
TASKING Embedded Profiler
User Guide

MA160-857 (v1.0) September 05, 2017

Copyright © 2017 TASKING BV.

All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium®,
TASKING®, and their respective logos are registered trademarks of Altium Limited or its subsidiaries. All other registered
or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to
the same are claimed.

Table of Contents
Manual Purpose and Structure ... v
1. Installing the Software ... 1

1.1. Installation for Windows .. 1
1.2. Licensing ... 1

1.2.1. Obtaining a License .. 2
1.2.2. Frequently Asked Questions (FAQ) ... 3
1.2.3. Installing a License ... 3

2. Introduction to the TASKING Embedded Profiler ... 7
2.1. Emulation Device (ED) ... 9
2.2. Trace Support ... 9

3. Tutorial ... 11
3.1. Prepare Demo Project in Eclipse .. 11
3.2. Analyze Project in TASKING Embedded Profiler ... 16
3.3. Fix the Problem ... 25
3.4. Verify Fix in TASKING Embedded Profiler ... 26
3.5. Compare Results ... 29
3.6. Export Results .. 30

4. Using the TASKING Embedded Profiler ... 31
4.1. Run the Embedded Profiler in Interactive Mode .. 31
4.2. Run the Embedded Profiler from the Command Line ... 32

4.2.1. Command Line Tutorial ... 33
5. Reference ... 35

5.1. Summary Tab ... 35
5.1.1. Info .. 36
5.1.2. Performance Hotspots .. 37
5.1.3. Data Access Intensive Functions .. 38
5.1.4. Memory Access Conflicts .. 39
5.1.5. ICache Misses .. 40
5.1.6. DCache Misses .. 40

5.2. Hot Functions Tab .. 41
5.3. Source Line Results Tab .. 42
5.4. Instruction Results Tab .. 43
5.5. Source Tab ... 44
5.6. Disassembly Tab ... 44

iii

iv

TASKING Embedded Profiler User Guide

Manual Purpose and Structure
Manual Purpose

You should read this manual if you want to know:

• how to use the TASKING Embedded Profiler

• the features of the TASKING Embedded Profiler

Manual Structure

Chapter 1, Installing the Software

Explains how to install and license the TASKING Embedded Profiler.

Chapter 2, Introduction to the TASKING Embedded Profiler

Contains an introduction to the TASKING Embedded Profiler and contains an overview of the features.

Chapter 3, Tutorial

Contains a step-by-step tutorial how to use the demo projects with the TASKING Embedded Profiler.

Chapter 4, Using the TASKING Embedded Profiler

Explains how to use the TASKING Embedded Profiler.You can run the TASKING Embedded Profiler in
two ways, via an interactive graphical user interface (GUI) or via the command line.

Chapter 5, Reference

Contains an overview of all the fields and columns in an analysis result output.

Related Publications

• Getting Started with the TASKING VX-toolset for TriCore

• TASKING VX-toolset for TriCore User Guide

• AURIX™ TC21x/TC22x/TC23x Family User's Manual, V1.1 [2014-12, Infineon]

• AURIX™ TC26x A-Step User's Manual, V1.1 [2013-12, Infineon]

• AURIX™ TC26x B-Step User's Manual, V1.2 [2014-02, Infineon]

• AURIX™ TC27x User's Manual, V1.4 [2013-11, Infineon]

• AURIX™ TC27x B-Step User's Manual, V1.4.1 [2014-02, Infineon]

• AURIX™ TC27x C-Step User's Manual, V2.2 [2014-12, Infineon]

• AURIX™ TC27x D-Step User's Manual, V2.2 [2014-12, Infineon]

v

• AURIX™ TC29x A-Step User's Manual, V1.1.1 [2014-01, Infineon]

• AURIX™ TC29x B-Step User's Manual, V1.3 [2014-12, Infineon]

vi

TASKING Embedded Profiler User Guide

Chapter 1. Installing the Software
This chapter guides you through the installation process of the TASKING® Embedded Profiler. It also
describes how to license the software.

In this manual, TASKING Embedded Profiler and Embedded Profiler are used as synonyms.

1.1. Installation for Windows

System Requirements

Before installing, make sure the following minimum system requirements are met:

• Windows 7 or higher

• 2 GHz Pentium class processor

• 1 GB memory

• 500 MB free hard disk space

• Screen resolution: 1024 x 768 or higher

Installation

1. If you received a download link, download the software and extract its contents.

- or -

If you received an USB flash drive, insert it into a free USB port on your computer.

2. Run the installation program (setup.exe).

The TASKING Setup dialog box appears.

3. Select a product and click on the Install button. If there is only one product, you can directly click on
the Install button.

4. Follow the instructions that appear on your screen. During the installation you need to enter a license
key, this is described in Section 1.2, Licensing.

1.2. Licensing

TASKING products are protected with TASKING license management software (TLM).To use a TASKING
product, you must install that product and install a license.

The following license types can be ordered from Altium.

1

Node-locked license

A node-locked license locks the software to one specific computer so you can use the product on that
particular computer only.

For information about installing a node-locked license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked) and Section 1.2.3.3, Installing Client Based Licenses (Node-Locked).

Floating license

A floating license is a license located on a license server and can be used by multiple users on the network.
Floating licenses allow you to share licenses among a group of users up to the number of users (seats)
specified in the license.

For example, suppose 50 developers may use a client but only ten clients are running at any given time.
In this scenario, you only require a ten seats floating license. When all ten licenses are in use, no other
client instance can be used.

