TASKING.

TASKING Embedded Profiler
User Guide

MA160-857 (v1.0) September 05, 2017

Copyright © 2017 TASKING BV.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium®,
TASKING®, and their respective logos are registered trademarks of Altium Limited or its subsidiaries. All other registered
or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to
the same are claimed.

Table of Contents

Manual PUIPOSE AN STTUCTUIE ...ttt e e e e et e e e e e enans \Y
1. INStalliNg the SOfWAIEt e e aa e 1
1.1. Installation for WINAOWS ..o e 1

2 IR o713 =Y oo [PP PTSPPPRP 1
1.2.1. ObtainiNg @ LICENSE . .uvniiiiiii e 2

1.2.2. Frequently Asked QUESEIONS (FAQ) ...uiuiuiuiiiiie e 3

1.2.3. INStalling @ LICENSEvtiiii i e 3

2. Introduction to the TASKING Embedded Profilercooiiiiiiiii 7
2.1 EMUIation DEVICE (ED)ouviiiiiiiiii it 9

A 1 - oS T U o] oL o S 9

B T V) (o] - | PPN 11
3.1. Prepare Demo Project in ECIIPSEiviiiiiiii e 11

3.2. Analyze Project in TASKING Embedded Profiler ..o 16

3.3 FiX the PrObIEM ... 25

3.4. Verify Fix in TASKING Embedded Profiler ..o 26

3.5, COMPAre RESUILS .. vttt e e e e 29

3.6, EXPOIrt RESUIS ...utit i e 30

4, Using the TASKING Embedded Profilerciiiii e 31
4.1. Run the Embedded Profiler in Interactive Modeoiviiiiiiiiiiiic e, 31

4.2. Run the Embedded Profiler from the Command Lineccooviiiiiiiiiiiiiiieeeans 32
4.2.1. Command Line TULOMIAlouieieiiie e e 33

L = L1 (== o P 35
B L. SUMMATNY TaD Lot 35
L0 0 O o P 36

5.1.2. Performance HOtSPOLSvuviiiiiiii et 37

5.1.3. Data Access INtensive FUNCHONSouiuiriiii e 38

5.1.4. Memory AcCesS CONFlICESivieieiiii e 39

B.1.5. ICACNE MISSES ...ttt 40

5.1.6. DCACNE MISSESutiiiiiiii e e e e e 40

5.2, HOt FUNCHONS TaD .. eiteiii e e e e e et ae e 41
5.3.50urce Line RESUIS Tahviviiii i 42

5.4, INStruction RESUIS Tabviiiii e 43

DD, SOUICE Al ottt e 44

5.6. DISasSemMbIY Tah ... 44

TASKING Embedded Profiler User Guide

Manual Purpose and Structure

Manual Purpose

You should read this manual if you want to know:

how to use the TASKING Embedded Profiler

the features of the TASKING Embedded Profiler

Manual Structure

Chapter 1, Installing the Software

Explains how to install and license the TASKING Embedded Profiler.

Chapter 2, Introduction to the TASKING Embedded Profiler

Contains an introduction to the TASKING Embedded Profiler and contains an overview of the features.

Chapter 3, Tutorial

Contains a step-by-step tutorial how to use the demo projects with the TASKING Embedded Profiler.

Chapter 4, Using the TASKING Embedded Profiler

Explains how to use the TASKING Embedded Profiler. You can run the TASKING Embedded Profiler in
two ways, via an interactive graphical user interface (GUI) or via the command line.

Chapter 5, Reference

Contains an overview of all the fields and columns in an analysis result output.

Related Publications

Getting Started with the TASKING VX-toolset for TriCore

TASKING VX-toolset for TriCore User Guide

AURIX™ TC21x/TC22x/TC23x Family User's Manual, V1.1 [2014-12, Infineon]
AURIX™ TC26x A-Step User's Manual, V1.1 [2013-12, Infineon]

AURIX™ TC26x B-Step User's Manual, V1.2 [2014-02, Infineon]

AURIX™ TC27x User's Manual, V1.4 [2013-11, Infineon]

AURIX™ TC27x B-Step User's Manual, V1.4.1 [2014-02, Infineon]

AURIX™ TC27x C-Step User's Manual, V2.2 [2014-12, Infineon]

AURIX™ TC27x D-Step User's Manual, V2.2 [2014-12, Infineon]

TASKING Embedded Profiler User Guide

* AURIX™ TC29x A-Step User's Manual, V1.1.1 [2014-01, Infineon]

* AURIX™ TC29x B-Step User's Manual, V1.3 [2014-12, Infineon]

Vi

Chapter 1. Installing the Software

This chapter guides you through the installation process of the TASKING® Embedded Profiler. It also
describes how to license the software.

In this manual, TASKING Embedded Profiler and Embedded Profiler are used as synonyms.

1.1. Installation for Windows

System Requirements

Before installing, make sure the following minimum system requirements are met:
» Windows 7 or higher

e 2 GHz Pentium class processor

* 1 GB memory

» 500 MB free hard disk space

» Screen resolution: 1024 x 768 or higher

Installation
1. |If you received a download link, download the software and extract its contents.
-or-
If you received an USB flash drive, insert it into a free USB port on your computer.
2. Run the installation program (setup.exe).

The TASKING Setup dialog box appears.

3. Select a product and click on the Install button. If there is only one product, you can directly click on

the Install button.

4. Follow the instructions that appear on your screen. During the installation you need to enter a license

key, this is described in Section 1.2, Licensing.

1.2. Licensing

TASKING products are protected with TASKING license management software (TLM). To use a TASKING

product, you must install that product and install a license.

The following license types can be ordered from Altium.

TASKING Embedded Profiler User Guide

Node-locked license

A node-locked license locks the software to one specific computer so you can use the product on that
particular computer only.

For information about installing a node-locked license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked) and Section 1.2.3.3, Installing Client Based Licenses (Node-Locked).

Floating license

A floating license is a license located on a license server and can be used by multiple users on the network.
Floating licenses allow you to share licenses among a group of users up to the number of users (seats)
specified in the license.

For example, suppose 50 developers may use a client but only ten clients are running at any given time.
In this scenario, you only require a ten seats floating license. When all ten licenses are in use, no other
client instance can be used.

For information about installing a floating license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked).

License service types

The license service type specifies the process used to validate the license. The following types are
possible:

» Client based (also known as 'standalone’). The license is serviced by the client. All information necessary
to service the license is available on the computer that executes the TASKING product. This license
service type is available for node-locked licenses only.

» Server based (also known as 'network based’). The license is serviced by a separate license server
program that runs either on your companies' network or runs in the cloud. This license service type is
available for both node-locked licenses and floating licenses.

Licenses can be serviced by a cloud based license server called "Remote TASKING License Server".
This is a license server that is operated by TASKING. Alternatively, you can install a license server
program on your local network. Such a server is called a "Local TASKING License Server". You have
to configure such a license server yourself. The installation of a local TASKING license server is not
part of this manual. You can order it as a separate product (SW000089).

The benefit of using the Remote TASKING License Server is that product installation and configuration
is simplified.

Unless you have an IT department that is proficient with the setup and configuration of licensing systems
we recommend to use the facilities offered by the Remote TASKING License Server.

1.2.1. Obtaining a License

You need a license key when you install a TASKING product on a computer. If you have not received
such a license key follow the steps below to obtain one. Otherwise, you cannot install the software.

Installing the Software

Obtaining a server based license (floating or node-locked)
* Order a TASKING product from Altium or one of its distributors.
A license key will be sent to you by email or on paper.

If your node-locked server based license is not yet bound to a specific computer ID, the license server
binds the license to the computer that first uses the license.

Obtaining a client based license (node-locked)

To use a TASKING product on one particular computer with a license file, Altium needs to know the
computer ID that uniquely identifies your computer. You can do this with the getcid program that is
available on the TASKING website. The detailed steps are explained below.

1. Download the getcid program from http://www.tasking.com/support/tim/download.shtml.

2. Execute the getcid program on the computer on which you want to use a TASKING product. The
tool has no options. For example,

C:\ Taski ng\ getci d
Conputer ID: 5Dzm L9+Z- WbO aMKU- 5Dzm L9+Z- WFbO aMkU- MDAy - Y2Zm

The computer ID is displayed on your screen.
3. Order a TASKING product from Altium or one of its distributors and supply the computer ID.
A license key and a license file will be sent to you by email or on paper.

When you have received your TASKING product, you are now ready to install it.

1.2.2. Frequently Asked Questions (FAQ)

If you have questions or encounter problems you can check the support page on the TASKING website.
http://www.tasking.com/support/tim/faq.shtmi
This page contains answers to questions for the TASKING license management system TLM.

If your question is not there, please contact your nearest Altium Sales & Support Center or Value Added
Reseller.

1.2.3. Installing a License

The license setup procedure is done by the installation program.

