TASKING.

TASKING Embedded Profiler
User Guide

MA160-857 (v1.0r3) November 20, 2018

Copyright © 2018 TASKING BV.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only
and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the
document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic,
including translation into another language, except for brief excerpts in published reviews, is prohibited without the
express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium®,
TASKING®, and their respective logos are registered trademarks of Altium Limited or its subsidiaries. All other registered
or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to
the same are claimed.

Table of Contents

Manual PUIPOSE AN STTUCTUIE ...ttt e e e e et e e e e e enans \Y
1. INStalliNg the SOfWAIEt e e aa e 1
1.1, Installation fOr WINAOWSuieiii e e eeaas 1

2 IR o713 =Y oo [PP PTSPPPRP 1
1.2.1. ObtainiNg @ LICENSE . .uvniiiiiii e 2

1.2.2. Frequently Asked QUESEIONS (FAQ) ...uiuiuiuiiiiie e 3

1.2.3. INStalling @ LICENSEvtiiii i e 3

2. Introduction to the TASKING Embedded Profiler ... 7
2.1 EMUIation DEVICE (ED)ouviiiiiiiiii it 9

A 1 - oS T U o] oL o S 9

B N 11 o 4T | P 11
3.1. Prepare Demo Project in ECIIPSEiviiiiiiii e 11

3.2. Analyze Project in TASKING Embedded Profiler ..o 16

3.3 FIX the Problem ... 25

3.4. Verify Fix in TASKING Embedded Profiler ..o 26

3.5, COMPAre RESUILS .. vttt e e e e 29

3.6, EXPOIrt RESUIS ...utit i e 29

4, Effects on Profiling AnalysisS RESUILSouiiii e 31
4.1. Differences in Analysis Results Due to Compiler Optimizationscocvviiiiinennnnn. 31

4.2. Effects of Interrupt Handlers on Interrupted FUNCLIONSccoiiiiiiiiiiieee, 33

5. Using the TASKING Embedded Profilercoiiiii e 35
5.1. Run the Embedded Profiler in Interactive Modeccveiiiiiiiiiii e, 35

5.2. Run the Embedded Profiler from the Command Linecooiiiiiiiiiiniiieen, 36
5.2.1. Command Line TULOKIAlc.einiiiii e 37

5.3. What to Do if Your Application Does not Starton a Board?ccocvvviiiiiiiiiiiiiiinnnn. 39

B. REIBIEINCE ... i 41
6.1, SENGS DiIAlOg ... vttt e 41

6.2, SUMMATY Tab ..ot e e 42
B.2.0. INFO et 43

6.2.2. Performance HOtSPOLSvviiiiiii e e 44

6.2.3. ICACNE MISSES .. .uiiiiiit e 45

6.2.4. DCACNE MISSES . ..iuiiiiiiiie e e 45

B.2.5. IMEBIMOIY ACCESS ..ttt ettt ettt ettt et et e et e et n et e e aanens 46

6.2.6. Memory CoNnfliCtS ..o 46

6.3, FUNCHONS TAD .. eeieiiei ettt e e 47

6.4. S0UICE LINES Tab ...ooeii i 48

6.5. INSIIUCHIONS TAD ...t e 48

6.6. MEMOIY ACCESS Tab ..o 49

6.7. Memory ConflictS Tabho.ieiiii 50

B.8. SOUICE TaAD ...ttt 51

6.9. DISasSeMbIY Tab ... 51

6.10. RAW Trace Dat@ TADuiuii it 52

TASKING Embedded Profiler User Guide

Manual Purpose and Structure

Manual Purpose
You should read this manual if you want to know:
* how to use the TASKING Embedded Profiler

 the features of the TASKING Embedded Profiler

Manual Structure

Chapter 1, Installing the Software

Explains how to install and license the TASKING Embedded Profiler.

Chapter 2, Introduction to the TASKING Embedded Profiler

Contains an introduction to the TASKING Embedded Profiler and contains an overview of the features.
Chapter 3, Tutorial

Contains a step-by-step tutorial how to use the demo projects with the TASKING Embedded Profiler.
Chapter 4, Effects on Profiling Analysis Results

Describes the differences in analysis results due to compiler optimizations and explains the effects of
interrupt handlers on interrupted functions.

Chapter 5, Using the TASKING Embedded Profiler

Explains how to use the TASKING Embedded Profiler. You can run the TASKING Embedded Profiler in
two ways, via an interactive graphical user interface (GUI) or via the command line.

Chapter 6, Reference

Contains an overview of all the fields and columns in an analysis result output.

Related Publications

» Getting Started with the TASKING VX-toolset for TriCore

» TASKING VX-toolset for TriCore User Guide

e AURIX™ TC21x/TC22x/TC23x Family User's Manual, V1.1 [2014-12, Infineon]
* AURIX™ TC26x A-Step User's Manual, V1.1 [2013-12, Infineon]

* AURIX™ TC26x B-Step User's Manual, V1.2 [2014-02, Infineon]

e AURIX™ TC27x User's Manual, V1.4 [2013-11, Infineon]

TASKING Embedded Profiler User Guide

* AURIX™ TC27x B-Step User's Manual, V1.4.1 [2014-02, Infineon]
* AURIX™ TC27x C-Step User's Manual, V2.2 [2014-12, Infineon]

* AURIX™ TC27x D-Step User's Manual, V2.2 [2014-12, Infineon]

* AURIX™ TC29x A-Step User's Manual, V1.1.1 [2014-01, Infineon]
o AURIX™ TC29x B-Step User's Manual, V1.3 [2014-12, Infineon]

* AURIX™ TC3xx Target Specification, V2.4 [2017-10, Infineon]

o AURIX™ TC38x Appendix, V2.5.1 [2018-04, Infineon]

* AURIX™ TC39x-B Appendix, V2.5.1 [2018-04, Infineon]

Vi

Chapter 1. Installing the Software

This chapter guides you through the installation process of the TASKING® Embedded Profiler. It also
describes how to license the software.

In this manual, TASKING Embedded Profiler and Embedded Profiler are used as synonyms.

1.1. Installation for Windows

System Requirements

Before installing, make sure the following minimum system requirements are met:
* 64-bit version of Windows 7 or higher

e 2 GHz Pentium class processor

* 4 GB memory

» 500 MB free hard disk space

» Screen resolution: 1024 x 768 or higher

Installation
1. |If you received a download link, download the software and extract its contents.
-or-
If you received an USB flash drive, insert it into a free USB port on your computer.
2. Run the installation program (setup.exe).

The TASKING Setup dialog box appears.

3. Select a product and click on the Install button. If there is only one product, you can directly click on

the Install button.

4. Follow the instructions that appear on your screen. During the installation you need to enter a license

key, this is described in Section 1.2, Licensing.

1.2. Licensing

TASKING products are protected with TASKING license management software (TLM). To use a TASKING

product, you must install that product and install a license.

The following license types can be ordered from Altium.

TASKING Embedded Profiler User Guide

Node-locked license

A node-locked license locks the software to one specific computer so you can use the product on that
particular computer only.

For information about installing a node-locked license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked) and Section 1.2.3.3, Installing Client Based Licenses (Node-Locked).

Floating license

A floating license is a license located on a license server and can be used by multiple users on the network.
Floating licenses allow you to share licenses among a group of users up to the number of users (seats)
specified in the license.

For example, suppose 50 developers may use a client but only ten clients are running at any given time.
In this scenario, you only require a ten seats floating license. When all ten licenses are in use, no other
client instance can be used.

For information about installing a floating license see Section 1.2.3.2, Installing Server Based Licenses
(Floating or Node-Locked).

License service types

The license service type specifies the process used to validate the license. The following types are
possible:

» Client based (also known as 'standalone’). The license is serviced by the client. All information necessary
to service the license is available on the computer that executes the TASKING product. This license
service type is available for node-locked licenses only.

» Server based (also known as 'network based’). The license is serviced by a separate license server
program that runs either on your companies' network or runs in the cloud. This license service type is
available for both node-locked licenses and floating licenses.

Licenses can be serviced by a cloud based license server called "Remote TASKING License Server".
This is a license server that is operated by TASKING. Alternatively, you can install a license server
program on your local network. Such a server is called a "Local TASKING License Server". You have
to configure such a license server yourself. The installation of a local TASKING license server is not
part of this manual. You can order it as a separate product (SW000089).

The benefit of using the Remote TASKING License Server is that product installation and configuration
is simplified.

Unless you have an IT department that is proficient with the setup and configuration of licensing systems
we recommend to use the facilities offered by the Remote TASKING License Server.

1.2.1. Obtaining a License

You need a license key when you install a TASKING product on a computer. If you have not received
such a license key follow the steps below to obtain one. Otherwise, you cannot install the software.

Installing the Software

Obtaining a server based license (floating or node-locked)
* Order a TASKING product from Altium or one of its distributors.
A license key will be sent to you by email or on paper.

If your node-locked server based license is not yet bound to a specific computer ID, the license server
binds the license to the computer that first uses the license.

Obtaining a client based license (node-locked)

To use a TASKING product on one particular computer with a license file, Altium needs to know the
computer ID that uniquely identifies your computer. You can do this with the getcid program that is
available on the TASKING website. The detailed steps are explained below.

1. Download the getcid program from http://www.tasking.com/support/tim/download.shtml.

2. Execute the getcid program on the computer on which you want to use a TASKING product. The
tool has no options. For example,

C:\ Taski ng\ getci d
Conputer ID: 5Dzm L9+Z- WbO aMKU- 5Dzm L9+Z- WFbO aMkU- MDAy - Y2Zm

The computer ID is displayed on your screen.
3. Order a TASKING product from Altium or one of its distributors and supply the computer ID.
A license key and a license file will be sent to you by email or on paper.

When you have received your TASKING product, you are now ready to install it.

1.2.2. Frequently Asked Questions (FAQ)

If you have questions or encounter problems you can check the support page on the TASKING website.
http://www.tasking.com/support/tim/faq.shtmi
This page contains answers to questions for the TASKING license management system TLM.

If your question is not there, please contact your nearest Altium Sales & Support Center or Value Added
Reseller.

1.2.3. Installing a License

The license setup procedure is done by the installation program.

If the installation program can access the internet then you only need the licence key. Given the license
key the installation program retrieves all required information from the remote TASKING license server.
The install program sends the license key and the computer ID of the computer on which the installation
program is running to the remote TASKING license server. No other data is transmitted.

http://www.tasking.com/support/tlm/download.shtml
http://www.tasking.com/support/tlm/faq.shtml

TASKING Embedded Profiler User Guide

If the installation program cannot access the internet the installation program asks you to enter the required
information by hand. If you install a node-locked client based license you should have the license file at
hand (see Section 1.2.1, Obtaining a License).

Floating licenses are always server based and node-locked licenses can be server based. All server
based licenses are installed using the same procedure.

1.2.3.1. Configure the Firewall in your Network

For using the TASKING license servers the TASKING license manager tries to connect to the Remote
TASKING servers | i cl. t aski ng. com..li c4. t aski ng. comat the TCP ports 8080, 8936 or 80.
Make sure that the firewall in your network has transparent access enabled for one of these ports.

1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)
If you do not have received your license key, read Section 1.2.1, Obtaining a License before you continue.

1. If you want to use a local license server, first install and run the local license server before you
continue with step 2. You can order a local license server as a separate product (product code
SWO000089).

2. Install the TASKING product and follow the instruction that appear on your screen.

The installation program asks you to enter the license information.

TASKING Embedded Profiler viyrz - InstallShield Wizard (=23

License key Information

Specify pour icenze key TASK’” G

Fleaze enter the icenze key that pou have received from TASEING. The key haz the format like
aaa-bbbb-cocc-dddd. IF you do not have a key, pleaze contact TASKING through
licensing(@tasking. com, or contact your TASKING reprezentative.

Licenze Fey

| Licensing Support | | < Back |[MHedt]| Cancel |

3. Inthe License key field enter the license key you have received from Altium and click Next to
continue.

6.

7.

Installing the Software

The installation program tries to retrieve the license information from a remote TASKING license
server. Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

Select your License type and click Next to continue.
You can find the license type in the email or paper that contains the license key.

Select Remote TASKING license server to use one of the remote TASKING license servers, or
select Local TASKING license server for a local license server. The latter requires optional software.

(For local license server only) specify the Server name and Port number of the local license server.

Click Finish to complete the installation.

1.2.3.3. Installing Client Based Licenses (Node-Locked)

If you do not have received your license key and license file, read Section 1.2.1, Obtaining a License
before continuing.

1.

Install the TASKING product and follow the instruction that appear on your screen.

The installation program asks you to enter the license information.