For information about installing a floating license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked).

License service types

The license service type specifies the process used to validate the license. The following types are
possible:

• Client based (also known as 'standalone').The license is serviced by the client. All information necessary
to service the license is available on the computer that executes the TASKING product. This license
service type is available for node-locked licenses only.

• Server based (also known as 'network based'). The license is serviced by a separate license server
program that runs either on your companies' network or runs in the cloud. This license service type is
available for both node-locked licenses and floating licenses.

Licenses can be serviced by a cloud based license server called "Remote TASKING License Server".
This is a license server that is operated by TASKING. Alternatively, you can install a license server
program on your local network. Such a server is called a "Local TASKING License Server".You have
to configure such a license server yourself. The installation of a local TASKING license server is not
part of this manual.You can order it as a separate product (SW000089).

The benefit of using the Remote TASKING License Server is that product installation and configuration
is simplified.

Unless you have an IT department that is proficient with the setup and configuration of licensing systems
we recommend to use the facilities offered by the Remote TASKING License Server.

1.2.1. Obtaining a License

You need a license key when you install a TASKING product on a computer. If you have not received
such a license key follow the steps below to obtain one. Otherwise, you cannot install the software.

2

TASKING Embedded Profiler User Guide

Obtaining a server based license (floating or node-locked)

• Order a TASKING product from Altium or one of its distributors.

A license key will be sent to you by email or on paper.

If your node-locked server based license is not yet bound to a specific computer ID, the license server
binds the license to the computer that first uses the license.

Obtaining a client based license (node-locked)

To use a TASKING product on one particular computer with a license file, Altium needs to know the
computer ID that uniquely identifies your computer.You can do this with the getcid program that is
available on the TASKING website. The detailed steps are explained below.

1. Download the getcid program from http://www.tasking.com/support/tlm/download.shtml.

2. Execute the getcid program on the computer on which you want to use a TASKING product. The
tool has no options. For example,

C:\Tasking\getcid
Computer ID: 5Dzm-L9+Z-WFbO-aMkU-5Dzm-L9+Z-WFbO-aMkU-MDAy-Y2Zm

The computer ID is displayed on your screen.

3. Order a TASKING product from Altium or one of its distributors and supply the computer ID.

A license key and a license file will be sent to you by email or on paper.

When you have received your TASKING product, you are now ready to install it.

1.2.2. Frequently Asked Questions (FAQ)

If you have questions or encounter problems you can check the support page on the TASKING website.

http://www.tasking.com/support/tlm/faq.shtml

This page contains answers to questions for the TASKING license management system TLM.

If your question is not there, please contact your nearest Altium Sales & Support Center or Value Added
Reseller.

1.2.3. Installing a License

The license setup procedure is done by the installation program.

If the installation program can access the internet then you only need the licence key. Given the license
key the installation program retrieves all required information from the remote TASKING license server.
The install program sends the license key and the computer ID of the computer on which the installation
program is running to the remote TASKING license server. No other data is transmitted.

3

Installing the Software

http://www.tasking.com/support/tlm/download.shtml
http://www.tasking.com/support/tlm/faq.shtml

If the installation program cannot access the internet the installation program asks you to enter the required
information by hand. If you install a node-locked client based license you should have the license file at
hand (see Section 1.2.1, Obtaining a License).

Floating licenses are always server based and node-locked licenses can be server based. All server
based licenses are installed using the same procedure.

1.2.3.1. Configure the Firewall in your Network

For using the TASKING license servers the TASKING license manager tries to connect to the Remote
TASKING servers lic1.tasking.com .. lic4.tasking.com at the TCP ports 8080, 8936 or 80.
Make sure that the firewall in your network has transparent access enabled for one of these ports.

1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)

If you do not have received your license key, read Section 1.2.1, Obtaining a License before you continue.

1. If you want to use a local license server, first install and run the local license server before you
continue with step 2.You can order a local license server as a separate product (product code
SW000089).

2. Install the TASKING product and follow the instruction that appear on your screen.

The installation program asks you to enter the license information.

3. In the License key field enter the license key you have received from Altium and click Next to
continue.

4

TASKING Embedded Profiler User Guide

The installation program tries to retrieve the license information from a remote TASKING license
server.Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

4. Select your License type and click Next to continue.

You can find the license type in the email or paper that contains the license key.

5. Select Remote TASKING license server to use one of the remote TASKING license servers, or
select Local TASKING license server for a local license server.The latter requires optional software.

6. (For local license server only) specify the Server name and Port number of the local license server.

7. Click Finish to complete the installation.

1.2.3.3. Installing Client Based Licenses (Node-Locked)

If you do not have received your license key and license file, read Section 1.2.1, Obtaining a License
before continuing.

1. Install the TASKING product and follow the instruction that appear on your screen.

The installation program asks you to enter the license information.

2. In the License key field enter the license key you have received from Altium and click Next to
continue.

5

Installing the Software

The installation program tries to retrieve the license information from a remote TASKING license
server.Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

3. Select Node-locked client based license and click Next to continue.

4. In the License file content field enter the contents of the license file you have received from Altium.

The license data is stored in the file licfile.txt in the etc directory of the product.

