
2. INTEROPERABILITY PATHS BETWEEN MOTOROLA AND
TASKING TOOLCHAINS

The interconnections between the TASKING and the Motorola
tools are depicted in the diagram below. Both toolchains can
process C and assembly sources with few restrictions.  The
TASKING toolchain can read the Motorola libraries and object
files. In addition, the compiler can create assembly source
files with COFF debug information which can be processed by
the Motorola tools. The TASKING assembler can output an
optimized assembly source file for the Motorola assembler
while taking advantage of the optimizations performed by our
assembler.

2.1 Migrating C and assembler sources
The first step towards migration is to be certain that it
compiles and operates correctly in the original environment.
When this has been accomplished, the project can be moved
to the TASKING environment on a file-by-file basis. Of course,
it is possible to move all of the source files to the new
environment in one go, but there is always a risk that the
result will not work and errors will be difficult to track.

Typically the migration begins with a new project based on the
TASKING C/C++ for DSP563xx v3.5r1 with Motorola tools to
which all Motorola generated object files are added. The

DSP56xxx Migration Guide

1. INTRODUCTION
In many instances customers need to migrate their existing
DSP projects from the Motorola GNU based tools to the
TASKING toolchain. In some cases, it is desirable to create a
Motorola COFF object that can be debugged with the
Motorola debuggers. This migration guide provides an
approach for these processes. Details of the differences
between the toolchains and how to solve them are supplied in
a separate paragraph. It is assumed readers of this document
will be making use of EDE although with minor effort it should
be of good use for command line users as well. Paragraphs 1
through 3 contain generalized information and have been
added as a setup to paragraph 4 which deals with an actual
example available under download migrate.zip from the
TASKING website (www.tasking.com/support/DSP56xxx/
appnotes.html). If these introductory paragraphs give rise to
questions they should at some point be answered when
working out paragraph 4. To be able to faultlessly work
through this document you MUST make sure your system
meets the following conditions:

� You have downloaded migrate.zip and explicitly installed it
in c:\migrate

� The TASKING tools reside in 
c:\program files\altium\c563\v3.5r1

1

MIGRATION GUIDE
TASKING DSP56xxx Tools

TASKING Motorola

C++ compiler

C compiler

C compiler

alo optimiser

optimising assembler

assembler

linker

locator

debuggerdebugger

linker

.cpp

.c

.ic

.asm

.obj

.src

.asm

.cln

.cln

.src/.asm

.ic/.c

.out

.abs

.cld
.cld

� The DPSLOC environmental variable has been properly set,
e.g. c:\progra~1\motorola\dsp

� The PATH environmental variable MUST include the
Motorola GNU based tools

Paragraph 4 differentiates between two toolchains which can
both be selected from EDE: Project | Select toolchain. These
toolchains are important to remember and have been listed
below:

� TASKING C/C++ for DSP563xx v3.5r1
� TASKING C/C++ for DSP563xx v3.5r1 with Motorola tools

The first toolchain is the one you would normally use. It solely
consists of TASKING tools. The latter one integrates a mixture
of TASKING and Motorola tools. This is also the reason why
Motorola tools MUST be included in the PATH environmental
variable. Throughout this document MUST and MUST NOT
will be capitalized in order to indicate that when ignored to all
likeability the concerning topic will not work. It is further
assumed that Project Options is the shorthand notation of
the main project properties plain Project | Project Options.



project is then built and the resulting executable is checked to
see if it still runs correctly. There should be no problems
because in this first phase because the Motorola objects are
immediately fed to the Motorola linker/locator resulting in the
original - Motorola generated - program image.
In the second phase each Motorola generated object file is
selectively removed from the EDE project and replaced with
the source module from which it was generated. Rebuilding
the project will now build this module using the TASKING
compiler and assembler using Motorola compatible settings
and the resulting optimised assembler is passed onto the
Motorola assembler in the normal way. Before proceeding to
the next module the new executable must be tested as
before. Possible errors are limited to the new object file and
are easy to track down. Repeat this process until all C and
assembly sources are handled and compiled correctly. The
resulting executable will, in general, be much smaller and
faster than the original one.

3. DEBUGGING A TASKING APPLICATION WITH THE MOTOROLA
DEBUGGER

The TASKING C/C++ for DSP563xx v3.5r1 with Motorola tools
requires the usage of the Motorola debugger since CrossView
Pro cannot read Motorola COFF objects. Existing TASKING
projects - build with the TASKING C/C++ for DSP563xx v3.5r1
toolchain - can be debugged with the Motorola debugger as
well. This requires selecting the Motorola COFF format from
Project Options | Linker/Locator | Output Format.
Additionally the Motorola debugger MUST be entered as third
party alternative from Build | Options | Misc. The executable
will not contain HLL debug information as the locator does not
support processing it for Motorola COFF. This requirement can
only be met by using the TASKING C/C++ for DSP563xx
v3.5r1 with Motorola tools. Usually there is no need to debug
an existing TASKING project with the Motorola debugger as
CrossView Pro can be used for this purpose.

