your project file list and removing

the comments in the cstart.inc file. The default interrupt vectors will

jump to the abort() function when they are inadvertently called.

The stack is defined in the locator description file (.dsc in directory etc)

with the keyword stack , which results in a section called stack . Except

in the static model of the DSP5600x, a user stack is always required.

See the section Stack for detailed information on the stack.

The stack pointer can be switched between r6 and r7. To initialize the

correct address register with the base of the stack the linker retrieves a

module from the library that defines the symbol R_STKINIT that contains

the opcode for the register move. This avoids the need for two versions of

every startup definition file.

The heap is defined in the description file with the keyword heap , which

results in as section called heap .

See the section Heap for detailed information on heap management.

An important task of the startup code is to configure the interface of the

DSP to external memory. The following registers are used for this:

5600x: BCR
563xx: SR OMR BCR AAR0 AAR1 AAR2 AAR3 DCR
566xx: SR OMR BCR

A download of a program that uses external memory can only take place

after the external memory interface has been initialized correctly.

CrossView Pro uses the values of symbols with coded names

R_xxxxVALUE (e.g., R_AAR0VALUE) for the above registers to do this. The

startup code assembly file defines and exports these symbols; the code in

the cstart.inc file sets them during program start, so the code can also

run without CrossView Pro (e.g., from an EPROM).

Run–time Environment 7–5

• • • • • • • •

The startup code also takes care of initialized C variables, residing in the

different RAM areas. Each memory type has a unique name for both the

ROM and the RAM section. The startup code copies the initial values of

initialized C variables from ROM to RAM, using these special sections and

some run-time library functions. When initialization of C variables is not

needed, you can translate the startup file with -DNOCOPY. See also the

table keyword in the locator description language DELFEE.

When everything described above has been executed, your C application

is called, using the global label Fmain , which has been generated by c563

for the C function main() .

When the C application 'returns', which is not likely to happen in an

embedded environment, the program ends with a DEBUG instruction,

using the assembly label F_exit . When using a debugger, it can be useful

to set a breakpoint on this label, indicating that the program has reached

the end, or that the library function exit() has been called.

The following macros can be used to control the functionality of

cstart.inc :

Macro Description

NODSTACK Do NOT initialize the dynamic stack pointer
(only in static model for the DSP5600x).

NOESTACK Do NOT initialize stack extension hardware
(DSP563xx only).

NOCACHE Do NOT enable cache (DSP563xx only).

NOCOPY Do NOT produce code to clear BSS sections and
initialize DATA sections.

NOARGV Do NOT produce code to provide a dummy argument
vector to function main().

PLLVALUE=val Set clock phase locked loop register to val. If not
defined, the PLL is not initialized.

BCRVALUE=val Set external memory waitstates to val. If not defined,
zero wait states is selected for all memory
(not on DSP563xx).

LOW_DYNAMIC Select 16–bit arithmetic mode (DSP563xx only).

NARROW_BUS Select 16–bit address bus mode (DSP563xx only).

USP=R6 Select register R6 for user stack pointer.

Table 7-1: Macros used in cstart.inc

Chapter 77–6
R
U
N
-
T
IM
E

The cstart.inc file declares some labels external, that will be resolved

by the linker. The label 'start ' will link the object from the file

start .asm that contains a jump to the label F_START and will generate

the start vector in the interrupt vector table. Likewise, some labels named

irqxx, with xx in the range 1 to 63 are declared external or can be

declared external and will create default interrupt vectors in the interrupt

vector table. These default vectors will always jump to abort(), because

they indicate that either a system error has occurred (e.g. hardware stack

overflow), or that an unexpected interrupt has occurred. By default most

interrupt vectors are left uninstalled in order to have as much internal

program memory available as possible. If an interrupt is created in the C

program this will overrule the default vector by defining the label irqxx; if

you create interrupt handlers in assembly you can suppress the default

vector in the same way. The symbols null_x and null_y are declared

external in order to link a one-word absolute section at X:$0 and another

one at Y:$0. This is done to allow safe checking of NULL pointers: by

occupying these addresses we know for sure that if a pointer returns NULL

it indicates an error condition. The _at() modifier can still be used to

force variables at address 0.

7.2 REGISTER USAGE

The compiler will use all available registers that fit for storing variables and

intermediates. Registers used are A, B, X0, Y0, X1, Y1, R0-R7, N0-N7. The

modifier registers M0-M7 are only used in conjunction with the associated

R0-R7 register to act as a circular pointer. When not in use as a circular

pointer they must remain in the reset state (-1, linear addressing). Of

course registers PC, SR and CCR are used implicitly, as is the hardware

stack.

Run–time Environment 7–7

• • • • • • • •

7.3 CALLING CONVENTIONS

The compiler will try to use the available registers as efficiently as

possible. The compiler uses a flexible register allocation scheme, which

implies that any change to the C code may result in a different register

usage.

For passing parameters to functions the compiler uses the following

scheme:

- Arithmetic-type arguments: Float arguments are passed via AB, X

and Y; long arguments are passed via A, B, X and Y; integers are

passed via A, B, X0, Y0, X1 and Y1. The order of the arguments

from left to right is A, B, X0, Y0, X1, Y1. Arguments requiring the

whole X or Y register (e.g., a long) are allocated in the A, B, X and

Y register before other arguments which only need X0, X1, Y0 or

Y1.

- Structure-type arguments: Single-word structures are passed and

returned in the same registers as integers, double-word structures in

the same registers as floats. Longer structures are passed on the

stack. The processor status flags are undefined upon return.

- Pointer-type arguments: Pointers are passed in registers R0, R4, R1,

R5, R2, (R6), R3, (R7) (and the corresponding modifier registers in

case of circular pointers). Except for the static model, R6 or R7 is

not used because it is reserved as user stack pointer.

- Variable argument lists are passed via the stack. All other arguments,

except the argument that immediately preceeds the variable

argument list, are stored using default register parameter passing.

extern int f(int,...);
extern int g(int,int,...);
extern int h(int,int,int,...);

int a0;
int a1;
int a2;

void foo(void)
{
 f(a0, ”a0 on stack as is this string”);
 g(a0, a1, ”a0 via accumulator – remainder on stack”);
 h(a0, a1, a2, ”a0 via A, a1 via B – remainder on stack”);
}

- When there are too many arguments to be passed in the registers

the remaining arguments are passed on the stack. If the _asmfunc
qualifier is used, the compiler will issue an error message.

Chapter 77–8
R
U
N
-
T
IM
E

For C function return types, the following registers are used:

Return type Register Description

char A accumulator

short/int A accumulator

long A accumulator

_fract A accumulator

long _fract A accumulator

float AB floating point stack (see section 7.8 for
floating point information)

pointer R0 scratch address registers

spointer R0 address registers

circular pointer R0/M0 address registers

Table 7-2: Function return types

The address register R7 (or R6) is used as user stack pointer (not for the

DSP5600x in the static memory model). R6 is used if the corresponding

compatibility switch (-Cr) is selected.

During the execution of the called function ('callee') all registers can be

used. The caller saves all registers that must be preserved over the

function call ('save-by-caller' calling convention) with the exception of the

modifier registers. Upon return, the callee must reset all modifier registers

to linear addressing (except M0 if it is used to return a circular pointer). Of

course the stacks must remain balanced between call and return.

In the compatible calling convention, entered with either the keyword

_compatible or with the global option -Cc, the parameter passing

changes to the convention used by the Motorola C compiler. The first two

parameters are passed in registers A and B and the return value is always

in register A. Upon return of a value the processor status flags are set by

the callee according to the return value. The registers Y0, Y1, R2, N2, R3,

N3, R7 and N7 are preserved by the callee. To be completely compatible

with the Motorola compiler the stack pointer must be chosen to be R6

(-Cr) and the right default memory space must be selected.

Run–time Environment 7–9

• • • • • • • •

The compiler uses a convention to pass parameters in registers and on the

stack, to save certain registers over a function call and to return values in

certain registers or on the stack. In the _compatible calling convention

several registers must be preserved in a function. The set of registers is

different for the members of the DSP56xxx family, as shown in the table

below.

Family
Member

Parameter
Registers

Registers to be
preserved by callee

Return Register

DSP5600x None (all on stack)

When returning a
struct/union, A
points to the address
to store it.

B1, B0, X1, X0, Y1,
Y0, R0..R5, R7

(R7 is replaced by
R6 if R7 is used for
user stack pointer)

A, except when
returning a
struct/union; in
that case A points
to the address
where it is stored

DSP563xx
DSP566xx

A,B (rest on stack)

When returning a
struct/union, R7
points to the address
to store it.

Y1, Y0, R2/N2,
R3/N3, R7/N7

(R7/N7 are replaced
by R6/N6 if R7 is
used for user stack
pointer)

A, except when
returning a
struct/union; in
that case R7
points to the
address where it is
stored

Table 7-3: Compatible calling convention

In the save-by-callee calling convention, selected with the

_callee_save qualifier, all registers are preserved by the callee. The

compiler tries to limit the number of registers used in the function when

this has been selected. The parameter passing convention is the same as

the default. Although this can have advantages in some cases, the default

calling convention in combination with the flexible register allocation

guarantees the best performance.

An example of the _callee_save qualifier is listed below.

#ifndef _CALLEE_SAVE
 #define _who_saves
#else
 #define _who_saves _callee_save
#endif

int i;

_who_saves void __inc(void)
{
 i++;
}

Chapter 77–10
R
U
N
-
T
IM
E

Default it will compile with the standard save-by-caller calling convention

and the assembly will look as follows:

F__inc: move x:Fi,r3
 move (r3)+
 move r3,x:Fi
 rts

But when you compile with the define _CALLEE_SAVE, the callee itself

becomes responsible for preserving R3 and the assembly will change to:

F__inc: move (r7)+
 move r3,x:(r7)
 move x:Fi,r3
 move (r3)+
 move r3,x:Fi
 move x:(r7)–,r3
 rts

7.4 SECTION USAGE

c563 uses a number of sections. For a section the compiler generates an

ORG directive in the assembler output file. The following list gives an

overview of sections that may be generated by c563:

Section Name Possible Attributes Comment

.p[n][i|e]text near, internal, external code

.fptext code from the floating point library

.l[n][i|e]const near, internal, external constant initialized L data, not
copied from copy table

.p[n][i|e]const near, internal, external constant initialized P data, not
copied from copy table

.x[n][i|e]const near, internal, external constant initialized X data, not
copied from copy table

.y[n][i|e]const near, internal, external constant initialized Y data, not
copied from copy table

.lovl overlayed area in L memory for
non–reentrant (static) functions

.povl overlayed area in P memory for
non–reentrant (static) functions

Run–time Environment 7–11

• • • • • • • •

CommentPossible AttributesSection Name

.xovl overlayed area in X memory for
non–reentrant (static) functions

.yovl overlayed area in Y memory for
non–reentrant (static) functions

.l[n][i|e]data near, internal, external initialized L data, copied from copy
table in P

.p[n][i|e]data near, internal, external initialized P data, copied from copy
table in P

.x[n][i|e]data near, internal, external initialized X data, copied from copy
table in P

.y[n][i|e]data near, internal, external initialized Y data, copied from copy
table in P

.l[n][i|e]bss near, internal, external cleared L data

.p[n][i|e]bss near, internal, external cleared P data

.x[n][i|e]bss near, internal, external cleared X data

.y[n][i|e]bss near, internal, external cleared Y data

Table 7-4: Section names

The [n][i|e] part of the section names has the following meaning:

n near

i internal

e external

ni near, internal

ne near, external

Chapter 77–12
R
U
N
-
T
IM
E

7.5 COMPILER HARDWARE ENVIRONMENT

In the compiled code it is assumed that all processor mode registers like

OMR, SR and SP are in the state they have after reset, except when they

are set up differently in the startup code. Although other settings of these

registers may work just as well, care is needed. In any case, different

settings must be compatible with the hardware connected and the memory

layout selected. For some changes the startup code and/or the locator

description files must be updated as well (e.g. if you want to place the

stack extension in Y memory).

7.5.1 OPERATING MODE REGISTER

OMR bit 0-3: chip operating mode.

Normally the compiled code runs in expanded mode

(default), but different settings may work. The interrupt

vectors and startup vector are placed from address 0 by the

compiler, so some modes will need special precautions.

OMR bit 16-20: stack extension settings (DSP563xx only).

Do not change these bits after the startup code.

7.5.2 STATUS REGISTER

The compiler assumes all status register bits are in the reset state, unless

they have been set up otherwise in the startup code

(lib/src/cstart.inc). This does not mean that the compiled code

does not work with other settings, but care is needed. In summary (some

of these bits are not present on all DSP56xxx family members):

SR bit 0-7: condition code register.

These bits are changed by just about any instruction. The

L-bit (limiting occurred) is also used by the floating point

library to indicate an overflow/underflow condition.

SR bit 8/9: interrupt mask.

Can be set to any value, but if the system timer is used (for

delay() for instance) its function may be affected (see

lib/src/clock.c). No other library functions use

interrupts.

Run–time Environment 7–13

• • • • • • • •

SR bit 10/11: scaling mode.

Never used in compiled code. These bits can be changed

locally in assembly code, but they must remain zero during

execution of compiled code. These bits are cleared during

interrupts and restored afterwards.

SR bit 12: Reserved.

SR bit 13: Sixteen bit compatibility mode (DSP563xx only).

Set up in 16-bit compilation model. This bit can be changed

locally in assembly code, but must be restored to its startup

value during execution of compiled code.

SR bit 14: Double precision multiply mode.

Never used in compiled code. This bit can be changed

locally in assembly code, but must remain zero during

execution of compiled code.

SR bit 15: DO-loop flag.

Never used in compiled code. Not very useful, do not touch

in compiled code.

SR bit 16: DO-forever flag.

Never used in compiled code. Not very useful, do not touch

in compiled code.

SR bit 17: Sixteen bit arithmetic mode.

Used in 16-bit compiled code. This bit can be changed

locally in assembly code, but must be restored to its startup

value during execution of compiled code. This bit is cleared

during interrupts and restored afterwards; in the 16-bit

models the compiler will force it on again in interrupt

routines.

SR bit 18: Reserved.

SR bit 19: Cache Enable.

Switched on in startup code normally. Can be changed in the

application, but the cache intrinsic functions cannot be called

when the cache is switched off. Care must be taken to avoid

using the cache area for code when switching the cache

mode at run-time.

Chapter 77–14
R
U
N
-
T
IM
E

SR bit 20: Arithmetic saturation mode.

Never used in compiled code. This bit can be changed

locally in assembly code, but must remain zero during

execution of compiled code. The overflow behavior of

integers is affected by this bit, so compiled code may behave

strangely when this bit is set. Long division might not work

anymore either. As register-register and register-memory

moves of (long) _fract s result in saturation anyway, it is

not very useful in compiled code. This bit is not changed

during interrupt routines; if it is set anywhere in the code, it

must be turned off in all C compiled interrupt routines using

inline assembly.

SR bit 21: Rounding mode.

Never used in compiled code. This bit can be changed in

compiled code to get the effect described in the processor

manual. This bit is cleared during interrupts and restored

afterwards.

SR bit 22-23: Core priority.

Never used in compiled code. These bits can be changed in

compiled code to get the effect described in the processor

manual.

The execution of compiled interrupt routines must be avoided as well

where the summary mentions that bits must remain unchanged in

compiled code. So, the interrupts may have to be switched off locally as

well.

7.5.3 OTHER REGISTERS

LA, LC, SP: do not change their value to avoid disrupting the program

flow.

SSL, SSH: the hardware stack is used to store return addresses and

hardware loop information. If required, return addresses are

popped from the hardware stack to avoid overflows

(DSP5600x). The hardware stack can be used as long as it is

not exhausted and stack balance is preserved. In most cases

using the user stack is a faster and easier method.

Run–time Environment 7–15

• • • • • • • •

EP, SZ, SC (DSP563xx only):

the first two registers are set up in the startup code if the

hardware stack extension is enabled and must not be

changed during program execution. The stack count register

could be used by a task switching kernel, but is of little use

otherwise and should be left untouched.

7.6 STACK

The DSP563xx/DSP566xx processors have a system stack (hardware

stack) with 16 locations, 15 for the DSP5600x, divided in a system stack

high word (SSH) and system stack low word (SSL). This system stack is

used by the DSP for function calls, long interrupts and program looping

(DO and REP loops). For a C program the system stack size is not

sufficient. A deeply nested C program that also uses DO and REP loops

and where long interrupts may occur, would soon generate a system stack

overflow, because the system stack is also used by the DSP for return

addresses of function calls. Therefore, all memory models except the

static model (c56 only) use a user stack to store C variables, common

subexpressions, temporary results, and to pass parameters when all

registers are occupied. The mixed model for functions that are not

explicitly declared _reentrant , and the static model use overlayable

sections for these purposes.

When hardware stack extension is not available (DSP5600x) or is not

enabled, the hardware stack size is very limited. Therefore the changed

hardware stack contents is transferred to the user stack during the function

execution. The compiler generates code that pops the return address from

the system stack and pushes it on the user stack (reentrant function) or

saves it in a static area on function entry (static function). Before

returning from the function it reverses this operation. A leaf function does

not move the return address from the system stack.