If the installation program can access the internet then you only need the licence key. Given the license
key the installation program retrieves all required information from the remote TASKING license server.
The install program sends the license key and the computer ID of the computer on which the installation
program is running to the remote TASKING license server. No other data is transmitted.

http://www.tasking.com/support/tlm/download.shtml
http://www.tasking.com/support/tlm/faq.shtml

TASKING Embedded Profiler User Guide

If the installation program cannot access the internet the installation program asks you to enter the required
information by hand. If you install a node-locked client based license you should have the license file at
hand (see Section 1.2.1, Obtaining a License).

Floating licenses are always server based and node-locked licenses can be server based. All server
based licenses are installed using the same procedure.

1.2.3.1. Configure the Firewall in your Network

For using the TASKING license servers the TASKING license manager tries to connect to the Remote
TASKING servers | i cl. t aski ng. com..li c4. t aski ng. comat the TCP ports 8080, 8936 or 80.
Make sure that the firewall in your network has transparent access enabled for one of these ports.

1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)
If you do not have received your license key, read Section 1.2.1, Obtaining a License before you continue.

1. If you want to use a local license server, first install and run the local license server before you
continue with step 2. You can order a local license server as a separate product (product code
SWO000089).

2. Install the TASKING product and follow the instruction that appear on your screen.

The installation program asks you to enter the license information.

TASKING Embedded Profiler viyrz - InstallShield Wizard (=23

License key Information

Specify pour icenze key TASK’” G

Fleaze enter the icenze key that pou have received from TASEING. The key haz the format like
aaa-bbbb-cocc-dddd. IF you do not have a key, pleaze contact TASKING through
licensing(@tasking. com, or contact your TASKING reprezentative.

Licenze Fey

| Licensing Support | | < Back |[MHedt]| Cancel |

3. Inthe License key field enter the license key you have received from Altium and click Next to
continue.

6.

7.

Installing the Software

The installation program tries to retrieve the license information from a remote TASKING license
server. Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

Select your License type and click Next to continue.
You can find the license type in the email or paper that contains the license key.

Select Remote TASKING license server to use one of the remote TASKING license servers, or
select Local TASKING license server for a local license server. The latter requires optional software.

(For local license server only) specify the Server name and Port number of the local license server.

Click Finish to complete the installation.

1.2.3.3. Installing Client Based Licenses (Node-Locked)

If you do not have received your license key and license file, read Section 1.2.1, Obtaining a License
before continuing.

1.

Install the TASKING product and follow the instruction that appear on your screen.

The installation program asks you to enter the license information.

TASKING Embedded Profiler viyrz - InstallShield Wizard (=23

License key Information

Specify pour icenze key TASK’” G

Fleaze enter the icenze key that pou have received from TASEING. The key haz the format like
aaa-bbbb-cocc-dddd. IF you do not have a key, pleaze contact TASKING through
licensing(@tasking. com, or contact your TASKING reprezentative.

Licenze Fey

| Licensing Support | | < Back |[MHedt]| Cancel |

In the License key field enter the license key you have received from Altium and click Next to
continue.

TASKING Embedded Profiler User Guide

The installation program tries to retrieve the license information from a remote TASKING license
server. Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

3. Select Node-locked client based license and click Next to continue.
4. Inthe License file content field enter the contents of the license file you have received from Altium.
The license data is stored in the file licfile.txt in the etc directory of the product.

5. Click Finish to complete the installation.

Chapter 2. Introduction to the TASKING
Embedded Profiler

After your application has been verified, thoroughly tested and debugged, and by itself behaves correctly,
you may still run into performance and timing issues. Many timing issues can be addressed simply by
improving the performance of the applications that caused a missed deadline. Furthermore, by reducing
the core load of your applications you may be able to go for a device that is cheaper because it has fewer
cores. A way to address these issues is performance tuning.

With performance tuning we refer to optimizing your application for a specific target device. Common
situations where performance tuning of your application makes sense are:

* You are using self-made libraries that are called a lot and thus have a big impact on overall application
performance.

* You develop/adapt low level drivers and basic software (BSW) or operating system (OS) components.
* You are close to or above your core load budget limit.

» You have a timing problem in your schedule that could be fixed by speeding up specific tasks but want
to avoid changing the schedule.

* You want to try and target a smaller electronic control unit (ECU) in order to save costs.

» You care about easily and cost effectively tracking and improving the performance of your code on
target devices.

Embedded hardware platforms are too complex for the average software developer to predict or understand
the performance of his code. In order to optimize code for a specific platform (cores plus peripherals),
developers need feedback from the hardware on which specific part of their code is suboptimal (in terms
of memory consumption, jitter, execution time, ...) and what is the root cause of the performance impact.
The TASKING Embedded Profiler is a smart profiling tool that provides this feedback.

The TASKING Embedded Profiler communicates with an embedded processor (CPU) to gather real-time
tracing and performance data. The tool gives an overview over the current clock settings — no need to
get an oscilloscope to verify that the clocks are configured properly for a benchmark run. After verification
of correct clock setup, you are guided through a few easy steps that pinpoint the source lines that have
the greatest performance impact. The tool indicates the root cause of the performance impact and gives
simple instructions on how to address the problem. The data is presented in graphics and tables and into
computer readable formats.

TASKING Embedded Profiler User Guide

£7) TASKING Embedded Profiler w.yrz - demo_dspr - MemAnalysis-1 - Resukt-1
Project Analysis Result Help

(=8| H0R =)

+ 2@

(= demo_tspr summary | Hot Functions | Source | Disassembly

Perfanalysis-1
)L MemAnalysis-1
[Result-1
Processor:
Timestamp:
Execution time:
Core index:

CPU dock count:

Clock frequendies:

CPU data/program cache:

DCache misses:

DSPRO accesses:

DSPR1 accesses:

DSPR2 accesses:

FLASH memory accesses:

External Bus Unit memory accesses:

Local Memory Unit aczesses:

Performance hotspots

TC29%ED

2017-08-29 10:26:58 AM

11,517 seconds

L]

301566

CPUO=100MHz CPU1=100MHz CPU2=100MHz SR1=100MHz SPB=50MHz BBE=50MHz
D0=on PO=on D1=off P1=off D2=off P2=off

30

780

L]

L]

Data access intensive functions (2)
_c_init

Variable Region Access Count % Cache Misses
x DsPR2 [w [16384 o

Unidentified access PFLASHD R Pﬂ o

b] W 50 0

d access DSPR2 W 0 0

Unidentified access DSPRO W 37 0

|_dbg_request] W 5 0

Unidentified access DSPRO R 3 0

main
Varizble Region Accass Count % Cache Misses
DSPR2

|Uridentfied access olsro w 5 0
|Unidentified access

Pl scratch-Pad memory of Care#2. Access to this memory region is ineffective from Core#0, consider moving data to scratch-pad memary of accessing core.

After applying the suggested mitigation, you can use the TASKING Embedded Profiler to confirm that the
problem has indeed been fixed. With the default settings of the tool this all happens non-intrusively with
real data collected from the application running on the real device. Using such a performance tuning tool,

non-expert users can often highly speed up untuned applications.

Features of the TASKING Embedded Profiler

« Performance analysis
» Memory access analysis

* Function-level analysis

» Compare analysis runs of the same kind

¢ Organize analyses and results in projects

» Load/store analysis results

¢ Graphical user interface (GUI) and command line support

Introduction to the TASKING Embedded Profiler

» Support for Device Access Server (DAS) v6.0 and Device Access Port (DAP) miniWiggler

Performance analysis

This type of analysis traces instructions and performance events. It measures the CPU clock count and
it finds branch misses, cache misses and stalls due to memory access delays or pipeline hazards. You
can run this type of analysis on the whole application or select specific functions.

Memory access analysis

This type of analysis traces function calls, function returns and data accesses. You can run this type of
analysis on the whole application or select specific functions.

Function-level analysis

This type of analysis traces all function calls and function returns. This is the fastest analysis.

2.1. Emulation Device (ED)

The standard TriCore/AURIX™ processors (production devices) lack debug trace functionality. However,
this functionality is very useful when you develop and test your application. Therefore pin compatible
Emulation Devices (ED) are available. An Emulation Device has an Emulation Extension Chip (EEC)
added to the same silicon, which is accessible through the JTAG or DAP interface. The TASKING
Embedded Profiler supports the on-chip trace feature of the Emulation Device. See the processor
documentation for detailed information about the device.

Some Production Devices, such as the TC29x, are equipped with a mini-MCDS, which is a subset of the
on-chip trace feature that is available on Emulation Devices. The mini-MCDS memory is not suitable for
safety related data and must not be used for data storage by safety applications. See the processor
documentation for detailed information about the device.

Naming convention

You can see by the name on the processor what type of device it is. For example, with SAK-TC299TE
the last letter indicates the "Feature Package". If this letter is an 'E' or 'F' you have an Emulation Device.

For a detailed naming convention see the AURIX™ Product Naming PDF on the Infineon website.