4. EXAMPLE MIGRATION PROJECT
This paragraph explains that exact steps to take for migrating
your Motorola GNU based tools project to TASKING. It makes

2

MIGRATION GUIDE
TASKING DSP56xxx Tools

TASKING DSP56XXX MIGRATION GUIDE

There is only one exception to the rule of replacing
modules with intermittent tests. This is when floating

points are used in combination with standard C library
routines. 

Since the TASKING tools and the Motorola GNU based tools
use a different single precision floating point implementation
there is no way a mixed project - a project containing a mixture
of TASKING and Motorola objects - will work even if they are
linked with both the TASKING and Motorola C-library. Even
though such a project would link without errors it would speak
two languages where floats are concerned possibly leading to
runtime errors such as unexpected exceptions but with
certainty all of its calculus will be wrong. For such projects the
testing MUST be postponed until all modules have been
migrated.

NOTE

use of migrate.zip which can be downloaded from the
DSP56xxx application notes page (www.tasking.com/support/
DSP56xxx/appnotes.html). The application in this example
computes the FFT of a fixed set of input data and prints the
result values to the stdout output. The example has been set
up for the DSP563xx, but will also work for the other
supported DSPs with the appropriate changes. After
unzipping the folder layout will be as follows:

cc::\\mmiiggrraattee\\ssrrcc\\mmoottoorroollaa contains Motorola source modules

cc::\\mmiiggrraattee\\ssrrcc\\ttaasskkiinngg contains TASKING migrated source modules

cc::\\mmiiggrraattee\\oouutt\\mmoottoorroollaa used during true Motorola program file generation

cc::\\mmiiggrraattee\\oouutt\\mmiixxeedd used during migration

cc::\\mmiiggrraattee\\oouutt\\ttaasskkiinngg used during true TASKING program file generation

The first step towards migration is to launch a command shell
and change directory to:
� c:\migrate\out\motorola

From which the following batch MUST be executed:
� rebuild.bat

Provided the conditions of the introduction are met the
Motorola sources should build without errors. After
completion the Motorola simulator MUST be invoked as listed
below:
� sim56300 sim.cmd

The simulator will output a file called fft.txt which MUST be
compared to fft_ref.txt as stored in the Motorola source folder.
For the Motorola GNU based tools this may seem like overkill
since fft_ref.txt was made with those same tools but even
then it may proof useful for detecting inconsistencies. The
compare becomes of more interest when TASKING tools, first
partially when using the TASKING C/C++ for DSP563xx v3.5r1
with Motorola tools, later on fully when using the TASKING
C/C++ for DSP563xx v3.5r1 toolchain, come to replace the
Motorola GNU based tools. At any point in time the results
must be the same as with the original. A change is an
indication that the most recent change - either a change in the
original sources or a project setting - was most likely incorrect.

Referring to the concluding note of section 2.1 this is one
of those projects where floats are used. 

Normally this would indicate that all testing MUST be
postponed until all modules have been migrated and linked
against the TASKING C, runtime- and floating point libraries.
This example allows a compromise. Floats are only used in
fft_sub.c. Provided that it is migrated last intermediate tests
are still allowed. This example will work along those lines.

NOTE



3

MIGRATION GUIDE
TASKING DSP56xxx Tools

TASKING DSP56XXX MIGRATION GUIDE

Having created a set of true Motorola objects the next step is
to create a new project from EDE using the TASKING C/C++
for DSP563xx v3.5r1 with Motorola tools. This project MUST
be created in:
� c:\migrate\out\mixed

The simulator command file in this folder will attempt to load
an object called mixed.cld which is the reason why the project
itself MUST be called mixed.pjt. The assembler objects
created after executing rebuild.bat MUST be added and
mixed.opt MUST be imported via Project | Load Options.
After having done this the most paramount project settings are:

PPrroojjeecctt OOppttiioonn SSeelleeccttiioonn

C compiler
Code Generation | Default data memory: Y memory

Assembler
Miscellaneous | Define user macros: FFTSIZE=16

Motorola Assembler
Define user macros: FFTSIZE 16

Motorola Linker
Motorola Linker Options | additional libraries: lib563cy.clb

Before trying your first build from this project you MUST add
the library-, include- and execute paths to Project |