The following diagrams show the structure of the stack. The first diagram

reflects the system stack. The second diagram shows the user stack when

using reentrant functions.

Chapter 77–16
R
U
N
-
T
IM
E

register (SR)

sp ($sp)

system stack

system stack
grows up

high memory

low memory

counter (LC)

fp ($fp)

loop

counter (PC)

register (LA)

loop address

statusprogram

SSLSSH

return address

saved registers

usp

user stack

user stack
grows up

high memory

low memory

(reentrant functions)

local

local 1

stacksize

framesize

ufp

n

parameter

parameter 1

n

...

...

temporary

storage

stack pointer

adjust

Figure 7-1: Stack diagrams

The user stack is defined in the locator description file (.dsc in directory

etc) with the keyword stack , which results in a section called stack .

The description file tells the locator where to allocate the user stack.

Run–time Environment 7–17

• • • • • • • •

The user stack size can be controlled with the keyword length= size in

the description file. If you do not specify the stack size, the locator will

allocate the rest of the available RAM for the stack, as done in the startup

code. You can use the locator defined labels F_lc_bs and F_lc_es in

your application to retrieve the begin and end address of the stack. Please

note that the locator will only allocate a stack section if the application

refers to one of the locator defined symbols F_lc_bs or F_lc_es . (This

is usually done in the startup code.) Remember that there must be enough

space allocated for the stack, which grows upwards.

For non-reentrant functions, (non-register) automatics and (non-register)

parameters are allocated in a static area and therefore do not use any

stack space.

For reentrant functions, a user stack is used in memory. Automatics and

parameters are all accessed using a user stack pointer register, allocated as

a 16-bit pointer (USP). The stack pointer USP points to the last occupied

location on the stack. If the compatibility option -Cs is used, the stack

pointer USP points to the first free location on the stack. The stack frame

also contains a so-called user frame pointer (UFP). The saved registers are

also accessed using a user stack pointer. The user stack pointer (USP) is
maintained in register R7 or R6 if the compatibility option is used. The

stack must be placed in default memory, or at least contain default

memory, so L memory can be used for it when default memory is X or Y.

The UFP is always relative to the USP. To save registers the UFP is not

maintained in a register, but is calculated from the USP with an offset.

7.6.1 STACK EXTENSION

Stack extension is a mechanism that allows larger stack sizes than

supported by the internal hardware mechanism. When stack extension is

enabled and the internal hardware stack has reached its maximum

capacity, the Least Recently Used (LRU) internal hardware stack location is

copied to data memory to create a new stack entry on the internal stack.

The toolchain works from the assumption that stack extension is required

and initializes EP and OMR in the startup code. Locator label F_lc_ub_se
is loaded into EP and afterwards stack extension is enabled from the OMR.

Chapter 77–18
R
U
N
-
T
IM
E

You can set the size of the stack extension as follows:

Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Control File . Type the size of the

stack extension in the Stack extension size field.

Or with the locator command line option:

-emSESIZE=size

The locator uses this macro to preprocess the following line in the

description file (which results in the locator label F_lc_ub_se):

reserved label=se length=SESIZE;

If you do not want to use stack extension, you must add the macro

NOESTACK to the assembler preprocessor options and make sure the

startup code is added to your project. In this case you need to be sure that

there will not be more than 16 function calls or do-loops; the number of

available internal hardware stack entries.

To avoid the calculation for this, you can also choose not to use the stack

extension:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Code Generation . Disable the

Use hardware stack extension check box.

Or with the compiler command line option:

-Mn

This 'ignoring' of the stack extension does not set a control register bit.

Only the function return address is saved/restored to/from the user stack.

(see section 7.6, Stack).

The effect is that the internal hardware stack is bypassed for function calls

and as such cannot overflow. Do-loops cannot be bypassed but you can

limit them:

Select the Project | Project Options... menu item. Expand the

C Compiler entry and select Code Generation . Disable the

Use hardware stack extension check box and type a number in the

Max. hardware stack use outside interrupt functions field.

Run–time Environment 7–19

• • • • • • • •

Or with the compiler option:

-Lnumber

Ignoring the hardware stack extension decrease execution speed because

user calls must be saved and restored on the user stack as well.

Furthermore, nested hardware do-loops become restricted. Since function

calls are being preserved, the user stack size will naturally increase, as will

code size. All this pleads for using the hardware stack extension.

7.7 HEAP

The heap is only needed when dynamic memory management library

functions are used: malloc() , calloc() , free() and realloc() . The

heap is a reserved area in default memory; it cannot be placed in a

different memory type because the library functions handling it rely on the

memory type. If you use one of the memory allocation functions listed

above, the locator automatically allocates a heap, as specified in the

locator description file with the keyword heap .

A special section called heap is used for the allocation of the heap area.

You can place the heap section anywhere in default memory, using the

locator description file. You can specify the size of the heap using the

keyword length= size in the locator description file. If you do not

specify the heap size and yet refer to it (e.g. call malloc()), the locator

will allocate the rest of the available X memory for the heap. The locator

defined labels F_lc_bh and F_lc_eh (begin and end of heap) are used

by the library function sbrk() , which is called by malloc() when

memory is needed from the heap.

Chapter 77–20
R
U
N
-
T
IM
E

7.8 FLOATING POINT

This section describes the definition and implementation of the TASKING

Software Floating Point Library for the Motorola DSP56xxx Family of

Digital Signal Processors.

7.8.1 SOFTWARE FLOATING POINT IMPLEMENTATION

7.8.1.1 CHARACTERISTICS OF FLOATING TYPES

There are three floating types defined by the ANSI C standard document,

designated as float , double and long double . The characteristics for

the double and long double types are equal to the float type, as

described in the standard definition include file <float.h> .

7.8.1.2 FLOATING POINT CONSTANTS

Floating point constants conform to the ANSI C standard, except that an

unsuffixed floating point constant has type float . If suffixed by the letter

f or F, it has type float . If suffixed by the letter l or L, it also has type

float because the characteristics for the double and long double
types are chosen to be equal to the float type. Floating point constants

in the range <–1,1> are interpreted as a fractional type (switchable with

the compiler -AF option). Semantics, the type of a float constant is the first

in which its value can be represented, first _fract then float . This

allows fixed point arithmetic with fractional constants without suffixes. See

also section 3.3.1 The Fractional Type.

7.8.1.3 USUAL ARITHMETIC CONVERSIONS

Promotions conform to the ANSI C pattern of usual arithmetic

conversions. This pattern is extended for _fract and long _fract .

First, if either operand has a fractional type and the other operand has

a non-fractional type, then the operand with the fractional type is

converted to the non-fractional type.

Otherwise, if either operand has type long _fract , the other is

converted to long _fract .

Run–time Environment 7–21

• • • • • • • •

Otherwise, both operands have type _fract .

Remember that floating point constants in <–1,1> are interpreted as a

fractional type. See previous section Floating Point Constants.

7.8.1.4 SINGLE PRECISION FLOATING POINT FORMAT

Floating point number - (m,e) including mantissa sign

Decimal value = m * (2e - fbias)

Bit number 23 0 23 0

Binary encoding s.mmm.mmmm.mmmm.mmmm.mmmm.mmmm 0000.0000.0000.0000.eeee.eeee

Bit Weight (2n) 0 -1 -23 7 0

s = sign bit, m = mantissa bit, e = exponent bit

Table 7-5: 2-Complement Format for 24-bit data models

Bit number 15 0 15 0

Binary encoding s.mmm.mmmm.mmmm.mmmm 0000.0000.eeee.eeee

Bit Weight (2n) 0 -1 -15 7 0

s = sign bit, m = mantissa bit, e = exponent bit

Table 7-6: 2-Complement Format for 16-bit data models

m = 24-bit mantissa or 16-bit mantissa (16 bit models) (two's

complement, normalized fraction). 23-bit or 15-bit (16-bit

models) mantissa precision plus 1-bit mantissa sign gives

precision of approximately 7 or 4 (16-bit models) decimal

digits. A minimum of 6 decimal digits is prescribed by the

ANSI C standard for single precision floating point. The

24-bit mantissa (24-bit models) or 16-bit mantissa (16-bit

models) was chosen to maximize precision with efficient use

of the MPY and MAC instructions. A hidden leading 1 is not

implemented in this format.

e = 8-bit exponent (unsigned integer, biased by fbias = +127)

stored as a 24-bit or 16-bit (16-bit models) unsigned integer

with 16 or 8 (16-bit models) leading zeros.

Chapter 77–22
R
U
N
-
T
IM
E

Largest positive mantissa
24–bit data models
16–bit data models

$7FFFFF
$7FFF

+0.99999988079071044921875
+0.99996948242875

Smallest positive mantissa
24–bit data models
16–bit data models

$400000
$4000

+0.5
+0.5

Floating point zero mantissa
24–bit data models
16–bit data models

$000000
$0000

 0.0
 0.0

Smallest negative mantissa
24–bit data models
16–bit data models

$BFFFFF
$BFFF

–0.50000011920928955078125
–0.500030517578125

Largest negative mantissa
24–bit data models
16–bit data models

$800000
$8000

–1.0
–1.0

Reserved mantissas
24–bit data models $000001 through $3FFFFF

$C00000 through $FFFFFF

16–bit data models $0001 through $3FFF
$C000 through $FFFF

Table 7-7: Supported mantissas

All reserved mantissas are illegal since they represent denormalized

mantissas. Denormalized numbers are not supported.

Assumed fixed point exponent
24–bit data models
16–bit data models

$00007F
$007F

2+0 = +1.0

Smallest exponent
24–bit data models
16–bit data models

$000000
$0000

2–127

Largest exponent
24–bit data models
16–bit data models

$0000FF
$00FF

2+128

Reserved exponents
24–bit data models
16–bit data models

$000100 through $FFFFFF
$0100 through $FFFF

Table 7-8: Supported exponents

If bit weight 28 is set, exponent overflow has occurred.

Run–time Environment 7–23

• • • • • • • •

If bit weight 29 is set, exponent underflow has occurred.

No distinct exponents are reserved for plus infinity, minus infinity,

Not-a-Number (IEEE NaN), minus zero or denormalized numbers.

7.8.1.5 SINGLE PRECISION FLOATING POINT NUMBER

RANGE

Floating point number Mantissa Exponent Decimal Value

Largest positive
24–bit data model
16–bit data model

$7FFFFF
$7FFF

$0000FF
$00FF

+3.402823E+38
+3.403E+38

Smallest positive
24–bit data model
16–bit data model

$400000
$4000

$000000
$0000

+2.938736E–39
+2.939E–39

Floating point zero
24–bit data model
16–bit data model

$000000
$0000

$000000
$0000

+0.0
+0.0

Smallest negative
24–bit data model
16–bit data model

$BFFFFF
$BFFF

$000000
$0000

–2.938736E–39
–2.939E–39

Largest negative
24–bit data model
16–bit data model

$800000
$8000

$0000FF
$00FF

–3.402823E+38
–3.403E+38

Table 7-9: Floating point number range

Note that the two's complement mantissa does not have equal positive and

negative ranges. Only sign-magnitude formats possess this property. These

ranges should be checked after most arithmetic operations.

Chapter 77–24
R
U
N
-
T
IM
E

7.8.1.6 COMPARISON TO IEEE-754 STANDARD FOR

BINARY FLOATING POINT ARITHMETIC

Since the IEEE Floating Point Arithmetic Standard is well publicized, it is

useful to compare these two floating point formats. This floating point

format is compared to the single precision IEEE format and it differs from

the IEEE standard primarily in its handling of floating point exceptions.

Other differences are noted in the table below. Conversion between the

IEEE standard format and this format is straight-forward.

Characteristic 2–Complement
Format

IEEE Format

Mantissa Precision
24–bit models
16–bit models

23 bits
15 bits

24 bits

Hidden Leading One No Yes

Mantissa Format
24–bit models

16–bit models

24–bit Two’s
Complement Fraction
16–bit Two’s
Complement Fraction

23 bit Unsigned Magnitude
Fraction

Exponent Width 8 bits 8 bits (single)

Maximum Exponent +128 +127 (single)

Minimum Exponent –127 –127 (single)

Exponent Bias +127 +127 (single)

Format Width
24–bit models
16–bit models

48 bits
32 bits

32 bits (single)

Rounding Round to Nearest Round to Nearest (default)
Round to +/–Infinite
Round to Zero

Infinity Arithmetic Saturation Limiting Affine Operations

Denormalized Numbers No (Forced to Zero) Yes (With Minimum
Exponent)

Exceptions Divide by Zero
Overflow
Underflow

Divide by Zero
Overflow
Underflow
Invalid Operations
Inexact Arithmetic

Table 7-10: IEEE 754 Comparison

Run–time Environment 7–25

• • • • • • • •

As shown in the table, the 2-complement floating point mantissa precision

is one bit (24-bit models) or nine bits (16-bit models) less than the IEEE

single precision format. This is a result of using two's complement

arithmetic.

If exponent overflow occurs, the result is limited to the maximum

representable floating point number of the correct sign. If exponent

underflow occurs, the result is limited to the minimum representable

floating point number, which is zero. Although this format does not

provide the arithmetic safety offered by the IEEE standard, it avoids

extensive error checking and exceptions in favor of real-time execution

speed and efficient implementation.

All exception conditions are handled "in-line" according to predefined

rules. This accepts the fact that real-time systems have no choice but to

provide an output with some amount of error if an exception occurs. It is

not possible to stop execution until the application program determines a

solution to the problem and fixes it.

One major difference is the use of affine arithmetic in the IEEE standard

versus the use of saturation arithmetic in this 2-complement floating point

format. Affine arithmetic gives separate identity to plus infinity, minus

infinity, plus zero and minus zero. In operations involving these values,

finite quantities remain finite and infinite quantities remain infinite. In

contrast, this format gives special identity only to unsigned zero.

This format performs saturation arithmetic such that any result out of the

representable floating point range is replaced with the nearest floating

point representation. In the analog world, overflow is analogous to an

analog opamp output clamping at the power supply rails.

The IEEE floating point standard provides extensive error handling

required by affine arithmetic, denormalized numbers, signaling Not a

Number (NaNs) and quiet NaNs. It postpones introducing computation

errors by using internal signaling and user traps to process each exception

condition. Computational errors will be introduced by the application

program if the calculation is completed instead of aborting the program.

This format introduces computation errors when an exception occurs in

order to maintain real-time execution. An error flag (L bit in CCR) is set to

inform the application program that an exception has occurred. This bit

will remain set until reset by the application program.

Chapter 77–26
R
U
N
-
T
IM
E

7.8.1.7 SINGLE PRECISION FLOATING POINT MEMORY

USAGE

The floating point mantissa and exponent may be stored in any locations

in any memory space. The input and output register values are organized

so that the long (L:) addressing mode may be used to load/store both the

mantissa and exponent with one instruction. If the long addressing mode

is used, the mantissa is in X memory and the exponent is in Y memory at

the same address.

7.8.2 SOFTWARE FLOATING POINT INTERFACING

This section describes how a floating point operation has to be performed

using the DSP56xxx floating point library functions. This contains the basic

floating point operations, floating point accumulator format and floating

point interface functions.

This section does not describe the algorithms used or the implementaion

considerations, nor does it give a thorough explanation of the floating

point routines themselves.

7.8.2.1 THE BASIC FLOATING POINT OPERATIONS

The basic operations of the floating point library are specified below and

consist of arithmetic operations and conversion operations. These

operations are implemented to support the 2-Complement Format.

For each floating point operation, function calls are specified in single

precision. It is also specified whether a floating point function needs one,

two or three floating point operands as input, an integer operand as input,

a fractional operand as input and if it returns a floating, integer or

fractional value.

Run–time Environment 7–27

• • • • • • • •

Floating point operations are performed on so-called floating point

accumulators. These accumulators are located in predefined registers and

contain the floating point value(s) passed to the floating point operation.

Section 7.8.2.2 The Floating Point Accumulators describes the format of

these accumulators. The first floating point operand has to be loaded in

accumulator fac and (if necessary) the second and third operand in

accumulator ftm1 or ftm2. A floating point result always resides in the

floating point accumulator fac. An integer, long or fractional operand is

passed via accumulator register A.

The following tables list all supported functions and their function names.

The actual functions are prefixed by the letters Rfp to meet the compiler

run-time library function calling convention.

Operation Function Input operand(s) Result

Add addf2 fac, ftm1 fac

Subtract subf2 fac, ftm1 fac

Multiply mulf2 fac, ftm1 fac

Divide divf2 fac, ftm1 fac

Multiply–Accumulate + macpf2 fac, ftm1, ftm2 fac

Multiply–Accumulate – macnf2 fac, ftm1, ftm2 fac

Compare cmpf2 fac, ftm1 CCR

Negate negf2 fac fac

Table 7-11: Floating point arithmetic operations

Chapter 77–28
R
U
N
-
T
IM
E

Operation Function Input operand(s) Result

Signed Integer to Float cif12 A fac

Signed Long to Float cif22 A fac

Unsigned Integer to Float cuf12 A fac

Unsigned Long to Float cuf22 A fac

Fract to Float crf12 A fac

Long Fract to Float crf22 A fac

Float to Signed Integer cfi21 fac A

Float to Signed Long cfi22 fac A

Float to Unsigned Integer cfu21 fac A

Float to Unsigned Long cfu22 fac A

Float to Fract cfr21 fac A

Float to Long Fract cfr22 fac A

Table 7-12: Floating point conversion operations

7.8.2.2 THE FLOATING POINT ACCUMULATORS

The software floating point libraries for the DSP56xxx are based on the

2-Complement Format, which is fully optimized for fast and efficient

floating point operations. The floating point values are stored in so-called

floating point accumulators.