TASKING Embedded Profiler viyrz - InstallShield Wizard (=23

License key Information

Specify pour icenze key TASK’” G

Fleaze enter the icenze key that pou have received from TASEING. The key haz the format like
aaa-bbbb-cocc-dddd. IF you do not have a key, pleaze contact TASKING through
licensing(@tasking. com, or contact your TASKING reprezentative.

Licenze Fey

| Licensing Support | | < Back |[MHedt]| Cancel |

In the License key field enter the license key you have received from Altium and click Next to
continue.

TASKING Embedded Profiler User Guide

The installation program tries to retrieve the license information from a remote TASKING license
server. Wait until the license information is retrieved. If the license information is retrieved successfully
subsequent dialogs are already filled-in and you only have to confirm the contents of the dialogs by
clicking the Next button. If the license information is not retrieved successfully you have to enter the
information by hand.

3. Select Node-locked client based license and click Next to continue.
4. Inthe License file content field enter the contents of the license file you have received from Altium.
The license data is stored in the file licfile.txt in the etc directory of the product.

5. Click Finish to complete the installation.

Chapter 2. Introduction to the TASKING
Embedded Profiler

After your application has been verified, thoroughly tested and debugged, and by itself behaves correctly,
you may still run into performance and timing issues. Many timing issues can be addressed simply by
improving the performance of the applications that caused a missed deadline. Furthermore, by reducing
the core load of your applications you may be able to go for a device that is cheaper because it has fewer
cores. A way to address these issues is performance tuning.

With performance tuning we refer to optimizing your application for a specific target device. Common
situations where performance tuning of your application makes sense are:

* You are using self-made libraries that are called a lot and thus have a big impact on overall application
performance.

* You develop/adapt low level drivers and basic software (BSW) components.
* You are close to or above your core load budget limit.

» You have a timing problem in your schedule that could be fixed by speeding up specific tasks but want
to avoid changing the schedule.

* You want to try and target a smaller electronic control unit (ECU) in order to save costs.

» You care about easily and cost effectively tracking and improving the performance of your code on
target devices.

Embedded hardware platforms are too complex for the average software developer to predict or understand
the performance of his code. In order to optimize code for a specific platform (cores plus peripherals),
developers need feedback from the hardware on which specific part of their code is suboptimal (in terms
of memory consumption, jitter, execution time, ...) and what is the root cause of the performance impact.
The TASKING Embedded Profiler is a smart profiling tool that provides this feedback.

The TASKING Embedded Profiler communicates with an embedded processor (CPU) to gather real-time
tracing and performance data. The tool gives an overview over the current clock settings — no need to
get an oscilloscope to verify that the clocks are configured properly for a benchmark run. After verification
of correct clock setup, you are guided through a few easy steps that pinpoint the source lines that have
the greatest performance impact. The tool indicates the root cause of the performance impact and gives
simple instructions on how to address the problem. The data is presented in graphics and tables and into
computer readable formats.

TASKING Embedded Profiler User Guide

£} TASKING Embedded Profiler viyrz - demo_dspr_te29 - MemAnalysis-1 - Result-1 =] - =)
Project Analysis Result Help
qF >
4 (= demo_dspr_tc29 Summary | Functions | Memory Access | Memory Conflictsl Source | Disassembly
- b PerfAnalysis-1 Inf "
4 MemAnalysis-1 e
= Result-1 Processon TC29xED
Timestamp: 2018-11-16 14:02:06.685
Trace settings: Core=0, Memory=TCM (tile 0-15), Mode=Reset-OneShot
Clock frequencies (MHz): CPUD=299, CPU1=299, CPU2=299, SRI=299, 5PB=149, BBB=149
CPU data/program cache: DCACHED=1, PCACHED=1, DCACHE1=0, PCACHE1 =0, DCACHE2=0, PCACHE2=0
CPU clock count: 302842
DCache misses: 30 L
Data Scratchpad RAM accesses: 801
DSPRO accesses: 41
DSPR2 accesses: E}
PFLASHO accesses: 75
Local Memory Unit accesses: 487 [High number of inefficient accesses from Core 0 to DSPR2 }
SFR accesses: 103
Performance Hotspots
_c_init
main
_start
_emitchar 1
_doprint
_dbg_cacheawi Clock count.
_dbg_trap_tc
_putnumber
clock]
setclockpersec
T T T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000 160000

After applying the suggested mitigation, you can use the TASKING Embedded Profiler to confirm that the
problem has indeed been fixed. With the default settings of the tool this all happens non-intrusively with
real data collected from the application running on the real device. Using such a performance tuning tool,
non-expert users can often highly speed up untuned applications.

Features of the TASKING Embedded Profiler

» Performance analysis

* Memory access analysis

* Function-level analysis

» Compare analysis runs of the same kind

» Organize analyses and results in projects

» Load/store analysis results

» Graphical user interface (GUI) and command line support

Introduction to the TASKING Embedded Profiler

» Support for Device Access Server (DAS) v7.0 and Device Access Port (DAP) miniWiggler

Performance analysis

This type of analysis traces instructions and performance events. It measures the CPU clock count and
it finds branch misses, cache misses and stalls due to memory access delays or pipeline hazards. You
can run this type of analysis on the whole application or select specific functions.

Memory access analysis

This type of analysis traces function calls, function returns and data accesses. You can run this type of
analysis on the whole application or select specific functions.

Function-level analysis

This type of analysis traces all function calls and function returns. This is the fastest analysis.

2.1. Emulation Device (ED)

The standard TriCore/AURIX™ processors (production devices) lack debug trace functionality. However,
this functionality is very useful when you develop and test your application. Therefore pin compatible
Emulation Devices (ED) are available. An Emulation Device has an Emulation Extension Chip (EEC)
added to the same silicon, which is accessible through the JTAG or DAP interface. The TASKING
Embedded Profiler supports the on-chip trace feature of the Emulation Device. See the processor
documentation for detailed information about the device.

Some Production Devices, such as the TC29x, are equipped with a mini-MCDS, which is a subset of the
on-chip trace feature that is available on Emulation Devices. The mini-MCDS memory is not suitable for
safety related data and must not be used for data storage by safety applications. See the processor
documentation for detailed information about the device.

Naming convention

You can see by the name on the processor what type of device it is. For example, with SAK-TC299TE
the last letter indicates the "Feature Package". If this letter is an 'E' or 'F' you have an Emulation Device.

For a detailed naming convention see the AURIX™ Product Naming PDF on the Infineon website.

2.2.Trace Support

The TASKING Embedded Profiler uses the Multi-Core Debug Solution (MCDS) for on-chip trace support.
For detailed information about MCDS we recommend that you read the processor documentation belonging
to the Emulation Device.

http://www.infineon.com/dgdl/Infineon-Infineon-MCU-Naming-Convention-SEPT-2014-PP-v01_00-EN.pdf?fileId=db3a304412b407950112b41aa12c2b0a

TASKING Embedded Profiler User Guide

Trace memory

Trace information is stored in a dedicated trace buffer. With an Emulation Device you can allocate part
of the Emulation Memory (EMEM) as trace buffer memory. The Emulation Memory is divided in RAM
blocks, the so-called 'tiles', which can be used as Calibration or Trace memory. These memory tiles
consists of TCM, XCM and XTM. Where TCM (Trace Calibration Memory) can be used for Trace memory
or Calibration. XCM (Extended Calibration Memory) can only be used for Calibration memory and XTM
(Extended Trace Memory) can only be used for Trace memory.

Production Devices that are equipped with mini-MCDS use TRAM for trace memory.

Which trace memory you can select depends on the selected processor.

Tile memory range

For TCM, you can choose which part of the Emulation Memory should be used for tracing. For XTM
always both tiles are used for tracing.

Be careful that the same tile memory range used for tracing is not used by the target application, as this
can lead to unexpected trace results. The number of tiles vary per Emulation Device.

Trace mode
When you run a trace analysis in the TASKING Embedded Profiler, you can set the trace mode:

* One shot mode. In this mode the analysis will run until the trace buffer is full, or when the application
finishes or when you stop the analysis manually. This is non-intrusive, meaning that the trace does not
interfere the running processor. After the trace has stopped the profiler reads the collected data.

» Continuous trace. In this mode the analysis will run until the application finishes or when you stop the
analysis manually. This mode is intrusive, meaning that the processor is stopped temporarily every
time the trace buffer has been filled, so that the profiler can read the collected data. After that the
processor continues execution and continues writing to the trace buffer.

Raw trace data

Raw trace data is for advanced users who want to examine program flow. Raw trace data is useful, for
example, to see why stall cycles are assigned to instructions that do not access memory. This can be the
case when an instruction is target of a branch. Raw trace data is displayed in a separate tab. The Raw
Trace Data tab has a search field that you can use to search through the address column. It has buttons
to search the Next, Previous, First and Last occurrence of the specified address. It does not support
wildcards or regular expressions.

Attach mode

When you run a trace analysis in the TASKING Embedded Profiler, you can set the attach mode:
» Reset device. In this mode the device is reset first and then the analysis starts.

» Hot attach. In this mode the analysis will start at the current execution position of the running application.

10

Chapter 3. Tutorial

The profiler\tutorial s directory of the TASKING Embedded Profiler installation contains several
examples. They serve as a good starting point for your own profiling analysis project. All examples are
present for the TC29xB and the TC39xB.

» deno_dspr - A project demonstrating how defaulting to the wrong scratch pad memory results in a
penalty in stalls.

» deno_dcache - A project demonstrating how multiple passes over a large buffer can cause many data
cache misses.

» denp_concurrent - A project demonstrating how accessing the same memory from multiple cores
causes stalls.

» denp_tail call - A project demonstrating a possible difference in analysis results between a
performance analysis and a memory analysis or function analysis. This is due to the tail call elimination
optimization of the C compiler. Tail call elimination is part of the peephole optimization of the C compiler.

All examples come with TASKING Embedded Profiler projects (files with the . EnbPr of extension), with
pre-run analyses. You can open a project in the TASKING Embedded Profiler to inspect the various
analysis results, without having to run the examples on a target board.

All examples also contain an ELF file (. el f) and an Intel Hex file (. hex), so that you can also use the
TASKING Embedded Debugger or a flash tool to flash an example application on a target board. Note
that these files are for the original example, without any fixes.

In this tutorial we will use the deno_dspr example for the TC29xB to go through the process of preparing

your project from scratch, running a profiling analysis, fixing the problem and rerunning a profiling analysis
to see the improvement. After this tutorial you can use the other tutorials yourself in a similar way.

3.1. Prepare Demo Project in Eclipse

Before you can use the TASKING Embedded Profiler, you must have an application ELF file with debug
information and the application must be downloaded onto a target board.

The example projects delivered with the TASKING Embedded Profiler are Eclipse projects suitable for

the TASKING VX-toolset for TriCore v6.2r1 or higher. For this part of the tutorial it is assumed that you
have this toolset version or higher installed.

Import an example project
1. Start the TASKING VX-toolset for TriCore Eclipse IDE.
2. From the File menu, select Import.

The Import dialog appears.

11

TASKING Embedded Profiler User Guide

12

ﬁj Import
Select

Create new projects from an archive file or directory.

Select an import source:

type filter text

4 (= General
JE Archive File
(> Existing Projects into Workspace
(=) File System
[Preferences
s B C/CH+
. B2 CVS
(= Install
(= Run/Debug
(= TASKING C/C++
> [= TASKING Software Platform
> = Team

The Import Projects dialog appears.

Select General » Existing Projects into Workspace and click Next.

ﬁj Import

Import Projects

Select a directory to search for existing Eclipse projects.

(7) Select root directory:

Browse...

(@) Select archive file: C\Program Files\TASKING\prof vicyrz\profileritutorials\demo_dspr_tc29.zip Browse...

Projects:

demo_dspr tc29 (demo_dspr_tc29)

Options
Search for nested projects
Copy projects into workspace
|| Hide projects that already exist in the workspace
Working sets
[] Add project to working sets

®

Select All
Deselect All

Select...

||

Cancel

Tutorial
4. Click Select archive file and browse to the example ZIP file delivered with the TASKING Embedded
Profiler.
5. Leave the other settings in this dialog as is and click Finish.
The project will be added to your workspace.

You can now examine the source files, build the project (for your target) and flash the application.

Examine source file

1. Inthe C/C++ Projects view double-click on the source file dermo_dspr. c.
The file will be opened in the source editor.

2. Examine the source file and make sure that the following define has the value 0:
#define FIXED O

This define is used to demonstrate the different profiler results before and after fixing the source file.

Set project options

The resulting application ELF file must contain debug information. The demo projects already have
debugging enabled by default. So, for the demo projects you can skip this step. For your own project,
make sure that debugging is enabled.

1. Fromthe Project menu, select Properties for. Alternatively, you can click the /= button.

The Properties for demo_dspr_tc29 dialog appears.
2. If not selected, expand C/C++ Build and select Settings to access the TriCore tool settings.