2.2.Trace Support

The TASKING Embedded Profiler uses the on-chip trace (MCS) concept. For detailed information about
the Multi-Core Debug Solution (MCDS) we recommend that you read the processor documentation
belonging to the Emulation Device.

http://www.infineon.com/dgdl/Infineon-Infineon-MCU-Naming-Convention-SEPT-2014-PP-v01_00-EN.pdf?fileId=db3a304412b407950112b41aa12c2b0a

TASKING Embedded Profiler User Guide

Tile memory range

Trace information is stored in a dedicated trace buffer. With an Emulation Device you can allocate part
of the Emulation Memory (EMEM) as trace buffer memory. The Emulation Memory is divided in so-called
‘tiles’, and you can choose which part of the Emulation Memory should be used for tracing. Be careful
that the same tile memory range used for tracing is not used by the target application, as this can lead
to unexpected trace results. The number of tiles vary per Emulation Device.

Trace mode

When you run a trace analysis in the TASKING Embedded Profiler, you can set the trace mode:

* One shot mode. In this mode the analysis will run until the trace buffer is full. This is non-intrusive,
meaning that the trace does not interfere the running processor. After the trace has stopped the profiler
reads the collected data.

» Continuous trace. In this mode the analysis will run until the application stops or when you stop the
analysis manually. This mode is intrusive, meaning that the processor is stopped temporarily every

time the trace buffer has been filled, so that the profiler can read the collected data. After that the
processor continues writing to the buffer.

Attach mode

When you run a trace analysis in the TASKING Embedded Profiler, you can set the attach mode:
» Reset device. In this mode the device is reset first and then the analysis starts.

» Hot attach. In this mode the analysis will start at the current execution position of the running application.

10

Chapter 3. Tutorial

The profiler\tutorial s directory of the TASKING Embedded Profiler installation contains several
examples. They serve as a good starting point for your own profiling analysis project.

» deno_dspr - A project for the TC29xB demonstrating how defaulting to the wrong scratch pad memory
results in a penalty in stalls.

» denp_dcache - A project for the TC29xB demonstrating how multiple passes over a large buffer can
cause many data cache misses.

« denp_concurrent - A project for the TC29xB demonstrating how accessing the same memory from
multiple cores causes stalls.

All examples come with embedded profiler projects (files with the . EmbPr of extension), with pre-run
analyses. You can open a project in the TASKING Embedded Profiler to inspect the various analysis
results, without having to run the examples on a target board.

In this tutorial we will use the dermo_dspr example to go through the process of preparing your project
from scratch, running a profiling analysis, fixing the problem and rerunning a profiling analysis to see the
improvement. After this tutorial you can use the other tutorials yourself in a similar way.

3.1. Prepare Demo Project in Eclipse

Before you can use the TASKING Embedded Profiler, you must have an application ELF file with debug
information and the application must be downloaded onto a target board.

The example projects delivered with the TASKING Embedded Profiler are Eclipse projects suitable for

the TASKING VX-toolset for TriCore v6.2r1 or higher. For this part of the tutorial it is assumed that you
have this toolset installed.

Import an example project
1. Start the TASKING VX-toolset for TriCore Eclipse IDE.
2. From the File menu, select Import.

The Import dialog appears.

11

TASKING Embedded Profiler User Guide

12

€ tmport T o e
Select) \4
Create new projects from an archive file or directory. ? 5

Select an import source:

type filter text

4 (= General
JE Archive File
(> Existing Projects into Workspace
(=) File System
[Preferences
s B C/CH+
. B2 CVS
(= Install
(= Run/Debug
(= TASKING C/C++
> [= TASKING Software Platform
> = Team

Select General » Existing Projects into Workspace and click Next.

The Import Projects dialog appears.

ﬁj Import =
Import Projects

Select a directory to search for existing Eclipse projects.

Ug

(7) Select root directory: Browse...
@) Select archive file: C:\Program Files (x86)\TASKING\prof vyrz\profiler\tutorials\demo_dsprzip =
Projects:

demo_dspr (/] Select All
Deselect All

Options
Search for nested projects
Copy projects into workspace
[] Hide projects that already exist in the workspace
Waorking sets
[] Add project to working sets

Select...

@ Mext > Finish] [Cancel

Tutorial
4. Click Select archive file and browse to the example ZIP file delivered with the TASKING Embedded
Profiler.
5. Leave the other settings in this dialog as is and click Finish.
The project will be added to your workspace.

You can now examine the source files, build the project (for your target) and flash the application.

Examine source file

1. Inthe C/C++ Projects view double-click on the source file dermo_dspr. c.
The file will be opened in the source editor.

2. Examine the source file and make sure that the following define has the value 0:
#define FIXED O

This define is used to demonstrate the different profiler results before and after fixing the source file.

Set project options

The resulting application ELF file must contain debug information. The demo projects already have
debugging enabled by default. So, for the demo projects you can skip this step. For your own project,
make sure that debugging is enabled.

1. Fromthe Project menu, select Properties for. Alternatively, you can click the /= button.

The Properties for demo_dspr dialog appears.
2. If not selected, expand C/C++ Build and select Settings to access the TriCore tool settings.

3. On the Tool Settings tab, expand C/C++ Compiler » Debugging, set option Generate symbolic
debug information to Default or Full and click OK.

13

TASKING Embedded Profiler User Guide

£} Properties for demo_dspr [o &=
type filter text Settings A v v
> Resource
Builders
4 C/C++ Build Configuration: [Debug [Active] '] [Manage(onﬁguratlons..‘

Build Variables
Envirenment

Logging & Tool Settings | #* Build Steps | /" Build Artifact | [Binary Parsers | @ Emor Parsers|
Memory
Processor (2 Global Optiens Generate symbolic debug information:
Seftings 4 B C/Cr Compiler 7] Generste control flow information =
Stack/Heap (2 Preprocessing st i
Startup Configuration (2 Include Paths atic protiing
Startup Registers (8 Precompiled C++ Headers [T] Generate profiling information for block counters

. C/C++ General 2 Language [7] Generate profiling information to build a call graph

Project References (2% Floating-Point [7] Generste profiling information for function counters
» Run/Debug Settings (2 Code Generation [7] Generate profiling infarmation for function timers

Allocation
a (% Optimization
(# Custom Optimization

Exclude time spent in interrupt functions

[] Generate code for bounds checking

(5 Compilation Speed [C] Generate code to detect unhandled case in a switch
@ Debugging [Generate code for malloc consistency checks

a (33 MISRA C
(& Custom 2012
(2 Custom 2004
2 Custom 1998
a (% CERT C Secure Coding
(5 Custom CERT C
(5 Diagnostics
(3 Miscellaneous

@

Build the project

From the Project menu, select Build demo_dspr, or click il from the toolbar.

Run the debugger to flash the application onto the target board

1. Connect the Infineon TriBoard TC29xB to your computer. See the documentation that came with the
board for more information.

2. From the Debug menu, select Debug project.

Alternatively you can click the %% putton in the main toolbar.

Before you can debug a project, you need a Debug launch configuration. Such a configuration,
identified by a name, contains all information about the debug project: which debugger is used, which

project is used, which binary debug file is used, ... and so forth. So, initially the Debug Configurations
dialog appears.

14

Tutorial

(.} Debug Configurations =3
Create, manage, and run configurations 5 %
TASKING C/C++ Debugger s
- EY
EIEE Name: demo_dspr
type filter text Target . = Initialization| 5] Project| 69= Arguments | K Source |] Miscellaneous
4 35 TASKING C/C++ Debugger Target settings -
*5 demo_dspr
) Show all targets @ Show targets for TC20xB
Target: Infineon TriBoard TC23x8
TriCore 161 Instruction Set Simulator
Configuration: [FCPU=300Mhz, PLL normal mode -
Connection settings 1
Connection: |Universal Debug Access Server -
SSig= Field Value
Edit..
Host localhost
Port pi]
Revert Apph
Filter matched 2 of 4 items
®

On the Target tab, select the Infineon Triboard TC29xB and click Debug.

The TASKING Debug perspective is associated with the TASKING C/C++ Debugger. Because the
TASKING C/C++ perspective is still active, Eclipse asks to open the TASKING Debug perspective.

Optionally, enable the option Remember my decision and click Yes.

The debug session is launched. This may take a few seconds.

From the Debug menu, select Resume (I¥) to run the application on the target board.
The output of the application appears in the FSS (File System Simulation) view.

Inspect the FSS view and notice the number of ticks.
L PSS 21 - demo_dspr 2 = g

Start -
duration 73767 ticks

15

TASKING Embedded Profiler User Guide

7. Fromthe Debug menu, select Terminate (M) to stop the debugging session. This is necessary to

free the connection with the target board.

3.2. Analyze Project in TASKING Embedded Profiler

Now it is time to start analyzing the demo project.

Create a project

1. Start the TASKING Embedded Profiler.

{2} TASKING Embedded Profiler vxyrz =N ==

Project Analysic Result Help

&R w

Mo open project Mo analysis result selected

The TASKING Embedded Profiler window is divided into two panes. The left pane is reserved for
the project tree and the right pane is reserved for analysis results.

2. From the Project menu, select New Project.

The New Project dialog appears.

16

Tutorial

lj MNew Project
Project name:
Project directary:

Executable file:

Processar:

Device server:

Source code directory:

demo_dspr
C:\Users\name'workspace_profidemo_dspr

Debugidemo_dspr.elf

Browse...

el
SN
SN

Browse...