Three accumulators are necessary to perform all the floating point

operations, they are called fac, ftm1 and ftm2. Accumulator fac is used for

passing operand 1, result values, intermediate results and for internal

calculations. Accumulators ftm1 and ftm2 are used for passing operands

and internal calculations. The accumulators are located in registers.

Run–time Environment 7–29

• • • • • • • •

Mantissa Exponent

FAC A2 – sign extension of A1
(unused)
A1 – mantissa
A0 – zero

B2 – sign extension of B1
(unused)
B1 – exponent
B0 – zero

FTM1 X1 X0

FTM2 Y1 Y0

Table 7-13: Accumulator formats

7.8.2.3 STORAGE 2-COMPLEMENT FORMAT VALUES

The following table shows the memory storage implementation used by

the software floating point libraries for single precision floating point

values.

Address +0000 +0001

Binary encoding 0000.0000.0000.0000.eeee.eeee s.mmm.mmmm.mmmm.mmmm.mmmm.mmmm

s = sign bit, m = mantissa bit, e = exponent bit

Table 7-14: Memory Layout for 24-bit data models

Address +0000 +0001

Binary encoding 0000.0000.eeee.eeee s.mmm.mmmm.mmmm.mmmm

s = sign bit, m = mantissa bit, e = exponent bit

Table 7-15: Memory Layout for 16-bit data models

7.8.2.4 INTERNAL REGISTER USAGE

The software floating point arithmetic and conversion functions use a set

of registers. Some are used for parameter passing and others are free for

internal use. If you use some of these registers in your own assembly

function you have to save them before a floating point function can be

performed.

The registers that are modified by each function are described in the

following tables.

Chapter 77–30
R
U
N
-
T
IM
E

Function Modified register(s)

addf2 A, B, X, R0, N0

subf2 A, B, X, Y, R0, N0

mulf2 A, B, X0, R0, N0 (DSP563xx)
A, B, X0, R0 (other)

divf2 A, B, X, R0, N0 (DSP563xx)
A, B, X, R0 (other)

macpf2 A, B, X, Y, R0, N0 (DSP563xx)
A, B, X, Y, R0 (other)

macnf2 A, B, X, Y, R0, N0 (DSP563xx)
A, B, X, Y, R0 (other)

cmpf2 none

negf2 A, B, R0, N0 (DSP563xx)
A, B, R0 (other)

Table 7-16: Floating point arithmetic operations register usage

Function Modified register(s)

cif12 A, B, R0, N0 (DSP563xx)
A, B, R0 (other)

cif22 A, B, R0, N0 (DSP563xx)
A, B, R0 (other)

cuf12 A, B, X, R0, N0 (DSP563xx)
A, B, X, R0 (other)

cuf22 A, B, X, R0, N0 (DSP563xx)
A, B, X, R0 (other)

crf12 A, B, R0, N0 (DSP563xx)
A, B, R0 (other)

crf22 A, B, R0, N0 (DSP563xx)
A, B, R0 (other)

cfi21 A, B, Y1 (DSP563xx)
A, B, Y, R0, N0 (other)

cfi22 A, B, Y1 (DSP563xx)
A, B, Y, R0, N0 (other)

cfu21 A, B, Y, R0, N0

cfu22 A, B, Y1

Run–time Environment 7–31

• • • • • • • •

Modified register(s)Function

cfr21 A, B, Y, R0, N0

cfr22 A, B, Y, R0, N0

Table 7-17: Floating point conversion operations register usage

7.8.3 FLOATING POINT CODE GENERATION

This section describes, using some examples, the basics of floating point

code generation. It is impossible to describe here all possible code

generation combinations with all the floating point operations, because the

number of possible floating point expression is almost infinite. So, if you

want to write your own floating point expression in assembly it is

profitable to write it first in C and then use the code generated by the C

compiler in your own assembly function.

The following example will illustrate a floating point expression using two

floating point values returning a floating point value.

c = a + b;

move x:Fa,b ; pass floating point a in fac
move x:Fa+1,a
move x:Fb,x0 ; pass floating point b in ftm1
move x:Fb+1,x1
jsr Rfpaddf2 ; perform add
move a,x:Fc+1 ; store result from fac in c
move b,x:Fc

Integer and long operands and integer and long results are passed via

accumulator register A. The following example illustrates a conversion

from long to float.

float a;
long b;

a = b;

move x:Fb+1,a ; pass long b in A
move x:Fb,a0
jsr Rfpcif22 ; convert from long to float
move a,x:Fa+1 ; store result from fac in a
move b,x:Fa

Chapter 77–32
R
U
N
-
T
IM
E

For more comprehensive floating point expressions it is not needed to

store the floating result of a previous floating point operation and load it

again for the next floating point operation. The result of the previous

floating point operations remains in the accumulator fac and will be used

in the next floating point operation. This is called intermediate result

optimization. Only the second operand must be loaded in accumulator

ftm1. The following example illustrates this.

d = a + b – c;

move x:Fa,b ; pass floating point a in fac
move x:Fa+1,a
move x:Fb,x0 ; pass floating point b in ftm1
move x:Fb+1,x1
jsr Rfpaddf2 ; perform add
 ; The intermediate floating point
 ; result stays in fac !
move x:Fc,x0 ; pass floating point c in ftm 1
move x:Fc+1,x1
jsr Rfpsubf2 ; perform subtract
move a,x:Fd+1 ; store result from fac in d
move b,x:Fd

The floating point mechanism is based on the fact that when the floating

point accumulator is loaded with a floating point operand and a next

operand must be loaded in it, then the current contents of fac is saved on

the user stack.

Next example is for the DSP5600x and illustrates the use of the user stack

in a floating point expression, which needs to subtract two intermediate

results. The first intermediate floating point result is stored on the user

stack and the second can be hold in the accumulator fac. To perform the

subtraction the intermediated result is popped from the user stack and

loaded in accumulator ftm1. This example shows generation of reentrant

code.

Run–time Environment 7–33

• • • • • • • •

e = (a + b) – (c * d)

move (r7)+ ; reserve user stack space
move (r7)+
move x:Fa,b ; pass floating point a in fac
move x:Fa+1,a
move x:Fb,x0 ; pass floating point b in ftm1
move x:Fb+1,x1
jsr Rfpaddf2 ; perform add
move #–2,n7 ; user stack offset
move (r7)+ ; first stack element
move a,x:(r7+n7) ; push result mantissa from
 ; fac on stack
move (r7)– ; second stack element
move b,x:(r7+n7) ; push result exponent from
 ; fac on stack
move x:Fc,b ; pass floating point c in fac
move x:Fc+1,a
move x:Fd,x0 ; pass floating point d in ftm1
move x:Fd+1,x1
jsr Rfpmulf2 ; perform multiply
move b,x0 ; store result from fac in ftm1
move a,x1
move (r7)+ ; first stack element
move x:(r7+n7),a ; pop mantissa result from
 ; stack to fac
move (r7)– ; second stack element
move x:(r7+n7),b ; pop exponent result from
 ; stack to fac
jsr Rfpsubf2 ; perform subtract
move a,x:Fe+1 ; store result from fac in e
move b,x:Fe
move (r7)+n7 ; free reserved user stack space

Chapter 77–34
R
U
N
-
T
IM
E

8

SUPPORT FOR
USER–DESIGNED
TARGET BOARDS

C
H
A
P
T
E
R

Chapter 88–2
T
A

R
G

E
T

 B
O

A
R

D
S 8

C
H
A
P
T
E
R

Support for User–designed Target Boards 8–3

• • • • • • • •

This chapter contains the steps you have to take to support user-designed

target boards.

To create support files for a user-designed target board:

1. Create a mytarget.asm file in the lib\src\ directory by copying one of

the startup files (for example, def_targ.asm).

2. Change the new file to contain adequate values for the AARx registers

etcetera for the board. Refer to the DSP manual and the hardware manual

of the board for the correct settings.

3. Add the new startup file to your project:

Using EDE:

- add mytarget.asm to the project file list.

Using the command line:

- add mytarget.asm to the makefile.

Alternatively, you can add the new startup file to the libraries. From the

command line, in the product directory, add the new file to the libraries

with (example for the DSP563xx):

bin\as563 lib\src\mytarget.asm –O >NUL
bin\ar563 –r lib\563xx\libc24.a mytarget.obj >NUL
bin\as563 lib\src\mytarget.asm –M16 –O >NUL
bin\ar563 –r lib\563xx\libc16.a mytarget.obj >NUL
bin\ar563 –r lib\563xx\libc1624.a mytarget.obj >NUL
del mytarget.obj

4. Create a correct memory description of your board for the locator.

Memory descriptions are in the product etc directory (*.mem) for several

targets. They are included in the *.dsc files. If you created a

mytarget.asm file, name these files mytarget.dsc and

mytarget.mem . mytarget.dsc can be a copy of any of the *.dsc files,

just replace the .mem include with mytarget.mem , and the .cpu include

with the correct cpu type.

Chapter 88–4
T
A

R
G

E
T

 B
O

A
R

D
S

Create a mytarget.mem file with the correct sizes of the external memory.

One of the existing .mem files can be used as a starting point for this. Take

care that your bus structure is correct: some files have a unified bus

(X/Y/P maps to the same physical memory, so sections are placed after

each other), others have separate buses (X/Y/P map to different chips, so

sections can be placed in parallel). Take the file that resembles your

board, and then just change the memory sizes in the chips section of the

file.

5. If you added a new startup file to your project (in step 3), disable the

startup file from the libraries and specify the correct startup code label and

description file:

Using EDE:

- Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Control File . Select User
supplied, no library startup code in the Target list box. In

the User defined target name field, fill in "mytarget ". This will

tell the tools to include the startup file mytarget.asm from the library,

and to use the file mytarget.dsc for the locating process.

Using the command line:

- Add -Tmytarget to the control program (cc563) command line.

6. If you added a new startup file to the libraries (in step 3), specify the

correct description file:

Using EDE:

- Select the Project | Project Options... menu item. Expand the

Linker/Locator entry and select Control File . Select User
supplied target definition in the Target list box. Specify

mytarget.dsc in the field of the Use project specific
linker/locator control file (.dsc) radio button.

Using the command line:

- Add -T mytarget.dsc to the control program (cc563) command line.

A

FLEXIBLE LICENSE
MANAGER (FLEXlm)

A
P

P
E

N
D

IX

Appendix AA–2
F
L
E
X
L
M

A

A
P

P
E

N
D

IX

Flexible License Manager (FLEXlm) A–3

• • • • • • • •

1 INTRODUCTION

This appendix discusses Globetrotter Software's Flexible License Manager

and how it is integrated into the TASKING toolchain. It also contains

descriptions of the Flexible License Manager license administration tools

that are included with the package, the daemon log file and its contents,

and the use of daemon options files to customize your use of the

TASKING toolchain.

2 LICENSE ADMINISTRATION

2.1 OVERVIEW

The Flexible License Manager (FLEXlm) is a set of utilities that, when

incorporated into software such as the TASKING toolchain, provides for

managing access to the software.

The following terms are used to describe FLEXlm concepts and software

components:

feature A feature could be any of the following:

• A TASKING software product.

• A software product from another vendor.

license The right to use a feature. FLEXlm restricts licenses for

features by counting the number of licenses for features in

use when new requests are made by the application

software.

client A TASKING application program.

daemon A process that "serves" clients. Sometimes referred to as a

server.

vendor daemon

The daemon that dispenses licenses for the requested

features. This daemon is built by an application's vendor, and

contains the vendor's personal encryption code. Tasking is

the vendor daemon for the TASKING software.

Appendix AA–4
F
L
E
X
L
M

license daemon

The daemon process that sends client processes to the

correct vendor daemon on the correct machine. The same

license daemon is used by all applications from all vendors,

as this daemon neither performs encryption nor dispenses

licenses. The license daemon processes no user requests on

its own, but forwards these requests to other daemons (the

vendor daemons).

server node A computer system that is running both the license and

vendor daemon software. The server node will contain all the

dynamic information regarding the usage of all the features.

license file An end-user specific file that contains descriptions of the

server nodes that can run the license daemons, the various

vendor daemons, and the restrictions for all the licensed

features.

The TASKING software is granted permission to run by FLEXlm daemons;

the daemons are started when the TASKING toolchain is installed and run

continuously thereafter. Information needed by the FLEXlm daemons to

perform access management is contained in a license data file that is

created during the toolchain installation process. As part of their normal

operation, the daemons log their actions in a daemon log file, which can

be used to monitor usage of the TASKING toolchain.

The following sections discuss:

• Installation of the FLEXlm daemons to provide for access to the

TASKING toolchain.

• Customizing your use of the toolchain through the use of a daemon

options file.

• Utilities that are provided to assist you in performing license

administration functions.

• The daemon log file and its contents.

For additional information regarding the use of FLEXlm, refer to the

chapter Software Installation.

Flexible License Manager (FLEXlm) A–5

• • • • • • • •

2.2 PROVIDING FOR UNINTERRUPTED FLEXLM

OPERATION

TASKING products licensed through FLEXlm contain a number of utilities

for managing licenses. These utilities are bundled in the form of an extra

product under the name SW000098. TASKING products themselves contain

two additional files for FLEXlm in a flexlm subdirectory:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

If you have already installed FLEXlm (e.g. as part of another product) then

it is not needed to install the bundled SW000098. After installing SW000098

on UNIX, the directory /usr/local/flexlm will contain two

subdirectories, bin and licenses . After installing SW000098 on Windows

the directory c:\flexlm will contain the subdirectory bin . The exact

location may differ if FLEXlm has already been installed as part of a

non-TASKING product but in general there will be a directory for

executables such as bin . That directory must contain a copy of the

Tasking daemon shipped with every TASKING product. It also contains

the files:

lmgrd The FLEXlm daemon (license daemon).

lm* A group of FLEXlm license administration utilities.

Next to it, a license file must be present containing the information of all

licenses. This file is usually called license.dat . The default location of

the license file is in directory c:\flexlm for Windows and in

/usr/local/flexlm/licenses for UNIX. If you did install SW000098

then the licenses directory on UNIX will be empty, and on Windows

the file license.dat will be empty. In that case you can copy the

license.dat file from the product to the licenses directory after filling

in the data from your "License Information Form".

Be very careful not to overwrite an existing license.dat file because it

contains valuable data.

Example license.dat :

SERVER HOSTNAME HOSTID PORT
DAEMON Tasking /usr/local/flexlm/bin/Tasking
FEATURE SW008002–32 Tasking 3.000 EXPDATE NUSERS PASSWORD SERIAL

Appendix AA–6
F
L
E
X
L
M

After modifications from a license data sheet (example):

SERVER elliot 5100520c 7594

DAEMON Tasking /usr/local/flexlm/bin/Tasking

FEATURE SW008002–32 Tasking 3.000 1–jan–00 4 0B1810310210A6894 ”123456”

If the license.dat file already exists then you should make sure that it

contains the DAEMON and FEATURE lines from your license data sheet.

An appropriate SERVER line should already be present in that case. You

should only add a new SERVER line if no SERVER line is present. The third

field of the DAEMON line is the pathname to the Tasking daemon and

you may change it if necessary.

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If the pathname of the resulting license file differs from this default

location then you must set the environment variable LM_LICENSE_FILE to

the correct pathname. If you have more than one product using the

FLEXlm license manager you can specify multiple license files by

separating each pathname (lfpath) with a ';' (on UNIX also ':') :

Windows:

set LM_LICENSE_FILE= lfpath[;lfpath]...

UNIX:

setenv LM_LICENSE_FILE lfpath[:lfpath]...

If you are running the TASKING software on multiple nodes, you have

three options for making your license file available on all the machines:

1. Place the license file in a partition which is available (via NFS on Unix

systems) to all nodes in the network that need the license file.

2. Copy the license file to all of the nodes where it is needed.

3. Set LM_LICENSE_FILE to "port@host", where host and port come from the

SERVER line in the license file.

Flexible License Manager (FLEXlm) A–7

• • • • • • • •

When the main license daemon lmgrd already runs it is sufficient to type

the command:

lmreread

for notifying the daemon that the license.dat file has been changed.

Otherwise, you must type the command:

lmgrd >/usr/tmp/license.log &

Both commands reside in the flexlm bin directory mentioned before.

2.3 DAEMON OPTIONS FILE

It is possible to customize the use of TASKING software using a daemon

options file. This options file allows you to reserve licenses for specified

users or groups of users, to restrict access to the TASKING toolchain, and

to set software timeouts. The following table lists the keywords that are

recognized at the start of a line of a daemon options file.

