
TASKING TriCore v6.2r2
Inspector User Guide

MA160-741 (v1.0r3) March 03, 2023

Copyright © 2023 TASKING BV.

All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. TASKING®

and its logo are registered trademarks of TASKING Germany GmbH. All other registered or unregistered trademarks
referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

Table of Contents
Manual Purpose and Structure ... v
1. Installing the Software ... 1

1.1. Installation for Windows .. 1
1.2. Licensing ... 1

1.2.1. Obtaining a License .. 3
1.2.2. Frequently Asked Questions (FAQ) ... 4
1.2.3. Installing a License ... 4

2. Introduction to the TASKING Inspector ... 9
2.1. Product Overview .. 10

3. Using the Inspector ... 11
3.1. Detectors for Known Issues ... 11
3.2. Detecting Issues with the Inspector Tools .. 11
3.3. Detection Processing of More Complex Issues .. 12

3.3.1. Issue Detector for TCVX-43102 .. 13
3.3.2. Issue Detector for TCVX-43543 .. 13
3.3.3. Issue Detector for TCVX-43587 .. 13
3.3.4. Issue Detector for TCVX-43704 .. 14
3.3.5. Issue Detector for TCVX-43893 .. 14
3.3.6. Issue Detector for TCVX-43928 .. 14
3.3.7. Issue Detector for TCVX-43998 .. 15
3.3.8. Issue Detector for TCVX-44102 .. 15
3.3.9. Issue Detector for TCVX-44237 .. 15
3.3.10. Issue Detector for TCVX-44278 .. 16
3.3.11. Issue Detector for TCVX-44387 .. 16
3.3.12. Issue Detector for TCVX-44400 .. 16
3.3.13. Issue Detector for TCVX-44407 .. 17
3.3.14. Issue Detector for TCVX-44419 .. 17
3.3.15. Issue Detector for TCVX-44522 .. 18
3.3.16. Issue Detector for TCVX-44737 .. 18
3.3.17. Issue Detector for TCVX-44796 .. 18

3.4. Detecting Issues that Cannot be Detected at Compile Time .. 19
3.4.1. Guidance for Detecting Issue TCVX-44325 ... 19

4. Tool Options .. 21
4.1. Control Program Options ... 21
4.2. C++ Compiler Options .. 26
4.3. C Compiler Options .. 30
4.4. Assembler Options ... 35
4.5. Linker Options ... 39

iii

iv

TASKING TriCore v6.2r2 Inspector User Guide

Manual Purpose and Structure
Manual Purpose

You should read this manual if you want to know:

• how to use the TASKING TriCore v6.2r2 Inspector

• the features of the TASKING TriCore v6.2r2 Inspector

Manual Structure

Chapter 1, Installing the Software

Explains how to install and license the TASKING TriCore v6.2r2 Inspector.

Chapter 2, Introduction to the TASKING Inspector

Contains an introduction to the TASKING TriCore v6.2r2 Inspector and contains an overview of the
features.

Chapter 3, Using the Inspector

Explains how to use the TASKING TriCore v6.2r2 Inspector.

Chapter 4, Tool Options

Contains an overview of all the Inspector specific options of the tools.

Related Publications

• Getting Started with the TASKING VX-toolset for TriCore

• TASKING VX-toolset for TriCore User Guide

• TriCore 1 32-bit Unified Processor Core, Volume 1 Core Architecture, V1.3 & V1.3.1 Architecture User's
Manual, V1.3.8 [2007-11, Infineon]

• TriCore 1 32-bit Unified Processor Core, Volume 2 Instruction Set, V1.3 & V1.3.1 Architecture User's
Manual, V1.3.8 [2007-11, Infineon]

• TC1xxx User's Manual, V2.0 [2007, Infineon]

• TriCore 1 32-bit Unified Processor Core, Embedded Applications Binary Interface (EABI), V1.3, V1.3.1
& V1.6 Architecture User’s Manual, v2.5 [2008-01, Infineon]

• AURIX™ TC21x/TC22x/TC23x Family User's Manual, V1.1 [2014-12, Infineon]

• AURIX™ TC26x A-Step User's Manual, V1.1 [2013-12, Infineon]

• AURIX™ TC26x B-Step User's Manual, V1.2 [2014-02, Infineon]

v

• AURIX™ TC27x User's Manual, V1.4 [2013-11, Infineon]

• AURIX™ TC27x B-Step User's Manual, V1.4.1 [2014-02, Infineon]

• AURIX™ TC27x C-Step User's Manual, V2.2 [2014-12, Infineon]

• AURIX™ TC27x D-Step User's Manual, V2.2 [2014-12, Infineon]

• AURIX™ TC29x A-Step User's Manual, V1.1.1 [2014-01, Infineon]

• AURIX™ TC29x B-Step User's Manual, V1.3 [2014-12, Infineon]

• AURIX™ TC3xx Target Specification, V2.5.1 [2018-04, Infineon]

• AURIX™ TC3xx User's Manual, V2.0.0 [2021-02, Infineon]

• AURIX™ TC35x User's Manual Appendix, V1.6.0 [2020-08, Infineon]

• AURIX™ TC37x User's Manual Appendix, V1.6.0 [2020-08, Infineon]

• AURIX™ TC38x User's Manual Appendix, V1.6.0 [2020-08, Infineon]

• AURIX™ TC39x-B User's Manual Appendix, V1.6.0 [2020-08, Infineon]

vi

TASKING TriCore v6.2r2 Inspector User Guide

Chapter 1. Installing the Software
This chapter guides you through the installation process of the TASKING® TriCore v6.2r2 Inspector. It
also describes how to license the software.

In this manual, TASKING TriCore v6.2r2 Inspector and Inspector are used as synonyms.