Directories as listed below. Note the abbreviated notation for
folder program files. This is a requirement for the Motorola
GNU based tools that make part of the TASKING C/C++ for
DSP563xx v3.5r1 with Motorola tools. The TASKING C/C++
for DSP563xx v3.5r1 toolchain does not have problems with
white spaced folders as all tools used in this toolchain are
white space compliant.
� c:\progra~1\altium\c563\v3.5r1\bin

� c:\progra~1\altium\c563\v3.5r1\include;

c:\migrate\src\motorola

� c:\progra~1\altium\c563\v3.5r1\lib\563xx;

c:\progra~1\motorola\dsp\dsp\lib

The build should be faultless and has to be followed with a
simulation:
� sim56300 sim.cmd

As before the resulting fft.txt MUST be compared to fft_ref.txt
before proceeding to the next step which is to selectively
replace all assembler object modules with their corresponding
source modules. Not all sources will compile or assemble by
default. This depends on the differences between the
Motorola GNU based tools and the TASKING tools. After each
successfully added module you MUST rebuild, simulate and
re-compare files fft.txt and fft_ref.txt. In this example we start
with the assembly file fft_calc.asm as stored in:
� c:\migrate\src\motorola

To have the TASKING assembler optimise fft_calc.asm it
MUST first be copied to fft_calc.src before adding it to the
project (note that adding implicitly assumes removing the
original Motorola object file of the same name). The resulting
output file from the TASKING assembler will be named

fft_calc.asm and will then finally be assembled by the
Motorola GNU assembler. Rebuilding the project will give a
warning 'XDEF interpreted as GLOBAL' which may be
ignored. Conclude with simulating and comparing the output.

The next module in line is fft_main.c. As this module is fully
written in ANSI-C the changes are zero. It will compile without
error. Simulating mixed.cld will result in an fft.txt that is not
different from fft_ref.txt. This leaves us with only fft_sub.c and
changes to this module are minor because from v2.2r2 the
__asm intrinsic is also supported by the TASKING 563xx
compiler package. In fact it will compile without errors the first
time you try it. This suggests no extra edits are required and
indeed one could decide to do so. However, we recommend
the type of buffers table and data (see fft_main.h) are changed
from int to _circ _L long because fft_calc.src tells us they are
in fact circular. The Motorola GNU based tools do not feature
a type similar to _circ and their implementation of _L is that
of two sequential words in default data space. These two
account for the usage of int  in the original sources. As __asm
only uses the addresses of both tables there is no harm in
that. 

For the TASKING 563xx tools the usage of _circ _L long will
allow the compiler to execute all the required optimizations
that can be attributed to these types. After changing the types
for table and data the module will no longer compile. Instead
it will report and error for the constraints used for the second
parameter of __asm. This is only logical since circular pointers
and addresses consist of an address and modulo register. The
Motorola GNU tools use constraint "A" since all of its pointers
are 24 bits only. With the change of storage type the
constraint MUST now be changed to "C". The observant reader
will remember that before running the final test the C-library
MUST be changed from Motorola to TASKING. 

As all TASKING C-libraries are for default X space this will take
three steps. The first one is to select default X space from
Project Options | C Compiler | Code Generation. The
second one is to clear the Additional libraries edit box from
Project Options | Motorola Linker | Motorola Linker

Options and thirdly the Link with default TASKING libraries
checkbox MUST be ticked. All this MUST be concluded with
an entire rebuild, simulate and compare. You will find two
small differences which should be accounted to the difference
in floating point implementation between Motorola GNU
based tools and TASKING tools explained earlier.

At the point of writing this document it should be noted
that Motorola's automatic DSIZE calculation fails when

not using default Y memory. This means DSIZE must be
overloaded by the user program and it is for this reason
__semi_stack__ has been included in the pre-migrated version
of fft_sub.c. Define __OVERLOAD_DSIZE__ was automatically
set while mixed.opt was being imported.

NOTE



4

MIGRATION GUIDE
TASKING DSP56xxx Tools

TASKING DSP56XXX MIGRATION GUIDE

convenience only using the command line switches. Their
EDE synonyms can be selected from both Project Options  |

C Compiler | Code Generation and  Project Options | C

Compiler | Output.  When using the steering program the
user may suffice with using -S. It will know this option
belongs to the TASKING assembler and as its meaning is to
generate Motorola assembly - having used TASKING
assembler optimizations - it will launch the compiler to use 
-C1 which enables all compatibility switches.