3. On the Tool Settings tab, expand C/C++ Compiler » Debugging, set option Generate symbolic
debug information to Default or Full and click OK.

13

TASKING Embedded Profiler User Guide

{_} Properties for demo_dspr_tc29 [o &=
type filter text Settings fe=1R r v
» Resource
Builders
4 C/C++ Build Configuration: [Debug [Active] '] [Manage Conﬁguratlons..‘l
Build Variables
Envircnment
Logging & Tool Settings | #* Build Steps | /" Build Artifact | [Binary Parsers | @ Emor Parsers|
Memory
Processor (2 Global Optiens Generate symbolic debug information:
Seftings 4 B C/Cr Compiler 7] Generste control flow information =
Stack/Heap (2 Preprocessing [l static profi
Startup Configuration (2 Include Paths atic protiing
Startup Registers (8 Precompiled C++ Headers [T] Generate profiling information for block counters
. C/Cs+ General (B Language [7] Generate profiling information to build a call graph
Project References (2% Floating-Point [7] Generste profiling information for function counters
» Run/Debug Settings (2 Code Generation [7] Generate profiling infarmation for function timers

Allocation
a (% Optimization
(# Custom Optimization

Exclude time spent in interrupt functions

[] Generate code for bounds checking

(5 Compilation Speed [C] Generate code to detect unhandled case in a switch
@ Debugging [Generate code for malloc consistency checks

a (33 MISRA C
(& Custom 2012
(2 Custom 2004
2 Custom 1998
a (% CERT C Secure Coding
(5 Custom CERT C
(5 Diagnostics
(3 Miscellaneous

@

Build the project

From the Project menu, select Build demo_dspr_tc29, or click Il from the toolbar.

Run the debugger to flash the application onto the target board

1. Connect the Infineon TriBoard TC29xB to your computer. See the documentation that came with the
board for more information.

2. From the Debug menu, select Debug project.

Alternatively you can click the %% putton in the main toolbar.

Before you can debug a project, you need a Debug launch configuration. Such a configuration,
identified by a name, contains all information about the debug project: which debugger is used, which

project is used, which binary debug file is used, ... and so forth. So, initially the Debug Configurations
dialog appears.

14

£} Debug Configurations

TASKING C/C++ Debugger

IR
type filter text

4 35 TASKING C/C++ Debugger
5 demo_dspr_tc29

Filter matched 2 of 2 items

Gy
@

Create, manage, and run configurations

Name: demo_dspr_tc2d

Target . = Initialization | [] Project| 69 Arguments| K Source |] Miscellaneous
Target settings

) Show all targets @ Show targets for TC20xB

Target: Infineon Application Kit TC29xB
Infineon TriBoard TC20x8
TriCore 1.6.x Instruction Set Simulator
Configuration: |FCPU=300Mhz, PLL normal mode -

Connection settings

Connection: |Universal Debug Access Server -
SSig= Field Value
Edit...
Host localhost
Port 23

On the Target tab, select the Infineon Triboard TC29xB and click Debug.

Tutorial

The TASKING Debug perspective is associated with the TASKING C/C++ Debugger. Because the
TASKING C/C++ perspective is still active, Eclipse asks to open the TASKING Debug perspective.

Optionally, enable the option Remember my decision and click Yes.

The debug session is launched. This may take a few seconds.

From the Debug menu, select Resume (I¥) to run the application on the target board.

The output of the application appears in the FSS (File System Simulation) view.

Inspect the FSS view and notice the number of ticks.

L FSS #1 - demo_dspr_tc29 &2 =

Start

duration 73761 ticks

UL k

15

TASKING Embedded Profiler User Guide

7. Fromthe Debug menu, select Terminate (M) to stop the debugging session. This is necessary to

free the connection with the target board.

3.2. Analyze Project in TASKING Embedded Profiler

Now it is time to start analyzing the demo project.

Create a project

1. Start the TASKING Embedded Profiler.

{2} TASKING Embedded Profiler vxyrz = e |

Project Analysis Result Help

No open project No analysis result selected

The TASKING Embedded Profiler window is divided into two panes. The left pane is reserved for
the project tree and the right pane is reserved for analysis results.

2. From the Project menu, select New Project.

The New Project dialog appears.

16

Tutorial

lj MNew Project @
Project directory: C:\Users\namelworkspace_profidemo_dspr_tc29 Browse...
Project name: demo_dspr_tc29
Executable file: Debugdemo_dspr_tc29.elf Browse...
Source code path: Browse...

(Path only required if executable file contains insufficient information)

Processon TC29xED -

Device serven

Create | Cancel |

In the Project directory field, specify the directory where you want to store the Embedded Profiler
project file (file with extension . EnbPr of).

In the Project name field, enter the name of the project (for example, you can use the same name
as the Eclipse project, deno_dspr _t c29).

In the Executable file field, specify the name of the ELF file. This file is usually relative to the project
directory. If the executable file is stored in another directory, the full path name is shown.

Optionally specify a Source code path (a semi-colon separated directory list). Normally, the location
of the source files is taken from the ELF file.

Select the Processor. For example, TC29x ED.
For the Device server, enter the server name (leave blank for | ocal host).
Leave the rest of the dialog as is and click Create.

The new project is created and opened.

= demo_dspr_tc29

Create a Performance analysis

1.

From the Analysis menu, select New Analysis.

The New Analysis wizard appears.

17

TASKING Embedded Profiler User Guide

Analysis Type

Select the type of analysis:

Traces instructions and performance events: branch misses, cache misses and stalls.

@ Perf A i ; o .
® Performance Analysis Optionally limited to selected functions.

() Function-level Analysis Fastest analysis, traces all function calls/returns,

lj Mew Analysis @

(") Memory Access Analysis Traces function calls/returns and data accesses. Optionally limited to selected functions.

Bock || Met || Einish || Cancel |

2. Three types of analyses are possible. Select Performance Analysis and click Next.

The Analysis Scope page appears.

Analysis Scope

Analysis scope: @ Whole application () Specific functions

Application functions: Functions chosen for trace:

l: MNew Analysis @

.cocofun_1 -
.cocofun_1
.cocofun_2
.cocofun_3
.cocofun_4
.cocofun_4
.cocofun_5
.cocofun_B "

| Back || Nex || Finish || Cancel |

3. For this tutorial select Whole Application. If you select Specific Functions, select one or more
Application functions and click >.

18

Note that the number of Application functions you can select, is limited by the hardware.

Usually, you can select a maximum of 4 functions.

4, Click Next.

The Analysis Name page appears.

Tutorial

5. Specify the analysis name. A default name has already been filled in based on the analysis type and
a sequence number, but you can specify your own name.

6. Click Finish.

The new analysis is created and is visible in the project tree.

4 = demo_dspr_tc29
b PerfAnalysis-1
Run the analysis
1. Inthe project tree select the analysis you want to run.
2. From the Analysis menu, select Run Analysis.

The Run Analysis dialog appears.

D Run Analysis

Processor: TC29%ED
Executable file Debug\demo_dspr_tc29.elf
Device server: <localhost>

Analysis type: Performance Analysis

Rezult name: Rezult-1

Trace mode: @ One shot mode Continuous trace
Attach mode: @ Reset device Hot attach

Raw trace data: Save and display

Core index: Cored -

Trace memory: |TCM = | Tilerange: 0 .. 15 (total rangeis0.15)

Run | Cancel |

3. Enter an analysis Result name (default Resul t - and a sequence number).

4. Selecta Trace mode. A One shot mode trace ends when the hardware trace buffer is full, or when
the application finishes or when you stop the analysis manually. A Continuous trace ends when the

19

TASKING Embedded Profiler User Guide

application finishes or when you stop the analysis manually. This mode is intrusive, meaning that
the processor is stopped temporarily every time the trace buffer has been filled, so that the profiler
can read the collected data. After that the processor continues execution and continues writing to
the trace buffer.

5. Select an Attach mode. With Reset device, tracing starts by running the program in the embedded
device from the reset vector. With Hot attach, tracing starts by continuing tracing from the current
program counter location.

6. Optionally enable Save and display raw trace data. Raw trace data is for advanced users who want
to examine program flow. Raw trace data is useful, for example, to see why stall cycles are assigned
to instructions that do not access memory. If you enable this option, an extra Raw Trace Data tab
appears in the analysis result.

7. Inthe Core index field, select the TriCore core for which you want to run the analysis.

8. Select the type of Trace memory that should be used for tracing, TCM (Trace Calibration Memory)
or XTM (Extended Trace Memory). Production Devices that are equipped with mini-MCDS always
use TRAM for trace memory.

9. For trace calibration memory (TCM) on emulation devices only, enter a Trace memory tile range.
Trace calibration memory (TCM) of emulation devices consists of a consecutive number of tiles.
Select the first and last tile index you want to use for trace memory.

10. Click Run.

The analysis starts. After the analysis is finished the result is present in the project tree.

4 [demo_dspr_tc29
4 g PerfAnalysis-1
=] Result-1
Inspect the result of the Performance analysis
1. Inthe project tree select the result you want to inspect (Per f Anal ysi s- 1, Resul t - 1).

The result appears in several tabs.

20

qF P
4 (= demo_dspr_tc29
4 bgh PerfAnalysis-1
=4 Result-1

£} TASKING Embedded Profiler weyrz - demo_dspr_tc20 - PerfAnalysis-1 - Result-1
Project Analysis Result Help

Summary | Functions | Source Lines Instruct\onsl Sourcal Disassembly

(=8 Ho ==

Info
Processor:
Timestamp:
Trace settings:

Clock frequencies (MHz):
CPU data/program cache:

CPU cleck count:
Stalls:

Average stalls per clock:
ICache misses:

DCache misses:

Perfermance Hotspots

_c_init_entry
main

_start]
flsbuf 1
_doprint

_dby_cacheani |
_emitchar]
_dbg_trap_tc
_putnumber

fpute

TC29xED
2018-11-16 12:02:52.822

Core=0, Memory=TCM (tile 0-15), Mode=Reset-OneShot

302820
267032
E
72

30

(not measured, CPU was reset or halted on analysis start)
DCACHED=1, PCACHEO=1, DCACHEL=0, PCACHEL=0, DCACHE2=0, PCACHE2=0

ICache Misses

T T T T
20000 40000 60000 80000

T
100000

T
120000

T
140000

T
160000

B Clock count

m

On the Summary tab, notice the high number of Average stalls per clock (0.88).

Tutorial

If the value is marked red or not depends on a threshold. For the average stalls per clock, the default
threshold is 0.7. You can change this threshold value in the Settings dialog (Project » Settings).
See Section 6.1, Settings Dialog.

On the Functions tab, notice the high number of Stalls with functions _c_i ni t _entry and mai n.

21

TASKING Embedded Profiler User Guide

12 TASKING Embedded Profiler vxyrz - demo_dspr_tc20 - PerfAnalysis-1 - Result-1
Project Analysis Result Help
@ b
4 (= demo_dspr_tc29 Functions | Source Lines | Instructions | Source [Disassembly

‘ 5;'::3‘:;5'1 Function Source Address Clocks % Of Total Time Clocks With Children Entries Avg. Clocks/Entry Max Clocks/Entry Min Clocks/Entry Jitter/Entry Branch Misses ICache Misses DCache Misses Stalls *
e 80000172 148401 4301 T4BAGS T 148401 T4ga0q TagAGq = T 7 i} 7%
main .\demo.. OB0000fcS 147440 48.69 150792 1 147440 147440 147440 - 1 1 - 131067
start Aestart.. 060000cda 2070 068 301916 1 2070 2070 2070 - 1 2 - 1308
flsbuf 040000752 104 036 1430 7w % u 6 5 5 2 a9
_doprint 08000035 506 017 12 2 53 w2 o 318 5 1 1 EUE
_dbg_ca 080000312 4638 015 168 8 58 9% 14 & - 2 28
_emitchar 060000600 296 010 26 7 10 Ed 8 EY - 1 13
_dbg tra 08000032e 258 009 6 6 I 8 b [1 2 151
_putnum... oG00Bte 19 006 e 1 1% 1% 1% - - 8 1m
fute 08000103 182 006 182 7 s % 6 E) - 1 - El
_io_pute 060000840 164 005 164 7 6 3 4 % - 1 9
dock 080000662 162 005 162 2 81 o 6 * - 2 12
setclock., estart., GA0000f3E 132 0 132 1 132 132 132 - - 6 104
cocofun... \estart.. (600002 130 004 130 8 16 n 6 16 1 6
_fflush 08000060 122 004 12 3 ®0 n xu 50 2 2 n
_toa 060000800 116 004 116 1 116 116 116 - 1 1 62
felose 080001016 114 004 680 3 E E E - 1 3 &
cocofun... \estart.. (@0000cle 96 003 108 2 s 52 w 8 - 2 61
_cocofun... \estart.. (00006t 96 003 140 2 8 5 2 n - o
_dbg_trap 0:B00000fc 94 003 9 6 15 18 4 u - 1 >
_doclose 0:60000328 86 003 766 1 86 86 8 - 2 1 n
_putstiing 06000020 84 003 E 1 8 8 8 - 1 3 n
strlen 0:80001092 80 003 80 2 w0 50 EY E) - »
cocofun... \cstart.. 0000002 78 003 108 2 E) 2] 6 - 50
printf 08000105 68 0m 319 2 3 46 n ! - 2 5
cocofun... \estart.. (0000c10 64 002 108 2 2 £l Y - -)
hostdl.. AAAdL. OB00007fe 50 002 s 3 16 2% 12 1 - 1 3 %
cocofun.. \AAd. (E000012 34 001 u 5 6 [6 2 1]
_cinit 060000165 32 001 32 1 2 2 E - - 1 z -

4. Double-click on mai n.

The Source tab opens.