5. Click Finish to complete the installation.

6

TASKING Embedded Profiler User Guide

Chapter 2. Introduction to the TASKING
Embedded Profiler
After your application has been verified, thoroughly tested and debugged, and by itself behaves correctly,
you may still run into performance and timing issues. Many timing issues can be addressed simply by
improving the performance of the applications that caused a missed deadline. Furthermore, by reducing
the core load of your applications you may be able to go for a device that is cheaper because it has fewer
cores. A way to address these issues is performance tuning.

With performance tuning we refer to optimizing your application for a specific target device. Common
situations where performance tuning of your application makes sense are:

• You are using self-made libraries that are called a lot and thus have a big impact on overall application
performance.

• You develop/adapt low level drivers and basic software (BSW) or operating system (OS) components.

• You are close to or above your core load budget limit.

• You have a timing problem in your schedule that could be fixed by speeding up specific tasks but want
to avoid changing the schedule.

• You want to try and target a smaller electronic control unit (ECU) in order to save costs.

• You care about easily and cost effectively tracking and improving the performance of your code on
target devices.

Embedded hardware platforms are too complex for the average software developer to predict or understand
the performance of his code. In order to optimize code for a specific platform (cores plus peripherals),
developers need feedback from the hardware on which specific part of their code is suboptimal (in terms
of memory consumption, jitter, execution time, …) and what is the root cause of the performance impact.
The TASKING Embedded Profiler is a smart profiling tool that provides this feedback.

The TASKING Embedded Profiler communicates with an embedded processor (CPU) to gather real-time
tracing and performance data. The tool gives an overview over the current clock settings — no need to
get an oscilloscope to verify that the clocks are configured properly for a benchmark run. After verification
of correct clock setup, you are guided through a few easy steps that pinpoint the source lines that have
the greatest performance impact. The tool indicates the root cause of the performance impact and gives
simple instructions on how to address the problem. The data is presented in graphics and tables and into
computer readable formats.

7

After applying the suggested mitigation, you can use the TASKING Embedded Profiler to confirm that the
problem has indeed been fixed. With the default settings of the tool this all happens non-intrusively with
real data collected from the application running on the real device. Using such a performance tuning tool,
non-expert users can often highly speed up untuned applications.

Features of the TASKING Embedded Profiler

• Performance analysis

• Memory access analysis

• Function-level analysis

• Compare analysis runs of the same kind

• Organize analyses and results in projects

• Load/store analysis results

• Graphical user interface (GUI) and command line support

8

TASKING Embedded Profiler User Guide

• Support for Device Access Server (DAS) v6.0 and Device Access Port (DAP) miniWiggler

Performance analysis

This type of analysis traces instructions and performance events. It measures the CPU clock count and
it finds branch misses, cache misses and stalls due to memory access delays or pipeline hazards.You
can run this type of analysis on the whole application or select specific functions.

Memory access analysis

This type of analysis traces function calls, function returns and data accesses.You can run this type of
analysis on the whole application or select specific functions.

Function-level analysis

This type of analysis traces all function calls and function returns. This is the fastest analysis.

2.1. Emulation Device (ED)

The standard TriCore/AURIX™ processors (production devices) lack debug trace functionality. However,
this functionality is very useful when you develop and test your application. Therefore pin compatible
Emulation Devices (ED) are available. An Emulation Device has an Emulation Extension Chip (EEC)
added to the same silicon, which is accessible through the JTAG or DAP interface. The TASKING
Embedded Profiler supports the on-chip trace feature of the Emulation Device. See the processor
documentation for detailed information about the device.

Some Production Devices, such as the TC29x, are equipped with a mini-MCDS, which is a subset of the
on-chip trace feature that is available on Emulation Devices. The mini-MCDS memory is not suitable for
safety related data and must not be used for data storage by safety applications. See the processor
documentation for detailed information about the device.

Naming convention

You can see by the name on the processor what type of device it is. For example, with SAK-TC299TE
the last letter indicates the "Feature Package". If this letter is an 'E' or 'F' you have an Emulation Device.

For a detailed naming convention see the AURIX™ Product Naming PDF on the Infineon website.

2.2.Trace Support

The TASKING Embedded Profiler uses the on-chip trace (MCS) concept. For detailed information about
the Multi-Core Debug Solution (MCDS) we recommend that you read the processor documentation
belonging to the Emulation Device.

9

Introduction to the TASKING Embedded Profiler

http://www.infineon.com/dgdl/Infineon-Infineon-MCU-Naming-Convention-SEPT-2014-PP-v01_00-EN.pdf?fileId=db3a304412b407950112b41aa12c2b0a

Tile memory range

Trace information is stored in a dedicated trace buffer. With an Emulation Device you can allocate part
of the Emulation Memory (EMEM) as trace buffer memory. The Emulation Memory is divided in so-called
'tiles', and you can choose which part of the Emulation Memory should be used for tracing. Be careful
that the same tile memory range used for tracing is not used by the target application, as this can lead
to unexpected trace results. The number of tiles vary per Emulation Device.

Trace mode

When you run a trace analysis in the TASKING Embedded Profiler, you can set the trace mode:

• One shot mode. In this mode the analysis will run until the trace buffer is full. This is non-intrusive,
meaning that the trace does not interfere the running processor. After the trace has stopped the profiler
reads the collected data.

• Continuous trace. In this mode the analysis will run until the application stops or when you stop the
analysis manually. This mode is intrusive, meaning that the processor is stopped temporarily every
time the trace buffer has been filled, so that the profiler can read the collected data. After that the
processor continues writing to the buffer.