Keywords Function

RESERVE Ensure that TASKING software will always be available to
one or more users or on one or more host computer systems.

INCLUDE Specify a list of users who are allowed exclusive access to
the TASKING software.

EXCLUDE Specify a list of users who are not allowed to use the
TASKING software.

GROUP Specify a group of users for use in the other commands.

TIMEOUT Allow licenses that are idle for a specified time to be returned
to the free pool, for use by someone else.

NOLOG Causes messages of the specified type to be filtered out of
the daemon’s log output.

Table A-1: Daemon options file keywords

In order to use the daemon options capability, you must create a daemon

options file and list its pathname as the fourth field on the DAEMON line for

the Tasking daemon in the license file. For example, if the daemon

options were in file /usr/local/flexlm/Tasking.opt (UNIX), then

you would modify the license file DAEMON line as follows:

DAEMON Tasking /usr/local/Tasking /usr/local/flexlm/Tasking.opt

Appendix AA–8
F
L
E
X
L
M

A daemon options file consists of lines in the following format:

RESERVE number feature {USER | HOST | DISPLAY | GROUP} name
INCLUDE feature {USER | HOST | DISPLAY | GROUP} name
EXCLUDE feature {USER | HOST | DISPLAY | GROUP} name
GROUP name <list_of_users>
TIMEOUT feature timeout_in_seconds
NOLOG {IN | OUT | DENIED | QUEUED}
REPORTLOG file

Lines beginning with the sharp character (#) are ignored, and can be used

as comments. For example, the following options file would reserve one

copy of feature SWxxxxxx–xx for user �pat", three copies for user �lee",

and one copy for anyone on a computer with the hostname of �terry"; and

would cause QUEUED messages to be omitted from the log file. In addition,

user �joe" and group �pinheads" would not be allowed to use the feature

SWxxxxxx–xx :

GROUP pinheads moe larry curley
RESERVE 1 SWxxxxxx–xx USER pat
RESERVE 3 SWxxxxxx–xx USER lee
RESERVE 1 SWxxxxxx–xx HOST terry
EXCLUDE SWxxxxxx–xx USER joe
EXCLUDE SWxxxxxx–xx GROUP pinheads
NOLOG QUEUED

3 LICENSE ADMINISTRATION TOOLS

The following utilities are provided to facilitate license management by

your system administrator. In certain cases, execution access to a utility is

restricted to users with root privileges. Complete descriptions of these

utilities are provided at the end of this section.

lmcksum

Prints license checksums.

lmdiag (Windows only)

Diagnoses license checkout problems.

lmdown

Gracefully shuts down all license daemons (both lmgrd all vendor

daemons, such as Tasking) on the license server.

Flexible License Manager (FLEXlm) A–9

• • • • • • • •

lmgrd

The main daemon program for FLEXlm.

lmhostid

Reports the hostid of a system.

lmremove

Removes a single user's license for a specified feature.

lmreread

Causes the license daemon to reread the license file and start any new

vendor daemons.

lmstat

Helps you monitor the status of all network licensing activities.

lmswitchr

Switches the report log file.

lmver

Reports the FLEXlm version of a library or binary file.

lmtools (Windows only)

This is a graphical Windows version of the license administration tools.

Appendix AA–10
F
L
E
X
L
M

3.1 LMCKSUM

Name

lmcksum - print license checksums

Synopsis

lmcksum [-c license_file] [-k]

Description

The lmcksum program will perform a checksum of a license file. This is

useful to verify data entry errors at your location. lmcksum will print a

line-by-line checksum for the file as well as an overall file checksum.

The following fields participate in the checksum:

• hostid on the SERVER lines

• daemon name on the DAEMON lines

• feature name, version, daemon name, expiration date, # of licenses,

encription code, vendor string and hostid on the FEATURE lines

• daemon name and encryption code on FEATURESET lines

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmcksum looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmcksum looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-k Case-sensitive checksum. If this option is specified,

lmcksum will compute the checksum using the exact case of

the FEATURE's and FEATURESET's encryption code.

Flexible License Manager (FLEXlm) A–11

• • • • • • • •

3.2 LMDIAG (Windows only)

Name

lmdiag - diagnose license checkout problems

Synopsis

lmdiag [-c license_file] [-n] [feature]

Description

lmdiag (Windows only) allows you to diagnose problems when you

cannot check out a license.

If no feature is specified, lmdiag will operate on all features in the license

file(s) in your path. lmdiag will first print information about the license,

then attempt to check out each license. If the checkout succeeds, lmdiag

will indicate this. If the checkout fails, lmdiag will give you the reason for

the failure. If the checkout fails because lmdiag cannot connect to the

license server, then you have the option of running "extended connection

diagnostics".

These extended diagnostics attempt to connect to each port on the license

server node, and can detect if the port number in the license file is

incorrect. lmdiag will indicate each port number that is listening, and if it

is an lmgrd process, lmdiag will indicate this as well. If lmdiag finds the

vendor daemon for the feature being tested, then it will indicate the

correct port number for the license file to correct the problem.

Parameters

feature Diagnose this feature only.

Options

-c license_file
Diagnose the specified license_file. If no -c option is

specified, lmdiag looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdiag looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-n Run in non-interactive mode; lmdiag will not prompt for

any input in this mode. In this mode, extended connection

diagnostics are not available.

Appendix AA–12
F
L
E
X
L
M

3.3 LMDOWN

Name

lmdown - graceful shutdown of all license daemons

Synopsis

lmdown [-c license_file] [-q]

Description

The lmdown utility allows for the graceful shutdown of all license

daemons (both lmgrd and all vendor daemons, such as Tasking) on all

nodes. You may want to protect the execution of lmdown, since shutting

down the servers causes users to lose their licenses. See the -p option in

Section 3.4, lmgrd.

lmdown sends a message to every license daemon asking it to shut down.

The license daemons write out their last messages to the log file, close the

file, and exit. All licenses which have been given out by those daemons

will be revoked, so that the next time a client program goes to verify his

license, it will not be valid.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmdown looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdown looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-q Quiet mode. If this switch is not specified, lmdown asks for

confirmation before asking the license daemons to shut

down. If this switch is specified, lmdown will not ask for

confirmation.

lmgrd, lmstat, lmreread

Flexible License Manager (FLEXlm) A–13

• • • • • • • •

3.4 LMGRD

Name

lmgrd - flexible license manager daemon

Synopsis

lmgrd [-c license_file] [-l logfile] [-2 -p] [-t timeout] [-s interval]

Description

lmgrd is the main daemon program for the FLEXlm distributed license

management system. When invoked, it looks for a license file containing

all required information about vendors and features. On UNIX systems, it

is strongly recommended that lmgrd be run as a non-privileged user (not

root).

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmgrd looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmgrd looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-l logfile Specifies the output log file to use. Instead of using the -l

option you can use output redirection (> or >>) to specify

the name of the output log file.

-2 -p Restricts usage of lmdown, lmreread, and lmremove to a

FLEXlm administrator who is by default root. If there is a

UNIX group called "lmadmin" then use is restricted to only

members of that group. If root is not a member of this group,

then root does not have permission to use any of the above

utilities.

-t timeout Specifies the timeout interval, in seconds, during which the

license daemon must complete its connection to other

daemons if operating in multi-server mode. The default value

is 10 seconds. A larger value may be desirable if the daemons

are being run on busy systems or a very heavily loaded

network.

Appendix AA–14
F
L
E
X
L
M

-s interval Specifies the log file timestamp interval, in minutes. The

default is 360 minutes. This means that every six hours

lmgrd logs the time in the log file.

lmdown, lmstat

Flexible License Manager (FLEXlm) A–15

• • • • • • • •

3.5 LMHOSTID

Name

lmhostid - report the hostid of a system

Synopsis

lmhostid

Description

lmhostid calls the FLEXlm version of gethostid and displays the results.

The output of lmhostid looks like this:

lmhostid – Copyright (C) 1989, 1999 Globetrotter Software, Inc.
The FLEXlm host ID of this machine is ”1200abcd”

Options

lmhostid has no command line options.

Appendix AA–16
F
L
E
X
L
M

3.6 LMREMOVE

Name

lmremove - remove specific licenses and return them to license pool

Synopsis

lmremove [-c license_file] feature user host [display]

Description

The lmremove utility allows the system administrator to remove a single

user's license for a specified feature. This could be required in the case

where the licensed user was running the software on a node that

subsequently crashed. This situation will sometimes cause the license to

remain unusable. lmremove will allow the license to return to the pool of

available licenses.

lmremove will remove all instances of �user" on node �host" on display

�display" from usage of �feature". If the optional –c file is specified, the

indicated file will be used as the license file. Since removing a user's

license can be disruptive, execution of lmremove is restricted to users

with root privileges.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmremove looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmremove looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

lmstat

Flexible License Manager (FLEXlm) A–17

• • • • • • • •

3.7 LMREREAD

Name

lmreread - tells the license daemon to reread the license file

Synopsis

lmreread [-c license_file]

Description

lmreread allows the system administrator to tell the license daemon to

reread the license file. This can be useful if the data in the license file has

changed; the new data can be loaded into the license daemon without

shutting down and restarting it.

The license administrator may want to protect the execution of lmreread.

See the -p option in Section 3.4, lmgrd for details about securing access to

lmreread.

lmreread uses the license file from the command line (or the default file,

if none specified) only to find the license daemon to send it the command

to reread the license file. The license daemon will always reread the file

that it loaded from the original path. If you need to change the path to the

license file read by the license daemon, then you must shut down the

daemon and restart it with that new license file path.

You cannot use lmreread if the SERVER node names or port numbers

have been changed in the license file. In this case, you must shut down

the daemon and restart it in order for those changes to take effect.

lmreread does not change any option information specified in an options

file. If the new license file specifies a different options file, that

information is ignored. If you need to reread the options file, you must

shut down (lmdown) the daemon and restart it.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmreread looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmreread looks for the

file license.dat in the default location.

lmdown

Appendix AA–18
F
L
E
X
L
M

3.8 LMSTAT

Name

lmstat - report status on license manager daemons and feature usage

Synopsis

lmstat [-a] [-A] [-c license_file] [-f [feature]]
[-l [regular_expression]] [-s [server]] [-S [daemon]] [-t timeout]

Description

License administration is simplified by the lmstat utility. lmstat allows

you to instantly monitor the status of all network licensing activities.

lmstat allows a system administrator to monitor license management

operations including:

• Which daemons are running

• Users of individual features

• Users of features served by a specific DAEMON

Options

-a Display all information.

-A List all active licenses.

-c license_file
Use the specified license_file. If no -c option is specified,

lmstat looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmstat looks for the file

c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

-f [feature] List all users of the specified feature(s).

-l [regular_expression]

List all users of the features matching the given

regular_expression.

-s [server] Display the status of the specified server node(s).

-S [daemon] List all users of the specified daemon's features.

Flexible License Manager (FLEXlm) A–19

• • • • • • • •

-t timeout Specifies the amount of time, in seconds, lmstat waits to

establish contact with the servers. The default value is 10

seconds. A larger value may be desirable if the daemons are

being run on busy systems or a very heavily loaded network.

lmgrd

Appendix AA–20
F
L
E
X
L
M

3.9 LMSWITCHR (Windows only)

Name

lmswitchr - switch the report log file

Synopsis

lmswitchr [-c license_file] feature new-file

or:

lmswitchr [-c license_file] vendor new-file

Description

lmswitchr (Windows only) switches the report writer (REPORTLOG) log

file. It will also start a new REPORTLOG file if one does not already exist.

Parameters

feature Any feature this daemon supports.

vendor The name of the vendor daemon (such as Tasking).

new-file New file path.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmswitchr looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmswitchr looks for the

file c:\flexlm\license.dat (Windows), or

/usr/local/flexlm/licenses/license.dat (UNIX).

Flexible License Manager (FLEXlm) A–21

• • • • • • • •

3.10 LMVER

Name

lmver - report the FLEXlm version of a library or binary file

Synopsis

lmver filename

Description

The lmver utility reports the FLEXlm version of a library or binary file.

Alternatively, on UNIX systems, you can use the following commands to

get the FLEXlm version of a binary:

strings file | grep Copy

Parameters

filename Name of the executable of the product.

Appendix AA–22
F
L
E
X
L
M

3.11 LICENSE ADMINISTRATION TOOLS FOR WINDOWS

3.11.1 LMTOOLS FOR WINDOWS

For the 32 Bit Windows Platforms, an lmtools.exe Windows program is

provided. It has the same functionality as listed in the previous sections

but is graphically-oriented. Simply run the program (Start | Programs
| TASKING FLEXlm | FLEXlm Tools) and choose a button for the

functionality required. Refer to the previous sections for information about

the options of each feature. The command line interface is replaced by

pop-up dialogs that can be filled out.The central EDIT field is where the

license file path is placed. This will be used for all other functions and

replaces the "-c license_file" argument in the other utilities.

The HOSTID button displays the hostid's for the computer on which the

program is running. The TIME button prints out the system's internal time

settings, intended to diagnose any time zone problems. The TCP
Settings button is intended to fix a bug in the Microsoft TCP protocol

stack which has a symptom of very slow connections to computers. After

pressing this button, the system will need to be rebooted for the settings to

become effective.

Flexible License Manager (FLEXlm) A–23

• • • • • • • •

3.11.2 FLEXLM LICENSE MANAGER FOR WINDOWS

lmgrd.exe can be run manually or using the graphical Windows tool. You

can start this tool from the FLEXlm program folder. Click on Start |
Programs | TASKING FLEXlm | FLEXlm Tools

From the Control tab you can start, stop, and check the status of your

license server. Select the Setup tab to enter information about your

license server.

Appendix AA–24
F
L
E
X
L
M

Select the Control tab and click the Start button to start your license

server. lmgrd.exe will be launched as a background application with the

license file and debug log file locations passed as parameters.

If you want lmgrd.exe to start automatically on NT, select the Use NT
Services check box and lmgrd.exe will be installed as an NT service.

Next, select the Start Server at Power–UP check box.

The Licenses tab provides information about the license file and the

Advanced tab allows you to perform diagnostics and check versions.

Flexible License Manager (FLEXlm) A–25

• • • • • • • •

4 THE DAEMON LOG FILE

The FLEXlm daemons all generate log files containing messages in the

following format:

mm/dd hh:mm (DAEMON name) message

Where:

mm/dd hh:mm Is the month/day hour:minute that the message was

logged.

DAEMON name Either �license daemon" or the string from the DAEMON
line that describes your daemon.

In the case where a single copy of the daemon cannot

handle all of the requested licenses, an optional �_"

followed by a number indicates that this message comes

from a forked daemon.

message The text of the message.

The log files can be used to:

• Inform you when it may be necessary to update your application

software licensing arrangement.

• Diagnose configuration problems.

• Diagnose daemon software errors.

The messages are grouped below into the above three categories, with

each message followed by a brief description of its meaning.

Appendix AA–26
F
L
E
X
L
M

4.1 INFORMATIONAL MESSAGES

Connected to node

This daemon is connected to its peer on node node.

CONNECTED, master is name

The license daemons log this message when a quorum is up and everyone

has selected a master.

DEMO mode supports only one SERVER host!

An attempt was made to configure a demo version of the software for

more than one server host.

DENIED: N feature to user (mm/dd/yy hh:mm)

user was denied access to N licenses of feature. This message may indicate

a need to purchase more licenses.

EXITING DUE TO SIGNAL nnn

EXITING with code nnn

All daemons list the reason that the daemon has exited.

EXPIRED: feature

feature has passed its expiration date.

IN: feature by user (N licenses) (used: d:hh:mm:ss)

(mm/dd/yy hh:mm)

user has checked back in N licenses of feature at mm/dd/yy hh:mm.

IN server died: feature by user (number licenses)

(used: d:hh:mm:ss) (mm/dd/yy hh:mm)

user has checked in N licenses by virtue of the fact that his server died.

License Manager server started

The license daemon was started.

Flexible License Manager (FLEXlm) A–27

• • • • • • • •

Lost connection to host

A daemon can no longer communicate with its peer on node host, which

can cause the clients to have to reconnect, or cause the number of

daemons to go below the minimum number, in which case clients may

start exiting. If the license daemons lose the connection to the master, they

will kill all the vendor daemons; vendor daemons will shut themselves

down.

Lost quorum

The daemon lost quorum, so will process only connection requests from

other daemons.

MASTER SERVER died due to signal nnn

The license daemon received fatal signal nnn.

MULTIPLE xxx servers running. Please kill, and restart license

daemon

The license daemon has detected that multiple copies of vendor daemon

xxx are running. The user should kill all xxx daemon processes and

re-start the license daemon.

OUT: feature by user (N licenses) (mm/dd/yy hh:mm)

user has checked out N licenses of feature at mm/dd/yy hh:mm

Removing clients of children

The top-level daemon logs this message when one of the child daemons

dies.

RESERVE feature for HOST name

RESERVE feature for USER name

A license of feature is reserved for either user name or host name.

REStarted xxx (internet port nnn)

Vendor daemon xxx was restarted at internet port nnn.

Retrying socket bind (address in use)

The license servers try to bind their sockets for approximately 6 minutes if

they detect address in use errors.