12} TASKING Embedded Profiler viyrz - demo_dspr_tc29 - PerfAnalysis-1 - Result-1
Project Analysis Result Help
w P
4 & demo_dspr_tc2d Summary | Functions | Source Lines | Instructions | Source | Disassembly
4 [PerfAnalysis-1
[Result-1 \demo_dspr.c (loaded C:\Users\name\workspace_profidemo_dspr_tc29\demo_dspr.c from 2018-11-09 10:53:50 AM) [T] Show disassembly

LineNr Source Clocks Branch Misses ICache Misses DCacheMisses Stalls *
6 - - - - R
bl #¢ this is the original lins - - - - R
28 #/ u[] is by default allocated in DSR2 - - - - R
20 wolatile int =[ARRAY SIZE]: o - - - R
30 = 5 - - R
Eil #else = 5 - - R
2 - - - - R
EE} ## this is ths fized line - - - - R
E"S #¢ we allocats =[] in DSPRO to avoid the penalty in stalls - - - - R
ES wolatile int _ privatel =[ARRAY_SIZE]: - - - - R
6 = 5 - - R
Erd #endif = 5 - - R
38 = 5 - - R
9 int nain(void) 147888 - - . 3
40 i - - - - R
41 printf{ "Start.n"): 2 - - - _
42 = - - - =
43 clock_t clockstart = clock(): 7 - - - 4 i
4 = s = s = 3
45 for (int 1 = 0; 1 ¢ ARR&Y GIZE; ++1) 1ama 1 1 =
46 { - - - - -
47 =[i] = 1: 8 = = = 7
48 i - - - - R
49 = - - -
50 int duration = (int) (clock() — clockstart): 8 = = 5 7
51 printf("duration %i ticks'n", duration): 10 - - - 7 8

5. Notice the high number of stalls is in the f or loop.

6. Enable Show disassembly on the Source tab to show disassembly intermixed with the source lines,
or open the Disassembly tab. When you double-click on an assembly instruction in the Source tab,

22

Tutorial

the Disassembly tab is opened automatically at the right position. Notice that the stalls are related

to memory access.

Project Analysis Result Help

% P

E TASKING Embedded Profiler vityrz - demo_dspr_tc29 - PerfAnalysis-1 - Result-1

4 (= demo_dspr_tc29

Summary | Functions | Source Lines In;truct\onsliour(e‘ Disassembly

(=8 Ho =

‘ @;r::jﬁs'l Function Address Disassembly Clocks Branch Misses ICache Misses DCache Misses Stalls
0480000768 and d15, #0xf 18 - 1 19
0:80000fba div d-d1.d0.d15 2
0:80000fbe mov ddds . do 2]
058000072 3 0x80001084 1 .

main
0:E0000fc sub & sp. #0=8 4 B
0:80000fc8 lea a4, 0280000024 .]
0:40000fcc call 08000105 2 .
0:800007d0 call 0=B0000Bd2 7 i
0480000fdd mov ds 42 s -
0:400007d6 movh.z al5.#0x5000 : .
0:80000fda Lea 215, [215]0x5000
0:80000fde mov di5 #0x1 . .
0:8000070 lea a2, 0x3fff 2 1 .
Tdotoored St w o [Albs]l A1t 35313 - JETEN
0:E0000fes loop a2, D=B0000fed 8207 - 1 15
048000078 call 0=80000bd? 8 -
0:80000fec sub d2.ds 8 7
0:@0000fee =t.w [sp].d2
0:E0000Ff0 movh.a ad #0=8000
0:80000F64 Lo a4, [ad]0x112a .
08000078 call 08000105 2 .
0:80000Fc mo dz_#0z0 6 ‘
0:80000Ffe zet 1 .
exit
0:80001000 mo d15.dd 18 ‘ .
060001002 call 0x800000fe 1]
0:80001006 call 0=BOD003aB 6 i
0:8000100a me d4 415 4 0

Create and run a Memory access analysis

1.

2.

Inspect the result of the Memory access analysis

1.

Repeat the steps described above with Create a Performance analysis, but in Step 2 select Memory

Access Analysis.

Run the new analysis similar as described above with Run the analysis.

In the project tree select the result you want to inspect (MemAnal ysi s- 1, Resul t - 1).

The result appears in several tabs.

23

TASKING Embedded Profiler User Guide

Project Analysis Result Help

« B

4 (= demo_dspr_tc2d Summary | Functions | Memery Access | Memory Conflictsl Sourcel Disassembly

{2} TASKING Embedded Profiler viyrz - demo_dspr_tc29 - MemAnalysis-1 - Result-1 =n =R =

> @ PerfAnalysis-1

a MemAnalysis-1 Info
& Result-1 Processon TC29+ED

Timestamp: 2018-11-16 14:02:06.685
Trace settings: Core=0, Memorny=TCM (tile 0-15), Mode=Reset-OneShot
Clock frequencies (MHz): CPUD=299, CPU1=299, CPU2=299, SRI=299, SPB=149, BBE=149
CPU data/program cache: DCACHED=1, PCACHED=1, DCACHE1=0, PCACHE1=0, DCACHE2=0, PCACHE2=0
CPU clock count: 302842
DCache misses: 30
Data Scratchpad RAM accesses: 801
DSPRO accesses: 41
D5PR2 accesses: 3
PFLASHO accesses: 75

Local Memory Unit accesses: 4a7 [High number of inefficient accesses from Core 0 to DSPR2]

SFR accesses: 103

Performance Hotspots
_c_init
main
_start
_emitchar]
_doprint
_dbg_cacheawi B Clock count
_dbg_trap_tc
_putnumber
clock

setclockpersec

0 20000 40000 60000 80000 100000 120000 140000 160000

m

2. Onthe Summary tab, notice the high number of DSPR2 accesses (32845). When you hover the
mouse over a value that is marked, a context sensitive help box with additional information can
appear.

If the value is marked red or not depends on a threshold factor. The default threshold factor is 0.05.
The threshold for DSPR memory access is calculated as: factor * total DSPR access. In this case
0.05*%(41+32845)=1644.3. You can change this threshold factor in the Settings dialog (Project »
Settings). See Section 6.1, Settings Dialog.

3. Onthe Memory Access tab and notice that _c_i ni t and mai n both access variable x in DSPR2.

24

4,

L

{2} TASKING Embedded Profiler wcyrz - demo_dspr_tc29 - MemAnalysis-1 - Result-1
Project Analysis Result Help

4 (= demo_dspr_tc29
> kg PerfAnalysis-1
4 MemAnalysis-1

Summary | Functions | Memory Access | Memory Conflicts | Source | Disassembly

[Result-1

Function Variable Region Access Origin - Count Cache Misses
main x DSPR2 w CPUD 16384 = i
_c_init b DSPR2 w CPUD 16384 =
_emitchar _iob LMU R CPUD 272 -
_emitchar (unidentified) DSPR w CPUD 177 =
_emitchar (unidentified) DSPR R CPUO 129 -
_start (unidentified) DSPR w CPUD 112 =
_emitchar _iob MU w CPUD 81 -
_c_init (unidentified) DSPR2 w CPUO 77 =
_c_init (unidentified) PFLASHO R CPUD 75 4
_start (unidentified) SFR R CPUD 53

_c_init _iob LMU w CPUD 50 12
_doprint (unidentified) DSPR R CPUD 36 1
_dbg_cacheawi (unidentified) DSPR w CPUD 36 =
_dbg_trap_tc (unidentified) DSPR w CPUD 30 =
_dbg_cacheawi (unidentified) DSPR R CPUD 24 -
_doprint (unidentified) DSPR w CPUD 23 -
strlen (unidentified) DSPR R CPUD 18 =
_dbg_trap_tc (unidentified) DSPR R CPUD 18 -
felose (unidentified) DSPR. w CPUD 16 -
_ltoa (unidentified) DSPR w CPUD 16 -
_host_close (unidentified) DSPR w CPUD 14 =
_fflush (unidentified) DSPR w CPUD 14 -
printf (unidentified) DSPR w cPUD 12 -
cleck (unidentified) SFR R CPUOD 10 =
_fflush _iob LMu R CPUOD 10 >
_doclose _iob LMu R CPUD 10 1
strlen (unidentified) DSPR w CPUD 9 =
fclose (unidentified) DSPR R cPUO 9 -
_putstring (unidentified) DSPRD R CcPUD 9 =

n

Hover the mouse over DSPR2 in mai n.

A context sensitive help box appears with a suggestion to solve the problem.

Summary | Functions | Memory Access | Memory Conflicts | Source | Disassembly|

Tutorial

ory of Core#2. Access te this memory region is ineffective from Cere®(, consider moving data te scratch-pad memory of accessing core. |

3.3. Fix the Problem

Now that we have analyzed the problem, we can fix it.

1.

In the TASKING TriCore Eclipse IDE, double-click on the source file deno_dspr. c.

Function Variable Region Access Origin Count Cache Misses
main x DSPR2, w CPUOD 16384

_c_init x DSPR2 1 nuA__16204

“ernitchar b MU [Seratch-Pad mem

_emitchar (unidentified) DSPR w cPUO 177

The file will be opened in the source editor.

Change the following source line:

#def i ne FlI XED
into:

#def i ne FlI XED

0

1

25

TASKING Embedded Profiler User Guide

From the Project menu, select Rebuild demo_dspr_tc29 (%),
From the Debug menu, select Debug project (ﬁ).
From the Debug menu, select Resume (I¥) to run the application on the target board.

The output of the application appears in the FSS (File System Simulation) view.

Inspect the FSS view and notice the number of ticks has reduced significantly.

L FSS #1 - demo_dspr_tc29 &2 = 8

Start -
duration 8231 ticks

From the Debug menu, select Terminate (®) to stop the debugging session. This is necessary to
free the connection with the target board.

3.4. Verify Fix in TASKING Embedded Profiler

Now that we have fixed the problem, we can use the TASKING Embedded Profiler to rerun both the
Performance analysis and the Memory access analysis mentioned in Section 3.2, Analyze Project in
TASKING Embedded Profiler and see the new results of the analyses.

Rerun the Performance analysis and inspect the result

1.

2.

26

In the TASKING Embedded Profiler, select Per f Anal ysi s- 1.
From the Analysis menu, select Run Analysis.

Click Run.

This creates a Result-2.

Select Resul t - 2 and notice that on the Summary tab, the number of Average stalls per clock
has reduced significantly from 0.88 to 0.08.

Project Analysis Result Help

gf B &R

£} TASKING Embedded Profiler weyrz - demo_dspr_tc20 - PerfAnalysis-1 - Result-2

4 (= demo_dspr_tc29

Summary | Functions | Source Lines Instruct\onsl Sourcal Disassembly

(=8 Ho ==

4 bgh PerfAnalysis-1

4 Result-1 Info
4 Result-2 Processor:
> MemAnalysis-1 Timestamp:

Trace settings:
Clock frequencies (MHz):

CPU data/program cache:

TC29xED

2018-11-16 14:20:07 539

Core=0, Memory=TCM (tile 0-15), Mode=Reset-OneShot

(not measured, CPU was reset or halted on analysis start)

DCACHED=1, PCACHEO=1, DCACHEL=0, PCACHEL=0, DCACHE2=0, PCACHE2=0

CPU cleck count: 56766
Stalls: 4600
Average stalls per clock: 0.08
ICache misses: 72
DCache misses: 31

Perfermance Hotspots

_c_init_entry
main

_start

_flsbuf
_dbg_cacheawi
_doprint
_emitchar
_dbg_trap_tc
_putnumber

fpute

B Clock count

T T T T T
0 5000 10000 15000 20000 25000

ICache Misses

i

5. Also inspect the other tabs yourself to see the results.

Rerun the Memory access analysis

1. Inthe TASKING Embedded Profiler, select MemAnal ysi s- 1.
2. From the Analysis menu, select Run Analysis.

3. Click Run.

This creates a Result-2.