1.1. Installation for Windows

System Requirements

Before installing, make sure the following minimum system requirements are met:

• Windows 7 or higher

• 2 GHz Pentium class processor

• 4 GB memory

• 500 MB free hard disk space

Installation

1. If you received a download link, download the software and extract its contents.

- or -

If you received an USB flash drive, insert it into a free USB port on your computer.

2. Run the installation program (setup.exe).

The TASKING Setup dialog box appears.

3. Select a product and click on the Install button. If there is only one product, you can directly click on
the Install button.

4. Follow the instructions that appear on your screen. During the installation you need to enter a license
key, this is described in Section 1.2, Licensing.

1.2. Licensing

TASKING products are protected with TASKING license management software (TLM).To use a TASKING
product, you must install that product and install a license.

The following license types can be ordered from TASKING.

1

Node-locked license

A node-locked license locks the software to one specific computer so you can use the product on that
particular computer only.

For information about installing a node-locked license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked) and Section 1.2.3.3, Installing Client Based Licenses (Node-Locked).

Floating license

A floating license is a license located on a license server and can be used by multiple users on the network.
Floating licenses allow you to share licenses among a group of users up to the number of users (seats)
specified in the license.

For example, suppose 50 developers may use a client but only ten clients are running at any given time.
In this scenario, you only require a ten seats floating license. When all ten licenses are in use, no other
client instance can be used. Also a linger time is in place. This means that a license seat is locked for a
period of time after a user has stopped using a client. The license seat is available again for other users
when the linger time has finished.

For information about installing a floating license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked).

License service types

The license service type specifies the process used to validate the license. The following types are
possible:

• Client based (also known as 'standalone').The license is serviced by the client. All information necessary
to service the license is available on the computer that executes the TASKING product. This license
service type is available for node-locked licenses only.

• Server based (also known as 'network based'). The license is serviced by a separate license server
program that runs either on your companies' network or runs in the cloud. This license service type is
available for both node-locked licenses and floating licenses.

Licenses can be serviced by a cloud based license server called "TASKING Remote License Server".
This is a license server that is operated by TASKING. Alternatively, you can install a license server
program on your local network. Such a server is called a "TASKING Local License Server".You have
to configure such a license server yourself. The installation of a TASKING local license server is not
part of this manual.You can order it as a separate product (SW000089).

The benefit of using the TASKING Remote License Server is that product installation and configuration
is simplified.

Unless you have an IT department that is proficient with the setup and configuration of licensing systems
we recommend to use the facilities offered by the TASKING Remote License Server.

2

TASKING TriCore v6.2r2 Inspector User Guide

1.2.1. Obtaining a License

You need a license key when you install a TASKING product on a computer. If you have not received
such a license key follow the steps below to obtain one. Otherwise, you cannot install the software.

Obtaining a server based license (floating or node-locked)

• Order a TASKING product from TASKING or one of its distributors.

A license key will be sent to you by email or on paper.

If your node-locked server based license is not yet bound to a specific computer ID, the license server
binds the license to the computer that first uses the license.

Obtaining a client based license (node-locked)

To use a TASKING product on one particular computer with a license file, TASKING needs to know the
computer ID that uniquely identifies your computer.You can do this with the getcid program that is
available on the TASKING website. The detailed steps are explained below.

1. Download the getcid program from https://www.tasking.com/support/tlm/downloads.

2. Execute the getcid program on the computer on which you want to use a TASKING product. The
tool has no options. For example,

getcid_version

The computer ID is displayed in the lower part of the dialog.

3. Order a TASKING product from TASKING or one of its distributors and supply the computer ID.

A license key and a license file will be sent to you by email or on paper.

3

Installing the Software

https://www.tasking.com/support/tlm/downloads

When you have received your TASKING product, you are now ready to install it.

1.2.2. Frequently Asked Questions (FAQ)

If you have questions or encounter problems you can check the support page on the TASKING website.

https://www.tasking.com/support/tlm/faqs

This page contains answers to questions for the TASKING license management system TLM.

If your question is not there, please contact your nearest TASKING Sales & Support Center or Value
Added Reseller.

1.2.3. Installing a License

The license setup procedure is done by the installation program.

If the installation program can access the internet then you only need the licence key. Given the license
key the installation program retrieves all required information from the remote TASKING license server.
The install program sends the license key and the computer ID of the computer on which the installation
program is running to the remote TASKING license server, no other data is transmitted.

If the installation program cannot access the internet the installation program asks you to enter the required
information by hand. If you install a node-locked client based license you should have the license file at
hand (see Section 1.2.1, Obtaining a License).

Floating licenses are always server based and node-locked licenses can be server based. All server
based licenses are installed using the same procedure.

1.2.3.1. Configure the Firewall in your Network

For using the TASKING license servers the TASKING license manager tries to connect to the remote
license servers lic1.tasking.com, lic2.tasking.com, lic3.tasking.com, lic4.tasking.com
at the TCP ports 8080, 8936 or 80. Make sure that the firewall in your network is transparently enabled
for one of these ports.

1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)

If you do not have received your license key, read Section 1.2.1, Obtaining a License before you continue.

1. If you want to use a local license server, first install and run the local license server before you
continue with step 2.You can order a local license server as a separate product (SW000089).

2. Install the TASKING product and follow the instructions that appear on your screen.

The installation program asks you to enter the license information.

4

TASKING TriCore v6.2r2 Inspector User Guide

https://www.tasking.com/support/tlm/faqs

3. In the License Key field enter the license key you have received from TASKING and click Next to
continue.

The installation program tries to retrieve the license information from a remote license server. Wait
until the license information is retrieved. If the license information is retrieved successfully subsequent
dialogs are already filled-in and you only have to confirm the contents of the dialogs by clicking the
Next button. If the license information is not retrieved successfully you have to enter the information
by hand.