(Directory only required if executable file contains insuffident information)

TC29%ED

. Create | | Cancel

3. Inthe Project name field, enter the name of the project (for example, you can use the same name
as the Eclipse project, deno_dspr).

4. Inthe Project directory field, specify the directory where you want to store the Embedded Profiler
project file (file with extension . EnbPr of).

5. Inthe Executable file field, specify the name of the ELF file. This file is usually relative to the project
directory. If the executable file is stored in another directory, the full path name is shown.

6. Optionally specify a Source code directory. Normally, the location of the source files is taken from

the ELF file.

7. Select the Processor. For example, TC29xED.

8. For the Device server, enter the server name (leave blank for | ocal host).

9. Leave the rest of the dialog as is and click Create.

The new project is created and opened.

= demo_dspr

Create a Performance analysis

1. From the Analysis menu, select New Analysis.

The New Analysis wizard appears.

17

TASKING Embedded Profiler User Guide

2.

3.

4.

18

lj Mew Analysis @

Analysis Type

Select the type of analysis:

@ Performance analysis. Traces instructions and performance events: branch misses, cache misses and stalls.
= Optionally limited to selected functions.

Memory access analysis. Traces function calls/returns and data accesses. Optionally limited to selected
' functions.

() Function-level analysis. Fastest analysis, traces all function callsfreturns.

Back [MNext | [Finish] [Cancel

Three types of analyses are possible. Select Performance analysis and click Next.

The Analysis Scope page appears.

lj Mew Analysis @

Analysis Scope

Analysis scope: @) Whole application (7 Spedific functions

Application functions: Functions chosen for trace:

.cocofun_1 -
.cocofun_1
«cocofun_1 N
.cocofun_2

.cocofun_2

.cocofun_3

.cocofun_4

.cocofun_5 -

m

[Back] [MNext | [Finish] [Cancel

For this tutorial select Whole Application. If you select Specific Functions, select one or more
Application functions and click >.

Click Next.

Tutorial

The Analysis Name page appears.

5. Specify the analysis name. A default name has already be filled in based on the analysis type and
a sequence number, but you can specify your own name.

6. Click Finish.

The new analysis is created and is visible in the project tree.

= demo_dspr

Run the analysis
1. Inthe project tree select the analysis you want to run.
2. From the Analysis menu, select Run Analysis.

The Run Analysis dialog appears.

l: Run Analysis @
Processor: TC29%xED
Executable file: Debugidemo_dspr.elf
Device server: localhost
Analysis type: Performance Analysis
Analysis result name: Result-1
Trace mode: @ One shotmode () Continuous trace
Attach mode: @ Resetdevice () Hotattach
Core index: iCore 0~
Trace memory tile range: |0 |.. 15 | (total range is 0..15)
[start | l Cancel l

3. Enter an Analysis result name (default Resul t - and a sequence number).

4. Select a Trace mode. A One shot mode trace ends when the hardware trace buffer is full. A
Continuous trace ends when the program finishes (ends at a break instruction) or when it is stopped
explicitly by the user.

5. Select an Attach mode. With Reset device, tracing starts by running the program in the embedded

device from the reset vector. With Hot attach, tracing starts by continuing tracing from the current
program counter location.

19

TASKING Embedded Profiler User Guide

In the Core index field, select the TriCore core for which you want to run the analysis.

For emulation devices only, enter a Trace memory tile range. Trace memory of emulation devices
consists of a consecutive number of tiles. Select the first and last tile index you want to use for trace
memory.

Click Start.

The analysis starts. After the analysis is finished the result is present in the project tree.

= demo_dspr
I L PerfAnalysis-1

W = Decylt-1

If a Windows Security Alert appears that the firewall has blocked some features, select a network
type and click Allow access.

Inspect the result of the Performance analysis

1.

20

In the project tree select the result you want to inspect (Per f Anal ysi s-1, Resul t-1).

The result appears in several tabs.

{21 TASKING Embedded Profiler vyrz - deme_dspr - PerfAnalysis-1 - Result-1 [= ===
Project Analysis Result Help

+ 2@

(= demo_dspr Summary | Hot Functions | Source Line Results | Instruction Resuits | source | Di
- PerfAnalysis-1

Processor: TC29xED

Timestamp: 2017-06-29 04:57:44 PM

Execution time: 10.51 seconds

Core index: 0

CPU dock count: 301518

Clock frequendies: {not measured, CPU was reset or halted on analysis start)
CPU data/program cache: DO=on PO=on D1=off P1=0ff D2=0ff P2=0ff

Stalls: 265876

Average stalls per dock: [

ICache misses: 68

DCache misses: 30

Performance hotspots (&)

Hotspots chart

clock count
a 20,000 40,000 60,000 80,000 100,000 120,000 140,000

_c_init_entry
main

_start

_fisbuf

_doprint
_dbg_cacheawi
_emitchar
_dbg_trap_tc
_putnumber
fpute -

Function

2.

3.

4,

On the Summary tab, notice the high number of Average stalls per clock (0.88).

Tutorial

On the Hot Functions tab, notice the high number of Stalls with functions _c_i nit _entry and

nmal n.
12} TASKING Embecided Profiler vx.yrz - demo_dspr - PerfAnalysis-1 - Result-1 =l e]
Project Analysis Result Help
+ 2@
= demo_dspr Summary | Hot Functions | Source Line Results | Instruction Results | Source | oi |
=)@ PerfAnalysis-1
- ey Functi.. Sourc.. Funct.. Clocks %Of.. Clock.. Enties Avg... Max.. MinCl.. Jiter.. Branc.. ICac.. DCac.. Stals
_c_init_.. 100... 148364 1 148364 148364 148364 131727
main ..\demo... 0x8000.. 147452 1 147452 147452 147452 131100
. \cstart,c|0x8000.., (1130 [0.37 300652 |1 1130 1130 (1130 [0 i 1 0 683
0x3000... 1014 [0.34 [422 |27 37] 34 34 2 3 2 6
0x3000... 516 017 sz 2 258 412 104 308 3 B 1 215
dbg_tra...[0xE000. . [454 0.5 454 s 56 £ Ig 70] 0 0 23
_emitchar |_doprin. . [0x8000... [312 0.0 312 7 11 4 8 36] 1 0 2
_dbg_tr 0x3000... [264 oos |78 3 %] 20 68] 4 0 25
_putru... |_doprin... [0x8000... [185 006|350 1 188 188 188 0 o s 0 144
oot 0x3000... 178 ooe [i78 7 s 2 6 & o 1 0 o
_io_putc 0x3000... 158 005 [7 5 30 = 3 o 1 0 z
clock 0x3000... 156 005 [i% z 7 sz 64 FE] o 0 0 4
ttoa | _doprin. . [0x@000... [122 oo+ |22 1 122 122 122 0 o 1 0 53
[feose 0x3000... 115 004 [6s0 3 £ @ 38 z o 1 1 35
cocofu... |, \estart.c[0xE000. . [38 003 @ z % 52 % 3 i 0 0 5
_fush 0%3000... 58 003 e 3 EF] 52 22 30 2 1 0 7
_dbg_trap 0%3000... 58 003 e 5 i3] = i3 o 0 5 5
_putstring|_doprin... [0x8000... 92 003 [a0s 1 EF] 52 EH 0 i] 0 o1
cocofu, 0%3000... [54 S] a2 & 3 2 o 0 0 i
cocofu... |. 0%3000... 78 CEEREE] ® @ 38 2 o 0 0 i
_dodose 0%3000... 78 CEERNE] 1 7 7 78 0 2 0 0 57
cocofu... |, \estart.c[0x8000. . [75 oo [%®] E3 % 30 i3 i 0 0 7
printf 0%3000... [70 ooz [p: 2 E5 50 20 30 o 3 0 23
strien 0%3000... [64 00z |64] EF] Ex 30 & o 0 0 5
0%3000... 50 00z [0 1 50 50 50 0 o 0 0 4
. [ox&000... [50 00z [0 5 0 24 3 8 i 0 0 o
. [oxg00a... [42 001 [a0s] a1 Ef] 12 8 o] 1 26
0x8000... [32 oor |2 1 EF] 32 32 0 o 1 1 7
_host_c...[VL [0xE000. . [32 oot 434 3 10 12 10 2] 0 3 &
_init_sp |..\cstart.c|0x8000... |18 ool [18 1 [18 5] 0] 0 0 g
_weaks... 0x3000... [12 oon |12 1 12 12 12 0] 0 0 g
.cocofu... |_doprin... [0x8000... [10 000 [0 1 10 10 10 0] 0 0]
_exit 0x3000... [10 000 [0 1 10 10 10 0] 0 0]
exit 0x3000.... [0 CECI 1 o o 0 0 o 0 0 o

Double-click on mai n.

The Source tab opens.