Tutorial

4. Select Resul t - 2 and notice that on the Summary tab, the accesses are now in DSPRO. And notice
that on the Memory Access tab _c_i ni t and mai n now both access variable x in DSPRO.

27

TASKING Embedded Profiler User Guide

Project Analysis Result

o b oap

4 (= demo_dspr_tc29
> b PerfAnalysis-1
4 MemAnalysis-1
[Result-1
4 Result-2

ASKING Embedded Profiler vicyrz - demo_dspr_tc29 - MemAnalysis-1 - Result-2

Help

Summary | Functions | Memory Access | Memory Conflicts | Source | Disassembly

Info
Processor:
Timestamp:
Trace settings:
Clock frequencies (MHz):
CPU data/program cache:
CPU clock count:
DCache misses:
Dsta Scratchpad RAM accesses:
DSPRO accesses:
PFLASHO accesses:
Local Memory Unit accesses:
SFR accesses:
Performance Hotspats
_c_init
main
_start
_emitchar
_doprint
_dbg_cacheawi
_dhg_trap_tc
_putnumber
setclockpersec

.cocofun_7

TC28:ED

2018-11-16 14:22:50.22

Core=0, Memory=TCM (tile 0-15), Mode=Reset-OneShot
CPU0=300, CPU1=300, CPU2=300, SRI=300, SPB=150, BBE=150
DCACHED=1, PCACHED=1, DCACHEL=0, PCACHEL=0, DCACHE2=0, PCACHE2=0
56812

31

783

32808

75

551

104

B Clock count

0 5000

10000 15000 20000 25000 30000 35000

m

Project Analysis Result

a B

4 (= demo_dspr tc29
» G PerfAnalysis-1
4 @) MemAnalysis-1
] Result-1
=4 Result-2

TASKING Embedded Profiler viyrz - deme_dspr_tc29 - MemAnalysis-1 - Result-2

Help

Summary | Functions | Memory Access | Memory Conflicts | Source | Disassembly

Function Variable Region Access Origin - Count Cache Misses
X DSPRO w CPUD 16384 =
k3 DSPROD w CPUD 163834 -

_emitchar _iob LMU R CPUD 261 =

_emitchar (unidentified) DSPR w CPUO 171 1

_emitchar (unidentified) DSPR R CPUD 124 -

_start (unidentified) DSPR w CPUD 111 -

_emitchar _iob LMU w CPUD 78 =

_c_init (unidentified) LMU w cPUO 77 5

_c_init (unidentified) PFLASHO R CPUD 75 17

_start (unidentified) SFR R CPUD 54 =

_c_init _iob LMU w CPUD 50 -

_doprint (unidentified) DSPR R CPUD 36 1

_dbg_cacheawi (unidentified) DSPR w CPUD 35 =

_dbg_trap_tc (unidentified) DSPR w CPUO 30 -

_doprint (unidentified) DSPR w CPUD 24 -

_dbg_cacheawi (unidentified) DSPR R CPUD 24 =

_dbg_trap_tc (unidentified) DSPR R CPUD 18 -

felose (unidentified) DSPR W CPUD 17 -

strlen (unidentified) DSPR R CPUD 16 -

_ltea (unidentified) DSPR w CPUD 15 =

_fflush (unidentified) DSPR w CPUD 15 -

_host_close (unidentified) DSPR w CPUD 14 -

printf (unidentified) DSPR w CPUD 12 =

clock (unidentified) SFR R CPUO 10 -

_fflush _iob LMu R CPUD 10 1

_doclose _iob LMU R CPUD 10 =

strlen (unidentified) DSPR w CPUO 9 -

felose (unidentified) DSPR R CPUD 9 -

_host_close (unidentified) DSPR R CPUD 9 =

mn

28

Tutorial

3.5. Compare Results

The Embedded Profiler has a feature to compare results. This is very useful to see the differences before
and after a fix. Note that you can only compare results from the same analysis.

1. Inthe TASKING Embedded Profiler, select a result. For example, Resul t - 2 of Per f Anal ysi s- 1.
2. From the Result menu, select Compare Results.
3. Select another result, for example Resul t - 1. The results you can select are marked yellow.

The comparison starts and a difference report is created. The numbers in the report are calculated
as the "first selected result" minus the "second selected result".

£} TASKING Embedded Profiler vx.yrz - demo_dspr_tc29 - PerfAnalysis-1 - Result-2 compared to Result-1 EI@
Project Analysis Result Help

% P

4= demo_dsprtc2d Summary Diff | Functions Diff
4 @ PerfAnalysis-1 y
1 Resuli-l Info Diff
4 B Result-2 Timestamp: 2018-11-16 14:20:07.529 / 2018-11-16 12:02:52.822
5 Compared to Result-1 CPU clock count: -246054
> MemAnalysis-1 Stalls: -262432

Average stalls perclock: -0.80

DCache misses: 1

Perfermance Hotspots Diff

main 1
_c_init_entry —— /1
_dbg_cacheawi

n

felose

_flsbuf

clock W Clock count diff
_ltoa

_emitchar

_declose

_start

-140000 -120000 -100000 -80000 -50000 -40000 -20000 0

ICache Misses Diff

Mo differences found
DCache Misses Diff

_c_init_entry } S S S

felose

3.6. Export Results

You can export analysis results and comparison results to comma separated values (CSV) files. You can
choose to export instructions, functions or memory depending on the analysis type.

1. Inthe TASKING Embedded Profiler, select a result. For example, Resul t - 1 of Per f Anal ysi s- 1.
2. From the Result menu, select Export to CSV.

The Export to CSV dialog appears.

29

TASKING Embedded Profiler User Guide

D Export to CSV

Instructions C5V file: C\Users\name\workspace_profidemo_dspr_tc2instructions.csv

Functions CSV file: ChUsers\name\workspace_profidemo_dspr_tc29functions.csv

Mermory CSV file: Browse...

3. Enter the filename(s) and click Export.

30

Chapter 4. Effects on Profiling Analysis
Results

This chapter describes the differences in analysis results due to compiler optimizations and explains the
effects of interrupt handlers on interrupted functions.

4.1. Differences in Analysis Results Due to Compiler
Optimizations

Analysis results may be different for functions in a performance analysis compared to a memory analysis
or an function analysis. This can happen due to the tail call optimization of the C compiler, which is part
of the peephole optimization of the C compiler. This optimization is enabled by default for the TASKING

VX-toolset for TriCore. This optimization causes a leaf function that is called at the last line of a function
to not show up in the analysis result while the function's code is executed. The reason for this is that the
leaf function is entered with a jump instruction and the leaf function's return instruction performs the return
that the calling function would have done.

Without the tail call optimization, the normal function flow is: f unc_a() calls f unc_b() which calls
func_c().func_c() returnsto func_b() which returnsto func_a() .

func_a()

|
| _ func_b()

| _ func_c()

With tail call optimization, the function flow becomes: f unc_a() calls f unc_b() which jumps to
func_c().func_c() returnstofunc_a().

Because of the jump instead of a call, the TASKING Embedded Profiler will not detect f unc_c() ina
memory analysis and function analysis, though the cycle count for f unc_c() is added to f unc_b().

For an example of this behavior, see the deno_t ai | cal | tutorial.

1. Importthe deno_t ai | cal | tutorial for the TC29x or TC39x the same way as explained for
deno_dspr in Section 3.1, Prepare Demo Project in Eclipse. For this tutorial we use
deno_tail cal | _t c29.The tutorial already contains an Embedded Profiler project file.

2. Start the TASKING Embedded Profiler.
3. From the Project menu, select Open Project, and select deno_t ai | cal | _t ¢29. EnbPr of .

4. Inspect the Functions tab in Resul t - 1 of Per f Anal ysi s- 1, MemAnal ysi s- 1 and
FuncAnal ysi s- 1.

For the Performance Analysis Per f Anal ysi s- 1, you can see there are 2202 clocks for function
I en() and 1444 clocks for functiontai | _test_1().

31

TASKING Embedded Profiler User Guide

D TASKING Embedded Profiler vicyrz - demo_tailcall_tc29 - PerfAnalysis-1 - Result-1
Project Analysis Result Help
= P
4 = demo_tailcall_tc29 Summary | Functions | Source Lines | Instructions. | Source | Disassembly
4 b PerfAnalysis-1 - . B p
& Resuit-1 Function Source Address Clocks | 3% Of Total Time Clocks With Children Entries Awg. Clocks/Entry Max Clocks/E =
4 MemAnalysis-1 len Jrepor.. 0x8000076¢ 20.84 2202 54 40 64
= Result-1 _start Acstart.. 0:80000358 2036 1927 10550 1 2036 2036
4 5 FuncAnalysis-1 rand 058000074 1544 1462 1544 % 15 54 9
[Result-1 filLarray .\demo.. 0:800006d4 1490 14.10 3034 1 1430 1430
tail test 1 .A\demo.. 0x8000072c @ 13.67 1714 100 14 28
_c_init_g... 0:800000d= 438 415 438 1 438 438
main Jdemo.. 0x80000702 430 407 7392 1 430 430
report Jrepor.. 0680000772 270 236 270 10 27 E
«cocofun., Jhestart.. 0x8000033a 152 144 152 8 19 28
setclock.. .M\cstart.. 0x80000646 142 134 142 1 142 142
«cocofun.. cstart., 0:8000032¢ 102 0497 120 2 51 60
«cocofun.. estart.. 080000302 S0 0.85 140 2 45 58
«cocofun... \cstart.. 0:30000310 78 0.74 108 2 39 54
«cocofun.. Acstart.. 0:8000031e 76 072 120 2 38 44
_c_init 0x800000ce 28 027 28 1 28 28
_init_sp Jhestart., 0:80000342 14 013 14 1 14 14
srand 0x800007b2 12 011 12 1 12 12
setfeschz 0x800007a4 10 0.09 16 1 10 10
«cocofun.. 0:800000c4 6 0.06 6 1 6 6
_trapsyst... 058000026 - = . = . -
] m r

For the Memory Analysis MemAnal ysi s- 1 and the Function-level Analysis FuncAnal ysi s- 1, you
can see there are 3684 clocks for function t ai | _t est _1() and no clocks for function | en() .

{2} TASKING Embedded Profiler vx:yrz - demo_tailcall_tc29 - FuncAnalysis-1 - Result-1 | |
Project Analysic Result Help
e B &R
4 (= demo_tailcall_tc29 Summary | Functions | Source | Disassemnbly
“ @;&r::::l\i?s-l Function Source Address < % Of Total Time Clocks With Children Entries Avg. Clocks/Entry Max Clocks/E =
4+ 5 MemAnalysis-1 tail test 1 .\demo... 038000072 3482 3902 00 36 8
= Result-1 _start Acstart.. 0:80000358 2094 1979 10580 - - 2094
4 B FuncAnalysis-1 fill_array .h\demo.. 0:800006d4 1678 15.86 3032 1 1678 1678 =
[Result-1 rand 0x8000074a 1354 12.80 1354 a9 13 40

_c_init 0:800000ce 462 437 462 1 462 462
main Jdemo., 0680000702 444 4.20 7390 1 444 444
report JArepor.. 0x8000077a 218 206 218 10 21 32
«cocofun. cstart.. (80000332 152 144 152 8 19 2
setclock.. Mestart.. 080000646 140 132 140 1 140 140
«cocofun... \estart.. 0x8000032¢ 100 095 123 2 50 60
«cocofun... Acstart.. 0:80000302 78 0.74 128 2 39 48
«cocofun.. estart.. 0x8000031e 74 070 118 2 37 42
«cocofun.. Aestart.. 0:80000310 74 0.70 104 2 37 52
srand 0x800007b2 12 011 12 1 12 12
setfeschz 0x800007a4 10 0.09 16 1 10 10
«cocofun.. 0:800000c4 6 0.06 6 1 6 6
len Arepor.. os000076c () - . . .
_c_init_g... 0:800000da - = = = =
_trapsyst... 08000026 - = = = =
_trapprot... 05800002e2 - = . = . = -
] m +

5. Rebuild the example in the TriCore VX-toolset for TriCore with the peephole optimization disabled
(C compiler option -QY, or in Eclipse select Project » Properties for » C/C++ Build » Settings »
Tool Settings » C/C++ Compiler » Optimization » Optimization level » Custom Optimization
and in the Custom Optimization tab disable Peephole optimizations), and run the analyses again
in the Embedded Profiler to see the differences.