4. Select your License Type and click Next to continue. If the license type is already filled in and grayed
out, you can just click Next to continue.

You can find the license type in the email or paper that contains the license key.

5. (For floating licenses only) Select Remote license server to use one of the remote license servers,
or select Local license server for a local license server. The latter requires optional software.

(For local license server only) specify the Server name and Server port of the local license server.

6. Click Next and follow the rest of the instructions to complete the installation.

1.2.3.3. Installing Client Based Licenses (Node-Locked)

If you do not have received your license key and license file, read Section 1.2.1, Obtaining a License
before continuing.

1. Install the TASKING product and follow the instructions that appear on your screen.

The installation program asks you to enter the license information.

5

Installing the Software

2. In the License Key field enter the license key you have received from TASKING and click Next to
continue.

The installation program tries to retrieve the license information from a remote license server. Wait
until the license information is retrieved. If the license information is retrieved successfully subsequent
dialogs are already filled-in and you only have to confirm the contents of the dialogs by clicking the
Next button. If the license information is not retrieved successfully you have to enter the information
by hand.

3. Select Node-locked client based license and click Next to continue.

6

TASKING TriCore v6.2r2 Inspector User Guide

4. In the License File Contents field enter the contents of the license file you have received from
TASKING.

The license data is stored in the file licfile.txt in the etc directory of the product (<install_dir>\etc).

5. Click Next and follow the rest of the instructions to complete the installation.

7

Installing the Software

8

TASKING TriCore v6.2r2 Inspector User Guide

Chapter 2. Introduction to the TASKING
Inspector
The TASKING TriCore v6.2r2 Inspector is a product which allows you to ascertain whether compilation
of your code is affected by known issues in various components of the TASKING VX-toolset for TriCore
v6.2r2 as presented on the TASKING Issues Portal. Essentially, this TASKING TriCore v6.2r2 Inspector
v1.0r3 is a copy of the TriCore v6.2r2p2 toolset that does not produce any executable code.

The TASKING Inspector is a useful tool to determine if you need a patch for the TASKING VX-toolset for
TriCore v6.2r2 or not. Depending on the status of your project a patch can be applied easily or an extensive
retest and re-qualification of the complete project is required. Without an Inspector tool it is necessary to
go trough the complete project source code by hand or write complex search scripts. Even with such
complex scripts it is not possible to determine correctly if the code is impacted or not. The Inspector tool
is setup in a way that it does not require any complex search scripts or hand review of the customer
software. Only when an issue is detected you need to review the affected source code and/or generated
assembly code. Defined by the usage of the Inspector it is guaranteed that each software component for
a particular project is checked and the probability of failures is reduced a lot.

Issue detectors

Minimally required snippets of code called 'detectors' are inserted into the original tools, which can detect
the fact that the currently compiled code will be affected by a certain known issue and then the detectors
report that fact.

Some detectors cannot determine such fact with 100% certainty. Such detectors report that your code is
potentially affected by the certain known issue and it's up to you to verify that.

By default all existing detectors are enabled within the Inspector and there are options that allow you to
enable and disable particular detectors.

Features of the TASKING Inspector

• Detect known issues in your source code that definitely impact the tool output (no false positives)

• Detect known issues in your source code that potentially impact the tool output (false positive is possible)

• Clarify detection of a certain issue by comparing the assembly source files affected and not affected
by that issue after its potential occurrence has been detected.

• Produce diagnostic messages

TASKING Inspector v1.0r3 use

You can use the TASKING Inspector v1.0r3 for the TASKING VX-toolset for TriCore v6.2r2 product and
any of the patches, with the following restrictions:

• When you use the Inspector with the TriCore v6.2r2 product or with v6.2r2p1 applied, the Inspector
does not detect issues fixed in TriCore v6.2r2p2.

9

• The level of confidence in the error detection of the Inspector is high if your software is compiled with
the TASKING VX-toolset for TriCore v6.2r2p2 and degrades if other patch versions of the compiler are
used.

2.1. Product Overview

The TASKING Inspector has all the same command-line tools as the TASKING VX-toolset for TriCore
v6.2r2. The Eclipse IDE and debugger are not part of the TASKING Inspector. The linker cannot produce
any executable code.

The following tools have Inspector capabilities.They are equivalent to the original tools without the "insp_"
prefix, and contain additional options.

• Control Program: insp_cctc

• C++ Compiler: insp_cptc

• C Compiler: insp_ctc

• Assembler: insp_astc

• Linker: insp_ltc

For information about the individual tools, see the corresponding tools in the TASKING VX-toolset for
TriCore v6.2r2 User Guide.

This manual only describes the additional functionality and options.

10

TASKING TriCore v6.2r2 Inspector User Guide

Chapter 3. Using the Inspector
The TASKING TriCore v6.2r2 Inspector is best used in conjunction with the TASKING VX-toolset for
TriCore v6.2r2.

The Inspector accepts the same input as the compiler toolset and issues diagnostic messages about
constructs in the input that can cause the compiler to malfunction.The components of the Inspector have
the same structure as the components of the compiler toolset, and are identified with the prefix insp_ in
their naming convention.

You should use the Inspector in addition to the verification requirements specified by the FuSa standard
that is applicable to your use case to obtain a high level of confidence that the behavior of your software
is not affected by a known compiler issue.

This is achieved by:

• Analyzing the diagnostics provided by the Inspector in conjunction with the source code that causes
the diagnostic message.

• Applying corrective actions to assure that your software or system satisfies its requirements, which
may include:

• Upgrade your compiler to a higher patch level that does not contain the identified malfunction.