CCoommmmaanndd PPuurrppoossee CCooddee eeffffiicciieennccyy 
lliinnee sswwiittcchh eeffffeeccttss

-Ca Motorola assembler compatible output more efficient11

-Cc Motorola compatible calling convention less efficient code

-Cg Generate Motorola COFF debug none22

information

-Cr R6 is user stack pointer none

-Cs Motorola (old-style TASKING) stack frame less efficient code

-My Default Y data space

1. Provided the TASKING assembler uses -SS to take full advantage from
TASKING optimizer controls generated by the TASKING compiler.

2. This switch controls the type of debug information. Whether it is
generated or not still depends on compiler command line option -gg.

The compiler also implements a function modifier that
specifies the GNU calling convention. By specifying the GNU
calling convention only where necessary, the implied
overhead can be avoided in the rest of the code. In the
example below __motorola can be resolved from a Motorola
library or object and __tasking can be linked to a Motorola
project that uses it.

The EDE or command line options for the user stack pointer
and for the default memory are still required when using this
method. Enabling these options will allow generation of
assembly sources to be mixed with GNU assembly sources
and objects. The floating-point format however remains an
unresolved issue i.e. the use of floating point numbers MUST
be restricted to one of the two toolchains. C object files may
also reference floating-point and run-time library subroutines.
As the names and implementations of these routines are

extern _compatible int __motorola(int,int,int);

int _compatible __tasking(int a,int b,int c)

{

return a+b+c;

}

void tasking_C(void)

{

__motorola(1,2,3);

__tasking(1,2,3);

}

The final step towards migration is to create a true TASKING
project. It should be created in:
� c:\migrate\out\tasking

Before importing tasking.opt the toolchain MUST be
switched to TASKING C/C++ for DSP563xx v3.5r1 thereby
enabling a true TASKING project without Motorola tools. At
this point you can either add your migrated modules or the
pre-migrated ones from:
� c:\migrate\src\tasking

Note that the pre-migrated modules use pre-processor
controls to allow it to compile and assemble on both the
TASKING tools and the Motorola GNU based tools. You can
now proceed to build the project and simulate it by either
evoking CrossView Pro from the command line:
� xfw56x tasking.abs -tcfg sim563.cfg -p sim.cmd

Or by pressing the debug-button from the editor interface. The
resulting output, again can be compared with the original
fft_text.txt.

5. COMPATIBILITY ISSUES
The differences between the TASKING and the Motorola
toolchains result in several compatibility issues. Most of these
differences are rooted in different base technology within
these tools; others have been introduced to improve the code
quality of the application. This paragraph describes the
differences and methods to resolve them in the migration
process. Also note that both the compiler- and assembler
manual contain appendixes with supplemental information:
� Assembler Manual, Appendix F, Migration from Motorola

CLAS
� Compiler Manual, Appendix B, Motorola Compatibility

5.1 Compatibility issues on the C source level
From a C point of view there are little differences between the
TASKING and Motorola toolchains. The major difference is the
better code quality of the TASKING compiler. An important
improvement in code density and speed can be obtained by
upgrading the algorithm from the integer to the fractional data
type. This will remove many shift instructions that are only
necessary to express the floating-point calculations in the
integer data type. However, backward compatibility with the
fixed-point implementation is difficult to retain. Compatibility
with the floating-point version of the algorithm is almost
automatic because the fractional data type can easily be
mapped to a floating-point one.

5.2 Compatibility issues on the C object level
The object files of the TASKING and GNU tools usually cannot
be mixed, although the TASKING linker can read the GNU
object format. By default there are differences in the user
stack pointer, the default memory space, the function calling
convention and the floating-point number format. The
TASKING C compiler provides compatibility options that
enable the generation of GNU compatible objects at the cost
of code efficiency. These have been listed below, for



5

MIGRATION GUIDE
TASKING DSP56xxx Tools

TASKING DSP56XXX MIGRATION GUIDE

different, they MUST be provided for both toolchains. The
TASKING floating-point and run-time libraries have been
included in both IEEE and Motorola COFF format.

5.3 Compatibility issues on the assembler source level
The TASKING and Motorola assemblers are to a great extent
compatible. The primary differences are in the opt directive,
the org directive and the handling of forward references.
Some of the opt directives are missing in the TASKING
assembler; others are not present in the Motorola assembler.
The missing directives represent fairly uncommon options,
whereas the additional directives handle new features, like
optimization switches.

The org directive also has new features, e.g., named sections
and section attributes. A different method of creating code
overlays exists in the TASKING assembler the details of which
can be found in the assembler manual. The TASKING
assembler will support forward references in a section,
whereas the Motorola assembler only assembles on a strict
per-line basis. This gives rise to differences in the handling of
expressions involving labels.