32

Effects on Profiling Analysis Results

4.2. Effects of Interrupt Handlers on Interrupted Functions

Interrupt handlers that do not call any functions (user functions, run-time functions and functions generated
for code compaction) are not visible in function analyses and memory analyses and their clock cycles
are added to the interrupted function. For performance analyses the interrupt function is visible and its
cycles are added to the interrupted function, except for the first few instructions that are part of the interrupt
vector table; the interrupt handler and children are visible and have cycles accounted to them.

Interrupt handlers that do call function(s) are visible for all three analysis types. For function and memory
analyses, the interrupt handler and its children are visible and have cycles accounted to them. These
cycles are not added to the clocks with children of the interrupted function. For performance analyses,
the interrupt handler cycles (including children) are added to clocks with children of the interrupted function,
except for the cycles accounted to the interrupt vector table; the interrupt handler and children are visible
and have cycles accounted to them.

33

TASKING Embedded Profiler User Guide

34

Chapter 5. Using the TASKING Embedded
Profiler

You can run the TASKING Embedded Profiler in two ways, via an interactive graphical user interface
(GUI) or via the command line. The GUI variant is useful in showing graphical analysis results with hints
how to improve the code. The command line interface is useful in automated scripts and makefiles to
generate analysis results in comma separated values (CSV) files.

5.1. Run the Embedded Profiler in Interactive Mode

To start the Embedded Profiler select Embedded Profiler from the Windows Start menu. The program
starts with an empty window except for a menu bar and a toolbar at the top. The area below that consists
of two panes. The left pane is used to display a project tree, with a project name, one or more analysis
names and one or more result names. The right pane is used to display an analysis result. You can resize
a pane by dragging one of its four corners and you can move a pane by dragging its title. You can drag
the button toolbar to another place, for example vertically to the left side or even detach it from the main
window.

{2} TASKING Embedded Profiler vyrz =N e

Project Analysis Result Help

No open project No analysis result selected

Normal project management is available. You can create, open, edit, close or delete a project. A project
filename will have the extension . EnbPr of .

35

TASKING Embedded Profiler User Guide

The steps to:
 create a project
 create an analysis

* run an analysis

are described in Section 3.2, Analyze Project in TASKING Embedded Profiler.

See also Section 3.5, Compare Results and Section 3.6, Export Results. For details about the Results

see Chapter 6, Reference.

5.2. Run the Embedded Profiler from the Command Line

To run the Embedded Profiler from the command line use the EmbProfCmd batch file in a Windows
Command Prompt. Enter the following command to see the usage:

EnbProf Cnd - - hel p

The general invocation syntax is:

EnbPr of Cnd options project. EnbPr of

where, pr oj ect . EnbPr of refers to an existing Embedded Profiler project file.

The following opt i ons are available:

Option

Description

-? | --help

This option causes the program to display an overview of all command
line options.

--compare=result
-mresult

This option allows you to compare the results of a run with another result.
You must specify the name of an existing reference result. Option --run
should be used together with this option.

--continuous
-C

This option allows you to run the analysis in continuous trace mode.
Without this option, the default is one shot mode.

--core=core-nr

This option allows you to specify the core index number. Without this
option, the default is core 0.

--memorytype=type
-ttype

This option allows you to specify the trace memory type. type can be TCM,
XTM or TRAM.

--run=analysis
-ranalysis

This option allows you to run an existing analysis.

--server=hostname
-shostname

This option allows you to specify the device server name. If you omit this
option, the defaultis | ocal host .

--tilerange=from-to
-xfrom-to

This option allows you to specify the tile memory range for the TCM
memory type.

36

Using the TASKING Embedded Profiler

Option Description
--version This option shows the program version header.
-V

To run an existing analysis
Use the following syntax to run an existing analysis from the command line:
EnmbPr of Cnd - - run=anal ysi s proj ect. EnbPr of

where, pr oj ect . EmbPr of refers to an existing Embedded Profiler project file.

To run and compare an existing analysis

Use the following syntax to run an existing analysis and compare the results with a previous result from
the command line:

EnbPr of Cnd - -run=anal ysi s --conpare=result project.EnbProf

where, pr oj ect . EnbPr of refers to an existing Embedded Profiler project file.

5.2.1. Command Line Tutorial

In this section we use tutorial denmo_dspr _t ¢29 with the delivered denmp_dspr _t ¢29. EnbPr of to
illustrate the use of the command line options of the Embedded Profiler.

Prepare command line

Before you run the Embedded Profiler from the command line, follow these steps to configure the Windows
command prompt.

1. Start the Windows Command Prompt and go to the workspace directory containing the tutorial
deno_dspr _t c29.

37

TASKING Embedded Profiler User Guide

&8 Command Prompt =0Ea @

C:s\Userssnamesworkspace_profsdemo_dspr_tc29>

Add the executable directory of the Embedded Profiler to the environment variable PATH. The
executable directory is the pr of i | er directory in the installation directory. Substitute version with
the correct version number.

set PATH=UPATHY " C. \ Program Fi | es\ TASKI NG pr of version\profiler”

Command line examples

1.

38

To run a performance analysis on denp_dspr _t ¢29 using one shot trace mode, enter:
EnmbPr of Crd - - run=Per f Anal ysi s-1 deno_dspr_t c29. EnbPr of

The results are exported to the CSV files denmo_dspr _t ¢c29_f uncti ons. csv and
deno_dspr_tc29_instructions. csv.You can inspect these files with any text editor. The first
line in a CSV file shows the columns that are used.

Note that the command line invocation does not add a new result entry to the
deno_dspr _t c29. EnbPr of file.

To run a performance analysis on denp_dspr _t ¢29 using one shot trace mode and compare the
results with or i gi nal , enter:

EnbPr of Crd - - run=Per f Anal ysi s-1 --conpare=origi nal deno_dspr_tc29. EnbPr of

The results of the comparison are exported to the CSV file
deno_dspr _tc29 diff_functions. csv.lIfallvalue fields are zero, this indicates that the results
are identical. This should be the case with this example.

Using the TASKING Embedded Profiler

3. Torun a performance analysis on derno_dspr _t ¢29 using one shot trace mode and compare the
results with f i xed, enter:

EnbPr of Cnd - -run=Perf Anal ysi s-1 --conpare=fi xed deno_dspr _t c29. EnbPr of

The results of the comparison are exported to the CSV file
deno_dspr_tc29_diff_functions. csv. Fields that contain zeros indicate no change. Fields
with negative values indicate an improvement, fields with positive values indicate worse performance.
In this example the comparison is worse, because we compare the original result (non-fixed sources)
with a version where the sources have been fixed. Normally, you compare your results with a previous
result.

4. To run an analysis using continuous trace mode use option --continuous. Be aware that this mode
requires that the application ends and does not contain endless whi | e loops. Otherwise an analysis
run will not end.

EnbPr of Cnd - -run=Perf Anal ysi s-1 --conpare=fixed --continuous
deno_dspr _t c29. EnbPr of

5. Torun an analysis on a specific core, use option --core=core-nr. For the TC29x derivative your can
use the values 0, 1 and 2. Be aware that a core needs to be enabled in the startup code of the
application. Otherwise the analysis run will not terminate.

EnmbPr of Crd - - run=Per f Anal ysi s-1 --conpare=fixed --continuous
--core=0 deno_dspr_tc29. EnbPr of

6. To specify a remote host to connect to the target, use option --server=hostname. The default, if you
do not specify this option, is | ocal host .

EnbPr of Crd - -run=Per f Anal ysi s-1 --conpare=fixed --continuous
--core=0 --server=nyservername deno_dspr_tc29. EnbPr of

5.3.What to Do if Your Application Does not Start on a Board?

When you profile an application and you encounter the error message:

Trace error: cannot find code at address address
Do you want to continue the run?

it might be the case that the application does not include a valid Boot Mode Header 0 (BMHDO)
configuration, or that the start address in the Boot Mode Header on the target does not match the start
address of the application. In order to fix this you need to initialize a Boot Mode Header for your target.
But be careful, you need to know what you are doing, because wrong use of the Boot Mode Headers
might brick the device. Therefore, we advice you to first read chapter 4 TC29x BootROM Content of the
AURIX™ TC29x B-Step User's Manual, or similar chapter in the User's Manual for other devices. Also
read sections 7.9.13 Boot Mode Headers, and section 9.7.1. Boot Mode Headers in the TriCore User
Guide.

39

TASKING Embedded Profiler User Guide

To initialize the Boot Mode Header using Eclipse in the TASKING VX-toolset for TriCore:

1. From the Project menu, select Properties for » C/C++ Build » Memory, and open the Boot Mode
Headers tab.

2. InBoot Mode Header 0, from the Boot Mode Header configuration, select Generate Boot Mode
Header.

Properties for myproject

Memory - ¥ 2
. Resource
Builders
4 C/C Build Configuration: |Debug [Activel ~ | [Manage Configurations..

Build Variables
Environment

Logging [Memory | Reserved [MCS Macros | Special Areas| Boot Mode Headers |

M
—— Boot Mode Header 0 (0xa0000000) Boot Mode Header 1 (0x30020000)
Processor
Settings Boot Mode Header configuration: Generate Boot Mode Heac Boot Mode Header configuration: Reserve Boot Mode Heade
Stack/Heap Hardware configuration startfup mode: | Intemal start from Flash = Internal start from Fla
Startup Configuration
Startup Registers [Lockstep for CPUD Mode selection by HWCFG pins lockstep for CPU O Mode selection by HWCFG pins
, C/C+ General [Lockstep for CPU1 LBIST execution start by SSW Lockstep for CPUT LBIST execution start by SSW
Project References Lockstep for CPU2 Lockstep for CPU 2
> Run/Debug Settings Lockstep for CPU 3 Lockstep for CPU 3
User code start addrese: " START" " START"
Checksum range start address: " START" " START"
Checksum range end address (exclusive): " START'+4 " START"+4
Boot Mode Header 2 (0xa000ffed) Boot Mode Header 3 (0xa001ffe)
Boot Mode Header configuration: Reserve Boot Mode Heade Boot Mode Header configuration: Reserve Boot Mode Heade
Internal start from Flash Internal start from Flash
Lockstep for CPUQ Mode selection by HWCFG pins Lockstep for CPU O Mode selection by HWCFG pins
Lockstep for CPUT LBIST execution start by SSW Lockstep for CPUT LBIST execution start by SSW
Lockstep for CPU2 Lockstep for CPU 2
Lockstep for CPU3 Lockstep for CPU3
" START' " START"
" START' " START"
" START'+4 " START"+4

(1) Settings are stored in the project Is! file: myproject.ls!

Restore Defaults Apply

3. Leave the other default settings untouched and select OK.

This will initialize the Boot Mode Header to allow for stand-alone execution of the target.

40

Chapter 6. Reference

Every analysis result shows a number of tabs with information. What information is shown depends on
the type of the analysis: performance analysis, memory access analysis or function-level analysis.

Furthermore there is a Settings dialog where you can specify values that influence the way information
is shown in the analysis results.

This chapter contains a description of the Settings dialog and contains an overview of all the fields and
columns in an analysis result.

6.1. Settings Dialog

In the Settings dialog you can specify values that influence the way information is shown in the analysis
results.

To open the Settings dialog
1. From the Project menu, select Settings.

The Settings dialog appears.

l:Settings @

Threshold for average stalls per clock: 0,700

Threshold factor for memory access: 0,050

0K | Cancel |

2. Change the value(s) and click OK.
All results will be updated to reflect the new thresholds.

When you run a Performance analysis, the value of Threshold for average stalls per clock determines
when the Average stalls per clock value is marked red.

The Threshold factor for memory access is used to calculate the threshold for memory access in a
Memory analysis:

Threshold factor for memory access * total DSPR access = Threshold for memory access

This means, for example, when DSPRO accesses is 50 and DSPR2 accesses is 31950 the total DSPR
access is 32000, and the value of DSPR2 of 31950 will be marked red because it is higher than
0.05*32000=1600. Also other memory accesses that are higher than 1600 will be marked red.

41

TASKING Embedded Profiler User Guide

6.2. Summary Tab

On the Summary tab the following information is available for the different analysis types

Performance analysis
* Info

» Performance hotspots

* ICache misses

* DCache misses

Memory access analysis
* Info

« Performance hotspots

» DCache misses

* Memory access

* Memory conflicts

Function-level analysis
* Info

» Performance hotspots

42

6.2.1. Info

The Info part of the Summary tab contains the following information.