Attach mode

When you run a trace analysis in the TASKING Embedded Profiler, you can set the attach mode:

• Reset device. In this mode the device is reset first and then the analysis starts.

• Hot attach. In this mode the analysis will start at the current execution position of the running application.

10

TASKING Embedded Profiler User Guide

Chapter 3.Tutorial
The profiler\tutorials directory of the TASKING Embedded Profiler installation contains several
examples. They serve as a good starting point for your own profiling analysis project.

• demo_dspr - A project for the TC29xB demonstrating how defaulting to the wrong scratch pad memory
results in a penalty in stalls.

• demo_dcache - A project for the TC29xB demonstrating how multiple passes over a large buffer can
cause many data cache misses.

• demo_concurrent - A project for the TC29xB demonstrating how accessing the same memory from
multiple cores causes stalls.

All examples come with embedded profiler projects (files with the .EmbProf extension), with pre-run
analyses.You can open a project in the TASKING Embedded Profiler to inspect the various analysis
results, without having to run the examples on a target board.

In this tutorial we will use the demo_dspr example to go through the process of preparing your project
from scratch, running a profiling analysis, fixing the problem and rerunning a profiling analysis to see the
improvement. After this tutorial you can use the other tutorials yourself in a similar way.

3.1. Prepare Demo Project in Eclipse

Before you can use the TASKING Embedded Profiler, you must have an application ELF file with debug
information and the application must be downloaded onto a target board.

The example projects delivered with the TASKING Embedded Profiler are Eclipse projects suitable for
the TASKING VX-toolset for TriCore v6.2r1 or higher. For this part of the tutorial it is assumed that you
have this toolset installed.

Import an example project

1. Start the TASKING VX-toolset for TriCore Eclipse IDE.

2. From the File menu, select Import.

The Import dialog appears.

11

3. Select General » Existing Projects into Workspace and click Next.

The Import Projects dialog appears.

12

TASKING Embedded Profiler User Guide

4. Click Select archive file and browse to the example ZIP file delivered with the TASKING Embedded
Profiler.

5. Leave the other settings in this dialog as is and click Finish.

The project will be added to your workspace.

You can now examine the source files, build the project (for your target) and flash the application.

Examine source file

1. In the C/C++ Projects view double-click on the source file demo_dspr.c.

The file will be opened in the source editor.

2. Examine the source file and make sure that the following define has the value 0:

#define FIXED 0

This define is used to demonstrate the different profiler results before and after fixing the source file.

Set project options

The resulting application ELF file must contain debug information. The demo projects already have
debugging enabled by default. So, for the demo projects you can skip this step. For your own project,
make sure that debugging is enabled.

1. From the Project menu, select Properties for. Alternatively, you can click the button.

The Properties for demo_dspr dialog appears.

2. If not selected, expand C/C++ Build and select Settings to access the TriCore tool settings.

3. On the Tool Settings tab, expand C/C++ Compiler » Debugging, set option Generate symbolic
debug information to Default or Full and click OK.

13

Tutorial

Build the project

• From the Project menu, select Build demo_dspr, or click from the toolbar.

Run the debugger to flash the application onto the target board

1. Connect the Infineon TriBoard TC29xB to your computer. See the documentation that came with the
board for more information.

2. From the Debug menu, select Debug project.

Alternatively you can click the button in the main toolbar.

Before you can debug a project, you need a Debug launch configuration. Such a configuration,
identified by a name, contains all information about the debug project: which debugger is used, which
project is used, which binary debug file is used, ... and so forth. So, initially the Debug Configurations
dialog appears.

14

TASKING Embedded Profiler User Guide

3. On the Target tab, select the Infineon Triboard TC29xB and click Debug.

The TASKING Debug perspective is associated with the TASKING C/C++ Debugger. Because the
TASKING C/C++ perspective is still active, Eclipse asks to open the TASKING Debug perspective.

4. Optionally, enable the option Remember my decision and click Yes.

The debug session is launched. This may take a few seconds.

5. From the Debug menu, select Resume () to run the application on the target board.

The output of the application appears in the FSS (File System Simulation) view.

6. Inspect the FSS view and notice the number of ticks.

15

Tutorial

7. From the Debug menu, select Terminate () to stop the debugging session. This is necessary to
free the connection with the target board.

3.2. Analyze Project in TASKING Embedded Profiler

Now it is time to start analyzing the demo project.

Create a project

1. Start the TASKING Embedded Profiler.

The TASKING Embedded Profiler window is divided into two panes. The left pane is reserved for
the project tree and the right pane is reserved for analysis results.

2. From the Project menu, select New Project.

The New Project dialog appears.

16

TASKING Embedded Profiler User Guide

3. In the Project name field, enter the name of the project (for example, you can use the same name
as the Eclipse project, demo_dspr).

4. In the Project directory field, specify the directory where you want to store the Embedded Profiler
project file (file with extension .EmbProf).

5. In the Executable file field, specify the name of the ELF file.This file is usually relative to the project
directory. If the executable file is stored in another directory, the full path name is shown.

6. Optionally specify a Source code directory. Normally, the location of the source files is taken from
the ELF file.

7. Select the Processor. For example, TC29xED.

8. For the Device server, enter the server name (leave blank for localhost).

9. Leave the rest of the dialog as is and click Create.

The new project is created and opened.

Create a Performance analysis

1. From the Analysis menu, select New Analysis.

The New Analysis wizard appears.