21

TASKING Embedded Profiler User Guide

TASKING Embedded Profiler viyrz - demo_dspr - PerfAnalysis-1 - Result-1 =N ==
Project Analysis Result Help
= b a@
(&= demo_dspr | summary | Hot Functions | Source Line Results | nstruction Resuits | Source | Disassembly|
Bl is-1
Clocks Branch ICache DCache Stalls
- Resulte Browse...] Show disassembly e he peah
17 o
18 #define ARRAY SIZE (16 = 1024)
19

20 /S @ = original

21 4/ 1 = problem fixed

22 #define FIXED 2

23

24

25 #if IFIXED

26

27 // this is the original line

28 // x[] is by defoult allocated in DSPR2Z —

20 veolatile int x[ARRAY _SIZE];

El)

31 #else

32

33 // this is the fixed line

34 // we allocate x[] in DSPRO to avoid the penalty in stalls

35 wveolatile int _ private@ x[ARRAY_SIZE];

36

37 #endif

38

39 int main(void) 1 0 1 0 19
2o E

41 printf("Start\n" }; 21 0 0 o o
42

43 clock_t clockstart = clock(): 1 0 1 0 16
a4

S for (intde 5 i AMALSIZE: 1)
46 {

47 x[i] = 15 11 o o o 7
48 }

49

se int duration = (int) (clock() - clockstart); i 0 o] o
51 printf("duration %i ticks\n", duration); I 0 0 0 7
52} [z o o o 3
53 -

< n +

5. Notice the high number of stalls is in the f or loop.

6. Enable Show disassembly on the Source tab to show disassembly intermixed with the source lines,
or open the Disassembly tab. Notice that the stalls are related to memory access.

22

Tutorial

£} TASKING Embedded Profiler wyrz - demo_dspr - PerfAnalysis-1 - Result-1 =N BN =<
Project Analysis Result Help
= > a@
&> demo_dspr | summary | Hot Functions | Source Line Resuits | Instruction Results | Source | Disassembly
- L PerfAnalysis-1
- Result-t Clocks Branch... ICache... DCach.. Stals

@xBOPBEDAG: JLt d2,d1,@x80000d50 «|as o 1 o 21
BxEOPREDAA: mcr #Exte3s,d 1 o o o o
@xB8000ODAE: isync 10 o o o o
exE000EDE2: call @xBE@ERLdA 1 o o o s
exBOPREDEG: mov 46w 1 o o o s
@x30000DB3: mov.a a4,50x8 24 0 o u o
exE00GEDEA: call @xB@@EBdcA 1 o o o o

@xB000EDEE: mov d4,dz 1 o a o 3

ox8000eDCa: j @xteepedfe 1 o a o o
main:

@xB0008DC4: sub.a sp,#0x8 1 o 1 1] 19
ox8e00eDC6: lea a4, ex3e000024 20 o a o o
@x30008DCA: call Bx38088e5C 1 0 o o o
@x30008DCE: call ex3eesebcd 1 0 1 o 16
@xEB000eDD2: mov dg,dz 8 o a o 7
@xB00060D4: movh.a als,#8x5000 2 0 o u o
@x80000DD3: lea als, [al5]@x5eee 1 o o o o
@xB000eDDC: mov d1s,#8x1 1 o a o o
Ox80008DDE: lea a2, ex3fff 2 o o o o
loop a2,ex3e000de2 8193 o] 1] 11

call ex3eesebcd 1 0 o o o

sub d2,ds 8 o] 1] 7

st.w [=p],d2 2 o o o o

movh.a ad,#0x3000 1 o] 1] 1]

lea a4, [a4]axfla 1 o o o o

call Bx38088e5C 2 0 o o o

L: mov d2,#8xe 1 o] 1] 3
@xEe0PeDFC: ret 1 o o 0 o

exit: B

@xE0PBBDFE: mov dis,d4 = {1] o o 0 o
ox8000eERe: call ex3eoasafs 1 o 1 0 15
Ox80002ER4: call Bx38000396 1 o o 0

@xEPPOBERS: mov d4,d1s 4 o o 0 3
Gx20008ERA: call Bx3e0086cC 1 0 o o 3
@xEPOOBERE: mov d4,d1s 1 o o 0 3
ox8002EELe: j OxBoceeeets 1 o o 0 o

Create and run a Memory access analysis

1. Repeat the steps described above with Create a Performance analysis, but in Step 2 select Memory
access analysis.

2. Run the new analysis similar as described above with Run the analysis.

Inspect the result of the Memory access analysis
1. Inthe project tree select the result you want to inspect (MemAnal ysi s- 1, Resul t - 1).

The result appears in several tabs.

23

TASKING Embedded Profiler User Guide

1 TASKING Embedded Profiler vi.yrz - demo_dspr - MemAnalysis-1 - Result-1
Project Analysis Result Help

b a2a@
(&= demo_dspr Summary HotchﬁoﬂsISwrr:E Disassembly
[Perfanalysis-1
=) s MemAnalysis-1

B8 7% Result-1

Processor: TC29%ED

Timestamp: 2017-06-29 05:09:24PM

Execution time: 11,142 seconds

Core index: 1}

CPU dock count: 301566

Clock frequencies: CPUD=100MHz CPU1=100MHz CPU2=100MHz SRI=100MHz SPB=50MHz BEE=50MHz
CPU dataprogram cache: D0=on PO=on D1=off P 1=0ff D2=0ff P2=off

DCache misses: 30

DSPRO accesses: 780

DSPR1accesses: o

DSPR2 acresses:

FLASH memery accesses:

u High number of ineffiecient accesses from Core#{ to DSPR2|

Excternal Bus Unit memory accesses: 0

Local Memory Unit accesses: []

Performance hotspots (2)

Hotspots chart

clock count
8] 20,000 40,000 60,000 80,000 100,000 120,000 140,000
_c_init
main
_emitchar
_start
_doprint
_dbg_cacheawi oS

2. Onthe Summary tab, notice the high number of DSPR2 accesses (32836). When you hover the
mouse over a value, a context sensitive help box with additional information can appear.

3. Scroll down to the Data access intensive functions and notice that _c_i ni t and mai n both access
variable x in DSPR2

24

Tutorial

1 TASKING Embedded Profiler vi.yrz - demo_dspr - MemAnalysis-1 - Result-1
Project Analysis Result Help

= > a@
(= demo_dspr Summary HotchﬁoﬂsISwrr:E Disassembly
[Perfanalysis-1

= L MemAnalysis-1 Data access intensive functions
[+ Result-1

Variable Region % Cache Misses

Unidentified access PFLASHO
_iob LMU
Unidentified access DSPR2
Unidentified access DSPRO
_dbg_request MU
Unidentified access IDSPRO

Region % Cache Misses

Unidentified access

Varizble Region % Cache Misses
_ioh LMu
Unidentified access DSPRO
iob]
Unidentified access DSPRO
x DSPRO
x DSPRO
Unidentified access DSPR2

_doprint

Variable Region % Cache Misses
Unidentified access [PFLASHO
Unidentified access DSPRO
Unidentified access DSPRO
x DSPRO
x DSPRO

Hover the mouse over DSPR2 in mai n.

A context sensitive help box appears with a suggestion to solve the problem.

main
Variable Region Access Count % Cache Misses
Unidentified access DlagR0 W 5 0

|unidentified access [oScratch-Pad memary of Core22. Access to this memory region is ineffective fram Core20,_consider moving data to scratch-pad memary of accessing core. |

3.3. Fix the Problem

Now that we have analyzed the problem, we can fix it.

1.

In the TASKING TriCore Eclipse IDE, double-click on the source file deno_dspr. c.
The file will be opened in the source editor.
Change the following source line:

#def i ne FlI XED 0

25

TASKING Embedded Profiler User Guide

into:

#def i ne FlI XED 1

3. Fromthe Project menu, select Rebuild demo_dspr (@5—'7).
4. From the Debug menu, select Debug project (#F).
5.

From the Debug menu, select Resume (IF) to run the application on the target board.
The output of the application appears in the FSS (File System Simulation) view.

6. Inspect the FSS view and notice the number of ticks has reduced significantly.

[P55 21 - demo_dspr 2 = O

Start -
duration 8237 ticks

From the Debug menu, select Terminate (M) to stop the debugging session. This is necessary to
free the connection with the target board.

3.4. Verify Fix in TASKING Embedded Profiler

Now that we have fixed the problem, we can use the TASKING Embedded Profiler to rerun both the
Performance analysis and the Memory access analysis mentioned in Section 3.2, Analyze Project in
TASKING Embedded Profiler and see the new results of the analyses.

Rerun the Performance analysis and inspect the result
1. Inthe TASKING Embedded Profiler, select Per f Anal ysi s- 1.
2. From the Analysis menu, select Run Analysis.
3. Click Start.
This creates a Result-2.

4. Select Resul t - 2 and notice that on the Summary tab, the number of Average stalls per clock
has reduced significantly from 0.88 to 0.09.

26

Tutorial

e = |
Project Analysis Result Help

ka2 @

(& demo_kor Summy ot Funcins | Source Lne Reslts | Insucton Resuls | Source [Oisessentlyl
&

[Result-1

Processor: TC29%ED

Timestamp: 2017-06-29 05:14:20 PM

Execution time: 11,432 seconds

Core index: 0

CPU dock count: 39094

Clock frequencies: (not measured, CPU was reset or halted on analysis start)
CPU data/program cache: DO=on P0=on D1=off P1=0ff D2=0ff P2=0ff

Stalls: 3457

Average stalls per dock:

ICache misses:

DCache misses:

Hotspots chart

clock count

16,000

4,000 6000 B,000 10,000 12,000 14,000

_c_init_entry
main

_start

_fisbuf
_doprint
_dbg_cacheawi
_emitchar [
_dbg_trap_tc
_putnumber
fpute i

Function

5. Also inspect the other tabs yourself to see the results.

Rerun the Memory access analysis

1.