• Apply the mitigations that are provided on the TASKING Issues Portal to fix or workaround an identified
malfunction.

• Take other measures to assure that the detected issues do not impact the intended function of your
software.

3.1. Detectors for Known Issues

Depending on the tools the Inspector can detect several known issues. For the list of issues you can
detect, see the release notes of the TASKING TriCore v6.2r2 Inspector. For details about the issue, you
can inspect the corresponding issues on the TASKING Issues Portal
https://issues.tasking.com/?project=TCVX&version=v6.2r2p2. In the overview list you can see in the
Inspector column which issues are covered by an Inspector. In the detailed issue description, the Inspector
field shows which Inspector version detects the issue.

3.2. Detecting Issues with the Inspector Tools

You can invoke the Inspector by calling the control program, or by calling the tools individually. The
invocations are similar. As an example we use the control program.

Invocation syntax on the command line

insp_cctc [[option]... [file]...]...

11

https://issues.tasking.com/?project=TCVX&version=v6.2r2p2

By default all existing detectors are enabled within the Inspector and there are options that allow you to
enable and disable particular detectors.

You can find a detailed description of all Inspector specific tool options in Chapter 4, Tool Options.

Detect/ignore issue detectors

With the options --detect and --ignore you can make a selection of the issue detectors. These options
are the same for all Inspector tools.

Detect by means of assembly compare

For some issue detectors where the normal detection gives a potential occurrence of an issue, you can
run an extra detector with option --detect-asm. This option is only available for the C compiler and by
means of the control program and can only detect one issue at a time. With this option the Inspector tool
clarifies detection of a certain issue by comparing the assembly source files affected and not affected by
that issue after its potential occurrence has been detected.

Detection messages

The following messages can be generated by an Inspector tool:

[INSP] detected occurrence of issue id

for issues that definitely impact the tool output (no false positives possible).

[INSP] detected potential occurrence of issue id

for issues that potentially impact the tool output (false positives are possible).

When an assembly difference is detected the following messages can be generated:

[INSP] detected change in assembly listing for command: argv
[INSP] asm cmp: assembly listing copies created for analysis.
 original: asm1 fixed: asm2

where, argv is the tool invocation line and asm1 and asm2 are the names of the two differing assembly
outputs.

Example

To detect if the C compiler issues TCVX-43102 and TCVX-43543 are present and ignore the other
detectors, type:

insp_cctc --detect=TCVX-43102,TCVX-43543 test.c

3.3. Detection Processing of More Complex Issues

The following sections give guidance on how to process more complex and not always obvious issues
that the Inspector can detect.

12

TASKING TriCore v6.2r2 Inspector User Guide

3.3.1. Issue Detector for TCVX-43102

Issue Description

Optimization of struct return may lead to overlapping struct copy.

Detection Processing

This issue is detected when the compiler optimizes return of a struct from a function and ignores potential
overlap between the source and the destination. Such overlap may only occur with union containing struct
members.

Verify that there is no such overlap possible at the indicated source position. Note that inlining of such a
function may lead to it being optimized into a direct assignment.

3.3.2. Issue Detector for TCVX-43543

Issue Description

Sizeof operator applied to a VLA involving variable post-modification causes wrong code.

Detection Processing

This issue is reported when the compiler ignores post-increment/post-decrement operations in the context
of sizeof.

Verify that the indicated value's modification does not affect program behavior (e.g. the value is not used
afterwards).

You can use control program option --detect-asm=TCVX-43543 for further assistance. The difference in
the generated assembly code indicates potentially problematic instructions. Absence of such a difference
means that detection is a false positive.

3.3.3. Issue Detector for TCVX-43587

Issue Description

GLO tracker optimization problem for uninitialized variable

Detection Processing

This issue is reported when the compiler removes the load operation of an uninitialized variable.

You can use control program option --detect-asm=TCVX-43587 to identify the load instruction removed
by the compiler. The difference in the generated assembly code should be checked to verify that the
removed load instruction was applied to an uninitialized variable. In this case, the generated code is
affected by the issue.

13

Using the Inspector

3.3.4. Issue Detector for TCVX-43704

Issue Description

Non justified if condition optimization.

Detection Processing

This issue is reported when the compiler removes the single-statement body of an if-statement (indicated
by the source position) with a possible side-effect in condition.

Verify that evaluation of the condition does not invalidate removal of the if-statement body.

3.3.5. Issue Detector for TCVX-43893

Issue Description

C compiler omits value assignment to pointer type function argument with forward store optimization
enabled.

Detection Processing

This issue is reported when the compiler misses potential memory aliasing/overlapping and assumes
that memory access (store or function call) indicated by the source position is safe to optimize.

Verify that the indicated memory accesses do not overlap with each other and are not incorrectly optimized
away.

You can use control program option --detect-asm=TCVX-43893 for further assistance. The difference in
the generated assembly code indicates potentially problematic instructions. Absence of such a difference
means that detection is a false positive.

Note that mitigations listed for this issue may still produce false positive detections.

3.3.6. Issue Detector for TCVX-43928

Issue Description

Incorrect reordering of volatile memory reads.

Detection Processing

This issue is reported when the compiler incorrectly reorders volatile memory accesses, indicated by the
source positions.

Verify that these memory accesses are not interdependent and that the new order does not change
program behavior.

14

TASKING TriCore v6.2r2 Inspector User Guide

3.3.7. Issue Detector for TCVX-43998

Issue Description

Invalid constant propagation with triple indirection.

Detection Processing

This issue is detected when the compiler overlooks potential memory overlap/aliasing for multiple-indirection
memory access indicated by a source position. This may result in various optimizations being applied
incorrectly and changing program behavior in unsafe way.