17

Tutorial

2. Three types of analyses are possible. Select Performance analysis and click Next.

The Analysis Scope page appears.

3. For this tutorial select Whole Application. If you select Specific Functions, select one or more
Application functions and click >.

4. Click Next.

18

TASKING Embedded Profiler User Guide

The Analysis Name page appears.

5. Specify the analysis name. A default name has already be filled in based on the analysis type and
a sequence number, but you can specify your own name.

6. Click Finish.

The new analysis is created and is visible in the project tree.

Run the analysis

1. In the project tree select the analysis you want to run.

2. From the Analysis menu, select Run Analysis.

The Run Analysis dialog appears.

3. Enter an Analysis result name (default Result- and a sequence number).

4. Select a Trace mode. A One shot mode trace ends when the hardware trace buffer is full. A
Continuous trace ends when the program finishes (ends at a break instruction) or when it is stopped
explicitly by the user.

5. Select an Attach mode. With Reset device, tracing starts by running the program in the embedded
device from the reset vector. With Hot attach, tracing starts by continuing tracing from the current
program counter location.

19

Tutorial

6. In the Core index field, select the TriCore core for which you want to run the analysis.

7. For emulation devices only, enter a Trace memory tile range. Trace memory of emulation devices
consists of a consecutive number of tiles. Select the first and last tile index you want to use for trace
memory.

8. Click Start.

The analysis starts. After the analysis is finished the result is present in the project tree.

9. If a Windows Security Alert appears that the firewall has blocked some features, select a network
type and click Allow access.

Inspect the result of the Performance analysis

1. In the project tree select the result you want to inspect (PerfAnalysis-1, Result-1).

The result appears in several tabs.

20

TASKING Embedded Profiler User Guide

2. On the Summary tab, notice the high number of Average stalls per clock (0.88).

3. On the Hot Functions tab, notice the high number of Stalls with functions _c_init_entry and
main.

4. Double-click on main.

The Source tab opens.

21

Tutorial

5. Notice the high number of stalls is in the for loop.

6. Enable Show disassembly on the Source tab to show disassembly intermixed with the source lines,
or open the Disassembly tab. Notice that the stalls are related to memory access.

22

TASKING Embedded Profiler User Guide

Create and run a Memory access analysis

1. Repeat the steps described above with Create a Performance analysis, but in Step 2 select Memory
access analysis.

2. Run the new analysis similar as described above with Run the analysis.

Inspect the result of the Memory access analysis

1. In the project tree select the result you want to inspect (MemAnalysis-1, Result-1).

The result appears in several tabs.

23

Tutorial

2. On the Summary tab, notice the high number of DSPR2 accesses (32836). When you hover the
mouse over a value, a context sensitive help box with additional information can appear.

3. Scroll down to the Data access intensive functions and notice that _c_init and main both access
variable x in DSPR2

24

TASKING Embedded Profiler User Guide

4. Hover the mouse over DSPR2 in main.

A context sensitive help box appears with a suggestion to solve the problem.

3.3. Fix the Problem

Now that we have analyzed the problem, we can fix it.

1. In the TASKING TriCore Eclipse IDE, double-click on the source file demo_dspr.c.

The file will be opened in the source editor.

2. Change the following source line:

#define FIXED 0

25

Tutorial

into:

#define FIXED 1

3. From the Project menu, select Rebuild demo_dspr ().

4. From the Debug menu, select Debug project ().

5. From the Debug menu, select Resume () to run the application on the target board.

The output of the application appears in the FSS (File System Simulation) view.

6. Inspect the FSS view and notice the number of ticks has reduced significantly.

7. From the Debug menu, select Terminate () to stop the debugging session. This is necessary to
free the connection with the target board.

3.4. Verify Fix in TASKING Embedded Profiler

Now that we have fixed the problem, we can use the TASKING Embedded Profiler to rerun both the
Performance analysis and the Memory access analysis mentioned in Section 3.2, Analyze Project in
TASKING Embedded Profiler and see the new results of the analyses.

Rerun the Performance analysis and inspect the result

1. In the TASKING Embedded Profiler, select PerfAnalysis-1.

2. From the Analysis menu, select Run Analysis.

3. Click Start.

This creates a Result-2.

4. Select Result-2 and notice that on the Summary tab, the number of Average stalls per clock
has reduced significantly from 0.88 to 0.09.

26

TASKING Embedded Profiler User Guide

5. Also inspect the other tabs yourself to see the results.

Rerun the Memory access analysis

1. In the TASKING Embedded Profiler, select MemAnalysis-1.

2. From the Analysis menu, select Run Analysis.

3. Click Start.

This creates a Result-2.

4. Select Result-2 and notice that on the Summary tab, the accesses are now in DSPR0. And notice
that main is no longer listed in the list of Data access intensive functions.

27

Tutorial

28

TASKING Embedded Profiler User Guide

3.5. Compare Results

The Embedded Profiler has a feature to compare results.This is very useful to see the differences before
and after a fix. Note that you can only compare results from the same analysis.

1. In the TASKING Embedded Profiler, select a result. For example, Result-2 of PerfAnalysis-1.

2. From the Result menu, select Compare Results.

3. Select another result, for example Result-1. The results you can select are marked yellow.

The comparison starts and a difference report is created. The numbers in the report are calculated
as the "first selected result" minus the "second selected result".

29

Tutorial

3.6. Export Results

You can export analysis results and comparison results to comma separated values (CSV) files.You can
choose to export instructions, functions or memory depending on the analysis type.