2.

In the TASKING Embedded Profiler, select MemAnal ysi s- 1.
From the Analysis menu, select Run Analysis.
Click Start.

This creates a Result-2.

Select Resul t - 2 and notice that on the Summary tab, the accesses are now in DSPRO. And notice

that mai n is no longer listed in the list of Data access intensive functions.

27

TASKING Embedded Profiler User Guide

28

Project Analysis Result Help

TLEY)

(&= demo_dspr
[Perfanalysis-1
=]

|- B2 Result-1

Processor: TC29%ED

Timestamp: 2017-06-29 05:17:35PM

Execution time: 11.191 seconds

Core index: 1}

CPU dock count: 39142

Clock frequencies: CPUD=100MHz CPU1=100MHz CPU2=100MHz SRI=100MHz SPB=50MHz BES =50MHz
CPU data/program cache: DO=on P0=0n D1=0ff P1=0ff D2=0ff P2=0ff
DCache misses: 31

DSPRO accesses: 33532

DSPR1accesses: a

DSPR2 accesses: 0

FLASH memory accesses:

External Bus Unit memory accesses:

Local Memory Unit accesses:

Hotspots chart

clock count
4,000 6000 8000 10,000 12,000 14000 16,000

_c_init
main
_emitchar
_start
_doprint

_dbg_cacheawi

Tutorial

£} TASKING Embedded Profiler wyrz - demo_dspr - MemAnalysis-1 - Result-2 =N BN =<
Project Analysis Result Help
= > a@

(= demo_dspr Summary HotFuncﬁoﬂsISourr:E Disassembly
[Perfanalysis-1
= L MemAnalysis-1 Data access intensive functions

I [Result-1

' [Result-2.

Wariable
_iob

Region
LMy

% Cache Misses

Unidentified access

IDSPRO

Unidentified access

IDSPRO

_iob

LU

Unidentified access

LU

Warizble
x
Unidentified access

Region
DSPRO
PFLASHO

% Cache Misses

_iob

LMU

Unidentified access

LMU

Unidentified access

IDSPRO

_dbg_request

LMU

Unidentified access

IDSPRO

_doprint

Warizble

Unidentified access

Region
DsPRO

% Cache Misses
o

Unidentified access

PFLASHO

o

Unidentified access

IDSPRO

o

Warizble

Unidentified access

Region
DsPRO

% Cache Misses

_ioh

LMU

Unidentified access

IDSPRO

_ioh

LMU

3.5. Compare Results

The Embedded Profiler has a feature to compare results. This is very useful to see the differences before
and after a fix. Note that you can only compare results from the same analysis.

1. Inthe TASKING Embedded Profiler, select a result. For example, Resul t - 2 of Per f Anal ysi s- 1.

2. From the Result menu, select Compare Results.

3. Select another result, for example Resul t - 1. The results you can select are marked yellow.

The comparison starts and a difference report is created. The numbers in the report are calculated
as the "first selected result" minus the "second selected result".

29

TASKING Embedded Profiler User Guide

Project Analysis Result Help
‘@
(&= demo_dspr Diff Summary | Functions Diff —
=]
- [Result-1

= diff Processor: TC29%ED

- B MemAnalysis-1 Total dock diff: 262424

Timestamp: 2017-06-29 05:22:50 PM

Performance top diff

Top functions diff chart

clock count
-120,000 -100,000 -80,000 -60,000 -40,000

_C_init_entry
main

felose

_fisbuf

clock
_dbg_cacheawi
_ltoa

_ffiush
_io_putc
_emitchar
_doprint
_putstring
_doclose
_putnumber

foute

Function

3.6. Export Results

You can export analysis results and comparison results to comma separated values (CSV) files. You can
choose to export instructions, functions or memory depending on the analysis type.

1. Inthe TASKING Embedded Profiler, select a result. For example, Resul t - 1 of Per f Anal ysi s- 1.
2. From the Result menu, select Export to CSV.

The Export to CSV dialog appears.

Instructions CSV file: |C:‘\Users\name\wodapaoeyof‘\demo_dspr‘u’nstucﬁons.csv | I Browse...

Functions C5V file: |C:\Usershame\wodcspaceyof\demo_dspr\ﬁmcﬁons.csv | l Browse...

Memory C5V file: | | [Browse...

LBwort | [cancel |

3. Enter the filename(s) and click Export.

30

Chapter 4. Using the TASKING Embedded
Profiler

You can run the TASKING Embedded Profiler in two ways, via an interactive graphical user interface
(GUI) or via the command line. The GUI variant is useful in showing graphical analysis results with hints
how to improve the code. The command line interface is useful in automated scripts and makefiles to
generate analysis results in comma separated values (CSV) files.

4.1. Run the Embedded Profiler in Interactive Mode

To start the Embedded Profiler select Embedded Profiler from the Windows Start menu. The program
starts with an empty window except for a menu bar and a toolbar at the top. The area below that consists
of two panes. The left pane is used to display a project tree, with a project name, one or more analysis
names and one or more result names. The right pane is used to display an analysis result. You can resize
a pane by dragging one of its four corners and you can move a pane by dragging its title. You can drag
the button toolbar to another place, for example vertically to the left side or even detach it from the main
window.

{73 TASKING Embedded Profiler vyrz =N (Ech (==

Project Analysis Result Help

&3 w

Mo open project Mo analysis result selected

Normal project management is available. You can create, open, edit, close or delete a project. A project
filename will have the extension . EnbPr of .

31

TASKING Embedded Profiler User Guide

The steps to:

 create a project

 create an analysis

* run an analysis

are described in Section 3.2, Analyze Project in TASKING Embedded Profiler.

See also Section 3.5, Compare Results and Section 3.6, Export Results. For details about the Results
see Chapter 5, Reference.

4.2. Run the Embedded Profiler from the Command Line

To run the Embedded Profiler from the command line use the EmbProfCmd batch file in a Windows
Command Prompt. Enter the following command to see the usage:

EnbProf Cnd - - hel p

The general invocation syntax is:

EnbPr of Cnd options project. EnbPr of

where, pr oj ect . EnbPr of refers to an existing Embedded Profiler project file.

The following opt i ons are available:

Option Description

-? | --help This option causes the program to display an overview of all command
line options.

--compare=result This option allows you to compare the results of a run with another result.

You must specify the name of an existing reference result. Option --run
should be used together with this option.

--continuous This option allows you to run the analysis in continuous trace mode.
Without this option, the default is one shot mode.

--core=core-nr This option allows you to specify the core index number.

--run=analysis This option allows you to run an existing analysis.

--server=hostname This option allows you to specify the device server name. If you omit this

option, the default is localhost.

--version This option shows the program version header.

To run an existing analysis

Use the following syntax to run an existing analysis from the command line:

EnbPr of Cmd - -run=anal ysi s proj ect. EmbPr of

32

Using the TASKING Embedded Profiler

where, pr oj ect . EnbPr of refers to an existing Embedded Profiler project file.

To run and compare an existing analysis

Use the following syntax to run an existing analysis and compare the results with a previous result from
the command line:

EnbPr of Cnd - -run=anal ysi s --conpare=result project.EnbProf

where, pr oj ect . EnbPr of refers to an existing Embedded Profiler project file.

4.2.1. Command Line Tutorial

In this section we use tutorial deno_dspr with the delivered deno_dspr . EnbPr of to illustrate the use
of the command line options of the Embedded Profiler.

Prepare command line

Before you run the Embedded Profiler from the command line, follow these steps to configure the Windows
command prompt.

1. Start the Windows Command Prompt and go to the workspace directory containing the tutorial
deno_dspr.

Bl C\Windows\system32\cmd.exe =0 @

m | »

C:Userssnamnesworkspace_prof demo_dspr>

2. Add the executable directory of the Embedded Profiler to the environment variable PATH. The
executable directory is the pr of i | er directory in the installation directory. Substitute version with
the correct version number.

set PATH=YATHY% "C.\ Program Fil es (x86)\ TASKI NG prof version\profiler"

33

TASKING Embedded Profiler User Guide

Command line examples

1.

34

To run a performance analysis in denmpo_dspr using one shot trace mode, enter:
EnbPr of Crd - - run=Per f Anal ysi s deno_dspr . EnbPr of

The results are exported to the CSV files f uncti ons. csv and i nstructi ons. csv.You can
inspect these files with any text editor. The first line in a CSV file shows the columns that are used.

Note that the command line invocation does not add a new result entry to the deno_dspr . EnbPr of
file.