Verify that the indicated indirect memory access is safe and any optimizations applied to it do not change
program behavior.

You can use control program option --detect-asm=TCVX-43998 for further assistance. The difference in
the generated assembly code indicates potentially problematic instructions. Absence of such a difference
means that detection is a false positive.

3.3.8. Issue Detector for TCVX-44102

Issue Description

Loop invariant code optimization issue.

Detection Processing

This issue is reported during loop-invariant code motion, when an indirect memory access (indicated by
the source position) is moved out of the loop and there is a possibility that the corresponding pointer may
be uninitialized or incorrectly initialized at its new location.

Verify that the indicated indirect memory access may be correctly and unconditionally dereferenced
outside of the containing loop.

3.3.9. Issue Detector for TCVX-44237

Issue Description

Illegal double word access to SFR register range.

Detection Processing

This issue is detected when the compiler removes a volatile modifier from the variable or ignores this
modifier during a peephole optimization. A lost volatile modifier may also affect subsequent optimizations.

Verify that accesses to the indicated volatile variable are not incorrectly optimized and remain in order
with other volatile accesses.

15

Using the Inspector

You can use control program option --detect-asm=TCVX-444237 for further assistance. The difference
in the generated assembly code indicates potentially unsafe optimizations/reorderings. Absence of such
a difference means that detection is a false positive.

3.3.10. Issue Detector for TCVX-44278

Issue Description

C++ compiler: generated code results in address 0x0000000 access causing bus trap.

Detection Processing

To verify if a reported potential issue is an actual problem, find the symbol name in the generated
intermediate C code (.ic file) or in the original C++ code, then check the value in the ELF file using e.g.
elfdump or in the linker map file.

Note that the linker and hldumptc have an option (-P/--print-mangled-symbols) to print non-demangled
symbol names, which match the names in the generated C code. Note also that the line number printed
in the issue detection message needs to be matched to a #line entry for the correct source file in the
generated C code, but the specific line may not have such an entry - the first lower C++ source line number
with a #line entry needs to be used in that case. Only if the symbol value is zero, then an instance of
the problem has been detected.

3.3.11. Issue Detector for TCVX-44387

Issue Description

Erroneous code in code compaction function leads to invalid function parameter.

Detection Processing

This issue is reported when the compiler reorders instructions in a potentially unsafe way. It can only
affect functions named .cocofun_* generated by the code compaction optimization.The source position
in the message indicates the first instruction of the corresponding function. These functions are usually
small in size.

Verify that the order of the instructions in the indicated function does not break data dependency.

You can use control program option --detect-asm=TCVX-44387 for further assistance. The difference in
the generated assembly code indicates which instructions have been reordered and should be looked
at.

3.3.12. Issue Detector for TCVX-44400

Issue Description

Wrong value is loaded into a 48-bit struct if used as a member of a larger 64-bit struct.

16

TASKING TriCore v6.2r2 Inspector User Guide

Detection Processing

The Inspector issues a warning every time an incorrect pattern is used. Whether it leads to an actual bug
depends on previous initializations and sometimes run-time. An incorrect pattern is only used when a
40-bit or 48-bit structure is assigned as a member of a 64-bit structure with a non-zero offset and this
operation is performed on extended registers. The generated code can produce invalid results if other
members of the 64-bit (destination) structure have been initialized with non-zero value prior to the
assignment in question. If at the moment of the assignment in question other members of the 64-bit
structure are uninitialized or initialized with zero, the final result will be correct.Thus one possible mitigation
would be to change the order of assignments.

3.3.13. Issue Detector for TCVX-44407

Issue Description

C compiler front-end may produce imprecise FP result (±1 bit difference).

Detection Processing

This issue is detected during the constant folding when the result of the division of a floating-point constant
by another constant deviates from the expected value in digits beyond the corresponding type precision.
Whether this will affect the resulting constant in the assembly code depends on the whole constant
expression being folded. This deviation may affect rounding, leading to the incorrect result of the division
itself. It may also be accumulated or amplified by subsequent operations, affecting the result of the whole
expression. On the other hand, subsequent operations (e.g. another division or cast to a smaller precision)
may negate this deviation. The source position indicates the operation in question, when it is possible.

Verify that the value of the folded constant expression in the assembly code is correct.

You can use control program option --detect-asm=TCVX-44407 for further assistance. The difference in
the generated assembly code indicates incorrectly folded constants. Absence of such a difference means
that detection is a false positive.

The mitigation listed in the issue does not work for unnamed constants, but this can be amended by
naming them.

3.3.14. Issue Detector for TCVX-44419

Issue Description

Linker does not insert alignment_protection section when copy_unit is greater than 1.

Detection Processing

To check that a reported potential issue is an actual problem, find the reported section in the linker map
file, or in the ELF file using elfdump or hldumptc. The required alignment protection section
".alignment_protection" will not be present after that section, but it may be located in a memory
mirror at the correct location in memory. If the alignment protection section is not found in a memory
mirror, then an instance of the problem was detected.

17

Using the Inspector

3.3.15. Issue Detector for TCVX-44522

Issue Description

The __dsync() intrinsic does not always work as a memory fence.

Detection Processing

This issue is reported every time when the dsync instruction is used by the C compiler and not properly
treated as a memory fence. This may affect code generation, but not necessarily result in incorrect code.

You can use control program option --detect-asm=TCVX-44522 for further assistance. The difference in
the generated assembly code should be checked for memory operations that were optimized away or
moved over dsync as a result of the missing memory fence. Absence of such a difference means that
detection is a false positive.

3.3.16. Issue Detector for TCVX-44737

Issue Description

Compiler generates wrong code.

Detection Processing

This issue is reported when the compiler removes certain conversion operations that might affect the
converted value.