Appendix AA–28
F
L
E
X
L
M

Selected (EXISTING) master node

This license daemon has selected an existing master (node) as the master.

SERVER shutdown requested

A daemon was requested to shut down via a user-generated kill

command.

[NEW] Server started for: feature-list

A (possibly new) server was started for the features listed.

Shutting down xxx

The license daemon is shutting down the vendor daemon xxx.

SIGCHLD received. Killing child servers

A vendor daemon logs this message when a shutdown was requested by

the license daemon.

Started name

The license daemon logs this message whenever it starts a new vendor

daemon.

Trying connection to node

The daemon is attempting a connection to node.

Flexible License Manager (FLEXlm) A–29

• • • • • • • •

4.2 CONFIGURATION PROBLEM MESSAGES

hostname: Not a valid server host, exiting

This daemon was run on an invalid hostname.

hostname: Wrong hostid, exiting

The hostid is wrong for hostname.

BAD CODE for feature-name

The specified feature name has a bad encryption code.

CANNOT OPEN options file �file"

The options file specified in the license file could not be opened.

Couldn't find a master

The daemons could not agree on a master.

license daemon: lost all connections

This message is logged when all the connections to a server are lost,

which often indicates a network problem.

lost lock, exiting

Error closing lock file

Unable to re-open lock file

The vendor daemon has a problem with its lock file, usually because of an

attempt to run more than one copy of the daemon on a single node.

Locate the other daemon that is running via a ps command, and kill it

with kill -9.

NO DAEMON line for daemon

The license file does not contain a DAEMON line for daemon.

No �license" service found

The TCP license service did not exist in /etc/services .

No license data for �feat", feature unsupported

There is no feature line for feat in the license file.

Appendix AA–30
F
L
E
X
L
M

No features to serve!

A vendor daemon found no features to serve. This could be caused by bad

data in the license file.

UNSUPPORTED FEATURE request: feature by user

The user has requested a feature that this vendor daemon does not

support. This can happen for a number of reasons: the license file is bad,

the feature has expired, or the daemon is accessing the wrong license file.

Unknown host: hostname

The hostname specified on a SERVER line in the license file does not exist

in the network database (probably /etc/hosts).

lm_server: lost all connections

This message is logged when all the connections to a server are lost. This

probably indicates a network problem.

NO DAEMON lines, exiting

The license daemon logs this message if there are no DAEMON lines in the

license file. Since there are no vendor daemons to start, there is nothing to

do.

NO DAEMON line for name

A vendor daemon logs this error if it cannot find its own DAEMON name in

the license file.

Flexible License Manager (FLEXlm) A–31

• • • • • • • •

4.3 DAEMON SOFTWARE ERROR MESSAGES

accept: message

An error was detected in the accept system call.

ATTEMPT TO START VENDOR DAEMON xxx with NO MASTER

A vendor daemon was started with no master selected. This is an internal

consistency error in the daemons.

BAD PID message from nnn: pid: xxx (msg)

A top-level vendor daemon received an invalid PID message from one of

its children (daemon number xxx).

BAD SCONNECT message: (message)

An invalid �server connect" message was received.

Cannot create pipes for server communication

The pipe call failed.

Can't allocate server table space

A malloc error. Check swap space.

Connection to node TIMED OUT

The daemon could not connect to node.

Error sending PID to master server

The vendor server could not send its PID to the top-level server in the

hierarchy.

Illegal connection request to DAEMON

A connection request was made to DAEMON, but this vendor daemon is not

DAEMON.

Illegal server connection request

A connection request came in from another server without a DAEMON
name.

KILL of child failed, errno = nnn

A daemon could not kill its child.

Appendix AA–32
F
L
E
X
L
M

No internet port number specified

A vendor daemon was started without an internet port.

Not enough descriptors to re-create pipes

The �top-level" daemon detected one of its sub-daemon's death. In trying

to restart the chain of sub-daemons, it was unable to get the file

descriptors to set up the pipes to communicate. This is a fatal error, and

the daemons must be re-started.

read: error message

An error in a read system call was detected.

recycle_control BUT WE DIDN'T HAVE CONTROL

The hierarchy of vendor daemons has become confused over who holds

the control token. This is an internal error.

return_reserved: can't find feature listhead

When a daemon is returning a reservation to the �free reservation" list, it

could not find the listhead of features.

select: message

An error in a select system call was detected.

Server exiting

The server is exiting. This is normally due to an error.

SHELLO for wrong DAEMON

This vendor daemon was sent a �server hello" message that was destined

for a different DAEMON.

Unsolicited msg from parent!

Normally, the top-level vendor daemon sends no unsolicited messages. If

one arrives, this message is logged. This is a bug.

WARNING: CORRUPTED options list (o->next == 0)

Options list TERMINATED at bad entry

An internal inconsistency was detected in the daemon's option list.

Flexible License Manager (FLEXlm) A–33

• • • • • • • •

5 FLEXLM LICENSE ERRORS

FLEXlm license error, encryption code in license file is inconsistent

Check the contents of the license file using the license data sheet for the

product. Correct the license file and run the lmreread command.

However, do not change the last (fourth) field of a SERVER line in the

license file. This cannot have any effect on the error message but changing

it will cause other problems.

license file does not support this version

If this is a first time install then follow the procedure for the error message:

FLEXlm license error, encryption code in license file is
inconsistent

because there may be a typo in the fourth field of a FEATURE line of your

license file. In all other cases you need a new license because the current

license is for an older version of the product.

Replace the FEATURE line for the old version of the product with a

FEATURE line for the new version (it can be found on the new license

data sheet). Run the lmreread command afterwards. You can have only

one version of a feature (previous versions of the product will continue to

work).

FLEXlm license error, cannot find license file

Make sure the license file exists. If the pathname printed on the line after

the error message is incorrect, correct this by setting the

LM_LICENSE_FILE environment variable to the full pathname of the

license file.

FLEXlm license error, cannot read license file

Every user needs to have read access on the license file and at least

execute access on every directory component in the pathname of the

license file. Write access is never needed. Read access on directories is

recommended.

FLEXlm license error, no such feature exists

Check the license file. There should be a line starting with:

FEATURE SWiiiiii–jj

Appendix AA–34
F
L
E
X
L
M

where "iiiiii" is a six digit software code and "jj" is a two digit host code

for identifying a compatible host architecture. During product installations

the product code is shown, e.g. SW008002, SW019002. The number in the

software code is the same as the number in the product code except that

the first number may contain an extra leading zero (it must be six digits

long).

The line after the license error message describes the expected feature

format and includes the host code.

Correct the license file using the license data sheet for the product and run

the lmreread command. There is one catch: do not add extra SERVER

lines or change existing SERVER lines in the license file.

FLEXlm license error, license server does not support this feature

If the LM_LICENSE_FILE variable has been set to the format

number@host then see first the solution for the message:

FLEXlm license error, no such feature exists

Run the lmreread program to inform the license server about a changed

license data file. If lmreread succeeds informing the license server but the

error message persists, there are basically three possibilities:

1. The license key is incorrect. If this is the case then there must be an error

message in the log file of lmgrd. Correct the key using the license data

sheet for the product. Finally rerun lmreread. The log file of lmgrd is

usually specified to lmgrd at startup with the -l option or with >.

2. Your network has more than one FLEXlm license server daemon and the

default license file location for lmreread differs from the default assumed

by the program. Also, there must be more than one license file. Try one of

the following solutions on the same host which produced the error

message:

- type:

 lmreread –c /usr/local/flexlm/licenses/license.dat

- set LM_LICENSE_FILE to the license file location and retry the

lmreread command.

- use the lmreread program supplied with the product SW000098,

Flexible License Manager. SW000098 is bundled with all TASKING

products.

Flexible License Manager (FLEXlm) A–35

• • • • • • • •

3. There is a protocol version mismatch between lmgrd and the daemon

with the name "Tasking" (the vendor daemon according to FLEXlm

terminology) or there is some other internal error. These errors are always

written to the log file of lmgrd. The solution is to upgrade the lmgrd

daemon to the one supplied in SW000098, the bundled Flexible License

Manager product.

On the other hand, if lmreread complains about not being able to

connect to the license server then follow the procedure described in the

next section for the error message "Cannot read license file data from

server". The only difference with the current situation is that not the

product but a license management utility shows a connect problem.

FLEXlm license error, Cannot read license file data from server

This indicates that the program could not connect to the license server

daemon. This can have a number of causes. If the program did not

immediately print the error message but waited for about 30 seconds (this

can vary) then probably the license server host is down or unreachable. If

the program responded immediately with the error message then check

the following if the LM_LICENSE_FILE variable has been set to the format

number@host:

- is the number correct? It should match the fourth field of a SERVER

line in the license file on the license server host. Also, the host

name on that SERVER line should be the same as the host name set

in the LM_LICENSE_FILE variable. Correct LM_LICENSE_FILE if

necessary.

In any case one should verify if the license server daemon is running.

Type the following command on the host where the license server

daemon (lmgrd) is supposed to run.

On SunOS 4.x:

ps wwax | grep lmgrd | grep –v grep

On SunOS 5.x (Solaris 2.x):

ps –ef | grep lmgrd | grep –v grep

If the command does not produce any output then the license server

daemon is not running. See below for an example how to start lmgrd.

Appendix AA–36
F
L
E
X
L
M

Make sure that both license server daemon (lmgrd) and the program are

using the same license data. All TASKING products use the license file

/usr/local/flexlm/licenses/license.dat unless overruled by the

environment variable LM_LICENSE_FILE . However, not all existing

lmgrd daemons may use the same default. In case of doubt, specify the

license file pathname with the -c option when starting the license server

daemon. For example:

lmgrd –c /usr/local/flexlm/licenses/license.dat \

–l /usr/local/flexlm/licenses/license.log &

and set the LM_LICENSE_FILE environment variable to the

license.dat pathname mentioned with the -c option of lmgrd before

running any license based program (including lmreread, lmstat,

lmdown). If lmgrd and the program run on different hosts, transparent

access to the license file is assumed in the situation described above (e.g.

NFS). If this is not the case, make a local copy of the license file (not

recommended) or set LM_LICENSE_FILE to the form number@host, as

described earlier.

If none of the above seems to apply (i.e. lmgrd was already running and

LM_LICENSE_FILE has been set correctly) then it is very likely that there

is a TCP port mismatch. The fourth field of a SERVER line in the license

file specifies a TCP port number. That number can be changed without

affecting any license. However, it must never be changed while the license

server daemon is running. If it has been changed, change it back to the

original value. If you do not know the original number anymore, restart

the license server daemon after typing the following command on the

license server host:

kill PID

where PID is the process id of lmgrd.

Flexible License Manager (FLEXlm) A–37

• • • • • • • •

6 FREQUENTLY ASKED QUESTIONS (FAQS)

6.1 LICENSE FILE QUESTIONS

I've received FLEXlm license files from 2 different companies. Do I

have to combine them?

You don't have to combine license files. Each license file that has any

'counted' lines (the 'number of licenses' field is >0) requires a server. It's

perfectly OK to have any number of separate license files, with different

lmgrd server processes supporting each file. Moreover, since lmgrd is a

lightweight process, for sites without system administrators, this is often

the simplest (and therefore recommended) way to proceed. With v6+

lmgrd/lmdown/lmreread, you can stop/reread/restart a single vendor

daemon (of any FLEXlm version). This makes combining licenses more

attractive than previously. Also, if the application is v6+, using 'dir/*.lic' for

license file management behaves like combining licenses without

physically combining them.

When is it recommended to combine license files?

Many system administrators, especially for larger sites, prefer to combine

license files to ease administration of FLEXlm licenses. It's purely a matter

of preference.

Does FLEXlm handle dates in the year 2000 and beyond?

Yes. The FLEXlm date format uses a 4-digit year. Dates in the 20th century

(19xx) can be abbreviated to the last 2 digits of the year (xx), and use of

this feature is quite widespread. Dates in the year 2000 and beyond must

specify all 4 year digits.

6.2 FLEXLM VERSION

Which FLEXlm versions does TASKING deliver?

For Windows we deliver FLEXlm v6.1 and for UNIX we deliver v2.4.

Appendix AA–38
F
L
E
X
L
M

I have products from several companies at various FLEXlm version

levels. Do I have to worry about how these versions work together?

If you're not combining license files from different vendors, the simplest

thing to do is make sure you use the tools (especially lmgrd) that are

shipped by each vendor.

lmgrd will always correctly support older versions of vendor daemons

and applications, so it's always safe to use the latest version of lmgrd and

the other FLEXlm utilities. If you've combined license files from 2 vendors,

you must use the latest version of lmgrd.

If you've received 2 versions of a product from the same vendor, you must

use the latest vendor daemon they sent you. An older vendor daemon

with a newer client will cause communication errors.

Please ignore letters appended to FLEXlm versions, i.e., v2.4d. The

appended letter indicates a patch, and does NOT indicate any

compatibility differences. In particular, some elements of FLEXlm didn't

require certain patches, so a 2.4 lmgrd will work successfully with a 2.4b

vendor daemon.

I've received a new copy of a product from a vendor, and it uses a new

version of FLEXlm. Is my old license file still valid?

Yes. Older FLEXlm license files are always valid with newer versions of

FLEXlm.

6.3 WINDOWS QUESTIONS

What Windows Host Platforms can be used as a server for Floating

Licenses?

The system being used as the server (where the FLEXlm License Manager

is running) for Floating licenses, must be Windows NT. The FLEXlm

License Manager does not run properly with Windows 95/98.

Why do I need to include NWlink IPX/SPX on NT?

This is necessary for either obtaining the Ethernet card address, or to

provide connectivity with a Netware License server.

Flexible License Manager (FLEXlm) A–39

• • • • • • • •

6.4 TASKING QUESTIONS

How will the TASKING licensing/pricing model change with License

Management (FLEXlm)?

TASKING will now offer the following types of licenses so you can

purchase licenses based upon usage:

License Description Pricing

Node Locked This license can only be used on a
specific system. It cannot be
moved to another system.

The pricing for this
license will be the
current product pricing.

Floating This license requires a network
(license server and a TCP/IP (or
IPX/SPX) connection between
clients and server) and can be used
on any host system (using the
same operating system) in the
network.

The pricing for this
license will be 50%
higher than the node
locked license.

How does FLEXlm affect future product ordering?

For all licenses, node locked or floating, you must provide information

that is used to create a license key. For node locked licenses we must

have the HOST ID. Floating licenses require the HOST ID and HOST

NAME. The HOST ID is a unique identification of the machine, which is

based upon different hardware depending upon host platform. The HOST

NAME is the network name of the machine.

TASKING Logistics CANNOT ship ANY orders that do not include the

HOST ID and/or HOST NAME information.

What if I do not know the information needed for the license key?

We have a software utility (tkhostid.exe) which will obtain and display

the HOST ID so a customer can easily obtain this information. This utility

is available from our web site, placed on all product CDs (which support

FLEXlm), and from technical support. If you have already installed

FLEXlm, you can also use lmhostid.

• In the case of a Node locked license, it is important that the customer

runs this utility on the exact machine he intends to run the

TASKING tools on.

Appendix AA–40
F
L
E
X
L
M

• In the case of a Floating License, the tkhostid.exe (or lmhostid)

utility should be run on the machine on which the FLEXlm license

manager will be installed, e.g. the server. The HOST NAME

information can be obtained from within the Windows Control

Panel. Select "Network", click on "Identification", look for

"Computer name".

How will the �locking" mechanism work?

• For node locked licenses, FLEXlm will first search for an ethernet card.

If one exists, it will lock onto the number of the ethernet card. If an

ethernet card does not exist, FLEXlm will lock onto the hard disk serial

number.

• For floating licenses, the ethernet card number will be used.

What happens if I try to move my node locked license to another

system?

The software will not run.

What does linger-time for floating licenses mean?

When the TASKING product starts to run, it will try to obtain a license

from the license server. The license server keeps track of the number of

licenses already issued, and grants or denies the request. When the

software has finished running, the license is kept by the license server for

a period of time known as the �linger-time". If the same user requests the

TASKING product again within the linger-time, he is granted the license

again. If another user requests a license during the linger-time, his

request is denied until the linger-time has finished

What is the length of the linger-time for floating licenses?

The length of the linger-time for both the PC and UNIX floating licenses is

5 minutes.

Can the linger-time be changed?

Yes. A customer can change the linger-time to be larger (but not shorter)

than the time specified by TASKING.

What happens if my system crashes or I upgrade to a new system?

You will need to contact Technical Support for temporary license keys due

to a system crash or to move from one system to another system. You will

then need to work with your local sales representative to obtain a

permanent new license key.

Flexible License Manager (FLEXlm) A–41

• • • • • • • •

6.5 USING FLEXLM FOR FLOATING LICENSES

Does FLEXlm work across the internet?

Yes. A server on the internet will serve licenses to anyone else on the

internet. This can be limited with the 'INTERNET=' attribute on the

FEATURE line, which limits access to a range of internet addresses. You

can also use the INCLUDE and EXCLUDE options in the daemon option

file to allow (or deny) access to clients running on a range of internet

addresses.

Does FLEXlm work with Internet firewalls?