1. In the TASKING Embedded Profiler, select a result. For example, Result-1 of PerfAnalysis-1.

2. From the Result menu, select Export to CSV.

The Export to CSV dialog appears.

3. Enter the filename(s) and click Export.

30

TASKING Embedded Profiler User Guide

Chapter 4. Using the TASKING Embedded
Profiler
You can run the TASKING Embedded Profiler in two ways, via an interactive graphical user interface
(GUI) or via the command line. The GUI variant is useful in showing graphical analysis results with hints
how to improve the code. The command line interface is useful in automated scripts and makefiles to
generate analysis results in comma separated values (CSV) files.

4.1. Run the Embedded Profiler in Interactive Mode

To start the Embedded Profiler select Embedded Profiler from the Windows Start menu. The program
starts with an empty window except for a menu bar and a toolbar at the top. The area below that consists
of two panes. The left pane is used to display a project tree, with a project name, one or more analysis
names and one or more result names.The right pane is used to display an analysis result.You can resize
a pane by dragging one of its four corners and you can move a pane by dragging its title.You can drag
the button toolbar to another place, for example vertically to the left side or even detach it from the main
window.

Normal project management is available.You can create, open, edit, close or delete a project. A project
filename will have the extension .EmbProf.

31

The steps to:

• create a project

• create an analysis

• run an analysis

are described in Section 3.2, Analyze Project in TASKING Embedded Profiler.

See also Section 3.5, Compare Results and Section 3.6, Export Results. For details about the Results
see Chapter 5, Reference.

4.2. Run the Embedded Profiler from the Command Line

To run the Embedded Profiler from the command line use the EmbProfCmd batch file in a Windows
Command Prompt. Enter the following command to see the usage:

EmbProfCmd --help

The general invocation syntax is:

EmbProfCmd options project.EmbProf

where, project.EmbProf refers to an existing Embedded Profiler project file.

The following options are available:

DescriptionOption

This option causes the program to display an overview of all command
line options.

-? / --help

This option allows you to compare the results of a run with another result.
You must specify the name of an existing reference result. Option --run
should be used together with this option.

--compare=result

This option allows you to run the analysis in continuous trace mode.
Without this option, the default is one shot mode.

--continuous

This option allows you to specify the core index number.--core=core-nr

This option allows you to run an existing analysis.--run=analysis

This option allows you to specify the device server name. If you omit this
option, the default is localhost.

--server=hostname

This option shows the program version header.--version

To run an existing analysis

Use the following syntax to run an existing analysis from the command line:

EmbProfCmd --run=analysis project.EmbProf

32

TASKING Embedded Profiler User Guide

where, project.EmbProf refers to an existing Embedded Profiler project file.

To run and compare an existing analysis

Use the following syntax to run an existing analysis and compare the results with a previous result from
the command line:

EmbProfCmd --run=analysis --compare=result project.EmbProf

where, project.EmbProf refers to an existing Embedded Profiler project file.

4.2.1. Command Line Tutorial

In this section we use tutorial demo_dspr with the delivered demo_dspr.EmbProf to illustrate the use
of the command line options of the Embedded Profiler.

Prepare command line

Before you run the Embedded Profiler from the command line, follow these steps to configure the Windows
command prompt.

1. Start the Windows Command Prompt and go to the workspace directory containing the tutorial
demo_dspr.

2. Add the executable directory of the Embedded Profiler to the environment variable PATH. The
executable directory is the profiler directory in the installation directory. Substitute version with
the correct version number.

set PATH=%PATH%;"C:\Program Files (x86)\TASKING\prof version\profiler"

33

Using the TASKING Embedded Profiler

Command line examples

1. To run a performance analysis in demo_dspr using one shot trace mode, enter:

EmbProfCmd --run=PerfAnalysis demo_dspr.EmbProf

The results are exported to the CSV files functions.csv and instructions.csv.You can
inspect these files with any text editor. The first line in a CSV file shows the columns that are used.

Note that the command line invocation does not add a new result entry to the demo_dspr.EmbProf
file.

2. To run a performance analysis in demo_dspr using one shot trace mode and compare the results
with original, enter:

EmbProfCmd --run=PerfAnalysis --compare=original demo_dspr.EmbProf

The results of the comparison are exported to the CSV file functions.csv. If all value fields are
zero, this indicates that the results are identical. This should be the case with this example.

3. To run a performance analysis in demo_dspr using one shot trace mode and compare the results
with fixed, enter:

EmbProfCmd --run=PerfAnalysis --compare=fixed demo_dspr.EmbProf

The results of the comparison are exported to the CSV file functions.csv. Fields that contain
zeros indicate no change. Fields with negative values indicate an improvement, fields with positive
values indicate worse performance. In this example the comparison is worse, because we compare
the original result (non-fixed sources) with a version where the sources have been fixed. Normally,
you compare your results with a previous result.

4. To run an analysis using continuous trace mode use option --continuous. Be aware that this mode
requires that the application ends and does not contain endless while loops. Otherwise an analysis
run will not end.

EmbProfCmd --run=PerfAnalysis --compare=fixed --continuous
 demo_dspr.EmbProf

5. To run an analysis on a specific core, use option --core=core-nr. For the TC29x derivative your can
use the values 0, 1 and 2. Be aware that a core needs to be enabled in the startup code of the
application. Otherwise the analysis run will not terminate.