You can use control program option --detect-asm=TCVX-44737 to identify the conversion removed by
the compiler. The difference in the generated assembly code should be checked to verify that this
conversion does not affect the converted value.

3.3.17. Issue Detector for TCVX-44796

Issue Description

FPU instructions may corrupt 64-bit integer computations.

Detection Processing

This issue is reported when ALU flags are corrupted by FPU instructions.

In addition to the detection message, the Inspector marks detected errors in the generated assembly file
with comments to the instructions.

Example:

 addx d2,d4,d6
 ld.w d0,[a10]
 ld.w d15,[a10]4
 add.f d15,d0,d15 ; Issue TCVX-44796 detected: Carry flag corrupted

18

TASKING TriCore v6.2r2 Inspector User Guide

 st.w flt,d15
 addc d3,d5,d7 ; Carry flag is used here
 st.d ll,e2
 ret

When the code compaction optimization is enabled (option -Or), liveness analysis may show false usage
(reading) of ALU flags within CoCo functions, leading to a false positive detection.

Example:

 itof d8,d8 ; Issue TCVX-44796 detected: Overflow flag corrupted
 movh.a a14,#@his(.L9)
 lea a14,[a14]@los(.L9)
 j .cocofun_3 ; Overflow flag is used here

In the above example, the overflow flag is not actually used in the CoCo function and this is a false positive.
If the Inspector added a "used here" comment to a CoCo function, an additional step is required for
verification: build the same module without code compaction (-OR). If there is no detection, then it was
a false positive.

The Inspector can only detect the formal usage of a flag. After detection, verify that the corrupted flag is
meaningfully used by the indicated instruction. In general, the carry flag is almost always used for real
and the overflow flag is only used non-formally in rare occasions related to fixed-point calculations.

3.4. Detecting Issues that Cannot be Detected at Compile Time

The following section gives guidance on how to detect issues that cannot be detected at compile time.

3.4.1. Guidance for Detecting Issue TCVX-44325

Issue Description

User stack pointer 4-byte aligned when interrupt occurs between FCALL and FRET.

Issue Prevention

This issue only happens when an interrupt is triggered inside a generated "code compaction" function
that uses FCALL/FRET, and the interrupt handler calls another function and hardware is set to use
common stack for interrupts and check for stack pointer alignment.

This issue has been deemed impossible to detect in a meaningful way at compile time.

To verify that the problem cannot manifest itself, check that at least one of the following is true:

1. Interrupt Stack in hardware is enabled.

2. Stack pointer check in hardware is disabled.

3. There are no FCALL instructions, generated by code compaction or added with inline assembly.

4. There are no function calls (CALL instructions) inside interrupt handlers.

19

Using the Inspector

5. If FCALL instructions are only used inside interrupt handlers, only FCALL inside interrupt handlers that
allowed to be interrupted are important. FCALL in an interrupt handler without __enable_/__bisr_()
qualifier and before __enable()/__bisr() intrinsic will not enable the problem. And in such case
only CALL instructions in handlers with a higher priority are important as only they can be executed
between FCALL and FRET.

If none of these is true, then the problem may potentially happen and cause a hardware exception during
program execution.

20

TASKING TriCore v6.2r2 Inspector User Guide

Chapter 4.Tool Options
This chapter provides a detailed description of the Inspector specific options for the control program, C++
compiler, C compiler, assembler and linker.

4.1. Control Program Options

The control program insp_cctc facilitates the invocation of the various components of the Inspector from
a single command line.

This section lists all control program options that are specific to the Inspector. All other options are the
same as the control program of the TriCore VX-toolset for TriCore v6.2r2.

The control program processes command line options either by itself, or, when the option is unknown to
the control program, it looks whether it can pass the option to one of the other tools. However, for directly
passing an option to the C++ compiler, C compiler, assembler or linker, it is recommended to use the
control program options --pass-c++, --pass-c, --pass-assembler, --pass-linker.

See the other sections for details on the options of the tools.

When you do not specify an option, a default value may become active.

21

Control program option: --detect

Command line syntax

--detect=issue,...

Description

This option allows you to enable only a specific set of issue detectors for Inspector. Detectors not listed
in this option will be disabled.This option is mutually exclusive with control program options --detect-asm
and --ignore.

For the list of issues you can detect, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Example

To detect if the C compiler issue TCVX-43102 is present, type:

insp_cctc --detect=TCVX-43102 test.c

Related information

Control program option --detect-asm (Enable assembler comparison issue detector)

Control program option --ignore (Disable issue detectors)

22

TASKING TriCore v6.2r2 Inspector User Guide

Control program option: --detect-asm

Command line syntax

--detect-asm=issue

Description

With this option the Inspector tool clarifies detection of a certain issue by comparing the assembly source
files affected and not affected by that issue after its potential occurrence has been detected. It can only
detect one issue at a time. All other detectors will be disabled. This option is mutually exclusive with
control program options --detect and --ignore.

For the list of issues you can detect, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Example

To detect if the C compiler issue TCVX-43543 is present by comparing the assembly output, type:

insp_cctc --detect-asm=TCVX-43543 test.c

Related information

Control program option --detect (Enable issue detectors)

Control program option --ignore (Disable issue detectors)

23

Tool Options

Control program option: --ignore

Command line syntax

--ignore=issue,...

Description

This option allows you to disable a specific set of issue detectors for Inspector. Detectors not listed in this
option will be enabled. This option is mutually exclusive with control program options --detect and
--detect-asm.