Many firewalls require that port numbers be specified to the firewall.

FLEXlm v5 lmgrd supports this.

If my client dies, does the server free the license?

Yes, unless the client's whole system crashes. Assuming communications is

TCP, the license is automatically freed immediately. If communications are

UDP, then the license is freed after the UDP timeout, which is set by each

vendor, but defaults to 45 minutes. UDP communications is normally only

set by the end-user, so TCP should be assumed. If the whole system

crashes, then the license is not freed, and you should use 'lmremove' to

free the license.

What happens when the license server dies?

FLEXlm applications send periodic heartbeats to the server to discover if it

has died. What happens when the server dies is then up to the application.

Some will simply continue periodically attempting to re-checkout the

license when the server comes back up. Some will attempt to re-checkout

a license a few times, and then, presumably with some warning, exit.

Some GUI applications will present pop-ups to the user periodically

letting them know the server is down and needs to be re-started.

How do you tell if a port is already in use?

99.44% of the time, if it's in use, it's because lmgrd is already running on

the port - or was recently killed, and the port isn't freed yet. Assuming this

is not the case, then use 'telnet host port' - if it says "can't connect", it's a
free port.

Appendix AA–42
F
L
E
X
L
M

Does FLEXlm require root permissions?

No. There is no part of FLEXlm, lmgrd, vendor daemon or application,

that requires root permissions. In fact, it is strongly recommended that you

do not run the license server (lmgrd) as root, since root processes can

introduce security risks.

If lmgrd must be started from the root user (for example, in a system boot

script), we recommend that you use the 'su' command to run lmgrd as a

non-privileged user:

su username –c” / path / lmgrd –c / path / license.dat \
 –l / path / log”

where username is a non-privileged user, and path is the correct paths to

lmgrd, license.dat and debug log file. You will have to ensure that the

vendor daemons listed in /path-to-license/license.dat have execute

permissions for username. The paths to all the vendor daemons in the

license file are listed on each DAEMON line.

Is it ok to run lmgrd as 'root' (UNIX only)?

It is not prudent to run any command, particularly a daemon, as root on

UNIX, as it may pose a security risk to the Operating System. Therefore,

we recommend that lmgrd be run as a non-privileged user (not 'root'). If

you are starting lmgrd from a boot script, we recommend that you use

su username –c”umask 022; / path / lmgrd \
 –c / path / license.dat –l / path / log”

to run lmgrd as a non-privileged user.

Does FLEXlm licensing impose a heavy load on the network?

No, but partly this depends on the application, and end-user's use. A

typical checkout request requires 5 messages and responses between

client and server, and each message is < 150 bytes.

When a server is not receiving requests, it requires virtually no CPU time.

When an application, or lmstat, requests the list of current users, this can

significantly increase the amount of networking FLEXlm uses, depending

on the number of current users. Also, prior to FLEXlm v5, use of

'port@host' can increase network load, since the license file is

down-loaded from the server to the client. 'port@host' should be, if

possible, limited to small license files (say < 50 features). In v5, 'port@host'

actually improves performance.

Flexible License Manager (FLEXlm) A–43

• • • • • • • •

Does FLEXlm work with NFS?

Yes. FLEXlm has no direct interaction with NFS. FLEXlm uses an

NFS-mounted file like any other application.

Does FLEXlm work with ATM, ISDN, Token-Ring, etc.?

In general, these have no impact on FLEXlm. FLEXlm requires TCP/IP or

SPX (Novell Netware). So long as TCP/IP works, FLEXlm will work.

Does FLEXlm work with subnets, fully-qualified names, multiple

domains, etc.?

Yes, although this behavior was improved in v3.0, and v6.0. When a

license server and a client are located in different domains, fully-qualified

host names have to be used. A fully-qualified hostname is of the form:

node.domain

where node is the local hostname (usually returned by the 'hostname'

command or 'uname -n') domain is the internet domain name, e.g.

'globes.com'.

To ensure success with FLEXlm across domains, do the following:

1. Make the sure the fully-qualified hostname is the name on the SERVER

line of the license file.

2. Make sure ALL client nodes, as well as the server node, are able to 'telnet'

to that fully-qualified hostname. For example, if the host is locally called

'speedy', and the domain name is 'corp.com', local systems will be able to

logon to speedy via 'telnet speedy'. But very often, 'telnet

speedy.corp.com' will fail, locally.

Note that this telnet command will always succeed on hosts in other

domains (assuming everything is configured correctly), since the network

will resolve speedy.corp.com automatically.

3. Finally, there must be an 'alias' for speedy so it's also known locally as

speedy.corp.com. This alias is added to the /etc/hosts file, or if

NIS/Yellow Pages are being used, then it will have to be added to the NIS

database. This requirement goes away in version 3.0 of FLEXlm.

If all components (application, lmgrd and vendor daemon) are v6.0 or

higher, no aliases are required; the only requirement is that the

fully-qualified domain name, or IP-address, is used as a hostname on the

SERVER, or as a hostname in LM_LICENSE_FILE port@host, or @host.

Appendix AA–44
F
L
E
X
L
M

Does FLEXlm work with NIS and DNS?

Yes. However, some sites have broken NIS or DNS, which will cause

FLEXlm to fail. In v5 of FLEXlm, NIS and DNS can be avoided to solve this

problem. In particular, sometimes DNS is configured for a server that's not

current available (e.g., a dial-up connection from a PC). Again, if DNS is

configured, but the server is not available, FLEXlm will fail.

In addition, some systems, particularly Sun, SGI, require that applications

be linked dynamically to support NIS or DNS. If a vendor links statically,

this can cause the application to fail at a site that uses NIS or DNS. In these

situations, the vendor will have to relink, or recompile with v5 FLEXlm.

Vendors are strongly encouraged to use dynamic libraries for libc and

networking libraries, since this tends to improve quality in general, as well

as making NIS/DNS work.

On PCs, if a checkout seems to take 3 minutes and then fails, this is

usually because the system is configured for a dial-up DNS server which is

not currently available. The solution here is to turn off DNS.

Finally, hostnames must NOT have periods in the name. These are not

legal hostnames, although PCs will allow you to enter them, and they will

not work with DNS.

We're using FLEXlm over a wide-area network. What can we do to

improve performance?

FLEXlm network traffic should be minimized. With the most common uses

of FLEXlm, traffic is negligible. In particular, checkout, checkin and

heartbeats use very little networking traffic. There are two items, however,

which can send considerably more data and should be avoided or used

sparingly:

• 'lmstat -a' should be used sparingly. 'lmstat -a' should not be

used more than, say, once every 15 minutes, and should be

particularly avoided when there's a lot of features, or concurrent

users, and therefore a lot of data to transmit; say, more than 20

concurrent users or features.

• Prior to FLEXlm v5, the 'port@host' mode of the LM_LICENSE_FILE

environment variable should be avoided, especially when the

license file has many features, or there are a lot of license files

included in LM_LICENSE_FILE. The license file information is sent

via the network, and can place a heavy load. Failures due to

'port@host' will generate the error LM_SERVNOREADLIC (-61).

B

MOTOROLA
COMPATABILITY

A
P

P
E

N
D

IX

Appendix BB–2
M

O
T

O
R

O
L

A
 C

O
M

P
A

T
IB

IL
IT

Y

B

A
P

P
E

N
D

IX

Motorola Compatibility B–3

• • • • • • • •

1 INTRODUCTION

This appendix describes the interoperability between the TASKING and
Motorola tool sets. That means, how to create an application with the TASKING
DSP56xxx C compiler, which can be debugged with the Motorola debugger; or
how to link Motorola object files and library files with the TASKING linker.

2 CREATING A MOTOROLA COFF OBJECT FILE

The TASKING tools do not have the capability to generate objects in the

Motorola CLAS COFF object format with debug information. In order to

overcome this limitation it is possible to generate an assembly file with the

TASKING tools, which can then be assembled with the Motorola

assembler.

Generating an assembly file with the TASKING tools uses the following

path:

 | \
 V (.c) |
 |
 c563 |
 |
 | |– cc563 (control program)
 V (.src) |
 |
 as563 |
 |
 | |
 V (.asm) /

The control program calls both the compiler and the assembler. The

compiler generates a source file. This source file generated by the

compiler contains COFF style debug information that will be converted by

the Motorola assembler. The generated source file is taken through the

TASKING assembler to further optimize this assembly code. Among the

optimizations performed by the TASKING assembler are move

parallelization, jump and branch optimizations and DO into REP

conversion. The assembler generates an assembly file that is compatible

with the Motorola assembler.

Appendix BB–4
M

O
T

O
R

O
L

A
 C

O
M

P
A

T
IB

IL
IT

Y

It is possible to use the source file from the compiler (.src) in the

Motorola assembler directly. However, in doing so optimizations will get

lost.

In order to support the generation of Motorola compatible assembly code

with COFF debug information, the following command line options must

be supplied to the TASKING tools:

Tool Option

cc563 –S

c563 –Cg

as563 –S

cc563

The -S option tells the 563xx control program to generate a Motorola

compatible assembly file. It does so by taking the following steps:

1. call the compiler with the -C1 option (full Motorola compatibility

mode)

2. call the assembler with the -S option (generate an assembly file instead

of an object file)

The control program stops after generating the assembly file. The linker

and locator will not be invoked. The generated assembly file is generated

by default by adding a .asm extension to the input file. You can specify

the name of the generated assembly file with the -o option of the control

program.

If, for any reason, you do not want to use the full compatibility mode, you

have to specify the compiler and assembler options yourself. For instance:

cc563 –g –Wc–Cg –Wa–S –c –o file.asm file.c

will only generate COFF debug information, but will skip the other

compatibility options.

c563

The -Cg option tells the compiler to generate COFF style debug

information instead of the normal SYMB directives. The COFF debug

information is only generated when the -g option is specified as well. It is

highly advisable to use the -Ca option as well in order to generate

Motorola assembler compatible output.

Motorola Compatibility B–5

• • • • • • • •

When using the -Ca option it is not possible to use packed strings. The

_packed keyword will then be ignored.

as563

The -S option instructs the assembler to generate an assembly file instead

of an object file. It is still possible to generate a list file as well.

Using the assembler for optimization can result in synchronization loss

between the generated code and the debugging information. Using the

-OG option will prevent this, but has negative effects on the optimization

performed.

Example:

This example compiles the file demo.c with the TASKING compiler, and

uses the Motorola assembler and linker to generate the final COFF

absolute file. The -g switch is given in order to get debug information.

cc563 –S –g demo.c
g563c demo.asm –g –o demo.cld –mx–memory

or if you do not want to use the different control programs:

c563 –g –C1 demo.c
as563 –S demo.src
asm56300 –c –Bdemo.cln demo.asm
dsplnk –g –c –Bdemo.cld crt0563x.cln demo.cln –Llib563cx.clb

The same examples, now using Y memory:

cc563 –S –g –My demo.c
g563c demo.asm –g –o demo.cld

or

c563 –C1 –g –My demo.c
as563 –S demo.src
asm56300 –c –Bdemo.cln demo.asm
dsplnk –g –c –Bdemo.cld crt0563y.cln demo.cln –Llib563cy.clb

The Motorola assembler needs the -c option in order to work correctly.

Appendix BB–6
M

O
T

O
R

O
L

A
 C

O
M

P
A

T
IB

IL
IT

Y

Known restrictions:

- Packed strings are not supported when generating Motorola compatible

assembly. The _packed keyword is ignored because the Motorola

assembler does not have directives to support this.

- The TASKING tools can move variables around between registers

and/or stack in order to get optimal code. To allow the debugger to

keep track of these moves the compiler generates lifetime information,

telling the debugger in which register the variable is located. The COFF

debug format cannot handle lifetime information. Therefore, this

information is lost. Watching an automatic variable in a debugger could

result in looking at the wrong place. This problem can be overcome by

turning off the optimizations with -O0.

- The default memory model for the TASKING tools is X memory. The

Motorola tools use Y memory. You need to specify another memory

model for one of the tool chains. You can either specify the -My

option to the TASKING control program for generating programs which

use Y memory, or you can specify the -mx-memory option to the

Motorola control program.

The COFF libraries as supplied with the Tasking tools use the X memory.

- Floating point variables generated by the Motorola C compiler have a

format that differs from the TASKING format. Restrict the use of floating

point variables to one compilation system.

3 USING LIBRARY FUNCTIONS

Due to certain differences between the TASKING compiler and the

Motorola compiler it is normally not possible to use the standard Motorola

libraries with COFF objects generated with the TASKING tools. Therefore,

the TASKING libraries are supplied in both IEEE object format and in

COFF object format. These COFF libraries fully support Motorola's file

system support. The libraries support the 563xx in 24-bit mode

(librt24.clb , libfp24.clb , libc24.clb), the 566xx (librt6.clb ,

libfp6.clb , libc6.clb) and the 5600x (librt.clb , libfp.clb ,

libcm.clb , libcs.clb , libcr.clb).

Even when using the TASKING COFF libraries it is necessary to use the

crt0 startup files as provided by Motorola. This is necessary because this

file contains numerous variables that are filled in by the Motorola linker.

Motorola Compatibility B–7

• • • • • • • •

When using the malloc() functions from the TASKING COFF libraries,

you must use a linker memory control file in order to specify the heap.

Normally theTASKING linker/locator allocates the heap and generates

symbols for the start and end of it.. You have to specify the symbols

F_lc_bh and F_lc_eh , where F_lc_bh indicates the beginning of the

heap area and the F_lc_eh the end of the heap area.

The heap must reside in default memory space.

An example of a memory control file is given here:

reserve y:$3000..$3fff
symbol F_lc_bh y:$3000
symbol F_lc_eh y:$4000

This will define the Y memory from $3000 till $4000 as heap space

which the malloc() routine can use for allocating memory.

4 LINKING MOTOROLA CLAS/COFF

The TASKING linker has the capability to read in Motorola CLAS/COFF

object files and library files. It will convert debug information in these files

into that of the TASKING IEEE-695 object format. This allows debugging a

program compiled with the Motorola tools with CrossView Pro.

The TASKING linker looks at the filename extension to determine what

kind of input file it is. In order for the linker to recognize a file as a

Motorola CLAS/COFF file the file must have the extension .cln . A

Motorola CLAS/COFF library file must have the extension .clb .

Example:

This example links the CLAS COFF object file util.cln with the program

prog.c . The Motorola library is specified as well in order to resolve any

run-time routines which might be called from util.cln . The control

program automatically links with the TASKING libraries.

cc563 –g prog.c util.cln lib563x.clb

Appendix BB–8
M

O
T

O
R

O
L

A
 C

O
M

P
A

T
IB

IL
IT

Y

Known restrictions:

- The Motorola linker/locator uses internally defined symbols like DSIZE.

This symbol defines the beginning of the dynamic stack. The TASKING

linker/locator does not know the DSIZE symbol. Therefore, this will

remain an unresolved symbol. This will only happen if you link with

the Motorola startup code (crt0563x.cln). Use the TASKING startup

code instead.

- The TASKING libraries are translated with a different calling convention

than the Motorola compiler uses. So, any calls to a TASKING library

function from a program compiled by the Motorola compiler will fail. It

is possible to recompile the libraries with the -Ccr option to create

libraries that use the Motorola calling convention.

- The TASKING libraries are compiled for using X memory by default.

The Motorola compiler generates programs that use Y memory by

default. Either recompile all the TASKING libraries for Y memory

(-My), or specify -mx-memory to the Motorola tools.

5 RUNNING EXAMPLES FROM EDE

The TASKING DSP56xxx toolchain now provides a special EDE file to

generate code in Motorola COFF format with debug information. The

following installation steps are necessary to allow this to work:

1. Install the Motorola executables (at least the assembler and linker, and

optionally the debugger) in a single directory. Add the path to this

directory to the PATH environment variable, as prescribed by the Motorola

installation instructions (adding it to Project | Directories |
Executable Files Path will not work).

2. In the Project | Select Toolchain... dialog, select the correct

toolchain that is shown as "with Motorola tools". The Project |
Project Options... dialog will now show options for the Motorola

tools instead of the TASKING linker and locator. To revert to the TASKING

tools later, select the correct toolchain without the additional "with

Motorola tools".

3. Add the path to the Motorola library directory to Project |
Directories | Library Files Path to allow the tools to find the

Motorola startup files.

4. Select an EDE option, for instance Project | Project Options |
Motorola Debugger , and press OK to force the tools to rebuild the

makefile.

Motorola Compatibility B–9

• • • • • • • •

5. Press the Rebuild button to build the project.

6. Press the Debug button to start the Motorola debugger. The debugger will

automatically load the executable.

7. To run an example that writes to stdout , like "hello world", enter the

following commands on the debugger command line:

streams enable
redirect stdout file .txt
go

8. The output of the program can now be found in file .txt in the current

working library.

This method works for the 'hello','sieve' and 'whet' examples. For the

'dhry_1' and 'dhry_2' examples, a linker control file must be added to the

project to create a heap for the malloc() function. The following contents

can be used for this file, but it may require changes for different memory

sizes on actual hardware:

reserve x$2000..$3fff
symbol F_lc_bh x:$2000
symbol F_lc_eh x:$3000

Add the linker control file to the linker options with the -Rfilename
command. Running the examples in the bench directory may take a very

long time on the simulator. Other examples cannot be run because they

contain assembly files that are not Motorola compliant.