To run a performance analysis in deno_dspr using one shot trace mode and compare the results
with or i gi nal , enter:

EnbPr of Crd - -run=Per f Anal ysi s --conpare=origi nal deno_dspr. EnbPr of

The results of the comparison are exported to the CSV file f unct i ons. csv. If all value fields are
zero, this indicates that the results are identical. This should be the case with this example.

To run a performance analysis in deno_dspr using one shot trace mode and compare the results
with f i xed, enter:

EmbPr of Crd - - run=Perf Anal ysi s --conpare=fi xed deno_dspr. EnbPr of

The results of the comparison are exported to the CSV file f unct i ons. csv. Fields that contain
zeros indicate no change. Fields with negative values indicate an improvement, fields with positive
values indicate worse performance. In this example the comparison is worse, because we compare
the original result (non-fixed sources) with a version where the sources have been fixed. Normally,
you compare your results with a previous result.

To run an analysis using continuous trace mode use option --continuous. Be aware that this mode
requires that the application ends and does not contain endless whi | e loops. Otherwise an analysis
run will not end.

EnmbPr of Crd - - run=Perf Anal ysi s --conpare=fi xed --conti nuous
deno_dspr . EnbPr of

To run an analysis on a specific core, use option --core=core-nr. For the TC29x derivative your can
use the values 0, 1 and 2. Be aware that a core needs to be enabled in the startup code of the
application. Otherwise the analysis run will not terminate.

EnbPr of Crd - -run=Per f Anal ysi s --conpare=fixed --continuous
--core=0 deno_dspr. EnbPr of
To specify a remote host to connect to the target, use option --server=hostname. The default, if you

do not specify this option, is | ocal host .

EnbPr of Cnd - -run=Perf Anal ysi s --conpare=fi xed --continuous
--core=0 --server=nyservernane deno_dspr. EnbPr of

Chapter 5. Reference

Every analysis result shows a number of tabs with information. What information is shown depends on

the type of the analysis: performance analysis, memory access analysis or function-level analysis.

This chapter contains an overview of all the fields and columns in an analysis result output.

5.1. Summary Tab

On the Summary tab the following information is available for the different analysis types

Performance analysis

Info
Performance hotspots
ICache misses

DCache misses

Memory access analysis

Info

Performance hotspots

Data access intensive functions
Memory access conflicts

DCache misses

Function-level analysis

Info

Performance hotspots

35

TASKING Embedded Profiler User Guide

5.1.1. Info

The Info part of the Summary tab contains the following information.

Info ~
Processor: TC29xED
Timestamp: 2017-08-07 12:25:55 PM
Execution time: 11.12 seconds
Core index: 0
CPU dodk count: 301566
Clock frequencies: CPUO=100MHz CPU1=100MHz CPU2=100MHz SRI=100MHz SPE=50MHz BBB=50MHz
CPU data/program cache: D0=on PO=on D 1=o0ff P 1=0ff D2=0ff P2=0ff
DCache misses: 30
DSPRO accesses: 730
DSPR1 accesses: u]
DSPR2 accesses:
FLASH memory accesses: E
External Bus Unit memory accesses: 0
Local Memory Unit accesses: E
Information Description Perf Mem Func
Analysis |Analysis |Analysis
Processor The name of the selected processor device |0 ad
Timestamp The date and time the analysis was run ad O ad
Execution time The time it took on the PC to run the analysis | O ad
Core index The TriCore core (0, 1, 2, ...) the analysis |0 O ad
was run for
CPU clock count The number of CPU clock cycles on the ad O ad
board it took to run the analysis
Clock frequencies The values of several clock frequencies. The | O ad
values are read at the start of the analysis
before any reset. If the CPU was reset or
halted at analysis start, the clock frequencies
are not measured.
CPU data/program The CPU 0, 1, 2, ... data cache (DCache) |O O ad

cache

and program cache (PCache) settings.
DO=on means CPUO.DCACHE is enabled,
P1=off means CPU1.PCACHE is disabled.
The values are read at the start of the
analysis before any reset.

36

Reference

Information Description Perf Mem Func
Analysis |Analysis [Analysis
Stalls The number of clock cycles the CPU stalls |0
on branch misses, ICache misses and/or
DCache misses
Average stalls per clock | The average of stalls / CPU clock count ad
ICache misses The number of failed attempts to read or ad
write instructions from the instruction cache
(ICache)
DCache misses The number of failed attempts to read or ad O
write data from the data cache (DCache)
DSPRO accesses The number of read or write accesses to O
Data Scratchpad RAM 0
DSPR1 accesses The number of read or write accesses to a
Data Scratchpad RAM 1
DSPR2 accesses The number of read or write accesses to O
Data Scratchpad RAM 2
FLASH memory The number of read or write accesses to O
accesses flash memory
External Bus Unit The number of read or write accesses to the ad
memory accesses EBU
Local Memory Unit The number of read or write accesses to the O

accesses

LMU

Items that are marked red are high values that may be improved. Hover the mouse over a value to see

additional information.

5.1.2. Performance Hotspots

The Performance hotspots part of the Summary tab show a Hotspots chart. It show the functions with

the highest clock count. This chart is available for all analysis types. As you can see in the following

example, most of the time is spent in the functions _c_i ni t and mai n.

37

TASKING Embedded Profiler User Guide

Performance hotspots

Function

_t_init_entry
main

_start |

_flshuf |
_doprint |
_dbg_cacheawi |

_emitchar
_dhg_trap_tec
_putnumber
fpute
_io_putc
clock

_ltoa

fclose
_fflush

()
Hotspots chart
clock count

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000

If you double-click on a function, the Source tab opens at the selected function.

5.1.3. Data Access Intensive Functions

The Data access intensive functions part of the Summary tab shows the functions with the highest
number of data accesses to memory. This chart is available for memory access analyses only.

The first column is the name of the global variable, if the address is associated with a variable, otherwise
"Unidentified access" is shown. The second column is the name of the memory. The third column shows
the type of access read (R) or write (W). The fourth column shows the total number of accesses. The fifth
column shows the approximate cache miss rate for this specific access.

Hover the mouse over a value to see additional information.

38

Reference

Data access intensive functions

_c_init
Variable Region Access Count %% Cache Misses
X DSPR2 Wi 16334 (8]
Unidentified access PFLASHO R 70 0
_iob LML Wi 50 (8]
Unidentified access DSPR2 W 40 0
Unidentified access DSPRO W 37 0
_dbg_request LML W 5 0
Unidentified access DSPRO R 3 0
main

Variable Region Access Count %% Cache Misses
X DSPR2 W 16385 0

Unidentified access DSPRO W 5 0

Unidentified access DSPRO R 3 0

_emitchar

Variable Region Access Count %% Cache Misses
_iob LML R 271 (8]

Unidentified access DSPRO W 122 0

5.1.4. Memory Access Conflicts

The Memory access conflicts part of the Summary tab shows the conflicts where two variables from

different cores access the same memory at the same time. This is called concurrent access. The
deno_concurrent tutorial delivered with the product demonstrates this problem. This chart is available
for memory access analyses only.

The first column is the name of the first global variable that accesses the memory. The second column
shows the type of access read (R) or write (W) of the first variable. The third column is the name of the
second global variable that accesses the memory and causes the conflict. The fourth column shows the
type of access read (R) or write (W) of the second variable. The fifth column shows the core from which
the conflicting access originated. The sixth column shows the total number of access conflicts.

Hover the mouse over a value to see additional information.

Memeory access conflicts %')
main
Variable 1 Access 1 variable 2 Access 2 Core Count
varll W var 1 W CPU1 997
varll W var2 R CPUZ 1
varll W var2 W CPUZ 1

39

TASKING Embedded Profiler User Guide

5.1.5. ICache Misses

The ICache misses part of the Summary tab show an ICache Miss chart. It show the functions with the
highest number of instruction cache (ICache) misses. This chart is available for performance analyses
only.

ICache Miss chart

ICache miss count
o1 2 2 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18

_doprint
_start
_putnumber
_flsbuf
_dbg_trap_tc
_c_init_entry
printf

main
_putstring
_host_write
_fflush
_c_init
fclose

_ltoa

fpute

Function

W ICACHEMISS

5.1.6. DCache Misses

The DCache misses part of the Summary tab show a DCache Miss chart. It show the functions with the
highest number of data cache (DCache) misses. This chart is available for performance analyses and
memory access analyses.

40

Reference

DCache misses (A

DCache Miss chart

DCache miss count
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

_c_init_entry
_dbg_trap -
_host_close |
_flsbuf -
_doprint -
_c_init+
_host_write -
frloge -

exit
.cocofun_1
__init_sp -
_putnumber |
_ltoa -

fpute -
.cocofun_2 -

Function

W DCACHEMISS

5.2. Hot Functions Tab

The Hot Functions tab shows a list with all the measured functions. This tab is available in all analysis
types. The performance analysis contains the most columns. Click on a column to sort the list according
to the information in that column. If you double-click on a function, the Source tab opens at the selected
function. If no source lines can be displayed, the Disassembly tab opens. Hover the mouse over a column
to see additional information.