For the list of issues you can specify, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Example

To ignore the issue detector for C compiler issue TCVX-43102 and enable all other issue detectors, type:

insp_cctc --ignore=TCVX-43102 test.c

Related information

Control program option --detect (Enable issue detectors)

Control program option --detect-asm (Enable assembler comparison issue detector)

24

TASKING TriCore v6.2r2 Inspector User Guide

Control program option: --insp-log

Command line syntax

--insp-log=file

Description

With this option the control program will add options to the tools to redirect Inspector messages to the
specified file. This file is written in append mode, clearing it is the user's responsibility.

Each detection warning is prefixed with the tool's invocation line. The control program passes this option
to the C++ compiler, C compiler, assembler and linker.

Example

insp_cctc --detect=TCVX-43102 --insp-log=TCVX-43102.log test.c

The log file TCVX-43102.log will contain the Inspector messages.

Related information

-

25

Tool Options

4.2. C++ Compiler Options

This section lists all C++ compiler options that are specific to the Inspector. All other options are the same
as the C++ compiler of the TriCore VX-toolset for TriCore v6.2r2.

When you do not specify an option, a default value may become active.

The priority of the options is left-to-right: when two options conflict, the first (most left) one takes effect.
The -D and -U options are not considered conflicting options, so they are processed left-to-right for each
source file.You can overrule the default output file name with the --output-file option.

26

TASKING TriCore v6.2r2 Inspector User Guide

C++ compiler option: --detect

Command line syntax

--detect=issue,...

Description

This option allows you to enable only a specific set of issue detectors for Inspector. Detectors not listed
in this option will be disabled. This option is mutually exclusive with C++ compiler option --ignore.

For the list of issues you can detect, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Example

To detect if the C++ compiler issue TCVX-44461 is present, type:

insp_cptc --detect=TCVX-44461 test.cc

Related information

C++ compiler option --ignore (Disable issue detectors)

27

Tool Options

C++ compiler option: --ignore

Command line syntax

--ignore=issue,...

Description

This option allows you to disable a specific set of issue detectors for Inspector. Detectors not listed in this
option will be enabled. This option is mutually exclusive with C++ compiler option --detect.

For the list of issues you can specify, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Example

To ignore the issue detector for C++ compiler issue TCVX-44461 and enable all other issue detectors,
type:

insp_cptc --ignore=TCVX-44461 test.cc

Related information

C++ compiler option --detect (Enable issue detectors)

28

TASKING TriCore v6.2r2 Inspector User Guide

C++ compiler option: --insp-log

Command line syntax

--insp-log=file

Description

With this option the C++ compiler duplicates Inspector detection messages to the specified file. This file
is written in append mode, clearing it is the user's responsibility.

Each detection warning is prefixed with the tool's invocation line.

Example

insp_cptc --detect=TCVX-44461 --insp-log=TCVX-44461.log test.cc

The log file TCVX-44461.log will contain the Inspector messages.

Related information

-

29

Tool Options

4.3. C Compiler Options

This section lists all C compiler options that are specific to the Inspector. All other options are the same
as the C compiler of the TriCore VX-toolset for TriCore v6.2r2.

When you do not specify an option, a default value may become active.

30

TASKING TriCore v6.2r2 Inspector User Guide

C compiler option: --detect

Command line syntax

--detect=issue,...

Description

This option allows you to enable only a specific set of issue detectors for Inspector. Detectors not listed
in this option will be disabled. This option is mutually exclusive with C compiler options --detect-asm and
--ignore.

For the list of issues you can detect, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Example

To detect if the C compiler issue TCVX-43102 is present, type:

insp_ctc --detect=TCVX-43102 test.c

Related information

C compiler option --detect-asm (Enable assembler comparison issue detector)

C compiler option --ignore (Disable issue detectors)

31

Tool Options

C compiler option: --detect-asm

Command line syntax

--detect-asm=issue

Description

With this option the Inspector tool clarifies detection of a certain issue by comparing the assembly source
files affected and not affected by that issue after its potential occurrence has been detected. It can only
detect one issue at a time. All other detectors will be disabled. This option is mutually exclusive with C
compiler options --detect and --ignore.

For the list of issues you can detect, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

When an assembly difference is detected the following messages can be generated:

W994: [INSP] detected change in assembly listing for command: argv
I992: [INSP] asm cmp: assembly listing copies created for analysis.
 original: asm1 fixed: asm2

where, argv is the tool invocation line and asm1 and asm2 are the names of the two differing assembly
outputs.

Example

To detect if C compiler issue TCVX-43543 is present by comparing the assembly output, type:

insp_ctc --detect-asm=TCVX-43543 test.c

Related information

C compiler option --detect (Enable issue detectors)

C compiler option --ignore (Disable issue detectors)

32

TASKING TriCore v6.2r2 Inspector User Guide

C compiler option: --ignore

Command line syntax

--ignore=issue,...

Description

This option allows you to disable a specific set of issue detectors for Inspector. Detectors not listed in this
option will be enabled.This option is mutually exclusive with C compiler options --detect and --detect-asm.

For the list of issues you can specify, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Example

To ignore the issue detector for C compiler issue TCVX-43102 and enable all other issue detectors, type:

insp_ctc --ignore=TCVX-43102 test.c

Related information

C compiler option --detect (Enable issue detectors)

C compiler option --detect-asm (Enable assembler comparison issue detector)

33

Tool Options

C compiler option: --insp-log

Command line syntax

--insp-log=file

Description

With this option the C compiler duplicates Inspector detection messages to the specified file. This file is
written in append mode, clearing it is the user's responsibility.

Each detection warning is prefixed with the tool's invocation line.

Example

insp_ctc --detect=TCVX-43102 --insp-log=TCVX-43102.log test.c

The log file TCVX-43102.log will contain the Inspector messages.

Related information

-

34

TASKING TriCore v6.2r2 Inspector User Guide

4.4. Assembler Options

This section lists all assembler options that are specific to the Inspector. All other options are the same
as the assembler of the TriCore VX-toolset for TriCore v6.2r2.