Appendix BB–10
M

O
T

O
R

O
L

A
 C

O
M

P
A

T
IB

IL
IT

Y

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

Symbols
#define, 4-19

#include, 4-29, 4-83

#pragma, 4-86

#pragma optimize, 4-35

#undef, 4-77

-DNOCOPY, 7-5

-M option, 3-8

__asm, 3-32, 3-45

__DATE__, 4-77

__FILE__, 4-77

__LINE__, 4-77

__STDC__, 4-77

__TIME__, 4-77

_abs, 3-44

_asm, 3-31, 3-44

_asmfunc, 3-41

_at attribute, 3-14

_bank, 3-75

_C56, 3-82, 4-77

_cache_get_end, 3-46

_cache_get_start, 3-45

_CACHE_SECTOR_SIZE, 4-78

_cadd, 3-46

_callee_save, 7-9

_cdiv, 3-47

_circ, 3-70

_circ pointer, 3-15, 3-16

_close, 6-14

_cmul, 3-48

_compatible, 7-8

_complex, 3-15, 3-16

_csub, 3-49

_DEFMEM, 3-13, 4-78

_DSP, 3-13, 4-78

_ext, 3-49

_external, 3-5

_fabs, 3-50

_filbuf, 6-14

_flsbuf, 6-14

_fopen, 6-15

_fract, 3-15, 3-16, 3-17

_fract2int, 3-50

_fsqrt, 3-51

_inline, 3-29

_insize, 6-15

_int2fract, 3-51

_internal, 3-5

_ioread, 6-15

_ioread.c, 6-14, 6-15

_iowrite, 6-16

_iowrite.c, 6-16

_L, 3-5

_labs, 3-52

_lfabs, 3-52

_lfract2long, 3-53

_long2lfract, 3-53

_lseek, 6-16

_lseek.c, 6-16

_memcpy, 3-54

_memset, 3-54

_MODEL, 3-13, 4-77

_near, 3-5

_nop, 3-55

_nosat, 3-18

_open, 6-17

_P, 3-5

_packed, 3-77

_packsize, 6-17

_packstr, 6-17

_pdiv, 3-55

_pflush, 3-56

_pflushun, 3-56

_pfree, 3-57

_plock, 3-57

_pstr_get, 6-18

_pstr_put, 6-18

_punlock, 3-58

_read, 6-19

_rol, 3-59

_ror, 3-59

_round, 3-60

_sema_clr, 3-61

IndexIndex–4
IN
D
E
X

_sema_set, 3-62

_sema_tst, 3-63

_STKMEM, 3-13, 4-78

_stop, 3-63

_strcmp, 3-64, 3-66

_strcpy, 3-64

_strlen, 3-65

_swi, 3-66

_tolower, 6-19

_toupper, 6-20

_unpackstr, 6-20

_unpstrlen, 6-20

_USP, 4-78

_wait, 3-67

_write, 6-20

_X, 3-5

_Y, 3-5

Numbers
2-complement values, 7-29

A
abort, 6-21

abs, 6-21

absolute addressing mode, 2-14

absolute value, intrinsic function, 3-44

acos, 6-21

adding files to a project, 2-28

address, absolute, 3-14

alias, 4-39

alias checking, 4-91

allocation graph, 2-8

ansi standard, 2-3, 3-3, 4-77

as56, 2-15

as563, 2-15

asctime, 6-21

asin, 6-22

asm, 4-86

asm_noflush, 4-86

assembly, assessing variables, 3-32

assembly functions, 3-41

assembly interfacing, 3-86

assembly source file, 2-15

assert, 6-22

assert.h, 6-7

assert, 6-22
atan, 6-22

atan2, 6-22

atexit, 6-23

atof, 6-23

atoi, 6-23

atol, 6-23

automatic variables, 3-23

B
backend

compiler phase, 2-5
optimization, 2-5, 2-8

bank switching, 3-75

bitfield, 2-14

branch tail merging, 2-8

bsearch, 6-24

buffer, circular, 3-70

built-in functions, 3-42

C
C

inline functions, 3-29
language extensions, 3-3

C library, 6-8

implementation details, 6-8
interface description, 6-14

C startup code, 7-3

c56.h, 3-82, 6-7

C563INC, 4-29, 4-83

C56INC, 4-29, 4-83

Index Index–5

• • • • • • • •

cache global variables, 4-50

cache support (563xx), 3-72

alignment, 3-72
examples, 3-74
intrinsic functions, 3-73
regions, 3-73
sector size, 4-18

cache_align_now, 4-87

cache_region_end, 4-87

cache_region_start, 4-87

cache_sector_size, 4-87

calling convention, 7-7

Motorola compatible, 7-8
calloc, 6-24

ceil, 6-24

char type, 3-83

circular buffer, 3-70

CLAS format, 2-18

clearerr, 6-25

clock, 6-25

code generator, 2-6, 3-24

code size, 3-86

COFF libraries, B-6

COFF object file

generation of, B-3
linking, B-7

command file, 4-24

command line processing, 4-24

comments, C++ style, 4-14

common subexpression elimination,

2-8

compatibility options, 4-16

compiler, invocation, 4-6

compiler hardware environment, 7-12

compiler limits, 4-93

compiler options

-?, 4-11
-A, 4-12
-C, 4-16
-c, 4-18
-D, 4-19
-E, 4-20
-e, 4-22

-Ec, 4-20
-Ei, 4-20
-El, 4-20
-Em, 4-20
-Ep, 4-20
-err, 4-23
-Ex, 4-20
-f, 4-24
-g, 4-26
-gc, 4-26
-gf, 4-26
-gl, 4-26
-gn, 4-26
-H, 4-28
-I, 4-29
-L, 4-30
-M, 4-31
-m, 4-33
-n, 4-34
-O, 4-35, 4-37
-o, 4-71
-Oa / -OA, 4-39
-Oc / -OC, 4-40
-Oe / -OE, 4-42
-Of / -OF, 4-43
-Og / -OG, 4-46
-Oh / -OH, 4-47
-Oi / -OI, 4-48
-Oj / -OJ, 4-50
-Ol / -OL, 4-51
-On / -ON, 4-53
-Oo / -OO, 4-55, 4-58
-Op / -OP, 4-56
-Or / -OR, 4-57
-Ot / -OT, 4-60
-Ou / -OU, 4-62
-Ov / -OV, 4-63
-Ow / -OW, 4-64
-Ox / -OX, 4-66
-Oy / -OY, 4-67
-Oz / -OZ, 4-69
-p, 4-72
-R, 4-73

IndexIndex–6
IN
D
E
X

-r, 4-74
-s, 4-75
-t, 4-76
-U, 4-77
-u, 4-79
-V, 4-80
-w, 4-81
-wstrict, 4-81
-z, 4-82
detailed description, 4-10
overview, 4-6
overview in functional order, 4-8
priority, 4-6

compiler phases, 2-5

backend, 2-5
code generator phase, 2-6
optimization phase, 2-5
peephole optimizer phase, 2-6
pipeline scheduler, 2-6

frontend, 2-5
optimization phase, 2-5
parser phase, 2-5
preprocessor phase, 2-5
scanner phase, 2-5

compiler structure, 2-15

complex, 3-15, 3-16

addition, 3-18, 3-46
division, 3-18, 3-47
multiplication, 3-18, 3-48
multiply-accumulate, 3-47
subtraction, 3-18, 3-49

complex type, 3-18

compound assignment, 4-42

conditional jump reversal, 2-7, 4-43

conio.h, 6-7

_insize, 6-15
const, 3-26

constant folding, 2-6

constant propagation, 2-8, 4-56

control flow optimization, 2-7, 4-43

control program, 4-3

options overview, 4-4
conversions, ANSI C, 3-19

copy propagation, 2-8, 4-56

cos, 6-25

cosh, 6-25

creating a makefile, 2-29

cross jumping, 2-8

cross-assembler, 2-15

CSE, 2-8, 4-40

cstart.inc, 7-3

ctime, 6-25

ctype.h, 6-7

_tolower, 6-19
_toupper, 6-20
isalnum, 6-35
isalpha, 6-35
isascii, 6-35
iscntrl, 6-35
isdigit, 6-35
isgraph, 6-36
islower, 6-36
isprint, 6-36
ispunct, 6-36
isspace, 6-36
isupper, 6-37
isxdigit, 6-37
toascii, 6-63
tolower, 6-63
toupper, 6-63

D
data types, 3-15�3-22

_circ pointer, 3-15, 3-16
_complex, 3-15, 3-16
_fract, 3-15, 3-16
double, 3-15, 3-16
enum, 3-15, 3-16
float, 3-15, 3-16
long _fract, 3-15, 3-16
pointer, 3-15, 3-16
signed char, 3-15, 3-16, 3-19
signed int, 3-15, 3-16

Index Index–7

• • • • • • • •

signed long, 3-15, 3-16
signed short, 3-15, 3-16
unsigned char, 3-15, 3-16, 3-19
unsigned int, 3-15, 3-16
unsigned long, 3-15, 3-16
unsigned short, 3-15, 3-16

dead code elimination, 2-8

dead store elimination, 2-9

debug information, 4-26

debugger, starting, 2-27

detailed option description, compiler,

4-10�4-82

development flow, 2-16

difftime, 6-26

directory separator, 4-84

div, 6-26

DO loop, 2-10

nesting depth, 2-13
double, 3-15, 3-16

DSP, 2-3

dynamic scaling, 3-89

E
EDE, 2-21

build an application, 2-25
load files, 2-23
open a project, 2-23
select a CPU, 2-25
select a toolchain, 2-22
start a new project, 2-28
starting, 2-21

embedded development environment.

See EDE

endasm, 4-87

endoptimize, 4-90

enum, 3-15, 3-16

environment variable

C563INC, 4-29, 4-83
C56INC, 4-29, 4-83
LM_LICENSE_FILE, 1-16, A-6

overview of, 2-19
PATH, 1-3, 1-7, 1-9
TMPDIR, 1-4, 1-7, 1-9
used by toolchain, 2-19

errno.h, 6-7

error level, 5-4

errors, 5-5

backend, 5-32
FLEXlm license, A-33
frontend, 5-5

example

starting EDE, 2-21
using EDE, 2-21
using the control program, 2-29
using the makefile, 2-31

examples, run from EDE, B-8

execution speed, 3-86

exit, 6-26

exit status, 5-4

exp, 6-26

expression propagation, 4-42

expression rearrangement, 2-6

expression simplification, 2-7

extensions to C, 3-3

external memory interface, 7-4

F
F_START, 7-4

fabs, 6-27

fac, 7-27

FAQ, FLEXlm, A-37

fast loops, 4-51

fclose, 6-27

fcntl.h, 6-7

feof, 6-27

ferror, 6-27

fflush, 6-27

fgetc, 6-28

fgetpos, 6-28

fgets, 6-28

IndexIndex–8
IN
D
E
X

Flexible License Manager, A-1

FLEXlm, A-1

daemon log file, A-25
daemon options file, A-7
FAQ, A-37
frequently asked questions, A-37
license administration tools, A-8

for Windows, A-22
license errors, A-33

float, 3-15, 3-16

float.h, 6-7

floating license, 1-10

floating point, 7-20

accumulators, 7-28
arithmetic (ieee-754), 7-24
arithmetic conversions, 7-20
basic operations, 7-26
code generation, 7-31
constant, 7-20
fractional type, 3-17
implementation, 7-20
interfacing, 7-26
internal register usage, 7-29
single precision, 7-21

memory usage, 7-26
number range, 7-23

storage 2-complement, 7-29
type, 7-20

floating point library, 6-69

floor, 6-28

fmod, 6-29

fopen, 6-29

formatters

printf, 6-67
scanf, 6-67

fprintf, 6-30

fputc, 6-30

fputs, 6-30

fractional data

scaling, 3-89
shifting, 3-88

fractional data type, 3-17

fractional number, printing, 6-45

fractional type, 3-90

floating point constants, 3-17
long, 3-17
operations, 3-17
rounding, 3-17
saturation, 3-18
wrapping, 3-18

fread, 6-31

free, 6-31

freopen, 6-31

frexp, 6-32

frontend

compiler phase, 2-5
optimization, 2-5, 2-6

fscanf, 6-32

fseek, 6-32

fsetpos, 6-33

ftell, 6-33

ftm, 7-27

function pointers, 3-11

function qualifier, _asmfunc, 3-41

function return types, 7-8

functions

built-in, 3-42
intrinsic, 3-42

fwrite, 6-33

G
getc, 6-33

getchar, 6-34

getenv, 6-34

gets, 6-34

global variables, 4-50

gmtime, 6-34

H
hardware environment, 7-12

hardware loop, 3-83

Index Index–9

• • • • • • • •

hardware loop generation, 2-9

hardware loops, 4-47, 4-57

header files, 6-7

heap, 7-4, 7-19

begin of, 7-19
end of, 7-19

heap size, 7-19

hostid, determining, 1-17

hostname, determining, 1-18

I
identifier, 4-14

IEEE-695, 2-18

include files, 4-83

default directory, 4-84
initialized C variables, 7-5

initialized variables, 3-25

inline assembly, 3-31

input function, calling mechanism, 6-6

input/output functions, 6-6

installation

licensing, 1-10
Linux, 1-5

Debian, 1-6
RPM, 1-5
tar.gz, 1-7

UNIX, 1-8
Windows, 1-3

integer division, 3-27

integer modulo, 3-27

integer type, 3-90

integral promotion, 3-19

Intel hex format, 2-18

function, inline C, 3-29

interrupt, 3-68

symbolic, 3-68
interrupt routine, 3-93

intrinsic functions, 3-42

__asm, 3-45
_abs, 3-44

_asm, 3-44
_cache_get_end, 3-46
_cache_get_start, 3-45
_cadd, 3-46
_cdiv, 3-47
_cmul, 3-48
_csub, 3-49
_ext, 3-49
_fabs, 3-50
_fract2int, 3-50
_fsqrt, 3-51
_int2fract, 3-51
_labs, 3-52
_lfabs, 3-52
_lfract2long, 3-53
_long2lfract, 3-53
_memcpy, 3-54
_memset, 3-54
_nop, 3-55
_pdiv, 3-55
_pflush, 3-56
_pflushun, 3-56
_pfree, 3-57
_plock, 3-57
_punlock, 3-58
_rol, 3-59
_ror, 3-59
_round, 3-60
_sema_clr, 3-61
_sema_set, 3-62
_sema_tst, 3-63
_stop, 3-63
_strcmp, 3-64, 3-66
_strcpy, 3-64
_strlen, 3-65
_swi, 3-66
_wait, 3-67

introduction, 2-3

invariant code, 4-48

invocation

compiler, 4-6
control program, 4-3

IndexIndex–10
IN
D
E
X

isalnum, 6-35

isalpha, 6-35

isascii, 6-35

iscntrl, 6-35

isdigit, 6-35

isgraph, 6-36

islower, 6-36

isprint, 6-36

ispunct, 6-36

isspace, 6-36

isupper, 6-37

isxdigit, 6-37

iterate_at_leat_once, 4-88

J
jump chain, 3-81, 4-64

jump chaining, 2-7, 4-43

jump table, 3-81, 4-60, 4-64

jumptable_memory, 4-89

K
keyword

_callee_save, 7-9
_compatible, 7-8
_inline, 3-29
_nosat, 3-18

L
labs, 6-37

language extensions, 4-12

lc56, 2-15

lc563, 2-15

ldexp, 6-37

ldiv, 6-37

leaf function handling, 2-9

libraries

C, 6-8
floating point, 6-5, 6-69
overview, 6-5
rebuilding, 6-4
run-time, 6-68

library functions, B-6

license

floating, 1-10
node-locked, 1-10
obtaining, 1-10

license file

default location, A-6
location, 1-16

licensing, 1-10

lifetime information, B-6

limits, compiler, 4-93

limits.h, 6-7

linker, 2-15

linking COFF, B-7

lk56, 2-15

lk563, 2-15

LM_LICENSE_FILE, 1-16, A-6

lmcksum, A-10

lmdiag, A-11

lmdown, A-12

lmgrd, A-13

lmhostid, A-15

lmremove, A-16

lmreread, A-17

lmstat, A-18

lmswitchr, A-20

lmver, A-21

locale.h, 6-7

localeconv, 6-38
setlocale, 6-52

localeconv, 6-38

localtime, 6-38

locator, 2-15

log, 6-38

log10, 6-38

logical expression optimization, 2-7

Index Index–11

• • • • • • • •

long _fract, 3-15, 3-16

longjmp, 6-38

loop, hardware, 3-83

loop optimization, 2-8

loop rotation, 2-7, 4-51

loop unrolling, 2-9, 4-62

loop variable detection, 4-40

M
MAC instruction, 2-14

makefile

automatic creation of, 2-29
updating, 2-29

malloc, 6-39

mask, 4-33

math.h, 6-7

acos, 6-21
asin, 6-22
atan, 6-22
atan2, 6-22
ceil, 6-24
cos, 6-25
cosh, 6-25
exp, 6-26
fabs, 6-27
floor, 6-28
fmod, 6-29
frexp, 6-32
ldexp, 6-37
log, 6-38
log10, 6-38
modf, 6-42
pow, 6-43
sin, 6-53
sinh, 6-53
sqrt, 6-54
tan, 6-62
tanh, 6-62