The Hot Functions tab contains the following information:

Column Description Perf Mem Func
Analysis |Analysis |Analysis
Function Name The name of the measured function O g O
Source File The relative path to the source file as stored |0 O O
in the application ELF file
Function Address The address of the function in the application | O O
ELF file
Clocks The total number of CPU clocks spent in the |O O ad
function

41

TASKING Embedded Profiler User Guide

Column

Description Perf Mem Func
Analysis |[Analysis [Analysis

% Of Total Time

The application execution time spent in the |0 O ad
function as a percentage of the total
application execution time

Clocks With Children

The total number of CPU clocks spent in the | O ad
function and call tree descendents

Entries The total number of times the function is a a a
called
Avg. clocks/Entry The average number of CPU clocks spent |0 O ad

in a function per function entry

Max Clocks/Entry

The highest number of CPU clocks spent in|O O ad
a function per function entry

Min Clocks/Entry The lowest number of CPU clocks spentin |0 O ad
a function per function entry
Jitter/Entry The difference between the highest and ad O ad

lowest number of CPU clocks spentin a
function. This is the difference of the previous
two columns.

Branch Misses

The total number of branch misses

ICache Misses

The total number of instruction cache misses

DCache Misses

The total number of data cache misses

Stalls

o|go|jo|o

The total number of stalls due to memory
access delays or pipeline hazards

5.3. Source Line Results Tab

The Source Line Results tab shows a list with all the source lines of the measured functions where branch
misses, instruction cache misses, data cache misses and/or stalls appear. This tab is available for
performance analyses only. Click on a column to sort the list according to the information in that column.
Hover the mouse over a column to see additional information.

If you double-click on a row, the Source tab opens at the selected source line.

The Source Line Results tab contains the following information:

Column Description

Position The source line number, function name and relative path to the source file
where the problem occurred

Clocks The total number of CPU clocks spent on the source line

Branch Misses

The total number of branch misses

ICache Misses

The total number of instruction cache misses

42

Reference

Column Description
DCache Misses The total number of data cache misses
Stalls The total number of stalls due to memory access delays or pipeline hazards

5.4. Instruction Results Tab

The Instruction Results tab shows a list with all the instructions of the measured functions where branch
misses, instruction cache misses, data cache misses and/or stalls appear. This tab is available for
performance analyses only. Click on a column to sort the list according to the information in that column.
Hover the mouse over a column to see additional information.

If you double-click on a row, the Disassembly tab opens at the selected instruction.

The Instruction Results tab contains the following information:

Column Description

Address The instruction address and function name where the problem occurred
Clocks The total number of CPU clocks spent on the instruction

Branch Misses The total number of branch misses

ICache Misses The total number of instruction cache misses

DCache Misses The total number of data cache misses

Stalls The total number of stalls due to memory access delays or pipeline hazards

5.5. Source Tab

The Source tab shows the source code for the selected 'hot function'. For performance analyses only,
trace data is also present grouped by source line.

43

TASKING Embedded Profiler User Guide

m TASKING Embedded Profiler vityrz - demo_dspr - PerfAnalysis-1 - Result-1
Project Analysis Result Help
&+ > @
(= demo_dspr Summary I Hot. Funchonsl Source Line Results I Instruction Resuhsl Source | Di |
=g Per ysis-1
= Result-1 Browse... [] Show disassembly s s‘::::: 'I:‘?:::: a?s:g:e AEE

17 t
18 #define ARRAY_SIZE (16 * 1824)
19
20 // @ = original
21 // 1 = problem fixed
22 #define FIXED a
23
24
25 #if |FIXED
26
27 // this is the original line
28 // x[] is by default allocated in DSPRZ =
29 wolatile int x[ARRAY_SIZE];
e
31 #else
32
33 // this is the fixed line
34 // we allocate x[] in D5PR@ to avoid the penalty in stalls
35 wolatile int _ private® x[ARRAY_SIZE];
36
37 #endif
38
39 int main(veid) 1 o 1 o 15
48 { =
41 printf{ "Start\n"); 21 0 o o 0
42
43 clock_t clockstart = clock(); 1 o 1 o 16
44
e (inticedammarsIzE)
ag {
47 x[i] = 1; 11 o o o 7
48 1
49
5@ int duration = (int) (clock() - clockstart); 1 o o o o
51 printf{"duration ¥i ticks\n", duration); 14 0 o o 7
5z} L[z 0 o o &
53 -
4 mm 3

The columns are the same as explained in Section 5.3, Source Line Results Tab. Red values indicate a
miss or a stall. Hover the mouse over a value to see additional information.

With the Browse button you can open another source file.

When you enable Show disassembly, the disassembly will be intermixed with the source lines.

5.6. Disassembly Tab

The Disassembly tab shows the instructions for the selected 'hot function'. For performance analyses
only, trace data is also present grouped by instruction address.

44

Reference

{2} TASKING Embedded Profiler viyrz - demo_dspr - PerfAnalysis-1 - Result-1 =2 E=R===
Project Analysis Result Help
¢ a@
(= demo_dspr summary | Hot Functions | Source Line Results | Instruction Results | Source | Disassembly
= ng::::’]- Clocks Branch... ICache... DCach... Stalls
Bx3eeeeDA6: jlt d2,d1,exseeeadse - |49 0 1 o 21
ex3e0eaD mtcr #exfe3s,de 1 0 0 o 0
Bx380@8DAE: isync 10 0 0 o o
8x38006DB2: call Bx500001d4 1 o 0] 3
@x8808@DB6: mov d4, #a8x0 1 0 0 o 3
Bx38eeaDEE: mov.a ad, #8xe 24 0 0 o 0
Bx3800e0EA: call @xseaddcs 1 0 0 o 0
ex3e086DEE: mov d4,dz 1 0 0 o 3
Bx30008DCE: j OxBeesedfe 1 0 0] 0
main:
8xs3eeeaDC4: sub.a sp,HAx8 1 0 1 o 18
Bx3eeeence: lea a4,@xseeeeazs 20 0 0 o 0
9x30000DCA: call Bx80800e5C 1 o 0 o 0
Bx30006DCE: call Bx5e008bcd 1 0 1] 16
8x30086002: mov ds,dz 8 0 0 0 7
Gx80008004: movh.a al5,#0x5000 2 0 0 o 0
Bx3eee8008: lea als, [al5]exseas 1 0 0 o 0
8xseeeedDl: mov d15,%#8x1 1 0 0 o 0
Bx30008DDE: lea a2,ex3fff 2 0 0 o 0
fais+Joxe, d1s
a2, ox30608de2 8193 0 0 0 11
Bx80808bca 1 0 0 o 0
d2,d8 8 0 0 o 7
[=p],d2 2 o 0 0 0
a4, Hex3ese 1 0 0 o 0
a4, [ad]exfla 1 o o o o
B@x308088e5c 2 0 0] 0
d2, %8x8 1 0 0 o &
Bx388008DFC: ret 1 0 0 0 0
exit: E
8x30086DFE mov dis,d4 = [T}} 0 0] 0
Bx30000E00: call Bx500000T6 1 0 1] 15
ax8a080E04: call BxBe888396 1 0 0 o &
Bx800BBERE: mov d4,dls 4 0 0] 3
Bx38000ERA: call Bx8080B6CC 1 o 0 0 3
ex300eEERE: mov d4,d1s 1 0 0 o 3
ax30008E16: j @x3e0000T3 i b 0 0 o 0

The columns are the same as explained in Section 5.4, Instruction Results Tab. Red values indicate a
miss or a stall. Hover the mouse over a value to see additional information.

Note that due to hardware constraints, a miss or a stall cannot always be linked to the exact
assembly instruction.

45

TASKING Embedded Profiler User Guide

46

	TASKING Embedded Profiler User Guide
	Table of Contents
	Manual Purpose and Structure
	Chapter 1. Installing the Software
	1.1. Installation for Windows
	1.2. Licensing
	1.2.1. Obtaining a License
	1.2.2. Frequently Asked Questions (FAQ)
	1.2.3. Installing a License
	1.2.3.1. Configure the Firewall in your Network
	1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)
	1.2.3.3. Installing Client Based Licenses (Node-Locked)

	Chapter 2. Introduction to the TASKING Embedded Profiler
	2.1. Emulation Device (ED)
	2.2. Trace Support

	Chapter 3. Tutorial
	3.1. Prepare Demo Project in Eclipse
	3.2. Analyze Project in TASKING Embedded Profiler
	3.3. Fix the Problem
	3.4. Verify Fix in TASKING Embedded Profiler
	3.5. Compare Results
	3.6. Export Results

	Chapter 4. Using the TASKING Embedded Profiler
	4.1. Run the Embedded Profiler in Interactive Mode
	4.2. Run the Embedded Profiler from the Command Line
	4.2.1. Command Line Tutorial

	Chapter 5. Reference
	5.1. Summary Tab
	5.1.1. Info
	5.1.2. Performance Hotspots
	5.1.3. Data Access Intensive Functions
	5.1.4. Memory Access Conflicts
	5.1.5. ICache Misses
	5.1.6. DCache Misses

	5.2. Hot Functions Tab
	5.3. Source Line Results Tab
	5.4. Instruction Results Tab
	5.5. Source Tab
	5.6. Disassembly Tab