EmbProfCmd --run=PerfAnalysis --compare=fixed --continuous
 --core=0 demo_dspr.EmbProf

6. To specify a remote host to connect to the target, use option --server=hostname. The default, if you
do not specify this option, is localhost.

EmbProfCmd --run=PerfAnalysis --compare=fixed --continuous
 --core=0 --server=myservername demo_dspr.EmbProf

34

TASKING Embedded Profiler User Guide

Chapter 5. Reference
Every analysis result shows a number of tabs with information. What information is shown depends on
the type of the analysis: performance analysis, memory access analysis or function-level analysis.

This chapter contains an overview of all the fields and columns in an analysis result output.

5.1. Summary Tab

On the Summary tab the following information is available for the different analysis types

Performance analysis

• Info

• Performance hotspots

• ICache misses

• DCache misses

Memory access analysis

• Info

• Performance hotspots

• Data access intensive functions

• Memory access conflicts

• DCache misses

Function-level analysis

• Info

• Performance hotspots

35

5.1.1. Info

The Info part of the Summary tab contains the following information.

Func
Analysis

Mem
Analysis

Perf
Analysis

DescriptionInformation

✓✓✓The name of the selected processor deviceProcessor

✓✓✓The date and time the analysis was runTimestamp

✓✓✓The time it took on the PC to run the analysisExecution time

✓✓✓The TriCore core (0, 1, 2, ...) the analysis
was run for

Core index

✓✓✓The number of CPU clock cycles on the
board it took to run the analysis

CPU clock count

✓✓✓The values of several clock frequencies.The
values are read at the start of the analysis
before any reset. If the CPU was reset or
halted at analysis start, the clock frequencies
are not measured.

Clock frequencies

✓✓✓The CPU 0, 1, 2, ... data cache (DCache)
and program cache (PCache) settings.
D0=on means CPU0.DCACHE is enabled,
P1=off means CPU1.PCACHE is disabled.
The values are read at the start of the
analysis before any reset.

CPU data/program
cache

36

TASKING Embedded Profiler User Guide

Func
Analysis

Mem
Analysis

Perf
Analysis

DescriptionInformation

✓The number of clock cycles the CPU stalls
on branch misses, ICache misses and/or
DCache misses

Stalls

✓The average of stalls / CPU clock countAverage stalls per clock

✓The number of failed attempts to read or
write instructions from the instruction cache
(ICache)

ICache misses

✓✓The number of failed attempts to read or
write data from the data cache (DCache)

DCache misses

✓The number of read or write accesses to
Data Scratchpad RAM 0

DSPR0 accesses

✓The number of read or write accesses to
Data Scratchpad RAM 1

DSPR1 accesses

✓The number of read or write accesses to
Data Scratchpad RAM 2

DSPR2 accesses

✓The number of read or write accesses to
flash memory

FLASH memory
accesses

✓The number of read or write accesses to the
EBU

External Bus Unit
memory accesses

✓The number of read or write accesses to the
LMU

Local Memory Unit
accesses

Items that are marked red are high values that may be improved. Hover the mouse over a value to see
additional information.

5.1.2. Performance Hotspots

The Performance hotspots part of the Summary tab show a Hotspots chart. It show the functions with
the highest clock count. This chart is available for all analysis types. As you can see in the following
example, most of the time is spent in the functions _c_init and main.

37

Reference

If you double-click on a function, the Source tab opens at the selected function.

5.1.3. Data Access Intensive Functions

The Data access intensive functions part of the Summary tab shows the functions with the highest
number of data accesses to memory. This chart is available for memory access analyses only.

The first column is the name of the global variable, if the address is associated with a variable, otherwise
"Unidentified access" is shown. The second column is the name of the memory. The third column shows
the type of access read (R) or write (W). The fourth column shows the total number of accesses. The fifth
column shows the approximate cache miss rate for this specific access.

Hover the mouse over a value to see additional information.

38

TASKING Embedded Profiler User Guide

5.1.4. Memory Access Conflicts

The Memory access conflicts part of the Summary tab shows the conflicts where two variables from
different cores access the same memory at the same time. This is called concurrent access. The
demo_concurrent tutorial delivered with the product demonstrates this problem. This chart is available
for memory access analyses only.

The first column is the name of the first global variable that accesses the memory. The second column
shows the type of access read (R) or write (W) of the first variable. The third column is the name of the
second global variable that accesses the memory and causes the conflict. The fourth column shows the
type of access read (R) or write (W) of the second variable. The fifth column shows the core from which
the conflicting access originated. The sixth column shows the total number of access conflicts.

Hover the mouse over a value to see additional information.

39

Reference

5.1.5. ICache Misses

The ICache misses part of the Summary tab show an ICache Miss chart. It show the functions with the
highest number of instruction cache (ICache) misses. This chart is available for performance analyses
only.

5.1.6. DCache Misses

The DCache misses part of the Summary tab show a DCache Miss chart. It show the functions with the
highest number of data cache (DCache) misses. This chart is available for performance analyses and
memory access analyses.

40

TASKING Embedded Profiler User Guide

5.2. Hot Functions Tab

The Hot Functions tab shows a list with all the measured functions. This tab is available in all analysis
types. The performance analysis contains the most columns. Click on a column to sort the list according
to the information in that column. If you double-click on a function, the Source tab opens at the selected
function. If no source lines can be displayed, the Disassembly tab opens. Hover the mouse over a column
to see additional information.