mblen, 6-39

mbstowcs, 6-40

mbtowc, 6-40

memchr, 6-40

memcmp, 6-41

memcpy, 6-41

memmove, 6-41

memory

copy, 3-54
fill, 3-54

memory access, 3-4

memory mapped I/O, 3-87

memory mapped register, 3-21

file, 3-21
memory model, 3-8

5600x limitations, 3-11
566xx, 3-9
mixed, 3-8
mixed (5600x), 3-11
mixed (563xx), 3-9
reentrant, 3-8, 3-12
static, 3-8
static (5600x), 3-9

memory type, 3-27

memset, 6-41

mktime, 6-42

model selection, 3-87

modf, 6-42

Motorola CLAS format, 2-18

Motorola examples, run from EDE,

B-8

Motorola S-record, 2-18

move slot, 2-10

multi-line macros, 4-20

N
no_iterate_at_leat_once, 4-88

node-locked license, 1-10

nop insertion, 4-53

nopack_strings, 4-90

IndexIndex–12
IN
D
E
X

nosource, 4-90

O
offsetof, 6-42

operating mode register, 7-12

optimization, 4-35, 4-37

backend, 2-5, 2-8
code, 3-89
frontend, 2-5, 2-6
specific, 2-9

absolute addressing mode usage,
2-14

bitfields, 2-14
hardware DO and REP loops, 2-10
instruction parallelization, 2-10
MAC instruction generation, 2-14
replacing NOPs, 2-10

optimization (backend)

allocation graph, 2-8
dead store elimination, 2-9
hardware loop generation, 2-9
leaf function handling, 2-9
loop unrolling, 2-9
peephole optimizations, 2-9
register contents tracking, 2-9

optimization (frontend)

common subexpression elimination,
2-8

conditional jump reversal, 2-7
constant folding, 2-6
constant/copy propagation, 2-8
control flow optimization, 2-7
cross jumping and branch tail

merging, 2-8
dead code elimination, 2-8
expression rearrangement, 2-6
expression simplification, 2-7
jump chaining, 2-7
logical expression optimization, 2-7
loop optimization, 2-8
loop rotation, 2-7

remove useless jumps, 2-7
switch optimization, 2-7

optimize, 4-90

options, control program, 4-4

output file, 4-71

output function, calling mechanism,

6-6

P
pack_strings, 4-90

packed strings, 3-77

examples, 3-78
library functions, 3-77
pragmas, 3-78

parallel move, 2-10, 3-88, 4-55, 4-58

parameter passing, 7-7

parser, 2-5

PATH, 1-3, 1-7, 1-9

Patriot memory pages, 4-72

peephole optimization, 2-9, 4-67

peephole optimizer, 2-6

perror, 6-42

pipeline scheduler, 2-6

pointer, 3-15, 3-16

pointers, 3-27

portable C code, 3-82

pow, 6-43

power-on vector, 7-4

pragma

asm, 3-40, 4-86
asm_noflush, 3-40, 4-86
cache_align_now, 3-72, 4-87
cache_region_end, 3-73, 4-87
cache_region_start, 3-73, 4-87
cache_sector_size, 4-87
endasm, 3-40, 4-87
endoptimize, 4-90
inline assembly, 3-40
iterate_at_leat_once, 4-88
jumptable_memory, 4-89
no_iterate_at_leat_once, 4-88

Index Index–13

• • • • • • • •

nopack_strings, 3-78, 4-90
nosource, 4-90
on command line, 4-82
optimize, 4-90
pack_strings, 3-78, 4-90
source, 4-90

pragma optimize

flow level, 4-35
function level, 4-35

pragmas, 4-86

predefined symbols, 4-77

_C56, 4-77
_CACHE_SECTOR_SIZE, 4-78
_DEFMEM, 3-13, 4-78
_DSP, 3-13, 4-78
_MODEL, 3-13, 4-77
_STKMEM, 3-13, 4-78
_USP, 4-78

printf, 6-43

printf formatter, 6-67

project files, adding files, 2-28

putc, 6-45

putchar, 6-46

puts, 6-46

Q
qsort, 6-46

R
raise, 6-47

RAM, 3-5, 3-23, 3-24, 3-25, 3-27

rand, 6-47

realloc, 6-47

rebuilding libraries, 6-4

recursion, 3-23

reentrant, 3-10, 3-11, 3-23, 3-24

reentrant functions, 3-12

reg56xxx.h, 6-7

register

ep, 7-14
file, 3-21
la, 7-14
lc, 7-14
memory mapped, 3-21
operating mode (omr), 7-12
reserve, 4-74
sc, 7-14
sp, 7-14
ssh, 7-14
ssl, 7-14
status (sr), 7-12
sz, 7-14

register allocation, 4-69

register allocation graph, 4-46

register contents tracking, 2-9, 4-66

register usage, 7-6

calling convention, 7-7
register variables, 3-24

remove, 6-48

remove useless jumps, 2-7

rename, 6-48

REP loop, 2-10

return address, 7-15

return values, 5-4

rewind, 6-48

ROM, 3-27

run-time library, 6-68

S
sample session, 2-21

saturation, 3-18

scaling, dynamic, 3-89

scanf, 6-49

scanf formatter, 6-67

scanner, 2-5

section, 3-8

name, 7-10
overlayable, 7-15

IndexIndex–14
IN
D
E
X

usage, 7-10
section name, 4-73

semaphores, 3-61

clear, 3-61
set, 3-62
test, 3-63

setbuf, 6-51

setjmp, 6-51

setjmp.h, 6-7

longjmp, 6-38
setjmp, 6-51

setlocale, 6-52

setting the environment, 1-3, 1-7, 1-9

setvbuf, 6-52

shift fractional data, 3-88

short type, 3-83

SIGABRT, 6-53

SIGFPE, 6-53

SIGILL, 6-53

SIGINT, 6-53

signal, 6-53

signal.h, 6-7

raise, 6-47
signal, 6-53

signals, 6-53

signed

char, 3-15, 3-16, 3-19
int, 3-15, 3-16
long, 3-15, 3-16
short, 3-15, 3-16

SIGSEGV, 6-53

SIGTERM, 6-53

silicon mask, 4-33

sin, 6-53

sinh, 6-53

smart programming, 3-83

software floating point. See floating

point

source, 4-90

sprintf, 6-54

sqrt, 6-54

srand, 6-54

sscanf, 6-54

stack, 3-23, 7-4, 7-15

begin of, 7-17
end of, 7-17
organization of, 7-16
system, 7-15
user, 7-15

stack extension, 7-17

stack pointer, 3-11

stack size, 7-15

start.asm, 7-6

start.obj, 7-3

startup code, 7-3

status register, 7-12

stdarg.h, 6-7

va_arg, 6-64
va_end, 6-64
va_start, 6-64

stddef.h, 6-7

offsetof, 6-42
stdio.h, 6-7

_close, 6-14
_filbuf, 6-14
_flsbuf, 6-14
_fopen, 6-15
_lseek, 6-16
_open, 6-17
_read, 6-19
_write, 6-20
clearerr, 6-25
fclose, 6-27
feof, 6-27
ferror, 6-27
fflush, 6-27
fgetc, 6-28
fgetpos, 6-28
fgets, 6-28
fopen, 6-29
fprintf, 6-30
fputc, 6-30
fputs, 6-30
fread, 6-31
freopen, 6-31
fscanf, 6-32

Index Index–15

• • • • • • • •

fseek, 6-32
fsetpos, 6-33
ftell, 6-33
fwrite, 6-33
getc, 6-33
getchar, 6-34
gets, 6-34
perror, 6-42
printf, 6-43
putc, 6-45
putchar, 6-46
puts, 6-46
remove, 6-48
rename, 6-48
rewind, 6-48
scanf, 6-49
setbuf, 6-51
setvbuf, 6-52
sprintf, 6-54
sscanf, 6-54
tmpfile, 6-62
tmpnam, 6-63
ungetc, 6-64
vfprintf, 6-65
vprintf, 6-65
vsprintf, 6-65

stdlib.h, 6-8

abort, 6-21
abs, 6-21
atexit, 6-23
atof, 6-23
atoi, 6-23
atol, 6-23
bsearch, 6-24
calloc, 6-24
div, 6-26
exit, 6-26
free, 6-31
getenv, 6-34
labs, 6-37
ldiv, 6-37
malloc, 6-39
mblen, 6-39

mbstowcs, 6-40
mbtowc, 6-40
qsort, 6-46
rand, 6-47
realloc, 6-47
srand, 6-54
strtod, 6-60
strtol, 6-60
strtoul, 6-61
system, 6-61
wcstombs, 6-66
wctomb, 6-66

storage specifier, 3-5

_external, 3-5
_internal, 3-5
_L, 3-5
_near, 3-5
_P, 3-5
_X, 3-5
_Y, 3-5

strcat, 6-55

strchr, 6-55

strcmp, 6-55

strcoll, 6-55

strcpy, 6-56

strcspm, 6-56

strerror, 6-56

strftime, 6-57

string, 3-26

packed, 3-77
string compare, 3-64

string copy, 3-64

string length, 3-65

string.h, 6-8

_packsize, 6-17
_packstr, 6-17
_pstr_get, 6-18
_pstr_put, 6-18
_unpackstr, 6-20
_unpstrlen, 6-20
memchr, 6-40
memcmp, 6-41
memcpy, 6-41

IndexIndex–16
IN
D
E
X

memmove, 6-41
memset, 6-41
strcat, 6-55
strchr, 6-55
strcmp, 6-55
strcoll, 6-55
strcpy, 6-56
strcspn, 6-56
strerror, 6-56
strlen, 6-58
strncat, 6-58
strncmp, 6-58
strncpy, 6-58
strpbrk, 6-59
strrchr, 6-59
strspn, 6-59
strstr, 6-59
strtok, 6-60
strxfrm, 6-61

strlen, 6-58

strncat, 6-58

strncmp, 6-58

strncpy, 6-58

strpbrk, 6-59

strrchr, 6-59

strspn, 6-59

strstr, 6-59

strtod, 6-60

strtok, 6-60

strtol, 6-60

strtoul, 6-61

structure tag, 3-80

strxfrm, 6-61

subscript strength reduction, 4-63

switch optimization, 2-7, 3-81, 4-60,

4-64

switch statement, 3-81

symbols, predefined, 4-77

system, 6-61

system stack, 7-15

T
tan, 6-62

tanh, 6-62

target memory, 3-27

time, 6-62

time.h, 6-8

asctime, 6-21
clock, 6-25
ctime, 6-25
difftime, 6-26
gmtime, 6-34
localtime, 6-38
mktime, 6-42
strftime, 6-57
time, 6-62

TMPDIR, 1-4, 1-7, 1-9

tmpfile, 6-62

tmpnam, 6-63

toascii, 6-63

tolower, 6-63

toupper, 6-63

type qualifier, volatile, 3-25

typedef, 3-80

U
ungetc, 6-64

unsigned

char, 3-15, 3-16, 3-19
int, 3-15, 3-16
long, 3-15, 3-16
short, 3-15, 3-16

unsigned characters, 3-19

unsigned qualifier, 3-83

updating makefile, 2-29

user stack, 7-15, 7-17

Index Index–17

• • • • • • • •

V
va_arg, 6-64

va_end, 6-64

va_start, 6-64

variable

automatic, 3-23
initialized, 3-25, 7-5
register, 3-24

variable argument list, 3-12

variables, from assembly, 3-32

version information, 4-80

vfprintf, 6-65

volatile, 3-25

vprintf, 6-65

vsprintf, 6-65

W
warnings, 5-5

warnings (suppress), 4-81

wcstombs, 6-66

wctomb, 6-66

wrapping, 3-18

IndexIndex–18
IN
D
E
X

	TABLE OF CONTENTS
	SOFTWARE INSTALLATION
	Introduction
	Installation for Windows
	Setting the Environment

	Installation for Linux
	RPM Installation
	Debian Installation
	Tar.gz Installation
	Setting the Environment

	Installation for UNIX Hosts
	Setting the Environment

	Licensing TASKING Products
	Obtaining License Information
	Installing Node-Locked Licenses
	Installing Floating Licenses
	Starting the License Daemon
	Setting Up the License Daemon to Run Automatically
	Modifying the License File Location
	How to Determine the Hostid
	How to Determine the Hostname

	OVERVIEW
	Introduction to DSP56xxx Family C Cross-Compiler
	General Implementation
	Compiler Phases
	Frontend Optimizations
	Backend Optimizations
	Specific Optimizations
	Replacing NOPs
	Instruction Parallelization (parallel moves)
	Hardware DO and REP Loops
	Bitfields
	MAC Instruction Generation
	Absolute Addressing Mode Usage

	Compiler Structure
	Environment Variables
	Sample Session
	Using EDE
	Using the Control Program
	Using the Makefile

	LANGUAGE IMPLEMENTATION
	Introduction
	Accessing Memory
	Storage Specifiers
	Memory Models
	16 and 24-bit Models for DSP563xx
	DSP566xx Memory Model
	Static Model for DSP5600x
	Mixed Model for DSP5600x
	DSP5600x Static and Mixed Model Limitations
	Reentrant Model
	_MODEL, _DSP, _DEFMEM and _STKMEM

	The _at() Attribute

	Data Types
	The Fractional Data Type
	The Complex Data Type
	Unsigned Characters
	ANSI C Type Conversions
	Memory Mapped Registers

	Automatic Variables
	Register Variables
	Initialized Variables
	Type Qualifier volatile
	Strings
	Pointers
	Integer Division and Modulo
	Inline C Functions
	Inline Assembly
	Using the _asm Intrinsic Function
	Using the __asm Intrinsic Function
	Using Inline Assembly Pragmas
	Linking with Separate Assembly Routines

	Intrinsic Functions
	Interrupts
	Circular Buffers
	DSP563xx Cache Support
	Cache Alignment
	Cache Regions
	Cache Intrinsic Functions
	Examples

	Patriot Bank Switching Support
	Packed Strings
	Library Functions
	Pragmas
	Examples

	Structure Tags
	Typedef
	Switch Statement
	Portable C Code
	Efficient Use of the DSP56xxx Tool Set
	Char and Short Types
	Unsigned
	Hardware Loops
	Speed vs. Size
	Assembly Interfacing
	Selecting the Most Efficient Model
	Memory Mapped I/O from C
	Parallel Moves
	Shifting Fractional Data
	Dynamic Scaling
	Reviewing the Optimized Code
	Integer and Fractional Types
	Interrupt Routines

	COMPILER USE
	Control Program
	Compilers
	Detailed Description of the Compiler Options

	Include Files
	Pragmas
	Alias Checking
	Compiler Limits

	COMPILER DIAGNOSTICS
	Introduction
	Return Values
	Errors and Warnings

	LIBRARIES
	Introduction
	Rebuilding Libraries
	Libraries Overview
	Input/Output Functions
	Header Files
	C Libraries
	C Library Implementation Details
	C Library Interface Description
	Printf and Scanf Formatting Routines

	Run-time Library
	Floating Point Library

	RUN-TIME ENVIRONMENT
	Startup Code
	Register Usage
	Calling Conventions
	Section Usage
	Compiler Hardware Environment
	Operating Mode Register
	Status Register
	Other Registers

	Stack
	Stack Extension

	Heap
	Floating Point
	Software Floating Point Implementation
	Characteristics of Floating Types
	Floating Point Constants
	Usual Arithmetic Conversions
	Single Precision Floating Point Format
	Single Precision Floating Point Number Range
	Comparison to IEEE-754 Standard for Binary Floating Point Arithmetic
	Single Precision Floating Point Memory Usage

	Software Floating Point Interfacing
	The Basic Floating Point Operations
	The Floating Point Accumulators
	Storage 2-Complement Format Values
	Internal Register Usage

	Floating Point Code Generation

	SUPPORT FOR USER-DESIGNED TARGET BOARDS
	FLEXIBLE LICENSE MANAGER (FLEXlm)
	Introduction
	License Administration
	Overview
	Providing For Uninterrupted FLEXlm Operation
	Daemon Options File

	License Administration Tools
	lmcksum
	lmdiag (Windows only)
	lmdown
	lmgrd
	lmhostid
	lmremove
	lmreread
	lmstat
	lmswitchr (Windows only)
	lmver
	License Administration Tools for Windows
	LMTOOLS for Windows
	FLEXlm License Manager for Windows

	The Daemon Log File
	Informational Messages
	Configuration Problem Messages
	Daemon Software Error Messages

	FLEXlm License Errors
	Frequently Asked Questions (FAQs)
	License File Questions
	FLEXlm Version
	Windows Questions
	TASKING Questions
	Using FLEXlm for Floating Licenses

	MOTOROLA COMPATABILITY
	Introduction
	Creating a Motorola COFF Object File
	Using Library Functions
	Linking Motorola CLAS/COFF
	Running Examples from EDE

	INDEX