When you do not specify an option, a default value may become active.

35

Tool Options

Assembler option: --detect

Command line syntax

--detect=issue,...

Description

This option allows you to enable only a specific set of issue detectors for Inspector. Detectors not listed
in this option will be disabled. This option is mutually exclusive with assembler option --ignore.

For the list of issues you can detect, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Related information

Assembler option --ignore (Disable issue detectors)

36

TASKING TriCore v6.2r2 Inspector User Guide

Assembler option: --ignore

Command line syntax

--ignore=issue,...

Description

This option allows you to disable a specific set of issue detectors for Inspector. Detectors not listed in this
option will be enabled. This option is mutually exclusive with assembler option --detect.

For the list of issues you can specify, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Related information

Assembler option --detect (Enable issue detectors)

37

Tool Options

Assembler option: --insp-log

Command line syntax

--insp-log=file

Description

the assembler duplicates Inspector detection messages to the specified file. This file is written in append
mode, clearing it is the user's responsibility.

Each detection warning is prefixed with the tool's invocation line.

Example

insp_astc --detect=TCVX-xxxx --insp-log=insp_astc.log test.src

The log file insp_astc.log will contain the Inspector messages.

Related information

-

38

TASKING TriCore v6.2r2 Inspector User Guide

4.5. Linker Options

This section lists all linker options that are specific to the Inspector. All other options are the same as the
linker of the TriCore VX-toolset for TriCore v6.2r2.

When you do not specify an option, a default value may become active.

39

Tool Options

Linker option: --detect

Command line syntax

--detect=issue,...

Description

This option allows you to enable only a specific set of issue detectors for Inspector. Detectors not listed
in this option will be disabled. This option is mutually exclusive with linker option --ignore.

For the list of issues you can detect, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Example

To detect if the linker issue TCVX-40469 is present, type:

insp_ltc --detect=TCVX-40469 test.o

Related information

Linker option --ignore (Disable issue detectors)

40

TASKING TriCore v6.2r2 Inspector User Guide

Linker option: --ignore

Command line syntax

--ignore=issue,...

Description

This option allows you to disable a specific set of issue detectors for Inspector. Detectors not listed in this
option will be enabled. This option is mutually exclusive with linker option --detect.

For the list of issues you can specify, see the release notes of the TASKING TriCore v6.2r2 Inspector.
When you specify a wrong issue, the list of issues is also listed on the command line.

Example

To ignore the issue detector for linker issue TCVX-40469 and enable all other issue detectors, type:

insp_ltc --ignore=TCVX-40469 test.o

Related information

Linker option --detect (Enable issue detectors)

41

Tool Options

Linker option: --insp-log

Command line syntax

--insp-log=file

Description

With this option the linker duplicates Inspector detection messages to the specified file.This file is written
in append mode, clearing it is the user's responsibility.

Each detection warning is prefixed with the tool's invocation line.

Example

insp_ltc --detect=TCVX-40469 --insp-log=TCVX-40469.log test.o

The log file TCVX-40469.log will contain the Inspector messages.

Related information

-

42

TASKING TriCore v6.2r2 Inspector User Guide

	TASKING TriCore v6.2r2 Inspector User Guide
	Table of Contents
	Manual Purpose and Structure
	Chapter 1. Installing the Software
	1.1. Installation for Windows
	1.2. Licensing
	1.2.1. Obtaining a License
	1.2.2. Frequently Asked Questions (FAQ)
	1.2.3. Installing a License
	1.2.3.1. Configure the Firewall in your Network
	1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)
	1.2.3.3. Installing Client Based Licenses (Node-Locked)

	Chapter 2. Introduction to the TASKING Inspector
	2.1. Product Overview

	Chapter 3. Using the Inspector
	3.1. Detectors for Known Issues
	3.2. Detecting Issues with the Inspector Tools
	3.3. Detection Processing of More Complex Issues
	3.3.1. Issue Detector for TCVX-43102
	3.3.2. Issue Detector for TCVX-43543
	3.3.3. Issue Detector for TCVX-43587
	3.3.4. Issue Detector for TCVX-43704
	3.3.5. Issue Detector for TCVX-43893
	3.3.6. Issue Detector for TCVX-43928
	3.3.7. Issue Detector for TCVX-43998
	3.3.8. Issue Detector for TCVX-44102
	3.3.9. Issue Detector for TCVX-44237
	3.3.10. Issue Detector for TCVX-44278
	3.3.11. Issue Detector for TCVX-44387
	3.3.12. Issue Detector for TCVX-44400
	3.3.13. Issue Detector for TCVX-44407
	3.3.14. Issue Detector for TCVX-44419
	3.3.15. Issue Detector for TCVX-44522
	3.3.16. Issue Detector for TCVX-44737
	3.3.17. Issue Detector for TCVX-44796

	3.4. Detecting Issues that Cannot be Detected at Compile Time
	3.4.1. Guidance for Detecting Issue TCVX-44325

	Chapter 4. Tool Options
	4.1. Control Program Options
	Control program option: --detect
	Control program option: --detect-asm
	Control program option: --ignore
	Control program option: --insp-log

	4.2. C++ Compiler Options
	C++ compiler option: --detect
	C++ compiler option: --ignore
	C++ compiler option: --insp-log

	4.3. C Compiler Options
	C compiler option: --detect
	C compiler option: --detect-asm
	C compiler option: --ignore
	C compiler option: --insp-log

	4.4. Assembler Options
	Assembler option: --detect
	Assembler option: --ignore
	Assembler option: --insp-log

	4.5. Linker Options
	Linker option: --detect
	Linker option: --ignore
	Linker option: --insp-log