Last, but not least, the TASKING assembler contains a new
opcode called gmove and a new directive called void which
are both used to improve code optimization. The TASKING
assembler also prefers the keyword extern to xref. By using
conditional assembly, it is possible to switch between the
syntaxes and retain compatibility with both assemblers. For
instance, the TASKING compiler can generate Motorola
assembler compatible output which emits the following code
at the start of a file:
It is clear that the opt directive is emitted in two flavours; the

TASKING keyword extern is mapped to xref, the TASKING
opcode gmove is mapped to move, and the directives void
and SYMB are turned into a comment. In addition, a section is
created which is not required in the TASKING assembler.

5.4 Compatibility issues on the assembler object level
The TASKING linker can read Motorola COFF object files (with
extension .cln) as generated by the Motorola assembler. The
only restrictions are in the debug information and floating-
point symbols. The linker cannot convert debug information
from COFF format into TASKING format, therefore omits

them. For proven object code this is not important. The
second restriction deals with the TASKING object format,
which cannot store floating-point values for symbols,
therefore the following construct cannot be stored in the
TASKING object format:

To solve this problem the floating-point symbol can be kept
local, imported from an include file or scaled to an integer
value. It is also possible to convert a Motorola .cln file to the
TASKING object format with the linker. Simply feed the .cln
file to the linker without specifying any libraries to create an
.obj file. This will remove the debug info as described before.

The Motorola linker cannot read the TASKING object format. To
read TASKING output files, the source files must be
reprocessed with the Motorola assembler. The TASKING
assembler has a command line switch to generate Motorola
compatible assembly, with all optimizations in place, instead
of the normal .obj file. The resulting assembler file (default
extension .asm) can then be fed to the Motorola assembler,
creating a .cln file suitable for further processing with the
Motorola tools.

5.5 Compatibility issues with libraries
The TASKING linker can access Motorola COFF object libraries
(with extension .cld) which are generated by the Motorola
archiver dsplib. The restriction on floating-point symbols,
mentioned above, remains valid.

6. CONCLUSION
Migrating a project from the Motorola GNU based tools to the
TASKING tools is relatively simple through use of compatibility
switches on compiler and assembler level. The file-by-file
migration method greatly decreases the failure risk of this
process. The added functionality and ease of use of the
TASKING tools prove that migration is a desirable step to
increase product quality and productivity.

7. REFERENCES
1. Hal Chamberlin, Musical Applications of Microprocessors,

Prentice-Hall, 1982.
2. DSP56KCC Users Manual, Motorola, 1997.

8. GLOSSARY
The term source file is used for any handwritten file that
translates to object code, whether in C or assembly language.
The term object file is used for intermediate binary files. The
term executable is used for the binary file that can be run on
the target DSP.

The Motorola C compiler for the DSP56xxx is based on the
GNU C compiler framework; therefore the term GNU tools is
widely used. The Motorola assembler package (assembler,
linker and archiver) is needed to process the output of the
GNU tools. Motorola has adopted the COFF (Common Object
File Format) object file format, but has added some of its own

if @def(_AS56)
opt
nops,now109,noop,opjmp,norp,w139,oprep,cache128
else
opt nops,cc,norp
endif

if !@def(_AS56)
define extern 'xref'
define gmove  'move'
define void  ';void'
define SYMB  ';SYMB'
section demo_c
endif

TWOPI   equ   6.28
global  TWOPI



6

MIGRATION GUIDE
TASKING DSP56xxx Tools

TASKING DSP56XXX MIGRATION GUIDE

features. The result is called Motorola COFF or the MCOFF file
format. Default filename extensions in this format are .cln
(relocatable object file), .cld (executable, absolute object file),
and .clb (object library). The Motorola debuggers (text mode
and graphical user interface) accept only the .cld file format.

The TASKING C/C++ toolchain for the DSP56xxx uses the
IEEE-695 standard for the object file format. Default filename
extensions in this format are .obj (relocatable object file), .abs
(absolute object file, executable), and .a (object library). The
TASKING debugger, called CrossView Pro, only accepts the
.abs file format. On the Windows platform, the TASKING tools
come with an integrated development environment called
EDE (Embedded Development Environment). The EDE has an
automatic makefile generation utility that can be switched
between all TASKING toolchains.

TASKING, the TASKING logo, Altium and the Altium logos are trademarks or registered trademarks of
Altium Limited or its subsidiaries. All other registered and unregistered trademarks referenced herein
are the property of their respective owners and no trademark rights to the same is claimed. Altium
assumes no responsibility for any errors that may appear in this document.

© 2002, ALTIUM LIMITED