Info
Processor
Timestamp:
Trace settings:
Clock frequencies (MHz):
CPU data/program cache:
CPU clock count:

DCache misses:

TC29xED
2018-11-16 14:02:06.685

Core=0, Memory=TCM (tile 0-15), Mode=FReset-OneShot
CPU0=299, CPU1=299, CPU2=299, SRI=299, SPB=149, BBE=149

DCACHED=1, PCACHED=1, DCACHEL=0, PCACHEL=0, DCACHE2=0, PCACHEZ=0

302842
30

Data Scratchpad RAM accesses: 801

Reference

DSPRO accesses: 41
DSPR2 accesses: 32845
PFLASHO accesses: 75
Local Memory Unit accesses: 487
SFR accesses 103
Information Description Perf Mem Func
Analysis |Analysis |Analysis
Processor The name of the selected processor device |0 O ad
Timestamp The date and time the analysis was run d O d
Trace settings The TriCore core (0, 1, 2, ...) the analysis |0 O ad
was run for, the trace memory and tile range
used and the trace mode
Clock frequencies The values of several clock frequencies. The | O O
values are read at the start of the analysis
before any reset. If the CPU was reset or
halted at analysis start, the clock frequencies
are not measured.
CPU data/program The CPU O, 1, 2, ... data cache (DCache) |O O O
cache and program cache (PCache) settings.
DCACHEO=1 means CPUO.DCACHE is
enabled, PCACHE1=0means
CPUL.PCACHE is disabled. The values are
read at the start of the analysis before any
reset.
CPU clock count The number of CPU clock cycles on the ad O O
board it took to run the analysis
Stalls The number of clock cycles the CPU stalls |0
on branch misses, ICache misses and/or
DCache misses
Average stalls per clock |The average of stalls / CPU clock count d

43

TASKING Embedded Profiler User Guide

Information Description Perf Mem Func
Analysis |[Analysis [Analysis
ICache misses The number of failed attempts to read or ad
write instructions from the instruction cache
(ICache)
DCache misses The number of failed attempts to read or ad O
write data from the data cache (DCache)
Data Scratchpad RAM | The number of read or write accesses to O
accesses Data Scratchpad RAM, where the core could
not be determined
DSPRx accesses The number of read or write accesses to O
Data Scratchpad RAM X, where x can be 0
.5
PFLASHXx accesses The number of read or write accesses to O
flash memory
External Bus Unit The number of read or write accesses to the O
memory accesses EBU
Local Memory Unit The number of read or write accesses to the O
accesses LMU
Program Memory Unit | The number of read or write accesses to the O
accesses PMU
SFR accesses The number of read or write accesses to O

Special Function registers

Items that are marked red are high values that may be improved. Hover the mouse over a value to see
additional information. You can influence the thresholds in the Settings dialog. See Section 6.1, Settings
Dialog.

6.2.2. Performance Hotspots
The Performance hotspots part of the Summary tab shows the functions with the highest clock count.

This chart is available for all analysis types. As you can see in the following example, most of the time is
spent in the functions _c_i ni t and n=i n.

44

Reference

Performance Hotspots
_c_init
main
_start
_emitchar _I
_doprint]
_dbg_cacheawi | B Clock count
_dbg_trap_tc
_putnumber

clock

setclockpersec

0 20000 40000 60000 80000 100000 120000 140000 160000

If you double-click on a function, the Source tab opens at the selected function.

6.2.3. ICache Misses

The ICache misses part of the Summary tab show an ICache Miss chart. It shows the functions with the
highest number of instruction cache (ICache) misses. This chart is available for performance analyses
only.

ICache Misses

_start
_doprint
_putnumber
setclockpersec
_flsbuf
_c_init_entry M ICache miss count
_putstring

printf

clock

_fflush

6.2.4. DCache Misses

The DCache misses part of the Summary tab show a DCache Miss chart. It shows the functions with
the highest number of data cache (DCache) misses. This chart is available for performance analyses and
memory access analyses.

45

TASKING Embedded Profiler User Guide

DCache Miszes

_c_init_entry
felose
_host_close
_host_write
_flsbuf
_doprint

M DCache miss count

_doclose

6.2.5. Memory Access

The Memory Access part of the Summary tab shows the functions with the highest number of data
accesses to memory. This chart is available for memory access analyses only.

Hover the mouse over a value to see additional information.

Memory Access
_c_init
main
_emitchar
_doprint
_ltoa
.cocofun_7]
flush |

strlen

B Total number of access

_dbg_trap_tc]

.cocofun_l

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

6.2.6. Memory Conflicts

The Memory Conflicts part of the summary tab shows the total number of access conflicts where two
variables from different cores access the same memory at the same time. This is called concurrent access.
The deno_concur rent tutorial delivered with the product demonstrates this problem. This chart is
available for memory access analyses only.

The global variable name that accesses the memory, the core from which the conflicting access originated
and the type of access read (R) or write (W) is listed for the two conflicting variables.

Hover the mouse over a value to see additional information.

46

Reference

Memaory Conflicts

var)-CPUO-W/varl -CPUL-W

var)-CPUO-W/var2-CPU2-R

var0-CPUO-W/var2-CPUZ-W B Total number of access canflicts

0 200 400 600 800 1000

6.3. Functions Tab

The Functions tab shows a list with all the measured functions. This tab is available in all analysis types.
The performance analysis contains the most columns. Click on a column to sort the list according to the
information in that column. If you double-click on a function, the Source tab opens at the selected function.
If no source lines can be displayed, the Disassembly tab opens. Hover the mouse over a column to see
additional information.

The Functions tab contains the following information:

Column Description Perf Mem Func
Analysis |Analysis |Analysis
Function The name of the measured function d O ad
Source The relative path to the source file as stored | O O
in the application ELF file
Address The address of the function in the application | O O
ELF file
Clocks The total number of CPU clocks spent in the |0 O d
function
% Of Total Time The application execution time spent in the |0 O O

function as a percentage of the total
application execution time

Clocks With Children The total number of CPU clocks spent in the | O ad
function and call tree descendents

Entries The total number of times the function is O 0 O
called

Avg. Clocks/Entry The average number of CPU clocks spent |0 O g
in a function per function entry

Max Clocks/Entry The highest number of CPU clocks spent in|O O ad
a function per function entry

Min Clocks/Entry The lowest number of CPU clocks spentin |0 O O
a function per function entry

Jitter/Entry The difference between the highest and d O ad

lowest number of CPU clocks spent in a
function. This is the difference of the previous
two columns.

47

TASKING Embedded Profiler User Guide

Column

Description Perf Mem Func
Analysis |[Analysis [Analysis

Branch Misses

The total number of branch misses O

ICache Misses

The total number of instruction cache misses

DCache Misses

Stalls

ad
The total number of data cache misses a a
a

The total number of stalls due to memory
access delays or pipeline hazards

6.4. Source Lines Tab

The Source Lines tab shows a list with all the source lines of the measured functions where branch misses,
instruction cache misses, data cache misses and/or stalls appear. This tab is available for performance
analyses only. Click on a column to sort the list according to the information in that column. Hover the
mouse over a column to see additional information.

If you double-click on a row, the Source tab opens at the selected source line.

The Source Lines tab contains the following information:

Column Description

Line The source line number, function name and relative path to the source file
where the problem occurred

Clocks The total number of CPU clocks spent on the source line

Branch Misses

The total number of branch misses

ICache Misses

The total number of instruction cache misses

DCache Misses

The total number of data cache misses

Stalls

The total number of stalls due to memory access delays or pipeline hazards

6.5. Instructions Tab

The Instructions tab shows a list with all the instructions of the measured functions where branch misses,
instruction cache misses, data cache misses and/or stalls appear. This tab is available for performance
analyses only. Click on a column to sort the list according to the information in that column. Hover the
mouse over a column to see additional information.

If you double-click on a row, the Disassembly tab opens at the selected instruction.

The Instructions tab contains the following information:

Column Description
Address The instruction address and function name where the problem occurred
Clocks The total number of CPU clocks spent on the instruction

48

Reference

Column Description

Branch Misses The total number of branch misses

ICache Misses The total number of instruction cache misses

DCache Misses The total number of data cache misses

Stalls The total number of stalls due to memory access delays or pipeline hazards

6.6. Memory Access Tab

The Memory Access tab shows the functions and variables and their data accesses to memory. This tab
is available for memory access analyses only.

Hover the mouse over a value to see additional information.

£} TASKING Embedded Profiler voyrz - demo_dspr_tc29 - MemAnalysis-1 - Result-1 =8 B=R =
Project Amalysis Result Help
ar P
4 [= demo_dspr tc29 Summary | Functions | Memory Access | Memory Canflicts | Source | Disassembly
¢ (8 Perfhnalysis-1 Function Variable Region | Access | Origin |:Gount: | Cache Misses -
4) MemAnalysis-1 |
& Resultl [main X DSPR2 W CPUD 16384

_c_init % DSPR2 w CPUD 16384
_emitchar _iob MU R CPUD 272
_emitchar (unidentified) DSPR w CPUD 177
_emitchar (unidentified) DSPR R CPUD 129 2
_start (unidentified) DSPR w CPUD 112
_emitchar _iob LMU w CPUD 81
_c_init (unidentified) DSPR2 w cPUO 77 -
_c_init (unidentified) PFLASHO R CPUD 75 4
_start (unidentified) SFR R CPUD 53 =
_c_init _iob LMU w CPUD 50 12
_doprint (unidentified) DSPR R CPUD 36 1
_dbg_cacheawi (unidentified) DSPR w CPUD 36
_dbg_trap_tc (unidentified) DSPR w CcPUO 30
_dbg_cacheawi (unidentified) DSPR R cPUD A
_doprint (unidentified) DSPR w CcPUD 23
strlen (unidentified) DSPR R CPUD 18
_dbg_trap_tc (unidentified) DSPR. R CPUD 18
fclose (unidentified) DSPR w CPUD 16
_ltoa (unidentified) DSPR w CPUD 16
_host_close (unidentified) DSPR w CPUD 14
_fflush (unidentified) DSPR w CPUD 14
printf (unidentified) DSPR w CPUD 12
clock (unidentified) SFR R CPUD 10
_fflush _iob LMu R CPUD 10
_doclose _iob LMU R CPUD 10 1
strlen (unidentified) DSPR w cPUO 9
felose (unidentified) DSPR R CPUD 9
_putstring (unidentified) DSPRO R CPUD 9 = 4

The Memory Access tab contains the following information:

Column Description

Function The name of the function that contains the global variable.

49

TASKING Embedded Profiler User Guide

Column Description

Variable The name of the global variable, if the address is associated with a variable,
otherwise "(unidentified)" is shown. This may be because of function stack
area, csa area, peripheral SFR area or another unknown area. Another
possibility is that it is a local static variable which is not shown. In order to have
static variables listed in the profiling analysis results, when building your
application specify the assembler option --emit-locals=+symbols, orin Eclipse
select Project » Properties for » C/C++ Build » Settings » Tool Settings »
Assembler » Symbols » Emit local non-EQU symbols.

Region The name of the memory

Access The type of access read (R) or write (W)

Origin The core from which the conflicting access originated
Count The number of accesses

Cache Misses The number of cache misses for this specific access

6.7. Memory Conflicts Tab

The Memory Conflicts tab shows the conflicts where two variables from different cores access the same
memory at the same time. This is called concurrent access. The deno_concur r ent tutorial delivered
with the product demonstrates this problem. This tab is available for memory access analyses only.

Hover the mouse over a value to see additional information.

| Summary | Functions | Memory Access| Memory Conflicts | Sourcel Disassemblyl Raw Trace Data

Furlct?on—l Variable-1 Region-1 Access-1 Origin-1 Function-2 Variable-2 Region-2 Access-2 Origin-2 Count
main varl Lmu w CPUD main varl Lmu W CPUL 936
main varl) LMu w CPUOD main var2 LMu R CPUZ 1
main wvari LMu w CPUO main var LMuU w CPUZ 1

The Memory Conflicts tab contains the following information:

Column Description

Function-1 / Function-2 |The name of the first/second function that contains the global variable.

Variable-1 / Variable-2 | The name of the first/second global variable

Region-1/ Region-2 The name of the first/second memory

Access-1 / Access-2 The type of access read (R) or write (W) for the first/second variable

Origin-1/ Origin-2 The core of the first/second variable from which the conflicting access originated

Count The number of access conflicts

50

Reference

6.8. Source Tab

The Source tab shows the source code for the selected function. For performance analyses only, trace
data is also present grouped by source line.