The Hot Functions tab contains the following information:

Func
Analysis

Mem
Analysis

Perf
Analysis

DescriptionColumn

✓✓✓The name of the measured functionFunction Name

✓✓✓The relative path to the source file as stored
in the application ELF file

Source File

✓✓✓The address of the function in the application
ELF file

Function Address

✓✓✓The total number of CPU clocks spent in the
function

Clocks

41

Reference

Func
Analysis

Mem
Analysis

Perf
Analysis

DescriptionColumn

✓✓✓The application execution time spent in the
function as a percentage of the total
application execution time

% Of Total Time

✓✓✓The total number of CPU clocks spent in the
function and call tree descendents

Clocks With Children

✓✓✓The total number of times the function is
called

Entries

✓✓✓The average number of CPU clocks spent
in a function per function entry

Avg. clocks/Entry

✓✓✓The highest number of CPU clocks spent in
a function per function entry

Max Clocks/Entry

✓✓✓The lowest number of CPU clocks spent in
a function per function entry

Min Clocks/Entry

✓✓✓The difference between the highest and
lowest number of CPU clocks spent in a
function.This is the difference of the previous
two columns.

Jitter/Entry

✓The total number of branch missesBranch Misses

✓The total number of instruction cache missesICache Misses

✓✓The total number of data cache missesDCache Misses

✓The total number of stalls due to memory
access delays or pipeline hazards

Stalls

5.3. Source Line Results Tab

The Source Line Results tab shows a list with all the source lines of the measured functions where branch
misses, instruction cache misses, data cache misses and/or stalls appear. This tab is available for
performance analyses only. Click on a column to sort the list according to the information in that column.
Hover the mouse over a column to see additional information.

If you double-click on a row, the Source tab opens at the selected source line.

The Source Line Results tab contains the following information:

DescriptionColumn

The source line number, function name and relative path to the source file
where the problem occurred

Position

The total number of CPU clocks spent on the source lineClocks

The total number of branch missesBranch Misses

The total number of instruction cache missesICache Misses

42

TASKING Embedded Profiler User Guide

DescriptionColumn

The total number of data cache missesDCache Misses

The total number of stalls due to memory access delays or pipeline hazardsStalls

5.4. Instruction Results Tab

The Instruction Results tab shows a list with all the instructions of the measured functions where branch
misses, instruction cache misses, data cache misses and/or stalls appear. This tab is available for
performance analyses only. Click on a column to sort the list according to the information in that column.
Hover the mouse over a column to see additional information.

If you double-click on a row, the Disassembly tab opens at the selected instruction.

The Instruction Results tab contains the following information:

DescriptionColumn

The instruction address and function name where the problem occurredAddress

The total number of CPU clocks spent on the instructionClocks

The total number of branch missesBranch Misses

The total number of instruction cache missesICache Misses

The total number of data cache missesDCache Misses

The total number of stalls due to memory access delays or pipeline hazardsStalls

5.5. Source Tab

The Source tab shows the source code for the selected 'hot function'. For performance analyses only,
trace data is also present grouped by source line.

43

Reference

The columns are the same as explained in Section 5.3, Source Line Results Tab. Red values indicate a
miss or a stall. Hover the mouse over a value to see additional information.

With the Browse button you can open another source file.

When you enable Show disassembly, the disassembly will be intermixed with the source lines.

5.6. Disassembly Tab

The Disassembly tab shows the instructions for the selected 'hot function'. For performance analyses
only, trace data is also present grouped by instruction address.

44

TASKING Embedded Profiler User Guide

The columns are the same as explained in Section 5.4, Instruction Results Tab. Red values indicate a
miss or a stall. Hover the mouse over a value to see additional information.

Note that due to hardware constraints, a miss or a stall cannot always be linked to the exact
assembly instruction.

45

Reference

46

TASKING Embedded Profiler User Guide

	TASKING Embedded Profiler User Guide
	Table of Contents
	Manual Purpose and Structure
	Chapter 1. Installing the Software
	1.1. Installation for Windows
	1.2. Licensing
	1.2.1. Obtaining a License
	1.2.2. Frequently Asked Questions (FAQ)
	1.2.3. Installing a License
	1.2.3.1. Configure the Firewall in your Network
	1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)
	1.2.3.3. Installing Client Based Licenses (Node-Locked)

	Chapter 2. Introduction to the TASKING Embedded Profiler
	2.1. Emulation Device (ED)
	2.2. Trace Support

	Chapter 3. Tutorial
	3.1. Prepare Demo Project in Eclipse
	3.2. Analyze Project in TASKING Embedded Profiler
	3.3. Fix the Problem
	3.4. Verify Fix in TASKING Embedded Profiler
	3.5. Compare Results
	3.6. Export Results

	Chapter 4. Using the TASKING Embedded Profiler
	4.1. Run the Embedded Profiler in Interactive Mode
	4.2. Run the Embedded Profiler from the Command Line
	4.2.1. Command Line Tutorial

	Chapter 5. Reference
	5.1. Summary Tab
	5.1.1. Info
	5.1.2. Performance Hotspots
	5.1.3. Data Access Intensive Functions
	5.1.4. Memory Access Conflicts
	5.1.5. ICache Misses
	5.1.6. DCache Misses

	5.2. Hot Functions Tab
	5.3. Source Line Results Tab
	5.4. Instruction Results Tab
	5.5. Source Tab
	5.6. Disassembly Tab