{21 TASKING Embedded Prafiler vicyrz - demo_dspr_tc29 - PerfAnalysis-1 - Result-1 =R =R
Project Analysis Result Help
587 @
4= demo_dspr_tc2d | Summary | Functions | Source Lines | Instructions | Seurce | Disassembly
4 @ PerfAnalysis-1
[Result-1 Adema_dspr. (loaded C:AUsers\name\workspace_profidema_dspr_tc23\demo_dspr.c from 2018-11-00 10:53:50 AM] 7] Show disassembly

LineNr Source Clocks Branch Misses ICache Misses DCache Misses Stalls b
26
27 7 this is the original lins
8 </ x[] is by default allocated in DSFRZ
29 volatils int =[ARRAY SIZE]:
0
31 delse
32
33 -/ this is the fized line
34 #7 we allocate =[] in DSPRO to awoid the penalty in stalls
35 volatils int _ privateD x[ARRAY SIZE]:
36
37 #endif
38 - -
39 int main(void) 147848 - _ _ 3
0 1 - -
u printf("Startsa"): 2
02 - -
3 clock_t clockstart = clock(); 7 . . . a |
44 - - = 3
45 for (int 1 = 0; 1 < ARRAV SIZE: ++1) udn 1 1
15 { = = -
47 =[i] = 1: 8 . . B 7
48 ¥
49
50 int duration = (int) (clock() — clockstart): 8 B B R 7
51 printf("duration %i ticks'n'. duration): 10 - - - 7 2

The columns are the same as explained in Section 6.4, Source Lines Tab. Red values indicate a miss or
a stall. Hover the mouse over a value to see additional information.

With the Browse button you can open another source file.

When you enable Show disassembly, the disassembly will be intermixed with the source lines.
6.9. Disassembly Tab

The Disassembly tab shows the instructions for the selected function. For performance analyses only,
trace data is also present grouped by instruction address.

51

TASKING Embedded Profiler User Guide

£} TASKING Embedded Profiler viyrz - demo_dspr_te29 - PerfAnalysis-1 - Result-1 =nEeh =<
Project Analysis Result Help

T

4 [z demo_dspr_tc29 Summary | Functions | Source Lines | Instructions | Source| Disassembly

“ @jer:::j‘l:r?s-l Function Address Disassembly Clocks Branch Misses ICache Misses DCache Misses Stalls e

= (:80000fb8 and dls, #0=f 18 - 1 - 19
0:80000fba diw d0~dl.d0.d1s 2
0:80000fbe mow d4-d5.d0 2 -
:B0000Fc2 3 0=xB0001084 10 = - - 11

main
B0000fcE =ub.a =p. #0=8 4 3
0:80000fc8 lea a4, 0x80000024
0x80000fcc call 0xB000105e 2 = - - -
:80000fd0 call O=zB0000bd42 7 = - - 4
0x80000fd4 mov df.dz2 8 = > - 7
0xB0000fdé movh.a alb, #0x5000
:80000fda lea a2l5.[al5]0=x5000
0:80000fde mov di5, #0=1 = -
0x80000fed lea a2, 0=3fff 2 1 -
0xB0000fed =t w [215+]0=4 d15 139212 - = = 131018 i
0x80000fe6 loop a2, 0=x80000f=4 8207 = 1 = 15
0x80000fe8 call 0=80000bd2 8 = > - 7
0:80000fec sub dz.ds 8 - = = 7
3:80000fee st .w [sp],d2
0:B0000Ff0 movh.a a4, #0=8000
0x80000ff4 lea ad, [24]0x112a
0xB0000Ff3 call 0=B000105e 2
O:B0000ffc mow dz, #0=0 [= - - 5
:B0000ffe ret 1
exit

(:B0001000 mow d15.d4 18 = 1 - 16
(80001002 call O=zB00000fe 1 = = - -
080001006 call 0=800003=28 5 = - R 4
080001008 mow d4.dis 4 - - - 4 -

The columns are the same as explained in Section 6.5, Instructions Tab. Red values indicate a miss or
a stall. Hover the mouse over a value to see additional information.

If you double-click on a row, the Raw Trace Data tab, if present, opens at the selected address.

Note that due to hardware constraints, a miss or a stall cannot always be linked to the exact
assembly instruction.

6.10. Raw Trace Data Tab

The Raw Trace Data tab is for advanced users who want to examine program flow. Raw trace data is
useful, for example, to see why stall cycles are assigned to instructions that do not access memory. This
tab is available for all analysis types, but only when you enable Save and display raw trace data in the
Run Analysis dialog.

Hover the mouse over a value to see additional information.

52

Reference

af B &R

4 (= demo_dspr_tc29
4 bgh PerfAnalysis-1
4 Result-1
[Result-2
[Raw Trace Data

Project Analysis Result Help

{2} TASKING Embedded Profiler w.yrz - demo_dspr_tc29 - PerfAnalysis-1 - Raw Trace Data = e <]
Summary | Functions | Source Lines | Instructions | Source | Disassembly | Raw Trace Data
[2][@][&] [®] serch osomses
[nr] Ticks OPoint Crigin Operation Data Address o
1070 1 CPUO CPUD P 0 (0x80000250
1071 2 MCDS MCDS_COUNTER COUNTER_3 4 00
1072 2 MCDS MCDS_COUNTER COUNTER_3 4 2]
1072 1 CPUO CPUD P 0 0x80000256
1074 1 MCDS MCDS_COUNTER COUNTER_1 1 (2]
1075 0 CPUO CPUD P 0 0x80000260
1076 1 MCDS MCDS_COUNTER COUNTER 3 3 2]
1077 2 MCDS MCDS_COUNTER COUNTER_3 3 0:0
1078 0 CPUD CPUD I 0 0x80000262
1079 2 MCDS MCDS_COUNTER COUNTER_3 3 00
1080 0 CPUO CPUD P 0 (080000264
1081 1 CPUO CPUD P 0 0x80000268
11082 2 CPUO CPUD P 0 0xB0000266 :
1082 0 CPUO CPUD P 0 (080000268
1084 1 CPUD CPUD P [0x80000266
1085 1 CPUO CPUD P 0 0x30000263
1086 1 CPUO CPUD P 0 0xB0000266
1087 0 CPUO CPUD P [(0x80000263
1083 1 CPUO CPUD P 0 0xB0000266
1089 0 CPUO CPUD P 0 0x80000263
1090 1 CPUO CPUD P 0 0xE0000266
1091 0 CPUD CPUD P 0 0x80000263
1092 1 MCDS MCDS_COUNTER COUNTER_3 3 00
1092 0 CPUO CPUD P 0 0x80000266 i

In the Search field you can enter an address to search for. All matches are marked red. With the buttons
you can navigate to the Next, Previous, First or Last occurrence.

If you double-click on a row, the Disassembly tab opens at the selected address.

The Raw Trace Data tab contains the following information:

Column Description

[nr] The sequence number for every raw trace operation.

Ticks The MCDS clock Ticks between trace messages. Please note that one Tick is
equal to two CPU cycles.

OPoint Displays the Observation Point of the trace data. The observation point is the
physical data acquisition point inside the SoC (System-on-Chip). For example
the CPUO, CPU1, SRI bus, and so on.

Origin The origin of the activity. In most cases this is the same as OPoint.

Operation The operation being executed but not on the level of assembler mnemonics
for program trace. It displays a more abstract type of the operation. For example,
IP_CALL, IP_RET, MEMORY_READ, MEMORY_WRITE or one of the internal
performance counters COUNTER_x.

Data The data written or read.

Address The pointer of the instruction (IP) which is being executed. If the Operation

column displays an R/W Operation, the Address column displays the address
where data is read or written to.

53

TASKING Embedded Profiler User Guide

Example how to use raw trace data for analysis

1. Importthe denb_concurrent example.

2. Run a One shot mode performance analysis with Save and display raw trace data enabled.
3. Open the Instructions tab and sort the Stalls column.

Notice that near the topisamov d2, d8 instruction with a value of 80 stalls at address 0x8000080a.

| Summaryl Functions I Source Lines| Instructions | Source | Disassembly | Raw Trace Data|

Address Disassembly Clocks Branch Misses 1Cache Misses DCache Misses Stails i
0x8000130e 1d.w d15, 0=xb0O00000ON 1011 - 2 - 21951 5
080000222 1ld.w dl, [22+]0=4 222 - - 6 189
0x%80000e42 1d.bu dil5. [a15] 33 - - - 133
0x30000dca movh.a al5, #0={f003 12 - - R a4
0x8000025¢ =t .w [212+]0=4.d10 192 - - 6 a9
0x800006e0 extr.u d4.d4. #0=0, #0=8 34 - 1 - a3
0x8000080a mow dz. ds 68 - al - 80
080000850 1d.=a alb. [ad] 34 - 1 - 74

4. Inthe Raw Trace Data tab, enter the address 0x8000080a in the Search box and search for the
first occurrence.

When searching through the raw trace data, it shows that the previous executed instruction is at
address 0x800007cc.

| Summary I Functions I Source Lines | Instructions | Source | Disassembly| Raw Trace Data |

Search: 0x8000080a

[nr] Ticks OPoint Origin Operation Data Address o
12439 1 MCDS MCDS_COUNTER COUNTER 3 3 00

12440 2 MCD5 MCDS_COUNTER COUNTER_3 4]

12441 2 CPUD CPUD P 0 (0x800007 c6
12442 CPUD CPUD P 0 (=B00007 cB
12443 1 MCDS MCDS_COUNTER COUNTER_3 3 00

12444 0 CPUD CPUD P 0 0xB00007 ca
12445 CPUD CPUD i 0 (0x800007 cc
12446 1 MCDS MCDS_COUNTER COUNTERZ 1 00

12447 1 MCDS MCDS_COUNTER COUNTER_3 E (]

12448 2 MCDS MCDS_COUNTER COUNTER_3 4 00

12445 1 MCDS MCDS_COUNTER COUNTER_L 1 (]

12450 1 MCDS MCDS_COUNTER COUNTER_3 4 00

12451 2 MCD5 MCDS_COUNTER COUNTER_3 4]

12452 0 CPUD CPUD P 0 (0x8000080a
12453 0 CPUD CPUD IP_RET 0 (=B000080c
12454 2 MCDS MCDS_COUNTER COUNTER 3 4 00

5. Double-click on the address and the view will switch to the Disassembly tab at the specified address,
in this case j ne d15, d0, 0x8000080a.

54

Summary | Functions | Source Lines | Instructions | Source| Disassembly | Raw Trace Data

Function

Address

0x800007ba
0:800007be
0x800007be
0800007 0
0x800007 c2
0500007 c4
0x800007 c6
0800007 8
0800007 ca
0800007 cc
0800007 ce
0x800007d0

Disassembly

=t.b
1d.a
add.a
st.a
Jeq
1d.w
1d.w
sub
1d.w
jne
1d.w
1d.w

[a2].d8

a2, [alk]

a2, #0=xl

[al5].a2

dl5.d8. 0=80000%ce
do. [a15]

d15, [al5]0x4
do.d15

415, [a15]0xe
d15.d0. 0=B000080a
do. [a15]

d15, [al15]0=d

Clocks

33
32
11
74
11
39
40
10

Reference

Branch Misses ICache Misses

DCache Misses

Stalls

W

-

55

TASKING Embedded Profiler User Guide

56

	TASKING Embedded Profiler User Guide
	Table of Contents
	Manual Purpose and Structure
	Chapter 1. Installing the Software
	1.1. Installation for Windows
	1.2. Licensing
	1.2.1. Obtaining a License
	1.2.2. Frequently Asked Questions (FAQ)
	1.2.3. Installing a License
	1.2.3.1. Configure the Firewall in your Network
	1.2.3.2. Installing Server Based Licenses (Floating or Node-Locked)
	1.2.3.3. Installing Client Based Licenses (Node-Locked)

	Chapter 2. Introduction to the TASKING Embedded Profiler
	2.1. Emulation Device (ED)
	2.2. Trace Support

	Chapter 3. Tutorial
	3.1. Prepare Demo Project in Eclipse
	3.2. Analyze Project in TASKING Embedded Profiler
	3.3. Fix the Problem
	3.4. Verify Fix in TASKING Embedded Profiler
	3.5. Compare Results
	3.6. Export Results

	Chapter 4. Effects on Profiling Analysis Results
	4.1. Differences in Analysis Results Due to Compiler Optimizations
	4.2. Effects of Interrupt Handlers on Interrupted Functions

	Chapter 5. Using the TASKING Embedded Profiler
	5.1. Run the Embedded Profiler in Interactive Mode
	5.2. Run the Embedded Profiler from the Command Line
	5.2.1. Command Line Tutorial

	5.3. What to Do if Your Application Does not Start on a Board?

	Chapter 6. Reference
	6.1. Settings Dialog
	6.2. Summary Tab
	6.2.1. Info
	6.2.2. Performance Hotspots
	6.2.3. ICache Misses
	6.2.4. DCache Misses
	6.2.5. Memory Access
	6.2.6. Memory Conflicts

	6.3. Functions Tab
	6.4. Source Lines Tab
	6.5. Instructions Tab
	6.6. Memory Access Tab
	6.7. Memory Conflicts Tab
	6.8. Source Tab
	6.9. Disassembly Tab
	6.10. Raw Trace Data Tab

